]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/ksm.c
ksm: get_ksm_page locked
[mirror_ubuntu-bionic-kernel.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f
IE
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
62b61f61 32#include <linux/memory.h>
31dbd01f 33#include <linux/mmu_notifier.h>
2c6854fd 34#include <linux/swap.h>
f8af4da3 35#include <linux/ksm.h>
4ca3a69b 36#include <linux/hashtable.h>
878aee7d 37#include <linux/freezer.h>
72788c38 38#include <linux/oom.h>
90bd6fd3 39#include <linux/numa.h>
f8af4da3 40
31dbd01f 41#include <asm/tlbflush.h>
73848b46 42#include "internal.h"
31dbd01f 43
e850dcf5
HD
44#ifdef CONFIG_NUMA
45#define NUMA(x) (x)
46#define DO_NUMA(x) do { (x); } while (0)
47#else
48#define NUMA(x) (0)
49#define DO_NUMA(x) do { } while (0)
50#endif
51
31dbd01f
IE
52/*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
90 */
91
92/**
93 * struct mm_slot - ksm information per mm that is being scanned
94 * @link: link to the mm_slots hash list
95 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 96 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
97 * @mm: the mm that this information is valid for
98 */
99struct mm_slot {
100 struct hlist_node link;
101 struct list_head mm_list;
6514d511 102 struct rmap_item *rmap_list;
31dbd01f
IE
103 struct mm_struct *mm;
104};
105
106/**
107 * struct ksm_scan - cursor for scanning
108 * @mm_slot: the current mm_slot we are scanning
109 * @address: the next address inside that to be scanned
6514d511 110 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
111 * @seqnr: count of completed full scans (needed when removing unstable node)
112 *
113 * There is only the one ksm_scan instance of this cursor structure.
114 */
115struct ksm_scan {
116 struct mm_slot *mm_slot;
117 unsigned long address;
6514d511 118 struct rmap_item **rmap_list;
31dbd01f
IE
119 unsigned long seqnr;
120};
121
7b6ba2c7
HD
122/**
123 * struct stable_node - node of the stable rbtree
124 * @node: rb node of this ksm page in the stable tree
125 * @hlist: hlist head of rmap_items using this ksm page
62b61f61 126 * @kpfn: page frame number of this ksm page
7b6ba2c7
HD
127 */
128struct stable_node {
129 struct rb_node node;
130 struct hlist_head hlist;
62b61f61 131 unsigned long kpfn;
7b6ba2c7
HD
132};
133
31dbd01f
IE
134/**
135 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 136 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 137 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
31dbd01f
IE
138 * @mm: the memory structure this rmap_item is pointing into
139 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
140 * @oldchecksum: previous checksum of the page at that virtual address
e850dcf5 141 * @nid: NUMA node id of unstable tree in which linked (may not match page)
7b6ba2c7
HD
142 * @node: rb node of this rmap_item in the unstable tree
143 * @head: pointer to stable_node heading this list in the stable tree
144 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
145 */
146struct rmap_item {
6514d511 147 struct rmap_item *rmap_list;
db114b83 148 struct anon_vma *anon_vma; /* when stable */
31dbd01f
IE
149 struct mm_struct *mm;
150 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 151 unsigned int oldchecksum; /* when unstable */
90bd6fd3 152#ifdef CONFIG_NUMA
e850dcf5 153 int nid;
90bd6fd3 154#endif
31dbd01f 155 union {
7b6ba2c7
HD
156 struct rb_node node; /* when node of unstable tree */
157 struct { /* when listed from stable tree */
158 struct stable_node *head;
159 struct hlist_node hlist;
160 };
31dbd01f
IE
161 };
162};
163
164#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
165#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
166#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
167
168/* The stable and unstable tree heads */
90bd6fd3
PH
169static struct rb_root root_unstable_tree[MAX_NUMNODES];
170static struct rb_root root_stable_tree[MAX_NUMNODES];
31dbd01f 171
4ca3a69b
SL
172#define MM_SLOTS_HASH_BITS 10
173static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
174
175static struct mm_slot ksm_mm_head = {
176 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
177};
178static struct ksm_scan ksm_scan = {
179 .mm_slot = &ksm_mm_head,
180};
181
182static struct kmem_cache *rmap_item_cache;
7b6ba2c7 183static struct kmem_cache *stable_node_cache;
31dbd01f
IE
184static struct kmem_cache *mm_slot_cache;
185
186/* The number of nodes in the stable tree */
b4028260 187static unsigned long ksm_pages_shared;
31dbd01f 188
e178dfde 189/* The number of page slots additionally sharing those nodes */
b4028260 190static unsigned long ksm_pages_sharing;
31dbd01f 191
473b0ce4
HD
192/* The number of nodes in the unstable tree */
193static unsigned long ksm_pages_unshared;
194
195/* The number of rmap_items in use: to calculate pages_volatile */
196static unsigned long ksm_rmap_items;
197
31dbd01f 198/* Number of pages ksmd should scan in one batch */
2c6854fd 199static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
200
201/* Milliseconds ksmd should sleep between batches */
2ffd8679 202static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 203
e850dcf5 204#ifdef CONFIG_NUMA
90bd6fd3
PH
205/* Zeroed when merging across nodes is not allowed */
206static unsigned int ksm_merge_across_nodes = 1;
e850dcf5
HD
207#else
208#define ksm_merge_across_nodes 1U
209#endif
90bd6fd3 210
31dbd01f
IE
211#define KSM_RUN_STOP 0
212#define KSM_RUN_MERGE 1
213#define KSM_RUN_UNMERGE 2
2c6854fd 214static unsigned int ksm_run = KSM_RUN_STOP;
31dbd01f
IE
215
216static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
217static DEFINE_MUTEX(ksm_thread_mutex);
218static DEFINE_SPINLOCK(ksm_mmlist_lock);
219
220#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
221 sizeof(struct __struct), __alignof__(struct __struct),\
222 (__flags), NULL)
223
224static int __init ksm_slab_init(void)
225{
226 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
227 if (!rmap_item_cache)
228 goto out;
229
7b6ba2c7
HD
230 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
231 if (!stable_node_cache)
232 goto out_free1;
233
31dbd01f
IE
234 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
235 if (!mm_slot_cache)
7b6ba2c7 236 goto out_free2;
31dbd01f
IE
237
238 return 0;
239
7b6ba2c7
HD
240out_free2:
241 kmem_cache_destroy(stable_node_cache);
242out_free1:
31dbd01f
IE
243 kmem_cache_destroy(rmap_item_cache);
244out:
245 return -ENOMEM;
246}
247
248static void __init ksm_slab_free(void)
249{
250 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 251 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
252 kmem_cache_destroy(rmap_item_cache);
253 mm_slot_cache = NULL;
254}
255
256static inline struct rmap_item *alloc_rmap_item(void)
257{
473b0ce4
HD
258 struct rmap_item *rmap_item;
259
260 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
261 if (rmap_item)
262 ksm_rmap_items++;
263 return rmap_item;
31dbd01f
IE
264}
265
266static inline void free_rmap_item(struct rmap_item *rmap_item)
267{
473b0ce4 268 ksm_rmap_items--;
31dbd01f
IE
269 rmap_item->mm = NULL; /* debug safety */
270 kmem_cache_free(rmap_item_cache, rmap_item);
271}
272
7b6ba2c7
HD
273static inline struct stable_node *alloc_stable_node(void)
274{
275 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
276}
277
278static inline void free_stable_node(struct stable_node *stable_node)
279{
280 kmem_cache_free(stable_node_cache, stable_node);
281}
282
31dbd01f
IE
283static inline struct mm_slot *alloc_mm_slot(void)
284{
285 if (!mm_slot_cache) /* initialization failed */
286 return NULL;
287 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
288}
289
290static inline void free_mm_slot(struct mm_slot *mm_slot)
291{
292 kmem_cache_free(mm_slot_cache, mm_slot);
293}
294
31dbd01f
IE
295static struct mm_slot *get_mm_slot(struct mm_struct *mm)
296{
31dbd01f 297 struct hlist_node *node;
4ca3a69b
SL
298 struct mm_slot *slot;
299
300 hash_for_each_possible(mm_slots_hash, slot, node, link, (unsigned long)mm)
301 if (slot->mm == mm)
302 return slot;
31dbd01f 303
31dbd01f
IE
304 return NULL;
305}
306
307static void insert_to_mm_slots_hash(struct mm_struct *mm,
308 struct mm_slot *mm_slot)
309{
31dbd01f 310 mm_slot->mm = mm;
4ca3a69b 311 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
312}
313
314static inline int in_stable_tree(struct rmap_item *rmap_item)
315{
316 return rmap_item->address & STABLE_FLAG;
317}
318
a913e182
HD
319/*
320 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
321 * page tables after it has passed through ksm_exit() - which, if necessary,
322 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
323 * a special flag: they can just back out as soon as mm_users goes to zero.
324 * ksm_test_exit() is used throughout to make this test for exit: in some
325 * places for correctness, in some places just to avoid unnecessary work.
326 */
327static inline bool ksm_test_exit(struct mm_struct *mm)
328{
329 return atomic_read(&mm->mm_users) == 0;
330}
331
31dbd01f
IE
332/*
333 * We use break_ksm to break COW on a ksm page: it's a stripped down
334 *
335 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
336 * put_page(page);
337 *
338 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
339 * in case the application has unmapped and remapped mm,addr meanwhile.
