]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/memblock.c
Revert "mm: numa: defer TLB flush for THP migration as long as possible"
[mirror_ubuntu-bionic-kernel.git] / mm / memblock.c
CommitLineData
95f72d1e
YL
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
142b45a7 14#include <linux/slab.h>
95f72d1e
YL
15#include <linux/init.h>
16#include <linux/bitops.h>
449e8df3 17#include <linux/poison.h>
c196f76f 18#include <linux/pfn.h>
6d03b885
BH
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
95f72d1e
YL
21#include <linux/memblock.h>
22
c4c5ad6b 23#include <asm/sections.h>
26f09e9b
SS
24#include <linux/io.h>
25
26#include "internal.h"
79442ed1 27
fe091c20
TH
28static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
70210ed9
PH
30#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32#endif
fe091c20
TH
33
34struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 38 .memory.name = "memory",
fe091c20
TH
39
40 .reserved.regions = memblock_reserved_init_regions,
41 .reserved.cnt = 1, /* empty dummy entry */
42 .reserved.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 43 .reserved.name = "reserved",
fe091c20 44
70210ed9
PH
45#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
46 .physmem.regions = memblock_physmem_init_regions,
47 .physmem.cnt = 1, /* empty dummy entry */
48 .physmem.max = INIT_PHYSMEM_REGIONS,
0262d9c8 49 .physmem.name = "physmem",
70210ed9
PH
50#endif
51
79442ed1 52 .bottom_up = false,
fe091c20
TH
53 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
54};
95f72d1e 55
10d06439 56int memblock_debug __initdata_memblock;
a3f5bafc 57static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 58static int memblock_can_resize __initdata_memblock;
181eb394
GS
59static int memblock_memory_in_slab __initdata_memblock = 0;
60static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 61
a3f5bafc
TL
62ulong __init_memblock choose_memblock_flags(void)
63{
64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65}
66
eb18f1b5
TH
67/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
68static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
69{
70 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
71}
72
6ed311b2
BH
73/*
74 * Address comparison utilities
75 */
10d06439 76static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 77 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
78{
79 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
80}
81
95cf82ec 82bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 83 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
84{
85 unsigned long i;
86
f14516fb
AK
87 for (i = 0; i < type->cnt; i++)
88 if (memblock_addrs_overlap(base, size, type->regions[i].base,
89 type->regions[i].size))
6ed311b2 90 break;
c5c5c9d1 91 return i < type->cnt;
6ed311b2
BH
92}
93
79442ed1
TC
94/*
95 * __memblock_find_range_bottom_up - find free area utility in bottom-up
96 * @start: start of candidate range
97 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
98 * @size: size of free area to find
99 * @align: alignment of free area to find
b1154233 100 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 101 * @flags: pick from blocks based on memory attributes
79442ed1
TC
102 *
103 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
104 *
105 * RETURNS:
106 * Found address on success, 0 on failure.
107 */
108static phys_addr_t __init_memblock
109__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9
TL
110 phys_addr_t size, phys_addr_t align, int nid,
111 ulong flags)
79442ed1
TC
112{
113 phys_addr_t this_start, this_end, cand;
114 u64 i;
115
fc6daaf9 116 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
117 this_start = clamp(this_start, start, end);
118 this_end = clamp(this_end, start, end);
119
120 cand = round_up(this_start, align);
121 if (cand < this_end && this_end - cand >= size)
122 return cand;
123 }
124
125 return 0;
126}
127
7bd0b0f0 128/**
1402899e 129 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0
TH
130 * @start: start of candidate range
131 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
132 * @size: size of free area to find
133 * @align: alignment of free area to find
b1154233 134 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 135 * @flags: pick from blocks based on memory attributes
7bd0b0f0 136 *
1402899e 137 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0
TH
138 *
139 * RETURNS:
79442ed1 140 * Found address on success, 0 on failure.
6ed311b2 141 */
1402899e
TC
142static phys_addr_t __init_memblock
143__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9
TL
144 phys_addr_t size, phys_addr_t align, int nid,
145 ulong flags)
f7210e6c
TC
146{
147 phys_addr_t this_start, this_end, cand;
148 u64 i;
149
fc6daaf9
TL
150 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
151 NULL) {
f7210e6c
TC
152 this_start = clamp(this_start, start, end);
153 this_end = clamp(this_end, start, end);
154
155 if (this_end < size)
156 continue;
157
158 cand = round_down(this_end - size, align);
159 if (cand >= this_start)
160 return cand;
161 }
1402899e 162
f7210e6c
TC
163 return 0;
164}
6ed311b2 165
1402899e
TC
166/**
167 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
168 * @size: size of free area to find
169 * @align: alignment of free area to find
87029ee9
GS
170 * @start: start of candidate range
171 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
b1154233 172 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 173 * @flags: pick from blocks based on memory attributes
1402899e
TC
174 *
175 * Find @size free area aligned to @align in the specified range and node.
176 *
79442ed1
TC
177 * When allocation direction is bottom-up, the @start should be greater
178 * than the end of the kernel image. Otherwise, it will be trimmed. The
179 * reason is that we want the bottom-up allocation just near the kernel
180 * image so it is highly likely that the allocated memory and the kernel
181 * will reside in the same node.
182 *
183 * If bottom-up allocation failed, will try to allocate memory top-down.
184 *
1402899e 185 * RETURNS:
79442ed1 186 * Found address on success, 0 on failure.
1402899e 187 */
87029ee9
GS
188phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
189 phys_addr_t align, phys_addr_t start,
fc6daaf9 190 phys_addr_t end, int nid, ulong flags)
1402899e 191{
0cfb8f0c 192 phys_addr_t kernel_end, ret;
79442ed1 193
1402899e
TC
194 /* pump up @end */
195 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
196 end = memblock.current_limit;
197
198 /* avoid allocating the first page */
199 start = max_t(phys_addr_t, start, PAGE_SIZE);
200 end = max(start, end);
79442ed1
TC
201 kernel_end = __pa_symbol(_end);
202
203 /*
204 * try bottom-up allocation only when bottom-up mode
205 * is set and @end is above the kernel image.
206 */
207 if (memblock_bottom_up() && end > kernel_end) {
208 phys_addr_t bottom_up_start;
209
210 /* make sure we will allocate above the kernel */
211 bottom_up_start = max(start, kernel_end);
212
213 /* ok, try bottom-up allocation first */
214 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
fc6daaf9 215 size, align, nid, flags);
79442ed1
TC
216 if (ret)
217 return ret;
218
219 /*
220 * we always limit bottom-up allocation above the kernel,
221 * but top-down allocation doesn't have the limit, so
222 * retrying top-down allocation may succeed when bottom-up
223 * allocation failed.
224 *
225 * bottom-up allocation is expected to be fail very rarely,
226 * so we use WARN_ONCE() here to see the stack trace if
227 * fail happens.
228 */
756a025f 229 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
79442ed1 230 }
1402899e 231
fc6daaf9
TL
232 return __memblock_find_range_top_down(start, end, size, align, nid,
233 flags);
1402899e
TC
234}
235
7bd0b0f0
TH
236/**
237 * memblock_find_in_range - find free area in given range
238 * @start: start of candidate range
239 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
240 * @size: size of free area to find
241 * @align: alignment of free area to find
242 *
243 * Find @size free area aligned to @align in the specified range.
