]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/memcontrol.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/hid/hid
[mirror_ubuntu-jammy-kernel.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
37d5985c
RG
76/* Active memory cgroup to use from an interrupt context */
77DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
78
f7e1cb6e
JW
79/* Socket memory accounting disabled? */
80static bool cgroup_memory_nosocket;
81
04823c83
VD
82/* Kernel memory accounting disabled? */
83static bool cgroup_memory_nokmem;
84
21afa38e 85/* Whether the swap controller is active */
c255a458 86#ifdef CONFIG_MEMCG_SWAP
eccb52e7 87bool cgroup_memory_noswap __read_mostly;
c077719b 88#else
eccb52e7 89#define cgroup_memory_noswap 1
2d1c4980 90#endif
c077719b 91
97b27821
TH
92#ifdef CONFIG_CGROUP_WRITEBACK
93static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
94#endif
95
7941d214
JW
96/* Whether legacy memory+swap accounting is active */
97static bool do_memsw_account(void)
98{
eccb52e7 99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
100}
101
a0db00fc
KS
102#define THRESHOLDS_EVENTS_TARGET 128
103#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 104
bb4cc1a8
AM
105/*
106 * Cgroups above their limits are maintained in a RB-Tree, independent of
107 * their hierarchy representation
108 */
109
ef8f2327 110struct mem_cgroup_tree_per_node {
bb4cc1a8 111 struct rb_root rb_root;
fa90b2fd 112 struct rb_node *rb_rightmost;
bb4cc1a8
AM
113 spinlock_t lock;
114};
115
bb4cc1a8
AM
116struct mem_cgroup_tree {
117 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
118};
119
120static struct mem_cgroup_tree soft_limit_tree __read_mostly;
121
9490ff27
KH
122/* for OOM */
123struct mem_cgroup_eventfd_list {
124 struct list_head list;
125 struct eventfd_ctx *eventfd;
126};
2e72b634 127
79bd9814
TH
128/*
129 * cgroup_event represents events which userspace want to receive.
130 */
3bc942f3 131struct mem_cgroup_event {
79bd9814 132 /*
59b6f873 133 * memcg which the event belongs to.
79bd9814 134 */
59b6f873 135 struct mem_cgroup *memcg;
79bd9814
TH
136 /*
137 * eventfd to signal userspace about the event.
138 */
139 struct eventfd_ctx *eventfd;
140 /*
141 * Each of these stored in a list by the cgroup.
142 */
143 struct list_head list;
fba94807
TH
144 /*
145 * register_event() callback will be used to add new userspace
146 * waiter for changes related to this event. Use eventfd_signal()
147 * on eventfd to send notification to userspace.
148 */
59b6f873 149 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 150 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
151 /*
152 * unregister_event() callback will be called when userspace closes
153 * the eventfd or on cgroup removing. This callback must be set,
154 * if you want provide notification functionality.
155 */
59b6f873 156 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 157 struct eventfd_ctx *eventfd);
79bd9814
TH
158 /*
159 * All fields below needed to unregister event when
160 * userspace closes eventfd.
161 */
162 poll_table pt;
163 wait_queue_head_t *wqh;
ac6424b9 164 wait_queue_entry_t wait;
79bd9814
TH
165 struct work_struct remove;
166};
167
c0ff4b85
R
168static void mem_cgroup_threshold(struct mem_cgroup *memcg);
169static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 170
7dc74be0
DN
171/* Stuffs for move charges at task migration. */
172/*
1dfab5ab 173 * Types of charges to be moved.
7dc74be0 174 */
1dfab5ab
JW
175#define MOVE_ANON 0x1U
176#define MOVE_FILE 0x2U
177#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 178
4ffef5fe
DN
179/* "mc" and its members are protected by cgroup_mutex */
180static struct move_charge_struct {
b1dd693e 181 spinlock_t lock; /* for from, to */
264a0ae1 182 struct mm_struct *mm;
4ffef5fe
DN
183 struct mem_cgroup *from;
184 struct mem_cgroup *to;
1dfab5ab 185 unsigned long flags;
4ffef5fe 186 unsigned long precharge;
854ffa8d 187 unsigned long moved_charge;
483c30b5 188 unsigned long moved_swap;
8033b97c
DN
189 struct task_struct *moving_task; /* a task moving charges */
190 wait_queue_head_t waitq; /* a waitq for other context */
191} mc = {
2bd9bb20 192 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
193 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
194};
4ffef5fe 195
4e416953
BS
196/*
197 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
198 * limit reclaim to prevent infinite loops, if they ever occur.
199 */
a0db00fc 200#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 201#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 202
8c7c6e34 203/* for encoding cft->private value on file */
86ae53e1
GC
204enum res_type {
205 _MEM,
206 _MEMSWAP,
207 _OOM_TYPE,
510fc4e1 208 _KMEM,
d55f90bf 209 _TCP,
86ae53e1
GC
210};
211
a0db00fc
KS
212#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
213#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 214#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
215/* Used for OOM nofiier */
216#define OOM_CONTROL (0)
8c7c6e34 217
b05706f1
KT
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
7775face
TH
233static inline bool should_force_charge(void)
234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
70ddf637
AV
239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
247struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
248{
249 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
250}
251
84c07d11 252#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
253extern spinlock_t css_set_lock;
254
255static void obj_cgroup_release(struct percpu_ref *ref)
256{
257 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
258 struct mem_cgroup *memcg;
259 unsigned int nr_bytes;
260 unsigned int nr_pages;
261 unsigned long flags;
262
263 /*
264 * At this point all allocated objects are freed, and
265 * objcg->nr_charged_bytes can't have an arbitrary byte value.
266 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
267 *
268 * The following sequence can lead to it:
269 * 1) CPU0: objcg == stock->cached_objcg
270 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
271 * PAGE_SIZE bytes are charged
272 * 3) CPU1: a process from another memcg is allocating something,
273 * the stock if flushed,
274 * objcg->nr_charged_bytes = PAGE_SIZE - 92
275 * 5) CPU0: we do release this object,
276 * 92 bytes are added to stock->nr_bytes
277 * 6) CPU0: stock is flushed,
278 * 92 bytes are added to objcg->nr_charged_bytes
279 *
280 * In the result, nr_charged_bytes == PAGE_SIZE.
281 * This page will be uncharged in obj_cgroup_release().
282 */
283 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
284 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
285 nr_pages = nr_bytes >> PAGE_SHIFT;
286
287 spin_lock_irqsave(&css_set_lock, flags);
288 memcg = obj_cgroup_memcg(objcg);
289 if (nr_pages)
290 __memcg_kmem_uncharge(memcg, nr_pages);
291 list_del(&objcg->list);
292 mem_cgroup_put(memcg);
293 spin_unlock_irqrestore(&css_set_lock, flags);
294
295 percpu_ref_exit(ref);
296 kfree_rcu(objcg, rcu);
297}
298
299static struct obj_cgroup *obj_cgroup_alloc(void)
300{
301 struct obj_cgroup *objcg;
302 int ret;
303
304 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
305 if (!objcg)
306 return NULL;
307
308 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
309 GFP_KERNEL);
310 if (ret) {
311 kfree(objcg);
312 return NULL;
313 }
314 INIT_LIST_HEAD(&objcg->list);
315 return objcg;
316}
317
318static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
319 struct mem_cgroup *parent)
320{
321 struct obj_cgroup *objcg, *iter;
322
323 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
324
325 spin_lock_irq(&css_set_lock);
326
327 /* Move active objcg to the parent's list */
328 xchg(&objcg->memcg, parent);
329 css_get(&parent->css);
330 list_add(&objcg->list, &parent->objcg_list);
331
332 /* Move already reparented objcgs to the parent's list */
333 list_for_each_entry(iter, &memcg->objcg_list, list) {
334 css_get(&parent->css);
335 xchg(&iter->memcg, parent);
336 css_put(&memcg->css);
337 }
338 list_splice(&memcg->objcg_list, &parent->objcg_list);
339
340 spin_unlock_irq(&css_set_lock);
341
342 percpu_ref_kill(&objcg->refcnt);
343}
344
55007d84 345/*
9855609b 346 * This will be used as a shrinker list's index.
b8627835
LZ
347 * The main reason for not using cgroup id for this:
348 * this works better in sparse environments, where we have a lot of memcgs,
349 * but only a few kmem-limited. Or also, if we have, for instance, 200
350 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
351 * 200 entry array for that.
55007d84 352 *
dbcf73e2
VD
353 * The current size of the caches array is stored in memcg_nr_cache_ids. It
354 * will double each time we have to increase it.
55007d84 355 */
dbcf73e2
VD
356static DEFINE_IDA(memcg_cache_ida);
357int memcg_nr_cache_ids;
749c5415 358
05257a1a
VD
359/* Protects memcg_nr_cache_ids */
360static DECLARE_RWSEM(memcg_cache_ids_sem);
361
362void memcg_get_cache_ids(void)
363{
364 down_read(&memcg_cache_ids_sem);
365}
366
367void memcg_put_cache_ids(void)
368{
369 up_read(&memcg_cache_ids_sem);
370}
371
55007d84
GC
372/*
373 * MIN_SIZE is different than 1, because we would like to avoid going through
374 * the alloc/free process all the time. In a small machine, 4 kmem-limited
375 * cgroups is a reasonable guess. In the future, it could be a parameter or
376 * tunable, but that is strictly not necessary.
377 *
b8627835 378 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
379 * this constant directly from cgroup, but it is understandable that this is
380 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 381 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
382 * increase ours as well if it increases.
383 */
384#define MEMCG_CACHES_MIN_SIZE 4
b8627835 385#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 386
d7f25f8a
GC
387/*
388 * A lot of the calls to the cache allocation functions are expected to be
272911a4 389 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
390 * conditional to this static branch, we'll have to allow modules that does
391 * kmem_cache_alloc and the such to see this symbol as well
392 */
ef12947c 393DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 394EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 395#endif
17cc4dfe 396
0a4465d3
KT
397static int memcg_shrinker_map_size;
398static DEFINE_MUTEX(memcg_shrinker_map_mutex);
399
400static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
401{
402 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
403}
404
405static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
406 int size, int old_size)
407{
408 struct memcg_shrinker_map *new, *old;
409 int nid;
410
411 lockdep_assert_held(&memcg_shrinker_map_mutex);
412
413 for_each_node(nid) {
414 old = rcu_dereference_protected(
415 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
416 /* Not yet online memcg */
417 if (!old)
418 return 0;
419
86daf94e 420 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
421 if (!new)
422 return -ENOMEM;
423
424 /* Set all old bits, clear all new bits */
425 memset(new->map, (int)0xff, old_size);
426 memset((void *)new->map + old_size, 0, size - old_size);
427
428 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
429 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
430 }
431
432 return 0;
433}
434
435static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
436{
437 struct mem_cgroup_per_node *pn;
438 struct memcg_shrinker_map *map;
439 int nid;
440
441 if (mem_cgroup_is_root(memcg))
442 return;
443
444 for_each_node(nid) {
445 pn = mem_cgroup_nodeinfo(memcg, nid);
446 map = rcu_dereference_protected(pn->shrinker_map, true);
447 if (map)
448 kvfree(map);
449 rcu_assign_pointer(pn->shrinker_map, NULL);
450 }
451}
452
453static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
454{
455 struct memcg_shrinker_map *map;
456 int nid, size, ret = 0;
457
458 if (mem_cgroup_is_root(memcg))
459 return 0;
460
461 mutex_lock(&memcg_shrinker_map_mutex);
462 size = memcg_shrinker_map_size;
463 for_each_node(nid) {
86daf94e 464 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
465 if (!map) {
466 memcg_free_shrinker_maps(memcg);
467 ret = -ENOMEM;
468 break;
469 }
470 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
471 }
472 mutex_unlock(&memcg_shrinker_map_mutex);
473
474 return ret;
475}
476
477int memcg_expand_shrinker_maps(int new_id)
478{
479 int size, old_size, ret = 0;
480 struct mem_cgroup *memcg;
481
482 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
483 old_size = memcg_shrinker_map_size;
484 if (size <= old_size)
485 return 0;
486
487 mutex_lock(&memcg_shrinker_map_mutex);
488 if (!root_mem_cgroup)
489 goto unlock;
490
491 for_each_mem_cgroup(memcg) {
492 if (mem_cgroup_is_root(memcg))
493 continue;
494 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
495 if (ret) {
496 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 497 goto unlock;
75866af6 498 }
0a4465d3
KT
499 }
500unlock:
501 if (!ret)
502 memcg_shrinker_map_size = size;
503 mutex_unlock(&memcg_shrinker_map_mutex);
504 return ret;
505}
fae91d6d
KT
506
507void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
508{
509 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
510 struct memcg_shrinker_map *map;
511
512 rcu_read_lock();
513 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
514 /* Pairs with smp mb in shrink_slab() */
515 smp_mb__before_atomic();
fae91d6d
KT
516 set_bit(shrinker_id, map->map);
517 rcu_read_unlock();
518 }
519}
520
ad7fa852
TH
521/**
522 * mem_cgroup_css_from_page - css of the memcg associated with a page
523 * @page: page of interest
524 *
525 * If memcg is bound to the default hierarchy, css of the memcg associated
526 * with @page is returned. The returned css remains associated with @page
527 * until it is released.
528 *
529 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
530 * is returned.
ad7fa852
TH
531 */
532struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
533{
534 struct mem_cgroup *memcg;
535
ad7fa852
TH
536 memcg = page->mem_cgroup;
537
9e10a130 538 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
539 memcg = root_mem_cgroup;
540
ad7fa852
TH
541 return &memcg->css;
542}
543
2fc04524
VD
544/**
545 * page_cgroup_ino - return inode number of the memcg a page is charged to
546 * @page: the page
547 *
548 * Look up the closest online ancestor of the memory cgroup @page is charged to
549 * and return its inode number or 0 if @page is not charged to any cgroup. It
550 * is safe to call this function without holding a reference to @page.
551 *
552 * Note, this function is inherently racy, because there is nothing to prevent
553 * the cgroup inode from getting torn down and potentially reallocated a moment
554 * after page_cgroup_ino() returns, so it only should be used by callers that
555 * do not care (such as procfs interfaces).
556 */
557ino_t page_cgroup_ino(struct page *page)
558{
559 struct mem_cgroup *memcg;
560 unsigned long ino = 0;
561
562 rcu_read_lock();
9855609b 563 memcg = page->mem_cgroup;
286e04b8 564
9855609b
RG
565 /*
566 * The lowest bit set means that memcg isn't a valid
567 * memcg pointer, but a obj_cgroups pointer.
568 * In this case the page is shared and doesn't belong
569 * to any specific memory cgroup.
570 */
571 if ((unsigned long) memcg & 0x1UL)
572 memcg = NULL;
286e04b8 573
2fc04524
VD
574 while (memcg && !(memcg->css.flags & CSS_ONLINE))
575 memcg = parent_mem_cgroup(memcg);
576 if (memcg)
577 ino = cgroup_ino(memcg->css.cgroup);
578 rcu_read_unlock();
579 return ino;
580}
581
ef8f2327
MG
582static struct mem_cgroup_per_node *
583mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 584{
97a6c37b 585 int nid = page_to_nid(page);
f64c3f54 586
ef8f2327 587 return memcg->nodeinfo[nid];
f64c3f54
BS
588}
589
ef8f2327
MG
590static struct mem_cgroup_tree_per_node *
591soft_limit_tree_node(int nid)
bb4cc1a8 592{
ef8f2327 593 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
594}
595
ef8f2327 596static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
597soft_limit_tree_from_page(struct page *page)
598{
599 int nid = page_to_nid(page);
bb4cc1a8 600
ef8f2327 601 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
602}
603
ef8f2327
MG
604static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
605 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 606 unsigned long new_usage_in_excess)
bb4cc1a8
AM
607{
608 struct rb_node **p = &mctz->rb_root.rb_node;
609 struct rb_node *parent = NULL;
ef8f2327 610 struct mem_cgroup_per_node *mz_node;
fa90b2fd 611 bool rightmost = true;
bb4cc1a8
AM
612
613 if (mz->on_tree)
614 return;
615
616 mz->usage_in_excess = new_usage_in_excess;
617 if (!mz->usage_in_excess)
618 return;
619 while (*p) {
620 parent = *p;
ef8f2327 621 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 622 tree_node);
fa90b2fd 623 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 624 p = &(*p)->rb_left;
fa90b2fd
DB
625 rightmost = false;
626 }
627
bb4cc1a8
AM
628 /*
629 * We can't avoid mem cgroups that are over their soft
630 * limit by the same amount
631 */
632 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
633 p = &(*p)->rb_right;
634 }
fa90b2fd
DB
635
636 if (rightmost)
637 mctz->rb_rightmost = &mz->tree_node;
638
bb4cc1a8
AM
639 rb_link_node(&mz->tree_node, parent, p);
640 rb_insert_color(&mz->tree_node, &mctz->rb_root);
641 mz->on_tree = true;
642}
643
ef8f2327
MG
644static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
645 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
646{
647 if (!mz->on_tree)
648 return;
fa90b2fd
DB
649
650 if (&mz->tree_node == mctz->rb_rightmost)
651 mctz->rb_rightmost = rb_prev(&mz->tree_node);
652
bb4cc1a8
AM
653 rb_erase(&mz->tree_node, &mctz->rb_root);
654 mz->on_tree = false;
655}
656
ef8f2327
MG
657static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
658 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 659{
0a31bc97
JW
660 unsigned long flags;
661
662 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 663 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 664 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
665}
666
3e32cb2e
JW
667static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
668{
669 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 670 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
671 unsigned long excess = 0;
672
673 if (nr_pages > soft_limit)
674 excess = nr_pages - soft_limit;
675
676 return excess;
677}
bb4cc1a8
AM
678
679static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
680{
3e32cb2e 681 unsigned long excess;
ef8f2327
MG
682 struct mem_cgroup_per_node *mz;
683 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 684
e231875b 685 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
686 if (!mctz)
687 return;
bb4cc1a8
AM
688 /*
689 * Necessary to update all ancestors when hierarchy is used.
690 * because their event counter is not touched.
691 */
692 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 693 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 694 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
695 /*
696 * We have to update the tree if mz is on RB-tree or
697 * mem is over its softlimit.
698 */
699 if (excess || mz->on_tree) {
0a31bc97
JW
700 unsigned long flags;
701
702 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
703 /* if on-tree, remove it */
704 if (mz->on_tree)
cf2c8127 705 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
706 /*
707 * Insert again. mz->usage_in_excess will be updated.
708 * If excess is 0, no tree ops.
709 */
cf2c8127 710 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 711 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
712 }
713 }
714}
715
716static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
717{
ef8f2327
MG
718 struct mem_cgroup_tree_per_node *mctz;
719 struct mem_cgroup_per_node *mz;
720 int nid;
bb4cc1a8 721
e231875b 722 for_each_node(nid) {
ef8f2327
MG
723 mz = mem_cgroup_nodeinfo(memcg, nid);
724 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
725 if (mctz)
726 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
727 }
728}
729
ef8f2327
MG
730static struct mem_cgroup_per_node *
731__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 732{
ef8f2327 733 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
734
735retry:
736 mz = NULL;
fa90b2fd 737 if (!mctz->rb_rightmost)
bb4cc1a8
AM
738 goto done; /* Nothing to reclaim from */
739
fa90b2fd
DB
740 mz = rb_entry(mctz->rb_rightmost,
741 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
742 /*
743 * Remove the node now but someone else can add it back,
744 * we will to add it back at the end of reclaim to its correct
745 * position in the tree.
746 */
cf2c8127 747 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 748 if (!soft_limit_excess(mz->memcg) ||
8965aa28 749 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
750 goto retry;
751done:
752 return mz;
753}
754
ef8f2327
MG
755static struct mem_cgroup_per_node *
756mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 757{
ef8f2327 758 struct mem_cgroup_per_node *mz;
bb4cc1a8 759
0a31bc97 760 spin_lock_irq(&mctz->lock);
bb4cc1a8 761 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 762 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
763 return mz;
764}
765
db9adbcb
JW
766/**
767 * __mod_memcg_state - update cgroup memory statistics
768 * @memcg: the memory cgroup
769 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
770 * @val: delta to add to the counter, can be negative
771 */
772void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
773{
ea426c2a 774 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb
JW
775
776 if (mem_cgroup_disabled())
777 return;
778
772616b0 779 if (memcg_stat_item_in_bytes(idx))
ea426c2a
RG
780 threshold <<= PAGE_SHIFT;
781
db9adbcb 782 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
ea426c2a 783 if (unlikely(abs(x) > threshold)) {
42a30035
JW
784 struct mem_cgroup *mi;
785
766a4c19
YS
786 /*
787 * Batch local counters to keep them in sync with
788 * the hierarchical ones.
789 */
790 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
791 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
792 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
793 x = 0;
794 }
795 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
796}
797
42a30035
JW
798static struct mem_cgroup_per_node *
799parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
800{
801 struct mem_cgroup *parent;
802
803 parent = parent_mem_cgroup(pn->memcg);
804 if (!parent)
805 return NULL;
806 return mem_cgroup_nodeinfo(parent, nid);
807}
808
eedc4e5a
RG
809void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
810 int val)
db9adbcb
JW
811{
812 struct mem_cgroup_per_node *pn;
42a30035 813 struct mem_cgroup *memcg;
ea426c2a 814 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 815
db9adbcb 816 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 817 memcg = pn->memcg;
db9adbcb
JW
818
819 /* Update memcg */
42a30035 820 __mod_memcg_state(memcg, idx, val);
db9adbcb 821
b4c46484
RG
822 /* Update lruvec */
823 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
824
ea426c2a
RG
825 if (vmstat_item_in_bytes(idx))
826 threshold <<= PAGE_SHIFT;
827
db9adbcb 828 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 829 if (unlikely(abs(x) > threshold)) {
eedc4e5a 830 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
831 struct mem_cgroup_per_node *pi;
832
42a30035
JW
833 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
834 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
835 x = 0;
836 }
837 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
838}
839
eedc4e5a
RG
840/**
841 * __mod_lruvec_state - update lruvec memory statistics
842 * @lruvec: the lruvec
843 * @idx: the stat item
844 * @val: delta to add to the counter, can be negative
845 *
846 * The lruvec is the intersection of the NUMA node and a cgroup. This
847 * function updates the all three counters that are affected by a
848 * change of state at this level: per-node, per-cgroup, per-lruvec.
849 */
850void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
851 int val)
852{
853 /* Update node */
854 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
855
856 /* Update memcg and lruvec */
857 if (!mem_cgroup_disabled())
858 __mod_memcg_lruvec_state(lruvec, idx, val);
859}
860
ec9f0238
RG
861void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
862{
4f103c63 863 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
864 struct mem_cgroup *memcg;
865 struct lruvec *lruvec;
866
867 rcu_read_lock();
4f103c63 868 memcg = mem_cgroup_from_obj(p);
ec9f0238 869
8faeb1ff
MS
870 /*
871 * Untracked pages have no memcg, no lruvec. Update only the
872 * node. If we reparent the slab objects to the root memcg,
873 * when we free the slab object, we need to update the per-memcg
874 * vmstats to keep it correct for the root memcg.
875 */
876 if (!memcg) {
ec9f0238
RG
877 __mod_node_page_state(pgdat, idx, val);
878 } else {
867e5e1d 879 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
880 __mod_lruvec_state(lruvec, idx, val);
881 }
882 rcu_read_unlock();
883}
884
8380ce47
RG
885void mod_memcg_obj_state(void *p, int idx, int val)
886{
887 struct mem_cgroup *memcg;
888
889 rcu_read_lock();
890 memcg = mem_cgroup_from_obj(p);
891 if (memcg)
892 mod_memcg_state(memcg, idx, val);
893 rcu_read_unlock();
894}
895
db9adbcb
JW
896/**
897 * __count_memcg_events - account VM events in a cgroup
898 * @memcg: the memory cgroup
899 * @idx: the event item
900 * @count: the number of events that occured
901 */
902void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
903 unsigned long count)
904{
905 unsigned long x;
906
907 if (mem_cgroup_disabled())
908 return;
909
910 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
911 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
912 struct mem_cgroup *mi;
913
766a4c19
YS
914 /*
915 * Batch local counters to keep them in sync with
916 * the hierarchical ones.
917 */
918 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
919 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
920 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
921 x = 0;
922 }
923 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
924}
925
42a30035 926static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 927{
871789d4 928 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
929}
930
42a30035
JW
931static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
932{
815744d7
JW
933 long x = 0;
934 int cpu;
935
936 for_each_possible_cpu(cpu)
937 x += per_cpu(memcg->vmstats_local->events[event], cpu);
938 return x;
42a30035
JW
939}
940
c0ff4b85 941static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 942 struct page *page,
3fba69a5 943 int nr_pages)
d52aa412 944{
e401f176
KH
945 /* pagein of a big page is an event. So, ignore page size */
946 if (nr_pages > 0)
c9019e9b 947 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 948 else {
c9019e9b 949 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
950 nr_pages = -nr_pages; /* for event */
951 }
e401f176 952
871789d4 953 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
954}
955
f53d7ce3
JW
956static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
957 enum mem_cgroup_events_target target)
7a159cc9
JW
958{
959 unsigned long val, next;
960
871789d4
CD
961 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
962 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 963 /* from time_after() in jiffies.h */
6a1a8b80 964 if ((long)(next - val) < 0) {
f53d7ce3
JW
965 switch (target) {
966 case MEM_CGROUP_TARGET_THRESH:
967 next = val + THRESHOLDS_EVENTS_TARGET;
968 break;
bb4cc1a8
AM
969 case MEM_CGROUP_TARGET_SOFTLIMIT:
970 next = val + SOFTLIMIT_EVENTS_TARGET;
971 break;
f53d7ce3
JW
972 default:
973 break;
974 }
871789d4 975 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 976 return true;
7a159cc9 977 }
f53d7ce3 978 return false;
d2265e6f
KH
979}
980
981/*
982 * Check events in order.
983 *
984 */
c0ff4b85 985static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
986{
987 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
988 if (unlikely(mem_cgroup_event_ratelimit(memcg,
989 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 990 bool do_softlimit;
f53d7ce3 991
bb4cc1a8
AM
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 994 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
995 if (unlikely(do_softlimit))
996 mem_cgroup_update_tree(memcg, page);
0a31bc97 997 }
d2265e6f
KH
998}
999
cf475ad2 1000struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1001{
31a78f23
BS
1002 /*
1003 * mm_update_next_owner() may clear mm->owner to NULL
1004 * if it races with swapoff, page migration, etc.
1005 * So this can be called with p == NULL.
1006 */
1007 if (unlikely(!p))
1008 return NULL;
1009
073219e9 1010 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1011}
33398cf2 1012EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1013
d46eb14b
SB
1014/**
1015 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1016 * @mm: mm from which memcg should be extracted. It can be NULL.
1017 *
1018 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1019 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1020 * returned.
1021 */
1022struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1023{
d46eb14b
SB
1024 struct mem_cgroup *memcg;
1025
1026 if (mem_cgroup_disabled())
1027 return NULL;
0b7f569e 1028
54595fe2
KH
1029 rcu_read_lock();
1030 do {
6f6acb00
MH
1031 /*
1032 * Page cache insertions can happen withou an
1033 * actual mm context, e.g. during disk probing
1034 * on boot, loopback IO, acct() writes etc.
1035 */
1036 if (unlikely(!mm))
df381975 1037 memcg = root_mem_cgroup;
6f6acb00
MH
1038 else {
1039 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1040 if (unlikely(!memcg))
1041 memcg = root_mem_cgroup;
1042 }
00d484f3 1043 } while (!css_tryget(&memcg->css));
54595fe2 1044 rcu_read_unlock();
c0ff4b85 1045 return memcg;
54595fe2 1046}
d46eb14b
SB
1047EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
f745c6f5
SB
1049/**
1050 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1051 * @page: page from which memcg should be extracted.
1052 *
1053 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1054 * root_mem_cgroup is returned.
1055 */
1056struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1057{
1058 struct mem_cgroup *memcg = page->mem_cgroup;
1059
1060 if (mem_cgroup_disabled())
1061 return NULL;
1062
1063 rcu_read_lock();
8965aa28
SB
1064 /* Page should not get uncharged and freed memcg under us. */
1065 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
1066 memcg = root_mem_cgroup;
1067 rcu_read_unlock();
1068 return memcg;
1069}
1070EXPORT_SYMBOL(get_mem_cgroup_from_page);
1071
37d5985c 1072static __always_inline struct mem_cgroup *active_memcg(void)
d46eb14b 1073{
37d5985c
RG
1074 if (in_interrupt())
1075 return this_cpu_read(int_active_memcg);
1076 else
1077 return current->active_memcg;
1078}
279c3393 1079
37d5985c
RG
1080static __always_inline struct mem_cgroup *get_active_memcg(void)
1081{
1082 struct mem_cgroup *memcg;
d46eb14b 1083
37d5985c
RG
1084 rcu_read_lock();
1085 memcg = active_memcg();
1086 if (memcg) {
8965aa28 1087 /* current->active_memcg must hold a ref. */
37d5985c 1088 if (WARN_ON_ONCE(!css_tryget(&memcg->css)))
8965aa28
SB
1089 memcg = root_mem_cgroup;
1090 else
d46eb14b 1091 memcg = current->active_memcg;
d46eb14b 1092 }
37d5985c
RG
1093 rcu_read_unlock();
1094
1095 return memcg;
1096}
1097
4127c650
RG
1098static __always_inline bool memcg_kmem_bypass(void)
1099{
1100 /* Allow remote memcg charging from any context. */
1101 if (unlikely(active_memcg()))
1102 return false;
1103
1104 /* Memcg to charge can't be determined. */
1105 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1106 return true;
1107
1108 return false;
1109}
1110
37d5985c
RG
1111/**
1112 * If active memcg is set, do not fallback to current->mm->memcg.