340 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
341 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
342 */
d952b791 343static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
344{
345 struct page *page;
d952b791 346 int ret = 0;
31dbd01f
IE
347
348 do {
349 cond_resched();
350 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 351 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
352 break;
353 if (PageKsm(page))
354 ret = handle_mm_fault(vma->vm_mm, vma, addr,
355 FAULT_FLAG_WRITE);
356 else
357 ret = VM_FAULT_WRITE;
358 put_page(page);
d952b791
HD
359 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
360 /*
361 * We must loop because handle_mm_fault() may back out if there's
362 * any difficulty e.g. if pte accessed bit gets updated concurrently.
363 *
364 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
365 * COW has been broken, even if the vma does not permit VM_WRITE;
366 * but note that a concurrent fault might break PageKsm for us.
367 *
368 * VM_FAULT_SIGBUS could occur if we race with truncation of the
369 * backing file, which also invalidates anonymous pages: that's
370 * okay, that truncation will have unmapped the PageKsm for us.
371 *
372 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
373 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
374 * current task has TIF_MEMDIE set, and will be OOM killed on return
375 * to user; and ksmd, having no mm, would never be chosen for that.
376 *
377 * But if the mm is in a limited mem_cgroup, then the fault may fail
378 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
379 * even ksmd can fail in this way - though it's usually breaking ksm
380 * just to undo a merge it made a moment before, so unlikely to oom.
381 *
382 * That's a pity: we might therefore have more kernel pages allocated
383 * than we're counting as nodes in the stable tree; but ksm_do_scan
384 * will retry to break_cow on each pass, so should recover the page
385 * in due course. The important thing is to not let VM_MERGEABLE
386 * be cleared while any such pages might remain in the area.
387 */
388 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
389}
390
ef694222
BL
391static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
392 unsigned long addr)
393{
394 struct vm_area_struct *vma;
395 if (ksm_test_exit(mm))
396 return NULL;
397 vma = find_vma(mm, addr);
398 if (!vma || vma->vm_start > addr)
399 return NULL;
400 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
401 return NULL;
402 return vma;
403}
404
8dd3557a 405static void break_cow(struct rmap_item *rmap_item)
31dbd01f 406{
8dd3557a
HD
407 struct mm_struct *mm = rmap_item->mm;
408 unsigned long addr = rmap_item->address;
31dbd01f
IE
409 struct vm_area_struct *vma;
410
4035c07a
HD
411 /*
412 * It is not an accident that whenever we want to break COW
413 * to undo, we also need to drop a reference to the anon_vma.
414 */
9e60109f 415 put_anon_vma(rmap_item->anon_vma);
4035c07a 416
81464e30 417 down_read(&mm->mmap_sem);
ef694222
BL
418 vma = find_mergeable_vma(mm, addr);
419 if (vma)
420 break_ksm(vma, addr);
31dbd01f
IE
421 up_read(&mm->mmap_sem);
422}
423
29ad768c
AA
424static struct page *page_trans_compound_anon(struct page *page)
425{
426 if (PageTransCompound(page)) {
22e5c47e 427 struct page *head = compound_trans_head(page);
29ad768c 428 /*
22e5c47e
AA
429 * head may actually be splitted and freed from under
430 * us but it's ok here.
29ad768c 431 */
29ad768c
AA
432 if (PageAnon(head))
433 return head;
434 }
435 return NULL;
436}
437
31dbd01f
IE
438static struct page *get_mergeable_page(struct rmap_item *rmap_item)
439{
440 struct mm_struct *mm = rmap_item->mm;
441 unsigned long addr = rmap_item->address;
442 struct vm_area_struct *vma;
443 struct page *page;
444
445 down_read(&mm->mmap_sem);
ef694222
BL
446 vma = find_mergeable_vma(mm, addr);
447 if (!vma)
31dbd01f
IE
448 goto out;
449
450 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 451 if (IS_ERR_OR_NULL(page))
31dbd01f 452 goto out;
29ad768c 453 if (PageAnon(page) || page_trans_compound_anon(page)) {
31dbd01f
IE
454 flush_anon_page(vma, page, addr);
455 flush_dcache_page(page);
456 } else {
457 put_page(page);
458out: page = NULL;
459 }
460 up_read(&mm->mmap_sem);
461 return page;
462}
463
90bd6fd3
PH
464/*
465 * This helper is used for getting right index into array of tree roots.
466 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
467 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
468 * every node has its own stable and unstable tree.
469 */
470static inline int get_kpfn_nid(unsigned long kpfn)
471{
e850dcf5 472 return ksm_merge_across_nodes ? 0 : pfn_to_nid(kpfn);
90bd6fd3
PH
473}
474
4035c07a
HD
475static void remove_node_from_stable_tree(struct stable_node *stable_node)
476{
477 struct rmap_item *rmap_item;
478 struct hlist_node *hlist;
90bd6fd3 479 int nid;
4035c07a
HD
480
481 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
482 if (rmap_item->hlist.next)
483 ksm_pages_sharing--;
484 else
485 ksm_pages_shared--;
9e60109f 486 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
487 rmap_item->address &= PAGE_MASK;
488 cond_resched();
489 }
490
90bd6fd3 491 nid = get_kpfn_nid(stable_node->kpfn);
90bd6fd3 492 rb_erase(&stable_node->node, &root_stable_tree[nid]);
4035c07a
HD
493 free_stable_node(stable_node);
494}
495
496/*
497 * get_ksm_page: checks if the page indicated by the stable node
498 * is still its ksm page, despite having held no reference to it.
499 * In which case we can trust the content of the page, and it
500 * returns the gotten page; but if the page has now been zapped,
501 * remove the stale node from the stable tree and return NULL.
502 *
503 * You would expect the stable_node to hold a reference to the ksm page.
504 * But if it increments the page's count, swapping out has to wait for
505 * ksmd to come around again before it can free the page, which may take
506 * seconds or even minutes: much too unresponsive. So instead we use a
507 * "keyhole reference": access to the ksm page from the stable node peeps
508 * out through its keyhole to see if that page still holds the right key,
509 * pointing back to this stable node. This relies on freeing a PageAnon
510 * page to reset its page->mapping to NULL, and relies on no other use of
511 * a page to put something that might look like our key in page->mapping.
512 *
513 * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
514 * but this is different - made simpler by ksm_thread_mutex being held, but
515 * interesting for assuming that no other use of the struct page could ever
516 * put our expected_mapping into page->mapping (or a field of the union which
8aafa6a4 517 * coincides with page->mapping).
4035c07a
HD
518 *
519 * Note: it is possible that get_ksm_page() will return NULL one moment,
520 * then page the next, if the page is in between page_freeze_refs() and
521 * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
522 * is on its way to being freed; but it is an anomaly to bear in mind.
523 */
8aafa6a4 524static struct page *get_ksm_page(struct stable_node *stable_node, bool locked)
4035c07a
HD
525{
526 struct page *page;
527 void *expected_mapping;
528
62b61f61 529 page = pfn_to_page(stable_node->kpfn);
4035c07a
HD
530 expected_mapping = (void *)stable_node +
531 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
4035c07a
HD
532 if (page->mapping != expected_mapping)
533 goto stale;
534 if (!get_page_unless_zero(page))
535 goto stale;
536 if (page->mapping != expected_mapping) {
537 put_page(page);
538 goto stale;
539 }
8aafa6a4
HD
540 if (locked) {
541 lock_page(page);
542 if (page->mapping != expected_mapping) {
543 unlock_page(page);
544 put_page(page);
545 goto stale;
546 }
547 }
4035c07a
HD
548 return page;
549stale:
4035c07a
HD
550 remove_node_from_stable_tree(stable_node);
551 return NULL;
552}
553
31dbd01f
IE
554/*
555 * Removing rmap_item from stable or unstable tree.
556 * This function will clean the information from the stable/unstable tree.
557 */
558static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
559{
7b6ba2c7
HD
560 if (rmap_item->address & STABLE_FLAG) {
561 struct stable_node *stable_node;
5ad64688 562 struct page *page;
31dbd01f 563
7b6ba2c7 564 stable_node = rmap_item->head;
8aafa6a4 565 page = get_ksm_page(stable_node, true);
4035c07a
HD
566 if (!page)
567 goto out;
5ad64688 568
7b6ba2c7 569 hlist_del(&rmap_item->hlist);
4035c07a
HD
570 unlock_page(page);
571 put_page(page);
08beca44 572
4035c07a
HD
573 if (stable_node->hlist.first)
574 ksm_pages_sharing--;
575 else
7b6ba2c7 576 ksm_pages_shared--;
31dbd01f 577
9e60109f 578 put_anon_vma(rmap_item->anon_vma);
93d17715 579 rmap_item->address &= PAGE_MASK;
31dbd01f 580
7b6ba2c7 581 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
582 unsigned char age;
583 /*
9ba69294 584 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 585 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
586 * But be careful when an mm is exiting: do the rb_erase
587 * if this rmap_item was inserted by this scan, rather
588 * than left over from before.
