]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/ksm.c
cpuset: mm: reduce large amounts of memory barrier related damage v3
[mirror_ubuntu-bionic-kernel.git] / mm / ksm.c
CommitLineData
f8af4da3 1/*
31dbd01f
IE
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
36b2528d 7 * Copyright (C) 2008-2009 Red Hat, Inc.
31dbd01f
IE
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
36b2528d 12 * Hugh Dickins
31dbd01f
IE
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
f8af4da3
HD
15 */
16
17#include <linux/errno.h>
31dbd01f
IE
18#include <linux/mm.h>
19#include <linux/fs.h>
f8af4da3 20#include <linux/mman.h>
31dbd01f
IE
21#include <linux/sched.h>
22#include <linux/rwsem.h>
23#include <linux/pagemap.h>
24#include <linux/rmap.h>
25#include <linux/spinlock.h>
26#include <linux/jhash.h>
27#include <linux/delay.h>
28#include <linux/kthread.h>
29#include <linux/wait.h>
30#include <linux/slab.h>
31#include <linux/rbtree.h>
62b61f61 32#include <linux/memory.h>
31dbd01f 33#include <linux/mmu_notifier.h>
2c6854fd 34#include <linux/swap.h>
f8af4da3 35#include <linux/ksm.h>
d9f8984c 36#include <linux/hash.h>
878aee7d 37#include <linux/freezer.h>
72788c38 38#include <linux/oom.h>
f8af4da3 39
31dbd01f 40#include <asm/tlbflush.h>
73848b46 41#include "internal.h"
31dbd01f
IE
42
43/*
44 * A few notes about the KSM scanning process,
45 * to make it easier to understand the data structures below:
46 *
47 * In order to reduce excessive scanning, KSM sorts the memory pages by their
48 * contents into a data structure that holds pointers to the pages' locations.
49 *
50 * Since the contents of the pages may change at any moment, KSM cannot just
51 * insert the pages into a normal sorted tree and expect it to find anything.
52 * Therefore KSM uses two data structures - the stable and the unstable tree.
53 *
54 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
55 * by their contents. Because each such page is write-protected, searching on
56 * this tree is fully assured to be working (except when pages are unmapped),
57 * and therefore this tree is called the stable tree.
58 *
59 * In addition to the stable tree, KSM uses a second data structure called the
60 * unstable tree: this tree holds pointers to pages which have been found to
61 * be "unchanged for a period of time". The unstable tree sorts these pages
62 * by their contents, but since they are not write-protected, KSM cannot rely
63 * upon the unstable tree to work correctly - the unstable tree is liable to
64 * be corrupted as its contents are modified, and so it is called unstable.
65 *
66 * KSM solves this problem by several techniques:
67 *
68 * 1) The unstable tree is flushed every time KSM completes scanning all
69 * memory areas, and then the tree is rebuilt again from the beginning.
70 * 2) KSM will only insert into the unstable tree, pages whose hash value
71 * has not changed since the previous scan of all memory areas.
72 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
73 * colors of the nodes and not on their contents, assuring that even when
74 * the tree gets "corrupted" it won't get out of balance, so scanning time
75 * remains the same (also, searching and inserting nodes in an rbtree uses
76 * the same algorithm, so we have no overhead when we flush and rebuild).
77 * 4) KSM never flushes the stable tree, which means that even if it were to
78 * take 10 attempts to find a page in the unstable tree, once it is found,
79 * it is secured in the stable tree. (When we scan a new page, we first
80 * compare it against the stable tree, and then against the unstable tree.)
81 */
82
83/**
84 * struct mm_slot - ksm information per mm that is being scanned
85 * @link: link to the mm_slots hash list
86 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
6514d511 87 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
31dbd01f
IE
88 * @mm: the mm that this information is valid for
89 */
90struct mm_slot {
91 struct hlist_node link;
92 struct list_head mm_list;
6514d511 93 struct rmap_item *rmap_list;
31dbd01f
IE
94 struct mm_struct *mm;
95};
96
97/**
98 * struct ksm_scan - cursor for scanning
99 * @mm_slot: the current mm_slot we are scanning
100 * @address: the next address inside that to be scanned
6514d511 101 * @rmap_list: link to the next rmap to be scanned in the rmap_list
31dbd01f
IE
102 * @seqnr: count of completed full scans (needed when removing unstable node)
103 *
104 * There is only the one ksm_scan instance of this cursor structure.
105 */
106struct ksm_scan {
107 struct mm_slot *mm_slot;
108 unsigned long address;
6514d511 109 struct rmap_item **rmap_list;
31dbd01f
IE
110 unsigned long seqnr;
111};
112
7b6ba2c7
HD
113/**
114 * struct stable_node - node of the stable rbtree
115 * @node: rb node of this ksm page in the stable tree
116 * @hlist: hlist head of rmap_items using this ksm page
62b61f61 117 * @kpfn: page frame number of this ksm page
7b6ba2c7
HD
118 */
119struct stable_node {
120 struct rb_node node;
121 struct hlist_head hlist;
62b61f61 122 unsigned long kpfn;
7b6ba2c7
HD
123};
124
31dbd01f
IE
125/**
126 * struct rmap_item - reverse mapping item for virtual addresses
6514d511 127 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
db114b83 128 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
31dbd01f
IE
129 * @mm: the memory structure this rmap_item is pointing into
130 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
131 * @oldchecksum: previous checksum of the page at that virtual address
7b6ba2c7
HD
132 * @node: rb node of this rmap_item in the unstable tree
133 * @head: pointer to stable_node heading this list in the stable tree
134 * @hlist: link into hlist of rmap_items hanging off that stable_node
31dbd01f
IE
135 */
136struct rmap_item {
6514d511 137 struct rmap_item *rmap_list;
db114b83 138 struct anon_vma *anon_vma; /* when stable */
31dbd01f
IE
139 struct mm_struct *mm;
140 unsigned long address; /* + low bits used for flags below */
7b6ba2c7 141 unsigned int oldchecksum; /* when unstable */
31dbd01f 142 union {
7b6ba2c7
HD
143 struct rb_node node; /* when node of unstable tree */
144 struct { /* when listed from stable tree */
145 struct stable_node *head;
146 struct hlist_node hlist;
147 };
31dbd01f
IE
148 };
149};
150
151#define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
7b6ba2c7
HD
152#define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
153#define STABLE_FLAG 0x200 /* is listed from the stable tree */
31dbd01f
IE
154
155/* The stable and unstable tree heads */
156static struct rb_root root_stable_tree = RB_ROOT;
157static struct rb_root root_unstable_tree = RB_ROOT;
158
d9f8984c
LJ
159#define MM_SLOTS_HASH_SHIFT 10
160#define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
161static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
31dbd01f
IE
162
163static struct mm_slot ksm_mm_head = {
164 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
165};
166static struct ksm_scan ksm_scan = {
167 .mm_slot = &ksm_mm_head,
168};
169
170static struct kmem_cache *rmap_item_cache;
7b6ba2c7 171static struct kmem_cache *stable_node_cache;
31dbd01f
IE
172static struct kmem_cache *mm_slot_cache;
173
174/* The number of nodes in the stable tree */
b4028260 175static unsigned long ksm_pages_shared;
31dbd01f 176
e178dfde 177/* The number of page slots additionally sharing those nodes */
b4028260 178static unsigned long ksm_pages_sharing;
31dbd01f 179
473b0ce4
HD
180/* The number of nodes in the unstable tree */
181static unsigned long ksm_pages_unshared;
182
183/* The number of rmap_items in use: to calculate pages_volatile */
184static unsigned long ksm_rmap_items;
185
31dbd01f 186/* Number of pages ksmd should scan in one batch */
2c6854fd 187static unsigned int ksm_thread_pages_to_scan = 100;
31dbd01f
IE
188
189/* Milliseconds ksmd should sleep between batches */
2ffd8679 190static unsigned int ksm_thread_sleep_millisecs = 20;
31dbd01f
IE
191
192#define KSM_RUN_STOP 0
193#define KSM_RUN_MERGE 1
194#define KSM_RUN_UNMERGE 2
2c6854fd 195static unsigned int ksm_run = KSM_RUN_STOP;
31dbd01f
IE
196
197static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
198static DEFINE_MUTEX(ksm_thread_mutex);
199static DEFINE_SPINLOCK(ksm_mmlist_lock);
200
201#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
202 sizeof(struct __struct), __alignof__(struct __struct),\
203 (__flags), NULL)
204
205static int __init ksm_slab_init(void)
206{
207 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
208 if (!rmap_item_cache)
209 goto out;
210
7b6ba2c7
HD
211 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
212 if (!stable_node_cache)
213 goto out_free1;
214
31dbd01f
IE
215 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
216 if (!mm_slot_cache)
7b6ba2c7 217 goto out_free2;
31dbd01f
IE
218
219 return 0;
220
7b6ba2c7
HD
221out_free2:
222 kmem_cache_destroy(stable_node_cache);
223out_free1:
31dbd01f
IE
224 kmem_cache_destroy(rmap_item_cache);
225out:
226 return -ENOMEM;
227}
228
229static void __init ksm_slab_free(void)
230{
231 kmem_cache_destroy(mm_slot_cache);
7b6ba2c7 232 kmem_cache_destroy(stable_node_cache);
31dbd01f
IE
233 kmem_cache_destroy(rmap_item_cache);
234 mm_slot_cache = NULL;
235}
236
237static inline struct rmap_item *alloc_rmap_item(void)
238{
473b0ce4
HD
239 struct rmap_item *rmap_item;
240
241 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
242 if (rmap_item)
243 ksm_rmap_items++;
244 return rmap_item;
31dbd01f
IE
245}
246
247static inline void free_rmap_item(struct rmap_item *rmap_item)
248{
473b0ce4 249 ksm_rmap_items--;
31dbd01f
IE
250 rmap_item->mm = NULL; /* debug safety */
251 kmem_cache_free(rmap_item_cache, rmap_item);
252}
253
7b6ba2c7
HD
254static inline struct stable_node *alloc_stable_node(void)
255{
256 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
257}
258
259static inline void free_stable_node(struct stable_node *stable_node)
260{
261 kmem_cache_free(stable_node_cache, stable_node);
262}
263
31dbd01f
IE
264static inline struct mm_slot *alloc_mm_slot(void)
265{
266 if (!mm_slot_cache) /* initialization failed */
267 return NULL;
268 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
269}
270
271static inline void free_mm_slot(struct mm_slot *mm_slot)
272{
273 kmem_cache_free(mm_slot_cache, mm_slot);
274}
275
31dbd01f
IE
276static struct mm_slot *get_mm_slot(struct mm_struct *mm)
277{
278 struct mm_slot *mm_slot;
279 struct hlist_head *bucket;
280 struct hlist_node *node;
281
d9f8984c 282 bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
31dbd01f
IE
283 hlist_for_each_entry(mm_slot, node, bucket, link) {
284 if (mm == mm_slot->mm)
285 return mm_slot;
286 }
287 return NULL;
288}
289
290static void insert_to_mm_slots_hash(struct mm_struct *mm,
291 struct mm_slot *mm_slot)
292{
293 struct hlist_head *bucket;
294
d9f8984c 295 bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
31dbd01f 296 mm_slot->mm = mm;
31dbd01f
IE
297 hlist_add_head(&mm_slot->link, bucket);
298}
299
300static inline int in_stable_tree(struct rmap_item *rmap_item)
301{
302 return rmap_item->address & STABLE_FLAG;
303}
304
a913e182
HD
305/*
306 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
307 * page tables after it has passed through ksm_exit() - which, if necessary,
308 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
309 * a special flag: they can just back out as soon as mm_users goes to zero.
