]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memblock.c
mm/memblock: cleanup on duplicate VA/PA conversion
[mirror_ubuntu-zesty-kernel.git] / mm / memblock.c
CommitLineData
95f72d1e
YL
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
142b45a7 14#include <linux/slab.h>
95f72d1e
YL
15#include <linux/init.h>
16#include <linux/bitops.h>
449e8df3 17#include <linux/poison.h>
c196f76f 18#include <linux/pfn.h>
6d03b885
BH
19#include <linux/debugfs.h>
20#include <linux/seq_file.h>
95f72d1e
YL
21#include <linux/memblock.h>
22
fe091c20
TH
23static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
24static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
25
26struct memblock memblock __initdata_memblock = {
27 .memory.regions = memblock_memory_init_regions,
28 .memory.cnt = 1, /* empty dummy entry */
29 .memory.max = INIT_MEMBLOCK_REGIONS,
30
31 .reserved.regions = memblock_reserved_init_regions,
32 .reserved.cnt = 1, /* empty dummy entry */
33 .reserved.max = INIT_MEMBLOCK_REGIONS,
34
35 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
36};
95f72d1e 37
10d06439 38int memblock_debug __initdata_memblock;
1aadc056 39static int memblock_can_resize __initdata_memblock;
95f72d1e 40
142b45a7
BH
41/* inline so we don't get a warning when pr_debug is compiled out */
42static inline const char *memblock_type_name(struct memblock_type *type)
43{
44 if (type == &memblock.memory)
45 return "memory";
46 else if (type == &memblock.reserved)
47 return "reserved";
48 else
49 return "unknown";
50}
51
eb18f1b5
TH
52/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
53static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
54{
55 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
56}
57
6ed311b2
BH
58/*
59 * Address comparison utilities
60 */
10d06439 61static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 62 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
63{
64 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
65}
66
2d7d3eb2
HS
67static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
68 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
69{
70 unsigned long i;
71
72 for (i = 0; i < type->cnt; i++) {
73 phys_addr_t rgnbase = type->regions[i].base;
74 phys_addr_t rgnsize = type->regions[i].size;
75 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
76 break;
77 }
78
79 return (i < type->cnt) ? i : -1;
80}
81
7bd0b0f0
TH
82/**
83 * memblock_find_in_range_node - find free area in given range and node
84 * @start: start of candidate range
85 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
86 * @size: size of free area to find
87 * @align: alignment of free area to find
88 * @nid: nid of the free area to find, %MAX_NUMNODES for any node
89 *
90 * Find @size free area aligned to @align in the specified range and node.
91 *
92 * RETURNS:
93 * Found address on success, %0 on failure.
6ed311b2 94 */
7bd0b0f0
TH
95phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t start,
96 phys_addr_t end, phys_addr_t size,
97 phys_addr_t align, int nid)
6ed311b2 98{
7bd0b0f0
TH
99 phys_addr_t this_start, this_end, cand;
100 u64 i;
6ed311b2 101
7bd0b0f0
TH
102 /* pump up @end */
103 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
104 end = memblock.current_limit;
f1af98c7 105
5d53cb27
TH
106 /* avoid allocating the first page */
107 start = max_t(phys_addr_t, start, PAGE_SIZE);
7bd0b0f0 108 end = max(start, end);
f1af98c7 109
7bd0b0f0
TH
110 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
111 this_start = clamp(this_start, start, end);
112 this_end = clamp(this_end, start, end);
6ed311b2 113
5d53cb27
TH
114 if (this_end < size)
115 continue;
116
7bd0b0f0
TH
117 cand = round_down(this_end - size, align);
118 if (cand >= this_start)
119 return cand;
120 }
1f5026a7 121 return 0;
6ed311b2
BH
122}
123
7bd0b0f0
TH
124/**
125 * memblock_find_in_range - find free area in given range
126 * @start: start of candidate range
127 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
128 * @size: size of free area to find
129 * @align: alignment of free area to find
130 *
131 * Find @size free area aligned to @align in the specified range.