31dbd01f
IE
589 */
590 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 591 BUG_ON(age > 1);
31dbd01f 592 if (!age)
90bd6fd3 593 rb_erase(&rmap_item->node,
e850dcf5 594 &root_unstable_tree[NUMA(rmap_item->nid)]);
473b0ce4 595 ksm_pages_unshared--;
93d17715 596 rmap_item->address &= PAGE_MASK;
31dbd01f 597 }
4035c07a 598out:
31dbd01f
IE
599 cond_resched(); /* we're called from many long loops */
600}
601
31dbd01f 602static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 603 struct rmap_item **rmap_list)
31dbd01f 604{
6514d511
HD
605 while (*rmap_list) {
606 struct rmap_item *rmap_item = *rmap_list;
607 *rmap_list = rmap_item->rmap_list;
31dbd01f 608 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
609 free_rmap_item(rmap_item);
610 }
611}
612
613/*
e850dcf5 614 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
615 * than check every pte of a given vma, the locking doesn't quite work for
616 * that - an rmap_item is assigned to the stable tree after inserting ksm
617 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
618 * rmap_items from parent to child at fork time (so as not to waste time
619 * if exit comes before the next scan reaches it).
81464e30
HD
620 *
621 * Similarly, although we'd like to remove rmap_items (so updating counts
622 * and freeing memory) when unmerging an area, it's easier to leave that
623 * to the next pass of ksmd - consider, for example, how ksmd might be
624 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 625 */
d952b791
HD
626static int unmerge_ksm_pages(struct vm_area_struct *vma,
627 unsigned long start, unsigned long end)
31dbd01f
IE
628{
629 unsigned long addr;
d952b791 630 int err = 0;
31dbd01f 631
d952b791 632 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
633 if (ksm_test_exit(vma->vm_mm))
634 break;
d952b791
HD
635 if (signal_pending(current))
636 err = -ERESTARTSYS;
637 else
638 err = break_ksm(vma, addr);
639 }
640 return err;
31dbd01f
IE
641}
642
2ffd8679
HD
643#ifdef CONFIG_SYSFS
644/*
645 * Only called through the sysfs control interface:
646 */
d952b791 647static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
648{
649 struct mm_slot *mm_slot;
650 struct mm_struct *mm;
651 struct vm_area_struct *vma;
d952b791
HD
652 int err = 0;
653
654 spin_lock(&ksm_mmlist_lock);
9ba69294 655 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
656 struct mm_slot, mm_list);
657 spin_unlock(&ksm_mmlist_lock);
31dbd01f 658
9ba69294
HD
659 for (mm_slot = ksm_scan.mm_slot;
660 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
661 mm = mm_slot->mm;
662 down_read(&mm->mmap_sem);
663 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
664 if (ksm_test_exit(mm))
665 break;
31dbd01f
IE
666 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
667 continue;
d952b791
HD
668 err = unmerge_ksm_pages(vma,
669 vma->vm_start, vma->vm_end);
9ba69294
HD
670 if (err)
671 goto error;
31dbd01f 672 }
9ba69294 673
6514d511 674 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
d952b791
HD
675
676 spin_lock(&ksm_mmlist_lock);
9ba69294 677 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 678 struct mm_slot, mm_list);
9ba69294 679 if (ksm_test_exit(mm)) {
4ca3a69b 680 hash_del(&mm_slot->link);
9ba69294
HD
681 list_del(&mm_slot->mm_list);
682 spin_unlock(&ksm_mmlist_lock);
683
684 free_mm_slot(mm_slot);
685 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
686 up_read(&mm->mmap_sem);
687 mmdrop(mm);
688 } else {
689 spin_unlock(&ksm_mmlist_lock);
690 up_read(&mm->mmap_sem);
691 }
31dbd01f
IE
692 }
693
d952b791 694 ksm_scan.seqnr = 0;
9ba69294
HD
695 return 0;
696
697error:
698 up_read(&mm->mmap_sem);
31dbd01f 699 spin_lock(&ksm_mmlist_lock);
d952b791 700 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 701 spin_unlock(&ksm_mmlist_lock);
d952b791 702 return err;
31dbd01f 703}
2ffd8679 704#endif /* CONFIG_SYSFS */
31dbd01f 705
31dbd01f
IE
706static u32 calc_checksum(struct page *page)
707{
708 u32 checksum;
9b04c5fe 709 void *addr = kmap_atomic(page);
31dbd01f 710 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
9b04c5fe 711 kunmap_atomic(addr);
31dbd01f
IE
712 return checksum;
713}
714
715static int memcmp_pages(struct page *page1, struct page *page2)
716{
717 char *addr1, *addr2;
718 int ret;
719
9b04c5fe
CW
720 addr1 = kmap_atomic(page1);
721 addr2 = kmap_atomic(page2);
31dbd01f 722 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
723 kunmap_atomic(addr2);
724 kunmap_atomic(addr1);
31dbd01f
IE
725 return ret;
726}
727
728static inline int pages_identical(struct page *page1, struct page *page2)
729{
730 return !memcmp_pages(page1, page2);
731}
732
733static int write_protect_page(struct vm_area_struct *vma, struct page *page,
734 pte_t *orig_pte)
735{
736 struct mm_struct *mm = vma->vm_mm;
737 unsigned long addr;
738 pte_t *ptep;
739 spinlock_t *ptl;
740 int swapped;
741 int err = -EFAULT;
6bdb913f
HE
742 unsigned long mmun_start; /* For mmu_notifiers */
743 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f
IE
744
745 addr = page_address_in_vma(page, vma);
746 if (addr == -EFAULT)
747 goto out;
748
29ad768c 749 BUG_ON(PageTransCompound(page));
6bdb913f
HE
750
751 mmun_start = addr;
752 mmun_end = addr + PAGE_SIZE;
753 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
754
31dbd01f
IE
755 ptep = page_check_address(page, mm, addr, &ptl, 0);
756 if (!ptep)
6bdb913f 757 goto out_mn;
31dbd01f 758
4e31635c 759 if (pte_write(*ptep) || pte_dirty(*ptep)) {
31dbd01f
IE
760 pte_t entry;
761
762 swapped = PageSwapCache(page);
763 flush_cache_page(vma, addr, page_to_pfn(page));
764 /*
25985edc 765 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
766 * take any lock, therefore the check that we are going to make
767 * with the pagecount against the mapcount is racey and
768 * O_DIRECT can happen right after the check.
769 * So we clear the pte and flush the tlb before the check
770 * this assure us that no O_DIRECT can happen after the check
771 * or in the middle of the check.
772 */
773 entry = ptep_clear_flush(vma, addr, ptep);
774 /*
775 * Check that no O_DIRECT or similar I/O is in progress on the
776 * page
777 */
31e855ea 778 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
cb532375 779 set_pte_at(mm, addr, ptep, entry);
31dbd01f
IE
780 goto out_unlock;
781 }
4e31635c
HD
782 if (pte_dirty(entry))
783 set_page_dirty(page);
784 entry = pte_mkclean(pte_wrprotect(entry));
31dbd01f
IE
785 set_pte_at_notify(mm, addr, ptep, entry);
786 }
787 *orig_pte = *ptep;
788 err = 0;
789
790out_unlock:
791 pte_unmap_unlock(ptep, ptl);
6bdb913f
HE
792out_mn:
793 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
794out:
795 return err;
796}
797
798/**
799 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
800 * @vma: vma that holds the pte pointing to page
801 * @page: the page we are replacing by kpage
802 * @kpage: the ksm page we replace page by
31dbd01f
IE
803 * @orig_pte: the original value of the pte
804 *
805 * Returns 0 on success, -EFAULT on failure.
806 */
8dd3557a
HD
807static int replace_page(struct vm_area_struct *vma, struct page *page,
808 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
809{
810 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
811 pmd_t *pmd;
812 pte_t *ptep;
813 spinlock_t *ptl;
814 unsigned long addr;
31dbd01f 815 int err = -EFAULT;
6bdb913f
HE
816 unsigned long mmun_start; /* For mmu_notifiers */
817 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 818
8dd3557a 819 addr = page_address_in_vma(page, vma);
31dbd01f
IE
820 if (addr == -EFAULT)
821 goto out;
822
6219049a
BL
823 pmd = mm_find_pmd(mm, addr);
824 if (!pmd)
31dbd01f 825 goto out;
29ad768c 826 BUG_ON(pmd_trans_huge(*pmd));
31dbd01f 827
6bdb913f
HE
828 mmun_start = addr;
829 mmun_end = addr + PAGE_SIZE;
830 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
831
31dbd01f
IE
832 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
833 if (!pte_same(*ptep, orig_pte)) {
834 pte_unmap_unlock(ptep, ptl);
6bdb913f 835 goto out_mn;
31dbd01f
IE
836 }
837
8dd3557a 838 get_page(kpage);
5ad64688 839 page_add_anon_rmap(kpage, vma, addr);
31dbd01f
IE
840
841 flush_cache_page(vma, addr, pte_pfn(*ptep));
842 ptep_clear_flush(vma, addr, ptep);
8dd3557a 843 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
31dbd01f 844
8dd3557a 845 page_remove_rmap(page);
ae52a2ad
HD
846 if (!page_mapped(page))
847 try_to_free_swap(page);
8dd3557a 848 put_page(page);
31dbd01f
IE
849
850 pte_unmap_unlock(ptep, ptl);
851 err = 0;
6bdb913f
HE
852out_mn:
853 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
854out:
855 return err;
856}
857
29ad768c
AA
858static int page_trans_compound_anon_split(struct page *page)
859{
860 int ret = 0;
861 struct page *transhuge_head = page_trans_compound_anon(page);
862 if (transhuge_head) {
863 /* Get the reference on the head to split it. */
864 if (get_page_unless_zero(transhuge_head)) {
865 /*
866 * Recheck we got the reference while the head
867 * was still anonymous.