310 * ksm_test_exit() is used throughout to make this test for exit: in some
311 * places for correctness, in some places just to avoid unnecessary work.
312 */
313static inline bool ksm_test_exit(struct mm_struct *mm)
314{
315 return atomic_read(&mm->mm_users) == 0;
316}
317
31dbd01f
IE
318/*
319 * We use break_ksm to break COW on a ksm page: it's a stripped down
320 *
321 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
322 * put_page(page);
323 *
324 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
325 * in case the application has unmapped and remapped mm,addr meanwhile.
326 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
327 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
328 */
d952b791 329static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
31dbd01f
IE
330{
331 struct page *page;
d952b791 332 int ret = 0;
31dbd01f
IE
333
334 do {
335 cond_resched();
336 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 337 if (IS_ERR_OR_NULL(page))
31dbd01f
IE
338 break;
339 if (PageKsm(page))
340 ret = handle_mm_fault(vma->vm_mm, vma, addr,
341 FAULT_FLAG_WRITE);
342 else
343 ret = VM_FAULT_WRITE;
344 put_page(page);
d952b791
HD
345 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
346 /*
347 * We must loop because handle_mm_fault() may back out if there's
348 * any difficulty e.g. if pte accessed bit gets updated concurrently.
349 *
350 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
351 * COW has been broken, even if the vma does not permit VM_WRITE;
352 * but note that a concurrent fault might break PageKsm for us.
353 *
354 * VM_FAULT_SIGBUS could occur if we race with truncation of the
355 * backing file, which also invalidates anonymous pages: that's
356 * okay, that truncation will have unmapped the PageKsm for us.
357 *
358 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
359 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
360 * current task has TIF_MEMDIE set, and will be OOM killed on return
361 * to user; and ksmd, having no mm, would never be chosen for that.
362 *
363 * But if the mm is in a limited mem_cgroup, then the fault may fail
364 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
365 * even ksmd can fail in this way - though it's usually breaking ksm
366 * just to undo a merge it made a moment before, so unlikely to oom.
367 *
368 * That's a pity: we might therefore have more kernel pages allocated
369 * than we're counting as nodes in the stable tree; but ksm_do_scan
370 * will retry to break_cow on each pass, so should recover the page
371 * in due course. The important thing is to not let VM_MERGEABLE
372 * be cleared while any such pages might remain in the area.
373 */
374 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
31dbd01f
IE
375}
376
8dd3557a 377static void break_cow(struct rmap_item *rmap_item)
31dbd01f 378{
8dd3557a
HD
379 struct mm_struct *mm = rmap_item->mm;
380 unsigned long addr = rmap_item->address;
31dbd01f
IE
381 struct vm_area_struct *vma;
382
4035c07a
HD
383 /*
384 * It is not an accident that whenever we want to break COW
385 * to undo, we also need to drop a reference to the anon_vma.
386 */
9e60109f 387 put_anon_vma(rmap_item->anon_vma);
4035c07a 388
81464e30 389 down_read(&mm->mmap_sem);
9ba69294
HD
390 if (ksm_test_exit(mm))
391 goto out;
31dbd01f
IE
392 vma = find_vma(mm, addr);
393 if (!vma || vma->vm_start > addr)
81464e30 394 goto out;
31dbd01f 395 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
81464e30 396 goto out;
31dbd01f 397 break_ksm(vma, addr);
81464e30 398out:
31dbd01f
IE
399 up_read(&mm->mmap_sem);
400}
401
29ad768c
AA
402static struct page *page_trans_compound_anon(struct page *page)
403{
404 if (PageTransCompound(page)) {
22e5c47e 405 struct page *head = compound_trans_head(page);
29ad768c 406 /*
22e5c47e
AA
407 * head may actually be splitted and freed from under
408 * us but it's ok here.
29ad768c 409 */
29ad768c
AA
410 if (PageAnon(head))
411 return head;
412 }
413 return NULL;
414}
415
31dbd01f
IE
416static struct page *get_mergeable_page(struct rmap_item *rmap_item)
417{
418 struct mm_struct *mm = rmap_item->mm;
419 unsigned long addr = rmap_item->address;
420 struct vm_area_struct *vma;
421 struct page *page;
422
423 down_read(&mm->mmap_sem);
9ba69294
HD
424 if (ksm_test_exit(mm))
425 goto out;
31dbd01f
IE
426 vma = find_vma(mm, addr);
427 if (!vma || vma->vm_start > addr)
428 goto out;
429 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
430 goto out;
431
432 page = follow_page(vma, addr, FOLL_GET);
22eccdd7 433 if (IS_ERR_OR_NULL(page))
31dbd01f 434 goto out;
29ad768c 435 if (PageAnon(page) || page_trans_compound_anon(page)) {
31dbd01f
IE
436 flush_anon_page(vma, page, addr);
437 flush_dcache_page(page);
438 } else {
439 put_page(page);
440out: page = NULL;
441 }
442 up_read(&mm->mmap_sem);
443 return page;
444}
445
4035c07a
HD
446static void remove_node_from_stable_tree(struct stable_node *stable_node)
447{
448 struct rmap_item *rmap_item;
449 struct hlist_node *hlist;
450
451 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
452 if (rmap_item->hlist.next)
453 ksm_pages_sharing--;
454 else
455 ksm_pages_shared--;
9e60109f 456 put_anon_vma(rmap_item->anon_vma);
4035c07a
HD
457 rmap_item->address &= PAGE_MASK;
458 cond_resched();
459 }
460
461 rb_erase(&stable_node->node, &root_stable_tree);
462 free_stable_node(stable_node);
463}
464
465/*
466 * get_ksm_page: checks if the page indicated by the stable node
467 * is still its ksm page, despite having held no reference to it.
468 * In which case we can trust the content of the page, and it
469 * returns the gotten page; but if the page has now been zapped,
470 * remove the stale node from the stable tree and return NULL.
471 *
472 * You would expect the stable_node to hold a reference to the ksm page.
473 * But if it increments the page's count, swapping out has to wait for
474 * ksmd to come around again before it can free the page, which may take
475 * seconds or even minutes: much too unresponsive. So instead we use a
476 * "keyhole reference": access to the ksm page from the stable node peeps
477 * out through its keyhole to see if that page still holds the right key,
478 * pointing back to this stable node. This relies on freeing a PageAnon
479 * page to reset its page->mapping to NULL, and relies on no other use of
480 * a page to put something that might look like our key in page->mapping.
481 *
482 * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
483 * but this is different - made simpler by ksm_thread_mutex being held, but
484 * interesting for assuming that no other use of the struct page could ever
485 * put our expected_mapping into page->mapping (or a field of the union which
486 * coincides with page->mapping). The RCU calls are not for KSM at all, but
487 * to keep the page_count protocol described with page_cache_get_speculative.
488 *
489 * Note: it is possible that get_ksm_page() will return NULL one moment,
490 * then page the next, if the page is in between page_freeze_refs() and
491 * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
492 * is on its way to being freed; but it is an anomaly to bear in mind.
493 */
494static struct page *get_ksm_page(struct stable_node *stable_node)
495{
496 struct page *page;
497 void *expected_mapping;
498
62b61f61 499 page = pfn_to_page(stable_node->kpfn);
4035c07a
HD
500 expected_mapping = (void *)stable_node +
501 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
502 rcu_read_lock();
503 if (page->mapping != expected_mapping)
504 goto stale;
505 if (!get_page_unless_zero(page))
506 goto stale;
507 if (page->mapping != expected_mapping) {
508 put_page(page);
509 goto stale;
510 }
511 rcu_read_unlock();
512 return page;
513stale:
514 rcu_read_unlock();
515 remove_node_from_stable_tree(stable_node);
516 return NULL;
517}
518
31dbd01f
IE
519/*
520 * Removing rmap_item from stable or unstable tree.
