]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memblock.c
Merge tag 'for-5.11-rc4-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[mirror_ubuntu-jammy-kernel.git] / mm / memblock.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
95f72d1e
YL
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
95f72d1e
YL
7 */
8
9#include <linux/kernel.h>
142b45a7 10#include <linux/slab.h>
95f72d1e
YL
11#include <linux/init.h>
12#include <linux/bitops.h>
449e8df3 13#include <linux/poison.h>
c196f76f 14#include <linux/pfn.h>
6d03b885 15#include <linux/debugfs.h>
514c6032 16#include <linux/kmemleak.h>
6d03b885 17#include <linux/seq_file.h>
95f72d1e
YL
18#include <linux/memblock.h>
19
c4c5ad6b 20#include <asm/sections.h>
26f09e9b
SS
21#include <linux/io.h>
22
23#include "internal.h"
79442ed1 24
8a5b403d
AB
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
3e039c5c
MR
32/**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
77649905
DH
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
3e039c5c 50 *
9303c9d5 51 * Each region is represented by struct memblock_region that
3e039c5c 52 * defines the region extents, its attributes and NUMA node id on NUMA
1bf162e4
MCC
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
77649905 55 * the allocator metadata. The "memory" and "reserved" types are nicely
9303c9d5 56 * wrapped with struct memblock. This structure is statically
77649905
DH
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
6e5af9a8
C
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
3e039c5c
MR
65 *
66 * The early architecture setup should tell memblock what the physical
6e5af9a8
C
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
3e039c5c 73 *
a2974133
MR
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
6e5af9a8
C
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
a2974133 81 *
df1758d9 82 * Note, that both API variants use implicit assumptions about allowed
a2974133 83 * memory ranges and the fallback methods. Consult the documentation
6e5af9a8
C
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
3e039c5c 86 *
6e5af9a8
C
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
3e039c5c 89 *
6e5af9a8 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
77649905
DH
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
3e039c5c
MR
93 */
94
bda49a81
MR
95#ifndef CONFIG_NEED_MULTIPLE_NODES
96struct pglist_data __refdata contig_page_data;
97EXPORT_SYMBOL(contig_page_data);
98#endif
99
100unsigned long max_low_pfn;
101unsigned long min_low_pfn;
102unsigned long max_pfn;
103unsigned long long max_possible_pfn;
104
fe091c20 105static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
8a5b403d 106static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
70210ed9 107#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 108static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
70210ed9 109#endif
fe091c20
TH
110
111struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
0262d9c8 115 .memory.name = "memory",
fe091c20
TH
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
8a5b403d 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
0262d9c8 120 .reserved.name = "reserved",
fe091c20 121
79442ed1 122 .bottom_up = false,
fe091c20
TH
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124};
95f72d1e 125
77649905
DH
126#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132};
133#endif
134
9f3d5eaa
MR
135/*
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 * For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
140 */
141static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142
cd991db8
MR
143#define for_each_memblock_type(i, memblock_type, rgn) \
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
147
87c55870
MR
148#define memblock_dbg(fmt, ...) \
149 do { \
150 if (memblock_debug) \
151 pr_info(fmt, ##__VA_ARGS__); \
152 } while (0)
153
154static int memblock_debug __initdata_memblock;
a3f5bafc 155static bool system_has_some_mirror __initdata_memblock = false;
1aadc056 156static int memblock_can_resize __initdata_memblock;
181eb394
GS
157static int memblock_memory_in_slab __initdata_memblock = 0;
158static int memblock_reserved_in_slab __initdata_memblock = 0;
95f72d1e 159
c366ea89 160static enum memblock_flags __init_memblock choose_memblock_flags(void)
a3f5bafc
TL
161{
162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163}
164
eb18f1b5
TH
165/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
166static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167{
1c4bc43d 168 return *size = min(*size, PHYS_ADDR_MAX - base);
eb18f1b5
TH
169}
170
6ed311b2
BH
171/*
172 * Address comparison utilities
173 */
10d06439 174static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
2898cc4c 175 phys_addr_t base2, phys_addr_t size2)
95f72d1e
YL
176{
177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178}
179
95cf82ec 180bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
2d7d3eb2 181 phys_addr_t base, phys_addr_t size)
6ed311b2
BH
182{
183 unsigned long i;
184
f14516fb
AK
185 for (i = 0; i < type->cnt; i++)
186 if (memblock_addrs_overlap(base, size, type->regions[i].base,
187 type->regions[i].size))
6ed311b2 188 break;
c5c5c9d1 189 return i < type->cnt;
6ed311b2
BH
190}
191
47cec443 192/**
79442ed1
TC
193 * __memblock_find_range_bottom_up - find free area utility in bottom-up
194 * @start: start of candidate range
47cec443
MR
195 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
196 * %MEMBLOCK_ALLOC_ACCESSIBLE
79442ed1
TC
197 * @size: size of free area to find
198 * @align: alignment of free area to find
b1154233 199 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 200 * @flags: pick from blocks based on memory attributes
79442ed1
TC
201 *
202 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
203 *
47cec443 204 * Return:
79442ed1
TC
205 * Found address on success, 0 on failure.
206 */
207static phys_addr_t __init_memblock
208__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
fc6daaf9 209 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 210 enum memblock_flags flags)
79442ed1
TC
211{
212 phys_addr_t this_start, this_end, cand;
213 u64 i;
214
fc6daaf9 215 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
79442ed1
TC
216 this_start = clamp(this_start, start, end);
217 this_end = clamp(this_end, start, end);
218
219 cand = round_up(this_start, align);
220 if (cand < this_end && this_end - cand >= size)
221 return cand;
222 }
223
224 return 0;
225}
226
7bd0b0f0 227/**
1402899e 228 * __memblock_find_range_top_down - find free area utility, in top-down
7bd0b0f0 229 * @start: start of candidate range
47cec443
MR
230 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
231 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
232 * @size: size of free area to find
233 * @align: alignment of free area to find
b1154233 234 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 235 * @flags: pick from blocks based on memory attributes
7bd0b0f0 236 *
1402899e 237 * Utility called from memblock_find_in_range_node(), find free area top-down.
7bd0b0f0 238 *
47cec443 239 * Return:
79442ed1 240 * Found address on success, 0 on failure.
6ed311b2 241 */
1402899e
TC
242static phys_addr_t __init_memblock
243__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
fc6daaf9 244 phys_addr_t size, phys_addr_t align, int nid,
e1720fee 245 enum memblock_flags flags)
f7210e6c
TC
246{
247 phys_addr_t this_start, this_end, cand;
248 u64 i;
249
fc6daaf9
TL
250 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
251 NULL) {
f7210e6c
TC
252 this_start = clamp(this_start, start, end);
253 this_end = clamp(this_end, start, end);
254
255 if (this_end < size)
256 continue;
257
258 cand = round_down(this_end - size, align);
259 if (cand >= this_start)
260 return cand;
261 }
1402899e 262
f7210e6c
TC
263 return 0;
264}
6ed311b2 265
1402899e
TC
266/**
267 * memblock_find_in_range_node - find free area in given range and node
1402899e
TC
268 * @size: size of free area to find
269 * @align: alignment of free area to find
87029ee9 270 * @start: start of candidate range
47cec443
MR
271 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
272 * %MEMBLOCK_ALLOC_ACCESSIBLE
b1154233 273 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
fc6daaf9 274 * @flags: pick from blocks based on memory attributes
1402899e
TC
275 *
276 * Find @size free area aligned to @align in the specified range and node.
277 *
79442ed1
TC
278 * When allocation direction is bottom-up, the @start should be greater
279 * than the end of the kernel image. Otherwise, it will be trimmed. The
280 * reason is that we want the bottom-up allocation just near the kernel
281 * image so it is highly likely that the allocated memory and the kernel
282 * will reside in the same node.
283 *
284 * If bottom-up allocation failed, will try to allocate memory top-down.
285 *
47cec443 286 * Return:
79442ed1 287 * Found address on success, 0 on failure.
1402899e 288 */
c366ea89 289static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
87029ee9 290 phys_addr_t align, phys_addr_t start,
e1720fee
MR
291 phys_addr_t end, int nid,
292 enum memblock_flags flags)
1402899e 293{
0cfb8f0c 294 phys_addr_t kernel_end, ret;
79442ed1 295
1402899e 296 /* pump up @end */
fed84c78
QC
297 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
298 end == MEMBLOCK_ALLOC_KASAN)
1402899e
TC
299 end = memblock.current_limit;
300
301 /* avoid allocating the first page */
302 start = max_t(phys_addr_t, start, PAGE_SIZE);
303 end = max(start, end);
79442ed1
TC
304 kernel_end = __pa_symbol(_end);
305
306 /*
307 * try bottom-up allocation only when bottom-up mode
308 * is set and @end is above the kernel image.
309 */
310 if (memblock_bottom_up() && end > kernel_end) {
311 phys_addr_t bottom_up_start;
312
313 /* make sure we will allocate above the kernel */
314 bottom_up_start = max(start, kernel_end);
315
316 /* ok, try bottom-up allocation first */
317 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
fc6daaf9 318 size, align, nid, flags);
79442ed1
TC
319 if (ret)
320 return ret;
321
322 /*
323 * we always limit bottom-up allocation above the kernel,
324 * but top-down allocation doesn't have the limit, so
325 * retrying top-down allocation may succeed when bottom-up
326 * allocation failed.
327 *
328 * bottom-up allocation is expected to be fail very rarely,
329 * so we use WARN_ONCE() here to see the stack trace if
330 * fail happens.
