]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/ksm.c
ksm: swap the two output parameters of chain/chain_prune
[mirror_ubuntu-bionic-kernel.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f 21#include <linux/sched.h>
6e84f315 22#include <linux/sched/mm.h>
f7ccbae4 23#include <linux/sched/coredump.h>
31dbd01f
IE
24#include <linux/rwsem.h>
25#include <linux/pagemap.h>
26#include <linux/rmap.h>
27#include <linux/spinlock.h>
28#include <linux/jhash.h>
29#include <linux/delay.h>
30#include <linux/kthread.h>
31#include <linux/wait.h>
32#include <linux/slab.h>
33#include <linux/rbtree.h>
62b61f61 34#include <linux/memory.h>
31dbd01f 35#include <linux/mmu_notifier.h>
2c6854fd 36#include <linux/swap.h>
f8af4da3 37#include <linux/ksm.h>
4ca3a69b 38#include <linux/hashtable.h>
878aee7d 39#include <linux/freezer.h>
72788c38 40#include <linux/oom.h>
90bd6fd3 41#include <linux/numa.h>
f8af4da3 42
31dbd01f 43#include <asm/tlbflush.h>
73848b46 44#include "internal.h"
31dbd01f 45
e850dcf5
HD
46#ifdef CONFIG_NUMA
47#define NUMA(x) (x)
48#define DO_NUMA(x) do { (x); } while (0)
49#else
50#define NUMA(x) (0)
51#define DO_NUMA(x) do { } while (0)
52#endif
53
31dbd01f
IE
54/*
55 * A few notes about the KSM scanning process,
56 * to make it easier to understand the data structures below:
57 *
58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
59 * contents into a data structure that holds pointers to the pages' locations.
60 *
61 * Since the contents of the pages may change at any moment, KSM cannot just
62 * insert the pages into a normal sorted tree and expect it to find anything.
63 * Therefore KSM uses two data structures - the stable and the unstable tree.
64 *
65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66 * by their contents. Because each such page is write-protected, searching on
67 * this tree is fully assured to be working (except when pages are unmapped),
68 * and therefore this tree is called the stable tree.
69 *
70 * In addition to the stable tree, KSM uses a second data structure called the
71 * unstable tree: this tree holds pointers to pages which have been found to
72 * be "unchanged for a period of time". The unstable tree sorts these pages
73 * by their contents, but since they are not write-protected, KSM cannot rely
74 * upon the unstable tree to work correctly - the unstable tree is liable to
75 * be corrupted as its contents are modified, and so it is called unstable.
76 *
77 * KSM solves this problem by several techniques:
78 *
79 * 1) The unstable tree is flushed every time KSM completes scanning all
80 * memory areas, and then the tree is rebuilt again from the beginning.
81 * 2) KSM will only insert into the unstable tree, pages whose hash value
82 * has not changed since the previous scan of all memory areas.
83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84 * colors of the nodes and not on their contents, assuring that even when
85 * the tree gets "corrupted" it won't get out of balance, so scanning time
86 * remains the same (also, searching and inserting nodes in an rbtree uses
87 * the same algorithm, so we have no overhead when we flush and rebuild).
88 * 4) KSM never flushes the stable tree, which means that even if it were to
89 * take 10 attempts to find a page in the unstable tree, once it is found,
90 * it is secured in the stable tree. (When we scan a new page, we first
91 * compare it against the stable tree, and then against the unstable tree.)
8fdb3dbf
HD
92 *
93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94 * stable trees and multiple unstable trees: one of each for each NUMA node.
31dbd01f
IE
95 */
96
97/**
98 * struct mm_slot - ksm information per mm that is being scanned
99 * @link: link to the mm_slots hash list
100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
102 * @mm: the mm that this information is valid for
103 */
104struct mm_slot {
105 struct hlist_node link;
106 struct list_head mm_list;
6514d511 107 struct rmap_item *rmap_list;
31dbd01f
IE
108 struct mm_struct *mm;
109};
110
111/**
112 * struct ksm_scan - cursor for scanning
113 * @mm_slot: the current mm_slot we are scanning
114 * @address: the next address inside that to be scanned
6514d511 115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
116 * @seqnr: count of completed full scans (needed when removing unstable node)
117 *
118 * There is only the one ksm_scan instance of this cursor structure.
119 */
120struct ksm_scan {
121 struct mm_slot *mm_slot;
122 unsigned long address;
6514d511 123 struct rmap_item **rmap_list;
31dbd01f
IE
124 unsigned long seqnr;
125};
126
7b6ba2c7
HD
127/**
128 * struct stable_node - node of the stable rbtree
129 * @node: rb node of this ksm page in the stable tree
4146d2d6 130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
2c653d0e 131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
4146d2d6 132 * @list: linked into migrate_nodes, pending placement in the proper node tree
7b6ba2c7 133 * @hlist: hlist head of rmap_items using this ksm page
4146d2d6 134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
2c653d0e
AA
135 * @chain_prune_time: time of the last full garbage collection
136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
4146d2d6 137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
7b6ba2c7
HD
138 */
139struct stable_node {
4146d2d6
HD
140 union {
141 struct rb_node node; /* when node of stable tree */
142 struct { /* when listed for migration */
143 struct list_head *head;
2c653d0e
AA
144 struct {
145 struct hlist_node hlist_dup;
146 struct list_head list;
147 };
4146d2d6
HD
148 };
149 };
7b6ba2c7 150 struct hlist_head hlist;
2c653d0e
AA
151 union {
152 unsigned long kpfn;
153 unsigned long chain_prune_time;
154 };
155 /*
156 * STABLE_NODE_CHAIN can be any negative number in
157 * rmap_hlist_len negative range, but better not -1 to be able
158 * to reliably detect underflows.
159 */
160#define STABLE_NODE_CHAIN -1024
161 int rmap_hlist_len;
4146d2d6
HD
162#ifdef CONFIG_NUMA
163 int nid;
164#endif
7b6ba2c7
HD
165};
166
31dbd01f
IE
167/**
168 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
bc56620b 171 * @nid: NUMA node id of unstable tree in which linked (may not match page)
31dbd01f
IE
172 * @mm: the memory structure this rmap_item is pointing into
173 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
175 * @node: rb node of this rmap_item in the unstable tree
176 * @head: pointer to stable_node heading this list in the stable tree
177 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
178 */
179struct rmap_item {
6514d511 180 struct rmap_item *rmap_list;
bc56620b
HD
181 union {
182 struct anon_vma *anon_vma; /* when stable */
183#ifdef CONFIG_NUMA
184 int nid; /* when node of unstable tree */
185#endif
186 };
31dbd01f
IE
187 struct mm_struct *mm;
188 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 189 unsigned int oldchecksum; /* when unstable */
31dbd01f 190 union {
7b6ba2c7
HD
191 struct rb_node node; /* when node of unstable tree */
192 struct { /* when listed from stable tree */
193 struct stable_node *head;
194 struct hlist_node hlist;
195 };
31dbd01f
IE
196 };
197};
198
199#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
200#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
201#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
202
203/* The stable and unstable tree heads */
ef53d16c
HD
204static struct rb_root one_stable_tree[1] = { RB_ROOT };
205static struct rb_root one_unstable_tree[1] = { RB_ROOT };
206static struct rb_root *root_stable_tree = one_stable_tree;
207static struct rb_root *root_unstable_tree = one_unstable_tree;
31dbd01f 208
4146d2d6
HD
209/* Recently migrated nodes of stable tree, pending proper placement */
210static LIST_HEAD(migrate_nodes);
2c653d0e 211#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
4146d2d6 212
4ca3a69b
SL
213#define MM_SLOTS_HASH_BITS 10
214static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
31dbd01f
IE
215
216static struct mm_slot ksm_mm_head = {
217 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
218};
219static struct ksm_scan ksm_scan = {
220 .mm_slot = &ksm_mm_head,
221};
222
223static struct kmem_cache *rmap_item_cache;
7b6ba2c7 224static struct kmem_cache *stable_node_cache;
31dbd01f
IE
225static struct kmem_cache *mm_slot_cache;
226
227/* The number of nodes in the stable tree */
b4028260 228static unsigned long ksm_pages_shared;
31dbd01f 229
e178dfde 230/* The number of page slots additionally sharing those nodes */
b4028260 231static unsigned long ksm_pages_sharing;
31dbd01f 232
473b0ce4
HD
233/* The number of nodes in the unstable tree */
234static unsigned long ksm_pages_unshared;
235
236/* The number of rmap_items in use: to calculate pages_volatile */
237static unsigned long ksm_rmap_items;
238
2c653d0e
AA
239/* The number of stable_node chains */
240static unsigned long ksm_stable_node_chains;
241
242/* The number of stable_node dups linked to the stable_node chains */
243static unsigned long ksm_stable_node_dups;
244
245/* Delay in pruning stale stable_node_dups in the stable_node_chains */
246static int ksm_stable_node_chains_prune_millisecs = 2000;
247
248/* Maximum number of page slots sharing a stable node */
249static int ksm_max_page_sharing = 256;
250
31dbd01f 251/* Number of pages ksmd should scan in one batch */
2c6854fd 252static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
253
254/* Milliseconds ksmd should sleep between batches */
2ffd8679 255static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f 256
e86c59b1
CI
257/* Checksum of an empty (zeroed) page */
258static unsigned int zero_checksum __read_mostly;
259
260/* Whether to merge empty (zeroed) pages with actual zero pages */
261static bool ksm_use_zero_pages __read_mostly;
262
e850dcf5 263#ifdef CONFIG_NUMA
90bd6fd3
PH
264/* Zeroed when merging across nodes is not allowed */
265static unsigned int ksm_merge_across_nodes = 1;
ef53d16c 266static int ksm_nr_node_ids = 1;
e850dcf5
HD
267#else
268#define ksm_merge_across_nodes 1U
ef53d16c 269#define ksm_nr_node_ids 1
e850dcf5 270#endif
90bd6fd3 271
31dbd01f
IE
272#define KSM_RUN_STOP 0
273#define KSM_RUN_MERGE 1
274#define KSM_RUN_UNMERGE 2
ef4d43a8
HD
275#define KSM_RUN_OFFLINE 4
276static unsigned long ksm_run = KSM_RUN_STOP;
277static void wait_while_offlining(void);
31dbd01f
IE
278
279static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
280static DEFINE_MUTEX(ksm_thread_mutex);
281static DEFINE_SPINLOCK(ksm_mmlist_lock);
282
283#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
284 sizeof(struct __struct), __alignof__(struct __struct),\
285 (__flags), NULL)
286
287static int __init ksm_slab_init(void)
288{
289 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
290 if (!rmap_item_cache)
291 goto out;
292
7b6ba2c7
HD
293 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
294 if (!stable_node_cache)
295 goto out_free1;
296
31dbd01f
IE
297 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
298 if (!mm_slot_cache)
7b6ba2c7 299 goto out_free2;
31dbd01f
IE
300
301 return 0;
302
7b6ba2c7
HD
303out_free2:
304 kmem_cache_destroy(stable_node_cache);
305out_free1:
31dbd01f
IE
306 kmem_cache_destroy(rmap_item_cache);
307out:
308 return -ENOMEM;
309}
310
311static void __init ksm_slab_free(void)
312{
313 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 314 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
315 kmem_cache_destroy(rmap_item_cache);
316 mm_slot_cache = NULL;
317}
318
2c653d0e
AA
319static __always_inline bool is_stable_node_chain(struct stable_node *chain)
320{
321 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
322}
323
324static __always_inline bool is_stable_node_dup(struct stable_node *dup)
325{
326 return dup->head == STABLE_NODE_DUP_HEAD;
327}
328
329static inline void stable_node_chain_add_dup(struct stable_node *dup,
330 struct stable_node *chain)
331{
332 VM_BUG_ON(is_stable_node_dup(dup));
333 dup->head = STABLE_NODE_DUP_HEAD;
334 VM_BUG_ON(!is_stable_node_chain(chain));
335 hlist_add_head(&dup->hlist_dup, &chain->hlist);
336 ksm_stable_node_dups++;
337}
338
339static inline void __stable_node_dup_del(struct stable_node *dup)
340{
b4fecc67 341 VM_BUG_ON(!is_stable_node_dup(dup));
2c653d0e
AA
342 hlist_del(&dup->hlist_dup);
343 ksm_stable_node_dups--;
344}
345
346static inline void stable_node_dup_del(struct stable_node *dup)
347{
348 VM_BUG_ON(is_stable_node_chain(dup));
349 if (is_stable_node_dup(dup))
350 __stable_node_dup_del(dup);
351 else
352 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
353#ifdef CONFIG_DEBUG_VM
354 dup->head = NULL;
355#endif
356}
357
31dbd01f
IE
358static inline struct rmap_item *alloc_rmap_item(void)
359{
473b0ce4
HD
360 struct rmap_item *rmap_item;
361
5b398e41 362 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
363 __GFP_NORETRY | __GFP_NOWARN);
473b0ce4
HD
364 if (rmap_item)
365 ksm_rmap_items++;
366 return rmap_item;
31dbd01f
IE
367}
368
369static inline void free_rmap_item(struct rmap_item *rmap_item)
370{
473b0ce4 371 ksm_rmap_items--;
31dbd01f
IE
372 rmap_item->mm = NULL; /* debug safety */
373 kmem_cache_free(rmap_item_cache, rmap_item);
374}
375
7b6ba2c7
HD
376static inline struct stable_node *alloc_stable_node(void)
377{
6213055f 378 /*
379 * The allocation can take too long with GFP_KERNEL when memory is under
380 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
381 * grants access to memory reserves, helping to avoid this problem.
