]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memblock.c
memblock: remove unused memblock_mem_size()
[mirror_ubuntu-jammy-kernel.git] / mm / memblock.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
95f72d1e
YL
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
95f72d1e
YL
7 */
8
9#include <linux/kernel.h>
142b45a7 10#include <linux/slab.h>
95f72d1e
YL
11#include <linux/init.h>
12#include <linux/bitops.h>
449e8df3 13#include <linux/poison.h>
c196f76f 14#include <linux/pfn.h>
6d03b885 15#include <linux/debugfs.h>
514c6032 16#include <linux/kmemleak.h>
6d03b885 17#include <linux/seq_file.h>
95f72d1e
YL
18#include <linux/memblock.h>
19
c4c5ad6b 20#include <asm/sections.h>
26f09e9b
SS
21#include <linux/io.h>
22
23#include "internal.h"
79442ed1 24
8a5b403d
AB
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
3e039c5c
MR
32/**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
77649905
DH
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
3e039c5c
MR
50 *
51 * Each region is represented by :c:type:`struct memblock_region` that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the :c:type:`struct
54 * memblock_type` which contains an array of memory regions along with
77649905
DH
55 * the allocator metadata. The "memory" and "reserved" types are nicely
56 * wrapped with :c:type:`struct memblock`. This structure is statically
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
6e5af9a8
C
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
3e039c5c
MR
65 *
66 * The early architecture setup should tell memblock what the physical
6e5af9a8
C
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
3e039c5c 73 *
a2974133
MR
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
6e5af9a8
C
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
a2974133 81 *
df1758d9 82 * Note, that both API variants use implicit assumptions about allowed
a2974133 83 * memory ranges and the fallback methods. Consult the documentation
6e5af9a8
C
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
3e039c5c 86 *
6e5af9a8
C
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
3e039c5c 89 *
6e5af9a8 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
77649905
DH
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
3e039c5c
MR
93 */
94
bda49a81
MR
95#ifndef CONFIG_NEED_MULTIPLE_NODES
96struct pglist_data __refdata contig_page_data;
97EXPORT_SYMBOL(contig_page_data);
98#endif
99
100unsigned long max_low_pfn;
101unsigned long min_low_pfn;
102unsigned long max_pfn;
103unsigned long long max_possible_pfn;
104
fe091c20 105static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
8a5b403d 106static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
70210ed9 107#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 108static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
70210ed9 109#endif
fe091c20
TH
110
111struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 115 .memory.name = "memory",
fe091c20
TH
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
8a5b403d 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
0262d9c8 120 .reserved.name = "reserved",
fe091c20 121
79442ed1 122 .bottom_up = false,
fe091c20
TH
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124};
95f72d1e 125
77649905
DH
126#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132};
133#endif
134
cd991db8
MR
135#define for_each_memblock_type(i, memblock_type, rgn) \
136 for (i = 0, rgn = &memblock_type->regions[0]; \
137 i < memblock_type->cnt; \
138 i++, rgn = &memblock_type->regions[i])
139
87c55870
MR
140#define memblock_dbg(fmt, ...) \
141 do { \
142 if (memblock_debug) \
143 pr_info(fmt, ##__VA_ARGS__); \
144 } while (0)
145
146static int memblock_debug __initdata_memblock;
a3f5bafc 147static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 148static int memblock_can_resize __initdata_memblock;
181eb394
GS
149static int memblock_memory_in_slab __initdata_memblock = 0;
150static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 151
c366ea89 152static enum memblock_flags __init_memblock choose_memblock_flags(void)
a3f5bafc
TL
153{
154 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
155}
156
eb18f1b5
TH
157/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
158static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
159{
1c4bc43d 160 return *size = min(*size, PHYS_ADDR_MAX - base);
eb18f1b5
TH
161}
162
6ed311b2
BH
163/*
164 * Address comparison utilities
165 */
10d06439 166static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 167 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
168{
169 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
170}
171
95cf82ec 172bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 173 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
174{
175 unsigned long i;
176
f14516fb
AK
177 for (i = 0; i < type->cnt; i++)
178 if (memblock_addrs_overlap(base, size, type->regions[i].base,
179 type->regions[i].size))
6ed311b2 180 break;
c5c5c9d1 181 return i < type->cnt;
6ed311b2
BH
182}
183
47cec443 184/**
79442ed1
TC
185 * __memblock_find_range_bottom_up - find free area utility in bottom-up
186 * @start: start of candidate range
47cec443
MR
187 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
188 * %MEMBLOCK_ALLOC_ACCESSIBLE
79442ed1
TC
189 * @size: size of free area to find
190 * @align: alignment of free area to find
b1154233 191 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 192 * @flags: pick from blocks based on memory attributes
79442ed1
TC
193 *
194 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
195 *
47cec443 196 * Return:
79442ed1
TC
197 * Found address on success, 0 on failure.
198 */
199static phys_addr_t __init_memblock
200__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9 201 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 202 enum memblock_flags flags)
79442ed1
TC
203{
204 phys_addr_t this_start, this_end, cand;
205 u64 i;
206
fc6daaf9 207 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
208 this_start = clamp(this_start, start, end);
209 this_end = clamp(this_end, start, end);
210
211 cand = round_up(this_start, align);
212 if (cand < this_end && this_end - cand >= size)
213 return cand;
214 }
215
216 return 0;
217}
218
7bd0b0f0 219/**
1402899e 220 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0 221 * @start: start of candidate range
47cec443
MR
222 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
223 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
224 * @size: size of free area to find
225 * @align: alignment of free area to find
b1154233 226 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 227 * @flags: pick from blocks based on memory attributes
7bd0b0f0 228 *
1402899e 229 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0 230 *
47cec443 231 * Return:
79442ed1 232 * Found address on success, 0 on failure.
6ed311b2 233 */
1402899e
TC
234static phys_addr_t __init_memblock
235__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9 236 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 237 enum memblock_flags flags)
f7210e6c
TC
238{
239 phys_addr_t this_start, this_end, cand;
240 u64 i;
241
fc6daaf9
TL
242 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
243 NULL) {
f7210e6c
TC
244 this_start = clamp(this_start, start, end);
245 this_end = clamp(this_end, start, end);
246
247 if (this_end < size)
248 continue;
249
250 cand = round_down(this_end - size, align);
251 if (cand >= this_start)
252 return cand;
253 }
1402899e 254
f7210e6c
TC
255 return 0;
256}
6ed311b2 257
1402899e
TC
258/**
259 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
260 * @size: size of free area to find
261 * @align: alignment of free area to find
87029ee9 262 * @start: start of candidate range
47cec443
MR
263 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
264 * %MEMBLOCK_ALLOC_ACCESSIBLE
b1154233 265 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 266 * @flags: pick from blocks based on memory attributes
1402899e
TC
267 *
268 * Find @size free area aligned to @align in the specified range and node.
269 *
79442ed1
TC
270 * When allocation direction is bottom-up, the @start should be greater
271 * than the end of the kernel image. Otherwise, it will be trimmed. The
272 * reason is that we want the bottom-up allocation just near the kernel
273 * image so it is highly likely that the allocated memory and the kernel
274 * will reside in the same node.
275 *
276 * If bottom-up allocation failed, will try to allocate memory top-down.
277 *
47cec443 278 * Return:
79442ed1 279 * Found address on success, 0 on failure.
1402899e 280 */
c366ea89 281static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
87029ee9 282 phys_addr_t align, phys_addr_t start,
e1720fee
MR
283 phys_addr_t end, int nid,
284 enum memblock_flags flags)
1402899e 285{
0cfb8f0c 286 phys_addr_t kernel_end, ret;
79442ed1 287
1402899e 288 /* pump up @end */
fed84c78
QC
289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
290 end == MEMBLOCK_ALLOC_KASAN)
1402899e
TC
291 end = memblock.current_limit;
292
293 /* avoid allocating the first page */
294 start = max_t(phys_addr_t, start, PAGE_SIZE);
295 end = max(start, end);
79442ed1
TC
296 kernel_end = __pa_symbol(_end);
297
298 /*
299 * try bottom-up allocation only when bottom-up mode
300 * is set and @end is above the kernel image.
301 */
302 if (memblock_bottom_up() && end > kernel_end) {
303 phys_addr_t bottom_up_start;
304
305 /* make sure we will allocate above the kernel */
306 bottom_up_start = max(start, kernel_end);
307
308 /* ok, try bottom-up allocation first */
309 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
fc6daaf9 310 size, align, nid, flags);
79442ed1
TC
311 if (ret)
312 return ret;
313
314 /*
315 * we always limit bottom-up allocation above the kernel,
316 * but top-down allocation doesn't have the limit, so
317 * retrying top-down allocation may succeed when bottom-up
318 * allocation failed.