331 */
e3d301ca
MH
332 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
333 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
79442ed1 334 }
1402899e 335
fc6daaf9
TL
336 return __memblock_find_range_top_down(start, end, size, align, nid,
337 flags);
1402899e
TC
338}
339
7bd0b0f0
TH
340/**
341 * memblock_find_in_range - find free area in given range
342 * @start: start of candidate range
47cec443
MR
343 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
344 * %MEMBLOCK_ALLOC_ACCESSIBLE
7bd0b0f0
TH
345 * @size: size of free area to find
346 * @align: alignment of free area to find
347 *
348 * Find @size free area aligned to @align in the specified range.
349 *
47cec443 350 * Return:
79442ed1 351 * Found address on success, 0 on failure.
fc769a8e 352 */
7bd0b0f0
TH
353phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
354 phys_addr_t end, phys_addr_t size,
355 phys_addr_t align)
6ed311b2 356{
a3f5bafc 357 phys_addr_t ret;
e1720fee 358 enum memblock_flags flags = choose_memblock_flags();
a3f5bafc
TL
359
360again:
361 ret = memblock_find_in_range_node(size, align, start, end,
362 NUMA_NO_NODE, flags);
363
364 if (!ret && (flags & MEMBLOCK_MIRROR)) {
365 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
366 &size);
367 flags &= ~MEMBLOCK_MIRROR;
368 goto again;
369 }
370
371 return ret;
6ed311b2
BH
372}
373
10d06439 374static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
95f72d1e 375{
1440c4e2 376 type->total_size -= type->regions[r].size;
7c0caeb8
TH
377 memmove(&type->regions[r], &type->regions[r + 1],
378 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
e3239ff9 379 type->cnt--;
95f72d1e 380
8f7a6605
BH
381 /* Special case for empty arrays */
382 if (type->cnt == 0) {
1440c4e2 383 WARN_ON(type->total_size != 0);
8f7a6605
BH
384 type->cnt = 1;
385 type->regions[0].base = 0;
386 type->regions[0].size = 0;
66a20757 387 type->regions[0].flags = 0;
7c0caeb8 388 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
8f7a6605 389 }
95f72d1e
YL
390}
391
350e88ba 392#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
3010f876 393/**
47cec443 394 * memblock_discard - discard memory and reserved arrays if they were allocated
3010f876
PT
395 */
396void __init memblock_discard(void)
5e270e25 397{
3010f876 398 phys_addr_t addr, size;
5e270e25 399
3010f876
PT
400 if (memblock.reserved.regions != memblock_reserved_init_regions) {
401 addr = __pa(memblock.reserved.regions);
402 size = PAGE_ALIGN(sizeof(struct memblock_region) *
403 memblock.reserved.max);
404 __memblock_free_late(addr, size);
405 }
5e270e25 406
91b540f9 407 if (memblock.memory.regions != memblock_memory_init_regions) {
3010f876
PT
408 addr = __pa(memblock.memory.regions);
409 size = PAGE_ALIGN(sizeof(struct memblock_region) *
410 memblock.memory.max);
411 __memblock_free_late(addr, size);
412 }
9f3d5eaa
MR
413
414 memblock_memory = NULL;
5e270e25 415}
5e270e25
PH
416#endif
417
48c3b583
GP
418/**
419 * memblock_double_array - double the size of the memblock regions array
420 * @type: memblock type of the regions array being doubled
421 * @new_area_start: starting address of memory range to avoid overlap with
422 * @new_area_size: size of memory range to avoid overlap with
423 *
424 * Double the size of the @type regions array. If memblock is being used to
425 * allocate memory for a new reserved regions array and there is a previously
47cec443 426 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
48c3b583
GP
427 * waiting to be reserved, ensure the memory used by the new array does
428 * not overlap.
429 *
47cec443 430 * Return:
48c3b583
GP
431 * 0 on success, -1 on failure.
432 */
433static int __init_memblock memblock_double_array(struct memblock_type *type,
434 phys_addr_t new_area_start,
435 phys_addr_t new_area_size)
142b45a7
BH
436{
437 struct memblock_region *new_array, *old_array;
29f67386 438 phys_addr_t old_alloc_size, new_alloc_size;
a36aab89 439 phys_addr_t old_size, new_size, addr, new_end;
142b45a7 440 int use_slab = slab_is_available();
181eb394 441 int *in_slab;
142b45a7
BH
442
443 /* We don't allow resizing until we know about the reserved regions
444 * of memory that aren't suitable for allocation
445 */
446 if (!memblock_can_resize)
447 return -1;
448
142b45a7
BH
449 /* Calculate new doubled size */
450 old_size = type->max * sizeof(struct memblock_region);
451 new_size = old_size << 1;
29f67386
YL
452 /*
453 * We need to allocated new one align to PAGE_SIZE,
454 * so we can free them completely later.
455 */
456 old_alloc_size = PAGE_ALIGN(old_size);
457 new_alloc_size = PAGE_ALIGN(new_size);
142b45a7 458
181eb394
GS
459 /* Retrieve the slab flag */
460 if (type == &memblock.memory)
461 in_slab = &memblock_memory_in_slab;
462 else
463 in_slab = &memblock_reserved_in_slab;
464
a2974133 465 /* Try to find some space for it */
142b45a7
BH
466 if (use_slab) {
467 new_array = kmalloc(new_size, GFP_KERNEL);
1f5026a7 468 addr = new_array ? __pa(new_array) : 0;
4e2f0775 469 } else {
48c3b583
GP
470 /* only exclude range when trying to double reserved.regions */
471 if (type != &memblock.reserved)
472 new_area_start = new_area_size = 0;
473
474 addr = memblock_find_in_range(new_area_start + new_area_size,
475 memblock.current_limit,
29f67386 476 new_alloc_size, PAGE_SIZE);
48c3b583
GP
477 if (!addr && new_area_size)
478 addr = memblock_find_in_range(0,
fd07383b
AM
479 min(new_area_start, memblock.current_limit),
480 new_alloc_size, PAGE_SIZE);
48c3b583 481
15674868 482 new_array = addr ? __va(addr) : NULL;
4e2f0775 483 }
1f5026a7 484 if (!addr) {
142b45a7 485 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
0262d9c8 486 type->name, type->max, type->max * 2);
142b45a7
BH
487 return -1;
488 }
142b45a7 489
a36aab89
MR
490 new_end = addr + new_size - 1;
491 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
492 type->name, type->max * 2, &addr, &new_end);
ea9e4376 493
fd07383b
AM
494 /*
495 * Found space, we now need to move the array over before we add the
496 * reserved region since it may be our reserved array itself that is
497 * full.
142b45a7
BH
498 */
499 memcpy(new_array, type->regions, old_size);
500 memset(new_array + type->max, 0, old_size);
501 old_array = type->regions;
502 type->regions = new_array;
503 type->max <<= 1;
504
fd07383b 505 /* Free old array. We needn't free it if the array is the static one */
181eb394
GS
506 if (*in_slab)
507 kfree(old_array);
508 else if (old_array != memblock_memory_init_regions &&
509 old_array != memblock_reserved_init_regions)
29f67386 510 memblock_free(__pa(old_array), old_alloc_size);
142b45a7 511
fd07383b
AM
512 /*
513 * Reserve the new array if that comes from the memblock. Otherwise, we
514 * needn't do it
181eb394
GS
515 */
516 if (!use_slab)
29f67386 517 BUG_ON(memblock_reserve(addr, new_alloc_size));
181eb394
GS
518
519 /* Update slab flag */
520 *in_slab = use_slab;
521
142b45a7
BH
522 return 0;
523}
524
784656f9
TH
525/**
526 * memblock_merge_regions - merge neighboring compatible regions
527 * @type: memblock type to scan
528 *
529 * Scan @type and merge neighboring compatible regions.
530 */
531static void __init_memblock memblock_merge_regions(struct memblock_type *type)
95f72d1e 532{
784656f9 533 int i = 0;
95f72d1e 534
784656f9
TH
535 /* cnt never goes below 1 */
536 while (i < type->cnt - 1) {
537 struct memblock_region *this = &type->regions[i];
538 struct memblock_region *next = &type->regions[i + 1];
95f72d1e 539
7c0caeb8
TH
540 if (this->base + this->size != next->base ||
541 memblock_get_region_node(this) !=
66a20757
TC
542 memblock_get_region_node(next) ||
543 this->flags != next->flags) {
784656f9
TH
544 BUG_ON(this->base + this->size > next->base);
545 i++;
546 continue;
8f7a6605
BH
547 }
548
784656f9 549 this->size += next->size;
c0232ae8
LF
550 /* move forward from next + 1, index of which is i + 2 */
551 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
784656f9 552 type->cnt--;
95f72d1e 553 }
784656f9 554}
95f72d1e 555
784656f9
TH
556/**
557 * memblock_insert_region - insert new memblock region
209ff86d
TC
558 * @type: memblock type to insert into
559 * @idx: index for the insertion point
560 * @base: base address of the new region
561 * @size: size of the new region
562 * @nid: node id of the new region
66a20757 563 * @flags: flags of the new region
784656f9 564 *
47cec443 565 * Insert new memblock region [@base, @base + @size) into @type at @idx.
412d0008 566 * @type must already have extra room to accommodate the new region.