868 */
869 if (PageAnon(transhuge_head))
870 ret = split_huge_page(transhuge_head);
871 else
872 /*
873 * Retry later if split_huge_page run
874 * from under us.
875 */
876 ret = 1;
877 put_page(transhuge_head);
878 } else
879 /* Retry later if split_huge_page run from under us. */
880 ret = 1;
881 }
882 return ret;
883}
884
31dbd01f
IE
885/*
886 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
887 * @vma: the vma that holds the pte pointing to page
888 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
889 * @kpage: the PageKsm page that we want to map instead of page,
890 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
891 *
892 * This function returns 0 if the pages were merged, -EFAULT otherwise.
893 */
894static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 895 struct page *page, struct page *kpage)
31dbd01f
IE
896{
897 pte_t orig_pte = __pte(0);
898 int err = -EFAULT;
899
db114b83
HD
900 if (page == kpage) /* ksm page forked */
901 return 0;
902
31dbd01f
IE
903 if (!(vma->vm_flags & VM_MERGEABLE))
904 goto out;
29ad768c
AA
905 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
906 goto out;
907 BUG_ON(PageTransCompound(page));
8dd3557a 908 if (!PageAnon(page))
31dbd01f
IE
909 goto out;
910
31dbd01f
IE
911 /*
912 * We need the page lock to read a stable PageSwapCache in
913 * write_protect_page(). We use trylock_page() instead of
914 * lock_page() because we don't want to wait here - we
915 * prefer to continue scanning and merging different pages,
916 * then come back to this page when it is unlocked.
917 */
8dd3557a 918 if (!trylock_page(page))
31e855ea 919 goto out;
31dbd01f
IE
920 /*
921 * If this anonymous page is mapped only here, its pte may need
922 * to be write-protected. If it's mapped elsewhere, all of its
923 * ptes are necessarily already write-protected. But in either
924 * case, we need to lock and check page_count is not raised.
925 */
80e14822
HD
926 if (write_protect_page(vma, page, &orig_pte) == 0) {
927 if (!kpage) {
928 /*
929 * While we hold page lock, upgrade page from
930 * PageAnon+anon_vma to PageKsm+NULL stable_node:
931 * stable_tree_insert() will update stable_node.
932 */
933 set_page_stable_node(page, NULL);
934 mark_page_accessed(page);
935 err = 0;
936 } else if (pages_identical(page, kpage))
937 err = replace_page(vma, page, kpage, orig_pte);
938 }
31dbd01f 939
80e14822 940 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 941 munlock_vma_page(page);
5ad64688
HD
942 if (!PageMlocked(kpage)) {
943 unlock_page(page);
5ad64688
HD
944 lock_page(kpage);
945 mlock_vma_page(kpage);
946 page = kpage; /* for final unlock */
947 }
948 }
73848b46 949
8dd3557a 950 unlock_page(page);
31dbd01f
IE
951out:
952 return err;
953}
954
81464e30
HD
955/*
956 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
957 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
958 *
959 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 960 */
8dd3557a
HD
961static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
962 struct page *page, struct page *kpage)
81464e30 963{
8dd3557a 964 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
965 struct vm_area_struct *vma;
966 int err = -EFAULT;
967
8dd3557a
HD
968 down_read(&mm->mmap_sem);
969 if (ksm_test_exit(mm))
9ba69294 970 goto out;
8dd3557a
HD
971 vma = find_vma(mm, rmap_item->address);
972 if (!vma || vma->vm_start > rmap_item->address)
81464e30
HD
973 goto out;
974
8dd3557a 975 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
976 if (err)
977 goto out;
978
979 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
980 rmap_item->anon_vma = vma->anon_vma;
981 get_anon_vma(vma->anon_vma);
81464e30 982out:
8dd3557a 983 up_read(&mm->mmap_sem);
81464e30
HD
984 return err;
985}
986
31dbd01f
IE
987/*
988 * try_to_merge_two_pages - take two identical pages and prepare them
989 * to be merged into one page.
990 *
8dd3557a
HD
991 * This function returns the kpage if we successfully merged two identical
992 * pages into one ksm page, NULL otherwise.
31dbd01f 993 *
80e14822 994 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
995 * is already a ksm page, try_to_merge_with_ksm_page should be used.
996 */
8dd3557a
HD
997static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
998 struct page *page,
999 struct rmap_item *tree_rmap_item,
1000 struct page *tree_page)
31dbd01f 1001{
80e14822 1002 int err;
31dbd01f 1003
80e14822 1004 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1005 if (!err) {
8dd3557a 1006 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1007 tree_page, page);
31dbd01f 1008 /*
81464e30
HD
1009 * If that fails, we have a ksm page with only one pte
1010 * pointing to it: so break it.
31dbd01f 1011 */
4035c07a 1012 if (err)
8dd3557a 1013 break_cow(rmap_item);
31dbd01f 1014 }
80e14822 1015 return err ? NULL : page;
31dbd01f
IE
1016}
1017
31dbd01f 1018/*
8dd3557a 1019 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1020 *
1021 * This function checks if there is a page inside the stable tree
1022 * with identical content to the page that we are scanning right now.
1023 *
7b6ba2c7 1024 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1025 * NULL otherwise.
1026 */
62b61f61 1027static struct page *stable_tree_search(struct page *page)
31dbd01f 1028{
90bd6fd3 1029 struct rb_node *node;
7b6ba2c7 1030 struct stable_node *stable_node;
90bd6fd3 1031 int nid;
31dbd01f 1032
08beca44
HD
1033 stable_node = page_stable_node(page);
1034 if (stable_node) { /* ksm page forked */
1035 get_page(page);
62b61f61 1036 return page;
08beca44
HD
1037 }
1038
90bd6fd3
PH
1039 nid = get_kpfn_nid(page_to_pfn(page));
1040 node = root_stable_tree[nid].rb_node;
1041
31dbd01f 1042 while (node) {
4035c07a 1043 struct page *tree_page;
31dbd01f
IE
1044 int ret;
1045
08beca44 1046 cond_resched();
7b6ba2c7 1047 stable_node = rb_entry(node, struct stable_node, node);
8aafa6a4 1048 tree_page = get_ksm_page(stable_node, false);
4035c07a
HD
1049 if (!tree_page)
1050 return NULL;
31dbd01f 1051
4035c07a 1052 ret = memcmp_pages(page, tree_page);
31dbd01f 1053
4035c07a
HD
1054 if (ret < 0) {
1055 put_page(tree_page);
31dbd01f 1056 node = node->rb_left;
4035c07a
HD
1057 } else if (ret > 0) {
1058 put_page(tree_page);
31dbd01f 1059 node = node->rb_right;
4035c07a 1060 } else
62b61f61 1061 return tree_page;
31dbd01f
IE
1062 }
1063
1064 return NULL;
1065}
1066
1067/*
e850dcf5 1068 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1069 * into the stable tree.
1070 *
7b6ba2c7
HD
1071 * This function returns the stable tree node just allocated on success,
1072 * NULL otherwise.
31dbd01f 1073 */
7b6ba2c7 1074static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1075{
90bd6fd3
PH
1076 int nid;
1077 unsigned long kpfn;
1078 struct rb_node **new;
31dbd01f 1079 struct rb_node *parent = NULL;
7b6ba2c7 1080 struct stable_node *stable_node;
31dbd01f 1081
90bd6fd3
PH
1082 kpfn = page_to_pfn(kpage);
1083 nid = get_kpfn_nid(kpfn);
1084 new = &root_stable_tree[nid].rb_node;
1085
31dbd01f 1086 while (*new) {
4035c07a 1087 struct page *tree_page;
31dbd01f
IE
1088 int ret;
1089
08beca44 1090 cond_resched();
7b6ba2c7 1091 stable_node = rb_entry(*new, struct stable_node, node);
8aafa6a4 1092 tree_page = get_ksm_page(stable_node, false);
4035c07a
HD
1093 if (!tree_page)
1094 return NULL;
31dbd01f 1095
4035c07a
HD
1096 ret = memcmp_pages(kpage, tree_page);
1097 put_page(tree_page);
31dbd01f
IE
1098
1099 parent = *new;
1100 if (ret < 0)
1101 new = &parent->rb_left;
1102 else if (ret > 0)
1103 new = &parent->rb_right;
1104 else {
1105 /*
1106 * It is not a bug that stable_tree_search() didn't
1107 * find this node: because at that time our page was
1108 * not yet write-protected, so may have changed since.