319 *
320 * bottom-up allocation is expected to be fail very rarely,
321 * so we use WARN_ONCE() here to see the stack trace if
322 * fail happens.
323 */
e3d301ca
MH
324 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
325 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
79442ed1 326 }
1402899e 327
fc6daaf9
TL
328 return __memblock_find_range_top_down(start, end, size, align, nid,
329 flags);
1402899e
TC
330}
331
7bd0b0f0
TH
332/**
333 * memblock_find_in_range - find free area in given range
334 * @start: start of candidate range
47cec443
MR
335 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
336 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
337 * @size: size of free area to find
338 * @align: alignment of free area to find
339 *
340 * Find @size free area aligned to @align in the specified range.
341 *
47cec443 342 * Return:
79442ed1 343 * Found address on success, 0 on failure.
fc769a8e 344 */
7bd0b0f0
TH
345phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
346 phys_addr_t end, phys_addr_t size,
347 phys_addr_t align)
6ed311b2 348{
a3f5bafc 349 phys_addr_t ret;
e1720fee 350 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
351
352again:
353 ret = memblock_find_in_range_node(size, align, start, end,
354 NUMA_NO_NODE, flags);
355
356 if (!ret && (flags & MEMBLOCK_MIRROR)) {
357 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
358 &size);
359 flags &= ~MEMBLOCK_MIRROR;
360 goto again;
361 }
362
363 return ret;
6ed311b2
BH
364}
365
10d06439 366static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 367{
1440c4e2 368 type->total_size -= type->regions[r].size;
7c0caeb8
TH
369 memmove(&type->regions[r], &type->regions[r + 1],
370 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 371 type->cnt--;
95f72d1e 372
8f7a6605
BH
373 /* Special case for empty arrays */
374 if (type->cnt == 0) {
1440c4e2 375 WARN_ON(type->total_size != 0);
8f7a6605
BH
376 type->cnt = 1;
377 type->regions[0].base = 0;
378 type->regions[0].size = 0;
66a20757 379 type->regions[0].flags = 0;
7c0caeb8 380 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 381 }
95f72d1e
YL
382}
383
350e88ba 384#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
3010f876 385/**
47cec443 386 * memblock_discard - discard memory and reserved arrays if they were allocated
3010f876
PT
387 */
388void __init memblock_discard(void)
5e270e25 389{
3010f876 390 phys_addr_t addr, size;
5e270e25 391
3010f876
PT
392 if (memblock.reserved.regions != memblock_reserved_init_regions) {
393 addr = __pa(memblock.reserved.regions);
394 size = PAGE_ALIGN(sizeof(struct memblock_region) *
395 memblock.reserved.max);
396 __memblock_free_late(addr, size);
397 }
5e270e25 398
91b540f9 399 if (memblock.memory.regions != memblock_memory_init_regions) {
3010f876
PT
400 addr = __pa(memblock.memory.regions);
401 size = PAGE_ALIGN(sizeof(struct memblock_region) *
402 memblock.memory.max);
403 __memblock_free_late(addr, size);
404 }
5e270e25 405}
5e270e25
PH
406#endif
407
48c3b583
GP
408/**
409 * memblock_double_array - double the size of the memblock regions array
410 * @type: memblock type of the regions array being doubled
411 * @new_area_start: starting address of memory range to avoid overlap with
412 * @new_area_size: size of memory range to avoid overlap with
413 *
414 * Double the size of the @type regions array. If memblock is being used to
415 * allocate memory for a new reserved regions array and there is a previously
47cec443 416 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
48c3b583
GP
417 * waiting to be reserved, ensure the memory used by the new array does
418 * not overlap.
419 *
47cec443 420 * Return:
48c3b583
GP
421 * 0 on success, -1 on failure.
422 */
423static int __init_memblock memblock_double_array(struct memblock_type *type,
424 phys_addr_t new_area_start,
425 phys_addr_t new_area_size)
142b45a7
BH
426{
427 struct memblock_region *new_array, *old_array;
29f67386 428 phys_addr_t old_alloc_size, new_alloc_size;
a36aab89 429 phys_addr_t old_size, new_size, addr, new_end;
142b45a7 430 int use_slab = slab_is_available();
181eb394 431 int *in_slab;
142b45a7
BH
432
433 /* We don't allow resizing until we know about the reserved regions
434 * of memory that aren't suitable for allocation
435 */
436 if (!memblock_can_resize)
437 return -1;
438
142b45a7
BH
439 /* Calculate new doubled size */
440 old_size = type->max * sizeof(struct memblock_region);
441 new_size = old_size << 1;
29f67386
YL
442 /*
443 * We need to allocated new one align to PAGE_SIZE,
444 * so we can free them completely later.
445 */
446 old_alloc_size = PAGE_ALIGN(old_size);
447 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 448
181eb394
GS
449 /* Retrieve the slab flag */
450 if (type == &memblock.memory)
451 in_slab = &memblock_memory_in_slab;
452 else
453 in_slab = &memblock_reserved_in_slab;
454
a2974133 455 /* Try to find some space for it */
142b45a7
BH
456 if (use_slab) {
457 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 458 addr = new_array ? __pa(new_array) : 0;
4e2f0775 459 } else {
48c3b583
GP
460 /* only exclude range when trying to double reserved.regions */
461 if (type != &memblock.reserved)
462 new_area_start = new_area_size = 0;
463
464 addr = memblock_find_in_range(new_area_start + new_area_size,
465 memblock.current_limit,
29f67386 466 new_alloc_size, PAGE_SIZE);
48c3b583
GP
467 if (!addr && new_area_size)
468 addr = memblock_find_in_range(0,
fd07383b
AM
469 min(new_area_start, memblock.current_limit),
470 new_alloc_size, PAGE_SIZE);
48c3b583 471
15674868 472 new_array = addr ? __va(addr) : NULL;
4e2f0775 473 }
1f5026a7 474 if (!addr) {
142b45a7 475 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 476 type->name, type->max, type->max * 2);
142b45a7
BH
477 return -1;
478 }
142b45a7 479
a36aab89
MR
480 new_end = addr + new_size - 1;
481 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
482 type->name, type->max * 2, &addr, &new_end);
ea9e4376 483
fd07383b
AM
484 /*
485 * Found space, we now need to move the array over before we add the
486 * reserved region since it may be our reserved array itself that is
487 * full.
142b45a7
BH
488 */
489 memcpy(new_array, type->regions, old_size);
490 memset(new_array + type->max, 0, old_size);
491 old_array = type->regions;
492 type->regions = new_array;
493 type->max <<= 1;
494
fd07383b 495 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
496 if (*in_slab)
497 kfree(old_array);
498 else if (old_array != memblock_memory_init_regions &&
499 old_array != memblock_reserved_init_regions)
29f67386 500 memblock_free(__pa(old_array), old_alloc_size);
142b45a7 501
fd07383b
AM
502 /*
503 * Reserve the new array if that comes from the memblock. Otherwise, we
504 * needn't do it
181eb394
GS
505 */
506 if (!use_slab)
29f67386 507 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
508
509 /* Update slab flag */
510 *in_slab = use_slab;
511
142b45a7
BH
512 return 0;
513}
514
784656f9
TH
515/**
516 * memblock_merge_regions - merge neighboring compatible regions
517 * @type: memblock type to scan
518 *
519 * Scan @type and merge neighboring compatible regions.
520 */
521static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 522{
784656f9 523 int i = 0;
95f72d1e 524
784656f9
TH
525 /* cnt never goes below 1 */
526 while (i < type->cnt - 1) {
527 struct memblock_region *this = &type->regions[i];
528 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 529
7c0caeb8
TH
530 if (this->base + this->size != next->base ||
531 memblock_get_region_node(this) !=
66a20757
TC
532 memblock_get_region_node(next) ||
533 this->flags != next->flags) {
784656f9
TH
534 BUG_ON(this->base + this->size > next->base);
535 i++;
536 continue;
8f7a6605
BH
537 }
538
784656f9 539 this->size += next->size;
c0232ae8
LF
540 /* move forward from next + 1, index of which is i + 2 */
541 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 542 type->cnt--;
95f72d1e 543 }
784656f9 544}
95f72d1e 545
784656f9
TH
546/**
547 * memblock_insert_region - insert new memblock region
209ff86d
TC
548 * @type: memblock type to insert into
549 * @idx: index for the insertion point
550 * @base: base address of the new region
551 * @size: size of the new region
552 * @nid: node id of the new region
66a20757 553 * @flags: flags of the new region
784656f9 554 *
47cec443 555 * Insert new memblock region [@base, @base + @size) into @type at @idx.
