]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/memcontrol.c
Merge tag 'riscv-for-linus-5.6' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
a181b0e8 76#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 77
f7e1cb6e
JW
78/* Socket memory accounting disabled? */
79static bool cgroup_memory_nosocket;
80
04823c83
VD
81/* Kernel memory accounting disabled? */
82static bool cgroup_memory_nokmem;
83
21afa38e 84/* Whether the swap controller is active */
c255a458 85#ifdef CONFIG_MEMCG_SWAP
c077719b 86int do_swap_account __read_mostly;
c077719b 87#else
a0db00fc 88#define do_swap_account 0
c077719b
KH
89#endif
90
97b27821
TH
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
a0db00fc
KS
101#define THRESHOLDS_EVENTS_TARGET 128
102#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 103
bb4cc1a8
AM
104/*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
ef8f2327 109struct mem_cgroup_tree_per_node {
bb4cc1a8 110 struct rb_root rb_root;
fa90b2fd 111 struct rb_node *rb_rightmost;
bb4cc1a8
AM
112 spinlock_t lock;
113};
114
bb4cc1a8
AM
115struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117};
118
119static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
9490ff27
KH
121/* for OOM */
122struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125};
2e72b634 126
79bd9814
TH
127/*
128 * cgroup_event represents events which userspace want to receive.
129 */
3bc942f3 130struct mem_cgroup_event {
79bd9814 131 /*
59b6f873 132 * memcg which the event belongs to.
79bd9814 133 */
59b6f873 134 struct mem_cgroup *memcg;
79bd9814
TH
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
fba94807
TH
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
59b6f873 148 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 149 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
59b6f873 155 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 156 struct eventfd_ctx *eventfd);
79bd9814
TH
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
ac6424b9 163 wait_queue_entry_t wait;
79bd9814
TH
164 struct work_struct remove;
165};
166
c0ff4b85
R
167static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 169
7dc74be0
DN
170/* Stuffs for move charges at task migration. */
171/*
1dfab5ab 172 * Types of charges to be moved.
7dc74be0 173 */
1dfab5ab
JW
174#define MOVE_ANON 0x1U
175#define MOVE_FILE 0x2U
176#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 177
4ffef5fe
DN
178/* "mc" and its members are protected by cgroup_mutex */
179static struct move_charge_struct {
b1dd693e 180 spinlock_t lock; /* for from, to */
264a0ae1 181 struct mm_struct *mm;
4ffef5fe
DN
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
1dfab5ab 184 unsigned long flags;
4ffef5fe 185 unsigned long precharge;
854ffa8d 186 unsigned long moved_charge;
483c30b5 187 unsigned long moved_swap;
8033b97c
DN
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190} mc = {
2bd9bb20 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193};
4ffef5fe 194
4e416953
BS
195/*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
a0db00fc 199#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 200#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 201
217bc319
KH
202enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 204 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
207 NR_CHARGE_TYPE,
208};
209
8c7c6e34 210/* for encoding cft->private value on file */
86ae53e1
GC
211enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
510fc4e1 215 _KMEM,
d55f90bf 216 _TCP,
86ae53e1
GC
217};
218
a0db00fc
KS
219#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 221#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
222/* Used for OOM nofiier */
223#define OOM_CONTROL (0)
8c7c6e34 224
b05706f1
KT
225/*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230#define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235#define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
7775face
TH
240static inline bool should_force_charge(void)
241{
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244}
245
70ddf637
AV
246/* Some nice accessors for the vmpressure. */
247struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248{
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252}
253
254struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255{
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257}
258
84c07d11 259#ifdef CONFIG_MEMCG_KMEM
55007d84 260/*
f7ce3190 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
55007d84 267 *
dbcf73e2
VD
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
55007d84 270 */
dbcf73e2
VD
271static DEFINE_IDA(memcg_cache_ida);
272int memcg_nr_cache_ids;
749c5415 273
05257a1a
VD
274/* Protects memcg_nr_cache_ids */
275static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277void memcg_get_cache_ids(void)
278{
279 down_read(&memcg_cache_ids_sem);
280}
281
282void memcg_put_cache_ids(void)
283{
284 up_read(&memcg_cache_ids_sem);
285}
286
55007d84
GC
287/*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
b8627835 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
297 * increase ours as well if it increases.
298 */
299#define MEMCG_CACHES_MIN_SIZE 4
b8627835 300#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 301
d7f25f8a
GC
302/*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
ef12947c 308DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 309EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 310
17cc4dfe 311struct workqueue_struct *memcg_kmem_cache_wq;
0a432dcb 312#endif
17cc4dfe 313
0a4465d3
KT
314static int memcg_shrinker_map_size;
315static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318{
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320}
321
322static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324{
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
337 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350}
351
352static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353{
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368}
369
370static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371{
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
381 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392}
393
394int memcg_expand_shrinker_maps(int new_id)
395{
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 414 goto unlock;
75866af6 415 }
0a4465d3
KT
416 }
417unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422}
fae91d6d
KT
423
424void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425{
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
fae91d6d
KT
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436}
437
ad7fa852
TH
438/**
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
441 *
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
445 *
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
ad7fa852
TH
448 */
449struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450{
451 struct mem_cgroup *memcg;
452
ad7fa852
TH
453 memcg = page->mem_cgroup;
454
9e10a130 455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
456 memcg = root_mem_cgroup;
457
ad7fa852
TH
458 return &memcg->css;
459}
460
2fc04524
VD
461/**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474ino_t page_cgroup_ino(struct page *page)
475{
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
221ec5c0 480 if (PageSlab(page) && !PageTail(page))
4d96ba35
RG
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
490}
491
ef8f2327
MG
492static struct mem_cgroup_per_node *
493mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 494{
97a6c37b 495 int nid = page_to_nid(page);
f64c3f54 496
ef8f2327 497 return memcg->nodeinfo[nid];
f64c3f54
BS
498}
499
ef8f2327
MG
500static struct mem_cgroup_tree_per_node *
501soft_limit_tree_node(int nid)
bb4cc1a8 502{
ef8f2327 503 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
504}
505
ef8f2327 506static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
507soft_limit_tree_from_page(struct page *page)
508{
509 int nid = page_to_nid(page);
bb4cc1a8 510
ef8f2327 511 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
512}
513
ef8f2327
MG
514static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 516 unsigned long new_usage_in_excess)
bb4cc1a8
AM
517{
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
ef8f2327 520 struct mem_cgroup_per_node *mz_node;
fa90b2fd 521 bool rightmost = true;
bb4cc1a8
AM
522
523 if (mz->on_tree)
524 return;
525
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
ef8f2327 531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 532 tree_node);
fa90b2fd 533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 534 p = &(*p)->rb_left;
fa90b2fd
DB
535 rightmost = false;
536 }
537
bb4cc1a8
AM
538 /*
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
541 */
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
544 }
fa90b2fd
DB
545
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
548
bb4cc1a8
AM
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
552}
553
ef8f2327
MG
554static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
556{
557 if (!mz->on_tree)
558 return;
fa90b2fd
DB
559
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
562
bb4cc1a8
AM
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565}
566
ef8f2327
MG
567static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 569{
0a31bc97
JW
570 unsigned long flags;
571
572 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 573 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 574 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
575}
576
3e32cb2e
JW
577static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578{
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
581 unsigned long excess = 0;
582
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
585
586 return excess;
587}
bb4cc1a8
AM
588
589static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590{
3e32cb2e 591 unsigned long excess;
ef8f2327
MG
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 594
e231875b 595 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
596 if (!mctz)
597 return;
bb4cc1a8
AM
598 /*
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
601 */
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 603 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 604 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
605 /*
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
608 */
609 if (excess || mz->on_tree) {
0a31bc97
JW
610 unsigned long flags;
611
612 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
613 /* if on-tree, remove it */
614 if (mz->on_tree)
cf2c8127 615 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
616 /*
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
619 */
cf2c8127 620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 621 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
622 }
623 }
624}
625
626static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627{
ef8f2327
MG
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
bb4cc1a8 631
e231875b 632 for_each_node(nid) {
ef8f2327
MG
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
637 }
638}
639
ef8f2327
MG
640static struct mem_cgroup_per_node *
641__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 642{
ef8f2327 643 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
644
645retry:
646 mz = NULL;
fa90b2fd 647 if (!mctz->rb_rightmost)
bb4cc1a8
AM
648 goto done; /* Nothing to reclaim from */
649
fa90b2fd
DB
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
652 /*
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
656 */
cf2c8127 657 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 658 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 659 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
660 goto retry;
661done:
662 return mz;
663}
664
ef8f2327
MG
665static struct mem_cgroup_per_node *
666mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 667{
ef8f2327 668 struct mem_cgroup_per_node *mz;
bb4cc1a8 669
0a31bc97 670 spin_lock_irq(&mctz->lock);
bb4cc1a8 671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 672 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
673 return mz;
674}
675
db9adbcb
JW
676/**
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
681 */
682void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683{
684 long x;
685
686 if (mem_cgroup_disabled())
687 return;
688
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
691 struct mem_cgroup *mi;
692
766a4c19
YS
693 /*
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
696 */
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
700 x = 0;
701 }
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703}
704
42a30035
JW
705static struct mem_cgroup_per_node *
706parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707{
708 struct mem_cgroup *parent;
709
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
714}
715
db9adbcb
JW
716/**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728{
42a30035 729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 730 struct mem_cgroup_per_node *pn;
42a30035 731 struct mem_cgroup *memcg;
db9adbcb
JW
732 long x;
733
734 /* Update node */
42a30035 735 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
736
737 if (mem_cgroup_disabled())
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 741 memcg = pn->memcg;
db9adbcb
JW
742
743 /* Update memcg */
42a30035 744 __mod_memcg_state(memcg, idx, val);
db9adbcb 745
b4c46484
RG
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748
db9adbcb
JW
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
751 struct mem_cgroup_per_node *pi;
752
42a30035
JW
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
755 x = 0;
756 }
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758}
759
ec9f0238
RG
760void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761{
762 struct page *page = virt_to_head_page(p);
763 pg_data_t *pgdat = page_pgdat(page);
764 struct mem_cgroup *memcg;
765 struct lruvec *lruvec;
766
767 rcu_read_lock();
768 memcg = memcg_from_slab_page(page);
769
770 /* Untracked pages have no memcg, no lruvec. Update only the node */
771 if (!memcg || memcg == root_mem_cgroup) {
772 __mod_node_page_state(pgdat, idx, val);
773 } else {
867e5e1d 774 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
775 __mod_lruvec_state(lruvec, idx, val);
776 }
777 rcu_read_unlock();
778}
779
db9adbcb
JW
780/**
781 * __count_memcg_events - account VM events in a cgroup
782 * @memcg: the memory cgroup
783 * @idx: the event item
784 * @count: the number of events that occured
785 */
786void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
787 unsigned long count)
788{
789 unsigned long x;
790
791 if (mem_cgroup_disabled())
792 return;
793
794 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
795 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
796 struct mem_cgroup *mi;
797
766a4c19
YS
798 /*
799 * Batch local counters to keep them in sync with
800 * the hierarchical ones.
801 */
802 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
803 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
804 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
805 x = 0;
806 }
807 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
808}
809
42a30035 810static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 811{
871789d4 812 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
813}
814
42a30035
JW
815static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
816{
815744d7
JW
817 long x = 0;
818 int cpu;
819
820 for_each_possible_cpu(cpu)
821 x += per_cpu(memcg->vmstats_local->events[event], cpu);
822 return x;
42a30035
JW
823}
824
c0ff4b85 825static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 826 struct page *page,
f627c2f5 827 bool compound, int nr_pages)
d52aa412 828{
b2402857
KH
829 /*
830 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
831 * counted as CACHE even if it's on ANON LRU.
832 */
0a31bc97 833 if (PageAnon(page))
c9019e9b 834 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 835 else {
c9019e9b 836 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 837 if (PageSwapBacked(page))
c9019e9b 838 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 839 }
55e462b0 840
f627c2f5
KS
841 if (compound) {
842 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 843 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 844 }
b070e65c 845
e401f176
KH
846 /* pagein of a big page is an event. So, ignore page size */
847 if (nr_pages > 0)
c9019e9b 848 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 849 else {
c9019e9b 850 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
851 nr_pages = -nr_pages; /* for event */
852 }
e401f176 853
871789d4 854 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
855}
856
f53d7ce3
JW
857static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
858 enum mem_cgroup_events_target target)
7a159cc9
JW
859{
860 unsigned long val, next;
861
871789d4
CD
862 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
863 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 864 /* from time_after() in jiffies.h */
6a1a8b80 865 if ((long)(next - val) < 0) {
f53d7ce3
JW
866 switch (target) {
867 case MEM_CGROUP_TARGET_THRESH:
868 next = val + THRESHOLDS_EVENTS_TARGET;
869 break;
bb4cc1a8
AM
870 case MEM_CGROUP_TARGET_SOFTLIMIT:
871 next = val + SOFTLIMIT_EVENTS_TARGET;
872 break;
f53d7ce3
JW
873 default:
874 break;
875 }
871789d4 876 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 877 return true;
7a159cc9 878 }
f53d7ce3 879 return false;
d2265e6f
KH
880}
881
882/*
883 * Check events in order.
884 *
885 */
c0ff4b85 886static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
887{
888 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
889 if (unlikely(mem_cgroup_event_ratelimit(memcg,
890 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 891 bool do_softlimit;
f53d7ce3 892
bb4cc1a8
AM
893 do_softlimit = mem_cgroup_event_ratelimit(memcg,
894 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 895 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
896 if (unlikely(do_softlimit))
897 mem_cgroup_update_tree(memcg, page);
0a31bc97 898 }
d2265e6f
KH
899}
900
cf475ad2 901struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 902{
31a78f23
BS
903 /*
904 * mm_update_next_owner() may clear mm->owner to NULL
905 * if it races with swapoff, page migration, etc.
906 * So this can be called with p == NULL.
907 */
908 if (unlikely(!p))
909 return NULL;
910
073219e9 911 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 912}
33398cf2 913EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 914
d46eb14b
SB
915/**
916 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
917 * @mm: mm from which memcg should be extracted. It can be NULL.
918 *
919 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
920 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
921 * returned.
922 */
923struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 924{
d46eb14b
SB
925 struct mem_cgroup *memcg;
926
927 if (mem_cgroup_disabled())
928 return NULL;
0b7f569e 929
54595fe2
KH
930 rcu_read_lock();
931 do {
6f6acb00
MH
932 /*
933 * Page cache insertions can happen withou an
934 * actual mm context, e.g. during disk probing
935 * on boot, loopback IO, acct() writes etc.
936 */
937 if (unlikely(!mm))
df381975 938 memcg = root_mem_cgroup;
6f6acb00
MH
939 else {
940 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
941 if (unlikely(!memcg))
942 memcg = root_mem_cgroup;
943 }
00d484f3 944 } while (!css_tryget(&memcg->css));
54595fe2 945 rcu_read_unlock();
c0ff4b85 946 return memcg;
54595fe2 947}
d46eb14b
SB
948EXPORT_SYMBOL(get_mem_cgroup_from_mm);
949
f745c6f5
SB
950/**
951 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
952 * @page: page from which memcg should be extracted.
953 *
954 * Obtain a reference on page->memcg and returns it if successful. Otherwise
955 * root_mem_cgroup is returned.
956 */
957struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
958{
959 struct mem_cgroup *memcg = page->mem_cgroup;
960
961 if (mem_cgroup_disabled())
962 return NULL;
963
964 rcu_read_lock();
965 if (!memcg || !css_tryget_online(&memcg->css))
966 memcg = root_mem_cgroup;
967 rcu_read_unlock();
968 return memcg;
969}
970EXPORT_SYMBOL(get_mem_cgroup_from_page);
971
d46eb14b
SB
972/**
973 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
974 */
975static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
976{
977 if (unlikely(current->active_memcg)) {
978 struct mem_cgroup *memcg = root_mem_cgroup;
979
980 rcu_read_lock();
981 if (css_tryget_online(&current->active_memcg->css))
982 memcg = current->active_memcg;
983 rcu_read_unlock();
984 return memcg;
985 }
986 return get_mem_cgroup_from_mm(current->mm);
987}
54595fe2 988
5660048c
JW
989/**
990 * mem_cgroup_iter - iterate over memory cgroup hierarchy
991 * @root: hierarchy root
992 * @prev: previously returned memcg, NULL on first invocation
993 * @reclaim: cookie for shared reclaim walks, NULL for full walks
994 *
995 * Returns references to children of the hierarchy below @root, or
996 * @root itself, or %NULL after a full round-trip.
997 *
998 * Caller must pass the return value in @prev on subsequent
999 * invocations for reference counting, or use mem_cgroup_iter_break()
1000 * to cancel a hierarchy walk before the round-trip is complete.
1001 *
b213b54f 1002 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1003 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1004 * reclaimers operating on the same node and priority.
5660048c 1005 */
694fbc0f 1006struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1007 struct mem_cgroup *prev,
694fbc0f 1008 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1009{
33398cf2 1010 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1011 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1012 struct mem_cgroup *memcg = NULL;
5ac8fb31 1013 struct mem_cgroup *pos = NULL;
711d3d2c 1014
694fbc0f
AM
1015 if (mem_cgroup_disabled())
1016 return NULL;
5660048c 1017
9f3a0d09
JW
1018 if (!root)
1019 root = root_mem_cgroup;
7d74b06f 1020
9f3a0d09 1021 if (prev && !reclaim)
5ac8fb31 1022 pos = prev;
14067bb3 1023
9f3a0d09
JW
1024 if (!root->use_hierarchy && root != root_mem_cgroup) {
1025 if (prev)
5ac8fb31 1026 goto out;
694fbc0f 1027 return root;
9f3a0d09 1028 }
14067bb3 1029
542f85f9 1030 rcu_read_lock();
5f578161 1031
5ac8fb31 1032 if (reclaim) {
ef8f2327 1033 struct mem_cgroup_per_node *mz;
5ac8fb31 1034
ef8f2327 1035 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1036 iter = &mz->iter;
5ac8fb31
JW
1037
1038 if (prev && reclaim->generation != iter->generation)
1039 goto out_unlock;
1040
6df38689 1041 while (1) {
4db0c3c2 1042 pos = READ_ONCE(iter->position);
6df38689
VD
1043 if (!pos || css_tryget(&pos->css))
1044 break;
5ac8fb31 1045 /*
6df38689
VD
1046 * css reference reached zero, so iter->position will
1047 * be cleared by ->css_released. However, we should not
1048 * rely on this happening soon, because ->css_released
1049 * is called from a work queue, and by busy-waiting we
1050 * might block it. So we clear iter->position right
1051 * away.
5ac8fb31 1052 */
6df38689
VD
1053 (void)cmpxchg(&iter->position, pos, NULL);
1054 }
5ac8fb31
JW
1055 }
1056
1057 if (pos)
1058 css = &pos->css;
1059
1060 for (;;) {
1061 css = css_next_descendant_pre(css, &root->css);
1062 if (!css) {
1063 /*
1064 * Reclaimers share the hierarchy walk, and a
1065 * new one might jump in right at the end of
1066 * the hierarchy - make sure they see at least
1067 * one group and restart from the beginning.
1068 */
1069 if (!prev)
1070 continue;
1071 break;
527a5ec9 1072 }
7d74b06f 1073
5ac8fb31
JW
1074 /*
1075 * Verify the css and acquire a reference. The root
1076 * is provided by the caller, so we know it's alive
1077 * and kicking, and don't take an extra reference.
1078 */
1079 memcg = mem_cgroup_from_css(css);
14067bb3 1080
5ac8fb31
JW
1081 if (css == &root->css)
1082 break;
14067bb3 1083
0b8f73e1
JW
1084 if (css_tryget(css))
1085 break;
9f3a0d09 1086
5ac8fb31 1087 memcg = NULL;
9f3a0d09 1088 }
5ac8fb31
JW
1089
1090 if (reclaim) {
5ac8fb31 1091 /*
6df38689
VD
1092 * The position could have already been updated by a competing
1093 * thread, so check that the value hasn't changed since we read
1094 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1095 */
6df38689
VD
1096 (void)cmpxchg(&iter->position, pos, memcg);
1097
5ac8fb31
JW
1098 if (pos)
1099 css_put(&pos->css);
1100
1101 if (!memcg)
1102 iter->generation++;
1103 else if (!prev)
1104 reclaim->generation = iter->generation;
9f3a0d09 1105 }
5ac8fb31 1106
542f85f9
MH
1107out_unlock:
1108 rcu_read_unlock();
5ac8fb31 1109out:
c40046f3
MH
1110 if (prev && prev != root)
1111 css_put(&prev->css);
1112
9f3a0d09 1113 return memcg;
14067bb3 1114}
7d74b06f 1115
5660048c
JW
1116/**
1117 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1118 * @root: hierarchy root
1119 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1120 */
1121void mem_cgroup_iter_break(struct mem_cgroup *root,
1122 struct mem_cgroup *prev)
9f3a0d09
JW
1123{
1124 if (!root)
1125 root = root_mem_cgroup;
1126 if (prev && prev != root)
1127 css_put(&prev->css);
1128}
7d74b06f 1129
54a83d6b
MC
1130static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1131 struct mem_cgroup *dead_memcg)
6df38689 1132{
6df38689 1133 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1134 struct mem_cgroup_per_node *mz;
1135 int nid;
6df38689 1136
54a83d6b
MC
1137 for_each_node(nid) {
1138 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1139 iter = &mz->iter;
1140 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1141 }
1142}
1143
54a83d6b
MC
1144static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1145{
1146 struct mem_cgroup *memcg = dead_memcg;
1147 struct mem_cgroup *last;
1148
1149 do {
1150 __invalidate_reclaim_iterators(memcg, dead_memcg);
1151 last = memcg;
1152 } while ((memcg = parent_mem_cgroup(memcg)));
1153
1154 /*
1155 * When cgruop1 non-hierarchy mode is used,
1156 * parent_mem_cgroup() does not walk all the way up to the
1157 * cgroup root (root_mem_cgroup). So we have to handle
1158 * dead_memcg from cgroup root separately.
1159 */
1160 if (last != root_mem_cgroup)
1161 __invalidate_reclaim_iterators(root_mem_cgroup,
1162 dead_memcg);
1163}
1164
7c5f64f8
VD
1165/**
1166 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1167 * @memcg: hierarchy root
1168 * @fn: function to call for each task
1169 * @arg: argument passed to @fn
1170 *
1171 * This function iterates over tasks attached to @memcg or to any of its
1172 * descendants and calls @fn for each task. If @fn returns a non-zero
1173 * value, the function breaks the iteration loop and returns the value.
1174 * Otherwise, it will iterate over all tasks and return 0.
1175 *
1176 * This function must not be called for the root memory cgroup.
1177 */
1178int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1179 int (*fn)(struct task_struct *, void *), void *arg)
1180{
1181 struct mem_cgroup *iter;
1182 int ret = 0;
1183
1184 BUG_ON(memcg == root_mem_cgroup);
1185
1186 for_each_mem_cgroup_tree(iter, memcg) {
1187 struct css_task_iter it;
1188 struct task_struct *task;
1189
f168a9a5 1190 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1191 while (!ret && (task = css_task_iter_next(&it)))
1192 ret = fn(task, arg);
1193 css_task_iter_end(&it);
1194 if (ret) {
1195 mem_cgroup_iter_break(memcg, iter);
1196 break;
1197 }
1198 }
1199 return ret;
1200}
1201
925b7673 1202/**
dfe0e773 1203 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1204 * @page: the page
f144c390 1205 * @pgdat: pgdat of the page
dfe0e773
JW
1206 *
1207 * This function is only safe when following the LRU page isolation
1208 * and putback protocol: the LRU lock must be held, and the page must
1209 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1210 */
599d0c95 1211struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1212{
ef8f2327 1213 struct mem_cgroup_per_node *mz;
925b7673 1214 struct mem_cgroup *memcg;
bea8c150 1215 struct lruvec *lruvec;
6d12e2d8 1216
bea8c150 1217 if (mem_cgroup_disabled()) {
867e5e1d 1218 lruvec = &pgdat->__lruvec;
bea8c150
HD
1219 goto out;
1220 }
925b7673 1221
1306a85a 1222 memcg = page->mem_cgroup;
7512102c 1223 /*
dfe0e773 1224 * Swapcache readahead pages are added to the LRU - and
29833315 1225 * possibly migrated - before they are charged.
7512102c 1226 */
29833315
JW
1227 if (!memcg)
1228 memcg = root_mem_cgroup;
7512102c 1229
ef8f2327 1230 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1231 lruvec = &mz->lruvec;
1232out:
1233 /*
1234 * Since a node can be onlined after the mem_cgroup was created,
1235 * we have to be prepared to initialize lruvec->zone here;
1236 * and if offlined then reonlined, we need to reinitialize it.
1237 */
599d0c95
MG
1238 if (unlikely(lruvec->pgdat != pgdat))
1239 lruvec->pgdat = pgdat;
bea8c150 1240 return lruvec;
08e552c6 1241}
b69408e8 1242
925b7673 1243/**
fa9add64
HD
1244 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1245 * @lruvec: mem_cgroup per zone lru vector
1246 * @lru: index of lru list the page is sitting on
b4536f0c 1247 * @zid: zone id of the accounted pages
fa9add64 1248 * @nr_pages: positive when adding or negative when removing
925b7673 1249 *
ca707239
HD
1250 * This function must be called under lru_lock, just before a page is added
1251 * to or just after a page is removed from an lru list (that ordering being
1252 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1253 */
fa9add64 1254void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1255 int zid, int nr_pages)
3f58a829 1256{
ef8f2327 1257 struct mem_cgroup_per_node *mz;
fa9add64 1258 unsigned long *lru_size;
ca707239 1259 long size;
3f58a829
MK
1260
1261 if (mem_cgroup_disabled())
1262 return;
1263
ef8f2327 1264 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1265 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1266
1267 if (nr_pages < 0)
1268 *lru_size += nr_pages;
1269
1270 size = *lru_size;
b4536f0c
MH
1271 if (WARN_ONCE(size < 0,
1272 "%s(%p, %d, %d): lru_size %ld\n",
1273 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1274 VM_BUG_ON(1);
1275 *lru_size = 0;
1276 }
1277
1278 if (nr_pages > 0)
1279 *lru_size += nr_pages;
08e552c6 1280}
544122e5 1281
19942822 1282/**
9d11ea9f 1283 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1284 * @memcg: the memory cgroup
19942822 1285 *
9d11ea9f 1286 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1287 * pages.
