]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/memcontrol.c
ARM: dts: pandora-common: define wl1251 as child node of mmc3
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
71cd3113 103static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 114
bb4cc1a8
AM
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
ef8f2327 120struct mem_cgroup_tree_per_node {
bb4cc1a8 121 struct rb_root rb_root;
fa90b2fd 122 struct rb_node *rb_rightmost;
bb4cc1a8
AM
123 spinlock_t lock;
124};
125
bb4cc1a8
AM
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
9490ff27
KH
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
2e72b634 137
79bd9814
TH
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
3bc942f3 141struct mem_cgroup_event {
79bd9814 142 /*
59b6f873 143 * memcg which the event belongs to.
79bd9814 144 */
59b6f873 145 struct mem_cgroup *memcg;
79bd9814
TH
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
fba94807
TH
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
59b6f873 159 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 160 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
59b6f873 166 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 167 struct eventfd_ctx *eventfd);
79bd9814
TH
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
ac6424b9 174 wait_queue_entry_t wait;
79bd9814
TH
175 struct work_struct remove;
176};
177
c0ff4b85
R
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 180
7dc74be0
DN
181/* Stuffs for move charges at task migration. */
182/*
1dfab5ab 183 * Types of charges to be moved.
7dc74be0 184 */
1dfab5ab
JW
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 188
4ffef5fe
DN
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
b1dd693e 191 spinlock_t lock; /* for from, to */
264a0ae1 192 struct mm_struct *mm;
4ffef5fe
DN
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
1dfab5ab 195 unsigned long flags;
4ffef5fe 196 unsigned long precharge;
854ffa8d 197 unsigned long moved_charge;
483c30b5 198 unsigned long moved_swap;
8033b97c
DN
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
2bd9bb20 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
4ffef5fe 205
4e416953
BS
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
a0db00fc 210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 212
217bc319
KH
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 215 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
218 NR_CHARGE_TYPE,
219};
220
8c7c6e34 221/* for encoding cft->private value on file */
86ae53e1
GC
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
510fc4e1 226 _KMEM,
d55f90bf 227 _TCP,
86ae53e1
GC
228};
229
a0db00fc
KS
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 232#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
8c7c6e34 235
d9e9af93
TH
236static inline bool should_force_charge(void)
237{
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240}
241
70ddf637
AV
242/* Some nice accessors for the vmpressure. */
243struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244{
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248}
249
250struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251{
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253}
254
7ffc0edc
MH
255static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
256{
257 return (memcg == root_mem_cgroup);
258}
259
127424c8 260#ifndef CONFIG_SLOB
55007d84 261/*
f7ce3190 262 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
263 * The main reason for not using cgroup id for this:
264 * this works better in sparse environments, where we have a lot of memcgs,
265 * but only a few kmem-limited. Or also, if we have, for instance, 200
266 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
267 * 200 entry array for that.
55007d84 268 *
dbcf73e2
VD
269 * The current size of the caches array is stored in memcg_nr_cache_ids. It
270 * will double each time we have to increase it.
55007d84 271 */
dbcf73e2
VD
272static DEFINE_IDA(memcg_cache_ida);
273int memcg_nr_cache_ids;
749c5415 274
05257a1a
VD
275/* Protects memcg_nr_cache_ids */
276static DECLARE_RWSEM(memcg_cache_ids_sem);
277
278void memcg_get_cache_ids(void)
279{
280 down_read(&memcg_cache_ids_sem);
281}
282
283void memcg_put_cache_ids(void)
284{
285 up_read(&memcg_cache_ids_sem);
286}
287
55007d84
GC
288/*
289 * MIN_SIZE is different than 1, because we would like to avoid going through
290 * the alloc/free process all the time. In a small machine, 4 kmem-limited
291 * cgroups is a reasonable guess. In the future, it could be a parameter or
292 * tunable, but that is strictly not necessary.
293 *
b8627835 294 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
295 * this constant directly from cgroup, but it is understandable that this is
296 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 297 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
298 * increase ours as well if it increases.
299 */
300#define MEMCG_CACHES_MIN_SIZE 4
b8627835 301#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 302
d7f25f8a
GC
303/*
304 * A lot of the calls to the cache allocation functions are expected to be
305 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
306 * conditional to this static branch, we'll have to allow modules that does
307 * kmem_cache_alloc and the such to see this symbol as well
308 */
ef12947c 309DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 310EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 311
17cc4dfe
TH
312struct workqueue_struct *memcg_kmem_cache_wq;
313
127424c8 314#endif /* !CONFIG_SLOB */
a8964b9b 315
ad7fa852
TH
316/**
317 * mem_cgroup_css_from_page - css of the memcg associated with a page
318 * @page: page of interest
319 *
320 * If memcg is bound to the default hierarchy, css of the memcg associated
321 * with @page is returned. The returned css remains associated with @page
322 * until it is released.
323 *
324 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
325 * is returned.
ad7fa852
TH
326 */
327struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
328{
329 struct mem_cgroup *memcg;
330
ad7fa852
TH
331 memcg = page->mem_cgroup;
332
9e10a130 333 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
334 memcg = root_mem_cgroup;
335
ad7fa852
TH
336 return &memcg->css;
337}
338
2fc04524
VD
339/**
340 * page_cgroup_ino - return inode number of the memcg a page is charged to
341 * @page: the page
342 *
343 * Look up the closest online ancestor of the memory cgroup @page is charged to
344 * and return its inode number or 0 if @page is not charged to any cgroup. It
345 * is safe to call this function without holding a reference to @page.
346 *
347 * Note, this function is inherently racy, because there is nothing to prevent
348 * the cgroup inode from getting torn down and potentially reallocated a moment
349 * after page_cgroup_ino() returns, so it only should be used by callers that
350 * do not care (such as procfs interfaces).
351 */
352ino_t page_cgroup_ino(struct page *page)
353{
354 struct mem_cgroup *memcg;
355 unsigned long ino = 0;
356
357 rcu_read_lock();
358 memcg = READ_ONCE(page->mem_cgroup);
359 while (memcg && !(memcg->css.flags & CSS_ONLINE))
360 memcg = parent_mem_cgroup(memcg);
361 if (memcg)
362 ino = cgroup_ino(memcg->css.cgroup);
363 rcu_read_unlock();
364 return ino;
365}
366
ef8f2327
MG
367static struct mem_cgroup_per_node *
368mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 369{
97a6c37b 370 int nid = page_to_nid(page);
f64c3f54 371
ef8f2327 372 return memcg->nodeinfo[nid];
f64c3f54
BS
373}
374
ef8f2327
MG
375static struct mem_cgroup_tree_per_node *
376soft_limit_tree_node(int nid)
bb4cc1a8 377{
ef8f2327 378 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
379}
380
ef8f2327 381static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
382soft_limit_tree_from_page(struct page *page)
383{
384 int nid = page_to_nid(page);
bb4cc1a8 385
ef8f2327 386 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
387}
388
ef8f2327
MG
389static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
390 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 391 unsigned long new_usage_in_excess)
bb4cc1a8
AM
392{
393 struct rb_node **p = &mctz->rb_root.rb_node;
394 struct rb_node *parent = NULL;
ef8f2327 395 struct mem_cgroup_per_node *mz_node;
fa90b2fd 396 bool rightmost = true;
bb4cc1a8
AM
397
398 if (mz->on_tree)
399 return;
400
401 mz->usage_in_excess = new_usage_in_excess;
402 if (!mz->usage_in_excess)
403 return;
404 while (*p) {
405 parent = *p;
ef8f2327 406 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 407 tree_node);
fa90b2fd 408 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 409 p = &(*p)->rb_left;
fa90b2fd
DB
410 rightmost = false;
411 }
412
bb4cc1a8
AM
413 /*
414 * We can't avoid mem cgroups that are over their soft
415 * limit by the same amount
416 */
417 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
418 p = &(*p)->rb_right;
419 }
fa90b2fd
DB
420
421 if (rightmost)
422 mctz->rb_rightmost = &mz->tree_node;
423
bb4cc1a8
AM
424 rb_link_node(&mz->tree_node, parent, p);
425 rb_insert_color(&mz->tree_node, &mctz->rb_root);
426 mz->on_tree = true;
427}
428
ef8f2327
MG
429static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
430 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
431{
432 if (!mz->on_tree)
433 return;
fa90b2fd
DB
434
435 if (&mz->tree_node == mctz->rb_rightmost)
436 mctz->rb_rightmost = rb_prev(&mz->tree_node);
437
bb4cc1a8
AM
438 rb_erase(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = false;
440}
441
ef8f2327
MG
442static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
443 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 444{
0a31bc97
JW
445 unsigned long flags;
446
447 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 448 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 449 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
450}
451
3e32cb2e
JW
452static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
453{
454 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 455 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
456 unsigned long excess = 0;
457
458 if (nr_pages > soft_limit)
459 excess = nr_pages - soft_limit;
460
461 return excess;
462}
bb4cc1a8
AM
463
464static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
465{
3e32cb2e 466 unsigned long excess;
ef8f2327
MG
467 struct mem_cgroup_per_node *mz;
468 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 469
e231875b 470 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
471 if (!mctz)
472 return;
bb4cc1a8
AM
473 /*
474 * Necessary to update all ancestors when hierarchy is used.
475 * because their event counter is not touched.
476 */
477 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 478 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 479 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
480 /*
481 * We have to update the tree if mz is on RB-tree or
482 * mem is over its softlimit.
483 */
484 if (excess || mz->on_tree) {
0a31bc97
JW
485 unsigned long flags;
486
487 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
488 /* if on-tree, remove it */
489 if (mz->on_tree)
cf2c8127 490 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
491 /*
492 * Insert again. mz->usage_in_excess will be updated.
493 * If excess is 0, no tree ops.
494 */
cf2c8127 495 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 496 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
497 }
498 }
499}
500
501static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
502{
ef8f2327
MG
503 struct mem_cgroup_tree_per_node *mctz;
504 struct mem_cgroup_per_node *mz;
505 int nid;
bb4cc1a8 506
e231875b 507 for_each_node(nid) {
ef8f2327
MG
508 mz = mem_cgroup_nodeinfo(memcg, nid);
509 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
510 if (mctz)
511 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
512 }
513}
514
ef8f2327
MG
515static struct mem_cgroup_per_node *
516__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 517{
ef8f2327 518 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
519
520retry:
521 mz = NULL;
fa90b2fd 522 if (!mctz->rb_rightmost)
bb4cc1a8
AM
523 goto done; /* Nothing to reclaim from */
524
fa90b2fd
DB
525 mz = rb_entry(mctz->rb_rightmost,
526 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
527 /*
528 * Remove the node now but someone else can add it back,
529 * we will to add it back at the end of reclaim to its correct
530 * position in the tree.
531 */
cf2c8127 532 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 533 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 534 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
535 goto retry;
536done:
537 return mz;
538}
539
ef8f2327
MG
540static struct mem_cgroup_per_node *
541mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 542{
ef8f2327 543 struct mem_cgroup_per_node *mz;
bb4cc1a8 544
0a31bc97 545 spin_lock_irq(&mctz->lock);
bb4cc1a8 546 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 547 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
548 return mz;
549}
550
711d3d2c 551/*
484ebb3b
GT
552 * Return page count for single (non recursive) @memcg.
553 *
711d3d2c
KH
554 * Implementation Note: reading percpu statistics for memcg.
555 *
556 * Both of vmstat[] and percpu_counter has threshold and do periodic
557 * synchronization to implement "quick" read. There are trade-off between
558 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 559 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
560 *
561 * But this _read() function is used for user interface now. The user accounts
562 * memory usage by memory cgroup and he _always_ requires exact value because
563 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
564 * have to visit all online cpus and make sum. So, for now, unnecessary
565 * synchronization is not implemented. (just implemented for cpu hotplug)
566 *
567 * If there are kernel internal actions which can make use of some not-exact
568 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 569 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c 570 * implemented.
04fecbf5
MK
571 *
572 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
711d3d2c 573 */
c62b1a3b 574
ccda7f43 575static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
04fecbf5 576 int event)
e9f8974f
JW
577{
578 unsigned long val = 0;
579 int cpu;
580
733a572e 581 for_each_possible_cpu(cpu)
df0e53d0 582 val += per_cpu(memcg->stat->events[event], cpu);
e9f8974f
JW
583 return val;
584}
585
c0ff4b85 586static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 587 struct page *page,
f627c2f5 588 bool compound, int nr_pages)
d52aa412 589{
b2402857
KH
590 /*
591 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
592 * counted as CACHE even if it's on ANON LRU.
593 */
0a31bc97 594 if (PageAnon(page))
71cd3113 595 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
9a4caf1e 596 else {
71cd3113 597 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
9a4caf1e 598 if (PageSwapBacked(page))
71cd3113 599 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
9a4caf1e 600 }
55e462b0 601
f627c2f5
KS
602 if (compound) {
603 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
71cd3113 604 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
f627c2f5 605 }
b070e65c 606
e401f176
KH
607 /* pagein of a big page is an event. So, ignore page size */
608 if (nr_pages > 0)
df0e53d0 609 __this_cpu_inc(memcg->stat->events[PGPGIN]);
3751d604 610 else {
df0e53d0 611 __this_cpu_inc(memcg->stat->events[PGPGOUT]);
3751d604
KH
612 nr_pages = -nr_pages; /* for event */
613 }
e401f176 614
13114716 615 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
616}
617
0a6b76dd
VD
618unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
619 int nid, unsigned int lru_mask)
bb2a0de9 620{
b4536f0c 621 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 622 unsigned long nr = 0;
ef8f2327 623 enum lru_list lru;
889976db 624
e231875b 625 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 626
ef8f2327
MG
627 for_each_lru(lru) {
628 if (!(BIT(lru) & lru_mask))
629 continue;
b4536f0c 630 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
631 }
632 return nr;
889976db 633}
bb2a0de9 634
c0ff4b85 635static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 636 unsigned int lru_mask)
6d12e2d8 637{
e231875b 638 unsigned long nr = 0;
889976db 639 int nid;
6d12e2d8 640
31aaea4a 641 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
642 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
643 return nr;
d52aa412
KH
644}
645
f53d7ce3
JW
646static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
647 enum mem_cgroup_events_target target)
7a159cc9
JW
648{
649 unsigned long val, next;
650
13114716 651 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 652 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 653 /* from time_after() in jiffies.h */
6a1a8b80 654 if ((long)(next - val) < 0) {
f53d7ce3
JW
655 switch (target) {
656 case MEM_CGROUP_TARGET_THRESH:
657 next = val + THRESHOLDS_EVENTS_TARGET;
658 break;
bb4cc1a8
AM
659 case MEM_CGROUP_TARGET_SOFTLIMIT:
660 next = val + SOFTLIMIT_EVENTS_TARGET;
661 break;
f53d7ce3
JW
662 case MEM_CGROUP_TARGET_NUMAINFO:
663 next = val + NUMAINFO_EVENTS_TARGET;
664 break;
665 default:
666 break;
667 }
668 __this_cpu_write(memcg->stat->targets[target], next);
669 return true;
7a159cc9 670 }
f53d7ce3 671 return false;
d2265e6f
KH
672}
673
674/*
675 * Check events in order.
676 *
677 */
c0ff4b85 678static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
679{
680 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
681 if (unlikely(mem_cgroup_event_ratelimit(memcg,
682 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 683 bool do_softlimit;
82b3f2a7 684 bool do_numainfo __maybe_unused;
f53d7ce3 685
bb4cc1a8
AM
686 do_softlimit = mem_cgroup_event_ratelimit(memcg,
687 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
688#if MAX_NUMNODES > 1
689 do_numainfo = mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_NUMAINFO);
691#endif
c0ff4b85 692 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
693 if (unlikely(do_softlimit))
694 mem_cgroup_update_tree(memcg, page);
453a9bf3 695#if MAX_NUMNODES > 1
f53d7ce3 696 if (unlikely(do_numainfo))
c0ff4b85 697 atomic_inc(&memcg->numainfo_events);
453a9bf3 698#endif
0a31bc97 699 }
d2265e6f
KH
700}
701
cf475ad2 702struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 703{
31a78f23
BS
704 /*
705 * mm_update_next_owner() may clear mm->owner to NULL
706 * if it races with swapoff, page migration, etc.
707 * So this can be called with p == NULL.
708 */
709 if (unlikely(!p))
710 return NULL;
711
073219e9 712 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 713}
33398cf2 714EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 715
df381975 716static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 717{
c0ff4b85 718 struct mem_cgroup *memcg = NULL;
0b7f569e 719
54595fe2
KH
720 rcu_read_lock();
721 do {
6f6acb00
MH
722 /*
723 * Page cache insertions can happen withou an
724 * actual mm context, e.g. during disk probing
725 * on boot, loopback IO, acct() writes etc.
726 */
727 if (unlikely(!mm))
df381975 728 memcg = root_mem_cgroup;
6f6acb00
MH
729 else {
730 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
731 if (unlikely(!memcg))
732 memcg = root_mem_cgroup;
733 }
b7ebcc92 734 } while (!css_tryget(&memcg->css));
54595fe2 735 rcu_read_unlock();
c0ff4b85 736 return memcg;
54595fe2
KH
737}
738
5660048c
JW
739/**
740 * mem_cgroup_iter - iterate over memory cgroup hierarchy
741 * @root: hierarchy root
742 * @prev: previously returned memcg, NULL on first invocation
743 * @reclaim: cookie for shared reclaim walks, NULL for full walks
744 *
745 * Returns references to children of the hierarchy below @root, or
746 * @root itself, or %NULL after a full round-trip.
747 *
748 * Caller must pass the return value in @prev on subsequent
749 * invocations for reference counting, or use mem_cgroup_iter_break()
750 * to cancel a hierarchy walk before the round-trip is complete.
751 *
752 * Reclaimers can specify a zone and a priority level in @reclaim to
753 * divide up the memcgs in the hierarchy among all concurrent
754 * reclaimers operating on the same zone and priority.
755 */
694fbc0f 756struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 757 struct mem_cgroup *prev,
694fbc0f 758 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 759{
33398cf2 760 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 761 struct cgroup_subsys_state *css = NULL;
9f3a0d09 762 struct mem_cgroup *memcg = NULL;
5ac8fb31 763 struct mem_cgroup *pos = NULL;
711d3d2c 764
694fbc0f
AM
765 if (mem_cgroup_disabled())
766 return NULL;
5660048c 767
9f3a0d09
JW
768 if (!root)
769 root = root_mem_cgroup;
7d74b06f 770
9f3a0d09 771 if (prev && !reclaim)
5ac8fb31 772 pos = prev;
14067bb3 773
9f3a0d09
JW
774 if (!root->use_hierarchy && root != root_mem_cgroup) {
775 if (prev)
5ac8fb31 776 goto out;
694fbc0f 777 return root;
9f3a0d09 778 }
14067bb3 779
542f85f9 780 rcu_read_lock();
5f578161 781
5ac8fb31 782 if (reclaim) {
ef8f2327 783 struct mem_cgroup_per_node *mz;
5ac8fb31 784
ef8f2327 785 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
786 iter = &mz->iter[reclaim->priority];
787
788 if (prev && reclaim->generation != iter->generation)
789 goto out_unlock;
790
6df38689 791 while (1) {
4db0c3c2 792 pos = READ_ONCE(iter->position);
6df38689
VD
793 if (!pos || css_tryget(&pos->css))
794 break;
5ac8fb31 795 /*
6df38689
VD
796 * css reference reached zero, so iter->position will
797 * be cleared by ->css_released. However, we should not
798 * rely on this happening soon, because ->css_released
799 * is called from a work queue, and by busy-waiting we
800 * might block it. So we clear iter->position right
801 * away.
5ac8fb31 802 */
6df38689
VD
803 (void)cmpxchg(&iter->position, pos, NULL);
804 }
5ac8fb31
JW
805 }
806
807 if (pos)
808 css = &pos->css;
809
810 for (;;) {
811 css = css_next_descendant_pre(css, &root->css);
812 if (!css) {
813 /*
814 * Reclaimers share the hierarchy walk, and a
815 * new one might jump in right at the end of
816 * the hierarchy - make sure they see at least
817 * one group and restart from the beginning.
818 */
819 if (!prev)
820 continue;
821 break;
527a5ec9 822 }
7d74b06f 823
5ac8fb31
JW
824 /*
825 * Verify the css and acquire a reference. The root
826 * is provided by the caller, so we know it's alive
827 * and kicking, and don't take an extra reference.
828 */
829 memcg = mem_cgroup_from_css(css);
14067bb3 830
5ac8fb31
JW
831 if (css == &root->css)
832 break;
14067bb3 833
0b8f73e1
JW
834 if (css_tryget(css))
835 break;
9f3a0d09 836
5ac8fb31 837 memcg = NULL;
9f3a0d09 838 }
5ac8fb31
JW
839
840 if (reclaim) {
5ac8fb31 841 /*
6df38689
VD
842 * The position could have already been updated by a competing
843 * thread, so check that the value hasn't changed since we read
844 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 845 */
6df38689
VD
846 (void)cmpxchg(&iter->position, pos, memcg);
847
5ac8fb31
JW
848 if (pos)
849 css_put(&pos->css);
850
851 if (!memcg)
852 iter->generation++;
853 else if (!prev)
854 reclaim->generation = iter->generation;
9f3a0d09 855 }
5ac8fb31 856
542f85f9
MH
857out_unlock:
858 rcu_read_unlock();
5ac8fb31 859out:
c40046f3
MH
860 if (prev && prev != root)
861 css_put(&prev->css);
862
9f3a0d09 863 return memcg;
14067bb3 864}
7d74b06f 865
5660048c
JW
866/**
867 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
868 * @root: hierarchy root
869 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
870 */
871void mem_cgroup_iter_break(struct mem_cgroup *root,
872 struct mem_cgroup *prev)
9f3a0d09
JW
873{
874 if (!root)
875 root = root_mem_cgroup;
876 if (prev && prev != root)
877 css_put(&prev->css);
878}
7d74b06f 879
0cddab6a
MC
880static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
881 struct mem_cgroup *dead_memcg)
6df38689 882{
6df38689 883 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
884 struct mem_cgroup_per_node *mz;
885 int nid;
6df38689
VD
886 int i;
887
0cddab6a
MC
888 for_each_node(nid) {
889 mz = mem_cgroup_nodeinfo(from, nid);
890 for (i = 0; i <= DEF_PRIORITY; i++) {
891 iter = &mz->iter[i];
892 cmpxchg(&iter->position,
893 dead_memcg, NULL);
6df38689
VD
894 }
895 }
896}
897
0cddab6a
MC
898static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
899{
900 struct mem_cgroup *memcg = dead_memcg;
901 struct mem_cgroup *last;
902
903 do {
904 __invalidate_reclaim_iterators(memcg, dead_memcg);
905 last = memcg;
906 } while ((memcg = parent_mem_cgroup(memcg)));
907
908 /*
909 * When cgruop1 non-hierarchy mode is used,
910 * parent_mem_cgroup() does not walk all the way up to the
911 * cgroup root (root_mem_cgroup). So we have to handle
912 * dead_memcg from cgroup root separately.
913 */
914 if (last != root_mem_cgroup)
915 __invalidate_reclaim_iterators(root_mem_cgroup,
916 dead_memcg);
917}
918
9f3a0d09
JW
919/*
920 * Iteration constructs for visiting all cgroups (under a tree). If
921 * loops are exited prematurely (break), mem_cgroup_iter_break() must
922 * be used for reference counting.
923 */
924#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 925 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 926 iter != NULL; \
527a5ec9 927 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 928
9f3a0d09 929#define for_each_mem_cgroup(iter) \
527a5ec9 930 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 931 iter != NULL; \
527a5ec9 932 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 933
7c5f64f8
VD
934/**
935 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
936 * @memcg: hierarchy root
937 * @fn: function to call for each task
938 * @arg: argument passed to @fn
939 *
940 * This function iterates over tasks attached to @memcg or to any of its
941 * descendants and calls @fn for each task. If @fn returns a non-zero
942 * value, the function breaks the iteration loop and returns the value.
943 * Otherwise, it will iterate over all tasks and return 0.
944 *
945 * This function must not be called for the root memory cgroup.