1113 */
1114static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1115{
1116 if (memcg_kmem_bypass())
1117 return NULL;
1118
1119 if (unlikely(active_memcg()))
1120 return get_active_memcg();
1121
d46eb14b
SB
1122 return get_mem_cgroup_from_mm(current->mm);
1123}
54595fe2 1124
5660048c
JW
1125/**
1126 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1127 * @root: hierarchy root
1128 * @prev: previously returned memcg, NULL on first invocation
1129 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1130 *
1131 * Returns references to children of the hierarchy below @root, or
1132 * @root itself, or %NULL after a full round-trip.
1133 *
1134 * Caller must pass the return value in @prev on subsequent
1135 * invocations for reference counting, or use mem_cgroup_iter_break()
1136 * to cancel a hierarchy walk before the round-trip is complete.
1137 *
05bdc520
ML
1138 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1139 * in the hierarchy among all concurrent reclaimers operating on the
1140 * same node.
5660048c 1141 */
694fbc0f 1142struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1143 struct mem_cgroup *prev,
694fbc0f 1144 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1145{
3f649ab7 1146 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1147 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1148 struct mem_cgroup *memcg = NULL;
5ac8fb31 1149 struct mem_cgroup *pos = NULL;
711d3d2c 1150
694fbc0f
AM
1151 if (mem_cgroup_disabled())
1152 return NULL;
5660048c 1153
9f3a0d09
JW
1154 if (!root)
1155 root = root_mem_cgroup;
7d74b06f 1156
9f3a0d09 1157 if (prev && !reclaim)
5ac8fb31 1158 pos = prev;
14067bb3 1159
9f3a0d09
JW
1160 if (!root->use_hierarchy && root != root_mem_cgroup) {
1161 if (prev)
5ac8fb31 1162 goto out;
694fbc0f 1163 return root;
9f3a0d09 1164 }
14067bb3 1165
542f85f9 1166 rcu_read_lock();
5f578161 1167
5ac8fb31 1168 if (reclaim) {
ef8f2327 1169 struct mem_cgroup_per_node *mz;
5ac8fb31 1170
ef8f2327 1171 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1172 iter = &mz->iter;
5ac8fb31
JW
1173
1174 if (prev && reclaim->generation != iter->generation)
1175 goto out_unlock;
1176
6df38689 1177 while (1) {
4db0c3c2 1178 pos = READ_ONCE(iter->position);
6df38689
VD
1179 if (!pos || css_tryget(&pos->css))
1180 break;
5ac8fb31 1181 /*
6df38689
VD
1182 * css reference reached zero, so iter->position will
1183 * be cleared by ->css_released. However, we should not
1184 * rely on this happening soon, because ->css_released
1185 * is called from a work queue, and by busy-waiting we
1186 * might block it. So we clear iter->position right
1187 * away.
5ac8fb31 1188 */
6df38689
VD
1189 (void)cmpxchg(&iter->position, pos, NULL);
1190 }
5ac8fb31
JW
1191 }
1192
1193 if (pos)
1194 css = &pos->css;
1195
1196 for (;;) {
1197 css = css_next_descendant_pre(css, &root->css);
1198 if (!css) {
1199 /*
1200 * Reclaimers share the hierarchy walk, and a
1201 * new one might jump in right at the end of
1202 * the hierarchy - make sure they see at least
1203 * one group and restart from the beginning.
1204 */
1205 if (!prev)
1206 continue;
1207 break;
527a5ec9 1208 }
7d74b06f 1209
5ac8fb31
JW
1210 /*
1211 * Verify the css and acquire a reference. The root
1212 * is provided by the caller, so we know it's alive
1213 * and kicking, and don't take an extra reference.
1214 */
1215 memcg = mem_cgroup_from_css(css);
14067bb3 1216
5ac8fb31
JW
1217 if (css == &root->css)
1218 break;
14067bb3 1219
0b8f73e1
JW
1220 if (css_tryget(css))
1221 break;
9f3a0d09 1222
5ac8fb31 1223 memcg = NULL;
9f3a0d09 1224 }
5ac8fb31
JW
1225
1226 if (reclaim) {
5ac8fb31 1227 /*
6df38689
VD
1228 * The position could have already been updated by a competing
1229 * thread, so check that the value hasn't changed since we read
1230 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1231 */
6df38689
VD
1232 (void)cmpxchg(&iter->position, pos, memcg);
1233
5ac8fb31
JW
1234 if (pos)
1235 css_put(&pos->css);
1236
1237 if (!memcg)
1238 iter->generation++;
1239 else if (!prev)
1240 reclaim->generation = iter->generation;
9f3a0d09 1241 }
5ac8fb31 1242
542f85f9
MH
1243out_unlock:
1244 rcu_read_unlock();
5ac8fb31 1245out:
c40046f3
MH
1246 if (prev && prev != root)
1247 css_put(&prev->css);
1248
9f3a0d09 1249 return memcg;
14067bb3 1250}
7d74b06f 1251
5660048c
JW
1252/**
1253 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1254 * @root: hierarchy root
1255 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1256 */
1257void mem_cgroup_iter_break(struct mem_cgroup *root,
1258 struct mem_cgroup *prev)
9f3a0d09
JW
1259{
1260 if (!root)
1261 root = root_mem_cgroup;
1262 if (prev && prev != root)
1263 css_put(&prev->css);
1264}
7d74b06f 1265
54a83d6b
MC
1266static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1267 struct mem_cgroup *dead_memcg)
6df38689 1268{
6df38689 1269 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1270 struct mem_cgroup_per_node *mz;
1271 int nid;
6df38689 1272
54a83d6b
MC
1273 for_each_node(nid) {
1274 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1275 iter = &mz->iter;
1276 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1277 }
1278}
1279
54a83d6b
MC
1280static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1281{
1282 struct mem_cgroup *memcg = dead_memcg;
1283 struct mem_cgroup *last;
1284
1285 do {
1286 __invalidate_reclaim_iterators(memcg, dead_memcg);
1287 last = memcg;
1288 } while ((memcg = parent_mem_cgroup(memcg)));
1289
1290 /*
1291 * When cgruop1 non-hierarchy mode is used,
1292 * parent_mem_cgroup() does not walk all the way up to the
1293 * cgroup root (root_mem_cgroup). So we have to handle
1294 * dead_memcg from cgroup root separately.
1295 */
1296 if (last != root_mem_cgroup)
1297 __invalidate_reclaim_iterators(root_mem_cgroup,
1298 dead_memcg);
1299}
1300
7c5f64f8
VD
1301/**
1302 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1303 * @memcg: hierarchy root
1304 * @fn: function to call for each task
1305 * @arg: argument passed to @fn
1306 *
1307 * This function iterates over tasks attached to @memcg or to any of its
1308 * descendants and calls @fn for each task. If @fn returns a non-zero
1309 * value, the function breaks the iteration loop and returns the value.
1310 * Otherwise, it will iterate over all tasks and return 0.
1311 *
1312 * This function must not be called for the root memory cgroup.
1313 */
1314int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1315 int (*fn)(struct task_struct *, void *), void *arg)
1316{
1317 struct mem_cgroup *iter;
1318 int ret = 0;
1319
1320 BUG_ON(memcg == root_mem_cgroup);
1321
1322 for_each_mem_cgroup_tree(iter, memcg) {
1323 struct css_task_iter it;
1324 struct task_struct *task;
1325
f168a9a5 1326 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1327 while (!ret && (task = css_task_iter_next(&it)))
1328 ret = fn(task, arg);
1329 css_task_iter_end(&it);
1330 if (ret) {
1331 mem_cgroup_iter_break(memcg, iter);
1332 break;
1333 }
1334 }
1335 return ret;
1336}
1337
925b7673 1338/**
dfe0e773 1339 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1340 * @page: the page
f144c390 1341 * @pgdat: pgdat of the page
dfe0e773 1342 *
a0b5b414
JW
1343 * This function relies on page->mem_cgroup being stable - see the
1344 * access rules in commit_charge().
925b7673 1345 */
599d0c95 1346struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1347{
ef8f2327 1348 struct mem_cgroup_per_node *mz;
925b7673 1349 struct mem_cgroup *memcg;
bea8c150 1350 struct lruvec *lruvec;
6d12e2d8 1351
bea8c150 1352 if (mem_cgroup_disabled()) {
867e5e1d 1353 lruvec = &pgdat->__lruvec;
bea8c150
HD
1354 goto out;
1355 }
925b7673 1356
1306a85a 1357 memcg = page->mem_cgroup;
7512102c 1358 /*
dfe0e773 1359 * Swapcache readahead pages are added to the LRU - and
29833315 1360 * possibly migrated - before they are charged.
7512102c 1361 */
29833315
JW
1362 if (!memcg)
1363 memcg = root_mem_cgroup;
7512102c 1364
ef8f2327 1365 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1366 lruvec = &mz->lruvec;
1367out:
1368 /*
1369 * Since a node can be onlined after the mem_cgroup was created,
1370 * we have to be prepared to initialize lruvec->zone here;
1371 * and if offlined then reonlined, we need to reinitialize it.
1372 */
599d0c95
MG
1373 if (unlikely(lruvec->pgdat != pgdat))
1374 lruvec->pgdat = pgdat;
bea8c150 1375 return lruvec;
08e552c6 1376}
b69408e8 1377
925b7673 1378/**
fa9add64
HD
1379 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1380 * @lruvec: mem_cgroup per zone lru vector
1381 * @lru: index of lru list the page is sitting on
b4536f0c 1382 * @zid: zone id of the accounted pages
fa9add64 1383 * @nr_pages: positive when adding or negative when removing
925b7673 1384 *
ca707239
HD
1385 * This function must be called under lru_lock, just before a page is added
1386 * to or just after a page is removed from an lru list (that ordering being
1387 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1388 */
fa9add64 1389void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1390 int zid, int nr_pages)
3f58a829 1391{
ef8f2327 1392 struct mem_cgroup_per_node *mz;
fa9add64 1393 unsigned long *lru_size;
ca707239 1394 long size;
3f58a829
MK
1395
1396 if (mem_cgroup_disabled())
1397 return;
1398
ef8f2327 1399 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1400 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1401
1402 if (nr_pages < 0)
1403 *lru_size += nr_pages;
1404
1405 size = *lru_size;
b4536f0c
MH
1406 if (WARN_ONCE(size < 0,
1407 "%s(%p, %d, %d): lru_size %ld\n",
1408 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1409 VM_BUG_ON(1);
1410 *lru_size = 0;
1411 }
1412
1413 if (nr_pages > 0)
1414 *lru_size += nr_pages;
08e552c6 1415}
544122e5 1416
19942822 1417/**
9d11ea9f 1418 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1419 * @memcg: the memory cgroup
19942822 1420 *
9d11ea9f 1421 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1422 * pages.
19942822 1423 */
c0ff4b85 1424static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1425{
3e32cb2e
JW
1426 unsigned long margin = 0;
1427 unsigned long count;
1428 unsigned long limit;
9d11ea9f 1429
3e32cb2e 1430 count = page_counter_read(&memcg->memory);
bbec2e15 1431 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1432 if (count < limit)
1433 margin = limit - count;
1434
7941d214 1435 if (do_memsw_account()) {
3e32cb2e 1436 count = page_counter_read(&memcg->memsw);
bbec2e15 1437 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1438 if (count < limit)
3e32cb2e 1439 margin = min(margin, limit - count);
cbedbac3
LR
1440 else
1441 margin = 0;
3e32cb2e
JW
1442 }
1443
1444 return margin;
19942822
JW
1445}
1446
32047e2a 1447/*
bdcbb659 1448 * A routine for checking "mem" is under move_account() or not.
32047e2a 1449 *
bdcbb659
QH
1450 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1451 * moving cgroups. This is for waiting at high-memory pressure
1452 * caused by "move".
32047e2a 1453 */
c0ff4b85 1454static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1455{
2bd9bb20
KH
1456 struct mem_cgroup *from;
1457 struct mem_cgroup *to;
4b534334 1458 bool ret = false;
2bd9bb20
KH
1459 /*
1460 * Unlike task_move routines, we access mc.to, mc.from not under
1461 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1462 */
1463 spin_lock(&mc.lock);
1464 from = mc.from;
1465 to = mc.to;
1466 if (!from)
1467 goto unlock;
3e92041d 1468
2314b42d
JW
1469 ret = mem_cgroup_is_descendant(from, memcg) ||
1470 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1471unlock:
1472 spin_unlock(&mc.lock);
4b534334
KH
1473 return ret;
1474}
1475
c0ff4b85 1476static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1477{
1478 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1479 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1480 DEFINE_WAIT(wait);
1481 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1482 /* moving charge context might have finished. */
1483 if (mc.moving_task)
1484 schedule();
1485 finish_wait(&mc.waitq, &wait);
1486 return true;
1487 }
1488 }
1489 return false;
1490}
1491
5f9a4f4a
MS
1492struct memory_stat {
1493 const char *name;
1494 unsigned int ratio;
1495 unsigned int idx;
1496};
1497
1498static struct memory_stat memory_stats[] = {
1499 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1500 { "file", PAGE_SIZE, NR_FILE_PAGES },
1501 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1502 { "percpu", 1, MEMCG_PERCPU_B },
1503 { "sock", PAGE_SIZE, MEMCG_SOCK },
1504 { "shmem", PAGE_SIZE, NR_SHMEM },
1505 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1506 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1507 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1508#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1509 /*
1510 * The ratio will be initialized in memory_stats_init(). Because
1511 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1512 * constant(e.g. powerpc).
1513 */
1514 { "anon_thp", 0, NR_ANON_THPS },
1515#endif
1516 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1517 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1518 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1519 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1520 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1521
1522 /*
1523 * Note: The slab_reclaimable and slab_unreclaimable must be
1524 * together and slab_reclaimable must be in front.
1525 */
1526 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1527 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1528
1529 /* The memory events */
1530 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1531 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1532 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1533 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1534 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1535 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1536 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1537};
1538
1539static int __init memory_stats_init(void)
1540{
1541 int i;
1542
1543 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1544#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1545 if (memory_stats[i].idx == NR_ANON_THPS)
1546 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1547#endif
1548 VM_BUG_ON(!memory_stats[i].ratio);
1549 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1550 }
1551
1552 return 0;
1553}
1554pure_initcall(memory_stats_init);
1555
c8713d0b
JW
1556static char *memory_stat_format(struct mem_cgroup *memcg)
1557{
1558 struct seq_buf s;
1559 int i;
71cd3113 1560
c8713d0b
JW
1561 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1562 if (!s.buffer)
1563 return NULL;
1564
1565 /*
1566 * Provide statistics on the state of the memory subsystem as
1567 * well as cumulative event counters that show past behavior.
1568 *
1569 * This list is ordered following a combination of these gradients:
1570 * 1) generic big picture -> specifics and details
1571 * 2) reflecting userspace activity -> reflecting kernel heuristics
1572 *
1573 * Current memory state:
1574 */
1575
5f9a4f4a
MS
1576 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1577 u64 size;
c8713d0b 1578
5f9a4f4a
MS
1579 size = memcg_page_state(memcg, memory_stats[i].idx);
1580 size *= memory_stats[i].ratio;
1581 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1582
5f9a4f4a
MS
1583 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1584 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1585 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1586 seq_buf_printf(&s, "slab %llu\n", size);
1587 }
1588 }
c8713d0b
JW
1589
1590 /* Accumulated memory events */
1591
ebc5d83d
KK
1592 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1593 memcg_events(memcg, PGFAULT));
1594 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1595 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1596 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1597 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1598 seq_buf_printf(&s, "pgscan %lu\n",
1599 memcg_events(memcg, PGSCAN_KSWAPD) +
1600 memcg_events(memcg, PGSCAN_DIRECT));
1601 seq_buf_printf(&s, "pgsteal %lu\n",
1602 memcg_events(memcg, PGSTEAL_KSWAPD) +
1603 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1604 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1605 memcg_events(memcg, PGACTIVATE));
1606 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1607 memcg_events(memcg, PGDEACTIVATE));
1608 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1609 memcg_events(memcg, PGLAZYFREE));
1610 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1611 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1612
1613#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1614 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1615 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1616 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1617 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1618#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1619
1620 /* The above should easily fit into one page */
1621 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1622
1623 return s.buffer;
1624}
71cd3113 1625
58cf188e 1626#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1627/**
f0c867d9 1628 * mem_cgroup_print_oom_context: Print OOM information relevant to
1629 * memory controller.
e222432b
BS
1630 * @memcg: The memory cgroup that went over limit
1631 * @p: Task that is going to be killed
1632 *
1633 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1634 * enabled
1635 */
f0c867d9 1636void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1637{
e222432b
BS
1638 rcu_read_lock();
1639
f0c867d9 1640 if (memcg) {
1641 pr_cont(",oom_memcg=");
1642 pr_cont_cgroup_path(memcg->css.cgroup);
1643 } else
1644 pr_cont(",global_oom");
2415b9f5 1645 if (p) {
f0c867d9 1646 pr_cont(",task_memcg=");
2415b9f5 1647 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1648 }
e222432b 1649 rcu_read_unlock();
f0c867d9 1650}
1651
1652/**
1653 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1654 * memory controller.
1655 * @memcg: The memory cgroup that went over limit
1656 */
1657void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1658{
c8713d0b 1659 char *buf;
e222432b 1660
3e32cb2e
JW
1661 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1662 K((u64)page_counter_read(&memcg->memory)),
15b42562 1663 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1664 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1665 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1666 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1667 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1668 else {
1669 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1670 K((u64)page_counter_read(&memcg->memsw)),
1671 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1672 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1673 K((u64)page_counter_read(&memcg->kmem)),
1674 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1675 }
c8713d0b
JW
1676
1677 pr_info("Memory cgroup stats for ");
1678 pr_cont_cgroup_path(memcg->css.cgroup);
1679 pr_cont(":");
1680 buf = memory_stat_format(memcg);
1681 if (!buf)
1682 return;
1683 pr_info("%s", buf);
1684 kfree(buf);
e222432b
BS
1685}
1686
a63d83f4
DR
1687/*
1688 * Return the memory (and swap, if configured) limit for a memcg.
1689 */
bbec2e15 1690unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1691{
8d387a5f
WL
1692 unsigned long max = READ_ONCE(memcg->memory.max);
1693
1694 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1695 if (mem_cgroup_swappiness(memcg))
1696 max += min(READ_ONCE(memcg->swap.max),
1697 (unsigned long)total_swap_pages);
1698 } else { /* v1 */
1699 if (mem_cgroup_swappiness(memcg)) {
1700 /* Calculate swap excess capacity from memsw limit */
1701 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1702
1703 max += min(swap, (unsigned long)total_swap_pages);
1704 }
9a5a8f19 1705 }
bbec2e15 1706 return max;
a63d83f4
DR
1707}
1708
9783aa99
CD
1709unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1710{
1711 return page_counter_read(&memcg->memory);
1712}
1713
b6e6edcf 1714static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1715 int order)
9cbb78bb 1716{
6e0fc46d
DR
1717 struct oom_control oc = {
1718 .zonelist = NULL,
1719 .nodemask = NULL,
2a966b77 1720 .memcg = memcg,
6e0fc46d
DR
1721 .gfp_mask = gfp_mask,
1722 .order = order,
6e0fc46d 1723 };
1378b37d 1724 bool ret = true;
9cbb78bb 1725
7775face
TH
1726 if (mutex_lock_killable(&oom_lock))
1727 return true;
1378b37d
YS
1728
1729 if (mem_cgroup_margin(memcg) >= (1 << order))
1730 goto unlock;
1731
7775face
TH
1732 /*
1733 * A few threads which were not waiting at mutex_lock_killable() can
1734 * fail to bail out. Therefore, check again after holding oom_lock.
1735 */
1736 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1737
1738unlock:
dc56401f 1739 mutex_unlock(&oom_lock);
7c5f64f8 1740 return ret;
9cbb78bb
DR
1741}
1742
0608f43d 1743static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1744 pg_data_t *pgdat,
0608f43d
AM
1745 gfp_t gfp_mask,
1746 unsigned long *total_scanned)
1747{
1748 struct mem_cgroup *victim = NULL;
1749 int total = 0;
1750 int loop = 0;
1751 unsigned long excess;
1752 unsigned long nr_scanned;
1753 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1754 .pgdat = pgdat,
0608f43d
AM
1755 };
1756
3e32cb2e 1757 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1758
1759 while (1) {
1760 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1761 if (!victim) {
1762 loop++;
1763 if (loop >= 2) {
1764 /*
1765 * If we have not been able to reclaim
1766 * anything, it might because there are
1767 * no reclaimable pages under this hierarchy
1768 */
1769 if (!total)
1770 break;
1771 /*
1772 * We want to do more targeted reclaim.
1773 * excess >> 2 is not to excessive so as to
1774 * reclaim too much, nor too less that we keep
1775 * coming back to reclaim from this cgroup
1776 */
1777 if (total >= (excess >> 2) ||
1778 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1779 break;
1780 }
1781 continue;
1782 }
a9dd0a83 1783 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1784 pgdat, &nr_scanned);
0608f43d 1785 *total_scanned += nr_scanned;
3e32cb2e 1786 if (!soft_limit_excess(root_memcg))
0608f43d 1787 break;
6d61ef40 1788 }
0608f43d
AM
1789 mem_cgroup_iter_break(root_memcg, victim);
1790 return total;
6d61ef40
BS
1791}
1792
0056f4e6
JW
1793#ifdef CONFIG_LOCKDEP
1794static struct lockdep_map memcg_oom_lock_dep_map = {
1795 .name = "memcg_oom_lock",
1796};
1797#endif
1798
fb2a6fc5
JW
1799static DEFINE_SPINLOCK(memcg_oom_lock);
1800
867578cb
KH
1801/*
1802 * Check OOM-Killer is already running under our hierarchy.
1803 * If someone is running, return false.
1804 */
fb2a6fc5 1805static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1806{
79dfdacc 1807 struct mem_cgroup *iter, *failed = NULL;
a636b327 1808
fb2a6fc5
JW
1809 spin_lock(&memcg_oom_lock);
1810
9f3a0d09 1811 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1812 if (iter->oom_lock) {
79dfdacc
MH
1813 /*
1814 * this subtree of our hierarchy is already locked
1815 * so we cannot give a lock.
1816 */
79dfdacc 1817 failed = iter;
9f3a0d09
JW
1818 mem_cgroup_iter_break(memcg, iter);
1819 break;
23751be0
JW
1820 } else
1821 iter->oom_lock = true;
7d74b06f 1822 }
867578cb 1823
fb2a6fc5
JW
1824 if (failed) {
1825 /*
1826 * OK, we failed to lock the whole subtree so we have
1827 * to clean up what we set up to the failing subtree
1828 */
1829 for_each_mem_cgroup_tree(iter, memcg) {
1830 if (iter == failed) {
1831 mem_cgroup_iter_break(memcg, iter);
1832 break;
1833 }
1834 iter->oom_lock = false;
79dfdacc 1835 }
0056f4e6
JW
1836 } else
1837 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1838
1839 spin_unlock(&memcg_oom_lock);
1840
1841 return !failed;
a636b327 1842}
0b7f569e 1843
fb2a6fc5 1844static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1845{
7d74b06f
KH
1846 struct mem_cgroup *iter;
1847
fb2a6fc5 1848 spin_lock(&memcg_oom_lock);
5facae4f 1849 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1850 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1851 iter->oom_lock = false;
fb2a6fc5 1852 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1853}
1854
c0ff4b85 1855static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1856{
1857 struct mem_cgroup *iter;
1858
c2b42d3c 1859 spin_lock(&memcg_oom_lock);
c0ff4b85 1860 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1861 iter->under_oom++;
1862 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1863}
1864
c0ff4b85 1865static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1866{
1867 struct mem_cgroup *iter;
1868
867578cb 1869 /*
7a52d4d8
ML
1870 * Be careful about under_oom underflows becase a child memcg
1871 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1872 */
c2b42d3c 1873 spin_lock(&memcg_oom_lock);
c0ff4b85 1874 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1875 if (iter->under_oom > 0)
1876 iter->under_oom--;
1877 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1878}
1879
867578cb
KH
1880static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1881
dc98df5a 1882struct oom_wait_info {
d79154bb 1883 struct mem_cgroup *memcg;
ac6424b9 1884 wait_queue_entry_t wait;
dc98df5a
KH
1885};
1886
ac6424b9 1887static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1888 unsigned mode, int sync, void *arg)
1889{
d79154bb
HD
1890 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1891 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1892 struct oom_wait_info *oom_wait_info;
1893
1894 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1895 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1896
2314b42d
JW
1897 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1898 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1899 return 0;
dc98df5a
KH
1900 return autoremove_wake_function(wait, mode, sync, arg);
1901}
1902
c0ff4b85 1903static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1904{
c2b42d3c
TH
1905 /*
1906 * For the following lockless ->under_oom test, the only required
1907 * guarantee is that it must see the state asserted by an OOM when
1908 * this function is called as a result of userland actions
1909 * triggered by the notification of the OOM. This is trivially
1910 * achieved by invoking mem_cgroup_mark_under_oom() before
1911 * triggering notification.
1912 */
1913 if (memcg && memcg->under_oom)
f4b90b70 1914 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1915}
1916
29ef680a
MH
1917enum oom_status {
1918 OOM_SUCCESS,
1919 OOM_FAILED,
1920 OOM_ASYNC,
1921 OOM_SKIPPED
1922};
1923
1924static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1925{
7056d3a3
MH
1926 enum oom_status ret;
1927 bool locked;
1928
29ef680a
MH
1929 if (order > PAGE_ALLOC_COSTLY_ORDER)
1930 return OOM_SKIPPED;
1931
7a1adfdd
RG
1932 memcg_memory_event(memcg, MEMCG_OOM);
1933
867578cb 1934 /*
49426420
JW
1935 * We are in the middle of the charge context here, so we
1936 * don't want to block when potentially sitting on a callstack
1937 * that holds all kinds of filesystem and mm locks.
1938 *
29ef680a
MH
1939 * cgroup1 allows disabling the OOM killer and waiting for outside
1940 * handling until the charge can succeed; remember the context and put
1941 * the task to sleep at the end of the page fault when all locks are
1942 * released.
49426420 1943 *
29ef680a
MH
1944 * On the other hand, in-kernel OOM killer allows for an async victim
1945 * memory reclaim (oom_reaper) and that means that we are not solely
1946 * relying on the oom victim to make a forward progress and we can
1947 * invoke the oom killer here.
1948 *
1949 * Please note that mem_cgroup_out_of_memory might fail to find a
1950 * victim and then we have to bail out from the charge path.
867578cb 1951 */
29ef680a
MH
1952 if (memcg->oom_kill_disable) {
1953 if (!current->in_user_fault)
1954 return OOM_SKIPPED;
1955 css_get(&memcg->css);
1956 current->memcg_in_oom = memcg;
1957 current->memcg_oom_gfp_mask = mask;
1958 current->memcg_oom_order = order;
1959
1960 return OOM_ASYNC;
1961 }
1962
7056d3a3
MH
1963 mem_cgroup_mark_under_oom(memcg);
1964
1965 locked = mem_cgroup_oom_trylock(memcg);
1966
1967 if (locked)
1968 mem_cgroup_oom_notify(memcg);
1969
1970 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1971 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1972 ret = OOM_SUCCESS;
1973 else
1974 ret = OOM_FAILED;
1975
1976 if (locked)
1977 mem_cgroup_oom_unlock(memcg);
29ef680a 1978
7056d3a3 1979 return ret;
3812c8c8
JW
1980}
1981
1982/**
1983 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1984 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1985 *
49426420
JW
1986 * This has to be called at the end of a page fault if the memcg OOM
1987 * handler was enabled.
3812c8c8 1988 *
49426420 1989 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1990 * sleep on a waitqueue until the userspace task resolves the
1991 * situation. Sleeping directly in the charge context with all kinds
1992 * of locks held is not a good idea, instead we remember an OOM state
1993 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1994 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1995 *
1996 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1997 * completed, %false otherwise.
