]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memblock.c
Merge branch 'dev-replace-fixes-4.7' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / mm / memblock.c
CommitLineData
95f72d1e
YL
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
142b45a7 14#include <linux/slab.h>
95f72d1e
YL
15#include <linux/init.h>
16#include <linux/bitops.h>
449e8df3 17#include <linux/poison.h>
c196f76f 18#include <linux/pfn.h>
6d03b885
BH
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
95f72d1e
YL
21#include <linux/memblock.h>
22
79442ed1 23#include <asm-generic/sections.h>
26f09e9b
SS
24#include <linux/io.h>
25
26#include "internal.h"
79442ed1 27
fe091c20
TH
28static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
70210ed9
PH
30#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32#endif
fe091c20
TH
33
34struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
38
39 .reserved.regions = memblock_reserved_init_regions,
40 .reserved.cnt = 1, /* empty dummy entry */
41 .reserved.max = INIT_MEMBLOCK_REGIONS,
42
70210ed9
PH
43#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
44 .physmem.regions = memblock_physmem_init_regions,
45 .physmem.cnt = 1, /* empty dummy entry */
46 .physmem.max = INIT_PHYSMEM_REGIONS,
47#endif
48
79442ed1 49 .bottom_up = false,
fe091c20
TH
50 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
51};
95f72d1e 52
10d06439 53int memblock_debug __initdata_memblock;
55ac590c
TC
54#ifdef CONFIG_MOVABLE_NODE
55bool movable_node_enabled __initdata_memblock = false;
56#endif
a3f5bafc 57static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 58static int memblock_can_resize __initdata_memblock;
181eb394
GS
59static int memblock_memory_in_slab __initdata_memblock = 0;
60static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 61
a3f5bafc
TL
62ulong __init_memblock choose_memblock_flags(void)
63{
64 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
65}
66
142b45a7 67/* inline so we don't get a warning when pr_debug is compiled out */
c2233116
RP
68static __init_memblock const char *
69memblock_type_name(struct memblock_type *type)
142b45a7
BH
70{
71 if (type == &memblock.memory)
72 return "memory";
73 else if (type == &memblock.reserved)
74 return "reserved";
75 else
76 return "unknown";
77}
78
eb18f1b5
TH
79/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
80static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
81{
82 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
83}
84
6ed311b2
BH
85/*
86 * Address comparison utilities
87 */
10d06439 88static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 89 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
90{
91 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
92}
93
95cf82ec 94bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 95 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
96{
97 unsigned long i;
98
f14516fb
AK
99 for (i = 0; i < type->cnt; i++)
100 if (memblock_addrs_overlap(base, size, type->regions[i].base,
101 type->regions[i].size))
6ed311b2 102 break;
c5c5c9d1 103 return i < type->cnt;
6ed311b2
BH
104}
105
79442ed1
TC
106/*
107 * __memblock_find_range_bottom_up - find free area utility in bottom-up
108 * @start: start of candidate range
109 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
110 * @size: size of free area to find
111 * @align: alignment of free area to find
b1154233 112 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 113 * @flags: pick from blocks based on memory attributes
79442ed1
TC
114 *
115 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
116 *
117 * RETURNS:
118 * Found address on success, 0 on failure.
119 */
120static phys_addr_t __init_memblock
121__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9
TL
122 phys_addr_t size, phys_addr_t align, int nid,
123 ulong flags)
79442ed1
TC
124{
125 phys_addr_t this_start, this_end, cand;
126 u64 i;
127
fc6daaf9 128 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
129 this_start = clamp(this_start, start, end);
130 this_end = clamp(this_end, start, end);
131
132 cand = round_up(this_start, align);
133 if (cand < this_end && this_end - cand >= size)
134 return cand;
135 }
136
137 return 0;
138}
139
7bd0b0f0 140/**
1402899e 141 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0
TH
142 * @start: start of candidate range
143 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
144 * @size: size of free area to find
145 * @align: alignment of free area to find
b1154233 146 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 147 * @flags: pick from blocks based on memory attributes
7bd0b0f0 148 *
1402899e 149 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0
TH
150 *
151 * RETURNS:
79442ed1 152 * Found address on success, 0 on failure.
6ed311b2 153 */
1402899e
TC
154static phys_addr_t __init_memblock
155__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9
TL
156 phys_addr_t size, phys_addr_t align, int nid,
157 ulong flags)
f7210e6c
TC
158{
159 phys_addr_t this_start, this_end, cand;
160 u64 i;
161
fc6daaf9
TL
162 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
163 NULL) {
f7210e6c
TC
164 this_start = clamp(this_start, start, end);
165 this_end = clamp(this_end, start, end);
166
167 if (this_end < size)
168 continue;
169
170 cand = round_down(this_end - size, align);
171 if (cand >= this_start)
172 return cand;
173 }
1402899e 174
f7210e6c
TC
175 return 0;
176}
6ed311b2 177
1402899e
TC
178/**
179 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
180 * @size: size of free area to find
181 * @align: alignment of free area to find
87029ee9
GS
182 * @start: start of candidate range
183 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
b1154233 184 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 185 * @flags: pick from blocks based on memory attributes
1402899e
TC
186 *
187 * Find @size free area aligned to @align in the specified range and node.
188 *
79442ed1
TC
189 * When allocation direction is bottom-up, the @start should be greater
190 * than the end of the kernel image. Otherwise, it will be trimmed. The
191 * reason is that we want the bottom-up allocation just near the kernel
192 * image so it is highly likely that the allocated memory and the kernel
193 * will reside in the same node.
194 *
195 * If bottom-up allocation failed, will try to allocate memory top-down.
196 *
1402899e 197 * RETURNS:
79442ed1 198 * Found address on success, 0 on failure.
1402899e 199 */
87029ee9
GS
200phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
201 phys_addr_t align, phys_addr_t start,
fc6daaf9 202 phys_addr_t end, int nid, ulong flags)
1402899e 203{
0cfb8f0c 204 phys_addr_t kernel_end, ret;
79442ed1 205
1402899e
TC
206 /* pump up @end */
207 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
208 end = memblock.current_limit;
209
210 /* avoid allocating the first page */
211 start = max_t(phys_addr_t, start, PAGE_SIZE);
212 end = max(start, end);
79442ed1
TC
213 kernel_end = __pa_symbol(_end);
214
215 /*
216 * try bottom-up allocation only when bottom-up mode
217 * is set and @end is above the kernel image.
218 */
219 if (memblock_bottom_up() && end > kernel_end) {
220 phys_addr_t bottom_up_start;
221
222 /* make sure we will allocate above the kernel */
223 bottom_up_start = max(start, kernel_end);
224
225 /* ok, try bottom-up allocation first */
226 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
fc6daaf9 227 size, align, nid, flags);
79442ed1
TC
228 if (ret)
229 return ret;
230
231 /*
232 * we always limit bottom-up allocation above the kernel,
233 * but top-down allocation doesn't have the limit, so
234 * retrying top-down allocation may succeed when bottom-up
235 * allocation failed.