382 */
383 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
7b6ba2c7
HD
384}
385
386static inline void free_stable_node(struct stable_node *stable_node)
387{
2c653d0e
AA
388 VM_BUG_ON(stable_node->rmap_hlist_len &&
389 !is_stable_node_chain(stable_node));
7b6ba2c7
HD
390 kmem_cache_free(stable_node_cache, stable_node);
391}
392
31dbd01f
IE
393static inline struct mm_slot *alloc_mm_slot(void)
394{
395 if (!mm_slot_cache) /* initialization failed */
396 return NULL;
397 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
398}
399
400static inline void free_mm_slot(struct mm_slot *mm_slot)
401{
402 kmem_cache_free(mm_slot_cache, mm_slot);
403}
404
31dbd01f
IE
405static struct mm_slot *get_mm_slot(struct mm_struct *mm)
406{
4ca3a69b
SL
407 struct mm_slot *slot;
408
b67bfe0d 409 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
4ca3a69b
SL
410 if (slot->mm == mm)
411 return slot;
31dbd01f 412
31dbd01f
IE
413 return NULL;
414}
415
416static void insert_to_mm_slots_hash(struct mm_struct *mm,
417 struct mm_slot *mm_slot)
418{
31dbd01f 419 mm_slot->mm = mm;
4ca3a69b 420 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
31dbd01f
IE
421}
422
a913e182
HD
423/*
424 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
425 * page tables after it has passed through ksm_exit() - which, if necessary,
426 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
427 * a special flag: they can just back out as soon as mm_users goes to zero.
428 * ksm_test_exit() is used throughout to make this test for exit: in some
429 * places for correctness, in some places just to avoid unnecessary work.
430 */
431static inline bool ksm_test_exit(struct mm_struct *mm)
432{
433 return atomic_read(&mm->mm_users) == 0;
434}
435
31dbd01f
IE
436/*
437 * We use break_ksm to break COW on a ksm page: it's a stripped down
438 *
d4edcf0d 439 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
31dbd01f
IE
440 * put_page(page);
441 *
442 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
443 * in case the application has unmapped and remapped mm,addr meanwhile.
444 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
445 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
1b2ee126
DH
446 *
447 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
448 * of the process that owns 'vma'. We also do not want to enforce
449 * protection keys here anyway.
31dbd01f 450 */
d952b791 451static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
452{
453 struct page *page;
d952b791 454 int ret = 0;
31dbd01f
IE
455
456 do {
457 cond_resched();
1b2ee126
DH
458 page = follow_page(vma, addr,
459 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
22eccdd7 460 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
461 break;
462 if (PageKsm(page))
dcddffd4
KS
463 ret = handle_mm_fault(vma, addr,
464 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
31dbd01f
IE
465 else
466 ret = VM_FAULT_WRITE;
467 put_page(page);
33692f27 468 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
d952b791
HD
469 /*
470 * We must loop because handle_mm_fault() may back out if there's
471 * any difficulty e.g. if pte accessed bit gets updated concurrently.
472 *
473 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
474 * COW has been broken, even if the vma does not permit VM_WRITE;
475 * but note that a concurrent fault might break PageKsm for us.
476 *
477 * VM_FAULT_SIGBUS could occur if we race with truncation of the
478 * backing file, which also invalidates anonymous pages: that's
479 * okay, that truncation will have unmapped the PageKsm for us.
480 *
481 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
482 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
483 * current task has TIF_MEMDIE set, and will be OOM killed on return
484 * to user; and ksmd, having no mm, would never be chosen for that.
485 *
486 * But if the mm is in a limited mem_cgroup, then the fault may fail
487 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
488 * even ksmd can fail in this way - though it's usually breaking ksm
489 * just to undo a merge it made a moment before, so unlikely to oom.
490 *
491 * That's a pity: we might therefore have more kernel pages allocated
492 * than we're counting as nodes in the stable tree; but ksm_do_scan
493 * will retry to break_cow on each pass, so should recover the page
494 * in due course. The important thing is to not let VM_MERGEABLE
495 * be cleared while any such pages might remain in the area.
496 */
497 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
498}
499
ef694222
BL
500static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
501 unsigned long addr)
502{
503 struct vm_area_struct *vma;
504 if (ksm_test_exit(mm))
505 return NULL;
506 vma = find_vma(mm, addr);
507 if (!vma || vma->vm_start > addr)
508 return NULL;
509 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
510 return NULL;
511 return vma;
512}
513
8dd3557a 514static void break_cow(struct rmap_item *rmap_item)
31dbd01f 515{
8dd3557a
HD
516 struct mm_struct *mm = rmap_item->mm;
517 unsigned long addr = rmap_item->address;
31dbd01f
IE
518 struct vm_area_struct *vma;
519
4035c07a
HD
520 /*
521 * It is not an accident that whenever we want to break COW
522 * to undo, we also need to drop a reference to the anon_vma.
523 */
9e60109f 524 put_anon_vma(rmap_item->anon_vma);
4035c07a 525
81464e30 526 down_read(&mm->mmap_sem);
ef694222
BL
527 vma = find_mergeable_vma(mm, addr);
528 if (vma)
529 break_ksm(vma, addr);
31dbd01f
IE
530 up_read(&mm->mmap_sem);
531}
532
533static struct page *get_mergeable_page(struct rmap_item *rmap_item)
534{
535 struct mm_struct *mm = rmap_item->mm;
536 unsigned long addr = rmap_item->address;
537 struct vm_area_struct *vma;
538 struct page *page;
539
540 down_read(&mm->mmap_sem);
ef694222
BL
541 vma = find_mergeable_vma(mm, addr);
542 if (!vma)
31dbd01f
IE
543 goto out;
544
545 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 546 if (IS_ERR_OR_NULL(page))
31dbd01f 547 goto out;
f765f540 548 if (PageAnon(page)) {
31dbd01f
IE
549 flush_anon_page(vma, page, addr);
550 flush_dcache_page(page);
551 } else {
552 put_page(page);
c8f95ed1
AA
553out:
554 page = NULL;
31dbd01f
IE
555 }
556 up_read(&mm->mmap_sem);
557 return page;
558}
559
90bd6fd3
PH
560/*
561 * This helper is used for getting right index into array of tree roots.
562 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
563 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
564 * every node has its own stable and unstable tree.
565 */
566static inline int get_kpfn_nid(unsigned long kpfn)
567{
d8fc16a8 568 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
90bd6fd3
PH
569}
570
2c653d0e
AA
571static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
572 struct rb_root *root)
573{
574 struct stable_node *chain = alloc_stable_node();
575 VM_BUG_ON(is_stable_node_chain(dup));
576 if (likely(chain)) {
577 INIT_HLIST_HEAD(&chain->hlist);
578 chain->chain_prune_time = jiffies;
579 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
580#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
581 chain->nid = -1; /* debug */
582#endif
583 ksm_stable_node_chains++;
584
585 /*
586 * Put the stable node chain in the first dimension of
587 * the stable tree and at the same time remove the old
588 * stable node.
589 */
590 rb_replace_node(&dup->node, &chain->node, root);
591
592 /*
593 * Move the old stable node to the second dimension
594 * queued in the hlist_dup. The invariant is that all
595 * dup stable_nodes in the chain->hlist point to pages
596 * that are wrprotected and have the exact same
597 * content.
598 */
599 stable_node_chain_add_dup(dup, chain);
600 }
601 return chain;
602}
603
604static inline void free_stable_node_chain(struct stable_node *chain,
605 struct rb_root *root)
606{
607 rb_erase(&chain->node, root);
608 free_stable_node(chain);
609 ksm_stable_node_chains--;
610}
611
4035c07a
HD
612static void remove_node_from_stable_tree(struct stable_node *stable_node)
613{
614 struct rmap_item *rmap_item;
4035c07a 615
2c653d0e
AA
616 /* check it's not STABLE_NODE_CHAIN or negative */
617 BUG_ON(stable_node->rmap_hlist_len < 0);
618
b67bfe0d 619 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
4035c07a
HD
620 if (rmap_item->hlist.next)
621 ksm_pages_sharing--;
622 else
623 ksm_pages_shared--;
2c653d0e
AA
624 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
625 stable_node->rmap_hlist_len--;
9e60109f 626 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
627 rmap_item->address &= PAGE_MASK;
628 cond_resched();
629 }
630
2c653d0e
AA
631 /*
632 * We need the second aligned pointer of the migrate_nodes
633 * list_head to stay clear from the rb_parent_color union
634 * (aligned and different than any node) and also different
635 * from &migrate_nodes. This will verify that future list.h changes
636 * don't break STABLE_NODE_DUP_HEAD.
637 */
638#if GCC_VERSION >= 40903 /* only recent gcc can handle it */
639 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
640 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
641#endif
642
4146d2d6
HD
643 if (stable_node->head == &migrate_nodes)
644 list_del(&stable_node->list);
645 else
2c653d0e 646 stable_node_dup_del(stable_node);
4035c07a
HD
647 free_stable_node(stable_node);
648}
649
650/*
651 * get_ksm_page: checks if the page indicated by the stable node
652 * is still its ksm page, despite having held no reference to it.
653 * In which case we can trust the content of the page, and it
654 * returns the gotten page; but if the page has now been zapped,
655 * remove the stale node from the stable tree and return NULL.
c8d6553b 656 * But beware, the stable node's page might be being migrated.
4035c07a
HD
657 *
658 * You would expect the stable_node to hold a reference to the ksm page.
659 * But if it increments the page's count, swapping out has to wait for
660 * ksmd to come around again before it can free the page, which may take
661 * seconds or even minutes: much too unresponsive. So instead we use a
662 * "keyhole reference": access to the ksm page from the stable node peeps
663 * out through its keyhole to see if that page still holds the right key,
664 * pointing back to this stable node. This relies on freeing a PageAnon
665 * page to reset its page->mapping to NULL, and relies on no other use of
666 * a page to put something that might look like our key in page->mapping.
4035c07a
HD
667 * is on its way to being freed; but it is an anomaly to bear in mind.
668 */
8fdb3dbf 669static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
4035c07a
HD
670{
671 struct page *page;
672 void *expected_mapping;
c8d6553b 673 unsigned long kpfn;
4035c07a 674
bda807d4
MK
675 expected_mapping = (void *)((unsigned long)stable_node |
676 PAGE_MAPPING_KSM);
c8d6553b 677again:
4db0c3c2 678 kpfn = READ_ONCE(stable_node->kpfn);
c8d6553b
HD
679 page = pfn_to_page(kpfn);
680
681 /*
682 * page is computed from kpfn, so on most architectures reading
683 * page->mapping is naturally ordered after reading node->kpfn,
684 * but on Alpha we need to be more careful.
685 */
686 smp_read_barrier_depends();
4db0c3c2 687 if (READ_ONCE(page->mapping) != expected_mapping)
4035c07a 688 goto stale;
c8d6553b
HD
689
690 /*
691 * We cannot do anything with the page while its refcount is 0.
692 * Usually 0 means free, or tail of a higher-order page: in which
693 * case this node is no longer referenced, and should be freed;
694 * however, it might mean that the page is under page_freeze_refs().
695 * The __remove_mapping() case is easy, again the node is now stale;
696 * but if page is swapcache in migrate_page_move_mapping(), it might
697 * still be our page, in which case it's essential to keep the node.
698 */
699 while (!get_page_unless_zero(page)) {
700 /*
701 * Another check for page->mapping != expected_mapping would
702 * work here too. We have chosen the !PageSwapCache test to
703 * optimize the common case, when the page is or is about to
704 * be freed: PageSwapCache is cleared (under spin_lock_irq)
705 * in the freeze_refs section of __remove_mapping(); but Anon
706 * page->mapping reset to NULL later, in free_pages_prepare().
707 */
708 if (!PageSwapCache(page))
709 goto stale;
710 cpu_relax();
711 }
712
4db0c3c2 713 if (READ_ONCE(page->mapping) != expected_mapping) {
4035c07a
HD
714 put_page(page);
715 goto stale;
716 }
c8d6553b 717
8fdb3dbf 718 if (lock_it) {
8aafa6a4 719 lock_page(page);
4db0c3c2 720 if (READ_ONCE(page->mapping) != expected_mapping) {
8aafa6a4
HD
721 unlock_page(page);
722 put_page(page);
723 goto stale;
724 }
725 }
4035c07a 726 return page;
c8d6553b 727
4035c07a 728stale:
c8d6553b
HD
729 /*
730 * We come here from above when page->mapping or !PageSwapCache
731 * suggests that the node is stale; but it might be under migration.
732 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
733 * before checking whether node->kpfn has been changed.
734 */
735 smp_rmb();
4db0c3c2 736 if (READ_ONCE(stable_node->kpfn) != kpfn)
c8d6553b 737 goto again;
4035c07a
HD
738 remove_node_from_stable_tree(stable_node);
739 return NULL;
740}
741
31dbd01f
IE
742/*
743 * Removing rmap_item from stable or unstable tree.
744 * This function will clean the information from the stable/unstable tree.
745 */
746static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
747{
7b6ba2c7
HD
748 if (rmap_item->address & STABLE_FLAG) {
749 struct stable_node *stable_node;
5ad64688 750 struct page *page;
31dbd01f 751
7b6ba2c7 752 stable_node = rmap_item->head;
8aafa6a4 753 page = get_ksm_page(stable_node, true);
4035c07a
HD
754 if (!page)
755 goto out;
5ad64688 756
7b6ba2c7 757 hlist_del(&rmap_item->hlist);
4035c07a
HD
758 unlock_page(page);
759 put_page(page);
08beca44 760
98666f8a 761 if (!hlist_empty(&stable_node->hlist))
4035c07a
HD
762 ksm_pages_sharing--;
763 else
7b6ba2c7 764 ksm_pages_shared--;
2c653d0e
AA
765 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
766 stable_node->rmap_hlist_len--;
31dbd01f 767
9e60109f 768 put_anon_vma(rmap_item->anon_vma);
93d17715 769 rmap_item->address &= PAGE_MASK;
31dbd01f 770
7b6ba2c7 771 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
772 unsigned char age;
773 /*
9ba69294 774 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 775 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
776 * But be careful when an mm is exiting: do the rb_erase
777 * if this rmap_item was inserted by this scan, rather
778 * than left over from before.