412d0008 556 * @type must already have extra room to accommodate the new region.
784656f9
TH
557 */
558static void __init_memblock memblock_insert_region(struct memblock_type *type,
559 int idx, phys_addr_t base,
66a20757 560 phys_addr_t size,
e1720fee
MR
561 int nid,
562 enum memblock_flags flags)
784656f9
TH
563{
564 struct memblock_region *rgn = &type->regions[idx];
565
566 BUG_ON(type->cnt >= type->max);
567 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
568 rgn->base = base;
569 rgn->size = size;
66a20757 570 rgn->flags = flags;
7c0caeb8 571 memblock_set_region_node(rgn, nid);
784656f9 572 type->cnt++;
1440c4e2 573 type->total_size += size;
784656f9
TH
574}
575
576/**
f1af9d3a 577 * memblock_add_range - add new memblock region
784656f9
TH
578 * @type: memblock type to add new region into
579 * @base: base address of the new region
580 * @size: size of the new region
7fb0bc3f 581 * @nid: nid of the new region
66a20757 582 * @flags: flags of the new region
784656f9 583 *
47cec443 584 * Add new memblock region [@base, @base + @size) into @type. The new region
784656f9
TH
585 * is allowed to overlap with existing ones - overlaps don't affect already
586 * existing regions. @type is guaranteed to be minimal (all neighbouring
587 * compatible regions are merged) after the addition.
588 *
47cec443 589 * Return:
784656f9
TH
590 * 0 on success, -errno on failure.
591 */
02634a44 592static int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757 593 phys_addr_t base, phys_addr_t size,
e1720fee 594 int nid, enum memblock_flags flags)
784656f9
TH
595{
596 bool insert = false;
eb18f1b5
TH
597 phys_addr_t obase = base;
598 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
599 int idx, nr_new;
600 struct memblock_region *rgn;
784656f9 601
b3dc627c
TH
602 if (!size)
603 return 0;
604
784656f9
TH
605 /* special case for empty array */
606 if (type->regions[0].size == 0) {
1440c4e2 607 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
608 type->regions[0].base = base;
609 type->regions[0].size = size;
66a20757 610 type->regions[0].flags = flags;
7fb0bc3f 611 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 612 type->total_size = size;
8f7a6605 613 return 0;
95f72d1e 614 }
784656f9
TH
615repeat:
616 /*
617 * The following is executed twice. Once with %false @insert and
618 * then with %true. The first counts the number of regions needed
412d0008 619 * to accommodate the new area. The second actually inserts them.
142b45a7 620 */
784656f9
TH
621 base = obase;
622 nr_new = 0;
95f72d1e 623
66e8b438 624 for_each_memblock_type(idx, type, rgn) {
784656f9
TH
625 phys_addr_t rbase = rgn->base;
626 phys_addr_t rend = rbase + rgn->size;
627
628 if (rbase >= end)
95f72d1e 629 break;
784656f9
TH
630 if (rend <= base)
631 continue;
632 /*
633 * @rgn overlaps. If it separates the lower part of new
634 * area, insert that portion.
635 */
636 if (rbase > base) {
3f08a302 637#ifdef CONFIG_NEED_MULTIPLE_NODES
c0a29498
WY
638 WARN_ON(nid != memblock_get_region_node(rgn));
639#endif
4fcab5f4 640 WARN_ON(flags != rgn->flags);
784656f9
TH
641 nr_new++;
642 if (insert)
8c9c1701 643 memblock_insert_region(type, idx++, base,
66a20757
TC
644 rbase - base, nid,
645 flags);
95f72d1e 646 }
784656f9
TH
647 /* area below @rend is dealt with, forget about it */
648 base = min(rend, end);
95f72d1e 649 }
784656f9
TH
650
651 /* insert the remaining portion */
652 if (base < end) {
653 nr_new++;
654 if (insert)
8c9c1701 655 memblock_insert_region(type, idx, base, end - base,
66a20757 656 nid, flags);
95f72d1e 657 }
95f72d1e 658
ef3cc4db 659 if (!nr_new)
660 return 0;
661
784656f9
TH
662 /*
663 * If this was the first round, resize array and repeat for actual
664 * insertions; otherwise, merge and return.
142b45a7 665 */
784656f9
TH
666 if (!insert) {
667 while (type->cnt + nr_new > type->max)
48c3b583 668 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
669 return -ENOMEM;
670 insert = true;
671 goto repeat;
672 } else {
673 memblock_merge_regions(type);
674 return 0;
142b45a7 675 }
95f72d1e
YL
676}
677
48a833cc
MR
678/**
679 * memblock_add_node - add new memblock region within a NUMA node
680 * @base: base address of the new region
681 * @size: size of the new region
682 * @nid: nid of the new region
683 *
684 * Add new memblock region [@base, @base + @size) to the "memory"
685 * type. See memblock_add_range() description for mode details
686 *
687 * Return:
688 * 0 on success, -errno on failure.
689 */
7fb0bc3f
TH
690int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
691 int nid)
692{
f1af9d3a 693 return memblock_add_range(&memblock.memory, base, size, nid, 0);
7fb0bc3f
TH
694}
695
48a833cc
MR
696/**
697 * memblock_add - add new memblock region
698 * @base: base address of the new region
699 * @size: size of the new region
700 *
701 * Add new memblock region [@base, @base + @size) to the "memory"
702 * type. See memblock_add_range() description for mode details
703 *
704 * Return:
705 * 0 on success, -errno on failure.
706 */
f705ac4b 707int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 708{
5d63f81c
MC
709 phys_addr_t end = base + size - 1;
710
a090d711 711 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 712 &base, &end, (void *)_RET_IP_);
6a4055bc 713
f705ac4b 714 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
715}
716
6a9ceb31
TH
717/**
718 * memblock_isolate_range - isolate given range into disjoint memblocks
719 * @type: memblock type to isolate range for
720 * @base: base of range to isolate
721 * @size: size of range to isolate
722 * @start_rgn: out parameter for the start of isolated region
723 * @end_rgn: out parameter for the end of isolated region
724 *
725 * Walk @type and ensure that regions don't cross the boundaries defined by
47cec443 726 * [@base, @base + @size). Crossing regions are split at the boundaries,
6a9ceb31
TH
727 * which may create at most two more regions. The index of the first
728 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
729 *
47cec443 730 * Return:
6a9ceb31
TH
731 * 0 on success, -errno on failure.
732 */
733static int __init_memblock memblock_isolate_range(struct memblock_type *type,
734 phys_addr_t base, phys_addr_t size,
735 int *start_rgn, int *end_rgn)
736{
eb18f1b5 737 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
738 int idx;
739 struct memblock_region *rgn;
6a9ceb31
TH
740
741 *start_rgn = *end_rgn = 0;
742
b3dc627c
TH
743 if (!size)
744 return 0;
745
6a9ceb31
TH
746 /* we'll create at most two more regions */
747 while (type->cnt + 2 > type->max)
48c3b583 748 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
749 return -ENOMEM;
750
66e8b438 751 for_each_memblock_type(idx, type, rgn) {
6a9ceb31
TH
752 phys_addr_t rbase = rgn->base;
753 phys_addr_t rend = rbase + rgn->size;
754
755 if (rbase >= end)
756 break;
757 if (rend <= base)
758 continue;
759
760 if (rbase < base) {
761 /*
762 * @rgn intersects from below. Split and continue
763 * to process the next region - the new top half.
764 */
765 rgn->base = base;
1440c4e2
TH
766 rgn->size -= base - rbase;
767 type->total_size -= base - rbase;
8c9c1701 768 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
769 memblock_get_region_node(rgn),
770 rgn->flags);
6a9ceb31
TH
771 } else if (rend > end) {
772 /*
773 * @rgn intersects from above. Split and redo the
774 * current region - the new bottom half.