244 *
245 * RETURNS:
79442ed1 246 * Found address on success, 0 on failure.
fc769a8e 247 */
7bd0b0f0
TH
248phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
249 phys_addr_t end, phys_addr_t size,
250 phys_addr_t align)
6ed311b2 251{
a3f5bafc
TL
252 phys_addr_t ret;
253 ulong flags = choose_memblock_flags();
254
255again:
256 ret = memblock_find_in_range_node(size, align, start, end,
257 NUMA_NO_NODE, flags);
258
259 if (!ret && (flags & MEMBLOCK_MIRROR)) {
260 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
261 &size);
262 flags &= ~MEMBLOCK_MIRROR;
263 goto again;
264 }
265
266 return ret;
6ed311b2
BH
267}
268
10d06439 269static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 270{
1440c4e2 271 type->total_size -= type->regions[r].size;
7c0caeb8
TH
272 memmove(&type->regions[r], &type->regions[r + 1],
273 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 274 type->cnt--;
95f72d1e 275
8f7a6605
BH
276 /* Special case for empty arrays */
277 if (type->cnt == 0) {
1440c4e2 278 WARN_ON(type->total_size != 0);
8f7a6605
BH
279 type->cnt = 1;
280 type->regions[0].base = 0;
281 type->regions[0].size = 0;
66a20757 282 type->regions[0].flags = 0;
7c0caeb8 283 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 284 }
95f72d1e
YL
285}
286
354f17e1
PH
287#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
288
29f67386
YL
289phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
290 phys_addr_t *addr)
291{
292 if (memblock.reserved.regions == memblock_reserved_init_regions)
293 return 0;
294
295 *addr = __pa(memblock.reserved.regions);
296
297 return PAGE_ALIGN(sizeof(struct memblock_region) *
298 memblock.reserved.max);
299}
300
5e270e25
PH
301phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
302 phys_addr_t *addr)
303{
304 if (memblock.memory.regions == memblock_memory_init_regions)
305 return 0;
306
307 *addr = __pa(memblock.memory.regions);
308
309 return PAGE_ALIGN(sizeof(struct memblock_region) *
310 memblock.memory.max);
311}
312
313#endif
314
48c3b583
GP
315/**
316 * memblock_double_array - double the size of the memblock regions array
317 * @type: memblock type of the regions array being doubled
318 * @new_area_start: starting address of memory range to avoid overlap with
319 * @new_area_size: size of memory range to avoid overlap with
320 *
321 * Double the size of the @type regions array. If memblock is being used to
322 * allocate memory for a new reserved regions array and there is a previously
323 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
324 * waiting to be reserved, ensure the memory used by the new array does
325 * not overlap.
326 *
327 * RETURNS:
328 * 0 on success, -1 on failure.
329 */
330static int __init_memblock memblock_double_array(struct memblock_type *type,
331 phys_addr_t new_area_start,
332 phys_addr_t new_area_size)
142b45a7
BH
333{
334 struct memblock_region *new_array, *old_array;
29f67386 335 phys_addr_t old_alloc_size, new_alloc_size;
142b45a7
BH
336 phys_addr_t old_size, new_size, addr;
337 int use_slab = slab_is_available();
181eb394 338 int *in_slab;
142b45a7
BH
339
340 /* We don't allow resizing until we know about the reserved regions
341 * of memory that aren't suitable for allocation
342 */
343 if (!memblock_can_resize)
344 return -1;
345
142b45a7
BH
346 /* Calculate new doubled size */
347 old_size = type->max * sizeof(struct memblock_region);
348 new_size = old_size << 1;
29f67386
YL
349 /*
350 * We need to allocated new one align to PAGE_SIZE,
351 * so we can free them completely later.
352 */
353 old_alloc_size = PAGE_ALIGN(old_size);
354 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 355
181eb394
GS
356 /* Retrieve the slab flag */
357 if (type == &memblock.memory)
358 in_slab = &memblock_memory_in_slab;
359 else
360 in_slab = &memblock_reserved_in_slab;
361
142b45a7
BH
362 /* Try to find some space for it.
363 *
364 * WARNING: We assume that either slab_is_available() and we use it or
fd07383b
AM
365 * we use MEMBLOCK for allocations. That means that this is unsafe to
366 * use when bootmem is currently active (unless bootmem itself is
367 * implemented on top of MEMBLOCK which isn't the case yet)
142b45a7
BH
368 *
369 * This should however not be an issue for now, as we currently only
fd07383b
AM
370 * call into MEMBLOCK while it's still active, or much later when slab
371 * is active for memory hotplug operations
142b45a7
BH
372 */
373 if (use_slab) {
374 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 375 addr = new_array ? __pa(new_array) : 0;
4e2f0775 376 } else {
48c3b583
GP
377 /* only exclude range when trying to double reserved.regions */
378 if (type != &memblock.reserved)
379 new_area_start = new_area_size = 0;
380
381 addr = memblock_find_in_range(new_area_start + new_area_size,
382 memblock.current_limit,
29f67386 383 new_alloc_size, PAGE_SIZE);
48c3b583
GP
384 if (!addr && new_area_size)
385 addr = memblock_find_in_range(0,
fd07383b
AM
386 min(new_area_start, memblock.current_limit),
387 new_alloc_size, PAGE_SIZE);
48c3b583 388
15674868 389 new_array = addr ? __va(addr) : NULL;
4e2f0775 390 }
1f5026a7 391 if (!addr) {
142b45a7 392 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 393 type->name, type->max, type->max * 2);
142b45a7
BH
394 return -1;
395 }
142b45a7 396
fd07383b 397 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
0262d9c8 398 type->name, type->max * 2, (u64)addr,
fd07383b 399 (u64)addr + new_size - 1);
ea9e4376 400
fd07383b
AM
401 /*
402 * Found space, we now need to move the array over before we add the
403 * reserved region since it may be our reserved array itself that is
404 * full.
142b45a7
BH
405 */
406 memcpy(new_array, type->regions, old_size);
407 memset(new_array + type->max, 0, old_size);
408 old_array = type->regions;
409 type->regions = new_array;
410 type->max <<= 1;
411
fd07383b 412 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
413 if (*in_slab)
414 kfree(old_array);
415 else if (old_array != memblock_memory_init_regions &&
416 old_array != memblock_reserved_init_regions)
29f67386 417 memblock_free(__pa(old_array), old_alloc_size);
142b45a7 418
fd07383b
AM
419 /*
420 * Reserve the new array if that comes from the memblock. Otherwise, we
421 * needn't do it
181eb394
GS
422 */
423 if (!use_slab)
29f67386 424 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
425
426 /* Update slab flag */
427 *in_slab = use_slab;
428
142b45a7
BH
429 return 0;
430}
431
784656f9
TH
432/**
433 * memblock_merge_regions - merge neighboring compatible regions
434 * @type: memblock type to scan
435 *
436 * Scan @type and merge neighboring compatible regions.
