]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memblock.c
mm/memblock: correct doc for function
[mirror_ubuntu-jammy-kernel.git] / mm / memblock.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
95f72d1e
YL
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
95f72d1e
YL
7 */
8
9#include <linux/kernel.h>
142b45a7 10#include <linux/slab.h>
95f72d1e
YL
11#include <linux/init.h>
12#include <linux/bitops.h>
449e8df3 13#include <linux/poison.h>
c196f76f 14#include <linux/pfn.h>
6d03b885 15#include <linux/debugfs.h>
514c6032 16#include <linux/kmemleak.h>
6d03b885 17#include <linux/seq_file.h>
95f72d1e
YL
18#include <linux/memblock.h>
19
c4c5ad6b 20#include <asm/sections.h>
26f09e9b
SS
21#include <linux/io.h>
22
23#include "internal.h"
79442ed1 24
8a5b403d
AB
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
3e039c5c
MR
32/**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmap`` - describes the actual physical memory regardless of
48 * the possible restrictions; the ``physmap`` type is only available
49 * on some architectures.
50 *
51 * Each region is represented by :c:type:`struct memblock_region` that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the :c:type:`struct
54 * memblock_type` which contains an array of memory regions along with
55 * the allocator metadata. The memory types are nicely wrapped with
56 * :c:type:`struct memblock`. This structure is statically initialzed
57 * at build time. The region arrays for the "memory" and "reserved"
58 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
59 * "physmap" type to %INIT_PHYSMEM_REGIONS.
6e5af9a8
C
60 * The memblock_allow_resize() enables automatic resizing of the region
61 * arrays during addition of new regions. This feature should be used
62 * with care so that memory allocated for the region array will not
63 * overlap with areas that should be reserved, for example initrd.
3e039c5c
MR
64 *
65 * The early architecture setup should tell memblock what the physical
6e5af9a8
C
66 * memory layout is by using memblock_add() or memblock_add_node()
67 * functions. The first function does not assign the region to a NUMA
68 * node and it is appropriate for UMA systems. Yet, it is possible to
69 * use it on NUMA systems as well and assign the region to a NUMA node
70 * later in the setup process using memblock_set_node(). The
71 * memblock_add_node() performs such an assignment directly.
3e039c5c 72 *
a2974133
MR
73 * Once memblock is setup the memory can be allocated using one of the
74 * API variants:
75 *
6e5af9a8
C
76 * * memblock_phys_alloc*() - these functions return the **physical**
77 * address of the allocated memory
78 * * memblock_alloc*() - these functions return the **virtual** address
79 * of the allocated memory.
a2974133
MR
80 *
81 * Note, that both API variants use implict assumptions about allowed
82 * memory ranges and the fallback methods. Consult the documentation
6e5af9a8
C
83 * of memblock_alloc_internal() and memblock_alloc_range_nid()
84 * functions for more elaborate description.
3e039c5c 85 *
6e5af9a8
C
86 * As the system boot progresses, the architecture specific mem_init()
87 * function frees all the memory to the buddy page allocator.
3e039c5c 88 *
6e5af9a8 89 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
3e039c5c 90 * memblock data structures will be discarded after the system
6e5af9a8 91 * initialization completes.
3e039c5c
MR
92 */
93
bda49a81
MR
94#ifndef CONFIG_NEED_MULTIPLE_NODES
95struct pglist_data __refdata contig_page_data;
96EXPORT_SYMBOL(contig_page_data);
97#endif
98
99unsigned long max_low_pfn;
100unsigned long min_low_pfn;
101unsigned long max_pfn;
102unsigned long long max_possible_pfn;
103
fe091c20 104static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
8a5b403d 105static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
70210ed9
PH
106#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
107static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
108#endif
fe091c20
TH
109
110struct memblock memblock __initdata_memblock = {
111 .memory.regions = memblock_memory_init_regions,
112 .memory.cnt = 1, /* empty dummy entry */
113 .memory.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 114 .memory.name = "memory",
fe091c20
TH
115
116 .reserved.regions = memblock_reserved_init_regions,
117 .reserved.cnt = 1, /* empty dummy entry */
8a5b403d 118 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
0262d9c8 119 .reserved.name = "reserved",
fe091c20 120
70210ed9
PH
121#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
122 .physmem.regions = memblock_physmem_init_regions,
123 .physmem.cnt = 1, /* empty dummy entry */
124 .physmem.max = INIT_PHYSMEM_REGIONS,
0262d9c8 125 .physmem.name = "physmem",
70210ed9
PH
126#endif
127
79442ed1 128 .bottom_up = false,
fe091c20
TH
129 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
130};
95f72d1e 131
10d06439 132int memblock_debug __initdata_memblock;
a3f5bafc 133static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 134static int memblock_can_resize __initdata_memblock;
181eb394
GS
135static int memblock_memory_in_slab __initdata_memblock = 0;
136static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 137
c366ea89 138static enum memblock_flags __init_memblock choose_memblock_flags(void)
a3f5bafc
TL
139{
140 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
141}
142
eb18f1b5
TH
143/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
144static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
145{
1c4bc43d 146 return *size = min(*size, PHYS_ADDR_MAX - base);
eb18f1b5
TH
147}
148
6ed311b2
BH
149/*
150 * Address comparison utilities
151 */
10d06439 152static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 153 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
154{
155 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
156}
157
95cf82ec 158bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 159 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
160{
161 unsigned long i;
162
f14516fb
AK
163 for (i = 0; i < type->cnt; i++)
164 if (memblock_addrs_overlap(base, size, type->regions[i].base,
165 type->regions[i].size))
6ed311b2 166 break;
c5c5c9d1 167 return i < type->cnt;
6ed311b2
BH
168}
169
47cec443 170/**
79442ed1
TC
171 * __memblock_find_range_bottom_up - find free area utility in bottom-up
172 * @start: start of candidate range
47cec443
MR
173 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
174 * %MEMBLOCK_ALLOC_ACCESSIBLE
79442ed1
TC
175 * @size: size of free area to find
176 * @align: alignment of free area to find
b1154233 177 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 178 * @flags: pick from blocks based on memory attributes
79442ed1
TC
179 *
180 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
181 *
47cec443 182 * Return:
79442ed1
TC
183 * Found address on success, 0 on failure.
184 */
185static phys_addr_t __init_memblock
186__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9 187 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 188 enum memblock_flags flags)
79442ed1
TC
189{
190 phys_addr_t this_start, this_end, cand;
191 u64 i;
192
fc6daaf9 193 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
194 this_start = clamp(this_start, start, end);
195 this_end = clamp(this_end, start, end);
196
197 cand = round_up(this_start, align);
198 if (cand < this_end && this_end - cand >= size)
199 return cand;
200 }
201
202 return 0;
203}
204
7bd0b0f0 205/**
1402899e 206 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0 207 * @start: start of candidate range
47cec443
MR
208 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
209 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
210 * @size: size of free area to find
211 * @align: alignment of free area to find
b1154233 212 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 213 * @flags: pick from blocks based on memory attributes
7bd0b0f0 214 *
1402899e 215 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0 216 *
47cec443 217 * Return:
79442ed1 218 * Found address on success, 0 on failure.
6ed311b2 219 */
1402899e
TC
220static phys_addr_t __init_memblock
221__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9 222 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 223 enum memblock_flags flags)
f7210e6c
TC
224{
225 phys_addr_t this_start, this_end, cand;
226 u64 i;
227
fc6daaf9
TL
228 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
229 NULL) {
f7210e6c
TC
230 this_start = clamp(this_start, start, end);
231 this_end = clamp(this_end, start, end);
232
233 if (this_end < size)
234 continue;
235
236 cand = round_down(this_end - size, align);
237 if (cand >= this_start)
238 return cand;
239 }
1402899e 240
f7210e6c
TC
241 return 0;
242}
6ed311b2 243
1402899e
TC
244/**
245 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
246 * @size: size of free area to find
247 * @align: alignment of free area to find
87029ee9 248 * @start: start of candidate range
47cec443
MR
249 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
250 * %MEMBLOCK_ALLOC_ACCESSIBLE
b1154233 251 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 252 * @flags: pick from blocks based on memory attributes
1402899e
TC
253 *
254 * Find @size free area aligned to @align in the specified range and node.
255 *
79442ed1
TC
256 * When allocation direction is bottom-up, the @start should be greater
257 * than the end of the kernel image. Otherwise, it will be trimmed. The
258 * reason is that we want the bottom-up allocation just near the kernel
259 * image so it is highly likely that the allocated memory and the kernel
260 * will reside in the same node.