3812c8c8 1998 */
49426420 1999bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2000{
626ebc41 2001 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2002 struct oom_wait_info owait;
49426420 2003 bool locked;
3812c8c8
JW
2004
2005 /* OOM is global, do not handle */
3812c8c8 2006 if (!memcg)
49426420 2007 return false;
3812c8c8 2008
7c5f64f8 2009 if (!handle)
49426420 2010 goto cleanup;
3812c8c8
JW
2011
2012 owait.memcg = memcg;
2013 owait.wait.flags = 0;
2014 owait.wait.func = memcg_oom_wake_function;
2015 owait.wait.private = current;
2055da97 2016 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2017
3812c8c8 2018 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2019 mem_cgroup_mark_under_oom(memcg);
2020
2021 locked = mem_cgroup_oom_trylock(memcg);
2022
2023 if (locked)
2024 mem_cgroup_oom_notify(memcg);
2025
2026 if (locked && !memcg->oom_kill_disable) {
2027 mem_cgroup_unmark_under_oom(memcg);
2028 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
2029 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2030 current->memcg_oom_order);
49426420 2031 } else {
3812c8c8 2032 schedule();
49426420
JW
2033 mem_cgroup_unmark_under_oom(memcg);
2034 finish_wait(&memcg_oom_waitq, &owait.wait);
2035 }
2036
2037 if (locked) {
fb2a6fc5
JW
2038 mem_cgroup_oom_unlock(memcg);
2039 /*
2040 * There is no guarantee that an OOM-lock contender
2041 * sees the wakeups triggered by the OOM kill
2042 * uncharges. Wake any sleepers explicitely.
2043 */
2044 memcg_oom_recover(memcg);
2045 }
49426420 2046cleanup:
626ebc41 2047 current->memcg_in_oom = NULL;
3812c8c8 2048 css_put(&memcg->css);
867578cb 2049 return true;
0b7f569e
KH
2050}
2051
3d8b38eb
RG
2052/**
2053 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2054 * @victim: task to be killed by the OOM killer
2055 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2056 *
2057 * Returns a pointer to a memory cgroup, which has to be cleaned up
2058 * by killing all belonging OOM-killable tasks.
2059 *
2060 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2061 */
2062struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2063 struct mem_cgroup *oom_domain)
2064{
2065 struct mem_cgroup *oom_group = NULL;
2066 struct mem_cgroup *memcg;
2067
2068 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2069 return NULL;
2070
2071 if (!oom_domain)
2072 oom_domain = root_mem_cgroup;
2073
2074 rcu_read_lock();
2075
2076 memcg = mem_cgroup_from_task(victim);
2077 if (memcg == root_mem_cgroup)
2078 goto out;
2079
48fe267c
RG
2080 /*
2081 * If the victim task has been asynchronously moved to a different
2082 * memory cgroup, we might end up killing tasks outside oom_domain.
2083 * In this case it's better to ignore memory.group.oom.
2084 */
2085 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2086 goto out;
2087
3d8b38eb
RG
2088 /*
2089 * Traverse the memory cgroup hierarchy from the victim task's
2090 * cgroup up to the OOMing cgroup (or root) to find the
2091 * highest-level memory cgroup with oom.group set.
2092 */
2093 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2094 if (memcg->oom_group)
2095 oom_group = memcg;
2096
2097 if (memcg == oom_domain)
2098 break;
2099 }
2100
2101 if (oom_group)
2102 css_get(&oom_group->css);
2103out:
2104 rcu_read_unlock();
2105
2106 return oom_group;
2107}
2108
2109void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2110{
2111 pr_info("Tasks in ");
2112 pr_cont_cgroup_path(memcg->css.cgroup);
2113 pr_cont(" are going to be killed due to memory.oom.group set\n");
2114}
2115
d7365e78 2116/**
81f8c3a4
JW
2117 * lock_page_memcg - lock a page->mem_cgroup binding
2118 * @page: the page
32047e2a 2119 *
81f8c3a4 2120 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2121 * another cgroup.
2122 *
2123 * It ensures lifetime of the returned memcg. Caller is responsible
2124 * for the lifetime of the page; __unlock_page_memcg() is available
2125 * when @page might get freed inside the locked section.
d69b042f 2126 */
739f79fc 2127struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5 2128{
9da7b521 2129 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2130 struct mem_cgroup *memcg;
6de22619 2131 unsigned long flags;
89c06bd5 2132
6de22619
JW
2133 /*
2134 * The RCU lock is held throughout the transaction. The fast
2135 * path can get away without acquiring the memcg->move_lock
2136 * because page moving starts with an RCU grace period.
739f79fc
JW
2137 *
2138 * The RCU lock also protects the memcg from being freed when
2139 * the page state that is going to change is the only thing
2140 * preventing the page itself from being freed. E.g. writeback
2141 * doesn't hold a page reference and relies on PG_writeback to
2142 * keep off truncation, migration and so forth.
2143 */
d7365e78
JW
2144 rcu_read_lock();
2145
2146 if (mem_cgroup_disabled())
739f79fc 2147 return NULL;
89c06bd5 2148again:
9da7b521 2149 memcg = head->mem_cgroup;
29833315 2150 if (unlikely(!memcg))
739f79fc 2151 return NULL;
d7365e78 2152
bdcbb659 2153 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2154 return memcg;
89c06bd5 2155
6de22619 2156 spin_lock_irqsave(&memcg->move_lock, flags);
9da7b521 2157 if (memcg != head->mem_cgroup) {
6de22619 2158 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2159 goto again;
2160 }
6de22619
JW
2161
2162 /*
2163 * When charge migration first begins, we can have locked and
2164 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2165 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2166 */
2167 memcg->move_lock_task = current;
2168 memcg->move_lock_flags = flags;
d7365e78 2169
739f79fc 2170 return memcg;
89c06bd5 2171}
81f8c3a4 2172EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2173
d7365e78 2174/**
739f79fc
JW
2175 * __unlock_page_memcg - unlock and unpin a memcg
2176 * @memcg: the memcg
2177 *
2178 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2179 */
739f79fc 2180void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2181{
6de22619
JW
2182 if (memcg && memcg->move_lock_task == current) {
2183 unsigned long flags = memcg->move_lock_flags;
2184
2185 memcg->move_lock_task = NULL;
2186 memcg->move_lock_flags = 0;
2187
2188 spin_unlock_irqrestore(&memcg->move_lock, flags);
2189 }
89c06bd5 2190
d7365e78 2191 rcu_read_unlock();
89c06bd5 2192}
739f79fc
JW
2193
2194/**
2195 * unlock_page_memcg - unlock a page->mem_cgroup binding
2196 * @page: the page
2197 */
2198void unlock_page_memcg(struct page *page)
2199{
9da7b521
JW
2200 struct page *head = compound_head(page);
2201
2202 __unlock_page_memcg(head->mem_cgroup);
739f79fc 2203}
81f8c3a4 2204EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2205
cdec2e42
KH
2206struct memcg_stock_pcp {
2207 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2208 unsigned int nr_pages;
bf4f0599
RG
2209
2210#ifdef CONFIG_MEMCG_KMEM
2211 struct obj_cgroup *cached_objcg;
2212 unsigned int nr_bytes;
2213#endif
2214
cdec2e42 2215 struct work_struct work;
26fe6168 2216 unsigned long flags;
a0db00fc 2217#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2218};
2219static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2220static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2221
bf4f0599
RG
2222#ifdef CONFIG_MEMCG_KMEM
2223static void drain_obj_stock(struct memcg_stock_pcp *stock);
2224static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2225 struct mem_cgroup *root_memcg);
2226
2227#else
2228static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2229{
2230}
2231static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2232 struct mem_cgroup *root_memcg)
2233{
2234 return false;
2235}
2236#endif
2237
a0956d54
SS
2238/**
2239 * consume_stock: Try to consume stocked charge on this cpu.
2240 * @memcg: memcg to consume from.
2241 * @nr_pages: how many pages to charge.
2242 *
2243 * The charges will only happen if @memcg matches the current cpu's memcg
2244 * stock, and at least @nr_pages are available in that stock. Failure to
2245 * service an allocation will refill the stock.
2246 *
2247 * returns true if successful, false otherwise.
cdec2e42 2248 */
a0956d54 2249static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2250{
2251 struct memcg_stock_pcp *stock;
db2ba40c 2252 unsigned long flags;
3e32cb2e 2253 bool ret = false;
cdec2e42 2254
a983b5eb 2255 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2256 return ret;
a0956d54 2257
db2ba40c
JW
2258 local_irq_save(flags);
2259
2260 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2261 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2262 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2263 ret = true;
2264 }
db2ba40c
JW
2265
2266 local_irq_restore(flags);
2267
cdec2e42
KH
2268 return ret;
2269}
2270
2271/*
3e32cb2e 2272 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2273 */
2274static void drain_stock(struct memcg_stock_pcp *stock)
2275{
2276 struct mem_cgroup *old = stock->cached;
2277
1a3e1f40
JW
2278 if (!old)
2279 return;
2280
11c9ea4e 2281 if (stock->nr_pages) {
3e32cb2e 2282 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2283 if (do_memsw_account())
3e32cb2e 2284 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2285 stock->nr_pages = 0;
cdec2e42 2286 }
1a3e1f40
JW
2287
2288 css_put(&old->css);
cdec2e42 2289 stock->cached = NULL;
cdec2e42
KH
2290}
2291
cdec2e42
KH
2292static void drain_local_stock(struct work_struct *dummy)
2293{
db2ba40c
JW
2294 struct memcg_stock_pcp *stock;
2295 unsigned long flags;
2296
72f0184c
MH
2297 /*
2298 * The only protection from memory hotplug vs. drain_stock races is
2299 * that we always operate on local CPU stock here with IRQ disabled
2300 */
db2ba40c
JW
2301 local_irq_save(flags);
2302
2303 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 2304 drain_obj_stock(stock);
cdec2e42 2305 drain_stock(stock);
26fe6168 2306 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2307
2308 local_irq_restore(flags);
cdec2e42
KH
2309}
2310
2311/*
3e32cb2e 2312 * Cache charges(val) to local per_cpu area.
320cc51d 2313 * This will be consumed by consume_stock() function, later.
cdec2e42 2314 */
c0ff4b85 2315static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2316{
db2ba40c
JW
2317 struct memcg_stock_pcp *stock;
2318 unsigned long flags;
2319
2320 local_irq_save(flags);
cdec2e42 2321
db2ba40c 2322 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2323 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2324 drain_stock(stock);
1a3e1f40 2325 css_get(&memcg->css);
c0ff4b85 2326 stock->cached = memcg;
cdec2e42 2327 }
11c9ea4e 2328 stock->nr_pages += nr_pages;
db2ba40c 2329
a983b5eb 2330 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2331 drain_stock(stock);
2332
db2ba40c 2333 local_irq_restore(flags);
cdec2e42
KH
2334}
2335
2336/*
c0ff4b85 2337 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2338 * of the hierarchy under it.
cdec2e42 2339 */
6d3d6aa2 2340static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2341{
26fe6168 2342 int cpu, curcpu;
d38144b7 2343
6d3d6aa2
JW
2344 /* If someone's already draining, avoid adding running more workers. */
2345 if (!mutex_trylock(&percpu_charge_mutex))
2346 return;
72f0184c
MH
2347 /*
2348 * Notify other cpus that system-wide "drain" is running
2349 * We do not care about races with the cpu hotplug because cpu down
2350 * as well as workers from this path always operate on the local
2351 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2352 */
5af12d0e 2353 curcpu = get_cpu();
cdec2e42
KH
2354 for_each_online_cpu(cpu) {
2355 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2356 struct mem_cgroup *memcg;
e1a366be 2357 bool flush = false;
26fe6168 2358
e1a366be 2359 rcu_read_lock();
c0ff4b85 2360 memcg = stock->cached;
e1a366be
RG
2361 if (memcg && stock->nr_pages &&
2362 mem_cgroup_is_descendant(memcg, root_memcg))
2363 flush = true;
bf4f0599
RG
2364 if (obj_stock_flush_required(stock, root_memcg))
2365 flush = true;
e1a366be
RG
2366 rcu_read_unlock();
2367
2368 if (flush &&
2369 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2370 if (cpu == curcpu)
2371 drain_local_stock(&stock->work);
2372 else
2373 schedule_work_on(cpu, &stock->work);
2374 }
cdec2e42 2375 }
5af12d0e 2376 put_cpu();
9f50fad6 2377 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2378}
2379
308167fc 2380static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2381{
cdec2e42 2382 struct memcg_stock_pcp *stock;
42a30035 2383 struct mem_cgroup *memcg, *mi;
cdec2e42 2384
cdec2e42
KH
2385 stock = &per_cpu(memcg_stock, cpu);
2386 drain_stock(stock);
a983b5eb
JW
2387
2388 for_each_mem_cgroup(memcg) {
2389 int i;
2390
2391 for (i = 0; i < MEMCG_NR_STAT; i++) {
2392 int nid;
2393 long x;
2394
871789d4 2395 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2396 if (x)
42a30035
JW
2397 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2398 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2399
2400 if (i >= NR_VM_NODE_STAT_ITEMS)
2401 continue;
2402
2403 for_each_node(nid) {
2404 struct mem_cgroup_per_node *pn;
2405
2406 pn = mem_cgroup_nodeinfo(memcg, nid);
2407 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2408 if (x)
42a30035
JW
2409 do {
2410 atomic_long_add(x, &pn->lruvec_stat[i]);
2411 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2412 }
2413 }
2414
e27be240 2415 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2416 long x;
2417
871789d4 2418 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2419 if (x)
42a30035
JW
2420 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2421 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2422 }
2423 }
2424
308167fc 2425 return 0;
cdec2e42
KH
2426}
2427
b3ff9291
CD
2428static unsigned long reclaim_high(struct mem_cgroup *memcg,
2429 unsigned int nr_pages,
2430 gfp_t gfp_mask)
f7e1cb6e 2431{
b3ff9291
CD
2432 unsigned long nr_reclaimed = 0;
2433
f7e1cb6e 2434 do {
e22c6ed9
JW
2435 unsigned long pflags;
2436
d1663a90
JK
2437 if (page_counter_read(&memcg->memory) <=
2438 READ_ONCE(memcg->memory.high))
f7e1cb6e 2439 continue;
e22c6ed9 2440
e27be240 2441 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2442
2443 psi_memstall_enter(&pflags);
b3ff9291
CD
2444 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2445 gfp_mask, true);
e22c6ed9 2446 psi_memstall_leave(&pflags);
4bf17307
CD
2447 } while ((memcg = parent_mem_cgroup(memcg)) &&
2448 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2449
2450 return nr_reclaimed;
f7e1cb6e
JW
2451}
2452
2453static void high_work_func(struct work_struct *work)
2454{
2455 struct mem_cgroup *memcg;
2456
2457 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2458 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2459}
2460
0e4b01df
CD
2461/*
2462 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2463 * enough to still cause a significant slowdown in most cases, while still
2464 * allowing diagnostics and tracing to proceed without becoming stuck.
2465 */
2466#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2467
2468/*
2469 * When calculating the delay, we use these either side of the exponentiation to
2470 * maintain precision and scale to a reasonable number of jiffies (see the table
2471 * below.
2472 *
2473 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2474 * overage ratio to a delay.
ac5ddd0f 2475 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2476 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2477 * to produce a reasonable delay curve.
2478 *
2479 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2480 * reasonable delay curve compared to precision-adjusted overage, not
2481 * penalising heavily at first, but still making sure that growth beyond the
2482 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2483 * example, with a high of 100 megabytes:
2484 *
2485 * +-------+------------------------+
2486 * | usage | time to allocate in ms |
2487 * +-------+------------------------+
2488 * | 100M | 0 |
2489 * | 101M | 6 |
2490 * | 102M | 25 |
2491 * | 103M | 57 |
2492 * | 104M | 102 |
2493 * | 105M | 159 |
2494 * | 106M | 230 |
2495 * | 107M | 313 |
2496 * | 108M | 409 |
2497 * | 109M | 518 |
2498 * | 110M | 639 |
2499 * | 111M | 774 |
2500 * | 112M | 921 |
2501 * | 113M | 1081 |
2502 * | 114M | 1254 |
2503 * | 115M | 1439 |
2504 * | 116M | 1638 |
2505 * | 117M | 1849 |
2506 * | 118M | 2000 |
2507 * | 119M | 2000 |
2508 * | 120M | 2000 |
2509 * +-------+------------------------+
2510 */
2511 #define MEMCG_DELAY_PRECISION_SHIFT 20
2512 #define MEMCG_DELAY_SCALING_SHIFT 14
2513
8a5dbc65 2514static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2515{
8a5dbc65 2516 u64 overage;
b23afb93 2517
8a5dbc65
JK
2518 if (usage <= high)
2519 return 0;
e26733e0 2520
8a5dbc65
JK
2521 /*
2522 * Prevent division by 0 in overage calculation by acting as if
2523 * it was a threshold of 1 page
2524 */
2525 high = max(high, 1UL);
9b8b1754 2526
8a5dbc65
JK
2527 overage = usage - high;
2528 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2529 return div64_u64(overage, high);
2530}
e26733e0 2531
8a5dbc65
JK
2532static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2533{
2534 u64 overage, max_overage = 0;
e26733e0 2535
8a5dbc65
JK
2536 do {
2537 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2538 READ_ONCE(memcg->memory.high));
8a5dbc65 2539 max_overage = max(overage, max_overage);
e26733e0
CD
2540 } while ((memcg = parent_mem_cgroup(memcg)) &&
2541 !mem_cgroup_is_root(memcg));
2542
8a5dbc65
JK
2543 return max_overage;
2544}
2545
4b82ab4f
JK
2546static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2547{
2548 u64 overage, max_overage = 0;
2549
2550 do {
2551 overage = calculate_overage(page_counter_read(&memcg->swap),
2552 READ_ONCE(memcg->swap.high));
2553 if (overage)
2554 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2555 max_overage = max(overage, max_overage);
2556 } while ((memcg = parent_mem_cgroup(memcg)) &&
2557 !mem_cgroup_is_root(memcg));
2558
2559 return max_overage;
2560}
2561
8a5dbc65
JK
2562/*
2563 * Get the number of jiffies that we should penalise a mischievous cgroup which
2564 * is exceeding its memory.high by checking both it and its ancestors.
2565 */
2566static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2567 unsigned int nr_pages,
2568 u64 max_overage)
2569{
2570 unsigned long penalty_jiffies;
2571
e26733e0
CD
2572 if (!max_overage)
2573 return 0;
0e4b01df
CD
2574
2575 /*
0e4b01df
CD
2576 * We use overage compared to memory.high to calculate the number of
2577 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2578 * fairly lenient on small overages, and increasingly harsh when the
2579 * memcg in question makes it clear that it has no intention of stopping
2580 * its crazy behaviour, so we exponentially increase the delay based on
2581 * overage amount.
2582 */
e26733e0
CD
2583 penalty_jiffies = max_overage * max_overage * HZ;
2584 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2585 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2586
2587 /*
2588 * Factor in the task's own contribution to the overage, such that four
2589 * N-sized allocations are throttled approximately the same as one
2590 * 4N-sized allocation.
2591 *
2592 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2593 * larger the current charge patch is than that.
2594 */
ff144e69 2595 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2596}
2597
2598/*
2599 * Scheduled by try_charge() to be executed from the userland return path
2600 * and reclaims memory over the high limit.
2601 */
2602void mem_cgroup_handle_over_high(void)
2603{
2604 unsigned long penalty_jiffies;
2605 unsigned long pflags;
b3ff9291 2606 unsigned long nr_reclaimed;
e26733e0 2607 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2608 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2609 struct mem_cgroup *memcg;
b3ff9291 2610 bool in_retry = false;
e26733e0
CD
2611
2612 if (likely(!nr_pages))
2613 return;
2614
2615 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2616 current->memcg_nr_pages_over_high = 0;
2617
b3ff9291
CD
2618retry_reclaim:
2619 /*
2620 * The allocating task should reclaim at least the batch size, but for
2621 * subsequent retries we only want to do what's necessary to prevent oom
2622 * or breaching resource isolation.
2623 *
2624 * This is distinct from memory.max or page allocator behaviour because
2625 * memory.high is currently batched, whereas memory.max and the page
2626 * allocator run every time an allocation is made.
2627 */
2628 nr_reclaimed = reclaim_high(memcg,
2629 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2630 GFP_KERNEL);
2631
e26733e0
CD
2632 /*
2633 * memory.high is breached and reclaim is unable to keep up. Throttle
2634 * allocators proactively to slow down excessive growth.
2635 */
8a5dbc65
JK
2636 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2637 mem_find_max_overage(memcg));
0e4b01df 2638
4b82ab4f
JK
2639 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2640 swap_find_max_overage(memcg));
2641
ff144e69
JK
2642 /*
2643 * Clamp the max delay per usermode return so as to still keep the
2644 * application moving forwards and also permit diagnostics, albeit
2645 * extremely slowly.
2646 */
2647 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2648
0e4b01df
CD
2649 /*
2650 * Don't sleep if the amount of jiffies this memcg owes us is so low
2651 * that it's not even worth doing, in an attempt to be nice to those who
2652 * go only a small amount over their memory.high value and maybe haven't
2653 * been aggressively reclaimed enough yet.
2654 */
2655 if (penalty_jiffies <= HZ / 100)
2656 goto out;
2657
b3ff9291
CD
2658 /*
2659 * If reclaim is making forward progress but we're still over
2660 * memory.high, we want to encourage that rather than doing allocator
2661 * throttling.
2662 */
2663 if (nr_reclaimed || nr_retries--) {
2664 in_retry = true;
2665 goto retry_reclaim;
2666 }
2667
0e4b01df
CD
2668 /*
2669 * If we exit early, we're guaranteed to die (since
2670 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2671 * need to account for any ill-begotten jiffies to pay them off later.
2672 */
2673 psi_memstall_enter(&pflags);
2674 schedule_timeout_killable(penalty_jiffies);
2675 psi_memstall_leave(&pflags);
2676
2677out:
2678 css_put(&memcg->css);
b23afb93
TH
2679}
2680
00501b53
JW
2681static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2682 unsigned int nr_pages)
8a9f3ccd 2683{
a983b5eb 2684 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2685 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2686 struct mem_cgroup *mem_over_limit;
3e32cb2e 2687 struct page_counter *counter;
e22c6ed9 2688 enum oom_status oom_status;
6539cc05 2689 unsigned long nr_reclaimed;
b70a2a21
JW
2690 bool may_swap = true;
2691 bool drained = false;
e22c6ed9 2692 unsigned long pflags;
a636b327 2693
ce00a967 2694 if (mem_cgroup_is_root(memcg))
10d53c74 2695 return 0;
6539cc05 2696retry:
b6b6cc72 2697 if (consume_stock(memcg, nr_pages))
10d53c74 2698 return 0;
8a9f3ccd 2699
7941d214 2700 if (!do_memsw_account() ||
6071ca52
JW
2701 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2702 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2703 goto done_restock;
7941d214 2704 if (do_memsw_account())
3e32cb2e
JW
2705 page_counter_uncharge(&memcg->memsw, batch);
2706 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2707 } else {
3e32cb2e 2708 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2709 may_swap = false;
3fbe7244 2710 }
7a81b88c 2711
6539cc05
JW
2712 if (batch > nr_pages) {
2713 batch = nr_pages;
2714 goto retry;
2715 }
6d61ef40 2716
869712fd
JW
2717 /*
2718 * Memcg doesn't have a dedicated reserve for atomic
2719 * allocations. But like the global atomic pool, we need to
2720 * put the burden of reclaim on regular allocation requests
2721 * and let these go through as privileged allocations.
2722 */
2723 if (gfp_mask & __GFP_ATOMIC)
2724 goto force;
2725
06b078fc
JW
2726 /*
2727 * Unlike in global OOM situations, memcg is not in a physical
2728 * memory shortage. Allow dying and OOM-killed tasks to
2729 * bypass the last charges so that they can exit quickly and
2730 * free their memory.
2731 */
7775face 2732 if (unlikely(should_force_charge()))
10d53c74 2733 goto force;
06b078fc 2734
89a28483
JW
2735 /*
2736 * Prevent unbounded recursion when reclaim operations need to
2737 * allocate memory. This might exceed the limits temporarily,
2738 * but we prefer facilitating memory reclaim and getting back
2739 * under the limit over triggering OOM kills in these cases.
2740 */
2741 if (unlikely(current->flags & PF_MEMALLOC))
2742 goto force;
2743
06b078fc
JW
2744 if (unlikely(task_in_memcg_oom(current)))
2745 goto nomem;
2746
d0164adc 2747 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2748 goto nomem;
4b534334 2749
e27be240 2750 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2751
e22c6ed9 2752 psi_memstall_enter(&pflags);
b70a2a21
JW
2753 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2754 gfp_mask, may_swap);
e22c6ed9 2755 psi_memstall_leave(&pflags);
6539cc05 2756
61e02c74 2757 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2758 goto retry;
28c34c29 2759
b70a2a21 2760 if (!drained) {
6d3d6aa2 2761 drain_all_stock(mem_over_limit);
b70a2a21
JW
2762 drained = true;
2763 goto retry;
2764 }
2765
28c34c29
JW
2766 if (gfp_mask & __GFP_NORETRY)
2767 goto nomem;
6539cc05
JW
2768 /*
2769 * Even though the limit is exceeded at this point, reclaim
2770 * may have been able to free some pages. Retry the charge
2771 * before killing the task.
2772 *
2773 * Only for regular pages, though: huge pages are rather
2774 * unlikely to succeed so close to the limit, and we fall back
2775 * to regular pages anyway in case of failure.
2776 */
61e02c74 2777 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2778 goto retry;
2779 /*
2780 * At task move, charge accounts can be doubly counted. So, it's
2781 * better to wait until the end of task_move if something is going on.
2782 */
2783 if (mem_cgroup_wait_acct_move(mem_over_limit))
2784 goto retry;
2785
9b130619
JW
2786 if (nr_retries--)
2787 goto retry;
2788
38d38493 2789 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2790 goto nomem;
2791
06b078fc 2792 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2793 goto force;
06b078fc 2794
6539cc05 2795 if (fatal_signal_pending(current))
10d53c74 2796 goto force;
6539cc05 2797
29ef680a
MH
2798 /*
2799 * keep retrying as long as the memcg oom killer is able to make
2800 * a forward progress or bypass the charge if the oom killer
2801 * couldn't make any progress.
2802 */
2803 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2804 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2805 switch (oom_status) {
2806 case OOM_SUCCESS:
d977aa93 2807 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2808 goto retry;
2809 case OOM_FAILED:
2810 goto force;
2811 default:
2812 goto nomem;
2813 }
7a81b88c 2814nomem:
6d1fdc48 2815 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2816 return -ENOMEM;
10d53c74
TH
2817force:
2818 /*
2819 * The allocation either can't fail or will lead to more memory
2820 * being freed very soon. Allow memory usage go over the limit
2821 * temporarily by force charging it.
2822 */
2823 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2824 if (do_memsw_account())
10d53c74 2825 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2826
2827 return 0;
6539cc05
JW
2828
2829done_restock:
2830 if (batch > nr_pages)
2831 refill_stock(memcg, batch - nr_pages);
b23afb93 2832
241994ed 2833 /*
b23afb93
TH
2834 * If the hierarchy is above the normal consumption range, schedule
2835 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2836 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2837 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2838 * not recorded as it most likely matches current's and won't
2839 * change in the meantime. As high limit is checked again before
2840 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2841 */
2842 do {
4b82ab4f
JK
2843 bool mem_high, swap_high;
2844
2845 mem_high = page_counter_read(&memcg->memory) >
2846 READ_ONCE(memcg->memory.high);
2847 swap_high = page_counter_read(&memcg->swap) >
2848 READ_ONCE(memcg->swap.high);
2849
2850 /* Don't bother a random interrupted task */
2851 if (in_interrupt()) {
2852 if (mem_high) {
f7e1cb6e
JW
2853 schedule_work(&memcg->high_work);
2854 break;
2855 }
4b82ab4f
JK
2856 continue;
2857 }
2858
2859 if (mem_high || swap_high) {
2860 /*
2861 * The allocating tasks in this cgroup will need to do
2862 * reclaim or be throttled to prevent further growth
2863 * of the memory or swap footprints.
2864 *
2865 * Target some best-effort fairness between the tasks,
2866 * and distribute reclaim work and delay penalties
2867 * based on how much each task is actually allocating.