437 */
438static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 439{
784656f9 440 int i = 0;
95f72d1e 441
784656f9
TH
442 /* cnt never goes below 1 */
443 while (i < type->cnt - 1) {
444 struct memblock_region *this = &type->regions[i];
445 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 446
7c0caeb8
TH
447 if (this->base + this->size != next->base ||
448 memblock_get_region_node(this) !=
66a20757
TC
449 memblock_get_region_node(next) ||
450 this->flags != next->flags) {
784656f9
TH
451 BUG_ON(this->base + this->size > next->base);
452 i++;
453 continue;
8f7a6605
BH
454 }
455
784656f9 456 this->size += next->size;
c0232ae8
LF
457 /* move forward from next + 1, index of which is i + 2 */
458 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 459 type->cnt--;
95f72d1e 460 }
784656f9 461}
95f72d1e 462
784656f9
TH
463/**
464 * memblock_insert_region - insert new memblock region
209ff86d
TC
465 * @type: memblock type to insert into
466 * @idx: index for the insertion point
467 * @base: base address of the new region
468 * @size: size of the new region
469 * @nid: node id of the new region
66a20757 470 * @flags: flags of the new region
784656f9
TH
471 *
472 * Insert new memblock region [@base,@base+@size) into @type at @idx.
412d0008 473 * @type must already have extra room to accommodate the new region.
784656f9
TH
474 */
475static void __init_memblock memblock_insert_region(struct memblock_type *type,
476 int idx, phys_addr_t base,
66a20757
TC
477 phys_addr_t size,
478 int nid, unsigned long flags)
784656f9
TH
479{
480 struct memblock_region *rgn = &type->regions[idx];
481
482 BUG_ON(type->cnt >= type->max);
483 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
484 rgn->base = base;
485 rgn->size = size;
66a20757 486 rgn->flags = flags;
7c0caeb8 487 memblock_set_region_node(rgn, nid);
784656f9 488 type->cnt++;
1440c4e2 489 type->total_size += size;
784656f9
TH
490}
491
492/**
f1af9d3a 493 * memblock_add_range - add new memblock region
784656f9
TH
494 * @type: memblock type to add new region into
495 * @base: base address of the new region
496 * @size: size of the new region
7fb0bc3f 497 * @nid: nid of the new region
66a20757 498 * @flags: flags of the new region
784656f9
TH
499 *
500 * Add new memblock region [@base,@base+@size) into @type. The new region
501 * is allowed to overlap with existing ones - overlaps don't affect already
502 * existing regions. @type is guaranteed to be minimal (all neighbouring
503 * compatible regions are merged) after the addition.
504 *
505 * RETURNS:
506 * 0 on success, -errno on failure.
507 */
f1af9d3a 508int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757
TC
509 phys_addr_t base, phys_addr_t size,
510 int nid, unsigned long flags)
784656f9
TH
511{
512 bool insert = false;
eb18f1b5
TH
513 phys_addr_t obase = base;
514 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
515 int idx, nr_new;
516 struct memblock_region *rgn;
784656f9 517
b3dc627c
TH
518 if (!size)
519 return 0;
520
784656f9
TH
521 /* special case for empty array */
522 if (type->regions[0].size == 0) {
1440c4e2 523 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
524 type->regions[0].base = base;
525 type->regions[0].size = size;
66a20757 526 type->regions[0].flags = flags;
7fb0bc3f 527 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 528 type->total_size = size;
8f7a6605 529 return 0;
95f72d1e 530 }
784656f9
TH
531repeat:
532 /*
533 * The following is executed twice. Once with %false @insert and
534 * then with %true. The first counts the number of regions needed
412d0008 535 * to accommodate the new area. The second actually inserts them.
142b45a7 536 */
784656f9
TH
537 base = obase;
538 nr_new = 0;
95f72d1e 539
8c9c1701 540 for_each_memblock_type(type, rgn) {
784656f9
TH
541 phys_addr_t rbase = rgn->base;
542 phys_addr_t rend = rbase + rgn->size;
543
544 if (rbase >= end)
95f72d1e 545 break;
784656f9
TH
546 if (rend <= base)
547 continue;
548 /*
549 * @rgn overlaps. If it separates the lower part of new
550 * area, insert that portion.
551 */
552 if (rbase > base) {
c0a29498
WY
553#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
554 WARN_ON(nid != memblock_get_region_node(rgn));
555#endif
4fcab5f4 556 WARN_ON(flags != rgn->flags);
784656f9
TH
557 nr_new++;
558 if (insert)
8c9c1701 559 memblock_insert_region(type, idx++, base,
66a20757
TC
560 rbase - base, nid,
561 flags);
95f72d1e 562 }
784656f9
TH
563 /* area below @rend is dealt with, forget about it */
564 base = min(rend, end);
95f72d1e 565 }
784656f9
TH
566
567 /* insert the remaining portion */
568 if (base < end) {
569 nr_new++;
570 if (insert)
8c9c1701 571 memblock_insert_region(type, idx, base, end - base,
66a20757 572 nid, flags);
95f72d1e 573 }
95f72d1e 574
ef3cc4db 575 if (!nr_new)
576 return 0;
577
784656f9
TH
578 /*
579 * If this was the first round, resize array and repeat for actual
580 * insertions; otherwise, merge and return.
142b45a7 581 */
784656f9
TH
582 if (!insert) {
583 while (type->cnt + nr_new > type->max)
48c3b583 584 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
585 return -ENOMEM;
586 insert = true;
587 goto repeat;
588 } else {
589 memblock_merge_regions(type);
590 return 0;
142b45a7 591 }
95f72d1e
YL
592}
593
7fb0bc3f
TH
594int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
595 int nid)
596{
f1af9d3a 597 return memblock_add_range(&memblock.memory, base, size, nid, 0);
7fb0bc3f
TH
598}
599
f705ac4b 600int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 601{
5d63f81c
MC
602 phys_addr_t end = base + size - 1;
603
604 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
605 &base, &end, (void *)_RET_IP_);
6a4055bc 606
f705ac4b 607 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
608}
609
6a9ceb31
TH
610/**
611 * memblock_isolate_range - isolate given range into disjoint memblocks
612 * @type: memblock type to isolate range for
613 * @base: base of range to isolate
614 * @size: size of range to isolate
615 * @start_rgn: out parameter for the start of isolated region
616 * @end_rgn: out parameter for the end of isolated region
617 *
618 * Walk @type and ensure that regions don't cross the boundaries defined by
619 * [@base,@base+@size). Crossing regions are split at the boundaries,
620 * which may create at most two more regions. The index of the first
621 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
622 *
623 * RETURNS:
624 * 0 on success, -errno on failure.
625 */
626static int __init_memblock memblock_isolate_range(struct memblock_type *type,
627 phys_addr_t base, phys_addr_t size,
628 int *start_rgn, int *end_rgn)
629{
eb18f1b5 630 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
631 int idx;
632 struct memblock_region *rgn;
6a9ceb31
TH
633
634 *start_rgn = *end_rgn = 0;
635
b3dc627c
TH
636 if (!size)
637 return 0;
638
6a9ceb31
TH
639 /* we'll create at most two more regions */
640 while (type->cnt + 2 > type->max)
48c3b583 641 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
642 return -ENOMEM;
643
8c9c1701 644 for_each_memblock_type(type, rgn) {
6a9ceb31
TH
645 phys_addr_t rbase = rgn->base;
646 phys_addr_t rend = rbase + rgn->size;
647
648 if (rbase >= end)
649 break;
650 if (rend <= base)
651 continue;
652
653 if (rbase < base) {
654 /*
655 * @rgn intersects from below. Split and continue
656 * to process the next region - the new top half.
657 */
658 rgn->base = base;
1440c4e2
TH
659 rgn->size -= base - rbase;
660 type->total_size -= base - rbase;
8c9c1701 661 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
662 memblock_get_region_node(rgn),
663 rgn->flags);
6a9ceb31
TH
664 } else if (rend > end) {
665 /*
666 * @rgn intersects from above. Split and redo the
667 * current region - the new bottom half.