775 */
776 rgn->base = end;
1440c4e2
TH
777 rgn->size -= end - rbase;
778 type->total_size -= end - rbase;
8c9c1701 779 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
780 memblock_get_region_node(rgn),
781 rgn->flags);
6a9ceb31
TH
782 } else {
783 /* @rgn is fully contained, record it */
784 if (!*end_rgn)
8c9c1701
AK
785 *start_rgn = idx;
786 *end_rgn = idx + 1;
6a9ceb31
TH
787 }
788 }
789
790 return 0;
791}
6a9ceb31 792
35bd16a2 793static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 794 phys_addr_t base, phys_addr_t size)
95f72d1e 795{
71936180
TH
796 int start_rgn, end_rgn;
797 int i, ret;
95f72d1e 798
71936180
TH
799 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
800 if (ret)
801 return ret;
95f72d1e 802
71936180
TH
803 for (i = end_rgn - 1; i >= start_rgn; i--)
804 memblock_remove_region(type, i);
8f7a6605 805 return 0;
95f72d1e
YL
806}
807
581adcbe 808int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 809{
25cf23d7
MK
810 phys_addr_t end = base + size - 1;
811
a090d711 812 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
25cf23d7
MK
813 &base, &end, (void *)_RET_IP_);
814
f1af9d3a 815 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
816}
817
4d72868c
MR
818/**
819 * memblock_free - free boot memory block
820 * @base: phys starting address of the boot memory block
821 * @size: size of the boot memory block in bytes
822 *
823 * Free boot memory block previously allocated by memblock_alloc_xx() API.
824 * The freeing memory will not be released to the buddy allocator.
825 */
581adcbe 826int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 827{
5d63f81c
MC
828 phys_addr_t end = base + size - 1;
829
a090d711 830 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 831 &base, &end, (void *)_RET_IP_);
24aa0788 832
9099daed 833 kmemleak_free_part_phys(base, size);
f1af9d3a 834 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
835}
836
f705ac4b 837int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 838{
5d63f81c
MC
839 phys_addr_t end = base + size - 1;
840
a090d711 841 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 842 &base, &end, (void *)_RET_IP_);
95f72d1e 843
f705ac4b 844 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
845}
846
02634a44
AK
847#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
848int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
849{
850 phys_addr_t end = base + size - 1;
851
852 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
853 &base, &end, (void *)_RET_IP_);
854
77649905 855 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
02634a44
AK
856}
857#endif
858
66b16edf 859/**
47cec443
MR
860 * memblock_setclr_flag - set or clear flag for a memory region
861 * @base: base address of the region
862 * @size: size of the region
863 * @set: set or clear the flag
864 * @flag: the flag to udpate
66b16edf 865 *
4308ce17 866 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 867 *
47cec443 868 * Return: 0 on success, -errno on failure.
66b16edf 869 */
4308ce17
TL
870static int __init_memblock memblock_setclr_flag(phys_addr_t base,
871 phys_addr_t size, int set, int flag)
66b16edf
TC
872{
873 struct memblock_type *type = &memblock.memory;
874 int i, ret, start_rgn, end_rgn;
875
876 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
877 if (ret)
878 return ret;
879
fe145124
MR
880 for (i = start_rgn; i < end_rgn; i++) {
881 struct memblock_region *r = &type->regions[i];
882
4308ce17 883 if (set)
fe145124 884 r->flags |= flag;
4308ce17 885 else
fe145124
MR
886 r->flags &= ~flag;
887 }
66b16edf
TC
888
889 memblock_merge_regions(type);
890 return 0;
891}
892
893/**
4308ce17 894 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
895 * @base: the base phys addr of the region
896 * @size: the size of the region
897 *
47cec443 898 * Return: 0 on success, -errno on failure.
4308ce17
TL
899 */
900int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
901{
902 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
903}
904
905/**
906 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
907 * @base: the base phys addr of the region
908 * @size: the size of the region
66b16edf 909 *
47cec443 910 * Return: 0 on success, -errno on failure.
66b16edf
TC
911 */
912int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
913{
4308ce17 914 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
915}
916
a3f5bafc
TL
917/**
918 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
919 * @base: the base phys addr of the region
920 * @size: the size of the region
921 *
47cec443 922 * Return: 0 on success, -errno on failure.
a3f5bafc
TL
923 */
924int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
925{
926 system_has_some_mirror = true;
927
928 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
929}
930
bf3d3cc5
AB
931/**
932 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
933 * @base: the base phys addr of the region
934 * @size: the size of the region
935 *
47cec443 936 * Return: 0 on success, -errno on failure.
bf3d3cc5
AB
937 */
938int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
939{
940 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
941}
a3f5bafc 942
4c546b8a
AT
943/**
944 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
945 * @base: the base phys addr of the region
946 * @size: the size of the region
947 *
47cec443 948 * Return: 0 on success, -errno on failure.
4c546b8a
AT
949 */
950int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
951{
952 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
953}
954
8e7a7f86
RH
955/**
956 * __next_reserved_mem_region - next function for for_each_reserved_region()
957 * @idx: pointer to u64 loop variable
958 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
959 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
960 *
961 * Iterate over all reserved memory regions.
962 */
963void __init_memblock __next_reserved_mem_region(u64 *idx,
964 phys_addr_t *out_start,
965 phys_addr_t *out_end)
966{
567d117b 967 struct memblock_type *type = &memblock.reserved;
8e7a7f86 968
cd33a76b 969 if (*idx < type->cnt) {
567d117b 970 struct memblock_region *r = &type->regions[*idx];
8e7a7f86
RH
971 phys_addr_t base = r->base;
972 phys_addr_t size = r->size;
973
974 if (out_start)
975 *out_start = base;
976 if (out_end)
977 *out_end = base + size - 1;
978
979 *idx += 1;
980 return;
981 }
982
983 /* signal end of iteration */
984 *idx = ULLONG_MAX;
985}
986
c9a688a3
MR
987static bool should_skip_region(struct memblock_region *m, int nid, int flags)
988{
989 int m_nid = memblock_get_region_node(m);
990
991 /* only memory regions are associated with nodes, check it */
992 if (nid != NUMA_NO_NODE && nid != m_nid)
993 return true;
994
995 /* skip hotpluggable memory regions if needed */
996 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
997 return true;
998
999 /* if we want mirror memory skip non-mirror memory regions */
1000 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1001 return true;
1002
1003 /* skip nomap memory unless we were asked for it explicitly */
1004 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1005 return true;
1006
1007 return false;
1008}
1009
35fd0808 1010/**
a2974133 1011 * __next_mem_range - next function for for_each_free_mem_range() etc.
35fd0808 1012 * @idx: pointer to u64 loop variable
b1154233 1013 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1014 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1015 * @type_a: pointer to memblock_type from where the range is taken
1016 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1017 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1018 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1019 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 1020 *
f1af9d3a 1021 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 1022 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
1023 * *@idx contains index into type_a and the upper 32bit indexes the
1024 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
1025 * look like the following,
1026 *
1027 * 0:[0-16), 1:[32-48), 2:[128-130)
1028 *
1029 * The upper 32bit indexes the following regions.
1030 *
1031 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1032 *
1033 * As both region arrays are sorted, the function advances the two indices
1034 * in lockstep and returns each intersection.
1035 */
77649905
DH
1036void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1037 struct memblock_type *type_a,
1038 struct memblock_type *type_b, phys_addr_t *out_start,
1039 phys_addr_t *out_end, int *out_nid)
35fd0808 1040{
f1af9d3a
PH
1041 int idx_a = *idx & 0xffffffff;
1042 int idx_b = *idx >> 32;
b1154233 1043
f1af9d3a
PH
1044 if (WARN_ONCE(nid == MAX_NUMNODES,
1045 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 1046 nid = NUMA_NO_NODE;
35fd0808 1047
f1af9d3a
PH
1048 for (; idx_a < type_a->cnt; idx_a++) {
1049 struct memblock_region *m = &type_a->regions[idx_a];
1050
35fd0808
TH
1051 phys_addr_t m_start = m->base;
1052 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1053 int m_nid = memblock_get_region_node(m);
35fd0808 1054
c9a688a3 1055 if (should_skip_region(m, nid, flags))
bf3d3cc5
AB
1056 continue;
1057
f1af9d3a
PH
1058 if (!type_b) {
1059 if (out_start)
1060 *out_start = m_start;
1061 if (out_end)
1062 *out_end = m_end;
1063 if (out_nid)
1064 *out_nid = m_nid;
1065 idx_a++;
1066 *idx = (u32)idx_a | (u64)idx_b << 32;
1067 return;
1068 }
1069
1070 /* scan areas before each reservation */
1071 for (; idx_b < type_b->cnt + 1; idx_b++) {
1072 struct memblock_region *r;
1073 phys_addr_t r_start;
1074 phys_addr_t r_end;
1075
1076 r = &type_b->regions[idx_b];
1077 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1078 r_end = idx_b < type_b->cnt ?