784656f9
TH
567 */
568static void __init_memblock memblock_insert_region(struct memblock_type *type,
569 int idx, phys_addr_t base,
66a20757 570 phys_addr_t size,
e1720fee
MR
571 int nid,
572 enum memblock_flags flags)
784656f9
TH
573{
574 struct memblock_region *rgn = &type->regions[idx];
575
576 BUG_ON(type->cnt >= type->max);
577 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
578 rgn->base = base;
579 rgn->size = size;
66a20757 580 rgn->flags = flags;
7c0caeb8 581 memblock_set_region_node(rgn, nid);
784656f9 582 type->cnt++;
1440c4e2 583 type->total_size += size;
784656f9
TH
584}
585
586/**
f1af9d3a 587 * memblock_add_range - add new memblock region
784656f9
TH
588 * @type: memblock type to add new region into
589 * @base: base address of the new region
590 * @size: size of the new region
7fb0bc3f 591 * @nid: nid of the new region
66a20757 592 * @flags: flags of the new region
784656f9 593 *
47cec443 594 * Add new memblock region [@base, @base + @size) into @type. The new region
784656f9
TH
595 * is allowed to overlap with existing ones - overlaps don't affect already
596 * existing regions. @type is guaranteed to be minimal (all neighbouring
597 * compatible regions are merged) after the addition.
598 *
47cec443 599 * Return:
784656f9
TH
600 * 0 on success, -errno on failure.
601 */
02634a44 602static int __init_memblock memblock_add_range(struct memblock_type *type,
66a20757 603 phys_addr_t base, phys_addr_t size,
e1720fee 604 int nid, enum memblock_flags flags)
784656f9
TH
605{
606 bool insert = false;
eb18f1b5
TH
607 phys_addr_t obase = base;
608 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
609 int idx, nr_new;
610 struct memblock_region *rgn;
784656f9 611
b3dc627c
TH
612 if (!size)
613 return 0;
614
784656f9
TH
615 /* special case for empty array */
616 if (type->regions[0].size == 0) {
1440c4e2 617 WARN_ON(type->cnt != 1 || type->total_size);
8f7a6605
BH
618 type->regions[0].base = base;
619 type->regions[0].size = size;
66a20757 620 type->regions[0].flags = flags;
7fb0bc3f 621 memblock_set_region_node(&type->regions[0], nid);
1440c4e2 622 type->total_size = size;
8f7a6605 623 return 0;
95f72d1e 624 }
784656f9
TH
625repeat:
626 /*
627 * The following is executed twice. Once with %false @insert and
628 * then with %true. The first counts the number of regions needed
412d0008 629 * to accommodate the new area. The second actually inserts them.
142b45a7 630 */
784656f9
TH
631 base = obase;
632 nr_new = 0;
95f72d1e 633
66e8b438 634 for_each_memblock_type(idx, type, rgn) {
784656f9
TH
635 phys_addr_t rbase = rgn->base;
636 phys_addr_t rend = rbase + rgn->size;
637
638 if (rbase >= end)
95f72d1e 639 break;
784656f9
TH
640 if (rend <= base)
641 continue;
642 /*
643 * @rgn overlaps. If it separates the lower part of new
644 * area, insert that portion.
645 */
646 if (rbase > base) {
3f08a302 647#ifdef CONFIG_NEED_MULTIPLE_NODES
c0a29498
WY
648 WARN_ON(nid != memblock_get_region_node(rgn));
649#endif
4fcab5f4 650 WARN_ON(flags != rgn->flags);
784656f9
TH
651 nr_new++;
652 if (insert)
8c9c1701 653 memblock_insert_region(type, idx++, base,
66a20757
TC
654 rbase - base, nid,
655 flags);
95f72d1e 656 }
784656f9
TH
657 /* area below @rend is dealt with, forget about it */
658 base = min(rend, end);
95f72d1e 659 }
784656f9
TH
660
661 /* insert the remaining portion */
662 if (base < end) {
663 nr_new++;
664 if (insert)
8c9c1701 665 memblock_insert_region(type, idx, base, end - base,
66a20757 666 nid, flags);
95f72d1e 667 }
95f72d1e 668
ef3cc4db 669 if (!nr_new)
670 return 0;
671
784656f9
TH
672 /*
673 * If this was the first round, resize array and repeat for actual
674 * insertions; otherwise, merge and return.
142b45a7 675 */
784656f9
TH
676 if (!insert) {
677 while (type->cnt + nr_new > type->max)
48c3b583 678 if (memblock_double_array(type, obase, size) < 0)
784656f9
TH
679 return -ENOMEM;
680 insert = true;
681 goto repeat;
682 } else {
683 memblock_merge_regions(type);
684 return 0;
142b45a7 685 }
95f72d1e
YL
686}
687
48a833cc
MR
688/**
689 * memblock_add_node - add new memblock region within a NUMA node
690 * @base: base address of the new region
691 * @size: size of the new region
692 * @nid: nid of the new region
693 *
694 * Add new memblock region [@base, @base + @size) to the "memory"
695 * type. See memblock_add_range() description for mode details
696 *
697 * Return:
698 * 0 on success, -errno on failure.
699 */
7fb0bc3f
TH
700int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
701 int nid)
702{
f1af9d3a 703 return memblock_add_range(&memblock.memory, base, size, nid, 0);
7fb0bc3f
TH
704}
705
48a833cc
MR
706/**
707 * memblock_add - add new memblock region
708 * @base: base address of the new region
709 * @size: size of the new region
710 *
711 * Add new memblock region [@base, @base + @size) to the "memory"
712 * type. See memblock_add_range() description for mode details
713 *
714 * Return:
715 * 0 on success, -errno on failure.
716 */
f705ac4b 717int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
6a4055bc 718{
5d63f81c
MC
719 phys_addr_t end = base + size - 1;
720
a090d711 721 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 722 &base, &end, (void *)_RET_IP_);
6a4055bc 723
f705ac4b 724 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
725}
726
6a9ceb31
TH
727/**
728 * memblock_isolate_range - isolate given range into disjoint memblocks
729 * @type: memblock type to isolate range for
730 * @base: base of range to isolate
731 * @size: size of range to isolate
732 * @start_rgn: out parameter for the start of isolated region
733 * @end_rgn: out parameter for the end of isolated region
734 *
735 * Walk @type and ensure that regions don't cross the boundaries defined by
47cec443 736 * [@base, @base + @size). Crossing regions are split at the boundaries,
6a9ceb31
TH
737 * which may create at most two more regions. The index of the first
738 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
739 *
47cec443 740 * Return:
6a9ceb31
TH
741 * 0 on success, -errno on failure.
742 */
743static int __init_memblock memblock_isolate_range(struct memblock_type *type,
744 phys_addr_t base, phys_addr_t size,
745 int *start_rgn, int *end_rgn)
746{
eb18f1b5 747 phys_addr_t end = base + memblock_cap_size(base, &size);
8c9c1701
AK
748 int idx;
749 struct memblock_region *rgn;
6a9ceb31
TH
750
751 *start_rgn = *end_rgn = 0;
752
b3dc627c
TH
753 if (!size)
754 return 0;
755
6a9ceb31
TH
756 /* we'll create at most two more regions */
757 while (type->cnt + 2 > type->max)
48c3b583 758 if (memblock_double_array(type, base, size) < 0)
6a9ceb31
TH
759 return -ENOMEM;
760
66e8b438 761 for_each_memblock_type(idx, type, rgn) {
6a9ceb31
TH
762 phys_addr_t rbase = rgn->base;
763 phys_addr_t rend = rbase + rgn->size;
764
765 if (rbase >= end)
766 break;
767 if (rend <= base)
768 continue;
769
770 if (rbase < base) {
771 /*
772 * @rgn intersects from below. Split and continue
773 * to process the next region - the new top half.
774 */
775 rgn->base = base;
1440c4e2
TH
776 rgn->size -= base - rbase;
777 type->total_size -= base - rbase;
8c9c1701 778 memblock_insert_region(type, idx, rbase, base - rbase,
66a20757
TC
779 memblock_get_region_node(rgn),
780 rgn->flags);
6a9ceb31
TH
781 } else if (rend > end) {
782 /*
783 * @rgn intersects from above. Split and redo the
784 * current region - the new bottom half.
785 */
786 rgn->base = end;
1440c4e2
TH
787 rgn->size -= end - rbase;
788 type->total_size -= end - rbase;
8c9c1701 789 memblock_insert_region(type, idx--, rbase, end - rbase,
66a20757
TC
790 memblock_get_region_node(rgn),
791 rgn->flags);
6a9ceb31
TH
792 } else {
793 /* @rgn is fully contained, record it */
794 if (!*end_rgn)
8c9c1701
AK
795 *start_rgn = idx;
796 *end_rgn = idx + 1;
6a9ceb31
TH
797 }
798 }
799
800 return 0;
801}
6a9ceb31 802
35bd16a2 803static int __init_memblock memblock_remove_range(struct memblock_type *type,
f1af9d3a 804 phys_addr_t base, phys_addr_t size)
95f72d1e 805{
71936180
TH
806 int start_rgn, end_rgn;
807 int i, ret;
95f72d1e 808
71936180
TH
809 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
810 if (ret)
811 return ret;
95f72d1e 812
71936180
TH
813 for (i = end_rgn - 1; i >= start_rgn; i--)
814 memblock_remove_region(type, i);
8f7a6605 815 return 0;
95f72d1e
YL
816}
817
581adcbe 818int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
95f72d1e 819{
25cf23d7
MK
820 phys_addr_t end = base + size - 1;
821
a090d711 822 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
25cf23d7
MK
823 &base, &end, (void *)_RET_IP_);
824
f1af9d3a 825 return memblock_remove_range(&memblock.memory, base, size);
95f72d1e
YL
826}
827
4d72868c
MR
828/**
829 * memblock_free - free boot memory block
830 * @base: phys starting address of the boot memory block
831 * @size: size of the boot memory block in bytes
832 *
833 * Free boot memory block previously allocated by memblock_alloc_xx() API.