19942822 1288 */
c0ff4b85 1289static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1290{
3e32cb2e
JW
1291 unsigned long margin = 0;
1292 unsigned long count;
1293 unsigned long limit;
9d11ea9f 1294
3e32cb2e 1295 count = page_counter_read(&memcg->memory);
bbec2e15 1296 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1297 if (count < limit)
1298 margin = limit - count;
1299
7941d214 1300 if (do_memsw_account()) {
3e32cb2e 1301 count = page_counter_read(&memcg->memsw);
bbec2e15 1302 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1303 if (count <= limit)
1304 margin = min(margin, limit - count);
cbedbac3
LR
1305 else
1306 margin = 0;
3e32cb2e
JW
1307 }
1308
1309 return margin;
19942822
JW
1310}
1311
32047e2a 1312/*
bdcbb659 1313 * A routine for checking "mem" is under move_account() or not.
32047e2a 1314 *
bdcbb659
QH
1315 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1316 * moving cgroups. This is for waiting at high-memory pressure
1317 * caused by "move".
32047e2a 1318 */
c0ff4b85 1319static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1320{
2bd9bb20
KH
1321 struct mem_cgroup *from;
1322 struct mem_cgroup *to;
4b534334 1323 bool ret = false;
2bd9bb20
KH
1324 /*
1325 * Unlike task_move routines, we access mc.to, mc.from not under
1326 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1327 */
1328 spin_lock(&mc.lock);
1329 from = mc.from;
1330 to = mc.to;
1331 if (!from)
1332 goto unlock;
3e92041d 1333
2314b42d
JW
1334 ret = mem_cgroup_is_descendant(from, memcg) ||
1335 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1336unlock:
1337 spin_unlock(&mc.lock);
4b534334
KH
1338 return ret;
1339}
1340
c0ff4b85 1341static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1342{
1343 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1344 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1345 DEFINE_WAIT(wait);
1346 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1347 /* moving charge context might have finished. */
1348 if (mc.moving_task)
1349 schedule();
1350 finish_wait(&mc.waitq, &wait);
1351 return true;
1352 }
1353 }
1354 return false;
1355}
1356
c8713d0b
JW
1357static char *memory_stat_format(struct mem_cgroup *memcg)
1358{
1359 struct seq_buf s;
1360 int i;
71cd3113 1361
c8713d0b
JW
1362 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1363 if (!s.buffer)
1364 return NULL;
1365
1366 /*
1367 * Provide statistics on the state of the memory subsystem as
1368 * well as cumulative event counters that show past behavior.
1369 *
1370 * This list is ordered following a combination of these gradients:
1371 * 1) generic big picture -> specifics and details
1372 * 2) reflecting userspace activity -> reflecting kernel heuristics
1373 *
1374 * Current memory state:
1375 */
1376
1377 seq_buf_printf(&s, "anon %llu\n",
1378 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1379 PAGE_SIZE);
1380 seq_buf_printf(&s, "file %llu\n",
1381 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1382 PAGE_SIZE);
1383 seq_buf_printf(&s, "kernel_stack %llu\n",
1384 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1385 1024);
1386 seq_buf_printf(&s, "slab %llu\n",
1387 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1388 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1389 PAGE_SIZE);
1390 seq_buf_printf(&s, "sock %llu\n",
1391 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1392 PAGE_SIZE);
1393
1394 seq_buf_printf(&s, "shmem %llu\n",
1395 (u64)memcg_page_state(memcg, NR_SHMEM) *
1396 PAGE_SIZE);
1397 seq_buf_printf(&s, "file_mapped %llu\n",
1398 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1399 PAGE_SIZE);
1400 seq_buf_printf(&s, "file_dirty %llu\n",
1401 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1402 PAGE_SIZE);
1403 seq_buf_printf(&s, "file_writeback %llu\n",
1404 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1405 PAGE_SIZE);
1406
1407 /*
1408 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1409 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1410 * arse because it requires migrating the work out of rmap to a place
1411 * where the page->mem_cgroup is set up and stable.
1412 */
1413 seq_buf_printf(&s, "anon_thp %llu\n",
1414 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1415 PAGE_SIZE);
1416
1417 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 1418 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
c8713d0b
JW
1419 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1420 PAGE_SIZE);
1421
1422 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1423 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1424 PAGE_SIZE);
1425 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1426 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1427 PAGE_SIZE);
1428
1429 /* Accumulated memory events */
1430
ebc5d83d
KK
1431 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1432 memcg_events(memcg, PGFAULT));
1433 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1434 memcg_events(memcg, PGMAJFAULT));
c8713d0b
JW
1435
1436 seq_buf_printf(&s, "workingset_refault %lu\n",
1437 memcg_page_state(memcg, WORKINGSET_REFAULT));
1438 seq_buf_printf(&s, "workingset_activate %lu\n",
1439 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1440 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1441 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1442
ebc5d83d
KK
1443 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1444 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1445 seq_buf_printf(&s, "pgscan %lu\n",
1446 memcg_events(memcg, PGSCAN_KSWAPD) +
1447 memcg_events(memcg, PGSCAN_DIRECT));
1448 seq_buf_printf(&s, "pgsteal %lu\n",
1449 memcg_events(memcg, PGSTEAL_KSWAPD) +
1450 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1452 memcg_events(memcg, PGACTIVATE));
1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1454 memcg_events(memcg, PGDEACTIVATE));
1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1456 memcg_events(memcg, PGLAZYFREE));
1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1458 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1459
1460#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1461 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1462 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1463 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1464 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1465#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1466
1467 /* The above should easily fit into one page */
1468 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1469
1470 return s.buffer;
1471}
71cd3113 1472
58cf188e 1473#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1474/**
f0c867d9 1475 * mem_cgroup_print_oom_context: Print OOM information relevant to
1476 * memory controller.
e222432b
BS
1477 * @memcg: The memory cgroup that went over limit
1478 * @p: Task that is going to be killed
1479 *
1480 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1481 * enabled
1482 */
f0c867d9 1483void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1484{
e222432b
BS
1485 rcu_read_lock();
1486
f0c867d9 1487 if (memcg) {
1488 pr_cont(",oom_memcg=");
1489 pr_cont_cgroup_path(memcg->css.cgroup);
1490 } else
1491 pr_cont(",global_oom");
2415b9f5 1492 if (p) {
f0c867d9 1493 pr_cont(",task_memcg=");
2415b9f5 1494 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1495 }
e222432b 1496 rcu_read_unlock();
f0c867d9 1497}
1498
1499/**
1500 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1501 * memory controller.
1502 * @memcg: The memory cgroup that went over limit
1503 */
1504void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1505{
c8713d0b 1506 char *buf;
e222432b 1507
3e32cb2e
JW
1508 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1509 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1510 K((u64)memcg->memory.max), memcg->memory.failcnt);
c8713d0b
JW
1511 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1512 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1513 K((u64)page_counter_read(&memcg->swap)),
1514 K((u64)memcg->swap.max), memcg->swap.failcnt);
1515 else {
1516 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1517 K((u64)page_counter_read(&memcg->memsw)),
1518 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1519 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1520 K((u64)page_counter_read(&memcg->kmem)),
1521 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1522 }
c8713d0b
JW
1523
1524 pr_info("Memory cgroup stats for ");
1525 pr_cont_cgroup_path(memcg->css.cgroup);
1526 pr_cont(":");
1527 buf = memory_stat_format(memcg);
1528 if (!buf)
1529 return;
1530 pr_info("%s", buf);
1531 kfree(buf);
e222432b
BS
1532}
1533
a63d83f4
DR
1534/*
1535 * Return the memory (and swap, if configured) limit for a memcg.
1536 */
bbec2e15 1537unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1538{
bbec2e15 1539 unsigned long max;
f3e8eb70 1540
bbec2e15 1541 max = memcg->memory.max;
9a5a8f19 1542 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1543 unsigned long memsw_max;
1544 unsigned long swap_max;
9a5a8f19 1545
bbec2e15
RG
1546 memsw_max = memcg->memsw.max;
1547 swap_max = memcg->swap.max;
1548 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1549 max = min(max + swap_max, memsw_max);
9a5a8f19 1550 }
bbec2e15 1551 return max;
a63d83f4
DR
1552}
1553
9783aa99
CD
1554unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1555{
1556 return page_counter_read(&memcg->memory);
1557}
1558
b6e6edcf 1559static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1560 int order)
9cbb78bb 1561{
6e0fc46d
DR
1562 struct oom_control oc = {
1563 .zonelist = NULL,
1564 .nodemask = NULL,
2a966b77 1565 .memcg = memcg,
6e0fc46d
DR
1566 .gfp_mask = gfp_mask,
1567 .order = order,
6e0fc46d 1568 };
7c5f64f8 1569 bool ret;
9cbb78bb 1570
7775face
TH
1571 if (mutex_lock_killable(&oom_lock))
1572 return true;
1573 /*
1574 * A few threads which were not waiting at mutex_lock_killable() can
1575 * fail to bail out. Therefore, check again after holding oom_lock.
1576 */
1577 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1578 mutex_unlock(&oom_lock);
7c5f64f8 1579 return ret;
9cbb78bb
DR
1580}
1581
0608f43d 1582static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1583 pg_data_t *pgdat,
0608f43d
AM
1584 gfp_t gfp_mask,
1585 unsigned long *total_scanned)
1586{
1587 struct mem_cgroup *victim = NULL;
1588 int total = 0;
1589 int loop = 0;
1590 unsigned long excess;
1591 unsigned long nr_scanned;
1592 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1593 .pgdat = pgdat,
0608f43d
AM
1594 };
1595
3e32cb2e 1596 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1597
1598 while (1) {
1599 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1600 if (!victim) {
1601 loop++;
1602 if (loop >= 2) {
1603 /*
1604 * If we have not been able to reclaim
1605 * anything, it might because there are
1606 * no reclaimable pages under this hierarchy
1607 */
1608 if (!total)
1609 break;
1610 /*
1611 * We want to do more targeted reclaim.
1612 * excess >> 2 is not to excessive so as to
1613 * reclaim too much, nor too less that we keep
1614 * coming back to reclaim from this cgroup
1615 */
1616 if (total >= (excess >> 2) ||
1617 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1618 break;
1619 }
1620 continue;
1621 }
a9dd0a83 1622 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1623 pgdat, &nr_scanned);
0608f43d 1624 *total_scanned += nr_scanned;
3e32cb2e 1625 if (!soft_limit_excess(root_memcg))
0608f43d 1626 break;
6d61ef40 1627 }
0608f43d
AM
1628 mem_cgroup_iter_break(root_memcg, victim);
1629 return total;
6d61ef40
BS
1630}
1631
0056f4e6
JW
1632#ifdef CONFIG_LOCKDEP
1633static struct lockdep_map memcg_oom_lock_dep_map = {
1634 .name = "memcg_oom_lock",
1635};
1636#endif
1637
fb2a6fc5
JW
1638static DEFINE_SPINLOCK(memcg_oom_lock);
1639
867578cb
KH
1640/*
1641 * Check OOM-Killer is already running under our hierarchy.
1642 * If someone is running, return false.
1643 */
fb2a6fc5 1644static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1645{
79dfdacc 1646 struct mem_cgroup *iter, *failed = NULL;
a636b327 1647
fb2a6fc5
JW
1648 spin_lock(&memcg_oom_lock);
1649
9f3a0d09 1650 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1651 if (iter->oom_lock) {
79dfdacc
MH
1652 /*
1653 * this subtree of our hierarchy is already locked
1654 * so we cannot give a lock.
1655 */
79dfdacc 1656 failed = iter;
9f3a0d09
JW
1657 mem_cgroup_iter_break(memcg, iter);
1658 break;
23751be0
JW
1659 } else
1660 iter->oom_lock = true;
7d74b06f 1661 }
867578cb 1662
fb2a6fc5
JW
1663 if (failed) {
1664 /*
1665 * OK, we failed to lock the whole subtree so we have
1666 * to clean up what we set up to the failing subtree
1667 */
1668 for_each_mem_cgroup_tree(iter, memcg) {
1669 if (iter == failed) {
1670 mem_cgroup_iter_break(memcg, iter);
1671 break;
1672 }
1673 iter->oom_lock = false;
79dfdacc 1674 }
0056f4e6
JW
1675 } else
1676 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1677
1678 spin_unlock(&memcg_oom_lock);
1679
1680 return !failed;
a636b327 1681}
0b7f569e 1682
fb2a6fc5 1683static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1684{
7d74b06f
KH
1685 struct mem_cgroup *iter;
1686
fb2a6fc5 1687 spin_lock(&memcg_oom_lock);
5facae4f 1688 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1689 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1690 iter->oom_lock = false;
fb2a6fc5 1691 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1692}
1693
c0ff4b85 1694static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1695{
1696 struct mem_cgroup *iter;
1697
c2b42d3c 1698 spin_lock(&memcg_oom_lock);
c0ff4b85 1699 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1700 iter->under_oom++;
1701 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1702}
1703
c0ff4b85 1704static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1705{
1706 struct mem_cgroup *iter;
1707
867578cb
KH
1708 /*
1709 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1710 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1711 */
c2b42d3c 1712 spin_lock(&memcg_oom_lock);
c0ff4b85 1713 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1714 if (iter->under_oom > 0)
1715 iter->under_oom--;
1716 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1717}
1718
867578cb
KH
1719static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1720
dc98df5a 1721struct oom_wait_info {
d79154bb 1722 struct mem_cgroup *memcg;
ac6424b9 1723 wait_queue_entry_t wait;
dc98df5a
KH
1724};
1725
ac6424b9 1726static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1727 unsigned mode, int sync, void *arg)
1728{
d79154bb
HD
1729 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1730 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1731 struct oom_wait_info *oom_wait_info;
1732
1733 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1734 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1735
2314b42d
JW
1736 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1737 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1738 return 0;
dc98df5a
KH
1739 return autoremove_wake_function(wait, mode, sync, arg);
1740}
1741
c0ff4b85 1742static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1743{
c2b42d3c
TH
1744 /*
1745 * For the following lockless ->under_oom test, the only required
1746 * guarantee is that it must see the state asserted by an OOM when
1747 * this function is called as a result of userland actions
1748 * triggered by the notification of the OOM. This is trivially
1749 * achieved by invoking mem_cgroup_mark_under_oom() before
1750 * triggering notification.
1751 */
1752 if (memcg && memcg->under_oom)
f4b90b70 1753 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1754}
1755
29ef680a
MH
1756enum oom_status {
1757 OOM_SUCCESS,
1758 OOM_FAILED,
1759 OOM_ASYNC,
1760 OOM_SKIPPED
1761};
1762
1763static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1764{
7056d3a3
MH
1765 enum oom_status ret;
1766 bool locked;
1767
29ef680a
MH
1768 if (order > PAGE_ALLOC_COSTLY_ORDER)
1769 return OOM_SKIPPED;
1770
7a1adfdd
RG
1771 memcg_memory_event(memcg, MEMCG_OOM);
1772
867578cb 1773 /*
49426420
JW
1774 * We are in the middle of the charge context here, so we
1775 * don't want to block when potentially sitting on a callstack
1776 * that holds all kinds of filesystem and mm locks.
1777 *
29ef680a
MH
1778 * cgroup1 allows disabling the OOM killer and waiting for outside
1779 * handling until the charge can succeed; remember the context and put
1780 * the task to sleep at the end of the page fault when all locks are
1781 * released.
49426420 1782 *
29ef680a
MH
1783 * On the other hand, in-kernel OOM killer allows for an async victim
1784 * memory reclaim (oom_reaper) and that means that we are not solely
1785 * relying on the oom victim to make a forward progress and we can
1786 * invoke the oom killer here.
1787 *
1788 * Please note that mem_cgroup_out_of_memory might fail to find a
1789 * victim and then we have to bail out from the charge path.
867578cb 1790 */
29ef680a
MH
1791 if (memcg->oom_kill_disable) {
1792 if (!current->in_user_fault)
1793 return OOM_SKIPPED;
1794 css_get(&memcg->css);
1795 current->memcg_in_oom = memcg;
1796 current->memcg_oom_gfp_mask = mask;
1797 current->memcg_oom_order = order;
1798
1799 return OOM_ASYNC;
1800 }
1801
7056d3a3
MH
1802 mem_cgroup_mark_under_oom(memcg);
1803
1804 locked = mem_cgroup_oom_trylock(memcg);
1805
1806 if (locked)
1807 mem_cgroup_oom_notify(memcg);
1808
1809 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1810 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1811 ret = OOM_SUCCESS;
1812 else
1813 ret = OOM_FAILED;
1814
1815 if (locked)
1816 mem_cgroup_oom_unlock(memcg);
29ef680a 1817
7056d3a3 1818 return ret;
3812c8c8
JW
1819}
1820
1821/**
1822 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1823 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1824 *
49426420
JW
1825 * This has to be called at the end of a page fault if the memcg OOM
1826 * handler was enabled.
3812c8c8 1827 *
49426420 1828 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1829 * sleep on a waitqueue until the userspace task resolves the
1830 * situation. Sleeping directly in the charge context with all kinds
1831 * of locks held is not a good idea, instead we remember an OOM state
1832 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1833 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1834 *
1835 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1836 * completed, %false otherwise.
3812c8c8 1837 */
49426420 1838bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1839{
626ebc41 1840 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1841 struct oom_wait_info owait;
49426420 1842 bool locked;
3812c8c8
JW
1843
1844 /* OOM is global, do not handle */
3812c8c8 1845 if (!memcg)
49426420 1846 return false;
3812c8c8 1847
7c5f64f8 1848 if (!handle)
49426420 1849 goto cleanup;
3812c8c8
JW
1850
1851 owait.memcg = memcg;
1852 owait.wait.flags = 0;
1853 owait.wait.func = memcg_oom_wake_function;
1854 owait.wait.private = current;
2055da97 1855 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1856
3812c8c8 1857 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1858 mem_cgroup_mark_under_oom(memcg);
1859
1860 locked = mem_cgroup_oom_trylock(memcg);
1861
1862 if (locked)
1863 mem_cgroup_oom_notify(memcg);
1864
1865 if (locked && !memcg->oom_kill_disable) {
1866 mem_cgroup_unmark_under_oom(memcg);
1867 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1868 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1869 current->memcg_oom_order);
49426420 1870 } else {
3812c8c8 1871 schedule();
49426420
JW
1872 mem_cgroup_unmark_under_oom(memcg);
1873 finish_wait(&memcg_oom_waitq, &owait.wait);
1874 }
1875
1876 if (locked) {
fb2a6fc5
JW
1877 mem_cgroup_oom_unlock(memcg);
1878 /*
1879 * There is no guarantee that an OOM-lock contender
1880 * sees the wakeups triggered by the OOM kill
1881 * uncharges. Wake any sleepers explicitely.
1882 */
1883 memcg_oom_recover(memcg);
1884 }
49426420 1885cleanup:
626ebc41 1886 current->memcg_in_oom = NULL;
3812c8c8 1887 css_put(&memcg->css);
867578cb 1888 return true;
0b7f569e
KH
1889}
1890
3d8b38eb
RG
1891/**
1892 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1893 * @victim: task to be killed by the OOM killer
1894 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1895 *
1896 * Returns a pointer to a memory cgroup, which has to be cleaned up
1897 * by killing all belonging OOM-killable tasks.
1898 *
1899 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1900 */
1901struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1902 struct mem_cgroup *oom_domain)
1903{
1904 struct mem_cgroup *oom_group = NULL;
1905 struct mem_cgroup *memcg;
1906
1907 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1908 return NULL;
1909
1910 if (!oom_domain)
1911 oom_domain = root_mem_cgroup;
1912
1913 rcu_read_lock();
1914
1915 memcg = mem_cgroup_from_task(victim);
1916 if (memcg == root_mem_cgroup)
1917 goto out;
1918
1919 /*
1920 * Traverse the memory cgroup hierarchy from the victim task's
1921 * cgroup up to the OOMing cgroup (or root) to find the
1922 * highest-level memory cgroup with oom.group set.
1923 */
1924 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1925 if (memcg->oom_group)
1926 oom_group = memcg;
1927
1928 if (memcg == oom_domain)
1929 break;
1930 }
1931
1932 if (oom_group)
1933 css_get(&oom_group->css);
1934out:
1935 rcu_read_unlock();
1936
1937 return oom_group;
1938}
1939
1940void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1941{
1942 pr_info("Tasks in ");
1943 pr_cont_cgroup_path(memcg->css.cgroup);
1944 pr_cont(" are going to be killed due to memory.oom.group set\n");
1945}
1946
d7365e78 1947/**
81f8c3a4
JW
1948 * lock_page_memcg - lock a page->mem_cgroup binding
1949 * @page: the page
32047e2a 1950 *
81f8c3a4 1951 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1952 * another cgroup.
1953 *
1954 * It ensures lifetime of the returned memcg. Caller is responsible
1955 * for the lifetime of the page; __unlock_page_memcg() is available
1956 * when @page might get freed inside the locked section.
d69b042f 1957 */
739f79fc 1958struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1959{
1960 struct mem_cgroup *memcg;
6de22619 1961 unsigned long flags;
89c06bd5 1962
6de22619
JW
1963 /*
1964 * The RCU lock is held throughout the transaction. The fast
1965 * path can get away without acquiring the memcg->move_lock
1966 * because page moving starts with an RCU grace period.
739f79fc
JW
1967 *
1968 * The RCU lock also protects the memcg from being freed when
1969 * the page state that is going to change is the only thing
1970 * preventing the page itself from being freed. E.g. writeback
1971 * doesn't hold a page reference and relies on PG_writeback to
1972 * keep off truncation, migration and so forth.
1973 */
d7365e78
JW
1974 rcu_read_lock();
1975
1976 if (mem_cgroup_disabled())
739f79fc 1977 return NULL;
89c06bd5 1978again:
1306a85a 1979 memcg = page->mem_cgroup;
29833315 1980 if (unlikely(!memcg))
739f79fc 1981 return NULL;
d7365e78 1982
bdcbb659 1983 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1984 return memcg;
89c06bd5 1985
6de22619 1986 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1987 if (memcg != page->mem_cgroup) {
6de22619 1988 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1989 goto again;
1990 }
6de22619
JW
1991
1992 /*
1993 * When charge migration first begins, we can have locked and
1994 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1995 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1996 */
1997 memcg->move_lock_task = current;
1998 memcg->move_lock_flags = flags;
d7365e78 1999
739f79fc 2000 return memcg;
89c06bd5 2001}
81f8c3a4 2002EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2003
d7365e78 2004/**
739f79fc
JW
2005 * __unlock_page_memcg - unlock and unpin a memcg
2006 * @memcg: the memcg
2007 *
2008 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2009 */
739f79fc 2010void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2011{
6de22619
JW
2012 if (memcg && memcg->move_lock_task == current) {
2013 unsigned long flags = memcg->move_lock_flags;
2014
2015 memcg->move_lock_task = NULL;
2016 memcg->move_lock_flags = 0;
2017
2018 spin_unlock_irqrestore(&memcg->move_lock, flags);
2019 }
89c06bd5 2020
d7365e78 2021 rcu_read_unlock();
89c06bd5 2022}
739f79fc
JW
2023
2024/**
2025 * unlock_page_memcg - unlock a page->mem_cgroup binding
2026 * @page: the page
2027 */
2028void unlock_page_memcg(struct page *page)
2029{
2030 __unlock_page_memcg(page->mem_cgroup);
2031}
81f8c3a4 2032EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2033
cdec2e42
KH
2034struct memcg_stock_pcp {
2035 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2036 unsigned int nr_pages;
cdec2e42 2037 struct work_struct work;
26fe6168 2038 unsigned long flags;
a0db00fc 2039#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2040};
2041static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2042static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2043
a0956d54
SS
2044/**
2045 * consume_stock: Try to consume stocked charge on this cpu.
2046 * @memcg: memcg to consume from.
2047 * @nr_pages: how many pages to charge.
2048 *
2049 * The charges will only happen if @memcg matches the current cpu's memcg
2050 * stock, and at least @nr_pages are available in that stock. Failure to
2051 * service an allocation will refill the stock.
2052 *
2053 * returns true if successful, false otherwise.
cdec2e42 2054 */
a0956d54 2055static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2056{
2057 struct memcg_stock_pcp *stock;
db2ba40c 2058 unsigned long flags;
3e32cb2e 2059 bool ret = false;
cdec2e42 2060
a983b5eb 2061 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2062 return ret;
a0956d54 2063
db2ba40c
JW
2064 local_irq_save(flags);
2065
2066 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2067 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2068 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2069 ret = true;
2070 }
db2ba40c
JW
2071
2072 local_irq_restore(flags);
2073
cdec2e42
KH
2074 return ret;
2075}
2076
2077/*
3e32cb2e 2078 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2079 */
2080static void drain_stock(struct memcg_stock_pcp *stock)
2081{
2082 struct mem_cgroup *old = stock->cached;
2083
11c9ea4e 2084 if (stock->nr_pages) {
3e32cb2e 2085 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2086 if (do_memsw_account())
3e32cb2e 2087 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2088 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2089 stock->nr_pages = 0;
cdec2e42
KH
2090 }
2091 stock->cached = NULL;
cdec2e42
KH
2092}
2093
cdec2e42
KH
2094static void drain_local_stock(struct work_struct *dummy)
2095{
db2ba40c
JW
2096 struct memcg_stock_pcp *stock;
2097 unsigned long flags;
2098
72f0184c
MH
2099 /*
2100 * The only protection from memory hotplug vs. drain_stock races is
2101 * that we always operate on local CPU stock here with IRQ disabled
2102 */
db2ba40c
JW
2103 local_irq_save(flags);
2104
2105 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2106 drain_stock(stock);
26fe6168 2107 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2108
2109 local_irq_restore(flags);
cdec2e42
KH
2110}
2111
2112/*
3e32cb2e 2113 * Cache charges(val) to local per_cpu area.