31dbd01f
IE
779 */
780 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 781 BUG_ON(age > 1);
31dbd01f 782 if (!age)
90bd6fd3 783 rb_erase(&rmap_item->node,
ef53d16c 784 root_unstable_tree + NUMA(rmap_item->nid));
473b0ce4 785 ksm_pages_unshared--;
93d17715 786 rmap_item->address &= PAGE_MASK;
31dbd01f 787 }
4035c07a 788out:
31dbd01f
IE
789 cond_resched(); /* we're called from many long loops */
790}
791
31dbd01f 792static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 793 struct rmap_item **rmap_list)
31dbd01f 794{
6514d511
HD
795 while (*rmap_list) {
796 struct rmap_item *rmap_item = *rmap_list;
797 *rmap_list = rmap_item->rmap_list;
31dbd01f 798 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
799 free_rmap_item(rmap_item);
800 }
801}
802
803/*
e850dcf5 804 * Though it's very tempting to unmerge rmap_items from stable tree rather
31dbd01f
IE
805 * than check every pte of a given vma, the locking doesn't quite work for
806 * that - an rmap_item is assigned to the stable tree after inserting ksm
807 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
808 * rmap_items from parent to child at fork time (so as not to waste time
809 * if exit comes before the next scan reaches it).
81464e30
HD
810 *
811 * Similarly, although we'd like to remove rmap_items (so updating counts
812 * and freeing memory) when unmerging an area, it's easier to leave that
813 * to the next pass of ksmd - consider, for example, how ksmd might be
814 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 815 */
d952b791
HD
816static int unmerge_ksm_pages(struct vm_area_struct *vma,
817 unsigned long start, unsigned long end)
31dbd01f
IE
818{
819 unsigned long addr;
d952b791 820 int err = 0;
31dbd01f 821
d952b791 822 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
823 if (ksm_test_exit(vma->vm_mm))
824 break;
d952b791
HD
825 if (signal_pending(current))
826 err = -ERESTARTSYS;
827 else
828 err = break_ksm(vma, addr);
829 }
830 return err;
31dbd01f
IE
831}
832
2ffd8679
HD
833#ifdef CONFIG_SYSFS
834/*
835 * Only called through the sysfs control interface:
836 */
cbf86cfe
HD
837static int remove_stable_node(struct stable_node *stable_node)
838{
839 struct page *page;
840 int err;
841
842 page = get_ksm_page(stable_node, true);
843 if (!page) {
844 /*
845 * get_ksm_page did remove_node_from_stable_tree itself.
846 */
847 return 0;
848 }
849
8fdb3dbf
HD
850 if (WARN_ON_ONCE(page_mapped(page))) {
851 /*
852 * This should not happen: but if it does, just refuse to let
853 * merge_across_nodes be switched - there is no need to panic.
854 */
cbf86cfe 855 err = -EBUSY;
8fdb3dbf 856 } else {
cbf86cfe 857 /*
8fdb3dbf
HD
858 * The stable node did not yet appear stale to get_ksm_page(),
859 * since that allows for an unmapped ksm page to be recognized
860 * right up until it is freed; but the node is safe to remove.
cbf86cfe
HD
861 * This page might be in a pagevec waiting to be freed,
862 * or it might be PageSwapCache (perhaps under writeback),
863 * or it might have been removed from swapcache a moment ago.
864 */
865 set_page_stable_node(page, NULL);
866 remove_node_from_stable_tree(stable_node);
867 err = 0;
868 }
869
870 unlock_page(page);
871 put_page(page);
872 return err;
873}
874
2c653d0e
AA
875static int remove_stable_node_chain(struct stable_node *stable_node,
876 struct rb_root *root)
877{
878 struct stable_node *dup;
879 struct hlist_node *hlist_safe;
880
881 if (!is_stable_node_chain(stable_node)) {
882 VM_BUG_ON(is_stable_node_dup(stable_node));
883 if (remove_stable_node(stable_node))
884 return true;
885 else
886 return false;
887 }
888
889 hlist_for_each_entry_safe(dup, hlist_safe,
890 &stable_node->hlist, hlist_dup) {
891 VM_BUG_ON(!is_stable_node_dup(dup));
892 if (remove_stable_node(dup))
893 return true;
894 }
895 BUG_ON(!hlist_empty(&stable_node->hlist));
896 free_stable_node_chain(stable_node, root);
897 return false;
898}
899
cbf86cfe
HD
900static int remove_all_stable_nodes(void)
901{
03640418 902 struct stable_node *stable_node, *next;
cbf86cfe
HD
903 int nid;
904 int err = 0;
905
ef53d16c 906 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
cbf86cfe
HD
907 while (root_stable_tree[nid].rb_node) {
908 stable_node = rb_entry(root_stable_tree[nid].rb_node,
909 struct stable_node, node);
2c653d0e
AA
910 if (remove_stable_node_chain(stable_node,
911 root_stable_tree + nid)) {
cbf86cfe
HD
912 err = -EBUSY;
913 break; /* proceed to next nid */
914 }
915 cond_resched();
916 }
917 }
03640418 918 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
919 if (remove_stable_node(stable_node))
920 err = -EBUSY;
921 cond_resched();
922 }
cbf86cfe
HD
923 return err;
924}
925
d952b791 926static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
927{
928 struct mm_slot *mm_slot;
929 struct mm_struct *mm;
930 struct vm_area_struct *vma;
d952b791
HD
931 int err = 0;
932
933 spin_lock(&ksm_mmlist_lock);
9ba69294 934 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
935 struct mm_slot, mm_list);
936 spin_unlock(&ksm_mmlist_lock);
31dbd01f 937
9ba69294
HD
938 for (mm_slot = ksm_scan.mm_slot;
939 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
940 mm = mm_slot->mm;
941 down_read(&mm->mmap_sem);
942 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
943 if (ksm_test_exit(mm))
944 break;
31dbd01f
IE
945 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
946 continue;
d952b791
HD
947 err = unmerge_ksm_pages(vma,
948 vma->vm_start, vma->vm_end);
9ba69294
HD
949 if (err)
950 goto error;
31dbd01f 951 }
9ba69294 952
6514d511 953 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
7496fea9 954 up_read(&mm->mmap_sem);
d952b791
HD
955
956 spin_lock(&ksm_mmlist_lock);
9ba69294 957 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 958 struct mm_slot, mm_list);
9ba69294 959 if (ksm_test_exit(mm)) {
4ca3a69b 960 hash_del(&mm_slot->link);
9ba69294
HD
961 list_del(&mm_slot->mm_list);
962 spin_unlock(&ksm_mmlist_lock);
963
964 free_mm_slot(mm_slot);
965 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 966 mmdrop(mm);
7496fea9 967 } else
9ba69294 968 spin_unlock(&ksm_mmlist_lock);
31dbd01f
IE
969 }
970
cbf86cfe
HD
971 /* Clean up stable nodes, but don't worry if some are still busy */
972 remove_all_stable_nodes();
d952b791 973 ksm_scan.seqnr = 0;
9ba69294
HD
974 return 0;
975
976error:
977 up_read(&mm->mmap_sem);
31dbd01f 978 spin_lock(&ksm_mmlist_lock);
d952b791 979 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 980 spin_unlock(&ksm_mmlist_lock);
d952b791 981 return err;
31dbd01f 982}
2ffd8679 983#endif /* CONFIG_SYSFS */
31dbd01f 984
31dbd01f
IE
985static u32 calc_checksum(struct page *page)
986{
987 u32 checksum;
9b04c5fe 988 void *addr = kmap_atomic(page);
31dbd01f 989 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
9b04c5fe 990 kunmap_atomic(addr);
31dbd01f
IE
991 return checksum;
992}
993
994static int memcmp_pages(struct page *page1, struct page *page2)
995{
996 char *addr1, *addr2;
997 int ret;
998
9b04c5fe
CW
999 addr1 = kmap_atomic(page1);
1000 addr2 = kmap_atomic(page2);
31dbd01f 1001 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
1002 kunmap_atomic(addr2);
1003 kunmap_atomic(addr1);
31dbd01f
IE
1004 return ret;
1005}
1006
1007static inline int pages_identical(struct page *page1, struct page *page2)
1008{
1009 return !memcmp_pages(page1, page2);
1010}
1011
1012static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1013 pte_t *orig_pte)
1014{
1015 struct mm_struct *mm = vma->vm_mm;
36eaff33
KS
1016 struct page_vma_mapped_walk pvmw = {
1017 .page = page,
1018 .vma = vma,
1019 };
31dbd01f
IE
1020 int swapped;
1021 int err = -EFAULT;
6bdb913f
HE
1022 unsigned long mmun_start; /* For mmu_notifiers */
1023 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 1024
36eaff33
KS
1025 pvmw.address = page_address_in_vma(page, vma);
1026 if (pvmw.address == -EFAULT)
31dbd01f
IE
1027 goto out;
1028
29ad768c 1029 BUG_ON(PageTransCompound(page));
6bdb913f 1030
36eaff33
KS
1031 mmun_start = pvmw.address;
1032 mmun_end = pvmw.address + PAGE_SIZE;
6bdb913f
HE
1033 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1034
36eaff33 1035 if (!page_vma_mapped_walk(&pvmw))
6bdb913f 1036 goto out_mn;
36eaff33
KS
1037 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1038 goto out_unlock;
31dbd01f 1039
595cd8f2
AK
1040 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1041 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) {
31dbd01f
IE
1042 pte_t entry;
1043
1044 swapped = PageSwapCache(page);
36eaff33 1045 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
31dbd01f 1046 /*
25985edc 1047 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
1048 * take any lock, therefore the check that we are going to make
1049 * with the pagecount against the mapcount is racey and
1050 * O_DIRECT can happen right after the check.
1051 * So we clear the pte and flush the tlb before the check
1052 * this assure us that no O_DIRECT can happen after the check
1053 * or in the middle of the check.
1054 */
36eaff33 1055 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
31dbd01f
IE
1056 /*
1057 * Check that no O_DIRECT or similar I/O is in progress on the
1058 * page
1059 */
31e855ea 1060 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
36eaff33 1061 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
31dbd01f
IE
1062 goto out_unlock;
1063 }
4e31635c
HD
1064 if (pte_dirty(entry))
1065 set_page_dirty(page);
595cd8f2
AK
1066
1067 if (pte_protnone(entry))
1068 entry = pte_mkclean(pte_clear_savedwrite(entry));
1069 else
1070 entry = pte_mkclean(pte_wrprotect(entry));
36eaff33 1071 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
31dbd01f 1072 }
36eaff33 1073 *orig_pte = *pvmw.pte;
31dbd01f
IE
1074 err = 0;
1075
1076out_unlock:
36eaff33 1077 page_vma_mapped_walk_done(&pvmw);
6bdb913f
HE
1078out_mn:
1079 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
1080out:
1081 return err;
1082}
1083
1084/**
1085 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
1086 * @vma: vma that holds the pte pointing to page
1087 * @page: the page we are replacing by kpage
1088 * @kpage: the ksm page we replace page by
31dbd01f
IE
1089 * @orig_pte: the original value of the pte
1090 *
1091 * Returns 0 on success, -EFAULT on failure.
1092 */
8dd3557a
HD
1093static int replace_page(struct vm_area_struct *vma, struct page *page,
1094 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
1095{
1096 struct mm_struct *mm = vma->vm_mm;
31dbd01f
IE
1097 pmd_t *pmd;
1098 pte_t *ptep;
e86c59b1 1099 pte_t newpte;
31dbd01f
IE
1100 spinlock_t *ptl;
1101 unsigned long addr;
31dbd01f 1102 int err = -EFAULT;
6bdb913f
HE
1103 unsigned long mmun_start; /* For mmu_notifiers */
1104 unsigned long mmun_end; /* For mmu_notifiers */
31dbd01f 1105
8dd3557a 1106 addr = page_address_in_vma(page, vma);
31dbd01f
IE
1107 if (addr == -EFAULT)
1108 goto out;
1109
6219049a
BL
1110 pmd = mm_find_pmd(mm, addr);
1111 if (!pmd)
31dbd01f 1112 goto out;
31dbd01f 1113
6bdb913f
HE
1114 mmun_start = addr;
1115 mmun_end = addr + PAGE_SIZE;
1116 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1117
31dbd01f
IE
1118 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1119 if (!pte_same(*ptep, orig_pte)) {
1120 pte_unmap_unlock(ptep, ptl);
6bdb913f 1121 goto out_mn;
31dbd01f
IE
1122 }
1123
e86c59b1
CI
1124 /*
1125 * No need to check ksm_use_zero_pages here: we can only have a
1126 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1127 */
1128 if (!is_zero_pfn(page_to_pfn(kpage))) {
1129 get_page(kpage);
1130 page_add_anon_rmap(kpage, vma, addr, false);
1131 newpte = mk_pte(kpage, vma->vm_page_prot);
1132 } else {
1133 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1134 vma->vm_page_prot));
1135 }
31dbd01f
IE
1136
1137 flush_cache_page(vma, addr, pte_pfn(*ptep));
34ee645e 1138 ptep_clear_flush_notify(vma, addr, ptep);
e86c59b1 1139 set_pte_at_notify(mm, addr, ptep, newpte);
31dbd01f 1140
d281ee61 1141 page_remove_rmap(page, false);
ae52a2ad
HD
1142 if (!page_mapped(page))
1143 try_to_free_swap(page);
8dd3557a 1144 put_page(page);
31dbd01f
IE
1145
1146 pte_unmap_unlock(ptep, ptl);
1147 err = 0;
6bdb913f
HE
1148out_mn:
1149 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
31dbd01f
IE
1150out:
1151 return err;
1152}
1153
1154/*
1155 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
1156 * @vma: the vma that holds the pte pointing to page
1157 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
1158 * @kpage: the PageKsm page that we want to map instead of page,
1159 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
1160 *
1161 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1162 */
1163static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 1164 struct page *page, struct page *kpage)
31dbd01f
IE
1165{
1166 pte_t orig_pte = __pte(0);
1167 int err = -EFAULT;
1168
db114b83
HD
1169 if (page == kpage) /* ksm page forked */
1170 return 0;
1171
8dd3557a 1172 if (!PageAnon(page))
31dbd01f
IE
1173 goto out;
1174
31dbd01f
IE
1175 /*
1176 * We need the page lock to read a stable PageSwapCache in
1177 * write_protect_page(). We use trylock_page() instead of
1178 * lock_page() because we don't want to wait here - we
1179 * prefer to continue scanning and merging different pages,
1180 * then come back to this page when it is unlocked.