668 */
669 rgn->base = end;
1440c4e2
TH
670 rgn->size -= end - rbase;
671 type->total_size -= end - rbase;
8c9c1701 672 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
673 memblock_get_region_node(rgn),
674 rgn->flags);
6a9ceb31
TH
675 } else {
676 /* @rgn is fully contained, record it */
677 if (!*end_rgn)
8c9c1701
AK
678 *start_rgn = idx;
679 *end_rgn = idx + 1;
6a9ceb31
TH
680 }
681 }
682
683 return 0;
684}
6a9ceb31 685
35bd16a2 686static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 687 phys_addr_t base, phys_addr_t size)
95f72d1e 688{
71936180
TH
689 int start_rgn, end_rgn;
690 int i, ret;
95f72d1e 691
71936180
TH
692 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
693 if (ret)
694 return ret;
95f72d1e 695
71936180
TH
696 for (i = end_rgn - 1; i >= start_rgn; i--)
697 memblock_remove_region(type, i);
8f7a6605 698 return 0;
95f72d1e
YL
699}
700
581adcbe 701int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 702{
f1af9d3a 703 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
704}
705
f1af9d3a 706
581adcbe 707int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 708{
5d63f81c
MC
709 phys_addr_t end = base + size - 1;
710
711 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
712 &base, &end, (void *)_RET_IP_);
24aa0788 713
9099daed 714 kmemleak_free_part_phys(base, size);
f1af9d3a 715 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
716}
717
f705ac4b 718int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 719{
5d63f81c
MC
720 phys_addr_t end = base + size - 1;
721
722 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
723 &base, &end, (void *)_RET_IP_);
95f72d1e 724
f705ac4b 725 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
726}
727
66b16edf 728/**
66b16edf 729 *
4308ce17 730 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 731 *
c1153931 732 * Return 0 on success, -errno on failure.
66b16edf 733 */
4308ce17
TL
734static int __init_memblock memblock_setclr_flag(phys_addr_t base,
735 phys_addr_t size, int set, int flag)
66b16edf
TC
736{
737 struct memblock_type *type = &memblock.memory;
738 int i, ret, start_rgn, end_rgn;
739
740 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
741 if (ret)
742 return ret;
743
744 for (i = start_rgn; i < end_rgn; i++)
4308ce17
TL
745 if (set)
746 memblock_set_region_flags(&type->regions[i], flag);
747 else
748 memblock_clear_region_flags(&type->regions[i], flag);
66b16edf
TC
749
750 memblock_merge_regions(type);
751 return 0;
752}
753
754/**
4308ce17 755 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
756 * @base: the base phys addr of the region
757 * @size: the size of the region
758 *
c1153931 759 * Return 0 on success, -errno on failure.
4308ce17
TL
760 */
761int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
762{
763 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
764}
765
766/**
767 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
768 * @base: the base phys addr of the region
769 * @size: the size of the region
66b16edf 770 *
c1153931 771 * Return 0 on success, -errno on failure.
66b16edf
TC
772 */
773int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
774{
4308ce17 775 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
776}
777
a3f5bafc
TL
778/**
779 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
780 * @base: the base phys addr of the region
781 * @size: the size of the region
782 *
c1153931 783 * Return 0 on success, -errno on failure.
a3f5bafc
TL
784 */
785int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
786{
787 system_has_some_mirror = true;
788
789 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
790}
791
bf3d3cc5
AB
792/**
793 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
794 * @base: the base phys addr of the region
795 * @size: the size of the region
796 *
797 * Return 0 on success, -errno on failure.
798 */
799int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
800{
801 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
802}
a3f5bafc 803
4c546b8a
AT
804/**
805 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
806 * @base: the base phys addr of the region
807 * @size: the size of the region
808 *
809 * Return 0 on success, -errno on failure.
810 */
811int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
812{
813 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
814}
815
8e7a7f86
RH
816/**
817 * __next_reserved_mem_region - next function for for_each_reserved_region()
818 * @idx: pointer to u64 loop variable
819 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
820 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
821 *
822 * Iterate over all reserved memory regions.
823 */
824void __init_memblock __next_reserved_mem_region(u64 *idx,
825 phys_addr_t *out_start,
826 phys_addr_t *out_end)
827{
567d117b 828 struct memblock_type *type = &memblock.reserved;
8e7a7f86 829
cd33a76b 830 if (*idx < type->cnt) {
567d117b 831 struct memblock_region *r = &type->regions[*idx];
8e7a7f86
RH
832 phys_addr_t base = r->base;
833 phys_addr_t size = r->size;
834
835 if (out_start)
836 *out_start = base;
837 if (out_end)
838 *out_end = base + size - 1;
839
840 *idx += 1;
841 return;
842 }
843
844 /* signal end of iteration */
845 *idx = ULLONG_MAX;
846}
847
35fd0808 848/**
f1af9d3a 849 * __next__mem_range - next function for for_each_free_mem_range() etc.
35fd0808 850 * @idx: pointer to u64 loop variable
b1154233 851 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 852 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
853 * @type_a: pointer to memblock_type from where the range is taken
854 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
855 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
856 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
857 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 858 *
f1af9d3a 859 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 860 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
861 * *@idx contains index into type_a and the upper 32bit indexes the
862 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
863 * look like the following,
864 *
865 * 0:[0-16), 1:[32-48), 2:[128-130)
866 *
867 * The upper 32bit indexes the following regions.
868 *
869 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
870 *
871 * As both region arrays are sorted, the function advances the two indices
872 * in lockstep and returns each intersection.
873 */
fc6daaf9 874void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
f1af9d3a
PH
875 struct memblock_type *type_a,
876 struct memblock_type *type_b,
877 phys_addr_t *out_start,
878 phys_addr_t *out_end, int *out_nid)
35fd0808 879{
f1af9d3a
PH
880 int idx_a = *idx & 0xffffffff;
881 int idx_b = *idx >> 32;
b1154233 882
f1af9d3a
PH
883 if (WARN_ONCE(nid == MAX_NUMNODES,
884 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 885 nid = NUMA_NO_NODE;
35fd0808 886
f1af9d3a
PH
887 for (; idx_a < type_a->cnt; idx_a++) {
888 struct memblock_region *m = &type_a->regions[idx_a];
889
35fd0808
TH
890 phys_addr_t m_start = m->base;
891 phys_addr_t m_end = m->base + m->size;
f1af9d3a 892 int m_nid = memblock_get_region_node(m);
35fd0808
TH
893
894 /* only memory regions are associated with nodes, check it */
f1af9d3a 895 if (nid != NUMA_NO_NODE && nid != m_nid)
35fd0808
TH
896 continue;
897
0a313a99
XQ
898 /* skip hotpluggable memory regions if needed */
899 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
900 continue;
901
a3f5bafc
TL
902 /* if we want mirror memory skip non-mirror memory regions */
903 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
904 continue;
905
bf3d3cc5
AB
906 /* skip nomap memory unless we were asked for it explicitly */
907 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
908 continue;
909
f1af9d3a
PH
910 if (!type_b) {
911 if (out_start)
912 *out_start = m_start;
913 if (out_end)
914 *out_end = m_end;
915 if (out_nid)
916 *out_nid = m_nid;
917 idx_a++;
918 *idx = (u32)idx_a | (u64)idx_b << 32;
919 return;
920 }
921
922 /* scan areas before each reservation */
923 for (; idx_b < type_b->cnt + 1; idx_b++) {
924 struct memblock_region *r;
925 phys_addr_t r_start;
926 phys_addr_t r_end;
927
928 r = &type_b->regions[idx_b];
929 r_start = idx_b ? r[-1].base + r[-1].size : 0;
930 r_end = idx_b < type_b->cnt ?
