]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/memcontrol.c
scsi: aic7xxx: fix EISA support
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
71cd3113 103static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 114
bb4cc1a8
AM
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
ef8f2327 120struct mem_cgroup_tree_per_node {
bb4cc1a8 121 struct rb_root rb_root;
fa90b2fd 122 struct rb_node *rb_rightmost;
bb4cc1a8
AM
123 spinlock_t lock;
124};
125
bb4cc1a8
AM
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
9490ff27
KH
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
2e72b634 137
79bd9814
TH
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
3bc942f3 141struct mem_cgroup_event {
79bd9814 142 /*
59b6f873 143 * memcg which the event belongs to.
79bd9814 144 */
59b6f873 145 struct mem_cgroup *memcg;
79bd9814
TH
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
fba94807
TH
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
59b6f873 159 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 160 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
59b6f873 166 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 167 struct eventfd_ctx *eventfd);
79bd9814
TH
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
ac6424b9 174 wait_queue_entry_t wait;
79bd9814
TH
175 struct work_struct remove;
176};
177
c0ff4b85
R
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 180
7dc74be0
DN
181/* Stuffs for move charges at task migration. */
182/*
1dfab5ab 183 * Types of charges to be moved.
7dc74be0 184 */
1dfab5ab
JW
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 188
4ffef5fe
DN
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
b1dd693e 191 spinlock_t lock; /* for from, to */
264a0ae1 192 struct mm_struct *mm;
4ffef5fe
DN
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
1dfab5ab 195 unsigned long flags;
4ffef5fe 196 unsigned long precharge;
854ffa8d 197 unsigned long moved_charge;
483c30b5 198 unsigned long moved_swap;
8033b97c
DN
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
2bd9bb20 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
4ffef5fe 205
4e416953
BS
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
a0db00fc 210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 212
217bc319
KH
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 215 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
218 NR_CHARGE_TYPE,
219};
220
8c7c6e34 221/* for encoding cft->private value on file */
86ae53e1
GC
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
510fc4e1 226 _KMEM,
d55f90bf 227 _TCP,
86ae53e1
GC
228};
229
a0db00fc
KS
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 232#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
8c7c6e34 235
d9e9af93
TH
236static inline bool should_force_charge(void)
237{
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240}
241
70ddf637
AV
242/* Some nice accessors for the vmpressure. */
243struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244{
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248}
249
250struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251{
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253}
254
7ffc0edc
MH
255static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
256{
257 return (memcg == root_mem_cgroup);
258}
259
127424c8 260#ifndef CONFIG_SLOB
55007d84 261/*
f7ce3190 262 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
263 * The main reason for not using cgroup id for this:
264 * this works better in sparse environments, where we have a lot of memcgs,
265 * but only a few kmem-limited. Or also, if we have, for instance, 200
266 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
267 * 200 entry array for that.
55007d84 268 *
dbcf73e2
VD
269 * The current size of the caches array is stored in memcg_nr_cache_ids. It
270 * will double each time we have to increase it.
55007d84 271 */
dbcf73e2
VD
272static DEFINE_IDA(memcg_cache_ida);
273int memcg_nr_cache_ids;
749c5415 274
05257a1a
VD
275/* Protects memcg_nr_cache_ids */
276static DECLARE_RWSEM(memcg_cache_ids_sem);
277
278void memcg_get_cache_ids(void)
279{
280 down_read(&memcg_cache_ids_sem);
281}
282
283void memcg_put_cache_ids(void)
284{
285 up_read(&memcg_cache_ids_sem);
286}
287
55007d84
GC
288/*
289 * MIN_SIZE is different than 1, because we would like to avoid going through
290 * the alloc/free process all the time. In a small machine, 4 kmem-limited
291 * cgroups is a reasonable guess. In the future, it could be a parameter or
292 * tunable, but that is strictly not necessary.
293 *
b8627835 294 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
295 * this constant directly from cgroup, but it is understandable that this is
296 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 297 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
298 * increase ours as well if it increases.
299 */
300#define MEMCG_CACHES_MIN_SIZE 4
b8627835 301#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 302
d7f25f8a
GC
303/*
304 * A lot of the calls to the cache allocation functions are expected to be
305 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
306 * conditional to this static branch, we'll have to allow modules that does
307 * kmem_cache_alloc and the such to see this symbol as well
308 */
ef12947c 309DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 310EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 311
17cc4dfe
TH
312struct workqueue_struct *memcg_kmem_cache_wq;
313
127424c8 314#endif /* !CONFIG_SLOB */
a8964b9b 315
ad7fa852
TH
316/**
317 * mem_cgroup_css_from_page - css of the memcg associated with a page
318 * @page: page of interest
319 *
320 * If memcg is bound to the default hierarchy, css of the memcg associated
321 * with @page is returned. The returned css remains associated with @page
322 * until it is released.
323 *
324 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
325 * is returned.
ad7fa852
TH
326 */
327struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
328{
329 struct mem_cgroup *memcg;
330
ad7fa852
TH
331 memcg = page->mem_cgroup;
332
9e10a130 333 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
334 memcg = root_mem_cgroup;
335
ad7fa852
TH
336 return &memcg->css;
337}
338
2fc04524
VD
339/**
340 * page_cgroup_ino - return inode number of the memcg a page is charged to
341 * @page: the page
342 *
343 * Look up the closest online ancestor of the memory cgroup @page is charged to
344 * and return its inode number or 0 if @page is not charged to any cgroup. It
345 * is safe to call this function without holding a reference to @page.
346 *
347 * Note, this function is inherently racy, because there is nothing to prevent
348 * the cgroup inode from getting torn down and potentially reallocated a moment
349 * after page_cgroup_ino() returns, so it only should be used by callers that
350 * do not care (such as procfs interfaces).