1181 */
8dd3557a 1182 if (!trylock_page(page))
31e855ea 1183 goto out;
f765f540
KS
1184
1185 if (PageTransCompound(page)) {
a7306c34 1186 if (split_huge_page(page))
f765f540
KS
1187 goto out_unlock;
1188 }
1189
31dbd01f
IE
1190 /*
1191 * If this anonymous page is mapped only here, its pte may need
1192 * to be write-protected. If it's mapped elsewhere, all of its
1193 * ptes are necessarily already write-protected. But in either
1194 * case, we need to lock and check page_count is not raised.
1195 */
80e14822
HD
1196 if (write_protect_page(vma, page, &orig_pte) == 0) {
1197 if (!kpage) {
1198 /*
1199 * While we hold page lock, upgrade page from
1200 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1201 * stable_tree_insert() will update stable_node.
1202 */
1203 set_page_stable_node(page, NULL);
1204 mark_page_accessed(page);
337ed7eb
MK
1205 /*
1206 * Page reclaim just frees a clean page with no dirty
1207 * ptes: make sure that the ksm page would be swapped.
1208 */
1209 if (!PageDirty(page))
1210 SetPageDirty(page);
80e14822
HD
1211 err = 0;
1212 } else if (pages_identical(page, kpage))
1213 err = replace_page(vma, page, kpage, orig_pte);
1214 }
31dbd01f 1215
80e14822 1216 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 1217 munlock_vma_page(page);
5ad64688
HD
1218 if (!PageMlocked(kpage)) {
1219 unlock_page(page);
5ad64688
HD
1220 lock_page(kpage);
1221 mlock_vma_page(kpage);
1222 page = kpage; /* for final unlock */
1223 }
1224 }
73848b46 1225
f765f540 1226out_unlock:
8dd3557a 1227 unlock_page(page);
31dbd01f
IE
1228out:
1229 return err;
1230}
1231
81464e30
HD
1232/*
1233 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1234 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
1235 *
1236 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 1237 */
8dd3557a
HD
1238static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1239 struct page *page, struct page *kpage)
81464e30 1240{
8dd3557a 1241 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
1242 struct vm_area_struct *vma;
1243 int err = -EFAULT;
1244
8dd3557a 1245 down_read(&mm->mmap_sem);
85c6e8dd
AA
1246 vma = find_mergeable_vma(mm, rmap_item->address);
1247 if (!vma)
81464e30
HD
1248 goto out;
1249
8dd3557a 1250 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
1251 if (err)
1252 goto out;
1253
bc56620b
HD
1254 /* Unstable nid is in union with stable anon_vma: remove first */
1255 remove_rmap_item_from_tree(rmap_item);
1256
db114b83 1257 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
1258 rmap_item->anon_vma = vma->anon_vma;
1259 get_anon_vma(vma->anon_vma);
81464e30 1260out:
8dd3557a 1261 up_read(&mm->mmap_sem);
81464e30
HD
1262 return err;
1263}
1264
31dbd01f
IE
1265/*
1266 * try_to_merge_two_pages - take two identical pages and prepare them
1267 * to be merged into one page.
1268 *
8dd3557a
HD
1269 * This function returns the kpage if we successfully merged two identical
1270 * pages into one ksm page, NULL otherwise.
31dbd01f 1271 *
80e14822 1272 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
1273 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1274 */
8dd3557a
HD
1275static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1276 struct page *page,
1277 struct rmap_item *tree_rmap_item,
1278 struct page *tree_page)
31dbd01f 1279{
80e14822 1280 int err;
31dbd01f 1281
80e14822 1282 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 1283 if (!err) {
8dd3557a 1284 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 1285 tree_page, page);
31dbd01f 1286 /*
81464e30
HD
1287 * If that fails, we have a ksm page with only one pte
1288 * pointing to it: so break it.
31dbd01f 1289 */
4035c07a 1290 if (err)
8dd3557a 1291 break_cow(rmap_item);
31dbd01f 1292 }
80e14822 1293 return err ? NULL : page;
31dbd01f
IE
1294}
1295
2c653d0e
AA
1296static __always_inline
1297bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1298{
1299 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1300 /*
1301 * Check that at least one mapping still exists, otherwise
1302 * there's no much point to merge and share with this
1303 * stable_node, as the underlying tree_page of the other
1304 * sharer is going to be freed soon.
1305 */
1306 return stable_node->rmap_hlist_len &&
1307 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1308}
1309
1310static __always_inline
1311bool is_page_sharing_candidate(struct stable_node *stable_node)
1312{
1313 return __is_page_sharing_candidate(stable_node, 0);
1314}
1315
8dc5ffcd
AA
1316struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1317 struct stable_node **_stable_node,
1318 struct rb_root *root,
1319 bool prune_stale_stable_nodes)
2c653d0e 1320{
b4fecc67 1321 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
2c653d0e 1322 struct hlist_node *hlist_safe;
8dc5ffcd 1323 struct page *_tree_page, *tree_page = NULL;
2c653d0e
AA
1324 int nr = 0;
1325 int found_rmap_hlist_len;
1326
1327 if (!prune_stale_stable_nodes ||
1328 time_before(jiffies, stable_node->chain_prune_time +
1329 msecs_to_jiffies(
1330 ksm_stable_node_chains_prune_millisecs)))
1331 prune_stale_stable_nodes = false;
1332 else
1333 stable_node->chain_prune_time = jiffies;
1334
1335 hlist_for_each_entry_safe(dup, hlist_safe,
1336 &stable_node->hlist, hlist_dup) {
1337 cond_resched();
1338 /*
1339 * We must walk all stable_node_dup to prune the stale
1340 * stable nodes during lookup.
1341 *
1342 * get_ksm_page can drop the nodes from the
1343 * stable_node->hlist if they point to freed pages
1344 * (that's why we do a _safe walk). The "dup"
1345 * stable_node parameter itself will be freed from
1346 * under us if it returns NULL.
1347 */
1348 _tree_page = get_ksm_page(dup, false);
1349 if (!_tree_page)
1350 continue;
1351 nr += 1;
1352 if (is_page_sharing_candidate(dup)) {
1353 if (!found ||
1354 dup->rmap_hlist_len > found_rmap_hlist_len) {
1355 if (found)
8dc5ffcd 1356 put_page(tree_page);
2c653d0e
AA
1357 found = dup;
1358 found_rmap_hlist_len = found->rmap_hlist_len;
8dc5ffcd 1359 tree_page = _tree_page;
2c653d0e 1360
8dc5ffcd 1361 /* skip put_page for found dup */
2c653d0e
AA
1362 if (!prune_stale_stable_nodes)
1363 break;
2c653d0e
AA
1364 continue;
1365 }
1366 }
1367 put_page(_tree_page);
1368 }
1369
1370 /*
1371 * nr is relevant only if prune_stale_stable_nodes is true,
1372 * otherwise we may break the loop at nr == 1 even if there
1373 * are multiple entries.
1374 */
1375 if (prune_stale_stable_nodes && found) {
1376 if (nr == 1) {
1377 /*
1378 * If there's not just one entry it would
1379 * corrupt memory, better BUG_ON. In KSM
1380 * context with no lock held it's not even
1381 * fatal.
1382 */
1383 BUG_ON(stable_node->hlist.first->next);
1384
1385 /*
1386 * There's just one entry and it is below the
1387 * deduplication limit so drop the chain.
1388 */
1389 rb_replace_node(&stable_node->node, &found->node,
1390 root);
1391 free_stable_node(stable_node);
1392 ksm_stable_node_chains--;
1393 ksm_stable_node_dups--;
b4fecc67 1394 /*
0ba1d0f7
AA
1395 * NOTE: the caller depends on the stable_node
1396 * to be equal to stable_node_dup if the chain
1397 * was collapsed.
b4fecc67 1398 */
0ba1d0f7
AA
1399 *_stable_node = found;
1400 /*
1401 * Just for robustneess as stable_node is
1402 * otherwise left as a stable pointer, the
1403 * compiler shall optimize it away at build
1404 * time.
1405 */
1406 stable_node = NULL;
2c653d0e
AA
1407 } else if (__is_page_sharing_candidate(found, 1)) {
1408 /*
1409 * Refile our candidate at the head
1410 * after the prune if our candidate
1411 * can accept one more future sharing
1412 * in addition to the one underway.
1413 */
1414 hlist_del(&found->hlist_dup);
1415 hlist_add_head(&found->hlist_dup,
1416 &stable_node->hlist);
1417 }
1418 }
1419
8dc5ffcd
AA
1420 *_stable_node_dup = found;
1421 return tree_page;
2c653d0e
AA
1422}
1423
1424static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1425 struct rb_root *root)
1426{
1427 if (!is_stable_node_chain(stable_node))
1428 return stable_node;
1429 if (hlist_empty(&stable_node->hlist)) {
1430 free_stable_node_chain(stable_node, root);
1431 return NULL;
1432 }
1433 return hlist_entry(stable_node->hlist.first,
1434 typeof(*stable_node), hlist_dup);
1435}
1436
8dc5ffcd
AA
1437/*
1438 * Like for get_ksm_page, this function can free the *_stable_node and
1439 * *_stable_node_dup if the returned tree_page is NULL.
1440 *
1441 * It can also free and overwrite *_stable_node with the found
1442 * stable_node_dup if the chain is collapsed (in which case
1443 * *_stable_node will be equal to *_stable_node_dup like if the chain
1444 * never existed). It's up to the caller to verify tree_page is not
1445 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1446 *
1447 * *_stable_node_dup is really a second output parameter of this
1448 * function and will be overwritten in all cases, the caller doesn't
1449 * need to initialize it.
1450 */
1451static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1452 struct stable_node **_stable_node,
1453 struct rb_root *root,
1454 bool prune_stale_stable_nodes)
2c653d0e 1455{
b4fecc67 1456 struct stable_node *stable_node = *_stable_node;
2c653d0e
AA
1457 if (!is_stable_node_chain(stable_node)) {
1458 if (is_page_sharing_candidate(stable_node)) {
8dc5ffcd
AA
1459 *_stable_node_dup = stable_node;
1460 return get_ksm_page(stable_node, false);
2c653d0e 1461 }
8dc5ffcd
AA
1462 /*
1463 * _stable_node_dup set to NULL means the stable_node
1464 * reached the ksm_max_page_sharing limit.
1465 */
1466 *_stable_node_dup = NULL;
2c653d0e
AA
1467 return NULL;
1468 }
8dc5ffcd 1469 return stable_node_dup(_stable_node_dup, _stable_node, root,
2c653d0e
AA
1470 prune_stale_stable_nodes);
1471}
1472
8dc5ffcd
AA
1473static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1474 struct stable_node **s_n,
1475 struct rb_root *root)
2c653d0e 1476{
8dc5ffcd 1477 return __stable_node_chain(s_n_d, s_n, root, true);
2c653d0e
AA
1478}
1479
8dc5ffcd
AA
1480static __always_inline struct page *chain(struct stable_node **s_n_d,
1481 struct stable_node *s_n,
1482 struct rb_root *root)
2c653d0e 1483{
8dc5ffcd
AA
1484 struct stable_node *old_stable_node = s_n;
1485 struct page *tree_page;
1486
1487 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1488 /* not pruning dups so s_n cannot have changed */
1489 VM_BUG_ON(s_n != old_stable_node);
1490 return tree_page;
2c653d0e
AA
1491}
1492
31dbd01f 1493/*
8dd3557a 1494 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
1495 *
1496 * This function checks if there is a page inside the stable tree
1497 * with identical content to the page that we are scanning right now.
1498 *
7b6ba2c7 1499 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
1500 * NULL otherwise.
1501 */
62b61f61 1502static struct page *stable_tree_search(struct page *page)
31dbd01f 1503{
90bd6fd3 1504 int nid;
ef53d16c 1505 struct rb_root *root;
4146d2d6
HD
1506 struct rb_node **new;
1507 struct rb_node *parent;
2c653d0e 1508 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
4146d2d6 1509 struct stable_node *page_node;
31dbd01f 1510
4146d2d6
HD
1511 page_node = page_stable_node(page);
1512 if (page_node && page_node->head != &migrate_nodes) {
1513 /* ksm page forked */
08beca44 1514 get_page(page);
62b61f61 1515 return page;
08beca44
HD
1516 }
1517
90bd6fd3 1518 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1519 root = root_stable_tree + nid;
4146d2d6 1520again:
ef53d16c 1521 new = &root->rb_node;
4146d2d6 1522 parent = NULL;
90bd6fd3 1523
4146d2d6 1524 while (*new) {
4035c07a 1525 struct page *tree_page;
31dbd01f
IE
1526 int ret;
1527
08beca44 1528 cond_resched();
4146d2d6 1529 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1530 stable_node_any = NULL;
8dc5ffcd 1531 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
b4fecc67
AA
1532 /*
1533 * NOTE: stable_node may have been freed by
1534 * chain_prune() if the returned stable_node_dup is
1535 * not NULL. stable_node_dup may have been inserted in
1536 * the rbtree instead as a regular stable_node (in
1537 * order to collapse the stable_node chain if a single
0ba1d0f7
AA
1538 * stable_node dup was found in it). In such case the
1539 * stable_node is overwritten by the calleee to point
1540 * to the stable_node_dup that was collapsed in the
1541 * stable rbtree and stable_node will be equal to
1542 * stable_node_dup like if the chain never existed.
b4fecc67 1543 */
2c653d0e
AA
1544 if (!stable_node_dup) {
1545 /*
1546 * Either all stable_node dups were full in
1547 * this stable_node chain, or this chain was
1548 * empty and should be rb_erased.
1549 */
1550 stable_node_any = stable_node_dup_any(stable_node,
1551 root);
1552 if (!stable_node_any) {
1553 /* rb_erase just run */
1554 goto again;
1555 }
1556 /*
1557 * Take any of the stable_node dups page of
1558 * this stable_node chain to let the tree walk
1559 * continue. All KSM pages belonging to the
1560 * stable_node dups in a stable_node chain
1561 * have the same content and they're
1562 * wrprotected at all times. Any will work
1563 * fine to continue the walk.