236 *
237 * bottom-up allocation is expected to be fail very rarely,
238 * so we use WARN_ONCE() here to see the stack trace if
239 * fail happens.
240 */
756a025f 241 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
79442ed1 242 }
1402899e 243
fc6daaf9
TL
244 return __memblock_find_range_top_down(start, end, size, align, nid,
245 flags);
1402899e
TC
246}
247
7bd0b0f0
TH
248/**
249 * memblock_find_in_range - find free area in given range
250 * @start: start of candidate range
251 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
252 * @size: size of free area to find
253 * @align: alignment of free area to find
254 *
255 * Find @size free area aligned to @align in the specified range.
256 *
257 * RETURNS:
79442ed1 258 * Found address on success, 0 on failure.
fc769a8e 259 */
7bd0b0f0
TH
260phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
261 phys_addr_t end, phys_addr_t size,
262 phys_addr_t align)
6ed311b2 263{
a3f5bafc
TL
264 phys_addr_t ret;
265 ulong flags = choose_memblock_flags();
266
267again:
268 ret = memblock_find_in_range_node(size, align, start, end,
269 NUMA_NO_NODE, flags);
270
271 if (!ret && (flags & MEMBLOCK_MIRROR)) {
272 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
273 &size);
274 flags &= ~MEMBLOCK_MIRROR;
275 goto again;
276 }
277
278 return ret;
6ed311b2
BH
279}
280
10d06439 281static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 282{
1440c4e2 283 type->total_size -= type->regions[r].size;
7c0caeb8
TH
284 memmove(&type->regions[r], &type->regions[r + 1],
285 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 286 type->cnt--;
95f72d1e 287
8f7a6605
BH
288 /* Special case for empty arrays */
289 if (type->cnt == 0) {
1440c4e2 290 WARN_ON(type->total_size != 0);
8f7a6605
BH
291 type->cnt = 1;
292 type->regions[0].base = 0;
293 type->regions[0].size = 0;
66a20757 294 type->regions[0].flags = 0;
7c0caeb8 295 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 296 }
95f72d1e
YL
297}
298
354f17e1
PH
299#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
300
29f67386
YL
301phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
302 phys_addr_t *addr)
303{
304 if (memblock.reserved.regions == memblock_reserved_init_regions)
305 return 0;
306
307 *addr = __pa(memblock.reserved.regions);
308
309 return PAGE_ALIGN(sizeof(struct memblock_region) *
310 memblock.reserved.max);
311}
312
5e270e25
PH
313phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
314 phys_addr_t *addr)
315{
316 if (memblock.memory.regions == memblock_memory_init_regions)
317 return 0;
318
319 *addr = __pa(memblock.memory.regions);
320
321 return PAGE_ALIGN(sizeof(struct memblock_region) *
322 memblock.memory.max);
323}
324
325#endif
326
48c3b583
GP
327/**
328 * memblock_double_array - double the size of the memblock regions array
329 * @type: memblock type of the regions array being doubled
330 * @new_area_start: starting address of memory range to avoid overlap with
331 * @new_area_size: size of memory range to avoid overlap with
332 *
333 * Double the size of the @type regions array. If memblock is being used to
334 * allocate memory for a new reserved regions array and there is a previously
335 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
336 * waiting to be reserved, ensure the memory used by the new array does
337 * not overlap.
338 *
339 * RETURNS:
340 * 0 on success, -1 on failure.
341 */
342static int __init_memblock memblock_double_array(struct memblock_type *type,
343 phys_addr_t new_area_start,
344 phys_addr_t new_area_size)
142b45a7
BH
345{
346 struct memblock_region *new_array, *old_array;
29f67386 347 phys_addr_t old_alloc_size, new_alloc_size;
142b45a7
BH
348 phys_addr_t old_size, new_size, addr;
349 int use_slab = slab_is_available();
181eb394 350 int *in_slab;
142b45a7
BH
351
352 /* We don't allow resizing until we know about the reserved regions
353 * of memory that aren't suitable for allocation
354 */
355 if (!memblock_can_resize)
356 return -1;
357
142b45a7
BH
358 /* Calculate new doubled size */
359 old_size = type->max * sizeof(struct memblock_region);
360 new_size = old_size << 1;
29f67386
YL
361 /*
362 * We need to allocated new one align to PAGE_SIZE,
363 * so we can free them completely later.
364 */
365 old_alloc_size = PAGE_ALIGN(old_size);
366 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 367
181eb394
GS
368 /* Retrieve the slab flag */
369 if (type == &memblock.memory)
370 in_slab = &memblock_memory_in_slab;
371 else
372 in_slab = &memblock_reserved_in_slab;
373
142b45a7
BH
374 /* Try to find some space for it.
375 *
376 * WARNING: We assume that either slab_is_available() and we use it or
fd07383b
AM
377 * we use MEMBLOCK for allocations. That means that this is unsafe to
378 * use when bootmem is currently active (unless bootmem itself is
379 * implemented on top of MEMBLOCK which isn't the case yet)
142b45a7
BH
380 *
381 * This should however not be an issue for now, as we currently only
fd07383b
AM
382 * call into MEMBLOCK while it's still active, or much later when slab
383 * is active for memory hotplug operations
142b45a7
BH
384 */
385 if (use_slab) {
386 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 387 addr = new_array ? __pa(new_array) : 0;
4e2f0775 388 } else {
48c3b583
GP
389 /* only exclude range when trying to double reserved.regions */
390 if (type != &memblock.reserved)
391 new_area_start = new_area_size = 0;
392
393 addr = memblock_find_in_range(new_area_start + new_area_size,
394 memblock.current_limit,
29f67386 395 new_alloc_size, PAGE_SIZE);
48c3b583
GP
396 if (!addr && new_area_size)
397 addr = memblock_find_in_range(0,
fd07383b
AM
398 min(new_area_start, memblock.current_limit),
399 new_alloc_size, PAGE_SIZE);
48c3b583 400
15674868 401 new_array = addr ? __va(addr) : NULL;
4e2f0775 402 }
1f5026a7 403 if (!addr) {
142b45a7
BH
404 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
405 memblock_type_name(type), type->max, type->max * 2);
406 return -1;
407 }
142b45a7 408
fd07383b
AM
409 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
410 memblock_type_name(type), type->max * 2, (u64)addr,
411 (u64)addr + new_size - 1);
ea9e4376 412
fd07383b
AM
413 /*
414 * Found space, we now need to move the array over before we add the
415 * reserved region since it may be our reserved array itself that is
416 * full.
142b45a7
BH
417 */
418 memcpy(new_array, type->regions, old_size);
419 memset(new_array + type->max, 0, old_size);
420 old_array = type->regions;
421 type->regions = new_array;
422 type->max <<= 1;
423
fd07383b 424 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
425 if (*in_slab)
426 kfree(old_array);
427 else if (old_array != memblock_memory_init_regions &&
428 old_array != memblock_reserved_init_regions)
29f67386 429 memblock_free(__pa(old_array), old_alloc_size);
142b45a7 430
fd07383b
AM
431 /*
432 * Reserve the new array if that comes from the memblock. Otherwise, we
433 * needn't do it
181eb394
GS
434 */
435 if (!use_slab)
29f67386 436 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
437
438 /* Update slab flag */
439 *in_slab = use_slab;
440
142b45a7
BH
441 return 0;
442}
443
784656f9
TH
444/**
445 * memblock_merge_regions - merge neighboring compatible regions
446 * @type: memblock type to scan
447 *
448 * Scan @type and merge neighboring compatible regions.