834 * The freeing memory will not be released to the buddy allocator.
835 */
581adcbe 836int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
95f72d1e 837{
5d63f81c
MC
838 phys_addr_t end = base + size - 1;
839
a090d711 840 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 841 &base, &end, (void *)_RET_IP_);
24aa0788 842
9099daed 843 kmemleak_free_part_phys(base, size);
f1af9d3a 844 return memblock_remove_range(&memblock.reserved, base, size);
95f72d1e
YL
845}
846
f705ac4b 847int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
95f72d1e 848{
5d63f81c
MC
849 phys_addr_t end = base + size - 1;
850
a090d711 851 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
5d63f81c 852 &base, &end, (void *)_RET_IP_);
95f72d1e 853
f705ac4b 854 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
95f72d1e
YL
855}
856
02634a44
AK
857#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
858int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
859{
860 phys_addr_t end = base + size - 1;
861
862 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
863 &base, &end, (void *)_RET_IP_);
864
77649905 865 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
02634a44
AK
866}
867#endif
868
66b16edf 869/**
47cec443
MR
870 * memblock_setclr_flag - set or clear flag for a memory region
871 * @base: base address of the region
872 * @size: size of the region
873 * @set: set or clear the flag
8958b249 874 * @flag: the flag to update
66b16edf 875 *
4308ce17 876 * This function isolates region [@base, @base + @size), and sets/clears flag
66b16edf 877 *
47cec443 878 * Return: 0 on success, -errno on failure.
66b16edf 879 */
4308ce17
TL
880static int __init_memblock memblock_setclr_flag(phys_addr_t base,
881 phys_addr_t size, int set, int flag)
66b16edf
TC
882{
883 struct memblock_type *type = &memblock.memory;
884 int i, ret, start_rgn, end_rgn;
885
886 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
887 if (ret)
888 return ret;
889
fe145124
MR
890 for (i = start_rgn; i < end_rgn; i++) {
891 struct memblock_region *r = &type->regions[i];
892
4308ce17 893 if (set)
fe145124 894 r->flags |= flag;
4308ce17 895 else
fe145124
MR
896 r->flags &= ~flag;
897 }
66b16edf
TC
898
899 memblock_merge_regions(type);
900 return 0;
901}
902
903/**
4308ce17 904 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
66b16edf
TC
905 * @base: the base phys addr of the region
906 * @size: the size of the region
907 *
47cec443 908 * Return: 0 on success, -errno on failure.
4308ce17
TL
909 */
910int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
911{
912 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
913}
914
915/**
916 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
917 * @base: the base phys addr of the region
918 * @size: the size of the region
66b16edf 919 *
47cec443 920 * Return: 0 on success, -errno on failure.
66b16edf
TC
921 */
922int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
923{
4308ce17 924 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
66b16edf
TC
925}
926
a3f5bafc
TL
927/**
928 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
929 * @base: the base phys addr of the region
930 * @size: the size of the region
931 *
47cec443 932 * Return: 0 on success, -errno on failure.
a3f5bafc
TL
933 */
934int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
935{
936 system_has_some_mirror = true;
937
938 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
939}
940
bf3d3cc5
AB
941/**
942 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
943 * @base: the base phys addr of the region
944 * @size: the size of the region
945 *
47cec443 946 * Return: 0 on success, -errno on failure.
bf3d3cc5
AB
947 */
948int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
949{
950 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
951}
a3f5bafc 952
4c546b8a
AT
953/**
954 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
955 * @base: the base phys addr of the region
956 * @size: the size of the region
957 *
47cec443 958 * Return: 0 on success, -errno on failure.
4c546b8a
AT
959 */
960int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
961{
962 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
963}
964
9f3d5eaa
MR
965static bool should_skip_region(struct memblock_type *type,
966 struct memblock_region *m,
967 int nid, int flags)
c9a688a3
MR
968{
969 int m_nid = memblock_get_region_node(m);
970
9f3d5eaa
MR
971 /* we never skip regions when iterating memblock.reserved or physmem */
972 if (type != memblock_memory)
973 return false;
974
c9a688a3
MR
975 /* only memory regions are associated with nodes, check it */
976 if (nid != NUMA_NO_NODE && nid != m_nid)
977 return true;
978
979 /* skip hotpluggable memory regions if needed */
980 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
981 return true;
982
983 /* if we want mirror memory skip non-mirror memory regions */
984 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
985 return true;
986
987 /* skip nomap memory unless we were asked for it explicitly */
988 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
989 return true;
990
991 return false;
992}
993
35fd0808 994/**
a2974133 995 * __next_mem_range - next function for for_each_free_mem_range() etc.
35fd0808 996 * @idx: pointer to u64 loop variable
b1154233 997 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 998 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
999 * @type_a: pointer to memblock_type from where the range is taken
1000 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1001 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1002 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1003 * @out_nid: ptr to int for nid of the range, can be %NULL
35fd0808 1004 *
f1af9d3a 1005 * Find the first area from *@idx which matches @nid, fill the out
35fd0808 1006 * parameters, and update *@idx for the next iteration. The lower 32bit of
f1af9d3a
PH
1007 * *@idx contains index into type_a and the upper 32bit indexes the
1008 * areas before each region in type_b. For example, if type_b regions
35fd0808
TH
1009 * look like the following,
1010 *
1011 * 0:[0-16), 1:[32-48), 2:[128-130)
1012 *
1013 * The upper 32bit indexes the following regions.
1014 *
1015 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1016 *
1017 * As both region arrays are sorted, the function advances the two indices
1018 * in lockstep and returns each intersection.
1019 */
77649905
DH
1020void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1021 struct memblock_type *type_a,
1022 struct memblock_type *type_b, phys_addr_t *out_start,
1023 phys_addr_t *out_end, int *out_nid)
35fd0808 1024{
f1af9d3a
PH
1025 int idx_a = *idx & 0xffffffff;
1026 int idx_b = *idx >> 32;
b1154233 1027
f1af9d3a
PH
1028 if (WARN_ONCE(nid == MAX_NUMNODES,
1029 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
560dca27 1030 nid = NUMA_NO_NODE;
35fd0808 1031
f1af9d3a
PH
1032 for (; idx_a < type_a->cnt; idx_a++) {
1033 struct memblock_region *m = &type_a->regions[idx_a];
1034
35fd0808
TH
1035 phys_addr_t m_start = m->base;
1036 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1037 int m_nid = memblock_get_region_node(m);
35fd0808 1038
9f3d5eaa 1039 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1040 continue;
1041
f1af9d3a
PH
1042 if (!type_b) {
1043 if (out_start)
1044 *out_start = m_start;
1045 if (out_end)
1046 *out_end = m_end;
1047 if (out_nid)
1048 *out_nid = m_nid;
1049 idx_a++;
1050 *idx = (u32)idx_a | (u64)idx_b << 32;
1051 return;
1052 }
1053
1054 /* scan areas before each reservation */
1055 for (; idx_b < type_b->cnt + 1; idx_b++) {
1056 struct memblock_region *r;
1057 phys_addr_t r_start;
1058 phys_addr_t r_end;
1059
1060 r = &type_b->regions[idx_b];
1061 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1062 r_end = idx_b < type_b->cnt ?
1c4bc43d 1063 r->base : PHYS_ADDR_MAX;
35fd0808 1064
f1af9d3a
PH
1065 /*
1066 * if idx_b advanced past idx_a,
1067 * break out to advance idx_a
1068 */
35fd0808
TH
1069 if (r_start >= m_end)
1070 break;
1071 /* if the two regions intersect, we're done */
1072 if (m_start < r_end) {
1073 if (out_start)
f1af9d3a
PH
1074 *out_start =
1075 max(m_start, r_start);
35fd0808
TH
1076 if (out_end)
1077 *out_end = min(m_end, r_end);
1078 if (out_nid)
f1af9d3a 1079 *out_nid = m_nid;
35fd0808 1080 /*
f1af9d3a
PH
1081 * The region which ends first is
1082 * advanced for the next iteration.
35fd0808
TH
1083 */
1084 if (m_end <= r_end)
f1af9d3a 1085 idx_a++;
35fd0808 1086 else
f1af9d3a
PH
1087 idx_b++;
1088 *idx = (u32)idx_a | (u64)idx_b << 32;
35fd0808
TH
1089 return;
1090 }
1091 }
1092 }
1093
1094 /* signal end of iteration */
1095 *idx = ULLONG_MAX;
1096}
1097
7bd0b0f0 1098/**
f1af9d3a
PH
1099 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1100 *
7bd0b0f0 1101 * @idx: pointer to u64 loop variable
ad5ea8cd 1102 * @nid: node selector, %NUMA_NO_NODE for all nodes
fc6daaf9 1103 * @flags: pick from blocks based on memory attributes
f1af9d3a
PH
1104 * @type_a: pointer to memblock_type from where the range is taken
1105 * @type_b: pointer to memblock_type which excludes memory from being taken
dad7557e
WL
1106 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1107 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1108 * @out_nid: ptr to int for nid of the range, can be %NULL
7bd0b0f0 1109 *
47cec443
MR
1110 * Finds the next range from type_a which is not marked as unsuitable
1111 * in type_b.