132 *
133 * RETURNS:
134 * Found address on success, %0 on failure.
fc769a8e 135 */
7bd0b0f0
TH
136phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
137 phys_addr_t end, phys_addr_t size,
138 phys_addr_t align)
6ed311b2 139{
7bd0b0f0
TH
140 return memblock_find_in_range_node(start, end, size, align,
141 MAX_NUMNODES);
6ed311b2
BH
142}
143
7950c407
YL
144/*
145 * Free memblock.reserved.regions
146 */
147int __init_memblock memblock_free_reserved_regions(void)
148{
149 if (memblock.reserved.regions == memblock_reserved_init_regions)
150 return 0;
151
152 return memblock_free(__pa(memblock.reserved.regions),
153 sizeof(struct memblock_region) * memblock.reserved.max);
154}
155
156/*
157 * Reserve memblock.reserved.regions
158 */
159int __init_memblock memblock_reserve_reserved_regions(void)
160{
161 if (memblock.reserved.regions == memblock_reserved_init_regions)
162 return 0;
163
164 return memblock_reserve(__pa(memblock.reserved.regions),
165 sizeof(struct memblock_region) * memblock.reserved.max);
166}
167
10d06439 168static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 169{
1440c4e2 170 type->total_size -= type->regions[r].size;
7c0caeb8
TH
171 memmove(&type->regions[r], &type->regions[r + 1],
172 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 173 type->cnt--;
95f72d1e 174
8f7a6605
BH
175 /* Special case for empty arrays */
176 if (type->cnt == 0) {
1440c4e2 177 WARN_ON(type->total_size != 0);
8f7a6605
BH
178 type->cnt = 1;
179 type->regions[0].base = 0;
180 type->regions[0].size = 0;
7c0caeb8 181 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 182 }
95f72d1e
YL
183}
184
10d06439 185static int __init_memblock memblock_double_array(struct memblock_type *type)
142b45a7
BH
186{
187 struct memblock_region *new_array, *old_array;
188 phys_addr_t old_size, new_size, addr;
189 int use_slab = slab_is_available();
190
191 /* We don't allow resizing until we know about the reserved regions
192 * of memory that aren't suitable for allocation
193 */
194 if (!memblock_can_resize)
195 return -1;
196
142b45a7
BH
197 /* Calculate new doubled size */
198 old_size = type->max * sizeof(struct memblock_region);
199 new_size = old_size << 1;
200
201 /* Try to find some space for it.
202 *
203 * WARNING: We assume that either slab_is_available() and we use it or
204 * we use MEMBLOCK for allocations. That means that this is unsafe to use
205 * when bootmem is currently active (unless bootmem itself is implemented
206 * on top of MEMBLOCK which isn't the case yet)
207 *
208 * This should however not be an issue for now, as we currently only
209 * call into MEMBLOCK while it's still active, or much later when slab is
210 * active for memory hotplug operations
211 */
212 if (use_slab) {
213 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 214 addr = new_array ? __pa(new_array) : 0;
4e2f0775 215 } else {
fc769a8e 216 addr = memblock_find_in_range(0, MEMBLOCK_ALLOC_ACCESSIBLE, new_size, sizeof(phys_addr_t));
4e2f0775
GS
217 new_array = addr ? __va(addr) : 0;
218 }
1f5026a7 219 if (!addr) {
142b45a7
BH
220 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
221 memblock_type_name(type), type->max, type->max * 2);
222 return -1;
223 }
142b45a7 224
ea9e4376
YL
225 memblock_dbg("memblock: %s array is doubled to %ld at [%#010llx-%#010llx]",
226 memblock_type_name(type), type->max * 2, (u64)addr, (u64)addr + new_size - 1);
227
142b45a7
BH
228 /* Found space, we now need to move the array over before
229 * we add the reserved region since it may be our reserved
230 * array itself that is full.