351 */
352ino_t page_cgroup_ino(struct page *page)
353{
354 struct mem_cgroup *memcg;
355 unsigned long ino = 0;
356
357 rcu_read_lock();
358 memcg = READ_ONCE(page->mem_cgroup);
359 while (memcg && !(memcg->css.flags & CSS_ONLINE))
360 memcg = parent_mem_cgroup(memcg);
361 if (memcg)
362 ino = cgroup_ino(memcg->css.cgroup);
363 rcu_read_unlock();
364 return ino;
365}
366
ef8f2327
MG
367static struct mem_cgroup_per_node *
368mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 369{
97a6c37b 370 int nid = page_to_nid(page);
f64c3f54 371
ef8f2327 372 return memcg->nodeinfo[nid];
f64c3f54
BS
373}
374
ef8f2327
MG
375static struct mem_cgroup_tree_per_node *
376soft_limit_tree_node(int nid)
bb4cc1a8 377{
ef8f2327 378 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
379}
380
ef8f2327 381static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
382soft_limit_tree_from_page(struct page *page)
383{
384 int nid = page_to_nid(page);
bb4cc1a8 385
ef8f2327 386 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
387}
388
ef8f2327
MG
389static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
390 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 391 unsigned long new_usage_in_excess)
bb4cc1a8
AM
392{
393 struct rb_node **p = &mctz->rb_root.rb_node;
394 struct rb_node *parent = NULL;
ef8f2327 395 struct mem_cgroup_per_node *mz_node;
fa90b2fd 396 bool rightmost = true;
bb4cc1a8
AM
397
398 if (mz->on_tree)
399 return;
400
401 mz->usage_in_excess = new_usage_in_excess;
402 if (!mz->usage_in_excess)
403 return;
404 while (*p) {
405 parent = *p;
ef8f2327 406 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 407 tree_node);
fa90b2fd 408 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 409 p = &(*p)->rb_left;
fa90b2fd
DB
410 rightmost = false;
411 }
412
bb4cc1a8
AM
413 /*
414 * We can't avoid mem cgroups that are over their soft
415 * limit by the same amount
416 */
417 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
418 p = &(*p)->rb_right;
419 }
fa90b2fd
DB
420
421 if (rightmost)
422 mctz->rb_rightmost = &mz->tree_node;
423
bb4cc1a8
AM
424 rb_link_node(&mz->tree_node, parent, p);
425 rb_insert_color(&mz->tree_node, &mctz->rb_root);
426 mz->on_tree = true;
427}
428
ef8f2327
MG
429static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
430 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
431{
432 if (!mz->on_tree)
433 return;
fa90b2fd
DB
434
435 if (&mz->tree_node == mctz->rb_rightmost)
436 mctz->rb_rightmost = rb_prev(&mz->tree_node);
437
bb4cc1a8
AM
438 rb_erase(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = false;
440}
441
ef8f2327
MG
442static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
443 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 444{
0a31bc97
JW
445 unsigned long flags;
446
447 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 448 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 449 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
450}
451
3e32cb2e
JW
452static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
453{
454 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 455 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
456 unsigned long excess = 0;
457
458 if (nr_pages > soft_limit)
459 excess = nr_pages - soft_limit;
460
461 return excess;
462}
bb4cc1a8
AM
463
464static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
465{
3e32cb2e 466 unsigned long excess;
ef8f2327
MG
467 struct mem_cgroup_per_node *mz;
468 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 469
e231875b 470 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
471 if (!mctz)
472 return;
bb4cc1a8
AM
473 /*
474 * Necessary to update all ancestors when hierarchy is used.
475 * because their event counter is not touched.
476 */
477 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 478 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 479 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
480 /*
481 * We have to update the tree if mz is on RB-tree or
482 * mem is over its softlimit.
483 */
484 if (excess || mz->on_tree) {
0a31bc97
JW
485 unsigned long flags;
486
487 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
488 /* if on-tree, remove it */
489 if (mz->on_tree)
cf2c8127 490 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
491 /*
492 * Insert again. mz->usage_in_excess will be updated.
493 * If excess is 0, no tree ops.
494 */
cf2c8127 495 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 496 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
497 }
498 }
499}
500
501static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
502{
ef8f2327
MG
503 struct mem_cgroup_tree_per_node *mctz;
504 struct mem_cgroup_per_node *mz;
505 int nid;
bb4cc1a8 506
e231875b 507 for_each_node(nid) {
ef8f2327
MG
508 mz = mem_cgroup_nodeinfo(memcg, nid);
509 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
510 if (mctz)
511 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
512 }
513}
514
ef8f2327
MG
515static struct mem_cgroup_per_node *
516__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 517{
ef8f2327 518 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
519
520retry:
521 mz = NULL;
fa90b2fd 522 if (!mctz->rb_rightmost)
bb4cc1a8
AM
523 goto done; /* Nothing to reclaim from */
524
fa90b2fd
DB
525 mz = rb_entry(mctz->rb_rightmost,
526 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
527 /*
528 * Remove the node now but someone else can add it back,
529 * we will to add it back at the end of reclaim to its correct
530 * position in the tree.
531 */
cf2c8127 532 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 533 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 534 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
535 goto retry;
536done:
537 return mz;
538}
539
ef8f2327
MG
540static struct mem_cgroup_per_node *
541mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 542{
ef8f2327 543 struct mem_cgroup_per_node *mz;
bb4cc1a8 544
0a31bc97 545 spin_lock_irq(&mctz->lock);
bb4cc1a8 546 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 547 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
548 return mz;
549}
550
711d3d2c 551/*
484ebb3b
GT
552 * Return page count for single (non recursive) @memcg.