931 r->base : ULLONG_MAX;
35fd0808 932
f1af9d3a
PH
933 /*
934 * if idx_b advanced past idx_a,
935 * break out to advance idx_a
936 */
35fd0808
TH
937 if (r_start >= m_end)
938 break;
939 /* if the two regions intersect, we're done */
940 if (m_start < r_end) {
941 if (out_start)
f1af9d3a
PH
942 *out_start =
943 max(m_start, r_start);
35fd0808
TH
944 if (out_end)
945 *out_end = min(m_end, r_end);
946 if (out_nid)
f1af9d3a 947 *out_nid = m_nid;
35fd0808 948 /*
f1af9d3a
PH
949 * The region which ends first is
950 * advanced for the next iteration.
35fd0808
TH
951 */
952 if (m_end <= r_end)
f1af9d3a 953 idx_a++;
35fd0808 954 else
f1af9d3a
PH
955 idx_b++;
956 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
957 return;
958 }
959 }
960 }
961
962 /* signal end of iteration */
963 *idx = ULLONG_MAX;
964}
965
7bd0b0f0 966/**
f1af9d3a
PH
967 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
968 *
969 * Finds the next range from type_a which is not marked as unsuitable
970 * in type_b.
971 *
7bd0b0f0 972 * @idx: pointer to u64 loop variable
ad5ea8cd 973 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 974 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
975 * @type_a: pointer to memblock_type from where the range is taken
976 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
977 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
978 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
979 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 980 *
f1af9d3a 981 * Reverse of __next_mem_range().
7bd0b0f0 982 */
fc6daaf9 983void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
f1af9d3a
PH
984 struct memblock_type *type_a,
985 struct memblock_type *type_b,
986 phys_addr_t *out_start,
987 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 988{
f1af9d3a
PH
989 int idx_a = *idx & 0xffffffff;
990 int idx_b = *idx >> 32;
b1154233 991
560dca27
GS
992 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
993 nid = NUMA_NO_NODE;
7bd0b0f0
TH
994
995 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 996 idx_a = type_a->cnt - 1;
e47608ab 997 if (type_b != NULL)
998 idx_b = type_b->cnt;
999 else
1000 idx_b = 0;
7bd0b0f0
TH
1001 }
1002
f1af9d3a
PH
1003 for (; idx_a >= 0; idx_a--) {
1004 struct memblock_region *m = &type_a->regions[idx_a];
1005
7bd0b0f0
TH
1006 phys_addr_t m_start = m->base;
1007 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1008 int m_nid = memblock_get_region_node(m);
7bd0b0f0
TH
1009
1010 /* only memory regions are associated with nodes, check it */
f1af9d3a 1011 if (nid != NUMA_NO_NODE && nid != m_nid)
7bd0b0f0
TH
1012 continue;
1013
55ac590c
TC
1014 /* skip hotpluggable memory regions if needed */
1015 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1016 continue;
1017
a3f5bafc
TL
1018 /* if we want mirror memory skip non-mirror memory regions */
1019 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1020 continue;
1021
bf3d3cc5
AB
1022 /* skip nomap memory unless we were asked for it explicitly */
1023 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1024 continue;
1025
f1af9d3a
PH
1026 if (!type_b) {
1027 if (out_start)
1028 *out_start = m_start;
1029 if (out_end)
1030 *out_end = m_end;
1031 if (out_nid)
1032 *out_nid = m_nid;
fb399b48 1033 idx_a--;
f1af9d3a
PH
1034 *idx = (u32)idx_a | (u64)idx_b << 32;
1035 return;
1036 }
1037
1038 /* scan areas before each reservation */
1039 for (; idx_b >= 0; idx_b--) {
1040 struct memblock_region *r;
1041 phys_addr_t r_start;
1042 phys_addr_t r_end;
1043
1044 r = &type_b->regions[idx_b];
1045 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1046 r_end = idx_b < type_b->cnt ?
1047 r->base : ULLONG_MAX;
1048 /*
1049 * if idx_b advanced past idx_a,
1050 * break out to advance idx_a
1051 */
7bd0b0f0 1052
7bd0b0f0
TH
1053 if (r_end <= m_start)
1054 break;
1055 /* if the two regions intersect, we're done */
1056 if (m_end > r_start) {
1057 if (out_start)
1058 *out_start = max(m_start, r_start);
1059 if (out_end)
1060 *out_end = min(m_end, r_end);
1061 if (out_nid)
f1af9d3a 1062 *out_nid = m_nid;
7bd0b0f0 1063 if (m_start >= r_start)
f1af9d3a 1064 idx_a--;
7bd0b0f0 1065 else
f1af9d3a
PH
1066 idx_b--;
1067 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1068 return;
1069 }
1070 }
1071 }
f1af9d3a 1072 /* signal end of iteration */
7bd0b0f0
TH
1073 *idx = ULLONG_MAX;
1074}
1075
7c0caeb8
TH
1076#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1077/*
1078 * Common iterator interface used to define for_each_mem_range().
1079 */
1080void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1081 unsigned long *out_start_pfn,
1082 unsigned long *out_end_pfn, int *out_nid)
1083{
1084 struct memblock_type *type = &memblock.memory;
1085 struct memblock_region *r;
1086
1087 while (++*idx < type->cnt) {
1088 r = &type->regions[*idx];
1089
1090 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1091 continue;
1092 if (nid == MAX_NUMNODES || nid == r->nid)
1093 break;
1094 }
1095 if (*idx >= type->cnt) {
1096 *idx = -1;
1097 return;
1098 }
1099
1100 if (out_start_pfn)
1101 *out_start_pfn = PFN_UP(r->base);
1102 if (out_end_pfn)
1103 *out_end_pfn = PFN_DOWN(r->base + r->size);
1104 if (out_nid)
1105 *out_nid = r->nid;
1106}
1107
b92df1de
PB
1108unsigned long __init_memblock memblock_next_valid_pfn(unsigned long pfn,
1109 unsigned long max_pfn)
1110{
1111 struct memblock_type *type = &memblock.memory;
1112 unsigned int right = type->cnt;
1113 unsigned int mid, left = 0;
1114 phys_addr_t addr = PFN_PHYS(pfn + 1);
1115
1116 do {
1117 mid = (right + left) / 2;
1118
1119 if (addr < type->regions[mid].base)
1120 right = mid;
1121 else if (addr >= (type->regions[mid].base +
1122 type->regions[mid].size))
1123 left = mid + 1;
1124 else {
1125 /* addr is within the region, so pfn + 1 is valid */
1126 return min(pfn + 1, max_pfn);
1127 }
1128 } while (left < right);
1129
c9a1b80d
AT
1130 if (right == type->cnt)
1131 return max_pfn;
1132 else
1133 return min(PHYS_PFN(type->regions[right].base), max_pfn);
b92df1de
PB
1134}
1135
7c0caeb8
TH
1136/**
1137 * memblock_set_node - set node ID on memblock regions
1138 * @base: base of area to set node ID for
1139 * @size: size of area to set node ID for
e7e8de59 1140 * @type: memblock type to set node ID for
7c0caeb8
TH
1141 * @nid: node ID to set
1142 *
e7e8de59 1143 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
7c0caeb8
TH
1144 * Regions which cross the area boundaries are split as necessary.