320cc51d 2114 * This will be consumed by consume_stock() function, later.
cdec2e42 2115 */
c0ff4b85 2116static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2117{
db2ba40c
JW
2118 struct memcg_stock_pcp *stock;
2119 unsigned long flags;
2120
2121 local_irq_save(flags);
cdec2e42 2122
db2ba40c 2123 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2124 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2125 drain_stock(stock);
c0ff4b85 2126 stock->cached = memcg;
cdec2e42 2127 }
11c9ea4e 2128 stock->nr_pages += nr_pages;
db2ba40c 2129
a983b5eb 2130 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2131 drain_stock(stock);
2132
db2ba40c 2133 local_irq_restore(flags);
cdec2e42
KH
2134}
2135
2136/*
c0ff4b85 2137 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2138 * of the hierarchy under it.
cdec2e42 2139 */
6d3d6aa2 2140static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2141{
26fe6168 2142 int cpu, curcpu;
d38144b7 2143
6d3d6aa2
JW
2144 /* If someone's already draining, avoid adding running more workers. */
2145 if (!mutex_trylock(&percpu_charge_mutex))
2146 return;
72f0184c
MH
2147 /*
2148 * Notify other cpus that system-wide "drain" is running
2149 * We do not care about races with the cpu hotplug because cpu down
2150 * as well as workers from this path always operate on the local
2151 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2152 */
5af12d0e 2153 curcpu = get_cpu();
cdec2e42
KH
2154 for_each_online_cpu(cpu) {
2155 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2156 struct mem_cgroup *memcg;
e1a366be 2157 bool flush = false;
26fe6168 2158
e1a366be 2159 rcu_read_lock();
c0ff4b85 2160 memcg = stock->cached;
e1a366be
RG
2161 if (memcg && stock->nr_pages &&
2162 mem_cgroup_is_descendant(memcg, root_memcg))
2163 flush = true;
2164 rcu_read_unlock();
2165
2166 if (flush &&
2167 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2168 if (cpu == curcpu)
2169 drain_local_stock(&stock->work);
2170 else
2171 schedule_work_on(cpu, &stock->work);
2172 }
cdec2e42 2173 }
5af12d0e 2174 put_cpu();
9f50fad6 2175 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2176}
2177
308167fc 2178static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2179{
cdec2e42 2180 struct memcg_stock_pcp *stock;
42a30035 2181 struct mem_cgroup *memcg, *mi;
cdec2e42 2182
cdec2e42
KH
2183 stock = &per_cpu(memcg_stock, cpu);
2184 drain_stock(stock);
a983b5eb
JW
2185
2186 for_each_mem_cgroup(memcg) {
2187 int i;
2188
2189 for (i = 0; i < MEMCG_NR_STAT; i++) {
2190 int nid;
2191 long x;
2192
871789d4 2193 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2194 if (x)
42a30035
JW
2195 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2196 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2197
2198 if (i >= NR_VM_NODE_STAT_ITEMS)
2199 continue;
2200
2201 for_each_node(nid) {
2202 struct mem_cgroup_per_node *pn;
2203
2204 pn = mem_cgroup_nodeinfo(memcg, nid);
2205 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2206 if (x)
42a30035
JW
2207 do {
2208 atomic_long_add(x, &pn->lruvec_stat[i]);
2209 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2210 }
2211 }
2212
e27be240 2213 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2214 long x;
2215
871789d4 2216 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2217 if (x)
42a30035
JW
2218 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2219 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2220 }
2221 }
2222
308167fc 2223 return 0;
cdec2e42
KH
2224}
2225
f7e1cb6e
JW
2226static void reclaim_high(struct mem_cgroup *memcg,
2227 unsigned int nr_pages,
2228 gfp_t gfp_mask)
2229{
2230 do {
2231 if (page_counter_read(&memcg->memory) <= memcg->high)
2232 continue;
e27be240 2233 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2234 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2235 } while ((memcg = parent_mem_cgroup(memcg)));
2236}
2237
2238static void high_work_func(struct work_struct *work)
2239{
2240 struct mem_cgroup *memcg;
2241
2242 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2243 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2244}
2245
0e4b01df
CD
2246/*
2247 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2248 * enough to still cause a significant slowdown in most cases, while still
2249 * allowing diagnostics and tracing to proceed without becoming stuck.
2250 */
2251#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2252
2253/*
2254 * When calculating the delay, we use these either side of the exponentiation to
2255 * maintain precision and scale to a reasonable number of jiffies (see the table
2256 * below.
2257 *
2258 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2259 * overage ratio to a delay.
2260 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2261 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2262 * to produce a reasonable delay curve.
2263 *
2264 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2265 * reasonable delay curve compared to precision-adjusted overage, not
2266 * penalising heavily at first, but still making sure that growth beyond the
2267 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2268 * example, with a high of 100 megabytes:
2269 *
2270 * +-------+------------------------+
2271 * | usage | time to allocate in ms |
2272 * +-------+------------------------+
2273 * | 100M | 0 |
2274 * | 101M | 6 |
2275 * | 102M | 25 |
2276 * | 103M | 57 |
2277 * | 104M | 102 |
2278 * | 105M | 159 |
2279 * | 106M | 230 |
2280 * | 107M | 313 |
2281 * | 108M | 409 |
2282 * | 109M | 518 |
2283 * | 110M | 639 |
2284 * | 111M | 774 |
2285 * | 112M | 921 |
2286 * | 113M | 1081 |
2287 * | 114M | 1254 |
2288 * | 115M | 1439 |
2289 * | 116M | 1638 |
2290 * | 117M | 1849 |
2291 * | 118M | 2000 |
2292 * | 119M | 2000 |
2293 * | 120M | 2000 |
2294 * +-------+------------------------+
2295 */
2296 #define MEMCG_DELAY_PRECISION_SHIFT 20
2297 #define MEMCG_DELAY_SCALING_SHIFT 14
2298
b23afb93 2299/*
e26733e0
CD
2300 * Get the number of jiffies that we should penalise a mischievous cgroup which
2301 * is exceeding its memory.high by checking both it and its ancestors.
b23afb93 2302 */
e26733e0
CD
2303static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2304 unsigned int nr_pages)
b23afb93 2305{
e26733e0
CD
2306 unsigned long penalty_jiffies;
2307 u64 max_overage = 0;
b23afb93 2308
e26733e0
CD
2309 do {
2310 unsigned long usage, high;
2311 u64 overage;
b23afb93 2312
e26733e0
CD
2313 usage = page_counter_read(&memcg->memory);
2314 high = READ_ONCE(memcg->high);
2315
2316 /*
2317 * Prevent division by 0 in overage calculation by acting as if
2318 * it was a threshold of 1 page
2319 */
2320 high = max(high, 1UL);
2321
2322 overage = usage - high;
2323 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2324 overage = div64_u64(overage, high);
2325
2326 if (overage > max_overage)
2327 max_overage = overage;
2328 } while ((memcg = parent_mem_cgroup(memcg)) &&
2329 !mem_cgroup_is_root(memcg));
2330
2331 if (!max_overage)
2332 return 0;
0e4b01df
CD
2333
2334 /*
0e4b01df
CD
2335 * We use overage compared to memory.high to calculate the number of
2336 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2337 * fairly lenient on small overages, and increasingly harsh when the
2338 * memcg in question makes it clear that it has no intention of stopping
2339 * its crazy behaviour, so we exponentially increase the delay based on
2340 * overage amount.
2341 */
e26733e0
CD
2342 penalty_jiffies = max_overage * max_overage * HZ;
2343 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2344 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2345
2346 /*
2347 * Factor in the task's own contribution to the overage, such that four
2348 * N-sized allocations are throttled approximately the same as one
2349 * 4N-sized allocation.
2350 *
2351 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2352 * larger the current charge patch is than that.
2353 */
2354 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2355
2356 /*
2357 * Clamp the max delay per usermode return so as to still keep the
2358 * application moving forwards and also permit diagnostics, albeit
2359 * extremely slowly.
2360 */
e26733e0
CD
2361 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2362}
2363
2364/*
2365 * Scheduled by try_charge() to be executed from the userland return path
2366 * and reclaims memory over the high limit.
2367 */
2368void mem_cgroup_handle_over_high(void)
2369{
2370 unsigned long penalty_jiffies;
2371 unsigned long pflags;
2372 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2373 struct mem_cgroup *memcg;
2374
2375 if (likely(!nr_pages))
2376 return;
2377
2378 memcg = get_mem_cgroup_from_mm(current->mm);
2379 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2380 current->memcg_nr_pages_over_high = 0;
2381
2382 /*
2383 * memory.high is breached and reclaim is unable to keep up. Throttle
2384 * allocators proactively to slow down excessive growth.
2385 */
2386 penalty_jiffies = calculate_high_delay(memcg, nr_pages);
0e4b01df
CD
2387
2388 /*
2389 * Don't sleep if the amount of jiffies this memcg owes us is so low
2390 * that it's not even worth doing, in an attempt to be nice to those who
2391 * go only a small amount over their memory.high value and maybe haven't
2392 * been aggressively reclaimed enough yet.
2393 */
2394 if (penalty_jiffies <= HZ / 100)
2395 goto out;
2396
2397 /*
2398 * If we exit early, we're guaranteed to die (since
2399 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2400 * need to account for any ill-begotten jiffies to pay them off later.
2401 */
2402 psi_memstall_enter(&pflags);
2403 schedule_timeout_killable(penalty_jiffies);
2404 psi_memstall_leave(&pflags);
2405
2406out:
2407 css_put(&memcg->css);
b23afb93
TH
2408}
2409
00501b53
JW
2410static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2411 unsigned int nr_pages)
8a9f3ccd 2412{
a983b5eb 2413 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2414 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2415 struct mem_cgroup *mem_over_limit;
3e32cb2e 2416 struct page_counter *counter;
6539cc05 2417 unsigned long nr_reclaimed;
b70a2a21
JW
2418 bool may_swap = true;
2419 bool drained = false;
29ef680a 2420 enum oom_status oom_status;
a636b327 2421
ce00a967 2422 if (mem_cgroup_is_root(memcg))
10d53c74 2423 return 0;
6539cc05 2424retry:
b6b6cc72 2425 if (consume_stock(memcg, nr_pages))
10d53c74 2426 return 0;
8a9f3ccd 2427
7941d214 2428 if (!do_memsw_account() ||
6071ca52
JW
2429 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2430 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2431 goto done_restock;
7941d214 2432 if (do_memsw_account())
3e32cb2e
JW
2433 page_counter_uncharge(&memcg->memsw, batch);
2434 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2435 } else {
3e32cb2e 2436 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2437 may_swap = false;
3fbe7244 2438 }
7a81b88c 2439
6539cc05
JW
2440 if (batch > nr_pages) {
2441 batch = nr_pages;
2442 goto retry;
2443 }
6d61ef40 2444
869712fd
JW
2445 /*
2446 * Memcg doesn't have a dedicated reserve for atomic
2447 * allocations. But like the global atomic pool, we need to
2448 * put the burden of reclaim on regular allocation requests
2449 * and let these go through as privileged allocations.
2450 */
2451 if (gfp_mask & __GFP_ATOMIC)
2452 goto force;
2453
06b078fc
JW
2454 /*
2455 * Unlike in global OOM situations, memcg is not in a physical
2456 * memory shortage. Allow dying and OOM-killed tasks to
2457 * bypass the last charges so that they can exit quickly and
2458 * free their memory.
2459 */
7775face 2460 if (unlikely(should_force_charge()))
10d53c74 2461 goto force;
06b078fc 2462
89a28483
JW
2463 /*
2464 * Prevent unbounded recursion when reclaim operations need to
2465 * allocate memory. This might exceed the limits temporarily,
2466 * but we prefer facilitating memory reclaim and getting back
2467 * under the limit over triggering OOM kills in these cases.
2468 */
2469 if (unlikely(current->flags & PF_MEMALLOC))
2470 goto force;
2471
06b078fc
JW
2472 if (unlikely(task_in_memcg_oom(current)))
2473 goto nomem;
2474
d0164adc 2475 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2476 goto nomem;
4b534334 2477
e27be240 2478 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2479
b70a2a21
JW
2480 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2481 gfp_mask, may_swap);
6539cc05 2482
61e02c74 2483 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2484 goto retry;
28c34c29 2485
b70a2a21 2486 if (!drained) {
6d3d6aa2 2487 drain_all_stock(mem_over_limit);
b70a2a21
JW
2488 drained = true;
2489 goto retry;
2490 }
2491
28c34c29
JW
2492 if (gfp_mask & __GFP_NORETRY)
2493 goto nomem;
6539cc05
JW
2494 /*
2495 * Even though the limit is exceeded at this point, reclaim
2496 * may have been able to free some pages. Retry the charge
2497 * before killing the task.
2498 *
2499 * Only for regular pages, though: huge pages are rather
2500 * unlikely to succeed so close to the limit, and we fall back
2501 * to regular pages anyway in case of failure.
2502 */
61e02c74 2503 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2504 goto retry;
2505 /*
2506 * At task move, charge accounts can be doubly counted. So, it's
2507 * better to wait until the end of task_move if something is going on.
2508 */
2509 if (mem_cgroup_wait_acct_move(mem_over_limit))
2510 goto retry;
2511
9b130619
JW
2512 if (nr_retries--)
2513 goto retry;
2514
38d38493 2515 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2516 goto nomem;
2517
06b078fc 2518 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2519 goto force;
06b078fc 2520
6539cc05 2521 if (fatal_signal_pending(current))
10d53c74 2522 goto force;
6539cc05 2523
29ef680a
MH
2524 /*
2525 * keep retrying as long as the memcg oom killer is able to make
2526 * a forward progress or bypass the charge if the oom killer
2527 * couldn't make any progress.
2528 */
2529 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2530 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2531 switch (oom_status) {
2532 case OOM_SUCCESS:
2533 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2534 goto retry;
2535 case OOM_FAILED:
2536 goto force;
2537 default:
2538 goto nomem;
2539 }
7a81b88c 2540nomem:
6d1fdc48 2541 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2542 return -ENOMEM;
10d53c74
TH
2543force:
2544 /*
2545 * The allocation either can't fail or will lead to more memory
2546 * being freed very soon. Allow memory usage go over the limit
2547 * temporarily by force charging it.
2548 */
2549 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2550 if (do_memsw_account())
10d53c74
TH
2551 page_counter_charge(&memcg->memsw, nr_pages);
2552 css_get_many(&memcg->css, nr_pages);
2553
2554 return 0;
6539cc05
JW
2555
2556done_restock:
e8ea14cc 2557 css_get_many(&memcg->css, batch);
6539cc05
JW
2558 if (batch > nr_pages)
2559 refill_stock(memcg, batch - nr_pages);
b23afb93 2560
241994ed 2561 /*
b23afb93
TH
2562 * If the hierarchy is above the normal consumption range, schedule
2563 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2564 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2565 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2566 * not recorded as it most likely matches current's and won't
2567 * change in the meantime. As high limit is checked again before
2568 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2569 */
2570 do {
b23afb93 2571 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2572 /* Don't bother a random interrupted task */
2573 if (in_interrupt()) {
2574 schedule_work(&memcg->high_work);
2575 break;
2576 }
9516a18a 2577 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2578 set_notify_resume(current);
2579 break;
2580 }
241994ed 2581 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2582
2583 return 0;
7a81b88c 2584}
8a9f3ccd 2585
00501b53 2586static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2587{
ce00a967
JW
2588 if (mem_cgroup_is_root(memcg))
2589 return;
2590
3e32cb2e 2591 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2592 if (do_memsw_account())
3e32cb2e 2593 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2594
e8ea14cc 2595 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2596}
2597
0a31bc97
JW
2598static void lock_page_lru(struct page *page, int *isolated)
2599{
f4b7e272 2600 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2601
f4b7e272 2602 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2603 if (PageLRU(page)) {
2604 struct lruvec *lruvec;
2605
f4b7e272 2606 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2607 ClearPageLRU(page);
2608 del_page_from_lru_list(page, lruvec, page_lru(page));
2609 *isolated = 1;
2610 } else
2611 *isolated = 0;
2612}
2613
2614static void unlock_page_lru(struct page *page, int isolated)
2615{
f4b7e272 2616 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2617
2618 if (isolated) {
2619 struct lruvec *lruvec;
2620
f4b7e272 2621 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2622 VM_BUG_ON_PAGE(PageLRU(page), page);
2623 SetPageLRU(page);
2624 add_page_to_lru_list(page, lruvec, page_lru(page));
2625 }
f4b7e272 2626 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2627}
2628
00501b53 2629static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2630 bool lrucare)
7a81b88c 2631{
0a31bc97 2632 int isolated;
9ce70c02 2633
1306a85a 2634 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2635
2636 /*
2637 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2638 * may already be on some other mem_cgroup's LRU. Take care of it.
2639 */
0a31bc97
JW
2640 if (lrucare)
2641 lock_page_lru(page, &isolated);
9ce70c02 2642
0a31bc97
JW
2643 /*
2644 * Nobody should be changing or seriously looking at
1306a85a 2645 * page->mem_cgroup at this point:
0a31bc97
JW
2646 *
2647 * - the page is uncharged
2648 *
2649 * - the page is off-LRU
2650 *
2651 * - an anonymous fault has exclusive page access, except for
2652 * a locked page table
2653 *
2654 * - a page cache insertion, a swapin fault, or a migration
2655 * have the page locked
2656 */
1306a85a 2657 page->mem_cgroup = memcg;
9ce70c02 2658
0a31bc97
JW
2659 if (lrucare)
2660 unlock_page_lru(page, isolated);
7a81b88c 2661}
66e1707b 2662
84c07d11 2663#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2664static int memcg_alloc_cache_id(void)
55007d84 2665{
f3bb3043
VD
2666 int id, size;
2667 int err;
2668
dbcf73e2 2669 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2670 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2671 if (id < 0)
2672 return id;
55007d84 2673
dbcf73e2 2674 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2675 return id;
2676
2677 /*
2678 * There's no space for the new id in memcg_caches arrays,
2679 * so we have to grow them.
2680 */
05257a1a 2681 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2682
2683 size = 2 * (id + 1);
55007d84
GC
2684 if (size < MEMCG_CACHES_MIN_SIZE)
2685 size = MEMCG_CACHES_MIN_SIZE;
2686 else if (size > MEMCG_CACHES_MAX_SIZE)
2687 size = MEMCG_CACHES_MAX_SIZE;
2688
f3bb3043 2689 err = memcg_update_all_caches(size);
60d3fd32
VD
2690 if (!err)
2691 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2692 if (!err)
2693 memcg_nr_cache_ids = size;
2694
2695 up_write(&memcg_cache_ids_sem);
2696
f3bb3043 2697 if (err) {
dbcf73e2 2698 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2699 return err;
2700 }
2701 return id;
2702}
2703
2704static void memcg_free_cache_id(int id)
2705{
dbcf73e2 2706 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2707}
2708
d5b3cf71 2709struct memcg_kmem_cache_create_work {
5722d094
VD
2710 struct mem_cgroup *memcg;
2711 struct kmem_cache *cachep;
2712 struct work_struct work;
2713};
2714
d5b3cf71 2715static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2716{
d5b3cf71
VD
2717 struct memcg_kmem_cache_create_work *cw =
2718 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2719 struct mem_cgroup *memcg = cw->memcg;
2720 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2721
d5b3cf71 2722 memcg_create_kmem_cache(memcg, cachep);
bd673145 2723
5722d094 2724 css_put(&memcg->css);
d7f25f8a
GC
2725 kfree(cw);
2726}
2727
2728/*
2729 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2730 */
85cfb245 2731static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2732 struct kmem_cache *cachep)
d7f25f8a 2733{
d5b3cf71 2734 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2735
f0a3a24b
RG
2736 if (!css_tryget_online(&memcg->css))
2737 return;
2738
c892fd82 2739 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2740 if (!cw)
d7f25f8a 2741 return;
8135be5a 2742
d7f25f8a
GC
2743 cw->memcg = memcg;
2744 cw->cachep = cachep;
d5b3cf71 2745 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2746
17cc4dfe 2747 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2748}
2749
45264778
VD
2750static inline bool memcg_kmem_bypass(void)
2751{
2752 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2753 return true;
2754 return false;
2755}
2756
2757/**
2758 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2759 * @cachep: the original global kmem cache
2760 *
d7f25f8a
GC
2761 * Return the kmem_cache we're supposed to use for a slab allocation.
2762 * We try to use the current memcg's version of the cache.
2763 *
45264778
VD
2764 * If the cache does not exist yet, if we are the first user of it, we
2765 * create it asynchronously in a workqueue and let the current allocation
2766 * go through with the original cache.
d7f25f8a 2767 *
45264778
VD
2768 * This function takes a reference to the cache it returns to assure it
2769 * won't get destroyed while we are working with it. Once the caller is
2770 * done with it, memcg_kmem_put_cache() must be called to release the
2771 * reference.
d7f25f8a 2772 */
45264778 2773struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2774{
2775 struct mem_cgroup *memcg;
959c8963 2776 struct kmem_cache *memcg_cachep;
f0a3a24b 2777 struct memcg_cache_array *arr;
2a4db7eb 2778 int kmemcg_id;
d7f25f8a 2779
f7ce3190 2780 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2781
45264778 2782 if (memcg_kmem_bypass())
230e9fc2
VD
2783 return cachep;
2784
f0a3a24b
RG
2785 rcu_read_lock();
2786
2787 if (unlikely(current->active_memcg))
2788 memcg = current->active_memcg;
2789 else
2790 memcg = mem_cgroup_from_task(current);
2791
2792 if (!memcg || memcg == root_mem_cgroup)
2793 goto out_unlock;
2794
4db0c3c2 2795 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2796 if (kmemcg_id < 0)
f0a3a24b 2797 goto out_unlock;
d7f25f8a 2798
f0a3a24b
RG
2799 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2800
2801 /*
2802 * Make sure we will access the up-to-date value. The code updating
2803 * memcg_caches issues a write barrier to match the data dependency
2804 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2805 */
2806 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2807
2808 /*
2809 * If we are in a safe context (can wait, and not in interrupt
2810 * context), we could be be predictable and return right away.
2811 * This would guarantee that the allocation being performed
2812 * already belongs in the new cache.
2813 *
2814 * However, there are some clashes that can arrive from locking.
2815 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2816 * memcg_create_kmem_cache, this means no further allocation
2817 * could happen with the slab_mutex held. So it's better to
2818 * defer everything.
f0a3a24b
RG
2819 *
2820 * If the memcg is dying or memcg_cache is about to be released,
2821 * don't bother creating new kmem_caches. Because memcg_cachep
2822 * is ZEROed as the fist step of kmem offlining, we don't need
2823 * percpu_ref_tryget_live() here. css_tryget_online() check in
2824 * memcg_schedule_kmem_cache_create() will prevent us from
2825 * creation of a new kmem_cache.
ca0dde97 2826 */
f0a3a24b
RG
2827 if (unlikely(!memcg_cachep))
2828 memcg_schedule_kmem_cache_create(memcg, cachep);
2829 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2830 cachep = memcg_cachep;
2831out_unlock:
2832 rcu_read_unlock();
ca0dde97 2833 return cachep;
d7f25f8a 2834}
d7f25f8a 2835
45264778
VD
2836/**
2837 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2838 * @cachep: the cache returned by memcg_kmem_get_cache
2839 */
2840void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2841{
2842 if (!is_root_cache(cachep))
f0a3a24b 2843 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2844}
2845
45264778 2846/**
60cd4bcd 2847 * __memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2848 * @page: page to charge
2849 * @gfp: reclaim mode
2850 * @order: allocation order
2851 * @memcg: memory cgroup to charge
2852 *
2853 * Returns 0 on success, an error code on failure.
2854 */
60cd4bcd 2855int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
45264778 2856 struct mem_cgroup *memcg)
7ae1e1d0 2857{
f3ccb2c4
VD
2858 unsigned int nr_pages = 1 << order;
2859 struct page_counter *counter;
7ae1e1d0
GC
2860 int ret;
2861
f3ccb2c4 2862 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2863 if (ret)
f3ccb2c4 2864 return ret;
52c29b04
JW
2865
2866 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2867 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2868
2869 /*
2870 * Enforce __GFP_NOFAIL allocation because callers are not
2871 * prepared to see failures and likely do not have any failure
2872 * handling code.
2873 */
2874 if (gfp & __GFP_NOFAIL) {
2875 page_counter_charge(&memcg->kmem, nr_pages);
2876 return 0;
2877 }
52c29b04
JW
2878 cancel_charge(memcg, nr_pages);
2879 return -ENOMEM;
7ae1e1d0 2880 }
f3ccb2c4 2881 return 0;
7ae1e1d0
GC
2882}
2883
45264778 2884/**
60cd4bcd 2885 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
45264778
VD
2886 * @page: page to charge
2887 * @gfp: reclaim mode
2888 * @order: allocation order
2889 *
2890 * Returns 0 on success, an error code on failure.
2891 */
60cd4bcd 2892int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2893{
f3ccb2c4 2894 struct mem_cgroup *memcg;
fcff7d7e 2895 int ret = 0;
7ae1e1d0 2896
60cd4bcd 2897 if (memcg_kmem_bypass())
45264778
VD
2898 return 0;
2899
d46eb14b 2900 memcg = get_mem_cgroup_from_current();
c4159a75 2901 if (!mem_cgroup_is_root(memcg)) {
60cd4bcd 2902 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
4d96ba35
RG
2903 if (!ret) {
2904 page->mem_cgroup = memcg;
c4159a75 2905 __SetPageKmemcg(page);
4d96ba35 2906 }
c4159a75 2907 }
7ae1e1d0 2908 css_put(&memcg->css);
d05e83a6 2909 return ret;
7ae1e1d0 2910}
49a18eae
RG
2911
2912/**
2913 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2914 * @memcg: memcg to uncharge
2915 * @nr_pages: number of pages to uncharge
2916 */
2917void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2918 unsigned int nr_pages)
2919{
2920 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2921 page_counter_uncharge(&memcg->kmem, nr_pages);
2922
2923 page_counter_uncharge(&memcg->memory, nr_pages);
2924 if (do_memsw_account())
2925 page_counter_uncharge(&memcg->memsw, nr_pages);
2926}
45264778 2927/**
60cd4bcd 2928 * __memcg_kmem_uncharge: uncharge a kmem page
45264778
VD
2929 * @page: page to uncharge
2930 * @order: allocation order
2931 */
60cd4bcd 2932void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2933{
1306a85a 2934 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2935 unsigned int nr_pages = 1 << order;
7ae1e1d0 2936
7ae1e1d0
GC
2937 if (!memcg)
2938 return;
2939
309381fe 2940 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
49a18eae 2941 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
1306a85a 2942 page->mem_cgroup = NULL;
c4159a75
VD
2943
2944 /* slab pages do not have PageKmemcg flag set */
2945 if (PageKmemcg(page))
2946 __ClearPageKmemcg(page);
2947
f3ccb2c4 2948 css_put_many(&memcg->css, nr_pages);
60d3fd32 2949}
84c07d11 2950#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2951
ca3e0214
KH
2952#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2953
ca3e0214
KH
2954/*
2955 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 2956 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 2957 */
e94c8a9c 2958void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2959{
e94c8a9c 2960 int i;
ca3e0214 2961
3d37c4a9
KH
2962 if (mem_cgroup_disabled())
2963 return;
b070e65c 2964
29833315 2965 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2966 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2967
c9019e9b 2968 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2969}
12d27107 2970#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2971
c255a458 2972#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2973/**
2974 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2975 * @entry: swap entry to be moved
2976 * @from: mem_cgroup which the entry is moved from
2977 * @to: mem_cgroup which the entry is moved to
2978 *
2979 * It succeeds only when the swap_cgroup's record for this entry is the same
2980 * as the mem_cgroup's id of @from.