2868 */
9516a18a 2869 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2870 set_notify_resume(current);
2871 break;
2872 }
241994ed 2873 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2874
2875 return 0;
7a81b88c 2876}
8a9f3ccd 2877
f0e45fb4 2878#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2879static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2880{
ce00a967
JW
2881 if (mem_cgroup_is_root(memcg))
2882 return;
2883
3e32cb2e 2884 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2885 if (do_memsw_account())
3e32cb2e 2886 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2887}
f0e45fb4 2888#endif
d01dd17f 2889
d9eb1ea2 2890static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2891{
1306a85a 2892 VM_BUG_ON_PAGE(page->mem_cgroup, page);
0a31bc97 2893 /*
a0b5b414 2894 * Any of the following ensures page->mem_cgroup stability:
0a31bc97 2895 *
a0b5b414
JW
2896 * - the page lock
2897 * - LRU isolation
2898 * - lock_page_memcg()
2899 * - exclusive reference
0a31bc97 2900 */
1306a85a 2901 page->mem_cgroup = memcg;
7a81b88c 2902}
66e1707b 2903
84c07d11 2904#ifdef CONFIG_MEMCG_KMEM
10befea9
RG
2905int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2906 gfp_t gfp)
2907{
2908 unsigned int objects = objs_per_slab_page(s, page);
2909 void *vec;
2910
2911 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2912 page_to_nid(page));
2913 if (!vec)
2914 return -ENOMEM;
2915
2916 if (cmpxchg(&page->obj_cgroups, NULL,
2917 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2918 kfree(vec);
2919 else
2920 kmemleak_not_leak(vec);
2921
2922 return 0;
2923}
2924
8380ce47
RG
2925/*
2926 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2927 *
2928 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2929 * cgroup_mutex, etc.
2930 */
2931struct mem_cgroup *mem_cgroup_from_obj(void *p)
2932{
2933 struct page *page;
2934
2935 if (mem_cgroup_disabled())
2936 return NULL;
2937
2938 page = virt_to_head_page(p);
2939
19b629c9
RG
2940 /*
2941 * If page->mem_cgroup is set, it's either a simple mem_cgroup pointer
2942 * or a pointer to obj_cgroup vector. In the latter case the lowest
2943 * bit of the pointer is set.
2944 * The page->mem_cgroup pointer can be asynchronously changed
2945 * from NULL to (obj_cgroup_vec | 0x1UL), but can't be changed
2946 * from a valid memcg pointer to objcg vector or back.
2947 */
2948 if (!page->mem_cgroup)
2949 return NULL;
2950
8380ce47 2951 /*
9855609b
RG
2952 * Slab objects are accounted individually, not per-page.
2953 * Memcg membership data for each individual object is saved in
2954 * the page->obj_cgroups.
8380ce47 2955 */
9855609b
RG
2956 if (page_has_obj_cgroups(page)) {
2957 struct obj_cgroup *objcg;
2958 unsigned int off;
2959
2960 off = obj_to_index(page->slab_cache, page, p);
2961 objcg = page_obj_cgroups(page)[off];
10befea9
RG
2962 if (objcg)
2963 return obj_cgroup_memcg(objcg);
2964
2965 return NULL;
9855609b 2966 }
8380ce47
RG
2967
2968 /* All other pages use page->mem_cgroup */
2969 return page->mem_cgroup;
2970}
2971
bf4f0599
RG
2972__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2973{
2974 struct obj_cgroup *objcg = NULL;
2975 struct mem_cgroup *memcg;
2976
279c3393
RG
2977 if (memcg_kmem_bypass())
2978 return NULL;
2979
bf4f0599 2980 rcu_read_lock();
37d5985c
RG
2981 if (unlikely(active_memcg()))
2982 memcg = active_memcg();
bf4f0599
RG
2983 else
2984 memcg = mem_cgroup_from_task(current);
2985
2986 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2987 objcg = rcu_dereference(memcg->objcg);
2988 if (objcg && obj_cgroup_tryget(objcg))
2989 break;
2990 }
2991 rcu_read_unlock();
2992
2993 return objcg;
2994}
2995
f3bb3043 2996static int memcg_alloc_cache_id(void)
55007d84 2997{
f3bb3043
VD
2998 int id, size;
2999 int err;
3000
dbcf73e2 3001 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
3002 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3003 if (id < 0)
3004 return id;
55007d84 3005
dbcf73e2 3006 if (id < memcg_nr_cache_ids)
f3bb3043
VD
3007 return id;
3008
3009 /*
3010 * There's no space for the new id in memcg_caches arrays,
3011 * so we have to grow them.
3012 */
05257a1a 3013 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
3014
3015 size = 2 * (id + 1);
55007d84
GC
3016 if (size < MEMCG_CACHES_MIN_SIZE)
3017 size = MEMCG_CACHES_MIN_SIZE;
3018 else if (size > MEMCG_CACHES_MAX_SIZE)
3019 size = MEMCG_CACHES_MAX_SIZE;
3020
9855609b 3021 err = memcg_update_all_list_lrus(size);
05257a1a
VD
3022 if (!err)
3023 memcg_nr_cache_ids = size;
3024
3025 up_write(&memcg_cache_ids_sem);
3026
f3bb3043 3027 if (err) {
dbcf73e2 3028 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
3029 return err;
3030 }
3031 return id;
3032}
3033
3034static void memcg_free_cache_id(int id)
3035{
dbcf73e2 3036 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
3037}
3038
45264778 3039/**
4b13f64d 3040 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 3041 * @memcg: memory cgroup to charge
45264778 3042 * @gfp: reclaim mode
92d0510c 3043 * @nr_pages: number of pages to charge
45264778
VD
3044 *
3045 * Returns 0 on success, an error code on failure.
3046 */
4b13f64d
RG
3047int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3048 unsigned int nr_pages)
7ae1e1d0 3049{
f3ccb2c4 3050 struct page_counter *counter;
7ae1e1d0
GC
3051 int ret;
3052
f3ccb2c4 3053 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 3054 if (ret)
f3ccb2c4 3055 return ret;
52c29b04
JW
3056
3057 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3058 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
3059
3060 /*
3061 * Enforce __GFP_NOFAIL allocation because callers are not
3062 * prepared to see failures and likely do not have any failure
3063 * handling code.
3064 */
3065 if (gfp & __GFP_NOFAIL) {
3066 page_counter_charge(&memcg->kmem, nr_pages);
3067 return 0;
3068 }
52c29b04
JW
3069 cancel_charge(memcg, nr_pages);
3070 return -ENOMEM;
7ae1e1d0 3071 }
f3ccb2c4 3072 return 0;
7ae1e1d0
GC
3073}
3074
4b13f64d
RG
3075/**
3076 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3077 * @memcg: memcg to uncharge
3078 * @nr_pages: number of pages to uncharge
3079 */
3080void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3081{
3082 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3083 page_counter_uncharge(&memcg->kmem, nr_pages);
3084
3085 page_counter_uncharge(&memcg->memory, nr_pages);
3086 if (do_memsw_account())
3087 page_counter_uncharge(&memcg->memsw, nr_pages);
3088}
3089
45264778 3090/**
f4b00eab 3091 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3092 * @page: page to charge
3093 * @gfp: reclaim mode
3094 * @order: allocation order
3095 *
3096 * Returns 0 on success, an error code on failure.
3097 */
f4b00eab 3098int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3099{
f3ccb2c4 3100 struct mem_cgroup *memcg;
fcff7d7e 3101 int ret = 0;
7ae1e1d0 3102
d46eb14b 3103 memcg = get_mem_cgroup_from_current();
279c3393 3104 if (memcg && !mem_cgroup_is_root(memcg)) {
4b13f64d 3105 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35
RG
3106 if (!ret) {
3107 page->mem_cgroup = memcg;
c4159a75 3108 __SetPageKmemcg(page);
1a3e1f40 3109 return 0;
4d96ba35 3110 }
279c3393 3111 css_put(&memcg->css);
c4159a75 3112 }
d05e83a6 3113 return ret;
7ae1e1d0 3114}
49a18eae 3115
45264778 3116/**
f4b00eab 3117 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3118 * @page: page to uncharge
3119 * @order: allocation order
3120 */
f4b00eab 3121void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3122{
1306a85a 3123 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 3124 unsigned int nr_pages = 1 << order;
7ae1e1d0 3125
7ae1e1d0
GC
3126 if (!memcg)
3127 return;
3128
309381fe 3129 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3130 __memcg_kmem_uncharge(memcg, nr_pages);
1306a85a 3131 page->mem_cgroup = NULL;
1a3e1f40 3132 css_put(&memcg->css);
c4159a75
VD
3133
3134 /* slab pages do not have PageKmemcg flag set */
3135 if (PageKmemcg(page))
3136 __ClearPageKmemcg(page);
60d3fd32 3137}
bf4f0599
RG
3138
3139static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3140{
3141 struct memcg_stock_pcp *stock;
3142 unsigned long flags;
3143 bool ret = false;
3144
3145 local_irq_save(flags);
3146
3147 stock = this_cpu_ptr(&memcg_stock);
3148 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3149 stock->nr_bytes -= nr_bytes;
3150 ret = true;
3151 }
3152
3153 local_irq_restore(flags);
3154
3155 return ret;
3156}
3157
3158static void drain_obj_stock(struct memcg_stock_pcp *stock)
3159{
3160 struct obj_cgroup *old = stock->cached_objcg;
3161
3162 if (!old)
3163 return;
3164
3165 if (stock->nr_bytes) {
3166 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3167 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3168
3169 if (nr_pages) {
3170 rcu_read_lock();
3171 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3172 rcu_read_unlock();
3173 }
3174
3175 /*
3176 * The leftover is flushed to the centralized per-memcg value.
3177 * On the next attempt to refill obj stock it will be moved
3178 * to a per-cpu stock (probably, on an other CPU), see
3179 * refill_obj_stock().
3180 *
3181 * How often it's flushed is a trade-off between the memory
3182 * limit enforcement accuracy and potential CPU contention,
3183 * so it might be changed in the future.
3184 */
3185 atomic_add(nr_bytes, &old->nr_charged_bytes);
3186 stock->nr_bytes = 0;
3187 }
3188
3189 obj_cgroup_put(old);
3190 stock->cached_objcg = NULL;
3191}
3192
3193static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3194 struct mem_cgroup *root_memcg)
3195{
3196 struct mem_cgroup *memcg;
3197
3198 if (stock->cached_objcg) {
3199 memcg = obj_cgroup_memcg(stock->cached_objcg);
3200 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3201 return true;
3202 }
3203
3204 return false;
3205}
3206
3207static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3208{
3209 struct memcg_stock_pcp *stock;
3210 unsigned long flags;
3211
3212 local_irq_save(flags);
3213
3214 stock = this_cpu_ptr(&memcg_stock);
3215 if (stock->cached_objcg != objcg) { /* reset if necessary */
3216 drain_obj_stock(stock);
3217 obj_cgroup_get(objcg);
3218 stock->cached_objcg = objcg;
3219 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3220 }
3221 stock->nr_bytes += nr_bytes;
3222
3223 if (stock->nr_bytes > PAGE_SIZE)
3224 drain_obj_stock(stock);
3225
3226 local_irq_restore(flags);
3227}
3228
3229int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3230{
3231 struct mem_cgroup *memcg;
3232 unsigned int nr_pages, nr_bytes;
3233 int ret;
3234
3235 if (consume_obj_stock(objcg, size))
3236 return 0;
3237
3238 /*
3239 * In theory, memcg->nr_charged_bytes can have enough
3240 * pre-charged bytes to satisfy the allocation. However,
3241 * flushing memcg->nr_charged_bytes requires two atomic
3242 * operations, and memcg->nr_charged_bytes can't be big,
3243 * so it's better to ignore it and try grab some new pages.
3244 * memcg->nr_charged_bytes will be flushed in
3245 * refill_obj_stock(), called from this function or
3246 * independently later.
3247 */
3248 rcu_read_lock();
3249 memcg = obj_cgroup_memcg(objcg);
3250 css_get(&memcg->css);
3251 rcu_read_unlock();
3252
3253 nr_pages = size >> PAGE_SHIFT;
3254 nr_bytes = size & (PAGE_SIZE - 1);
3255
3256 if (nr_bytes)
3257 nr_pages += 1;
3258
3259 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3260 if (!ret && nr_bytes)
3261 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3262
3263 css_put(&memcg->css);
3264 return ret;
3265}
3266
3267void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3268{
3269 refill_obj_stock(objcg, size);
3270}
3271
84c07d11 3272#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3273
ca3e0214
KH
3274#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3275
ca3e0214
KH
3276/*
3277 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 3278 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 3279 */
e94c8a9c 3280void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3281{
1a3e1f40 3282 struct mem_cgroup *memcg = head->mem_cgroup;
e94c8a9c 3283 int i;
ca3e0214 3284
3d37c4a9
KH
3285 if (mem_cgroup_disabled())
3286 return;
b070e65c 3287
1a3e1f40
JW
3288 for (i = 1; i < HPAGE_PMD_NR; i++) {
3289 css_get(&memcg->css);
3290 head[i].mem_cgroup = memcg;
3291 }
ca3e0214 3292}
12d27107 3293#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3294
c255a458 3295#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3296/**
3297 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3298 * @entry: swap entry to be moved
3299 * @from: mem_cgroup which the entry is moved from
3300 * @to: mem_cgroup which the entry is moved to
3301 *
3302 * It succeeds only when the swap_cgroup's record for this entry is the same
3303 * as the mem_cgroup's id of @from.
3304 *
3305 * Returns 0 on success, -EINVAL on failure.
3306 *
3e32cb2e 3307 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3308 * both res and memsw, and called css_get().
3309 */
3310static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3311 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3312{
3313 unsigned short old_id, new_id;
3314
34c00c31
LZ
3315 old_id = mem_cgroup_id(from);
3316 new_id = mem_cgroup_id(to);
02491447
DN
3317
3318 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3319 mod_memcg_state(from, MEMCG_SWAP, -1);
3320 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3321 return 0;
3322 }
3323 return -EINVAL;
3324}
3325#else
3326static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3327 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3328{
3329 return -EINVAL;
3330}
8c7c6e34 3331#endif
d13d1443 3332
bbec2e15 3333static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3334
bbec2e15
RG
3335static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3336 unsigned long max, bool memsw)
628f4235 3337{
3e32cb2e 3338 bool enlarge = false;
bb4a7ea2 3339 bool drained = false;
3e32cb2e 3340 int ret;
c054a78c
YZ
3341 bool limits_invariant;
3342 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3343
3e32cb2e 3344 do {
628f4235
KH
3345 if (signal_pending(current)) {
3346 ret = -EINTR;
3347 break;
3348 }
3e32cb2e 3349
bbec2e15 3350 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3351 /*
3352 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3353 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3354 */
15b42562 3355 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3356 max <= memcg->memsw.max;
c054a78c 3357 if (!limits_invariant) {
bbec2e15 3358 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3359 ret = -EINVAL;
8c7c6e34
KH
3360 break;
3361 }
bbec2e15 3362 if (max > counter->max)
3e32cb2e 3363 enlarge = true;
bbec2e15
RG
3364 ret = page_counter_set_max(counter, max);
3365 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3366
3367 if (!ret)
3368 break;
3369
bb4a7ea2
SB
3370 if (!drained) {
3371 drain_all_stock(memcg);
3372 drained = true;
3373 continue;
3374 }
3375
1ab5c056
AR
3376 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3377 GFP_KERNEL, !memsw)) {
3378 ret = -EBUSY;
3379 break;
3380 }
3381 } while (true);
3e32cb2e 3382
3c11ecf4
KH
3383 if (!ret && enlarge)
3384 memcg_oom_recover(memcg);
3e32cb2e 3385
628f4235
KH
3386 return ret;
3387}
3388
ef8f2327 3389unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3390 gfp_t gfp_mask,
3391 unsigned long *total_scanned)
3392{
3393 unsigned long nr_reclaimed = 0;
ef8f2327 3394 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3395 unsigned long reclaimed;
3396 int loop = 0;
ef8f2327 3397 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3398 unsigned long excess;
0608f43d
AM
3399 unsigned long nr_scanned;
3400
3401 if (order > 0)
3402 return 0;
3403
ef8f2327 3404 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3405
3406 /*
3407 * Do not even bother to check the largest node if the root
3408 * is empty. Do it lockless to prevent lock bouncing. Races
3409 * are acceptable as soft limit is best effort anyway.
3410 */
bfc7228b 3411 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3412 return 0;
3413
0608f43d
AM
3414 /*
3415 * This loop can run a while, specially if mem_cgroup's continuously
3416 * keep exceeding their soft limit and putting the system under
3417 * pressure
3418 */
3419 do {
3420 if (next_mz)
3421 mz = next_mz;
3422 else
3423 mz = mem_cgroup_largest_soft_limit_node(mctz);
3424 if (!mz)
3425 break;
3426
3427 nr_scanned = 0;
ef8f2327 3428 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3429 gfp_mask, &nr_scanned);
3430 nr_reclaimed += reclaimed;
3431 *total_scanned += nr_scanned;
0a31bc97 3432 spin_lock_irq(&mctz->lock);
bc2f2e7f 3433 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3434
3435 /*
3436 * If we failed to reclaim anything from this memory cgroup
3437 * it is time to move on to the next cgroup
3438 */
3439 next_mz = NULL;
bc2f2e7f
VD
3440 if (!reclaimed)
3441 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3442
3e32cb2e 3443 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3444 /*
3445 * One school of thought says that we should not add
3446 * back the node to the tree if reclaim returns 0.
3447 * But our reclaim could return 0, simply because due
3448 * to priority we are exposing a smaller subset of
3449 * memory to reclaim from. Consider this as a longer
3450 * term TODO.
3451 */
3452 /* If excess == 0, no tree ops */
cf2c8127 3453 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3454 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3455 css_put(&mz->memcg->css);
3456 loop++;
3457 /*
3458 * Could not reclaim anything and there are no more
3459 * mem cgroups to try or we seem to be looping without
3460 * reclaiming anything.
3461 */
3462 if (!nr_reclaimed &&
3463 (next_mz == NULL ||
3464 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3465 break;
3466 } while (!nr_reclaimed);
3467 if (next_mz)
3468 css_put(&next_mz->memcg->css);
3469 return nr_reclaimed;
3470}
3471
ea280e7b
TH
3472/*
3473 * Test whether @memcg has children, dead or alive. Note that this
3474 * function doesn't care whether @memcg has use_hierarchy enabled and
3475 * returns %true if there are child csses according to the cgroup
b8f2935f 3476 * hierarchy. Testing use_hierarchy is the caller's responsibility.
ea280e7b 3477 */
b5f99b53
GC
3478static inline bool memcg_has_children(struct mem_cgroup *memcg)
3479{
ea280e7b
TH
3480 bool ret;
3481
ea280e7b
TH
3482 rcu_read_lock();
3483 ret = css_next_child(NULL, &memcg->css);
3484 rcu_read_unlock();
3485 return ret;
b5f99b53
GC
3486}
3487
c26251f9 3488/*
51038171 3489 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3490 *
3491 * Caller is responsible for holding css reference for memcg.
3492 */
3493static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3494{
d977aa93 3495 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3496
c1e862c1
KH
3497 /* we call try-to-free pages for make this cgroup empty */
3498 lru_add_drain_all();
d12c60f6
JS
3499
3500 drain_all_stock(memcg);
3501
f817ed48 3502 /* try to free all pages in this cgroup */
3e32cb2e 3503 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3504 int progress;
c1e862c1 3505
c26251f9
MH
3506 if (signal_pending(current))
3507 return -EINTR;
3508
b70a2a21
JW
3509 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3510 GFP_KERNEL, true);
c1e862c1 3511 if (!progress) {
f817ed48 3512 nr_retries--;
c1e862c1 3513 /* maybe some writeback is necessary */
8aa7e847 3514 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3515 }
f817ed48
KH
3516
3517 }
ab5196c2
MH
3518
3519 return 0;
cc847582
KH
3520}
3521
6770c64e
TH
3522static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3523 char *buf, size_t nbytes,
3524 loff_t off)
c1e862c1 3525{
6770c64e 3526 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3527
d8423011
MH
3528 if (mem_cgroup_is_root(memcg))
3529 return -EINVAL;
6770c64e 3530 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3531}
3532
182446d0
TH
3533static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3534 struct cftype *cft)
18f59ea7 3535{
182446d0 3536 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3537}
3538
182446d0
TH
3539static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3540 struct cftype *cft, u64 val)
18f59ea7
BS
3541{
3542 int retval = 0;
182446d0 3543 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3544 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3545
567fb435 3546 if (memcg->use_hierarchy == val)
0b8f73e1 3547 return 0;
567fb435 3548
18f59ea7 3549 /*
af901ca1 3550 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3551 * in the child subtrees. If it is unset, then the change can
3552 * occur, provided the current cgroup has no children.
3553 *
3554 * For the root cgroup, parent_mem is NULL, we allow value to be
3555 * set if there are no children.
3556 */
c0ff4b85 3557 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3558 (val == 1 || val == 0)) {
ea280e7b 3559 if (!memcg_has_children(memcg))
c0ff4b85 3560 memcg->use_hierarchy = val;
18f59ea7
BS
3561 else
3562 retval = -EBUSY;
3563 } else
3564 retval = -EINVAL;
567fb435 3565
18f59ea7
BS
3566 return retval;
3567}
3568
6f646156 3569static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3570{
42a30035 3571 unsigned long val;
ce00a967 3572
3e32cb2e 3573 if (mem_cgroup_is_root(memcg)) {
0d1c2072 3574 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3575 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3576 if (swap)
3577 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3578 } else {
ce00a967 3579 if (!swap)
3e32cb2e 3580 val = page_counter_read(&memcg->memory);
ce00a967 3581 else
3e32cb2e 3582 val = page_counter_read(&memcg->memsw);
ce00a967 3583 }
c12176d3 3584 return val;
ce00a967
JW
3585}
3586
3e32cb2e
JW
3587enum {
3588 RES_USAGE,
3589 RES_LIMIT,
3590 RES_MAX_USAGE,
3591 RES_FAILCNT,
3592 RES_SOFT_LIMIT,
3593};
ce00a967 3594
791badbd 3595static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3596 struct cftype *cft)
8cdea7c0 3597{
182446d0 3598 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3599 struct page_counter *counter;
af36f906 3600
3e32cb2e 3601 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3602 case _MEM:
3e32cb2e
JW
3603 counter = &memcg->memory;
3604 break;
8c7c6e34 3605 case _MEMSWAP:
3e32cb2e
JW
3606 counter = &memcg->memsw;
3607 break;
510fc4e1 3608 case _KMEM:
3e32cb2e 3609 counter = &memcg->kmem;
510fc4e1 3610 break;
d55f90bf 3611 case _TCP:
0db15298 3612 counter = &memcg->tcpmem;
d55f90bf 3613 break;
8c7c6e34
KH
3614 default:
3615 BUG();
8c7c6e34 3616 }
3e32cb2e
JW
3617
3618 switch (MEMFILE_ATTR(cft->private)) {
3619 case RES_USAGE:
3620 if (counter == &memcg->memory)
c12176d3 3621 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3622 if (counter == &memcg->memsw)
c12176d3 3623 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3624 return (u64)page_counter_read(counter) * PAGE_SIZE;
3625 case RES_LIMIT:
bbec2e15 3626 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3627 case RES_MAX_USAGE:
3628 return (u64)counter->watermark * PAGE_SIZE;
3629 case RES_FAILCNT:
3630 return counter->failcnt;
3631 case RES_SOFT_LIMIT:
3632 return (u64)memcg->soft_limit * PAGE_SIZE;
3633 default:
3634 BUG();
3635 }
8cdea7c0 3636}
510fc4e1 3637
4a87e2a2 3638static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3639{
4a87e2a2 3640 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3641 struct mem_cgroup *mi;
3642 int node, cpu, i;
c350a99e
RG
3643
3644 for_each_online_cpu(cpu)
4a87e2a2 3645 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3646 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3647
3648 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3649 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3650 atomic_long_add(stat[i], &mi->vmstats[i]);
3651
3652 for_each_node(node) {
3653 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3654 struct mem_cgroup_per_node *pi;
3655
4a87e2a2 3656 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3657 stat[i] = 0;
3658
3659 for_each_online_cpu(cpu)
4a87e2a2 3660 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3661 stat[i] += per_cpu(
3662 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3663
3664 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3665 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3666 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3667 }
3668}
3669
bb65f89b
RG
3670static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3671{
3672 unsigned long events[NR_VM_EVENT_ITEMS];
3673 struct mem_cgroup *mi;
3674 int cpu, i;
3675
3676 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3677 events[i] = 0;
3678
3679 for_each_online_cpu(cpu)
3680 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3681 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3682 cpu);
bb65f89b
RG
3683
3684 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3685 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3686 atomic_long_add(events[i], &mi->vmevents[i]);
3687}
3688
84c07d11 3689#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3690static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3691{
bf4f0599 3692 struct obj_cgroup *objcg;
d6441637
VD
3693 int memcg_id;
3694
b313aeee
VD
3695 if (cgroup_memory_nokmem)
3696 return 0;
3697
2a4db7eb 3698 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3699 BUG_ON(memcg->kmem_state);
d6441637 3700
f3bb3043 3701 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3702 if (memcg_id < 0)
3703 return memcg_id;
d6441637 3704
bf4f0599
RG
3705 objcg = obj_cgroup_alloc();
3706 if (!objcg) {
3707 memcg_free_cache_id(memcg_id);
3708 return -ENOMEM;
3709 }
3710 objcg->memcg = memcg;
3711 rcu_assign_pointer(memcg->objcg, objcg);
3712
d648bcc7
RG
3713 static_branch_enable(&memcg_kmem_enabled_key);
3714
d6441637 3715 /*
567e9ab2 3716 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3717 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3718 * guarantee no one starts accounting before all call sites are
3719 * patched.
3720 */
900a38f0 3721 memcg->kmemcg_id = memcg_id;
567e9ab2 3722 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3723
3724 return 0;
d6441637
VD
3725}
3726
8e0a8912
JW
3727static void memcg_offline_kmem(struct mem_cgroup *memcg)
3728{
3729 struct cgroup_subsys_state *css;
3730 struct mem_cgroup *parent, *child;
3731 int kmemcg_id;
3732
3733 if (memcg->kmem_state != KMEM_ONLINE)
3734 return;
9855609b 3735
8e0a8912
JW
3736 memcg->kmem_state = KMEM_ALLOCATED;
3737
8e0a8912
JW
3738 parent = parent_mem_cgroup(memcg);
3739 if (!parent)
3740 parent = root_mem_cgroup;
3741
bf4f0599 3742 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3743
3744 kmemcg_id = memcg->kmemcg_id;
3745 BUG_ON(kmemcg_id < 0);
3746
8e0a8912
JW
3747 /*
3748 * Change kmemcg_id of this cgroup and all its descendants to the
3749 * parent's id, and then move all entries from this cgroup's list_lrus
3750 * to ones of the parent. After we have finished, all list_lrus
3751 * corresponding to this cgroup are guaranteed to remain empty. The
3752 * ordering is imposed by list_lru_node->lock taken by
3753 * memcg_drain_all_list_lrus().
3754 */
3a06bb78 3755 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3756 css_for_each_descendant_pre(css, &memcg->css) {
3757 child = mem_cgroup_from_css(css);
3758 BUG_ON(child->kmemcg_id != kmemcg_id);
3759 child->kmemcg_id = parent->kmemcg_id;
3760 if (!memcg->use_hierarchy)
3761 break;
3762 }
3a06bb78
TH
3763 rcu_read_unlock();
3764
9bec5c35 3765 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3766
3767 memcg_free_cache_id(kmemcg_id);
3768}
3769
3770static void memcg_free_kmem(struct mem_cgroup *memcg)
3771{
0b8f73e1
JW
3772 /* css_alloc() failed, offlining didn't happen */
3773 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3774 memcg_offline_kmem(memcg);
8e0a8912 3775}
d6441637 3776#else
0b8f73e1 3777static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3778{
3779 return 0;
3780}
3781static void memcg_offline_kmem(struct mem_cgroup *memcg)
3782{
3783}
3784static void memcg_free_kmem(struct mem_cgroup *memcg)
3785{
3786}
84c07d11 3787#endif /* CONFIG_MEMCG_KMEM */
127424c8 3788
bbec2e15
RG
3789static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3790 unsigned long max)
d6441637 3791{
b313aeee 3792 int ret;
127424c8 3793
bbec2e15
RG
3794 mutex_lock(&memcg_max_mutex);
3795 ret = page_counter_set_max(&memcg->kmem, max);
3796 mutex_unlock(&memcg_max_mutex);
127424c8 3797 return ret;
d6441637 3798}
510fc4e1 3799
bbec2e15 3800static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3801{
3802 int ret;
3803
bbec2e15 3804 mutex_lock(&memcg_max_mutex);
d55f90bf 3805
bbec2e15 3806 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3807 if (ret)
3808 goto out;
3809
0db15298 3810 if (!memcg->tcpmem_active) {
d55f90bf
VD
3811 /*
3812 * The active flag needs to be written after the static_key
3813 * update. This is what guarantees that the socket activation
2d758073
JW
3814 * function is the last one to run. See mem_cgroup_sk_alloc()
3815 * for details, and note that we don't mark any socket as
3816 * belonging to this memcg until that flag is up.
d55f90bf
VD
3817 *
3818 * We need to do this, because static_keys will span multiple
3819 * sites, but we can't control their order. If we mark a socket
3820 * as accounted, but the accounting functions are not patched in
3821 * yet, we'll lose accounting.
3822 *
2d758073 3823 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3824 * because when this value change, the code to process it is not
3825 * patched in yet.