1112 *
f1af9d3a 1113 * Reverse of __next_mem_range().
7bd0b0f0 1114 */
e1720fee
MR
1115void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1116 enum memblock_flags flags,
f1af9d3a
PH
1117 struct memblock_type *type_a,
1118 struct memblock_type *type_b,
1119 phys_addr_t *out_start,
1120 phys_addr_t *out_end, int *out_nid)
7bd0b0f0 1121{
f1af9d3a
PH
1122 int idx_a = *idx & 0xffffffff;
1123 int idx_b = *idx >> 32;
b1154233 1124
560dca27
GS
1125 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1126 nid = NUMA_NO_NODE;
7bd0b0f0
TH
1127
1128 if (*idx == (u64)ULLONG_MAX) {
f1af9d3a 1129 idx_a = type_a->cnt - 1;
e47608ab 1130 if (type_b != NULL)
1131 idx_b = type_b->cnt;
1132 else
1133 idx_b = 0;
7bd0b0f0
TH
1134 }
1135
f1af9d3a
PH
1136 for (; idx_a >= 0; idx_a--) {
1137 struct memblock_region *m = &type_a->regions[idx_a];
1138
7bd0b0f0
TH
1139 phys_addr_t m_start = m->base;
1140 phys_addr_t m_end = m->base + m->size;
f1af9d3a 1141 int m_nid = memblock_get_region_node(m);
7bd0b0f0 1142
9f3d5eaa 1143 if (should_skip_region(type_a, m, nid, flags))
bf3d3cc5
AB
1144 continue;
1145
f1af9d3a
PH
1146 if (!type_b) {
1147 if (out_start)
1148 *out_start = m_start;
1149 if (out_end)
1150 *out_end = m_end;
1151 if (out_nid)
1152 *out_nid = m_nid;
fb399b48 1153 idx_a--;
f1af9d3a
PH
1154 *idx = (u32)idx_a | (u64)idx_b << 32;
1155 return;
1156 }
1157
1158 /* scan areas before each reservation */
1159 for (; idx_b >= 0; idx_b--) {
1160 struct memblock_region *r;
1161 phys_addr_t r_start;
1162 phys_addr_t r_end;
1163
1164 r = &type_b->regions[idx_b];
1165 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1166 r_end = idx_b < type_b->cnt ?
1c4bc43d 1167 r->base : PHYS_ADDR_MAX;
f1af9d3a
PH
1168 /*
1169 * if idx_b advanced past idx_a,
1170 * break out to advance idx_a
1171 */
7bd0b0f0 1172
7bd0b0f0
TH
1173 if (r_end <= m_start)
1174 break;
1175 /* if the two regions intersect, we're done */
1176 if (m_end > r_start) {
1177 if (out_start)
1178 *out_start = max(m_start, r_start);
1179 if (out_end)
1180 *out_end = min(m_end, r_end);
1181 if (out_nid)
f1af9d3a 1182 *out_nid = m_nid;
7bd0b0f0 1183 if (m_start >= r_start)
f1af9d3a 1184 idx_a--;
7bd0b0f0 1185 else
f1af9d3a
PH
1186 idx_b--;
1187 *idx = (u32)idx_a | (u64)idx_b << 32;
7bd0b0f0
TH
1188 return;
1189 }
1190 }
1191 }
f1af9d3a 1192 /* signal end of iteration */
7bd0b0f0
TH
1193 *idx = ULLONG_MAX;
1194}
1195
7c0caeb8 1196/*
45e79815 1197 * Common iterator interface used to define for_each_mem_pfn_range().
7c0caeb8
TH
1198 */
1199void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1200 unsigned long *out_start_pfn,
1201 unsigned long *out_end_pfn, int *out_nid)
1202{
1203 struct memblock_type *type = &memblock.memory;
1204 struct memblock_region *r;
d622abf7 1205 int r_nid;
7c0caeb8
TH
1206
1207 while (++*idx < type->cnt) {
1208 r = &type->regions[*idx];
d622abf7 1209 r_nid = memblock_get_region_node(r);
7c0caeb8
TH
1210
1211 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1212 continue;
d622abf7 1213 if (nid == MAX_NUMNODES || nid == r_nid)
7c0caeb8
TH
1214 break;
1215 }
1216 if (*idx >= type->cnt) {
1217 *idx = -1;
1218 return;
1219 }
1220
1221 if (out_start_pfn)
1222 *out_start_pfn = PFN_UP(r->base);
1223 if (out_end_pfn)
1224 *out_end_pfn = PFN_DOWN(r->base + r->size);
1225 if (out_nid)
d622abf7 1226 *out_nid = r_nid;
7c0caeb8
TH
1227}
1228
1229/**
1230 * memblock_set_node - set node ID on memblock regions
1231 * @base: base of area to set node ID for
1232 * @size: size of area to set node ID for
e7e8de59 1233 * @type: memblock type to set node ID for
7c0caeb8
TH
1234 * @nid: node ID to set
1235 *
47cec443 1236 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
7c0caeb8
TH
1237 * Regions which cross the area boundaries are split as necessary.
1238 *
47cec443 1239 * Return:
7c0caeb8
TH
1240 * 0 on success, -errno on failure.
1241 */
1242int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
e7e8de59 1243 struct memblock_type *type, int nid)
7c0caeb8 1244{
3f08a302 1245#ifdef CONFIG_NEED_MULTIPLE_NODES
6a9ceb31
TH
1246 int start_rgn, end_rgn;
1247 int i, ret;
7c0caeb8 1248
6a9ceb31
TH
1249 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1250 if (ret)
1251 return ret;
7c0caeb8 1252
6a9ceb31 1253 for (i = start_rgn; i < end_rgn; i++)
e9d24ad3 1254 memblock_set_region_node(&type->regions[i], nid);
7c0caeb8
TH
1255
1256 memblock_merge_regions(type);
3f08a302 1257#endif
7c0caeb8
TH
1258 return 0;
1259}
3f08a302 1260
837566e7
AD
1261#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1262/**
1263 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1264 *
1265 * @idx: pointer to u64 loop variable
1266 * @zone: zone in which all of the memory blocks reside
1267 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1268 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1269 *
1270 * This function is meant to be a zone/pfn specific wrapper for the
1271 * for_each_mem_range type iterators. Specifically they are used in the
1272 * deferred memory init routines and as such we were duplicating much of
1273 * this logic throughout the code. So instead of having it in multiple
1274 * locations it seemed like it would make more sense to centralize this to
1275 * one new iterator that does everything they need.
1276 */
1277void __init_memblock
1278__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1279 unsigned long *out_spfn, unsigned long *out_epfn)
1280{
1281 int zone_nid = zone_to_nid(zone);
1282 phys_addr_t spa, epa;
1283 int nid;
1284
1285 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1286 &memblock.memory, &memblock.reserved,
1287 &spa, &epa, &nid);
1288
1289 while (*idx != U64_MAX) {
1290 unsigned long epfn = PFN_DOWN(epa);
1291 unsigned long spfn = PFN_UP(spa);
1292
1293 /*
1294 * Verify the end is at least past the start of the zone and
1295 * that we have at least one PFN to initialize.
1296 */
1297 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1298 /* if we went too far just stop searching */
1299 if (zone_end_pfn(zone) <= spfn) {
1300 *idx = U64_MAX;
1301 break;
1302 }
1303
1304 if (out_spfn)
1305 *out_spfn = max(zone->zone_start_pfn, spfn);
1306 if (out_epfn)
1307 *out_epfn = min(zone_end_pfn(zone), epfn);
1308
1309 return;
1310 }
1311
1312 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1313 &memblock.memory, &memblock.reserved,
1314 &spa, &epa, &nid);
1315 }
1316
1317 /* signal end of iteration */
1318 if (out_spfn)
1319 *out_spfn = ULONG_MAX;
1320 if (out_epfn)
1321 *out_epfn = 0;
1322}
1323
1324#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
7c0caeb8 1325
92d12f95
MR
1326/**
1327 * memblock_alloc_range_nid - allocate boot memory block
1328 * @size: size of memory block to be allocated in bytes
1329 * @align: alignment of the region and block's size
1330 * @start: the lower bound of the memory region to allocate (phys address)
1331 * @end: the upper bound of the memory region to allocate (phys address)
1332 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1333 * @exact_nid: control the allocation fall back to other nodes
92d12f95
MR
1334 *
1335 * The allocation is performed from memory region limited by
95830666 1336 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
92d12f95 1337 *
0ac398b1
YY
1338 * If the specified node can not hold the requested memory and @exact_nid
1339 * is false, the allocation falls back to any node in the system.
92d12f95
MR
1340 *
1341 * For systems with memory mirroring, the allocation is attempted first
1342 * from the regions with mirroring enabled and then retried from any
1343 * memory region.
1344 *
1345 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1346 * allocated boot memory block, so that it is never reported as leaks.
1347 *
1348 * Return:
1349 * Physical address of allocated memory block on success, %0 on failure.