1109 */
1110 return NULL;
1111 }
1112 }
1113
7b6ba2c7
HD
1114 stable_node = alloc_stable_node();
1115 if (!stable_node)
1116 return NULL;
31dbd01f 1117
7b6ba2c7 1118 INIT_HLIST_HEAD(&stable_node->hlist);
90bd6fd3 1119 stable_node->kpfn = kpfn;
08beca44 1120 set_page_stable_node(kpage, stable_node);
e850dcf5
HD
1121 rb_link_node(&stable_node->node, parent, new);
1122 rb_insert_color(&stable_node->node, &root_stable_tree[nid]);
08beca44 1123
7b6ba2c7 1124 return stable_node;
31dbd01f
IE
1125}
1126
1127/*
8dd3557a
HD
1128 * unstable_tree_search_insert - search for identical page,
1129 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1130 *
1131 * This function searches for a page in the unstable tree identical to the
1132 * page currently being scanned; and if no identical page is found in the
1133 * tree, we insert rmap_item as a new object into the unstable tree.
1134 *
1135 * This function returns pointer to rmap_item found to be identical
1136 * to the currently scanned page, NULL otherwise.
1137 *
1138 * This function does both searching and inserting, because they share
1139 * the same walking algorithm in an rbtree.
1140 */
8dd3557a
HD
1141static
1142struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1143 struct page *page,
1144 struct page **tree_pagep)
31dbd01f 1145{
90bd6fd3
PH
1146 struct rb_node **new;
1147 struct rb_root *root;
31dbd01f 1148 struct rb_node *parent = NULL;
90bd6fd3
PH
1149 int nid;
1150
1151 nid = get_kpfn_nid(page_to_pfn(page));
1152 root = &root_unstable_tree[nid];
1153 new = &root->rb_node;
31dbd01f
IE
1154
1155 while (*new) {
1156 struct rmap_item *tree_rmap_item;
8dd3557a 1157 struct page *tree_page;
31dbd01f
IE
1158 int ret;
1159
d178f27f 1160 cond_resched();
31dbd01f 1161 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1162 tree_page = get_mergeable_page(tree_rmap_item);
22eccdd7 1163 if (IS_ERR_OR_NULL(tree_page))
31dbd01f
IE
1164 return NULL;
1165
1166 /*
8dd3557a 1167 * Don't substitute a ksm page for a forked page.
31dbd01f 1168 */
8dd3557a
HD
1169 if (page == tree_page) {
1170 put_page(tree_page);
31dbd01f
IE
1171 return NULL;
1172 }
1173
90bd6fd3
PH
1174 /*
1175 * If tree_page has been migrated to another NUMA node, it
1176 * will be flushed out and put into the right unstable tree
1177 * next time: only merge with it if merge_across_nodes.
90bd6fd3
PH
1178 */
1179 if (!ksm_merge_across_nodes && page_to_nid(tree_page) != nid) {
1180 put_page(tree_page);
1181 return NULL;
1182 }
1183
8dd3557a 1184 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1185
1186 parent = *new;
1187 if (ret < 0) {
8dd3557a 1188 put_page(tree_page);
31dbd01f
IE
1189 new = &parent->rb_left;
1190 } else if (ret > 0) {
8dd3557a 1191 put_page(tree_page);
31dbd01f
IE
1192 new = &parent->rb_right;
1193 } else {
8dd3557a 1194 *tree_pagep = tree_page;
31dbd01f
IE
1195 return tree_rmap_item;
1196 }
1197 }
1198
7b6ba2c7 1199 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1200 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1201 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1202 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1203 rb_insert_color(&rmap_item->node, root);
31dbd01f 1204
473b0ce4 1205 ksm_pages_unshared++;
31dbd01f
IE
1206 return NULL;
1207}
1208
1209/*
1210 * stable_tree_append - add another rmap_item to the linked list of
1211 * rmap_items hanging off a given node of the stable tree, all sharing
1212 * the same ksm page.
1213 */
1214static void stable_tree_append(struct rmap_item *rmap_item,
7b6ba2c7 1215 struct stable_node *stable_node)
31dbd01f 1216{
90bd6fd3
PH
1217 /*
1218 * Usually rmap_item->nid is already set correctly,
1219 * but it may be wrong after switching merge_across_nodes.
1220 */
e850dcf5 1221 DO_NUMA(rmap_item->nid = get_kpfn_nid(stable_node->kpfn));
7b6ba2c7 1222 rmap_item->head = stable_node;
31dbd01f 1223 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1224 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1225
7b6ba2c7
HD
1226 if (rmap_item->hlist.next)
1227 ksm_pages_sharing++;
1228 else
1229 ksm_pages_shared++;
31dbd01f
IE
1230}
1231
1232/*
81464e30
HD
1233 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1234 * if not, compare checksum to previous and if it's the same, see if page can
1235 * be inserted into the unstable tree, or merged with a page already there and
1236 * both transferred to the stable tree.
31dbd01f
IE
1237 *
1238 * @page: the page that we are searching identical page to.
1239 * @rmap_item: the reverse mapping into the virtual address of this page
1240 */
1241static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1242{
31dbd01f 1243 struct rmap_item *tree_rmap_item;
8dd3557a 1244 struct page *tree_page = NULL;
7b6ba2c7 1245 struct stable_node *stable_node;
8dd3557a 1246 struct page *kpage;
31dbd01f
IE
1247 unsigned int checksum;
1248 int err;
1249
93d17715 1250 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1251
1252 /* We first start with searching the page inside the stable tree */
62b61f61
HD
1253 kpage = stable_tree_search(page);
1254 if (kpage) {
08beca44 1255 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
1256 if (!err) {
1257 /*
1258 * The page was successfully merged:
1259 * add its rmap_item to the stable tree.
1260 */
5ad64688 1261 lock_page(kpage);
62b61f61 1262 stable_tree_append(rmap_item, page_stable_node(kpage));
5ad64688 1263 unlock_page(kpage);
31dbd01f 1264 }
8dd3557a 1265 put_page(kpage);
31dbd01f
IE
1266 return;
1267 }
1268
1269 /*
4035c07a
HD
1270 * If the hash value of the page has changed from the last time
1271 * we calculated it, this page is changing frequently: therefore we
1272 * don't want to insert it in the unstable tree, and we don't want
1273 * to waste our time searching for something identical to it there.
31dbd01f
IE
1274 */
1275 checksum = calc_checksum(page);
1276 if (rmap_item->oldchecksum != checksum) {
1277 rmap_item->oldchecksum = checksum;
1278 return;
1279 }
1280
8dd3557a
HD
1281 tree_rmap_item =
1282 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 1283 if (tree_rmap_item) {
8dd3557a
HD
1284 kpage = try_to_merge_two_pages(rmap_item, page,
1285 tree_rmap_item, tree_page);
1286 put_page(tree_page);
31dbd01f
IE
1287 /*
1288 * As soon as we merge this page, we want to remove the
1289 * rmap_item of the page we have merged with from the unstable
1290 * tree, and insert it instead as new node in the stable tree.
1291 */
8dd3557a 1292 if (kpage) {
93d17715 1293 remove_rmap_item_from_tree(tree_rmap_item);
473b0ce4 1294
5ad64688 1295 lock_page(kpage);
7b6ba2c7
HD
1296 stable_node = stable_tree_insert(kpage);
1297 if (stable_node) {
1298 stable_tree_append(tree_rmap_item, stable_node);
1299 stable_tree_append(rmap_item, stable_node);
1300 }
5ad64688 1301 unlock_page(kpage);
7b6ba2c7 1302
31dbd01f
IE
1303 /*
1304 * If we fail to insert the page into the stable tree,
1305 * we will have 2 virtual addresses that are pointing
1306 * to a ksm page left outside the stable tree,
1307 * in which case we need to break_cow on both.
1308 */
7b6ba2c7 1309 if (!stable_node) {
8dd3557a
HD
1310 break_cow(tree_rmap_item);
1311 break_cow(rmap_item);
31dbd01f
IE
1312 }
1313 }
31dbd01f
IE
1314 }
1315}
1316
1317static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 1318 struct rmap_item **rmap_list,
31dbd01f
IE
1319 unsigned long addr)
1320{
1321 struct rmap_item *rmap_item;
1322
6514d511
HD
1323 while (*rmap_list) {
1324 rmap_item = *rmap_list;
93d17715 1325 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 1326 return rmap_item;
31dbd01f
IE
1327 if (rmap_item->address > addr)
1328 break;
6514d511 1329 *rmap_list = rmap_item->rmap_list;
31dbd01f 1330 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1331 free_rmap_item(rmap_item);
1332 }
1333
1334 rmap_item = alloc_rmap_item();
1335 if (rmap_item) {
1336 /* It has already been zeroed */
1337 rmap_item->mm = mm_slot->mm;
1338 rmap_item->address = addr;
6514d511
HD
1339 rmap_item->rmap_list = *rmap_list;
1340 *rmap_list = rmap_item;
31dbd01f
IE
1341 }
1342 return rmap_item;
1343}
1344
1345static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1346{
1347 struct mm_struct *mm;
1348 struct mm_slot *slot;
1349 struct vm_area_struct *vma;
1350 struct rmap_item *rmap_item;
90bd6fd3 1351 int nid;
31dbd01f
IE
1352
1353 if (list_empty(&ksm_mm_head.mm_list))
1354 return NULL;
1355
1356 slot = ksm_scan.mm_slot;
1357 if (slot == &ksm_mm_head) {
2919bfd0
HD
1358 /*
1359 * A number of pages can hang around indefinitely on per-cpu
1360 * pagevecs, raised page count preventing write_protect_page
1361 * from merging them. Though it doesn't really matter much,
1362 * it is puzzling to see some stuck in pages_volatile until
1363 * other activity jostles them out, and they also prevented
1364 * LTP's KSM test from succeeding deterministically; so drain
1365 * them here (here rather than on entry to ksm_do_scan(),
1366 * so we don't IPI too often when pages_to_scan is set low).