449 */
450static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 451{
784656f9 452 int i = 0;
95f72d1e 453
784656f9
TH
454 /* cnt never goes below 1 */
455 while (i < type->cnt - 1) {
456 struct memblock_region *this = &type->regions[i];
457 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 458
7c0caeb8
TH
459 if (this->base + this->size != next->base ||
460 memblock_get_region_node(this) !=
66a20757
TC
461 memblock_get_region_node(next) ||
462 this->flags != next->flags) {
784656f9
TH
463 BUG_ON(this->base + this->size > next->base);
464 i++;
465 continue;
8f7a6605
BH
466 }
467
784656f9 468 this->size += next->size;
c0232ae8
LF
469 /* move forward from next + 1, index of which is i + 2 */
470 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 471 type->cnt--;
95f72d1e 472 }
784656f9 473}
95f72d1e 474
784656f9
TH
475/**
476 * memblock_insert_region - insert new memblock region
209ff86d
TC
477 * @type: memblock type to insert into
478 * @idx: index for the insertion point
479 * @base: base address of the new region
480 * @size: size of the new region
481 * @nid: node id of the new region
66a20757 482 * @flags: flags of the new region
784656f9
TH
483 *
484 * Insert new memblock region [@base,@base+@size) into @type at @idx.
485 * @type must already have extra room to accomodate the new region.
486 */
487static void __init_memblock memblock_insert_region(struct memblock_type *type,
488 int idx, phys_addr_t base,
66a20757
TC
489 phys_addr_t size,
490 int nid, unsigned long flags)
784656f9
TH
491{
492 struct memblock_region *rgn = &type->regions[idx];
493
494 BUG_ON(type->cnt >= type->max);
495 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
496 rgn->base = base;
497 rgn->size = size;
66a20757 498 rgn->flags = flags;
7c0caeb8 499 memblock_set_region_node(rgn, nid);
784656f9 500 type->cnt++;
1440c4e2 501 type->total_size += size;
784656f9
TH
502}
503
504/**
f1af9d3a 505 * memblock_add_range - add new memblock region
784656f9
TH
506 * @type: memblock type to add new region into
507 * @base: base address of the new region
508 * @size: size of the new region
7fb0bc3f 509 * @nid: nid of the new region
66a20757 510 * @flags: flags of the new region
784656f9
TH
511 *
512 * Add new memblock region [@base,@base+@size) into @type. The new region
513 * is allowed to overlap with existing ones - overlaps don't affect already
514 * existing regions. @type is guaranteed to be minimal (all neighbouring
515 * compatible regions are merged) after the addition.
516 *
517 * RETURNS:
518 * 0 on success, -errno on failure.
519 */
f1af9d3a 520int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757
TC
521 phys_addr_t base, phys_addr_t size,
522 int nid, unsigned long flags)
784656f9
TH
523{
524 bool insert = false;
eb18f1b5
TH
525 phys_addr_t obase = base;
526 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
527 int idx, nr_new;
528 struct memblock_region *rgn;
784656f9 529
b3dc627c
TH
530 if (!size)
531 return 0;
532
784656f9
TH
533 /* special case for empty array */
534 if (type->regions[0].size == 0) {
1440c4e2 535 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
536 type->regions[0].base = base;
537 type->regions[0].size = size;
66a20757 538 type->regions[0].flags = flags;
7fb0bc3f 539 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 540 type->total_size = size;
8f7a6605 541 return 0;
95f72d1e 542 }
784656f9
TH
543repeat:
544 /*
545 * The following is executed twice. Once with %false @insert and
546 * then with %true. The first counts the number of regions needed
547 * to accomodate the new area. The second actually inserts them.
142b45a7 548 */
784656f9
TH
549 base = obase;
550 nr_new = 0;
95f72d1e 551
8c9c1701 552 for_each_memblock_type(type, rgn) {
784656f9
TH
553 phys_addr_t rbase = rgn->base;
554 phys_addr_t rend = rbase + rgn->size;
555
556 if (rbase >= end)
95f72d1e 557 break;
784656f9
TH
558 if (rend <= base)
559 continue;
560 /*
561 * @rgn overlaps. If it separates the lower part of new
562 * area, insert that portion.
563 */
564 if (rbase > base) {
c0a29498
WY
565#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
566 WARN_ON(nid != memblock_get_region_node(rgn));
567#endif
4fcab5f4 568 WARN_ON(flags != rgn->flags);
784656f9
TH
569 nr_new++;
570 if (insert)
8c9c1701 571 memblock_insert_region(type, idx++, base,
66a20757
TC
572 rbase - base, nid,
573 flags);
95f72d1e 574 }
784656f9
TH
575 /* area below @rend is dealt with, forget about it */
576 base = min(rend, end);
95f72d1e 577 }
784656f9
TH
578
579 /* insert the remaining portion */
580 if (base < end) {
581 nr_new++;
582 if (insert)
8c9c1701 583 memblock_insert_region(type, idx, base, end - base,
66a20757 584 nid, flags);
95f72d1e 585 }
95f72d1e 586
784656f9
TH
587 /*
588 * If this was the first round, resize array and repeat for actual
589 * insertions; otherwise, merge and return.
142b45a7 590 */
784656f9
TH
591 if (!insert) {
592 while (type->cnt + nr_new > type->max)
48c3b583 593 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
594 return -ENOMEM;
595 insert = true;
596 goto repeat;
597 } else {
598 memblock_merge_regions(type);
599 return 0;
142b45a7 600 }
95f72d1e
YL
601}
602
7fb0bc3f
TH
603int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
604 int nid)
605{
f1af9d3a 606 return memblock_add_range(&memblock.memory, base, size, nid, 0);
7fb0bc3f
TH
607}
608
6a4055bc
AK
609static int __init_memblock memblock_add_region(phys_addr_t base,
610 phys_addr_t size,
611 int nid,
612 unsigned long flags)
613{
6a4055bc
AK
614 memblock_dbg("memblock_add: [%#016llx-%#016llx] flags %#02lx %pF\n",
615 (unsigned long long)base,
616 (unsigned long long)base + size - 1,
617 flags, (void *)_RET_IP_);
618
5aa17480 619 return memblock_add_range(&memblock.memory, base, size, nid, flags);
6a4055bc
AK
620}
621
581adcbe 622int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
95f72d1e 623{
6a4055bc 624 return memblock_add_region(base, size, MAX_NUMNODES, 0);
95f72d1e
YL
625}
626
6a9ceb31
TH
627/**
628 * memblock_isolate_range - isolate given range into disjoint memblocks
629 * @type: memblock type to isolate range for
630 * @base: base of range to isolate
631 * @size: size of range to isolate
632 * @start_rgn: out parameter for the start of isolated region
633 * @end_rgn: out parameter for the end of isolated region
634 *
635 * Walk @type and ensure that regions don't cross the boundaries defined by
636 * [@base,@base+@size). Crossing regions are split at the boundaries,
637 * which may create at most two more regions. The index of the first
638 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
639 *
640 * RETURNS:
641 * 0 on success, -errno on failure.