231 */
232 memcpy(new_array, type->regions, old_size);
233 memset(new_array + type->max, 0, old_size);
234 old_array = type->regions;
235 type->regions = new_array;
236 type->max <<= 1;
237
238 /* If we use SLAB that's it, we are done */
239 if (use_slab)
240 return 0;
241
242 /* Add the new reserved region now. Should not fail ! */
9c8c27e2 243 BUG_ON(memblock_reserve(addr, new_size));
142b45a7
BH
244
245 /* If the array wasn't our static init one, then free it. We only do
246 * that before SLAB is available as later on, we don't know whether
247 * to use kfree or free_bootmem_pages(). Shouldn't be a big deal
248 * anyways
249 */
250 if (old_array != memblock_memory_init_regions &&
251 old_array != memblock_reserved_init_regions)
252 memblock_free(__pa(old_array), old_size);
253
254 return 0;
255}
256
784656f9
TH
257/**
258 * memblock_merge_regions - merge neighboring compatible regions
259 * @type: memblock type to scan
260 *
261 * Scan @type and merge neighboring compatible regions.
262 */
263static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 264{
784656f9 265 int i = 0;
95f72d1e 266
784656f9
TH
267 /* cnt never goes below 1 */
268 while (i < type->cnt - 1) {
269 struct memblock_region *this = &type->regions[i];
270 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 271
7c0caeb8
TH
272 if (this->base + this->size != next->base ||
273 memblock_get_region_node(this) !=
274 memblock_get_region_node(next)) {
784656f9
TH
275 BUG_ON(this->base + this->size > next->base);
276 i++;
277 continue;
8f7a6605
BH
278 }
279
784656f9
TH
280 this->size += next->size;
281 memmove(next, next + 1, (type->cnt - (i + 1)) * sizeof(*next));
282 type->cnt--;
95f72d1e 283 }
784656f9 284}
95f72d1e 285
784656f9
TH
286/**
287 * memblock_insert_region - insert new memblock region
288 * @type: memblock type to insert into
289 * @idx: index for the insertion point
290 * @base: base address of the new region
291 * @size: size of the new region
292 *
293 * Insert new memblock region [@base,@base+@size) into @type at @idx.
294 * @type must already have extra room to accomodate the new region.
295 */
296static void __init_memblock memblock_insert_region(struct memblock_type *type,
297 int idx, phys_addr_t base,
7c0caeb8 298 phys_addr_t size, int nid)
784656f9
TH
299{
300 struct memblock_region *rgn = &type->regions[idx];
301
302 BUG_ON(type->cnt >= type->max);
303 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
304 rgn->base = base;
305 rgn->size = size;
7c0caeb8 306 memblock_set_region_node(rgn, nid);
784656f9 307 type->cnt++;
1440c4e2 308 type->total_size += size;
784656f9
TH
309}
310
311/**
312 * memblock_add_region - add new memblock region
313 * @type: memblock type to add new region into
314 * @base: base address of the new region
315 * @size: size of the new region
7fb0bc3f 316 * @nid: nid of the new region
784656f9
TH
317 *
318 * Add new memblock region [@base,@base+@size) into @type. The new region
319 * is allowed to overlap with existing ones - overlaps don't affect already
320 * existing regions. @type is guaranteed to be minimal (all neighbouring
321 * compatible regions are merged) after the addition.
322 *
323 * RETURNS:
324 * 0 on success, -errno on failure.
325 */
581adcbe 326static int __init_memblock memblock_add_region(struct memblock_type *type,
7fb0bc3f 327 phys_addr_t base, phys_addr_t size, int nid)
784656f9
TH
328{
329 bool insert = false;
eb18f1b5
TH
330 phys_addr_t obase = base;
331 phys_addr_t end = base + memblock_cap_size(base, &size);
784656f9
TH
332 int i, nr_new;
333
b3dc627c
TH
334 if (!size)
335 return 0;
336
784656f9
TH
337 /* special case for empty array */
338 if (type->regions[0].size == 0) {
1440c4e2 339 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
340 type->regions[0].base = base;
341 type->regions[0].size = size;
7fb0bc3f 342 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 343 type->total_size = size;
8f7a6605 344 return 0;
95f72d1e 345 }
784656f9
TH
346repeat:
347 /*
348 * The following is executed twice. Once with %false @insert and
349 * then with %true. The first counts the number of regions needed
350 * to accomodate the new area. The second actually inserts them.