553 *
711d3d2c
KH
554 * Implementation Note: reading percpu statistics for memcg.
555 *
556 * Both of vmstat[] and percpu_counter has threshold and do periodic
557 * synchronization to implement "quick" read. There are trade-off between
558 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 559 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
560 *
561 * But this _read() function is used for user interface now. The user accounts
562 * memory usage by memory cgroup and he _always_ requires exact value because
563 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
564 * have to visit all online cpus and make sum. So, for now, unnecessary
565 * synchronization is not implemented. (just implemented for cpu hotplug)
566 *
567 * If there are kernel internal actions which can make use of some not-exact
568 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 569 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c 570 * implemented.
04fecbf5
MK
571 *
572 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
711d3d2c 573 */
c62b1a3b 574
ccda7f43 575static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
04fecbf5 576 int event)
e9f8974f
JW
577{
578 unsigned long val = 0;
579 int cpu;
580
733a572e 581 for_each_possible_cpu(cpu)
df0e53d0 582 val += per_cpu(memcg->stat->events[event], cpu);
e9f8974f
JW
583 return val;
584}
585
c0ff4b85 586static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 587 struct page *page,
f627c2f5 588 bool compound, int nr_pages)
d52aa412 589{
b2402857
KH
590 /*
591 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
592 * counted as CACHE even if it's on ANON LRU.
593 */
0a31bc97 594 if (PageAnon(page))
71cd3113 595 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
9a4caf1e 596 else {
71cd3113 597 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
9a4caf1e 598 if (PageSwapBacked(page))
71cd3113 599 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
9a4caf1e 600 }
55e462b0 601
f627c2f5
KS
602 if (compound) {
603 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
71cd3113 604 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
f627c2f5 605 }
b070e65c 606
e401f176
KH
607 /* pagein of a big page is an event. So, ignore page size */
608 if (nr_pages > 0)
df0e53d0 609 __this_cpu_inc(memcg->stat->events[PGPGIN]);
3751d604 610 else {
df0e53d0 611 __this_cpu_inc(memcg->stat->events[PGPGOUT]);
3751d604
KH
612 nr_pages = -nr_pages; /* for event */
613 }
e401f176 614
13114716 615 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
616}
617
0a6b76dd
VD
618unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
619 int nid, unsigned int lru_mask)
bb2a0de9 620{
b4536f0c 621 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 622 unsigned long nr = 0;
ef8f2327 623 enum lru_list lru;
889976db 624
e231875b 625 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 626
ef8f2327
MG
627 for_each_lru(lru) {
628 if (!(BIT(lru) & lru_mask))
629 continue;
b4536f0c 630 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
631 }
632 return nr;
889976db 633}
bb2a0de9 634
c0ff4b85 635static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 636 unsigned int lru_mask)
6d12e2d8 637{
e231875b 638 unsigned long nr = 0;
889976db 639 int nid;
6d12e2d8 640
31aaea4a 641 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
642 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
643 return nr;
d52aa412
KH
644}
645
f53d7ce3
JW
646static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
647 enum mem_cgroup_events_target target)
7a159cc9
JW
648{
649 unsigned long val, next;
650
13114716 651 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 652 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 653 /* from time_after() in jiffies.h */
6a1a8b80 654 if ((long)(next - val) < 0) {
f53d7ce3
JW
655 switch (target) {
656 case MEM_CGROUP_TARGET_THRESH:
657 next = val + THRESHOLDS_EVENTS_TARGET;
658 break;
bb4cc1a8
AM
659 case MEM_CGROUP_TARGET_SOFTLIMIT:
660 next = val + SOFTLIMIT_EVENTS_TARGET;
661 break;
f53d7ce3
JW
662 case MEM_CGROUP_TARGET_NUMAINFO:
663 next = val + NUMAINFO_EVENTS_TARGET;
664 break;
665 default:
666 break;
667 }
668 __this_cpu_write(memcg->stat->targets[target], next);
669 return true;
7a159cc9 670 }
f53d7ce3 671 return false;
d2265e6f
KH
672}
673
674/*
675 * Check events in order.
676 *
677 */
c0ff4b85 678static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
679{
680 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
681 if (unlikely(mem_cgroup_event_ratelimit(memcg,
682 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 683 bool do_softlimit;
82b3f2a7 684 bool do_numainfo __maybe_unused;
f53d7ce3 685
bb4cc1a8
AM
686 do_softlimit = mem_cgroup_event_ratelimit(memcg,
687 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
688#if MAX_NUMNODES > 1
689 do_numainfo = mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_NUMAINFO);
691#endif
c0ff4b85 692 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
693 if (unlikely(do_softlimit))
694 mem_cgroup_update_tree(memcg, page);
453a9bf3 695#if MAX_NUMNODES > 1
f53d7ce3 696 if (unlikely(do_numainfo))
c0ff4b85 697 atomic_inc(&memcg->numainfo_events);
453a9bf3 698#endif
0a31bc97 699 }
d2265e6f
KH
700}
701
cf475ad2 702struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 703{
31a78f23
BS
704 /*
705 * mm_update_next_owner() may clear mm->owner to NULL
706 * if it races with swapoff, page migration, etc.
707 * So this can be called with p == NULL.
708 */
709 if (unlikely(!p))
710 return NULL;
711
073219e9 712 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 713}
33398cf2 714EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 715
df381975 716static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 717{
c0ff4b85 718 struct mem_cgroup *memcg = NULL;
0b7f569e 719
54595fe2
KH
720 rcu_read_lock();
721 do {
6f6acb00
MH
722 /*
723 * Page cache insertions can happen withou an
724 * actual mm context, e.g. during disk probing
725 * on boot, loopback IO, acct() writes etc.