3826 */
3827 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3828 memcg->tcpmem_active = true;
d55f90bf
VD
3829 }
3830out:
bbec2e15 3831 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3832 return ret;
3833}
d55f90bf 3834
628f4235
KH
3835/*
3836 * The user of this function is...
3837 * RES_LIMIT.
3838 */
451af504
TH
3839static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3840 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3841{
451af504 3842 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3843 unsigned long nr_pages;
628f4235
KH
3844 int ret;
3845
451af504 3846 buf = strstrip(buf);
650c5e56 3847 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3848 if (ret)
3849 return ret;
af36f906 3850
3e32cb2e 3851 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3852 case RES_LIMIT:
4b3bde4c
BS
3853 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3854 ret = -EINVAL;
3855 break;
3856 }
3e32cb2e
JW
3857 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3858 case _MEM:
bbec2e15 3859 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3860 break;
3e32cb2e 3861 case _MEMSWAP:
bbec2e15 3862 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3863 break;
3e32cb2e 3864 case _KMEM:
0158115f
MH
3865 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3866 "Please report your usecase to linux-mm@kvack.org if you "
3867 "depend on this functionality.\n");
bbec2e15 3868 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3869 break;
d55f90bf 3870 case _TCP:
bbec2e15 3871 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3872 break;
3e32cb2e 3873 }
296c81d8 3874 break;
3e32cb2e
JW
3875 case RES_SOFT_LIMIT:
3876 memcg->soft_limit = nr_pages;
3877 ret = 0;
628f4235
KH
3878 break;
3879 }
451af504 3880 return ret ?: nbytes;
8cdea7c0
BS
3881}
3882
6770c64e
TH
3883static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3884 size_t nbytes, loff_t off)
c84872e1 3885{
6770c64e 3886 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3887 struct page_counter *counter;
c84872e1 3888
3e32cb2e
JW
3889 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3890 case _MEM:
3891 counter = &memcg->memory;
3892 break;
3893 case _MEMSWAP:
3894 counter = &memcg->memsw;
3895 break;
3896 case _KMEM:
3897 counter = &memcg->kmem;
3898 break;
d55f90bf 3899 case _TCP:
0db15298 3900 counter = &memcg->tcpmem;
d55f90bf 3901 break;
3e32cb2e
JW
3902 default:
3903 BUG();
3904 }
af36f906 3905
3e32cb2e 3906 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3907 case RES_MAX_USAGE:
3e32cb2e 3908 page_counter_reset_watermark(counter);
29f2a4da
PE
3909 break;
3910 case RES_FAILCNT:
3e32cb2e 3911 counter->failcnt = 0;
29f2a4da 3912 break;
3e32cb2e
JW
3913 default:
3914 BUG();
29f2a4da 3915 }
f64c3f54 3916
6770c64e 3917 return nbytes;
c84872e1
PE
3918}
3919
182446d0 3920static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3921 struct cftype *cft)
3922{
182446d0 3923 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3924}
3925
02491447 3926#ifdef CONFIG_MMU
182446d0 3927static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3928 struct cftype *cft, u64 val)
3929{
182446d0 3930 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3931
1dfab5ab 3932 if (val & ~MOVE_MASK)
7dc74be0 3933 return -EINVAL;
ee5e8472 3934
7dc74be0 3935 /*
ee5e8472
GC
3936 * No kind of locking is needed in here, because ->can_attach() will
3937 * check this value once in the beginning of the process, and then carry
3938 * on with stale data. This means that changes to this value will only
3939 * affect task migrations starting after the change.
7dc74be0 3940 */
c0ff4b85 3941 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3942 return 0;
3943}
02491447 3944#else
182446d0 3945static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3946 struct cftype *cft, u64 val)
3947{
3948 return -ENOSYS;
3949}
3950#endif
7dc74be0 3951
406eb0c9 3952#ifdef CONFIG_NUMA
113b7dfd
JW
3953
3954#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3955#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3956#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3957
3958static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3959 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3960{
867e5e1d 3961 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3962 unsigned long nr = 0;
3963 enum lru_list lru;
3964
3965 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3966
3967 for_each_lru(lru) {
3968 if (!(BIT(lru) & lru_mask))
3969 continue;
dd8657b6
SB
3970 if (tree)
3971 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3972 else
3973 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3974 }
3975 return nr;
3976}
3977
3978static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3979 unsigned int lru_mask,
3980 bool tree)
113b7dfd
JW
3981{
3982 unsigned long nr = 0;
3983 enum lru_list lru;
3984
3985 for_each_lru(lru) {
3986 if (!(BIT(lru) & lru_mask))
3987 continue;
dd8657b6
SB
3988 if (tree)
3989 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3990 else
3991 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3992 }
3993 return nr;
3994}
3995
2da8ca82 3996static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3997{
25485de6
GT
3998 struct numa_stat {
3999 const char *name;
4000 unsigned int lru_mask;
4001 };
4002
4003 static const struct numa_stat stats[] = {
4004 { "total", LRU_ALL },
4005 { "file", LRU_ALL_FILE },
4006 { "anon", LRU_ALL_ANON },
4007 { "unevictable", BIT(LRU_UNEVICTABLE) },
4008 };
4009 const struct numa_stat *stat;
406eb0c9 4010 int nid;
aa9694bb 4011 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 4012
25485de6 4013 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4014 seq_printf(m, "%s=%lu", stat->name,
4015 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4016 false));
4017 for_each_node_state(nid, N_MEMORY)
4018 seq_printf(m, " N%d=%lu", nid,
4019 mem_cgroup_node_nr_lru_pages(memcg, nid,
4020 stat->lru_mask, false));
25485de6 4021 seq_putc(m, '\n');
406eb0c9 4022 }
406eb0c9 4023
071aee13 4024 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4025
4026 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4027 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4028 true));
4029 for_each_node_state(nid, N_MEMORY)
4030 seq_printf(m, " N%d=%lu", nid,
4031 mem_cgroup_node_nr_lru_pages(memcg, nid,
4032 stat->lru_mask, true));
071aee13 4033 seq_putc(m, '\n');
406eb0c9 4034 }
406eb0c9 4035
406eb0c9
YH
4036 return 0;
4037}
4038#endif /* CONFIG_NUMA */
4039
c8713d0b 4040static const unsigned int memcg1_stats[] = {
0d1c2072 4041 NR_FILE_PAGES,
be5d0a74 4042 NR_ANON_MAPPED,
468c3982
JW
4043#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4044 NR_ANON_THPS,
4045#endif
c8713d0b
JW
4046 NR_SHMEM,
4047 NR_FILE_MAPPED,
4048 NR_FILE_DIRTY,
4049 NR_WRITEBACK,
4050 MEMCG_SWAP,
4051};
4052
4053static const char *const memcg1_stat_names[] = {
4054 "cache",
4055 "rss",
468c3982 4056#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4057 "rss_huge",
468c3982 4058#endif
c8713d0b
JW
4059 "shmem",
4060 "mapped_file",
4061 "dirty",
4062 "writeback",
4063 "swap",
4064};
4065
df0e53d0 4066/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4067static const unsigned int memcg1_events[] = {
df0e53d0
JW
4068 PGPGIN,
4069 PGPGOUT,
4070 PGFAULT,
4071 PGMAJFAULT,
4072};
4073
2da8ca82 4074static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4075{
aa9694bb 4076 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4077 unsigned long memory, memsw;
af7c4b0e
JW
4078 struct mem_cgroup *mi;
4079 unsigned int i;
406eb0c9 4080
71cd3113 4081 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4082
71cd3113 4083 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4084 unsigned long nr;
4085
71cd3113 4086 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4087 continue;
468c3982
JW
4088 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4089#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4090 if (memcg1_stats[i] == NR_ANON_THPS)
4091 nr *= HPAGE_PMD_NR;
4092#endif
4093 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 4094 }
7b854121 4095
df0e53d0 4096 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4097 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4098 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4099
4100 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4101 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4102 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4103 PAGE_SIZE);
af7c4b0e 4104
14067bb3 4105 /* Hierarchical information */
3e32cb2e
JW
4106 memory = memsw = PAGE_COUNTER_MAX;
4107 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4108 memory = min(memory, READ_ONCE(mi->memory.max));
4109 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4110 }
3e32cb2e
JW
4111 seq_printf(m, "hierarchical_memory_limit %llu\n",
4112 (u64)memory * PAGE_SIZE);
7941d214 4113 if (do_memsw_account())
3e32cb2e
JW
4114 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4115 (u64)memsw * PAGE_SIZE);
7f016ee8 4116
8de7ecc6 4117 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4118 unsigned long nr;
4119
71cd3113 4120 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4121 continue;
7de2e9f1 4122 nr = memcg_page_state(memcg, memcg1_stats[i]);
4123#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4124 if (memcg1_stats[i] == NR_ANON_THPS)
4125 nr *= HPAGE_PMD_NR;
4126#endif
8de7ecc6 4127 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4128 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4129 }
4130
8de7ecc6 4131 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4132 seq_printf(m, "total_%s %llu\n",
4133 vm_event_name(memcg1_events[i]),
dd923990 4134 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4135
8de7ecc6 4136 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4137 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4138 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4139 PAGE_SIZE);
14067bb3 4140
7f016ee8 4141#ifdef CONFIG_DEBUG_VM
7f016ee8 4142 {
ef8f2327
MG
4143 pg_data_t *pgdat;
4144 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4145 unsigned long anon_cost = 0;
4146 unsigned long file_cost = 0;
7f016ee8 4147
ef8f2327
MG
4148 for_each_online_pgdat(pgdat) {
4149 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
7f016ee8 4150
1431d4d1
JW
4151 anon_cost += mz->lruvec.anon_cost;
4152 file_cost += mz->lruvec.file_cost;
ef8f2327 4153 }
1431d4d1
JW
4154 seq_printf(m, "anon_cost %lu\n", anon_cost);
4155 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4156 }
4157#endif
4158
d2ceb9b7
KH
4159 return 0;
4160}
4161
182446d0
TH
4162static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4163 struct cftype *cft)
a7885eb8 4164{
182446d0 4165 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4166
1f4c025b 4167 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4168}
4169
182446d0
TH
4170static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4171 struct cftype *cft, u64 val)
a7885eb8 4172{
182446d0 4173 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4174
3dae7fec 4175 if (val > 100)
a7885eb8
KM
4176 return -EINVAL;
4177
14208b0e 4178 if (css->parent)
3dae7fec
JW
4179 memcg->swappiness = val;
4180 else
4181 vm_swappiness = val;
068b38c1 4182
a7885eb8
KM
4183 return 0;
4184}
4185
2e72b634
KS
4186static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4187{
4188 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4189 unsigned long usage;
2e72b634
KS
4190 int i;
4191
4192 rcu_read_lock();
4193 if (!swap)
2c488db2 4194 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4195 else
2c488db2 4196 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4197
4198 if (!t)
4199 goto unlock;
4200
ce00a967 4201 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4202
4203 /*
748dad36 4204 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4205 * If it's not true, a threshold was crossed after last
4206 * call of __mem_cgroup_threshold().
4207 */
5407a562 4208 i = t->current_threshold;
2e72b634
KS
4209
4210 /*
4211 * Iterate backward over array of thresholds starting from
4212 * current_threshold and check if a threshold is crossed.
4213 * If none of thresholds below usage is crossed, we read
4214 * only one element of the array here.
4215 */
4216 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4217 eventfd_signal(t->entries[i].eventfd, 1);
4218
4219 /* i = current_threshold + 1 */
4220 i++;
4221
4222 /*
4223 * Iterate forward over array of thresholds starting from
4224 * current_threshold+1 and check if a threshold is crossed.
4225 * If none of thresholds above usage is crossed, we read
4226 * only one element of the array here.
4227 */
4228 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4229 eventfd_signal(t->entries[i].eventfd, 1);
4230
4231 /* Update current_threshold */
5407a562 4232 t->current_threshold = i - 1;
2e72b634
KS
4233unlock:
4234 rcu_read_unlock();
4235}
4236
4237static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4238{
ad4ca5f4
KS
4239 while (memcg) {
4240 __mem_cgroup_threshold(memcg, false);
7941d214 4241 if (do_memsw_account())
ad4ca5f4
KS
4242 __mem_cgroup_threshold(memcg, true);
4243
4244 memcg = parent_mem_cgroup(memcg);
4245 }
2e72b634
KS
4246}
4247
4248static int compare_thresholds(const void *a, const void *b)
4249{
4250 const struct mem_cgroup_threshold *_a = a;
4251 const struct mem_cgroup_threshold *_b = b;
4252
2bff24a3
GT
4253 if (_a->threshold > _b->threshold)
4254 return 1;
4255
4256 if (_a->threshold < _b->threshold)
4257 return -1;
4258
4259 return 0;
2e72b634
KS
4260}
4261
c0ff4b85 4262static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4263{
4264 struct mem_cgroup_eventfd_list *ev;
4265
2bcf2e92
MH
4266 spin_lock(&memcg_oom_lock);
4267
c0ff4b85 4268 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4269 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4270
4271 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4272 return 0;
4273}
4274
c0ff4b85 4275static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4276{
7d74b06f
KH
4277 struct mem_cgroup *iter;
4278
c0ff4b85 4279 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4280 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4281}
4282
59b6f873 4283static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4284 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4285{
2c488db2
KS
4286 struct mem_cgroup_thresholds *thresholds;
4287 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4288 unsigned long threshold;
4289 unsigned long usage;
2c488db2 4290 int i, size, ret;
2e72b634 4291
650c5e56 4292 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4293 if (ret)
4294 return ret;
4295
4296 mutex_lock(&memcg->thresholds_lock);
2c488db2 4297
05b84301 4298 if (type == _MEM) {
2c488db2 4299 thresholds = &memcg->thresholds;
ce00a967 4300 usage = mem_cgroup_usage(memcg, false);
05b84301 4301 } else if (type == _MEMSWAP) {
2c488db2 4302 thresholds = &memcg->memsw_thresholds;
ce00a967 4303 usage = mem_cgroup_usage(memcg, true);
05b84301 4304 } else
2e72b634
KS
4305 BUG();
4306
2e72b634 4307 /* Check if a threshold crossed before adding a new one */
2c488db2 4308 if (thresholds->primary)
2e72b634
KS
4309 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4310
2c488db2 4311 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4312
4313 /* Allocate memory for new array of thresholds */
67b8046f 4314 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4315 if (!new) {
2e72b634
KS
4316 ret = -ENOMEM;
4317 goto unlock;
4318 }
2c488db2 4319 new->size = size;
2e72b634
KS
4320
4321 /* Copy thresholds (if any) to new array */
e90342e6
GS
4322 if (thresholds->primary)
4323 memcpy(new->entries, thresholds->primary->entries,
4324 flex_array_size(new, entries, size - 1));
2c488db2 4325
2e72b634 4326 /* Add new threshold */
2c488db2
KS
4327 new->entries[size - 1].eventfd = eventfd;
4328 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4329
4330 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4331 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4332 compare_thresholds, NULL);
4333
4334 /* Find current threshold */
2c488db2 4335 new->current_threshold = -1;
2e72b634 4336 for (i = 0; i < size; i++) {
748dad36 4337 if (new->entries[i].threshold <= usage) {
2e72b634 4338 /*
2c488db2
KS
4339 * new->current_threshold will not be used until
4340 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4341 * it here.
4342 */
2c488db2 4343 ++new->current_threshold;
748dad36
SZ
4344 } else
4345 break;
2e72b634
KS
4346 }
4347
2c488db2
KS
4348 /* Free old spare buffer and save old primary buffer as spare */
4349 kfree(thresholds->spare);
4350 thresholds->spare = thresholds->primary;
4351
4352 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4353
907860ed 4354 /* To be sure that nobody uses thresholds */
2e72b634
KS
4355 synchronize_rcu();
4356
2e72b634
KS
4357unlock:
4358 mutex_unlock(&memcg->thresholds_lock);
4359
4360 return ret;
4361}
4362
59b6f873 4363static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4364 struct eventfd_ctx *eventfd, const char *args)
4365{
59b6f873 4366 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4367}
4368
59b6f873 4369static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4370 struct eventfd_ctx *eventfd, const char *args)
4371{
59b6f873 4372 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4373}
4374
59b6f873 4375static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4376 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4377{
2c488db2
KS
4378 struct mem_cgroup_thresholds *thresholds;
4379 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4380 unsigned long usage;
7d36665a 4381 int i, j, size, entries;
2e72b634
KS
4382
4383 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4384
4385 if (type == _MEM) {
2c488db2 4386 thresholds = &memcg->thresholds;
ce00a967 4387 usage = mem_cgroup_usage(memcg, false);
05b84301 4388 } else if (type == _MEMSWAP) {
2c488db2 4389 thresholds = &memcg->memsw_thresholds;
ce00a967 4390 usage = mem_cgroup_usage(memcg, true);
05b84301 4391 } else
2e72b634
KS
4392 BUG();
4393
371528ca
AV
4394 if (!thresholds->primary)
4395 goto unlock;
4396
2e72b634
KS
4397 /* Check if a threshold crossed before removing */
4398 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4399
4400 /* Calculate new number of threshold */
7d36665a 4401 size = entries = 0;
2c488db2
KS
4402 for (i = 0; i < thresholds->primary->size; i++) {
4403 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4404 size++;
7d36665a
CX
4405 else
4406 entries++;
2e72b634
KS
4407 }
4408
2c488db2 4409 new = thresholds->spare;
907860ed 4410
7d36665a
CX
4411 /* If no items related to eventfd have been cleared, nothing to do */
4412 if (!entries)
4413 goto unlock;
4414
2e72b634
KS
4415 /* Set thresholds array to NULL if we don't have thresholds */
4416 if (!size) {
2c488db2
KS
4417 kfree(new);
4418 new = NULL;
907860ed 4419 goto swap_buffers;
2e72b634
KS
4420 }
4421
2c488db2 4422 new->size = size;
2e72b634
KS
4423
4424 /* Copy thresholds and find current threshold */
2c488db2
KS
4425 new->current_threshold = -1;
4426 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4427 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4428 continue;
4429
2c488db2 4430 new->entries[j] = thresholds->primary->entries[i];
748dad36 4431 if (new->entries[j].threshold <= usage) {
2e72b634 4432 /*
2c488db2 4433 * new->current_threshold will not be used
2e72b634
KS
4434 * until rcu_assign_pointer(), so it's safe to increment
4435 * it here.
4436 */
2c488db2 4437 ++new->current_threshold;
2e72b634
KS
4438 }
4439 j++;
4440 }
4441
907860ed 4442swap_buffers:
2c488db2
KS
4443 /* Swap primary and spare array */
4444 thresholds->spare = thresholds->primary;
8c757763 4445
2c488db2 4446 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4447
907860ed 4448 /* To be sure that nobody uses thresholds */
2e72b634 4449 synchronize_rcu();
6611d8d7
MC
4450
4451 /* If all events are unregistered, free the spare array */
4452 if (!new) {
4453 kfree(thresholds->spare);
4454 thresholds->spare = NULL;
4455 }
371528ca 4456unlock:
2e72b634 4457 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4458}
c1e862c1 4459
59b6f873 4460static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4461 struct eventfd_ctx *eventfd)
4462{
59b6f873 4463 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4464}
4465
59b6f873 4466static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4467 struct eventfd_ctx *eventfd)
4468{
59b6f873 4469 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4470}
4471
59b6f873 4472static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4473 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4474{
9490ff27 4475 struct mem_cgroup_eventfd_list *event;
9490ff27 4476
9490ff27
KH
4477 event = kmalloc(sizeof(*event), GFP_KERNEL);
4478 if (!event)
4479 return -ENOMEM;
4480
1af8efe9 4481 spin_lock(&memcg_oom_lock);
9490ff27
KH
4482
4483 event->eventfd = eventfd;
4484 list_add(&event->list, &memcg->oom_notify);
4485
4486 /* already in OOM ? */
c2b42d3c 4487 if (memcg->under_oom)
9490ff27 4488 eventfd_signal(eventfd, 1);
1af8efe9 4489 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4490
4491 return 0;
4492}
4493
59b6f873 4494static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4495 struct eventfd_ctx *eventfd)
9490ff27 4496{
9490ff27 4497 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4498
1af8efe9 4499 spin_lock(&memcg_oom_lock);
9490ff27 4500
c0ff4b85 4501 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4502 if (ev->eventfd == eventfd) {
4503 list_del(&ev->list);
4504 kfree(ev);
4505 }
4506 }
4507
1af8efe9 4508 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4509}
4510
2da8ca82 4511static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4512{
aa9694bb 4513 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4514
791badbd 4515 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4516 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4517 seq_printf(sf, "oom_kill %lu\n",
4518 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4519 return 0;
4520}
4521
182446d0 4522static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4523 struct cftype *cft, u64 val)
4524{
182446d0 4525 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4526
4527 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4528 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4529 return -EINVAL;
4530
c0ff4b85 4531 memcg->oom_kill_disable = val;
4d845ebf 4532 if (!val)
c0ff4b85 4533 memcg_oom_recover(memcg);
3dae7fec 4534
3c11ecf4
KH
4535 return 0;
4536}
4537
52ebea74
TH
4538#ifdef CONFIG_CGROUP_WRITEBACK
4539
3a8e9ac8
TH
4540#include <trace/events/writeback.h>
4541
841710aa
TH
4542static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4543{
4544 return wb_domain_init(&memcg->cgwb_domain, gfp);
4545}
4546
4547static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4548{
4549 wb_domain_exit(&memcg->cgwb_domain);
4550}
4551
2529bb3a
TH
4552static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4553{
4554 wb_domain_size_changed(&memcg->cgwb_domain);
4555}
4556
841710aa
TH
4557struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4558{
4559 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4560
4561 if (!memcg->css.parent)
4562 return NULL;
4563
4564 return &memcg->cgwb_domain;
4565}
4566
0b3d6e6f
GT
4567/*
4568 * idx can be of type enum memcg_stat_item or node_stat_item.
4569 * Keep in sync with memcg_exact_page().
4570 */
4571static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4572{
871789d4 4573 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4574 int cpu;
4575
4576 for_each_online_cpu(cpu)
871789d4 4577 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4578 if (x < 0)
4579 x = 0;
4580 return x;
4581}
4582
c2aa723a
TH
4583/**
4584 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4585 * @wb: bdi_writeback in question
c5edf9cd
TH
4586 * @pfilepages: out parameter for number of file pages
4587 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4588 * @pdirty: out parameter for number of dirty pages
4589 * @pwriteback: out parameter for number of pages under writeback
4590 *
c5edf9cd
TH
4591 * Determine the numbers of file, headroom, dirty, and writeback pages in
4592 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4593 * is a bit more involved.
c2aa723a 4594 *
c5edf9cd
TH
4595 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4596 * headroom is calculated as the lowest headroom of itself and the
4597 * ancestors. Note that this doesn't consider the actual amount of
4598 * available memory in the system. The caller should further cap
4599 * *@pheadroom accordingly.
c2aa723a 4600 */
c5edf9cd
TH
4601void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4602 unsigned long *pheadroom, unsigned long *pdirty,
4603 unsigned long *pwriteback)
c2aa723a
TH
4604{
4605 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4606 struct mem_cgroup *parent;
c2aa723a 4607
0b3d6e6f 4608 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4609
0b3d6e6f 4610 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4611 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4612 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4613 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4614
c2aa723a 4615 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4616 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4617 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4618 unsigned long used = page_counter_read(&memcg->memory);
4619
c5edf9cd 4620 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4621 memcg = parent;
4622 }
c2aa723a
TH
4623}
4624
97b27821
TH
4625/*
4626 * Foreign dirty flushing
4627 *
4628 * There's an inherent mismatch between memcg and writeback. The former
4629 * trackes ownership per-page while the latter per-inode. This was a
4630 * deliberate design decision because honoring per-page ownership in the
4631 * writeback path is complicated, may lead to higher CPU and IO overheads
4632 * and deemed unnecessary given that write-sharing an inode across
4633 * different cgroups isn't a common use-case.
4634 *
4635 * Combined with inode majority-writer ownership switching, this works well
4636 * enough in most cases but there are some pathological cases. For
4637 * example, let's say there are two cgroups A and B which keep writing to
4638 * different but confined parts of the same inode. B owns the inode and
4639 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4640 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4641 * triggering background writeback. A will be slowed down without a way to
4642 * make writeback of the dirty pages happen.
4643 *
4644 * Conditions like the above can lead to a cgroup getting repatedly and
4645 * severely throttled after making some progress after each
4646 * dirty_expire_interval while the underyling IO device is almost
4647 * completely idle.
4648 *
4649 * Solving this problem completely requires matching the ownership tracking
4650 * granularities between memcg and writeback in either direction. However,
4651 * the more egregious behaviors can be avoided by simply remembering the
4652 * most recent foreign dirtying events and initiating remote flushes on
4653 * them when local writeback isn't enough to keep the memory clean enough.
4654 *
4655 * The following two functions implement such mechanism. When a foreign
4656 * page - a page whose memcg and writeback ownerships don't match - is
4657 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4658 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4659 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4660 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4661 * foreign bdi_writebacks which haven't expired. Both the numbers of
4662 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4663 * limited to MEMCG_CGWB_FRN_CNT.
4664 *
4665 * The mechanism only remembers IDs and doesn't hold any object references.
4666 * As being wrong occasionally doesn't matter, updates and accesses to the
4667 * records are lockless and racy.
4668 */
4669void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4670 struct bdi_writeback *wb)
4671{
4672 struct mem_cgroup *memcg = page->mem_cgroup;
4673 struct memcg_cgwb_frn *frn;
4674 u64 now = get_jiffies_64();
4675 u64 oldest_at = now;
4676 int oldest = -1;
4677 int i;
4678
3a8e9ac8
TH
4679 trace_track_foreign_dirty(page, wb);
4680
97b27821
TH
4681 /*
4682 * Pick the slot to use. If there is already a slot for @wb, keep
4683 * using it. If not replace the oldest one which isn't being
4684 * written out.
4685 */
4686 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4687 frn = &memcg->cgwb_frn[i];
4688 if (frn->bdi_id == wb->bdi->id &&
4689 frn->memcg_id == wb->memcg_css->id)
4690 break;
4691 if (time_before64(frn->at, oldest_at) &&
4692 atomic_read(&frn->done.cnt) == 1) {
4693 oldest = i;
4694 oldest_at = frn->at;
4695 }
4696 }
4697
4698 if (i < MEMCG_CGWB_FRN_CNT) {
4699 /*
4700 * Re-using an existing one. Update timestamp lazily to
4701 * avoid making the cacheline hot. We want them to be
4702 * reasonably up-to-date and significantly shorter than
4703 * dirty_expire_interval as that's what expires the record.
4704 * Use the shorter of 1s and dirty_expire_interval / 8.
4705 */
4706 unsigned long update_intv =
4707 min_t(unsigned long, HZ,
4708 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4709
4710 if (time_before64(frn->at, now - update_intv))
4711 frn->at = now;
4712 } else if (oldest >= 0) {
4713 /* replace the oldest free one */
4714 frn = &memcg->cgwb_frn[oldest];
4715 frn->bdi_id = wb->bdi->id;
4716 frn->memcg_id = wb->memcg_css->id;
4717 frn->at = now;
4718 }
4719}
4720
4721/* issue foreign writeback flushes for recorded foreign dirtying events */
4722void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4723{
4724 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4725 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4726 u64 now = jiffies_64;
4727 int i;
4728
4729 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4730 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4731
4732 /*
4733 * If the record is older than dirty_expire_interval,
4734 * writeback on it has already started. No need to kick it
4735 * off again. Also, don't start a new one if there's
4736 * already one in flight.
4737 */
4738 if (time_after64(frn->at, now - intv) &&
4739 atomic_read(&frn->done.cnt) == 1) {
4740 frn->at = 0;
3a8e9ac8 4741 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4742 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4743 WB_REASON_FOREIGN_FLUSH,
4744 &frn->done);
4745 }
4746 }
4747}
4748
841710aa
TH
4749#else /* CONFIG_CGROUP_WRITEBACK */
4750
4751static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4752{
4753 return 0;
4754}
4755
4756static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4757{
4758}
4759
2529bb3a
TH
4760static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4761{
4762}
4763
52ebea74
TH
4764#endif /* CONFIG_CGROUP_WRITEBACK */
4765
3bc942f3
TH
4766/*
4767 * DO NOT USE IN NEW FILES.
4768 *
4769 * "cgroup.event_control" implementation.
4770 *
4771 * This is way over-engineered. It tries to support fully configurable
4772 * events for each user. Such level of flexibility is completely
4773 * unnecessary especially in the light of the planned unified hierarchy.
4774 *
4775 * Please deprecate this and replace with something simpler if at all
4776 * possible.
4777 */
4778
79bd9814
TH
4779/*
4780 * Unregister event and free resources.
4781 *
4782 * Gets called from workqueue.