946 */
947int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
948 int (*fn)(struct task_struct *, void *), void *arg)
949{
950 struct mem_cgroup *iter;
951 int ret = 0;
952
953 BUG_ON(memcg == root_mem_cgroup);
954
955 for_each_mem_cgroup_tree(iter, memcg) {
956 struct css_task_iter it;
957 struct task_struct *task;
958
bc2fb7ed 959 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
960 while (!ret && (task = css_task_iter_next(&it)))
961 ret = fn(task, arg);
962 css_task_iter_end(&it);
963 if (ret) {
964 mem_cgroup_iter_break(memcg, iter);
965 break;
966 }
967 }
968 return ret;
969}
970
925b7673 971/**
dfe0e773 972 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 973 * @page: the page
fa9add64 974 * @zone: zone of the page
dfe0e773
JW
975 *
976 * This function is only safe when following the LRU page isolation
977 * and putback protocol: the LRU lock must be held, and the page must
978 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 979 */
599d0c95 980struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 981{
ef8f2327 982 struct mem_cgroup_per_node *mz;
925b7673 983 struct mem_cgroup *memcg;
bea8c150 984 struct lruvec *lruvec;
6d12e2d8 985
bea8c150 986 if (mem_cgroup_disabled()) {
599d0c95 987 lruvec = &pgdat->lruvec;
bea8c150
HD
988 goto out;
989 }
925b7673 990
1306a85a 991 memcg = page->mem_cgroup;
7512102c 992 /*
dfe0e773 993 * Swapcache readahead pages are added to the LRU - and
29833315 994 * possibly migrated - before they are charged.
7512102c 995 */
29833315
JW
996 if (!memcg)
997 memcg = root_mem_cgroup;
7512102c 998
ef8f2327 999 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1000 lruvec = &mz->lruvec;
1001out:
1002 /*
1003 * Since a node can be onlined after the mem_cgroup was created,
1004 * we have to be prepared to initialize lruvec->zone here;
1005 * and if offlined then reonlined, we need to reinitialize it.
1006 */
599d0c95
MG
1007 if (unlikely(lruvec->pgdat != pgdat))
1008 lruvec->pgdat = pgdat;
bea8c150 1009 return lruvec;
08e552c6 1010}
b69408e8 1011
925b7673 1012/**
fa9add64
HD
1013 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1014 * @lruvec: mem_cgroup per zone lru vector
1015 * @lru: index of lru list the page is sitting on
b4536f0c 1016 * @zid: zone id of the accounted pages
fa9add64 1017 * @nr_pages: positive when adding or negative when removing
925b7673 1018 *
ca707239
HD
1019 * This function must be called under lru_lock, just before a page is added
1020 * to or just after a page is removed from an lru list (that ordering being
1021 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1022 */
fa9add64 1023void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1024 int zid, int nr_pages)
3f58a829 1025{
ef8f2327 1026 struct mem_cgroup_per_node *mz;
fa9add64 1027 unsigned long *lru_size;
ca707239 1028 long size;
3f58a829
MK
1029
1030 if (mem_cgroup_disabled())
1031 return;
1032
ef8f2327 1033 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1034 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1035
1036 if (nr_pages < 0)
1037 *lru_size += nr_pages;
1038
1039 size = *lru_size;
b4536f0c
MH
1040 if (WARN_ONCE(size < 0,
1041 "%s(%p, %d, %d): lru_size %ld\n",
1042 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1043 VM_BUG_ON(1);
1044 *lru_size = 0;
1045 }
1046
1047 if (nr_pages > 0)
1048 *lru_size += nr_pages;
08e552c6 1049}
544122e5 1050
2314b42d 1051bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1052{
2314b42d 1053 struct mem_cgroup *task_memcg;
158e0a2d 1054 struct task_struct *p;
ffbdccf5 1055 bool ret;
4c4a2214 1056
158e0a2d 1057 p = find_lock_task_mm(task);
de077d22 1058 if (p) {
2314b42d 1059 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1060 task_unlock(p);
1061 } else {
1062 /*
1063 * All threads may have already detached their mm's, but the oom
1064 * killer still needs to detect if they have already been oom
1065 * killed to prevent needlessly killing additional tasks.
1066 */
ffbdccf5 1067 rcu_read_lock();
2314b42d
JW
1068 task_memcg = mem_cgroup_from_task(task);
1069 css_get(&task_memcg->css);
ffbdccf5 1070 rcu_read_unlock();
de077d22 1071 }
2314b42d
JW
1072 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1073 css_put(&task_memcg->css);
4c4a2214
DR
1074 return ret;
1075}
1076
19942822 1077/**
9d11ea9f 1078 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1079 * @memcg: the memory cgroup
19942822 1080 *
9d11ea9f 1081 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1082 * pages.
19942822 1083 */
c0ff4b85 1084static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1085{
3e32cb2e
JW
1086 unsigned long margin = 0;
1087 unsigned long count;
1088 unsigned long limit;
9d11ea9f 1089
3e32cb2e 1090 count = page_counter_read(&memcg->memory);
4db0c3c2 1091 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1092 if (count < limit)
1093 margin = limit - count;
1094
7941d214 1095 if (do_memsw_account()) {
3e32cb2e 1096 count = page_counter_read(&memcg->memsw);
4db0c3c2 1097 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1098 if (count <= limit)
1099 margin = min(margin, limit - count);
cbedbac3
LR
1100 else
1101 margin = 0;
3e32cb2e
JW
1102 }
1103
1104 return margin;
19942822
JW
1105}
1106
32047e2a 1107/*
bdcbb659 1108 * A routine for checking "mem" is under move_account() or not.
32047e2a 1109 *
bdcbb659
QH
1110 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1111 * moving cgroups. This is for waiting at high-memory pressure
1112 * caused by "move".
32047e2a 1113 */
c0ff4b85 1114static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1115{
2bd9bb20
KH
1116 struct mem_cgroup *from;
1117 struct mem_cgroup *to;
4b534334 1118 bool ret = false;
2bd9bb20
KH
1119 /*
1120 * Unlike task_move routines, we access mc.to, mc.from not under
1121 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1122 */
1123 spin_lock(&mc.lock);
1124 from = mc.from;
1125 to = mc.to;
1126 if (!from)
1127 goto unlock;
3e92041d 1128
2314b42d
JW
1129 ret = mem_cgroup_is_descendant(from, memcg) ||
1130 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1131unlock:
1132 spin_unlock(&mc.lock);
4b534334
KH
1133 return ret;
1134}
1135
c0ff4b85 1136static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1137{
1138 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1139 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1140 DEFINE_WAIT(wait);
1141 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1142 /* moving charge context might have finished. */
1143 if (mc.moving_task)
1144 schedule();
1145 finish_wait(&mc.waitq, &wait);
1146 return true;
1147 }
1148 }
1149 return false;
1150}
1151
71cd3113
JW
1152unsigned int memcg1_stats[] = {
1153 MEMCG_CACHE,
1154 MEMCG_RSS,
1155 MEMCG_RSS_HUGE,
1156 NR_SHMEM,
1157 NR_FILE_MAPPED,
1158 NR_FILE_DIRTY,
1159 NR_WRITEBACK,
1160 MEMCG_SWAP,
1161};
1162
1163static const char *const memcg1_stat_names[] = {
1164 "cache",
1165 "rss",
1166 "rss_huge",
1167 "shmem",
1168 "mapped_file",
1169 "dirty",
1170 "writeback",
1171 "swap",
1172};
1173
58cf188e 1174#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1175/**
58cf188e 1176 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1177 * @memcg: The memory cgroup that went over limit
1178 * @p: Task that is going to be killed
1179 *
1180 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1181 * enabled
1182 */
1183void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1184{
58cf188e
SZ
1185 struct mem_cgroup *iter;
1186 unsigned int i;
e222432b 1187
e222432b
BS
1188 rcu_read_lock();
1189
2415b9f5
BV
1190 if (p) {
1191 pr_info("Task in ");
1192 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1193 pr_cont(" killed as a result of limit of ");
1194 } else {
1195 pr_info("Memory limit reached of cgroup ");
1196 }
1197
e61734c5 1198 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1199 pr_cont("\n");
e222432b 1200
e222432b
BS
1201 rcu_read_unlock();
1202
3e32cb2e
JW
1203 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1204 K((u64)page_counter_read(&memcg->memory)),
1205 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1206 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1207 K((u64)page_counter_read(&memcg->memsw)),
1208 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1209 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1210 K((u64)page_counter_read(&memcg->kmem)),
1211 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1212
1213 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1214 pr_info("Memory cgroup stats for ");
1215 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1216 pr_cont(":");
1217
71cd3113
JW
1218 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1219 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1220 continue;
71cd3113 1221 pr_cont(" %s:%luKB", memcg1_stat_names[i],
ccda7f43 1222 K(memcg_page_state(iter, memcg1_stats[i])));
58cf188e
SZ
1223 }
1224
1225 for (i = 0; i < NR_LRU_LISTS; i++)
1226 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1227 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1228
1229 pr_cont("\n");
1230 }
e222432b
BS
1231}
1232
81d39c20
KH
1233/*
1234 * This function returns the number of memcg under hierarchy tree. Returns
1235 * 1(self count) if no children.
1236 */
c0ff4b85 1237static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1238{
1239 int num = 0;
7d74b06f
KH
1240 struct mem_cgroup *iter;
1241
c0ff4b85 1242 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1243 num++;
81d39c20
KH
1244 return num;
1245}
1246
a63d83f4
DR
1247/*
1248 * Return the memory (and swap, if configured) limit for a memcg.
1249 */
7c5f64f8 1250unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1251{
3e32cb2e 1252 unsigned long limit;
f3e8eb70 1253
3e32cb2e 1254 limit = memcg->memory.limit;
9a5a8f19 1255 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1256 unsigned long memsw_limit;
37e84351 1257 unsigned long swap_limit;
9a5a8f19 1258
3e32cb2e 1259 memsw_limit = memcg->memsw.limit;
37e84351
VD
1260 swap_limit = memcg->swap.limit;
1261 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1262 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1263 }
9a5a8f19 1264 return limit;
a63d83f4
DR
1265}
1266
b6e6edcf 1267static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1268 int order)
9cbb78bb 1269{
6e0fc46d
DR
1270 struct oom_control oc = {
1271 .zonelist = NULL,
1272 .nodemask = NULL,
2a966b77 1273 .memcg = memcg,
6e0fc46d
DR
1274 .gfp_mask = gfp_mask,
1275 .order = order,
6e0fc46d 1276 };
7c5f64f8 1277 bool ret;
9cbb78bb 1278
d9e9af93
TH
1279 if (mutex_lock_killable(&oom_lock))
1280 return true;
1281 /*
1282 * A few threads which were not waiting at mutex_lock_killable() can
1283 * fail to bail out. Therefore, check again after holding oom_lock.
1284 */
1285 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1286 mutex_unlock(&oom_lock);
7c5f64f8 1287 return ret;
9cbb78bb
DR
1288}
1289
ae6e71d3
MC
1290#if MAX_NUMNODES > 1
1291
4d0c066d
KH
1292/**
1293 * test_mem_cgroup_node_reclaimable
dad7557e 1294 * @memcg: the target memcg
4d0c066d
KH
1295 * @nid: the node ID to be checked.
1296 * @noswap : specify true here if the user wants flle only information.
1297 *
1298 * This function returns whether the specified memcg contains any
1299 * reclaimable pages on a node. Returns true if there are any reclaimable
1300 * pages in the node.
1301 */
c0ff4b85 1302static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1303 int nid, bool noswap)
1304{
c0ff4b85 1305 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1306 return true;
1307 if (noswap || !total_swap_pages)
1308 return false;
c0ff4b85 1309 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1310 return true;
1311 return false;
1312
1313}
889976db
YH
1314
1315/*
1316 * Always updating the nodemask is not very good - even if we have an empty
1317 * list or the wrong list here, we can start from some node and traverse all
1318 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1319 *
1320 */
c0ff4b85 1321static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1322{
1323 int nid;
453a9bf3
KH
1324 /*
1325 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1326 * pagein/pageout changes since the last update.
1327 */
c0ff4b85 1328 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1329 return;
c0ff4b85 1330 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1331 return;
1332
889976db 1333 /* make a nodemask where this memcg uses memory from */
31aaea4a 1334 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1335
31aaea4a 1336 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1337
c0ff4b85
R
1338 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1339 node_clear(nid, memcg->scan_nodes);
889976db 1340 }
453a9bf3 1341
c0ff4b85
R
1342 atomic_set(&memcg->numainfo_events, 0);
1343 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1344}
1345
1346/*
1347 * Selecting a node where we start reclaim from. Because what we need is just
1348 * reducing usage counter, start from anywhere is O,K. Considering
1349 * memory reclaim from current node, there are pros. and cons.
1350 *
1351 * Freeing memory from current node means freeing memory from a node which
1352 * we'll use or we've used. So, it may make LRU bad. And if several threads
1353 * hit limits, it will see a contention on a node. But freeing from remote
1354 * node means more costs for memory reclaim because of memory latency.
1355 *
1356 * Now, we use round-robin. Better algorithm is welcomed.
1357 */
c0ff4b85 1358int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1359{
1360 int node;
1361
c0ff4b85
R
1362 mem_cgroup_may_update_nodemask(memcg);
1363 node = memcg->last_scanned_node;
889976db 1364
0edaf86c 1365 node = next_node_in(node, memcg->scan_nodes);
889976db 1366 /*
fda3d69b
MH
1367 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1368 * last time it really checked all the LRUs due to rate limiting.
1369 * Fallback to the current node in that case for simplicity.
889976db
YH
1370 */
1371 if (unlikely(node == MAX_NUMNODES))
1372 node = numa_node_id();
1373
c0ff4b85 1374 memcg->last_scanned_node = node;
889976db
YH
1375 return node;
1376}
889976db 1377#else
c0ff4b85 1378int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1379{
1380 return 0;
1381}
1382#endif
1383
0608f43d 1384static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1385 pg_data_t *pgdat,
0608f43d
AM
1386 gfp_t gfp_mask,
1387 unsigned long *total_scanned)
1388{
1389 struct mem_cgroup *victim = NULL;
1390 int total = 0;
1391 int loop = 0;
1392 unsigned long excess;
1393 unsigned long nr_scanned;
1394 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1395 .pgdat = pgdat,
0608f43d
AM
1396 .priority = 0,
1397 };
1398
3e32cb2e 1399 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1400
1401 while (1) {
1402 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1403 if (!victim) {
1404 loop++;
1405 if (loop >= 2) {
1406 /*
1407 * If we have not been able to reclaim
1408 * anything, it might because there are
1409 * no reclaimable pages under this hierarchy
1410 */
1411 if (!total)
1412 break;
1413 /*
1414 * We want to do more targeted reclaim.
1415 * excess >> 2 is not to excessive so as to
1416 * reclaim too much, nor too less that we keep
1417 * coming back to reclaim from this cgroup
1418 */
1419 if (total >= (excess >> 2) ||
1420 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1421 break;
1422 }
1423 continue;
1424 }
a9dd0a83 1425 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1426 pgdat, &nr_scanned);
0608f43d 1427 *total_scanned += nr_scanned;
3e32cb2e 1428 if (!soft_limit_excess(root_memcg))
0608f43d 1429 break;
6d61ef40 1430 }
0608f43d
AM
1431 mem_cgroup_iter_break(root_memcg, victim);
1432 return total;
6d61ef40
BS
1433}
1434
0056f4e6
JW
1435#ifdef CONFIG_LOCKDEP
1436static struct lockdep_map memcg_oom_lock_dep_map = {
1437 .name = "memcg_oom_lock",
1438};
1439#endif
1440
fb2a6fc5
JW
1441static DEFINE_SPINLOCK(memcg_oom_lock);
1442
867578cb
KH
1443/*
1444 * Check OOM-Killer is already running under our hierarchy.
1445 * If someone is running, return false.
1446 */
fb2a6fc5 1447static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1448{
79dfdacc 1449 struct mem_cgroup *iter, *failed = NULL;
a636b327 1450
fb2a6fc5
JW
1451 spin_lock(&memcg_oom_lock);
1452
9f3a0d09 1453 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1454 if (iter->oom_lock) {
79dfdacc
MH
1455 /*
1456 * this subtree of our hierarchy is already locked
1457 * so we cannot give a lock.
1458 */
79dfdacc 1459 failed = iter;
9f3a0d09
JW
1460 mem_cgroup_iter_break(memcg, iter);
1461 break;
23751be0
JW
1462 } else
1463 iter->oom_lock = true;
7d74b06f 1464 }
867578cb 1465
fb2a6fc5
JW
1466 if (failed) {
1467 /*
1468 * OK, we failed to lock the whole subtree so we have
1469 * to clean up what we set up to the failing subtree
1470 */
1471 for_each_mem_cgroup_tree(iter, memcg) {
1472 if (iter == failed) {
1473 mem_cgroup_iter_break(memcg, iter);
1474 break;
1475 }
1476 iter->oom_lock = false;
79dfdacc 1477 }
0056f4e6
JW
1478 } else
1479 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1480
1481 spin_unlock(&memcg_oom_lock);
1482
1483 return !failed;
a636b327 1484}
0b7f569e 1485
fb2a6fc5 1486static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1487{
7d74b06f
KH
1488 struct mem_cgroup *iter;
1489
fb2a6fc5 1490 spin_lock(&memcg_oom_lock);
0056f4e6 1491 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1492 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1493 iter->oom_lock = false;
fb2a6fc5 1494 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1495}
1496
c0ff4b85 1497static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1498{
1499 struct mem_cgroup *iter;
1500
c2b42d3c 1501 spin_lock(&memcg_oom_lock);
c0ff4b85 1502 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1503 iter->under_oom++;
1504 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1505}
1506
c0ff4b85 1507static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1508{
1509 struct mem_cgroup *iter;
1510
867578cb
KH
1511 /*
1512 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1513 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1514 */
c2b42d3c 1515 spin_lock(&memcg_oom_lock);
c0ff4b85 1516 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1517 if (iter->under_oom > 0)
1518 iter->under_oom--;
1519 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1520}
1521
867578cb
KH
1522static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1523
dc98df5a 1524struct oom_wait_info {
d79154bb 1525 struct mem_cgroup *memcg;
ac6424b9 1526 wait_queue_entry_t wait;
dc98df5a
KH
1527};
1528
ac6424b9 1529static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1530 unsigned mode, int sync, void *arg)
1531{
d79154bb
HD
1532 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1533 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1534 struct oom_wait_info *oom_wait_info;
1535
1536 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1537 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1538
2314b42d
JW
1539 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1540 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1541 return 0;
dc98df5a
KH
1542 return autoremove_wake_function(wait, mode, sync, arg);
1543}
1544
c0ff4b85 1545static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1546{
c2b42d3c
TH
1547 /*
1548 * For the following lockless ->under_oom test, the only required
1549 * guarantee is that it must see the state asserted by an OOM when
1550 * this function is called as a result of userland actions
1551 * triggered by the notification of the OOM. This is trivially
1552 * achieved by invoking mem_cgroup_mark_under_oom() before
1553 * triggering notification.
1554 */
1555 if (memcg && memcg->under_oom)
f4b90b70 1556 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1557}
1558
3812c8c8 1559static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1560{
d0db7afa 1561 if (!current->memcg_may_oom)
3812c8c8 1562 return;
867578cb 1563 /*
49426420
JW
1564 * We are in the middle of the charge context here, so we
1565 * don't want to block when potentially sitting on a callstack
1566 * that holds all kinds of filesystem and mm locks.
1567 *
1568 * Also, the caller may handle a failed allocation gracefully
1569 * (like optional page cache readahead) and so an OOM killer
1570 * invocation might not even be necessary.
1571 *
1572 * That's why we don't do anything here except remember the
1573 * OOM context and then deal with it at the end of the page
1574 * fault when the stack is unwound, the locks are released,
1575 * and when we know whether the fault was overall successful.
867578cb 1576 */
49426420 1577 css_get(&memcg->css);
626ebc41
TH
1578 current->memcg_in_oom = memcg;
1579 current->memcg_oom_gfp_mask = mask;
1580 current->memcg_oom_order = order;
3812c8c8
JW
1581}
1582
1583/**
1584 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1585 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1586 *
49426420
JW
1587 * This has to be called at the end of a page fault if the memcg OOM
1588 * handler was enabled.
3812c8c8 1589 *
49426420 1590 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1591 * sleep on a waitqueue until the userspace task resolves the
1592 * situation. Sleeping directly in the charge context with all kinds
1593 * of locks held is not a good idea, instead we remember an OOM state
1594 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1595 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1596 *
1597 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1598 * completed, %false otherwise.
3812c8c8 1599 */
49426420 1600bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1601{
626ebc41 1602 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1603 struct oom_wait_info owait;
49426420 1604 bool locked;
3812c8c8
JW
1605
1606 /* OOM is global, do not handle */
3812c8c8 1607 if (!memcg)
49426420 1608 return false;
3812c8c8 1609
7c5f64f8 1610 if (!handle)
49426420 1611 goto cleanup;
3812c8c8
JW
1612
1613 owait.memcg = memcg;
1614 owait.wait.flags = 0;
1615 owait.wait.func = memcg_oom_wake_function;
1616 owait.wait.private = current;
2055da97 1617 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1618
3812c8c8 1619 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1620 mem_cgroup_mark_under_oom(memcg);
1621
1622 locked = mem_cgroup_oom_trylock(memcg);
1623
1624 if (locked)
1625 mem_cgroup_oom_notify(memcg);
1626
1627 if (locked && !memcg->oom_kill_disable) {
1628 mem_cgroup_unmark_under_oom(memcg);
1629 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1630 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1631 current->memcg_oom_order);
49426420 1632 } else {
3812c8c8 1633 schedule();
49426420
JW
1634 mem_cgroup_unmark_under_oom(memcg);
1635 finish_wait(&memcg_oom_waitq, &owait.wait);
1636 }
1637
1638 if (locked) {
fb2a6fc5
JW
1639 mem_cgroup_oom_unlock(memcg);
1640 /*
1641 * There is no guarantee that an OOM-lock contender
1642 * sees the wakeups triggered by the OOM kill
1643 * uncharges. Wake any sleepers explicitely.
1644 */
1645 memcg_oom_recover(memcg);
1646 }
49426420 1647cleanup:
626ebc41 1648 current->memcg_in_oom = NULL;
3812c8c8 1649 css_put(&memcg->css);
867578cb 1650 return true;
0b7f569e
KH
1651}
1652
d7365e78 1653/**
81f8c3a4
JW
1654 * lock_page_memcg - lock a page->mem_cgroup binding
1655 * @page: the page
32047e2a 1656 *
81f8c3a4 1657 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1658 * another cgroup.
1659 *
1660 * It ensures lifetime of the returned memcg. Caller is responsible
1661 * for the lifetime of the page; __unlock_page_memcg() is available
1662 * when @page might get freed inside the locked section.
d69b042f 1663 */
739f79fc 1664struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1665{
1666 struct mem_cgroup *memcg;
6de22619 1667 unsigned long flags;
89c06bd5 1668
6de22619
JW
1669 /*
1670 * The RCU lock is held throughout the transaction. The fast
1671 * path can get away without acquiring the memcg->move_lock
1672 * because page moving starts with an RCU grace period.
739f79fc
JW
1673 *
1674 * The RCU lock also protects the memcg from being freed when
1675 * the page state that is going to change is the only thing
1676 * preventing the page itself from being freed. E.g. writeback
1677 * doesn't hold a page reference and relies on PG_writeback to
1678 * keep off truncation, migration and so forth.
1679 */
d7365e78
JW
1680 rcu_read_lock();
1681
1682 if (mem_cgroup_disabled())
739f79fc 1683 return NULL;
89c06bd5 1684again:
1306a85a 1685 memcg = page->mem_cgroup;
29833315 1686 if (unlikely(!memcg))
739f79fc 1687 return NULL;
d7365e78 1688
bdcbb659 1689 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1690 return memcg;
89c06bd5 1691
6de22619 1692 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1693 if (memcg != page->mem_cgroup) {
6de22619 1694 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1695 goto again;
1696 }
6de22619
JW
1697
1698 /*
1699 * When charge migration first begins, we can have locked and
1700 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1701 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1702 */
1703 memcg->move_lock_task = current;
1704 memcg->move_lock_flags = flags;
d7365e78 1705
739f79fc 1706 return memcg;
89c06bd5 1707}
81f8c3a4 1708EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1709
d7365e78 1710/**
739f79fc
JW
1711 * __unlock_page_memcg - unlock and unpin a memcg
1712 * @memcg: the memcg
1713 *
1714 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1715 */
739f79fc 1716void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1717{
6de22619
JW
1718 if (memcg && memcg->move_lock_task == current) {
1719 unsigned long flags = memcg->move_lock_flags;
1720
1721 memcg->move_lock_task = NULL;
1722 memcg->move_lock_flags = 0;
1723
1724 spin_unlock_irqrestore(&memcg->move_lock, flags);
1725 }
89c06bd5 1726
d7365e78 1727 rcu_read_unlock();
89c06bd5 1728}
739f79fc
JW
1729
1730/**
1731 * unlock_page_memcg - unlock a page->mem_cgroup binding
1732 * @page: the page
1733 */
1734void unlock_page_memcg(struct page *page)
1735{
1736 __unlock_page_memcg(page->mem_cgroup);
1737}
81f8c3a4 1738EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1739
cdec2e42
KH
1740/*
1741 * size of first charge trial. "32" comes from vmscan.c's magic value.