521 * This function will clean the information from the stable/unstable tree.
522 */
523static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
524{
7b6ba2c7
HD
525 if (rmap_item->address & STABLE_FLAG) {
526 struct stable_node *stable_node;
5ad64688 527 struct page *page;
31dbd01f 528
7b6ba2c7 529 stable_node = rmap_item->head;
4035c07a
HD
530 page = get_ksm_page(stable_node);
531 if (!page)
532 goto out;
5ad64688 533
4035c07a 534 lock_page(page);
7b6ba2c7 535 hlist_del(&rmap_item->hlist);
4035c07a
HD
536 unlock_page(page);
537 put_page(page);
08beca44 538
4035c07a
HD
539 if (stable_node->hlist.first)
540 ksm_pages_sharing--;
541 else
7b6ba2c7 542 ksm_pages_shared--;
31dbd01f 543
9e60109f 544 put_anon_vma(rmap_item->anon_vma);
93d17715 545 rmap_item->address &= PAGE_MASK;
31dbd01f 546
7b6ba2c7 547 } else if (rmap_item->address & UNSTABLE_FLAG) {
31dbd01f
IE
548 unsigned char age;
549 /*
9ba69294 550 * Usually ksmd can and must skip the rb_erase, because
31dbd01f 551 * root_unstable_tree was already reset to RB_ROOT.
9ba69294
HD
552 * But be careful when an mm is exiting: do the rb_erase
553 * if this rmap_item was inserted by this scan, rather
554 * than left over from before.
31dbd01f
IE
555 */
556 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
cd551f97 557 BUG_ON(age > 1);
31dbd01f
IE
558 if (!age)
559 rb_erase(&rmap_item->node, &root_unstable_tree);
93d17715 560
473b0ce4 561 ksm_pages_unshared--;
93d17715 562 rmap_item->address &= PAGE_MASK;
31dbd01f 563 }
4035c07a 564out:
31dbd01f
IE
565 cond_resched(); /* we're called from many long loops */
566}
567
31dbd01f 568static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
6514d511 569 struct rmap_item **rmap_list)
31dbd01f 570{
6514d511
HD
571 while (*rmap_list) {
572 struct rmap_item *rmap_item = *rmap_list;
573 *rmap_list = rmap_item->rmap_list;
31dbd01f 574 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
575 free_rmap_item(rmap_item);
576 }
577}
578
579/*
580 * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
581 * than check every pte of a given vma, the locking doesn't quite work for
582 * that - an rmap_item is assigned to the stable tree after inserting ksm
583 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
584 * rmap_items from parent to child at fork time (so as not to waste time
585 * if exit comes before the next scan reaches it).
81464e30
HD
586 *
587 * Similarly, although we'd like to remove rmap_items (so updating counts
588 * and freeing memory) when unmerging an area, it's easier to leave that
589 * to the next pass of ksmd - consider, for example, how ksmd might be
590 * in cmp_and_merge_page on one of the rmap_items we would be removing.
31dbd01f 591 */
d952b791
HD
592static int unmerge_ksm_pages(struct vm_area_struct *vma,
593 unsigned long start, unsigned long end)
31dbd01f
IE
594{
595 unsigned long addr;
d952b791 596 int err = 0;
31dbd01f 597
d952b791 598 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
9ba69294
HD
599 if (ksm_test_exit(vma->vm_mm))
600 break;
d952b791
HD
601 if (signal_pending(current))
602 err = -ERESTARTSYS;
603 else
604 err = break_ksm(vma, addr);
605 }
606 return err;
31dbd01f
IE
607}
608
2ffd8679
HD
609#ifdef CONFIG_SYSFS
610/*
611 * Only called through the sysfs control interface:
612 */
d952b791 613static int unmerge_and_remove_all_rmap_items(void)
31dbd01f
IE
614{
615 struct mm_slot *mm_slot;
616 struct mm_struct *mm;
617 struct vm_area_struct *vma;
d952b791
HD
618 int err = 0;
619
620 spin_lock(&ksm_mmlist_lock);
9ba69294 621 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
d952b791
HD
622 struct mm_slot, mm_list);
623 spin_unlock(&ksm_mmlist_lock);
31dbd01f 624
9ba69294
HD
625 for (mm_slot = ksm_scan.mm_slot;
626 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
31dbd01f
IE
627 mm = mm_slot->mm;
628 down_read(&mm->mmap_sem);
629 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9ba69294
HD
630 if (ksm_test_exit(mm))
631 break;
31dbd01f
IE
632 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
633 continue;
d952b791
HD
634 err = unmerge_ksm_pages(vma,
635 vma->vm_start, vma->vm_end);
9ba69294
HD
636 if (err)
637 goto error;
31dbd01f 638 }
9ba69294 639
6514d511 640 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
d952b791
HD
641
642 spin_lock(&ksm_mmlist_lock);
9ba69294 643 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
d952b791 644 struct mm_slot, mm_list);
9ba69294
HD
645 if (ksm_test_exit(mm)) {
646 hlist_del(&mm_slot->link);
647 list_del(&mm_slot->mm_list);
648 spin_unlock(&ksm_mmlist_lock);
649
650 free_mm_slot(mm_slot);
651 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
652 up_read(&mm->mmap_sem);
653 mmdrop(mm);
654 } else {
655 spin_unlock(&ksm_mmlist_lock);
656 up_read(&mm->mmap_sem);
657 }
31dbd01f
IE
658 }
659
d952b791 660 ksm_scan.seqnr = 0;
9ba69294
HD
661 return 0;
662
663error:
664 up_read(&mm->mmap_sem);
31dbd01f 665 spin_lock(&ksm_mmlist_lock);
d952b791 666 ksm_scan.mm_slot = &ksm_mm_head;
31dbd01f 667 spin_unlock(&ksm_mmlist_lock);
d952b791 668 return err;
31dbd01f 669}
2ffd8679 670#endif /* CONFIG_SYSFS */
31dbd01f 671
31dbd01f
IE
672static u32 calc_checksum(struct page *page)
673{
674 u32 checksum;
9b04c5fe 675 void *addr = kmap_atomic(page);
31dbd01f 676 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
9b04c5fe 677 kunmap_atomic(addr);
31dbd01f
IE
678 return checksum;
679}
680
681static int memcmp_pages(struct page *page1, struct page *page2)
682{
683 char *addr1, *addr2;
684 int ret;
685
9b04c5fe
CW
686 addr1 = kmap_atomic(page1);
687 addr2 = kmap_atomic(page2);
31dbd01f 688 ret = memcmp(addr1, addr2, PAGE_SIZE);
9b04c5fe
CW
689 kunmap_atomic(addr2);
690 kunmap_atomic(addr1);
31dbd01f
IE
691 return ret;
692}
693
694static inline int pages_identical(struct page *page1, struct page *page2)
695{
696 return !memcmp_pages(page1, page2);
697}
698
699static int write_protect_page(struct vm_area_struct *vma, struct page *page,
700 pte_t *orig_pte)
701{
702 struct mm_struct *mm = vma->vm_mm;
703 unsigned long addr;
704 pte_t *ptep;
705 spinlock_t *ptl;
706 int swapped;
707 int err = -EFAULT;
708
709 addr = page_address_in_vma(page, vma);
710 if (addr == -EFAULT)
711 goto out;
712
29ad768c 713 BUG_ON(PageTransCompound(page));
31dbd01f
IE
714 ptep = page_check_address(page, mm, addr, &ptl, 0);
715 if (!ptep)
716 goto out;
717
4e31635c 718 if (pte_write(*ptep) || pte_dirty(*ptep)) {
31dbd01f
IE
719 pte_t entry;
720
721 swapped = PageSwapCache(page);
722 flush_cache_page(vma, addr, page_to_pfn(page));
723 /*
25985edc 724 * Ok this is tricky, when get_user_pages_fast() run it doesn't
31dbd01f
IE
725 * take any lock, therefore the check that we are going to make
726 * with the pagecount against the mapcount is racey and
727 * O_DIRECT can happen right after the check.
728 * So we clear the pte and flush the tlb before the check
729 * this assure us that no O_DIRECT can happen after the check
730 * or in the middle of the check.
731 */
732 entry = ptep_clear_flush(vma, addr, ptep);
733 /*
734 * Check that no O_DIRECT or similar I/O is in progress on the
735 * page
736 */
31e855ea 737 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
cb532375 738 set_pte_at(mm, addr, ptep, entry);
31dbd01f
IE
739 goto out_unlock;
740 }
4e31635c
HD
741 if (pte_dirty(entry))
742 set_page_dirty(page);
743 entry = pte_mkclean(pte_wrprotect(entry));
31dbd01f
IE
744 set_pte_at_notify(mm, addr, ptep, entry);
745 }
746 *orig_pte = *ptep;
747 err = 0;
748
749out_unlock:
750 pte_unmap_unlock(ptep, ptl);
751out:
752 return err;
753}
754
755/**
756 * replace_page - replace page in vma by new ksm page
8dd3557a
HD
757 * @vma: vma that holds the pte pointing to page
758 * @page: the page we are replacing by kpage
759 * @kpage: the ksm page we replace page by
31dbd01f
IE
760 * @orig_pte: the original value of the pte
761 *
762 * Returns 0 on success, -EFAULT on failure.