1145 *
1146 * RETURNS:
1147 * 0 on success, -errno on failure.
1148 */
1149int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1150 struct memblock_type *type, int nid)
7c0caeb8 1151{
6a9ceb31
TH
1152 int start_rgn, end_rgn;
1153 int i, ret;
7c0caeb8 1154
6a9ceb31
TH
1155 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1156 if (ret)
1157 return ret;
7c0caeb8 1158
6a9ceb31 1159 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1160 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1161
1162 memblock_merge_regions(type);
1163 return 0;
1164}
1165#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1166
2bfc2862
AM
1167static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1168 phys_addr_t align, phys_addr_t start,
fc6daaf9 1169 phys_addr_t end, int nid, ulong flags)
95f72d1e 1170{
6ed311b2 1171 phys_addr_t found;
95f72d1e 1172
79f40fab
GS
1173 if (!align)
1174 align = SMP_CACHE_BYTES;
94f3d3af 1175
fc6daaf9
TL
1176 found = memblock_find_in_range_node(size, align, start, end, nid,
1177 flags);
aedf95ea
CM
1178 if (found && !memblock_reserve(found, size)) {
1179 /*
1180 * The min_count is set to 0 so that memblock allocations are
1181 * never reported as leaks.
1182 */
9099daed 1183 kmemleak_alloc_phys(found, size, 0, 0);
6ed311b2 1184 return found;
aedf95ea 1185 }
6ed311b2 1186 return 0;
95f72d1e
YL
1187}
1188
2bfc2862 1189phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
fc6daaf9
TL
1190 phys_addr_t start, phys_addr_t end,
1191 ulong flags)
2bfc2862 1192{
fc6daaf9
TL
1193 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1194 flags);
2bfc2862
AM
1195}
1196
1197static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1198 phys_addr_t align, phys_addr_t max_addr,
fc6daaf9 1199 int nid, ulong flags)
2bfc2862 1200{
fc6daaf9 1201 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
2bfc2862
AM
1202}
1203
7bd0b0f0
TH
1204phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1205{
a3f5bafc
TL
1206 ulong flags = choose_memblock_flags();
1207 phys_addr_t ret;
1208
1209again:
1210 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1211 nid, flags);
1212
1213 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1214 flags &= ~MEMBLOCK_MIRROR;
1215 goto again;
1216 }
1217 return ret;
7bd0b0f0
TH
1218}
1219
1220phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1221{
fc6daaf9
TL
1222 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1223 MEMBLOCK_NONE);
7bd0b0f0
TH
1224}
1225
6ed311b2 1226phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
95f72d1e 1227{
6ed311b2
BH
1228 phys_addr_t alloc;
1229
1230 alloc = __memblock_alloc_base(size, align, max_addr);
1231
1232 if (alloc == 0)
5d63f81c
MC
1233 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1234 &size, &max_addr);
6ed311b2
BH
1235
1236 return alloc;
95f72d1e
YL
1237}
1238
6ed311b2 1239phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
95f72d1e 1240{
6ed311b2
BH
1241 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1242}
95f72d1e 1243
9d1e2492
BH
1244phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1245{
1246 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1247
1248 if (res)
1249 return res;
15fb0972 1250 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
95f72d1e
YL
1251}
1252
26f09e9b
SS
1253/**
1254 * memblock_virt_alloc_internal - allocate boot memory block
1255 * @size: size of memory block to be allocated in bytes
1256 * @align: alignment of the region and block's size
1257 * @min_addr: the lower bound of the memory region to allocate (phys address)
1258 * @max_addr: the upper bound of the memory region to allocate (phys address)
1259 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1260 *
1261 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1262 * will fall back to memory below @min_addr. Also, allocation may fall back
1263 * to any node in the system if the specified node can not
1264 * hold the requested memory.
1265 *
1266 * The allocation is performed from memory region limited by
1267 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1268 *
1269 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1270 *
1271 * The phys address of allocated boot memory block is converted to virtual and
1272 * allocated memory is reset to 0.
1273 *
1274 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1275 * allocated boot memory block, so that it is never reported as leaks.
1276 *
1277 * RETURNS:
1278 * Virtual address of allocated memory block on success, NULL on failure.
1279 */
1280static void * __init memblock_virt_alloc_internal(
1281 phys_addr_t size, phys_addr_t align,
1282 phys_addr_t min_addr, phys_addr_t max_addr,
1283 int nid)
1284{
1285 phys_addr_t alloc;
1286 void *ptr;
a3f5bafc 1287 ulong flags = choose_memblock_flags();
26f09e9b 1288
560dca27
GS
1289 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1290 nid = NUMA_NO_NODE;
26f09e9b
SS
1291
1292 /*
1293 * Detect any accidental use of these APIs after slab is ready, as at
1294 * this moment memblock may be deinitialized already and its
1295 * internal data may be destroyed (after execution of free_all_bootmem)
1296 */
1297 if (WARN_ON_ONCE(slab_is_available()))
1298 return kzalloc_node(size, GFP_NOWAIT, nid);
1299
1300 if (!align)
1301 align = SMP_CACHE_BYTES;
1302
f544e14f
YL
1303 if (max_addr > memblock.current_limit)
1304 max_addr = memblock.current_limit;
26f09e9b
SS
1305again:
1306 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
a3f5bafc 1307 nid, flags);
7d41c03e 1308 if (alloc && !memblock_reserve(alloc, size))
26f09e9b
SS
1309 goto done;
1310
1311 if (nid != NUMA_NO_NODE) {
1312 alloc = memblock_find_in_range_node(size, align, min_addr,
fc6daaf9 1313 max_addr, NUMA_NO_NODE,
a3f5bafc 1314 flags);
7d41c03e 1315 if (alloc && !memblock_reserve(alloc, size))
26f09e9b
SS
1316 goto done;
1317 }
1318
1319 if (min_addr) {
1320 min_addr = 0;
1321 goto again;
26f09e9b
SS
1322 }
1323
a3f5bafc
TL
1324 if (flags & MEMBLOCK_MIRROR) {
1325 flags &= ~MEMBLOCK_MIRROR;
1326 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1327 &size);
1328 goto again;
1329 }
1330
1331 return NULL;
26f09e9b 1332done:
26f09e9b
SS
1333 ptr = phys_to_virt(alloc);
1334 memset(ptr, 0, size);
1335
1336 /*
1337 * The min_count is set to 0 so that bootmem allocated blocks
1338 * are never reported as leaks. This is because many of these blocks
1339 * are only referred via the physical address which is not
1340 * looked up by kmemleak.
1341 */
1342 kmemleak_alloc(ptr, size, 0, 0);
1343
1344 return ptr;
26f09e9b
SS
1345}
1346
1347/**
1348 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1349 * @size: size of memory block to be allocated in bytes
1350 * @align: alignment of the region and block's size
1351 * @min_addr: the lower bound of the memory region from where the allocation
1352 * is preferred (phys address)
1353 * @max_addr: the upper bound of the memory region from where the allocation
1354 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1355 * allocate only from memory limited by memblock.current_limit value
1356 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1357 *
1358 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1359 * additional debug information (including caller info), if enabled.