4783 */
3bc942f3 4784static void memcg_event_remove(struct work_struct *work)
79bd9814 4785{
3bc942f3
TH
4786 struct mem_cgroup_event *event =
4787 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4788 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4789
4790 remove_wait_queue(event->wqh, &event->wait);
4791
59b6f873 4792 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4793
4794 /* Notify userspace the event is going away. */
4795 eventfd_signal(event->eventfd, 1);
4796
4797 eventfd_ctx_put(event->eventfd);
4798 kfree(event);
59b6f873 4799 css_put(&memcg->css);
79bd9814
TH
4800}
4801
4802/*
a9a08845 4803 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4804 *
4805 * Called with wqh->lock held and interrupts disabled.
4806 */
ac6424b9 4807static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4808 int sync, void *key)
79bd9814 4809{
3bc942f3
TH
4810 struct mem_cgroup_event *event =
4811 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4812 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4813 __poll_t flags = key_to_poll(key);
79bd9814 4814
a9a08845 4815 if (flags & EPOLLHUP) {
79bd9814
TH
4816 /*
4817 * If the event has been detached at cgroup removal, we
4818 * can simply return knowing the other side will cleanup
4819 * for us.
4820 *
4821 * We can't race against event freeing since the other
4822 * side will require wqh->lock via remove_wait_queue(),
4823 * which we hold.
4824 */
fba94807 4825 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4826 if (!list_empty(&event->list)) {
4827 list_del_init(&event->list);
4828 /*
4829 * We are in atomic context, but cgroup_event_remove()
4830 * may sleep, so we have to call it in workqueue.
4831 */
4832 schedule_work(&event->remove);
4833 }
fba94807 4834 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4835 }
4836
4837 return 0;
4838}
4839
3bc942f3 4840static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4841 wait_queue_head_t *wqh, poll_table *pt)
4842{
3bc942f3
TH
4843 struct mem_cgroup_event *event =
4844 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4845
4846 event->wqh = wqh;
4847 add_wait_queue(wqh, &event->wait);
4848}
4849
4850/*
3bc942f3
TH
4851 * DO NOT USE IN NEW FILES.
4852 *
79bd9814
TH
4853 * Parse input and register new cgroup event handler.
4854 *
4855 * Input must be in format '<event_fd> <control_fd> <args>'.
4856 * Interpretation of args is defined by control file implementation.
4857 */
451af504
TH
4858static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4859 char *buf, size_t nbytes, loff_t off)
79bd9814 4860{
451af504 4861 struct cgroup_subsys_state *css = of_css(of);
fba94807 4862 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4863 struct mem_cgroup_event *event;
79bd9814
TH
4864 struct cgroup_subsys_state *cfile_css;
4865 unsigned int efd, cfd;
4866 struct fd efile;
4867 struct fd cfile;
fba94807 4868 const char *name;
79bd9814
TH
4869 char *endp;
4870 int ret;
4871
451af504
TH
4872 buf = strstrip(buf);
4873
4874 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4875 if (*endp != ' ')
4876 return -EINVAL;
451af504 4877 buf = endp + 1;
79bd9814 4878
451af504 4879 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4880 if ((*endp != ' ') && (*endp != '\0'))
4881 return -EINVAL;
451af504 4882 buf = endp + 1;
79bd9814
TH
4883
4884 event = kzalloc(sizeof(*event), GFP_KERNEL);
4885 if (!event)
4886 return -ENOMEM;
4887
59b6f873 4888 event->memcg = memcg;
79bd9814 4889 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4890 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4891 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4892 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4893
4894 efile = fdget(efd);
4895 if (!efile.file) {
4896 ret = -EBADF;
4897 goto out_kfree;
4898 }
4899
4900 event->eventfd = eventfd_ctx_fileget(efile.file);
4901 if (IS_ERR(event->eventfd)) {
4902 ret = PTR_ERR(event->eventfd);
4903 goto out_put_efile;
4904 }
4905
4906 cfile = fdget(cfd);
4907 if (!cfile.file) {
4908 ret = -EBADF;
4909 goto out_put_eventfd;
4910 }
4911
4912 /* the process need read permission on control file */
4913 /* AV: shouldn't we check that it's been opened for read instead? */
4914 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4915 if (ret < 0)
4916 goto out_put_cfile;
4917
fba94807
TH
4918 /*
4919 * Determine the event callbacks and set them in @event. This used
4920 * to be done via struct cftype but cgroup core no longer knows
4921 * about these events. The following is crude but the whole thing
4922 * is for compatibility anyway.
3bc942f3
TH
4923 *
4924 * DO NOT ADD NEW FILES.
fba94807 4925 */
b583043e 4926 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4927
4928 if (!strcmp(name, "memory.usage_in_bytes")) {
4929 event->register_event = mem_cgroup_usage_register_event;
4930 event->unregister_event = mem_cgroup_usage_unregister_event;
4931 } else if (!strcmp(name, "memory.oom_control")) {
4932 event->register_event = mem_cgroup_oom_register_event;
4933 event->unregister_event = mem_cgroup_oom_unregister_event;
4934 } else if (!strcmp(name, "memory.pressure_level")) {
4935 event->register_event = vmpressure_register_event;
4936 event->unregister_event = vmpressure_unregister_event;
4937 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4938 event->register_event = memsw_cgroup_usage_register_event;
4939 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4940 } else {
4941 ret = -EINVAL;
4942 goto out_put_cfile;
4943 }
4944
79bd9814 4945 /*
b5557c4c
TH
4946 * Verify @cfile should belong to @css. Also, remaining events are
4947 * automatically removed on cgroup destruction but the removal is
4948 * asynchronous, so take an extra ref on @css.
79bd9814 4949 */
b583043e 4950 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4951 &memory_cgrp_subsys);
79bd9814 4952 ret = -EINVAL;
5a17f543 4953 if (IS_ERR(cfile_css))
79bd9814 4954 goto out_put_cfile;
5a17f543
TH
4955 if (cfile_css != css) {
4956 css_put(cfile_css);
79bd9814 4957 goto out_put_cfile;
5a17f543 4958 }
79bd9814 4959
451af504 4960 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4961 if (ret)
4962 goto out_put_css;
4963
9965ed17 4964 vfs_poll(efile.file, &event->pt);
79bd9814 4965
fba94807
TH
4966 spin_lock(&memcg->event_list_lock);
4967 list_add(&event->list, &memcg->event_list);
4968 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4969
4970 fdput(cfile);
4971 fdput(efile);
4972
451af504 4973 return nbytes;
79bd9814
TH
4974
4975out_put_css:
b5557c4c 4976 css_put(css);
79bd9814
TH
4977out_put_cfile:
4978 fdput(cfile);
4979out_put_eventfd:
4980 eventfd_ctx_put(event->eventfd);
4981out_put_efile:
4982 fdput(efile);
4983out_kfree:
4984 kfree(event);
4985
4986 return ret;
4987}
4988
241994ed 4989static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4990 {
0eea1030 4991 .name = "usage_in_bytes",
8c7c6e34 4992 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4993 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4994 },
c84872e1
PE
4995 {
4996 .name = "max_usage_in_bytes",
8c7c6e34 4997 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4998 .write = mem_cgroup_reset,
791badbd 4999 .read_u64 = mem_cgroup_read_u64,
c84872e1 5000 },
8cdea7c0 5001 {
0eea1030 5002 .name = "limit_in_bytes",
8c7c6e34 5003 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 5004 .write = mem_cgroup_write,
791badbd 5005 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5006 },
296c81d8
BS
5007 {
5008 .name = "soft_limit_in_bytes",
5009 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 5010 .write = mem_cgroup_write,
791badbd 5011 .read_u64 = mem_cgroup_read_u64,
296c81d8 5012 },
8cdea7c0
BS
5013 {
5014 .name = "failcnt",
8c7c6e34 5015 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 5016 .write = mem_cgroup_reset,
791badbd 5017 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5018 },
d2ceb9b7
KH
5019 {
5020 .name = "stat",
2da8ca82 5021 .seq_show = memcg_stat_show,
d2ceb9b7 5022 },
c1e862c1
KH
5023 {
5024 .name = "force_empty",
6770c64e 5025 .write = mem_cgroup_force_empty_write,
c1e862c1 5026 },
18f59ea7
BS
5027 {
5028 .name = "use_hierarchy",
5029 .write_u64 = mem_cgroup_hierarchy_write,
5030 .read_u64 = mem_cgroup_hierarchy_read,
5031 },
79bd9814 5032 {
3bc942f3 5033 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5034 .write = memcg_write_event_control,
7dbdb199 5035 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5036 },
a7885eb8
KM
5037 {
5038 .name = "swappiness",
5039 .read_u64 = mem_cgroup_swappiness_read,
5040 .write_u64 = mem_cgroup_swappiness_write,
5041 },
7dc74be0
DN
5042 {
5043 .name = "move_charge_at_immigrate",
5044 .read_u64 = mem_cgroup_move_charge_read,
5045 .write_u64 = mem_cgroup_move_charge_write,
5046 },
9490ff27
KH
5047 {
5048 .name = "oom_control",
2da8ca82 5049 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5050 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5051 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5052 },
70ddf637
AV
5053 {
5054 .name = "pressure_level",
70ddf637 5055 },
406eb0c9
YH
5056#ifdef CONFIG_NUMA
5057 {
5058 .name = "numa_stat",
2da8ca82 5059 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5060 },
5061#endif
510fc4e1
GC
5062 {
5063 .name = "kmem.limit_in_bytes",
5064 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5065 .write = mem_cgroup_write,
791badbd 5066 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5067 },
5068 {
5069 .name = "kmem.usage_in_bytes",
5070 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5071 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5072 },
5073 {
5074 .name = "kmem.failcnt",
5075 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5076 .write = mem_cgroup_reset,
791badbd 5077 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5078 },
5079 {
5080 .name = "kmem.max_usage_in_bytes",
5081 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5082 .write = mem_cgroup_reset,
791badbd 5083 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5084 },
a87425a3
YS
5085#if defined(CONFIG_MEMCG_KMEM) && \
5086 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5087 {
5088 .name = "kmem.slabinfo",
b047501c 5089 .seq_show = memcg_slab_show,
749c5415
GC
5090 },
5091#endif
d55f90bf
VD
5092 {
5093 .name = "kmem.tcp.limit_in_bytes",
5094 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5095 .write = mem_cgroup_write,
5096 .read_u64 = mem_cgroup_read_u64,
5097 },
5098 {
5099 .name = "kmem.tcp.usage_in_bytes",
5100 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5101 .read_u64 = mem_cgroup_read_u64,
5102 },
5103 {
5104 .name = "kmem.tcp.failcnt",
5105 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5106 .write = mem_cgroup_reset,
5107 .read_u64 = mem_cgroup_read_u64,
5108 },
5109 {
5110 .name = "kmem.tcp.max_usage_in_bytes",
5111 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5112 .write = mem_cgroup_reset,
5113 .read_u64 = mem_cgroup_read_u64,
5114 },
6bc10349 5115 { }, /* terminate */
af36f906 5116};
8c7c6e34 5117
73f576c0
JW
5118/*
5119 * Private memory cgroup IDR
5120 *
5121 * Swap-out records and page cache shadow entries need to store memcg
5122 * references in constrained space, so we maintain an ID space that is
5123 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5124 * memory-controlled cgroups to 64k.
5125 *
b8f2935f 5126 * However, there usually are many references to the offline CSS after
73f576c0
JW
5127 * the cgroup has been destroyed, such as page cache or reclaimable
5128 * slab objects, that don't need to hang on to the ID. We want to keep
5129 * those dead CSS from occupying IDs, or we might quickly exhaust the
5130 * relatively small ID space and prevent the creation of new cgroups
5131 * even when there are much fewer than 64k cgroups - possibly none.
5132 *
5133 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5134 * be freed and recycled when it's no longer needed, which is usually
5135 * when the CSS is offlined.
5136 *
5137 * The only exception to that are records of swapped out tmpfs/shmem
5138 * pages that need to be attributed to live ancestors on swapin. But
5139 * those references are manageable from userspace.
5140 */
5141
5142static DEFINE_IDR(mem_cgroup_idr);
5143
7e97de0b
KT
5144static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5145{
5146 if (memcg->id.id > 0) {
5147 idr_remove(&mem_cgroup_idr, memcg->id.id);
5148 memcg->id.id = 0;
5149 }
5150}
5151
c1514c0a
VF
5152static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5153 unsigned int n)
73f576c0 5154{
1c2d479a 5155 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5156}
5157
615d66c3 5158static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5159{
1c2d479a 5160 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5161 mem_cgroup_id_remove(memcg);
73f576c0
JW
5162
5163 /* Memcg ID pins CSS */
5164 css_put(&memcg->css);
5165 }
5166}
5167
615d66c3
VD
5168static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5169{
5170 mem_cgroup_id_put_many(memcg, 1);
5171}
5172
73f576c0
JW
5173/**
5174 * mem_cgroup_from_id - look up a memcg from a memcg id
5175 * @id: the memcg id to look up
5176 *
5177 * Caller must hold rcu_read_lock().
5178 */
5179struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5180{
5181 WARN_ON_ONCE(!rcu_read_lock_held());
5182 return idr_find(&mem_cgroup_idr, id);
5183}
5184
ef8f2327 5185static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5186{
5187 struct mem_cgroup_per_node *pn;
ef8f2327 5188 int tmp = node;
1ecaab2b
KH
5189 /*
5190 * This routine is called against possible nodes.
5191 * But it's BUG to call kmalloc() against offline node.
5192 *
5193 * TODO: this routine can waste much memory for nodes which will
5194 * never be onlined. It's better to use memory hotplug callback
5195 * function.
5196 */
41e3355d
KH
5197 if (!node_state(node, N_NORMAL_MEMORY))
5198 tmp = -1;
17295c88 5199 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5200 if (!pn)
5201 return 1;
1ecaab2b 5202
3e38e0aa
RG
5203 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5204 GFP_KERNEL_ACCOUNT);
815744d7
JW
5205 if (!pn->lruvec_stat_local) {
5206 kfree(pn);
5207 return 1;
5208 }
5209
3e38e0aa
RG
5210 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5211 GFP_KERNEL_ACCOUNT);
a983b5eb 5212 if (!pn->lruvec_stat_cpu) {
815744d7 5213 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5214 kfree(pn);
5215 return 1;
5216 }
5217
ef8f2327
MG
5218 lruvec_init(&pn->lruvec);
5219 pn->usage_in_excess = 0;
5220 pn->on_tree = false;
5221 pn->memcg = memcg;
5222
54f72fe0 5223 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5224 return 0;
5225}
5226
ef8f2327 5227static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5228{
00f3ca2c
JW
5229 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5230
4eaf431f
MH
5231 if (!pn)
5232 return;
5233
a983b5eb 5234 free_percpu(pn->lruvec_stat_cpu);
815744d7 5235 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5236 kfree(pn);
1ecaab2b
KH
5237}
5238
40e952f9 5239static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5240{
c8b2a36f 5241 int node;
59927fb9 5242
c8b2a36f 5243 for_each_node(node)
ef8f2327 5244 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5245 free_percpu(memcg->vmstats_percpu);
815744d7 5246 free_percpu(memcg->vmstats_local);
8ff69e2c 5247 kfree(memcg);
59927fb9 5248}
3afe36b1 5249
40e952f9
TE
5250static void mem_cgroup_free(struct mem_cgroup *memcg)
5251{
5252 memcg_wb_domain_exit(memcg);
7961eee3
SB
5253 /*
5254 * Flush percpu vmstats and vmevents to guarantee the value correctness
5255 * on parent's and all ancestor levels.
5256 */
4a87e2a2 5257 memcg_flush_percpu_vmstats(memcg);
7961eee3 5258 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5259 __mem_cgroup_free(memcg);
5260}
5261
0b8f73e1 5262static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5263{
d142e3e6 5264 struct mem_cgroup *memcg;
b9726c26 5265 unsigned int size;
6d12e2d8 5266 int node;
97b27821 5267 int __maybe_unused i;
11d67612 5268 long error = -ENOMEM;
8cdea7c0 5269
0b8f73e1
JW
5270 size = sizeof(struct mem_cgroup);
5271 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5272
5273 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5274 if (!memcg)
11d67612 5275 return ERR_PTR(error);
0b8f73e1 5276
73f576c0
JW
5277 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5278 1, MEM_CGROUP_ID_MAX,
5279 GFP_KERNEL);
11d67612
YS
5280 if (memcg->id.id < 0) {
5281 error = memcg->id.id;
73f576c0 5282 goto fail;
11d67612 5283 }
73f576c0 5284
3e38e0aa
RG
5285 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5286 GFP_KERNEL_ACCOUNT);
815744d7
JW
5287 if (!memcg->vmstats_local)
5288 goto fail;
5289
3e38e0aa
RG
5290 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5291 GFP_KERNEL_ACCOUNT);
871789d4 5292 if (!memcg->vmstats_percpu)
0b8f73e1 5293 goto fail;
78fb7466 5294
3ed28fa1 5295 for_each_node(node)
ef8f2327 5296 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5297 goto fail;
f64c3f54 5298
0b8f73e1
JW
5299 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5300 goto fail;
28dbc4b6 5301
f7e1cb6e 5302 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5303 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5304 mutex_init(&memcg->thresholds_lock);
5305 spin_lock_init(&memcg->move_lock);
70ddf637 5306 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5307 INIT_LIST_HEAD(&memcg->event_list);
5308 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5309 memcg->socket_pressure = jiffies;
84c07d11 5310#ifdef CONFIG_MEMCG_KMEM
900a38f0 5311 memcg->kmemcg_id = -1;
bf4f0599 5312 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5313#endif
52ebea74
TH
5314#ifdef CONFIG_CGROUP_WRITEBACK
5315 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5316 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5317 memcg->cgwb_frn[i].done =
5318 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5319#endif
5320#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5321 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5322 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5323 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5324#endif
73f576c0 5325 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5326 return memcg;
5327fail:
7e97de0b 5328 mem_cgroup_id_remove(memcg);
40e952f9 5329 __mem_cgroup_free(memcg);
11d67612 5330 return ERR_PTR(error);
d142e3e6
GC
5331}
5332
0b8f73e1
JW
5333static struct cgroup_subsys_state * __ref
5334mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5335{
0b8f73e1 5336 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5337 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5338 long error = -ENOMEM;
d142e3e6 5339
b87d8cef 5340 old_memcg = set_active_memcg(parent);
0b8f73e1 5341 memcg = mem_cgroup_alloc();
b87d8cef 5342 set_active_memcg(old_memcg);
11d67612
YS
5343 if (IS_ERR(memcg))
5344 return ERR_CAST(memcg);
d142e3e6 5345
d1663a90 5346 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5347 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5348 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5349 if (parent) {
5350 memcg->swappiness = mem_cgroup_swappiness(parent);
5351 memcg->oom_kill_disable = parent->oom_kill_disable;
5352 }
8de15e92
RG
5353 if (!parent) {
5354 page_counter_init(&memcg->memory, NULL);
5355 page_counter_init(&memcg->swap, NULL);
5356 page_counter_init(&memcg->kmem, NULL);
5357 page_counter_init(&memcg->tcpmem, NULL);
5358 } else if (parent->use_hierarchy) {
0b8f73e1 5359 memcg->use_hierarchy = true;
3e32cb2e 5360 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5361 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5362 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5363 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5364 } else {
8de15e92
RG
5365 page_counter_init(&memcg->memory, &root_mem_cgroup->memory);
5366 page_counter_init(&memcg->swap, &root_mem_cgroup->swap);
5367 page_counter_init(&memcg->kmem, &root_mem_cgroup->kmem);
5368 page_counter_init(&memcg->tcpmem, &root_mem_cgroup->tcpmem);
8c7f6edb
TH
5369 /*
5370 * Deeper hierachy with use_hierarchy == false doesn't make
5371 * much sense so let cgroup subsystem know about this
5372 * unfortunate state in our controller.
5373 */
d142e3e6 5374 if (parent != root_mem_cgroup)
073219e9 5375 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5376 }
d6441637 5377
0b8f73e1
JW
5378 /* The following stuff does not apply to the root */
5379 if (!parent) {
5380 root_mem_cgroup = memcg;
5381 return &memcg->css;
5382 }
5383
b313aeee 5384 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5385 if (error)
5386 goto fail;
127424c8 5387
f7e1cb6e 5388 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5389 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5390
0b8f73e1
JW
5391 return &memcg->css;
5392fail:
7e97de0b 5393 mem_cgroup_id_remove(memcg);
0b8f73e1 5394 mem_cgroup_free(memcg);
11d67612 5395 return ERR_PTR(error);
0b8f73e1
JW
5396}
5397
73f576c0 5398static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5399{
58fa2a55
VD
5400 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5401
0a4465d3
KT
5402 /*
5403 * A memcg must be visible for memcg_expand_shrinker_maps()
5404 * by the time the maps are allocated. So, we allocate maps
5405 * here, when for_each_mem_cgroup() can't skip it.
5406 */
5407 if (memcg_alloc_shrinker_maps(memcg)) {
5408 mem_cgroup_id_remove(memcg);
5409 return -ENOMEM;
5410 }
5411
73f576c0 5412 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5413 refcount_set(&memcg->id.ref, 1);
73f576c0 5414 css_get(css);
2f7dd7a4 5415 return 0;
8cdea7c0
BS
5416}
5417
eb95419b 5418static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5419{
eb95419b 5420 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5421 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5422
5423 /*
5424 * Unregister events and notify userspace.
5425 * Notify userspace about cgroup removing only after rmdir of cgroup
5426 * directory to avoid race between userspace and kernelspace.
5427 */
fba94807
TH
5428 spin_lock(&memcg->event_list_lock);
5429 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5430 list_del_init(&event->list);
5431 schedule_work(&event->remove);
5432 }
fba94807 5433 spin_unlock(&memcg->event_list_lock);
ec64f515 5434
bf8d5d52 5435 page_counter_set_min(&memcg->memory, 0);
23067153 5436 page_counter_set_low(&memcg->memory, 0);
63677c74 5437
567e9ab2 5438 memcg_offline_kmem(memcg);
52ebea74 5439 wb_memcg_offline(memcg);
73f576c0 5440
591edfb1
RG
5441 drain_all_stock(memcg);
5442
73f576c0 5443 mem_cgroup_id_put(memcg);
df878fb0
KH
5444}
5445
6df38689
VD
5446static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5447{
5448 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5449
5450 invalidate_reclaim_iterators(memcg);
5451}
5452
eb95419b 5453static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5454{
eb95419b 5455 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5456 int __maybe_unused i;
c268e994 5457
97b27821
TH
5458#ifdef CONFIG_CGROUP_WRITEBACK
5459 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5460 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5461#endif
f7e1cb6e 5462 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5463 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5464
0db15298 5465 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5466 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5467
0b8f73e1
JW
5468 vmpressure_cleanup(&memcg->vmpressure);
5469 cancel_work_sync(&memcg->high_work);
5470 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5471 memcg_free_shrinker_maps(memcg);
d886f4e4 5472 memcg_free_kmem(memcg);
0b8f73e1 5473 mem_cgroup_free(memcg);
8cdea7c0
BS
5474}
5475
1ced953b
TH
5476/**
5477 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5478 * @css: the target css
5479 *
5480 * Reset the states of the mem_cgroup associated with @css. This is
5481 * invoked when the userland requests disabling on the default hierarchy
5482 * but the memcg is pinned through dependency. The memcg should stop
5483 * applying policies and should revert to the vanilla state as it may be
5484 * made visible again.
5485 *
5486 * The current implementation only resets the essential configurations.
5487 * This needs to be expanded to cover all the visible parts.
5488 */
5489static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5490{
5491 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5492
bbec2e15
RG
5493 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5494 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5495 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5496 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5497 page_counter_set_min(&memcg->memory, 0);
23067153 5498 page_counter_set_low(&memcg->memory, 0);
d1663a90 5499 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5500 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5501 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5502 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5503}
5504
02491447 5505#ifdef CONFIG_MMU
7dc74be0 5506/* Handlers for move charge at task migration. */
854ffa8d 5507static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5508{
05b84301 5509 int ret;
9476db97 5510
d0164adc
MG
5511 /* Try a single bulk charge without reclaim first, kswapd may wake */
5512 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5513 if (!ret) {
854ffa8d 5514 mc.precharge += count;
854ffa8d
DN
5515 return ret;
5516 }
9476db97 5517
3674534b 5518 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5519 while (count--) {
3674534b 5520 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5521 if (ret)
38c5d72f 5522 return ret;
854ffa8d 5523 mc.precharge++;
9476db97 5524 cond_resched();
854ffa8d 5525 }
9476db97 5526 return 0;
4ffef5fe
DN
5527}
5528
4ffef5fe
DN
5529union mc_target {
5530 struct page *page;
02491447 5531 swp_entry_t ent;
4ffef5fe
DN
5532};
5533
4ffef5fe 5534enum mc_target_type {
8d32ff84 5535 MC_TARGET_NONE = 0,
4ffef5fe 5536 MC_TARGET_PAGE,
02491447 5537 MC_TARGET_SWAP,
c733a828 5538 MC_TARGET_DEVICE,
4ffef5fe
DN
5539};
5540
90254a65
DN
5541static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5542 unsigned long addr, pte_t ptent)
4ffef5fe 5543{
25b2995a 5544 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5545
90254a65
DN
5546 if (!page || !page_mapped(page))
5547 return NULL;
5548 if (PageAnon(page)) {
1dfab5ab 5549 if (!(mc.flags & MOVE_ANON))
90254a65 5550 return NULL;
1dfab5ab
JW
5551 } else {
5552 if (!(mc.flags & MOVE_FILE))
5553 return NULL;
5554 }
90254a65
DN
5555 if (!get_page_unless_zero(page))
5556 return NULL;
5557
5558 return page;
5559}
5560
c733a828 5561#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5562static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5563 pte_t ptent, swp_entry_t *entry)
90254a65 5564{
90254a65
DN
5565 struct page *page = NULL;
5566 swp_entry_t ent = pte_to_swp_entry(ptent);
5567
9a137153 5568 if (!(mc.flags & MOVE_ANON))
90254a65 5569 return NULL;
c733a828
JG
5570
5571 /*
5572 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5573 * a device and because they are not accessible by CPU they are store
5574 * as special swap entry in the CPU page table.
5575 */
5576 if (is_device_private_entry(ent)) {
5577 page = device_private_entry_to_page(ent);
5578 /*
5579 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5580 * a refcount of 1 when free (unlike normal page)
5581 */
5582 if (!page_ref_add_unless(page, 1, 1))
5583 return NULL;
5584 return page;
5585 }
5586
9a137153
RC
5587 if (non_swap_entry(ent))
5588 return NULL;
5589
4b91355e
KH
5590 /*
5591 * Because lookup_swap_cache() updates some statistics counter,
5592 * we call find_get_page() with swapper_space directly.
5593 */
f6ab1f7f 5594 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5595 entry->val = ent.val;
90254a65
DN
5596
5597 return page;
5598}
4b91355e
KH
5599#else
5600static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5601 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5602{
5603 return NULL;
5604}
5605#endif
90254a65 5606
87946a72
DN
5607static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5608 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5609{
87946a72
DN
5610 if (!vma->vm_file) /* anonymous vma */
5611 return NULL;
1dfab5ab 5612 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5613 return NULL;
5614
87946a72 5615 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5616 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5617 return find_get_incore_page(vma->vm_file->f_mapping,
5618 linear_page_index(vma, addr));
87946a72
DN
5619}
5620
b1b0deab
CG
5621/**
5622 * mem_cgroup_move_account - move account of the page
5623 * @page: the page
25843c2b 5624 * @compound: charge the page as compound or small page
b1b0deab
CG
5625 * @from: mem_cgroup which the page is moved from.
5626 * @to: mem_cgroup which the page is moved to. @from != @to.
5627 *
3ac808fd 5628 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5629 *
5630 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5631 * from old cgroup.
5632 */
5633static int mem_cgroup_move_account(struct page *page,
f627c2f5 5634 bool compound,
b1b0deab
CG
5635 struct mem_cgroup *from,
5636 struct mem_cgroup *to)
5637{
ae8af438
KK
5638 struct lruvec *from_vec, *to_vec;
5639 struct pglist_data *pgdat;
6c357848 5640 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5641 int ret;
5642
5643 VM_BUG_ON(from == to);
5644 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5645 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5646
5647 /*
6a93ca8f 5648 * Prevent mem_cgroup_migrate() from looking at
45637bab 5649 * page->mem_cgroup of its source page while we change it.
b1b0deab 5650 */
f627c2f5 5651 ret = -EBUSY;
b1b0deab
CG
5652 if (!trylock_page(page))
5653 goto out;
5654
5655 ret = -EINVAL;
5656 if (page->mem_cgroup != from)
5657 goto out_unlock;
5658
ae8af438 5659 pgdat = page_pgdat(page);
867e5e1d
JW
5660 from_vec = mem_cgroup_lruvec(from, pgdat);
5661 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5662
abb242f5 5663 lock_page_memcg(page);
b1b0deab 5664
be5d0a74
JW
5665 if (PageAnon(page)) {
5666 if (page_mapped(page)) {
5667 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5668 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982
JW
5669 if (PageTransHuge(page)) {
5670 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5671 -nr_pages);
5672 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5673 nr_pages);
5674 }
5675
be5d0a74
JW
5676 }
5677 } else {
0d1c2072
JW
5678 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5679 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5680
5681 if (PageSwapBacked(page)) {
5682 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5683 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5684 }
5685
49e50d27
JW
5686 if (page_mapped(page)) {
5687 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5688 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5689 }
b1b0deab 5690
49e50d27
JW
5691 if (PageDirty(page)) {
5692 struct address_space *mapping = page_mapping(page);
c4843a75 5693
f56753ac 5694 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5695 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5696 -nr_pages);
5697 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5698 nr_pages);
5699 }
c4843a75
GT
5700 }
5701 }
5702
b1b0deab 5703 if (PageWriteback(page)) {
ae8af438
KK
5704 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5705 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5706 }
5707
5708 /*
abb242f5
JW
5709 * All state has been migrated, let's switch to the new memcg.