261 *
262 * If bottom-up allocation failed, will try to allocate memory top-down.
263 *
47cec443 264 * Return:
79442ed1 265 * Found address on success, 0 on failure.
1402899e 266 */
c366ea89 267static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
87029ee9 268 phys_addr_t align, phys_addr_t start,
e1720fee
MR
269 phys_addr_t end, int nid,
270 enum memblock_flags flags)
1402899e 271{
0cfb8f0c 272 phys_addr_t kernel_end, ret;
79442ed1 273
1402899e 274 /* pump up @end */
fed84c78
QC
275 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
276 end == MEMBLOCK_ALLOC_KASAN)
1402899e
TC
277 end = memblock.current_limit;
278
279 /* avoid allocating the first page */
280 start = max_t(phys_addr_t, start, PAGE_SIZE);
281 end = max(start, end);
79442ed1
TC
282 kernel_end = __pa_symbol(_end);
283
284 /*
285 * try bottom-up allocation only when bottom-up mode
286 * is set and @end is above the kernel image.
287 */
288 if (memblock_bottom_up() && end > kernel_end) {
289 phys_addr_t bottom_up_start;
290
291 /* make sure we will allocate above the kernel */
292 bottom_up_start = max(start, kernel_end);
293
294 /* ok, try bottom-up allocation first */
295 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
fc6daaf9 296 size, align, nid, flags);
79442ed1
TC
297 if (ret)
298 return ret;
299
300 /*
301 * we always limit bottom-up allocation above the kernel,
302 * but top-down allocation doesn't have the limit, so
303 * retrying top-down allocation may succeed when bottom-up
304 * allocation failed.
305 *
306 * bottom-up allocation is expected to be fail very rarely,
307 * so we use WARN_ONCE() here to see the stack trace if
308 * fail happens.
309 */
e3d301ca
MH
310 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
311 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
79442ed1 312 }
1402899e 313
fc6daaf9
TL
314 return __memblock_find_range_top_down(start, end, size, align, nid,
315 flags);
1402899e
TC
316}
317
7bd0b0f0
TH
318/**
319 * memblock_find_in_range - find free area in given range
320 * @start: start of candidate range
47cec443
MR
321 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
322 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
323 * @size: size of free area to find
324 * @align: alignment of free area to find
325 *
326 * Find @size free area aligned to @align in the specified range.
327 *
47cec443 328 * Return:
79442ed1 329 * Found address on success, 0 on failure.
fc769a8e 330 */
7bd0b0f0
TH
331phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
332 phys_addr_t end, phys_addr_t size,
333 phys_addr_t align)
6ed311b2 334{
a3f5bafc 335 phys_addr_t ret;
e1720fee 336 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
337
338again:
339 ret = memblock_find_in_range_node(size, align, start, end,
340 NUMA_NO_NODE, flags);
341
342 if (!ret && (flags & MEMBLOCK_MIRROR)) {
343 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
344 &size);
345 flags &= ~MEMBLOCK_MIRROR;
346 goto again;
347 }
348
349 return ret;
6ed311b2
BH
350}
351
10d06439 352static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 353{
1440c4e2 354 type->total_size -= type->regions[r].size;
7c0caeb8
TH
355 memmove(&type->regions[r], &type->regions[r + 1],
356 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 357 type->cnt--;
95f72d1e 358
8f7a6605
BH
359 /* Special case for empty arrays */
360 if (type->cnt == 0) {
1440c4e2 361 WARN_ON(type->total_size != 0);
8f7a6605
BH
362 type->cnt = 1;
363 type->regions[0].base = 0;
364 type->regions[0].size = 0;
66a20757 365 type->regions[0].flags = 0;
7c0caeb8 366 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 367 }
95f72d1e
YL
368}
369
350e88ba 370#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
3010f876 371/**
47cec443 372 * memblock_discard - discard memory and reserved arrays if they were allocated
3010f876
PT
373 */
374void __init memblock_discard(void)
5e270e25 375{
3010f876 376 phys_addr_t addr, size;
5e270e25 377
3010f876
PT
378 if (memblock.reserved.regions != memblock_reserved_init_regions) {
379 addr = __pa(memblock.reserved.regions);
380 size = PAGE_ALIGN(sizeof(struct memblock_region) *
381 memblock.reserved.max);
382 __memblock_free_late(addr, size);
383 }
5e270e25 384
91b540f9 385 if (memblock.memory.regions != memblock_memory_init_regions) {
3010f876
PT
386 addr = __pa(memblock.memory.regions);
387 size = PAGE_ALIGN(sizeof(struct memblock_region) *
388 memblock.memory.max);
389 __memblock_free_late(addr, size);
390 }
5e270e25 391}
5e270e25
PH
392#endif
393
48c3b583
GP
394/**
395 * memblock_double_array - double the size of the memblock regions array
396 * @type: memblock type of the regions array being doubled
397 * @new_area_start: starting address of memory range to avoid overlap with
398 * @new_area_size: size of memory range to avoid overlap with
399 *
400 * Double the size of the @type regions array. If memblock is being used to
401 * allocate memory for a new reserved regions array and there is a previously
47cec443 402 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
48c3b583
GP
403 * waiting to be reserved, ensure the memory used by the new array does
404 * not overlap.
405 *
47cec443 406 * Return:
48c3b583
GP
407 * 0 on success, -1 on failure.
408 */
409static int __init_memblock memblock_double_array(struct memblock_type *type,
410 phys_addr_t new_area_start,
411 phys_addr_t new_area_size)
142b45a7
BH
412{
413 struct memblock_region *new_array, *old_array;
29f67386 414 phys_addr_t old_alloc_size, new_alloc_size;
a36aab89 415 phys_addr_t old_size, new_size, addr, new_end;
142b45a7 416 int use_slab = slab_is_available();
181eb394 417 int *in_slab;
142b45a7
BH
418
419 /* We don't allow resizing until we know about the reserved regions
420 * of memory that aren't suitable for allocation
421 */
422 if (!memblock_can_resize)
423 return -1;
424
142b45a7
BH
425 /* Calculate new doubled size */
426 old_size = type->max * sizeof(struct memblock_region);
427 new_size = old_size << 1;
29f67386
YL
428 /*
429 * We need to allocated new one align to PAGE_SIZE,
430 * so we can free them completely later.
431 */
432 old_alloc_size = PAGE_ALIGN(old_size);
433 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 434
181eb394
GS
435 /* Retrieve the slab flag */
436 if (type == &memblock.memory)
437 in_slab = &memblock_memory_in_slab;
438 else
439 in_slab = &memblock_reserved_in_slab;
440
a2974133 441 /* Try to find some space for it */
142b45a7
BH
442 if (use_slab) {
443 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 444 addr = new_array ? __pa(new_array) : 0;
4e2f0775 445 } else {
48c3b583
GP
446 /* only exclude range when trying to double reserved.regions */
447 if (type != &memblock.reserved)
448 new_area_start = new_area_size = 0;
449
450 addr = memblock_find_in_range(new_area_start + new_area_size,
451 memblock.current_limit,
29f67386 452 new_alloc_size, PAGE_SIZE);
48c3b583
GP
453 if (!addr && new_area_size)
454 addr = memblock_find_in_range(0,
fd07383b
AM
455 min(new_area_start, memblock.current_limit),
456 new_alloc_size, PAGE_SIZE);
48c3b583 457
15674868 458 new_array = addr ? __va(addr) : NULL;
4e2f0775 459 }
1f5026a7 460 if (!addr) {
142b45a7 461 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 462 type->name, type->max, type->max * 2);
142b45a7
BH
463 return -1;
464 }
142b45a7 465
a36aab89
MR
466 new_end = addr + new_size - 1;
467 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
468 type->name, type->max * 2, &addr, &new_end);
ea9e4376 469
fd07383b
AM
470 /*
471 * Found space, we now need to move the array over before we add the
472 * reserved region since it may be our reserved array itself that is
473 * full.
142b45a7
BH
474 */
475 memcpy(new_array, type->regions, old_size);
476 memset(new_array + type->max, 0, old_size);
477 old_array = type->regions;
478 type->regions = new_array;
479 type->max <<= 1;
480
fd07383b 481 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
482 if (*in_slab)
483 kfree(old_array);
484 else if (old_array != memblock_memory_init_regions &&
485 old_array != memblock_reserved_init_regions)
29f67386 486 memblock_free(__pa(old_array), old_alloc_size);
142b45a7 487
fd07383b
AM
488 /*
489 * Reserve the new array if that comes from the memblock. Otherwise, we
490 * needn't do it
181eb394
GS
491 */
492 if (!use_slab)
29f67386 493 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
494
495 /* Update slab flag */
496 *in_slab = use_slab;
497
142b45a7
BH
498 return 0;
499}
500
784656f9
TH
501/**
502 * memblock_merge_regions - merge neighboring compatible regions
503 * @type: memblock type to scan
504 *
505 * Scan @type and merge neighboring compatible regions.