1367 */
1368 lru_add_drain_all();
1369
90bd6fd3
PH
1370 for (nid = 0; nid < nr_node_ids; nid++)
1371 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
1372
1373 spin_lock(&ksm_mmlist_lock);
1374 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1375 ksm_scan.mm_slot = slot;
1376 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
1377 /*
1378 * Although we tested list_empty() above, a racing __ksm_exit
1379 * of the last mm on the list may have removed it since then.
1380 */
1381 if (slot == &ksm_mm_head)
1382 return NULL;
31dbd01f
IE
1383next_mm:
1384 ksm_scan.address = 0;
6514d511 1385 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
1386 }
1387
1388 mm = slot->mm;
1389 down_read(&mm->mmap_sem);
9ba69294
HD
1390 if (ksm_test_exit(mm))
1391 vma = NULL;
1392 else
1393 vma = find_vma(mm, ksm_scan.address);
1394
1395 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
1396 if (!(vma->vm_flags & VM_MERGEABLE))
1397 continue;
1398 if (ksm_scan.address < vma->vm_start)
1399 ksm_scan.address = vma->vm_start;
1400 if (!vma->anon_vma)
1401 ksm_scan.address = vma->vm_end;
1402
1403 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
1404 if (ksm_test_exit(mm))
1405 break;
31dbd01f 1406 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
1407 if (IS_ERR_OR_NULL(*page)) {
1408 ksm_scan.address += PAGE_SIZE;
1409 cond_resched();
1410 continue;
1411 }
29ad768c
AA
1412 if (PageAnon(*page) ||
1413 page_trans_compound_anon(*page)) {
31dbd01f
IE
1414 flush_anon_page(vma, *page, ksm_scan.address);
1415 flush_dcache_page(*page);
1416 rmap_item = get_next_rmap_item(slot,
6514d511 1417 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 1418 if (rmap_item) {
6514d511
HD
1419 ksm_scan.rmap_list =
1420 &rmap_item->rmap_list;
31dbd01f
IE
1421 ksm_scan.address += PAGE_SIZE;
1422 } else
1423 put_page(*page);
1424 up_read(&mm->mmap_sem);
1425 return rmap_item;
1426 }
21ae5b01 1427 put_page(*page);
31dbd01f
IE
1428 ksm_scan.address += PAGE_SIZE;
1429 cond_resched();
1430 }
1431 }
1432
9ba69294
HD
1433 if (ksm_test_exit(mm)) {
1434 ksm_scan.address = 0;
6514d511 1435 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 1436 }
31dbd01f
IE
1437 /*
1438 * Nuke all the rmap_items that are above this current rmap:
1439 * because there were no VM_MERGEABLE vmas with such addresses.
1440 */
6514d511 1441 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
1442
1443 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
1444 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1445 struct mm_slot, mm_list);
1446 if (ksm_scan.address == 0) {
1447 /*
1448 * We've completed a full scan of all vmas, holding mmap_sem
1449 * throughout, and found no VM_MERGEABLE: so do the same as
1450 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
1451 * This applies either when cleaning up after __ksm_exit
1452 * (but beware: we can reach here even before __ksm_exit),
1453 * or when all VM_MERGEABLE areas have been unmapped (and
1454 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 1455 */
4ca3a69b 1456 hash_del(&slot->link);
cd551f97 1457 list_del(&slot->mm_list);
9ba69294
HD
1458 spin_unlock(&ksm_mmlist_lock);
1459
cd551f97
HD
1460 free_mm_slot(slot);
1461 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
1462 up_read(&mm->mmap_sem);
1463 mmdrop(mm);
1464 } else {
1465 spin_unlock(&ksm_mmlist_lock);
1466 up_read(&mm->mmap_sem);
cd551f97 1467 }
31dbd01f
IE
1468
1469 /* Repeat until we've completed scanning the whole list */
cd551f97 1470 slot = ksm_scan.mm_slot;
31dbd01f
IE
1471 if (slot != &ksm_mm_head)
1472 goto next_mm;
1473
31dbd01f
IE
1474 ksm_scan.seqnr++;
1475 return NULL;
1476}
1477
1478/**
1479 * ksm_do_scan - the ksm scanner main worker function.
1480 * @scan_npages - number of pages we want to scan before we return.
1481 */
1482static void ksm_do_scan(unsigned int scan_npages)
1483{
1484 struct rmap_item *rmap_item;
22eccdd7 1485 struct page *uninitialized_var(page);
31dbd01f 1486
878aee7d 1487 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
1488 cond_resched();
1489 rmap_item = scan_get_next_rmap_item(&page);
1490 if (!rmap_item)
1491 return;
1492 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1493 cmp_and_merge_page(page, rmap_item);
1494 put_page(page);
1495 }
1496}
1497
6e158384
HD
1498static int ksmd_should_run(void)
1499{
1500 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1501}
1502
31dbd01f
IE
1503static int ksm_scan_thread(void *nothing)
1504{
878aee7d 1505 set_freezable();
339aa624 1506 set_user_nice(current, 5);
31dbd01f
IE
1507
1508 while (!kthread_should_stop()) {
6e158384
HD
1509 mutex_lock(&ksm_thread_mutex);
1510 if (ksmd_should_run())
31dbd01f 1511 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
1512 mutex_unlock(&ksm_thread_mutex);
1513
878aee7d
AA
1514 try_to_freeze();
1515
6e158384 1516 if (ksmd_should_run()) {
31dbd01f
IE
1517 schedule_timeout_interruptible(
1518 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1519 } else {
878aee7d 1520 wait_event_freezable(ksm_thread_wait,
6e158384 1521 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
1522 }
1523 }
1524 return 0;
1525}
1526
f8af4da3
HD
1527int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1528 unsigned long end, int advice, unsigned long *vm_flags)
1529{
1530 struct mm_struct *mm = vma->vm_mm;
d952b791 1531 int err;
f8af4da3
HD
1532
1533 switch (advice) {
1534 case MADV_MERGEABLE:
1535 /*
1536 * Be somewhat over-protective for now!
1537 */
1538 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1539 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
314e51b9 1540 VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
f8af4da3
HD
1541 return 0; /* just ignore the advice */
1542
cc2383ec
KK
1543#ifdef VM_SAO
1544 if (*vm_flags & VM_SAO)
1545 return 0;
1546#endif
1547
d952b791
HD
1548 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1549 err = __ksm_enter(mm);
1550 if (err)
1551 return err;
1552 }
f8af4da3
HD
1553
1554 *vm_flags |= VM_MERGEABLE;
1555 break;
1556
1557 case MADV_UNMERGEABLE:
1558 if (!(*vm_flags & VM_MERGEABLE))
1559 return 0; /* just ignore the advice */
1560
d952b791
HD
1561 if (vma->anon_vma) {
1562 err = unmerge_ksm_pages(vma, start, end);
1563 if (err)
1564 return err;
1565 }
f8af4da3
HD
1566
1567 *vm_flags &= ~VM_MERGEABLE;
1568 break;
1569 }
1570
1571 return 0;
1572}
1573
1574int __ksm_enter(struct mm_struct *mm)
1575{
6e158384
HD
1576 struct mm_slot *mm_slot;
1577 int needs_wakeup;
1578
1579 mm_slot = alloc_mm_slot();
31dbd01f
IE
1580 if (!mm_slot)
1581 return -ENOMEM;
1582
6e158384
HD
1583 /* Check ksm_run too? Would need tighter locking */
1584 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1585
31dbd01f
IE
1586 spin_lock(&ksm_mmlist_lock);
1587 insert_to_mm_slots_hash(mm, mm_slot);
1588 /*
1589 * Insert just behind the scanning cursor, to let the area settle
1590 * down a little; when fork is followed by immediate exec, we don't
1591 * want ksmd to waste time setting up and tearing down an rmap_list.
1592 */
1593 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1594 spin_unlock(&ksm_mmlist_lock);
1595
f8af4da3 1596 set_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1597 atomic_inc(&mm->mm_count);
6e158384
HD
1598
1599 if (needs_wakeup)
1600 wake_up_interruptible(&ksm_thread_wait);
1601
f8af4da3
HD
1602 return 0;
1603}
1604
1c2fb7a4 1605void __ksm_exit(struct mm_struct *mm)
f8af4da3 1606{
cd551f97 1607 struct mm_slot *mm_slot;
9ba69294 1608 int easy_to_free = 0;
cd551f97 1609
31dbd01f 1610 /*
9ba69294
HD
1611 * This process is exiting: if it's straightforward (as is the
1612 * case when ksmd was never running), free mm_slot immediately.
1613 * But if it's at the cursor or has rmap_items linked to it, use
1614 * mmap_sem to synchronize with any break_cows before pagetables
1615 * are freed, and leave the mm_slot on the list for ksmd to free.