763 */
8dd3557a
HD
764static int replace_page(struct vm_area_struct *vma, struct page *page,
765 struct page *kpage, pte_t orig_pte)
31dbd01f
IE
766{
767 struct mm_struct *mm = vma->vm_mm;
768 pgd_t *pgd;
769 pud_t *pud;
770 pmd_t *pmd;
771 pte_t *ptep;
772 spinlock_t *ptl;
773 unsigned long addr;
31dbd01f
IE
774 int err = -EFAULT;
775
8dd3557a 776 addr = page_address_in_vma(page, vma);
31dbd01f
IE
777 if (addr == -EFAULT)
778 goto out;
779
780 pgd = pgd_offset(mm, addr);
781 if (!pgd_present(*pgd))
782 goto out;
783
784 pud = pud_offset(pgd, addr);
785 if (!pud_present(*pud))
786 goto out;
787
788 pmd = pmd_offset(pud, addr);
29ad768c 789 BUG_ON(pmd_trans_huge(*pmd));
31dbd01f
IE
790 if (!pmd_present(*pmd))
791 goto out;
792
793 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
794 if (!pte_same(*ptep, orig_pte)) {
795 pte_unmap_unlock(ptep, ptl);
796 goto out;
797 }
798
8dd3557a 799 get_page(kpage);
5ad64688 800 page_add_anon_rmap(kpage, vma, addr);
31dbd01f
IE
801
802 flush_cache_page(vma, addr, pte_pfn(*ptep));
803 ptep_clear_flush(vma, addr, ptep);
8dd3557a 804 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
31dbd01f 805
8dd3557a 806 page_remove_rmap(page);
ae52a2ad
HD
807 if (!page_mapped(page))
808 try_to_free_swap(page);
8dd3557a 809 put_page(page);
31dbd01f
IE
810
811 pte_unmap_unlock(ptep, ptl);
812 err = 0;
813out:
814 return err;
815}
816
29ad768c
AA
817static int page_trans_compound_anon_split(struct page *page)
818{
819 int ret = 0;
820 struct page *transhuge_head = page_trans_compound_anon(page);
821 if (transhuge_head) {
822 /* Get the reference on the head to split it. */
823 if (get_page_unless_zero(transhuge_head)) {
824 /*
825 * Recheck we got the reference while the head
826 * was still anonymous.
827 */
828 if (PageAnon(transhuge_head))
829 ret = split_huge_page(transhuge_head);
830 else
831 /*
832 * Retry later if split_huge_page run
833 * from under us.
834 */
835 ret = 1;
836 put_page(transhuge_head);
837 } else
838 /* Retry later if split_huge_page run from under us. */
839 ret = 1;
840 }
841 return ret;
842}
843
31dbd01f
IE
844/*
845 * try_to_merge_one_page - take two pages and merge them into one
8dd3557a
HD
846 * @vma: the vma that holds the pte pointing to page
847 * @page: the PageAnon page that we want to replace with kpage
80e14822
HD
848 * @kpage: the PageKsm page that we want to map instead of page,
849 * or NULL the first time when we want to use page as kpage.
31dbd01f
IE
850 *
851 * This function returns 0 if the pages were merged, -EFAULT otherwise.
852 */
853static int try_to_merge_one_page(struct vm_area_struct *vma,
8dd3557a 854 struct page *page, struct page *kpage)
31dbd01f
IE
855{
856 pte_t orig_pte = __pte(0);
857 int err = -EFAULT;
858
db114b83
HD
859 if (page == kpage) /* ksm page forked */
860 return 0;
861
31dbd01f
IE
862 if (!(vma->vm_flags & VM_MERGEABLE))
863 goto out;
29ad768c
AA
864 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
865 goto out;
866 BUG_ON(PageTransCompound(page));
8dd3557a 867 if (!PageAnon(page))
31dbd01f
IE
868 goto out;
869
31dbd01f
IE
870 /*
871 * We need the page lock to read a stable PageSwapCache in
872 * write_protect_page(). We use trylock_page() instead of
873 * lock_page() because we don't want to wait here - we
874 * prefer to continue scanning and merging different pages,
875 * then come back to this page when it is unlocked.
876 */
8dd3557a 877 if (!trylock_page(page))
31e855ea 878 goto out;
31dbd01f
IE
879 /*
880 * If this anonymous page is mapped only here, its pte may need
881 * to be write-protected. If it's mapped elsewhere, all of its
882 * ptes are necessarily already write-protected. But in either
883 * case, we need to lock and check page_count is not raised.
884 */
80e14822
HD
885 if (write_protect_page(vma, page, &orig_pte) == 0) {
886 if (!kpage) {
887 /*
888 * While we hold page lock, upgrade page from
889 * PageAnon+anon_vma to PageKsm+NULL stable_node:
890 * stable_tree_insert() will update stable_node.
891 */
892 set_page_stable_node(page, NULL);
893 mark_page_accessed(page);
894 err = 0;
895 } else if (pages_identical(page, kpage))
896 err = replace_page(vma, page, kpage, orig_pte);
897 }
31dbd01f 898
80e14822 899 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
73848b46 900 munlock_vma_page(page);
5ad64688
HD
901 if (!PageMlocked(kpage)) {
902 unlock_page(page);
5ad64688
HD
903 lock_page(kpage);
904 mlock_vma_page(kpage);
905 page = kpage; /* for final unlock */
906 }
907 }
73848b46 908
8dd3557a 909 unlock_page(page);
31dbd01f
IE
910out:
911 return err;
912}
913
81464e30
HD
914/*
915 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
916 * but no new kernel page is allocated: kpage must already be a ksm page.
8dd3557a
HD
917 *
918 * This function returns 0 if the pages were merged, -EFAULT otherwise.
81464e30 919 */
8dd3557a
HD
920static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
921 struct page *page, struct page *kpage)
81464e30 922{
8dd3557a 923 struct mm_struct *mm = rmap_item->mm;
81464e30
HD
924 struct vm_area_struct *vma;
925 int err = -EFAULT;
926
8dd3557a
HD
927 down_read(&mm->mmap_sem);
928 if (ksm_test_exit(mm))
9ba69294 929 goto out;
8dd3557a
HD
930 vma = find_vma(mm, rmap_item->address);
931 if (!vma || vma->vm_start > rmap_item->address)
81464e30
HD
932 goto out;
933
8dd3557a 934 err = try_to_merge_one_page(vma, page, kpage);
db114b83
HD
935 if (err)
936 goto out;
937
938 /* Must get reference to anon_vma while still holding mmap_sem */
9e60109f
PZ
939 rmap_item->anon_vma = vma->anon_vma;
940 get_anon_vma(vma->anon_vma);
81464e30 941out:
8dd3557a 942 up_read(&mm->mmap_sem);
81464e30
HD
943 return err;
944}
945
31dbd01f
IE
946/*
947 * try_to_merge_two_pages - take two identical pages and prepare them
948 * to be merged into one page.
949 *
8dd3557a
HD
950 * This function returns the kpage if we successfully merged two identical
951 * pages into one ksm page, NULL otherwise.
31dbd01f 952 *
80e14822 953 * Note that this function upgrades page to ksm page: if one of the pages
31dbd01f
IE
954 * is already a ksm page, try_to_merge_with_ksm_page should be used.
955 */
8dd3557a
HD
956static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
957 struct page *page,
958 struct rmap_item *tree_rmap_item,
959 struct page *tree_page)
31dbd01f 960{
80e14822 961 int err;
31dbd01f 962
80e14822 963 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
31dbd01f 964 if (!err) {
8dd3557a 965 err = try_to_merge_with_ksm_page(tree_rmap_item,
80e14822 966 tree_page, page);
31dbd01f 967 /*
81464e30
HD
968 * If that fails, we have a ksm page with only one pte
969 * pointing to it: so break it.
31dbd01f 970 */
4035c07a 971 if (err)
8dd3557a 972 break_cow(rmap_item);
31dbd01f 973 }
80e14822 974 return err ? NULL : page;
31dbd01f
IE
975}
976
31dbd01f 977/*
8dd3557a 978 * stable_tree_search - search for page inside the stable tree
31dbd01f
IE
979 *
980 * This function checks if there is a page inside the stable tree
981 * with identical content to the page that we are scanning right now.
982 *
7b6ba2c7 983 * This function returns the stable tree node of identical content if found,
31dbd01f
IE
984 * NULL otherwise.
985 */
62b61f61 986static struct page *stable_tree_search(struct page *page)
31dbd01f
IE
987{
988 struct rb_node *node = root_stable_tree.rb_node;
7b6ba2c7 989 struct stable_node *stable_node;
31dbd01f 990
08beca44
HD
991 stable_node = page_stable_node(page);
992 if (stable_node) { /* ksm page forked */
993 get_page(page);
62b61f61 994 return page;
08beca44
HD
995 }
996
31dbd01f 997 while (node) {
4035c07a 998 struct page *tree_page;
31dbd01f
IE
999 int ret;
1000
08beca44 1001 cond_resched();
7b6ba2c7 1002 stable_node = rb_entry(node, struct stable_node, node);
4035c07a
HD
1003 tree_page = get_ksm_page(stable_node);
1004 if (!tree_page)
1005 return NULL;
31dbd01f 1006
4035c07a 1007 ret = memcmp_pages(page, tree_page);
31dbd01f 1008
4035c07a
HD
1009 if (ret < 0) {
1010 put_page(tree_page);
31dbd01f 1011 node = node->rb_left;
4035c07a
HD
1012 } else if (ret > 0) {
1013 put_page(tree_page);
31dbd01f 1014 node = node->rb_right;
4035c07a 1015 } else
62b61f61 1016 return tree_page;
31dbd01f
IE
1017 }
1018
1019 return NULL;
1020}
1021
1022/*
1023 * stable_tree_insert - insert rmap_item pointing to new ksm page
1024 * into the stable tree.