726 */
727 if (unlikely(!mm))
df381975 728 memcg = root_mem_cgroup;
6f6acb00
MH
729 else {
730 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
731 if (unlikely(!memcg))
732 memcg = root_mem_cgroup;
733 }
ec903c0c 734 } while (!css_tryget_online(&memcg->css));
54595fe2 735 rcu_read_unlock();
c0ff4b85 736 return memcg;
54595fe2
KH
737}
738
5660048c
JW
739/**
740 * mem_cgroup_iter - iterate over memory cgroup hierarchy
741 * @root: hierarchy root
742 * @prev: previously returned memcg, NULL on first invocation
743 * @reclaim: cookie for shared reclaim walks, NULL for full walks
744 *
745 * Returns references to children of the hierarchy below @root, or
746 * @root itself, or %NULL after a full round-trip.
747 *
748 * Caller must pass the return value in @prev on subsequent
749 * invocations for reference counting, or use mem_cgroup_iter_break()
750 * to cancel a hierarchy walk before the round-trip is complete.
751 *
752 * Reclaimers can specify a zone and a priority level in @reclaim to
753 * divide up the memcgs in the hierarchy among all concurrent
754 * reclaimers operating on the same zone and priority.
755 */
694fbc0f 756struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 757 struct mem_cgroup *prev,
694fbc0f 758 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 759{
33398cf2 760 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 761 struct cgroup_subsys_state *css = NULL;
9f3a0d09 762 struct mem_cgroup *memcg = NULL;
5ac8fb31 763 struct mem_cgroup *pos = NULL;
711d3d2c 764
694fbc0f
AM
765 if (mem_cgroup_disabled())
766 return NULL;
5660048c 767
9f3a0d09
JW
768 if (!root)
769 root = root_mem_cgroup;
7d74b06f 770
9f3a0d09 771 if (prev && !reclaim)
5ac8fb31 772 pos = prev;
14067bb3 773
9f3a0d09
JW
774 if (!root->use_hierarchy && root != root_mem_cgroup) {
775 if (prev)
5ac8fb31 776 goto out;
694fbc0f 777 return root;
9f3a0d09 778 }
14067bb3 779
542f85f9 780 rcu_read_lock();
5f578161 781
5ac8fb31 782 if (reclaim) {
ef8f2327 783 struct mem_cgroup_per_node *mz;
5ac8fb31 784
ef8f2327 785 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
786 iter = &mz->iter[reclaim->priority];
787
788 if (prev && reclaim->generation != iter->generation)
789 goto out_unlock;
790
6df38689 791 while (1) {
4db0c3c2 792 pos = READ_ONCE(iter->position);
6df38689
VD
793 if (!pos || css_tryget(&pos->css))
794 break;
5ac8fb31 795 /*
6df38689
VD
796 * css reference reached zero, so iter->position will
797 * be cleared by ->css_released. However, we should not
798 * rely on this happening soon, because ->css_released
799 * is called from a work queue, and by busy-waiting we
800 * might block it. So we clear iter->position right
801 * away.
5ac8fb31 802 */
6df38689
VD
803 (void)cmpxchg(&iter->position, pos, NULL);
804 }
5ac8fb31
JW
805 }
806
807 if (pos)
808 css = &pos->css;
809
810 for (;;) {
811 css = css_next_descendant_pre(css, &root->css);
812 if (!css) {
813 /*
814 * Reclaimers share the hierarchy walk, and a
815 * new one might jump in right at the end of
816 * the hierarchy - make sure they see at least
817 * one group and restart from the beginning.
818 */
819 if (!prev)
820 continue;
821 break;
527a5ec9 822 }
7d74b06f 823
5ac8fb31
JW
824 /*
825 * Verify the css and acquire a reference. The root
826 * is provided by the caller, so we know it's alive
827 * and kicking, and don't take an extra reference.
828 */
829 memcg = mem_cgroup_from_css(css);
14067bb3 830
5ac8fb31
JW
831 if (css == &root->css)
832 break;
14067bb3 833
0b8f73e1
JW
834 if (css_tryget(css))
835 break;
9f3a0d09 836
5ac8fb31 837 memcg = NULL;
9f3a0d09 838 }
5ac8fb31
JW
839
840 if (reclaim) {
5ac8fb31 841 /*
6df38689
VD
842 * The position could have already been updated by a competing
843 * thread, so check that the value hasn't changed since we read
844 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 845 */
6df38689
VD
846 (void)cmpxchg(&iter->position, pos, memcg);
847
5ac8fb31
JW
848 if (pos)
849 css_put(&pos->css);
850
851 if (!memcg)
852 iter->generation++;
853 else if (!prev)
854 reclaim->generation = iter->generation;
9f3a0d09 855 }
5ac8fb31 856
542f85f9
MH
857out_unlock:
858 rcu_read_unlock();
5ac8fb31 859out:
c40046f3
MH
860 if (prev && prev != root)
861 css_put(&prev->css);
862
9f3a0d09 863 return memcg;
14067bb3 864}
7d74b06f 865
5660048c
JW
866/**
867 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
868 * @root: hierarchy root
869 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
870 */
871void mem_cgroup_iter_break(struct mem_cgroup *root,
872 struct mem_cgroup *prev)
9f3a0d09
JW
873{
874 if (!root)
875 root = root_mem_cgroup;
876 if (prev && prev != root)
877 css_put(&prev->css);
878}
7d74b06f 879
6df38689
VD
880static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
881{
882 struct mem_cgroup *memcg = dead_memcg;
883 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
884 struct mem_cgroup_per_node *mz;
885 int nid;
6df38689
VD
886 int i;
887
62ec8032 888 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 889 for_each_node(nid) {
ef8f2327
MG
890 mz = mem_cgroup_nodeinfo(memcg, nid);
891 for (i = 0; i <= DEF_PRIORITY; i++) {
892 iter = &mz->iter[i];
893 cmpxchg(&iter->position,
894 dead_memcg, NULL);
6df38689
VD
895 }
896 }
897 }
898}
899
9f3a0d09
JW
900/*
901 * Iteration constructs for visiting all cgroups (under a tree). If
902 * loops are exited prematurely (break), mem_cgroup_iter_break() must
903 * be used for reference counting.