1742 * TODO: maybe necessary to use big numbers in big irons.
1743 */
7ec99d62 1744#define CHARGE_BATCH 32U
cdec2e42
KH
1745struct memcg_stock_pcp {
1746 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1747 unsigned int nr_pages;
cdec2e42 1748 struct work_struct work;
26fe6168 1749 unsigned long flags;
a0db00fc 1750#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1751};
1752static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1753static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1754
a0956d54
SS
1755/**
1756 * consume_stock: Try to consume stocked charge on this cpu.
1757 * @memcg: memcg to consume from.
1758 * @nr_pages: how many pages to charge.
1759 *
1760 * The charges will only happen if @memcg matches the current cpu's memcg
1761 * stock, and at least @nr_pages are available in that stock. Failure to
1762 * service an allocation will refill the stock.
1763 *
1764 * returns true if successful, false otherwise.
cdec2e42 1765 */
a0956d54 1766static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1767{
1768 struct memcg_stock_pcp *stock;
db2ba40c 1769 unsigned long flags;
3e32cb2e 1770 bool ret = false;
cdec2e42 1771
a0956d54 1772 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1773 return ret;
a0956d54 1774
db2ba40c
JW
1775 local_irq_save(flags);
1776
1777 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1778 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1779 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1780 ret = true;
1781 }
db2ba40c
JW
1782
1783 local_irq_restore(flags);
1784
cdec2e42
KH
1785 return ret;
1786}
1787
1788/*
3e32cb2e 1789 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1790 */
1791static void drain_stock(struct memcg_stock_pcp *stock)
1792{
1793 struct mem_cgroup *old = stock->cached;
1794
11c9ea4e 1795 if (stock->nr_pages) {
3e32cb2e 1796 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1797 if (do_memsw_account())
3e32cb2e 1798 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1799 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1800 stock->nr_pages = 0;
cdec2e42
KH
1801 }
1802 stock->cached = NULL;
cdec2e42
KH
1803}
1804
cdec2e42
KH
1805static void drain_local_stock(struct work_struct *dummy)
1806{
db2ba40c
JW
1807 struct memcg_stock_pcp *stock;
1808 unsigned long flags;
1809
72f0184c
MH
1810 /*
1811 * The only protection from memory hotplug vs. drain_stock races is
1812 * that we always operate on local CPU stock here with IRQ disabled
1813 */
db2ba40c
JW
1814 local_irq_save(flags);
1815
1816 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1817 drain_stock(stock);
26fe6168 1818 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1819
1820 local_irq_restore(flags);
cdec2e42
KH
1821}
1822
1823/*
3e32cb2e 1824 * Cache charges(val) to local per_cpu area.
320cc51d 1825 * This will be consumed by consume_stock() function, later.
cdec2e42 1826 */
c0ff4b85 1827static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1828{
db2ba40c
JW
1829 struct memcg_stock_pcp *stock;
1830 unsigned long flags;
1831
1832 local_irq_save(flags);
cdec2e42 1833
db2ba40c 1834 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1835 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1836 drain_stock(stock);
c0ff4b85 1837 stock->cached = memcg;
cdec2e42 1838 }
11c9ea4e 1839 stock->nr_pages += nr_pages;
db2ba40c 1840
475d0487
RG
1841 if (stock->nr_pages > CHARGE_BATCH)
1842 drain_stock(stock);
1843
db2ba40c 1844 local_irq_restore(flags);
cdec2e42
KH
1845}
1846
1847/*
c0ff4b85 1848 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1849 * of the hierarchy under it.
cdec2e42 1850 */
6d3d6aa2 1851static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1852{
26fe6168 1853 int cpu, curcpu;
d38144b7 1854
6d3d6aa2
JW
1855 /* If someone's already draining, avoid adding running more workers. */
1856 if (!mutex_trylock(&percpu_charge_mutex))
1857 return;
72f0184c
MH
1858 /*
1859 * Notify other cpus that system-wide "drain" is running
1860 * We do not care about races with the cpu hotplug because cpu down
1861 * as well as workers from this path always operate on the local
1862 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1863 */
5af12d0e 1864 curcpu = get_cpu();
cdec2e42
KH
1865 for_each_online_cpu(cpu) {
1866 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1867 struct mem_cgroup *memcg;
26fe6168 1868
c0ff4b85 1869 memcg = stock->cached;
72f0184c 1870 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 1871 continue;
72f0184c
MH
1872 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1873 css_put(&memcg->css);
3e92041d 1874 continue;
72f0184c 1875 }
d1a05b69
MH
1876 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1877 if (cpu == curcpu)
1878 drain_local_stock(&stock->work);
1879 else
1880 schedule_work_on(cpu, &stock->work);
1881 }
72f0184c 1882 css_put(&memcg->css);
cdec2e42 1883 }
5af12d0e 1884 put_cpu();
9f50fad6 1885 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1886}
1887
308167fc 1888static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 1889{
cdec2e42
KH
1890 struct memcg_stock_pcp *stock;
1891
cdec2e42
KH
1892 stock = &per_cpu(memcg_stock, cpu);
1893 drain_stock(stock);
308167fc 1894 return 0;
cdec2e42
KH
1895}
1896
f7e1cb6e
JW
1897static void reclaim_high(struct mem_cgroup *memcg,
1898 unsigned int nr_pages,
1899 gfp_t gfp_mask)
1900{
1901 do {
1902 if (page_counter_read(&memcg->memory) <= memcg->high)
1903 continue;
31176c78 1904 mem_cgroup_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
1905 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1906 } while ((memcg = parent_mem_cgroup(memcg)));
1907}
1908
1909static void high_work_func(struct work_struct *work)
1910{
1911 struct mem_cgroup *memcg;
1912
1913 memcg = container_of(work, struct mem_cgroup, high_work);
1914 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1915}
1916
b23afb93
TH
1917/*
1918 * Scheduled by try_charge() to be executed from the userland return path
1919 * and reclaims memory over the high limit.
1920 */
1921void mem_cgroup_handle_over_high(void)
1922{
1923 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1924 struct mem_cgroup *memcg;
b23afb93
TH
1925
1926 if (likely(!nr_pages))
1927 return;
1928
f7e1cb6e
JW
1929 memcg = get_mem_cgroup_from_mm(current->mm);
1930 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1931 css_put(&memcg->css);
1932 current->memcg_nr_pages_over_high = 0;
1933}
1934
00501b53
JW
1935static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1936 unsigned int nr_pages)
8a9f3ccd 1937{
7ec99d62 1938 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1939 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1940 struct mem_cgroup *mem_over_limit;
3e32cb2e 1941 struct page_counter *counter;
6539cc05 1942 unsigned long nr_reclaimed;
b70a2a21
JW
1943 bool may_swap = true;
1944 bool drained = false;
a636b327 1945
ce00a967 1946 if (mem_cgroup_is_root(memcg))
10d53c74 1947 return 0;
6539cc05 1948retry:
b6b6cc72 1949 if (consume_stock(memcg, nr_pages))
10d53c74 1950 return 0;
8a9f3ccd 1951
7941d214 1952 if (!do_memsw_account() ||
6071ca52
JW
1953 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1954 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1955 goto done_restock;
7941d214 1956 if (do_memsw_account())
3e32cb2e
JW
1957 page_counter_uncharge(&memcg->memsw, batch);
1958 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1959 } else {
3e32cb2e 1960 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1961 may_swap = false;
3fbe7244 1962 }
7a81b88c 1963
6539cc05
JW
1964 if (batch > nr_pages) {
1965 batch = nr_pages;
1966 goto retry;
1967 }
6d61ef40 1968
115e02ed
JW
1969 /*
1970 * Memcg doesn't have a dedicated reserve for atomic
1971 * allocations. But like the global atomic pool, we need to
1972 * put the burden of reclaim on regular allocation requests
1973 * and let these go through as privileged allocations.
1974 */
1975 if (gfp_mask & __GFP_ATOMIC)
1976 goto force;
1977
06b078fc
JW
1978 /*
1979 * Unlike in global OOM situations, memcg is not in a physical
1980 * memory shortage. Allow dying and OOM-killed tasks to
1981 * bypass the last charges so that they can exit quickly and
1982 * free their memory.
1983 */
d9e9af93 1984 if (unlikely(should_force_charge()))
10d53c74 1985 goto force;
06b078fc 1986
89a28483
JW
1987 /*
1988 * Prevent unbounded recursion when reclaim operations need to
1989 * allocate memory. This might exceed the limits temporarily,
1990 * but we prefer facilitating memory reclaim and getting back
1991 * under the limit over triggering OOM kills in these cases.
1992 */
1993 if (unlikely(current->flags & PF_MEMALLOC))
1994 goto force;
1995
06b078fc
JW
1996 if (unlikely(task_in_memcg_oom(current)))
1997 goto nomem;
1998
d0164adc 1999 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2000 goto nomem;
4b534334 2001
31176c78 2002 mem_cgroup_event(mem_over_limit, MEMCG_MAX);
241994ed 2003
b70a2a21
JW
2004 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2005 gfp_mask, may_swap);
6539cc05 2006
61e02c74 2007 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2008 goto retry;
28c34c29 2009
b70a2a21 2010 if (!drained) {
6d3d6aa2 2011 drain_all_stock(mem_over_limit);
b70a2a21
JW
2012 drained = true;
2013 goto retry;
2014 }
2015
28c34c29
JW
2016 if (gfp_mask & __GFP_NORETRY)
2017 goto nomem;
6539cc05
JW
2018 /*
2019 * Even though the limit is exceeded at this point, reclaim
2020 * may have been able to free some pages. Retry the charge
2021 * before killing the task.
2022 *
2023 * Only for regular pages, though: huge pages are rather
2024 * unlikely to succeed so close to the limit, and we fall back
2025 * to regular pages anyway in case of failure.
2026 */
61e02c74 2027 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2028 goto retry;
2029 /*
2030 * At task move, charge accounts can be doubly counted. So, it's
2031 * better to wait until the end of task_move if something is going on.
2032 */
2033 if (mem_cgroup_wait_acct_move(mem_over_limit))
2034 goto retry;
2035
9b130619
JW
2036 if (nr_retries--)
2037 goto retry;
2038
06b078fc 2039 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2040 goto force;
06b078fc 2041
6539cc05 2042 if (fatal_signal_pending(current))
10d53c74 2043 goto force;
6539cc05 2044
31176c78 2045 mem_cgroup_event(mem_over_limit, MEMCG_OOM);
241994ed 2046
3608de07
JM
2047 mem_cgroup_oom(mem_over_limit, gfp_mask,
2048 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2049nomem:
6d1fdc48 2050 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2051 return -ENOMEM;
10d53c74
TH
2052force:
2053 /*
2054 * The allocation either can't fail or will lead to more memory
2055 * being freed very soon. Allow memory usage go over the limit
2056 * temporarily by force charging it.
2057 */
2058 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2059 if (do_memsw_account())
10d53c74
TH
2060 page_counter_charge(&memcg->memsw, nr_pages);
2061 css_get_many(&memcg->css, nr_pages);
2062
2063 return 0;
6539cc05
JW
2064
2065done_restock:
e8ea14cc 2066 css_get_many(&memcg->css, batch);
6539cc05
JW
2067 if (batch > nr_pages)
2068 refill_stock(memcg, batch - nr_pages);
b23afb93 2069
241994ed 2070 /*
b23afb93
TH
2071 * If the hierarchy is above the normal consumption range, schedule
2072 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2073 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2074 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2075 * not recorded as it most likely matches current's and won't
2076 * change in the meantime. As high limit is checked again before
2077 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2078 */
2079 do {
b23afb93 2080 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2081 /* Don't bother a random interrupted task */
2082 if (in_interrupt()) {
2083 schedule_work(&memcg->high_work);
2084 break;
2085 }
9516a18a 2086 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2087 set_notify_resume(current);
2088 break;
2089 }
241994ed 2090 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2091
2092 return 0;
7a81b88c 2093}
8a9f3ccd 2094
00501b53 2095static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2096{
ce00a967
JW
2097 if (mem_cgroup_is_root(memcg))
2098 return;
2099
3e32cb2e 2100 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2101 if (do_memsw_account())
3e32cb2e 2102 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2103
e8ea14cc 2104 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2105}
2106
0a31bc97
JW
2107static void lock_page_lru(struct page *page, int *isolated)
2108{
2109 struct zone *zone = page_zone(page);
2110
a52633d8 2111 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2112 if (PageLRU(page)) {
2113 struct lruvec *lruvec;
2114
599d0c95 2115 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2116 ClearPageLRU(page);
2117 del_page_from_lru_list(page, lruvec, page_lru(page));
2118 *isolated = 1;
2119 } else
2120 *isolated = 0;
2121}
2122
2123static void unlock_page_lru(struct page *page, int isolated)
2124{
2125 struct zone *zone = page_zone(page);
2126
2127 if (isolated) {
2128 struct lruvec *lruvec;
2129
599d0c95 2130 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2131 VM_BUG_ON_PAGE(PageLRU(page), page);
2132 SetPageLRU(page);
2133 add_page_to_lru_list(page, lruvec, page_lru(page));
2134 }
a52633d8 2135 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2136}
2137
00501b53 2138static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2139 bool lrucare)
7a81b88c 2140{
0a31bc97 2141 int isolated;
9ce70c02 2142
1306a85a 2143 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2144
2145 /*
2146 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2147 * may already be on some other mem_cgroup's LRU. Take care of it.
2148 */
0a31bc97
JW
2149 if (lrucare)
2150 lock_page_lru(page, &isolated);
9ce70c02 2151
0a31bc97
JW
2152 /*
2153 * Nobody should be changing or seriously looking at
1306a85a 2154 * page->mem_cgroup at this point:
0a31bc97
JW
2155 *
2156 * - the page is uncharged
2157 *
2158 * - the page is off-LRU
2159 *
2160 * - an anonymous fault has exclusive page access, except for
2161 * a locked page table
2162 *
2163 * - a page cache insertion, a swapin fault, or a migration
2164 * have the page locked
2165 */
1306a85a 2166 page->mem_cgroup = memcg;
9ce70c02 2167
0a31bc97
JW
2168 if (lrucare)
2169 unlock_page_lru(page, isolated);
7a81b88c 2170}
66e1707b 2171
127424c8 2172#ifndef CONFIG_SLOB
f3bb3043 2173static int memcg_alloc_cache_id(void)
55007d84 2174{
f3bb3043
VD
2175 int id, size;
2176 int err;
2177
dbcf73e2 2178 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2179 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2180 if (id < 0)
2181 return id;
55007d84 2182
dbcf73e2 2183 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2184 return id;
2185
2186 /*
2187 * There's no space for the new id in memcg_caches arrays,
2188 * so we have to grow them.
2189 */
05257a1a 2190 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2191
2192 size = 2 * (id + 1);
55007d84
GC
2193 if (size < MEMCG_CACHES_MIN_SIZE)
2194 size = MEMCG_CACHES_MIN_SIZE;
2195 else if (size > MEMCG_CACHES_MAX_SIZE)
2196 size = MEMCG_CACHES_MAX_SIZE;
2197
f3bb3043 2198 err = memcg_update_all_caches(size);
60d3fd32
VD
2199 if (!err)
2200 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2201 if (!err)
2202 memcg_nr_cache_ids = size;
2203
2204 up_write(&memcg_cache_ids_sem);
2205
f3bb3043 2206 if (err) {
dbcf73e2 2207 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2208 return err;
2209 }
2210 return id;
2211}
2212
2213static void memcg_free_cache_id(int id)
2214{
dbcf73e2 2215 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2216}
2217
d5b3cf71 2218struct memcg_kmem_cache_create_work {
5722d094
VD
2219 struct mem_cgroup *memcg;
2220 struct kmem_cache *cachep;
2221 struct work_struct work;
2222};
2223
d5b3cf71 2224static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2225{
d5b3cf71
VD
2226 struct memcg_kmem_cache_create_work *cw =
2227 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2228 struct mem_cgroup *memcg = cw->memcg;
2229 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2230
d5b3cf71 2231 memcg_create_kmem_cache(memcg, cachep);
bd673145 2232
5722d094 2233 css_put(&memcg->css);
d7f25f8a
GC
2234 kfree(cw);
2235}
2236
2237/*
2238 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2239 */
d5b3cf71
VD
2240static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2241 struct kmem_cache *cachep)
d7f25f8a 2242{
d5b3cf71 2243 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2244
8954327d 2245 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2246 if (!cw)
d7f25f8a 2247 return;
8135be5a
VD
2248
2249 css_get(&memcg->css);
d7f25f8a
GC
2250
2251 cw->memcg = memcg;
2252 cw->cachep = cachep;
d5b3cf71 2253 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2254
17cc4dfe 2255 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2256}
2257
d5b3cf71
VD
2258static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2259 struct kmem_cache *cachep)
0e9d92f2
GC
2260{
2261 /*
2262 * We need to stop accounting when we kmalloc, because if the
2263 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2264 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2265 *
2266 * However, it is better to enclose the whole function. Depending on
2267 * the debugging options enabled, INIT_WORK(), for instance, can
2268 * trigger an allocation. This too, will make us recurse. Because at
2269 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2270 * the safest choice is to do it like this, wrapping the whole function.
2271 */
6f185c29 2272 current->memcg_kmem_skip_account = 1;
d5b3cf71 2273 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2274 current->memcg_kmem_skip_account = 0;
0e9d92f2 2275}
c67a8a68 2276
45264778
VD
2277static inline bool memcg_kmem_bypass(void)
2278{
2279 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2280 return true;
2281 return false;
2282}
2283
2284/**
2285 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2286 * @cachep: the original global kmem cache
2287 *
d7f25f8a
GC
2288 * Return the kmem_cache we're supposed to use for a slab allocation.
2289 * We try to use the current memcg's version of the cache.
2290 *
45264778
VD
2291 * If the cache does not exist yet, if we are the first user of it, we
2292 * create it asynchronously in a workqueue and let the current allocation
2293 * go through with the original cache.
d7f25f8a 2294 *
45264778
VD
2295 * This function takes a reference to the cache it returns to assure it
2296 * won't get destroyed while we are working with it. Once the caller is
2297 * done with it, memcg_kmem_put_cache() must be called to release the
2298 * reference.
d7f25f8a 2299 */
45264778 2300struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2301{
2302 struct mem_cgroup *memcg;
959c8963 2303 struct kmem_cache *memcg_cachep;
2a4db7eb 2304 int kmemcg_id;
d7f25f8a 2305
f7ce3190 2306 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2307
45264778 2308 if (memcg_kmem_bypass())
230e9fc2
VD
2309 return cachep;
2310
9d100c5e 2311 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2312 return cachep;
2313
8135be5a 2314 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2315 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2316 if (kmemcg_id < 0)
ca0dde97 2317 goto out;
d7f25f8a 2318
2a4db7eb 2319 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2320 if (likely(memcg_cachep))
2321 return memcg_cachep;
ca0dde97
LZ
2322
2323 /*
2324 * If we are in a safe context (can wait, and not in interrupt
2325 * context), we could be be predictable and return right away.
2326 * This would guarantee that the allocation being performed
2327 * already belongs in the new cache.
2328 *
2329 * However, there are some clashes that can arrive from locking.
2330 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2331 * memcg_create_kmem_cache, this means no further allocation
2332 * could happen with the slab_mutex held. So it's better to
2333 * defer everything.
ca0dde97 2334 */
d5b3cf71 2335 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2336out:
8135be5a 2337 css_put(&memcg->css);
ca0dde97 2338 return cachep;
d7f25f8a 2339}
d7f25f8a 2340
45264778
VD
2341/**
2342 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2343 * @cachep: the cache returned by memcg_kmem_get_cache
2344 */
2345void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2346{
2347 if (!is_root_cache(cachep))
f7ce3190 2348 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2349}
2350
45264778
VD
2351/**
2352 * memcg_kmem_charge: charge a kmem page
2353 * @page: page to charge
2354 * @gfp: reclaim mode
2355 * @order: allocation order
2356 * @memcg: memory cgroup to charge
2357 *
2358 * Returns 0 on success, an error code on failure.
2359 */
2360int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2361 struct mem_cgroup *memcg)
7ae1e1d0 2362{
f3ccb2c4
VD
2363 unsigned int nr_pages = 1 << order;
2364 struct page_counter *counter;
7ae1e1d0
GC
2365 int ret;
2366
f3ccb2c4 2367 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2368 if (ret)
f3ccb2c4 2369 return ret;
52c29b04
JW
2370
2371 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2372 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
a6c47d49
MH
2373
2374 /*
2375 * Enforce __GFP_NOFAIL allocation because callers are not
2376 * prepared to see failures and likely do not have any failure
2377 * handling code.
2378 */
2379 if (gfp & __GFP_NOFAIL) {
2380 page_counter_charge(&memcg->kmem, nr_pages);
2381 return 0;
2382 }
52c29b04
JW
2383 cancel_charge(memcg, nr_pages);
2384 return -ENOMEM;
7ae1e1d0
GC
2385 }
2386
f3ccb2c4 2387 page->mem_cgroup = memcg;
7ae1e1d0 2388
f3ccb2c4 2389 return 0;
7ae1e1d0
GC
2390}
2391
45264778
VD
2392/**
2393 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2394 * @page: page to charge
2395 * @gfp: reclaim mode
2396 * @order: allocation order
2397 *
2398 * Returns 0 on success, an error code on failure.
2399 */
2400int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2401{
f3ccb2c4 2402 struct mem_cgroup *memcg;
fcff7d7e 2403 int ret = 0;
7ae1e1d0 2404
b1850bcd 2405 if (mem_cgroup_disabled() || memcg_kmem_bypass())
45264778
VD
2406 return 0;
2407
f3ccb2c4 2408 memcg = get_mem_cgroup_from_mm(current->mm);
c4159a75 2409 if (!mem_cgroup_is_root(memcg)) {
45264778 2410 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2411 if (!ret)
2412 __SetPageKmemcg(page);
2413 }
7ae1e1d0 2414 css_put(&memcg->css);
d05e83a6 2415 return ret;
7ae1e1d0 2416}
45264778
VD
2417/**
2418 * memcg_kmem_uncharge: uncharge a kmem page
2419 * @page: page to uncharge
2420 * @order: allocation order
2421 */
2422void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2423{
1306a85a 2424 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2425 unsigned int nr_pages = 1 << order;
7ae1e1d0 2426
7ae1e1d0
GC
2427 if (!memcg)
2428 return;
2429
309381fe 2430 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2431
52c29b04
JW
2432 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2433 page_counter_uncharge(&memcg->kmem, nr_pages);
2434
f3ccb2c4 2435 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2436 if (do_memsw_account())
f3ccb2c4 2437 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2438
1306a85a 2439 page->mem_cgroup = NULL;
c4159a75
VD
2440
2441 /* slab pages do not have PageKmemcg flag set */
2442 if (PageKmemcg(page))
2443 __ClearPageKmemcg(page);
2444
f3ccb2c4 2445 css_put_many(&memcg->css, nr_pages);
60d3fd32 2446}
127424c8 2447#endif /* !CONFIG_SLOB */
7ae1e1d0 2448
ca3e0214
KH
2449#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2450
ca3e0214
KH
2451/*
2452 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2453 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2454 */
e94c8a9c 2455void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2456{
e94c8a9c 2457 int i;
ca3e0214 2458
3d37c4a9
KH
2459 if (mem_cgroup_disabled())
2460 return;
b070e65c 2461
29833315 2462 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2463 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2464
71cd3113 2465 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
b070e65c 2466 HPAGE_PMD_NR);
ca3e0214 2467}
12d27107 2468#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2469
c255a458 2470#ifdef CONFIG_MEMCG_SWAP
0a31bc97 2471static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
38d8b4e6 2472 int nr_entries)
d13d1443 2473{
38d8b4e6 2474 this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
d13d1443 2475}
02491447
DN
2476
2477/**
2478 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2479 * @entry: swap entry to be moved
2480 * @from: mem_cgroup which the entry is moved from
2481 * @to: mem_cgroup which the entry is moved to
2482 *
2483 * It succeeds only when the swap_cgroup's record for this entry is the same
2484 * as the mem_cgroup's id of @from.