506 */
507static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 508{
784656f9 509 int i = 0;
95f72d1e 510
784656f9
TH
511 /* cnt never goes below 1 */
512 while (i < type->cnt - 1) {
513 struct memblock_region *this = &type->regions[i];
514 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 515
7c0caeb8
TH
516 if (this->base + this->size != next->base ||
517 memblock_get_region_node(this) !=
66a20757
TC
518 memblock_get_region_node(next) ||
519 this->flags != next->flags) {
784656f9
TH
520 BUG_ON(this->base + this->size > next->base);
521 i++;
522 continue;
8f7a6605
BH
523 }
524
784656f9 525 this->size += next->size;
c0232ae8
LF
526 /* move forward from next + 1, index of which is i + 2 */
527 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 528 type->cnt--;
95f72d1e 529 }
784656f9 530}
95f72d1e 531
784656f9
TH
532/**
533 * memblock_insert_region - insert new memblock region
209ff86d
TC
534 * @type: memblock type to insert into
535 * @idx: index for the insertion point
536 * @base: base address of the new region
537 * @size: size of the new region
538 * @nid: node id of the new region
66a20757 539 * @flags: flags of the new region
784656f9 540 *
47cec443 541 * Insert new memblock region [@base, @base + @size) into @type at @idx.
412d0008 542 * @type must already have extra room to accommodate the new region.
784656f9
TH
543 */
544static void __init_memblock memblock_insert_region(struct memblock_type *type,
545 int idx, phys_addr_t base,
66a20757 546 phys_addr_t size,
e1720fee
MR
547 int nid,
548 enum memblock_flags flags)
784656f9
TH
549{
550 struct memblock_region *rgn = &type->regions[idx];
551
552 BUG_ON(type->cnt >= type->max);
553 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
554 rgn->base = base;
555 rgn->size = size;
66a20757 556 rgn->flags = flags;
7c0caeb8 557 memblock_set_region_node(rgn, nid);
784656f9 558 type->cnt++;
1440c4e2 559 type->total_size += size;
784656f9
TH
560}
561
562/**
f1af9d3a 563 * memblock_add_range - add new memblock region
784656f9
TH
564 * @type: memblock type to add new region into
565 * @base: base address of the new region
566 * @size: size of the new region
7fb0bc3f 567 * @nid: nid of the new region
66a20757 568 * @flags: flags of the new region
784656f9 569 *
47cec443 570 * Add new memblock region [@base, @base + @size) into @type. The new region
784656f9
TH
571 * is allowed to overlap with existing ones - overlaps don't affect already
572 * existing regions. @type is guaranteed to be minimal (all neighbouring
573 * compatible regions are merged) after the addition.
574 *
47cec443 575 * Return:
784656f9
TH
576 * 0 on success, -errno on failure.
577 */
f1af9d3a 578int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757 579 phys_addr_t base, phys_addr_t size,
e1720fee 580 int nid, enum memblock_flags flags)
784656f9
TH
581{
582 bool insert = false;
eb18f1b5
TH
583 phys_addr_t obase = base;
584 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
585 int idx, nr_new;
586 struct memblock_region *rgn;
784656f9 587
b3dc627c
TH
588 if (!size)
589 return 0;
590
784656f9
TH
591 /* special case for empty array */
592 if (type->regions[0].size == 0) {
1440c4e2 593 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
594 type->regions[0].base = base;
595 type->regions[0].size = size;
66a20757 596 type->regions[0].flags = flags;
7fb0bc3f 597 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 598 type->total_size = size;
8f7a6605 599 return 0;
95f72d1e 600 }
784656f9
TH
601repeat:
602 /*
603 * The following is executed twice. Once with %false @insert and
604 * then with %true. The first counts the number of regions needed
412d0008 605 * to accommodate the new area. The second actually inserts them.
142b45a7 606 */
784656f9
TH
607 base = obase;
608 nr_new = 0;
95f72d1e 609
66e8b438 610 for_each_memblock_type(idx, type, rgn) {
784656f9
TH
611 phys_addr_t rbase = rgn->base;
612 phys_addr_t rend = rbase + rgn->size;
613
614 if (rbase >= end)
95f72d1e 615 break;
784656f9
TH
616 if (rend <= base)
617 continue;
618 /*
619 * @rgn overlaps. If it separates the lower part of new
620 * area, insert that portion.
621 */
622 if (rbase > base) {
c0a29498
WY
623#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
624 WARN_ON(nid != memblock_get_region_node(rgn));
625#endif
4fcab5f4 626 WARN_ON(flags != rgn->flags);
784656f9
TH
627 nr_new++;
628 if (insert)
8c9c1701 629 memblock_insert_region(type, idx++, base,
66a20757
TC
630 rbase - base, nid,
631 flags);
95f72d1e 632 }
784656f9
TH
633 /* area below @rend is dealt with, forget about it */
634 base = min(rend, end);
95f72d1e 635 }
784656f9
TH
636
637 /* insert the remaining portion */
638 if (base < end) {
639 nr_new++;
640 if (insert)
8c9c1701 641 memblock_insert_region(type, idx, base, end - base,
66a20757 642 nid, flags);
95f72d1e 643 }
95f72d1e 644
ef3cc4db 645 if (!nr_new)
646 return 0;
647
784656f9
TH
648 /*
649 * If this was the first round, resize array and repeat for actual
650 * insertions; otherwise, merge and return.
142b45a7 651 */
784656f9
TH
652 if (!insert) {
653 while (type->cnt + nr_new > type->max)
48c3b583 654 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
655 return -ENOMEM;
656 insert = true;
657 goto repeat;
658 } else {
659 memblock_merge_regions(type);
660 return 0;
142b45a7 661 }
95f72d1e
YL
662}
663
48a833cc
MR
664/**
665 * memblock_add_node - add new memblock region within a NUMA node
666 * @base: base address of the new region
667 * @size: size of the new region
668 * @nid: nid of the new region
669 *
670 * Add new memblock region [@base, @base + @size) to the "memory"
671 * type. See memblock_add_range() description for mode details
672 *
673 * Return:
674 * 0 on success, -errno on failure.
675 */
7fb0bc3f
TH
676int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
677 int nid)
678{
f1af9d3a 679 return memblock_add_range(&memblock.memory, base, size, nid, 0);
7fb0bc3f
TH
680}
681
48a833cc
MR
682/**
683 * memblock_add - add new memblock region
684 * @base: base address of the new region
685 * @size: size of the new region
686 *
687 * Add new memblock region [@base, @base + @size) to the "memory"
688 * type. See memblock_add_range() description for mode details
689 *
690 * Return:
691 * 0 on success, -errno on failure.
692 */
f705ac4b 693int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 694{
5d63f81c
MC
695 phys_addr_t end = base + size - 1;
696
d75f773c 697 memblock_dbg("memblock_add: [%pa-%pa] %pS\n",
5d63f81c 698 &base, &end, (void *)_RET_IP_);
6a4055bc 699
f705ac4b 700 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
701}
702
6a9ceb31
TH
703/**
704 * memblock_isolate_range - isolate given range into disjoint memblocks
705 * @type: memblock type to isolate range for
706 * @base: base of range to isolate
707 * @size: size of range to isolate
708 * @start_rgn: out parameter for the start of isolated region
709 * @end_rgn: out parameter for the end of isolated region
710 *
711 * Walk @type and ensure that regions don't cross the boundaries defined by
47cec443 712 * [@base, @base + @size). Crossing regions are split at the boundaries,
6a9ceb31
TH
713 * which may create at most two more regions. The index of the first
714 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
715 *
47cec443 716 * Return:
6a9ceb31
TH
717 * 0 on success, -errno on failure.
718 */
719static int __init_memblock memblock_isolate_range(struct memblock_type *type,
720 phys_addr_t base, phys_addr_t size,
721 int *start_rgn, int *end_rgn)
722{
eb18f1b5 723 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
724 int idx;
725 struct memblock_region *rgn;
6a9ceb31
TH
726
727 *start_rgn = *end_rgn = 0;
728
b3dc627c
TH
729 if (!size)
730 return 0;
731
6a9ceb31
TH
732 /* we'll create at most two more regions */
733 while (type->cnt + 2 > type->max)
48c3b583 734 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
735 return -ENOMEM;
736
66e8b438 737 for_each_memblock_type(idx, type, rgn) {
6a9ceb31
TH
738 phys_addr_t rbase = rgn->base;
739 phys_addr_t rend = rbase + rgn->size;
740
741 if (rbase >= end)
742 break;
743 if (rend <= base)
744 continue;
745
746 if (rbase < base) {
747 /*
748 * @rgn intersects from below. Split and continue
749 * to process the next region - the new top half.