904 */
905#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 906 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 907 iter != NULL; \
527a5ec9 908 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 909
9f3a0d09 910#define for_each_mem_cgroup(iter) \
527a5ec9 911 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 912 iter != NULL; \
527a5ec9 913 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 914
7c5f64f8
VD
915/**
916 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
917 * @memcg: hierarchy root
918 * @fn: function to call for each task
919 * @arg: argument passed to @fn
920 *
921 * This function iterates over tasks attached to @memcg or to any of its
922 * descendants and calls @fn for each task. If @fn returns a non-zero
923 * value, the function breaks the iteration loop and returns the value.
924 * Otherwise, it will iterate over all tasks and return 0.
925 *
926 * This function must not be called for the root memory cgroup.
927 */
928int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
929 int (*fn)(struct task_struct *, void *), void *arg)
930{
931 struct mem_cgroup *iter;
932 int ret = 0;
933
934 BUG_ON(memcg == root_mem_cgroup);
935
936 for_each_mem_cgroup_tree(iter, memcg) {
937 struct css_task_iter it;
938 struct task_struct *task;
939
bc2fb7ed 940 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
941 while (!ret && (task = css_task_iter_next(&it)))
942 ret = fn(task, arg);
943 css_task_iter_end(&it);
944 if (ret) {
945 mem_cgroup_iter_break(memcg, iter);
946 break;
947 }
948 }
949 return ret;
950}
951
925b7673 952/**
dfe0e773 953 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 954 * @page: the page
fa9add64 955 * @zone: zone of the page
dfe0e773
JW
956 *
957 * This function is only safe when following the LRU page isolation
958 * and putback protocol: the LRU lock must be held, and the page must
959 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 960 */
599d0c95 961struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 962{
ef8f2327 963 struct mem_cgroup_per_node *mz;
925b7673 964 struct mem_cgroup *memcg;
bea8c150 965 struct lruvec *lruvec;
6d12e2d8 966
bea8c150 967 if (mem_cgroup_disabled()) {
599d0c95 968 lruvec = &pgdat->lruvec;
bea8c150
HD
969 goto out;
970 }
925b7673 971
1306a85a 972 memcg = page->mem_cgroup;
7512102c 973 /*
dfe0e773 974 * Swapcache readahead pages are added to the LRU - and
29833315 975 * possibly migrated - before they are charged.
7512102c 976 */
29833315
JW
977 if (!memcg)
978 memcg = root_mem_cgroup;
7512102c 979
ef8f2327 980 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
981 lruvec = &mz->lruvec;
982out:
983 /*
984 * Since a node can be onlined after the mem_cgroup was created,
985 * we have to be prepared to initialize lruvec->zone here;
986 * and if offlined then reonlined, we need to reinitialize it.
987 */
599d0c95
MG
988 if (unlikely(lruvec->pgdat != pgdat))
989 lruvec->pgdat = pgdat;
bea8c150 990 return lruvec;
08e552c6 991}
b69408e8 992
925b7673 993/**
fa9add64
HD
994 * mem_cgroup_update_lru_size - account for adding or removing an lru page
995 * @lruvec: mem_cgroup per zone lru vector
996 * @lru: index of lru list the page is sitting on
b4536f0c 997 * @zid: zone id of the accounted pages
fa9add64 998 * @nr_pages: positive when adding or negative when removing
925b7673 999 *
ca707239
HD
1000 * This function must be called under lru_lock, just before a page is added
1001 * to or just after a page is removed from an lru list (that ordering being
1002 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1003 */
fa9add64 1004void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1005 int zid, int nr_pages)
3f58a829 1006{
ef8f2327 1007 struct mem_cgroup_per_node *mz;
fa9add64 1008 unsigned long *lru_size;
ca707239 1009 long size;
3f58a829
MK
1010
1011 if (mem_cgroup_disabled())
1012 return;
1013
ef8f2327 1014 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1015 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1016
1017 if (nr_pages < 0)
1018 *lru_size += nr_pages;
1019
1020 size = *lru_size;
b4536f0c
MH
1021 if (WARN_ONCE(size < 0,
1022 "%s(%p, %d, %d): lru_size %ld\n",
1023 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1024 VM_BUG_ON(1);
1025 *lru_size = 0;
1026 }
1027
1028 if (nr_pages > 0)
1029 *lru_size += nr_pages;
08e552c6 1030}
544122e5 1031
2314b42d 1032bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1033{
2314b42d 1034 struct mem_cgroup *task_memcg;
158e0a2d 1035 struct task_struct *p;
ffbdccf5 1036 bool ret;
4c4a2214 1037
158e0a2d 1038 p = find_lock_task_mm(task);
de077d22 1039 if (p) {
2314b42d 1040 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1041 task_unlock(p);
1042 } else {
1043 /*
1044 * All threads may have already detached their mm's, but the oom
1045 * killer still needs to detect if they have already been oom
1046 * killed to prevent needlessly killing additional tasks.
1047 */
ffbdccf5 1048 rcu_read_lock();
2314b42d
JW
1049 task_memcg = mem_cgroup_from_task(task);
1050 css_get(&task_memcg->css);
ffbdccf5 1051 rcu_read_unlock();
de077d22 1052 }
2314b42d
JW
1053 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1054 css_put(&task_memcg->css);
4c4a2214
DR
1055 return ret;
1056}
1057
19942822 1058/**
9d11ea9f 1059 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1060 * @memcg: the memory cgroup
19942822 1061 *
9d11ea9f 1062 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1063 * pages.