642 */
643static int __init_memblock memblock_isolate_range(struct memblock_type *type,
644 phys_addr_t base, phys_addr_t size,
645 int *start_rgn, int *end_rgn)
646{
eb18f1b5 647 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
648 int idx;
649 struct memblock_region *rgn;
6a9ceb31
TH
650
651 *start_rgn = *end_rgn = 0;
652
b3dc627c
TH
653 if (!size)
654 return 0;
655
6a9ceb31
TH
656 /* we'll create at most two more regions */
657 while (type->cnt + 2 > type->max)
48c3b583 658 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
659 return -ENOMEM;
660
8c9c1701 661 for_each_memblock_type(type, rgn) {
6a9ceb31
TH
662 phys_addr_t rbase = rgn->base;
663 phys_addr_t rend = rbase + rgn->size;
664
665 if (rbase >= end)
666 break;
667 if (rend <= base)
668 continue;
669
670 if (rbase < base) {
671 /*
672 * @rgn intersects from below. Split and continue
673 * to process the next region - the new top half.
674 */
675 rgn->base = base;
1440c4e2
TH
676 rgn->size -= base - rbase;
677 type->total_size -= base - rbase;
8c9c1701 678 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
679 memblock_get_region_node(rgn),
680 rgn->flags);
6a9ceb31
TH
681 } else if (rend > end) {
682 /*
683 * @rgn intersects from above. Split and redo the
684 * current region - the new bottom half.
685 */
686 rgn->base = end;
1440c4e2
TH
687 rgn->size -= end - rbase;
688 type->total_size -= end - rbase;
8c9c1701 689 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
690 memblock_get_region_node(rgn),
691 rgn->flags);
6a9ceb31
TH
692 } else {
693 /* @rgn is fully contained, record it */
694 if (!*end_rgn)
8c9c1701
AK
695 *start_rgn = idx;
696 *end_rgn = idx + 1;
6a9ceb31
TH
697 }
698 }
699
700 return 0;
701}
6a9ceb31 702
35bd16a2 703static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 704 phys_addr_t base, phys_addr_t size)
95f72d1e 705{
71936180
TH
706 int start_rgn, end_rgn;
707 int i, ret;
95f72d1e 708
71936180
TH
709 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
710 if (ret)
711 return ret;
95f72d1e 712
71936180
TH
713 for (i = end_rgn - 1; i >= start_rgn; i--)
714 memblock_remove_region(type, i);
8f7a6605 715 return 0;
95f72d1e
YL
716}
717
581adcbe 718int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 719{
f1af9d3a 720 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
721}
722
f1af9d3a 723
581adcbe 724int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 725{
24aa0788 726 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
a150439c 727 (unsigned long long)base,
931d13f5 728 (unsigned long long)base + size - 1,
a150439c 729 (void *)_RET_IP_);
24aa0788 730
aedf95ea 731 kmemleak_free_part(__va(base), size);
f1af9d3a 732 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
733}
734
66a20757
TC
735static int __init_memblock memblock_reserve_region(phys_addr_t base,
736 phys_addr_t size,
737 int nid,
738 unsigned long flags)
95f72d1e 739{
66a20757 740 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
a150439c 741 (unsigned long long)base,
931d13f5 742 (unsigned long long)base + size - 1,
66a20757
TC
743 flags, (void *)_RET_IP_);
744
5aa17480 745 return memblock_add_range(&memblock.reserved, base, size, nid, flags);
66a20757 746}
95f72d1e 747
66a20757
TC
748int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
749{
750 return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
95f72d1e
YL
751}
752
66b16edf 753/**
66b16edf 754 *
4308ce17 755 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 756 *
c1153931 757 * Return 0 on success, -errno on failure.
66b16edf 758 */
4308ce17
TL
759static int __init_memblock memblock_setclr_flag(phys_addr_t base,
760 phys_addr_t size, int set, int flag)
66b16edf
TC
761{
762 struct memblock_type *type = &memblock.memory;
763 int i, ret, start_rgn, end_rgn;
764
765 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
766 if (ret)
767 return ret;
768
769 for (i = start_rgn; i < end_rgn; i++)
4308ce17
TL
770 if (set)
771 memblock_set_region_flags(&type->regions[i], flag);
772 else
773 memblock_clear_region_flags(&type->regions[i], flag);
66b16edf
TC
774
775 memblock_merge_regions(type);
776 return 0;
777}
778
779/**
4308ce17 780 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
781 * @base: the base phys addr of the region
782 * @size: the size of the region
783 *
c1153931 784 * Return 0 on success, -errno on failure.
4308ce17
TL
785 */
786int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
787{
788 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
789}
790
791/**
792 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
793 * @base: the base phys addr of the region
794 * @size: the size of the region
66b16edf 795 *
c1153931 796 * Return 0 on success, -errno on failure.
66b16edf
TC
797 */
798int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
799{
4308ce17 800 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
801}
802
a3f5bafc
TL
803/**
804 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
805 * @base: the base phys addr of the region
806 * @size: the size of the region
807 *
c1153931 808 * Return 0 on success, -errno on failure.
a3f5bafc
TL
809 */
810int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
811{
812 system_has_some_mirror = true;
813
814 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
815}
816
bf3d3cc5
AB
817/**
818 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
819 * @base: the base phys addr of the region
820 * @size: the size of the region
821 *
822 * Return 0 on success, -errno on failure.
823 */
824int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
825{
826 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
827}
a3f5bafc 828
8e7a7f86
RH
829/**
830 * __next_reserved_mem_region - next function for for_each_reserved_region()
831 * @idx: pointer to u64 loop variable
832 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
833 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
834 *
835 * Iterate over all reserved memory regions.
836 */
837void __init_memblock __next_reserved_mem_region(u64 *idx,
838 phys_addr_t *out_start,
839 phys_addr_t *out_end)
840{
567d117b 841 struct memblock_type *type = &memblock.reserved;
8e7a7f86 842
567d117b
AK
843 if (*idx >= 0 && *idx < type->cnt) {
844 struct memblock_region *r = &type->regions[*idx];
8e7a7f86
RH
845 phys_addr_t base = r->base;
846 phys_addr_t size = r->size;
847
848 if (out_start)
849 *out_start = base;
850 if (out_end)
851 *out_end = base + size - 1;
852
853 *idx += 1;
854 return;
855 }
856
857 /* signal end of iteration */
858 *idx = ULLONG_MAX;
859}
860
35fd0808 861/**
f1af9d3a 862 * __next__mem_range - next function for for_each_free_mem_range() etc.