1c4bc43d 1079 r->base : PHYS_ADDR_MAX;
35fd0808 1080
f1af9d3a
PH
1081 /*
1082 * if idx_b advanced past idx_a,
1083 * break out to advance idx_a
1084 */
35fd0808
TH
1085 if (r_start >= m_end)
1086 break;
1087 /* if the two regions intersect, we're done */
1088 if (m_start < r_end) {
1089 if (out_start)
f1af9d3a
PH
1090 *out_start =
1091 max(m_start, r_start);
35fd0808
TH
1092 if (out_end)
1093 *out_end = min(m_end, r_end);
1094 if (out_nid)
f1af9d3a 1095 *out_nid = m_nid;
35fd0808 1096 /*
f1af9d3a
PH
1097 * The region which ends first is
1098 * advanced for the next iteration.
35fd0808
TH
1099 */
1100 if (m_end <= r_end)
f1af9d3a 1101 idx_a++;
35fd0808 1102 else
f1af9d3a
PH
1103 idx_b++;
1104 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
1105 return;
1106 }
1107 }
1108 }
1109
1110 /* signal end of iteration */
1111 *idx = ULLONG_MAX;
1112}
1113
7bd0b0f0 1114/**
f1af9d3a
PH
1115 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1116 *
7bd0b0f0 1117 * @idx: pointer to u64 loop variable
ad5ea8cd 1118 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1119 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1120 * @type_a: pointer to memblock_type from where the range is taken
1121 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1122 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1123 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1124 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 1125 *
47cec443
MR
1126 * Finds the next range from type_a which is not marked as unsuitable
1127 * in type_b.
1128 *
f1af9d3a 1129 * Reverse of __next_mem_range().
7bd0b0f0 1130 */
e1720fee
MR
1131void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1132 enum memblock_flags flags,
f1af9d3a
PH
1133 struct memblock_type *type_a,
1134 struct memblock_type *type_b,
1135 phys_addr_t *out_start,
1136 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1137{
f1af9d3a
PH
1138 int idx_a = *idx & 0xffffffff;
1139 int idx_b = *idx >> 32;
b1154233 1140
560dca27
GS
1141 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1142 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1143
1144 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1145 idx_a = type_a->cnt - 1;
e47608ab 1146 if (type_b != NULL)
1147 idx_b = type_b->cnt;
1148 else
1149 idx_b = 0;
7bd0b0f0
TH
1150 }
1151
f1af9d3a
PH
1152 for (; idx_a >= 0; idx_a--) {
1153 struct memblock_region *m = &type_a->regions[idx_a];
1154
7bd0b0f0
TH
1155 phys_addr_t m_start = m->base;
1156 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1157 int m_nid = memblock_get_region_node(m);
7bd0b0f0 1158
c9a688a3 1159 if (should_skip_region(m, nid, flags))
bf3d3cc5
AB
1160 continue;
1161
f1af9d3a
PH
1162 if (!type_b) {
1163 if (out_start)
1164 *out_start = m_start;
1165 if (out_end)
1166 *out_end = m_end;
1167 if (out_nid)
1168 *out_nid = m_nid;
fb399b48 1169 idx_a--;
f1af9d3a
PH
1170 *idx = (u32)idx_a | (u64)idx_b << 32;
1171 return;
1172 }
1173
1174 /* scan areas before each reservation */
1175 for (; idx_b >= 0; idx_b--) {
1176 struct memblock_region *r;
1177 phys_addr_t r_start;
1178 phys_addr_t r_end;
1179
1180 r = &type_b->regions[idx_b];
1181 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1182 r_end = idx_b < type_b->cnt ?
1c4bc43d 1183 r->base : PHYS_ADDR_MAX;
f1af9d3a
PH
1184 /*
1185 * if idx_b advanced past idx_a,
1186 * break out to advance idx_a
1187 */
7bd0b0f0 1188
7bd0b0f0
TH
1189 if (r_end <= m_start)
1190 break;
1191 /* if the two regions intersect, we're done */
1192 if (m_end > r_start) {
1193 if (out_start)
1194 *out_start = max(m_start, r_start);
1195 if (out_end)
1196 *out_end = min(m_end, r_end);
1197 if (out_nid)
f1af9d3a 1198 *out_nid = m_nid;
7bd0b0f0 1199 if (m_start >= r_start)
f1af9d3a 1200 idx_a--;
7bd0b0f0 1201 else
f1af9d3a
PH
1202 idx_b--;
1203 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1204 return;
1205 }
1206 }
1207 }
f1af9d3a 1208 /* signal end of iteration */
7bd0b0f0
TH
1209 *idx = ULLONG_MAX;
1210}
1211
7c0caeb8 1212/*
45e79815 1213 * Common iterator interface used to define for_each_mem_pfn_range().
7c0caeb8
TH
1214 */
1215void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1216 unsigned long *out_start_pfn,
1217 unsigned long *out_end_pfn, int *out_nid)
1218{
1219 struct memblock_type *type = &memblock.memory;
1220 struct memblock_region *r;
d622abf7 1221 int r_nid;
7c0caeb8
TH
1222
1223 while (++*idx < type->cnt) {
1224 r = &type->regions[*idx];
d622abf7 1225 r_nid = memblock_get_region_node(r);
7c0caeb8
TH
1226
1227 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1228 continue;
d622abf7 1229 if (nid == MAX_NUMNODES || nid == r_nid)
7c0caeb8
TH
1230 break;
1231 }
1232 if (*idx >= type->cnt) {
1233 *idx = -1;
1234 return;
1235 }
1236
1237 if (out_start_pfn)
1238 *out_start_pfn = PFN_UP(r->base);
1239 if (out_end_pfn)
1240 *out_end_pfn = PFN_DOWN(r->base + r->size);
1241 if (out_nid)
d622abf7 1242 *out_nid = r_nid;
7c0caeb8
TH
1243}
1244
1245/**
1246 * memblock_set_node - set node ID on memblock regions
1247 * @base: base of area to set node ID for
1248 * @size: size of area to set node ID for
e7e8de59 1249 * @type: memblock type to set node ID for
7c0caeb8
TH
1250 * @nid: node ID to set
1251 *
47cec443 1252 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
7c0caeb8
TH
1253 * Regions which cross the area boundaries are split as necessary.
1254 *
47cec443 1255 * Return:
7c0caeb8
TH
1256 * 0 on success, -errno on failure.
1257 */
1258int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1259 struct memblock_type *type, int nid)
7c0caeb8 1260{
3f08a302 1261#ifdef CONFIG_NEED_MULTIPLE_NODES
6a9ceb31
TH
1262 int start_rgn, end_rgn;
1263 int i, ret;
7c0caeb8 1264
6a9ceb31
TH
1265 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1266 if (ret)
1267 return ret;
7c0caeb8 1268
6a9ceb31 1269 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1270 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1271
1272 memblock_merge_regions(type);
3f08a302 1273#endif
7c0caeb8
TH
1274 return 0;
1275}
3f08a302 1276
837566e7
AD
1277#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1278/**
1279 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1280 *
1281 * @idx: pointer to u64 loop variable
1282 * @zone: zone in which all of the memory blocks reside
1283 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1284 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1285 *
1286 * This function is meant to be a zone/pfn specific wrapper for the
1287 * for_each_mem_range type iterators. Specifically they are used in the
1288 * deferred memory init routines and as such we were duplicating much of
1289 * this logic throughout the code. So instead of having it in multiple
1290 * locations it seemed like it would make more sense to centralize this to
1291 * one new iterator that does everything they need.
1292 */
1293void __init_memblock
1294__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1295 unsigned long *out_spfn, unsigned long *out_epfn)
1296{
1297 int zone_nid = zone_to_nid(zone);
1298 phys_addr_t spa, epa;
1299 int nid;
1300
1301 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1302 &memblock.memory, &memblock.reserved,
1303 &spa, &epa, &nid);
1304
1305 while (*idx != U64_MAX) {
1306 unsigned long epfn = PFN_DOWN(epa);
1307 unsigned long spfn = PFN_UP(spa);
1308
1309 /*
1310 * Verify the end is at least past the start of the zone and
1311 * that we have at least one PFN to initialize.
1312 */
1313 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1314 /* if we went too far just stop searching */
1315 if (zone_end_pfn(zone) <= spfn) {
1316 *idx = U64_MAX;
1317 break;
1318 }
1319
1320 if (out_spfn)
1321 *out_spfn = max(zone->zone_start_pfn, spfn);
1322 if (out_epfn)
1323 *out_epfn = min(zone_end_pfn(zone), epfn);
1324
1325 return;
1326 }
1327
1328 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1329 &memblock.memory, &memblock.reserved,
1330 &spa, &epa, &nid);
1331 }
1332
1333 /* signal end of iteration */
1334 if (out_spfn)
1335 *out_spfn = ULONG_MAX;
1336 if (out_epfn)
1337 *out_epfn = 0;
1338}
1339
1340#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
7c0caeb8 1341
92d12f95
MR
1342/**
1343 * memblock_alloc_range_nid - allocate boot memory block
1344 * @size: size of memory block to be allocated in bytes
1345 * @align: alignment of the region and block's size
1346 * @start: the lower bound of the memory region to allocate (phys address)
1347 * @end: the upper bound of the memory region to allocate (phys address)
1348 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1349 * @exact_nid: control the allocation fall back to other nodes
92d12f95
MR
1350 *
1351 * The allocation is performed from memory region limited by
95830666 1352 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
92d12f95 1353 *
0ac398b1
YY
1354 * If the specified node can not hold the requested memory and @exact_nid
1355 * is false, the allocation falls back to any node in the system.