142b45a7 351 */
784656f9
TH
352 base = obase;
353 nr_new = 0;
95f72d1e 354
784656f9
TH
355 for (i = 0; i < type->cnt; i++) {
356 struct memblock_region *rgn = &type->regions[i];
357 phys_addr_t rbase = rgn->base;
358 phys_addr_t rend = rbase + rgn->size;
359
360 if (rbase >= end)
95f72d1e 361 break;
784656f9
TH
362 if (rend <= base)
363 continue;
364 /*
365 * @rgn overlaps. If it separates the lower part of new
366 * area, insert that portion.
367 */
368 if (rbase > base) {
369 nr_new++;
370 if (insert)
371 memblock_insert_region(type, i++, base,
7fb0bc3f 372 rbase - base, nid);
95f72d1e 373 }
784656f9
TH
374 /* area below @rend is dealt with, forget about it */
375 base = min(rend, end);
95f72d1e 376 }
784656f9
TH
377
378 /* insert the remaining portion */
379 if (base < end) {
380 nr_new++;
381 if (insert)
7fb0bc3f 382 memblock_insert_region(type, i, base, end - base, nid);
95f72d1e 383 }
95f72d1e 384
784656f9
TH
385 /*
386 * If this was the first round, resize array and repeat for actual
387 * insertions; otherwise, merge and return.
142b45a7 388 */
784656f9
TH
389 if (!insert) {
390 while (type->cnt + nr_new > type->max)
391 if (memblock_double_array(type) < 0)
392 return -ENOMEM;
393 insert = true;
394 goto repeat;
395 } else {
396 memblock_merge_regions(type);
397 return 0;
142b45a7 398 }
95f72d1e
YL
399}
400
7fb0bc3f
TH
401int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
402 int nid)
403{
404 return memblock_add_region(&memblock.memory, base, size, nid);
405}
406
581adcbe 407int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
95f72d1e 408{
7fb0bc3f 409 return memblock_add_region(&memblock.memory, base, size, MAX_NUMNODES);
95f72d1e
YL
410}
411
6a9ceb31
TH
412/**
413 * memblock_isolate_range - isolate given range into disjoint memblocks
414 * @type: memblock type to isolate range for
415 * @base: base of range to isolate
416 * @size: size of range to isolate
417 * @start_rgn: out parameter for the start of isolated region
418 * @end_rgn: out parameter for the end of isolated region
419 *
420 * Walk @type and ensure that regions don't cross the boundaries defined by
421 * [@base,@base+@size). Crossing regions are split at the boundaries,
422 * which may create at most two more regions. The index of the first
423 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
424 *
425 * RETURNS:
426 * 0 on success, -errno on failure.
427 */
428static int __init_memblock memblock_isolate_range(struct memblock_type *type,
429 phys_addr_t base, phys_addr_t size,
430 int *start_rgn, int *end_rgn)
431{
eb18f1b5 432 phys_addr_t end = base + memblock_cap_size(base, &size);
6a9ceb31
TH
433 int i;
434
435 *start_rgn = *end_rgn = 0;
436
b3dc627c
TH
437 if (!size)
438 return 0;
439
6a9ceb31
TH
440 /* we'll create at most two more regions */
441 while (type->cnt + 2 > type->max)
442 if (memblock_double_array(type) < 0)
443 return -ENOMEM;
444
445 for (i = 0; i < type->cnt; i++) {
446 struct memblock_region *rgn = &type->regions[i];
447 phys_addr_t rbase = rgn->base;
448 phys_addr_t rend = rbase + rgn->size;
449
450 if (rbase >= end)
451 break;
452 if (rend <= base)
453 continue;
454
455 if (rbase < base) {
456 /*
457 * @rgn intersects from below. Split and continue
458 * to process the next region - the new top half.