2485 *
2486 * Returns 0 on success, -EINVAL on failure.
2487 *
3e32cb2e 2488 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2489 * both res and memsw, and called css_get().
2490 */
2491static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2492 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2493{
2494 unsigned short old_id, new_id;
2495
34c00c31
LZ
2496 old_id = mem_cgroup_id(from);
2497 new_id = mem_cgroup_id(to);
02491447
DN
2498
2499 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
38d8b4e6
HY
2500 mem_cgroup_swap_statistics(from, -1);
2501 mem_cgroup_swap_statistics(to, 1);
02491447
DN
2502 return 0;
2503 }
2504 return -EINVAL;
2505}
2506#else
2507static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2508 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2509{
2510 return -EINVAL;
2511}
8c7c6e34 2512#endif
d13d1443 2513
3e32cb2e 2514static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2515
d38d2a75 2516static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2517 unsigned long limit)
628f4235 2518{
3e32cb2e
JW
2519 unsigned long curusage;
2520 unsigned long oldusage;
2521 bool enlarge = false;
81d39c20 2522 int retry_count;
3e32cb2e 2523 int ret;
81d39c20
KH
2524
2525 /*
2526 * For keeping hierarchical_reclaim simple, how long we should retry
2527 * is depends on callers. We set our retry-count to be function
2528 * of # of children which we should visit in this loop.
2529 */
3e32cb2e
JW
2530 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2531 mem_cgroup_count_children(memcg);
81d39c20 2532
3e32cb2e 2533 oldusage = page_counter_read(&memcg->memory);
628f4235 2534
3e32cb2e 2535 do {
628f4235
KH
2536 if (signal_pending(current)) {
2537 ret = -EINTR;
2538 break;
2539 }
3e32cb2e
JW
2540
2541 mutex_lock(&memcg_limit_mutex);
2542 if (limit > memcg->memsw.limit) {
2543 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2544 ret = -EINVAL;
628f4235
KH
2545 break;
2546 }
3e32cb2e
JW
2547 if (limit > memcg->memory.limit)
2548 enlarge = true;
2549 ret = page_counter_limit(&memcg->memory, limit);
2550 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2551
2552 if (!ret)
2553 break;
2554
b70a2a21
JW
2555 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2556
3e32cb2e 2557 curusage = page_counter_read(&memcg->memory);
81d39c20 2558 /* Usage is reduced ? */
f894ffa8 2559 if (curusage >= oldusage)
81d39c20
KH
2560 retry_count--;
2561 else
2562 oldusage = curusage;
3e32cb2e
JW
2563 } while (retry_count);
2564
3c11ecf4
KH
2565 if (!ret && enlarge)
2566 memcg_oom_recover(memcg);
14797e23 2567
8c7c6e34
KH
2568 return ret;
2569}
2570
338c8431 2571static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2572 unsigned long limit)
8c7c6e34 2573{
3e32cb2e
JW
2574 unsigned long curusage;
2575 unsigned long oldusage;
2576 bool enlarge = false;
81d39c20 2577 int retry_count;
3e32cb2e 2578 int ret;
8c7c6e34 2579
81d39c20 2580 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2581 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2582 mem_cgroup_count_children(memcg);
2583
2584 oldusage = page_counter_read(&memcg->memsw);
2585
2586 do {
8c7c6e34
KH
2587 if (signal_pending(current)) {
2588 ret = -EINTR;
2589 break;
2590 }
3e32cb2e
JW
2591
2592 mutex_lock(&memcg_limit_mutex);
2593 if (limit < memcg->memory.limit) {
2594 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2595 ret = -EINVAL;
8c7c6e34
KH
2596 break;
2597 }
3e32cb2e
JW
2598 if (limit > memcg->memsw.limit)
2599 enlarge = true;
2600 ret = page_counter_limit(&memcg->memsw, limit);
2601 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2602
2603 if (!ret)
2604 break;
2605
b70a2a21
JW
2606 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2607
3e32cb2e 2608 curusage = page_counter_read(&memcg->memsw);
81d39c20 2609 /* Usage is reduced ? */
8c7c6e34 2610 if (curusage >= oldusage)
628f4235 2611 retry_count--;
81d39c20
KH
2612 else
2613 oldusage = curusage;
3e32cb2e
JW
2614 } while (retry_count);
2615
3c11ecf4
KH
2616 if (!ret && enlarge)
2617 memcg_oom_recover(memcg);
3e32cb2e 2618
628f4235
KH
2619 return ret;
2620}
2621
ef8f2327 2622unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2623 gfp_t gfp_mask,
2624 unsigned long *total_scanned)
2625{
2626 unsigned long nr_reclaimed = 0;
ef8f2327 2627 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2628 unsigned long reclaimed;
2629 int loop = 0;
ef8f2327 2630 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2631 unsigned long excess;
0608f43d
AM
2632 unsigned long nr_scanned;
2633
2634 if (order > 0)
2635 return 0;
2636
ef8f2327 2637 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2638
2639 /*
2640 * Do not even bother to check the largest node if the root
2641 * is empty. Do it lockless to prevent lock bouncing. Races
2642 * are acceptable as soft limit is best effort anyway.
2643 */
bfc7228b 2644 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2645 return 0;
2646
0608f43d
AM
2647 /*
2648 * This loop can run a while, specially if mem_cgroup's continuously
2649 * keep exceeding their soft limit and putting the system under
2650 * pressure
2651 */
2652 do {
2653 if (next_mz)
2654 mz = next_mz;
2655 else
2656 mz = mem_cgroup_largest_soft_limit_node(mctz);
2657 if (!mz)
2658 break;
2659
2660 nr_scanned = 0;
ef8f2327 2661 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2662 gfp_mask, &nr_scanned);
2663 nr_reclaimed += reclaimed;
2664 *total_scanned += nr_scanned;
0a31bc97 2665 spin_lock_irq(&mctz->lock);
bc2f2e7f 2666 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2667
2668 /*
2669 * If we failed to reclaim anything from this memory cgroup
2670 * it is time to move on to the next cgroup
2671 */
2672 next_mz = NULL;
bc2f2e7f
VD
2673 if (!reclaimed)
2674 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2675
3e32cb2e 2676 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2677 /*
2678 * One school of thought says that we should not add
2679 * back the node to the tree if reclaim returns 0.
2680 * But our reclaim could return 0, simply because due
2681 * to priority we are exposing a smaller subset of
2682 * memory to reclaim from. Consider this as a longer
2683 * term TODO.
2684 */
2685 /* If excess == 0, no tree ops */
cf2c8127 2686 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2687 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2688 css_put(&mz->memcg->css);
2689 loop++;
2690 /*
2691 * Could not reclaim anything and there are no more
2692 * mem cgroups to try or we seem to be looping without
2693 * reclaiming anything.
2694 */
2695 if (!nr_reclaimed &&
2696 (next_mz == NULL ||
2697 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2698 break;
2699 } while (!nr_reclaimed);
2700 if (next_mz)
2701 css_put(&next_mz->memcg->css);
2702 return nr_reclaimed;
2703}
2704
ea280e7b
TH
2705/*
2706 * Test whether @memcg has children, dead or alive. Note that this
2707 * function doesn't care whether @memcg has use_hierarchy enabled and
2708 * returns %true if there are child csses according to the cgroup
2709 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2710 */
b5f99b53
GC
2711static inline bool memcg_has_children(struct mem_cgroup *memcg)
2712{
ea280e7b
TH
2713 bool ret;
2714
ea280e7b
TH
2715 rcu_read_lock();
2716 ret = css_next_child(NULL, &memcg->css);
2717 rcu_read_unlock();
2718 return ret;
b5f99b53
GC
2719}
2720
c26251f9 2721/*
51038171 2722 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2723 *
2724 * Caller is responsible for holding css reference for memcg.
2725 */
2726static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2727{
2728 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2729
c1e862c1
KH
2730 /* we call try-to-free pages for make this cgroup empty */
2731 lru_add_drain_all();
f817ed48 2732 /* try to free all pages in this cgroup */
3e32cb2e 2733 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2734 int progress;
c1e862c1 2735
c26251f9
MH
2736 if (signal_pending(current))
2737 return -EINTR;
2738
b70a2a21
JW
2739 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2740 GFP_KERNEL, true);
c1e862c1 2741 if (!progress) {
f817ed48 2742 nr_retries--;
c1e862c1 2743 /* maybe some writeback is necessary */
8aa7e847 2744 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2745 }
f817ed48
KH
2746
2747 }
ab5196c2
MH
2748
2749 return 0;
cc847582
KH
2750}
2751
6770c64e
TH
2752static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2753 char *buf, size_t nbytes,
2754 loff_t off)
c1e862c1 2755{
6770c64e 2756 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2757
d8423011
MH
2758 if (mem_cgroup_is_root(memcg))
2759 return -EINVAL;
6770c64e 2760 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2761}
2762
182446d0
TH
2763static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2764 struct cftype *cft)
18f59ea7 2765{
182446d0 2766 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2767}
2768
182446d0
TH
2769static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2770 struct cftype *cft, u64 val)
18f59ea7
BS
2771{
2772 int retval = 0;
182446d0 2773 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2774 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2775
567fb435 2776 if (memcg->use_hierarchy == val)
0b8f73e1 2777 return 0;
567fb435 2778
18f59ea7 2779 /*
af901ca1 2780 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2781 * in the child subtrees. If it is unset, then the change can
2782 * occur, provided the current cgroup has no children.
2783 *
2784 * For the root cgroup, parent_mem is NULL, we allow value to be
2785 * set if there are no children.
2786 */
c0ff4b85 2787 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2788 (val == 1 || val == 0)) {
ea280e7b 2789 if (!memcg_has_children(memcg))
c0ff4b85 2790 memcg->use_hierarchy = val;
18f59ea7
BS
2791 else
2792 retval = -EBUSY;
2793 } else
2794 retval = -EINVAL;
567fb435 2795
18f59ea7
BS
2796 return retval;
2797}
2798
72b54e73 2799static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2800{
2801 struct mem_cgroup *iter;
72b54e73 2802 int i;
ce00a967 2803
72b54e73 2804 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2805
72b54e73
VD
2806 for_each_mem_cgroup_tree(iter, memcg) {
2807 for (i = 0; i < MEMCG_NR_STAT; i++)
ccda7f43 2808 stat[i] += memcg_page_state(iter, i);
72b54e73 2809 }
ce00a967
JW
2810}
2811
72b54e73 2812static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2813{
2814 struct mem_cgroup *iter;
72b54e73 2815 int i;
587d9f72 2816
72b54e73 2817 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2818
72b54e73
VD
2819 for_each_mem_cgroup_tree(iter, memcg) {
2820 for (i = 0; i < MEMCG_NR_EVENTS; i++)
ccda7f43 2821 events[i] += memcg_sum_events(iter, i);
72b54e73 2822 }
587d9f72
JW
2823}
2824
6f646156 2825static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2826{
72b54e73 2827 unsigned long val = 0;
ce00a967 2828
3e32cb2e 2829 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2830 struct mem_cgroup *iter;
2831
2832 for_each_mem_cgroup_tree(iter, memcg) {
ccda7f43
JW
2833 val += memcg_page_state(iter, MEMCG_CACHE);
2834 val += memcg_page_state(iter, MEMCG_RSS);
72b54e73 2835 if (swap)
ccda7f43 2836 val += memcg_page_state(iter, MEMCG_SWAP);
72b54e73 2837 }
3e32cb2e 2838 } else {
ce00a967 2839 if (!swap)
3e32cb2e 2840 val = page_counter_read(&memcg->memory);
ce00a967 2841 else
3e32cb2e 2842 val = page_counter_read(&memcg->memsw);
ce00a967 2843 }
c12176d3 2844 return val;
ce00a967
JW
2845}
2846
3e32cb2e
JW
2847enum {
2848 RES_USAGE,
2849 RES_LIMIT,
2850 RES_MAX_USAGE,
2851 RES_FAILCNT,
2852 RES_SOFT_LIMIT,
2853};
ce00a967 2854
791badbd 2855static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2856 struct cftype *cft)
8cdea7c0 2857{
182446d0 2858 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2859 struct page_counter *counter;
af36f906 2860
3e32cb2e 2861 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2862 case _MEM:
3e32cb2e
JW
2863 counter = &memcg->memory;
2864 break;
8c7c6e34 2865 case _MEMSWAP:
3e32cb2e
JW
2866 counter = &memcg->memsw;
2867 break;
510fc4e1 2868 case _KMEM:
3e32cb2e 2869 counter = &memcg->kmem;
510fc4e1 2870 break;
d55f90bf 2871 case _TCP:
0db15298 2872 counter = &memcg->tcpmem;
d55f90bf 2873 break;
8c7c6e34
KH
2874 default:
2875 BUG();
8c7c6e34 2876 }
3e32cb2e
JW
2877
2878 switch (MEMFILE_ATTR(cft->private)) {
2879 case RES_USAGE:
2880 if (counter == &memcg->memory)
c12176d3 2881 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2882 if (counter == &memcg->memsw)
c12176d3 2883 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2884 return (u64)page_counter_read(counter) * PAGE_SIZE;
2885 case RES_LIMIT:
2886 return (u64)counter->limit * PAGE_SIZE;
2887 case RES_MAX_USAGE:
2888 return (u64)counter->watermark * PAGE_SIZE;
2889 case RES_FAILCNT:
2890 return counter->failcnt;
2891 case RES_SOFT_LIMIT:
2892 return (u64)memcg->soft_limit * PAGE_SIZE;
2893 default:
2894 BUG();
2895 }
8cdea7c0 2896}
510fc4e1 2897
127424c8 2898#ifndef CONFIG_SLOB
567e9ab2 2899static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2900{
d6441637
VD
2901 int memcg_id;
2902
b313aeee
VD
2903 if (cgroup_memory_nokmem)
2904 return 0;
2905
2a4db7eb 2906 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2907 BUG_ON(memcg->kmem_state);
d6441637 2908
f3bb3043 2909 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2910 if (memcg_id < 0)
2911 return memcg_id;
d6441637 2912
ef12947c 2913 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2914 /*
567e9ab2 2915 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2916 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2917 * guarantee no one starts accounting before all call sites are
2918 * patched.
2919 */
900a38f0 2920 memcg->kmemcg_id = memcg_id;
567e9ab2 2921 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 2922 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
2923
2924 return 0;
d6441637
VD
2925}
2926
8e0a8912
JW
2927static void memcg_offline_kmem(struct mem_cgroup *memcg)
2928{
2929 struct cgroup_subsys_state *css;
2930 struct mem_cgroup *parent, *child;
2931 int kmemcg_id;
2932
2933 if (memcg->kmem_state != KMEM_ONLINE)
2934 return;
2935 /*
2936 * Clear the online state before clearing memcg_caches array
2937 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2938 * guarantees that no cache will be created for this cgroup
2939 * after we are done (see memcg_create_kmem_cache()).
2940 */
2941 memcg->kmem_state = KMEM_ALLOCATED;
2942
2943 memcg_deactivate_kmem_caches(memcg);
2944
2945 kmemcg_id = memcg->kmemcg_id;
2946 BUG_ON(kmemcg_id < 0);
2947
2948 parent = parent_mem_cgroup(memcg);
2949 if (!parent)
2950 parent = root_mem_cgroup;
2951
2952 /*
2953 * Change kmemcg_id of this cgroup and all its descendants to the
2954 * parent's id, and then move all entries from this cgroup's list_lrus
2955 * to ones of the parent. After we have finished, all list_lrus
2956 * corresponding to this cgroup are guaranteed to remain empty. The
2957 * ordering is imposed by list_lru_node->lock taken by
2958 * memcg_drain_all_list_lrus().
2959 */
3a06bb78 2960 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2961 css_for_each_descendant_pre(css, &memcg->css) {
2962 child = mem_cgroup_from_css(css);
2963 BUG_ON(child->kmemcg_id != kmemcg_id);
2964 child->kmemcg_id = parent->kmemcg_id;
2965 if (!memcg->use_hierarchy)
2966 break;
2967 }
3a06bb78
TH
2968 rcu_read_unlock();
2969
8e0a8912
JW
2970 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2971
2972 memcg_free_cache_id(kmemcg_id);
2973}
2974
2975static void memcg_free_kmem(struct mem_cgroup *memcg)
2976{
0b8f73e1
JW
2977 /* css_alloc() failed, offlining didn't happen */
2978 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2979 memcg_offline_kmem(memcg);
2980
8e0a8912
JW
2981 if (memcg->kmem_state == KMEM_ALLOCATED) {
2982 memcg_destroy_kmem_caches(memcg);
2983 static_branch_dec(&memcg_kmem_enabled_key);
2984 WARN_ON(page_counter_read(&memcg->kmem));
2985 }
8e0a8912 2986}
d6441637 2987#else
0b8f73e1 2988static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2989{
2990 return 0;
2991}
2992static void memcg_offline_kmem(struct mem_cgroup *memcg)
2993{
2994}
2995static void memcg_free_kmem(struct mem_cgroup *memcg)
2996{
2997}
2998#endif /* !CONFIG_SLOB */
2999
d6441637 3000static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3001 unsigned long limit)
d6441637 3002{
b313aeee 3003 int ret;
127424c8
JW
3004
3005 mutex_lock(&memcg_limit_mutex);
127424c8 3006 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
3007 mutex_unlock(&memcg_limit_mutex);
3008 return ret;
d6441637 3009}
510fc4e1 3010
d55f90bf
VD
3011static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
3012{
3013 int ret;
3014
3015 mutex_lock(&memcg_limit_mutex);
3016
0db15298 3017 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
3018 if (ret)
3019 goto out;
3020
0db15298 3021 if (!memcg->tcpmem_active) {
d55f90bf
VD
3022 /*
3023 * The active flag needs to be written after the static_key
3024 * update. This is what guarantees that the socket activation
2d758073
JW
3025 * function is the last one to run. See mem_cgroup_sk_alloc()
3026 * for details, and note that we don't mark any socket as
3027 * belonging to this memcg until that flag is up.
d55f90bf
VD
3028 *
3029 * We need to do this, because static_keys will span multiple
3030 * sites, but we can't control their order. If we mark a socket
3031 * as accounted, but the accounting functions are not patched in
3032 * yet, we'll lose accounting.
3033 *
2d758073 3034 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3035 * because when this value change, the code to process it is not
3036 * patched in yet.
3037 */
3038 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3039 memcg->tcpmem_active = true;
d55f90bf
VD
3040 }
3041out:
3042 mutex_unlock(&memcg_limit_mutex);
3043 return ret;
3044}
d55f90bf 3045
628f4235
KH
3046/*
3047 * The user of this function is...
3048 * RES_LIMIT.
3049 */
451af504
TH
3050static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3051 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3052{
451af504 3053 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3054 unsigned long nr_pages;
628f4235
KH
3055 int ret;
3056
451af504 3057 buf = strstrip(buf);
650c5e56 3058 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3059 if (ret)
3060 return ret;
af36f906 3061
3e32cb2e 3062 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3063 case RES_LIMIT:
4b3bde4c
BS
3064 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3065 ret = -EINVAL;
3066 break;
3067 }
3e32cb2e
JW
3068 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3069 case _MEM:
3070 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3071 break;
3e32cb2e
JW
3072 case _MEMSWAP:
3073 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3074 break;
3e32cb2e
JW
3075 case _KMEM:
3076 ret = memcg_update_kmem_limit(memcg, nr_pages);
3077 break;
d55f90bf
VD
3078 case _TCP:
3079 ret = memcg_update_tcp_limit(memcg, nr_pages);
3080 break;
3e32cb2e 3081 }
296c81d8 3082 break;
3e32cb2e
JW
3083 case RES_SOFT_LIMIT:
3084 memcg->soft_limit = nr_pages;
3085 ret = 0;
628f4235
KH
3086 break;
3087 }
451af504 3088 return ret ?: nbytes;
8cdea7c0
BS
3089}
3090
6770c64e
TH
3091static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3092 size_t nbytes, loff_t off)
c84872e1 3093{
6770c64e 3094 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3095 struct page_counter *counter;
c84872e1 3096
3e32cb2e
JW
3097 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3098 case _MEM:
3099 counter = &memcg->memory;
3100 break;
3101 case _MEMSWAP:
3102 counter = &memcg->memsw;
3103 break;
3104 case _KMEM:
3105 counter = &memcg->kmem;
3106 break;
d55f90bf 3107 case _TCP:
0db15298 3108 counter = &memcg->tcpmem;
d55f90bf 3109 break;
3e32cb2e
JW
3110 default:
3111 BUG();
3112 }
af36f906 3113
3e32cb2e 3114 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3115 case RES_MAX_USAGE:
3e32cb2e 3116 page_counter_reset_watermark(counter);
29f2a4da
PE
3117 break;
3118 case RES_FAILCNT:
3e32cb2e 3119 counter->failcnt = 0;
29f2a4da 3120 break;
3e32cb2e
JW
3121 default:
3122 BUG();
29f2a4da 3123 }
f64c3f54 3124
6770c64e 3125 return nbytes;
c84872e1
PE
3126}
3127
182446d0 3128static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3129 struct cftype *cft)
3130{
182446d0 3131 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3132}
3133
02491447 3134#ifdef CONFIG_MMU
182446d0 3135static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3136 struct cftype *cft, u64 val)
3137{
182446d0 3138 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3139
1dfab5ab 3140 if (val & ~MOVE_MASK)
7dc74be0 3141 return -EINVAL;
ee5e8472 3142
7dc74be0 3143 /*
ee5e8472
GC
3144 * No kind of locking is needed in here, because ->can_attach() will
3145 * check this value once in the beginning of the process, and then carry
3146 * on with stale data. This means that changes to this value will only
3147 * affect task migrations starting after the change.