2981 *
2982 * Returns 0 on success, -EINVAL on failure.
2983 *
3e32cb2e 2984 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2985 * both res and memsw, and called css_get().
2986 */
2987static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2988 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2989{
2990 unsigned short old_id, new_id;
2991
34c00c31
LZ
2992 old_id = mem_cgroup_id(from);
2993 new_id = mem_cgroup_id(to);
02491447
DN
2994
2995 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2996 mod_memcg_state(from, MEMCG_SWAP, -1);
2997 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2998 return 0;
2999 }
3000 return -EINVAL;
3001}
3002#else
3003static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3004 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3005{
3006 return -EINVAL;
3007}
8c7c6e34 3008#endif
d13d1443 3009
bbec2e15 3010static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3011
bbec2e15
RG
3012static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3013 unsigned long max, bool memsw)
628f4235 3014{
3e32cb2e 3015 bool enlarge = false;
bb4a7ea2 3016 bool drained = false;
3e32cb2e 3017 int ret;
c054a78c
YZ
3018 bool limits_invariant;
3019 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3020
3e32cb2e 3021 do {
628f4235
KH
3022 if (signal_pending(current)) {
3023 ret = -EINTR;
3024 break;
3025 }
3e32cb2e 3026
bbec2e15 3027 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3028 /*
3029 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3030 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3031 */
bbec2e15
RG
3032 limits_invariant = memsw ? max >= memcg->memory.max :
3033 max <= memcg->memsw.max;
c054a78c 3034 if (!limits_invariant) {
bbec2e15 3035 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3036 ret = -EINVAL;
8c7c6e34
KH
3037 break;
3038 }
bbec2e15 3039 if (max > counter->max)
3e32cb2e 3040 enlarge = true;
bbec2e15
RG
3041 ret = page_counter_set_max(counter, max);
3042 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3043
3044 if (!ret)
3045 break;
3046
bb4a7ea2
SB
3047 if (!drained) {
3048 drain_all_stock(memcg);
3049 drained = true;
3050 continue;
3051 }
3052
1ab5c056
AR
3053 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3054 GFP_KERNEL, !memsw)) {
3055 ret = -EBUSY;
3056 break;
3057 }
3058 } while (true);
3e32cb2e 3059
3c11ecf4
KH
3060 if (!ret && enlarge)
3061 memcg_oom_recover(memcg);
3e32cb2e 3062
628f4235
KH
3063 return ret;
3064}
3065
ef8f2327 3066unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3067 gfp_t gfp_mask,
3068 unsigned long *total_scanned)
3069{
3070 unsigned long nr_reclaimed = 0;
ef8f2327 3071 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3072 unsigned long reclaimed;
3073 int loop = 0;
ef8f2327 3074 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3075 unsigned long excess;
0608f43d
AM
3076 unsigned long nr_scanned;
3077
3078 if (order > 0)
3079 return 0;
3080
ef8f2327 3081 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3082
3083 /*
3084 * Do not even bother to check the largest node if the root
3085 * is empty. Do it lockless to prevent lock bouncing. Races
3086 * are acceptable as soft limit is best effort anyway.
3087 */
bfc7228b 3088 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3089 return 0;
3090
0608f43d
AM
3091 /*
3092 * This loop can run a while, specially if mem_cgroup's continuously
3093 * keep exceeding their soft limit and putting the system under
3094 * pressure
3095 */
3096 do {
3097 if (next_mz)
3098 mz = next_mz;
3099 else
3100 mz = mem_cgroup_largest_soft_limit_node(mctz);
3101 if (!mz)
3102 break;
3103
3104 nr_scanned = 0;
ef8f2327 3105 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3106 gfp_mask, &nr_scanned);
3107 nr_reclaimed += reclaimed;
3108 *total_scanned += nr_scanned;
0a31bc97 3109 spin_lock_irq(&mctz->lock);
bc2f2e7f 3110 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3111
3112 /*
3113 * If we failed to reclaim anything from this memory cgroup
3114 * it is time to move on to the next cgroup
3115 */
3116 next_mz = NULL;
bc2f2e7f
VD
3117 if (!reclaimed)
3118 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3119
3e32cb2e 3120 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3121 /*
3122 * One school of thought says that we should not add
3123 * back the node to the tree if reclaim returns 0.
3124 * But our reclaim could return 0, simply because due
3125 * to priority we are exposing a smaller subset of
3126 * memory to reclaim from. Consider this as a longer
3127 * term TODO.
3128 */
3129 /* If excess == 0, no tree ops */
cf2c8127 3130 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3131 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3132 css_put(&mz->memcg->css);
3133 loop++;
3134 /*
3135 * Could not reclaim anything and there are no more
3136 * mem cgroups to try or we seem to be looping without
3137 * reclaiming anything.
3138 */
3139 if (!nr_reclaimed &&
3140 (next_mz == NULL ||
3141 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3142 break;
3143 } while (!nr_reclaimed);
3144 if (next_mz)
3145 css_put(&next_mz->memcg->css);
3146 return nr_reclaimed;
3147}
3148
ea280e7b
TH
3149/*
3150 * Test whether @memcg has children, dead or alive. Note that this
3151 * function doesn't care whether @memcg has use_hierarchy enabled and
3152 * returns %true if there are child csses according to the cgroup
3153 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3154 */
b5f99b53
GC
3155static inline bool memcg_has_children(struct mem_cgroup *memcg)
3156{
ea280e7b
TH
3157 bool ret;
3158
ea280e7b
TH
3159 rcu_read_lock();
3160 ret = css_next_child(NULL, &memcg->css);
3161 rcu_read_unlock();
3162 return ret;
b5f99b53
GC
3163}
3164
c26251f9 3165/*
51038171 3166 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3167 *
3168 * Caller is responsible for holding css reference for memcg.
3169 */
3170static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3171{
3172 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3173
c1e862c1
KH
3174 /* we call try-to-free pages for make this cgroup empty */
3175 lru_add_drain_all();
d12c60f6
JS
3176
3177 drain_all_stock(memcg);
3178
f817ed48 3179 /* try to free all pages in this cgroup */
3e32cb2e 3180 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3181 int progress;
c1e862c1 3182
c26251f9
MH
3183 if (signal_pending(current))
3184 return -EINTR;
3185
b70a2a21
JW
3186 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3187 GFP_KERNEL, true);
c1e862c1 3188 if (!progress) {
f817ed48 3189 nr_retries--;
c1e862c1 3190 /* maybe some writeback is necessary */
8aa7e847 3191 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3192 }
f817ed48
KH
3193
3194 }
ab5196c2
MH
3195
3196 return 0;
cc847582
KH
3197}
3198
6770c64e
TH
3199static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3200 char *buf, size_t nbytes,
3201 loff_t off)
c1e862c1 3202{
6770c64e 3203 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3204
d8423011
MH
3205 if (mem_cgroup_is_root(memcg))
3206 return -EINVAL;
6770c64e 3207 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3208}
3209
182446d0
TH
3210static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3211 struct cftype *cft)
18f59ea7 3212{
182446d0 3213 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3214}
3215
182446d0
TH
3216static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3217 struct cftype *cft, u64 val)
18f59ea7
BS
3218{
3219 int retval = 0;
182446d0 3220 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3221 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3222
567fb435 3223 if (memcg->use_hierarchy == val)
0b8f73e1 3224 return 0;
567fb435 3225
18f59ea7 3226 /*
af901ca1 3227 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3228 * in the child subtrees. If it is unset, then the change can
3229 * occur, provided the current cgroup has no children.
3230 *
3231 * For the root cgroup, parent_mem is NULL, we allow value to be
3232 * set if there are no children.
3233 */
c0ff4b85 3234 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3235 (val == 1 || val == 0)) {
ea280e7b 3236 if (!memcg_has_children(memcg))
c0ff4b85 3237 memcg->use_hierarchy = val;
18f59ea7
BS
3238 else
3239 retval = -EBUSY;
3240 } else
3241 retval = -EINVAL;
567fb435 3242
18f59ea7
BS
3243 return retval;
3244}
3245
6f646156 3246static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3247{
42a30035 3248 unsigned long val;
ce00a967 3249
3e32cb2e 3250 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3251 val = memcg_page_state(memcg, MEMCG_CACHE) +
3252 memcg_page_state(memcg, MEMCG_RSS);
3253 if (swap)
3254 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3255 } else {
ce00a967 3256 if (!swap)
3e32cb2e 3257 val = page_counter_read(&memcg->memory);
ce00a967 3258 else
3e32cb2e 3259 val = page_counter_read(&memcg->memsw);
ce00a967 3260 }
c12176d3 3261 return val;
ce00a967
JW
3262}
3263
3e32cb2e
JW
3264enum {
3265 RES_USAGE,
3266 RES_LIMIT,
3267 RES_MAX_USAGE,
3268 RES_FAILCNT,
3269 RES_SOFT_LIMIT,
3270};
ce00a967 3271
791badbd 3272static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3273 struct cftype *cft)
8cdea7c0 3274{
182446d0 3275 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3276 struct page_counter *counter;
af36f906 3277
3e32cb2e 3278 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3279 case _MEM:
3e32cb2e
JW
3280 counter = &memcg->memory;
3281 break;
8c7c6e34 3282 case _MEMSWAP:
3e32cb2e
JW
3283 counter = &memcg->memsw;
3284 break;
510fc4e1 3285 case _KMEM:
3e32cb2e 3286 counter = &memcg->kmem;
510fc4e1 3287 break;
d55f90bf 3288 case _TCP:
0db15298 3289 counter = &memcg->tcpmem;
d55f90bf 3290 break;
8c7c6e34
KH
3291 default:
3292 BUG();
8c7c6e34 3293 }
3e32cb2e
JW
3294
3295 switch (MEMFILE_ATTR(cft->private)) {
3296 case RES_USAGE:
3297 if (counter == &memcg->memory)
c12176d3 3298 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3299 if (counter == &memcg->memsw)
c12176d3 3300 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3301 return (u64)page_counter_read(counter) * PAGE_SIZE;
3302 case RES_LIMIT:
bbec2e15 3303 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3304 case RES_MAX_USAGE:
3305 return (u64)counter->watermark * PAGE_SIZE;
3306 case RES_FAILCNT:
3307 return counter->failcnt;
3308 case RES_SOFT_LIMIT:
3309 return (u64)memcg->soft_limit * PAGE_SIZE;
3310 default:
3311 BUG();
3312 }
8cdea7c0 3313}
510fc4e1 3314
4a87e2a2 3315static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3316{
4a87e2a2 3317 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3318 struct mem_cgroup *mi;
3319 int node, cpu, i;
c350a99e
RG
3320
3321 for_each_online_cpu(cpu)
4a87e2a2 3322 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3323 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3324
3325 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3326 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3327 atomic_long_add(stat[i], &mi->vmstats[i]);
3328
3329 for_each_node(node) {
3330 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3331 struct mem_cgroup_per_node *pi;
3332
4a87e2a2 3333 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3334 stat[i] = 0;
3335
3336 for_each_online_cpu(cpu)
4a87e2a2 3337 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3338 stat[i] += per_cpu(
3339 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3340
3341 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3342 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3343 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3344 }
3345}
3346
bb65f89b
RG
3347static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3348{
3349 unsigned long events[NR_VM_EVENT_ITEMS];
3350 struct mem_cgroup *mi;
3351 int cpu, i;
3352
3353 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3354 events[i] = 0;
3355
3356 for_each_online_cpu(cpu)
3357 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3358 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3359 cpu);
bb65f89b
RG
3360
3361 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3362 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3363 atomic_long_add(events[i], &mi->vmevents[i]);
3364}
3365
84c07d11 3366#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3367static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3368{
d6441637
VD
3369 int memcg_id;
3370
b313aeee
VD
3371 if (cgroup_memory_nokmem)
3372 return 0;
3373
2a4db7eb 3374 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3375 BUG_ON(memcg->kmem_state);
d6441637 3376
f3bb3043 3377 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3378 if (memcg_id < 0)
3379 return memcg_id;
d6441637 3380
ef12947c 3381 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3382 /*
567e9ab2 3383 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3384 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3385 * guarantee no one starts accounting before all call sites are
3386 * patched.
3387 */
900a38f0 3388 memcg->kmemcg_id = memcg_id;
567e9ab2 3389 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3390 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3391
3392 return 0;
d6441637
VD
3393}
3394
8e0a8912
JW
3395static void memcg_offline_kmem(struct mem_cgroup *memcg)
3396{
3397 struct cgroup_subsys_state *css;
3398 struct mem_cgroup *parent, *child;
3399 int kmemcg_id;
3400
3401 if (memcg->kmem_state != KMEM_ONLINE)
3402 return;
3403 /*
3404 * Clear the online state before clearing memcg_caches array
3405 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3406 * guarantees that no cache will be created for this cgroup
3407 * after we are done (see memcg_create_kmem_cache()).
3408 */
3409 memcg->kmem_state = KMEM_ALLOCATED;
3410
8e0a8912
JW
3411 parent = parent_mem_cgroup(memcg);
3412 if (!parent)
3413 parent = root_mem_cgroup;
3414
bee07b33 3415 /*
4a87e2a2 3416 * Deactivate and reparent kmem_caches.
bee07b33 3417 */
fb2f2b0a
RG
3418 memcg_deactivate_kmem_caches(memcg, parent);
3419
3420 kmemcg_id = memcg->kmemcg_id;
3421 BUG_ON(kmemcg_id < 0);
3422
8e0a8912
JW
3423 /*
3424 * Change kmemcg_id of this cgroup and all its descendants to the
3425 * parent's id, and then move all entries from this cgroup's list_lrus
3426 * to ones of the parent. After we have finished, all list_lrus
3427 * corresponding to this cgroup are guaranteed to remain empty. The
3428 * ordering is imposed by list_lru_node->lock taken by
3429 * memcg_drain_all_list_lrus().
3430 */
3a06bb78 3431 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3432 css_for_each_descendant_pre(css, &memcg->css) {
3433 child = mem_cgroup_from_css(css);
3434 BUG_ON(child->kmemcg_id != kmemcg_id);
3435 child->kmemcg_id = parent->kmemcg_id;
3436 if (!memcg->use_hierarchy)
3437 break;
3438 }
3a06bb78
TH
3439 rcu_read_unlock();
3440
9bec5c35 3441 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3442
3443 memcg_free_cache_id(kmemcg_id);
3444}
3445
3446static void memcg_free_kmem(struct mem_cgroup *memcg)
3447{
0b8f73e1
JW
3448 /* css_alloc() failed, offlining didn't happen */
3449 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3450 memcg_offline_kmem(memcg);
3451
8e0a8912 3452 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3453 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3454 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3455 }
8e0a8912 3456}
d6441637 3457#else
0b8f73e1 3458static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3459{
3460 return 0;
3461}
3462static void memcg_offline_kmem(struct mem_cgroup *memcg)
3463{
3464}
3465static void memcg_free_kmem(struct mem_cgroup *memcg)
3466{
3467}
84c07d11 3468#endif /* CONFIG_MEMCG_KMEM */
127424c8 3469
bbec2e15
RG
3470static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3471 unsigned long max)
d6441637 3472{
b313aeee 3473 int ret;
127424c8 3474
bbec2e15
RG
3475 mutex_lock(&memcg_max_mutex);
3476 ret = page_counter_set_max(&memcg->kmem, max);
3477 mutex_unlock(&memcg_max_mutex);
127424c8 3478 return ret;
d6441637 3479}
510fc4e1 3480
bbec2e15 3481static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3482{
3483 int ret;
3484
bbec2e15 3485 mutex_lock(&memcg_max_mutex);
d55f90bf 3486
bbec2e15 3487 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3488 if (ret)
3489 goto out;
3490
0db15298 3491 if (!memcg->tcpmem_active) {
d55f90bf
VD
3492 /*
3493 * The active flag needs to be written after the static_key
3494 * update. This is what guarantees that the socket activation
2d758073
JW
3495 * function is the last one to run. See mem_cgroup_sk_alloc()
3496 * for details, and note that we don't mark any socket as
3497 * belonging to this memcg until that flag is up.
d55f90bf
VD
3498 *
3499 * We need to do this, because static_keys will span multiple
3500 * sites, but we can't control their order. If we mark a socket
3501 * as accounted, but the accounting functions are not patched in
3502 * yet, we'll lose accounting.
3503 *
2d758073 3504 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3505 * because when this value change, the code to process it is not
3506 * patched in yet.
3507 */
3508 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3509 memcg->tcpmem_active = true;
d55f90bf
VD
3510 }
3511out:
bbec2e15 3512 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3513 return ret;
3514}
d55f90bf 3515
628f4235
KH
3516/*
3517 * The user of this function is...
3518 * RES_LIMIT.
3519 */
451af504
TH
3520static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3521 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3522{
451af504 3523 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3524 unsigned long nr_pages;
628f4235
KH
3525 int ret;
3526
451af504 3527 buf = strstrip(buf);
650c5e56 3528 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3529 if (ret)
3530 return ret;
af36f906 3531
3e32cb2e 3532 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3533 case RES_LIMIT:
4b3bde4c
BS
3534 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3535 ret = -EINVAL;
3536 break;
3537 }
3e32cb2e
JW
3538 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3539 case _MEM:
bbec2e15 3540 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3541 break;
3e32cb2e 3542 case _MEMSWAP:
bbec2e15 3543 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3544 break;
3e32cb2e 3545 case _KMEM:
0158115f
MH
3546 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3547 "Please report your usecase to linux-mm@kvack.org if you "
3548 "depend on this functionality.\n");
bbec2e15 3549 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3550 break;
d55f90bf 3551 case _TCP:
bbec2e15 3552 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3553 break;
3e32cb2e 3554 }
296c81d8 3555 break;
3e32cb2e
JW
3556 case RES_SOFT_LIMIT:
3557 memcg->soft_limit = nr_pages;
3558 ret = 0;
628f4235
KH
3559 break;
3560 }
451af504 3561 return ret ?: nbytes;
8cdea7c0
BS
3562}
3563
6770c64e
TH
3564static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3565 size_t nbytes, loff_t off)
c84872e1 3566{
6770c64e 3567 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3568 struct page_counter *counter;
c84872e1 3569
3e32cb2e
JW
3570 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3571 case _MEM:
3572 counter = &memcg->memory;
3573 break;
3574 case _MEMSWAP:
3575 counter = &memcg->memsw;
3576 break;
3577 case _KMEM:
3578 counter = &memcg->kmem;
3579 break;
d55f90bf 3580 case _TCP:
0db15298 3581 counter = &memcg->tcpmem;
d55f90bf 3582 break;
3e32cb2e
JW
3583 default:
3584 BUG();
3585 }
af36f906 3586
3e32cb2e 3587 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3588 case RES_MAX_USAGE:
3e32cb2e 3589 page_counter_reset_watermark(counter);
29f2a4da
PE
3590 break;
3591 case RES_FAILCNT:
3e32cb2e 3592 counter->failcnt = 0;
29f2a4da 3593 break;
3e32cb2e
JW
3594 default:
3595 BUG();
29f2a4da 3596 }
f64c3f54 3597
6770c64e 3598 return nbytes;
c84872e1
PE
3599}
3600
182446d0 3601static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3602 struct cftype *cft)
3603{
182446d0 3604 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3605}
3606
02491447 3607#ifdef CONFIG_MMU
182446d0 3608static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3609 struct cftype *cft, u64 val)
3610{
182446d0 3611 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3612
1dfab5ab 3613 if (val & ~MOVE_MASK)
7dc74be0 3614 return -EINVAL;
ee5e8472 3615
7dc74be0 3616 /*
ee5e8472
GC
3617 * No kind of locking is needed in here, because ->can_attach() will
3618 * check this value once in the beginning of the process, and then carry
3619 * on with stale data. This means that changes to this value will only
3620 * affect task migrations starting after the change.
7dc74be0 3621 */
c0ff4b85 3622 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3623 return 0;
3624}
02491447 3625#else
182446d0 3626static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3627 struct cftype *cft, u64 val)
3628{
3629 return -ENOSYS;
3630}
3631#endif
7dc74be0 3632
406eb0c9 3633#ifdef CONFIG_NUMA
113b7dfd
JW
3634
3635#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3636#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3637#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3638
3639static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3640 int nid, unsigned int lru_mask)
3641{
867e5e1d 3642 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3643 unsigned long nr = 0;
3644 enum lru_list lru;
3645
3646 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3647
3648 for_each_lru(lru) {
3649 if (!(BIT(lru) & lru_mask))
3650 continue;
205b20cc 3651 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3652 }
3653 return nr;
3654}
3655
3656static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3657 unsigned int lru_mask)
3658{
3659 unsigned long nr = 0;
3660 enum lru_list lru;
3661
3662 for_each_lru(lru) {
3663 if (!(BIT(lru) & lru_mask))
3664 continue;
205b20cc 3665 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3666 }
3667 return nr;
3668}
3669
2da8ca82 3670static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3671{
25485de6
GT
3672 struct numa_stat {
3673 const char *name;
3674 unsigned int lru_mask;
3675 };
3676
3677 static const struct numa_stat stats[] = {
3678 { "total", LRU_ALL },
3679 { "file", LRU_ALL_FILE },
3680 { "anon", LRU_ALL_ANON },
3681 { "unevictable", BIT(LRU_UNEVICTABLE) },
3682 };
3683 const struct numa_stat *stat;
406eb0c9 3684 int nid;
25485de6 3685 unsigned long nr;
aa9694bb 3686 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3687
25485de6
GT
3688 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3689 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3690 seq_printf(m, "%s=%lu", stat->name, nr);
3691 for_each_node_state(nid, N_MEMORY) {
3692 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3693 stat->lru_mask);
3694 seq_printf(m, " N%d=%lu", nid, nr);
3695 }
3696 seq_putc(m, '\n');
406eb0c9 3697 }
406eb0c9 3698
071aee13
YH
3699 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3700 struct mem_cgroup *iter;
3701
3702 nr = 0;
3703 for_each_mem_cgroup_tree(iter, memcg)
3704 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3705 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3706 for_each_node_state(nid, N_MEMORY) {
3707 nr = 0;
3708 for_each_mem_cgroup_tree(iter, memcg)
3709 nr += mem_cgroup_node_nr_lru_pages(
3710 iter, nid, stat->lru_mask);
3711 seq_printf(m, " N%d=%lu", nid, nr);
3712 }
3713 seq_putc(m, '\n');
406eb0c9 3714 }
406eb0c9 3715
406eb0c9
YH
3716 return 0;
3717}
3718#endif /* CONFIG_NUMA */
3719
c8713d0b
JW
3720static const unsigned int memcg1_stats[] = {
3721 MEMCG_CACHE,
3722 MEMCG_RSS,
3723 MEMCG_RSS_HUGE,
3724 NR_SHMEM,
3725 NR_FILE_MAPPED,
3726 NR_FILE_DIRTY,
3727 NR_WRITEBACK,
3728 MEMCG_SWAP,
3729};
3730
3731static const char *const memcg1_stat_names[] = {
3732 "cache",
3733 "rss",
3734 "rss_huge",
3735 "shmem",
3736 "mapped_file",
3737 "dirty",
3738 "writeback",
3739 "swap",
3740};
3741
df0e53d0 3742/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3743static const unsigned int memcg1_events[] = {
df0e53d0
JW
3744 PGPGIN,
3745 PGPGOUT,
3746 PGFAULT,
3747 PGMAJFAULT,
3748};
3749
2da8ca82 3750static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3751{
aa9694bb 3752 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3753 unsigned long memory, memsw;
af7c4b0e
JW
3754 struct mem_cgroup *mi;
3755 unsigned int i;
406eb0c9 3756
71cd3113 3757 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3758
71cd3113
JW
3759 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3760 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3761 continue;
71cd3113 3762 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3763 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3764 PAGE_SIZE);
1dd3a273 3765 }
7b854121 3766
df0e53d0 3767 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3768 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3769 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3770
3771 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3772 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3773 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3774 PAGE_SIZE);
af7c4b0e 3775
14067bb3 3776 /* Hierarchical information */
3e32cb2e
JW
3777 memory = memsw = PAGE_COUNTER_MAX;
3778 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3779 memory = min(memory, mi->memory.max);
3780 memsw = min(memsw, mi->memsw.max);
fee7b548 3781 }
3e32cb2e
JW
3782 seq_printf(m, "hierarchical_memory_limit %llu\n",
3783 (u64)memory * PAGE_SIZE);
7941d214 3784 if (do_memsw_account())
3e32cb2e
JW
3785 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3786 (u64)memsw * PAGE_SIZE);
7f016ee8 3787
8de7ecc6 3788 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3789 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3790 continue;
8de7ecc6 3791 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3792 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3793 PAGE_SIZE);
af7c4b0e
JW
3794 }
3795
8de7ecc6 3796 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
3797 seq_printf(m, "total_%s %llu\n",
3798 vm_event_name(memcg1_events[i]),
dd923990 3799 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3800
8de7ecc6 3801 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3802 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
3803 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3804 PAGE_SIZE);
14067bb3 3805
7f016ee8 3806#ifdef CONFIG_DEBUG_VM
7f016ee8 3807 {
ef8f2327
MG
3808 pg_data_t *pgdat;
3809 struct mem_cgroup_per_node *mz;
89abfab1 3810 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3811 unsigned long recent_rotated[2] = {0, 0};
3812 unsigned long recent_scanned[2] = {0, 0};
3813
ef8f2327
MG
3814 for_each_online_pgdat(pgdat) {
3815 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3816 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3817
ef8f2327
MG
3818 recent_rotated[0] += rstat->recent_rotated[0];
3819 recent_rotated[1] += rstat->recent_rotated[1];
3820 recent_scanned[0] += rstat->recent_scanned[0];
3821 recent_scanned[1] += rstat->recent_scanned[1];
3822 }
78ccf5b5
JW
3823 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3824 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3825 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3826 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3827 }
3828#endif
3829
d2ceb9b7
KH
3830 return 0;
3831}
3832
182446d0
TH
3833static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3834 struct cftype *cft)
a7885eb8 3835{
182446d0 3836 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3837
1f4c025b 3838 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3839}
3840
182446d0
TH
3841static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3842 struct cftype *cft, u64 val)
a7885eb8 3843{
182446d0 3844 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3845
3dae7fec 3846 if (val > 100)
a7885eb8
KM
3847 return -EINVAL;
3848
14208b0e 3849 if (css->parent)
3dae7fec
JW
3850 memcg->swappiness = val;
3851 else
3852 vm_swappiness = val;
068b38c1 3853
a7885eb8
KM
3854 return 0;
3855}
3856
2e72b634
KS
3857static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3858{
3859 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3860 unsigned long usage;
2e72b634
KS
3861 int i;
3862
3863 rcu_read_lock();
3864 if (!swap)
2c488db2 3865 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3866 else
2c488db2 3867 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3868
3869 if (!t)
3870 goto unlock;
3871
ce00a967 3872 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3873
3874 /*
748dad36 3875 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3876 * If it's not true, a threshold was crossed after last
3877 * call of __mem_cgroup_threshold().