1025 *
7b6ba2c7
HD
1026 * This function returns the stable tree node just allocated on success,
1027 * NULL otherwise.
31dbd01f 1028 */
7b6ba2c7 1029static struct stable_node *stable_tree_insert(struct page *kpage)
31dbd01f
IE
1030{
1031 struct rb_node **new = &root_stable_tree.rb_node;
1032 struct rb_node *parent = NULL;
7b6ba2c7 1033 struct stable_node *stable_node;
31dbd01f
IE
1034
1035 while (*new) {
4035c07a 1036 struct page *tree_page;
31dbd01f
IE
1037 int ret;
1038
08beca44 1039 cond_resched();
7b6ba2c7 1040 stable_node = rb_entry(*new, struct stable_node, node);
4035c07a
HD
1041 tree_page = get_ksm_page(stable_node);
1042 if (!tree_page)
1043 return NULL;
31dbd01f 1044
4035c07a
HD
1045 ret = memcmp_pages(kpage, tree_page);
1046 put_page(tree_page);
31dbd01f
IE
1047
1048 parent = *new;
1049 if (ret < 0)
1050 new = &parent->rb_left;
1051 else if (ret > 0)
1052 new = &parent->rb_right;
1053 else {
1054 /*
1055 * It is not a bug that stable_tree_search() didn't
1056 * find this node: because at that time our page was
1057 * not yet write-protected, so may have changed since.
1058 */
1059 return NULL;
1060 }
1061 }
1062
7b6ba2c7
HD
1063 stable_node = alloc_stable_node();
1064 if (!stable_node)
1065 return NULL;
31dbd01f 1066
7b6ba2c7
HD
1067 rb_link_node(&stable_node->node, parent, new);
1068 rb_insert_color(&stable_node->node, &root_stable_tree);
1069
1070 INIT_HLIST_HEAD(&stable_node->hlist);
1071
62b61f61 1072 stable_node->kpfn = page_to_pfn(kpage);
08beca44
HD
1073 set_page_stable_node(kpage, stable_node);
1074
7b6ba2c7 1075 return stable_node;
31dbd01f
IE
1076}
1077
1078/*
8dd3557a
HD
1079 * unstable_tree_search_insert - search for identical page,
1080 * else insert rmap_item into the unstable tree.
31dbd01f
IE
1081 *
1082 * This function searches for a page in the unstable tree identical to the
1083 * page currently being scanned; and if no identical page is found in the
1084 * tree, we insert rmap_item as a new object into the unstable tree.
1085 *
1086 * This function returns pointer to rmap_item found to be identical
1087 * to the currently scanned page, NULL otherwise.
1088 *
1089 * This function does both searching and inserting, because they share
1090 * the same walking algorithm in an rbtree.
1091 */
8dd3557a
HD
1092static
1093struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1094 struct page *page,
1095 struct page **tree_pagep)
1096
31dbd01f
IE
1097{
1098 struct rb_node **new = &root_unstable_tree.rb_node;
1099 struct rb_node *parent = NULL;
1100
1101 while (*new) {
1102 struct rmap_item *tree_rmap_item;
8dd3557a 1103 struct page *tree_page;
31dbd01f
IE
1104 int ret;
1105
d178f27f 1106 cond_resched();
31dbd01f 1107 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
8dd3557a 1108 tree_page = get_mergeable_page(tree_rmap_item);
22eccdd7 1109 if (IS_ERR_OR_NULL(tree_page))
31dbd01f
IE
1110 return NULL;
1111
1112 /*
8dd3557a 1113 * Don't substitute a ksm page for a forked page.
31dbd01f 1114 */
8dd3557a
HD
1115 if (page == tree_page) {
1116 put_page(tree_page);
31dbd01f
IE
1117 return NULL;
1118 }
1119
8dd3557a 1120 ret = memcmp_pages(page, tree_page);
31dbd01f
IE
1121
1122 parent = *new;
1123 if (ret < 0) {
8dd3557a 1124 put_page(tree_page);
31dbd01f
IE
1125 new = &parent->rb_left;
1126 } else if (ret > 0) {
8dd3557a 1127 put_page(tree_page);
31dbd01f
IE
1128 new = &parent->rb_right;
1129 } else {
8dd3557a 1130 *tree_pagep = tree_page;
31dbd01f
IE
1131 return tree_rmap_item;
1132 }
1133 }
1134
7b6ba2c7 1135 rmap_item->address |= UNSTABLE_FLAG;
31dbd01f
IE
1136 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1137 rb_link_node(&rmap_item->node, parent, new);
1138 rb_insert_color(&rmap_item->node, &root_unstable_tree);
1139
473b0ce4 1140 ksm_pages_unshared++;
31dbd01f
IE
1141 return NULL;
1142}
1143
1144/*
1145 * stable_tree_append - add another rmap_item to the linked list of
1146 * rmap_items hanging off a given node of the stable tree, all sharing
1147 * the same ksm page.
1148 */
1149static void stable_tree_append(struct rmap_item *rmap_item,
7b6ba2c7 1150 struct stable_node *stable_node)
31dbd01f 1151{
7b6ba2c7 1152 rmap_item->head = stable_node;
31dbd01f 1153 rmap_item->address |= STABLE_FLAG;
7b6ba2c7 1154 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
e178dfde 1155
7b6ba2c7
HD
1156 if (rmap_item->hlist.next)
1157 ksm_pages_sharing++;
1158 else
1159 ksm_pages_shared++;
31dbd01f
IE
1160}
1161
1162/*
81464e30
HD
1163 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1164 * if not, compare checksum to previous and if it's the same, see if page can
1165 * be inserted into the unstable tree, or merged with a page already there and
1166 * both transferred to the stable tree.
31dbd01f
IE
1167 *
1168 * @page: the page that we are searching identical page to.
1169 * @rmap_item: the reverse mapping into the virtual address of this page
1170 */
1171static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1172{
31dbd01f 1173 struct rmap_item *tree_rmap_item;
8dd3557a 1174 struct page *tree_page = NULL;
7b6ba2c7 1175 struct stable_node *stable_node;
8dd3557a 1176 struct page *kpage;
31dbd01f
IE
1177 unsigned int checksum;
1178 int err;
1179
93d17715 1180 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1181
1182 /* We first start with searching the page inside the stable tree */
62b61f61
HD
1183 kpage = stable_tree_search(page);
1184 if (kpage) {
08beca44 1185 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
31dbd01f
IE
1186 if (!err) {
1187 /*
1188 * The page was successfully merged:
1189 * add its rmap_item to the stable tree.
1190 */
5ad64688 1191 lock_page(kpage);
62b61f61 1192 stable_tree_append(rmap_item, page_stable_node(kpage));
5ad64688 1193 unlock_page(kpage);
31dbd01f 1194 }
8dd3557a 1195 put_page(kpage);
31dbd01f
IE
1196 return;
1197 }
1198
1199 /*
4035c07a
HD
1200 * If the hash value of the page has changed from the last time
1201 * we calculated it, this page is changing frequently: therefore we
1202 * don't want to insert it in the unstable tree, and we don't want
1203 * to waste our time searching for something identical to it there.
31dbd01f
IE
1204 */
1205 checksum = calc_checksum(page);
1206 if (rmap_item->oldchecksum != checksum) {
1207 rmap_item->oldchecksum = checksum;
1208 return;
1209 }
1210
8dd3557a
HD
1211 tree_rmap_item =
1212 unstable_tree_search_insert(rmap_item, page, &tree_page);
31dbd01f 1213 if (tree_rmap_item) {
8dd3557a
HD
1214 kpage = try_to_merge_two_pages(rmap_item, page,
1215 tree_rmap_item, tree_page);
1216 put_page(tree_page);
31dbd01f
IE
1217 /*
1218 * As soon as we merge this page, we want to remove the
1219 * rmap_item of the page we have merged with from the unstable
1220 * tree, and insert it instead as new node in the stable tree.
1221 */
8dd3557a 1222 if (kpage) {
93d17715 1223 remove_rmap_item_from_tree(tree_rmap_item);
473b0ce4 1224
5ad64688 1225 lock_page(kpage);
7b6ba2c7
HD
1226 stable_node = stable_tree_insert(kpage);
1227 if (stable_node) {
1228 stable_tree_append(tree_rmap_item, stable_node);
1229 stable_tree_append(rmap_item, stable_node);
1230 }
5ad64688 1231 unlock_page(kpage);
7b6ba2c7 1232
31dbd01f
IE
1233 /*
1234 * If we fail to insert the page into the stable tree,
1235 * we will have 2 virtual addresses that are pointing
1236 * to a ksm page left outside the stable tree,
1237 * in which case we need to break_cow on both.