19942822 1064 */
c0ff4b85 1065static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1066{
3e32cb2e
JW
1067 unsigned long margin = 0;
1068 unsigned long count;
1069 unsigned long limit;
9d11ea9f 1070
3e32cb2e 1071 count = page_counter_read(&memcg->memory);
4db0c3c2 1072 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1073 if (count < limit)
1074 margin = limit - count;
1075
7941d214 1076 if (do_memsw_account()) {
3e32cb2e 1077 count = page_counter_read(&memcg->memsw);
4db0c3c2 1078 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1079 if (count <= limit)
1080 margin = min(margin, limit - count);
cbedbac3
LR
1081 else
1082 margin = 0;
3e32cb2e
JW
1083 }
1084
1085 return margin;
19942822
JW
1086}
1087
32047e2a 1088/*
bdcbb659 1089 * A routine for checking "mem" is under move_account() or not.
32047e2a 1090 *
bdcbb659
QH
1091 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1092 * moving cgroups. This is for waiting at high-memory pressure
1093 * caused by "move".
32047e2a 1094 */
c0ff4b85 1095static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1096{
2bd9bb20
KH
1097 struct mem_cgroup *from;
1098 struct mem_cgroup *to;
4b534334 1099 bool ret = false;
2bd9bb20
KH
1100 /*
1101 * Unlike task_move routines, we access mc.to, mc.from not under
1102 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1103 */
1104 spin_lock(&mc.lock);
1105 from = mc.from;
1106 to = mc.to;
1107 if (!from)
1108 goto unlock;
3e92041d 1109
2314b42d
JW
1110 ret = mem_cgroup_is_descendant(from, memcg) ||
1111 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1112unlock:
1113 spin_unlock(&mc.lock);
4b534334
KH
1114 return ret;
1115}
1116
c0ff4b85 1117static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1118{
1119 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1120 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1121 DEFINE_WAIT(wait);
1122 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1123 /* moving charge context might have finished. */
1124 if (mc.moving_task)
1125 schedule();
1126 finish_wait(&mc.waitq, &wait);
1127 return true;
1128 }
1129 }
1130 return false;
1131}
1132
71cd3113
JW
1133unsigned int memcg1_stats[] = {
1134 MEMCG_CACHE,
1135 MEMCG_RSS,
1136 MEMCG_RSS_HUGE,
1137 NR_SHMEM,
1138 NR_FILE_MAPPED,
1139 NR_FILE_DIRTY,
1140 NR_WRITEBACK,
1141 MEMCG_SWAP,
1142};
1143
1144static const char *const memcg1_stat_names[] = {
1145 "cache",
1146 "rss",
1147 "rss_huge",
1148 "shmem",
1149 "mapped_file",
1150 "dirty",
1151 "writeback",
1152 "swap",
1153};
1154
58cf188e 1155#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1156/**
58cf188e 1157 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1158 * @memcg: The memory cgroup that went over limit
1159 * @p: Task that is going to be killed
1160 *
1161 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1162 * enabled
1163 */
1164void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1165{
58cf188e
SZ
1166 struct mem_cgroup *iter;
1167 unsigned int i;
e222432b 1168
e222432b
BS
1169 rcu_read_lock();
1170
2415b9f5
BV
1171 if (p) {
1172 pr_info("Task in ");
1173 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1174 pr_cont(" killed as a result of limit of ");
1175 } else {
1176 pr_info("Memory limit reached of cgroup ");
1177 }
1178
e61734c5 1179 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1180 pr_cont("\n");
e222432b 1181
e222432b
BS
1182 rcu_read_unlock();
1183
3e32cb2e
JW
1184 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1185 K((u64)page_counter_read(&memcg->memory)),
1186 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1187 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1188 K((u64)page_counter_read(&memcg->memsw)),
1189 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1190 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1191 K((u64)page_counter_read(&memcg->kmem)),
1192 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1193
1194 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1195 pr_info("Memory cgroup stats for ");
1196 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1197 pr_cont(":");
1198
71cd3113
JW
1199 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1200 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1201 continue;
71cd3113 1202 pr_cont(" %s:%luKB", memcg1_stat_names[i],
ccda7f43 1203 K(memcg_page_state(iter, memcg1_stats[i])));
58cf188e
SZ
1204 }
1205
1206 for (i = 0; i < NR_LRU_LISTS; i++)
1207 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1208 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1209
1210 pr_cont("\n");
1211 }
e222432b
BS
1212}
1213
81d39c20
KH
1214/*
1215 * This function returns the number of memcg under hierarchy tree. Returns
1216 * 1(self count) if no children.
1217 */
c0ff4b85 1218static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1219{
1220 int num = 0;
7d74b06f
KH
1221 struct mem_cgroup *iter;
1222
c0ff4b85 1223 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1224 num++;
81d39c20
KH
1225 return num;
1226}
1227
a63d83f4
DR
1228/*
1229 * Return the memory (and swap, if configured) limit for a memcg.