92d12f95
MR
1356 *
1357 * For systems with memory mirroring, the allocation is attempted first
1358 * from the regions with mirroring enabled and then retried from any
1359 * memory region.
1360 *
1361 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1362 * allocated boot memory block, so that it is never reported as leaks.
1363 *
1364 * Return:
1365 * Physical address of allocated memory block on success, %0 on failure.
1366 */
8676af1f 1367phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
2bfc2862 1368 phys_addr_t align, phys_addr_t start,
0ac398b1
YY
1369 phys_addr_t end, int nid,
1370 bool exact_nid)
95f72d1e 1371{
92d12f95 1372 enum memblock_flags flags = choose_memblock_flags();
6ed311b2 1373 phys_addr_t found;
95f72d1e 1374
92d12f95
MR
1375 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1376 nid = NUMA_NO_NODE;
1377
2f770806
MR
1378 if (!align) {
1379 /* Can't use WARNs this early in boot on powerpc */
1380 dump_stack();
1381 align = SMP_CACHE_BYTES;
1382 }
1383
92d12f95 1384again:
fc6daaf9
TL
1385 found = memblock_find_in_range_node(size, align, start, end, nid,
1386 flags);
92d12f95
MR
1387 if (found && !memblock_reserve(found, size))
1388 goto done;
1389
0ac398b1 1390 if (nid != NUMA_NO_NODE && !exact_nid) {
92d12f95
MR
1391 found = memblock_find_in_range_node(size, align, start,
1392 end, NUMA_NO_NODE,
1393 flags);
1394 if (found && !memblock_reserve(found, size))
1395 goto done;
1396 }
1397
1398 if (flags & MEMBLOCK_MIRROR) {
1399 flags &= ~MEMBLOCK_MIRROR;
1400 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1401 &size);
1402 goto again;
1403 }
1404
1405 return 0;
1406
1407done:
1408 /* Skip kmemleak for kasan_init() due to high volume. */
1409 if (end != MEMBLOCK_ALLOC_KASAN)
aedf95ea 1410 /*
92d12f95
MR
1411 * The min_count is set to 0 so that memblock allocated
1412 * blocks are never reported as leaks. This is because many
1413 * of these blocks are only referred via the physical
1414 * address which is not looked up by kmemleak.
aedf95ea 1415 */
9099daed 1416 kmemleak_alloc_phys(found, size, 0, 0);
92d12f95
MR
1417
1418 return found;
95f72d1e
YL
1419}
1420
a2974133
MR
1421/**
1422 * memblock_phys_alloc_range - allocate a memory block inside specified range
1423 * @size: size of memory block to be allocated in bytes
1424 * @align: alignment of the region and block's size
1425 * @start: the lower bound of the memory region to allocate (physical address)
1426 * @end: the upper bound of the memory region to allocate (physical address)
1427 *
1428 * Allocate @size bytes in the between @start and @end.
1429 *
1430 * Return: physical address of the allocated memory block on success,
1431 * %0 on failure.
1432 */
8a770c2a
MR
1433phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1434 phys_addr_t align,
1435 phys_addr_t start,
1436 phys_addr_t end)
2bfc2862 1437{
0ac398b1
YY
1438 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1439 false);
7bd0b0f0
TH
1440}
1441
a2974133
MR
1442/**
1443 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1444 * @size: size of memory block to be allocated in bytes
1445 * @align: alignment of the region and block's size
1446 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1447 *
1448 * Allocates memory block from the specified NUMA node. If the node
1449 * has no available memory, attempts to allocated from any node in the
1450 * system.
1451 *
1452 * Return: physical address of the allocated memory block on success,
1453 * %0 on failure.
1454 */
9a8dd708 1455phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
9d1e2492 1456{
33755574 1457 return memblock_alloc_range_nid(size, align, 0,
0ac398b1 1458 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
95f72d1e
YL
1459}
1460
26f09e9b 1461/**
eb31d559 1462 * memblock_alloc_internal - allocate boot memory block
26f09e9b
SS
1463 * @size: size of memory block to be allocated in bytes
1464 * @align: alignment of the region and block's size
1465 * @min_addr: the lower bound of the memory region to allocate (phys address)
1466 * @max_addr: the upper bound of the memory region to allocate (phys address)
1467 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1468 * @exact_nid: control the allocation fall back to other nodes
26f09e9b 1469 *
92d12f95
MR
1470 * Allocates memory block using memblock_alloc_range_nid() and
1471 * converts the returned physical address to virtual.
26f09e9b 1472 *
92d12f95
MR
1473 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1474 * will fall back to memory below @min_addr. Other constraints, such
1475 * as node and mirrored memory will be handled again in
1476 * memblock_alloc_range_nid().
26f09e9b 1477 *
47cec443 1478 * Return:
26f09e9b
SS
1479 * Virtual address of allocated memory block on success, NULL on failure.
1480 */
eb31d559 1481static void * __init memblock_alloc_internal(
26f09e9b
SS
1482 phys_addr_t size, phys_addr_t align,
1483 phys_addr_t min_addr, phys_addr_t max_addr,
0ac398b1 1484 int nid, bool exact_nid)
26f09e9b
SS
1485{
1486 phys_addr_t alloc;
26f09e9b
SS
1487
1488 /*
1489 * Detect any accidental use of these APIs after slab is ready, as at
1490 * this moment memblock may be deinitialized already and its
c6ffc5ca 1491 * internal data may be destroyed (after execution of memblock_free_all)
26f09e9b
SS
1492 */
1493 if (WARN_ON_ONCE(slab_is_available()))
1494 return kzalloc_node(size, GFP_NOWAIT, nid);
1495
f3057ad7
MR
1496 if (max_addr > memblock.current_limit)
1497 max_addr = memblock.current_limit;
1498
0ac398b1
YY
1499 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1500 exact_nid);
26f09e9b 1501
92d12f95
MR
1502 /* retry allocation without lower limit */
1503 if (!alloc && min_addr)
0ac398b1
YY
1504 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1505 exact_nid);
26f09e9b 1506
92d12f95
MR
1507 if (!alloc)
1508 return NULL;
26f09e9b 1509
92d12f95 1510 return phys_to_virt(alloc);
26f09e9b
SS
1511}
1512
0ac398b1
YY
1513/**
1514 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1515 * without zeroing memory
1516 * @size: size of memory block to be allocated in bytes
1517 * @align: alignment of the region and block's size
1518 * @min_addr: the lower bound of the memory region from where the allocation
1519 * is preferred (phys address)
1520 * @max_addr: the upper bound of the memory region from where the allocation
1521 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1522 * allocate only from memory limited by memblock.current_limit value
1523 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1524 *
1525 * Public function, provides additional debug information (including caller
1526 * info), if enabled. Does not zero allocated memory.
1527 *
1528 * Return:
1529 * Virtual address of allocated memory block on success, NULL on failure.
1530 */
1531void * __init memblock_alloc_exact_nid_raw(
1532 phys_addr_t size, phys_addr_t align,
1533 phys_addr_t min_addr, phys_addr_t max_addr,
1534 int nid)
1535{
1536 void *ptr;
1537
1538 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1539 __func__, (u64)size, (u64)align, nid, &min_addr,
1540 &max_addr, (void *)_RET_IP_);
1541
1542 ptr = memblock_alloc_internal(size, align,
1543 min_addr, max_addr, nid, true);
1544 if (ptr && size > 0)
1545 page_init_poison(ptr, size);
1546
1547 return ptr;
1548}
1549
ea1f5f37 1550/**
eb31d559 1551 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
ea1f5f37
PT
1552 * memory and without panicking
1553 * @size: size of memory block to be allocated in bytes
1554 * @align: alignment of the region and block's size
1555 * @min_addr: the lower bound of the memory region from where the allocation
1556 * is preferred (phys address)
1557 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1558 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
ea1f5f37
PT
1559 * allocate only from memory limited by memblock.current_limit value
1560 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1561 *
1562 * Public function, provides additional debug information (including caller
1563 * info), if enabled. Does not zero allocated memory, does not panic if request
1564 * cannot be satisfied.