1238 */
7b6ba2c7 1239 if (!stable_node) {
8dd3557a
HD
1240 break_cow(tree_rmap_item);
1241 break_cow(rmap_item);
31dbd01f
IE
1242 }
1243 }
31dbd01f
IE
1244 }
1245}
1246
1247static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
6514d511 1248 struct rmap_item **rmap_list,
31dbd01f
IE
1249 unsigned long addr)
1250{
1251 struct rmap_item *rmap_item;
1252
6514d511
HD
1253 while (*rmap_list) {
1254 rmap_item = *rmap_list;
93d17715 1255 if ((rmap_item->address & PAGE_MASK) == addr)
31dbd01f 1256 return rmap_item;
31dbd01f
IE
1257 if (rmap_item->address > addr)
1258 break;
6514d511 1259 *rmap_list = rmap_item->rmap_list;
31dbd01f 1260 remove_rmap_item_from_tree(rmap_item);
31dbd01f
IE
1261 free_rmap_item(rmap_item);
1262 }
1263
1264 rmap_item = alloc_rmap_item();
1265 if (rmap_item) {
1266 /* It has already been zeroed */
1267 rmap_item->mm = mm_slot->mm;
1268 rmap_item->address = addr;
6514d511
HD
1269 rmap_item->rmap_list = *rmap_list;
1270 *rmap_list = rmap_item;
31dbd01f
IE
1271 }
1272 return rmap_item;
1273}
1274
1275static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1276{
1277 struct mm_struct *mm;
1278 struct mm_slot *slot;
1279 struct vm_area_struct *vma;
1280 struct rmap_item *rmap_item;
1281
1282 if (list_empty(&ksm_mm_head.mm_list))
1283 return NULL;
1284
1285 slot = ksm_scan.mm_slot;
1286 if (slot == &ksm_mm_head) {
2919bfd0
HD
1287 /*
1288 * A number of pages can hang around indefinitely on per-cpu
1289 * pagevecs, raised page count preventing write_protect_page
1290 * from merging them. Though it doesn't really matter much,
1291 * it is puzzling to see some stuck in pages_volatile until
1292 * other activity jostles them out, and they also prevented
1293 * LTP's KSM test from succeeding deterministically; so drain
1294 * them here (here rather than on entry to ksm_do_scan(),
1295 * so we don't IPI too often when pages_to_scan is set low).
1296 */
1297 lru_add_drain_all();
1298
31dbd01f
IE
1299 root_unstable_tree = RB_ROOT;
1300
1301 spin_lock(&ksm_mmlist_lock);
1302 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1303 ksm_scan.mm_slot = slot;
1304 spin_unlock(&ksm_mmlist_lock);
2b472611
HD
1305 /*
1306 * Although we tested list_empty() above, a racing __ksm_exit
1307 * of the last mm on the list may have removed it since then.
1308 */
1309 if (slot == &ksm_mm_head)
1310 return NULL;
31dbd01f
IE
1311next_mm:
1312 ksm_scan.address = 0;
6514d511 1313 ksm_scan.rmap_list = &slot->rmap_list;
31dbd01f
IE
1314 }
1315
1316 mm = slot->mm;
1317 down_read(&mm->mmap_sem);
9ba69294
HD
1318 if (ksm_test_exit(mm))
1319 vma = NULL;
1320 else
1321 vma = find_vma(mm, ksm_scan.address);
1322
1323 for (; vma; vma = vma->vm_next) {
31dbd01f
IE
1324 if (!(vma->vm_flags & VM_MERGEABLE))
1325 continue;
1326 if (ksm_scan.address < vma->vm_start)
1327 ksm_scan.address = vma->vm_start;
1328 if (!vma->anon_vma)
1329 ksm_scan.address = vma->vm_end;
1330
1331 while (ksm_scan.address < vma->vm_end) {
9ba69294
HD
1332 if (ksm_test_exit(mm))
1333 break;
31dbd01f 1334 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
21ae5b01
AA
1335 if (IS_ERR_OR_NULL(*page)) {
1336 ksm_scan.address += PAGE_SIZE;
1337 cond_resched();
1338 continue;
1339 }
29ad768c
AA
1340 if (PageAnon(*page) ||
1341 page_trans_compound_anon(*page)) {
31dbd01f
IE
1342 flush_anon_page(vma, *page, ksm_scan.address);
1343 flush_dcache_page(*page);
1344 rmap_item = get_next_rmap_item(slot,
6514d511 1345 ksm_scan.rmap_list, ksm_scan.address);
31dbd01f 1346 if (rmap_item) {
6514d511
HD
1347 ksm_scan.rmap_list =
1348 &rmap_item->rmap_list;
31dbd01f
IE
1349 ksm_scan.address += PAGE_SIZE;
1350 } else
1351 put_page(*page);
1352 up_read(&mm->mmap_sem);
1353 return rmap_item;
1354 }
21ae5b01 1355 put_page(*page);
31dbd01f
IE
1356 ksm_scan.address += PAGE_SIZE;
1357 cond_resched();
1358 }
1359 }
1360
9ba69294
HD
1361 if (ksm_test_exit(mm)) {
1362 ksm_scan.address = 0;
6514d511 1363 ksm_scan.rmap_list = &slot->rmap_list;
9ba69294 1364 }
31dbd01f
IE
1365 /*
1366 * Nuke all the rmap_items that are above this current rmap:
1367 * because there were no VM_MERGEABLE vmas with such addresses.
1368 */
6514d511 1369 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
31dbd01f
IE
1370
1371 spin_lock(&ksm_mmlist_lock);
cd551f97
HD
1372 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1373 struct mm_slot, mm_list);
1374 if (ksm_scan.address == 0) {
1375 /*
1376 * We've completed a full scan of all vmas, holding mmap_sem
1377 * throughout, and found no VM_MERGEABLE: so do the same as
1378 * __ksm_exit does to remove this mm from all our lists now.
9ba69294
HD
1379 * This applies either when cleaning up after __ksm_exit
1380 * (but beware: we can reach here even before __ksm_exit),
1381 * or when all VM_MERGEABLE areas have been unmapped (and
1382 * mmap_sem then protects against race with MADV_MERGEABLE).
cd551f97
HD
1383 */
1384 hlist_del(&slot->link);
1385 list_del(&slot->mm_list);
9ba69294
HD
1386 spin_unlock(&ksm_mmlist_lock);
1387
cd551f97
HD
1388 free_mm_slot(slot);
1389 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294
HD
1390 up_read(&mm->mmap_sem);
1391 mmdrop(mm);
1392 } else {
1393 spin_unlock(&ksm_mmlist_lock);
1394 up_read(&mm->mmap_sem);
cd551f97 1395 }
31dbd01f
IE
1396
1397 /* Repeat until we've completed scanning the whole list */
cd551f97 1398 slot = ksm_scan.mm_slot;
31dbd01f
IE
1399 if (slot != &ksm_mm_head)
1400 goto next_mm;
1401
31dbd01f
IE
1402 ksm_scan.seqnr++;
1403 return NULL;
1404}
1405
1406/**
1407 * ksm_do_scan - the ksm scanner main worker function.
1408 * @scan_npages - number of pages we want to scan before we return.
1409 */
1410static void ksm_do_scan(unsigned int scan_npages)
1411{
1412 struct rmap_item *rmap_item;
22eccdd7 1413 struct page *uninitialized_var(page);
31dbd01f 1414
878aee7d 1415 while (scan_npages-- && likely(!freezing(current))) {
31dbd01f
IE
1416 cond_resched();
1417 rmap_item = scan_get_next_rmap_item(&page);
1418 if (!rmap_item)
1419 return;
1420 if (!PageKsm(page) || !in_stable_tree(rmap_item))
1421 cmp_and_merge_page(page, rmap_item);
1422 put_page(page);
1423 }
1424}
1425
6e158384
HD
1426static int ksmd_should_run(void)
1427{
1428 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1429}
1430
31dbd01f
IE
1431static int ksm_scan_thread(void *nothing)
1432{
878aee7d 1433 set_freezable();
339aa624 1434 set_user_nice(current, 5);
31dbd01f
IE
1435
1436 while (!kthread_should_stop()) {
6e158384
HD
1437 mutex_lock(&ksm_thread_mutex);
1438 if (ksmd_should_run())
31dbd01f 1439 ksm_do_scan(ksm_thread_pages_to_scan);
6e158384
HD
1440 mutex_unlock(&ksm_thread_mutex);
1441
878aee7d
AA
1442 try_to_freeze();
1443
6e158384 1444 if (ksmd_should_run()) {
31dbd01f
IE
1445 schedule_timeout_interruptible(
1446 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1447 } else {
878aee7d 1448 wait_event_freezable(ksm_thread_wait,
6e158384 1449 ksmd_should_run() || kthread_should_stop());
31dbd01f
IE
1450 }
1451 }
1452 return 0;
1453}
1454
f8af4da3
HD
1455int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1456 unsigned long end, int advice, unsigned long *vm_flags)
1457{
1458 struct mm_struct *mm = vma->vm_mm;
d952b791 1459 int err;
f8af4da3
HD
1460
1461 switch (advice) {
1462 case MADV_MERGEABLE:
1463 /*
1464 * Be somewhat over-protective for now!
1465 */
1466 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1467 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1468 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
5ad64688 1469 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
f8af4da3
HD
1470 return 0; /* just ignore the advice */
1471
d952b791
HD
1472 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1473 err = __ksm_enter(mm);
1474 if (err)
1475 return err;
1476 }
f8af4da3
HD
1477
1478 *vm_flags |= VM_MERGEABLE;
1479 break;
1480
1481 case MADV_UNMERGEABLE:
1482 if (!(*vm_flags & VM_MERGEABLE))
1483 return 0; /* just ignore the advice */
1484
d952b791
HD
1485 if (vma->anon_vma) {
1486 err = unmerge_ksm_pages(vma, start, end);
1487 if (err)
1488 return err;
1489 }
f8af4da3
HD
1490
1491 *vm_flags &= ~VM_MERGEABLE;
1492 break;
1493 }
1494
1495 return 0;
1496}
1497
1498int __ksm_enter(struct mm_struct *mm)
1499{
6e158384
HD
1500 struct mm_slot *mm_slot;
1501 int needs_wakeup;
1502
1503 mm_slot = alloc_mm_slot();
31dbd01f
IE
1504 if (!mm_slot)
1505 return -ENOMEM;
1506
6e158384
HD
1507 /* Check ksm_run too? Would need tighter locking */
1508 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1509
31dbd01f
IE
1510 spin_lock(&ksm_mmlist_lock);
1511 insert_to_mm_slots_hash(mm, mm_slot);
1512 /*
1513 * Insert just behind the scanning cursor, to let the area settle
1514 * down a little; when fork is followed by immediate exec, we don't
1515 * want ksmd to waste time setting up and tearing down an rmap_list.