1350 */
8676af1f 1351phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
2bfc2862 1352 phys_addr_t align, phys_addr_t start,
0ac398b1
YY
1353 phys_addr_t end, int nid,
1354 bool exact_nid)
95f72d1e 1355{
92d12f95 1356 enum memblock_flags flags = choose_memblock_flags();
6ed311b2 1357 phys_addr_t found;
95f72d1e 1358
92d12f95
MR
1359 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1360 nid = NUMA_NO_NODE;
1361
2f770806
MR
1362 if (!align) {
1363 /* Can't use WARNs this early in boot on powerpc */
1364 dump_stack();
1365 align = SMP_CACHE_BYTES;
1366 }
1367
92d12f95 1368again:
fc6daaf9
TL
1369 found = memblock_find_in_range_node(size, align, start, end, nid,
1370 flags);
92d12f95
MR
1371 if (found && !memblock_reserve(found, size))
1372 goto done;
1373
0ac398b1 1374 if (nid != NUMA_NO_NODE && !exact_nid) {
92d12f95
MR
1375 found = memblock_find_in_range_node(size, align, start,
1376 end, NUMA_NO_NODE,
1377 flags);
1378 if (found && !memblock_reserve(found, size))
1379 goto done;
1380 }
1381
1382 if (flags & MEMBLOCK_MIRROR) {
1383 flags &= ~MEMBLOCK_MIRROR;
1384 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1385 &size);
1386 goto again;
1387 }
1388
1389 return 0;
1390
1391done:
1392 /* Skip kmemleak for kasan_init() due to high volume. */
1393 if (end != MEMBLOCK_ALLOC_KASAN)
aedf95ea 1394 /*
92d12f95
MR
1395 * The min_count is set to 0 so that memblock allocated
1396 * blocks are never reported as leaks. This is because many
1397 * of these blocks are only referred via the physical
1398 * address which is not looked up by kmemleak.
aedf95ea 1399 */
9099daed 1400 kmemleak_alloc_phys(found, size, 0, 0);
92d12f95
MR
1401
1402 return found;
95f72d1e
YL
1403}
1404
a2974133
MR
1405/**
1406 * memblock_phys_alloc_range - allocate a memory block inside specified range
1407 * @size: size of memory block to be allocated in bytes
1408 * @align: alignment of the region and block's size
1409 * @start: the lower bound of the memory region to allocate (physical address)
1410 * @end: the upper bound of the memory region to allocate (physical address)
1411 *
1412 * Allocate @size bytes in the between @start and @end.
1413 *
1414 * Return: physical address of the allocated memory block on success,
1415 * %0 on failure.
1416 */
8a770c2a
MR
1417phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1418 phys_addr_t align,
1419 phys_addr_t start,
1420 phys_addr_t end)
2bfc2862 1421{
b5cf2d6c
FM
1422 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1423 __func__, (u64)size, (u64)align, &start, &end,
1424 (void *)_RET_IP_);
0ac398b1
YY
1425 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1426 false);
7bd0b0f0
TH
1427}
1428
a2974133
MR
1429/**
1430 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1431 * @size: size of memory block to be allocated in bytes
1432 * @align: alignment of the region and block's size
1433 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1434 *
1435 * Allocates memory block from the specified NUMA node. If the node
1436 * has no available memory, attempts to allocated from any node in the
1437 * system.
1438 *
1439 * Return: physical address of the allocated memory block on success,
1440 * %0 on failure.
1441 */
9a8dd708 1442phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
9d1e2492 1443{
33755574 1444 return memblock_alloc_range_nid(size, align, 0,
0ac398b1 1445 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
95f72d1e
YL
1446}
1447
26f09e9b 1448/**
eb31d559 1449 * memblock_alloc_internal - allocate boot memory block
26f09e9b
SS
1450 * @size: size of memory block to be allocated in bytes
1451 * @align: alignment of the region and block's size
1452 * @min_addr: the lower bound of the memory region to allocate (phys address)
1453 * @max_addr: the upper bound of the memory region to allocate (phys address)
1454 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
0ac398b1 1455 * @exact_nid: control the allocation fall back to other nodes
26f09e9b 1456 *
92d12f95
MR
1457 * Allocates memory block using memblock_alloc_range_nid() and
1458 * converts the returned physical address to virtual.
26f09e9b 1459 *
92d12f95
MR
1460 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1461 * will fall back to memory below @min_addr. Other constraints, such
1462 * as node and mirrored memory will be handled again in
1463 * memblock_alloc_range_nid().
26f09e9b 1464 *
47cec443 1465 * Return:
26f09e9b
SS
1466 * Virtual address of allocated memory block on success, NULL on failure.
1467 */
eb31d559 1468static void * __init memblock_alloc_internal(
26f09e9b
SS
1469 phys_addr_t size, phys_addr_t align,
1470 phys_addr_t min_addr, phys_addr_t max_addr,
0ac398b1 1471 int nid, bool exact_nid)
26f09e9b
SS
1472{
1473 phys_addr_t alloc;
26f09e9b
SS
1474
1475 /*
1476 * Detect any accidental use of these APIs after slab is ready, as at
1477 * this moment memblock may be deinitialized already and its
c6ffc5ca 1478 * internal data may be destroyed (after execution of memblock_free_all)
26f09e9b
SS
1479 */
1480 if (WARN_ON_ONCE(slab_is_available()))
1481 return kzalloc_node(size, GFP_NOWAIT, nid);
1482
f3057ad7
MR
1483 if (max_addr > memblock.current_limit)
1484 max_addr = memblock.current_limit;
1485
0ac398b1
YY
1486 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1487 exact_nid);
26f09e9b 1488
92d12f95
MR
1489 /* retry allocation without lower limit */
1490 if (!alloc && min_addr)
0ac398b1
YY
1491 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1492 exact_nid);
26f09e9b 1493
92d12f95
MR
1494 if (!alloc)
1495 return NULL;
26f09e9b 1496
92d12f95 1497 return phys_to_virt(alloc);
26f09e9b
SS
1498}
1499
0ac398b1
YY
1500/**
1501 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1502 * without zeroing memory
1503 * @size: size of memory block to be allocated in bytes
1504 * @align: alignment of the region and block's size
1505 * @min_addr: the lower bound of the memory region from where the allocation
1506 * is preferred (phys address)
1507 * @max_addr: the upper bound of the memory region from where the allocation
1508 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1509 * allocate only from memory limited by memblock.current_limit value
1510 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1511 *
1512 * Public function, provides additional debug information (including caller
1513 * info), if enabled. Does not zero allocated memory.
1514 *
1515 * Return:
1516 * Virtual address of allocated memory block on success, NULL on failure.
1517 */
1518void * __init memblock_alloc_exact_nid_raw(
1519 phys_addr_t size, phys_addr_t align,
1520 phys_addr_t min_addr, phys_addr_t max_addr,
1521 int nid)
1522{
1523 void *ptr;
1524
1525 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1526 __func__, (u64)size, (u64)align, nid, &min_addr,
1527 &max_addr, (void *)_RET_IP_);
1528
1529 ptr = memblock_alloc_internal(size, align,
1530 min_addr, max_addr, nid, true);
1531 if (ptr && size > 0)
1532 page_init_poison(ptr, size);
1533
1534 return ptr;
1535}
1536
ea1f5f37 1537/**
eb31d559 1538 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
ea1f5f37
PT
1539 * memory and without panicking
1540 * @size: size of memory block to be allocated in bytes
1541 * @align: alignment of the region and block's size
1542 * @min_addr: the lower bound of the memory region from where the allocation
1543 * is preferred (phys address)
1544 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1545 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
ea1f5f37
PT
1546 * allocate only from memory limited by memblock.current_limit value
1547 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1548 *
1549 * Public function, provides additional debug information (including caller
1550 * info), if enabled. Does not zero allocated memory, does not panic if request
1551 * cannot be satisfied.
1552 *
47cec443 1553 * Return:
ea1f5f37
PT
1554 * Virtual address of allocated memory block on success, NULL on failure.
1555 */
eb31d559 1556void * __init memblock_alloc_try_nid_raw(
ea1f5f37
PT
1557 phys_addr_t size, phys_addr_t align,
1558 phys_addr_t min_addr, phys_addr_t max_addr,
1559 int nid)
1560{
1561 void *ptr;
1562
d75f773c 1563 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1564 __func__, (u64)size, (u64)align, nid, &min_addr,
1565 &max_addr, (void *)_RET_IP_);
ea1f5f37 1566
eb31d559 1567 ptr = memblock_alloc_internal(size, align,
0ac398b1 1568 min_addr, max_addr, nid, false);
ea1f5f37 1569 if (ptr && size > 0)
f682a97a
AD
1570 page_init_poison(ptr, size);
1571
ea1f5f37
PT
1572 return ptr;
1573}
1574
26f09e9b 1575/**
c0dbe825 1576 * memblock_alloc_try_nid - allocate boot memory block
26f09e9b
SS
1577 * @size: size of memory block to be allocated in bytes
1578 * @align: alignment of the region and block's size
1579 * @min_addr: the lower bound of the memory region from where the allocation
1580 * is preferred (phys address)
1581 * @max_addr: the upper bound of the memory region from where the allocation
97ad1087 1582 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
26f09e9b
SS
1583 * allocate only from memory limited by memblock.current_limit value
1584 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1585 *
c0dbe825
MR
1586 * Public function, provides additional debug information (including caller
1587 * info), if enabled. This function zeroes the allocated memory.
26f09e9b 1588 *
47cec443 1589 * Return:
26f09e9b
SS
1590 * Virtual address of allocated memory block on success, NULL on failure.