750 */
751 rgn->base = base;
1440c4e2
TH
752 rgn->size -= base - rbase;
753 type->total_size -= base - rbase;
8c9c1701 754 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
755 memblock_get_region_node(rgn),
756 rgn->flags);
6a9ceb31
TH
757 } else if (rend > end) {
758 /*
759 * @rgn intersects from above. Split and redo the
760 * current region - the new bottom half.
761 */
762 rgn->base = end;
1440c4e2
TH
763 rgn->size -= end - rbase;
764 type->total_size -= end - rbase;
8c9c1701 765 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
766 memblock_get_region_node(rgn),
767 rgn->flags);
6a9ceb31
TH
768 } else {
769 /* @rgn is fully contained, record it */
770 if (!*end_rgn)
8c9c1701
AK
771 *start_rgn = idx;
772 *end_rgn = idx + 1;
6a9ceb31
TH
773 }
774 }
775
776 return 0;
777}
6a9ceb31 778
35bd16a2 779static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 780 phys_addr_t base, phys_addr_t size)
95f72d1e 781{
71936180
TH
782 int start_rgn, end_rgn;
783 int i, ret;
95f72d1e 784
71936180
TH
785 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
786 if (ret)
787 return ret;
95f72d1e 788
71936180
TH
789 for (i = end_rgn - 1; i >= start_rgn; i--)
790 memblock_remove_region(type, i);
8f7a6605 791 return 0;
95f72d1e
YL
792}
793
581adcbe 794int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 795{
25cf23d7
MK
796 phys_addr_t end = base + size - 1;
797
798 memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
799 &base, &end, (void *)_RET_IP_);
800
f1af9d3a 801 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
802}
803
4d72868c
MR
804/**
805 * memblock_free - free boot memory block
806 * @base: phys starting address of the boot memory block
807 * @size: size of the boot memory block in bytes
808 *
809 * Free boot memory block previously allocated by memblock_alloc_xx() API.
810 * The freeing memory will not be released to the buddy allocator.
811 */
581adcbe 812int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 813{
5d63f81c
MC
814 phys_addr_t end = base + size - 1;
815
d75f773c 816 memblock_dbg(" memblock_free: [%pa-%pa] %pS\n",
5d63f81c 817 &base, &end, (void *)_RET_IP_);
24aa0788 818
9099daed 819 kmemleak_free_part_phys(base, size);
f1af9d3a 820 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
821}
822
f705ac4b 823int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 824{
5d63f81c
MC
825 phys_addr_t end = base + size - 1;
826
d75f773c 827 memblock_dbg("memblock_reserve: [%pa-%pa] %pS\n",
5d63f81c 828 &base, &end, (void *)_RET_IP_);
95f72d1e 829
f705ac4b 830 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
831}
832
66b16edf 833/**
47cec443
MR
834 * memblock_setclr_flag - set or clear flag for a memory region
835 * @base: base address of the region
836 * @size: size of the region
837 * @set: set or clear the flag
838 * @flag: the flag to udpate
66b16edf 839 *
4308ce17 840 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 841 *
47cec443 842 * Return: 0 on success, -errno on failure.
66b16edf 843 */
4308ce17
TL
844static int __init_memblock memblock_setclr_flag(phys_addr_t base,
845 phys_addr_t size, int set, int flag)
66b16edf
TC
846{
847 struct memblock_type *type = &memblock.memory;
848 int i, ret, start_rgn, end_rgn;
849
850 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
851 if (ret)
852 return ret;
853
fe145124
MR
854 for (i = start_rgn; i < end_rgn; i++) {
855 struct memblock_region *r = &type->regions[i];
856
4308ce17 857 if (set)
fe145124 858 r->flags |= flag;
4308ce17 859 else
fe145124
MR
860 r->flags &= ~flag;
861 }
66b16edf
TC
862
863 memblock_merge_regions(type);
864 return 0;
865}
866
867/**
4308ce17 868 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
869 * @base: the base phys addr of the region
870 * @size: the size of the region
871 *
47cec443 872 * Return: 0 on success, -errno on failure.
4308ce17
TL
873 */
874int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
875{
876 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
877}
878
879/**
880 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
881 * @base: the base phys addr of the region
882 * @size: the size of the region
66b16edf 883 *
47cec443 884 * Return: 0 on success, -errno on failure.
66b16edf
TC
885 */
886int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
887{
4308ce17 888 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
889}
890
a3f5bafc
TL
891/**
892 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
893 * @base: the base phys addr of the region
894 * @size: the size of the region
895 *
47cec443 896 * Return: 0 on success, -errno on failure.
a3f5bafc
TL
897 */
898int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
899{
900 system_has_some_mirror = true;
901
902 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
903}
904
bf3d3cc5
AB
905/**
906 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
907 * @base: the base phys addr of the region
908 * @size: the size of the region
909 *
47cec443 910 * Return: 0 on success, -errno on failure.
bf3d3cc5
AB
911 */
912int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
913{
914 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
915}
a3f5bafc 916
4c546b8a
AT
917/**
918 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
919 * @base: the base phys addr of the region
920 * @size: the size of the region
921 *
47cec443 922 * Return: 0 on success, -errno on failure.
4c546b8a
AT
923 */
924int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
925{
926 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
927}
928
8e7a7f86
RH
929/**
930 * __next_reserved_mem_region - next function for for_each_reserved_region()
931 * @idx: pointer to u64 loop variable
932 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
933 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
934 *
935 * Iterate over all reserved memory regions.
936 */
937void __init_memblock __next_reserved_mem_region(u64 *idx,
938 phys_addr_t *out_start,
939 phys_addr_t *out_end)
940{
567d117b 941 struct memblock_type *type = &memblock.reserved;
8e7a7f86 942
cd33a76b 943 if (*idx < type->cnt) {
567d117b 944 struct memblock_region *r = &type->regions[*idx];
8e7a7f86
RH
945 phys_addr_t base = r->base;
946 phys_addr_t size = r->size;
947
948 if (out_start)
949 *out_start = base;
950 if (out_end)
951 *out_end = base + size - 1;
952
953 *idx += 1;
954 return;
955 }
956
957 /* signal end of iteration */
958 *idx = ULLONG_MAX;
959}
960
c9a688a3
MR
961static bool should_skip_region(struct memblock_region *m, int nid, int flags)
962{
963 int m_nid = memblock_get_region_node(m);
964
965 /* only memory regions are associated with nodes, check it */
966 if (nid != NUMA_NO_NODE && nid != m_nid)
967 return true;
968
969 /* skip hotpluggable memory regions if needed */
970 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
971 return true;
972
973 /* if we want mirror memory skip non-mirror memory regions */
974 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
975 return true;
976
977 /* skip nomap memory unless we were asked for it explicitly */
978 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
979 return true;
980
981 return false;
982}
983
35fd0808 984/**
a2974133 985 * __next_mem_range - next function for for_each_free_mem_range() etc.
35fd0808 986 * @idx: pointer to u64 loop variable
b1154233 987 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 988 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
989 * @type_a: pointer to memblock_type from where the range is taken
990 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
991 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
992 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
993 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 994 *
f1af9d3a 995 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 996 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
997 * *@idx contains index into type_a and the upper 32bit indexes the
998 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
999 * look like the following,
1000 *
1001 * 0:[0-16), 1:[32-48), 2:[128-130)
1002 *
1003 * The upper 32bit indexes the following regions.
1004 *
1005 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1006 *
1007 * As both region arrays are sorted, the function advances the two indices
1008 * in lockstep and returns each intersection.