459 */
460 rgn->base = base;
1440c4e2
TH
461 rgn->size -= base - rbase;
462 type->total_size -= base - rbase;
6a9ceb31 463 memblock_insert_region(type, i, rbase, base - rbase,
71936180 464 memblock_get_region_node(rgn));
6a9ceb31
TH
465 } else if (rend > end) {
466 /*
467 * @rgn intersects from above. Split and redo the
468 * current region - the new bottom half.
469 */
470 rgn->base = end;
1440c4e2
TH
471 rgn->size -= end - rbase;
472 type->total_size -= end - rbase;
6a9ceb31 473 memblock_insert_region(type, i--, rbase, end - rbase,
71936180 474 memblock_get_region_node(rgn));
6a9ceb31
TH
475 } else {
476 /* @rgn is fully contained, record it */
477 if (!*end_rgn)
478 *start_rgn = i;
479 *end_rgn = i + 1;
480 }
481 }
482
483 return 0;
484}
6a9ceb31 485
581adcbe
TH
486static int __init_memblock __memblock_remove(struct memblock_type *type,
487 phys_addr_t base, phys_addr_t size)
95f72d1e 488{
71936180
TH
489 int start_rgn, end_rgn;
490 int i, ret;
95f72d1e 491
71936180
TH
492 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
493 if (ret)
494 return ret;
95f72d1e 495
71936180
TH
496 for (i = end_rgn - 1; i >= start_rgn; i--)
497 memblock_remove_region(type, i);
8f7a6605 498 return 0;
95f72d1e
YL
499}
500
581adcbe 501int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e
YL
502{
503 return __memblock_remove(&memblock.memory, base, size);
504}
505
581adcbe 506int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 507{
24aa0788 508 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
a150439c
PA
509 (unsigned long long)base,
510 (unsigned long long)base + size,
511 (void *)_RET_IP_);
24aa0788 512
95f72d1e
YL
513 return __memblock_remove(&memblock.reserved, base, size);
514}
515
581adcbe 516int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 517{
e3239ff9 518 struct memblock_type *_rgn = &memblock.reserved;
95f72d1e 519
24aa0788 520 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] %pF\n",
a150439c
PA
521 (unsigned long long)base,
522 (unsigned long long)base + size,
523 (void *)_RET_IP_);
95f72d1e 524
7fb0bc3f 525 return memblock_add_region(_rgn, base, size, MAX_NUMNODES);
95f72d1e
YL
526}
527
35fd0808
TH
528/**
529 * __next_free_mem_range - next function for for_each_free_mem_range()
530 * @idx: pointer to u64 loop variable
531 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
532 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
533 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
534 * @p_nid: ptr to int for nid of the range, can be %NULL
535 *
536 * Find the first free area from *@idx which matches @nid, fill the out
537 * parameters, and update *@idx for the next iteration. The lower 32bit of
538 * *@idx contains index into memory region and the upper 32bit indexes the
539 * areas before each reserved region. For example, if reserved regions
540 * look like the following,
541 *
542 * 0:[0-16), 1:[32-48), 2:[128-130)
543 *
544 * The upper 32bit indexes the following regions.
545 *
546 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
547 *
548 * As both region arrays are sorted, the function advances the two indices
549 * in lockstep and returns each intersection.
550 */
551void __init_memblock __next_free_mem_range(u64 *idx, int nid,
552 phys_addr_t *out_start,
553 phys_addr_t *out_end, int *out_nid)
554{
555 struct memblock_type *mem = &memblock.memory;
556 struct memblock_type *rsv = &memblock.reserved;
557 int mi = *idx & 0xffffffff;
558 int ri = *idx >> 32;
559
560 for ( ; mi < mem->cnt; mi++) {
561 struct memblock_region *m = &mem->regions[mi];
562 phys_addr_t m_start = m->base;
563 phys_addr_t m_end = m->base + m->size;
564
565 /* only memory regions are associated with nodes, check it */
566 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
567 continue;
568
569 /* scan areas before each reservation for intersection */
570 for ( ; ri < rsv->cnt + 1; ri++) {
571 struct memblock_region *r = &rsv->regions[ri];
572 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
573 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
574
575 /* if ri advanced past mi, break out to advance mi */
576 if (r_start >= m_end)
577 break;
578 /* if the two regions intersect, we're done */
579 if (m_start < r_end) {
580 if (out_start)
581 *out_start = max(m_start, r_start);
582 if (out_end)
583 *out_end = min(m_end, r_end);
584 if (out_nid)
585 *out_nid = memblock_get_region_node(m);
586 /*
587 * The region which ends first is advanced
588 * for the next iteration.