1591 */
eb31d559 1592void * __init memblock_alloc_try_nid(
26f09e9b
SS
1593 phys_addr_t size, phys_addr_t align,
1594 phys_addr_t min_addr, phys_addr_t max_addr,
1595 int nid)
1596{
1597 void *ptr;
1598
d75f773c 1599 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
a36aab89
MR
1600 __func__, (u64)size, (u64)align, nid, &min_addr,
1601 &max_addr, (void *)_RET_IP_);
eb31d559 1602 ptr = memblock_alloc_internal(size, align,
0ac398b1 1603 min_addr, max_addr, nid, false);
c0dbe825 1604 if (ptr)
ea1f5f37 1605 memset(ptr, 0, size);
26f09e9b 1606
c0dbe825 1607 return ptr;
26f09e9b
SS
1608}
1609
48a833cc 1610/**
a2974133 1611 * __memblock_free_late - free pages directly to buddy allocator
48a833cc 1612 * @base: phys starting address of the boot memory block
26f09e9b
SS
1613 * @size: size of the boot memory block in bytes
1614 *
a2974133 1615 * This is only useful when the memblock allocator has already been torn
26f09e9b 1616 * down, but we are still initializing the system. Pages are released directly
a2974133 1617 * to the buddy allocator.
26f09e9b
SS
1618 */
1619void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1620{
a36aab89 1621 phys_addr_t cursor, end;
26f09e9b 1622
a36aab89 1623 end = base + size - 1;
d75f773c 1624 memblock_dbg("%s: [%pa-%pa] %pS\n",
a36aab89 1625 __func__, &base, &end, (void *)_RET_IP_);
9099daed 1626 kmemleak_free_part_phys(base, size);
26f09e9b
SS
1627 cursor = PFN_UP(base);
1628 end = PFN_DOWN(base + size);
1629
1630 for (; cursor < end; cursor++) {
7c2ee349 1631 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
ca79b0c2 1632 totalram_pages_inc();
26f09e9b
SS
1633 }
1634}
9d1e2492
BH
1635
1636/*
1637 * Remaining API functions
1638 */
1639
1f1ffb8a 1640phys_addr_t __init_memblock memblock_phys_mem_size(void)
95f72d1e 1641{
1440c4e2 1642 return memblock.memory.total_size;
95f72d1e
YL
1643}
1644
8907de5d
SD
1645phys_addr_t __init_memblock memblock_reserved_size(void)
1646{
1647 return memblock.reserved.total_size;
1648}
1649
0a93ebef
SR
1650/* lowest address */
1651phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1652{
1653 return memblock.memory.regions[0].base;
1654}
1655
10d06439 1656phys_addr_t __init_memblock memblock_end_of_DRAM(void)
95f72d1e
YL
1657{
1658 int idx = memblock.memory.cnt - 1;
1659
e3239ff9 1660 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
95f72d1e
YL
1661}
1662
a571d4eb 1663static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
95f72d1e 1664{
1c4bc43d 1665 phys_addr_t max_addr = PHYS_ADDR_MAX;
136199f0 1666 struct memblock_region *r;
95f72d1e 1667
a571d4eb
DC
1668 /*
1669 * translate the memory @limit size into the max address within one of
1670 * the memory memblock regions, if the @limit exceeds the total size
1c4bc43d 1671 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
a571d4eb 1672 */
cc6de168 1673 for_each_mem_region(r) {
c0ce8fef
TH
1674 if (limit <= r->size) {
1675 max_addr = r->base + limit;
1676 break;
95f72d1e 1677 }
c0ce8fef 1678 limit -= r->size;
95f72d1e 1679 }
c0ce8fef 1680
a571d4eb
DC
1681 return max_addr;
1682}
1683
1684void __init memblock_enforce_memory_limit(phys_addr_t limit)
1685{
49aef717 1686 phys_addr_t max_addr;
a571d4eb
DC
1687
1688 if (!limit)
1689 return;
1690
1691 max_addr = __find_max_addr(limit);
1692
1693 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1694 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1695 return;
1696
c0ce8fef 1697 /* truncate both memory and reserved regions */
f1af9d3a 1698 memblock_remove_range(&memblock.memory, max_addr,
1c4bc43d 1699 PHYS_ADDR_MAX);
f1af9d3a 1700 memblock_remove_range(&memblock.reserved, max_addr,
1c4bc43d 1701 PHYS_ADDR_MAX);
95f72d1e
YL
1702}
1703
c9ca9b4e
AT
1704void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1705{
1706 int start_rgn, end_rgn;
1707 int i, ret;
1708
1709 if (!size)
1710 return;
1711
1712 ret = memblock_isolate_range(&memblock.memory, base, size,
1713 &start_rgn, &end_rgn);
1714 if (ret)
1715 return;
1716
1717 /* remove all the MAP regions */
1718 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1719 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1720 memblock_remove_region(&memblock.memory, i);
1721
1722 for (i = start_rgn - 1; i >= 0; i--)
1723 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1724 memblock_remove_region(&memblock.memory, i);
1725
1726 /* truncate the reserved regions */
1727 memblock_remove_range(&memblock.reserved, 0, base);
1728 memblock_remove_range(&memblock.reserved,
1c4bc43d 1729 base + size, PHYS_ADDR_MAX);
c9ca9b4e
AT
1730}
1731
a571d4eb
DC
1732void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1733{
a571d4eb 1734 phys_addr_t max_addr;
a571d4eb
DC
1735
1736 if (!limit)
1737 return;
1738
1739 max_addr = __find_max_addr(limit);
1740
1741 /* @limit exceeds the total size of the memory, do nothing */
1c4bc43d 1742 if (max_addr == PHYS_ADDR_MAX)
a571d4eb
DC
1743 return;
1744
c9ca9b4e 1745 memblock_cap_memory_range(0, max_addr);
a571d4eb
DC
1746}
1747
cd79481d 1748static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
72d4b0b4
BH
1749{
1750 unsigned int left = 0, right = type->cnt;
1751
1752 do {
1753 unsigned int mid = (right + left) / 2;
1754
1755 if (addr < type->regions[mid].base)
1756 right = mid;
1757 else if (addr >= (type->regions[mid].base +
1758 type->regions[mid].size))
1759 left = mid + 1;
1760 else
1761 return mid;
1762 } while (left < right);
1763 return -1;
1764}
1765
f5a222dc 1766bool __init_memblock memblock_is_reserved(phys_addr_t addr)
95f72d1e 1767{
72d4b0b4
BH
1768 return memblock_search(&memblock.reserved, addr) != -1;
1769}
95f72d1e 1770
b4ad0c7e 1771bool __init_memblock memblock_is_memory(phys_addr_t addr)
72d4b0b4
BH
1772{
1773 return memblock_search(&memblock.memory, addr) != -1;
1774}
1775
937f0c26 1776bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
bf3d3cc5
AB
1777{
1778 int i = memblock_search(&memblock.memory, addr);
1779
1780 if (i == -1)
1781 return false;
1782 return !memblock_is_nomap(&memblock.memory.regions[i]);
1783}
1784
e76b63f8
YL
1785int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1786 unsigned long *start_pfn, unsigned long *end_pfn)
1787{
1788 struct memblock_type *type = &memblock.memory;
16763230 1789 int mid = memblock_search(type, PFN_PHYS(pfn));
e76b63f8
YL
1790
1791 if (mid == -1)
1792 return -1;
1793
f7e2f7e8
FF
1794 *start_pfn = PFN_DOWN(type->regions[mid].base);
1795 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
e76b63f8 1796
d622abf7 1797 return memblock_get_region_node(&type->regions[mid]);
e76b63f8 1798}
e76b63f8 1799
eab30949
SB
1800/**
1801 * memblock_is_region_memory - check if a region is a subset of memory
1802 * @base: base of region to check
1803 * @size: size of region to check
1804 *
47cec443 1805 * Check if the region [@base, @base + @size) is a subset of a memory block.
eab30949 1806 *
47cec443 1807 * Return:
eab30949
SB
1808 * 0 if false, non-zero if true
1809 */
937f0c26 1810bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
72d4b0b4 1811{
abb65272 1812 int idx = memblock_search(&memblock.memory, base);
eb18f1b5 1813 phys_addr_t end = base + memblock_cap_size(base, &size);
72d4b0b4
BH
1814
1815 if (idx == -1)
937f0c26 1816 return false;
ef415ef4 1817 return (memblock.memory.regions[idx].base +
eb18f1b5 1818 memblock.memory.regions[idx].size) >= end;
95f72d1e
YL
1819}
1820
eab30949
SB
1821/**
1822 * memblock_is_region_reserved - check if a region intersects reserved memory
1823 * @base: base of region to check
1824 * @size: size of region to check
1825 *
47cec443
MR
1826 * Check if the region [@base, @base + @size) intersects a reserved
1827 * memory block.
eab30949 1828 *
47cec443 1829 * Return:
c5c5c9d1 1830 * True if they intersect, false if not.