3878 */
5407a562 3879 i = t->current_threshold;
2e72b634
KS
3880
3881 /*
3882 * Iterate backward over array of thresholds starting from
3883 * current_threshold and check if a threshold is crossed.
3884 * If none of thresholds below usage is crossed, we read
3885 * only one element of the array here.
3886 */
3887 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3888 eventfd_signal(t->entries[i].eventfd, 1);
3889
3890 /* i = current_threshold + 1 */
3891 i++;
3892
3893 /*
3894 * Iterate forward over array of thresholds starting from
3895 * current_threshold+1 and check if a threshold is crossed.
3896 * If none of thresholds above usage is crossed, we read
3897 * only one element of the array here.
3898 */
3899 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3900 eventfd_signal(t->entries[i].eventfd, 1);
3901
3902 /* Update current_threshold */
5407a562 3903 t->current_threshold = i - 1;
2e72b634
KS
3904unlock:
3905 rcu_read_unlock();
3906}
3907
3908static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3909{
ad4ca5f4
KS
3910 while (memcg) {
3911 __mem_cgroup_threshold(memcg, false);
7941d214 3912 if (do_memsw_account())
ad4ca5f4
KS
3913 __mem_cgroup_threshold(memcg, true);
3914
3915 memcg = parent_mem_cgroup(memcg);
3916 }
2e72b634
KS
3917}
3918
3919static int compare_thresholds(const void *a, const void *b)
3920{
3921 const struct mem_cgroup_threshold *_a = a;
3922 const struct mem_cgroup_threshold *_b = b;
3923
2bff24a3
GT
3924 if (_a->threshold > _b->threshold)
3925 return 1;
3926
3927 if (_a->threshold < _b->threshold)
3928 return -1;
3929
3930 return 0;
2e72b634
KS
3931}
3932
c0ff4b85 3933static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3934{
3935 struct mem_cgroup_eventfd_list *ev;
3936
2bcf2e92
MH
3937 spin_lock(&memcg_oom_lock);
3938
c0ff4b85 3939 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3940 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3941
3942 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3943 return 0;
3944}
3945
c0ff4b85 3946static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3947{
7d74b06f
KH
3948 struct mem_cgroup *iter;
3949
c0ff4b85 3950 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3951 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3952}
3953
59b6f873 3954static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3955 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3956{
2c488db2
KS
3957 struct mem_cgroup_thresholds *thresholds;
3958 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3959 unsigned long threshold;
3960 unsigned long usage;
2c488db2 3961 int i, size, ret;
2e72b634 3962
650c5e56 3963 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3964 if (ret)
3965 return ret;
3966
3967 mutex_lock(&memcg->thresholds_lock);
2c488db2 3968
05b84301 3969 if (type == _MEM) {
2c488db2 3970 thresholds = &memcg->thresholds;
ce00a967 3971 usage = mem_cgroup_usage(memcg, false);
05b84301 3972 } else if (type == _MEMSWAP) {
2c488db2 3973 thresholds = &memcg->memsw_thresholds;
ce00a967 3974 usage = mem_cgroup_usage(memcg, true);
05b84301 3975 } else
2e72b634
KS
3976 BUG();
3977
2e72b634 3978 /* Check if a threshold crossed before adding a new one */
2c488db2 3979 if (thresholds->primary)
2e72b634
KS
3980 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3981
2c488db2 3982 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3983
3984 /* Allocate memory for new array of thresholds */
67b8046f 3985 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 3986 if (!new) {
2e72b634
KS
3987 ret = -ENOMEM;
3988 goto unlock;
3989 }
2c488db2 3990 new->size = size;
2e72b634
KS
3991
3992 /* Copy thresholds (if any) to new array */
2c488db2
KS
3993 if (thresholds->primary) {
3994 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3995 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3996 }
3997
2e72b634 3998 /* Add new threshold */
2c488db2
KS
3999 new->entries[size - 1].eventfd = eventfd;
4000 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4001
4002 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4003 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4004 compare_thresholds, NULL);
4005
4006 /* Find current threshold */
2c488db2 4007 new->current_threshold = -1;
2e72b634 4008 for (i = 0; i < size; i++) {
748dad36 4009 if (new->entries[i].threshold <= usage) {
2e72b634 4010 /*
2c488db2
KS
4011 * new->current_threshold will not be used until
4012 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4013 * it here.
4014 */
2c488db2 4015 ++new->current_threshold;
748dad36
SZ
4016 } else
4017 break;
2e72b634
KS
4018 }
4019
2c488db2
KS
4020 /* Free old spare buffer and save old primary buffer as spare */
4021 kfree(thresholds->spare);
4022 thresholds->spare = thresholds->primary;
4023
4024 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4025
907860ed 4026 /* To be sure that nobody uses thresholds */
2e72b634
KS
4027 synchronize_rcu();
4028
2e72b634
KS
4029unlock:
4030 mutex_unlock(&memcg->thresholds_lock);
4031
4032 return ret;
4033}
4034
59b6f873 4035static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4036 struct eventfd_ctx *eventfd, const char *args)
4037{
59b6f873 4038 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4039}
4040
59b6f873 4041static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4042 struct eventfd_ctx *eventfd, const char *args)
4043{
59b6f873 4044 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4045}
4046
59b6f873 4047static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4048 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4049{
2c488db2
KS
4050 struct mem_cgroup_thresholds *thresholds;
4051 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4052 unsigned long usage;
7d36665a 4053 int i, j, size, entries;
2e72b634
KS
4054
4055 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4056
4057 if (type == _MEM) {
2c488db2 4058 thresholds = &memcg->thresholds;
ce00a967 4059 usage = mem_cgroup_usage(memcg, false);
05b84301 4060 } else if (type == _MEMSWAP) {
2c488db2 4061 thresholds = &memcg->memsw_thresholds;
ce00a967 4062 usage = mem_cgroup_usage(memcg, true);
05b84301 4063 } else
2e72b634
KS
4064 BUG();
4065
371528ca
AV
4066 if (!thresholds->primary)
4067 goto unlock;
4068
2e72b634
KS
4069 /* Check if a threshold crossed before removing */
4070 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4071
4072 /* Calculate new number of threshold */
7d36665a 4073 size = entries = 0;
2c488db2
KS
4074 for (i = 0; i < thresholds->primary->size; i++) {
4075 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4076 size++;
7d36665a
CX
4077 else
4078 entries++;
2e72b634
KS
4079 }
4080
2c488db2 4081 new = thresholds->spare;
907860ed 4082
7d36665a
CX
4083 /* If no items related to eventfd have been cleared, nothing to do */
4084 if (!entries)
4085 goto unlock;
4086
2e72b634
KS
4087 /* Set thresholds array to NULL if we don't have thresholds */
4088 if (!size) {
2c488db2
KS
4089 kfree(new);
4090 new = NULL;
907860ed 4091 goto swap_buffers;
2e72b634
KS
4092 }
4093
2c488db2 4094 new->size = size;
2e72b634
KS
4095
4096 /* Copy thresholds and find current threshold */
2c488db2
KS
4097 new->current_threshold = -1;
4098 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4099 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4100 continue;
4101
2c488db2 4102 new->entries[j] = thresholds->primary->entries[i];
748dad36 4103 if (new->entries[j].threshold <= usage) {
2e72b634 4104 /*
2c488db2 4105 * new->current_threshold will not be used
2e72b634
KS
4106 * until rcu_assign_pointer(), so it's safe to increment
4107 * it here.
4108 */
2c488db2 4109 ++new->current_threshold;
2e72b634
KS
4110 }
4111 j++;
4112 }
4113
907860ed 4114swap_buffers:
2c488db2
KS
4115 /* Swap primary and spare array */
4116 thresholds->spare = thresholds->primary;
8c757763 4117
2c488db2 4118 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4119
907860ed 4120 /* To be sure that nobody uses thresholds */
2e72b634 4121 synchronize_rcu();
6611d8d7
MC
4122
4123 /* If all events are unregistered, free the spare array */
4124 if (!new) {
4125 kfree(thresholds->spare);
4126 thresholds->spare = NULL;
4127 }
371528ca 4128unlock:
2e72b634 4129 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4130}
c1e862c1 4131
59b6f873 4132static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4133 struct eventfd_ctx *eventfd)
4134{
59b6f873 4135 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4136}
4137
59b6f873 4138static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4139 struct eventfd_ctx *eventfd)
4140{
59b6f873 4141 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4142}
4143
59b6f873 4144static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4145 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4146{
9490ff27 4147 struct mem_cgroup_eventfd_list *event;
9490ff27 4148
9490ff27
KH
4149 event = kmalloc(sizeof(*event), GFP_KERNEL);
4150 if (!event)
4151 return -ENOMEM;
4152
1af8efe9 4153 spin_lock(&memcg_oom_lock);
9490ff27
KH
4154
4155 event->eventfd = eventfd;
4156 list_add(&event->list, &memcg->oom_notify);
4157
4158 /* already in OOM ? */
c2b42d3c 4159 if (memcg->under_oom)
9490ff27 4160 eventfd_signal(eventfd, 1);
1af8efe9 4161 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4162
4163 return 0;
4164}
4165
59b6f873 4166static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4167 struct eventfd_ctx *eventfd)
9490ff27 4168{
9490ff27 4169 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4170
1af8efe9 4171 spin_lock(&memcg_oom_lock);
9490ff27 4172
c0ff4b85 4173 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4174 if (ev->eventfd == eventfd) {
4175 list_del(&ev->list);
4176 kfree(ev);
4177 }
4178 }
4179
1af8efe9 4180 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4181}
4182
2da8ca82 4183static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4184{
aa9694bb 4185 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4186
791badbd 4187 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4188 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4189 seq_printf(sf, "oom_kill %lu\n",
4190 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4191 return 0;
4192}
4193
182446d0 4194static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4195 struct cftype *cft, u64 val)
4196{
182446d0 4197 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4198
4199 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4200 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4201 return -EINVAL;
4202
c0ff4b85 4203 memcg->oom_kill_disable = val;
4d845ebf 4204 if (!val)
c0ff4b85 4205 memcg_oom_recover(memcg);
3dae7fec 4206
3c11ecf4
KH
4207 return 0;
4208}
4209
52ebea74
TH
4210#ifdef CONFIG_CGROUP_WRITEBACK
4211
3a8e9ac8
TH
4212#include <trace/events/writeback.h>
4213
841710aa
TH
4214static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4215{
4216 return wb_domain_init(&memcg->cgwb_domain, gfp);
4217}
4218
4219static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4220{
4221 wb_domain_exit(&memcg->cgwb_domain);
4222}
4223
2529bb3a
TH
4224static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4225{
4226 wb_domain_size_changed(&memcg->cgwb_domain);
4227}
4228
841710aa
TH
4229struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4230{
4231 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4232
4233 if (!memcg->css.parent)
4234 return NULL;
4235
4236 return &memcg->cgwb_domain;
4237}
4238
0b3d6e6f
GT
4239/*
4240 * idx can be of type enum memcg_stat_item or node_stat_item.
4241 * Keep in sync with memcg_exact_page().
4242 */
4243static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4244{
871789d4 4245 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4246 int cpu;
4247
4248 for_each_online_cpu(cpu)
871789d4 4249 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4250 if (x < 0)
4251 x = 0;
4252 return x;
4253}
4254
c2aa723a
TH
4255/**
4256 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4257 * @wb: bdi_writeback in question
c5edf9cd
TH
4258 * @pfilepages: out parameter for number of file pages
4259 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4260 * @pdirty: out parameter for number of dirty pages
4261 * @pwriteback: out parameter for number of pages under writeback
4262 *
c5edf9cd
TH
4263 * Determine the numbers of file, headroom, dirty, and writeback pages in
4264 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4265 * is a bit more involved.
c2aa723a 4266 *
c5edf9cd
TH
4267 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4268 * headroom is calculated as the lowest headroom of itself and the
4269 * ancestors. Note that this doesn't consider the actual amount of
4270 * available memory in the system. The caller should further cap
4271 * *@pheadroom accordingly.
c2aa723a 4272 */
c5edf9cd
TH
4273void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4274 unsigned long *pheadroom, unsigned long *pdirty,
4275 unsigned long *pwriteback)
c2aa723a
TH
4276{
4277 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4278 struct mem_cgroup *parent;
c2aa723a 4279
0b3d6e6f 4280 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
4281
4282 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 4283 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4284 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4285 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4286 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4287
c2aa723a 4288 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 4289 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
4290 unsigned long used = page_counter_read(&memcg->memory);
4291
c5edf9cd 4292 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4293 memcg = parent;
4294 }
c2aa723a
TH
4295}
4296
97b27821
TH
4297/*
4298 * Foreign dirty flushing
4299 *
4300 * There's an inherent mismatch between memcg and writeback. The former
4301 * trackes ownership per-page while the latter per-inode. This was a
4302 * deliberate design decision because honoring per-page ownership in the
4303 * writeback path is complicated, may lead to higher CPU and IO overheads
4304 * and deemed unnecessary given that write-sharing an inode across
4305 * different cgroups isn't a common use-case.
4306 *
4307 * Combined with inode majority-writer ownership switching, this works well
4308 * enough in most cases but there are some pathological cases. For
4309 * example, let's say there are two cgroups A and B which keep writing to
4310 * different but confined parts of the same inode. B owns the inode and
4311 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4312 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4313 * triggering background writeback. A will be slowed down without a way to
4314 * make writeback of the dirty pages happen.
4315 *
4316 * Conditions like the above can lead to a cgroup getting repatedly and
4317 * severely throttled after making some progress after each
4318 * dirty_expire_interval while the underyling IO device is almost
4319 * completely idle.
4320 *
4321 * Solving this problem completely requires matching the ownership tracking
4322 * granularities between memcg and writeback in either direction. However,
4323 * the more egregious behaviors can be avoided by simply remembering the
4324 * most recent foreign dirtying events and initiating remote flushes on
4325 * them when local writeback isn't enough to keep the memory clean enough.
4326 *
4327 * The following two functions implement such mechanism. When a foreign
4328 * page - a page whose memcg and writeback ownerships don't match - is
4329 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4330 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4331 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4332 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4333 * foreign bdi_writebacks which haven't expired. Both the numbers of
4334 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4335 * limited to MEMCG_CGWB_FRN_CNT.
4336 *
4337 * The mechanism only remembers IDs and doesn't hold any object references.
4338 * As being wrong occasionally doesn't matter, updates and accesses to the
4339 * records are lockless and racy.
4340 */
4341void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4342 struct bdi_writeback *wb)
4343{
4344 struct mem_cgroup *memcg = page->mem_cgroup;
4345 struct memcg_cgwb_frn *frn;
4346 u64 now = get_jiffies_64();
4347 u64 oldest_at = now;
4348 int oldest = -1;
4349 int i;
4350
3a8e9ac8
TH
4351 trace_track_foreign_dirty(page, wb);
4352
97b27821
TH
4353 /*
4354 * Pick the slot to use. If there is already a slot for @wb, keep
4355 * using it. If not replace the oldest one which isn't being
4356 * written out.
4357 */
4358 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4359 frn = &memcg->cgwb_frn[i];
4360 if (frn->bdi_id == wb->bdi->id &&
4361 frn->memcg_id == wb->memcg_css->id)
4362 break;
4363 if (time_before64(frn->at, oldest_at) &&
4364 atomic_read(&frn->done.cnt) == 1) {
4365 oldest = i;
4366 oldest_at = frn->at;
4367 }
4368 }
4369
4370 if (i < MEMCG_CGWB_FRN_CNT) {
4371 /*
4372 * Re-using an existing one. Update timestamp lazily to
4373 * avoid making the cacheline hot. We want them to be
4374 * reasonably up-to-date and significantly shorter than
4375 * dirty_expire_interval as that's what expires the record.
4376 * Use the shorter of 1s and dirty_expire_interval / 8.
4377 */
4378 unsigned long update_intv =
4379 min_t(unsigned long, HZ,
4380 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4381
4382 if (time_before64(frn->at, now - update_intv))
4383 frn->at = now;
4384 } else if (oldest >= 0) {
4385 /* replace the oldest free one */
4386 frn = &memcg->cgwb_frn[oldest];
4387 frn->bdi_id = wb->bdi->id;
4388 frn->memcg_id = wb->memcg_css->id;
4389 frn->at = now;
4390 }
4391}
4392
4393/* issue foreign writeback flushes for recorded foreign dirtying events */
4394void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4395{
4396 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4397 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4398 u64 now = jiffies_64;
4399 int i;
4400
4401 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4402 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4403
4404 /*
4405 * If the record is older than dirty_expire_interval,
4406 * writeback on it has already started. No need to kick it
4407 * off again. Also, don't start a new one if there's
4408 * already one in flight.
4409 */
4410 if (time_after64(frn->at, now - intv) &&
4411 atomic_read(&frn->done.cnt) == 1) {
4412 frn->at = 0;
3a8e9ac8 4413 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4414 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4415 WB_REASON_FOREIGN_FLUSH,
4416 &frn->done);
4417 }
4418 }
4419}
4420
841710aa
TH
4421#else /* CONFIG_CGROUP_WRITEBACK */
4422
4423static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4424{
4425 return 0;
4426}
4427
4428static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4429{
4430}
4431
2529bb3a
TH
4432static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4433{
4434}
4435
52ebea74
TH
4436#endif /* CONFIG_CGROUP_WRITEBACK */
4437
3bc942f3
TH
4438/*
4439 * DO NOT USE IN NEW FILES.
4440 *
4441 * "cgroup.event_control" implementation.
4442 *
4443 * This is way over-engineered. It tries to support fully configurable
4444 * events for each user. Such level of flexibility is completely
4445 * unnecessary especially in the light of the planned unified hierarchy.
4446 *
4447 * Please deprecate this and replace with something simpler if at all
4448 * possible.
4449 */
4450
79bd9814
TH
4451/*
4452 * Unregister event and free resources.
4453 *
4454 * Gets called from workqueue.
4455 */
3bc942f3 4456static void memcg_event_remove(struct work_struct *work)
79bd9814 4457{
3bc942f3
TH
4458 struct mem_cgroup_event *event =
4459 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4460 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4461
4462 remove_wait_queue(event->wqh, &event->wait);
4463
59b6f873 4464 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4465
4466 /* Notify userspace the event is going away. */
4467 eventfd_signal(event->eventfd, 1);
4468
4469 eventfd_ctx_put(event->eventfd);
4470 kfree(event);
59b6f873 4471 css_put(&memcg->css);
79bd9814
TH
4472}
4473
4474/*
a9a08845 4475 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4476 *
4477 * Called with wqh->lock held and interrupts disabled.
4478 */
ac6424b9 4479static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4480 int sync, void *key)
79bd9814 4481{
3bc942f3
TH
4482 struct mem_cgroup_event *event =
4483 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4484 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4485 __poll_t flags = key_to_poll(key);
79bd9814 4486
a9a08845 4487 if (flags & EPOLLHUP) {
79bd9814
TH
4488 /*
4489 * If the event has been detached at cgroup removal, we
4490 * can simply return knowing the other side will cleanup
4491 * for us.
4492 *
4493 * We can't race against event freeing since the other
4494 * side will require wqh->lock via remove_wait_queue(),
4495 * which we hold.
4496 */
fba94807 4497 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4498 if (!list_empty(&event->list)) {
4499 list_del_init(&event->list);
4500 /*
4501 * We are in atomic context, but cgroup_event_remove()
4502 * may sleep, so we have to call it in workqueue.
4503 */
4504 schedule_work(&event->remove);
4505 }
fba94807 4506 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4507 }
4508
4509 return 0;
4510}
4511
3bc942f3 4512static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4513 wait_queue_head_t *wqh, poll_table *pt)
4514{
3bc942f3
TH
4515 struct mem_cgroup_event *event =
4516 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4517
4518 event->wqh = wqh;
4519 add_wait_queue(wqh, &event->wait);
4520}
4521
4522/*
3bc942f3
TH
4523 * DO NOT USE IN NEW FILES.
4524 *
79bd9814
TH
4525 * Parse input and register new cgroup event handler.
4526 *
4527 * Input must be in format '<event_fd> <control_fd> <args>'.
4528 * Interpretation of args is defined by control file implementation.
4529 */
451af504
TH
4530static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4531 char *buf, size_t nbytes, loff_t off)
79bd9814 4532{
451af504 4533 struct cgroup_subsys_state *css = of_css(of);
fba94807 4534 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4535 struct mem_cgroup_event *event;
79bd9814
TH
4536 struct cgroup_subsys_state *cfile_css;
4537 unsigned int efd, cfd;
4538 struct fd efile;
4539 struct fd cfile;
fba94807 4540 const char *name;
79bd9814
TH
4541 char *endp;
4542 int ret;
4543
451af504
TH
4544 buf = strstrip(buf);
4545
4546 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4547 if (*endp != ' ')
4548 return -EINVAL;
451af504 4549 buf = endp + 1;
79bd9814 4550
451af504 4551 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4552 if ((*endp != ' ') && (*endp != '\0'))
4553 return -EINVAL;
451af504 4554 buf = endp + 1;
79bd9814
TH
4555
4556 event = kzalloc(sizeof(*event), GFP_KERNEL);
4557 if (!event)
4558 return -ENOMEM;
4559
59b6f873 4560 event->memcg = memcg;
79bd9814 4561 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4562 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4563 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4564 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4565
4566 efile = fdget(efd);
4567 if (!efile.file) {
4568 ret = -EBADF;
4569 goto out_kfree;
4570 }
4571
4572 event->eventfd = eventfd_ctx_fileget(efile.file);
4573 if (IS_ERR(event->eventfd)) {
4574 ret = PTR_ERR(event->eventfd);
4575 goto out_put_efile;
4576 }
4577
4578 cfile = fdget(cfd);
4579 if (!cfile.file) {
4580 ret = -EBADF;
4581 goto out_put_eventfd;
4582 }
4583
4584 /* the process need read permission on control file */
4585 /* AV: shouldn't we check that it's been opened for read instead? */
4586 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4587 if (ret < 0)
4588 goto out_put_cfile;
4589
fba94807
TH
4590 /*
4591 * Determine the event callbacks and set them in @event. This used
4592 * to be done via struct cftype but cgroup core no longer knows
4593 * about these events. The following is crude but the whole thing
4594 * is for compatibility anyway.
3bc942f3
TH
4595 *
4596 * DO NOT ADD NEW FILES.
fba94807 4597 */
b583043e 4598 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4599
4600 if (!strcmp(name, "memory.usage_in_bytes")) {
4601 event->register_event = mem_cgroup_usage_register_event;
4602 event->unregister_event = mem_cgroup_usage_unregister_event;
4603 } else if (!strcmp(name, "memory.oom_control")) {
4604 event->register_event = mem_cgroup_oom_register_event;
4605 event->unregister_event = mem_cgroup_oom_unregister_event;
4606 } else if (!strcmp(name, "memory.pressure_level")) {
4607 event->register_event = vmpressure_register_event;
4608 event->unregister_event = vmpressure_unregister_event;
4609 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4610 event->register_event = memsw_cgroup_usage_register_event;
4611 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4612 } else {
4613 ret = -EINVAL;
4614 goto out_put_cfile;
4615 }
4616
79bd9814 4617 /*
b5557c4c
TH
4618 * Verify @cfile should belong to @css. Also, remaining events are
4619 * automatically removed on cgroup destruction but the removal is
4620 * asynchronous, so take an extra ref on @css.