1009 */
e1720fee
MR
1010void __init_memblock __next_mem_range(u64 *idx, int nid,
1011 enum memblock_flags flags,
f1af9d3a
PH
1012 struct memblock_type *type_a,
1013 struct memblock_type *type_b,
1014 phys_addr_t *out_start,
1015 phys_addr_t *out_end, int *out_nid)
35fd0808 1016{
f1af9d3a
PH
1017 int idx_a = *idx & 0xffffffff;
1018 int idx_b = *idx >> 32;
b1154233 1019
f1af9d3a
PH
1020 if (WARN_ONCE(nid == MAX_NUMNODES,
1021 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 1022 nid = NUMA_NO_NODE;
35fd0808 1023
f1af9d3a
PH
1024 for (; idx_a < type_a->cnt; idx_a++) {
1025 struct memblock_region *m = &type_a->regions[idx_a];
1026
35fd0808
TH
1027 phys_addr_t m_start = m->base;
1028 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1029 int m_nid = memblock_get_region_node(m);
35fd0808 1030
c9a688a3 1031 if (should_skip_region(m, nid, flags))
bf3d3cc5
AB
1032 continue;
1033
f1af9d3a
PH
1034 if (!type_b) {
1035 if (out_start)
1036 *out_start = m_start;
1037 if (out_end)
1038 *out_end = m_end;
1039 if (out_nid)
1040 *out_nid = m_nid;
1041 idx_a++;
1042 *idx = (u32)idx_a | (u64)idx_b << 32;
1043 return;
1044 }
1045
1046 /* scan areas before each reservation */
1047 for (; idx_b < type_b->cnt + 1; idx_b++) {
1048 struct memblock_region *r;
1049 phys_addr_t r_start;
1050 phys_addr_t r_end;
1051
1052 r = &type_b->regions[idx_b];
1053 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1054 r_end = idx_b < type_b->cnt ?
1c4bc43d 1055 r->base : PHYS_ADDR_MAX;
35fd0808 1056
f1af9d3a
PH
1057 /*
1058 * if idx_b advanced past idx_a,
1059 * break out to advance idx_a
1060 */
35fd0808
TH
1061 if (r_start >= m_end)
1062 break;
1063 /* if the two regions intersect, we're done */
1064 if (m_start < r_end) {
1065 if (out_start)
f1af9d3a
PH
1066 *out_start =
1067 max(m_start, r_start);
35fd0808
TH
1068 if (out_end)
1069 *out_end = min(m_end, r_end);
1070 if (out_nid)
f1af9d3a 1071 *out_nid = m_nid;
35fd0808 1072 /*
f1af9d3a
PH
1073 * The region which ends first is
1074 * advanced for the next iteration.
35fd0808
TH
1075 */
1076 if (m_end <= r_end)
f1af9d3a 1077 idx_a++;
35fd0808 1078 else
f1af9d3a
PH
1079 idx_b++;
1080 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
1081 return;
1082 }
1083 }
1084 }
1085
1086 /* signal end of iteration */
1087 *idx = ULLONG_MAX;
1088}
1089
7bd0b0f0 1090/**
f1af9d3a
PH
1091 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1092 *
7bd0b0f0 1093 * @idx: pointer to u64 loop variable
ad5ea8cd 1094 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1095 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1096 * @type_a: pointer to memblock_type from where the range is taken
1097 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1098 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1099 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1100 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 1101 *
47cec443
MR
1102 * Finds the next range from type_a which is not marked as unsuitable
1103 * in type_b.
1104 *
f1af9d3a 1105 * Reverse of __next_mem_range().
7bd0b0f0 1106 */
e1720fee
MR
1107void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1108 enum memblock_flags flags,
f1af9d3a
PH
1109 struct memblock_type *type_a,
1110 struct memblock_type *type_b,
1111 phys_addr_t *out_start,
1112 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1113{
f1af9d3a
PH
1114 int idx_a = *idx & 0xffffffff;
1115 int idx_b = *idx >> 32;
b1154233 1116
560dca27
GS
1117 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1118 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1119
1120 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1121 idx_a = type_a->cnt - 1;
e47608ab 1122 if (type_b != NULL)
1123 idx_b = type_b->cnt;
1124 else
1125 idx_b = 0;
7bd0b0f0
TH
1126 }
1127
f1af9d3a
PH
1128 for (; idx_a >= 0; idx_a--) {
1129 struct memblock_region *m = &type_a->regions[idx_a];
1130
7bd0b0f0
TH
1131 phys_addr_t m_start = m->base;
1132 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1133 int m_nid = memblock_get_region_node(m);
7bd0b0f0 1134
c9a688a3 1135 if (should_skip_region(m, nid, flags))
bf3d3cc5
AB
1136 continue;
1137
f1af9d3a
PH
1138 if (!type_b) {
1139 if (out_start)
1140 *out_start = m_start;
1141 if (out_end)
1142 *out_end = m_end;
1143 if (out_nid)
1144 *out_nid = m_nid;
fb399b48 1145 idx_a--;
f1af9d3a
PH
1146 *idx = (u32)idx_a | (u64)idx_b << 32;
1147 return;
1148 }
1149
1150 /* scan areas before each reservation */
1151 for (; idx_b >= 0; idx_b--) {
1152 struct memblock_region *r;
1153 phys_addr_t r_start;
1154 phys_addr_t r_end;
1155
1156 r = &type_b->regions[idx_b];
1157 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1158 r_end = idx_b < type_b->cnt ?
1c4bc43d 1159 r->base : PHYS_ADDR_MAX;
f1af9d3a
PH
1160 /*
1161 * if idx_b advanced past idx_a,
1162 * break out to advance idx_a
1163 */
7bd0b0f0 1164
7bd0b0f0
TH
1165 if (r_end <= m_start)
1166 break;
1167 /* if the two regions intersect, we're done */
1168 if (m_end > r_start) {
1169 if (out_start)
1170 *out_start = max(m_start, r_start);
1171 if (out_end)
1172 *out_end = min(m_end, r_end);
1173 if (out_nid)
f1af9d3a 1174 *out_nid = m_nid;
7bd0b0f0 1175 if (m_start >= r_start)
f1af9d3a 1176 idx_a--;
7bd0b0f0 1177 else
f1af9d3a
PH
1178 idx_b--;
1179 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1180 return;
1181 }
1182 }
1183 }
f1af9d3a 1184 /* signal end of iteration */
7bd0b0f0
TH
1185 *idx = ULLONG_MAX;
1186}
1187
7c0caeb8
TH
1188#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1189/*
45e79815 1190 * Common iterator interface used to define for_each_mem_pfn_range().
7c0caeb8
TH
1191 */
1192void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1193 unsigned long *out_start_pfn,
1194 unsigned long *out_end_pfn, int *out_nid)
1195{
1196 struct memblock_type *type = &memblock.memory;
1197 struct memblock_region *r;
1198
1199 while (++*idx < type->cnt) {
1200 r = &type->regions[*idx];
1201
1202 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1203 continue;
1204 if (nid == MAX_NUMNODES || nid == r->nid)
1205 break;
1206 }
1207 if (*idx >= type->cnt) {
1208 *idx = -1;
1209 return;
1210 }
1211
1212 if (out_start_pfn)
1213 *out_start_pfn = PFN_UP(r->base);
1214 if (out_end_pfn)
1215 *out_end_pfn = PFN_DOWN(r->base + r->size);
1216 if (out_nid)
1217 *out_nid = r->nid;
1218}
1219
1220/**
1221 * memblock_set_node - set node ID on memblock regions
1222 * @base: base of area to set node ID for
1223 * @size: size of area to set node ID for
e7e8de59 1224 * @type: memblock type to set node ID for
7c0caeb8
TH
1225 * @nid: node ID to set
1226 *
47cec443 1227 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
7c0caeb8
TH
1228 * Regions which cross the area boundaries are split as necessary.
1229 *
47cec443 1230 * Return:
7c0caeb8
TH
1231 * 0 on success, -errno on failure.
1232 */
1233int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1234 struct memblock_type *type, int nid)
7c0caeb8 1235{
6a9ceb31
TH
1236 int start_rgn, end_rgn;
1237 int i, ret;
7c0caeb8 1238
6a9ceb31
TH
1239 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1240 if (ret)
1241 return ret;
7c0caeb8 1242
6a9ceb31 1243 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1244 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1245
1246 memblock_merge_regions(type);
1247 return 0;
1248}
1249#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
837566e7
AD
1250#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1251/**
1252 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1253 *
1254 * @idx: pointer to u64 loop variable
1255 * @zone: zone in which all of the memory blocks reside
1256 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1257 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1258 *
1259 * This function is meant to be a zone/pfn specific wrapper for the
1260 * for_each_mem_range type iterators. Specifically they are used in the
1261 * deferred memory init routines and as such we were duplicating much of
1262 * this logic throughout the code. So instead of having it in multiple
1263 * locations it seemed like it would make more sense to centralize this to
1264 * one new iterator that does everything they need.