1516 */
1517 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1518 spin_unlock(&ksm_mmlist_lock);
1519
f8af4da3 1520 set_bit(MMF_VM_MERGEABLE, &mm->flags);
9ba69294 1521 atomic_inc(&mm->mm_count);
6e158384
HD
1522
1523 if (needs_wakeup)
1524 wake_up_interruptible(&ksm_thread_wait);
1525
f8af4da3
HD
1526 return 0;
1527}
1528
1c2fb7a4 1529void __ksm_exit(struct mm_struct *mm)
f8af4da3 1530{
cd551f97 1531 struct mm_slot *mm_slot;
9ba69294 1532 int easy_to_free = 0;
cd551f97 1533
31dbd01f 1534 /*
9ba69294
HD
1535 * This process is exiting: if it's straightforward (as is the
1536 * case when ksmd was never running), free mm_slot immediately.
1537 * But if it's at the cursor or has rmap_items linked to it, use
1538 * mmap_sem to synchronize with any break_cows before pagetables
1539 * are freed, and leave the mm_slot on the list for ksmd to free.
1540 * Beware: ksm may already have noticed it exiting and freed the slot.
31dbd01f 1541 */
9ba69294 1542
cd551f97
HD
1543 spin_lock(&ksm_mmlist_lock);
1544 mm_slot = get_mm_slot(mm);
9ba69294 1545 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
6514d511 1546 if (!mm_slot->rmap_list) {
9ba69294
HD
1547 hlist_del(&mm_slot->link);
1548 list_del(&mm_slot->mm_list);
1549 easy_to_free = 1;
1550 } else {
1551 list_move(&mm_slot->mm_list,
1552 &ksm_scan.mm_slot->mm_list);
1553 }
cd551f97 1554 }
cd551f97
HD
1555 spin_unlock(&ksm_mmlist_lock);
1556
9ba69294
HD
1557 if (easy_to_free) {
1558 free_mm_slot(mm_slot);
1559 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1560 mmdrop(mm);
1561 } else if (mm_slot) {
9ba69294
HD
1562 down_write(&mm->mmap_sem);
1563 up_write(&mm->mmap_sem);
9ba69294 1564 }
31dbd01f
IE
1565}
1566
5ad64688
HD
1567struct page *ksm_does_need_to_copy(struct page *page,
1568 struct vm_area_struct *vma, unsigned long address)
1569{
1570 struct page *new_page;
1571
5ad64688
HD
1572 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1573 if (new_page) {
1574 copy_user_highpage(new_page, page, address, vma);
1575
1576 SetPageDirty(new_page);
1577 __SetPageUptodate(new_page);
1578 SetPageSwapBacked(new_page);
1579 __set_page_locked(new_page);
1580
1581 if (page_evictable(new_page, vma))
1582 lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1583 else
1584 add_page_to_unevictable_list(new_page);
1585 }
1586
5ad64688
HD
1587 return new_page;
1588}
1589
1590int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1591 unsigned long *vm_flags)
1592{
1593 struct stable_node *stable_node;
1594 struct rmap_item *rmap_item;
1595 struct hlist_node *hlist;
1596 unsigned int mapcount = page_mapcount(page);
1597 int referenced = 0;
db114b83 1598 int search_new_forks = 0;
5ad64688
HD
1599
1600 VM_BUG_ON(!PageKsm(page));
1601 VM_BUG_ON(!PageLocked(page));
1602
1603 stable_node = page_stable_node(page);
1604 if (!stable_node)
1605 return 0;
db114b83 1606again:
5ad64688 1607 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
db114b83 1608 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1609 struct anon_vma_chain *vmac;
db114b83 1610 struct vm_area_struct *vma;
5ad64688 1611
cba48b98 1612 anon_vma_lock(anon_vma);
5beb4930
RR
1613 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1614 vma = vmac->vma;
db114b83
HD
1615 if (rmap_item->address < vma->vm_start ||
1616 rmap_item->address >= vma->vm_end)
1617 continue;
1618 /*
1619 * Initially we examine only the vma which covers this
1620 * rmap_item; but later, if there is still work to do,
1621 * we examine covering vmas in other mms: in case they
1622 * were forked from the original since ksmd passed.
1623 */
1624 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1625 continue;
1626
1627 if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1628 continue;
5ad64688 1629
db114b83 1630 referenced += page_referenced_one(page, vma,
5ad64688 1631 rmap_item->address, &mapcount, vm_flags);
db114b83
HD
1632 if (!search_new_forks || !mapcount)
1633 break;
1634 }
cba48b98 1635 anon_vma_unlock(anon_vma);
5ad64688
HD
1636 if (!mapcount)
1637 goto out;
1638 }
db114b83
HD
1639 if (!search_new_forks++)
1640 goto again;
5ad64688 1641out:
5ad64688
HD
1642 return referenced;
1643}
1644
1645int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1646{
1647 struct stable_node *stable_node;
1648 struct hlist_node *hlist;
1649 struct rmap_item *rmap_item;
1650 int ret = SWAP_AGAIN;
db114b83 1651 int search_new_forks = 0;
5ad64688
HD
1652
1653 VM_BUG_ON(!PageKsm(page));
1654 VM_BUG_ON(!PageLocked(page));
1655
1656 stable_node = page_stable_node(page);
1657 if (!stable_node)
1658 return SWAP_FAIL;
db114b83 1659again:
5ad64688 1660 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
db114b83 1661 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1662 struct anon_vma_chain *vmac;
db114b83 1663 struct vm_area_struct *vma;
5ad64688 1664
cba48b98 1665 anon_vma_lock(anon_vma);
5beb4930
RR
1666 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1667 vma = vmac->vma;
db114b83
HD
1668 if (rmap_item->address < vma->vm_start ||
1669 rmap_item->address >= vma->vm_end)
1670 continue;
1671 /*
1672 * Initially we examine only the vma which covers this
1673 * rmap_item; but later, if there is still work to do,
1674 * we examine covering vmas in other mms: in case they
1675 * were forked from the original since ksmd passed.
1676 */
1677 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1678 continue;
1679
1680 ret = try_to_unmap_one(page, vma,
1681 rmap_item->address, flags);
1682 if (ret != SWAP_AGAIN || !page_mapped(page)) {
cba48b98 1683 anon_vma_unlock(anon_vma);
db114b83
HD
1684 goto out;
1685 }
1686 }
cba48b98 1687 anon_vma_unlock(anon_vma);
5ad64688 1688 }
db114b83
HD
1689 if (!search_new_forks++)
1690 goto again;
5ad64688 1691out:
5ad64688
HD
1692 return ret;
1693}
1694
e9995ef9
HD
1695#ifdef CONFIG_MIGRATION
1696int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1697 struct vm_area_struct *, unsigned long, void *), void *arg)
1698{
1699 struct stable_node *stable_node;
1700 struct hlist_node *hlist;
1701 struct rmap_item *rmap_item;
1702 int ret = SWAP_AGAIN;
1703 int search_new_forks = 0;
1704
1705 VM_BUG_ON(!PageKsm(page));
1706 VM_BUG_ON(!PageLocked(page));
1707
1708 stable_node = page_stable_node(page);
1709 if (!stable_node)
1710 return ret;
1711again:
1712 hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1713 struct anon_vma *anon_vma = rmap_item->anon_vma;
5beb4930 1714 struct anon_vma_chain *vmac;
e9995ef9
HD
1715 struct vm_area_struct *vma;
1716
cba48b98 1717 anon_vma_lock(anon_vma);
5beb4930
RR
1718 list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1719 vma = vmac->vma;
e9995ef9
HD
1720 if (rmap_item->address < vma->vm_start ||
1721 rmap_item->address >= vma->vm_end)
1722 continue;
1723 /*
1724 * Initially we examine only the vma which covers this
1725 * rmap_item; but later, if there is still work to do,
1726 * we examine covering vmas in other mms: in case they
1727 * were forked from the original since ksmd passed.