1564 */
1565 tree_page = get_ksm_page(stable_node_any, false);
1566 }
1567 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1568 if (!tree_page) {
1569 /*
1570 * If we walked over a stale stable_node,
1571 * get_ksm_page() will call rb_erase() and it
1572 * may rebalance the tree from under us. So
1573 * restart the search from scratch. Returning
1574 * NULL would be safe too, but we'd generate
1575 * false negative insertions just because some
1576 * stable_node was stale.
1577 */
1578 goto again;
1579 }
31dbd01f 1580
4035c07a 1581 ret = memcmp_pages(page, tree_page);
c8d6553b 1582 put_page(tree_page);
31dbd01f 1583
4146d2d6 1584 parent = *new;
c8d6553b 1585 if (ret < 0)
4146d2d6 1586 new = &parent->rb_left;
c8d6553b 1587 else if (ret > 0)
4146d2d6 1588 new = &parent->rb_right;
c8d6553b 1589 else {
2c653d0e
AA
1590 if (page_node) {
1591 VM_BUG_ON(page_node->head != &migrate_nodes);
1592 /*
1593 * Test if the migrated page should be merged
1594 * into a stable node dup. If the mapcount is
1595 * 1 we can migrate it with another KSM page
1596 * without adding it to the chain.
1597 */
1598 if (page_mapcount(page) > 1)
1599 goto chain_append;
1600 }
1601
1602 if (!stable_node_dup) {
1603 /*
1604 * If the stable_node is a chain and
1605 * we got a payload match in memcmp
1606 * but we cannot merge the scanned
1607 * page in any of the existing
1608 * stable_node dups because they're
1609 * all full, we need to wait the
1610 * scanned page to find itself a match
1611 * in the unstable tree to create a
1612 * brand new KSM page to add later to
1613 * the dups of this stable_node.
1614 */
1615 return NULL;
1616 }
1617
c8d6553b
HD
1618 /*
1619 * Lock and unlock the stable_node's page (which
1620 * might already have been migrated) so that page
1621 * migration is sure to notice its raised count.
1622 * It would be more elegant to return stable_node
1623 * than kpage, but that involves more changes.
1624 */
2c653d0e
AA
1625 tree_page = get_ksm_page(stable_node_dup, true);
1626 if (unlikely(!tree_page))
1627 /*
1628 * The tree may have been rebalanced,
1629 * so re-evaluate parent and new.
1630 */
4146d2d6 1631 goto again;
2c653d0e
AA
1632 unlock_page(tree_page);
1633
1634 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1635 NUMA(stable_node_dup->nid)) {
1636 put_page(tree_page);
1637 goto replace;
1638 }
1639 return tree_page;
c8d6553b 1640 }
31dbd01f
IE
1641 }
1642
4146d2d6
HD
1643 if (!page_node)
1644 return NULL;
1645
1646 list_del(&page_node->list);
1647 DO_NUMA(page_node->nid = nid);
1648 rb_link_node(&page_node->node, parent, new);
ef53d16c 1649 rb_insert_color(&page_node->node, root);
2c653d0e
AA
1650out:
1651 if (is_page_sharing_candidate(page_node)) {
1652 get_page(page);
1653 return page;
1654 } else
1655 return NULL;
4146d2d6
HD
1656
1657replace:
b4fecc67
AA
1658 /*
1659 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1660 * stable_node has been updated to be the new regular
1661 * stable_node. A collapse of the chain is indistinguishable
1662 * from the case there was no chain in the stable
1663 * rbtree. Otherwise stable_node is the chain and
1664 * stable_node_dup is the dup to replace.
b4fecc67 1665 */
0ba1d0f7 1666 if (stable_node_dup == stable_node) {
b4fecc67
AA
1667 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1668 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1669 /* there is no chain */
1670 if (page_node) {
1671 VM_BUG_ON(page_node->head != &migrate_nodes);
1672 list_del(&page_node->list);
1673 DO_NUMA(page_node->nid = nid);
b4fecc67
AA
1674 rb_replace_node(&stable_node_dup->node,
1675 &page_node->node,
2c653d0e
AA
1676 root);
1677 if (is_page_sharing_candidate(page_node))
1678 get_page(page);
1679 else
1680 page = NULL;
1681 } else {
b4fecc67 1682 rb_erase(&stable_node_dup->node, root);
2c653d0e
AA
1683 page = NULL;
1684 }
4146d2d6 1685 } else {
2c653d0e
AA
1686 VM_BUG_ON(!is_stable_node_chain(stable_node));
1687 __stable_node_dup_del(stable_node_dup);
1688 if (page_node) {
1689 VM_BUG_ON(page_node->head != &migrate_nodes);
1690 list_del(&page_node->list);
1691 DO_NUMA(page_node->nid = nid);
1692 stable_node_chain_add_dup(page_node, stable_node);
1693 if (is_page_sharing_candidate(page_node))
1694 get_page(page);
1695 else
1696 page = NULL;
1697 } else {
1698 page = NULL;
1699 }
4146d2d6 1700 }
2c653d0e
AA
1701 stable_node_dup->head = &migrate_nodes;
1702 list_add(&stable_node_dup->list, stable_node_dup->head);
4146d2d6 1703 return page;
2c653d0e
AA
1704
1705chain_append:
1706 /* stable_node_dup could be null if it reached the limit */
1707 if (!stable_node_dup)
1708 stable_node_dup = stable_node_any;
b4fecc67
AA
1709 /*
1710 * If stable_node was a chain and chain_prune collapsed it,
0ba1d0f7
AA
1711 * stable_node has been updated to be the new regular
1712 * stable_node. A collapse of the chain is indistinguishable
1713 * from the case there was no chain in the stable
1714 * rbtree. Otherwise stable_node is the chain and
1715 * stable_node_dup is the dup to replace.
b4fecc67 1716 */
0ba1d0f7 1717 if (stable_node_dup == stable_node) {
b4fecc67
AA
1718 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1719 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1720 /* chain is missing so create it */
1721 stable_node = alloc_stable_node_chain(stable_node_dup,
1722 root);
1723 if (!stable_node)
1724 return NULL;
1725 }
1726 /*
1727 * Add this stable_node dup that was
1728 * migrated to the stable_node chain
1729 * of the current nid for this page
1730 * content.
1731 */
b4fecc67
AA
1732 VM_BUG_ON(!is_stable_node_chain(stable_node));
1733 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
2c653d0e
AA
1734 VM_BUG_ON(page_node->head != &migrate_nodes);
1735 list_del(&page_node->list);
1736 DO_NUMA(page_node->nid = nid);
1737 stable_node_chain_add_dup(page_node, stable_node);
1738 goto out;
31dbd01f
IE
1739}
1740
1741/*
e850dcf5 1742 * stable_tree_insert - insert stable tree node pointing to new ksm page
31dbd01f
IE
1743 * into the stable tree.
1744 *
7b6ba2c7
HD
1745 * This function returns the stable tree node just allocated on success,
1746 * NULL otherwise.
31dbd01f 1747 */
7b6ba2c7 1748static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f 1749{
90bd6fd3
PH
1750 int nid;
1751 unsigned long kpfn;
ef53d16c 1752 struct rb_root *root;
90bd6fd3 1753 struct rb_node **new;
f2e5ff85 1754 struct rb_node *parent;
2c653d0e
AA
1755 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1756 bool need_chain = false;
31dbd01f 1757
90bd6fd3
PH
1758 kpfn = page_to_pfn(kpage);
1759 nid = get_kpfn_nid(kpfn);
ef53d16c 1760 root = root_stable_tree + nid;
f2e5ff85
AA
1761again:
1762 parent = NULL;
ef53d16c 1763 new = &root->rb_node;
90bd6fd3 1764
31dbd01f 1765 while (*new) {
4035c07a 1766 struct page *tree_page;
31dbd01f
IE
1767 int ret;
1768
08beca44 1769 cond_resched();
7b6ba2c7 1770 stable_node = rb_entry(*new, struct stable_node, node);
2c653d0e 1771 stable_node_any = NULL;
8dc5ffcd 1772 tree_page = chain(&stable_node_dup, stable_node, root);
2c653d0e
AA
1773 if (!stable_node_dup) {
1774 /*
1775 * Either all stable_node dups were full in
1776 * this stable_node chain, or this chain was
1777 * empty and should be rb_erased.
1778 */
1779 stable_node_any = stable_node_dup_any(stable_node,
1780 root);
1781 if (!stable_node_any) {
1782 /* rb_erase just run */
1783 goto again;
1784 }
1785 /*
1786 * Take any of the stable_node dups page of
1787 * this stable_node chain to let the tree walk
1788 * continue. All KSM pages belonging to the
1789 * stable_node dups in a stable_node chain
1790 * have the same content and they're
1791 * wrprotected at all times. Any will work
1792 * fine to continue the walk.
1793 */
1794 tree_page = get_ksm_page(stable_node_any, false);
1795 }
1796 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
f2e5ff85
AA
1797 if (!tree_page) {
1798 /*
1799 * If we walked over a stale stable_node,
1800 * get_ksm_page() will call rb_erase() and it
1801 * may rebalance the tree from under us. So
1802 * restart the search from scratch. Returning
1803 * NULL would be safe too, but we'd generate
1804 * false negative insertions just because some
1805 * stable_node was stale.
1806 */
1807 goto again;
1808 }
31dbd01f 1809
4035c07a
HD
1810 ret = memcmp_pages(kpage, tree_page);
1811 put_page(tree_page);
31dbd01f
IE
1812
1813 parent = *new;
1814 if (ret < 0)
1815 new = &parent->rb_left;
1816 else if (ret > 0)
1817 new = &parent->rb_right;
1818 else {
2c653d0e
AA
1819 need_chain = true;
1820 break;
31dbd01f
IE
1821 }
1822 }
1823
2c653d0e
AA
1824 stable_node_dup = alloc_stable_node();
1825 if (!stable_node_dup)
7b6ba2c7 1826 return NULL;
31dbd01f 1827
2c653d0e
AA
1828 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1829 stable_node_dup->kpfn = kpfn;
1830 set_page_stable_node(kpage, stable_node_dup);
1831 stable_node_dup->rmap_hlist_len = 0;
1832 DO_NUMA(stable_node_dup->nid = nid);
1833 if (!need_chain) {
1834 rb_link_node(&stable_node_dup->node, parent, new);
1835 rb_insert_color(&stable_node_dup->node, root);
1836 } else {
1837 if (!is_stable_node_chain(stable_node)) {
1838 struct stable_node *orig = stable_node;
1839 /* chain is missing so create it */
1840 stable_node = alloc_stable_node_chain(orig, root);
1841 if (!stable_node) {
1842 free_stable_node(stable_node_dup);
1843 return NULL;
1844 }
1845 }
1846 stable_node_chain_add_dup(stable_node_dup, stable_node);
1847 }
08beca44 1848
2c653d0e 1849 return stable_node_dup;
31dbd01f
IE
1850}
1851
1852/*
8dd3557a
HD
1853 * unstable_tree_search_insert - search for identical page,
1854 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1855 *
1856 * This function searches for a page in the unstable tree identical to the
1857 * page currently being scanned; and if no identical page is found in the
1858 * tree, we insert rmap_item as a new object into the unstable tree.
1859 *
1860 * This function returns pointer to rmap_item found to be identical
1861 * to the currently scanned page, NULL otherwise.
1862 *
1863 * This function does both searching and inserting, because they share
1864 * the same walking algorithm in an rbtree.
1865 */
8dd3557a
HD
1866static
1867struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1868 struct page *page,
1869 struct page **tree_pagep)
31dbd01f 1870{
90bd6fd3
PH
1871 struct rb_node **new;
1872 struct rb_root *root;
31dbd01f 1873 struct rb_node *parent = NULL;
90bd6fd3
PH
1874 int nid;
1875
1876 nid = get_kpfn_nid(page_to_pfn(page));
ef53d16c 1877 root = root_unstable_tree + nid;
90bd6fd3 1878 new = &root->rb_node;
31dbd01f
IE
1879
1880 while (*new) {
1881 struct rmap_item *tree_rmap_item;
8dd3557a 1882 struct page *tree_page;
31dbd01f
IE
1883 int ret;
1884
d178f27f 1885 cond_resched();
31dbd01f 1886 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1887 tree_page = get_mergeable_page(tree_rmap_item);
c8f95ed1 1888 if (!tree_page)
31dbd01f
IE
1889 return NULL;
1890
1891 /*
8dd3557a 1892 * Don't substitute a ksm page for a forked page.
31dbd01f 1893 */
8dd3557a
HD
1894 if (page == tree_page) {
1895 put_page(tree_page);
31dbd01f
IE
1896 return NULL;
1897 }
1898
8dd3557a 1899 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1900
1901 parent = *new;
1902 if (ret < 0) {
8dd3557a 1903 put_page(tree_page);
31dbd01f
IE
1904 new = &parent->rb_left;
1905 } else if (ret > 0) {
8dd3557a 1906 put_page(tree_page);
31dbd01f 1907 new = &parent->rb_right;
b599cbdf
HD
1908 } else if (!ksm_merge_across_nodes &&
1909 page_to_nid(tree_page) != nid) {
1910 /*
1911 * If tree_page has been migrated to another NUMA node,
1912 * it will be flushed out and put in the right unstable
1913 * tree next time: only merge with it when across_nodes.
1914 */
1915 put_page(tree_page);
1916 return NULL;
31dbd01f 1917 } else {
8dd3557a 1918 *tree_pagep = tree_page;
31dbd01f
IE
1919 return tree_rmap_item;
1920 }
1921 }
1922
7b6ba2c7 1923 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f 1924 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
e850dcf5 1925 DO_NUMA(rmap_item->nid = nid);
31dbd01f 1926 rb_link_node(&rmap_item->node, parent, new);
90bd6fd3 1927 rb_insert_color(&rmap_item->node, root);
31dbd01f 1928
473b0ce4 1929 ksm_pages_unshared++;
31dbd01f
IE
1930 return NULL;
1931}
1932
1933/*
1934 * stable_tree_append - add another rmap_item to the linked list of
1935 * rmap_items hanging off a given node of the stable tree, all sharing
1936 * the same ksm page.