79bd9814 4621 */
b583043e 4622 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4623 &memory_cgrp_subsys);
79bd9814 4624 ret = -EINVAL;
5a17f543 4625 if (IS_ERR(cfile_css))
79bd9814 4626 goto out_put_cfile;
5a17f543
TH
4627 if (cfile_css != css) {
4628 css_put(cfile_css);
79bd9814 4629 goto out_put_cfile;
5a17f543 4630 }
79bd9814 4631
451af504 4632 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4633 if (ret)
4634 goto out_put_css;
4635
9965ed17 4636 vfs_poll(efile.file, &event->pt);
79bd9814 4637
fba94807
TH
4638 spin_lock(&memcg->event_list_lock);
4639 list_add(&event->list, &memcg->event_list);
4640 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4641
4642 fdput(cfile);
4643 fdput(efile);
4644
451af504 4645 return nbytes;
79bd9814
TH
4646
4647out_put_css:
b5557c4c 4648 css_put(css);
79bd9814
TH
4649out_put_cfile:
4650 fdput(cfile);
4651out_put_eventfd:
4652 eventfd_ctx_put(event->eventfd);
4653out_put_efile:
4654 fdput(efile);
4655out_kfree:
4656 kfree(event);
4657
4658 return ret;
4659}
4660
241994ed 4661static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4662 {
0eea1030 4663 .name = "usage_in_bytes",
8c7c6e34 4664 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4665 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4666 },
c84872e1
PE
4667 {
4668 .name = "max_usage_in_bytes",
8c7c6e34 4669 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4670 .write = mem_cgroup_reset,
791badbd 4671 .read_u64 = mem_cgroup_read_u64,
c84872e1 4672 },
8cdea7c0 4673 {
0eea1030 4674 .name = "limit_in_bytes",
8c7c6e34 4675 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4676 .write = mem_cgroup_write,
791badbd 4677 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4678 },
296c81d8
BS
4679 {
4680 .name = "soft_limit_in_bytes",
4681 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4682 .write = mem_cgroup_write,
791badbd 4683 .read_u64 = mem_cgroup_read_u64,
296c81d8 4684 },
8cdea7c0
BS
4685 {
4686 .name = "failcnt",
8c7c6e34 4687 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4688 .write = mem_cgroup_reset,
791badbd 4689 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4690 },
d2ceb9b7
KH
4691 {
4692 .name = "stat",
2da8ca82 4693 .seq_show = memcg_stat_show,
d2ceb9b7 4694 },
c1e862c1
KH
4695 {
4696 .name = "force_empty",
6770c64e 4697 .write = mem_cgroup_force_empty_write,
c1e862c1 4698 },
18f59ea7
BS
4699 {
4700 .name = "use_hierarchy",
4701 .write_u64 = mem_cgroup_hierarchy_write,
4702 .read_u64 = mem_cgroup_hierarchy_read,
4703 },
79bd9814 4704 {
3bc942f3 4705 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4706 .write = memcg_write_event_control,
7dbdb199 4707 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4708 },
a7885eb8
KM
4709 {
4710 .name = "swappiness",
4711 .read_u64 = mem_cgroup_swappiness_read,
4712 .write_u64 = mem_cgroup_swappiness_write,
4713 },
7dc74be0
DN
4714 {
4715 .name = "move_charge_at_immigrate",
4716 .read_u64 = mem_cgroup_move_charge_read,
4717 .write_u64 = mem_cgroup_move_charge_write,
4718 },
9490ff27
KH
4719 {
4720 .name = "oom_control",
2da8ca82 4721 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4722 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4723 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4724 },
70ddf637
AV
4725 {
4726 .name = "pressure_level",
70ddf637 4727 },
406eb0c9
YH
4728#ifdef CONFIG_NUMA
4729 {
4730 .name = "numa_stat",
2da8ca82 4731 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4732 },
4733#endif
510fc4e1
GC
4734 {
4735 .name = "kmem.limit_in_bytes",
4736 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4737 .write = mem_cgroup_write,
791badbd 4738 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4739 },
4740 {
4741 .name = "kmem.usage_in_bytes",
4742 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4743 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4744 },
4745 {
4746 .name = "kmem.failcnt",
4747 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4748 .write = mem_cgroup_reset,
791badbd 4749 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4750 },
4751 {
4752 .name = "kmem.max_usage_in_bytes",
4753 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4754 .write = mem_cgroup_reset,
791badbd 4755 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4756 },
5b365771 4757#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4758 {
4759 .name = "kmem.slabinfo",
bc2791f8
TH
4760 .seq_start = memcg_slab_start,
4761 .seq_next = memcg_slab_next,
4762 .seq_stop = memcg_slab_stop,
b047501c 4763 .seq_show = memcg_slab_show,
749c5415
GC
4764 },
4765#endif
d55f90bf
VD
4766 {
4767 .name = "kmem.tcp.limit_in_bytes",
4768 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4769 .write = mem_cgroup_write,
4770 .read_u64 = mem_cgroup_read_u64,
4771 },
4772 {
4773 .name = "kmem.tcp.usage_in_bytes",
4774 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4775 .read_u64 = mem_cgroup_read_u64,
4776 },
4777 {
4778 .name = "kmem.tcp.failcnt",
4779 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4780 .write = mem_cgroup_reset,
4781 .read_u64 = mem_cgroup_read_u64,
4782 },
4783 {
4784 .name = "kmem.tcp.max_usage_in_bytes",
4785 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4786 .write = mem_cgroup_reset,
4787 .read_u64 = mem_cgroup_read_u64,
4788 },
6bc10349 4789 { }, /* terminate */
af36f906 4790};
8c7c6e34 4791
73f576c0
JW
4792/*
4793 * Private memory cgroup IDR
4794 *
4795 * Swap-out records and page cache shadow entries need to store memcg
4796 * references in constrained space, so we maintain an ID space that is
4797 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4798 * memory-controlled cgroups to 64k.
4799 *
4800 * However, there usually are many references to the oflline CSS after
4801 * the cgroup has been destroyed, such as page cache or reclaimable
4802 * slab objects, that don't need to hang on to the ID. We want to keep
4803 * those dead CSS from occupying IDs, or we might quickly exhaust the
4804 * relatively small ID space and prevent the creation of new cgroups
4805 * even when there are much fewer than 64k cgroups - possibly none.
4806 *
4807 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4808 * be freed and recycled when it's no longer needed, which is usually
4809 * when the CSS is offlined.
4810 *
4811 * The only exception to that are records of swapped out tmpfs/shmem
4812 * pages that need to be attributed to live ancestors on swapin. But
4813 * those references are manageable from userspace.
4814 */
4815
4816static DEFINE_IDR(mem_cgroup_idr);
4817
7e97de0b
KT
4818static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4819{
4820 if (memcg->id.id > 0) {
4821 idr_remove(&mem_cgroup_idr, memcg->id.id);
4822 memcg->id.id = 0;
4823 }
4824}
4825
615d66c3 4826static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4827{
1c2d479a 4828 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4829}
4830
615d66c3 4831static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4832{
1c2d479a 4833 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4834 mem_cgroup_id_remove(memcg);
73f576c0
JW
4835
4836 /* Memcg ID pins CSS */
4837 css_put(&memcg->css);
4838 }
4839}
4840
615d66c3
VD
4841static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4842{
4843 mem_cgroup_id_put_many(memcg, 1);
4844}
4845
73f576c0
JW
4846/**
4847 * mem_cgroup_from_id - look up a memcg from a memcg id
4848 * @id: the memcg id to look up
4849 *
4850 * Caller must hold rcu_read_lock().
4851 */
4852struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4853{
4854 WARN_ON_ONCE(!rcu_read_lock_held());
4855 return idr_find(&mem_cgroup_idr, id);
4856}
4857
ef8f2327 4858static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4859{
4860 struct mem_cgroup_per_node *pn;
ef8f2327 4861 int tmp = node;
1ecaab2b
KH
4862 /*
4863 * This routine is called against possible nodes.
4864 * But it's BUG to call kmalloc() against offline node.
4865 *
4866 * TODO: this routine can waste much memory for nodes which will
4867 * never be onlined. It's better to use memory hotplug callback
4868 * function.
4869 */
41e3355d
KH
4870 if (!node_state(node, N_NORMAL_MEMORY))
4871 tmp = -1;
17295c88 4872 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4873 if (!pn)
4874 return 1;
1ecaab2b 4875
815744d7
JW
4876 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4877 if (!pn->lruvec_stat_local) {
4878 kfree(pn);
4879 return 1;
4880 }
4881
a983b5eb
JW
4882 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4883 if (!pn->lruvec_stat_cpu) {
815744d7 4884 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4885 kfree(pn);
4886 return 1;
4887 }
4888
ef8f2327
MG
4889 lruvec_init(&pn->lruvec);
4890 pn->usage_in_excess = 0;
4891 pn->on_tree = false;
4892 pn->memcg = memcg;
4893
54f72fe0 4894 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4895 return 0;
4896}
4897
ef8f2327 4898static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4899{
00f3ca2c
JW
4900 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4901
4eaf431f
MH
4902 if (!pn)
4903 return;
4904
a983b5eb 4905 free_percpu(pn->lruvec_stat_cpu);
815744d7 4906 free_percpu(pn->lruvec_stat_local);
00f3ca2c 4907 kfree(pn);
1ecaab2b
KH
4908}
4909
40e952f9 4910static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4911{
c8b2a36f 4912 int node;
59927fb9 4913
c8b2a36f 4914 for_each_node(node)
ef8f2327 4915 free_mem_cgroup_per_node_info(memcg, node);
871789d4 4916 free_percpu(memcg->vmstats_percpu);
815744d7 4917 free_percpu(memcg->vmstats_local);
8ff69e2c 4918 kfree(memcg);
59927fb9 4919}
3afe36b1 4920
40e952f9
TE
4921static void mem_cgroup_free(struct mem_cgroup *memcg)
4922{
4923 memcg_wb_domain_exit(memcg);
7961eee3
SB
4924 /*
4925 * Flush percpu vmstats and vmevents to guarantee the value correctness
4926 * on parent's and all ancestor levels.
4927 */
4a87e2a2 4928 memcg_flush_percpu_vmstats(memcg);
7961eee3 4929 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
4930 __mem_cgroup_free(memcg);
4931}
4932
0b8f73e1 4933static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4934{
d142e3e6 4935 struct mem_cgroup *memcg;
b9726c26 4936 unsigned int size;
6d12e2d8 4937 int node;
97b27821 4938 int __maybe_unused i;
8cdea7c0 4939
0b8f73e1
JW
4940 size = sizeof(struct mem_cgroup);
4941 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4942
4943 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4944 if (!memcg)
0b8f73e1
JW
4945 return NULL;
4946
73f576c0
JW
4947 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4948 1, MEM_CGROUP_ID_MAX,
4949 GFP_KERNEL);
4950 if (memcg->id.id < 0)
4951 goto fail;
4952
815744d7
JW
4953 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4954 if (!memcg->vmstats_local)
4955 goto fail;
4956
871789d4
CD
4957 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4958 if (!memcg->vmstats_percpu)
0b8f73e1 4959 goto fail;
78fb7466 4960
3ed28fa1 4961 for_each_node(node)
ef8f2327 4962 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4963 goto fail;
f64c3f54 4964
0b8f73e1
JW
4965 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4966 goto fail;
28dbc4b6 4967
f7e1cb6e 4968 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 4969 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4970 mutex_init(&memcg->thresholds_lock);
4971 spin_lock_init(&memcg->move_lock);
70ddf637 4972 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4973 INIT_LIST_HEAD(&memcg->event_list);
4974 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4975 memcg->socket_pressure = jiffies;
84c07d11 4976#ifdef CONFIG_MEMCG_KMEM
900a38f0 4977 memcg->kmemcg_id = -1;
900a38f0 4978#endif
52ebea74
TH
4979#ifdef CONFIG_CGROUP_WRITEBACK
4980 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
4981 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
4982 memcg->cgwb_frn[i].done =
4983 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
4984#endif
4985#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4986 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
4987 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
4988 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 4989#endif
73f576c0 4990 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4991 return memcg;
4992fail:
7e97de0b 4993 mem_cgroup_id_remove(memcg);
40e952f9 4994 __mem_cgroup_free(memcg);
0b8f73e1 4995 return NULL;
d142e3e6
GC
4996}
4997
0b8f73e1
JW
4998static struct cgroup_subsys_state * __ref
4999mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5000{
0b8f73e1
JW
5001 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5002 struct mem_cgroup *memcg;
5003 long error = -ENOMEM;
d142e3e6 5004
0b8f73e1
JW
5005 memcg = mem_cgroup_alloc();
5006 if (!memcg)
5007 return ERR_PTR(error);
d142e3e6 5008
0b8f73e1
JW
5009 memcg->high = PAGE_COUNTER_MAX;
5010 memcg->soft_limit = PAGE_COUNTER_MAX;
5011 if (parent) {
5012 memcg->swappiness = mem_cgroup_swappiness(parent);
5013 memcg->oom_kill_disable = parent->oom_kill_disable;
5014 }
5015 if (parent && parent->use_hierarchy) {
5016 memcg->use_hierarchy = true;
3e32cb2e 5017 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5018 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
5019 page_counter_init(&memcg->memsw, &parent->memsw);
5020 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5021 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5022 } else {
3e32cb2e 5023 page_counter_init(&memcg->memory, NULL);
37e84351 5024 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
5025 page_counter_init(&memcg->memsw, NULL);
5026 page_counter_init(&memcg->kmem, NULL);
0db15298 5027 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
5028 /*
5029 * Deeper hierachy with use_hierarchy == false doesn't make
5030 * much sense so let cgroup subsystem know about this
5031 * unfortunate state in our controller.
5032 */
d142e3e6 5033 if (parent != root_mem_cgroup)
073219e9 5034 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5035 }
d6441637 5036
0b8f73e1
JW
5037 /* The following stuff does not apply to the root */
5038 if (!parent) {
fb2f2b0a
RG
5039#ifdef CONFIG_MEMCG_KMEM
5040 INIT_LIST_HEAD(&memcg->kmem_caches);
5041#endif
0b8f73e1
JW
5042 root_mem_cgroup = memcg;
5043 return &memcg->css;
5044 }
5045
b313aeee 5046 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5047 if (error)
5048 goto fail;
127424c8 5049
f7e1cb6e 5050 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5051 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5052
0b8f73e1
JW
5053 return &memcg->css;
5054fail:
7e97de0b 5055 mem_cgroup_id_remove(memcg);
0b8f73e1 5056 mem_cgroup_free(memcg);
ea3a9645 5057 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
5058}
5059
73f576c0 5060static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5061{
58fa2a55
VD
5062 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5063
0a4465d3
KT
5064 /*
5065 * A memcg must be visible for memcg_expand_shrinker_maps()
5066 * by the time the maps are allocated. So, we allocate maps
5067 * here, when for_each_mem_cgroup() can't skip it.
5068 */
5069 if (memcg_alloc_shrinker_maps(memcg)) {
5070 mem_cgroup_id_remove(memcg);
5071 return -ENOMEM;
5072 }
5073
73f576c0 5074 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5075 refcount_set(&memcg->id.ref, 1);
73f576c0 5076 css_get(css);
2f7dd7a4 5077 return 0;
8cdea7c0
BS
5078}
5079
eb95419b 5080static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5081{
eb95419b 5082 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5083 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5084
5085 /*
5086 * Unregister events and notify userspace.
5087 * Notify userspace about cgroup removing only after rmdir of cgroup
5088 * directory to avoid race between userspace and kernelspace.
5089 */
fba94807
TH
5090 spin_lock(&memcg->event_list_lock);
5091 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5092 list_del_init(&event->list);
5093 schedule_work(&event->remove);
5094 }
fba94807 5095 spin_unlock(&memcg->event_list_lock);
ec64f515 5096
bf8d5d52 5097 page_counter_set_min(&memcg->memory, 0);
23067153 5098 page_counter_set_low(&memcg->memory, 0);
63677c74 5099
567e9ab2 5100 memcg_offline_kmem(memcg);
52ebea74 5101 wb_memcg_offline(memcg);
73f576c0 5102
591edfb1
RG
5103 drain_all_stock(memcg);
5104
73f576c0 5105 mem_cgroup_id_put(memcg);
df878fb0
KH
5106}
5107
6df38689
VD
5108static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5109{
5110 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5111
5112 invalidate_reclaim_iterators(memcg);
5113}
5114
eb95419b 5115static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5116{
eb95419b 5117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5118 int __maybe_unused i;
c268e994 5119
97b27821
TH
5120#ifdef CONFIG_CGROUP_WRITEBACK
5121 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5122 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5123#endif
f7e1cb6e 5124 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5125 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5126
0db15298 5127 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5128 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5129
0b8f73e1
JW
5130 vmpressure_cleanup(&memcg->vmpressure);
5131 cancel_work_sync(&memcg->high_work);
5132 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5133 memcg_free_shrinker_maps(memcg);
d886f4e4 5134 memcg_free_kmem(memcg);
0b8f73e1 5135 mem_cgroup_free(memcg);
8cdea7c0
BS
5136}
5137
1ced953b
TH
5138/**
5139 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5140 * @css: the target css
5141 *
5142 * Reset the states of the mem_cgroup associated with @css. This is
5143 * invoked when the userland requests disabling on the default hierarchy
5144 * but the memcg is pinned through dependency. The memcg should stop
5145 * applying policies and should revert to the vanilla state as it may be
5146 * made visible again.
5147 *
5148 * The current implementation only resets the essential configurations.
5149 * This needs to be expanded to cover all the visible parts.
5150 */
5151static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5152{
5153 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5154
bbec2e15
RG
5155 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5156 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5157 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5158 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5159 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5160 page_counter_set_min(&memcg->memory, 0);
23067153 5161 page_counter_set_low(&memcg->memory, 0);
241994ed 5162 memcg->high = PAGE_COUNTER_MAX;
24d404dc 5163 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 5164 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5165}
5166
02491447 5167#ifdef CONFIG_MMU
7dc74be0 5168/* Handlers for move charge at task migration. */
854ffa8d 5169static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5170{
05b84301 5171 int ret;
9476db97 5172
d0164adc
MG
5173 /* Try a single bulk charge without reclaim first, kswapd may wake */
5174 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5175 if (!ret) {
854ffa8d 5176 mc.precharge += count;
854ffa8d
DN
5177 return ret;
5178 }
9476db97 5179
3674534b 5180 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5181 while (count--) {
3674534b 5182 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5183 if (ret)
38c5d72f 5184 return ret;
854ffa8d 5185 mc.precharge++;
9476db97 5186 cond_resched();
854ffa8d 5187 }
9476db97 5188 return 0;
4ffef5fe
DN
5189}
5190
4ffef5fe
DN
5191union mc_target {
5192 struct page *page;
02491447 5193 swp_entry_t ent;
4ffef5fe
DN
5194};
5195
4ffef5fe 5196enum mc_target_type {
8d32ff84 5197 MC_TARGET_NONE = 0,
4ffef5fe 5198 MC_TARGET_PAGE,
02491447 5199 MC_TARGET_SWAP,
c733a828 5200 MC_TARGET_DEVICE,
4ffef5fe
DN
5201};
5202
90254a65
DN
5203static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5204 unsigned long addr, pte_t ptent)
4ffef5fe 5205{
25b2995a 5206 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5207
90254a65
DN
5208 if (!page || !page_mapped(page))
5209 return NULL;
5210 if (PageAnon(page)) {
1dfab5ab 5211 if (!(mc.flags & MOVE_ANON))
90254a65 5212 return NULL;
1dfab5ab
JW
5213 } else {
5214 if (!(mc.flags & MOVE_FILE))
5215 return NULL;
5216 }
90254a65
DN
5217 if (!get_page_unless_zero(page))
5218 return NULL;
5219
5220 return page;
5221}
5222
c733a828 5223#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5224static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5225 pte_t ptent, swp_entry_t *entry)
90254a65 5226{
90254a65
DN
5227 struct page *page = NULL;
5228 swp_entry_t ent = pte_to_swp_entry(ptent);
5229
1dfab5ab 5230 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5231 return NULL;
c733a828
JG
5232
5233 /*
5234 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5235 * a device and because they are not accessible by CPU they are store
5236 * as special swap entry in the CPU page table.
5237 */
5238 if (is_device_private_entry(ent)) {
5239 page = device_private_entry_to_page(ent);
5240 /*
5241 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5242 * a refcount of 1 when free (unlike normal page)
5243 */
5244 if (!page_ref_add_unless(page, 1, 1))
5245 return NULL;
5246 return page;
5247 }
5248
4b91355e
KH
5249 /*
5250 * Because lookup_swap_cache() updates some statistics counter,
5251 * we call find_get_page() with swapper_space directly.
5252 */
f6ab1f7f 5253 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 5254 if (do_memsw_account())
90254a65
DN
5255 entry->val = ent.val;
5256
5257 return page;
5258}
4b91355e
KH
5259#else
5260static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5261 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5262{
5263 return NULL;
5264}
5265#endif
90254a65 5266
87946a72
DN
5267static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5268 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5269{
5270 struct page *page = NULL;
87946a72
DN
5271 struct address_space *mapping;
5272 pgoff_t pgoff;
5273
5274 if (!vma->vm_file) /* anonymous vma */
5275 return NULL;
1dfab5ab 5276 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5277 return NULL;
5278
87946a72 5279 mapping = vma->vm_file->f_mapping;
0661a336 5280 pgoff = linear_page_index(vma, addr);
87946a72
DN
5281
5282 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5283#ifdef CONFIG_SWAP
5284 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5285 if (shmem_mapping(mapping)) {
5286 page = find_get_entry(mapping, pgoff);
3159f943 5287 if (xa_is_value(page)) {
139b6a6f 5288 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 5289 if (do_memsw_account())
139b6a6f 5290 *entry = swp;
f6ab1f7f
HY
5291 page = find_get_page(swap_address_space(swp),
5292 swp_offset(swp));
139b6a6f
JW
5293 }
5294 } else
5295 page = find_get_page(mapping, pgoff);
5296#else
5297 page = find_get_page(mapping, pgoff);
aa3b1895 5298#endif
87946a72
DN
5299 return page;
5300}
5301
b1b0deab
CG
5302/**
5303 * mem_cgroup_move_account - move account of the page
5304 * @page: the page
25843c2b 5305 * @compound: charge the page as compound or small page
b1b0deab
CG
5306 * @from: mem_cgroup which the page is moved from.
5307 * @to: mem_cgroup which the page is moved to. @from != @to.
5308 *
3ac808fd 5309 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5310 *
5311 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5312 * from old cgroup.
5313 */
5314static int mem_cgroup_move_account(struct page *page,
f627c2f5 5315 bool compound,
b1b0deab
CG
5316 struct mem_cgroup *from,
5317 struct mem_cgroup *to)
5318{
ae8af438
KK
5319 struct lruvec *from_vec, *to_vec;
5320 struct pglist_data *pgdat;
b1b0deab 5321 unsigned long flags;
f627c2f5 5322 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 5323 int ret;
c4843a75 5324 bool anon;
b1b0deab
CG
5325
5326 VM_BUG_ON(from == to);
5327 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5328 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5329
5330 /*
6a93ca8f 5331 * Prevent mem_cgroup_migrate() from looking at
45637bab 5332 * page->mem_cgroup of its source page while we change it.
b1b0deab 5333 */
f627c2f5 5334 ret = -EBUSY;
b1b0deab
CG
5335 if (!trylock_page(page))
5336 goto out;
5337
5338 ret = -EINVAL;
5339 if (page->mem_cgroup != from)
5340 goto out_unlock;
5341
c4843a75
GT
5342 anon = PageAnon(page);
5343
ae8af438 5344 pgdat = page_pgdat(page);
867e5e1d
JW
5345 from_vec = mem_cgroup_lruvec(from, pgdat);
5346 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5347
b1b0deab
CG
5348 spin_lock_irqsave(&from->move_lock, flags);
5349
c4843a75 5350 if (!anon && page_mapped(page)) {
ae8af438
KK
5351 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5352 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
5353 }
5354
c4843a75
GT
5355 /*
5356 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 5357 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
5358 * So mapping should be stable for dirty pages.
5359 */
5360 if (!anon && PageDirty(page)) {
5361 struct address_space *mapping = page_mapping(page);
5362
5363 if (mapping_cap_account_dirty(mapping)) {
ae8af438
KK
5364 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5365 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
5366 }
5367 }
5368
b1b0deab 5369 if (PageWriteback(page)) {
ae8af438
KK
5370 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5371 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5372 }
5373
5374 /*
5375 * It is safe to change page->mem_cgroup here because the page
5376 * is referenced, charged, and isolated - we can't race with
5377 * uncharging, charging, migration, or LRU putback.
5378 */
5379
5380 /* caller should have done css_get */
5381 page->mem_cgroup = to;
87eaceb3 5382
b1b0deab
CG
5383 spin_unlock_irqrestore(&from->move_lock, flags);
5384
5385 ret = 0;
5386
5387 local_irq_disable();
f627c2f5 5388 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 5389 memcg_check_events(to, page);
f627c2f5 5390 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
5391 memcg_check_events(from, page);
5392 local_irq_enable();
5393out_unlock:
5394 unlock_page(page);
5395out:
5396 return ret;
5397}
5398
7cf7806c
LR
5399/**
5400 * get_mctgt_type - get target type of moving charge
5401 * @vma: the vma the pte to be checked belongs
5402 * @addr: the address corresponding to the pte to be checked
5403 * @ptent: the pte to be checked
5404 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5405 *
5406 * Returns
5407 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5408 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5409 * move charge. if @target is not NULL, the page is stored in target->page
5410 * with extra refcnt got(Callers should handle it).
5411 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5412 * target for charge migration. if @target is not NULL, the entry is stored
5413 * in target->ent.
25b2995a
CH
5414 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5415 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5416 * For now we such page is charge like a regular page would be as for all
5417 * intent and purposes it is just special memory taking the place of a
5418 * regular page.
c733a828
JG
5419 *
5420 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5421 *
5422 * Called with pte lock held.
5423 */
5424
8d32ff84 5425static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5426 unsigned long addr, pte_t ptent, union mc_target *target)
5427{
5428 struct page *page = NULL;
8d32ff84 5429 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5430 swp_entry_t ent = { .val = 0 };
5431
5432 if (pte_present(ptent))
5433 page = mc_handle_present_pte(vma, addr, ptent);
5434 else if (is_swap_pte(ptent))
48406ef8 5435 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5436 else if (pte_none(ptent))
87946a72 5437 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5438
5439 if (!page && !ent.val)
8d32ff84 5440 return ret;
02491447 5441 if (page) {
02491447 5442 /*
0a31bc97 5443 * Do only loose check w/o serialization.
1306a85a 5444 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5445 * not under LRU exclusion.
02491447 5446 */
1306a85a 5447 if (page->mem_cgroup == mc.from) {
02491447 5448 ret = MC_TARGET_PAGE;
25b2995a 5449 if (is_device_private_page(page))
c733a828 5450 ret = MC_TARGET_DEVICE;
02491447
DN
5451 if (target)
5452 target->page = page;
5453 }
5454 if (!ret || !target)
5455 put_page(page);
5456 }
3e14a57b
HY
5457 /*
5458 * There is a swap entry and a page doesn't exist or isn't charged.
5459 * But we cannot move a tail-page in a THP.
5460 */
5461 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5462 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5463 ret = MC_TARGET_SWAP;
5464 if (target)
5465 target->ent = ent;
4ffef5fe 5466 }
4ffef5fe
DN
5467 return ret;
5468}
5469
12724850
NH
5470#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5471/*
d6810d73
HY
5472 * We don't consider PMD mapped swapping or file mapped pages because THP does
5473 * not support them for now.
12724850
NH
5474 * Caller should make sure that pmd_trans_huge(pmd) is true.