5710 *
b1b0deab 5711 * It is safe to change page->mem_cgroup here because the page
abb242f5
JW
5712 * is referenced, charged, isolated, and locked: we can't race
5713 * with (un)charging, migration, LRU putback, or anything else
5714 * that would rely on a stable page->mem_cgroup.
5715 *
5716 * Note that lock_page_memcg is a memcg lock, not a page lock,
5717 * to save space. As soon as we switch page->mem_cgroup to a
5718 * new memcg that isn't locked, the above state can change
5719 * concurrently again. Make sure we're truly done with it.
b1b0deab 5720 */
abb242f5 5721 smp_mb();
b1b0deab 5722
1a3e1f40
JW
5723 css_get(&to->css);
5724 css_put(&from->css);
5725
5726 page->mem_cgroup = to;
87eaceb3 5727
abb242f5 5728 __unlock_page_memcg(from);
b1b0deab
CG
5729
5730 ret = 0;
5731
5732 local_irq_disable();
3fba69a5 5733 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5734 memcg_check_events(to, page);
3fba69a5 5735 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5736 memcg_check_events(from, page);
5737 local_irq_enable();
5738out_unlock:
5739 unlock_page(page);
5740out:
5741 return ret;
5742}
5743
7cf7806c
LR
5744/**
5745 * get_mctgt_type - get target type of moving charge
5746 * @vma: the vma the pte to be checked belongs
5747 * @addr: the address corresponding to the pte to be checked
5748 * @ptent: the pte to be checked
5749 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5750 *
5751 * Returns
5752 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5753 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5754 * move charge. if @target is not NULL, the page is stored in target->page
5755 * with extra refcnt got(Callers should handle it).
5756 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5757 * target for charge migration. if @target is not NULL, the entry is stored
5758 * in target->ent.
25b2995a
CH
5759 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5760 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5761 * For now we such page is charge like a regular page would be as for all
5762 * intent and purposes it is just special memory taking the place of a
5763 * regular page.
c733a828
JG
5764 *
5765 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5766 *
5767 * Called with pte lock held.
5768 */
5769
8d32ff84 5770static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5771 unsigned long addr, pte_t ptent, union mc_target *target)
5772{
5773 struct page *page = NULL;
8d32ff84 5774 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5775 swp_entry_t ent = { .val = 0 };
5776
5777 if (pte_present(ptent))
5778 page = mc_handle_present_pte(vma, addr, ptent);
5779 else if (is_swap_pte(ptent))
48406ef8 5780 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5781 else if (pte_none(ptent))
87946a72 5782 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5783
5784 if (!page && !ent.val)
8d32ff84 5785 return ret;
02491447 5786 if (page) {
02491447 5787 /*
0a31bc97 5788 * Do only loose check w/o serialization.
1306a85a 5789 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5790 * not under LRU exclusion.
02491447 5791 */
1306a85a 5792 if (page->mem_cgroup == mc.from) {
02491447 5793 ret = MC_TARGET_PAGE;
25b2995a 5794 if (is_device_private_page(page))
c733a828 5795 ret = MC_TARGET_DEVICE;
02491447
DN
5796 if (target)
5797 target->page = page;
5798 }
5799 if (!ret || !target)
5800 put_page(page);
5801 }
3e14a57b
HY
5802 /*
5803 * There is a swap entry and a page doesn't exist or isn't charged.
5804 * But we cannot move a tail-page in a THP.
5805 */
5806 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5807 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5808 ret = MC_TARGET_SWAP;
5809 if (target)
5810 target->ent = ent;
4ffef5fe 5811 }
4ffef5fe
DN
5812 return ret;
5813}
5814
12724850
NH
5815#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5816/*
d6810d73
HY
5817 * We don't consider PMD mapped swapping or file mapped pages because THP does
5818 * not support them for now.
12724850
NH
5819 * Caller should make sure that pmd_trans_huge(pmd) is true.
5820 */
5821static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5822 unsigned long addr, pmd_t pmd, union mc_target *target)
5823{
5824 struct page *page = NULL;
12724850
NH
5825 enum mc_target_type ret = MC_TARGET_NONE;
5826
84c3fc4e
ZY
5827 if (unlikely(is_swap_pmd(pmd))) {
5828 VM_BUG_ON(thp_migration_supported() &&
5829 !is_pmd_migration_entry(pmd));
5830 return ret;
5831 }
12724850 5832 page = pmd_page(pmd);
309381fe 5833 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5834 if (!(mc.flags & MOVE_ANON))
12724850 5835 return ret;
1306a85a 5836 if (page->mem_cgroup == mc.from) {
12724850
NH
5837 ret = MC_TARGET_PAGE;
5838 if (target) {
5839 get_page(page);
5840 target->page = page;
5841 }
5842 }
5843 return ret;
5844}
5845#else
5846static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5847 unsigned long addr, pmd_t pmd, union mc_target *target)
5848{
5849 return MC_TARGET_NONE;
5850}
5851#endif
5852
4ffef5fe
DN
5853static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5854 unsigned long addr, unsigned long end,
5855 struct mm_walk *walk)
5856{
26bcd64a 5857 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5858 pte_t *pte;
5859 spinlock_t *ptl;
5860
b6ec57f4
KS
5861 ptl = pmd_trans_huge_lock(pmd, vma);
5862 if (ptl) {
c733a828
JG
5863 /*
5864 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5865 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5866 * this might change.
c733a828 5867 */
12724850
NH
5868 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5869 mc.precharge += HPAGE_PMD_NR;
bf929152 5870 spin_unlock(ptl);
1a5a9906 5871 return 0;
12724850 5872 }
03319327 5873
45f83cef
AA
5874 if (pmd_trans_unstable(pmd))
5875 return 0;
4ffef5fe
DN
5876 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5877 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5878 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5879 mc.precharge++; /* increment precharge temporarily */
5880 pte_unmap_unlock(pte - 1, ptl);
5881 cond_resched();
5882
7dc74be0
DN
5883 return 0;
5884}
5885
7b86ac33
CH
5886static const struct mm_walk_ops precharge_walk_ops = {
5887 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5888};
5889
4ffef5fe
DN
5890static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5891{
5892 unsigned long precharge;
4ffef5fe 5893
d8ed45c5 5894 mmap_read_lock(mm);
7b86ac33 5895 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5896 mmap_read_unlock(mm);
4ffef5fe
DN
5897
5898 precharge = mc.precharge;
5899 mc.precharge = 0;
5900
5901 return precharge;
5902}
5903
4ffef5fe
DN
5904static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5905{
dfe076b0
DN
5906 unsigned long precharge = mem_cgroup_count_precharge(mm);
5907
5908 VM_BUG_ON(mc.moving_task);
5909 mc.moving_task = current;
5910 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5911}
5912
dfe076b0
DN
5913/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5914static void __mem_cgroup_clear_mc(void)
4ffef5fe 5915{
2bd9bb20
KH
5916 struct mem_cgroup *from = mc.from;
5917 struct mem_cgroup *to = mc.to;
5918
4ffef5fe 5919 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5920 if (mc.precharge) {
00501b53 5921 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5922 mc.precharge = 0;
5923 }
5924 /*
5925 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5926 * we must uncharge here.
5927 */
5928 if (mc.moved_charge) {
00501b53 5929 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5930 mc.moved_charge = 0;
4ffef5fe 5931 }
483c30b5
DN
5932 /* we must fixup refcnts and charges */
5933 if (mc.moved_swap) {
483c30b5 5934 /* uncharge swap account from the old cgroup */
ce00a967 5935 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5936 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5937
615d66c3
VD
5938 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5939
05b84301 5940 /*
3e32cb2e
JW
5941 * we charged both to->memory and to->memsw, so we
5942 * should uncharge to->memory.
05b84301 5943 */
ce00a967 5944 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5945 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5946
483c30b5
DN
5947 mc.moved_swap = 0;
5948 }
dfe076b0
DN
5949 memcg_oom_recover(from);
5950 memcg_oom_recover(to);
5951 wake_up_all(&mc.waitq);
5952}
5953
5954static void mem_cgroup_clear_mc(void)
5955{
264a0ae1
TH
5956 struct mm_struct *mm = mc.mm;
5957
dfe076b0
DN
5958 /*
5959 * we must clear moving_task before waking up waiters at the end of
5960 * task migration.
5961 */
5962 mc.moving_task = NULL;
5963 __mem_cgroup_clear_mc();
2bd9bb20 5964 spin_lock(&mc.lock);
4ffef5fe
DN
5965 mc.from = NULL;
5966 mc.to = NULL;
264a0ae1 5967 mc.mm = NULL;
2bd9bb20 5968 spin_unlock(&mc.lock);
264a0ae1
TH
5969
5970 mmput(mm);
4ffef5fe
DN
5971}
5972
1f7dd3e5 5973static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5974{
1f7dd3e5 5975 struct cgroup_subsys_state *css;
eed67d75 5976 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5977 struct mem_cgroup *from;
4530eddb 5978 struct task_struct *leader, *p;
9f2115f9 5979 struct mm_struct *mm;
1dfab5ab 5980 unsigned long move_flags;
9f2115f9 5981 int ret = 0;
7dc74be0 5982
1f7dd3e5
TH
5983 /* charge immigration isn't supported on the default hierarchy */
5984 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5985 return 0;
5986
4530eddb
TH
5987 /*
5988 * Multi-process migrations only happen on the default hierarchy
5989 * where charge immigration is not used. Perform charge
5990 * immigration if @tset contains a leader and whine if there are
5991 * multiple.
5992 */
5993 p = NULL;
1f7dd3e5 5994 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5995 WARN_ON_ONCE(p);
5996 p = leader;
1f7dd3e5 5997 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5998 }
5999 if (!p)
6000 return 0;
6001
1f7dd3e5
TH
6002 /*
6003 * We are now commited to this value whatever it is. Changes in this
6004 * tunable will only affect upcoming migrations, not the current one.
6005 * So we need to save it, and keep it going.
6006 */
6007 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6008 if (!move_flags)
6009 return 0;
6010
9f2115f9
TH
6011 from = mem_cgroup_from_task(p);
6012
6013 VM_BUG_ON(from == memcg);
6014
6015 mm = get_task_mm(p);
6016 if (!mm)
6017 return 0;
6018 /* We move charges only when we move a owner of the mm */
6019 if (mm->owner == p) {
6020 VM_BUG_ON(mc.from);
6021 VM_BUG_ON(mc.to);
6022 VM_BUG_ON(mc.precharge);
6023 VM_BUG_ON(mc.moved_charge);
6024 VM_BUG_ON(mc.moved_swap);
6025
6026 spin_lock(&mc.lock);
264a0ae1 6027 mc.mm = mm;
9f2115f9
TH
6028 mc.from = from;
6029 mc.to = memcg;
6030 mc.flags = move_flags;
6031 spin_unlock(&mc.lock);
6032 /* We set mc.moving_task later */
6033
6034 ret = mem_cgroup_precharge_mc(mm);
6035 if (ret)
6036 mem_cgroup_clear_mc();
264a0ae1
TH
6037 } else {
6038 mmput(mm);
7dc74be0
DN
6039 }
6040 return ret;
6041}
6042
1f7dd3e5 6043static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6044{
4e2f245d
JW
6045 if (mc.to)
6046 mem_cgroup_clear_mc();
7dc74be0
DN
6047}
6048
4ffef5fe
DN
6049static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6050 unsigned long addr, unsigned long end,
6051 struct mm_walk *walk)
7dc74be0 6052{
4ffef5fe 6053 int ret = 0;
26bcd64a 6054 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6055 pte_t *pte;
6056 spinlock_t *ptl;
12724850
NH
6057 enum mc_target_type target_type;
6058 union mc_target target;
6059 struct page *page;
4ffef5fe 6060
b6ec57f4
KS
6061 ptl = pmd_trans_huge_lock(pmd, vma);
6062 if (ptl) {
62ade86a 6063 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6064 spin_unlock(ptl);
12724850
NH
6065 return 0;
6066 }
6067 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6068 if (target_type == MC_TARGET_PAGE) {
6069 page = target.page;
6070 if (!isolate_lru_page(page)) {
f627c2f5 6071 if (!mem_cgroup_move_account(page, true,
1306a85a 6072 mc.from, mc.to)) {
12724850
NH
6073 mc.precharge -= HPAGE_PMD_NR;
6074 mc.moved_charge += HPAGE_PMD_NR;
6075 }
6076 putback_lru_page(page);
6077 }
6078 put_page(page);
c733a828
JG
6079 } else if (target_type == MC_TARGET_DEVICE) {
6080 page = target.page;
6081 if (!mem_cgroup_move_account(page, true,
6082 mc.from, mc.to)) {
6083 mc.precharge -= HPAGE_PMD_NR;
6084 mc.moved_charge += HPAGE_PMD_NR;
6085 }
6086 put_page(page);
12724850 6087 }
bf929152 6088 spin_unlock(ptl);
1a5a9906 6089 return 0;
12724850
NH
6090 }
6091
45f83cef
AA
6092 if (pmd_trans_unstable(pmd))
6093 return 0;
4ffef5fe
DN
6094retry:
6095 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6096 for (; addr != end; addr += PAGE_SIZE) {
6097 pte_t ptent = *(pte++);
c733a828 6098 bool device = false;
02491447 6099 swp_entry_t ent;
4ffef5fe
DN
6100
6101 if (!mc.precharge)
6102 break;
6103
8d32ff84 6104 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6105 case MC_TARGET_DEVICE:
6106 device = true;
e4a9bc58 6107 fallthrough;
4ffef5fe
DN
6108 case MC_TARGET_PAGE:
6109 page = target.page;
53f9263b
KS
6110 /*
6111 * We can have a part of the split pmd here. Moving it
6112 * can be done but it would be too convoluted so simply
6113 * ignore such a partial THP and keep it in original
6114 * memcg. There should be somebody mapping the head.
6115 */
6116 if (PageTransCompound(page))
6117 goto put;
c733a828 6118 if (!device && isolate_lru_page(page))
4ffef5fe 6119 goto put;
f627c2f5
KS
6120 if (!mem_cgroup_move_account(page, false,
6121 mc.from, mc.to)) {
4ffef5fe 6122 mc.precharge--;
854ffa8d
DN
6123 /* we uncharge from mc.from later. */
6124 mc.moved_charge++;
4ffef5fe 6125 }
c733a828
JG
6126 if (!device)
6127 putback_lru_page(page);
8d32ff84 6128put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6129 put_page(page);
6130 break;
02491447
DN
6131 case MC_TARGET_SWAP:
6132 ent = target.ent;
e91cbb42 6133 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6134 mc.precharge--;
8d22a935
HD
6135 mem_cgroup_id_get_many(mc.to, 1);
6136 /* we fixup other refcnts and charges later. */
483c30b5
DN
6137 mc.moved_swap++;
6138 }
02491447 6139 break;
4ffef5fe
DN
6140 default:
6141 break;
6142 }
6143 }
6144 pte_unmap_unlock(pte - 1, ptl);
6145 cond_resched();
6146
6147 if (addr != end) {
6148 /*
6149 * We have consumed all precharges we got in can_attach().
6150 * We try charge one by one, but don't do any additional
6151 * charges to mc.to if we have failed in charge once in attach()
6152 * phase.
6153 */
854ffa8d 6154 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6155 if (!ret)
6156 goto retry;
6157 }
6158
6159 return ret;
6160}
6161
7b86ac33
CH
6162static const struct mm_walk_ops charge_walk_ops = {
6163 .pmd_entry = mem_cgroup_move_charge_pte_range,
6164};
6165
264a0ae1 6166static void mem_cgroup_move_charge(void)
4ffef5fe 6167{
4ffef5fe 6168 lru_add_drain_all();
312722cb 6169 /*
81f8c3a4
JW
6170 * Signal lock_page_memcg() to take the memcg's move_lock
6171 * while we're moving its pages to another memcg. Then wait
6172 * for already started RCU-only updates to finish.
312722cb
JW
6173 */
6174 atomic_inc(&mc.from->moving_account);
6175 synchronize_rcu();
dfe076b0 6176retry:
d8ed45c5 6177 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6178 /*
c1e8d7c6 6179 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6180 * waitq. So we cancel all extra charges, wake up all waiters,
6181 * and retry. Because we cancel precharges, we might not be able
6182 * to move enough charges, but moving charge is a best-effort
6183 * feature anyway, so it wouldn't be a big problem.
6184 */
6185 __mem_cgroup_clear_mc();
6186 cond_resched();
6187 goto retry;
6188 }
26bcd64a
NH
6189 /*
6190 * When we have consumed all precharges and failed in doing
6191 * additional charge, the page walk just aborts.
6192 */
7b86ac33
CH
6193 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6194 NULL);
0247f3f4 6195
d8ed45c5 6196 mmap_read_unlock(mc.mm);
312722cb 6197 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6198}
6199
264a0ae1 6200static void mem_cgroup_move_task(void)
67e465a7 6201{
264a0ae1
TH
6202 if (mc.to) {
6203 mem_cgroup_move_charge();
a433658c 6204 mem_cgroup_clear_mc();
264a0ae1 6205 }
67e465a7 6206}
5cfb80a7 6207#else /* !CONFIG_MMU */
1f7dd3e5 6208static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6209{
6210 return 0;
6211}
1f7dd3e5 6212static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6213{
6214}
264a0ae1 6215static void mem_cgroup_move_task(void)
5cfb80a7
DN
6216{
6217}
6218#endif
67e465a7 6219
f00baae7
TH
6220/*
6221 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6222 * to verify whether we're attached to the default hierarchy on each mount
6223 * attempt.
f00baae7 6224 */
eb95419b 6225static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6226{
6227 /*
aa6ec29b 6228 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6229 * guarantees that @root doesn't have any children, so turning it
6230 * on for the root memcg is enough.
6231 */
9e10a130 6232 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
6233 root_mem_cgroup->use_hierarchy = true;
6234 else
6235 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
6236}
6237
677dc973
CD
6238static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6239{
6240 if (value == PAGE_COUNTER_MAX)
6241 seq_puts(m, "max\n");
6242 else
6243 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6244
6245 return 0;
6246}
6247
241994ed
JW
6248static u64 memory_current_read(struct cgroup_subsys_state *css,
6249 struct cftype *cft)
6250{
f5fc3c5d
JW
6251 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6252
6253 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6254}
6255
bf8d5d52
RG
6256static int memory_min_show(struct seq_file *m, void *v)
6257{
677dc973
CD
6258 return seq_puts_memcg_tunable(m,
6259 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6260}
6261
6262static ssize_t memory_min_write(struct kernfs_open_file *of,
6263 char *buf, size_t nbytes, loff_t off)
6264{
6265 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6266 unsigned long min;
6267 int err;
6268
6269 buf = strstrip(buf);
6270 err = page_counter_memparse(buf, "max", &min);
6271 if (err)
6272 return err;
6273
6274 page_counter_set_min(&memcg->memory, min);
6275
6276 return nbytes;
6277}
6278
241994ed
JW
6279static int memory_low_show(struct seq_file *m, void *v)
6280{
677dc973
CD
6281 return seq_puts_memcg_tunable(m,
6282 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6283}
6284
6285static ssize_t memory_low_write(struct kernfs_open_file *of,
6286 char *buf, size_t nbytes, loff_t off)
6287{
6288 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6289 unsigned long low;
6290 int err;
6291
6292 buf = strstrip(buf);
d2973697 6293 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6294 if (err)
6295 return err;
6296
23067153 6297 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6298
6299 return nbytes;
6300}
6301
6302static int memory_high_show(struct seq_file *m, void *v)
6303{
d1663a90
JK
6304 return seq_puts_memcg_tunable(m,
6305 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6306}
6307
6308static ssize_t memory_high_write(struct kernfs_open_file *of,
6309 char *buf, size_t nbytes, loff_t off)
6310{
6311 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6312 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6313 bool drained = false;
241994ed
JW
6314 unsigned long high;
6315 int err;
6316
6317 buf = strstrip(buf);
d2973697 6318 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6319 if (err)
6320 return err;
6321
8c8c383c
JW
6322 for (;;) {
6323 unsigned long nr_pages = page_counter_read(&memcg->memory);
6324 unsigned long reclaimed;
6325
6326 if (nr_pages <= high)
6327 break;
6328
6329 if (signal_pending(current))
6330 break;
6331
6332 if (!drained) {
6333 drain_all_stock(memcg);
6334 drained = true;
6335 continue;
6336 }
6337
6338 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6339 GFP_KERNEL, true);
6340
6341 if (!reclaimed && !nr_retries--)
6342 break;
6343 }
588083bb 6344
536d3bf2
RG
6345 page_counter_set_high(&memcg->memory, high);
6346
19ce33ac
JW
6347 memcg_wb_domain_size_changed(memcg);
6348
241994ed
JW
6349 return nbytes;
6350}
6351
6352static int memory_max_show(struct seq_file *m, void *v)
6353{
677dc973
CD
6354 return seq_puts_memcg_tunable(m,
6355 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6356}
6357
6358static ssize_t memory_max_write(struct kernfs_open_file *of,
6359 char *buf, size_t nbytes, loff_t off)
6360{
6361 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6362 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6363 bool drained = false;
241994ed
JW
6364 unsigned long max;
6365 int err;
6366
6367 buf = strstrip(buf);
d2973697 6368 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6369 if (err)
6370 return err;
6371
bbec2e15 6372 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6373
6374 for (;;) {
6375 unsigned long nr_pages = page_counter_read(&memcg->memory);
6376
6377 if (nr_pages <= max)
6378 break;
6379
7249c9f0 6380 if (signal_pending(current))
b6e6edcf 6381 break;
b6e6edcf
JW
6382
6383 if (!drained) {
6384 drain_all_stock(memcg);
6385 drained = true;
6386 continue;
6387 }
6388
6389 if (nr_reclaims) {
6390 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6391 GFP_KERNEL, true))
6392 nr_reclaims--;
6393 continue;
6394 }
6395
e27be240 6396 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6397 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6398 break;
6399 }
241994ed 6400
2529bb3a 6401 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6402 return nbytes;
6403}
6404
1e577f97
SB
6405static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6406{
6407 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6408 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6409 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6410 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6411 seq_printf(m, "oom_kill %lu\n",
6412 atomic_long_read(&events[MEMCG_OOM_KILL]));
6413}
6414
241994ed
JW
6415static int memory_events_show(struct seq_file *m, void *v)
6416{
aa9694bb 6417 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6418
1e577f97
SB
6419 __memory_events_show(m, memcg->memory_events);
6420 return 0;
6421}
6422
6423static int memory_events_local_show(struct seq_file *m, void *v)
6424{
6425 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6426
1e577f97 6427 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6428 return 0;
6429}
6430
587d9f72
JW
6431static int memory_stat_show(struct seq_file *m, void *v)
6432{
aa9694bb 6433 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6434 char *buf;
1ff9e6e1 6435
c8713d0b
JW
6436 buf = memory_stat_format(memcg);
6437 if (!buf)
6438 return -ENOMEM;
6439 seq_puts(m, buf);
6440 kfree(buf);
587d9f72
JW
6441 return 0;
6442}
6443
5f9a4f4a
MS
6444#ifdef CONFIG_NUMA
6445static int memory_numa_stat_show(struct seq_file *m, void *v)
6446{
6447 int i;
6448 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6449
6450 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6451 int nid;
6452
6453 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6454 continue;
6455
6456 seq_printf(m, "%s", memory_stats[i].name);
6457 for_each_node_state(nid, N_MEMORY) {
6458 u64 size;
6459 struct lruvec *lruvec;
6460
6461 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6462 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6463 size *= memory_stats[i].ratio;
6464 seq_printf(m, " N%d=%llu", nid, size);
6465 }
6466 seq_putc(m, '\n');
6467 }
6468
6469 return 0;
6470}
6471#endif
6472
3d8b38eb
RG
6473static int memory_oom_group_show(struct seq_file *m, void *v)
6474{
aa9694bb 6475 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6476
6477 seq_printf(m, "%d\n", memcg->oom_group);
6478
6479 return 0;
6480}
6481
6482static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6483 char *buf, size_t nbytes, loff_t off)
6484{
6485 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6486 int ret, oom_group;
6487
6488 buf = strstrip(buf);
6489 if (!buf)
6490 return -EINVAL;
6491
6492 ret = kstrtoint(buf, 0, &oom_group);
6493 if (ret)
6494 return ret;
6495
6496 if (oom_group != 0 && oom_group != 1)
6497 return -EINVAL;
6498
6499 memcg->oom_group = oom_group;
6500
6501 return nbytes;
6502}
6503
241994ed
JW
6504static struct cftype memory_files[] = {
6505 {
6506 .name = "current",
f5fc3c5d 6507 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6508 .read_u64 = memory_current_read,
6509 },
bf8d5d52
RG
6510 {
6511 .name = "min",
6512 .flags = CFTYPE_NOT_ON_ROOT,
6513 .seq_show = memory_min_show,
6514 .write = memory_min_write,
6515 },
241994ed
JW
6516 {
6517 .name = "low",
6518 .flags = CFTYPE_NOT_ON_ROOT,
6519 .seq_show = memory_low_show,
6520 .write = memory_low_write,
6521 },
6522 {
6523 .name = "high",
6524 .flags = CFTYPE_NOT_ON_ROOT,
6525 .seq_show = memory_high_show,
6526 .write = memory_high_write,
6527 },
6528 {
6529 .name = "max",
6530 .flags = CFTYPE_NOT_ON_ROOT,
6531 .seq_show = memory_max_show,
6532 .write = memory_max_write,
6533 },
6534 {
6535 .name = "events",
6536 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6537 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6538 .seq_show = memory_events_show,
6539 },
1e577f97
SB
6540 {
6541 .name = "events.local",
6542 .flags = CFTYPE_NOT_ON_ROOT,
6543 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6544 .seq_show = memory_events_local_show,
6545 },
587d9f72
JW
6546 {
6547 .name = "stat",
587d9f72
JW
6548 .seq_show = memory_stat_show,
6549 },
5f9a4f4a
MS
6550#ifdef CONFIG_NUMA
6551 {
6552 .name = "numa_stat",
6553 .seq_show = memory_numa_stat_show,
6554 },
6555#endif
3d8b38eb
RG
6556 {
6557 .name = "oom.group",
6558 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6559 .seq_show = memory_oom_group_show,
6560 .write = memory_oom_group_write,
6561 },
241994ed
JW
6562 { } /* terminate */
6563};
6564
073219e9 6565struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6566 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6567 .css_online = mem_cgroup_css_online,
92fb9748 6568 .css_offline = mem_cgroup_css_offline,
6df38689 6569 .css_released = mem_cgroup_css_released,
92fb9748 6570 .css_free = mem_cgroup_css_free,
1ced953b 6571 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6572 .can_attach = mem_cgroup_can_attach,
6573 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6574 .post_attach = mem_cgroup_move_task,
f00baae7 6575 .bind = mem_cgroup_bind,
241994ed
JW
6576 .dfl_cftypes = memory_files,
6577 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6578 .early_init = 0,
8cdea7c0 6579};
c077719b 6580
bc50bcc6
JW
6581/*
6582 * This function calculates an individual cgroup's effective
6583 * protection which is derived from its own memory.min/low, its
6584 * parent's and siblings' settings, as well as the actual memory
6585 * distribution in the tree.
6586 *
6587 * The following rules apply to the effective protection values:
6588 *
6589 * 1. At the first level of reclaim, effective protection is equal to
6590 * the declared protection in memory.min and memory.low.
6591 *
6592 * 2. To enable safe delegation of the protection configuration, at
6593 * subsequent levels the effective protection is capped to the
6594 * parent's effective protection.
6595 *
6596 * 3. To make complex and dynamic subtrees easier to configure, the
6597 * user is allowed to overcommit the declared protection at a given
6598 * level. If that is the case, the parent's effective protection is
6599 * distributed to the children in proportion to how much protection
6600 * they have declared and how much of it they are utilizing.
6601 *
6602 * This makes distribution proportional, but also work-conserving:
6603 * if one cgroup claims much more protection than it uses memory,
6604 * the unused remainder is available to its siblings.