7dc74be0 3148 */
c0ff4b85 3149 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3150 return 0;
3151}
02491447 3152#else
182446d0 3153static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3154 struct cftype *cft, u64 val)
3155{
3156 return -ENOSYS;
3157}
3158#endif
7dc74be0 3159
406eb0c9 3160#ifdef CONFIG_NUMA
2da8ca82 3161static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3162{
25485de6
GT
3163 struct numa_stat {
3164 const char *name;
3165 unsigned int lru_mask;
3166 };
3167
3168 static const struct numa_stat stats[] = {
3169 { "total", LRU_ALL },
3170 { "file", LRU_ALL_FILE },
3171 { "anon", LRU_ALL_ANON },
3172 { "unevictable", BIT(LRU_UNEVICTABLE) },
3173 };
3174 const struct numa_stat *stat;
406eb0c9 3175 int nid;
25485de6 3176 unsigned long nr;
2da8ca82 3177 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3178
25485de6
GT
3179 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3180 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3181 seq_printf(m, "%s=%lu", stat->name, nr);
3182 for_each_node_state(nid, N_MEMORY) {
3183 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3184 stat->lru_mask);
3185 seq_printf(m, " N%d=%lu", nid, nr);
3186 }
3187 seq_putc(m, '\n');
406eb0c9 3188 }
406eb0c9 3189
071aee13
YH
3190 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3191 struct mem_cgroup *iter;
3192
3193 nr = 0;
3194 for_each_mem_cgroup_tree(iter, memcg)
3195 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3196 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3197 for_each_node_state(nid, N_MEMORY) {
3198 nr = 0;
3199 for_each_mem_cgroup_tree(iter, memcg)
3200 nr += mem_cgroup_node_nr_lru_pages(
3201 iter, nid, stat->lru_mask);
3202 seq_printf(m, " N%d=%lu", nid, nr);
3203 }
3204 seq_putc(m, '\n');
406eb0c9 3205 }
406eb0c9 3206
406eb0c9
YH
3207 return 0;
3208}
3209#endif /* CONFIG_NUMA */
3210
df0e53d0
JW
3211/* Universal VM events cgroup1 shows, original sort order */
3212unsigned int memcg1_events[] = {
3213 PGPGIN,
3214 PGPGOUT,
3215 PGFAULT,
3216 PGMAJFAULT,
3217};
3218
3219static const char *const memcg1_event_names[] = {
3220 "pgpgin",
3221 "pgpgout",
3222 "pgfault",
3223 "pgmajfault",
3224};
3225
2da8ca82 3226static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3227{
2da8ca82 3228 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3229 unsigned long memory, memsw;
af7c4b0e
JW
3230 struct mem_cgroup *mi;
3231 unsigned int i;
406eb0c9 3232
71cd3113 3233 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3234 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3235
71cd3113
JW
3236 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3237 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3238 continue;
71cd3113 3239 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
ccda7f43 3240 memcg_page_state(memcg, memcg1_stats[i]) *
71cd3113 3241 PAGE_SIZE);
1dd3a273 3242 }
7b854121 3243
df0e53d0
JW
3244 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3245 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
ccda7f43 3246 memcg_sum_events(memcg, memcg1_events[i]));
af7c4b0e
JW
3247
3248 for (i = 0; i < NR_LRU_LISTS; i++)
3249 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3250 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3251
14067bb3 3252 /* Hierarchical information */
3e32cb2e
JW
3253 memory = memsw = PAGE_COUNTER_MAX;
3254 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3255 memory = min(memory, mi->memory.limit);
3256 memsw = min(memsw, mi->memsw.limit);
fee7b548 3257 }
3e32cb2e
JW
3258 seq_printf(m, "hierarchical_memory_limit %llu\n",
3259 (u64)memory * PAGE_SIZE);
7941d214 3260 if (do_memsw_account())
3e32cb2e
JW
3261 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3262 (u64)memsw * PAGE_SIZE);
7f016ee8 3263
71cd3113 3264 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
484ebb3b 3265 unsigned long long val = 0;
af7c4b0e 3266
71cd3113 3267 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3268 continue;
af7c4b0e 3269 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3270 val += memcg_page_state(mi, memcg1_stats[i]) *
71cd3113
JW
3271 PAGE_SIZE;
3272 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
af7c4b0e
JW
3273 }
3274
df0e53d0 3275 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
af7c4b0e
JW
3276 unsigned long long val = 0;
3277
3278 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3279 val += memcg_sum_events(mi, memcg1_events[i]);
df0e53d0 3280 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
af7c4b0e
JW
3281 }
3282
3283 for (i = 0; i < NR_LRU_LISTS; i++) {
3284 unsigned long long val = 0;
3285
3286 for_each_mem_cgroup_tree(mi, memcg)
3287 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3288 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3289 }
14067bb3 3290
7f016ee8 3291#ifdef CONFIG_DEBUG_VM
7f016ee8 3292 {
ef8f2327
MG
3293 pg_data_t *pgdat;
3294 struct mem_cgroup_per_node *mz;
89abfab1 3295 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3296 unsigned long recent_rotated[2] = {0, 0};
3297 unsigned long recent_scanned[2] = {0, 0};
3298
ef8f2327
MG
3299 for_each_online_pgdat(pgdat) {
3300 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3301 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3302
ef8f2327
MG
3303 recent_rotated[0] += rstat->recent_rotated[0];
3304 recent_rotated[1] += rstat->recent_rotated[1];
3305 recent_scanned[0] += rstat->recent_scanned[0];
3306 recent_scanned[1] += rstat->recent_scanned[1];
3307 }
78ccf5b5
JW
3308 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3309 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3310 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3311 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3312 }
3313#endif
3314
d2ceb9b7
KH
3315 return 0;
3316}
3317
182446d0
TH
3318static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3319 struct cftype *cft)
a7885eb8 3320{
182446d0 3321 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3322
1f4c025b 3323 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3324}
3325
182446d0
TH
3326static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3327 struct cftype *cft, u64 val)
a7885eb8 3328{
182446d0 3329 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3330
3dae7fec 3331 if (val > 100)
a7885eb8
KM
3332 return -EINVAL;
3333
14208b0e 3334 if (css->parent)
3dae7fec
JW
3335 memcg->swappiness = val;
3336 else
3337 vm_swappiness = val;
068b38c1 3338
a7885eb8
KM
3339 return 0;
3340}
3341
2e72b634
KS
3342static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3343{
3344 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3345 unsigned long usage;
2e72b634
KS
3346 int i;
3347
3348 rcu_read_lock();
3349 if (!swap)
2c488db2 3350 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3351 else
2c488db2 3352 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3353
3354 if (!t)
3355 goto unlock;
3356
ce00a967 3357 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3358
3359 /*
748dad36 3360 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3361 * If it's not true, a threshold was crossed after last
3362 * call of __mem_cgroup_threshold().
3363 */
5407a562 3364 i = t->current_threshold;
2e72b634
KS
3365
3366 /*
3367 * Iterate backward over array of thresholds starting from
3368 * current_threshold and check if a threshold is crossed.
3369 * If none of thresholds below usage is crossed, we read
3370 * only one element of the array here.
3371 */
3372 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3373 eventfd_signal(t->entries[i].eventfd, 1);
3374
3375 /* i = current_threshold + 1 */
3376 i++;
3377
3378 /*
3379 * Iterate forward over array of thresholds starting from
3380 * current_threshold+1 and check if a threshold is crossed.
3381 * If none of thresholds above usage is crossed, we read
3382 * only one element of the array here.
3383 */
3384 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3385 eventfd_signal(t->entries[i].eventfd, 1);
3386
3387 /* Update current_threshold */
5407a562 3388 t->current_threshold = i - 1;
2e72b634
KS
3389unlock:
3390 rcu_read_unlock();
3391}
3392
3393static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3394{
ad4ca5f4
KS
3395 while (memcg) {
3396 __mem_cgroup_threshold(memcg, false);
7941d214 3397 if (do_memsw_account())
ad4ca5f4
KS
3398 __mem_cgroup_threshold(memcg, true);
3399
3400 memcg = parent_mem_cgroup(memcg);
3401 }
2e72b634
KS
3402}
3403
3404static int compare_thresholds(const void *a, const void *b)
3405{
3406 const struct mem_cgroup_threshold *_a = a;
3407 const struct mem_cgroup_threshold *_b = b;
3408
2bff24a3
GT
3409 if (_a->threshold > _b->threshold)
3410 return 1;
3411
3412 if (_a->threshold < _b->threshold)
3413 return -1;
3414
3415 return 0;
2e72b634
KS
3416}
3417
c0ff4b85 3418static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3419{
3420 struct mem_cgroup_eventfd_list *ev;
3421
2bcf2e92
MH
3422 spin_lock(&memcg_oom_lock);
3423
c0ff4b85 3424 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3425 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3426
3427 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3428 return 0;
3429}
3430
c0ff4b85 3431static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3432{
7d74b06f
KH
3433 struct mem_cgroup *iter;
3434
c0ff4b85 3435 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3436 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3437}
3438
59b6f873 3439static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3440 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3441{
2c488db2
KS
3442 struct mem_cgroup_thresholds *thresholds;
3443 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3444 unsigned long threshold;
3445 unsigned long usage;
2c488db2 3446 int i, size, ret;
2e72b634 3447
650c5e56 3448 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3449 if (ret)
3450 return ret;
3451
3452 mutex_lock(&memcg->thresholds_lock);
2c488db2 3453
05b84301 3454 if (type == _MEM) {
2c488db2 3455 thresholds = &memcg->thresholds;
ce00a967 3456 usage = mem_cgroup_usage(memcg, false);
05b84301 3457 } else if (type == _MEMSWAP) {
2c488db2 3458 thresholds = &memcg->memsw_thresholds;
ce00a967 3459 usage = mem_cgroup_usage(memcg, true);
05b84301 3460 } else
2e72b634
KS
3461 BUG();
3462
2e72b634 3463 /* Check if a threshold crossed before adding a new one */
2c488db2 3464 if (thresholds->primary)
2e72b634
KS
3465 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3466
2c488db2 3467 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3468
3469 /* Allocate memory for new array of thresholds */
2c488db2 3470 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3471 GFP_KERNEL);
2c488db2 3472 if (!new) {
2e72b634
KS
3473 ret = -ENOMEM;
3474 goto unlock;
3475 }
2c488db2 3476 new->size = size;
2e72b634
KS
3477
3478 /* Copy thresholds (if any) to new array */
2c488db2
KS
3479 if (thresholds->primary) {
3480 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3481 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3482 }
3483
2e72b634 3484 /* Add new threshold */
2c488db2
KS
3485 new->entries[size - 1].eventfd = eventfd;
3486 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3487
3488 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3489 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3490 compare_thresholds, NULL);
3491
3492 /* Find current threshold */
2c488db2 3493 new->current_threshold = -1;
2e72b634 3494 for (i = 0; i < size; i++) {
748dad36 3495 if (new->entries[i].threshold <= usage) {
2e72b634 3496 /*
2c488db2
KS
3497 * new->current_threshold will not be used until
3498 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3499 * it here.
3500 */
2c488db2 3501 ++new->current_threshold;
748dad36
SZ
3502 } else
3503 break;
2e72b634
KS
3504 }
3505
2c488db2
KS
3506 /* Free old spare buffer and save old primary buffer as spare */
3507 kfree(thresholds->spare);
3508 thresholds->spare = thresholds->primary;
3509
3510 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3511
907860ed 3512 /* To be sure that nobody uses thresholds */
2e72b634
KS
3513 synchronize_rcu();
3514
2e72b634
KS
3515unlock:
3516 mutex_unlock(&memcg->thresholds_lock);
3517
3518 return ret;
3519}
3520
59b6f873 3521static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3522 struct eventfd_ctx *eventfd, const char *args)
3523{
59b6f873 3524 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3525}
3526
59b6f873 3527static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3528 struct eventfd_ctx *eventfd, const char *args)
3529{
59b6f873 3530 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3531}
3532
59b6f873 3533static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3534 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3535{
2c488db2
KS
3536 struct mem_cgroup_thresholds *thresholds;
3537 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3538 unsigned long usage;
2c488db2 3539 int i, j, size;
2e72b634
KS
3540
3541 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3542
3543 if (type == _MEM) {
2c488db2 3544 thresholds = &memcg->thresholds;
ce00a967 3545 usage = mem_cgroup_usage(memcg, false);
05b84301 3546 } else if (type == _MEMSWAP) {
2c488db2 3547 thresholds = &memcg->memsw_thresholds;
ce00a967 3548 usage = mem_cgroup_usage(memcg, true);
05b84301 3549 } else
2e72b634
KS
3550 BUG();
3551
371528ca
AV
3552 if (!thresholds->primary)
3553 goto unlock;
3554
2e72b634
KS
3555 /* Check if a threshold crossed before removing */
3556 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3557
3558 /* Calculate new number of threshold */
2c488db2
KS
3559 size = 0;
3560 for (i = 0; i < thresholds->primary->size; i++) {
3561 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3562 size++;
3563 }
3564
2c488db2 3565 new = thresholds->spare;
907860ed 3566
2e72b634
KS
3567 /* Set thresholds array to NULL if we don't have thresholds */
3568 if (!size) {
2c488db2
KS
3569 kfree(new);
3570 new = NULL;
907860ed 3571 goto swap_buffers;
2e72b634
KS
3572 }
3573
2c488db2 3574 new->size = size;
2e72b634
KS
3575
3576 /* Copy thresholds and find current threshold */
2c488db2
KS
3577 new->current_threshold = -1;
3578 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3579 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3580 continue;
3581
2c488db2 3582 new->entries[j] = thresholds->primary->entries[i];
748dad36 3583 if (new->entries[j].threshold <= usage) {
2e72b634 3584 /*
2c488db2 3585 * new->current_threshold will not be used
2e72b634
KS
3586 * until rcu_assign_pointer(), so it's safe to increment
3587 * it here.
3588 */
2c488db2 3589 ++new->current_threshold;
2e72b634
KS
3590 }
3591 j++;
3592 }
3593
907860ed 3594swap_buffers:
2c488db2
KS
3595 /* Swap primary and spare array */
3596 thresholds->spare = thresholds->primary;
8c757763 3597
2c488db2 3598 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3599
907860ed 3600 /* To be sure that nobody uses thresholds */
2e72b634 3601 synchronize_rcu();
6611d8d7
MC
3602
3603 /* If all events are unregistered, free the spare array */
3604 if (!new) {
3605 kfree(thresholds->spare);
3606 thresholds->spare = NULL;
3607 }
371528ca 3608unlock:
2e72b634 3609 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3610}
c1e862c1 3611
59b6f873 3612static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3613 struct eventfd_ctx *eventfd)
3614{
59b6f873 3615 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3616}
3617
59b6f873 3618static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3619 struct eventfd_ctx *eventfd)
3620{
59b6f873 3621 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3622}
3623
59b6f873 3624static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3625 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3626{
9490ff27 3627 struct mem_cgroup_eventfd_list *event;
9490ff27 3628
9490ff27
KH
3629 event = kmalloc(sizeof(*event), GFP_KERNEL);
3630 if (!event)
3631 return -ENOMEM;
3632
1af8efe9 3633 spin_lock(&memcg_oom_lock);
9490ff27
KH
3634
3635 event->eventfd = eventfd;
3636 list_add(&event->list, &memcg->oom_notify);
3637
3638 /* already in OOM ? */
c2b42d3c 3639 if (memcg->under_oom)
9490ff27 3640 eventfd_signal(eventfd, 1);
1af8efe9 3641 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3642
3643 return 0;
3644}
3645
59b6f873 3646static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3647 struct eventfd_ctx *eventfd)
9490ff27 3648{
9490ff27 3649 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3650
1af8efe9 3651 spin_lock(&memcg_oom_lock);
9490ff27 3652
c0ff4b85 3653 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3654 if (ev->eventfd == eventfd) {
3655 list_del(&ev->list);
3656 kfree(ev);
3657 }
3658 }
3659
1af8efe9 3660 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3661}
3662
2da8ca82 3663static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3664{
2da8ca82 3665 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3666
791badbd 3667 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3668 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
8e675f7a 3669 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3c11ecf4
KH
3670 return 0;
3671}
3672
182446d0 3673static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3674 struct cftype *cft, u64 val)
3675{
182446d0 3676 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3677
3678 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3679 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3680 return -EINVAL;
3681
c0ff4b85 3682 memcg->oom_kill_disable = val;
4d845ebf 3683 if (!val)
c0ff4b85 3684 memcg_oom_recover(memcg);
3dae7fec 3685
3c11ecf4
KH
3686 return 0;
3687}
3688
52ebea74
TH
3689#ifdef CONFIG_CGROUP_WRITEBACK
3690
3691struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3692{
3693 return &memcg->cgwb_list;
3694}
3695
841710aa
TH
3696static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3697{
3698 return wb_domain_init(&memcg->cgwb_domain, gfp);
3699}
3700
3701static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3702{
3703 wb_domain_exit(&memcg->cgwb_domain);
3704}
3705
2529bb3a
TH
3706static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3707{
3708 wb_domain_size_changed(&memcg->cgwb_domain);
3709}
3710
841710aa
TH
3711struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3712{
3713 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3714
3715 if (!memcg->css.parent)
3716 return NULL;
3717
3718 return &memcg->cgwb_domain;
3719}
3720
c2aa723a
TH
3721/**
3722 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3723 * @wb: bdi_writeback in question
c5edf9cd
TH
3724 * @pfilepages: out parameter for number of file pages
3725 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3726 * @pdirty: out parameter for number of dirty pages
3727 * @pwriteback: out parameter for number of pages under writeback
3728 *
c5edf9cd
TH
3729 * Determine the numbers of file, headroom, dirty, and writeback pages in
3730 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3731 * is a bit more involved.
c2aa723a 3732 *
c5edf9cd
TH
3733 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3734 * headroom is calculated as the lowest headroom of itself and the
3735 * ancestors. Note that this doesn't consider the actual amount of
3736 * available memory in the system. The caller should further cap
3737 * *@pheadroom accordingly.
c2aa723a 3738 */
c5edf9cd
TH
3739void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3740 unsigned long *pheadroom, unsigned long *pdirty,
3741 unsigned long *pwriteback)
c2aa723a
TH
3742{
3743 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3744 struct mem_cgroup *parent;
c2aa723a 3745
ccda7f43 3746 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3747
3748 /* this should eventually include NR_UNSTABLE_NFS */
ccda7f43 3749 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
c5edf9cd
TH
3750 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3751 (1 << LRU_ACTIVE_FILE));
3752 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3753
c2aa723a
TH
3754 while ((parent = parent_mem_cgroup(memcg))) {
3755 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3756 unsigned long used = page_counter_read(&memcg->memory);
3757
c5edf9cd 3758 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3759 memcg = parent;
3760 }
c2aa723a
TH
3761}
3762
841710aa
TH
3763#else /* CONFIG_CGROUP_WRITEBACK */
3764
3765static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3766{
3767 return 0;
3768}
3769
3770static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3771{
3772}
3773
2529bb3a
TH
3774static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3775{
3776}
3777
52ebea74
TH
3778#endif /* CONFIG_CGROUP_WRITEBACK */
3779
3bc942f3
TH
3780/*
3781 * DO NOT USE IN NEW FILES.
3782 *
3783 * "cgroup.event_control" implementation.
3784 *
3785 * This is way over-engineered. It tries to support fully configurable
3786 * events for each user. Such level of flexibility is completely
3787 * unnecessary especially in the light of the planned unified hierarchy.
3788 *
3789 * Please deprecate this and replace with something simpler if at all
3790 * possible.
3791 */
3792
79bd9814
TH
3793/*
3794 * Unregister event and free resources.
3795 *
3796 * Gets called from workqueue.
3797 */
3bc942f3 3798static void memcg_event_remove(struct work_struct *work)
79bd9814 3799{
3bc942f3
TH
3800 struct mem_cgroup_event *event =
3801 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3802 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3803
3804 remove_wait_queue(event->wqh, &event->wait);
3805
59b6f873 3806 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3807
3808 /* Notify userspace the event is going away. */
3809 eventfd_signal(event->eventfd, 1);
3810
3811 eventfd_ctx_put(event->eventfd);
3812 kfree(event);
59b6f873 3813 css_put(&memcg->css);
79bd9814
TH
3814}
3815
3816/*
3817 * Gets called on POLLHUP on eventfd when user closes it.
3818 *
3819 * Called with wqh->lock held and interrupts disabled.
3820 */
ac6424b9 3821static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 3822 int sync, void *key)
79bd9814 3823{
3bc942f3
TH
3824 struct mem_cgroup_event *event =
3825 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3826 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3827 unsigned long flags = (unsigned long)key;
3828
3829 if (flags & POLLHUP) {
3830 /*
3831 * If the event has been detached at cgroup removal, we
3832 * can simply return knowing the other side will cleanup
3833 * for us.
3834 *
3835 * We can't race against event freeing since the other
3836 * side will require wqh->lock via remove_wait_queue(),
3837 * which we hold.
3838 */
fba94807 3839 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3840 if (!list_empty(&event->list)) {
3841 list_del_init(&event->list);
3842 /*
3843 * We are in atomic context, but cgroup_event_remove()
3844 * may sleep, so we have to call it in workqueue.
3845 */
3846 schedule_work(&event->remove);
3847 }
fba94807 3848 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3849 }
3850
3851 return 0;
3852}
3853
3bc942f3 3854static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3855 wait_queue_head_t *wqh, poll_table *pt)
3856{
3bc942f3
TH
3857 struct mem_cgroup_event *event =
3858 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3859
3860 event->wqh = wqh;
3861 add_wait_queue(wqh, &event->wait);
3862}
3863
3864/*
3bc942f3
TH
3865 * DO NOT USE IN NEW FILES.
3866 *
79bd9814
TH
3867 * Parse input and register new cgroup event handler.
3868 *
3869 * Input must be in format '<event_fd> <control_fd> <args>'.
3870 * Interpretation of args is defined by control file implementation.
3871 */
451af504
TH
3872static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3873 char *buf, size_t nbytes, loff_t off)
79bd9814 3874{
451af504 3875 struct cgroup_subsys_state *css = of_css(of);
fba94807 3876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3877 struct mem_cgroup_event *event;
79bd9814
TH
3878 struct cgroup_subsys_state *cfile_css;
3879 unsigned int efd, cfd;
3880 struct fd efile;
3881 struct fd cfile;
fba94807 3882 const char *name;
79bd9814
TH
3883 char *endp;
3884 int ret;
3885
451af504
TH
3886 buf = strstrip(buf);
3887
3888 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3889 if (*endp != ' ')
3890 return -EINVAL;
451af504 3891 buf = endp + 1;
79bd9814 3892
451af504 3893 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3894 if ((*endp != ' ') && (*endp != '\0'))
3895 return -EINVAL;
451af504 3896 buf = endp + 1;
79bd9814
TH
3897
3898 event = kzalloc(sizeof(*event), GFP_KERNEL);
3899 if (!event)
3900 return -ENOMEM;
3901
59b6f873 3902 event->memcg = memcg;
79bd9814 3903 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3904 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3905 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3906 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3907
3908 efile = fdget(efd);
3909 if (!efile.file) {
3910 ret = -EBADF;
3911 goto out_kfree;
3912 }
3913
3914 event->eventfd = eventfd_ctx_fileget(efile.file);
3915 if (IS_ERR(event->eventfd)) {
3916 ret = PTR_ERR(event->eventfd);
3917 goto out_put_efile;
3918 }
3919
3920 cfile = fdget(cfd);
3921 if (!cfile.file) {
3922 ret = -EBADF;
3923 goto out_put_eventfd;
3924 }
3925
3926 /* the process need read permission on control file */
3927 /* AV: shouldn't we check that it's been opened for read instead? */
3928 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3929 if (ret < 0)
3930 goto out_put_cfile;
3931
fba94807
TH
3932 /*
3933 * Determine the event callbacks and set them in @event. This used
3934 * to be done via struct cftype but cgroup core no longer knows
3935 * about these events. The following is crude but the whole thing
3936 * is for compatibility anyway.
3bc942f3
TH
3937 *
3938 * DO NOT ADD NEW FILES.
fba94807 3939 */
b583043e 3940 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3941
3942 if (!strcmp(name, "memory.usage_in_bytes")) {
3943 event->register_event = mem_cgroup_usage_register_event;
3944 event->unregister_event = mem_cgroup_usage_unregister_event;
3945 } else if (!strcmp(name, "memory.oom_control")) {
3946 event->register_event = mem_cgroup_oom_register_event;
3947 event->unregister_event = mem_cgroup_oom_unregister_event;
3948 } else if (!strcmp(name, "memory.pressure_level")) {
3949 event->register_event = vmpressure_register_event;
3950 event->unregister_event = vmpressure_unregister_event;
3951 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3952 event->register_event = memsw_cgroup_usage_register_event;
3953 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3954 } else {
3955 ret = -EINVAL;
3956 goto out_put_cfile;
3957 }
3958
79bd9814 3959 /*
b5557c4c
TH
3960 * Verify @cfile should belong to @css. Also, remaining events are
3961 * automatically removed on cgroup destruction but the removal is
3962 * asynchronous, so take an extra ref on @css.