1565 *
47cec443 1566 * Return:
ea1f5f37
PT
1567 * Virtual address of allocated memory block on success, NULL on failure.
1568 */
eb31d559 1569void * __init memblock_alloc_try_nid_raw(
ea1f5f37
PT
1570 phys_addr_t size, phys_addr_t align,
1571 phys_addr_t min_addr, phys_addr_t max_addr,
1572 int nid)
1573{
1574 void *ptr;
1575
d75f773c 1576 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1577 __func__, (u64)size, (u64)align, nid, &min_addr,
1578 &max_addr, (void *)_RET_IP_);
ea1f5f37 1579
eb31d559 1580 ptr = memblock_alloc_internal(size, align,
0ac398b1 1581 min_addr, max_addr, nid, false);
ea1f5f37 1582 if (ptr && size > 0)
f682a97a
AD
1583 page_init_poison(ptr, size);
1584
ea1f5f37
PT
1585 return ptr;
1586}
1587
26f09e9b 1588/**
c0dbe825 1589 * memblock_alloc_try_nid - allocate boot memory block
26f09e9b
SS
1590 * @size: size of memory block to be allocated in bytes
1591 * @align: alignment of the region and block's size
1592 * @min_addr: the lower bound of the memory region from where the allocation
1593 * is preferred (phys address)
1594 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1595 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
26f09e9b
SS
1596 * allocate only from memory limited by memblock.current_limit value
1597 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1598 *
c0dbe825
MR
1599 * Public function, provides additional debug information (including caller
1600 * info), if enabled. This function zeroes the allocated memory.
26f09e9b 1601 *
47cec443 1602 * Return:
26f09e9b
SS
1603 * Virtual address of allocated memory block on success, NULL on failure.
1604 */
eb31d559 1605void * __init memblock_alloc_try_nid(
26f09e9b
SS
1606 phys_addr_t size, phys_addr_t align,
1607 phys_addr_t min_addr, phys_addr_t max_addr,
1608 int nid)
1609{
1610 void *ptr;
1611
d75f773c 1612 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1613 __func__, (u64)size, (u64)align, nid, &min_addr,
1614 &max_addr, (void *)_RET_IP_);
eb31d559 1615 ptr = memblock_alloc_internal(size, align,
0ac398b1 1616 min_addr, max_addr, nid, false);
c0dbe825 1617 if (ptr)
ea1f5f37 1618 memset(ptr, 0, size);
26f09e9b 1619
c0dbe825 1620 return ptr;
26f09e9b
SS
1621}
1622
48a833cc 1623/**
a2974133 1624 * __memblock_free_late - free pages directly to buddy allocator
48a833cc 1625 * @base: phys starting address of the boot memory block
26f09e9b
SS
1626 * @size: size of the boot memory block in bytes
1627 *
a2974133 1628 * This is only useful when the memblock allocator has already been torn
26f09e9b 1629 * down, but we are still initializing the system. Pages are released directly
a2974133 1630 * to the buddy allocator.
26f09e9b
SS
1631 */
1632void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1633{
a36aab89 1634 phys_addr_t cursor, end;
26f09e9b 1635
a36aab89 1636 end = base + size - 1;
d75f773c 1637 memblock_dbg("%s: [%pa-%pa] %pS\n",
a36aab89 1638 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1639 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1640 cursor = PFN_UP(base);
1641 end = PFN_DOWN(base + size);
1642
1643 for (; cursor < end; cursor++) {
7c2ee349 1644 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
ca79b0c2 1645 totalram_pages_inc();
26f09e9b
SS
1646 }
1647}
9d1e2492
BH
1648
1649/*
1650 * Remaining API functions
1651 */
1652
1f1ffb8a 1653phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1654{
1440c4e2 1655 return memblock.memory.total_size;
95f72d1e
YL
1656}
1657
8907de5d
SD
1658phys_addr_t __init_memblock memblock_reserved_size(void)
1659{
1660 return memblock.reserved.total_size;
1661}
1662
0a93ebef
SR
1663/* lowest address */
1664phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1665{
1666 return memblock.memory.regions[0].base;
1667}
1668
10d06439 1669phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1670{
1671 int idx = memblock.memory.cnt - 1;
1672
e3239ff9 1673 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1674}
1675
a571d4eb 1676static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1677{
1c4bc43d 1678 phys_addr_t max_addr = PHYS_ADDR_MAX;
136199f0 1679 struct memblock_region *r;
95f72d1e 1680
a571d4eb
DC
1681 /*
1682 * translate the memory @limit size into the max address within one of
1683 * the memory memblock regions, if the @limit exceeds the total size
1c4bc43d 1684 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
a571d4eb 1685 */
136199f0 1686 for_each_memblock(memory, r) {
c0ce8fef
TH
1687 if (limit <= r->size) {
1688 max_addr = r->base + limit;
1689 break;
95f72d1e 1690 }
c0ce8fef 1691 limit -= r->size;
95f72d1e 1692 }
c0ce8fef 1693
a571d4eb
DC
1694 return max_addr;
1695}
1696
1697void __init memblock_enforce_memory_limit(phys_addr_t limit)
1698{
49aef717 1699 phys_addr_t max_addr;
a571d4eb
DC
1700
1701 if (!limit)
1702 return;
1703
1704 max_addr = __find_max_addr(limit);
1705
1706 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1707 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1708 return;
1709
c0ce8fef 1710 /* truncate both memory and reserved regions */
f1af9d3a 1711 memblock_remove_range(&memblock.memory, max_addr,
1c4bc43d 1712 PHYS_ADDR_MAX);
f1af9d3a 1713 memblock_remove_range(&memblock.reserved, max_addr,
1c4bc43d 1714 PHYS_ADDR_MAX);
95f72d1e
YL
1715}
1716
c9ca9b4e
AT
1717void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1718{
1719 int start_rgn, end_rgn;
1720 int i, ret;
1721
1722 if (!size)
1723 return;
1724
1725 ret = memblock_isolate_range(&memblock.memory, base, size,
1726 &start_rgn, &end_rgn);
1727 if (ret)
1728 return;
1729
1730 /* remove all the MAP regions */
1731 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1732 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1733 memblock_remove_region(&memblock.memory, i);
1734
1735 for (i = start_rgn - 1; i >= 0; i--)
1736 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1737 memblock_remove_region(&memblock.memory, i);
1738
1739 /* truncate the reserved regions */
1740 memblock_remove_range(&memblock.reserved, 0, base);
1741 memblock_remove_range(&memblock.reserved,
1c4bc43d 1742 base + size, PHYS_ADDR_MAX);
c9ca9b4e
AT
1743}
1744
a571d4eb
DC
1745void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1746{
a571d4eb 1747 phys_addr_t max_addr;
a571d4eb
DC
1748
1749 if (!limit)
1750 return;
1751
1752 max_addr = __find_max_addr(limit);
1753
1754 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1755 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1756 return;
1757
c9ca9b4e 1758 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1759}
1760
cd79481d 1761static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1762{
1763 unsigned int left = 0, right = type->cnt;
1764
1765 do {
1766 unsigned int mid = (right + left) / 2;
1767
1768 if (addr < type->regions[mid].base)
1769 right = mid;
1770 else if (addr >= (type->regions[mid].base +
1771 type->regions[mid].size))
1772 left = mid + 1;
1773 else
1774 return mid;
1775 } while (left < right);
1776 return -1;
1777}
1778
f5a222dc 1779bool __init_memblock memblock_is_reserved(phys_addr_t addr)
95f72d1e 1780{
72d4b0b4
BH
1781 return memblock_search(&memblock.reserved, addr) != -1;
1782}
95f72d1e 1783
b4ad0c7e 1784bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1785{
1786 return memblock_search(&memblock.memory, addr) != -1;
1787}
1788
937f0c26 1789bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
bf3d3cc5
AB
1790{
1791 int i = memblock_search(&memblock.memory, addr);
1792
1793 if (i == -1)
1794 return false;
1795 return !memblock_is_nomap(&memblock.memory.regions[i]);
1796}
1797
e76b63f8
YL
1798int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1799 unsigned long *start_pfn, unsigned long *end_pfn)
1800{
1801 struct memblock_type *type = &memblock.memory;
16763230 1802 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1803
1804 if (mid == -1)
1805 return -1;
1806
f7e2f7e8
FF
1807 *start_pfn = PFN_DOWN(type->regions[mid].base);
1808 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8 1809
d622abf7 1810 return memblock_get_region_node(&type->regions[mid]);
e76b63f8 1811}
e76b63f8 1812
eab30949
SB
1813/**
1814 * memblock_is_region_memory - check if a region is a subset of memory
1815 * @base: base of region to check
1816 * @size: size of region to check
1817 *
47cec443 1818 * Check if the region [@base, @base + @size) is a subset of a memory block.