1230 */
7c5f64f8 1231unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1232{
3e32cb2e 1233 unsigned long limit;
f3e8eb70 1234
3e32cb2e 1235 limit = memcg->memory.limit;
9a5a8f19 1236 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1237 unsigned long memsw_limit;
37e84351 1238 unsigned long swap_limit;
9a5a8f19 1239
3e32cb2e 1240 memsw_limit = memcg->memsw.limit;
37e84351
VD
1241 swap_limit = memcg->swap.limit;
1242 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1243 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1244 }
9a5a8f19 1245 return limit;
a63d83f4
DR
1246}
1247
b6e6edcf 1248static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1249 int order)
9cbb78bb 1250{
6e0fc46d
DR
1251 struct oom_control oc = {
1252 .zonelist = NULL,
1253 .nodemask = NULL,
2a966b77 1254 .memcg = memcg,
6e0fc46d
DR
1255 .gfp_mask = gfp_mask,
1256 .order = order,
6e0fc46d 1257 };
7c5f64f8 1258 bool ret;
9cbb78bb 1259
d9e9af93
TH
1260 if (mutex_lock_killable(&oom_lock))
1261 return true;
1262 /*
1263 * A few threads which were not waiting at mutex_lock_killable() can
1264 * fail to bail out. Therefore, check again after holding oom_lock.
1265 */
1266 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1267 mutex_unlock(&oom_lock);
7c5f64f8 1268 return ret;
9cbb78bb
DR
1269}
1270
ae6e71d3
MC
1271#if MAX_NUMNODES > 1
1272
4d0c066d
KH
1273/**
1274 * test_mem_cgroup_node_reclaimable
dad7557e 1275 * @memcg: the target memcg
4d0c066d
KH
1276 * @nid: the node ID to be checked.
1277 * @noswap : specify true here if the user wants flle only information.
1278 *
1279 * This function returns whether the specified memcg contains any
1280 * reclaimable pages on a node. Returns true if there are any reclaimable
1281 * pages in the node.
1282 */
c0ff4b85 1283static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1284 int nid, bool noswap)
1285{
c0ff4b85 1286 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1287 return true;
1288 if (noswap || !total_swap_pages)
1289 return false;
c0ff4b85 1290 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1291 return true;
1292 return false;
1293
1294}
889976db
YH
1295
1296/*
1297 * Always updating the nodemask is not very good - even if we have an empty
1298 * list or the wrong list here, we can start from some node and traverse all
1299 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1300 *
1301 */
c0ff4b85 1302static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1303{
1304 int nid;
453a9bf3
KH
1305 /*
1306 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1307 * pagein/pageout changes since the last update.
1308 */
c0ff4b85 1309 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1310 return;
c0ff4b85 1311 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1312 return;
1313
889976db 1314 /* make a nodemask where this memcg uses memory from */
31aaea4a 1315 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1316
31aaea4a 1317 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1318
c0ff4b85
R
1319 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1320 node_clear(nid, memcg->scan_nodes);
889976db 1321 }
453a9bf3 1322
c0ff4b85
R
1323 atomic_set(&memcg->numainfo_events, 0);
1324 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1325}
1326
1327/*
1328 * Selecting a node where we start reclaim from. Because what we need is just
1329 * reducing usage counter, start from anywhere is O,K. Considering
1330 * memory reclaim from current node, there are pros. and cons.
1331 *
1332 * Freeing memory from current node means freeing memory from a node which
1333 * we'll use or we've used. So, it may make LRU bad. And if several threads
1334 * hit limits, it will see a contention on a node. But freeing from remote
1335 * node means more costs for memory reclaim because of memory latency.
1336 *
1337 * Now, we use round-robin. Better algorithm is welcomed.
1338 */
c0ff4b85 1339int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1340{
1341 int node;
1342
c0ff4b85
R
1343 mem_cgroup_may_update_nodemask(memcg);
1344 node = memcg->last_scanned_node;
889976db 1345
0edaf86c 1346 node = next_node_in(node, memcg->scan_nodes);
889976db 1347 /*
fda3d69b
MH
1348 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1349 * last time it really checked all the LRUs due to rate limiting.
1350 * Fallback to the current node in that case for simplicity.
889976db
YH
1351 */
1352 if (unlikely(node == MAX_NUMNODES))
1353 node = numa_node_id();
1354
c0ff4b85 1355 memcg->last_scanned_node = node;
889976db
YH
1356 return node;
1357}
889976db 1358#else
c0ff4b85 1359int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1360{
1361 return 0;
1362}
1363#endif
1364
0608f43d 1365static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1366 pg_data_t *pgdat,
0608f43d
AM
1367 gfp_t gfp_mask,
1368 unsigned long *total_scanned)
1369{
1370 struct mem_cgroup *victim = NULL;
1371 int total = 0;
1372 int loop = 0;
1373 unsigned long excess;
1374 unsigned long nr_scanned;
1375 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1376 .pgdat = pgdat,
0608f43d
AM
1377 .priority = 0,
1378 };
1379
3e32cb2e 1380 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1381
1382 while (1) {
1383 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1384 if (!victim) {
1385 loop++;
1386 if (loop >= 2) {
1387 /*
1388 * If we have not been able to reclaim
1389 * anything, it might because there are
1390 * no reclaimable pages under this hierarchy
1391 */
1392 if (!total)
1393 break;
1394 /*
1395 * We want to do more targeted reclaim.
1396 * excess >> 2 is not to excessive so as to
1397 * reclaim too much, nor too less that we keep
1398 * coming back to reclaim from this cgroup
1399 */
1400 if (total >= (excess >> 2) ||
1401 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1402 break;
1403 }
1404 continue;
1405 }
a9dd0a83 1406 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1407 pgdat, &nr_scanned);
0608f43d 1408 *total_scanned += nr_scanned;
3e32cb2e 1409 if (!soft_limit_excess(root_memcg))
0608f43d 1410 break;
6d61ef40 1411 }
0608f43d
AM
1412 mem_cgroup_iter_break(root_memcg, victim);
1413 return total;
6d61ef40
BS
1414}
1415
0056f4e6
JW
1416#ifdef CONFIG_LOCKDEP
1417static struct lockdep_map memcg_oom_lock_dep_map = {
1418 .name = "memcg_oom_lock",
1419};
1420#endif
1421
fb2a6fc5
JW
1422static DEFINE_SPINLOCK(memcg_oom_lock);
1423
867578cb
KH
1424/*
1425 * Check OOM-Killer is already running under our hierarchy.