35fd0808 863 * @idx: pointer to u64 loop variable
b1154233 864 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 865 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
866 * @type_a: pointer to memblock_type from where the range is taken
867 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
868 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
869 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
870 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 871 *
f1af9d3a 872 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 873 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
874 * *@idx contains index into type_a and the upper 32bit indexes the
875 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
876 * look like the following,
877 *
878 * 0:[0-16), 1:[32-48), 2:[128-130)
879 *
880 * The upper 32bit indexes the following regions.
881 *
882 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
883 *
884 * As both region arrays are sorted, the function advances the two indices
885 * in lockstep and returns each intersection.
886 */
fc6daaf9 887void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
f1af9d3a
PH
888 struct memblock_type *type_a,
889 struct memblock_type *type_b,
890 phys_addr_t *out_start,
891 phys_addr_t *out_end, int *out_nid)
35fd0808 892{
f1af9d3a
PH
893 int idx_a = *idx & 0xffffffff;
894 int idx_b = *idx >> 32;
b1154233 895
f1af9d3a
PH
896 if (WARN_ONCE(nid == MAX_NUMNODES,
897 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 898 nid = NUMA_NO_NODE;
35fd0808 899
f1af9d3a
PH
900 for (; idx_a < type_a->cnt; idx_a++) {
901 struct memblock_region *m = &type_a->regions[idx_a];
902
35fd0808
TH
903 phys_addr_t m_start = m->base;
904 phys_addr_t m_end = m->base + m->size;
f1af9d3a 905 int m_nid = memblock_get_region_node(m);
35fd0808
TH
906
907 /* only memory regions are associated with nodes, check it */
f1af9d3a 908 if (nid != NUMA_NO_NODE && nid != m_nid)
35fd0808
TH
909 continue;
910
0a313a99
XQ
911 /* skip hotpluggable memory regions if needed */
912 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
913 continue;
914
a3f5bafc
TL
915 /* if we want mirror memory skip non-mirror memory regions */
916 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
917 continue;
918
bf3d3cc5
AB
919 /* skip nomap memory unless we were asked for it explicitly */
920 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
921 continue;
922
f1af9d3a
PH
923 if (!type_b) {
924 if (out_start)
925 *out_start = m_start;
926 if (out_end)
927 *out_end = m_end;
928 if (out_nid)
929 *out_nid = m_nid;
930 idx_a++;
931 *idx = (u32)idx_a | (u64)idx_b << 32;
932 return;
933 }
934
935 /* scan areas before each reservation */
936 for (; idx_b < type_b->cnt + 1; idx_b++) {
937 struct memblock_region *r;
938 phys_addr_t r_start;
939 phys_addr_t r_end;
940
941 r = &type_b->regions[idx_b];
942 r_start = idx_b ? r[-1].base + r[-1].size : 0;
943 r_end = idx_b < type_b->cnt ?
944 r->base : ULLONG_MAX;
35fd0808 945
f1af9d3a
PH
946 /*
947 * if idx_b advanced past idx_a,
948 * break out to advance idx_a
949 */
35fd0808
TH
950 if (r_start >= m_end)
951 break;
952 /* if the two regions intersect, we're done */
953 if (m_start < r_end) {
954 if (out_start)
f1af9d3a
PH
955 *out_start =
956 max(m_start, r_start);
35fd0808
TH
957 if (out_end)
958 *out_end = min(m_end, r_end);
959 if (out_nid)
f1af9d3a 960 *out_nid = m_nid;
35fd0808 961 /*
f1af9d3a
PH
962 * The region which ends first is
963 * advanced for the next iteration.
35fd0808
TH
964 */
965 if (m_end <= r_end)
f1af9d3a 966 idx_a++;
35fd0808 967 else
f1af9d3a
PH
968 idx_b++;
969 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
970 return;
971 }
972 }
973 }
974
975 /* signal end of iteration */
976 *idx = ULLONG_MAX;
977}
978
7bd0b0f0 979/**
f1af9d3a
PH
980 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
981 *
982 * Finds the next range from type_a which is not marked as unsuitable
983 * in type_b.
984 *
7bd0b0f0 985 * @idx: pointer to u64 loop variable
ad5ea8cd 986 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 987 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
988 * @type_a: pointer to memblock_type from where the range is taken
989 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
990 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
991 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
992 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 993 *
f1af9d3a 994 * Reverse of __next_mem_range().
7bd0b0f0 995 */
fc6daaf9 996void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
f1af9d3a
PH
997 struct memblock_type *type_a,
998 struct memblock_type *type_b,
999 phys_addr_t *out_start,
1000 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1001{
f1af9d3a
PH
1002 int idx_a = *idx & 0xffffffff;
1003 int idx_b = *idx >> 32;
b1154233 1004
560dca27
GS
1005 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1006 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1007
1008 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a
PH
1009 idx_a = type_a->cnt - 1;
1010 idx_b = type_b->cnt;
7bd0b0f0
TH
1011 }
1012
f1af9d3a
PH
1013 for (; idx_a >= 0; idx_a--) {
1014 struct memblock_region *m = &type_a->regions[idx_a];
1015
7bd0b0f0
TH
1016 phys_addr_t m_start = m->base;
1017 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1018 int m_nid = memblock_get_region_node(m);
7bd0b0f0
TH
1019
1020 /* only memory regions are associated with nodes, check it */
f1af9d3a 1021 if (nid != NUMA_NO_NODE && nid != m_nid)
7bd0b0f0
TH
1022 continue;
1023
55ac590c
TC
1024 /* skip hotpluggable memory regions if needed */
1025 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1026 continue;
1027
a3f5bafc
TL
1028 /* if we want mirror memory skip non-mirror memory regions */
1029 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1030 continue;
1031
bf3d3cc5
AB
1032 /* skip nomap memory unless we were asked for it explicitly */
1033 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1034 continue;
1035
f1af9d3a
PH
1036 if (!type_b) {
1037 if (out_start)
1038 *out_start = m_start;
1039 if (out_end)
1040 *out_end = m_end;
1041 if (out_nid)
1042 *out_nid = m_nid;
1043 idx_a++;
1044 *idx = (u32)idx_a | (u64)idx_b << 32;
1045 return;
1046 }
1047
1048 /* scan areas before each reservation */
1049 for (; idx_b >= 0; idx_b--) {
1050 struct memblock_region *r;
1051 phys_addr_t r_start;
1052 phys_addr_t r_end;
1053
1054 r = &type_b->regions[idx_b];
1055 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1056 r_end = idx_b < type_b->cnt ?
1057 r->base : ULLONG_MAX;
1058 /*
1059 * if idx_b advanced past idx_a,
1060 * break out to advance idx_a
1061 */
7bd0b0f0 1062
7bd0b0f0
TH
1063 if (r_end <= m_start)
1064 break;
1065 /* if the two regions intersect, we're done */
1066 if (m_end > r_start) {
1067 if (out_start)
1068 *out_start = max(m_start, r_start);
1069 if (out_end)
1070 *out_end = min(m_end, r_end);
1071 if (out_nid)
f1af9d3a 1072 *out_nid = m_nid;
7bd0b0f0 1073 if (m_start >= r_start)
f1af9d3a 1074 idx_a--;
7bd0b0f0 1075 else
f1af9d3a
PH
1076 idx_b--;
1077 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1078 return;
1079 }
1080 }
1081 }
f1af9d3a 1082 /* signal end of iteration */
7bd0b0f0
TH
1083 *idx = ULLONG_MAX;
1084}
1085
7c0caeb8
TH
1086#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1087/*
1088 * Common iterator interface used to define for_each_mem_range().