589 */
590 if (m_end <= r_end)
591 mi++;
592 else
593 ri++;
594 *idx = (u32)mi | (u64)ri << 32;
595 return;
596 }
597 }
598 }
599
600 /* signal end of iteration */
601 *idx = ULLONG_MAX;
602}
603
7bd0b0f0
TH
604/**
605 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
606 * @idx: pointer to u64 loop variable
607 * @nid: nid: node selector, %MAX_NUMNODES for all nodes
608 * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
609 * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
610 * @p_nid: ptr to int for nid of the range, can be %NULL
611 *
612 * Reverse of __next_free_mem_range().
613 */
614void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
615 phys_addr_t *out_start,
616 phys_addr_t *out_end, int *out_nid)
617{
618 struct memblock_type *mem = &memblock.memory;
619 struct memblock_type *rsv = &memblock.reserved;
620 int mi = *idx & 0xffffffff;
621 int ri = *idx >> 32;
622
623 if (*idx == (u64)ULLONG_MAX) {
624 mi = mem->cnt - 1;
625 ri = rsv->cnt;
626 }
627
628 for ( ; mi >= 0; mi--) {
629 struct memblock_region *m = &mem->regions[mi];
630 phys_addr_t m_start = m->base;
631 phys_addr_t m_end = m->base + m->size;
632
633 /* only memory regions are associated with nodes, check it */
634 if (nid != MAX_NUMNODES && nid != memblock_get_region_node(m))
635 continue;
636
637 /* scan areas before each reservation for intersection */
638 for ( ; ri >= 0; ri--) {
639 struct memblock_region *r = &rsv->regions[ri];
640 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
641 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
642
643 /* if ri advanced past mi, break out to advance mi */
644 if (r_end <= m_start)
645 break;
646 /* if the two regions intersect, we're done */
647 if (m_end > r_start) {
648 if (out_start)
649 *out_start = max(m_start, r_start);
650 if (out_end)
651 *out_end = min(m_end, r_end);
652 if (out_nid)
653 *out_nid = memblock_get_region_node(m);
654
655 if (m_start >= r_start)
656 mi--;
657 else
658 ri--;
659 *idx = (u32)mi | (u64)ri << 32;
660 return;
661 }
662 }
663 }
664
665 *idx = ULLONG_MAX;
666}
667
7c0caeb8
TH
668#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
669/*
670 * Common iterator interface used to define for_each_mem_range().
671 */
672void __init_memblock __next_mem_pfn_range(int *idx, int nid,
673 unsigned long *out_start_pfn,
674 unsigned long *out_end_pfn, int *out_nid)
675{
676 struct memblock_type *type = &memblock.memory;
677 struct memblock_region *r;
678
679 while (++*idx < type->cnt) {
680 r = &type->regions[*idx];
681
682 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
683 continue;
684 if (nid == MAX_NUMNODES || nid == r->nid)
685 break;
686 }
687 if (*idx >= type->cnt) {
688 *idx = -1;
689 return;
690 }
691
692 if (out_start_pfn)
693 *out_start_pfn = PFN_UP(r->base);
694 if (out_end_pfn)
695 *out_end_pfn = PFN_DOWN(r->base + r->size);
696 if (out_nid)
697 *out_nid = r->nid;
698}
699
700/**
701 * memblock_set_node - set node ID on memblock regions
702 * @base: base of area to set node ID for
703 * @size: size of area to set node ID for
704 * @nid: node ID to set
705 *
706 * Set the nid of memblock memory regions in [@base,@base+@size) to @nid.