1265 */
1266void __init_memblock
1267__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1268 unsigned long *out_spfn, unsigned long *out_epfn)
1269{
1270 int zone_nid = zone_to_nid(zone);
1271 phys_addr_t spa, epa;
1272 int nid;
1273
1274 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1275 &memblock.memory, &memblock.reserved,
1276 &spa, &epa, &nid);
1277
1278 while (*idx != U64_MAX) {
1279 unsigned long epfn = PFN_DOWN(epa);
1280 unsigned long spfn = PFN_UP(spa);
1281
1282 /*
1283 * Verify the end is at least past the start of the zone and
1284 * that we have at least one PFN to initialize.
1285 */
1286 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1287 /* if we went too far just stop searching */
1288 if (zone_end_pfn(zone) <= spfn) {
1289 *idx = U64_MAX;
1290 break;
1291 }
1292
1293 if (out_spfn)
1294 *out_spfn = max(zone->zone_start_pfn, spfn);
1295 if (out_epfn)
1296 *out_epfn = min(zone_end_pfn(zone), epfn);
1297
1298 return;
1299 }
1300
1301 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1302 &memblock.memory, &memblock.reserved,
1303 &spa, &epa, &nid);
1304 }
1305
1306 /* signal end of iteration */
1307 if (out_spfn)
1308 *out_spfn = ULONG_MAX;
1309 if (out_epfn)
1310 *out_epfn = 0;
1311}
1312
1313#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
7c0caeb8 1314
92d12f95
MR
1315/**
1316 * memblock_alloc_range_nid - allocate boot memory block
1317 * @size: size of memory block to be allocated in bytes
1318 * @align: alignment of the region and block's size
1319 * @start: the lower bound of the memory region to allocate (phys address)
1320 * @end: the upper bound of the memory region to allocate (phys address)
1321 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1322 *
1323 * The allocation is performed from memory region limited by
95830666 1324 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
92d12f95
MR
1325 *
1326 * If the specified node can not hold the requested memory the
1327 * allocation falls back to any node in the system
1328 *
1329 * For systems with memory mirroring, the allocation is attempted first
1330 * from the regions with mirroring enabled and then retried from any
1331 * memory region.
1332 *
1333 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1334 * allocated boot memory block, so that it is never reported as leaks.
1335 *
1336 * Return:
1337 * Physical address of allocated memory block on success, %0 on failure.
1338 */
2bfc2862
AM
1339static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1340 phys_addr_t align, phys_addr_t start,
92d12f95 1341 phys_addr_t end, int nid)
95f72d1e 1342{
92d12f95 1343 enum memblock_flags flags = choose_memblock_flags();
6ed311b2 1344 phys_addr_t found;
95f72d1e 1345
92d12f95
MR
1346 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1347 nid = NUMA_NO_NODE;
1348
2f770806
MR
1349 if (!align) {
1350 /* Can't use WARNs this early in boot on powerpc */
1351 dump_stack();
1352 align = SMP_CACHE_BYTES;
1353 }
1354
92d12f95 1355again:
fc6daaf9
TL
1356 found = memblock_find_in_range_node(size, align, start, end, nid,
1357 flags);
92d12f95
MR
1358 if (found && !memblock_reserve(found, size))
1359 goto done;
1360
1361 if (nid != NUMA_NO_NODE) {
1362 found = memblock_find_in_range_node(size, align, start,
1363 end, NUMA_NO_NODE,
1364 flags);
1365 if (found && !memblock_reserve(found, size))
1366 goto done;
1367 }
1368
1369 if (flags & MEMBLOCK_MIRROR) {
1370 flags &= ~MEMBLOCK_MIRROR;
1371 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1372 &size);
1373 goto again;
1374 }
1375
1376 return 0;
1377
1378done:
1379 /* Skip kmemleak for kasan_init() due to high volume. */
1380 if (end != MEMBLOCK_ALLOC_KASAN)
aedf95ea 1381 /*
92d12f95
MR
1382 * The min_count is set to 0 so that memblock allocated
1383 * blocks are never reported as leaks. This is because many
1384 * of these blocks are only referred via the physical
1385 * address which is not looked up by kmemleak.
aedf95ea 1386 */
9099daed 1387 kmemleak_alloc_phys(found, size, 0, 0);
92d12f95
MR
1388
1389 return found;
95f72d1e
YL
1390}
1391
a2974133
MR
1392/**
1393 * memblock_phys_alloc_range - allocate a memory block inside specified range
1394 * @size: size of memory block to be allocated in bytes
1395 * @align: alignment of the region and block's size
1396 * @start: the lower bound of the memory region to allocate (physical address)
1397 * @end: the upper bound of the memory region to allocate (physical address)
1398 *
1399 * Allocate @size bytes in the between @start and @end.
1400 *
1401 * Return: physical address of the allocated memory block on success,
1402 * %0 on failure.
1403 */
8a770c2a
MR
1404phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1405 phys_addr_t align,
1406 phys_addr_t start,
1407 phys_addr_t end)
2bfc2862 1408{
92d12f95 1409 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
7bd0b0f0
TH
1410}
1411
a2974133
MR
1412/**
1413 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1414 * @size: size of memory block to be allocated in bytes
1415 * @align: alignment of the region and block's size
1416 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1417 *
1418 * Allocates memory block from the specified NUMA node. If the node
1419 * has no available memory, attempts to allocated from any node in the
1420 * system.
1421 *
1422 * Return: physical address of the allocated memory block on success,
1423 * %0 on failure.
1424 */
9a8dd708 1425phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
9d1e2492 1426{
33755574 1427 return memblock_alloc_range_nid(size, align, 0,
92d12f95 1428 MEMBLOCK_ALLOC_ACCESSIBLE, nid);
95f72d1e
YL
1429}
1430
26f09e9b 1431/**
eb31d559 1432 * memblock_alloc_internal - allocate boot memory block
26f09e9b
SS
1433 * @size: size of memory block to be allocated in bytes
1434 * @align: alignment of the region and block's size
1435 * @min_addr: the lower bound of the memory region to allocate (phys address)
1436 * @max_addr: the upper bound of the memory region to allocate (phys address)
1437 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1438 *
92d12f95
MR
1439 * Allocates memory block using memblock_alloc_range_nid() and
1440 * converts the returned physical address to virtual.
26f09e9b 1441 *
92d12f95
MR
1442 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1443 * will fall back to memory below @min_addr. Other constraints, such
1444 * as node and mirrored memory will be handled again in
1445 * memblock_alloc_range_nid().
26f09e9b 1446 *
47cec443 1447 * Return:
26f09e9b
SS
1448 * Virtual address of allocated memory block on success, NULL on failure.
1449 */
eb31d559 1450static void * __init memblock_alloc_internal(
26f09e9b
SS
1451 phys_addr_t size, phys_addr_t align,
1452 phys_addr_t min_addr, phys_addr_t max_addr,
1453 int nid)
1454{
1455 phys_addr_t alloc;
26f09e9b
SS
1456
1457 /*
1458 * Detect any accidental use of these APIs after slab is ready, as at
1459 * this moment memblock may be deinitialized already and its
c6ffc5ca 1460 * internal data may be destroyed (after execution of memblock_free_all)
26f09e9b
SS
1461 */
1462 if (WARN_ON_ONCE(slab_is_available()))
1463 return kzalloc_node(size, GFP_NOWAIT, nid);
1464
f3057ad7
MR
1465 if (max_addr > memblock.current_limit)
1466 max_addr = memblock.current_limit;
1467
92d12f95 1468 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid);
26f09e9b 1469
92d12f95
MR
1470 /* retry allocation without lower limit */
1471 if (!alloc && min_addr)
1472 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid);
26f09e9b 1473
92d12f95
MR
1474 if (!alloc)
1475 return NULL;
26f09e9b 1476
92d12f95 1477 return phys_to_virt(alloc);
26f09e9b
SS
1478}
1479
ea1f5f37 1480/**
eb31d559 1481 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
ea1f5f37
PT
1482 * memory and without panicking
1483 * @size: size of memory block to be allocated in bytes
1484 * @align: alignment of the region and block's size
1485 * @min_addr: the lower bound of the memory region from where the allocation
1486 * is preferred (phys address)
1487 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1488 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
ea1f5f37
PT
1489 * allocate only from memory limited by memblock.current_limit value
1490 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1491 *
1492 * Public function, provides additional debug information (including caller
1493 * info), if enabled. Does not zero allocated memory, does not panic if request
1494 * cannot be satisfied.
1495 *
47cec443 1496 * Return:
ea1f5f37
PT
1497 * Virtual address of allocated memory block on success, NULL on failure.