1728 */
1729 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1730 continue;
1731
1732 ret = rmap_one(page, vma, rmap_item->address, arg);
1733 if (ret != SWAP_AGAIN) {
cba48b98 1734 anon_vma_unlock(anon_vma);
e9995ef9
HD
1735 goto out;
1736 }
1737 }
cba48b98 1738 anon_vma_unlock(anon_vma);
e9995ef9
HD
1739 }
1740 if (!search_new_forks++)
1741 goto again;
1742out:
1743 return ret;
1744}
1745
1746void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1747{
1748 struct stable_node *stable_node;
1749
1750 VM_BUG_ON(!PageLocked(oldpage));
1751 VM_BUG_ON(!PageLocked(newpage));
1752 VM_BUG_ON(newpage->mapping != oldpage->mapping);
1753
1754 stable_node = page_stable_node(newpage);
1755 if (stable_node) {
62b61f61
HD
1756 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1757 stable_node->kpfn = page_to_pfn(newpage);
e9995ef9
HD
1758 }
1759}
1760#endif /* CONFIG_MIGRATION */
1761
62b61f61
HD
1762#ifdef CONFIG_MEMORY_HOTREMOVE
1763static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1764 unsigned long end_pfn)
1765{
1766 struct rb_node *node;
1767
1768 for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1769 struct stable_node *stable_node;
1770
1771 stable_node = rb_entry(node, struct stable_node, node);
1772 if (stable_node->kpfn >= start_pfn &&
1773 stable_node->kpfn < end_pfn)
1774 return stable_node;
1775 }
1776 return NULL;
1777}
1778
1779static int ksm_memory_callback(struct notifier_block *self,
1780 unsigned long action, void *arg)
1781{
1782 struct memory_notify *mn = arg;
1783 struct stable_node *stable_node;
1784
1785 switch (action) {
1786 case MEM_GOING_OFFLINE:
1787 /*
1788 * Keep it very simple for now: just lock out ksmd and
1789 * MADV_UNMERGEABLE while any memory is going offline.
a0b0f58c
KM
1790 * mutex_lock_nested() is necessary because lockdep was alarmed
1791 * that here we take ksm_thread_mutex inside notifier chain
1792 * mutex, and later take notifier chain mutex inside
1793 * ksm_thread_mutex to unlock it. But that's safe because both
1794 * are inside mem_hotplug_mutex.
62b61f61 1795 */
a0b0f58c 1796 mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
62b61f61
HD
1797 break;
1798
1799 case MEM_OFFLINE:
1800 /*
1801 * Most of the work is done by page migration; but there might
1802 * be a few stable_nodes left over, still pointing to struct
1803 * pages which have been offlined: prune those from the tree.
1804 */
1805 while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1806 mn->start_pfn + mn->nr_pages)) != NULL)
1807 remove_node_from_stable_tree(stable_node);
1808 /* fallthrough */
1809
1810 case MEM_CANCEL_OFFLINE:
1811 mutex_unlock(&ksm_thread_mutex);
1812 break;
1813 }
1814 return NOTIFY_OK;
1815}
1816#endif /* CONFIG_MEMORY_HOTREMOVE */
1817
2ffd8679
HD
1818#ifdef CONFIG_SYSFS
1819/*
1820 * This all compiles without CONFIG_SYSFS, but is a waste of space.
1821 */
1822
31dbd01f
IE
1823#define KSM_ATTR_RO(_name) \
1824 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1825#define KSM_ATTR(_name) \
1826 static struct kobj_attribute _name##_attr = \
1827 __ATTR(_name, 0644, _name##_show, _name##_store)
1828
1829static ssize_t sleep_millisecs_show(struct kobject *kobj,
1830 struct kobj_attribute *attr, char *buf)
1831{
1832 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1833}
1834
1835static ssize_t sleep_millisecs_store(struct kobject *kobj,
1836 struct kobj_attribute *attr,
1837 const char *buf, size_t count)
1838{
1839 unsigned long msecs;
1840 int err;
1841
1842 err = strict_strtoul(buf, 10, &msecs);
1843 if (err || msecs > UINT_MAX)
1844 return -EINVAL;
1845
1846 ksm_thread_sleep_millisecs = msecs;
1847
1848 return count;
1849}
1850KSM_ATTR(sleep_millisecs);
1851
1852static ssize_t pages_to_scan_show(struct kobject *kobj,
1853 struct kobj_attribute *attr, char *buf)
1854{
1855 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1856}
1857
1858static ssize_t pages_to_scan_store(struct kobject *kobj,
1859 struct kobj_attribute *attr,
1860 const char *buf, size_t count)
1861{
1862 int err;
1863 unsigned long nr_pages;
1864
1865 err = strict_strtoul(buf, 10, &nr_pages);
1866 if (err || nr_pages > UINT_MAX)
1867 return -EINVAL;
1868
1869 ksm_thread_pages_to_scan = nr_pages;
1870
1871 return count;
1872}
1873KSM_ATTR(pages_to_scan);
1874
1875static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1876 char *buf)
1877{
1878 return sprintf(buf, "%u\n", ksm_run);
1879}
1880
1881static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1882 const char *buf, size_t count)
1883{
1884 int err;
1885 unsigned long flags;
1886
1887 err = strict_strtoul(buf, 10, &flags);
1888 if (err || flags > UINT_MAX)
1889 return -EINVAL;
1890 if (flags > KSM_RUN_UNMERGE)
1891 return -EINVAL;
1892
1893 /*
1894 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1895 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
d0f209f6
HD
1896 * breaking COW to free the pages_shared (but leaves mm_slots
1897 * on the list for when ksmd may be set running again).
31dbd01f
IE
1898 */
1899
1900 mutex_lock(&ksm_thread_mutex);
1901 if (ksm_run != flags) {
1902 ksm_run = flags;
d952b791 1903 if (flags & KSM_RUN_UNMERGE) {
72788c38
DR
1904 int oom_score_adj;
1905
1906 oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
d952b791 1907 err = unmerge_and_remove_all_rmap_items();
43362a49
DR
1908 compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX,
1909 oom_score_adj);
d952b791
HD
1910 if (err) {
1911 ksm_run = KSM_RUN_STOP;
1912 count = err;
1913 }
1914 }
31dbd01f
IE
1915 }
1916 mutex_unlock(&ksm_thread_mutex);
1917
1918 if (flags & KSM_RUN_MERGE)
1919 wake_up_interruptible(&ksm_thread_wait);
1920
1921 return count;
1922}
1923KSM_ATTR(run);
1924
b4028260
HD
1925static ssize_t pages_shared_show(struct kobject *kobj,
1926 struct kobj_attribute *attr, char *buf)
1927{
1928 return sprintf(buf, "%lu\n", ksm_pages_shared);
1929}
1930KSM_ATTR_RO(pages_shared);
1931
1932static ssize_t pages_sharing_show(struct kobject *kobj,
1933 struct kobj_attribute *attr, char *buf)
1934{
e178dfde 1935 return sprintf(buf, "%lu\n", ksm_pages_sharing);
b4028260
HD
1936}
1937KSM_ATTR_RO(pages_sharing);
1938
473b0ce4
HD
1939static ssize_t pages_unshared_show(struct kobject *kobj,
1940 struct kobj_attribute *attr, char *buf)
1941{
1942 return sprintf(buf, "%lu\n", ksm_pages_unshared);
1943}
1944KSM_ATTR_RO(pages_unshared);
1945
1946static ssize_t pages_volatile_show(struct kobject *kobj,
1947 struct kobj_attribute *attr, char *buf)
1948{
1949 long ksm_pages_volatile;
1950
1951 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1952 - ksm_pages_sharing - ksm_pages_unshared;
1953 /*
1954 * It was not worth any locking to calculate that statistic,
1955 * but it might therefore sometimes be negative: conceal that.
1956 */
1957 if (ksm_pages_volatile < 0)
1958 ksm_pages_volatile = 0;
1959 return sprintf(buf, "%ld\n", ksm_pages_volatile);
1960}
1961KSM_ATTR_RO(pages_volatile);
1962
1963static ssize_t full_scans_show(struct kobject *kobj,
1964 struct kobj_attribute *attr, char *buf)
1965{
1966 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1967}
1968KSM_ATTR_RO(full_scans);
1969
31dbd01f
IE
1970static struct attribute *ksm_attrs[] = {
1971 &sleep_millisecs_attr.attr,
1972 &pages_to_scan_attr.attr,
1973 &run_attr.attr,
b4028260
HD
1974 &pages_shared_attr.attr,
1975 &pages_sharing_attr.attr,
473b0ce4
HD
1976 &pages_unshared_attr.attr,
1977 &pages_volatile_attr.attr,
1978 &full_scans_attr.attr,
31dbd01f
IE
1979 NULL,
1980};
1981
1982static struct attribute_group ksm_attr_group = {
1983 .attrs = ksm_attrs,
1984 .name = "ksm",
1985};
2ffd8679 1986#endif /* CONFIG_SYSFS */
31dbd01f
IE
1987
1988static int __init ksm_init(void)
1989{
1990 struct task_struct *ksm_thread;
1991 int err;
1992
1993 err = ksm_slab_init();
1994 if (err)
1995 goto out;
1996
31dbd01f
IE
1997 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
1998 if (IS_ERR(ksm_thread)) {
1999 printk(KERN_ERR "ksm: creating kthread failed\n");
2000 err = PTR_ERR(ksm_thread);
d9f8984c 2001 goto out_free;
31dbd01f
IE
2002 }
2003
2ffd8679 2004#ifdef CONFIG_SYSFS
31dbd01f
IE
2005 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2006 if (err) {
2007 printk(KERN_ERR "ksm: register sysfs failed\n");
2ffd8679 2008 kthread_stop(ksm_thread);
d9f8984c 2009 goto out_free;
31dbd01f 2010 }
c73602ad
HD
2011#else
2012 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2013
2ffd8679 2014#endif /* CONFIG_SYSFS */
31dbd01f 2015
62b61f61
HD
2016#ifdef CONFIG_MEMORY_HOTREMOVE
2017 /*
2018 * Choose a high priority since the callback takes ksm_thread_mutex:
2019 * later callbacks could only be taking locks which nest within that.
2020 */
2021 hotplug_memory_notifier(ksm_memory_callback, 100);
2022#endif
31dbd01f
IE
2023 return 0;
2024
d9f8984c 2025out_free:
31dbd01f
IE
2026 ksm_slab_free();
2027out:
2028 return err;
f8af4da3 2029}
31dbd01f 2030module_init(ksm_init)