707 * Regions which cross the area boundaries are split as necessary.
708 *
709 * RETURNS:
710 * 0 on success, -errno on failure.
711 */
712int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
713 int nid)
714{
715 struct memblock_type *type = &memblock.memory;
6a9ceb31
TH
716 int start_rgn, end_rgn;
717 int i, ret;
7c0caeb8 718
6a9ceb31
TH
719 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
720 if (ret)
721 return ret;
7c0caeb8 722
6a9ceb31
TH
723 for (i = start_rgn; i < end_rgn; i++)
724 type->regions[i].nid = nid;
7c0caeb8
TH
725
726 memblock_merge_regions(type);
727 return 0;
728}
729#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
730
7bd0b0f0
TH
731static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
732 phys_addr_t align, phys_addr_t max_addr,
733 int nid)
95f72d1e 734{
6ed311b2 735 phys_addr_t found;
95f72d1e 736
847854f5
TH
737 /* align @size to avoid excessive fragmentation on reserved array */
738 size = round_up(size, align);
739
7bd0b0f0 740 found = memblock_find_in_range_node(0, max_addr, size, align, nid);
9c8c27e2 741 if (found && !memblock_reserve(found, size))
6ed311b2 742 return found;
95f72d1e 743
6ed311b2 744 return 0;
95f72d1e
YL
745}
746
7bd0b0f0
TH
747phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
748{
749 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
750}
751
752phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
753{
754 return memblock_alloc_base_nid(size, align, max_addr, MAX_NUMNODES);
755}
756
6ed311b2 757phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
95f72d1e 758{
6ed311b2
BH
759 phys_addr_t alloc;
760
761 alloc = __memblock_alloc_base(size, align, max_addr);
762
763 if (alloc == 0)
764 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
765 (unsigned long long) size, (unsigned long long) max_addr);
766
767 return alloc;
95f72d1e
YL
768}
769
6ed311b2 770phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
95f72d1e 771{
6ed311b2
BH
772 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
773}
95f72d1e 774
9d1e2492
BH
775phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
776{
777 phys_addr_t res = memblock_alloc_nid(size, align, nid);
778
779 if (res)
780 return res;
15fb0972 781 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
95f72d1e
YL
782}
783
9d1e2492
BH
784
785/*
786 * Remaining API functions
787 */
788
2898cc4c 789phys_addr_t __init memblock_phys_mem_size(void)
95f72d1e 790{
1440c4e2 791 return memblock.memory.total_size;
95f72d1e
YL
792}
793
0a93ebef
SR
794/* lowest address */
795phys_addr_t __init_memblock memblock_start_of_DRAM(void)
796{
797 return memblock.memory.regions[0].base;
798}
799
10d06439 800phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
801{
802 int idx = memblock.memory.cnt - 1;
803
e3239ff9 804 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
805}
806
c0ce8fef 807void __init memblock_enforce_memory_limit(phys_addr_t limit)
95f72d1e
YL
808{
809 unsigned long i;
c0ce8fef 810 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
95f72d1e 811
c0ce8fef 812 if (!limit)
95f72d1e
YL
813 return;
814
c0ce8fef 815 /* find out max address */
95f72d1e 816 for (i = 0; i < memblock.memory.cnt; i++) {
c0ce8fef 817 struct memblock_region *r = &memblock.memory.regions[i];
95f72d1e 818
c0ce8fef
TH
819 if (limit <= r->size) {
820 max_addr = r->base + limit;
821 break;
95f72d1e 822 }
c0ce8fef 823 limit -= r->size;
95f72d1e 824 }
c0ce8fef
TH
825
826 /* truncate both memory and reserved regions */
827 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
828 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
95f72d1e
YL
829}
830
cd79481d 831static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
832{
833 unsigned int left = 0, right = type->cnt;
834
835 do {
836 unsigned int mid = (right + left) / 2;
837
838 if (addr < type->regions[mid].base)
839 right = mid;
840 else if (addr >= (type->regions[mid].base +
841 type->regions[mid].size))
842 left = mid + 1;
843 else
844 return mid;