1089 */
1090void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1091 unsigned long *out_start_pfn,
1092 unsigned long *out_end_pfn, int *out_nid)
1093{
1094 struct memblock_type *type = &memblock.memory;
1095 struct memblock_region *r;
1096
1097 while (++*idx < type->cnt) {
1098 r = &type->regions[*idx];
1099
1100 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1101 continue;
1102 if (nid == MAX_NUMNODES || nid == r->nid)
1103 break;
1104 }
1105 if (*idx >= type->cnt) {
1106 *idx = -1;
1107 return;
1108 }
1109
1110 if (out_start_pfn)
1111 *out_start_pfn = PFN_UP(r->base);
1112 if (out_end_pfn)
1113 *out_end_pfn = PFN_DOWN(r->base + r->size);
1114 if (out_nid)
1115 *out_nid = r->nid;
1116}
1117
1118/**
1119 * memblock_set_node - set node ID on memblock regions
1120 * @base: base of area to set node ID for
1121 * @size: size of area to set node ID for
e7e8de59 1122 * @type: memblock type to set node ID for
7c0caeb8
TH
1123 * @nid: node ID to set
1124 *
e7e8de59 1125 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
7c0caeb8
TH
1126 * Regions which cross the area boundaries are split as necessary.
1127 *
1128 * RETURNS:
1129 * 0 on success, -errno on failure.
1130 */
1131int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1132 struct memblock_type *type, int nid)
7c0caeb8 1133{
6a9ceb31
TH
1134 int start_rgn, end_rgn;
1135 int i, ret;
7c0caeb8 1136
6a9ceb31
TH
1137 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1138 if (ret)
1139 return ret;
7c0caeb8 1140
6a9ceb31 1141 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1142 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1143
1144 memblock_merge_regions(type);
1145 return 0;
1146}
1147#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1148
2bfc2862
AM
1149static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1150 phys_addr_t align, phys_addr_t start,
fc6daaf9 1151 phys_addr_t end, int nid, ulong flags)
95f72d1e 1152{
6ed311b2 1153 phys_addr_t found;
95f72d1e 1154
79f40fab
GS
1155 if (!align)
1156 align = SMP_CACHE_BYTES;
94f3d3af 1157
fc6daaf9
TL
1158 found = memblock_find_in_range_node(size, align, start, end, nid,
1159 flags);
aedf95ea
CM
1160 if (found && !memblock_reserve(found, size)) {
1161 /*
1162 * The min_count is set to 0 so that memblock allocations are
1163 * never reported as leaks.
1164 */
1165 kmemleak_alloc(__va(found), size, 0, 0);
6ed311b2 1166 return found;
aedf95ea 1167 }
6ed311b2 1168 return 0;
95f72d1e
YL
1169}
1170
2bfc2862 1171phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
fc6daaf9
TL
1172 phys_addr_t start, phys_addr_t end,
1173 ulong flags)
2bfc2862 1174{
fc6daaf9
TL
1175 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1176 flags);
2bfc2862
AM
1177}
1178
1179static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1180 phys_addr_t align, phys_addr_t max_addr,
fc6daaf9 1181 int nid, ulong flags)
2bfc2862 1182{
fc6daaf9 1183 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
2bfc2862
AM
1184}
1185
7bd0b0f0
TH
1186phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1187{
a3f5bafc
TL
1188 ulong flags = choose_memblock_flags();
1189 phys_addr_t ret;
1190
1191again:
1192 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1193 nid, flags);
1194
1195 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1196 flags &= ~MEMBLOCK_MIRROR;
1197 goto again;
1198 }
1199 return ret;
7bd0b0f0
TH
1200}
1201
1202phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1203{
fc6daaf9
TL
1204 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1205 MEMBLOCK_NONE);
7bd0b0f0
TH
1206}
1207
6ed311b2 1208phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
95f72d1e 1209{
6ed311b2
BH
1210 phys_addr_t alloc;
1211
1212 alloc = __memblock_alloc_base(size, align, max_addr);
1213
1214 if (alloc == 0)
1215 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1216 (unsigned long long) size, (unsigned long long) max_addr);
1217
1218 return alloc;
95f72d1e
YL
1219}
1220
6ed311b2 1221phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
95f72d1e 1222{
6ed311b2
BH
1223 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1224}
95f72d1e 1225
9d1e2492
BH
1226phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1227{
1228 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1229
1230 if (res)
1231 return res;
15fb0972 1232 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
95f72d1e
YL
1233}
1234
26f09e9b
SS
1235/**
1236 * memblock_virt_alloc_internal - allocate boot memory block
1237 * @size: size of memory block to be allocated in bytes
1238 * @align: alignment of the region and block's size
1239 * @min_addr: the lower bound of the memory region to allocate (phys address)
1240 * @max_addr: the upper bound of the memory region to allocate (phys address)
1241 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1242 *
1243 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1244 * will fall back to memory below @min_addr. Also, allocation may fall back
1245 * to any node in the system if the specified node can not
1246 * hold the requested memory.
1247 *
1248 * The allocation is performed from memory region limited by
1249 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1250 *
1251 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1252 *
1253 * The phys address of allocated boot memory block is converted to virtual and
1254 * allocated memory is reset to 0.
1255 *
1256 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1257 * allocated boot memory block, so that it is never reported as leaks.
1258 *
1259 * RETURNS:
1260 * Virtual address of allocated memory block on success, NULL on failure.
1261 */
1262static void * __init memblock_virt_alloc_internal(
1263 phys_addr_t size, phys_addr_t align,
1264 phys_addr_t min_addr, phys_addr_t max_addr,
1265 int nid)
1266{
1267 phys_addr_t alloc;
1268 void *ptr;
a3f5bafc 1269 ulong flags = choose_memblock_flags();
26f09e9b 1270
560dca27
GS
1271 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1272 nid = NUMA_NO_NODE;
26f09e9b
SS
1273
1274 /*
1275 * Detect any accidental use of these APIs after slab is ready, as at
1276 * this moment memblock may be deinitialized already and its
1277 * internal data may be destroyed (after execution of free_all_bootmem)
1278 */
1279 if (WARN_ON_ONCE(slab_is_available()))
1280 return kzalloc_node(size, GFP_NOWAIT, nid);
1281
1282 if (!align)
1283 align = SMP_CACHE_BYTES;
1284
f544e14f
YL
1285 if (max_addr > memblock.current_limit)
1286 max_addr = memblock.current_limit;
1287
26f09e9b
SS
1288again:
1289 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
a3f5bafc 1290 nid, flags);
26f09e9b
SS
1291 if (alloc)
1292 goto done;
1293
1294 if (nid != NUMA_NO_NODE) {
1295 alloc = memblock_find_in_range_node(size, align, min_addr,
fc6daaf9 1296 max_addr, NUMA_NO_NODE,
a3f5bafc 1297 flags);
26f09e9b
SS
1298 if (alloc)
1299 goto done;
1300 }
1301
1302 if (min_addr) {
1303 min_addr = 0;
1304 goto again;
26f09e9b
SS
1305 }
1306
a3f5bafc
TL
1307 if (flags & MEMBLOCK_MIRROR) {
1308 flags &= ~MEMBLOCK_MIRROR;
1309 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1310 &size);
1311 goto again;
1312 }
1313
1314 return NULL;
26f09e9b
SS
1315done:
1316 memblock_reserve(alloc, size);
1317 ptr = phys_to_virt(alloc);
1318 memset(ptr, 0, size);
1319
1320 /*
1321 * The min_count is set to 0 so that bootmem allocated blocks
1322 * are never reported as leaks. This is because many of these blocks
1323 * are only referred via the physical address which is not
1324 * looked up by kmemleak.