1616 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 1617 */
9ba69294 1618
cd551f97
HD
1619 spin_lock(&ksm_mmlist_lock);
1620 mm_slot = get_mm_slot(mm);
9ba69294 1621 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 1622 if (!mm_slot->rmap_list) {
4ca3a69b 1623 hash_del(&mm_slot->link);
9ba69294
HD
1624 list_del(&mm_slot->mm_list);
1625 easy_to_free = 1;
1626 } else {
1627 list_move(&mm_slot->mm_list,
1628 &ksm_scan.mm_slot->mm_list);
1629 }
cd551f97 1630 }
cd551f97
HD
1631 spin_unlock(&ksm_mmlist_lock);
1632
9ba69294
HD
1633 if (easy_to_free) {
1634 free_mm_slot(mm_slot);
1635 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1636 mmdrop(mm);
1637 } else if (mm_slot) {
9ba69294
HD
1638 down_write(&mm->mmap_sem);
1639 up_write(&mm->mmap_sem);
9ba69294 1640 }
31dbd01f
IE
1641}
1642
5ad64688
HD
1643struct page *ksm_does_need_to_copy(struct page *page,
1644 struct vm_area_struct *vma, unsigned long address)
1645{
1646 struct page *new_page;
1647
5ad64688
HD
1648 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1649 if (new_page) {
1650 copy_user_highpage(new_page, page, address, vma);
1651
1652 SetPageDirty(new_page);
1653 __SetPageUptodate(new_page);
5ad64688 1654 __set_page_locked(new_page);
5ad64688
HD
1655 }
1656
5ad64688
HD
1657 return new_page;
1658}
1659
1660int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1661 unsigned long *vm_flags)
1662{
1663 struct stable_node *stable_node;
1664 struct rmap_item *rmap_item;
1665 struct hlist_node *hlist;
1666 unsigned int mapcount = page_mapcount(page);
1667 int referenced = 0;
db114b83 1668 int search_new_forks = 0;
5ad64688
HD
1669
1670 VM_BUG_ON(!PageKsm(page));
1671 VM_BUG_ON(!PageLocked(page));
1672
1673 stable_node = page_stable_node(page);
1674 if (!stable_node)
1675 return 0;
db114b83 1676again:
5ad64688 1677 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
db114b83 1678 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1679 struct anon_vma_chain *vmac;
db114b83 1680 struct vm_area_struct *vma;
5ad64688 1681
b6b19f25 1682 anon_vma_lock_read(anon_vma);
bf181b9f
ML
1683 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1684 0, ULONG_MAX) {
5beb4930 1685 vma = vmac->vma;
db114b83
HD
1686 if (rmap_item->address < vma->vm_start ||
1687 rmap_item->address >= vma->vm_end)
1688 continue;
1689 /*
1690 * Initially we examine only the vma which covers this
1691 * rmap_item; but later, if there is still work to do,
1692 * we examine covering vmas in other mms: in case they
1693 * were forked from the original since ksmd passed.
1694 */
1695 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1696 continue;
1697
1698 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1699 continue;
5ad64688 1700
db114b83 1701 referenced += page_referenced_one(page, vma,
5ad64688 1702 rmap_item->address, &mapcount, vm_flags);
db114b83
HD
1703 if (!search_new_forks || !mapcount)
1704 break;
1705 }
b6b19f25 1706 anon_vma_unlock_read(anon_vma);
5ad64688
HD
1707 if (!mapcount)
1708 goto out;
1709 }
db114b83
HD
1710 if (!search_new_forks++)
1711 goto again;
5ad64688 1712out:
5ad64688
HD
1713 return referenced;
1714}
1715
1716int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1717{
1718 struct stable_node *stable_node;
1719 struct hlist_node *hlist;
1720 struct rmap_item *rmap_item;
1721 int ret = SWAP_AGAIN;
db114b83 1722 int search_new_forks = 0;
5ad64688
HD
1723
1724 VM_BUG_ON(!PageKsm(page));
1725 VM_BUG_ON(!PageLocked(page));
1726
1727 stable_node = page_stable_node(page);
1728 if (!stable_node)
1729 return SWAP_FAIL;
db114b83 1730again:
5ad64688 1731 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
db114b83 1732 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1733 struct anon_vma_chain *vmac;
db114b83 1734 struct vm_area_struct *vma;
5ad64688 1735
b6b19f25 1736 anon_vma_lock_read(anon_vma);
bf181b9f
ML
1737 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1738 0, ULONG_MAX) {
5beb4930 1739 vma = vmac->vma;
db114b83
HD
1740 if (rmap_item->address < vma->vm_start ||
1741 rmap_item->address >= vma->vm_end)
1742 continue;
1743 /*
1744 * Initially we examine only the vma which covers this
1745 * rmap_item; but later, if there is still work to do,
1746 * we examine covering vmas in other mms: in case they
1747 * were forked from the original since ksmd passed.
1748 */
1749 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1750 continue;
1751
1752 ret = try_to_unmap_one(page, vma,
1753 rmap_item->address, flags);
1754 if (ret != SWAP_AGAIN || !page_mapped(page)) {
b6b19f25 1755 anon_vma_unlock_read(anon_vma);
db114b83
HD
1756 goto out;
1757 }
1758 }
b6b19f25 1759 anon_vma_unlock_read(anon_vma);
5ad64688 1760 }
db114b83
HD
1761 if (!search_new_forks++)
1762 goto again;
5ad64688 1763out:
5ad64688
HD
1764 return ret;
1765}
1766
e9995ef9
HD
1767#ifdef CONFIG_MIGRATION
1768int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1769 struct vm_area_struct *, unsigned long, void *), void *arg)
1770{
1771 struct stable_node *stable_node;
1772 struct hlist_node *hlist;
1773 struct rmap_item *rmap_item;
1774 int ret = SWAP_AGAIN;
1775 int search_new_forks = 0;
1776
1777 VM_BUG_ON(!PageKsm(page));
1778 VM_BUG_ON(!PageLocked(page));
1779
1780 stable_node = page_stable_node(page);
1781 if (!stable_node)
1782 return ret;
1783again:
1784 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1785 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1786 struct anon_vma_chain *vmac;
e9995ef9
HD
1787 struct vm_area_struct *vma;
1788
b6b19f25 1789 anon_vma_lock_read(anon_vma);
bf181b9f
ML
1790 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1791 0, ULONG_MAX) {
5beb4930 1792 vma = vmac->vma;
e9995ef9
HD
1793 if (rmap_item->address < vma->vm_start ||
1794 rmap_item->address >= vma->vm_end)
1795 continue;
1796 /*
1797 * Initially we examine only the vma which covers this
1798 * rmap_item; but later, if there is still work to do,
1799 * we examine covering vmas in other mms: in case they
1800 * were forked from the original since ksmd passed.
1801 */
1802 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1803 continue;
1804
1805 ret = rmap_one(page, vma, rmap_item->address, arg);
1806 if (ret != SWAP_AGAIN) {
b6b19f25 1807 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1808 goto out;
1809 }
1810 }
b6b19f25 1811 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
1812 }
1813 if (!search_new_forks++)
1814 goto again;
1815out:
1816 return ret;
1817}
1818
1819void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1820{
1821 struct stable_node *stable_node;
1822
1823 VM_BUG_ON(!PageLocked(oldpage));
1824 VM_BUG_ON(!PageLocked(newpage));
1825 VM_BUG_ON(newpage->mapping != oldpage->mapping);
1826
1827 stable_node = page_stable_node(newpage);
1828 if (stable_node) {
62b61f61
HD
1829 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1830 stable_node->kpfn = page_to_pfn(newpage);
e9995ef9
HD
1831 }
1832}
1833#endif /* CONFIG_MIGRATION */
1834
62b61f61 1835#ifdef CONFIG_MEMORY_HOTREMOVE
ee0ea59c
HD
1836static void ksm_check_stable_tree(unsigned long start_pfn,
1837 unsigned long end_pfn)
62b61f61 1838{
ee0ea59c 1839 struct stable_node *stable_node;
62b61f61 1840 struct rb_node *node;
90bd6fd3 1841 int nid;
62b61f61 1842
ee0ea59c
HD
1843 for (nid = 0; nid < nr_node_ids; nid++) {
1844 node = rb_first(&root_stable_tree[nid]);
1845 while (node) {
90bd6fd3
PH
1846 stable_node = rb_entry(node, struct stable_node, node);
1847 if (stable_node->kpfn >= start_pfn &&
ee0ea59c
HD
1848 stable_node->kpfn < end_pfn) {
1849 /*
1850 * Don't get_ksm_page, page has already gone:
1851 * which is why we keep kpfn instead of page*
1852 */
1853 remove_node_from_stable_tree(stable_node);
1854 node = rb_first(&root_stable_tree[nid]);
1855 } else
1856 node = rb_next(node);
1857 cond_resched();
90bd6fd3 1858 }
ee0ea59c 1859 }
62b61f61
HD
1860}
1861
1862static int ksm_memory_callback(struct notifier_block *self,
1863 unsigned long action, void *arg)
1864{
1865 struct memory_notify *mn = arg;
62b61f61
HD
1866
1867 switch (action) {
1868 case MEM_GOING_OFFLINE:
1869 /*
1870 * Keep it very simple for now: just lock out ksmd and
1871 * MADV_UNMERGEABLE while any memory is going offline.
a0b0f58c
KM
1872 * mutex_lock_nested() is necessary because lockdep was alarmed
1873 * that here we take ksm_thread_mutex inside notifier chain
1874 * mutex, and later take notifier chain mutex inside
1875 * ksm_thread_mutex to unlock it. But that's safe because both
1876 * are inside mem_hotplug_mutex.