845 } while (left < right);
846 return -1;
847}
848
2898cc4c 849int __init memblock_is_reserved(phys_addr_t addr)
95f72d1e 850{
72d4b0b4
BH
851 return memblock_search(&memblock.reserved, addr) != -1;
852}
95f72d1e 853
3661ca66 854int __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
855{
856 return memblock_search(&memblock.memory, addr) != -1;
857}
858
3661ca66 859int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 860{
abb65272 861 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 862 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
863
864 if (idx == -1)
865 return 0;
abb65272
TV
866 return memblock.memory.regions[idx].base <= base &&
867 (memblock.memory.regions[idx].base +
eb18f1b5 868 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
869}
870
10d06439 871int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 872{
eb18f1b5 873 memblock_cap_size(base, &size);
f1c2c19c 874 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
95f72d1e
YL
875}
876
e63075a3 877
3661ca66 878void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
879{
880 memblock.current_limit = limit;
881}
882
7c0caeb8 883static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
6ed311b2
BH
884{
885 unsigned long long base, size;
886 int i;
887
7c0caeb8 888 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
6ed311b2 889
7c0caeb8
TH
890 for (i = 0; i < type->cnt; i++) {
891 struct memblock_region *rgn = &type->regions[i];
892 char nid_buf[32] = "";
893
894 base = rgn->base;
895 size = rgn->size;
896#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
897 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
898 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
899 memblock_get_region_node(rgn));
900#endif
901 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s\n",
902 name, i, base, base + size - 1, size, nid_buf);
6ed311b2
BH
903 }
904}
905
4ff7b82f 906void __init_memblock __memblock_dump_all(void)
6ed311b2 907{
6ed311b2 908 pr_info("MEMBLOCK configuration:\n");
1440c4e2
TH
909 pr_info(" memory size = %#llx reserved size = %#llx\n",
910 (unsigned long long)memblock.memory.total_size,
911 (unsigned long long)memblock.reserved.total_size);
6ed311b2
BH
912
913 memblock_dump(&memblock.memory, "memory");
914 memblock_dump(&memblock.reserved, "reserved");
915}
916
1aadc056 917void __init memblock_allow_resize(void)
6ed311b2 918{
142b45a7 919 memblock_can_resize = 1;
6ed311b2
BH
920}
921
6ed311b2
BH
922static int __init early_memblock(char *p)
923{
924 if (p && strstr(p, "debug"))
925 memblock_debug = 1;
926 return 0;
927}
928early_param("memblock", early_memblock);
929
c378ddd5 930#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
6d03b885
BH
931
932static int memblock_debug_show(struct seq_file *m, void *private)
933{
934 struct memblock_type *type = m->private;
935 struct memblock_region *reg;
936 int i;
937
938 for (i = 0; i < type->cnt; i++) {
939 reg = &type->regions[i];
940 seq_printf(m, "%4d: ", i);
941 if (sizeof(phys_addr_t) == 4)
942 seq_printf(m, "0x%08lx..0x%08lx\n",
943 (unsigned long)reg->base,
944 (unsigned long)(reg->base + reg->size - 1));
945 else
946 seq_printf(m, "0x%016llx..0x%016llx\n",
947 (unsigned long long)reg->base,
948 (unsigned long long)(reg->base + reg->size - 1));
949
950 }
951 return 0;
952}
953
954static int memblock_debug_open(struct inode *inode, struct file *file)
955{
956 return single_open(file, memblock_debug_show, inode->i_private);
957}
958
959static const struct file_operations memblock_debug_fops = {
960 .open = memblock_debug_open,
961 .read = seq_read,
962 .llseek = seq_lseek,
963 .release = single_release,
964};
965
966static int __init memblock_init_debugfs(void)
967{
968 struct dentry *root = debugfs_create_dir("memblock", NULL);
969 if (!root)
970 return -ENXIO;
971 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
972 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
973
974 return 0;
975}
976__initcall(memblock_init_debugfs);
977
978#endif /* CONFIG_DEBUG_FS */