1937 */
1938static void stable_tree_append(struct rmap_item *rmap_item,
2c653d0e
AA
1939 struct stable_node *stable_node,
1940 bool max_page_sharing_bypass)
31dbd01f 1941{
2c653d0e
AA
1942 /*
1943 * rmap won't find this mapping if we don't insert the
1944 * rmap_item in the right stable_node
1945 * duplicate. page_migration could break later if rmap breaks,
1946 * so we can as well crash here. We really need to check for
1947 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1948 * for other negative values as an undeflow if detected here
1949 * for the first time (and not when decreasing rmap_hlist_len)
1950 * would be sign of memory corruption in the stable_node.
1951 */
1952 BUG_ON(stable_node->rmap_hlist_len < 0);
1953
1954 stable_node->rmap_hlist_len++;
1955 if (!max_page_sharing_bypass)
1956 /* possibly non fatal but unexpected overflow, only warn */
1957 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1958 ksm_max_page_sharing);
1959
7b6ba2c7 1960 rmap_item->head = stable_node;
31dbd01f 1961 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1962 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1963
7b6ba2c7
HD
1964 if (rmap_item->hlist.next)
1965 ksm_pages_sharing++;
1966 else
1967 ksm_pages_shared++;
31dbd01f
IE
1968}
1969
1970/*
81464e30
HD
1971 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1972 * if not, compare checksum to previous and if it's the same, see if page can
1973 * be inserted into the unstable tree, or merged with a page already there and
1974 * both transferred to the stable tree.
31dbd01f
IE
1975 *
1976 * @page: the page that we are searching identical page to.
1977 * @rmap_item: the reverse mapping into the virtual address of this page
1978 */
1979static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1980{
31dbd01f 1981 struct rmap_item *tree_rmap_item;
8dd3557a 1982 struct page *tree_page = NULL;
7b6ba2c7 1983 struct stable_node *stable_node;
8dd3557a 1984 struct page *kpage;
31dbd01f
IE
1985 unsigned int checksum;
1986 int err;
2c653d0e 1987 bool max_page_sharing_bypass = false;
31dbd01f 1988
4146d2d6
HD
1989 stable_node = page_stable_node(page);
1990 if (stable_node) {
1991 if (stable_node->head != &migrate_nodes &&
2c653d0e
AA
1992 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
1993 NUMA(stable_node->nid)) {
1994 stable_node_dup_del(stable_node);
4146d2d6
HD
1995 stable_node->head = &migrate_nodes;
1996 list_add(&stable_node->list, stable_node->head);
1997 }
1998 if (stable_node->head != &migrate_nodes &&
1999 rmap_item->head == stable_node)
2000 return;
2c653d0e
AA
2001 /*
2002 * If it's a KSM fork, allow it to go over the sharing limit
2003 * without warnings.
2004 */
2005 if (!is_page_sharing_candidate(stable_node))
2006 max_page_sharing_bypass = true;
4146d2d6 2007 }
31dbd01f
IE
2008
2009 /* We first start with searching the page inside the stable tree */
62b61f61 2010 kpage = stable_tree_search(page);
4146d2d6
HD
2011 if (kpage == page && rmap_item->head == stable_node) {
2012 put_page(kpage);
2013 return;
2014 }
2015
2016 remove_rmap_item_from_tree(rmap_item);
2017
62b61f61 2018 if (kpage) {
08beca44 2019 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
2020 if (!err) {
2021 /*
2022 * The page was successfully merged:
2023 * add its rmap_item to the stable tree.
2024 */
5ad64688 2025 lock_page(kpage);
2c653d0e
AA
2026 stable_tree_append(rmap_item, page_stable_node(kpage),
2027 max_page_sharing_bypass);
5ad64688 2028 unlock_page(kpage);
31dbd01f 2029 }
8dd3557a 2030 put_page(kpage);
31dbd01f
IE
2031 return;
2032 }
2033
2034 /*
4035c07a
HD
2035 * If the hash value of the page has changed from the last time
2036 * we calculated it, this page is changing frequently: therefore we
2037 * don't want to insert it in the unstable tree, and we don't want
2038 * to waste our time searching for something identical to it there.
31dbd01f
IE
2039 */
2040 checksum = calc_checksum(page);
2041 if (rmap_item->oldchecksum != checksum) {
2042 rmap_item->oldchecksum = checksum;
2043 return;
2044 }
2045
e86c59b1
CI
2046 /*
2047 * Same checksum as an empty page. We attempt to merge it with the
2048 * appropriate zero page if the user enabled this via sysfs.
2049 */
2050 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2051 struct vm_area_struct *vma;
2052
2053 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
2054 err = try_to_merge_one_page(vma, page,
2055 ZERO_PAGE(rmap_item->address));
2056 /*
2057 * In case of failure, the page was not really empty, so we
2058 * need to continue. Otherwise we're done.
2059 */
2060 if (!err)
2061 return;
2062 }
8dd3557a
HD
2063 tree_rmap_item =
2064 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 2065 if (tree_rmap_item) {
8dd3557a
HD
2066 kpage = try_to_merge_two_pages(rmap_item, page,
2067 tree_rmap_item, tree_page);
2068 put_page(tree_page);
8dd3557a 2069 if (kpage) {
bc56620b
HD
2070 /*
2071 * The pages were successfully merged: insert new
2072 * node in the stable tree and add both rmap_items.
2073 */
5ad64688 2074 lock_page(kpage);
7b6ba2c7
HD
2075 stable_node = stable_tree_insert(kpage);
2076 if (stable_node) {
2c653d0e
AA
2077 stable_tree_append(tree_rmap_item, stable_node,
2078 false);
2079 stable_tree_append(rmap_item, stable_node,
2080 false);
7b6ba2c7 2081 }
5ad64688 2082 unlock_page(kpage);
7b6ba2c7 2083
31dbd01f
IE
2084 /*
2085 * If we fail to insert the page into the stable tree,
2086 * we will have 2 virtual addresses that are pointing
2087 * to a ksm page left outside the stable tree,
2088 * in which case we need to break_cow on both.
2089 */
7b6ba2c7 2090 if (!stable_node) {
8dd3557a
HD
2091 break_cow(tree_rmap_item);
2092 break_cow(rmap_item);
31dbd01f
IE
2093 }
2094 }
31dbd01f
IE
2095 }
2096}
2097
2098static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 2099 struct rmap_item **rmap_list,
31dbd01f
IE
2100 unsigned long addr)
2101{
2102 struct rmap_item *rmap_item;
2103
6514d511
HD
2104 while (*rmap_list) {
2105 rmap_item = *rmap_list;
93d17715 2106 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 2107 return rmap_item;
31dbd01f
IE
2108 if (rmap_item->address > addr)
2109 break;
6514d511 2110 *rmap_list = rmap_item->rmap_list;
31dbd01f 2111 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
2112 free_rmap_item(rmap_item);
2113 }
2114
2115 rmap_item = alloc_rmap_item();
2116 if (rmap_item) {
2117 /* It has already been zeroed */
2118 rmap_item->mm = mm_slot->mm;
2119 rmap_item->address = addr;
6514d511
HD
2120 rmap_item->rmap_list = *rmap_list;
2121 *rmap_list = rmap_item;
31dbd01f
IE
2122 }
2123 return rmap_item;
2124}
2125
2126static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2127{
2128 struct mm_struct *mm;
2129 struct mm_slot *slot;
2130 struct vm_area_struct *vma;
2131 struct rmap_item *rmap_item;
90bd6fd3 2132 int nid;
31dbd01f
IE
2133
2134 if (list_empty(&ksm_mm_head.mm_list))
2135 return NULL;
2136
2137 slot = ksm_scan.mm_slot;
2138 if (slot == &ksm_mm_head) {
2919bfd0
HD
2139 /*
2140 * A number of pages can hang around indefinitely on per-cpu
2141 * pagevecs, raised page count preventing write_protect_page
2142 * from merging them. Though it doesn't really matter much,
2143 * it is puzzling to see some stuck in pages_volatile until
2144 * other activity jostles them out, and they also prevented
2145 * LTP's KSM test from succeeding deterministically; so drain
2146 * them here (here rather than on entry to ksm_do_scan(),
2147 * so we don't IPI too often when pages_to_scan is set low).
2148 */
2149 lru_add_drain_all();
2150
4146d2d6
HD
2151 /*
2152 * Whereas stale stable_nodes on the stable_tree itself
2153 * get pruned in the regular course of stable_tree_search(),
2154 * those moved out to the migrate_nodes list can accumulate:
2155 * so prune them once before each full scan.
2156 */
2157 if (!ksm_merge_across_nodes) {
03640418 2158 struct stable_node *stable_node, *next;
4146d2d6
HD
2159 struct page *page;
2160
03640418
GT
2161 list_for_each_entry_safe(stable_node, next,
2162 &migrate_nodes, list) {
4146d2d6
HD
2163 page = get_ksm_page(stable_node, false);
2164 if (page)
2165 put_page(page);
2166 cond_resched();
2167 }
2168 }
2169
ef53d16c 2170 for (nid = 0; nid < ksm_nr_node_ids; nid++)
90bd6fd3 2171 root_unstable_tree[nid] = RB_ROOT;
31dbd01f
IE
2172
2173 spin_lock(&ksm_mmlist_lock);
2174 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2175 ksm_scan.mm_slot = slot;
2176 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
2177 /*
2178 * Although we tested list_empty() above, a racing __ksm_exit
2179 * of the last mm on the list may have removed it since then.
2180 */
2181 if (slot == &ksm_mm_head)
2182 return NULL;
31dbd01f
IE
2183next_mm:
2184 ksm_scan.address = 0;
6514d511 2185 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
2186 }
2187
2188 mm = slot->mm;
2189 down_read(&mm->mmap_sem);
9ba69294
HD
2190 if (ksm_test_exit(mm))
2191 vma = NULL;
2192 else
2193 vma = find_vma(mm, ksm_scan.address);
2194
2195 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
2196 if (!(vma->vm_flags & VM_MERGEABLE))
2197 continue;
2198 if (ksm_scan.address < vma->vm_start)
2199 ksm_scan.address = vma->vm_start;
2200 if (!vma->anon_vma)
2201 ksm_scan.address = vma->vm_end;
2202
2203 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
2204 if (ksm_test_exit(mm))
2205 break;
31dbd01f 2206 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
2207 if (IS_ERR_OR_NULL(*page)) {
2208 ksm_scan.address += PAGE_SIZE;
2209 cond_resched();
2210 continue;
2211 }
f765f540 2212 if (PageAnon(*page)) {
31dbd01f
IE
2213 flush_anon_page(vma, *page, ksm_scan.address);
2214 flush_dcache_page(*page);
2215 rmap_item = get_next_rmap_item(slot,
6514d511 2216 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 2217 if (rmap_item) {
6514d511
HD
2218 ksm_scan.rmap_list =
2219 &rmap_item->rmap_list;
31dbd01f
IE
2220 ksm_scan.address += PAGE_SIZE;
2221 } else
2222 put_page(*page);
2223 up_read(&mm->mmap_sem);
2224 return rmap_item;
2225 }
21ae5b01 2226 put_page(*page);
31dbd01f
IE
2227 ksm_scan.address += PAGE_SIZE;
2228 cond_resched();
2229 }
2230 }
2231
9ba69294
HD
2232 if (ksm_test_exit(mm)) {
2233 ksm_scan.address = 0;
6514d511 2234 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 2235 }
31dbd01f
IE
2236 /*
2237 * Nuke all the rmap_items that are above this current rmap:
2238 * because there were no VM_MERGEABLE vmas with such addresses.
2239 */
6514d511 2240 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
2241
2242 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
2243 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2244 struct mm_slot, mm_list);
2245 if (ksm_scan.address == 0) {
2246 /*
2247 * We've completed a full scan of all vmas, holding mmap_sem
2248 * throughout, and found no VM_MERGEABLE: so do the same as
2249 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
2250 * This applies either when cleaning up after __ksm_exit
2251 * (but beware: we can reach here even before __ksm_exit),
2252 * or when all VM_MERGEABLE areas have been unmapped (and
2253 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97 2254 */
4ca3a69b 2255 hash_del(&slot->link);
cd551f97 2256 list_del(&slot->mm_list);
9ba69294
HD
2257 spin_unlock(&ksm_mmlist_lock);
2258
cd551f97
HD
2259 free_mm_slot(slot);
2260 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
2261 up_read(&mm->mmap_sem);
2262 mmdrop(mm);
2263 } else {
9ba69294 2264 up_read(&mm->mmap_sem);
7496fea9
ZC
2265 /*
2266 * up_read(&mm->mmap_sem) first because after
2267 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2268 * already have been freed under us by __ksm_exit()
2269 * because the "mm_slot" is still hashed and
2270 * ksm_scan.mm_slot doesn't point to it anymore.
2271 */
2272 spin_unlock(&ksm_mmlist_lock);
cd551f97 2273 }
31dbd01f
IE
2274
2275 /* Repeat until we've completed scanning the whole list */
cd551f97 2276 slot = ksm_scan.mm_slot;
31dbd01f
IE
2277 if (slot != &ksm_mm_head)
2278 goto next_mm;
2279
31dbd01f
IE
2280 ksm_scan.seqnr++;
2281 return NULL;
2282}
2283
2284/**
2285 * ksm_do_scan - the ksm scanner main worker function.
2286 * @scan_npages - number of pages we want to scan before we return.