79bd9814 3963 */
b583043e 3964 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3965 &memory_cgrp_subsys);
79bd9814 3966 ret = -EINVAL;
5a17f543 3967 if (IS_ERR(cfile_css))
79bd9814 3968 goto out_put_cfile;
5a17f543
TH
3969 if (cfile_css != css) {
3970 css_put(cfile_css);
79bd9814 3971 goto out_put_cfile;
5a17f543 3972 }
79bd9814 3973
451af504 3974 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3975 if (ret)
3976 goto out_put_css;
3977
3978 efile.file->f_op->poll(efile.file, &event->pt);
3979
fba94807
TH
3980 spin_lock(&memcg->event_list_lock);
3981 list_add(&event->list, &memcg->event_list);
3982 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3983
3984 fdput(cfile);
3985 fdput(efile);
3986
451af504 3987 return nbytes;
79bd9814
TH
3988
3989out_put_css:
b5557c4c 3990 css_put(css);
79bd9814
TH
3991out_put_cfile:
3992 fdput(cfile);
3993out_put_eventfd:
3994 eventfd_ctx_put(event->eventfd);
3995out_put_efile:
3996 fdput(efile);
3997out_kfree:
3998 kfree(event);
3999
4000 return ret;
4001}
4002
241994ed 4003static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4004 {
0eea1030 4005 .name = "usage_in_bytes",
8c7c6e34 4006 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4007 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4008 },
c84872e1
PE
4009 {
4010 .name = "max_usage_in_bytes",
8c7c6e34 4011 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4012 .write = mem_cgroup_reset,
791badbd 4013 .read_u64 = mem_cgroup_read_u64,
c84872e1 4014 },
8cdea7c0 4015 {
0eea1030 4016 .name = "limit_in_bytes",
8c7c6e34 4017 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4018 .write = mem_cgroup_write,
791badbd 4019 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4020 },
296c81d8
BS
4021 {
4022 .name = "soft_limit_in_bytes",
4023 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4024 .write = mem_cgroup_write,
791badbd 4025 .read_u64 = mem_cgroup_read_u64,
296c81d8 4026 },
8cdea7c0
BS
4027 {
4028 .name = "failcnt",
8c7c6e34 4029 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4030 .write = mem_cgroup_reset,
791badbd 4031 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4032 },
d2ceb9b7
KH
4033 {
4034 .name = "stat",
2da8ca82 4035 .seq_show = memcg_stat_show,
d2ceb9b7 4036 },
c1e862c1
KH
4037 {
4038 .name = "force_empty",
6770c64e 4039 .write = mem_cgroup_force_empty_write,
c1e862c1 4040 },
18f59ea7
BS
4041 {
4042 .name = "use_hierarchy",
4043 .write_u64 = mem_cgroup_hierarchy_write,
4044 .read_u64 = mem_cgroup_hierarchy_read,
4045 },
79bd9814 4046 {
3bc942f3 4047 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4048 .write = memcg_write_event_control,
7dbdb199 4049 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4050 },
a7885eb8
KM
4051 {
4052 .name = "swappiness",
4053 .read_u64 = mem_cgroup_swappiness_read,
4054 .write_u64 = mem_cgroup_swappiness_write,
4055 },
7dc74be0
DN
4056 {
4057 .name = "move_charge_at_immigrate",
4058 .read_u64 = mem_cgroup_move_charge_read,
4059 .write_u64 = mem_cgroup_move_charge_write,
4060 },
9490ff27
KH
4061 {
4062 .name = "oom_control",
2da8ca82 4063 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4064 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4065 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4066 },
70ddf637
AV
4067 {
4068 .name = "pressure_level",
70ddf637 4069 },
406eb0c9
YH
4070#ifdef CONFIG_NUMA
4071 {
4072 .name = "numa_stat",
2da8ca82 4073 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4074 },
4075#endif
510fc4e1
GC
4076 {
4077 .name = "kmem.limit_in_bytes",
4078 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4079 .write = mem_cgroup_write,
791badbd 4080 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4081 },
4082 {
4083 .name = "kmem.usage_in_bytes",
4084 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4085 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4086 },
4087 {
4088 .name = "kmem.failcnt",
4089 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4090 .write = mem_cgroup_reset,
791badbd 4091 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4092 },
4093 {
4094 .name = "kmem.max_usage_in_bytes",
4095 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4096 .write = mem_cgroup_reset,
791badbd 4097 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4098 },
5b365771 4099#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4100 {
4101 .name = "kmem.slabinfo",
bc2791f8
TH
4102 .seq_start = memcg_slab_start,
4103 .seq_next = memcg_slab_next,
4104 .seq_stop = memcg_slab_stop,
b047501c 4105 .seq_show = memcg_slab_show,
749c5415
GC
4106 },
4107#endif
d55f90bf
VD
4108 {
4109 .name = "kmem.tcp.limit_in_bytes",
4110 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4111 .write = mem_cgroup_write,
4112 .read_u64 = mem_cgroup_read_u64,
4113 },
4114 {
4115 .name = "kmem.tcp.usage_in_bytes",
4116 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4117 .read_u64 = mem_cgroup_read_u64,
4118 },
4119 {
4120 .name = "kmem.tcp.failcnt",
4121 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4122 .write = mem_cgroup_reset,
4123 .read_u64 = mem_cgroup_read_u64,
4124 },
4125 {
4126 .name = "kmem.tcp.max_usage_in_bytes",
4127 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4128 .write = mem_cgroup_reset,
4129 .read_u64 = mem_cgroup_read_u64,
4130 },
6bc10349 4131 { }, /* terminate */
af36f906 4132};
8c7c6e34 4133
73f576c0
JW
4134/*
4135 * Private memory cgroup IDR
4136 *
4137 * Swap-out records and page cache shadow entries need to store memcg
4138 * references in constrained space, so we maintain an ID space that is
4139 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4140 * memory-controlled cgroups to 64k.
4141 *
4142 * However, there usually are many references to the oflline CSS after
4143 * the cgroup has been destroyed, such as page cache or reclaimable
4144 * slab objects, that don't need to hang on to the ID. We want to keep
4145 * those dead CSS from occupying IDs, or we might quickly exhaust the
4146 * relatively small ID space and prevent the creation of new cgroups
4147 * even when there are much fewer than 64k cgroups - possibly none.
4148 *
4149 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4150 * be freed and recycled when it's no longer needed, which is usually
4151 * when the CSS is offlined.
4152 *
4153 * The only exception to that are records of swapped out tmpfs/shmem
4154 * pages that need to be attributed to live ancestors on swapin. But
4155 * those references are manageable from userspace.
4156 */
4157
4158static DEFINE_IDR(mem_cgroup_idr);
4159
403a1579
KT
4160static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4161{
4162 if (memcg->id.id > 0) {
4163 idr_remove(&mem_cgroup_idr, memcg->id.id);
4164 memcg->id.id = 0;
4165 }
4166}
4167
615d66c3 4168static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4169{
58fa2a55 4170 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4171 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4172}
4173
615d66c3 4174static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4175{
58fa2a55 4176 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4177 if (atomic_sub_and_test(n, &memcg->id.ref)) {
403a1579 4178 mem_cgroup_id_remove(memcg);
73f576c0
JW
4179
4180 /* Memcg ID pins CSS */
4181 css_put(&memcg->css);
4182 }
4183}
4184
615d66c3
VD
4185static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4186{
4187 mem_cgroup_id_get_many(memcg, 1);
4188}
4189
4190static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4191{
4192 mem_cgroup_id_put_many(memcg, 1);
4193}
4194
73f576c0
JW
4195/**
4196 * mem_cgroup_from_id - look up a memcg from a memcg id
4197 * @id: the memcg id to look up
4198 *
4199 * Caller must hold rcu_read_lock().
4200 */
4201struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4202{
4203 WARN_ON_ONCE(!rcu_read_lock_held());
4204 return idr_find(&mem_cgroup_idr, id);
4205}
4206
ef8f2327 4207static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4208{
4209 struct mem_cgroup_per_node *pn;
ef8f2327 4210 int tmp = node;
1ecaab2b
KH
4211 /*
4212 * This routine is called against possible nodes.
4213 * But it's BUG to call kmalloc() against offline node.
4214 *
4215 * TODO: this routine can waste much memory for nodes which will
4216 * never be onlined. It's better to use memory hotplug callback
4217 * function.
4218 */
41e3355d
KH
4219 if (!node_state(node, N_NORMAL_MEMORY))
4220 tmp = -1;
17295c88 4221 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4222 if (!pn)
4223 return 1;
1ecaab2b 4224
00f3ca2c
JW
4225 pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4226 if (!pn->lruvec_stat) {
4227 kfree(pn);
4228 return 1;
4229 }
4230
ef8f2327
MG
4231 lruvec_init(&pn->lruvec);
4232 pn->usage_in_excess = 0;
4233 pn->on_tree = false;
4234 pn->memcg = memcg;
4235
54f72fe0 4236 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4237 return 0;
4238}
4239
ef8f2327 4240static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4241{
00f3ca2c
JW
4242 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4243
6d3d5ee1
MH
4244 if (!pn)
4245 return;
4246
00f3ca2c
JW
4247 free_percpu(pn->lruvec_stat);
4248 kfree(pn);
1ecaab2b
KH
4249}
4250
40e952f9 4251static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4252{
c8b2a36f 4253 int node;
59927fb9 4254
c8b2a36f 4255 for_each_node(node)
ef8f2327 4256 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4257 free_percpu(memcg->stat);
8ff69e2c 4258 kfree(memcg);
59927fb9 4259}
3afe36b1 4260
40e952f9
TE
4261static void mem_cgroup_free(struct mem_cgroup *memcg)
4262{
4263 memcg_wb_domain_exit(memcg);
4264 __mem_cgroup_free(memcg);
4265}
4266
0b8f73e1 4267static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4268{
d142e3e6 4269 struct mem_cgroup *memcg;
0b8f73e1 4270 size_t size;
6d12e2d8 4271 int node;
8cdea7c0 4272
0b8f73e1
JW
4273 size = sizeof(struct mem_cgroup);
4274 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4275
4276 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4277 if (!memcg)
0b8f73e1
JW
4278 return NULL;
4279
73f576c0
JW
4280 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4281 1, MEM_CGROUP_ID_MAX,
4282 GFP_KERNEL);
4283 if (memcg->id.id < 0)
4284 goto fail;
4285
0b8f73e1
JW
4286 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4287 if (!memcg->stat)
4288 goto fail;
78fb7466 4289
3ed28fa1 4290 for_each_node(node)
ef8f2327 4291 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4292 goto fail;
f64c3f54 4293
0b8f73e1
JW
4294 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4295 goto fail;
28dbc4b6 4296
f7e1cb6e 4297 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4298 memcg->last_scanned_node = MAX_NUMNODES;
4299 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4300 mutex_init(&memcg->thresholds_lock);
4301 spin_lock_init(&memcg->move_lock);
70ddf637 4302 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4303 INIT_LIST_HEAD(&memcg->event_list);
4304 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4305 memcg->socket_pressure = jiffies;
127424c8 4306#ifndef CONFIG_SLOB
900a38f0 4307 memcg->kmemcg_id = -1;
900a38f0 4308#endif
52ebea74
TH
4309#ifdef CONFIG_CGROUP_WRITEBACK
4310 INIT_LIST_HEAD(&memcg->cgwb_list);
4311#endif
73f576c0 4312 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4313 return memcg;
4314fail:
403a1579 4315 mem_cgroup_id_remove(memcg);
40e952f9 4316 __mem_cgroup_free(memcg);
0b8f73e1 4317 return NULL;
d142e3e6
GC
4318}
4319
0b8f73e1
JW
4320static struct cgroup_subsys_state * __ref
4321mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4322{
0b8f73e1
JW
4323 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4324 struct mem_cgroup *memcg;
4325 long error = -ENOMEM;
d142e3e6 4326
0b8f73e1
JW
4327 memcg = mem_cgroup_alloc();
4328 if (!memcg)
4329 return ERR_PTR(error);
d142e3e6 4330
0b8f73e1
JW
4331 memcg->high = PAGE_COUNTER_MAX;
4332 memcg->soft_limit = PAGE_COUNTER_MAX;
4333 if (parent) {
4334 memcg->swappiness = mem_cgroup_swappiness(parent);
4335 memcg->oom_kill_disable = parent->oom_kill_disable;
4336 }
4337 if (parent && parent->use_hierarchy) {
4338 memcg->use_hierarchy = true;
3e32cb2e 4339 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4340 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4341 page_counter_init(&memcg->memsw, &parent->memsw);
4342 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4343 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4344 } else {
3e32cb2e 4345 page_counter_init(&memcg->memory, NULL);
37e84351 4346 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4347 page_counter_init(&memcg->memsw, NULL);
4348 page_counter_init(&memcg->kmem, NULL);
0db15298 4349 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4350 /*
4351 * Deeper hierachy with use_hierarchy == false doesn't make
4352 * much sense so let cgroup subsystem know about this
4353 * unfortunate state in our controller.
4354 */
d142e3e6 4355 if (parent != root_mem_cgroup)
073219e9 4356 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4357 }
d6441637 4358
0b8f73e1
JW
4359 /* The following stuff does not apply to the root */
4360 if (!parent) {
4361 root_mem_cgroup = memcg;
4362 return &memcg->css;
4363 }
4364
b313aeee 4365 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4366 if (error)
4367 goto fail;
127424c8 4368
f7e1cb6e 4369 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4370 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4371
0b8f73e1
JW
4372 return &memcg->css;
4373fail:
403a1579 4374 mem_cgroup_id_remove(memcg);
0b8f73e1 4375 mem_cgroup_free(memcg);
ea3a9645 4376 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4377}
4378
73f576c0 4379static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4380{
58fa2a55
VD
4381 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4382
73f576c0 4383 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4384 atomic_set(&memcg->id.ref, 1);
73f576c0 4385 css_get(css);
2f7dd7a4 4386 return 0;
8cdea7c0
BS
4387}
4388
eb95419b 4389static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4390{
eb95419b 4391 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4392 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4393
4394 /*
4395 * Unregister events and notify userspace.
4396 * Notify userspace about cgroup removing only after rmdir of cgroup
4397 * directory to avoid race between userspace and kernelspace.
4398 */
fba94807
TH
4399 spin_lock(&memcg->event_list_lock);
4400 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4401 list_del_init(&event->list);
4402 schedule_work(&event->remove);
4403 }
fba94807 4404 spin_unlock(&memcg->event_list_lock);
ec64f515 4405
63677c74
RG
4406 memcg->low = 0;
4407
567e9ab2 4408 memcg_offline_kmem(memcg);
52ebea74 4409 wb_memcg_offline(memcg);
73f576c0
JW
4410
4411 mem_cgroup_id_put(memcg);
df878fb0
KH
4412}
4413
6df38689
VD
4414static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4415{
4416 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4417
4418 invalidate_reclaim_iterators(memcg);
4419}
4420
eb95419b 4421static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4422{
eb95419b 4423 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4424
f7e1cb6e 4425 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4426 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4427
0db15298 4428 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4429 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4430
0b8f73e1
JW
4431 vmpressure_cleanup(&memcg->vmpressure);
4432 cancel_work_sync(&memcg->high_work);
4433 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4434 memcg_free_kmem(memcg);
0b8f73e1 4435 mem_cgroup_free(memcg);
8cdea7c0
BS
4436}
4437
1ced953b
TH
4438/**
4439 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4440 * @css: the target css
4441 *
4442 * Reset the states of the mem_cgroup associated with @css. This is
4443 * invoked when the userland requests disabling on the default hierarchy
4444 * but the memcg is pinned through dependency. The memcg should stop
4445 * applying policies and should revert to the vanilla state as it may be
4446 * made visible again.
4447 *
4448 * The current implementation only resets the essential configurations.
4449 * This needs to be expanded to cover all the visible parts.
4450 */
4451static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4452{
4453 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4454
d334c9bc
VD
4455 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4456 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4457 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4458 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4459 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4460 memcg->low = 0;
4461 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4462 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4463 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4464}
4465
02491447 4466#ifdef CONFIG_MMU
7dc74be0 4467/* Handlers for move charge at task migration. */
854ffa8d 4468static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4469{
05b84301 4470 int ret;
9476db97 4471
d0164adc
MG
4472 /* Try a single bulk charge without reclaim first, kswapd may wake */
4473 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4474 if (!ret) {
854ffa8d 4475 mc.precharge += count;
854ffa8d
DN
4476 return ret;
4477 }
9476db97 4478
3674534b 4479 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4480 while (count--) {
3674534b 4481 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4482 if (ret)
38c5d72f 4483 return ret;
854ffa8d 4484 mc.precharge++;
9476db97 4485 cond_resched();
854ffa8d 4486 }
9476db97 4487 return 0;
4ffef5fe
DN
4488}
4489
4ffef5fe
DN
4490union mc_target {
4491 struct page *page;
02491447 4492 swp_entry_t ent;
4ffef5fe
DN
4493};
4494
4ffef5fe 4495enum mc_target_type {
8d32ff84 4496 MC_TARGET_NONE = 0,
4ffef5fe 4497 MC_TARGET_PAGE,
02491447 4498 MC_TARGET_SWAP,
c733a828 4499 MC_TARGET_DEVICE,
4ffef5fe
DN
4500};
4501
90254a65
DN
4502static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4503 unsigned long addr, pte_t ptent)
4ffef5fe 4504{
c733a828 4505 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4506
90254a65
DN
4507 if (!page || !page_mapped(page))
4508 return NULL;
4509 if (PageAnon(page)) {
1dfab5ab 4510 if (!(mc.flags & MOVE_ANON))
90254a65 4511 return NULL;
1dfab5ab
JW
4512 } else {
4513 if (!(mc.flags & MOVE_FILE))
4514 return NULL;
4515 }
90254a65
DN
4516 if (!get_page_unless_zero(page))
4517 return NULL;
4518
4519 return page;
4520}
4521
c733a828 4522#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4523static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4524 pte_t ptent, swp_entry_t *entry)
90254a65 4525{
90254a65
DN
4526 struct page *page = NULL;
4527 swp_entry_t ent = pte_to_swp_entry(ptent);
4528
1dfab5ab 4529 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4530 return NULL;
c733a828
JG
4531
4532 /*
4533 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4534 * a device and because they are not accessible by CPU they are store
4535 * as special swap entry in the CPU page table.
4536 */
4537 if (is_device_private_entry(ent)) {
4538 page = device_private_entry_to_page(ent);
4539 /*
4540 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4541 * a refcount of 1 when free (unlike normal page)
4542 */
4543 if (!page_ref_add_unless(page, 1, 1))
4544 return NULL;
4545 return page;
4546 }
4547
4b91355e
KH
4548 /*
4549 * Because lookup_swap_cache() updates some statistics counter,
4550 * we call find_get_page() with swapper_space directly.
4551 */
f6ab1f7f 4552 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4553 if (do_memsw_account())
90254a65
DN
4554 entry->val = ent.val;
4555
4556 return page;
4557}
4b91355e
KH
4558#else
4559static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4560 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4561{
4562 return NULL;
4563}
4564#endif
90254a65 4565
87946a72
DN
4566static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4567 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4568{
4569 struct page *page = NULL;
87946a72
DN
4570 struct address_space *mapping;
4571 pgoff_t pgoff;
4572
4573 if (!vma->vm_file) /* anonymous vma */
4574 return NULL;
1dfab5ab 4575 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4576 return NULL;
4577
87946a72 4578 mapping = vma->vm_file->f_mapping;
0661a336 4579 pgoff = linear_page_index(vma, addr);
87946a72
DN
4580
4581 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4582#ifdef CONFIG_SWAP
4583 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4584 if (shmem_mapping(mapping)) {
4585 page = find_get_entry(mapping, pgoff);
4586 if (radix_tree_exceptional_entry(page)) {
4587 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4588 if (do_memsw_account())
139b6a6f 4589 *entry = swp;
f6ab1f7f
HY
4590 page = find_get_page(swap_address_space(swp),
4591 swp_offset(swp));
139b6a6f
JW
4592 }
4593 } else
4594 page = find_get_page(mapping, pgoff);
4595#else
4596 page = find_get_page(mapping, pgoff);
aa3b1895 4597#endif
87946a72
DN
4598 return page;
4599}
4600
b1b0deab
CG
4601/**
4602 * mem_cgroup_move_account - move account of the page
4603 * @page: the page
25843c2b 4604 * @compound: charge the page as compound or small page
b1b0deab
CG
4605 * @from: mem_cgroup which the page is moved from.
4606 * @to: mem_cgroup which the page is moved to. @from != @to.
4607 *
3ac808fd 4608 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4609 *
4610 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4611 * from old cgroup.
4612 */
4613static int mem_cgroup_move_account(struct page *page,
f627c2f5 4614 bool compound,
b1b0deab
CG
4615 struct mem_cgroup *from,
4616 struct mem_cgroup *to)
4617{
4618 unsigned long flags;
f627c2f5 4619 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4620 int ret;
c4843a75 4621 bool anon;
b1b0deab
CG
4622
4623 VM_BUG_ON(from == to);
4624 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4625 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4626
4627 /*
6a93ca8f 4628 * Prevent mem_cgroup_migrate() from looking at
45637bab 4629 * page->mem_cgroup of its source page while we change it.
b1b0deab 4630 */
f627c2f5 4631 ret = -EBUSY;
b1b0deab
CG
4632 if (!trylock_page(page))
4633 goto out;
4634
4635 ret = -EINVAL;
4636 if (page->mem_cgroup != from)
4637 goto out_unlock;
4638
c4843a75
GT
4639 anon = PageAnon(page);
4640
b1b0deab
CG
4641 spin_lock_irqsave(&from->move_lock, flags);
4642
c4843a75 4643 if (!anon && page_mapped(page)) {
71cd3113
JW
4644 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4645 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
b1b0deab
CG
4646 }
4647
c4843a75
GT
4648 /*
4649 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4650 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4651 * So mapping should be stable for dirty pages.
4652 */
4653 if (!anon && PageDirty(page)) {
4654 struct address_space *mapping = page_mapping(page);
4655
4656 if (mapping_cap_account_dirty(mapping)) {
71cd3113 4657 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
c4843a75 4658 nr_pages);
71cd3113 4659 __this_cpu_add(to->stat->count[NR_FILE_DIRTY],
c4843a75
GT
4660 nr_pages);
4661 }
4662 }
4663
b1b0deab 4664 if (PageWriteback(page)) {
71cd3113
JW
4665 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4666 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
b1b0deab
CG
4667 }
4668
4669 /*
4670 * It is safe to change page->mem_cgroup here because the page
4671 * is referenced, charged, and isolated - we can't race with
4672 * uncharging, charging, migration, or LRU putback.
4673 */
4674
4675 /* caller should have done css_get */
4676 page->mem_cgroup = to;
4677 spin_unlock_irqrestore(&from->move_lock, flags);
4678
4679 ret = 0;
4680
4681 local_irq_disable();
f627c2f5 4682 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4683 memcg_check_events(to, page);
f627c2f5 4684 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4685 memcg_check_events(from, page);
4686 local_irq_enable();
4687out_unlock:
4688 unlock_page(page);
4689out:
4690 return ret;
4691}
4692
7cf7806c
LR
4693/**
4694 * get_mctgt_type - get target type of moving charge
4695 * @vma: the vma the pte to be checked belongs
4696 * @addr: the address corresponding to the pte to be checked
4697 * @ptent: the pte to be checked
4698 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4699 *
4700 * Returns
4701 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4702 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4703 * move charge. if @target is not NULL, the page is stored in target->page
4704 * with extra refcnt got(Callers should handle it).
4705 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4706 * target for charge migration. if @target is not NULL, the entry is stored
4707 * in target->ent.
df6ad698
JG
4708 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4709 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4710 * For now we such page is charge like a regular page would be as for all
4711 * intent and purposes it is just special memory taking the place of a
4712 * regular page.
c733a828
JG
4713 *
4714 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
4715 *
4716 * Called with pte lock held.
4717 */
4718
8d32ff84 4719static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4720 unsigned long addr, pte_t ptent, union mc_target *target)
4721{
4722 struct page *page = NULL;
8d32ff84 4723 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4724 swp_entry_t ent = { .val = 0 };
4725
4726 if (pte_present(ptent))
4727 page = mc_handle_present_pte(vma, addr, ptent);
4728 else if (is_swap_pte(ptent))
48406ef8 4729 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4730 else if (pte_none(ptent))
87946a72 4731 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4732
4733 if (!page && !ent.val)
8d32ff84 4734 return ret;
02491447 4735 if (page) {
02491447 4736 /*
0a31bc97 4737 * Do only loose check w/o serialization.
1306a85a 4738 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4739 * not under LRU exclusion.
02491447 4740 */
1306a85a 4741 if (page->mem_cgroup == mc.from) {
02491447 4742 ret = MC_TARGET_PAGE;
df6ad698
JG
4743 if (is_device_private_page(page) ||
4744 is_device_public_page(page))
c733a828 4745 ret = MC_TARGET_DEVICE;
02491447
DN
4746 if (target)
4747 target->page = page;
4748 }
4749 if (!ret || !target)
4750 put_page(page);
4751 }
3e14a57b
HY
4752 /*
4753 * There is a swap entry and a page doesn't exist or isn't charged.
4754 * But we cannot move a tail-page in a THP.
4755 */
4756 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 4757 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4758 ret = MC_TARGET_SWAP;
4759 if (target)
4760 target->ent = ent;
4ffef5fe 4761 }
4ffef5fe
DN
4762 return ret;
4763}
4764
12724850
NH
4765#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4766/*
d6810d73
HY
4767 * We don't consider PMD mapped swapping or file mapped pages because THP does
4768 * not support them for now.
12724850
NH
4769 * Caller should make sure that pmd_trans_huge(pmd) is true.