62b61f61 1877 */
a0b0f58c 1878 mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
62b61f61
HD
1879 break;
1880
1881 case MEM_OFFLINE:
1882 /*
1883 * Most of the work is done by page migration; but there might
1884 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
1885 * pages which have been offlined: prune those from the tree,
1886 * otherwise get_ksm_page() might later try to access a
1887 * non-existent struct page.
62b61f61 1888 */
ee0ea59c
HD
1889 ksm_check_stable_tree(mn->start_pfn,
1890 mn->start_pfn + mn->nr_pages);
62b61f61
HD
1891 /* fallthrough */
1892
1893 case MEM_CANCEL_OFFLINE:
1894 mutex_unlock(&ksm_thread_mutex);
1895 break;
1896 }
1897 return NOTIFY_OK;
1898}
1899#endif /* CONFIG_MEMORY_HOTREMOVE */
1900
2ffd8679
HD
1901#ifdef CONFIG_SYSFS
1902/*
1903 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1904 */
1905
31dbd01f
IE
1906#define KSM_ATTR_RO(_name) \
1907 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1908#define KSM_ATTR(_name) \
1909 static struct kobj_attribute _name##_attr = \
1910 __ATTR(_name, 0644, _name##_show, _name##_store)
1911
1912static ssize_t sleep_millisecs_show(struct kobject *kobj,
1913 struct kobj_attribute *attr, char *buf)
1914{
1915 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1916}
1917
1918static ssize_t sleep_millisecs_store(struct kobject *kobj,
1919 struct kobj_attribute *attr,
1920 const char *buf, size_t count)
1921{
1922 unsigned long msecs;
1923 int err;
1924
1925 err = strict_strtoul(buf, 10, &msecs);
1926 if (err || msecs > UINT_MAX)
1927 return -EINVAL;
1928
1929 ksm_thread_sleep_millisecs = msecs;
1930
1931 return count;
1932}
1933KSM_ATTR(sleep_millisecs);
1934
1935static ssize_t pages_to_scan_show(struct kobject *kobj,
1936 struct kobj_attribute *attr, char *buf)
1937{
1938 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1939}
1940
1941static ssize_t pages_to_scan_store(struct kobject *kobj,
1942 struct kobj_attribute *attr,
1943 const char *buf, size_t count)
1944{
1945 int err;
1946 unsigned long nr_pages;
1947
1948 err = strict_strtoul(buf, 10, &nr_pages);
1949 if (err || nr_pages > UINT_MAX)
1950 return -EINVAL;
1951
1952 ksm_thread_pages_to_scan = nr_pages;
1953
1954 return count;
1955}
1956KSM_ATTR(pages_to_scan);
1957
1958static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1959 char *buf)
1960{
1961 return sprintf(buf, "%u\n", ksm_run);
1962}
1963
1964static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1965 const char *buf, size_t count)
1966{
1967 int err;
1968 unsigned long flags;
1969
1970 err = strict_strtoul(buf, 10, &flags);
1971 if (err || flags > UINT_MAX)
1972 return -EINVAL;
1973 if (flags > KSM_RUN_UNMERGE)
1974 return -EINVAL;
1975
1976 /*
1977 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1978 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
1979 * breaking COW to free the pages_shared (but leaves mm_slots
1980 * on the list for when ksmd may be set running again).
31dbd01f
IE
1981 */
1982
1983 mutex_lock(&ksm_thread_mutex);
1984 if (ksm_run != flags) {
1985 ksm_run = flags;
d952b791 1986 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 1987 set_current_oom_origin();
d952b791 1988 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 1989 clear_current_oom_origin();
d952b791
HD
1990 if (err) {
1991 ksm_run = KSM_RUN_STOP;
1992 count = err;
1993 }
1994 }
31dbd01f
IE
1995 }
1996 mutex_unlock(&ksm_thread_mutex);
1997
1998 if (flags & KSM_RUN_MERGE)
1999 wake_up_interruptible(&ksm_thread_wait);
2000
2001 return count;
2002}
2003KSM_ATTR(run);
2004
90bd6fd3
PH
2005#ifdef CONFIG_NUMA
2006static ssize_t merge_across_nodes_show(struct kobject *kobj,
2007 struct kobj_attribute *attr, char *buf)
2008{
2009 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2010}
2011
2012static ssize_t merge_across_nodes_store(struct kobject *kobj,
2013 struct kobj_attribute *attr,
2014 const char *buf, size_t count)
2015{
2016 int err;
2017 unsigned long knob;
2018
2019 err = kstrtoul(buf, 10, &knob);
2020 if (err)
2021 return err;
2022 if (knob > 1)
2023 return -EINVAL;
2024
2025 mutex_lock(&ksm_thread_mutex);
2026 if (ksm_merge_across_nodes != knob) {
2027 if (ksm_pages_shared)
2028 err = -EBUSY;
2029 else
2030 ksm_merge_across_nodes = knob;
2031 }
2032 mutex_unlock(&ksm_thread_mutex);
2033
2034 return err ? err : count;
2035}
2036KSM_ATTR(merge_across_nodes);
2037#endif
2038
b4028260
HD
2039static ssize_t pages_shared_show(struct kobject *kobj,
2040 struct kobj_attribute *attr, char *buf)
2041{
2042 return sprintf(buf, "%lu\n", ksm_pages_shared);
2043}
2044KSM_ATTR_RO(pages_shared);
2045
2046static ssize_t pages_sharing_show(struct kobject *kobj,
2047 struct kobj_attribute *attr, char *buf)
2048{
e178dfde 2049 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
2050}
2051KSM_ATTR_RO(pages_sharing);
2052
473b0ce4
HD
2053static ssize_t pages_unshared_show(struct kobject *kobj,
2054 struct kobj_attribute *attr, char *buf)
2055{
2056 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2057}
2058KSM_ATTR_RO(pages_unshared);
2059
2060static ssize_t pages_volatile_show(struct kobject *kobj,
2061 struct kobj_attribute *attr, char *buf)
2062{
2063 long ksm_pages_volatile;
2064
2065 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2066 - ksm_pages_sharing - ksm_pages_unshared;
2067 /*
2068 * It was not worth any locking to calculate that statistic,
2069 * but it might therefore sometimes be negative: conceal that.
2070 */
2071 if (ksm_pages_volatile < 0)
2072 ksm_pages_volatile = 0;
2073 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2074}
2075KSM_ATTR_RO(pages_volatile);
2076
2077static ssize_t full_scans_show(struct kobject *kobj,
2078 struct kobj_attribute *attr, char *buf)
2079{
2080 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2081}
2082KSM_ATTR_RO(full_scans);
2083
31dbd01f
IE
2084static struct attribute *ksm_attrs[] = {
2085 &sleep_millisecs_attr.attr,
2086 &pages_to_scan_attr.attr,
2087 &run_attr.attr,
b4028260
HD
2088 &pages_shared_attr.attr,
2089 &pages_sharing_attr.attr,
473b0ce4
HD
2090 &pages_unshared_attr.attr,
2091 &pages_volatile_attr.attr,
2092 &full_scans_attr.attr,
90bd6fd3
PH
2093#ifdef CONFIG_NUMA
2094 &merge_across_nodes_attr.attr,
2095#endif
31dbd01f
IE
2096 NULL,
2097};
2098
2099static struct attribute_group ksm_attr_group = {
2100 .attrs = ksm_attrs,
2101 .name = "ksm",
2102};
2ffd8679 2103#endif /* CONFIG_SYSFS */
31dbd01f
IE
2104
2105static int __init ksm_init(void)
2106{
2107 struct task_struct *ksm_thread;
2108 int err;
90bd6fd3 2109 int nid;
31dbd01f
IE
2110
2111 err = ksm_slab_init();
2112 if (err)
2113 goto out;
2114
90bd6fd3
PH
2115 for (nid = 0; nid < nr_node_ids; nid++)
2116 root_stable_tree[nid] = RB_ROOT;
2117
31dbd01f
IE
2118 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2119 if (IS_ERR(ksm_thread)) {
2120 printk(KERN_ERR "ksm: creating kthread failed\n");
2121 err = PTR_ERR(ksm_thread);
d9f8984c 2122 goto out_free;
31dbd01f
IE
2123 }
2124
2ffd8679 2125#ifdef CONFIG_SYSFS
31dbd01f
IE
2126 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2127 if (err) {
2128 printk(KERN_ERR "ksm: register sysfs failed\n");
2ffd8679 2129 kthread_stop(ksm_thread);
d9f8984c 2130 goto out_free;
31dbd01f 2131 }
c73602ad
HD
2132#else
2133 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2134
2ffd8679 2135#endif /* CONFIG_SYSFS */
31dbd01f 2136
62b61f61
HD
2137#ifdef CONFIG_MEMORY_HOTREMOVE
2138 /*
2139 * Choose a high priority since the callback takes ksm_thread_mutex:
2140 * later callbacks could only be taking locks which nest within that.
2141 */
2142 hotplug_memory_notifier(ksm_memory_callback, 100);
2143#endif
31dbd01f
IE
2144 return 0;
2145
d9f8984c 2146out_free:
31dbd01f
IE
2147 ksm_slab_free();
2148out:
2149 return err;
f8af4da3 2150}
31dbd01f 2151module_init(ksm_init)