1498 */
eb31d559 1499void * __init memblock_alloc_try_nid_raw(
ea1f5f37
PT
1500 phys_addr_t size, phys_addr_t align,
1501 phys_addr_t min_addr, phys_addr_t max_addr,
1502 int nid)
1503{
1504 void *ptr;
1505
d75f773c 1506 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1507 __func__, (u64)size, (u64)align, nid, &min_addr,
1508 &max_addr, (void *)_RET_IP_);
ea1f5f37 1509
eb31d559 1510 ptr = memblock_alloc_internal(size, align,
ea1f5f37 1511 min_addr, max_addr, nid);
ea1f5f37 1512 if (ptr && size > 0)
f682a97a
AD
1513 page_init_poison(ptr, size);
1514
ea1f5f37
PT
1515 return ptr;
1516}
1517
26f09e9b 1518/**
c0dbe825 1519 * memblock_alloc_try_nid - allocate boot memory block
26f09e9b
SS
1520 * @size: size of memory block to be allocated in bytes
1521 * @align: alignment of the region and block's size
1522 * @min_addr: the lower bound of the memory region from where the allocation
1523 * is preferred (phys address)
1524 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1525 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
26f09e9b
SS
1526 * allocate only from memory limited by memblock.current_limit value
1527 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1528 *
c0dbe825
MR
1529 * Public function, provides additional debug information (including caller
1530 * info), if enabled. This function zeroes the allocated memory.
26f09e9b 1531 *
47cec443 1532 * Return:
26f09e9b
SS
1533 * Virtual address of allocated memory block on success, NULL on failure.
1534 */
eb31d559 1535void * __init memblock_alloc_try_nid(
26f09e9b
SS
1536 phys_addr_t size, phys_addr_t align,
1537 phys_addr_t min_addr, phys_addr_t max_addr,
1538 int nid)
1539{
1540 void *ptr;
1541
d75f773c 1542 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1543 __func__, (u64)size, (u64)align, nid, &min_addr,
1544 &max_addr, (void *)_RET_IP_);
eb31d559 1545 ptr = memblock_alloc_internal(size, align,
26f09e9b 1546 min_addr, max_addr, nid);
c0dbe825 1547 if (ptr)
ea1f5f37 1548 memset(ptr, 0, size);
26f09e9b 1549
c0dbe825 1550 return ptr;
26f09e9b
SS
1551}
1552
48a833cc 1553/**
a2974133 1554 * __memblock_free_late - free pages directly to buddy allocator
48a833cc 1555 * @base: phys starting address of the boot memory block
26f09e9b
SS
1556 * @size: size of the boot memory block in bytes
1557 *
a2974133 1558 * This is only useful when the memblock allocator has already been torn
26f09e9b 1559 * down, but we are still initializing the system. Pages are released directly
a2974133 1560 * to the buddy allocator.
26f09e9b
SS
1561 */
1562void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1563{
a36aab89 1564 phys_addr_t cursor, end;
26f09e9b 1565
a36aab89 1566 end = base + size - 1;
d75f773c 1567 memblock_dbg("%s: [%pa-%pa] %pS\n",
a36aab89 1568 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1569 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1570 cursor = PFN_UP(base);
1571 end = PFN_DOWN(base + size);
1572
1573 for (; cursor < end; cursor++) {
7c2ee349 1574 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
ca79b0c2 1575 totalram_pages_inc();
26f09e9b
SS
1576 }
1577}
9d1e2492
BH
1578
1579/*
1580 * Remaining API functions
1581 */
1582
1f1ffb8a 1583phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1584{
1440c4e2 1585 return memblock.memory.total_size;
95f72d1e
YL
1586}
1587
8907de5d
SD
1588phys_addr_t __init_memblock memblock_reserved_size(void)
1589{
1590 return memblock.reserved.total_size;
1591}
1592
595ad9af
YL
1593phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1594{
1595 unsigned long pages = 0;
1596 struct memblock_region *r;
1597 unsigned long start_pfn, end_pfn;
1598
1599 for_each_memblock(memory, r) {
1600 start_pfn = memblock_region_memory_base_pfn(r);
1601 end_pfn = memblock_region_memory_end_pfn(r);
1602 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1603 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1604 pages += end_pfn - start_pfn;
1605 }
1606
16763230 1607 return PFN_PHYS(pages);
595ad9af
YL
1608}
1609
0a93ebef
SR
1610/* lowest address */
1611phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1612{
1613 return memblock.memory.regions[0].base;
1614}
1615
10d06439 1616phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1617{
1618 int idx = memblock.memory.cnt - 1;
1619
e3239ff9 1620 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1621}
1622
a571d4eb 1623static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1624{
1c4bc43d 1625 phys_addr_t max_addr = PHYS_ADDR_MAX;
136199f0 1626 struct memblock_region *r;
95f72d1e 1627
a571d4eb
DC
1628 /*
1629 * translate the memory @limit size into the max address within one of
1630 * the memory memblock regions, if the @limit exceeds the total size
1c4bc43d 1631 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
a571d4eb 1632 */
136199f0 1633 for_each_memblock(memory, r) {
c0ce8fef
TH
1634 if (limit <= r->size) {
1635 max_addr = r->base + limit;
1636 break;
95f72d1e 1637 }
c0ce8fef 1638 limit -= r->size;
95f72d1e 1639 }
c0ce8fef 1640
a571d4eb
DC
1641 return max_addr;
1642}
1643
1644void __init memblock_enforce_memory_limit(phys_addr_t limit)
1645{
1c4bc43d 1646 phys_addr_t max_addr = PHYS_ADDR_MAX;
a571d4eb
DC
1647
1648 if (!limit)
1649 return;
1650
1651 max_addr = __find_max_addr(limit);
1652
1653 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1654 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1655 return;
1656
c0ce8fef 1657 /* truncate both memory and reserved regions */
f1af9d3a 1658 memblock_remove_range(&memblock.memory, max_addr,
1c4bc43d 1659 PHYS_ADDR_MAX);
f1af9d3a 1660 memblock_remove_range(&memblock.reserved, max_addr,
1c4bc43d 1661 PHYS_ADDR_MAX);
95f72d1e
YL
1662}
1663
c9ca9b4e
AT
1664void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1665{
1666 int start_rgn, end_rgn;
1667 int i, ret;
1668
1669 if (!size)
1670 return;
1671
1672 ret = memblock_isolate_range(&memblock.memory, base, size,
1673 &start_rgn, &end_rgn);
1674 if (ret)
1675 return;
1676
1677 /* remove all the MAP regions */
1678 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1679 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1680 memblock_remove_region(&memblock.memory, i);
1681
1682 for (i = start_rgn - 1; i >= 0; i--)
1683 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1684 memblock_remove_region(&memblock.memory, i);
1685
1686 /* truncate the reserved regions */
1687 memblock_remove_range(&memblock.reserved, 0, base);
1688 memblock_remove_range(&memblock.reserved,
1c4bc43d 1689 base + size, PHYS_ADDR_MAX);
c9ca9b4e
AT
1690}
1691
a571d4eb
DC
1692void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1693{
a571d4eb 1694 phys_addr_t max_addr;
a571d4eb
DC
1695
1696 if (!limit)
1697 return;
1698
1699 max_addr = __find_max_addr(limit);
1700
1701 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1702 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1703 return;
1704
c9ca9b4e 1705 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1706}
1707
cd79481d 1708static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1709{
1710 unsigned int left = 0, right = type->cnt;
1711
1712 do {
1713 unsigned int mid = (right + left) / 2;
1714
1715 if (addr < type->regions[mid].base)
1716 right = mid;
1717 else if (addr >= (type->regions[mid].base +
1718 type->regions[mid].size))
1719 left = mid + 1;
1720 else
1721 return mid;
1722 } while (left < right);
1723 return -1;
1724}
1725
f5a222dc 1726bool __init_memblock memblock_is_reserved(phys_addr_t addr)
95f72d1e 1727{
72d4b0b4
BH
1728 return memblock_search(&memblock.reserved, addr) != -1;
1729}
95f72d1e 1730
b4ad0c7e 1731bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1732{
1733 return memblock_search(&memblock.memory, addr) != -1;
1734}
1735
937f0c26 1736bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
bf3d3cc5
AB
1737{
1738 int i = memblock_search(&memblock.memory, addr);
1739
1740 if (i == -1)
1741 return false;
1742 return !memblock_is_nomap(&memblock.memory.regions[i]);
1743}
1744
e76b63f8
YL
1745#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1746int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1747 unsigned long *start_pfn, unsigned long *end_pfn)
1748{
1749 struct memblock_type *type = &memblock.memory;
16763230 1750 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1751
1752 if (mid == -1)
1753 return -1;
1754
f7e2f7e8
FF
1755 *start_pfn = PFN_DOWN(type->regions[mid].base);
1756 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8
YL
1757
1758 return type->regions[mid].nid;
1759}
1760#endif
1761
eab30949
SB
1762/**
1763 * memblock_is_region_memory - check if a region is a subset of memory
1764 * @base: base of region to check
1765 * @size: size of region to check
1766 *
47cec443 1767 * Check if the region [@base, @base + @size) is a subset of a memory block.