1360 *
1361 * RETURNS:
1362 * Virtual address of allocated memory block on success, NULL on failure.
1363 */
1364void * __init memblock_virt_alloc_try_nid_nopanic(
1365 phys_addr_t size, phys_addr_t align,
1366 phys_addr_t min_addr, phys_addr_t max_addr,
1367 int nid)
1368{
1369 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1370 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1371 (u64)max_addr, (void *)_RET_IP_);
1372 return memblock_virt_alloc_internal(size, align, min_addr,
1373 max_addr, nid);
1374}
1375
1376/**
1377 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1378 * @size: size of memory block to be allocated in bytes
1379 * @align: alignment of the region and block's size
1380 * @min_addr: the lower bound of the memory region from where the allocation
1381 * is preferred (phys address)
1382 * @max_addr: the upper bound of the memory region from where the allocation
1383 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1384 * allocate only from memory limited by memblock.current_limit value
1385 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1386 *
1387 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1388 * which provides debug information (including caller info), if enabled,
1389 * and panics if the request can not be satisfied.
1390 *
1391 * RETURNS:
1392 * Virtual address of allocated memory block on success, NULL on failure.
1393 */
1394void * __init memblock_virt_alloc_try_nid(
1395 phys_addr_t size, phys_addr_t align,
1396 phys_addr_t min_addr, phys_addr_t max_addr,
1397 int nid)
1398{
1399 void *ptr;
1400
1401 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1402 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1403 (u64)max_addr, (void *)_RET_IP_);
1404 ptr = memblock_virt_alloc_internal(size, align,
1405 min_addr, max_addr, nid);
1406 if (ptr)
1407 return ptr;
1408
1409 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1410 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1411 (u64)max_addr);
1412 return NULL;
1413}
1414
1415/**
1416 * __memblock_free_early - free boot memory block
1417 * @base: phys starting address of the boot memory block
1418 * @size: size of the boot memory block in bytes
1419 *
1420 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1421 * The freeing memory will not be released to the buddy allocator.
1422 */
1423void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1424{
1425 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1426 __func__, (u64)base, (u64)base + size - 1,
1427 (void *)_RET_IP_);
9099daed 1428 kmemleak_free_part_phys(base, size);
f1af9d3a 1429 memblock_remove_range(&memblock.reserved, base, size);
26f09e9b
SS
1430}
1431
1432/*
1433 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1434 * @addr: phys starting address of the boot memory block
1435 * @size: size of the boot memory block in bytes
1436 *
1437 * This is only useful when the bootmem allocator has already been torn
1438 * down, but we are still initializing the system. Pages are released directly
1439 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1440 */
1441void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1442{
1443 u64 cursor, end;
1444
1445 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1446 __func__, (u64)base, (u64)base + size - 1,
1447 (void *)_RET_IP_);
9099daed 1448 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1449 cursor = PFN_UP(base);
1450 end = PFN_DOWN(base + size);
1451
1452 for (; cursor < end; cursor++) {
d70ddd7a 1453 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
26f09e9b
SS
1454 totalram_pages++;
1455 }
1456}
9d1e2492
BH
1457
1458/*
1459 * Remaining API functions
1460 */
1461
1f1ffb8a 1462phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1463{
1440c4e2 1464 return memblock.memory.total_size;
95f72d1e
YL
1465}
1466
8907de5d
SD
1467phys_addr_t __init_memblock memblock_reserved_size(void)
1468{
1469 return memblock.reserved.total_size;
1470}
1471
595ad9af
YL
1472phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1473{
1474 unsigned long pages = 0;
1475 struct memblock_region *r;
1476 unsigned long start_pfn, end_pfn;
1477
1478 for_each_memblock(memory, r) {
1479 start_pfn = memblock_region_memory_base_pfn(r);
1480 end_pfn = memblock_region_memory_end_pfn(r);
1481 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1482 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1483 pages += end_pfn - start_pfn;
1484 }
1485
16763230 1486 return PFN_PHYS(pages);
595ad9af
YL
1487}
1488
0a93ebef
SR
1489/* lowest address */
1490phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1491{
1492 return memblock.memory.regions[0].base;
1493}
1494
10d06439 1495phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1496{
1497 int idx = memblock.memory.cnt - 1;
1498
e3239ff9 1499 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1500}
1501
a571d4eb 1502static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1503{
c0ce8fef 1504 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
136199f0 1505 struct memblock_region *r;
95f72d1e 1506
a571d4eb
DC
1507 /*
1508 * translate the memory @limit size into the max address within one of
1509 * the memory memblock regions, if the @limit exceeds the total size
1510 * of those regions, max_addr will keep original value ULLONG_MAX
1511 */
136199f0 1512 for_each_memblock(memory, r) {
c0ce8fef
TH
1513 if (limit <= r->size) {
1514 max_addr = r->base + limit;
1515 break;
95f72d1e 1516 }
c0ce8fef 1517 limit -= r->size;
95f72d1e 1518 }
c0ce8fef 1519
a571d4eb
DC
1520 return max_addr;
1521}
1522
1523void __init memblock_enforce_memory_limit(phys_addr_t limit)
1524{
1525 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1526
1527 if (!limit)
1528 return;
1529
1530 max_addr = __find_max_addr(limit);
1531
1532 /* @limit exceeds the total size of the memory, do nothing */
1533 if (max_addr == (phys_addr_t)ULLONG_MAX)
1534 return;
1535
c0ce8fef 1536 /* truncate both memory and reserved regions */
f1af9d3a
PH
1537 memblock_remove_range(&memblock.memory, max_addr,
1538 (phys_addr_t)ULLONG_MAX);
1539 memblock_remove_range(&memblock.reserved, max_addr,
1540 (phys_addr_t)ULLONG_MAX);
95f72d1e
YL
1541}
1542
c9ca9b4e
AT
1543void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1544{
1545 int start_rgn, end_rgn;
1546 int i, ret;
1547
1548 if (!size)
1549 return;
1550
1551 ret = memblock_isolate_range(&memblock.memory, base, size,
1552 &start_rgn, &end_rgn);
1553 if (ret)
1554 return;
1555
1556 /* remove all the MAP regions */
1557 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1558 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1559 memblock_remove_region(&memblock.memory, i);
1560
1561 for (i = start_rgn - 1; i >= 0; i--)
1562 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1563 memblock_remove_region(&memblock.memory, i);
1564
1565 /* truncate the reserved regions */
1566 memblock_remove_range(&memblock.reserved, 0, base);
1567 memblock_remove_range(&memblock.reserved,
1568 base + size, (phys_addr_t)ULLONG_MAX);
1569}
1570
a571d4eb
DC
1571void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1572{
a571d4eb 1573 phys_addr_t max_addr;
a571d4eb
DC
1574
1575 if (!limit)
1576 return;
1577
1578 max_addr = __find_max_addr(limit);
1579
1580 /* @limit exceeds the total size of the memory, do nothing */
1581 if (max_addr == (phys_addr_t)ULLONG_MAX)
1582 return;
1583
c9ca9b4e 1584 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1585}
1586
cd79481d 1587static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1588{
1589 unsigned int left = 0, right = type->cnt;
1590
1591 do {
1592 unsigned int mid = (right + left) / 2;
1593
1594 if (addr < type->regions[mid].base)
1595 right = mid;
1596 else if (addr >= (type->regions[mid].base +
1597 type->regions[mid].size))
1598 left = mid + 1;
1599 else
1600 return mid;
1601 } while (left < right);
1602 return -1;
1603}
1604
b4ad0c7e 1605bool __init memblock_is_reserved(phys_addr_t addr)
95f72d1e 1606{
72d4b0b4
BH
1607 return memblock_search(&memblock.reserved, addr) != -1;
1608}
95f72d1e 1609
b4ad0c7e 1610bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1611{
1612 return memblock_search(&memblock.memory, addr) != -1;
1613}
1614
bf3d3cc5
AB
1615int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1616{
1617 int i = memblock_search(&memblock.memory, addr);
1618
1619 if (i == -1)
1620 return false;
1621 return !memblock_is_nomap(&memblock.memory.regions[i]);
1622}
1623
e76b63f8
YL
1624#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1625int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1626 unsigned long *start_pfn, unsigned long *end_pfn)
1627{
1628 struct memblock_type *type = &memblock.memory;
16763230 1629 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1630
1631 if (mid == -1)
1632 return -1;
1633
f7e2f7e8
FF
1634 *start_pfn = PFN_DOWN(type->regions[mid].base);
1635 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8
YL
1636
1637 return type->regions[mid].nid;
1638}
1639#endif
1640
eab30949
SB
1641/**
1642 * memblock_is_region_memory - check if a region is a subset of memory
1643 * @base: base of region to check
1644 * @size: size of region to check
1645 *
1646 * Check if the region [@base, @base+@size) is a subset of a memory block.