2287 */
2288static void ksm_do_scan(unsigned int scan_npages)
2289{
2290 struct rmap_item *rmap_item;
22eccdd7 2291 struct page *uninitialized_var(page);
31dbd01f 2292
878aee7d 2293 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
2294 cond_resched();
2295 rmap_item = scan_get_next_rmap_item(&page);
2296 if (!rmap_item)
2297 return;
4146d2d6 2298 cmp_and_merge_page(page, rmap_item);
31dbd01f
IE
2299 put_page(page);
2300 }
2301}
2302
6e158384
HD
2303static int ksmd_should_run(void)
2304{
2305 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2306}
2307
31dbd01f
IE
2308static int ksm_scan_thread(void *nothing)
2309{
878aee7d 2310 set_freezable();
339aa624 2311 set_user_nice(current, 5);
31dbd01f
IE
2312
2313 while (!kthread_should_stop()) {
6e158384 2314 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2315 wait_while_offlining();
6e158384 2316 if (ksmd_should_run())
31dbd01f 2317 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
2318 mutex_unlock(&ksm_thread_mutex);
2319
878aee7d
AA
2320 try_to_freeze();
2321
6e158384 2322 if (ksmd_should_run()) {
31dbd01f
IE
2323 schedule_timeout_interruptible(
2324 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2325 } else {
878aee7d 2326 wait_event_freezable(ksm_thread_wait,
6e158384 2327 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
2328 }
2329 }
2330 return 0;
2331}
2332
f8af4da3
HD
2333int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2334 unsigned long end, int advice, unsigned long *vm_flags)
2335{
2336 struct mm_struct *mm = vma->vm_mm;
d952b791 2337 int err;
f8af4da3
HD
2338
2339 switch (advice) {
2340 case MADV_MERGEABLE:
2341 /*
2342 * Be somewhat over-protective for now!
2343 */
2344 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2345 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
0661a336 2346 VM_HUGETLB | VM_MIXEDMAP))
f8af4da3
HD
2347 return 0; /* just ignore the advice */
2348
cc2383ec
KK
2349#ifdef VM_SAO
2350 if (*vm_flags & VM_SAO)
2351 return 0;
2352#endif
2353
d952b791
HD
2354 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2355 err = __ksm_enter(mm);
2356 if (err)
2357 return err;
2358 }
f8af4da3
HD
2359
2360 *vm_flags |= VM_MERGEABLE;
2361 break;
2362
2363 case MADV_UNMERGEABLE:
2364 if (!(*vm_flags & VM_MERGEABLE))
2365 return 0; /* just ignore the advice */
2366
d952b791
HD
2367 if (vma->anon_vma) {
2368 err = unmerge_ksm_pages(vma, start, end);
2369 if (err)
2370 return err;
2371 }
f8af4da3
HD
2372
2373 *vm_flags &= ~VM_MERGEABLE;
2374 break;
2375 }
2376
2377 return 0;
2378}
2379
2380int __ksm_enter(struct mm_struct *mm)
2381{
6e158384
HD
2382 struct mm_slot *mm_slot;
2383 int needs_wakeup;
2384
2385 mm_slot = alloc_mm_slot();
31dbd01f
IE
2386 if (!mm_slot)
2387 return -ENOMEM;
2388
6e158384
HD
2389 /* Check ksm_run too? Would need tighter locking */
2390 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2391
31dbd01f
IE
2392 spin_lock(&ksm_mmlist_lock);
2393 insert_to_mm_slots_hash(mm, mm_slot);
2394 /*
cbf86cfe
HD
2395 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2396 * insert just behind the scanning cursor, to let the area settle
31dbd01f
IE
2397 * down a little; when fork is followed by immediate exec, we don't
2398 * want ksmd to waste time setting up and tearing down an rmap_list.
cbf86cfe
HD
2399 *
2400 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2401 * scanning cursor, otherwise KSM pages in newly forked mms will be
2402 * missed: then we might as well insert at the end of the list.
31dbd01f 2403 */
cbf86cfe
HD
2404 if (ksm_run & KSM_RUN_UNMERGE)
2405 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2406 else
2407 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
31dbd01f
IE
2408 spin_unlock(&ksm_mmlist_lock);
2409
f8af4da3 2410 set_bit(MMF_VM_MERGEABLE, &mm->flags);
f1f10076 2411 mmgrab(mm);
6e158384
HD
2412
2413 if (needs_wakeup)
2414 wake_up_interruptible(&ksm_thread_wait);
2415
f8af4da3
HD
2416 return 0;
2417}
2418
1c2fb7a4 2419void __ksm_exit(struct mm_struct *mm)
f8af4da3 2420{
cd551f97 2421 struct mm_slot *mm_slot;
9ba69294 2422 int easy_to_free = 0;
cd551f97 2423
31dbd01f 2424 /*
9ba69294
HD
2425 * This process is exiting: if it's straightforward (as is the
2426 * case when ksmd was never running), free mm_slot immediately.
2427 * But if it's at the cursor or has rmap_items linked to it, use
2428 * mmap_sem to synchronize with any break_cows before pagetables
2429 * are freed, and leave the mm_slot on the list for ksmd to free.
2430 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 2431 */
9ba69294 2432
cd551f97
HD
2433 spin_lock(&ksm_mmlist_lock);
2434 mm_slot = get_mm_slot(mm);
9ba69294 2435 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 2436 if (!mm_slot->rmap_list) {
4ca3a69b 2437 hash_del(&mm_slot->link);
9ba69294
HD
2438 list_del(&mm_slot->mm_list);
2439 easy_to_free = 1;
2440 } else {
2441 list_move(&mm_slot->mm_list,
2442 &ksm_scan.mm_slot->mm_list);
2443 }
cd551f97 2444 }
cd551f97
HD
2445 spin_unlock(&ksm_mmlist_lock);
2446
9ba69294
HD
2447 if (easy_to_free) {
2448 free_mm_slot(mm_slot);
2449 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2450 mmdrop(mm);
2451 } else if (mm_slot) {
9ba69294
HD
2452 down_write(&mm->mmap_sem);
2453 up_write(&mm->mmap_sem);
9ba69294 2454 }
31dbd01f
IE
2455}
2456
cbf86cfe 2457struct page *ksm_might_need_to_copy(struct page *page,
5ad64688
HD
2458 struct vm_area_struct *vma, unsigned long address)
2459{
cbf86cfe 2460 struct anon_vma *anon_vma = page_anon_vma(page);
5ad64688
HD
2461 struct page *new_page;
2462
cbf86cfe
HD
2463 if (PageKsm(page)) {
2464 if (page_stable_node(page) &&
2465 !(ksm_run & KSM_RUN_UNMERGE))
2466 return page; /* no need to copy it */
2467 } else if (!anon_vma) {
2468 return page; /* no need to copy it */
2469 } else if (anon_vma->root == vma->anon_vma->root &&
2470 page->index == linear_page_index(vma, address)) {
2471 return page; /* still no need to copy it */
2472 }
2473 if (!PageUptodate(page))
2474 return page; /* let do_swap_page report the error */
2475
5ad64688
HD
2476 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2477 if (new_page) {
2478 copy_user_highpage(new_page, page, address, vma);
2479
2480 SetPageDirty(new_page);
2481 __SetPageUptodate(new_page);
48c935ad 2482 __SetPageLocked(new_page);
5ad64688
HD
2483 }
2484
5ad64688
HD
2485 return new_page;
2486}
2487
1df631ae 2488void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
e9995ef9
HD
2489{
2490 struct stable_node *stable_node;
e9995ef9 2491 struct rmap_item *rmap_item;
e9995ef9
HD
2492 int search_new_forks = 0;
2493
309381fe 2494 VM_BUG_ON_PAGE(!PageKsm(page), page);
9f32624b
JK
2495
2496 /*
2497 * Rely on the page lock to protect against concurrent modifications
2498 * to that page's node of the stable tree.
2499 */
309381fe 2500 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9995ef9
HD
2501
2502 stable_node = page_stable_node(page);
2503 if (!stable_node)
1df631ae 2504 return;
e9995ef9 2505again:
b67bfe0d 2506 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
e9995ef9 2507 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 2508 struct anon_vma_chain *vmac;
e9995ef9
HD
2509 struct vm_area_struct *vma;
2510
ad12695f 2511 cond_resched();
b6b19f25 2512 anon_vma_lock_read(anon_vma);
bf181b9f
ML
2513 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2514 0, ULONG_MAX) {
ad12695f 2515 cond_resched();
5beb4930 2516 vma = vmac->vma;
e9995ef9
HD
2517 if (rmap_item->address < vma->vm_start ||
2518 rmap_item->address >= vma->vm_end)
2519 continue;
2520 /*
2521 * Initially we examine only the vma which covers this
2522 * rmap_item; but later, if there is still work to do,
2523 * we examine covering vmas in other mms: in case they
2524 * were forked from the original since ksmd passed.
2525 */
2526 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2527 continue;
2528
0dd1c7bb
JK
2529 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2530 continue;
2531
e4b82222 2532 if (!rwc->rmap_one(page, vma,
1df631ae 2533 rmap_item->address, rwc->arg)) {
b6b19f25 2534 anon_vma_unlock_read(anon_vma);
1df631ae 2535 return;
e9995ef9 2536 }
0dd1c7bb
JK
2537 if (rwc->done && rwc->done(page)) {
2538 anon_vma_unlock_read(anon_vma);
1df631ae 2539 return;
0dd1c7bb 2540 }
e9995ef9 2541 }
b6b19f25 2542 anon_vma_unlock_read(anon_vma);
e9995ef9
HD
2543 }
2544 if (!search_new_forks++)
2545 goto again;
e9995ef9
HD
2546}
2547
52629506 2548#ifdef CONFIG_MIGRATION
e9995ef9
HD
2549void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2550{
2551 struct stable_node *stable_node;
2552
309381fe
SL
2553 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2554 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2555 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
e9995ef9
HD
2556
2557 stable_node = page_stable_node(newpage);
2558 if (stable_node) {
309381fe 2559 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
62b61f61 2560 stable_node->kpfn = page_to_pfn(newpage);
c8d6553b
HD
2561 /*
2562 * newpage->mapping was set in advance; now we need smp_wmb()
2563 * to make sure that the new stable_node->kpfn is visible
2564 * to get_ksm_page() before it can see that oldpage->mapping
2565 * has gone stale (or that PageSwapCache has been cleared).
2566 */
2567 smp_wmb();
2568 set_page_stable_node(oldpage, NULL);
e9995ef9
HD
2569 }
2570}
2571#endif /* CONFIG_MIGRATION */
2572
62b61f61 2573#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8
HD
2574static void wait_while_offlining(void)
2575{
2576 while (ksm_run & KSM_RUN_OFFLINE) {
2577 mutex_unlock(&ksm_thread_mutex);
2578 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
74316201 2579 TASK_UNINTERRUPTIBLE);
ef4d43a8
HD
2580 mutex_lock(&ksm_thread_mutex);
2581 }
2582}
2583
2c653d0e
AA
2584static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2585 unsigned long start_pfn,
2586 unsigned long end_pfn)
2587{
2588 if (stable_node->kpfn >= start_pfn &&
2589 stable_node->kpfn < end_pfn) {
2590 /*
2591 * Don't get_ksm_page, page has already gone:
2592 * which is why we keep kpfn instead of page*
2593 */
2594 remove_node_from_stable_tree(stable_node);
2595 return true;
2596 }
2597 return false;
2598}
2599
2600static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2601 unsigned long start_pfn,
2602 unsigned long end_pfn,
2603 struct rb_root *root)
2604{
2605 struct stable_node *dup;
2606 struct hlist_node *hlist_safe;
2607
2608 if (!is_stable_node_chain(stable_node)) {
2609 VM_BUG_ON(is_stable_node_dup(stable_node));
2610 return stable_node_dup_remove_range(stable_node, start_pfn,
2611 end_pfn);
2612 }
2613
2614 hlist_for_each_entry_safe(dup, hlist_safe,
2615 &stable_node->hlist, hlist_dup) {
2616 VM_BUG_ON(!is_stable_node_dup(dup));
2617 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2618 }
2619 if (hlist_empty(&stable_node->hlist)) {
2620 free_stable_node_chain(stable_node, root);
2621 return true; /* notify caller that tree was rebalanced */
2622 } else
2623 return false;
2624}
2625
ee0ea59c
HD
2626static void ksm_check_stable_tree(unsigned long start_pfn,
2627 unsigned long end_pfn)
62b61f61 2628{
03640418 2629 struct stable_node *stable_node, *next;
62b61f61 2630 struct rb_node *node;
90bd6fd3 2631 int nid;
62b61f61 2632
ef53d16c
HD
2633 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2634 node = rb_first(root_stable_tree + nid);
ee0ea59c 2635 while (node) {
90bd6fd3 2636 stable_node = rb_entry(node, struct stable_node, node);
2c653d0e
AA
2637 if (stable_node_chain_remove_range(stable_node,
2638 start_pfn, end_pfn,
2639 root_stable_tree +
2640 nid))
ef53d16c 2641 node = rb_first(root_stable_tree + nid);
2c653d0e 2642 else
ee0ea59c
HD
2643 node = rb_next(node);
2644 cond_resched();
90bd6fd3 2645 }
ee0ea59c 2646 }
03640418 2647 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
4146d2d6
HD
2648 if (stable_node->kpfn >= start_pfn &&
2649 stable_node->kpfn < end_pfn)
2650 remove_node_from_stable_tree(stable_node);
2651 cond_resched();
2652 }
62b61f61
HD
2653}
2654
2655static int ksm_memory_callback(struct notifier_block *self,
2656 unsigned long action, void *arg)
2657{
2658 struct memory_notify *mn = arg;
62b61f61
HD
2659
2660 switch (action) {
2661 case MEM_GOING_OFFLINE:
2662 /*
ef4d43a8
HD
2663 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2664 * and remove_all_stable_nodes() while memory is going offline:
2665 * it is unsafe for them to touch the stable tree at this time.
2666 * But unmerge_ksm_pages(), rmap lookups and other entry points
2667 * which do not need the ksm_thread_mutex are all safe.
62b61f61 2668 */
ef4d43a8
HD
2669 mutex_lock(&ksm_thread_mutex);
2670 ksm_run |= KSM_RUN_OFFLINE;
2671 mutex_unlock(&ksm_thread_mutex);
62b61f61
HD
2672 break;
2673
2674 case MEM_OFFLINE:
2675 /*
2676 * Most of the work is done by page migration; but there might
2677 * be a few stable_nodes left over, still pointing to struct
ee0ea59c
HD
2678 * pages which have been offlined: prune those from the tree,
2679 * otherwise get_ksm_page() might later try to access a
2680 * non-existent struct page.