1325 */
1326 kmemleak_alloc(ptr, size, 0, 0);
1327
1328 return ptr;
26f09e9b
SS
1329}
1330
1331/**
1332 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1333 * @size: size of memory block to be allocated in bytes
1334 * @align: alignment of the region and block's size
1335 * @min_addr: the lower bound of the memory region from where the allocation
1336 * is preferred (phys address)
1337 * @max_addr: the upper bound of the memory region from where the allocation
1338 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1339 * allocate only from memory limited by memblock.current_limit value
1340 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1341 *
1342 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1343 * additional debug information (including caller info), if enabled.
1344 *
1345 * RETURNS:
1346 * Virtual address of allocated memory block on success, NULL on failure.
1347 */
1348void * __init memblock_virt_alloc_try_nid_nopanic(
1349 phys_addr_t size, phys_addr_t align,
1350 phys_addr_t min_addr, phys_addr_t max_addr,
1351 int nid)
1352{
1353 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1354 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1355 (u64)max_addr, (void *)_RET_IP_);
1356 return memblock_virt_alloc_internal(size, align, min_addr,
1357 max_addr, nid);
1358}
1359
1360/**
1361 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1362 * @size: size of memory block to be allocated in bytes
1363 * @align: alignment of the region and block's size
1364 * @min_addr: the lower bound of the memory region from where the allocation
1365 * is preferred (phys address)
1366 * @max_addr: the upper bound of the memory region from where the allocation
1367 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1368 * allocate only from memory limited by memblock.current_limit value
1369 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1370 *
1371 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1372 * which provides debug information (including caller info), if enabled,
1373 * and panics if the request can not be satisfied.
1374 *
1375 * RETURNS:
1376 * Virtual address of allocated memory block on success, NULL on failure.
1377 */
1378void * __init memblock_virt_alloc_try_nid(
1379 phys_addr_t size, phys_addr_t align,
1380 phys_addr_t min_addr, phys_addr_t max_addr,
1381 int nid)
1382{
1383 void *ptr;
1384
1385 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1386 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1387 (u64)max_addr, (void *)_RET_IP_);
1388 ptr = memblock_virt_alloc_internal(size, align,
1389 min_addr, max_addr, nid);
1390 if (ptr)
1391 return ptr;
1392
1393 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1394 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1395 (u64)max_addr);
1396 return NULL;
1397}
1398
1399/**
1400 * __memblock_free_early - free boot memory block
1401 * @base: phys starting address of the boot memory block
1402 * @size: size of the boot memory block in bytes
1403 *
1404 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1405 * The freeing memory will not be released to the buddy allocator.
1406 */
1407void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1408{
1409 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1410 __func__, (u64)base, (u64)base + size - 1,
1411 (void *)_RET_IP_);
1412 kmemleak_free_part(__va(base), size);
f1af9d3a 1413 memblock_remove_range(&memblock.reserved, base, size);
26f09e9b
SS
1414}
1415
1416/*
1417 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1418 * @addr: phys starting address of the boot memory block
1419 * @size: size of the boot memory block in bytes
1420 *
1421 * This is only useful when the bootmem allocator has already been torn
1422 * down, but we are still initializing the system. Pages are released directly
1423 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1424 */
1425void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1426{
1427 u64 cursor, end;
1428
1429 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1430 __func__, (u64)base, (u64)base + size - 1,
1431 (void *)_RET_IP_);
1432 kmemleak_free_part(__va(base), size);
1433 cursor = PFN_UP(base);
1434 end = PFN_DOWN(base + size);
1435
1436 for (; cursor < end; cursor++) {
d70ddd7a 1437 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
26f09e9b
SS
1438 totalram_pages++;
1439 }
1440}
9d1e2492
BH
1441
1442/*
1443 * Remaining API functions
1444 */
1445
1f1ffb8a 1446phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1447{
1440c4e2 1448 return memblock.memory.total_size;
95f72d1e
YL
1449}
1450
595ad9af
YL
1451phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1452{
1453 unsigned long pages = 0;
1454 struct memblock_region *r;
1455 unsigned long start_pfn, end_pfn;
1456
1457 for_each_memblock(memory, r) {
1458 start_pfn = memblock_region_memory_base_pfn(r);
1459 end_pfn = memblock_region_memory_end_pfn(r);
1460 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1461 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1462 pages += end_pfn - start_pfn;
1463 }
1464
16763230 1465 return PFN_PHYS(pages);
595ad9af
YL
1466}
1467
0a93ebef
SR
1468/* lowest address */
1469phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1470{
1471 return memblock.memory.regions[0].base;
1472}
1473
10d06439 1474phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1475{
1476 int idx = memblock.memory.cnt - 1;
1477
e3239ff9 1478 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1479}
1480
c0ce8fef 1481void __init memblock_enforce_memory_limit(phys_addr_t limit)
95f72d1e 1482{
c0ce8fef 1483 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
136199f0 1484 struct memblock_region *r;
95f72d1e 1485
c0ce8fef 1486 if (!limit)
95f72d1e
YL
1487 return;
1488
c0ce8fef 1489 /* find out max address */
136199f0 1490 for_each_memblock(memory, r) {
c0ce8fef
TH
1491 if (limit <= r->size) {
1492 max_addr = r->base + limit;
1493 break;
95f72d1e 1494 }
c0ce8fef 1495 limit -= r->size;
95f72d1e 1496 }
c0ce8fef
TH
1497
1498 /* truncate both memory and reserved regions */
f1af9d3a
PH
1499 memblock_remove_range(&memblock.memory, max_addr,
1500 (phys_addr_t)ULLONG_MAX);
1501 memblock_remove_range(&memblock.reserved, max_addr,
1502 (phys_addr_t)ULLONG_MAX);
95f72d1e
YL
1503}
1504
cd79481d 1505static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1506{
1507 unsigned int left = 0, right = type->cnt;
1508
1509 do {
1510 unsigned int mid = (right + left) / 2;
1511
1512 if (addr < type->regions[mid].base)
1513 right = mid;
1514 else if (addr >= (type->regions[mid].base +
1515 type->regions[mid].size))
1516 left = mid + 1;
1517 else
1518 return mid;
1519 } while (left < right);
1520 return -1;
1521}
1522
b4ad0c7e 1523bool __init memblock_is_reserved(phys_addr_t addr)
95f72d1e 1524{
72d4b0b4
BH
1525 return memblock_search(&memblock.reserved, addr) != -1;
1526}
95f72d1e 1527
b4ad0c7e 1528bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1529{
1530 return memblock_search(&memblock.memory, addr) != -1;
1531}
1532
bf3d3cc5
AB
1533int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1534{
1535 int i = memblock_search(&memblock.memory, addr);
1536
1537 if (i == -1)
1538 return false;
1539 return !memblock_is_nomap(&memblock.memory.regions[i]);
1540}
1541
e76b63f8
YL
1542#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1543int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1544 unsigned long *start_pfn, unsigned long *end_pfn)
1545{
1546 struct memblock_type *type = &memblock.memory;
16763230 1547 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1548
1549 if (mid == -1)
1550 return -1;
1551
f7e2f7e8
FF
1552 *start_pfn = PFN_DOWN(type->regions[mid].base);
1553 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8
YL
1554
1555 return type->regions[mid].nid;
1556}
1557#endif
1558
eab30949
SB
1559/**
1560 * memblock_is_region_memory - check if a region is a subset of memory
1561 * @base: base of region to check
1562 * @size: size of region to check
1563 *
1564 * Check if the region [@base, @base+@size) is a subset of a memory block.