4770 */
4771static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4772 unsigned long addr, pmd_t pmd, union mc_target *target)
4773{
4774 struct page *page = NULL;
12724850
NH
4775 enum mc_target_type ret = MC_TARGET_NONE;
4776
84c3fc4e
ZY
4777 if (unlikely(is_swap_pmd(pmd))) {
4778 VM_BUG_ON(thp_migration_supported() &&
4779 !is_pmd_migration_entry(pmd));
4780 return ret;
4781 }
12724850 4782 page = pmd_page(pmd);
309381fe 4783 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4784 if (!(mc.flags & MOVE_ANON))
12724850 4785 return ret;
1306a85a 4786 if (page->mem_cgroup == mc.from) {
12724850
NH
4787 ret = MC_TARGET_PAGE;
4788 if (target) {
4789 get_page(page);
4790 target->page = page;
4791 }
4792 }
4793 return ret;
4794}
4795#else
4796static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4797 unsigned long addr, pmd_t pmd, union mc_target *target)
4798{
4799 return MC_TARGET_NONE;
4800}
4801#endif
4802
4ffef5fe
DN
4803static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4804 unsigned long addr, unsigned long end,
4805 struct mm_walk *walk)
4806{
26bcd64a 4807 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4808 pte_t *pte;
4809 spinlock_t *ptl;
4810
b6ec57f4
KS
4811 ptl = pmd_trans_huge_lock(pmd, vma);
4812 if (ptl) {
c733a828
JG
4813 /*
4814 * Note their can not be MC_TARGET_DEVICE for now as we do not
4815 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4816 * MEMORY_DEVICE_PRIVATE but this might change.
4817 */
12724850
NH
4818 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4819 mc.precharge += HPAGE_PMD_NR;
bf929152 4820 spin_unlock(ptl);
1a5a9906 4821 return 0;
12724850 4822 }
03319327 4823
45f83cef
AA
4824 if (pmd_trans_unstable(pmd))
4825 return 0;
4ffef5fe
DN
4826 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4827 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4828 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4829 mc.precharge++; /* increment precharge temporarily */
4830 pte_unmap_unlock(pte - 1, ptl);
4831 cond_resched();
4832
7dc74be0
DN
4833 return 0;
4834}
4835
4ffef5fe
DN
4836static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4837{
4838 unsigned long precharge;
4ffef5fe 4839
26bcd64a
NH
4840 struct mm_walk mem_cgroup_count_precharge_walk = {
4841 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4842 .mm = mm,
4843 };
dfe076b0 4844 down_read(&mm->mmap_sem);
0247f3f4
JM
4845 walk_page_range(0, mm->highest_vm_end,
4846 &mem_cgroup_count_precharge_walk);
dfe076b0 4847 up_read(&mm->mmap_sem);
4ffef5fe
DN
4848
4849 precharge = mc.precharge;
4850 mc.precharge = 0;
4851
4852 return precharge;
4853}
4854
4ffef5fe
DN
4855static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4856{
dfe076b0
DN
4857 unsigned long precharge = mem_cgroup_count_precharge(mm);
4858
4859 VM_BUG_ON(mc.moving_task);
4860 mc.moving_task = current;
4861 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4862}
4863
dfe076b0
DN
4864/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4865static void __mem_cgroup_clear_mc(void)
4ffef5fe 4866{
2bd9bb20
KH
4867 struct mem_cgroup *from = mc.from;
4868 struct mem_cgroup *to = mc.to;
4869
4ffef5fe 4870 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4871 if (mc.precharge) {
00501b53 4872 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4873 mc.precharge = 0;
4874 }
4875 /*
4876 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4877 * we must uncharge here.
4878 */
4879 if (mc.moved_charge) {
00501b53 4880 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4881 mc.moved_charge = 0;
4ffef5fe 4882 }
483c30b5
DN
4883 /* we must fixup refcnts and charges */
4884 if (mc.moved_swap) {
483c30b5 4885 /* uncharge swap account from the old cgroup */
ce00a967 4886 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4887 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4888
615d66c3
VD
4889 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4890
05b84301 4891 /*
3e32cb2e
JW
4892 * we charged both to->memory and to->memsw, so we
4893 * should uncharge to->memory.
05b84301 4894 */
ce00a967 4895 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4896 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4897
615d66c3
VD
4898 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4899 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 4900
483c30b5
DN
4901 mc.moved_swap = 0;
4902 }
dfe076b0
DN
4903 memcg_oom_recover(from);
4904 memcg_oom_recover(to);
4905 wake_up_all(&mc.waitq);
4906}
4907
4908static void mem_cgroup_clear_mc(void)
4909{
264a0ae1
TH
4910 struct mm_struct *mm = mc.mm;
4911
dfe076b0
DN
4912 /*
4913 * we must clear moving_task before waking up waiters at the end of
4914 * task migration.
4915 */
4916 mc.moving_task = NULL;
4917 __mem_cgroup_clear_mc();
2bd9bb20 4918 spin_lock(&mc.lock);
4ffef5fe
DN
4919 mc.from = NULL;
4920 mc.to = NULL;
264a0ae1 4921 mc.mm = NULL;
2bd9bb20 4922 spin_unlock(&mc.lock);
264a0ae1
TH
4923
4924 mmput(mm);
4ffef5fe
DN
4925}
4926
1f7dd3e5 4927static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4928{
1f7dd3e5 4929 struct cgroup_subsys_state *css;
eed67d75 4930 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4931 struct mem_cgroup *from;
4530eddb 4932 struct task_struct *leader, *p;
9f2115f9 4933 struct mm_struct *mm;
1dfab5ab 4934 unsigned long move_flags;
9f2115f9 4935 int ret = 0;
7dc74be0 4936
1f7dd3e5
TH
4937 /* charge immigration isn't supported on the default hierarchy */
4938 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4939 return 0;
4940
4530eddb
TH
4941 /*
4942 * Multi-process migrations only happen on the default hierarchy
4943 * where charge immigration is not used. Perform charge
4944 * immigration if @tset contains a leader and whine if there are
4945 * multiple.
4946 */
4947 p = NULL;
1f7dd3e5 4948 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4949 WARN_ON_ONCE(p);
4950 p = leader;
1f7dd3e5 4951 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4952 }
4953 if (!p)
4954 return 0;
4955
1f7dd3e5
TH
4956 /*
4957 * We are now commited to this value whatever it is. Changes in this
4958 * tunable will only affect upcoming migrations, not the current one.
4959 * So we need to save it, and keep it going.
4960 */
4961 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4962 if (!move_flags)
4963 return 0;
4964
9f2115f9
TH
4965 from = mem_cgroup_from_task(p);
4966
4967 VM_BUG_ON(from == memcg);
4968
4969 mm = get_task_mm(p);
4970 if (!mm)
4971 return 0;
4972 /* We move charges only when we move a owner of the mm */
4973 if (mm->owner == p) {
4974 VM_BUG_ON(mc.from);
4975 VM_BUG_ON(mc.to);
4976 VM_BUG_ON(mc.precharge);
4977 VM_BUG_ON(mc.moved_charge);
4978 VM_BUG_ON(mc.moved_swap);
4979
4980 spin_lock(&mc.lock);
264a0ae1 4981 mc.mm = mm;
9f2115f9
TH
4982 mc.from = from;
4983 mc.to = memcg;
4984 mc.flags = move_flags;
4985 spin_unlock(&mc.lock);
4986 /* We set mc.moving_task later */
4987
4988 ret = mem_cgroup_precharge_mc(mm);
4989 if (ret)
4990 mem_cgroup_clear_mc();
264a0ae1
TH
4991 } else {
4992 mmput(mm);
7dc74be0
DN
4993 }
4994 return ret;
4995}
4996
1f7dd3e5 4997static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4998{
4e2f245d
JW
4999 if (mc.to)
5000 mem_cgroup_clear_mc();
7dc74be0
DN
5001}
5002
4ffef5fe
DN
5003static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5004 unsigned long addr, unsigned long end,
5005 struct mm_walk *walk)
7dc74be0 5006{
4ffef5fe 5007 int ret = 0;
26bcd64a 5008 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5009 pte_t *pte;
5010 spinlock_t *ptl;
12724850
NH
5011 enum mc_target_type target_type;
5012 union mc_target target;
5013 struct page *page;
4ffef5fe 5014
b6ec57f4
KS
5015 ptl = pmd_trans_huge_lock(pmd, vma);
5016 if (ptl) {
62ade86a 5017 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5018 spin_unlock(ptl);
12724850
NH
5019 return 0;
5020 }
5021 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5022 if (target_type == MC_TARGET_PAGE) {
5023 page = target.page;
5024 if (!isolate_lru_page(page)) {
f627c2f5 5025 if (!mem_cgroup_move_account(page, true,
1306a85a 5026 mc.from, mc.to)) {
12724850
NH
5027 mc.precharge -= HPAGE_PMD_NR;
5028 mc.moved_charge += HPAGE_PMD_NR;
5029 }
5030 putback_lru_page(page);
5031 }
5032 put_page(page);
c733a828
JG
5033 } else if (target_type == MC_TARGET_DEVICE) {
5034 page = target.page;
5035 if (!mem_cgroup_move_account(page, true,
5036 mc.from, mc.to)) {
5037 mc.precharge -= HPAGE_PMD_NR;
5038 mc.moved_charge += HPAGE_PMD_NR;
5039 }
5040 put_page(page);
12724850 5041 }
bf929152 5042 spin_unlock(ptl);
1a5a9906 5043 return 0;
12724850
NH
5044 }
5045
45f83cef
AA
5046 if (pmd_trans_unstable(pmd))
5047 return 0;
4ffef5fe
DN
5048retry:
5049 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5050 for (; addr != end; addr += PAGE_SIZE) {
5051 pte_t ptent = *(pte++);
c733a828 5052 bool device = false;
02491447 5053 swp_entry_t ent;
4ffef5fe
DN
5054
5055 if (!mc.precharge)
5056 break;
5057
8d32ff84 5058 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5059 case MC_TARGET_DEVICE:
5060 device = true;
5061 /* fall through */
4ffef5fe
DN
5062 case MC_TARGET_PAGE:
5063 page = target.page;
53f9263b
KS
5064 /*
5065 * We can have a part of the split pmd here. Moving it
5066 * can be done but it would be too convoluted so simply
5067 * ignore such a partial THP and keep it in original
5068 * memcg. There should be somebody mapping the head.
5069 */
5070 if (PageTransCompound(page))
5071 goto put;
c733a828 5072 if (!device && isolate_lru_page(page))
4ffef5fe 5073 goto put;
f627c2f5
KS
5074 if (!mem_cgroup_move_account(page, false,
5075 mc.from, mc.to)) {
4ffef5fe 5076 mc.precharge--;
854ffa8d
DN
5077 /* we uncharge from mc.from later. */
5078 mc.moved_charge++;
4ffef5fe 5079 }
c733a828
JG
5080 if (!device)
5081 putback_lru_page(page);
8d32ff84 5082put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5083 put_page(page);
5084 break;
02491447
DN
5085 case MC_TARGET_SWAP:
5086 ent = target.ent;
e91cbb42 5087 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5088 mc.precharge--;
483c30b5
DN
5089 /* we fixup refcnts and charges later. */
5090 mc.moved_swap++;
5091 }
02491447 5092 break;
4ffef5fe
DN
5093 default:
5094 break;
5095 }
5096 }
5097 pte_unmap_unlock(pte - 1, ptl);
5098 cond_resched();
5099
5100 if (addr != end) {
5101 /*
5102 * We have consumed all precharges we got in can_attach().
5103 * We try charge one by one, but don't do any additional
5104 * charges to mc.to if we have failed in charge once in attach()
5105 * phase.
5106 */
854ffa8d 5107 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5108 if (!ret)
5109 goto retry;
5110 }
5111
5112 return ret;
5113}
5114
264a0ae1 5115static void mem_cgroup_move_charge(void)
4ffef5fe 5116{
26bcd64a
NH
5117 struct mm_walk mem_cgroup_move_charge_walk = {
5118 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5119 .mm = mc.mm,
26bcd64a 5120 };
4ffef5fe
DN
5121
5122 lru_add_drain_all();
312722cb 5123 /*
81f8c3a4
JW
5124 * Signal lock_page_memcg() to take the memcg's move_lock
5125 * while we're moving its pages to another memcg. Then wait
5126 * for already started RCU-only updates to finish.
312722cb
JW
5127 */
5128 atomic_inc(&mc.from->moving_account);
5129 synchronize_rcu();
dfe076b0 5130retry:
264a0ae1 5131 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5132 /*
5133 * Someone who are holding the mmap_sem might be waiting in
5134 * waitq. So we cancel all extra charges, wake up all waiters,
5135 * and retry. Because we cancel precharges, we might not be able
5136 * to move enough charges, but moving charge is a best-effort
5137 * feature anyway, so it wouldn't be a big problem.
5138 */
5139 __mem_cgroup_clear_mc();
5140 cond_resched();
5141 goto retry;
5142 }
26bcd64a
NH
5143 /*
5144 * When we have consumed all precharges and failed in doing
5145 * additional charge, the page walk just aborts.
5146 */
0247f3f4
JM
5147 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5148
264a0ae1 5149 up_read(&mc.mm->mmap_sem);
312722cb 5150 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5151}
5152
264a0ae1 5153static void mem_cgroup_move_task(void)
67e465a7 5154{
264a0ae1
TH
5155 if (mc.to) {
5156 mem_cgroup_move_charge();
a433658c 5157 mem_cgroup_clear_mc();
264a0ae1 5158 }
67e465a7 5159}
5cfb80a7 5160#else /* !CONFIG_MMU */
1f7dd3e5 5161static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5162{
5163 return 0;
5164}
1f7dd3e5 5165static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5166{
5167}
264a0ae1 5168static void mem_cgroup_move_task(void)
5cfb80a7
DN
5169{
5170}
5171#endif
67e465a7 5172
f00baae7
TH
5173/*
5174 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5175 * to verify whether we're attached to the default hierarchy on each mount
5176 * attempt.
f00baae7 5177 */
eb95419b 5178static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5179{
5180 /*
aa6ec29b 5181 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5182 * guarantees that @root doesn't have any children, so turning it
5183 * on for the root memcg is enough.
5184 */
9e10a130 5185 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5186 root_mem_cgroup->use_hierarchy = true;
5187 else
5188 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5189}
5190
241994ed
JW
5191static u64 memory_current_read(struct cgroup_subsys_state *css,
5192 struct cftype *cft)
5193{
f5fc3c5d
JW
5194 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5195
5196 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5197}
5198
5199static int memory_low_show(struct seq_file *m, void *v)
5200{
5201 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5202 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5203
5204 if (low == PAGE_COUNTER_MAX)
d2973697 5205 seq_puts(m, "max\n");
241994ed
JW
5206 else
5207 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5208
5209 return 0;
5210}
5211
5212static ssize_t memory_low_write(struct kernfs_open_file *of,
5213 char *buf, size_t nbytes, loff_t off)
5214{
5215 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5216 unsigned long low;
5217 int err;
5218
5219 buf = strstrip(buf);
d2973697 5220 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5221 if (err)
5222 return err;
5223
5224 memcg->low = low;
5225
5226 return nbytes;
5227}
5228
5229static int memory_high_show(struct seq_file *m, void *v)
5230{
5231 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5232 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5233
5234 if (high == PAGE_COUNTER_MAX)
d2973697 5235 seq_puts(m, "max\n");
241994ed
JW
5236 else
5237 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5238
5239 return 0;
5240}
5241
5242static ssize_t memory_high_write(struct kernfs_open_file *of,
5243 char *buf, size_t nbytes, loff_t off)
5244{
5245 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5246 unsigned long nr_pages;
241994ed
JW
5247 unsigned long high;
5248 int err;
5249
5250 buf = strstrip(buf);
d2973697 5251 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5252 if (err)
5253 return err;
5254
5255 memcg->high = high;
5256
588083bb
JW
5257 nr_pages = page_counter_read(&memcg->memory);
5258 if (nr_pages > high)
5259 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5260 GFP_KERNEL, true);
5261
2529bb3a 5262 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5263 return nbytes;
5264}
5265
5266static int memory_max_show(struct seq_file *m, void *v)
5267{
5268 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5269 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5270
5271 if (max == PAGE_COUNTER_MAX)
d2973697 5272 seq_puts(m, "max\n");
241994ed
JW
5273 else
5274 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5275
5276 return 0;
5277}
5278
5279static ssize_t memory_max_write(struct kernfs_open_file *of,
5280 char *buf, size_t nbytes, loff_t off)
5281{
5282 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5283 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5284 bool drained = false;
241994ed
JW
5285 unsigned long max;
5286 int err;
5287
5288 buf = strstrip(buf);
d2973697 5289 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5290 if (err)
5291 return err;
5292
b6e6edcf
JW
5293 xchg(&memcg->memory.limit, max);
5294
5295 for (;;) {
5296 unsigned long nr_pages = page_counter_read(&memcg->memory);
5297
5298 if (nr_pages <= max)
5299 break;
5300
5301 if (signal_pending(current)) {
5302 err = -EINTR;
5303 break;
5304 }
5305
5306 if (!drained) {
5307 drain_all_stock(memcg);
5308 drained = true;
5309 continue;
5310 }
5311
5312 if (nr_reclaims) {
5313 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5314 GFP_KERNEL, true))
5315 nr_reclaims--;
5316 continue;
5317 }
5318
31176c78 5319 mem_cgroup_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5320 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5321 break;
5322 }
241994ed 5323
2529bb3a 5324 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5325 return nbytes;
5326}
5327
5328static int memory_events_show(struct seq_file *m, void *v)
5329{
5330 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5331
ccda7f43
JW
5332 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5333 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5334 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5335 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
8e675f7a 5336 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
241994ed
JW
5337
5338 return 0;
5339}
5340
587d9f72
JW
5341static int memory_stat_show(struct seq_file *m, void *v)
5342{
5343 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5344 unsigned long stat[MEMCG_NR_STAT];
5345 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5346 int i;
5347
5348 /*
5349 * Provide statistics on the state of the memory subsystem as
5350 * well as cumulative event counters that show past behavior.
5351 *
5352 * This list is ordered following a combination of these gradients:
5353 * 1) generic big picture -> specifics and details
5354 * 2) reflecting userspace activity -> reflecting kernel heuristics
5355 *
5356 * Current memory state:
5357 */
5358
72b54e73
VD
5359 tree_stat(memcg, stat);
5360 tree_events(memcg, events);
5361
587d9f72 5362 seq_printf(m, "anon %llu\n",
71cd3113 5363 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5364 seq_printf(m, "file %llu\n",
71cd3113 5365 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5366 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5367 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5368 seq_printf(m, "slab %llu\n",
32049296
JW
5369 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5370 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5371 seq_printf(m, "sock %llu\n",
72b54e73 5372 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5373
9a4caf1e 5374 seq_printf(m, "shmem %llu\n",
71cd3113 5375 (u64)stat[NR_SHMEM] * PAGE_SIZE);
587d9f72 5376 seq_printf(m, "file_mapped %llu\n",
71cd3113 5377 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5378 seq_printf(m, "file_dirty %llu\n",
71cd3113 5379 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5380 seq_printf(m, "file_writeback %llu\n",
71cd3113 5381 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5382
5383 for (i = 0; i < NR_LRU_LISTS; i++) {
5384 struct mem_cgroup *mi;
5385 unsigned long val = 0;
5386
5387 for_each_mem_cgroup_tree(mi, memcg)
5388 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5389 seq_printf(m, "%s %llu\n",
5390 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5391 }
5392
27ee57c9 5393 seq_printf(m, "slab_reclaimable %llu\n",
32049296 5394 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5395 seq_printf(m, "slab_unreclaimable %llu\n",
32049296 5396 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5397
587d9f72
JW
5398 /* Accumulated memory events */
5399
df0e53d0
JW
5400 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5401 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
587d9f72 5402
2262185c
RG
5403 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5404 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5405 events[PGSCAN_DIRECT]);
5406 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5407 events[PGSTEAL_DIRECT]);
5408 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5409 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5410 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5411 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5412
2a2e4885 5413 seq_printf(m, "workingset_refault %lu\n",
71cd3113 5414 stat[WORKINGSET_REFAULT]);
2a2e4885 5415 seq_printf(m, "workingset_activate %lu\n",
71cd3113 5416 stat[WORKINGSET_ACTIVATE]);
2a2e4885 5417 seq_printf(m, "workingset_nodereclaim %lu\n",
71cd3113 5418 stat[WORKINGSET_NODERECLAIM]);
2a2e4885 5419
587d9f72
JW
5420 return 0;
5421}
5422
241994ed
JW
5423static struct cftype memory_files[] = {
5424 {
5425 .name = "current",
f5fc3c5d 5426 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5427 .read_u64 = memory_current_read,
5428 },
5429 {
5430 .name = "low",
5431 .flags = CFTYPE_NOT_ON_ROOT,
5432 .seq_show = memory_low_show,
5433 .write = memory_low_write,
5434 },
5435 {
5436 .name = "high",
5437 .flags = CFTYPE_NOT_ON_ROOT,
5438 .seq_show = memory_high_show,
5439 .write = memory_high_write,
5440 },
5441 {
5442 .name = "max",
5443 .flags = CFTYPE_NOT_ON_ROOT,
5444 .seq_show = memory_max_show,
5445 .write = memory_max_write,
5446 },
5447 {
5448 .name = "events",
5449 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5450 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5451 .seq_show = memory_events_show,
5452 },
587d9f72
JW
5453 {
5454 .name = "stat",
5455 .flags = CFTYPE_NOT_ON_ROOT,
5456 .seq_show = memory_stat_show,
5457 },
241994ed
JW
5458 { } /* terminate */
5459};
5460
073219e9 5461struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5462 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5463 .css_online = mem_cgroup_css_online,
92fb9748 5464 .css_offline = mem_cgroup_css_offline,
6df38689 5465 .css_released = mem_cgroup_css_released,
92fb9748 5466 .css_free = mem_cgroup_css_free,
1ced953b 5467 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5468 .can_attach = mem_cgroup_can_attach,
5469 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5470 .post_attach = mem_cgroup_move_task,
f00baae7 5471 .bind = mem_cgroup_bind,
241994ed
JW
5472 .dfl_cftypes = memory_files,
5473 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5474 .early_init = 0,
8cdea7c0 5475};
c077719b 5476
241994ed
JW
5477/**
5478 * mem_cgroup_low - check if memory consumption is below the normal range
34c81057 5479 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5480 * @memcg: the memory cgroup to check
5481 *
5482 * Returns %true if memory consumption of @memcg, and that of all
34c81057
SC
5483 * ancestors up to (but not including) @root, is below the normal range.
5484 *
5485 * @root is exclusive; it is never low when looked at directly and isn't
5486 * checked when traversing the hierarchy.
5487 *
5488 * Excluding @root enables using memory.low to prioritize memory usage
5489 * between cgroups within a subtree of the hierarchy that is limited by
5490 * memory.high or memory.max.
5491 *
5492 * For example, given cgroup A with children B and C:
5493 *
5494 * A
5495 * / \
5496 * B C
5497 *
5498 * and
5499 *
5500 * 1. A/memory.current > A/memory.high
5501 * 2. A/B/memory.current < A/B/memory.low
5502 * 3. A/C/memory.current >= A/C/memory.low
5503 *
5504 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5505 * should reclaim from 'C' until 'A' is no longer high or until we can
5506 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5507 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5508 * low and we will reclaim indiscriminately from both 'B' and 'C'.
241994ed
JW
5509 */
5510bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5511{
5512 if (mem_cgroup_disabled())
5513 return false;
5514
34c81057
SC
5515 if (!root)
5516 root = root_mem_cgroup;
5517 if (memcg == root)
241994ed
JW
5518 return false;
5519
34c81057 5520 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
4e54dede 5521 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5522 return false;
5523 }
34c81057 5524
241994ed
JW
5525 return true;
5526}
5527
00501b53
JW
5528/**
5529 * mem_cgroup_try_charge - try charging a page
5530 * @page: page to charge
5531 * @mm: mm context of the victim
5532 * @gfp_mask: reclaim mode
5533 * @memcgp: charged memcg return
25843c2b 5534 * @compound: charge the page as compound or small page
00501b53
JW
5535 *
5536 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5537 * pages according to @gfp_mask if necessary.
5538 *
5539 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5540 * Otherwise, an error code is returned.
5541 *
5542 * After page->mapping has been set up, the caller must finalize the
5543 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5544 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5545 */
5546int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5547 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5548 bool compound)
00501b53
JW
5549{
5550 struct mem_cgroup *memcg = NULL;
f627c2f5 5551 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5552 int ret = 0;
5553
5554 if (mem_cgroup_disabled())
5555 goto out;
5556
5557 if (PageSwapCache(page)) {
00501b53
JW
5558 /*
5559 * Every swap fault against a single page tries to charge the
5560 * page, bail as early as possible. shmem_unuse() encounters
5561 * already charged pages, too. The USED bit is protected by
5562 * the page lock, which serializes swap cache removal, which
5563 * in turn serializes uncharging.