1647 *
1648 * RETURNS:
1649 * 0 if false, non-zero if true
1650 */
3661ca66 1651int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1652{
abb65272 1653 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1654 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1655
1656 if (idx == -1)
1657 return 0;
ef415ef4 1658 return (memblock.memory.regions[idx].base +
eb18f1b5 1659 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1660}
1661
eab30949
SB
1662/**
1663 * memblock_is_region_reserved - check if a region intersects reserved memory
1664 * @base: base of region to check
1665 * @size: size of region to check
1666 *
1667 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1668 *
1669 * RETURNS:
c5c5c9d1 1670 * True if they intersect, false if not.
eab30949 1671 */
c5c5c9d1 1672bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1673{
eb18f1b5 1674 memblock_cap_size(base, &size);
c5c5c9d1 1675 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1676}
1677
6ede1fd3
YL
1678void __init_memblock memblock_trim_memory(phys_addr_t align)
1679{
6ede1fd3 1680 phys_addr_t start, end, orig_start, orig_end;
136199f0 1681 struct memblock_region *r;
6ede1fd3 1682
136199f0
EM
1683 for_each_memblock(memory, r) {
1684 orig_start = r->base;
1685 orig_end = r->base + r->size;
6ede1fd3
YL
1686 start = round_up(orig_start, align);
1687 end = round_down(orig_end, align);
1688
1689 if (start == orig_start && end == orig_end)
1690 continue;
1691
1692 if (start < end) {
136199f0
EM
1693 r->base = start;
1694 r->size = end - start;
6ede1fd3 1695 } else {
136199f0
EM
1696 memblock_remove_region(&memblock.memory,
1697 r - memblock.memory.regions);
1698 r--;
6ede1fd3
YL
1699 }
1700 }
1701}
e63075a3 1702
3661ca66 1703void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1704{
1705 memblock.current_limit = limit;
1706}
1707
fec51014
LA
1708phys_addr_t __init_memblock memblock_get_current_limit(void)
1709{
1710 return memblock.current_limit;
1711}
1712
0262d9c8 1713static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1714{
5d63f81c 1715 phys_addr_t base, end, size;
66a20757 1716 unsigned long flags;
8c9c1701
AK
1717 int idx;
1718 struct memblock_region *rgn;
6ed311b2 1719
0262d9c8 1720 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1721
8c9c1701 1722 for_each_memblock_type(type, rgn) {
7c0caeb8
TH
1723 char nid_buf[32] = "";
1724
1725 base = rgn->base;
1726 size = rgn->size;
5d63f81c 1727 end = base + size - 1;
66a20757 1728 flags = rgn->flags;
7c0caeb8
TH
1729#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1730 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1731 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1732 memblock_get_region_node(rgn));
1733#endif
5d63f81c 1734 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
0262d9c8 1735 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1736 }
1737}
1738
864b9a39
MH
1739extern unsigned long __init_memblock
1740memblock_reserved_memory_within(phys_addr_t start_addr, phys_addr_t end_addr)
1741{
1742 struct memblock_region *rgn;
1743 unsigned long size = 0;
1744 int idx;
1745
1746 for_each_memblock_type((&memblock.reserved), rgn) {
1747 phys_addr_t start, end;
1748
1749 if (rgn->base + rgn->size < start_addr)
1750 continue;
1751 if (rgn->base > end_addr)
1752 continue;
1753
1754 start = rgn->base;
1755 end = start + rgn->size;
1756 size += end - start;
1757 }
1758
1759 return size;
1760}
1761
4ff7b82f 1762void __init_memblock __memblock_dump_all(void)
6ed311b2 1763{
6ed311b2 1764 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1765 pr_info(" memory size = %pa reserved size = %pa\n",
1766 &memblock.memory.total_size,
1767 &memblock.reserved.total_size);
6ed311b2 1768
0262d9c8
HC
1769 memblock_dump(&memblock.memory);
1770 memblock_dump(&memblock.reserved);
409efd4c 1771#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
0262d9c8 1772 memblock_dump(&memblock.physmem);
409efd4c 1773#endif
6ed311b2
BH
1774}
1775
1aadc056 1776void __init memblock_allow_resize(void)
6ed311b2 1777{
142b45a7 1778 memblock_can_resize = 1;
6ed311b2
BH
1779}
1780
6ed311b2
BH
1781static int __init early_memblock(char *p)
1782{
1783 if (p && strstr(p, "debug"))
1784 memblock_debug = 1;
1785 return 0;
1786}
1787early_param("memblock", early_memblock);
1788
c378ddd5 1789#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
6d03b885
BH
1790
1791static int memblock_debug_show(struct seq_file *m, void *private)
1792{
1793 struct memblock_type *type = m->private;
1794 struct memblock_region *reg;
1795 int i;
5d63f81c 1796 phys_addr_t end;
6d03b885
BH
1797
1798 for (i = 0; i < type->cnt; i++) {
1799 reg = &type->regions[i];
5d63f81c 1800 end = reg->base + reg->size - 1;
6d03b885 1801
5d63f81c
MC
1802 seq_printf(m, "%4d: ", i);
1803 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
6d03b885
BH
1804 }
1805 return 0;
1806}
1807
1808static int memblock_debug_open(struct inode *inode, struct file *file)
1809{
1810 return single_open(file, memblock_debug_show, inode->i_private);
1811}
1812
1813static const struct file_operations memblock_debug_fops = {
1814 .open = memblock_debug_open,
1815 .read = seq_read,
1816 .llseek = seq_lseek,
1817 .release = single_release,
1818};
1819
1820static int __init memblock_init_debugfs(void)
1821{
1822 struct dentry *root = debugfs_create_dir("memblock", NULL);
1823 if (!root)
1824 return -ENXIO;
1825 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1826 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
70210ed9
PH
1827#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1828 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1829#endif
6d03b885
BH
1830
1831 return 0;
1832}
1833__initcall(memblock_init_debugfs);
1834
1835#endif /* CONFIG_DEBUG_FS */