5475 */
5476static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5477 unsigned long addr, pmd_t pmd, union mc_target *target)
5478{
5479 struct page *page = NULL;
12724850
NH
5480 enum mc_target_type ret = MC_TARGET_NONE;
5481
84c3fc4e
ZY
5482 if (unlikely(is_swap_pmd(pmd))) {
5483 VM_BUG_ON(thp_migration_supported() &&
5484 !is_pmd_migration_entry(pmd));
5485 return ret;
5486 }
12724850 5487 page = pmd_page(pmd);
309381fe 5488 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5489 if (!(mc.flags & MOVE_ANON))
12724850 5490 return ret;
1306a85a 5491 if (page->mem_cgroup == mc.from) {
12724850
NH
5492 ret = MC_TARGET_PAGE;
5493 if (target) {
5494 get_page(page);
5495 target->page = page;
5496 }
5497 }
5498 return ret;
5499}
5500#else
5501static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5502 unsigned long addr, pmd_t pmd, union mc_target *target)
5503{
5504 return MC_TARGET_NONE;
5505}
5506#endif
5507
4ffef5fe
DN
5508static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5509 unsigned long addr, unsigned long end,
5510 struct mm_walk *walk)
5511{
26bcd64a 5512 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5513 pte_t *pte;
5514 spinlock_t *ptl;
5515
b6ec57f4
KS
5516 ptl = pmd_trans_huge_lock(pmd, vma);
5517 if (ptl) {
c733a828
JG
5518 /*
5519 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5520 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5521 * this might change.
c733a828 5522 */
12724850
NH
5523 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5524 mc.precharge += HPAGE_PMD_NR;
bf929152 5525 spin_unlock(ptl);
1a5a9906 5526 return 0;
12724850 5527 }
03319327 5528
45f83cef
AA
5529 if (pmd_trans_unstable(pmd))
5530 return 0;
4ffef5fe
DN
5531 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5532 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5533 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5534 mc.precharge++; /* increment precharge temporarily */
5535 pte_unmap_unlock(pte - 1, ptl);
5536 cond_resched();
5537
7dc74be0
DN
5538 return 0;
5539}
5540
7b86ac33
CH
5541static const struct mm_walk_ops precharge_walk_ops = {
5542 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5543};
5544
4ffef5fe
DN
5545static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5546{
5547 unsigned long precharge;
4ffef5fe 5548
dfe076b0 5549 down_read(&mm->mmap_sem);
7b86ac33 5550 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
dfe076b0 5551 up_read(&mm->mmap_sem);
4ffef5fe
DN
5552
5553 precharge = mc.precharge;
5554 mc.precharge = 0;
5555
5556 return precharge;
5557}
5558
4ffef5fe
DN
5559static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5560{
dfe076b0
DN
5561 unsigned long precharge = mem_cgroup_count_precharge(mm);
5562
5563 VM_BUG_ON(mc.moving_task);
5564 mc.moving_task = current;
5565 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5566}
5567
dfe076b0
DN
5568/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5569static void __mem_cgroup_clear_mc(void)
4ffef5fe 5570{
2bd9bb20
KH
5571 struct mem_cgroup *from = mc.from;
5572 struct mem_cgroup *to = mc.to;
5573
4ffef5fe 5574 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5575 if (mc.precharge) {
00501b53 5576 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5577 mc.precharge = 0;
5578 }
5579 /*
5580 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5581 * we must uncharge here.
5582 */
5583 if (mc.moved_charge) {
00501b53 5584 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5585 mc.moved_charge = 0;
4ffef5fe 5586 }
483c30b5
DN
5587 /* we must fixup refcnts and charges */
5588 if (mc.moved_swap) {
483c30b5 5589 /* uncharge swap account from the old cgroup */
ce00a967 5590 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5591 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5592
615d66c3
VD
5593 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5594
05b84301 5595 /*
3e32cb2e
JW
5596 * we charged both to->memory and to->memsw, so we
5597 * should uncharge to->memory.
05b84301 5598 */
ce00a967 5599 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5600 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5601
615d66c3
VD
5602 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5603 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5604
483c30b5
DN
5605 mc.moved_swap = 0;
5606 }
dfe076b0
DN
5607 memcg_oom_recover(from);
5608 memcg_oom_recover(to);
5609 wake_up_all(&mc.waitq);
5610}
5611
5612static void mem_cgroup_clear_mc(void)
5613{
264a0ae1
TH
5614 struct mm_struct *mm = mc.mm;
5615
dfe076b0
DN
5616 /*
5617 * we must clear moving_task before waking up waiters at the end of
5618 * task migration.
5619 */
5620 mc.moving_task = NULL;
5621 __mem_cgroup_clear_mc();
2bd9bb20 5622 spin_lock(&mc.lock);
4ffef5fe
DN
5623 mc.from = NULL;
5624 mc.to = NULL;
264a0ae1 5625 mc.mm = NULL;
2bd9bb20 5626 spin_unlock(&mc.lock);
264a0ae1
TH
5627
5628 mmput(mm);
4ffef5fe
DN
5629}
5630
1f7dd3e5 5631static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5632{
1f7dd3e5 5633 struct cgroup_subsys_state *css;
eed67d75 5634 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5635 struct mem_cgroup *from;
4530eddb 5636 struct task_struct *leader, *p;
9f2115f9 5637 struct mm_struct *mm;
1dfab5ab 5638 unsigned long move_flags;
9f2115f9 5639 int ret = 0;
7dc74be0 5640
1f7dd3e5
TH
5641 /* charge immigration isn't supported on the default hierarchy */
5642 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5643 return 0;
5644
4530eddb
TH
5645 /*
5646 * Multi-process migrations only happen on the default hierarchy
5647 * where charge immigration is not used. Perform charge
5648 * immigration if @tset contains a leader and whine if there are
5649 * multiple.
5650 */
5651 p = NULL;
1f7dd3e5 5652 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5653 WARN_ON_ONCE(p);
5654 p = leader;
1f7dd3e5 5655 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5656 }
5657 if (!p)
5658 return 0;
5659
1f7dd3e5
TH
5660 /*
5661 * We are now commited to this value whatever it is. Changes in this
5662 * tunable will only affect upcoming migrations, not the current one.
5663 * So we need to save it, and keep it going.
5664 */
5665 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5666 if (!move_flags)
5667 return 0;
5668
9f2115f9
TH
5669 from = mem_cgroup_from_task(p);
5670
5671 VM_BUG_ON(from == memcg);
5672
5673 mm = get_task_mm(p);
5674 if (!mm)
5675 return 0;
5676 /* We move charges only when we move a owner of the mm */
5677 if (mm->owner == p) {
5678 VM_BUG_ON(mc.from);
5679 VM_BUG_ON(mc.to);
5680 VM_BUG_ON(mc.precharge);
5681 VM_BUG_ON(mc.moved_charge);
5682 VM_BUG_ON(mc.moved_swap);
5683
5684 spin_lock(&mc.lock);
264a0ae1 5685 mc.mm = mm;
9f2115f9
TH
5686 mc.from = from;
5687 mc.to = memcg;
5688 mc.flags = move_flags;
5689 spin_unlock(&mc.lock);
5690 /* We set mc.moving_task later */
5691
5692 ret = mem_cgroup_precharge_mc(mm);
5693 if (ret)
5694 mem_cgroup_clear_mc();
264a0ae1
TH
5695 } else {
5696 mmput(mm);
7dc74be0
DN
5697 }
5698 return ret;
5699}
5700
1f7dd3e5 5701static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5702{
4e2f245d
JW
5703 if (mc.to)
5704 mem_cgroup_clear_mc();
7dc74be0
DN
5705}
5706
4ffef5fe
DN
5707static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5708 unsigned long addr, unsigned long end,
5709 struct mm_walk *walk)
7dc74be0 5710{
4ffef5fe 5711 int ret = 0;
26bcd64a 5712 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5713 pte_t *pte;
5714 spinlock_t *ptl;
12724850
NH
5715 enum mc_target_type target_type;
5716 union mc_target target;
5717 struct page *page;
4ffef5fe 5718
b6ec57f4
KS
5719 ptl = pmd_trans_huge_lock(pmd, vma);
5720 if (ptl) {
62ade86a 5721 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5722 spin_unlock(ptl);
12724850
NH
5723 return 0;
5724 }
5725 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5726 if (target_type == MC_TARGET_PAGE) {
5727 page = target.page;
5728 if (!isolate_lru_page(page)) {
f627c2f5 5729 if (!mem_cgroup_move_account(page, true,
1306a85a 5730 mc.from, mc.to)) {
12724850
NH
5731 mc.precharge -= HPAGE_PMD_NR;
5732 mc.moved_charge += HPAGE_PMD_NR;
5733 }
5734 putback_lru_page(page);
5735 }
5736 put_page(page);
c733a828
JG
5737 } else if (target_type == MC_TARGET_DEVICE) {
5738 page = target.page;
5739 if (!mem_cgroup_move_account(page, true,
5740 mc.from, mc.to)) {
5741 mc.precharge -= HPAGE_PMD_NR;
5742 mc.moved_charge += HPAGE_PMD_NR;
5743 }
5744 put_page(page);
12724850 5745 }
bf929152 5746 spin_unlock(ptl);
1a5a9906 5747 return 0;
12724850
NH
5748 }
5749
45f83cef
AA
5750 if (pmd_trans_unstable(pmd))
5751 return 0;
4ffef5fe
DN
5752retry:
5753 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5754 for (; addr != end; addr += PAGE_SIZE) {
5755 pte_t ptent = *(pte++);
c733a828 5756 bool device = false;
02491447 5757 swp_entry_t ent;
4ffef5fe
DN
5758
5759 if (!mc.precharge)
5760 break;
5761
8d32ff84 5762 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5763 case MC_TARGET_DEVICE:
5764 device = true;
5765 /* fall through */
4ffef5fe
DN
5766 case MC_TARGET_PAGE:
5767 page = target.page;
53f9263b
KS
5768 /*
5769 * We can have a part of the split pmd here. Moving it
5770 * can be done but it would be too convoluted so simply
5771 * ignore such a partial THP and keep it in original
5772 * memcg. There should be somebody mapping the head.
5773 */
5774 if (PageTransCompound(page))
5775 goto put;
c733a828 5776 if (!device && isolate_lru_page(page))
4ffef5fe 5777 goto put;
f627c2f5
KS
5778 if (!mem_cgroup_move_account(page, false,
5779 mc.from, mc.to)) {
4ffef5fe 5780 mc.precharge--;
854ffa8d
DN
5781 /* we uncharge from mc.from later. */
5782 mc.moved_charge++;
4ffef5fe 5783 }
c733a828
JG
5784 if (!device)
5785 putback_lru_page(page);
8d32ff84 5786put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5787 put_page(page);
5788 break;
02491447
DN
5789 case MC_TARGET_SWAP:
5790 ent = target.ent;
e91cbb42 5791 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5792 mc.precharge--;
483c30b5
DN
5793 /* we fixup refcnts and charges later. */
5794 mc.moved_swap++;
5795 }
02491447 5796 break;
4ffef5fe
DN
5797 default:
5798 break;
5799 }
5800 }
5801 pte_unmap_unlock(pte - 1, ptl);
5802 cond_resched();
5803
5804 if (addr != end) {
5805 /*
5806 * We have consumed all precharges we got in can_attach().
5807 * We try charge one by one, but don't do any additional
5808 * charges to mc.to if we have failed in charge once in attach()
5809 * phase.
5810 */
854ffa8d 5811 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5812 if (!ret)
5813 goto retry;
5814 }
5815
5816 return ret;
5817}
5818
7b86ac33
CH
5819static const struct mm_walk_ops charge_walk_ops = {
5820 .pmd_entry = mem_cgroup_move_charge_pte_range,
5821};
5822
264a0ae1 5823static void mem_cgroup_move_charge(void)
4ffef5fe 5824{
4ffef5fe 5825 lru_add_drain_all();
312722cb 5826 /*
81f8c3a4
JW
5827 * Signal lock_page_memcg() to take the memcg's move_lock
5828 * while we're moving its pages to another memcg. Then wait
5829 * for already started RCU-only updates to finish.
312722cb
JW
5830 */
5831 atomic_inc(&mc.from->moving_account);
5832 synchronize_rcu();
dfe076b0 5833retry:
264a0ae1 5834 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5835 /*
5836 * Someone who are holding the mmap_sem might be waiting in
5837 * waitq. So we cancel all extra charges, wake up all waiters,
5838 * and retry. Because we cancel precharges, we might not be able
5839 * to move enough charges, but moving charge is a best-effort
5840 * feature anyway, so it wouldn't be a big problem.
5841 */
5842 __mem_cgroup_clear_mc();
5843 cond_resched();
5844 goto retry;
5845 }
26bcd64a
NH
5846 /*
5847 * When we have consumed all precharges and failed in doing
5848 * additional charge, the page walk just aborts.
5849 */
7b86ac33
CH
5850 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5851 NULL);
0247f3f4 5852
264a0ae1 5853 up_read(&mc.mm->mmap_sem);
312722cb 5854 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5855}
5856
264a0ae1 5857static void mem_cgroup_move_task(void)
67e465a7 5858{
264a0ae1
TH
5859 if (mc.to) {
5860 mem_cgroup_move_charge();
a433658c 5861 mem_cgroup_clear_mc();
264a0ae1 5862 }
67e465a7 5863}
5cfb80a7 5864#else /* !CONFIG_MMU */
1f7dd3e5 5865static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5866{
5867 return 0;
5868}
1f7dd3e5 5869static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5870{
5871}
264a0ae1 5872static void mem_cgroup_move_task(void)
5cfb80a7
DN
5873{
5874}
5875#endif
67e465a7 5876
f00baae7
TH
5877/*
5878 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5879 * to verify whether we're attached to the default hierarchy on each mount
5880 * attempt.
f00baae7 5881 */
eb95419b 5882static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5883{
5884 /*
aa6ec29b 5885 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5886 * guarantees that @root doesn't have any children, so turning it
5887 * on for the root memcg is enough.
5888 */
9e10a130 5889 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5890 root_mem_cgroup->use_hierarchy = true;
5891 else
5892 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5893}
5894
677dc973
CD
5895static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5896{
5897 if (value == PAGE_COUNTER_MAX)
5898 seq_puts(m, "max\n");
5899 else
5900 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5901
5902 return 0;
5903}
5904
241994ed
JW
5905static u64 memory_current_read(struct cgroup_subsys_state *css,
5906 struct cftype *cft)
5907{
f5fc3c5d
JW
5908 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5909
5910 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5911}
5912
bf8d5d52
RG
5913static int memory_min_show(struct seq_file *m, void *v)
5914{
677dc973
CD
5915 return seq_puts_memcg_tunable(m,
5916 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
5917}
5918
5919static ssize_t memory_min_write(struct kernfs_open_file *of,
5920 char *buf, size_t nbytes, loff_t off)
5921{
5922 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5923 unsigned long min;
5924 int err;
5925
5926 buf = strstrip(buf);
5927 err = page_counter_memparse(buf, "max", &min);
5928 if (err)
5929 return err;
5930
5931 page_counter_set_min(&memcg->memory, min);
5932
5933 return nbytes;
5934}
5935
241994ed
JW
5936static int memory_low_show(struct seq_file *m, void *v)
5937{
677dc973
CD
5938 return seq_puts_memcg_tunable(m,
5939 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
5940}
5941
5942static ssize_t memory_low_write(struct kernfs_open_file *of,
5943 char *buf, size_t nbytes, loff_t off)
5944{
5945 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5946 unsigned long low;
5947 int err;
5948
5949 buf = strstrip(buf);
d2973697 5950 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5951 if (err)
5952 return err;
5953
23067153 5954 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5955
5956 return nbytes;
5957}
5958
5959static int memory_high_show(struct seq_file *m, void *v)
5960{
677dc973 5961 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
5962}
5963
5964static ssize_t memory_high_write(struct kernfs_open_file *of,
5965 char *buf, size_t nbytes, loff_t off)
5966{
5967 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8c8c383c
JW
5968 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5969 bool drained = false;
241994ed
JW
5970 unsigned long high;
5971 int err;
5972
5973 buf = strstrip(buf);
d2973697 5974 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5975 if (err)
5976 return err;
5977
5978 memcg->high = high;
5979
8c8c383c
JW
5980 for (;;) {
5981 unsigned long nr_pages = page_counter_read(&memcg->memory);
5982 unsigned long reclaimed;
5983
5984 if (nr_pages <= high)
5985 break;
5986
5987 if (signal_pending(current))
5988 break;
5989
5990 if (!drained) {
5991 drain_all_stock(memcg);
5992 drained = true;
5993 continue;
5994 }
5995
5996 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5997 GFP_KERNEL, true);
5998
5999 if (!reclaimed && !nr_retries--)
6000 break;
6001 }
588083bb 6002
241994ed
JW
6003 return nbytes;
6004}
6005
6006static int memory_max_show(struct seq_file *m, void *v)
6007{
677dc973
CD
6008 return seq_puts_memcg_tunable(m,
6009 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6010}
6011
6012static ssize_t memory_max_write(struct kernfs_open_file *of,
6013 char *buf, size_t nbytes, loff_t off)
6014{
6015 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
6016 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6017 bool drained = false;
241994ed
JW
6018 unsigned long max;
6019 int err;
6020
6021 buf = strstrip(buf);
d2973697 6022 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6023 if (err)
6024 return err;
6025
bbec2e15 6026 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6027
6028 for (;;) {
6029 unsigned long nr_pages = page_counter_read(&memcg->memory);
6030
6031 if (nr_pages <= max)
6032 break;
6033
7249c9f0 6034 if (signal_pending(current))
b6e6edcf 6035 break;
b6e6edcf
JW
6036
6037 if (!drained) {
6038 drain_all_stock(memcg);
6039 drained = true;
6040 continue;
6041 }
6042
6043 if (nr_reclaims) {
6044 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6045 GFP_KERNEL, true))
6046 nr_reclaims--;
6047 continue;
6048 }
6049
e27be240 6050 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6051 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6052 break;
6053 }
241994ed 6054
2529bb3a 6055 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6056 return nbytes;
6057}
6058
1e577f97
SB
6059static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6060{
6061 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6062 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6063 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6064 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6065 seq_printf(m, "oom_kill %lu\n",
6066 atomic_long_read(&events[MEMCG_OOM_KILL]));
6067}
6068
241994ed
JW
6069static int memory_events_show(struct seq_file *m, void *v)
6070{
aa9694bb 6071 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6072
1e577f97
SB
6073 __memory_events_show(m, memcg->memory_events);
6074 return 0;
6075}
6076
6077static int memory_events_local_show(struct seq_file *m, void *v)
6078{
6079 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6080
1e577f97 6081 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6082 return 0;
6083}
6084
587d9f72
JW
6085static int memory_stat_show(struct seq_file *m, void *v)
6086{
aa9694bb 6087 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6088 char *buf;
1ff9e6e1 6089
c8713d0b
JW
6090 buf = memory_stat_format(memcg);
6091 if (!buf)
6092 return -ENOMEM;
6093 seq_puts(m, buf);
6094 kfree(buf);
587d9f72
JW
6095 return 0;
6096}
6097
3d8b38eb
RG
6098static int memory_oom_group_show(struct seq_file *m, void *v)
6099{
aa9694bb 6100 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6101
6102 seq_printf(m, "%d\n", memcg->oom_group);
6103
6104 return 0;
6105}
6106
6107static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6108 char *buf, size_t nbytes, loff_t off)
6109{
6110 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6111 int ret, oom_group;
6112
6113 buf = strstrip(buf);
6114 if (!buf)
6115 return -EINVAL;
6116
6117 ret = kstrtoint(buf, 0, &oom_group);
6118 if (ret)
6119 return ret;
6120
6121 if (oom_group != 0 && oom_group != 1)
6122 return -EINVAL;
6123
6124 memcg->oom_group = oom_group;
6125
6126 return nbytes;
6127}
6128
241994ed
JW
6129static struct cftype memory_files[] = {
6130 {
6131 .name = "current",
f5fc3c5d 6132 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6133 .read_u64 = memory_current_read,
6134 },
bf8d5d52
RG
6135 {
6136 .name = "min",
6137 .flags = CFTYPE_NOT_ON_ROOT,
6138 .seq_show = memory_min_show,
6139 .write = memory_min_write,
6140 },
241994ed
JW
6141 {
6142 .name = "low",
6143 .flags = CFTYPE_NOT_ON_ROOT,
6144 .seq_show = memory_low_show,
6145 .write = memory_low_write,
6146 },
6147 {
6148 .name = "high",
6149 .flags = CFTYPE_NOT_ON_ROOT,
6150 .seq_show = memory_high_show,
6151 .write = memory_high_write,
6152 },
6153 {
6154 .name = "max",
6155 .flags = CFTYPE_NOT_ON_ROOT,
6156 .seq_show = memory_max_show,
6157 .write = memory_max_write,
6158 },
6159 {
6160 .name = "events",
6161 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6162 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6163 .seq_show = memory_events_show,
6164 },
1e577f97
SB
6165 {
6166 .name = "events.local",
6167 .flags = CFTYPE_NOT_ON_ROOT,
6168 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6169 .seq_show = memory_events_local_show,
6170 },
587d9f72
JW
6171 {
6172 .name = "stat",
6173 .flags = CFTYPE_NOT_ON_ROOT,
6174 .seq_show = memory_stat_show,
6175 },
3d8b38eb
RG
6176 {
6177 .name = "oom.group",
6178 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6179 .seq_show = memory_oom_group_show,
6180 .write = memory_oom_group_write,
6181 },
241994ed
JW
6182 { } /* terminate */
6183};
6184
073219e9 6185struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6186 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6187 .css_online = mem_cgroup_css_online,
92fb9748 6188 .css_offline = mem_cgroup_css_offline,
6df38689 6189 .css_released = mem_cgroup_css_released,
92fb9748 6190 .css_free = mem_cgroup_css_free,
1ced953b 6191 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6192 .can_attach = mem_cgroup_can_attach,
6193 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6194 .post_attach = mem_cgroup_move_task,
f00baae7 6195 .bind = mem_cgroup_bind,
241994ed
JW
6196 .dfl_cftypes = memory_files,
6197 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6198 .early_init = 0,
8cdea7c0 6199};
c077719b 6200
241994ed 6201/**
bf8d5d52 6202 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6203 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6204 * @memcg: the memory cgroup to check
6205 *
23067153
RG
6206 * WARNING: This function is not stateless! It can only be used as part
6207 * of a top-down tree iteration, not for isolated queries.
34c81057 6208 *
bf8d5d52
RG
6209 * Returns one of the following:
6210 * MEMCG_PROT_NONE: cgroup memory is not protected
6211 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6212 * an unprotected supply of reclaimable memory from other cgroups.
6213 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 6214 *
bf8d5d52 6215 * @root is exclusive; it is never protected when looked at directly
34c81057 6216 *
bf8d5d52
RG
6217 * To provide a proper hierarchical behavior, effective memory.min/low values
6218 * are used. Below is the description of how effective memory.low is calculated.
6219 * Effective memory.min values is calculated in the same way.
34c81057 6220 *
23067153
RG
6221 * Effective memory.low is always equal or less than the original memory.low.
6222 * If there is no memory.low overcommittment (which is always true for
6223 * top-level memory cgroups), these two values are equal.
6224 * Otherwise, it's a part of parent's effective memory.low,
6225 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6226 * memory.low usages, where memory.low usage is the size of actually
6227 * protected memory.
34c81057 6228 *
23067153
RG
6229 * low_usage
6230 * elow = min( memory.low, parent->elow * ------------------ ),
6231 * siblings_low_usage
34c81057 6232 *
23067153
RG
6233 * | memory.current, if memory.current < memory.low
6234 * low_usage = |
82ede7ee 6235 * | 0, otherwise.
34c81057 6236 *
23067153
RG
6237 *
6238 * Such definition of the effective memory.low provides the expected
6239 * hierarchical behavior: parent's memory.low value is limiting
6240 * children, unprotected memory is reclaimed first and cgroups,
6241 * which are not using their guarantee do not affect actual memory
6242 * distribution.
6243 *
6244 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6245 *
6246 * A A/memory.low = 2G, A/memory.current = 6G
6247 * //\\
6248 * BC DE B/memory.low = 3G B/memory.current = 2G
6249 * C/memory.low = 1G C/memory.current = 2G
6250 * D/memory.low = 0 D/memory.current = 2G
6251 * E/memory.low = 10G E/memory.current = 0
6252 *
6253 * and the memory pressure is applied, the following memory distribution
6254 * is expected (approximately):
6255 *
6256 * A/memory.current = 2G
6257 *
6258 * B/memory.current = 1.3G
6259 * C/memory.current = 0.6G
6260 * D/memory.current = 0
6261 * E/memory.current = 0
6262 *
6263 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
6264 * (see propagate_protected_usage()), as well as recursive calculation of
6265 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
6266 * path for each memory cgroup top-down from the reclaim,
6267 * it's possible to optimize this part, and save calculated elow
6268 * for next usage. This part is intentionally racy, but it's ok,
6269 * as memory.low is a best-effort mechanism.