5564 */
e993d905 5565 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 5566 if (compound_head(page)->mem_cgroup)
00501b53 5567 goto out;
e993d905 5568
37e84351 5569 if (do_swap_account) {
e993d905
VD
5570 swp_entry_t ent = { .val = page_private(page), };
5571 unsigned short id = lookup_swap_cgroup_id(ent);
5572
5573 rcu_read_lock();
5574 memcg = mem_cgroup_from_id(id);
5575 if (memcg && !css_tryget_online(&memcg->css))
5576 memcg = NULL;
5577 rcu_read_unlock();
5578 }
00501b53
JW
5579 }
5580
00501b53
JW
5581 if (!memcg)
5582 memcg = get_mem_cgroup_from_mm(mm);
5583
5584 ret = try_charge(memcg, gfp_mask, nr_pages);
5585
5586 css_put(&memcg->css);
00501b53
JW
5587out:
5588 *memcgp = memcg;
5589 return ret;
5590}
5591
5592/**
5593 * mem_cgroup_commit_charge - commit a page charge
5594 * @page: page to charge
5595 * @memcg: memcg to charge the page to
5596 * @lrucare: page might be on LRU already
25843c2b 5597 * @compound: charge the page as compound or small page
00501b53
JW
5598 *
5599 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5600 * after page->mapping has been set up. This must happen atomically
5601 * as part of the page instantiation, i.e. under the page table lock
5602 * for anonymous pages, under the page lock for page and swap cache.
5603 *
5604 * In addition, the page must not be on the LRU during the commit, to
5605 * prevent racing with task migration. If it might be, use @lrucare.
5606 *
5607 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5608 */
5609void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5610 bool lrucare, bool compound)
00501b53 5611{
f627c2f5 5612 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5613
5614 VM_BUG_ON_PAGE(!page->mapping, page);
5615 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5616
5617 if (mem_cgroup_disabled())
5618 return;
5619 /*
5620 * Swap faults will attempt to charge the same page multiple
5621 * times. But reuse_swap_page() might have removed the page
5622 * from swapcache already, so we can't check PageSwapCache().
5623 */
5624 if (!memcg)
5625 return;
5626
6abb5a86
JW
5627 commit_charge(page, memcg, lrucare);
5628
6abb5a86 5629 local_irq_disable();
f627c2f5 5630 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5631 memcg_check_events(memcg, page);
5632 local_irq_enable();
00501b53 5633
7941d214 5634 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5635 swp_entry_t entry = { .val = page_private(page) };
5636 /*
5637 * The swap entry might not get freed for a long time,
5638 * let's not wait for it. The page already received a
5639 * memory+swap charge, drop the swap entry duplicate.
5640 */
38d8b4e6 5641 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
5642 }
5643}
5644
5645/**
5646 * mem_cgroup_cancel_charge - cancel a page charge
5647 * @page: page to charge
5648 * @memcg: memcg to charge the page to
25843c2b 5649 * @compound: charge the page as compound or small page
00501b53
JW
5650 *
5651 * Cancel a charge transaction started by mem_cgroup_try_charge().
5652 */
f627c2f5
KS
5653void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5654 bool compound)
00501b53 5655{
f627c2f5 5656 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5657
5658 if (mem_cgroup_disabled())
5659 return;
5660 /*
5661 * Swap faults will attempt to charge the same page multiple
5662 * times. But reuse_swap_page() might have removed the page
5663 * from swapcache already, so we can't check PageSwapCache().
5664 */
5665 if (!memcg)
5666 return;
5667
00501b53
JW
5668 cancel_charge(memcg, nr_pages);
5669}
5670
a9d5adee
JG
5671struct uncharge_gather {
5672 struct mem_cgroup *memcg;
5673 unsigned long pgpgout;
5674 unsigned long nr_anon;
5675 unsigned long nr_file;
5676 unsigned long nr_kmem;
5677 unsigned long nr_huge;
5678 unsigned long nr_shmem;
5679 struct page *dummy_page;
5680};
5681
5682static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 5683{
a9d5adee
JG
5684 memset(ug, 0, sizeof(*ug));
5685}
5686
5687static void uncharge_batch(const struct uncharge_gather *ug)
5688{
5689 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
5690 unsigned long flags;
5691
a9d5adee
JG
5692 if (!mem_cgroup_is_root(ug->memcg)) {
5693 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 5694 if (do_memsw_account())
a9d5adee
JG
5695 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5696 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5697 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5698 memcg_oom_recover(ug->memcg);
ce00a967 5699 }
747db954
JW
5700
5701 local_irq_save(flags);
a9d5adee
JG
5702 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS], ug->nr_anon);
5703 __this_cpu_sub(ug->memcg->stat->count[MEMCG_CACHE], ug->nr_file);
5704 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS_HUGE], ug->nr_huge);
5705 __this_cpu_sub(ug->memcg->stat->count[NR_SHMEM], ug->nr_shmem);
5706 __this_cpu_add(ug->memcg->stat->events[PGPGOUT], ug->pgpgout);
5707 __this_cpu_add(ug->memcg->stat->nr_page_events, nr_pages);
5708 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 5709 local_irq_restore(flags);
e8ea14cc 5710
a9d5adee
JG
5711 if (!mem_cgroup_is_root(ug->memcg))
5712 css_put_many(&ug->memcg->css, nr_pages);
5713}
5714
5715static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5716{
5717 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
5718 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5719 !PageHWPoison(page) , page);
a9d5adee
JG
5720
5721 if (!page->mem_cgroup)
5722 return;
5723
5724 /*
5725 * Nobody should be changing or seriously looking at
5726 * page->mem_cgroup at this point, we have fully
5727 * exclusive access to the page.
5728 */
5729
5730 if (ug->memcg != page->mem_cgroup) {
5731 if (ug->memcg) {
5732 uncharge_batch(ug);
5733 uncharge_gather_clear(ug);
5734 }
5735 ug->memcg = page->mem_cgroup;
5736 }
5737
5738 if (!PageKmemcg(page)) {
5739 unsigned int nr_pages = 1;
5740
5741 if (PageTransHuge(page)) {
5742 nr_pages <<= compound_order(page);
5743 ug->nr_huge += nr_pages;
5744 }
5745 if (PageAnon(page))
5746 ug->nr_anon += nr_pages;
5747 else {
5748 ug->nr_file += nr_pages;
5749 if (PageSwapBacked(page))
5750 ug->nr_shmem += nr_pages;
5751 }
5752 ug->pgpgout++;
5753 } else {
5754 ug->nr_kmem += 1 << compound_order(page);
5755 __ClearPageKmemcg(page);
5756 }
5757
5758 ug->dummy_page = page;
5759 page->mem_cgroup = NULL;
747db954
JW
5760}
5761
5762static void uncharge_list(struct list_head *page_list)
5763{
a9d5adee 5764 struct uncharge_gather ug;
747db954 5765 struct list_head *next;
a9d5adee
JG
5766
5767 uncharge_gather_clear(&ug);
747db954 5768
8b592656
JW
5769 /*
5770 * Note that the list can be a single page->lru; hence the
5771 * do-while loop instead of a simple list_for_each_entry().
5772 */
747db954
JW
5773 next = page_list->next;
5774 do {
a9d5adee
JG
5775 struct page *page;
5776
747db954
JW
5777 page = list_entry(next, struct page, lru);
5778 next = page->lru.next;
5779
a9d5adee 5780 uncharge_page(page, &ug);
747db954
JW
5781 } while (next != page_list);
5782
a9d5adee
JG
5783 if (ug.memcg)
5784 uncharge_batch(&ug);
747db954
JW
5785}
5786
0a31bc97
JW
5787/**
5788 * mem_cgroup_uncharge - uncharge a page
5789 * @page: page to uncharge
5790 *
5791 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5792 * mem_cgroup_commit_charge().
5793 */
5794void mem_cgroup_uncharge(struct page *page)
5795{
a9d5adee
JG
5796 struct uncharge_gather ug;
5797
0a31bc97
JW
5798 if (mem_cgroup_disabled())
5799 return;
5800
747db954 5801 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5802 if (!page->mem_cgroup)
0a31bc97
JW
5803 return;
5804
a9d5adee
JG
5805 uncharge_gather_clear(&ug);
5806 uncharge_page(page, &ug);
5807 uncharge_batch(&ug);
747db954 5808}
0a31bc97 5809
747db954
JW
5810/**
5811 * mem_cgroup_uncharge_list - uncharge a list of page
5812 * @page_list: list of pages to uncharge
5813 *
5814 * Uncharge a list of pages previously charged with
5815 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5816 */
5817void mem_cgroup_uncharge_list(struct list_head *page_list)
5818{
5819 if (mem_cgroup_disabled())
5820 return;
0a31bc97 5821
747db954
JW
5822 if (!list_empty(page_list))
5823 uncharge_list(page_list);
0a31bc97
JW
5824}
5825
5826/**
6a93ca8f
JW
5827 * mem_cgroup_migrate - charge a page's replacement
5828 * @oldpage: currently circulating page
5829 * @newpage: replacement page
0a31bc97 5830 *
6a93ca8f
JW
5831 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5832 * be uncharged upon free.
0a31bc97
JW
5833 *
5834 * Both pages must be locked, @newpage->mapping must be set up.
5835 */
6a93ca8f 5836void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5837{
29833315 5838 struct mem_cgroup *memcg;
44b7a8d3
JW
5839 unsigned int nr_pages;
5840 bool compound;
d93c4130 5841 unsigned long flags;
0a31bc97
JW
5842
5843 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5844 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5845 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5846 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5847 newpage);
0a31bc97
JW
5848
5849 if (mem_cgroup_disabled())
5850 return;
5851
5852 /* Page cache replacement: new page already charged? */
1306a85a 5853 if (newpage->mem_cgroup)
0a31bc97
JW
5854 return;
5855
45637bab 5856 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5857 memcg = oldpage->mem_cgroup;
29833315 5858 if (!memcg)
0a31bc97
JW
5859 return;
5860
44b7a8d3
JW
5861 /* Force-charge the new page. The old one will be freed soon */
5862 compound = PageTransHuge(newpage);
5863 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5864
5865 page_counter_charge(&memcg->memory, nr_pages);
5866 if (do_memsw_account())
5867 page_counter_charge(&memcg->memsw, nr_pages);
5868 css_get_many(&memcg->css, nr_pages);
0a31bc97 5869
9cf7666a 5870 commit_charge(newpage, memcg, false);
44b7a8d3 5871
d93c4130 5872 local_irq_save(flags);
44b7a8d3
JW
5873 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5874 memcg_check_events(memcg, newpage);
d93c4130 5875 local_irq_restore(flags);
0a31bc97
JW
5876}
5877
ef12947c 5878DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5879EXPORT_SYMBOL(memcg_sockets_enabled_key);
5880
2d758073 5881void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
5882{
5883 struct mem_cgroup *memcg;
5884
2d758073
JW
5885 if (!mem_cgroup_sockets_enabled)
5886 return;
5887
344ae441
RG
5888 /*
5889 * Socket cloning can throw us here with sk_memcg already
5890 * filled. It won't however, necessarily happen from
5891 * process context. So the test for root memcg given
5892 * the current task's memcg won't help us in this case.
5893 *
5894 * Respecting the original socket's memcg is a better
5895 * decision in this case.
5896 */
5897 if (sk->sk_memcg) {
5898 css_get(&sk->sk_memcg->css);
5899 return;
5900 }
5901
11092087
JW
5902 rcu_read_lock();
5903 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5904 if (memcg == root_mem_cgroup)
5905 goto out;
0db15298 5906 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5907 goto out;
f7e1cb6e 5908 if (css_tryget_online(&memcg->css))
11092087 5909 sk->sk_memcg = memcg;
f7e1cb6e 5910out:
11092087
JW
5911 rcu_read_unlock();
5912}
11092087 5913
2d758073 5914void mem_cgroup_sk_free(struct sock *sk)
11092087 5915{
2d758073
JW
5916 if (sk->sk_memcg)
5917 css_put(&sk->sk_memcg->css);
11092087
JW
5918}
5919
5920/**
5921 * mem_cgroup_charge_skmem - charge socket memory
5922 * @memcg: memcg to charge
5923 * @nr_pages: number of pages to charge
5924 *
5925 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5926 * @memcg's configured limit, %false if the charge had to be forced.
5927 */
5928bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5929{
f7e1cb6e 5930 gfp_t gfp_mask = GFP_KERNEL;
11092087 5931
f7e1cb6e 5932 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5933 struct page_counter *fail;
f7e1cb6e 5934
0db15298
JW
5935 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5936 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5937 return true;
5938 }
0db15298
JW
5939 page_counter_charge(&memcg->tcpmem, nr_pages);
5940 memcg->tcpmem_pressure = 1;
f7e1cb6e 5941 return false;
11092087 5942 }
d886f4e4 5943
f7e1cb6e
JW
5944 /* Don't block in the packet receive path */
5945 if (in_softirq())
5946 gfp_mask = GFP_NOWAIT;
5947
b2807f07
JW
5948 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5949
f7e1cb6e
JW
5950 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5951 return true;
5952
5953 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5954 return false;
5955}
5956
5957/**
5958 * mem_cgroup_uncharge_skmem - uncharge socket memory
5959 * @memcg - memcg to uncharge
5960 * @nr_pages - number of pages to uncharge
5961 */
5962void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5963{
f7e1cb6e 5964 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5965 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5966 return;
5967 }
d886f4e4 5968
b2807f07
JW
5969 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5970
475d0487 5971 refill_stock(memcg, nr_pages);
11092087
JW
5972}
5973
f7e1cb6e
JW
5974static int __init cgroup_memory(char *s)
5975{
5976 char *token;
5977
5978 while ((token = strsep(&s, ",")) != NULL) {
5979 if (!*token)
5980 continue;
5981 if (!strcmp(token, "nosocket"))
5982 cgroup_memory_nosocket = true;
04823c83
VD
5983 if (!strcmp(token, "nokmem"))
5984 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5985 }
5986 return 0;
5987}
5988__setup("cgroup.memory=", cgroup_memory);
11092087 5989
2d11085e 5990/*
1081312f
MH
5991 * subsys_initcall() for memory controller.
5992 *
308167fc
SAS
5993 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5994 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5995 * basically everything that doesn't depend on a specific mem_cgroup structure
5996 * should be initialized from here.
2d11085e
MH
5997 */
5998static int __init mem_cgroup_init(void)
5999{
95a045f6
JW
6000 int cpu, node;
6001
13583c3d
VD
6002#ifndef CONFIG_SLOB
6003 /*
6004 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6005 * so use a workqueue with limited concurrency to avoid stalling
6006 * all worker threads in case lots of cgroups are created and
6007 * destroyed simultaneously.
13583c3d 6008 */
17cc4dfe
TH
6009 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6010 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6011#endif
6012
308167fc
SAS
6013 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6014 memcg_hotplug_cpu_dead);
95a045f6
JW
6015
6016 for_each_possible_cpu(cpu)
6017 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6018 drain_local_stock);
6019
6020 for_each_node(node) {
6021 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6022
6023 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6024 node_online(node) ? node : NUMA_NO_NODE);
6025
ef8f2327 6026 rtpn->rb_root = RB_ROOT;
fa90b2fd 6027 rtpn->rb_rightmost = NULL;
ef8f2327 6028 spin_lock_init(&rtpn->lock);
95a045f6
JW
6029 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6030 }
6031
2d11085e
MH
6032 return 0;
6033}
6034subsys_initcall(mem_cgroup_init);
21afa38e
JW
6035
6036#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6037static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6038{
6039 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6040 /*
6041 * The root cgroup cannot be destroyed, so it's refcount must
6042 * always be >= 1.
6043 */
6044 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6045 VM_BUG_ON(1);
6046 break;
6047 }
6048 memcg = parent_mem_cgroup(memcg);
6049 if (!memcg)
6050 memcg = root_mem_cgroup;
6051 }
6052 return memcg;
6053}
6054
21afa38e
JW
6055/**
6056 * mem_cgroup_swapout - transfer a memsw charge to swap
6057 * @page: page whose memsw charge to transfer
6058 * @entry: swap entry to move the charge to
6059 *
6060 * Transfer the memsw charge of @page to @entry.
6061 */
6062void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6063{
1f47b61f 6064 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6065 unsigned int nr_entries;
21afa38e
JW
6066 unsigned short oldid;
6067
6068 VM_BUG_ON_PAGE(PageLRU(page), page);
6069 VM_BUG_ON_PAGE(page_count(page), page);
6070
7941d214 6071 if (!do_memsw_account())
21afa38e
JW
6072 return;
6073
6074 memcg = page->mem_cgroup;
6075
6076 /* Readahead page, never charged */
6077 if (!memcg)
6078 return;
6079
1f47b61f
VD
6080 /*
6081 * In case the memcg owning these pages has been offlined and doesn't
6082 * have an ID allocated to it anymore, charge the closest online
6083 * ancestor for the swap instead and transfer the memory+swap charge.
6084 */
6085 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6086 nr_entries = hpage_nr_pages(page);
6087 /* Get references for the tail pages, too */
6088 if (nr_entries > 1)
6089 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6090 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6091 nr_entries);
21afa38e 6092 VM_BUG_ON_PAGE(oldid, page);
d6810d73 6093 mem_cgroup_swap_statistics(swap_memcg, nr_entries);
21afa38e
JW
6094
6095 page->mem_cgroup = NULL;
6096
6097 if (!mem_cgroup_is_root(memcg))
d6810d73 6098 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6099
1f47b61f
VD
6100 if (memcg != swap_memcg) {
6101 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6102 page_counter_charge(&swap_memcg->memsw, nr_entries);
6103 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6104 }
6105
ce9ce665
SAS
6106 /*
6107 * Interrupts should be disabled here because the caller holds the
6108 * mapping->tree_lock lock which is taken with interrupts-off. It is
6109 * important here to have the interrupts disabled because it is the
6110 * only synchronisation we have for udpating the per-CPU variables.
6111 */
6112 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6113 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6114 -nr_entries);
21afa38e 6115 memcg_check_events(memcg, page);
73f576c0
JW
6116
6117 if (!mem_cgroup_is_root(memcg))
d08afa14 6118 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6119}
6120
38d8b4e6
HY
6121/**
6122 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6123 * @page: page being added to swap
6124 * @entry: swap entry to charge
6125 *
38d8b4e6 6126 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6127 *
6128 * Returns 0 on success, -ENOMEM on failure.
6129 */
6130int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6131{
38d8b4e6 6132 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6133 struct page_counter *counter;
38d8b4e6 6134 struct mem_cgroup *memcg;
37e84351
VD
6135 unsigned short oldid;
6136
6137 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6138 return 0;
6139
6140 memcg = page->mem_cgroup;
6141
6142 /* Readahead page, never charged */
6143 if (!memcg)
6144 return 0;
6145
1f47b61f
VD
6146 memcg = mem_cgroup_id_get_online(memcg);
6147
37e84351 6148 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6149 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
1f47b61f 6150 mem_cgroup_id_put(memcg);
37e84351 6151 return -ENOMEM;
1f47b61f 6152 }
37e84351 6153
38d8b4e6
HY
6154 /* Get references for the tail pages, too */
6155 if (nr_pages > 1)
6156 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6157 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6158 VM_BUG_ON_PAGE(oldid, page);
38d8b4e6 6159 mem_cgroup_swap_statistics(memcg, nr_pages);
37e84351 6160
37e84351
VD
6161 return 0;
6162}
6163
21afa38e 6164/**
38d8b4e6 6165 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6166 * @entry: swap entry to uncharge
38d8b4e6 6167 * @nr_pages: the amount of swap space to uncharge
21afa38e 6168 */
38d8b4e6 6169void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6170{
6171 struct mem_cgroup *memcg;
6172 unsigned short id;
6173
37e84351 6174 if (!do_swap_account)
21afa38e
JW
6175 return;
6176
38d8b4e6 6177 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6178 rcu_read_lock();
adbe427b 6179 memcg = mem_cgroup_from_id(id);
21afa38e 6180 if (memcg) {
37e84351
VD
6181 if (!mem_cgroup_is_root(memcg)) {
6182 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6183 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6184 else
38d8b4e6 6185 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6186 }
38d8b4e6
HY
6187 mem_cgroup_swap_statistics(memcg, -nr_pages);
6188 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6189 }
6190 rcu_read_unlock();
6191}
6192
d8b38438
VD
6193long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6194{
6195 long nr_swap_pages = get_nr_swap_pages();
6196
6197 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6198 return nr_swap_pages;
6199 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6200 nr_swap_pages = min_t(long, nr_swap_pages,
6201 READ_ONCE(memcg->swap.limit) -
6202 page_counter_read(&memcg->swap));
6203 return nr_swap_pages;
6204}
6205
5ccc5aba
VD
6206bool mem_cgroup_swap_full(struct page *page)
6207{
6208 struct mem_cgroup *memcg;
6209
6210 VM_BUG_ON_PAGE(!PageLocked(page), page);
6211
6212 if (vm_swap_full())
6213 return true;
6214 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6215 return false;
6216
6217 memcg = page->mem_cgroup;
6218 if (!memcg)
6219 return false;
6220
6221 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6222 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6223 return true;
6224
6225 return false;
6226}
6227
21afa38e
JW
6228/* for remember boot option*/
6229#ifdef CONFIG_MEMCG_SWAP_ENABLED
6230static int really_do_swap_account __initdata = 1;
6231#else
6232static int really_do_swap_account __initdata;
6233#endif
6234
6235static int __init enable_swap_account(char *s)
6236{
6237 if (!strcmp(s, "1"))
6238 really_do_swap_account = 1;
6239 else if (!strcmp(s, "0"))
6240 really_do_swap_account = 0;
6241 return 1;
6242}
6243__setup("swapaccount=", enable_swap_account);
6244
37e84351
VD
6245static u64 swap_current_read(struct cgroup_subsys_state *css,
6246 struct cftype *cft)
6247{
6248 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6249
6250 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6251}
6252
6253static int swap_max_show(struct seq_file *m, void *v)
6254{
6255 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6256 unsigned long max = READ_ONCE(memcg->swap.limit);
6257
6258 if (max == PAGE_COUNTER_MAX)
6259 seq_puts(m, "max\n");
6260 else
6261 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6262
6263 return 0;
6264}
6265
6266static ssize_t swap_max_write(struct kernfs_open_file *of,
6267 char *buf, size_t nbytes, loff_t off)
6268{
6269 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6270 unsigned long max;
6271 int err;
6272
6273 buf = strstrip(buf);
6274 err = page_counter_memparse(buf, "max", &max);
6275 if (err)
6276 return err;
6277
6278 mutex_lock(&memcg_limit_mutex);
6279 err = page_counter_limit(&memcg->swap, max);
6280 mutex_unlock(&memcg_limit_mutex);
6281 if (err)
6282 return err;
6283
6284 return nbytes;
6285}
6286
6287static struct cftype swap_files[] = {
6288 {
6289 .name = "swap.current",
6290 .flags = CFTYPE_NOT_ON_ROOT,
6291 .read_u64 = swap_current_read,
6292 },
6293 {
6294 .name = "swap.max",
6295 .flags = CFTYPE_NOT_ON_ROOT,
6296 .seq_show = swap_max_show,
6297 .write = swap_max_write,
6298 },
6299 { } /* terminate */
6300};
6301
21afa38e
JW
6302static struct cftype memsw_cgroup_files[] = {
6303 {
6304 .name = "memsw.usage_in_bytes",
6305 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6306 .read_u64 = mem_cgroup_read_u64,
6307 },
6308 {
6309 .name = "memsw.max_usage_in_bytes",
6310 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6311 .write = mem_cgroup_reset,
6312 .read_u64 = mem_cgroup_read_u64,
6313 },
6314 {
6315 .name = "memsw.limit_in_bytes",
6316 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6317 .write = mem_cgroup_write,
6318 .read_u64 = mem_cgroup_read_u64,
6319 },
6320 {
6321 .name = "memsw.failcnt",
6322 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6323 .write = mem_cgroup_reset,
6324 .read_u64 = mem_cgroup_read_u64,
6325 },
6326 { }, /* terminate */
6327};
6328
6329static int __init mem_cgroup_swap_init(void)
6330{
6331 if (!mem_cgroup_disabled() && really_do_swap_account) {
6332 do_swap_account = 1;
37e84351
VD
6333 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6334 swap_files));
21afa38e
JW
6335 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6336 memsw_cgroup_files));
6337 }
6338 return 0;
6339}
6340subsys_initcall(mem_cgroup_swap_init);
6341
6342#endif /* CONFIG_MEMCG_SWAP */