eab30949 1768 *
47cec443 1769 * Return:
eab30949
SB
1770 * 0 if false, non-zero if true
1771 */
937f0c26 1772bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1773{
abb65272 1774 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1775 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1776
1777 if (idx == -1)
937f0c26 1778 return false;
ef415ef4 1779 return (memblock.memory.regions[idx].base +
eb18f1b5 1780 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1781}
1782
eab30949
SB
1783/**
1784 * memblock_is_region_reserved - check if a region intersects reserved memory
1785 * @base: base of region to check
1786 * @size: size of region to check
1787 *
47cec443
MR
1788 * Check if the region [@base, @base + @size) intersects a reserved
1789 * memory block.
eab30949 1790 *
47cec443 1791 * Return:
c5c5c9d1 1792 * True if they intersect, false if not.
eab30949 1793 */
c5c5c9d1 1794bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1795{
eb18f1b5 1796 memblock_cap_size(base, &size);
c5c5c9d1 1797 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1798}
1799
6ede1fd3
YL
1800void __init_memblock memblock_trim_memory(phys_addr_t align)
1801{
6ede1fd3 1802 phys_addr_t start, end, orig_start, orig_end;
136199f0 1803 struct memblock_region *r;
6ede1fd3 1804
136199f0
EM
1805 for_each_memblock(memory, r) {
1806 orig_start = r->base;
1807 orig_end = r->base + r->size;
6ede1fd3
YL
1808 start = round_up(orig_start, align);
1809 end = round_down(orig_end, align);
1810
1811 if (start == orig_start && end == orig_end)
1812 continue;
1813
1814 if (start < end) {
136199f0
EM
1815 r->base = start;
1816 r->size = end - start;
6ede1fd3 1817 } else {
136199f0
EM
1818 memblock_remove_region(&memblock.memory,
1819 r - memblock.memory.regions);
1820 r--;
6ede1fd3
YL
1821 }
1822 }
1823}
e63075a3 1824
3661ca66 1825void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1826{
1827 memblock.current_limit = limit;
1828}
1829
fec51014
LA
1830phys_addr_t __init_memblock memblock_get_current_limit(void)
1831{
1832 return memblock.current_limit;
1833}
1834
0262d9c8 1835static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1836{
5d63f81c 1837 phys_addr_t base, end, size;
e1720fee 1838 enum memblock_flags flags;
8c9c1701
AK
1839 int idx;
1840 struct memblock_region *rgn;
6ed311b2 1841
0262d9c8 1842 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1843
66e8b438 1844 for_each_memblock_type(idx, type, rgn) {
7c0caeb8
TH
1845 char nid_buf[32] = "";
1846
1847 base = rgn->base;
1848 size = rgn->size;
5d63f81c 1849 end = base + size - 1;
66a20757 1850 flags = rgn->flags;
7c0caeb8
TH
1851#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1852 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1853 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1854 memblock_get_region_node(rgn));
1855#endif
e1720fee 1856 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
0262d9c8 1857 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1858 }
1859}
1860
4ff7b82f 1861void __init_memblock __memblock_dump_all(void)
6ed311b2 1862{
6ed311b2 1863 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1864 pr_info(" memory size = %pa reserved size = %pa\n",
1865 &memblock.memory.total_size,
1866 &memblock.reserved.total_size);
6ed311b2 1867
0262d9c8
HC
1868 memblock_dump(&memblock.memory);
1869 memblock_dump(&memblock.reserved);
409efd4c 1870#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
0262d9c8 1871 memblock_dump(&memblock.physmem);
409efd4c 1872#endif
6ed311b2
BH
1873}
1874
1aadc056 1875void __init memblock_allow_resize(void)
6ed311b2 1876{
142b45a7 1877 memblock_can_resize = 1;
6ed311b2
BH
1878}
1879
6ed311b2
BH
1880static int __init early_memblock(char *p)
1881{
1882 if (p && strstr(p, "debug"))
1883 memblock_debug = 1;
1884 return 0;
1885}
1886early_param("memblock", early_memblock);
1887
bda49a81
MR
1888static void __init __free_pages_memory(unsigned long start, unsigned long end)
1889{
1890 int order;
1891
1892 while (start < end) {
1893 order = min(MAX_ORDER - 1UL, __ffs(start));
1894
1895 while (start + (1UL << order) > end)
1896 order--;
1897
1898 memblock_free_pages(pfn_to_page(start), start, order);
1899
1900 start += (1UL << order);
1901 }
1902}
1903
1904static unsigned long __init __free_memory_core(phys_addr_t start,
1905 phys_addr_t end)
1906{
1907 unsigned long start_pfn = PFN_UP(start);
1908 unsigned long end_pfn = min_t(unsigned long,
1909 PFN_DOWN(end), max_low_pfn);
1910
1911 if (start_pfn >= end_pfn)
1912 return 0;
1913
1914 __free_pages_memory(start_pfn, end_pfn);
1915
1916 return end_pfn - start_pfn;
1917}
1918
1919static unsigned long __init free_low_memory_core_early(void)
1920{
1921 unsigned long count = 0;
1922 phys_addr_t start, end;
1923 u64 i;
1924
1925 memblock_clear_hotplug(0, -1);
1926
1927 for_each_reserved_mem_region(i, &start, &end)
1928 reserve_bootmem_region(start, end);
1929
1930 /*
1931 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1932 * because in some case like Node0 doesn't have RAM installed
1933 * low ram will be on Node1
1934 */
1935 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1936 NULL)
1937 count += __free_memory_core(start, end);
1938
1939 return count;
1940}
1941
1942static int reset_managed_pages_done __initdata;
1943
1944void reset_node_managed_pages(pg_data_t *pgdat)
1945{
1946 struct zone *z;
1947
1948 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
9705bea5 1949 atomic_long_set(&z->managed_pages, 0);
bda49a81
MR
1950}
1951
1952void __init reset_all_zones_managed_pages(void)
1953{
1954 struct pglist_data *pgdat;
1955
1956 if (reset_managed_pages_done)
1957 return;
1958
1959 for_each_online_pgdat(pgdat)
1960 reset_node_managed_pages(pgdat);
1961
1962 reset_managed_pages_done = 1;
1963}
1964
1965/**
1966 * memblock_free_all - release free pages to the buddy allocator
1967 *
1968 * Return: the number of pages actually released.
1969 */
1970unsigned long __init memblock_free_all(void)
1971{
1972 unsigned long pages;
1973
1974 reset_all_zones_managed_pages();
1975
1976 pages = free_low_memory_core_early();
ca79b0c2 1977 totalram_pages_add(pages);
bda49a81
MR
1978
1979 return pages;
1980}
1981
350e88ba 1982#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
6d03b885
BH
1983
1984static int memblock_debug_show(struct seq_file *m, void *private)
1985{
1986 struct memblock_type *type = m->private;
1987 struct memblock_region *reg;
1988 int i;
5d63f81c 1989 phys_addr_t end;
6d03b885
BH
1990
1991 for (i = 0; i < type->cnt; i++) {
1992 reg = &type->regions[i];
5d63f81c 1993 end = reg->base + reg->size - 1;
6d03b885 1994
5d63f81c
MC
1995 seq_printf(m, "%4d: ", i);
1996 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
6d03b885
BH
1997 }
1998 return 0;
1999}
5ad35093 2000DEFINE_SHOW_ATTRIBUTE(memblock_debug);
6d03b885
BH
2001
2002static int __init memblock_init_debugfs(void)
2003{
2004 struct dentry *root = debugfs_create_dir("memblock", NULL);
d9f7979c 2005
0825a6f9
JP
2006 debugfs_create_file("memory", 0444, root,
2007 &memblock.memory, &memblock_debug_fops);
2008 debugfs_create_file("reserved", 0444, root,
2009 &memblock.reserved, &memblock_debug_fops);
70210ed9 2010#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
0825a6f9
JP
2011 debugfs_create_file("physmem", 0444, root,
2012 &memblock.physmem, &memblock_debug_fops);
70210ed9 2013#endif
6d03b885
BH
2014
2015 return 0;
2016}
2017__initcall(memblock_init_debugfs);
2018
2019#endif /* CONFIG_DEBUG_FS */