1565 *
1566 * RETURNS:
1567 * 0 if false, non-zero if true
1568 */
3661ca66 1569int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1570{
abb65272 1571 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1572 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1573
1574 if (idx == -1)
1575 return 0;
abb65272
TV
1576 return memblock.memory.regions[idx].base <= base &&
1577 (memblock.memory.regions[idx].base +
eb18f1b5 1578 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1579}
1580
eab30949
SB
1581/**
1582 * memblock_is_region_reserved - check if a region intersects reserved memory
1583 * @base: base of region to check
1584 * @size: size of region to check
1585 *
1586 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1587 *
1588 * RETURNS:
c5c5c9d1 1589 * True if they intersect, false if not.
eab30949 1590 */
c5c5c9d1 1591bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1592{
eb18f1b5 1593 memblock_cap_size(base, &size);
c5c5c9d1 1594 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1595}
1596
6ede1fd3
YL
1597void __init_memblock memblock_trim_memory(phys_addr_t align)
1598{
6ede1fd3 1599 phys_addr_t start, end, orig_start, orig_end;
136199f0 1600 struct memblock_region *r;
6ede1fd3 1601
136199f0
EM
1602 for_each_memblock(memory, r) {
1603 orig_start = r->base;
1604 orig_end = r->base + r->size;
6ede1fd3
YL
1605 start = round_up(orig_start, align);
1606 end = round_down(orig_end, align);
1607
1608 if (start == orig_start && end == orig_end)
1609 continue;
1610
1611 if (start < end) {
136199f0
EM
1612 r->base = start;
1613 r->size = end - start;
6ede1fd3 1614 } else {
136199f0
EM
1615 memblock_remove_region(&memblock.memory,
1616 r - memblock.memory.regions);
1617 r--;
6ede1fd3
YL
1618 }
1619 }
1620}
e63075a3 1621
3661ca66 1622void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1623{
1624 memblock.current_limit = limit;
1625}
1626
fec51014
LA
1627phys_addr_t __init_memblock memblock_get_current_limit(void)
1628{
1629 return memblock.current_limit;
1630}
1631
7c0caeb8 1632static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
6ed311b2
BH
1633{
1634 unsigned long long base, size;
66a20757 1635 unsigned long flags;
8c9c1701
AK
1636 int idx;
1637 struct memblock_region *rgn;
6ed311b2 1638
7c0caeb8 1639 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
6ed311b2 1640
8c9c1701 1641 for_each_memblock_type(type, rgn) {
7c0caeb8
TH
1642 char nid_buf[32] = "";
1643
1644 base = rgn->base;
1645 size = rgn->size;
66a20757 1646 flags = rgn->flags;
7c0caeb8
TH
1647#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1648 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1649 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1650 memblock_get_region_node(rgn));
1651#endif
66a20757 1652 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
8c9c1701 1653 name, idx, base, base + size - 1, size, nid_buf, flags);
6ed311b2
BH
1654 }
1655}
1656
4ff7b82f 1657void __init_memblock __memblock_dump_all(void)
6ed311b2 1658{
6ed311b2 1659 pr_info("MEMBLOCK configuration:\n");
1440c4e2
TH
1660 pr_info(" memory size = %#llx reserved size = %#llx\n",
1661 (unsigned long long)memblock.memory.total_size,
1662 (unsigned long long)memblock.reserved.total_size);
6ed311b2
BH
1663
1664 memblock_dump(&memblock.memory, "memory");
1665 memblock_dump(&memblock.reserved, "reserved");
1666}
1667
1aadc056 1668void __init memblock_allow_resize(void)
6ed311b2 1669{
142b45a7 1670 memblock_can_resize = 1;
6ed311b2
BH
1671}
1672
6ed311b2
BH
1673static int __init early_memblock(char *p)
1674{
1675 if (p && strstr(p, "debug"))
1676 memblock_debug = 1;
1677 return 0;
1678}
1679early_param("memblock", early_memblock);
1680
c378ddd5 1681#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
6d03b885
BH
1682
1683static int memblock_debug_show(struct seq_file *m, void *private)
1684{
1685 struct memblock_type *type = m->private;
1686 struct memblock_region *reg;
1687 int i;
1688
1689 for (i = 0; i < type->cnt; i++) {
1690 reg = &type->regions[i];
1691 seq_printf(m, "%4d: ", i);
1692 if (sizeof(phys_addr_t) == 4)
1693 seq_printf(m, "0x%08lx..0x%08lx\n",
1694 (unsigned long)reg->base,
1695 (unsigned long)(reg->base + reg->size - 1));
1696 else
1697 seq_printf(m, "0x%016llx..0x%016llx\n",
1698 (unsigned long long)reg->base,
1699 (unsigned long long)(reg->base + reg->size - 1));
1700
1701 }
1702 return 0;
1703}
1704
1705static int memblock_debug_open(struct inode *inode, struct file *file)
1706{
1707 return single_open(file, memblock_debug_show, inode->i_private);
1708}
1709
1710static const struct file_operations memblock_debug_fops = {
1711 .open = memblock_debug_open,
1712 .read = seq_read,
1713 .llseek = seq_lseek,
1714 .release = single_release,
1715};
1716
1717static int __init memblock_init_debugfs(void)
1718{
1719 struct dentry *root = debugfs_create_dir("memblock", NULL);
1720 if (!root)
1721 return -ENXIO;
1722 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1723 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
70210ed9
PH
1724#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1725 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1726#endif
6d03b885
BH
1727
1728 return 0;
1729}
1730__initcall(memblock_init_debugfs);
1731
1732#endif /* CONFIG_DEBUG_FS */