62b61f61 2681 */
ee0ea59c
HD
2682 ksm_check_stable_tree(mn->start_pfn,
2683 mn->start_pfn + mn->nr_pages);
62b61f61
HD
2684 /* fallthrough */
2685
2686 case MEM_CANCEL_OFFLINE:
ef4d43a8
HD
2687 mutex_lock(&ksm_thread_mutex);
2688 ksm_run &= ~KSM_RUN_OFFLINE;
62b61f61 2689 mutex_unlock(&ksm_thread_mutex);
ef4d43a8
HD
2690
2691 smp_mb(); /* wake_up_bit advises this */
2692 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
62b61f61
HD
2693 break;
2694 }
2695 return NOTIFY_OK;
2696}
ef4d43a8
HD
2697#else
2698static void wait_while_offlining(void)
2699{
2700}
62b61f61
HD
2701#endif /* CONFIG_MEMORY_HOTREMOVE */
2702
2ffd8679
HD
2703#ifdef CONFIG_SYSFS
2704/*
2705 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2706 */
2707
31dbd01f
IE
2708#define KSM_ATTR_RO(_name) \
2709 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2710#define KSM_ATTR(_name) \
2711 static struct kobj_attribute _name##_attr = \
2712 __ATTR(_name, 0644, _name##_show, _name##_store)
2713
2714static ssize_t sleep_millisecs_show(struct kobject *kobj,
2715 struct kobj_attribute *attr, char *buf)
2716{
2717 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2718}
2719
2720static ssize_t sleep_millisecs_store(struct kobject *kobj,
2721 struct kobj_attribute *attr,
2722 const char *buf, size_t count)
2723{
2724 unsigned long msecs;
2725 int err;
2726
3dbb95f7 2727 err = kstrtoul(buf, 10, &msecs);
31dbd01f
IE
2728 if (err || msecs > UINT_MAX)
2729 return -EINVAL;
2730
2731 ksm_thread_sleep_millisecs = msecs;
2732
2733 return count;
2734}
2735KSM_ATTR(sleep_millisecs);
2736
2737static ssize_t pages_to_scan_show(struct kobject *kobj,
2738 struct kobj_attribute *attr, char *buf)
2739{
2740 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2741}
2742
2743static ssize_t pages_to_scan_store(struct kobject *kobj,
2744 struct kobj_attribute *attr,
2745 const char *buf, size_t count)
2746{
2747 int err;
2748 unsigned long nr_pages;
2749
3dbb95f7 2750 err = kstrtoul(buf, 10, &nr_pages);
31dbd01f
IE
2751 if (err || nr_pages > UINT_MAX)
2752 return -EINVAL;
2753
2754 ksm_thread_pages_to_scan = nr_pages;
2755
2756 return count;
2757}
2758KSM_ATTR(pages_to_scan);
2759
2760static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2761 char *buf)
2762{
ef4d43a8 2763 return sprintf(buf, "%lu\n", ksm_run);
31dbd01f
IE
2764}
2765
2766static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2767 const char *buf, size_t count)
2768{
2769 int err;
2770 unsigned long flags;
2771
3dbb95f7 2772 err = kstrtoul(buf, 10, &flags);
31dbd01f
IE
2773 if (err || flags > UINT_MAX)
2774 return -EINVAL;
2775 if (flags > KSM_RUN_UNMERGE)
2776 return -EINVAL;
2777
2778 /*
2779 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2780 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
2781 * breaking COW to free the pages_shared (but leaves mm_slots
2782 * on the list for when ksmd may be set running again).
31dbd01f
IE
2783 */
2784
2785 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2786 wait_while_offlining();
31dbd01f
IE
2787 if (ksm_run != flags) {
2788 ksm_run = flags;
d952b791 2789 if (flags & KSM_RUN_UNMERGE) {
e1e12d2f 2790 set_current_oom_origin();
d952b791 2791 err = unmerge_and_remove_all_rmap_items();
e1e12d2f 2792 clear_current_oom_origin();
d952b791
HD
2793 if (err) {
2794 ksm_run = KSM_RUN_STOP;
2795 count = err;
2796 }
2797 }
31dbd01f
IE
2798 }
2799 mutex_unlock(&ksm_thread_mutex);
2800
2801 if (flags & KSM_RUN_MERGE)
2802 wake_up_interruptible(&ksm_thread_wait);
2803
2804 return count;
2805}
2806KSM_ATTR(run);
2807
90bd6fd3
PH
2808#ifdef CONFIG_NUMA
2809static ssize_t merge_across_nodes_show(struct kobject *kobj,
2810 struct kobj_attribute *attr, char *buf)
2811{
2812 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2813}
2814
2815static ssize_t merge_across_nodes_store(struct kobject *kobj,
2816 struct kobj_attribute *attr,
2817 const char *buf, size_t count)
2818{
2819 int err;
2820 unsigned long knob;
2821
2822 err = kstrtoul(buf, 10, &knob);
2823 if (err)
2824 return err;
2825 if (knob > 1)
2826 return -EINVAL;
2827
2828 mutex_lock(&ksm_thread_mutex);
ef4d43a8 2829 wait_while_offlining();
90bd6fd3 2830 if (ksm_merge_across_nodes != knob) {
cbf86cfe 2831 if (ksm_pages_shared || remove_all_stable_nodes())
90bd6fd3 2832 err = -EBUSY;
ef53d16c
HD
2833 else if (root_stable_tree == one_stable_tree) {
2834 struct rb_root *buf;
2835 /*
2836 * This is the first time that we switch away from the
2837 * default of merging across nodes: must now allocate
2838 * a buffer to hold as many roots as may be needed.
2839 * Allocate stable and unstable together:
2840 * MAXSMP NODES_SHIFT 10 will use 16kB.
2841 */
bafe1e14
JP
2842 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2843 GFP_KERNEL);
ef53d16c
HD
2844 /* Let us assume that RB_ROOT is NULL is zero */
2845 if (!buf)
2846 err = -ENOMEM;
2847 else {
2848 root_stable_tree = buf;
2849 root_unstable_tree = buf + nr_node_ids;
2850 /* Stable tree is empty but not the unstable */
2851 root_unstable_tree[0] = one_unstable_tree[0];
2852 }
2853 }
2854 if (!err) {
90bd6fd3 2855 ksm_merge_across_nodes = knob;
ef53d16c
HD
2856 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2857 }
90bd6fd3
PH
2858 }
2859 mutex_unlock(&ksm_thread_mutex);
2860
2861 return err ? err : count;
2862}
2863KSM_ATTR(merge_across_nodes);
2864#endif
2865
e86c59b1
CI
2866static ssize_t use_zero_pages_show(struct kobject *kobj,
2867 struct kobj_attribute *attr, char *buf)
2868{
2869 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2870}
2871static ssize_t use_zero_pages_store(struct kobject *kobj,
2872 struct kobj_attribute *attr,
2873 const char *buf, size_t count)
2874{
2875 int err;
2876 bool value;
2877
2878 err = kstrtobool(buf, &value);
2879 if (err)
2880 return -EINVAL;
2881
2882 ksm_use_zero_pages = value;
2883
2884 return count;
2885}
2886KSM_ATTR(use_zero_pages);
2887
2c653d0e
AA
2888static ssize_t max_page_sharing_show(struct kobject *kobj,
2889 struct kobj_attribute *attr, char *buf)
2890{
2891 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2892}
2893
2894static ssize_t max_page_sharing_store(struct kobject *kobj,
2895 struct kobj_attribute *attr,
2896 const char *buf, size_t count)
2897{
2898 int err;
2899 int knob;
2900
2901 err = kstrtoint(buf, 10, &knob);
2902 if (err)
2903 return err;
2904 /*
2905 * When a KSM page is created it is shared by 2 mappings. This
2906 * being a signed comparison, it implicitly verifies it's not
2907 * negative.
2908 */
2909 if (knob < 2)
2910 return -EINVAL;
2911
2912 if (READ_ONCE(ksm_max_page_sharing) == knob)
2913 return count;
2914
2915 mutex_lock(&ksm_thread_mutex);
2916 wait_while_offlining();
2917 if (ksm_max_page_sharing != knob) {
2918 if (ksm_pages_shared || remove_all_stable_nodes())
2919 err = -EBUSY;
2920 else
2921 ksm_max_page_sharing = knob;
2922 }
2923 mutex_unlock(&ksm_thread_mutex);
2924
2925 return err ? err : count;
2926}
2927KSM_ATTR(max_page_sharing);
2928
b4028260
HD
2929static ssize_t pages_shared_show(struct kobject *kobj,
2930 struct kobj_attribute *attr, char *buf)
2931{
2932 return sprintf(buf, "%lu\n", ksm_pages_shared);
2933}
2934KSM_ATTR_RO(pages_shared);
2935
2936static ssize_t pages_sharing_show(struct kobject *kobj,
2937 struct kobj_attribute *attr, char *buf)
2938{
e178dfde 2939 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
2940}
2941KSM_ATTR_RO(pages_sharing);
2942
473b0ce4
HD
2943static ssize_t pages_unshared_show(struct kobject *kobj,
2944 struct kobj_attribute *attr, char *buf)
2945{
2946 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2947}
2948KSM_ATTR_RO(pages_unshared);
2949
2950static ssize_t pages_volatile_show(struct kobject *kobj,
2951 struct kobj_attribute *attr, char *buf)
2952{
2953 long ksm_pages_volatile;
2954
2955 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2956 - ksm_pages_sharing - ksm_pages_unshared;
2957 /*
2958 * It was not worth any locking to calculate that statistic,
2959 * but it might therefore sometimes be negative: conceal that.
2960 */
2961 if (ksm_pages_volatile < 0)
2962 ksm_pages_volatile = 0;
2963 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2964}
2965KSM_ATTR_RO(pages_volatile);
2966
2c653d0e
AA
2967static ssize_t stable_node_dups_show(struct kobject *kobj,
2968 struct kobj_attribute *attr, char *buf)
2969{
2970 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
2971}
2972KSM_ATTR_RO(stable_node_dups);
2973
2974static ssize_t stable_node_chains_show(struct kobject *kobj,
2975 struct kobj_attribute *attr, char *buf)
2976{
2977 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
2978}
2979KSM_ATTR_RO(stable_node_chains);
2980
2981static ssize_t
2982stable_node_chains_prune_millisecs_show(struct kobject *kobj,
2983 struct kobj_attribute *attr,
2984 char *buf)
2985{
2986 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2987}
2988
2989static ssize_t
2990stable_node_chains_prune_millisecs_store(struct kobject *kobj,
2991 struct kobj_attribute *attr,
2992 const char *buf, size_t count)
2993{
2994 unsigned long msecs;
2995 int err;
2996
2997 err = kstrtoul(buf, 10, &msecs);
2998 if (err || msecs > UINT_MAX)
2999 return -EINVAL;
3000
3001 ksm_stable_node_chains_prune_millisecs = msecs;
3002
3003 return count;
3004}
3005KSM_ATTR(stable_node_chains_prune_millisecs);
3006
473b0ce4
HD
3007static ssize_t full_scans_show(struct kobject *kobj,
3008 struct kobj_attribute *attr, char *buf)
3009{
3010 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3011}
3012KSM_ATTR_RO(full_scans);
3013
31dbd01f
IE
3014static struct attribute *ksm_attrs[] = {
3015 &sleep_millisecs_attr.attr,
3016 &pages_to_scan_attr.attr,
3017 &run_attr.attr,
b4028260
HD
3018 &pages_shared_attr.attr,
3019 &pages_sharing_attr.attr,
473b0ce4
HD
3020 &pages_unshared_attr.attr,
3021 &pages_volatile_attr.attr,
3022 &full_scans_attr.attr,
90bd6fd3
PH
3023#ifdef CONFIG_NUMA
3024 &merge_across_nodes_attr.attr,
3025#endif
2c653d0e
AA
3026 &max_page_sharing_attr.attr,
3027 &stable_node_chains_attr.attr,
3028 &stable_node_dups_attr.attr,
3029 &stable_node_chains_prune_millisecs_attr.attr,
e86c59b1 3030 &use_zero_pages_attr.attr,
31dbd01f
IE
3031 NULL,
3032};
3033
3034static struct attribute_group ksm_attr_group = {
3035 .attrs = ksm_attrs,
3036 .name = "ksm",
3037};
2ffd8679 3038#endif /* CONFIG_SYSFS */
31dbd01f
IE
3039
3040static int __init ksm_init(void)
3041{
3042 struct task_struct *ksm_thread;
3043 int err;
3044
e86c59b1
CI
3045 /* The correct value depends on page size and endianness */
3046 zero_checksum = calc_checksum(ZERO_PAGE(0));
3047 /* Default to false for backwards compatibility */
3048 ksm_use_zero_pages = false;
3049
31dbd01f
IE
3050 err = ksm_slab_init();
3051 if (err)
3052 goto out;
3053
31dbd01f
IE
3054 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3055 if (IS_ERR(ksm_thread)) {
25acde31 3056 pr_err("ksm: creating kthread failed\n");
31dbd01f 3057 err = PTR_ERR(ksm_thread);
d9f8984c 3058 goto out_free;
31dbd01f
IE
3059 }
3060
2ffd8679 3061#ifdef CONFIG_SYSFS
31dbd01f
IE
3062 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3063 if (err) {
25acde31 3064 pr_err("ksm: register sysfs failed\n");
2ffd8679 3065 kthread_stop(ksm_thread);
d9f8984c 3066 goto out_free;
31dbd01f 3067 }
c73602ad
HD
3068#else
3069 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3070
2ffd8679 3071#endif /* CONFIG_SYSFS */
31dbd01f 3072
62b61f61 3073#ifdef CONFIG_MEMORY_HOTREMOVE
ef4d43a8 3074 /* There is no significance to this priority 100 */
62b61f61
HD
3075 hotplug_memory_notifier(ksm_memory_callback, 100);
3076#endif
31dbd01f
IE
3077 return 0;
3078
d9f8984c 3079out_free:
31dbd01f
IE
3080 ksm_slab_free();
3081out:
3082 return err;
f8af4da3 3083}
a64fb3cd 3084subsys_initcall(ksm_init);