eab30949 1831 */
c5c5c9d1 1832bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
95f72d1e 1833{
eb18f1b5 1834 memblock_cap_size(base, &size);
c5c5c9d1 1835 return memblock_overlaps_region(&memblock.reserved, base, size);
95f72d1e
YL
1836}
1837
6ede1fd3
YL
1838void __init_memblock memblock_trim_memory(phys_addr_t align)
1839{
6ede1fd3 1840 phys_addr_t start, end, orig_start, orig_end;
136199f0 1841 struct memblock_region *r;
6ede1fd3 1842
cc6de168 1843 for_each_mem_region(r) {
136199f0
EM
1844 orig_start = r->base;
1845 orig_end = r->base + r->size;
6ede1fd3
YL
1846 start = round_up(orig_start, align);
1847 end = round_down(orig_end, align);
1848
1849 if (start == orig_start && end == orig_end)
1850 continue;
1851
1852 if (start < end) {
136199f0
EM
1853 r->base = start;
1854 r->size = end - start;
6ede1fd3 1855 } else {
136199f0
EM
1856 memblock_remove_region(&memblock.memory,
1857 r - memblock.memory.regions);
1858 r--;
6ede1fd3
YL
1859 }
1860 }
1861}
e63075a3 1862
3661ca66 1863void __init_memblock memblock_set_current_limit(phys_addr_t limit)
e63075a3
BH
1864{
1865 memblock.current_limit = limit;
1866}
1867
fec51014
LA
1868phys_addr_t __init_memblock memblock_get_current_limit(void)
1869{
1870 return memblock.current_limit;
1871}
1872
0262d9c8 1873static void __init_memblock memblock_dump(struct memblock_type *type)
6ed311b2 1874{
5d63f81c 1875 phys_addr_t base, end, size;
e1720fee 1876 enum memblock_flags flags;
8c9c1701
AK
1877 int idx;
1878 struct memblock_region *rgn;
6ed311b2 1879
0262d9c8 1880 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
6ed311b2 1881
66e8b438 1882 for_each_memblock_type(idx, type, rgn) {
7c0caeb8
TH
1883 char nid_buf[32] = "";
1884
1885 base = rgn->base;
1886 size = rgn->size;
5d63f81c 1887 end = base + size - 1;
66a20757 1888 flags = rgn->flags;
3f08a302 1889#ifdef CONFIG_NEED_MULTIPLE_NODES
7c0caeb8
TH
1890 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1891 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1892 memblock_get_region_node(rgn));
1893#endif
e1720fee 1894 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
0262d9c8 1895 type->name, idx, &base, &end, &size, nid_buf, flags);
6ed311b2
BH
1896 }
1897}
1898
87c55870 1899static void __init_memblock __memblock_dump_all(void)
6ed311b2 1900{
6ed311b2 1901 pr_info("MEMBLOCK configuration:\n");
5d63f81c
MC
1902 pr_info(" memory size = %pa reserved size = %pa\n",
1903 &memblock.memory.total_size,
1904 &memblock.reserved.total_size);
6ed311b2 1905
0262d9c8
HC
1906 memblock_dump(&memblock.memory);
1907 memblock_dump(&memblock.reserved);
409efd4c 1908#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905 1909 memblock_dump(&physmem);
409efd4c 1910#endif
6ed311b2
BH
1911}
1912
87c55870
MR
1913void __init_memblock memblock_dump_all(void)
1914{
1915 if (memblock_debug)
1916 __memblock_dump_all();
1917}
1918
1aadc056 1919void __init memblock_allow_resize(void)
6ed311b2 1920{
142b45a7 1921 memblock_can_resize = 1;
6ed311b2
BH
1922}
1923
6ed311b2
BH
1924static int __init early_memblock(char *p)
1925{
1926 if (p && strstr(p, "debug"))
1927 memblock_debug = 1;
1928 return 0;
1929}
1930early_param("memblock", early_memblock);
1931
4f5b0c17
MR
1932static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1933{
1934 struct page *start_pg, *end_pg;
1935 phys_addr_t pg, pgend;
1936
1937 /*
1938 * Convert start_pfn/end_pfn to a struct page pointer.
1939 */
1940 start_pg = pfn_to_page(start_pfn - 1) + 1;
1941 end_pg = pfn_to_page(end_pfn - 1) + 1;
1942
1943 /*
1944 * Convert to physical addresses, and round start upwards and end
1945 * downwards.
1946 */
1947 pg = PAGE_ALIGN(__pa(start_pg));
1948 pgend = __pa(end_pg) & PAGE_MASK;
1949
1950 /*
1951 * If there are free pages between these, free the section of the
1952 * memmap array.
1953 */
1954 if (pg < pgend)
1955 memblock_free(pg, pgend - pg);
1956}
1957
1958/*
1959 * The mem_map array can get very big. Free the unused area of the memory map.
1960 */
1961static void __init free_unused_memmap(void)
1962{
1963 unsigned long start, end, prev_end = 0;
1964 int i;
1965
1966 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1967 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1968 return;
1969
1970 /*
1971 * This relies on each bank being in address order.
1972 * The banks are sorted previously in bootmem_init().
1973 */
1974 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1975#ifdef CONFIG_SPARSEMEM
1976 /*
1977 * Take care not to free memmap entries that don't exist
1978 * due to SPARSEMEM sections which aren't present.
1979 */
1980 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1981#else
1982 /*
1983 * Align down here since the VM subsystem insists that the
1984 * memmap entries are valid from the bank start aligned to
1985 * MAX_ORDER_NR_PAGES.
1986 */
1987 start = round_down(start, MAX_ORDER_NR_PAGES);
1988#endif
1989
1990 /*
1991 * If we had a previous bank, and there is a space
1992 * between the current bank and the previous, free it.
1993 */
1994 if (prev_end && prev_end < start)
1995 free_memmap(prev_end, start);
1996
1997 /*
1998 * Align up here since the VM subsystem insists that the
1999 * memmap entries are valid from the bank end aligned to
2000 * MAX_ORDER_NR_PAGES.
2001 */
2002 prev_end = ALIGN(end, MAX_ORDER_NR_PAGES);
2003 }
2004
2005#ifdef CONFIG_SPARSEMEM
2006 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
2007 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2008#endif
2009}
2010
bda49a81
MR
2011static void __init __free_pages_memory(unsigned long start, unsigned long end)
2012{
2013 int order;
2014
2015 while (start < end) {
2016 order = min(MAX_ORDER - 1UL, __ffs(start));
2017
2018 while (start + (1UL << order) > end)
2019 order--;
2020
2021 memblock_free_pages(pfn_to_page(start), start, order);
2022
2023 start += (1UL << order);
2024 }
2025}
2026
2027static unsigned long __init __free_memory_core(phys_addr_t start,
2028 phys_addr_t end)
2029{
2030 unsigned long start_pfn = PFN_UP(start);
2031 unsigned long end_pfn = min_t(unsigned long,
2032 PFN_DOWN(end), max_low_pfn);
2033
2034 if (start_pfn >= end_pfn)
2035 return 0;
2036
2037 __free_pages_memory(start_pfn, end_pfn);
2038
2039 return end_pfn - start_pfn;
2040}
2041
2042static unsigned long __init free_low_memory_core_early(void)
2043{
2044 unsigned long count = 0;
2045 phys_addr_t start, end;
2046 u64 i;
2047
2048 memblock_clear_hotplug(0, -1);
2049
9f3d5eaa 2050 for_each_reserved_mem_range(i, &start, &end)
bda49a81
MR
2051 reserve_bootmem_region(start, end);
2052
2053 /*
2054 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2055 * because in some case like Node0 doesn't have RAM installed
2056 * low ram will be on Node1
2057 */
2058 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2059 NULL)
2060 count += __free_memory_core(start, end);
2061
2062 return count;
2063}
2064
2065static int reset_managed_pages_done __initdata;
2066
2067void reset_node_managed_pages(pg_data_t *pgdat)
2068{
2069 struct zone *z;
2070
2071 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
9705bea5 2072 atomic_long_set(&z->managed_pages, 0);
bda49a81
MR
2073}
2074
2075void __init reset_all_zones_managed_pages(void)
2076{
2077 struct pglist_data *pgdat;
2078
2079 if (reset_managed_pages_done)
2080 return;
2081
2082 for_each_online_pgdat(pgdat)
2083 reset_node_managed_pages(pgdat);
2084
2085 reset_managed_pages_done = 1;
2086}
2087
2088/**
2089 * memblock_free_all - release free pages to the buddy allocator
2090 *
2091 * Return: the number of pages actually released.
2092 */
2093unsigned long __init memblock_free_all(void)
2094{
2095 unsigned long pages;
2096
4f5b0c17 2097 free_unused_memmap();
bda49a81
MR
2098 reset_all_zones_managed_pages();
2099
2100 pages = free_low_memory_core_early();
ca79b0c2 2101 totalram_pages_add(pages);
bda49a81
MR
2102
2103 return pages;
2104}
2105
350e88ba 2106#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
6d03b885
BH
2107
2108static int memblock_debug_show(struct seq_file *m, void *private)
2109{
2110 struct memblock_type *type = m->private;
2111 struct memblock_region *reg;
2112 int i;
5d63f81c 2113 phys_addr_t end;
6d03b885
BH
2114
2115 for (i = 0; i < type->cnt; i++) {
2116 reg = &type->regions[i];
5d63f81c 2117 end = reg->base + reg->size - 1;
6d03b885 2118
5d63f81c
MC
2119 seq_printf(m, "%4d: ", i);
2120 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
6d03b885
BH
2121 }
2122 return 0;
2123}
5ad35093 2124DEFINE_SHOW_ATTRIBUTE(memblock_debug);
6d03b885
BH
2125
2126static int __init memblock_init_debugfs(void)
2127{
2128 struct dentry *root = debugfs_create_dir("memblock", NULL);
d9f7979c 2129
0825a6f9
JP
2130 debugfs_create_file("memory", 0444, root,
2131 &memblock.memory, &memblock_debug_fops);
2132 debugfs_create_file("reserved", 0444, root,
2133 &memblock.reserved, &memblock_debug_fops);
70210ed9 2134#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
77649905
DH
2135 debugfs_create_file("physmem", 0444, root, &physmem,
2136 &memblock_debug_fops);
70210ed9 2137#endif
6d03b885
BH
2138
2139 return 0;
2140}
2141__initcall(memblock_init_debugfs);
2142
2143#endif /* CONFIG_DEBUG_FS */