eab30949 1819 *
47cec443 1820 * Return:
eab30949
SB
1821 * 0 if false, non-zero if true
1822 */
937f0c26 1823bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1824{
abb65272 1825 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1826 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1827
1828 if (idx == -1)
937f0c26 1829 return false;
ef415ef4 1830 return (memblock.memory.regions[idx].base +
eb18f1b5 1831 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1832}
1833
eab30949
SB
1834/**
1835 * memblock_is_region_reserved - check if a region intersects reserved memory
1836 * @base: base of region to check
1837 * @size: size of region to check
1838 *
47cec443
MR
1839 * Check if the region [@base, @base + @size) intersects a reserved
1840 * memory block.
eab30949 1841 *
47cec443 1842 * Return:
c5c5c9d1 1843 * True if they intersect, false if not.
eab30949 1844 */
c5c5c9d1 1845bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1846{
eb18f1b5 1847 memblock_cap_size(base, &size);
c5c5c9d1 1848 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1849}
1850
6ede1fd3
YL
1851void __init_memblock memblock_trim_memory(phys_addr_t align)
1852{
6ede1fd3 1853 phys_addr_t start, end, orig_start, orig_end;
136199f0 1854 struct memblock_region *r;
6ede1fd3 1855
136199f0
EM
1856 for_each_memblock(memory, r) {
1857 orig_start = r->base;
1858 orig_end = r->base + r->size;
6ede1fd3
YL
1859 start = round_up(orig_start, align);
1860 end = round_down(orig_end, align);
1861
1862 if (start == orig_start && end == orig_end)
1863 continue;
1864
1865 if (start < end) {
136199f0
EM
1866 r->base = start;
1867 r->size = end - start;
6ede1fd3 1868 } else {
136199f0
EM
1869 memblock_remove_region(&memblock.memory,
1870 r - memblock.memory.regions);
1871 r--;
6ede1fd3
YL
1872 }
1873 }
1874}
e63075a3 1875
3661ca66 1876void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1877{
1878 memblock.current_limit = limit;
1879}
1880
fec51014
LA
1881phys_addr_t __init_memblock memblock_get_current_limit(void)
1882{
1883 return memblock.current_limit;
1884}
1885
0262d9c8 1886static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1887{
5d63f81c 1888 phys_addr_t base, end, size;
e1720fee 1889 enum memblock_flags flags;
8c9c1701
AK
1890 int idx;
1891 struct memblock_region *rgn;
6ed311b2 1892
0262d9c8 1893 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1894
66e8b438 1895 for_each_memblock_type(idx, type, rgn) {
7c0caeb8
TH
1896 char nid_buf[32] = "";
1897
1898 base = rgn->base;
1899 size = rgn->size;
5d63f81c 1900 end = base + size - 1;
66a20757 1901 flags = rgn->flags;
3f08a302 1902#ifdef CONFIG_NEED_MULTIPLE_NODES
7c0caeb8
TH
1903 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1904 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1905 memblock_get_region_node(rgn));
1906#endif
e1720fee 1907 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
0262d9c8 1908 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1909 }
1910}
1911
87c55870 1912static void __init_memblock __memblock_dump_all(void)
6ed311b2 1913{
6ed311b2 1914 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1915 pr_info(" memory size = %pa reserved size = %pa\n",
1916 &memblock.memory.total_size,
1917 &memblock.reserved.total_size);
6ed311b2 1918
0262d9c8
HC
1919 memblock_dump(&memblock.memory);
1920 memblock_dump(&memblock.reserved);
409efd4c 1921#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 1922 memblock_dump(&physmem);
409efd4c 1923#endif
6ed311b2
BH
1924}
1925
87c55870
MR
1926void __init_memblock memblock_dump_all(void)
1927{
1928 if (memblock_debug)
1929 __memblock_dump_all();
1930}
1931
1aadc056 1932void __init memblock_allow_resize(void)
6ed311b2 1933{
142b45a7 1934 memblock_can_resize = 1;
6ed311b2
BH
1935}
1936
6ed311b2
BH
1937static int __init early_memblock(char *p)
1938{
1939 if (p && strstr(p, "debug"))
1940 memblock_debug = 1;
1941 return 0;
1942}
1943early_param("memblock", early_memblock);
1944
bda49a81
MR
1945static void __init __free_pages_memory(unsigned long start, unsigned long end)
1946{
1947 int order;
1948
1949 while (start < end) {
1950 order = min(MAX_ORDER - 1UL, __ffs(start));
1951
1952 while (start + (1UL << order) > end)
1953 order--;
1954
1955 memblock_free_pages(pfn_to_page(start), start, order);
1956
1957 start += (1UL << order);
1958 }
1959}
1960
1961static unsigned long __init __free_memory_core(phys_addr_t start,
1962 phys_addr_t end)
1963{
1964 unsigned long start_pfn = PFN_UP(start);
1965 unsigned long end_pfn = min_t(unsigned long,
1966 PFN_DOWN(end), max_low_pfn);
1967
1968 if (start_pfn >= end_pfn)
1969 return 0;
1970
1971 __free_pages_memory(start_pfn, end_pfn);
1972
1973 return end_pfn - start_pfn;
1974}
1975
1976static unsigned long __init free_low_memory_core_early(void)
1977{
1978 unsigned long count = 0;
1979 phys_addr_t start, end;
1980 u64 i;
1981
1982 memblock_clear_hotplug(0, -1);
1983
1984 for_each_reserved_mem_region(i, &start, &end)
1985 reserve_bootmem_region(start, end);
1986
1987 /*
1988 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1989 * because in some case like Node0 doesn't have RAM installed
1990 * low ram will be on Node1
1991 */
1992 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1993 NULL)
1994 count += __free_memory_core(start, end);
1995
1996 return count;
1997}
1998
1999static int reset_managed_pages_done __initdata;
2000
2001void reset_node_managed_pages(pg_data_t *pgdat)
2002{
2003 struct zone *z;
2004
2005 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
9705bea5 2006 atomic_long_set(&z->managed_pages, 0);
bda49a81
MR
2007}
2008
2009void __init reset_all_zones_managed_pages(void)
2010{
2011 struct pglist_data *pgdat;
2012
2013 if (reset_managed_pages_done)
2014 return;
2015
2016 for_each_online_pgdat(pgdat)
2017 reset_node_managed_pages(pgdat);
2018
2019 reset_managed_pages_done = 1;
2020}
2021
2022/**
2023 * memblock_free_all - release free pages to the buddy allocator
2024 *
2025 * Return: the number of pages actually released.
2026 */
2027unsigned long __init memblock_free_all(void)
2028{
2029 unsigned long pages;
2030
2031 reset_all_zones_managed_pages();
2032
2033 pages = free_low_memory_core_early();
ca79b0c2 2034 totalram_pages_add(pages);
bda49a81
MR
2035
2036 return pages;
2037}
2038
350e88ba 2039#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
6d03b885
BH
2040
2041static int memblock_debug_show(struct seq_file *m, void *private)
2042{
2043 struct memblock_type *type = m->private;
2044 struct memblock_region *reg;
2045 int i;
5d63f81c 2046 phys_addr_t end;
6d03b885
BH
2047
2048 for (i = 0; i < type->cnt; i++) {
2049 reg = &type->regions[i];
5d63f81c 2050 end = reg->base + reg->size - 1;
6d03b885 2051
5d63f81c
MC
2052 seq_printf(m, "%4d: ", i);
2053 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
6d03b885
BH
2054 }
2055 return 0;
2056}
5ad35093 2057DEFINE_SHOW_ATTRIBUTE(memblock_debug);
6d03b885
BH
2058
2059static int __init memblock_init_debugfs(void)
2060{
2061 struct dentry *root = debugfs_create_dir("memblock", NULL);
d9f7979c 2062
0825a6f9
JP
2063 debugfs_create_file("memory", 0444, root,
2064 &memblock.memory, &memblock_debug_fops);
2065 debugfs_create_file("reserved", 0444, root,
2066 &memblock.reserved, &memblock_debug_fops);
70210ed9 2067#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905
DH
2068 debugfs_create_file("physmem", 0444, root, &physmem,
2069 &memblock_debug_fops);
70210ed9 2070#endif
6d03b885
BH
2071
2072 return 0;
2073}
2074__initcall(memblock_init_debugfs);
2075
2076#endif /* CONFIG_DEBUG_FS */