6605 *
6606 * 4. Conversely, when the declared protection is undercommitted at a
6607 * given level, the distribution of the larger parental protection
6608 * budget is NOT proportional. A cgroup's protection from a sibling
6609 * is capped to its own memory.min/low setting.
6610 *
8a931f80
JW
6611 * 5. However, to allow protecting recursive subtrees from each other
6612 * without having to declare each individual cgroup's fixed share
6613 * of the ancestor's claim to protection, any unutilized -
6614 * "floating" - protection from up the tree is distributed in
6615 * proportion to each cgroup's *usage*. This makes the protection
6616 * neutral wrt sibling cgroups and lets them compete freely over
6617 * the shared parental protection budget, but it protects the
6618 * subtree as a whole from neighboring subtrees.
6619 *
6620 * Note that 4. and 5. are not in conflict: 4. is about protecting
6621 * against immediate siblings whereas 5. is about protecting against
6622 * neighboring subtrees.
bc50bcc6
JW
6623 */
6624static unsigned long effective_protection(unsigned long usage,
8a931f80 6625 unsigned long parent_usage,
bc50bcc6
JW
6626 unsigned long setting,
6627 unsigned long parent_effective,
6628 unsigned long siblings_protected)
6629{
6630 unsigned long protected;
8a931f80 6631 unsigned long ep;
bc50bcc6
JW
6632
6633 protected = min(usage, setting);
6634 /*
6635 * If all cgroups at this level combined claim and use more
6636 * protection then what the parent affords them, distribute
6637 * shares in proportion to utilization.
6638 *
6639 * We are using actual utilization rather than the statically
6640 * claimed protection in order to be work-conserving: claimed
6641 * but unused protection is available to siblings that would
6642 * otherwise get a smaller chunk than what they claimed.
6643 */
6644 if (siblings_protected > parent_effective)
6645 return protected * parent_effective / siblings_protected;
6646
6647 /*
6648 * Ok, utilized protection of all children is within what the
6649 * parent affords them, so we know whatever this child claims
6650 * and utilizes is effectively protected.
6651 *
6652 * If there is unprotected usage beyond this value, reclaim
6653 * will apply pressure in proportion to that amount.
6654 *
6655 * If there is unutilized protection, the cgroup will be fully
6656 * shielded from reclaim, but we do return a smaller value for
6657 * protection than what the group could enjoy in theory. This
6658 * is okay. With the overcommit distribution above, effective
6659 * protection is always dependent on how memory is actually
6660 * consumed among the siblings anyway.
6661 */
8a931f80
JW
6662 ep = protected;
6663
6664 /*
6665 * If the children aren't claiming (all of) the protection
6666 * afforded to them by the parent, distribute the remainder in
6667 * proportion to the (unprotected) memory of each cgroup. That
6668 * way, cgroups that aren't explicitly prioritized wrt each
6669 * other compete freely over the allowance, but they are
6670 * collectively protected from neighboring trees.
6671 *
6672 * We're using unprotected memory for the weight so that if
6673 * some cgroups DO claim explicit protection, we don't protect
6674 * the same bytes twice.
cd324edc
JW
6675 *
6676 * Check both usage and parent_usage against the respective
6677 * protected values. One should imply the other, but they
6678 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6679 */
6680 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6681 return ep;
cd324edc
JW
6682 if (parent_effective > siblings_protected &&
6683 parent_usage > siblings_protected &&
6684 usage > protected) {
8a931f80
JW
6685 unsigned long unclaimed;
6686
6687 unclaimed = parent_effective - siblings_protected;
6688 unclaimed *= usage - protected;
6689 unclaimed /= parent_usage - siblings_protected;
6690
6691 ep += unclaimed;
6692 }
6693
6694 return ep;
bc50bcc6
JW
6695}
6696
241994ed 6697/**
bf8d5d52 6698 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6699 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6700 * @memcg: the memory cgroup to check
6701 *
23067153
RG
6702 * WARNING: This function is not stateless! It can only be used as part
6703 * of a top-down tree iteration, not for isolated queries.
241994ed 6704 */
45c7f7e1
CD
6705void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6706 struct mem_cgroup *memcg)
241994ed 6707{
8a931f80 6708 unsigned long usage, parent_usage;
23067153
RG
6709 struct mem_cgroup *parent;
6710
241994ed 6711 if (mem_cgroup_disabled())
45c7f7e1 6712 return;
241994ed 6713
34c81057
SC
6714 if (!root)
6715 root = root_mem_cgroup;
22f7496f
YS
6716
6717 /*
6718 * Effective values of the reclaim targets are ignored so they
6719 * can be stale. Have a look at mem_cgroup_protection for more
6720 * details.
6721 * TODO: calculation should be more robust so that we do not need
6722 * that special casing.
6723 */
34c81057 6724 if (memcg == root)
45c7f7e1 6725 return;
241994ed 6726
23067153 6727 usage = page_counter_read(&memcg->memory);
bf8d5d52 6728 if (!usage)
45c7f7e1 6729 return;
bf8d5d52 6730
bf8d5d52 6731 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6732 /* No parent means a non-hierarchical mode on v1 memcg */
6733 if (!parent)
45c7f7e1 6734 return;
df2a4196 6735
bc50bcc6 6736 if (parent == root) {
c3d53200 6737 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6738 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6739 return;
bf8d5d52
RG
6740 }
6741
8a931f80
JW
6742 parent_usage = page_counter_read(&parent->memory);
6743
b3a7822e 6744 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6745 READ_ONCE(memcg->memory.min),
6746 READ_ONCE(parent->memory.emin),
b3a7822e 6747 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6748
b3a7822e 6749 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6750 READ_ONCE(memcg->memory.low),
6751 READ_ONCE(parent->memory.elow),
b3a7822e 6752 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6753}
6754
00501b53 6755/**
f0e45fb4 6756 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6757 * @page: page to charge
6758 * @mm: mm context of the victim
6759 * @gfp_mask: reclaim mode
00501b53
JW
6760 *
6761 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6762 * pages according to @gfp_mask if necessary.
6763 *
f0e45fb4 6764 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6765 */
d9eb1ea2 6766int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6767{
6c357848 6768 unsigned int nr_pages = thp_nr_pages(page);
00501b53 6769 struct mem_cgroup *memcg = NULL;
00501b53
JW
6770 int ret = 0;
6771
6772 if (mem_cgroup_disabled())
6773 goto out;
6774
6775 if (PageSwapCache(page)) {
2d1c4980
JW
6776 swp_entry_t ent = { .val = page_private(page), };
6777 unsigned short id;
6778
00501b53
JW
6779 /*
6780 * Every swap fault against a single page tries to charge the
6781 * page, bail as early as possible. shmem_unuse() encounters
eccb52e7
JW
6782 * already charged pages, too. page->mem_cgroup is protected
6783 * by the page lock, which serializes swap cache removal, which
00501b53
JW
6784 * in turn serializes uncharging.
6785 */
e993d905 6786 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6787 if (compound_head(page)->mem_cgroup)
00501b53 6788 goto out;
e993d905 6789
2d1c4980
JW
6790 id = lookup_swap_cgroup_id(ent);
6791 rcu_read_lock();
6792 memcg = mem_cgroup_from_id(id);
6793 if (memcg && !css_tryget_online(&memcg->css))
6794 memcg = NULL;
6795 rcu_read_unlock();
00501b53
JW
6796 }
6797
00501b53
JW
6798 if (!memcg)
6799 memcg = get_mem_cgroup_from_mm(mm);
6800
6801 ret = try_charge(memcg, gfp_mask, nr_pages);
f0e45fb4
JW
6802 if (ret)
6803 goto out_put;
00501b53 6804
1a3e1f40 6805 css_get(&memcg->css);
d9eb1ea2 6806 commit_charge(page, memcg);
6abb5a86 6807
6abb5a86 6808 local_irq_disable();
3fba69a5 6809 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6810 memcg_check_events(memcg, page);
6811 local_irq_enable();
00501b53 6812
2d1c4980 6813 if (PageSwapCache(page)) {
00501b53
JW
6814 swp_entry_t entry = { .val = page_private(page) };
6815 /*
6816 * The swap entry might not get freed for a long time,
6817 * let's not wait for it. The page already received a
6818 * memory+swap charge, drop the swap entry duplicate.
6819 */
38d8b4e6 6820 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53 6821 }
00501b53 6822
f0e45fb4
JW
6823out_put:
6824 css_put(&memcg->css);
6825out:
6826 return ret;
3fea5a49
JW
6827}
6828
a9d5adee
JG
6829struct uncharge_gather {
6830 struct mem_cgroup *memcg;
9f762dbe 6831 unsigned long nr_pages;
a9d5adee 6832 unsigned long pgpgout;
a9d5adee 6833 unsigned long nr_kmem;
a9d5adee
JG
6834 struct page *dummy_page;
6835};
6836
6837static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6838{
a9d5adee
JG
6839 memset(ug, 0, sizeof(*ug));
6840}
6841
6842static void uncharge_batch(const struct uncharge_gather *ug)
6843{
747db954
JW
6844 unsigned long flags;
6845
a9d5adee 6846 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6847 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6848 if (do_memsw_account())
9f762dbe 6849 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6850 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6851 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6852 memcg_oom_recover(ug->memcg);
ce00a967 6853 }
747db954
JW
6854
6855 local_irq_save(flags);
c9019e9b 6856 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6857 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6858 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6859 local_irq_restore(flags);
f1796544
MH
6860
6861 /* drop reference from uncharge_page */
6862 css_put(&ug->memcg->css);
a9d5adee
JG
6863}
6864
6865static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6866{
9f762dbe
JW
6867 unsigned long nr_pages;
6868
a9d5adee 6869 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee
JG
6870
6871 if (!page->mem_cgroup)
6872 return;
6873
6874 /*
6875 * Nobody should be changing or seriously looking at
6876 * page->mem_cgroup at this point, we have fully
6877 * exclusive access to the page.
6878 */
6879
6880 if (ug->memcg != page->mem_cgroup) {
6881 if (ug->memcg) {
6882 uncharge_batch(ug);
6883 uncharge_gather_clear(ug);
6884 }
6885 ug->memcg = page->mem_cgroup;
f1796544
MH
6886
6887 /* pairs with css_put in uncharge_batch */
6888 css_get(&ug->memcg->css);
a9d5adee
JG
6889 }
6890
9f762dbe
JW
6891 nr_pages = compound_nr(page);
6892 ug->nr_pages += nr_pages;
a9d5adee 6893
9f762dbe 6894 if (!PageKmemcg(page)) {
a9d5adee
JG
6895 ug->pgpgout++;
6896 } else {
9f762dbe 6897 ug->nr_kmem += nr_pages;
a9d5adee
JG
6898 __ClearPageKmemcg(page);
6899 }
6900
6901 ug->dummy_page = page;
6902 page->mem_cgroup = NULL;
1a3e1f40 6903 css_put(&ug->memcg->css);
747db954
JW
6904}
6905
6906static void uncharge_list(struct list_head *page_list)
6907{
a9d5adee 6908 struct uncharge_gather ug;
747db954 6909 struct list_head *next;
a9d5adee
JG
6910
6911 uncharge_gather_clear(&ug);
747db954 6912
8b592656
JW
6913 /*
6914 * Note that the list can be a single page->lru; hence the
6915 * do-while loop instead of a simple list_for_each_entry().
6916 */
747db954
JW
6917 next = page_list->next;
6918 do {
a9d5adee
JG
6919 struct page *page;
6920
747db954
JW
6921 page = list_entry(next, struct page, lru);
6922 next = page->lru.next;
6923
a9d5adee 6924 uncharge_page(page, &ug);
747db954
JW
6925 } while (next != page_list);
6926
a9d5adee
JG
6927 if (ug.memcg)
6928 uncharge_batch(&ug);
747db954
JW
6929}
6930
0a31bc97
JW
6931/**
6932 * mem_cgroup_uncharge - uncharge a page
6933 * @page: page to uncharge
6934 *
f0e45fb4 6935 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6936 */
6937void mem_cgroup_uncharge(struct page *page)
6938{
a9d5adee
JG
6939 struct uncharge_gather ug;
6940
0a31bc97
JW
6941 if (mem_cgroup_disabled())
6942 return;
6943
747db954 6944 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6945 if (!page->mem_cgroup)
0a31bc97
JW
6946 return;
6947
a9d5adee
JG
6948 uncharge_gather_clear(&ug);
6949 uncharge_page(page, &ug);
6950 uncharge_batch(&ug);
747db954 6951}
0a31bc97 6952
747db954
JW
6953/**
6954 * mem_cgroup_uncharge_list - uncharge a list of page
6955 * @page_list: list of pages to uncharge
6956 *
6957 * Uncharge a list of pages previously charged with
f0e45fb4 6958 * mem_cgroup_charge().
747db954
JW
6959 */
6960void mem_cgroup_uncharge_list(struct list_head *page_list)
6961{
6962 if (mem_cgroup_disabled())
6963 return;
0a31bc97 6964
747db954
JW
6965 if (!list_empty(page_list))
6966 uncharge_list(page_list);
0a31bc97
JW
6967}
6968
6969/**
6a93ca8f
JW
6970 * mem_cgroup_migrate - charge a page's replacement
6971 * @oldpage: currently circulating page
6972 * @newpage: replacement page
0a31bc97 6973 *
6a93ca8f
JW
6974 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6975 * be uncharged upon free.
0a31bc97
JW
6976 *
6977 * Both pages must be locked, @newpage->mapping must be set up.
6978 */
6a93ca8f 6979void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6980{
29833315 6981 struct mem_cgroup *memcg;
44b7a8d3 6982 unsigned int nr_pages;
d93c4130 6983 unsigned long flags;
0a31bc97
JW
6984
6985 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6986 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6987 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6988 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6989 newpage);
0a31bc97
JW
6990
6991 if (mem_cgroup_disabled())
6992 return;
6993
6994 /* Page cache replacement: new page already charged? */
1306a85a 6995 if (newpage->mem_cgroup)
0a31bc97
JW
6996 return;
6997
45637bab 6998 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6999 memcg = oldpage->mem_cgroup;
29833315 7000 if (!memcg)
0a31bc97
JW
7001 return;
7002
44b7a8d3 7003 /* Force-charge the new page. The old one will be freed soon */
6c357848 7004 nr_pages = thp_nr_pages(newpage);
44b7a8d3
JW
7005
7006 page_counter_charge(&memcg->memory, nr_pages);
7007 if (do_memsw_account())
7008 page_counter_charge(&memcg->memsw, nr_pages);
0a31bc97 7009
1a3e1f40 7010 css_get(&memcg->css);
d9eb1ea2 7011 commit_charge(newpage, memcg);
44b7a8d3 7012
d93c4130 7013 local_irq_save(flags);
3fba69a5 7014 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 7015 memcg_check_events(memcg, newpage);
d93c4130 7016 local_irq_restore(flags);
0a31bc97
JW
7017}
7018
ef12947c 7019DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
7020EXPORT_SYMBOL(memcg_sockets_enabled_key);
7021
2d758073 7022void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
7023{
7024 struct mem_cgroup *memcg;
7025
2d758073
JW
7026 if (!mem_cgroup_sockets_enabled)
7027 return;
7028
e876ecc6
SB
7029 /* Do not associate the sock with unrelated interrupted task's memcg. */
7030 if (in_interrupt())
7031 return;
7032
11092087
JW
7033 rcu_read_lock();
7034 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
7035 if (memcg == root_mem_cgroup)
7036 goto out;
0db15298 7037 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7038 goto out;
8965aa28 7039 if (css_tryget(&memcg->css))
11092087 7040 sk->sk_memcg = memcg;
f7e1cb6e 7041out:
11092087
JW
7042 rcu_read_unlock();
7043}
11092087 7044
2d758073 7045void mem_cgroup_sk_free(struct sock *sk)
11092087 7046{
2d758073
JW
7047 if (sk->sk_memcg)
7048 css_put(&sk->sk_memcg->css);
11092087
JW
7049}
7050
7051/**
7052 * mem_cgroup_charge_skmem - charge socket memory
7053 * @memcg: memcg to charge
7054 * @nr_pages: number of pages to charge
7055 *
7056 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7057 * @memcg's configured limit, %false if the charge had to be forced.
7058 */
7059bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7060{
f7e1cb6e 7061 gfp_t gfp_mask = GFP_KERNEL;
11092087 7062
f7e1cb6e 7063 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7064 struct page_counter *fail;
f7e1cb6e 7065
0db15298
JW
7066 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7067 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7068 return true;
7069 }
0db15298
JW
7070 page_counter_charge(&memcg->tcpmem, nr_pages);
7071 memcg->tcpmem_pressure = 1;
f7e1cb6e 7072 return false;
11092087 7073 }
d886f4e4 7074
f7e1cb6e
JW
7075 /* Don't block in the packet receive path */
7076 if (in_softirq())
7077 gfp_mask = GFP_NOWAIT;
7078
c9019e9b 7079 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 7080
f7e1cb6e
JW
7081 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7082 return true;
7083
7084 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
7085 return false;
7086}
7087
7088/**
7089 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7090 * @memcg: memcg to uncharge
7091 * @nr_pages: number of pages to uncharge
11092087
JW
7092 */
7093void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7094{
f7e1cb6e 7095 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7096 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7097 return;
7098 }
d886f4e4 7099
c9019e9b 7100 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7101
475d0487 7102 refill_stock(memcg, nr_pages);
11092087
JW
7103}
7104
f7e1cb6e
JW
7105static int __init cgroup_memory(char *s)
7106{
7107 char *token;
7108
7109 while ((token = strsep(&s, ",")) != NULL) {
7110 if (!*token)
7111 continue;
7112 if (!strcmp(token, "nosocket"))
7113 cgroup_memory_nosocket = true;
04823c83
VD
7114 if (!strcmp(token, "nokmem"))
7115 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7116 }
7117 return 0;
7118}
7119__setup("cgroup.memory=", cgroup_memory);
11092087 7120
2d11085e 7121/*
1081312f
MH
7122 * subsys_initcall() for memory controller.
7123 *
308167fc
SAS
7124 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7125 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7126 * basically everything that doesn't depend on a specific mem_cgroup structure
7127 * should be initialized from here.
2d11085e
MH
7128 */
7129static int __init mem_cgroup_init(void)
7130{
95a045f6
JW
7131 int cpu, node;
7132
308167fc
SAS
7133 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7134 memcg_hotplug_cpu_dead);
95a045f6
JW
7135
7136 for_each_possible_cpu(cpu)
7137 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7138 drain_local_stock);
7139
7140 for_each_node(node) {
7141 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7142
7143 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7144 node_online(node) ? node : NUMA_NO_NODE);
7145
ef8f2327 7146 rtpn->rb_root = RB_ROOT;
fa90b2fd 7147 rtpn->rb_rightmost = NULL;
ef8f2327 7148 spin_lock_init(&rtpn->lock);
95a045f6
JW
7149 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7150 }
7151
2d11085e
MH
7152 return 0;
7153}
7154subsys_initcall(mem_cgroup_init);
21afa38e
JW
7155
7156#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7157static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7158{
1c2d479a 7159 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7160 /*
7161 * The root cgroup cannot be destroyed, so it's refcount must
7162 * always be >= 1.
7163 */
7164 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7165 VM_BUG_ON(1);
7166 break;
7167 }
7168 memcg = parent_mem_cgroup(memcg);
7169 if (!memcg)
7170 memcg = root_mem_cgroup;
7171 }
7172 return memcg;
7173}
7174
21afa38e
JW
7175/**
7176 * mem_cgroup_swapout - transfer a memsw charge to swap
7177 * @page: page whose memsw charge to transfer
7178 * @entry: swap entry to move the charge to
7179 *
7180 * Transfer the memsw charge of @page to @entry.
7181 */
7182void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7183{
1f47b61f 7184 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7185 unsigned int nr_entries;
21afa38e
JW
7186 unsigned short oldid;
7187
7188 VM_BUG_ON_PAGE(PageLRU(page), page);
7189 VM_BUG_ON_PAGE(page_count(page), page);
7190
2d1c4980 7191 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7192 return;
7193
7194 memcg = page->mem_cgroup;
7195
7196 /* Readahead page, never charged */
7197 if (!memcg)
7198 return;
7199
1f47b61f
VD
7200 /*
7201 * In case the memcg owning these pages has been offlined and doesn't
7202 * have an ID allocated to it anymore, charge the closest online
7203 * ancestor for the swap instead and transfer the memory+swap charge.
7204 */
7205 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7206 nr_entries = thp_nr_pages(page);
d6810d73
HY
7207 /* Get references for the tail pages, too */
7208 if (nr_entries > 1)
7209 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7210 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7211 nr_entries);
21afa38e 7212 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7213 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
7214
7215 page->mem_cgroup = NULL;
7216
7217 if (!mem_cgroup_is_root(memcg))
d6810d73 7218 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7219
2d1c4980 7220 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7221 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7222 page_counter_charge(&swap_memcg->memsw, nr_entries);
7223 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7224 }
7225
ce9ce665
SAS
7226 /*
7227 * Interrupts should be disabled here because the caller holds the
b93b0163 7228 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7229 * important here to have the interrupts disabled because it is the
b93b0163 7230 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7231 */
7232 VM_BUG_ON(!irqs_disabled());
3fba69a5 7233 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7234 memcg_check_events(memcg, page);
73f576c0 7235
1a3e1f40 7236 css_put(&memcg->css);
21afa38e
JW
7237}
7238
38d8b4e6
HY
7239/**
7240 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7241 * @page: page being added to swap
7242 * @entry: swap entry to charge
7243 *
38d8b4e6 7244 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7245 *
7246 * Returns 0 on success, -ENOMEM on failure.
7247 */
7248int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7249{
6c357848 7250 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7251 struct page_counter *counter;
38d8b4e6 7252 struct mem_cgroup *memcg;
37e84351
VD
7253 unsigned short oldid;
7254
2d1c4980 7255 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7256 return 0;
7257
7258 memcg = page->mem_cgroup;
7259
7260 /* Readahead page, never charged */
7261 if (!memcg)
7262 return 0;
7263
f3a53a3a
TH
7264 if (!entry.val) {
7265 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7266 return 0;
f3a53a3a 7267 }
bb98f2c5 7268
1f47b61f
VD
7269 memcg = mem_cgroup_id_get_online(memcg);
7270
2d1c4980 7271 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7272 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7273 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7274 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7275 mem_cgroup_id_put(memcg);
37e84351 7276 return -ENOMEM;
1f47b61f 7277 }
37e84351 7278
38d8b4e6
HY
7279 /* Get references for the tail pages, too */
7280 if (nr_pages > 1)
7281 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7282 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7283 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7284 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7285
37e84351
VD
7286 return 0;
7287}
7288
21afa38e 7289/**
38d8b4e6 7290 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7291 * @entry: swap entry to uncharge
38d8b4e6 7292 * @nr_pages: the amount of swap space to uncharge
21afa38e 7293 */
38d8b4e6 7294void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7295{
7296 struct mem_cgroup *memcg;
7297 unsigned short id;
7298
38d8b4e6 7299 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7300 rcu_read_lock();
adbe427b 7301 memcg = mem_cgroup_from_id(id);
21afa38e 7302 if (memcg) {
2d1c4980 7303 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7304 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7305 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7306 else
38d8b4e6 7307 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7308 }
c9019e9b 7309 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7310 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7311 }
7312 rcu_read_unlock();
7313}
7314
d8b38438
VD
7315long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7316{
7317 long nr_swap_pages = get_nr_swap_pages();
7318
eccb52e7 7319 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7320 return nr_swap_pages;
7321 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7322 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7323 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7324 page_counter_read(&memcg->swap));
7325 return nr_swap_pages;
7326}
7327
5ccc5aba
VD
7328bool mem_cgroup_swap_full(struct page *page)
7329{
7330 struct mem_cgroup *memcg;
7331
7332 VM_BUG_ON_PAGE(!PageLocked(page), page);
7333
7334 if (vm_swap_full())
7335 return true;
eccb52e7 7336 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7337 return false;
7338
7339 memcg = page->mem_cgroup;
7340 if (!memcg)
7341 return false;
7342
4b82ab4f
JK
7343 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7344 unsigned long usage = page_counter_read(&memcg->swap);
7345
7346 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7347 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7348 return true;
4b82ab4f 7349 }
5ccc5aba
VD
7350
7351 return false;
7352}
7353
eccb52e7 7354static int __init setup_swap_account(char *s)
21afa38e
JW
7355{
7356 if (!strcmp(s, "1"))
eccb52e7 7357 cgroup_memory_noswap = 0;
21afa38e 7358 else if (!strcmp(s, "0"))
eccb52e7 7359 cgroup_memory_noswap = 1;
21afa38e
JW
7360 return 1;
7361}
eccb52e7 7362__setup("swapaccount=", setup_swap_account);
21afa38e 7363
37e84351
VD
7364static u64 swap_current_read(struct cgroup_subsys_state *css,
7365 struct cftype *cft)
7366{
7367 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7368
7369 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7370}
7371
4b82ab4f
JK
7372static int swap_high_show(struct seq_file *m, void *v)
7373{
7374 return seq_puts_memcg_tunable(m,
7375 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7376}
7377
7378static ssize_t swap_high_write(struct kernfs_open_file *of,
7379 char *buf, size_t nbytes, loff_t off)
7380{
7381 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7382 unsigned long high;
7383 int err;
7384
7385 buf = strstrip(buf);
7386 err = page_counter_memparse(buf, "max", &high);
7387 if (err)
7388 return err;
7389
7390 page_counter_set_high(&memcg->swap, high);
7391
7392 return nbytes;
7393}
7394
37e84351
VD
7395static int swap_max_show(struct seq_file *m, void *v)
7396{
677dc973
CD
7397 return seq_puts_memcg_tunable(m,
7398 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7399}
7400
7401static ssize_t swap_max_write(struct kernfs_open_file *of,
7402 char *buf, size_t nbytes, loff_t off)
7403{
7404 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7405 unsigned long max;
7406 int err;
7407
7408 buf = strstrip(buf);
7409 err = page_counter_memparse(buf, "max", &max);
7410 if (err)
7411 return err;
7412
be09102b 7413 xchg(&memcg->swap.max, max);
37e84351
VD
7414
7415 return nbytes;
7416}
7417
f3a53a3a
TH
7418static int swap_events_show(struct seq_file *m, void *v)
7419{
aa9694bb 7420 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7421
4b82ab4f
JK
7422 seq_printf(m, "high %lu\n",
7423 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7424 seq_printf(m, "max %lu\n",
7425 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7426 seq_printf(m, "fail %lu\n",
7427 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7428
7429 return 0;
7430}
7431
37e84351
VD
7432static struct cftype swap_files[] = {
7433 {
7434 .name = "swap.current",
7435 .flags = CFTYPE_NOT_ON_ROOT,
7436 .read_u64 = swap_current_read,
7437 },
4b82ab4f
JK
7438 {
7439 .name = "swap.high",
7440 .flags = CFTYPE_NOT_ON_ROOT,
7441 .seq_show = swap_high_show,
7442 .write = swap_high_write,
7443 },
37e84351
VD
7444 {
7445 .name = "swap.max",
7446 .flags = CFTYPE_NOT_ON_ROOT,
7447 .seq_show = swap_max_show,
7448 .write = swap_max_write,
7449 },
f3a53a3a
TH
7450 {
7451 .name = "swap.events",
7452 .flags = CFTYPE_NOT_ON_ROOT,
7453 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7454 .seq_show = swap_events_show,
7455 },
37e84351
VD
7456 { } /* terminate */
7457};
7458
eccb52e7 7459static struct cftype memsw_files[] = {
21afa38e
JW
7460 {
7461 .name = "memsw.usage_in_bytes",
7462 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7463 .read_u64 = mem_cgroup_read_u64,
7464 },
7465 {
7466 .name = "memsw.max_usage_in_bytes",
7467 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7468 .write = mem_cgroup_reset,
7469 .read_u64 = mem_cgroup_read_u64,
7470 },
7471 {
7472 .name = "memsw.limit_in_bytes",
7473 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7474 .write = mem_cgroup_write,
7475 .read_u64 = mem_cgroup_read_u64,
7476 },
7477 {
7478 .name = "memsw.failcnt",
7479 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7480 .write = mem_cgroup_reset,
7481 .read_u64 = mem_cgroup_read_u64,
7482 },
7483 { }, /* terminate */
7484};
7485
82ff165c
BS
7486/*
7487 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7488 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7489 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7490 * boot parameter. This may result in premature OOPS inside
7491 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7492 */
21afa38e
JW
7493static int __init mem_cgroup_swap_init(void)
7494{
2d1c4980
JW
7495 /* No memory control -> no swap control */
7496 if (mem_cgroup_disabled())
7497 cgroup_memory_noswap = true;
7498
7499 if (cgroup_memory_noswap)
eccb52e7
JW
7500 return 0;
7501
7502 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7503 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7504
21afa38e
JW
7505 return 0;
7506}
82ff165c 7507core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7508
7509#endif /* CONFIG_MEMCG_SWAP */