241994ed 6270 */
bf8d5d52
RG
6271enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6272 struct mem_cgroup *memcg)
241994ed 6273{
23067153 6274 struct mem_cgroup *parent;
bf8d5d52
RG
6275 unsigned long emin, parent_emin;
6276 unsigned long elow, parent_elow;
6277 unsigned long usage;
23067153 6278
241994ed 6279 if (mem_cgroup_disabled())
bf8d5d52 6280 return MEMCG_PROT_NONE;
241994ed 6281
34c81057
SC
6282 if (!root)
6283 root = root_mem_cgroup;
6284 if (memcg == root)
bf8d5d52 6285 return MEMCG_PROT_NONE;
241994ed 6286
23067153 6287 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
6288 if (!usage)
6289 return MEMCG_PROT_NONE;
6290
6291 emin = memcg->memory.min;
6292 elow = memcg->memory.low;
34c81057 6293
bf8d5d52 6294 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6295 /* No parent means a non-hierarchical mode on v1 memcg */
6296 if (!parent)
6297 return MEMCG_PROT_NONE;
6298
23067153
RG
6299 if (parent == root)
6300 goto exit;
6301
bf8d5d52
RG
6302 parent_emin = READ_ONCE(parent->memory.emin);
6303 emin = min(emin, parent_emin);
6304 if (emin && parent_emin) {
6305 unsigned long min_usage, siblings_min_usage;
6306
6307 min_usage = min(usage, memcg->memory.min);
6308 siblings_min_usage = atomic_long_read(
6309 &parent->memory.children_min_usage);
6310
6311 if (min_usage && siblings_min_usage)
6312 emin = min(emin, parent_emin * min_usage /
6313 siblings_min_usage);
6314 }
6315
23067153
RG
6316 parent_elow = READ_ONCE(parent->memory.elow);
6317 elow = min(elow, parent_elow);
bf8d5d52
RG
6318 if (elow && parent_elow) {
6319 unsigned long low_usage, siblings_low_usage;
23067153 6320
bf8d5d52
RG
6321 low_usage = min(usage, memcg->memory.low);
6322 siblings_low_usage = atomic_long_read(
6323 &parent->memory.children_low_usage);
23067153 6324
bf8d5d52
RG
6325 if (low_usage && siblings_low_usage)
6326 elow = min(elow, parent_elow * low_usage /
6327 siblings_low_usage);
6328 }
23067153 6329
23067153 6330exit:
bf8d5d52 6331 memcg->memory.emin = emin;
23067153 6332 memcg->memory.elow = elow;
bf8d5d52
RG
6333
6334 if (usage <= emin)
6335 return MEMCG_PROT_MIN;
6336 else if (usage <= elow)
6337 return MEMCG_PROT_LOW;
6338 else
6339 return MEMCG_PROT_NONE;
241994ed
JW
6340}
6341
00501b53
JW
6342/**
6343 * mem_cgroup_try_charge - try charging a page
6344 * @page: page to charge
6345 * @mm: mm context of the victim
6346 * @gfp_mask: reclaim mode
6347 * @memcgp: charged memcg return
25843c2b 6348 * @compound: charge the page as compound or small page
00501b53
JW
6349 *
6350 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6351 * pages according to @gfp_mask if necessary.
6352 *
6353 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6354 * Otherwise, an error code is returned.
6355 *
6356 * After page->mapping has been set up, the caller must finalize the
6357 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6358 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6359 */
6360int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
6361 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6362 bool compound)
00501b53
JW
6363{
6364 struct mem_cgroup *memcg = NULL;
f627c2f5 6365 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6366 int ret = 0;
6367
6368 if (mem_cgroup_disabled())
6369 goto out;
6370
6371 if (PageSwapCache(page)) {
00501b53
JW
6372 /*
6373 * Every swap fault against a single page tries to charge the
6374 * page, bail as early as possible. shmem_unuse() encounters
6375 * already charged pages, too. The USED bit is protected by
6376 * the page lock, which serializes swap cache removal, which
6377 * in turn serializes uncharging.
6378 */
e993d905 6379 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6380 if (compound_head(page)->mem_cgroup)
00501b53 6381 goto out;
e993d905 6382
37e84351 6383 if (do_swap_account) {
e993d905
VD
6384 swp_entry_t ent = { .val = page_private(page), };
6385 unsigned short id = lookup_swap_cgroup_id(ent);
6386
6387 rcu_read_lock();
6388 memcg = mem_cgroup_from_id(id);
6389 if (memcg && !css_tryget_online(&memcg->css))
6390 memcg = NULL;
6391 rcu_read_unlock();
6392 }
00501b53
JW
6393 }
6394
00501b53
JW
6395 if (!memcg)
6396 memcg = get_mem_cgroup_from_mm(mm);
6397
6398 ret = try_charge(memcg, gfp_mask, nr_pages);
6399
6400 css_put(&memcg->css);
00501b53
JW
6401out:
6402 *memcgp = memcg;
6403 return ret;
6404}
6405
2cf85583
TH
6406int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6407 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6408 bool compound)
6409{
6410 struct mem_cgroup *memcg;
6411 int ret;
6412
6413 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6414 memcg = *memcgp;
6415 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6416 return ret;
6417}
6418
00501b53
JW
6419/**
6420 * mem_cgroup_commit_charge - commit a page charge
6421 * @page: page to charge
6422 * @memcg: memcg to charge the page to
6423 * @lrucare: page might be on LRU already
25843c2b 6424 * @compound: charge the page as compound or small page
00501b53
JW
6425 *
6426 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6427 * after page->mapping has been set up. This must happen atomically
6428 * as part of the page instantiation, i.e. under the page table lock
6429 * for anonymous pages, under the page lock for page and swap cache.
6430 *
6431 * In addition, the page must not be on the LRU during the commit, to
6432 * prevent racing with task migration. If it might be, use @lrucare.
6433 *
6434 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6435 */
6436void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6437 bool lrucare, bool compound)
00501b53 6438{
f627c2f5 6439 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6440
6441 VM_BUG_ON_PAGE(!page->mapping, page);
6442 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6443
6444 if (mem_cgroup_disabled())
6445 return;
6446 /*
6447 * Swap faults will attempt to charge the same page multiple
6448 * times. But reuse_swap_page() might have removed the page
6449 * from swapcache already, so we can't check PageSwapCache().
6450 */
6451 if (!memcg)
6452 return;
6453
6abb5a86
JW
6454 commit_charge(page, memcg, lrucare);
6455
6abb5a86 6456 local_irq_disable();
f627c2f5 6457 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6458 memcg_check_events(memcg, page);
6459 local_irq_enable();
00501b53 6460
7941d214 6461 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6462 swp_entry_t entry = { .val = page_private(page) };
6463 /*
6464 * The swap entry might not get freed for a long time,
6465 * let's not wait for it. The page already received a
6466 * memory+swap charge, drop the swap entry duplicate.
6467 */
38d8b4e6 6468 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6469 }
6470}
6471
6472/**
6473 * mem_cgroup_cancel_charge - cancel a page charge
6474 * @page: page to charge
6475 * @memcg: memcg to charge the page to
25843c2b 6476 * @compound: charge the page as compound or small page
00501b53
JW
6477 *
6478 * Cancel a charge transaction started by mem_cgroup_try_charge().
6479 */
f627c2f5
KS
6480void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6481 bool compound)
00501b53 6482{
f627c2f5 6483 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6484
6485 if (mem_cgroup_disabled())
6486 return;
6487 /*
6488 * Swap faults will attempt to charge the same page multiple
6489 * times. But reuse_swap_page() might have removed the page
6490 * from swapcache already, so we can't check PageSwapCache().
6491 */
6492 if (!memcg)
6493 return;
6494
00501b53
JW
6495 cancel_charge(memcg, nr_pages);
6496}
6497
a9d5adee
JG
6498struct uncharge_gather {
6499 struct mem_cgroup *memcg;
6500 unsigned long pgpgout;
6501 unsigned long nr_anon;
6502 unsigned long nr_file;
6503 unsigned long nr_kmem;
6504 unsigned long nr_huge;
6505 unsigned long nr_shmem;
6506 struct page *dummy_page;
6507};
6508
6509static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6510{
a9d5adee
JG
6511 memset(ug, 0, sizeof(*ug));
6512}
6513
6514static void uncharge_batch(const struct uncharge_gather *ug)
6515{
6516 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6517 unsigned long flags;
6518
a9d5adee
JG
6519 if (!mem_cgroup_is_root(ug->memcg)) {
6520 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6521 if (do_memsw_account())
a9d5adee
JG
6522 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6523 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6524 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6525 memcg_oom_recover(ug->memcg);
ce00a967 6526 }
747db954
JW
6527
6528 local_irq_save(flags);
c9019e9b
JW
6529 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6530 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6531 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6532 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6533 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6534 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6535 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6536 local_irq_restore(flags);
e8ea14cc 6537
a9d5adee
JG
6538 if (!mem_cgroup_is_root(ug->memcg))
6539 css_put_many(&ug->memcg->css, nr_pages);
6540}
6541
6542static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6543{
6544 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6545 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6546 !PageHWPoison(page) , page);
a9d5adee
JG
6547
6548 if (!page->mem_cgroup)
6549 return;
6550
6551 /*
6552 * Nobody should be changing or seriously looking at
6553 * page->mem_cgroup at this point, we have fully
6554 * exclusive access to the page.
6555 */
6556
6557 if (ug->memcg != page->mem_cgroup) {
6558 if (ug->memcg) {
6559 uncharge_batch(ug);
6560 uncharge_gather_clear(ug);
6561 }
6562 ug->memcg = page->mem_cgroup;
6563 }
6564
6565 if (!PageKmemcg(page)) {
6566 unsigned int nr_pages = 1;
6567
6568 if (PageTransHuge(page)) {
d8c6546b 6569 nr_pages = compound_nr(page);
a9d5adee
JG
6570 ug->nr_huge += nr_pages;
6571 }
6572 if (PageAnon(page))
6573 ug->nr_anon += nr_pages;
6574 else {
6575 ug->nr_file += nr_pages;
6576 if (PageSwapBacked(page))
6577 ug->nr_shmem += nr_pages;
6578 }
6579 ug->pgpgout++;
6580 } else {
d8c6546b 6581 ug->nr_kmem += compound_nr(page);
a9d5adee
JG
6582 __ClearPageKmemcg(page);
6583 }
6584
6585 ug->dummy_page = page;
6586 page->mem_cgroup = NULL;
747db954
JW
6587}
6588
6589static void uncharge_list(struct list_head *page_list)
6590{
a9d5adee 6591 struct uncharge_gather ug;
747db954 6592 struct list_head *next;
a9d5adee
JG
6593
6594 uncharge_gather_clear(&ug);
747db954 6595
8b592656
JW
6596 /*
6597 * Note that the list can be a single page->lru; hence the
6598 * do-while loop instead of a simple list_for_each_entry().
6599 */
747db954
JW
6600 next = page_list->next;
6601 do {
a9d5adee
JG
6602 struct page *page;
6603
747db954
JW
6604 page = list_entry(next, struct page, lru);
6605 next = page->lru.next;
6606
a9d5adee 6607 uncharge_page(page, &ug);
747db954
JW
6608 } while (next != page_list);
6609
a9d5adee
JG
6610 if (ug.memcg)
6611 uncharge_batch(&ug);
747db954
JW
6612}
6613
0a31bc97
JW
6614/**
6615 * mem_cgroup_uncharge - uncharge a page
6616 * @page: page to uncharge
6617 *
6618 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6619 * mem_cgroup_commit_charge().
6620 */
6621void mem_cgroup_uncharge(struct page *page)
6622{
a9d5adee
JG
6623 struct uncharge_gather ug;
6624
0a31bc97
JW
6625 if (mem_cgroup_disabled())
6626 return;
6627
747db954 6628 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6629 if (!page->mem_cgroup)
0a31bc97
JW
6630 return;
6631
a9d5adee
JG
6632 uncharge_gather_clear(&ug);
6633 uncharge_page(page, &ug);
6634 uncharge_batch(&ug);
747db954 6635}
0a31bc97 6636
747db954
JW
6637/**
6638 * mem_cgroup_uncharge_list - uncharge a list of page
6639 * @page_list: list of pages to uncharge
6640 *
6641 * Uncharge a list of pages previously charged with
6642 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6643 */
6644void mem_cgroup_uncharge_list(struct list_head *page_list)
6645{
6646 if (mem_cgroup_disabled())
6647 return;
0a31bc97 6648
747db954
JW
6649 if (!list_empty(page_list))
6650 uncharge_list(page_list);
0a31bc97
JW
6651}
6652
6653/**
6a93ca8f
JW
6654 * mem_cgroup_migrate - charge a page's replacement
6655 * @oldpage: currently circulating page
6656 * @newpage: replacement page
0a31bc97 6657 *
6a93ca8f
JW
6658 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6659 * be uncharged upon free.
0a31bc97
JW
6660 *
6661 * Both pages must be locked, @newpage->mapping must be set up.
6662 */
6a93ca8f 6663void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6664{
29833315 6665 struct mem_cgroup *memcg;
44b7a8d3 6666 unsigned int nr_pages;
d93c4130 6667 unsigned long flags;
0a31bc97
JW
6668
6669 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6670 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6671 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6672 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6673 newpage);
0a31bc97
JW
6674
6675 if (mem_cgroup_disabled())
6676 return;
6677
6678 /* Page cache replacement: new page already charged? */
1306a85a 6679 if (newpage->mem_cgroup)
0a31bc97
JW
6680 return;
6681
45637bab 6682 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6683 memcg = oldpage->mem_cgroup;
29833315 6684 if (!memcg)
0a31bc97
JW
6685 return;
6686
44b7a8d3 6687 /* Force-charge the new page. The old one will be freed soon */
92855270 6688 nr_pages = hpage_nr_pages(newpage);
44b7a8d3
JW
6689
6690 page_counter_charge(&memcg->memory, nr_pages);
6691 if (do_memsw_account())
6692 page_counter_charge(&memcg->memsw, nr_pages);
6693 css_get_many(&memcg->css, nr_pages);
0a31bc97 6694
9cf7666a 6695 commit_charge(newpage, memcg, false);
44b7a8d3 6696
d93c4130 6697 local_irq_save(flags);
92855270
KC
6698 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6699 nr_pages);
44b7a8d3 6700 memcg_check_events(memcg, newpage);
d93c4130 6701 local_irq_restore(flags);
0a31bc97
JW
6702}
6703
ef12947c 6704DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6705EXPORT_SYMBOL(memcg_sockets_enabled_key);
6706
2d758073 6707void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6708{
6709 struct mem_cgroup *memcg;
6710
2d758073
JW
6711 if (!mem_cgroup_sockets_enabled)
6712 return;
6713
e876ecc6
SB
6714 /* Do not associate the sock with unrelated interrupted task's memcg. */
6715 if (in_interrupt())
6716 return;
6717
11092087
JW
6718 rcu_read_lock();
6719 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6720 if (memcg == root_mem_cgroup)
6721 goto out;
0db15298 6722 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6723 goto out;
f7e1cb6e 6724 if (css_tryget_online(&memcg->css))
11092087 6725 sk->sk_memcg = memcg;
f7e1cb6e 6726out:
11092087
JW
6727 rcu_read_unlock();
6728}
11092087 6729
2d758073 6730void mem_cgroup_sk_free(struct sock *sk)
11092087 6731{
2d758073
JW
6732 if (sk->sk_memcg)
6733 css_put(&sk->sk_memcg->css);
11092087
JW
6734}
6735
6736/**
6737 * mem_cgroup_charge_skmem - charge socket memory
6738 * @memcg: memcg to charge
6739 * @nr_pages: number of pages to charge
6740 *
6741 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6742 * @memcg's configured limit, %false if the charge had to be forced.
6743 */
6744bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6745{
f7e1cb6e 6746 gfp_t gfp_mask = GFP_KERNEL;
11092087 6747
f7e1cb6e 6748 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6749 struct page_counter *fail;
f7e1cb6e 6750
0db15298
JW
6751 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6752 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6753 return true;
6754 }
0db15298
JW
6755 page_counter_charge(&memcg->tcpmem, nr_pages);
6756 memcg->tcpmem_pressure = 1;
f7e1cb6e 6757 return false;
11092087 6758 }
d886f4e4 6759
f7e1cb6e
JW
6760 /* Don't block in the packet receive path */
6761 if (in_softirq())
6762 gfp_mask = GFP_NOWAIT;
6763
c9019e9b 6764 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6765
f7e1cb6e
JW
6766 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6767 return true;
6768
6769 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6770 return false;
6771}
6772
6773/**
6774 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6775 * @memcg: memcg to uncharge
6776 * @nr_pages: number of pages to uncharge
11092087
JW
6777 */
6778void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6779{
f7e1cb6e 6780 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6781 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6782 return;
6783 }
d886f4e4 6784
c9019e9b 6785 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6786
475d0487 6787 refill_stock(memcg, nr_pages);
11092087
JW
6788}
6789
f7e1cb6e
JW
6790static int __init cgroup_memory(char *s)
6791{
6792 char *token;
6793
6794 while ((token = strsep(&s, ",")) != NULL) {
6795 if (!*token)
6796 continue;
6797 if (!strcmp(token, "nosocket"))
6798 cgroup_memory_nosocket = true;
04823c83
VD
6799 if (!strcmp(token, "nokmem"))
6800 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6801 }
6802 return 0;
6803}
6804__setup("cgroup.memory=", cgroup_memory);
11092087 6805
2d11085e 6806/*
1081312f
MH
6807 * subsys_initcall() for memory controller.
6808 *
308167fc
SAS
6809 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6810 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6811 * basically everything that doesn't depend on a specific mem_cgroup structure
6812 * should be initialized from here.
2d11085e
MH
6813 */
6814static int __init mem_cgroup_init(void)
6815{
95a045f6
JW
6816 int cpu, node;
6817
84c07d11 6818#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6819 /*
6820 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6821 * so use a workqueue with limited concurrency to avoid stalling
6822 * all worker threads in case lots of cgroups are created and
6823 * destroyed simultaneously.
13583c3d 6824 */
17cc4dfe
TH
6825 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6826 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6827#endif
6828
308167fc
SAS
6829 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6830 memcg_hotplug_cpu_dead);
95a045f6
JW
6831
6832 for_each_possible_cpu(cpu)
6833 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6834 drain_local_stock);
6835
6836 for_each_node(node) {
6837 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6838
6839 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6840 node_online(node) ? node : NUMA_NO_NODE);
6841
ef8f2327 6842 rtpn->rb_root = RB_ROOT;
fa90b2fd 6843 rtpn->rb_rightmost = NULL;
ef8f2327 6844 spin_lock_init(&rtpn->lock);
95a045f6
JW
6845 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6846 }
6847
2d11085e
MH
6848 return 0;
6849}
6850subsys_initcall(mem_cgroup_init);
21afa38e
JW
6851
6852#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6853static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6854{
1c2d479a 6855 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6856 /*
6857 * The root cgroup cannot be destroyed, so it's refcount must
6858 * always be >= 1.
6859 */
6860 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6861 VM_BUG_ON(1);
6862 break;
6863 }
6864 memcg = parent_mem_cgroup(memcg);
6865 if (!memcg)
6866 memcg = root_mem_cgroup;
6867 }
6868 return memcg;
6869}
6870
21afa38e
JW
6871/**
6872 * mem_cgroup_swapout - transfer a memsw charge to swap
6873 * @page: page whose memsw charge to transfer
6874 * @entry: swap entry to move the charge to
6875 *
6876 * Transfer the memsw charge of @page to @entry.
6877 */
6878void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6879{
1f47b61f 6880 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6881 unsigned int nr_entries;
21afa38e
JW
6882 unsigned short oldid;
6883
6884 VM_BUG_ON_PAGE(PageLRU(page), page);
6885 VM_BUG_ON_PAGE(page_count(page), page);
6886
7941d214 6887 if (!do_memsw_account())
21afa38e
JW
6888 return;
6889
6890 memcg = page->mem_cgroup;
6891
6892 /* Readahead page, never charged */
6893 if (!memcg)
6894 return;
6895
1f47b61f
VD
6896 /*
6897 * In case the memcg owning these pages has been offlined and doesn't
6898 * have an ID allocated to it anymore, charge the closest online
6899 * ancestor for the swap instead and transfer the memory+swap charge.
6900 */
6901 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6902 nr_entries = hpage_nr_pages(page);
6903 /* Get references for the tail pages, too */
6904 if (nr_entries > 1)
6905 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6906 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6907 nr_entries);
21afa38e 6908 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6909 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6910
6911 page->mem_cgroup = NULL;
6912
6913 if (!mem_cgroup_is_root(memcg))
d6810d73 6914 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6915
1f47b61f
VD
6916 if (memcg != swap_memcg) {
6917 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6918 page_counter_charge(&swap_memcg->memsw, nr_entries);
6919 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6920 }
6921
ce9ce665
SAS
6922 /*
6923 * Interrupts should be disabled here because the caller holds the
b93b0163 6924 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6925 * important here to have the interrupts disabled because it is the
b93b0163 6926 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6927 */
6928 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6929 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6930 -nr_entries);
21afa38e 6931 memcg_check_events(memcg, page);
73f576c0
JW
6932
6933 if (!mem_cgroup_is_root(memcg))
d08afa14 6934 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6935}
6936
38d8b4e6
HY
6937/**
6938 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6939 * @page: page being added to swap
6940 * @entry: swap entry to charge
6941 *
38d8b4e6 6942 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6943 *
6944 * Returns 0 on success, -ENOMEM on failure.
6945 */
6946int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6947{
38d8b4e6 6948 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6949 struct page_counter *counter;
38d8b4e6 6950 struct mem_cgroup *memcg;
37e84351
VD
6951 unsigned short oldid;
6952
6953 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6954 return 0;
6955
6956 memcg = page->mem_cgroup;
6957
6958 /* Readahead page, never charged */
6959 if (!memcg)
6960 return 0;
6961
f3a53a3a
TH
6962 if (!entry.val) {
6963 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6964 return 0;
f3a53a3a 6965 }
bb98f2c5 6966
1f47b61f
VD
6967 memcg = mem_cgroup_id_get_online(memcg);
6968
37e84351 6969 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6970 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6971 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6972 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6973 mem_cgroup_id_put(memcg);
37e84351 6974 return -ENOMEM;
1f47b61f 6975 }
37e84351 6976
38d8b4e6
HY
6977 /* Get references for the tail pages, too */
6978 if (nr_pages > 1)
6979 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6980 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6981 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6982 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6983
37e84351
VD
6984 return 0;
6985}
6986
21afa38e 6987/**
38d8b4e6 6988 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6989 * @entry: swap entry to uncharge
38d8b4e6 6990 * @nr_pages: the amount of swap space to uncharge
21afa38e 6991 */
38d8b4e6 6992void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6993{
6994 struct mem_cgroup *memcg;
6995 unsigned short id;
6996
37e84351 6997 if (!do_swap_account)
21afa38e
JW
6998 return;
6999
38d8b4e6 7000 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7001 rcu_read_lock();
adbe427b 7002 memcg = mem_cgroup_from_id(id);
21afa38e 7003 if (memcg) {
37e84351
VD
7004 if (!mem_cgroup_is_root(memcg)) {
7005 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7006 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7007 else
38d8b4e6 7008 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7009 }
c9019e9b 7010 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7011 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7012 }
7013 rcu_read_unlock();
7014}
7015
d8b38438
VD
7016long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7017{
7018 long nr_swap_pages = get_nr_swap_pages();
7019
7020 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7021 return nr_swap_pages;
7022 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7023 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7024 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7025 page_counter_read(&memcg->swap));
7026 return nr_swap_pages;
7027}
7028
5ccc5aba
VD
7029bool mem_cgroup_swap_full(struct page *page)
7030{
7031 struct mem_cgroup *memcg;
7032
7033 VM_BUG_ON_PAGE(!PageLocked(page), page);
7034
7035 if (vm_swap_full())
7036 return true;
7037 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7038 return false;
7039
7040 memcg = page->mem_cgroup;
7041 if (!memcg)
7042 return false;
7043
7044 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 7045 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
7046 return true;
7047
7048 return false;
7049}
7050
21afa38e
JW
7051/* for remember boot option*/
7052#ifdef CONFIG_MEMCG_SWAP_ENABLED
7053static int really_do_swap_account __initdata = 1;
7054#else
7055static int really_do_swap_account __initdata;
7056#endif
7057
7058static int __init enable_swap_account(char *s)
7059{
7060 if (!strcmp(s, "1"))
7061 really_do_swap_account = 1;
7062 else if (!strcmp(s, "0"))
7063 really_do_swap_account = 0;
7064 return 1;
7065}
7066__setup("swapaccount=", enable_swap_account);
7067
37e84351
VD
7068static u64 swap_current_read(struct cgroup_subsys_state *css,
7069 struct cftype *cft)
7070{
7071 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7072
7073 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7074}
7075
7076static int swap_max_show(struct seq_file *m, void *v)
7077{
677dc973
CD
7078 return seq_puts_memcg_tunable(m,
7079 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7080}
7081
7082static ssize_t swap_max_write(struct kernfs_open_file *of,
7083 char *buf, size_t nbytes, loff_t off)
7084{
7085 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7086 unsigned long max;
7087 int err;
7088
7089 buf = strstrip(buf);
7090 err = page_counter_memparse(buf, "max", &max);
7091 if (err)
7092 return err;
7093
be09102b 7094 xchg(&memcg->swap.max, max);
37e84351
VD
7095
7096 return nbytes;
7097}
7098
f3a53a3a
TH
7099static int swap_events_show(struct seq_file *m, void *v)
7100{
aa9694bb 7101 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
7102
7103 seq_printf(m, "max %lu\n",
7104 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7105 seq_printf(m, "fail %lu\n",
7106 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7107
7108 return 0;
7109}
7110
37e84351
VD
7111static struct cftype swap_files[] = {
7112 {
7113 .name = "swap.current",
7114 .flags = CFTYPE_NOT_ON_ROOT,
7115 .read_u64 = swap_current_read,
7116 },
7117 {
7118 .name = "swap.max",
7119 .flags = CFTYPE_NOT_ON_ROOT,
7120 .seq_show = swap_max_show,
7121 .write = swap_max_write,
7122 },
f3a53a3a
TH
7123 {
7124 .name = "swap.events",
7125 .flags = CFTYPE_NOT_ON_ROOT,
7126 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7127 .seq_show = swap_events_show,
7128 },
37e84351
VD
7129 { } /* terminate */
7130};
7131
21afa38e
JW
7132static struct cftype memsw_cgroup_files[] = {
7133 {
7134 .name = "memsw.usage_in_bytes",
7135 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7136 .read_u64 = mem_cgroup_read_u64,
7137 },
7138 {
7139 .name = "memsw.max_usage_in_bytes",
7140 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7141 .write = mem_cgroup_reset,
7142 .read_u64 = mem_cgroup_read_u64,
7143 },
7144 {
7145 .name = "memsw.limit_in_bytes",
7146 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7147 .write = mem_cgroup_write,
7148 .read_u64 = mem_cgroup_read_u64,
7149 },
7150 {
7151 .name = "memsw.failcnt",
7152 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7153 .write = mem_cgroup_reset,
7154 .read_u64 = mem_cgroup_read_u64,
7155 },
7156 { }, /* terminate */
7157};
7158
7159static int __init mem_cgroup_swap_init(void)
7160{
7161 if (!mem_cgroup_disabled() && really_do_swap_account) {
7162 do_swap_account = 1;
37e84351
VD
7163 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7164 swap_files));
21afa38e
JW
7165 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7166 memsw_cgroup_files));
7167 }
7168 return 0;
7169}
7170subsys_initcall(mem_cgroup_swap_init);
7171
7172#endif /* CONFIG_MEMCG_SWAP */