1426 * If someone is running, return false.
1427 */
fb2a6fc5 1428static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1429{
79dfdacc 1430 struct mem_cgroup *iter, *failed = NULL;
a636b327 1431
fb2a6fc5
JW
1432 spin_lock(&memcg_oom_lock);
1433
9f3a0d09 1434 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1435 if (iter->oom_lock) {
79dfdacc
MH
1436 /*
1437 * this subtree of our hierarchy is already locked
1438 * so we cannot give a lock.
1439 */
79dfdacc 1440 failed = iter;
9f3a0d09
JW
1441 mem_cgroup_iter_break(memcg, iter);
1442 break;
23751be0
JW
1443 } else
1444 iter->oom_lock = true;
7d74b06f 1445 }
867578cb 1446
fb2a6fc5
JW
1447 if (failed) {
1448 /*
1449 * OK, we failed to lock the whole subtree so we have
1450 * to clean up what we set up to the failing subtree
1451 */
1452 for_each_mem_cgroup_tree(iter, memcg) {
1453 if (iter == failed) {
1454 mem_cgroup_iter_break(memcg, iter);
1455 break;
1456 }
1457 iter->oom_lock = false;
79dfdacc 1458 }
0056f4e6
JW
1459 } else
1460 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1461
1462 spin_unlock(&memcg_oom_lock);
1463
1464 return !failed;
a636b327 1465}
0b7f569e 1466
fb2a6fc5 1467static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1468{
7d74b06f
KH
1469 struct mem_cgroup *iter;
1470
fb2a6fc5 1471 spin_lock(&memcg_oom_lock);
0056f4e6 1472 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1473 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1474 iter->oom_lock = false;
fb2a6fc5 1475 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1476}
1477
c0ff4b85 1478static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1479{
1480 struct mem_cgroup *iter;
1481
c2b42d3c 1482 spin_lock(&memcg_oom_lock);
c0ff4b85 1483 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1484 iter->under_oom++;
1485 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1486}
1487
c0ff4b85 1488static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1489{
1490 struct mem_cgroup *iter;
1491
867578cb
KH
1492 /*
1493 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1494 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1495 */
c2b42d3c 1496 spin_lock(&memcg_oom_lock);
c0ff4b85 1497 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1498 if (iter->under_oom > 0)
1499 iter->under_oom--;
1500 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1501}
1502
867578cb
KH
1503static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1504
dc98df5a 1505struct oom_wait_info {
d79154bb 1506 struct mem_cgroup *memcg;
ac6424b9 1507 wait_queue_entry_t wait;
dc98df5a
KH
1508};
1509
ac6424b9 1510static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1511 unsigned mode, int sync, void *arg)
1512{
d79154bb
HD
1513 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1514 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1515 struct oom_wait_info *oom_wait_info;
1516
1517 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1518 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1519
2314b42d
JW
1520 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1521 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1522 return 0;
dc98df5a
KH
1523 return autoremove_wake_function(wait, mode, sync, arg);
1524}
1525
c0ff4b85 1526static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1527{
c2b42d3c
TH
1528 /*
1529 * For the following lockless ->under_oom test, the only required
1530 * guarantee is that it must see the state asserted by an OOM when
1531 * this function is called as a result of userland actions
1532 * triggered by the notification of the OOM. This is trivially
1533 * achieved by invoking mem_cgroup_mark_under_oom() before
1534 * triggering notification.
1535 */
1536 if (memcg && memcg->under_oom)
f4b90b70 1537 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1538}
1539
3812c8c8 1540static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1541{
d0db7afa 1542 if (!current->memcg_may_oom)
3812c8c8 1543 return;
867578cb 1544 /*
49426420
JW
1545 * We are in the middle of the charge context here, so we
1546 * don't want to block when potentially sitting on a callstack
1547 * that holds all kinds of filesystem and mm locks.
1548 *
1549 * Also, the caller may handle a failed allocation gracefully
1550 * (like optional page cache readahead) and so an OOM killer
1551 * invocation might not even be necessary.
1552 *
1553 * That's why we don't do anything here except remember the
1554 * OOM context and then deal with it at the end of the page
1555 * fault when the stack is unwound, the locks are released,
1556 * and when we know whether the fault was overall successful.
867578cb 1557 */
49426420 1558 css_get(&memcg->css);
626ebc41
TH
1559 current->memcg_in_oom = memcg;
1560 current->memcg_oom_gfp_mask = mask;
1561 current->memcg_oom_order = order;
3812c8c8
JW
1562}
1563
1564/**
1565 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1566 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1567 *
49426420
JW
1568 * This has to be called at the end of a page fault if the memcg OOM
1569 * handler was enabled.
3812c8c8 1570 *
49426420 1571 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1572 * sleep on a waitqueue until the userspace task resolves the
1573 * situation. Sleeping directly in the charge context with all kinds
1574 * of locks held is not a good idea, instead we remember an OOM state
1575 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1576 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1577 *
1578 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1579 * completed, %false otherwise.
3812c8c8 1580 */
49426420 1581bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1582{
626ebc41 1583 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1584 struct oom_wait_info owait;
49426420 1585 bool locked;
3812c8c8
JW
1586
1587 /* OOM is global, do not handle */
3812c8c8 1588 if (!memcg)
49426420 1589 return false;
3812c8c8 1590
7c5f64f8 1591 if (!handle)
49426420 1592 goto cleanup;
3812c8c8
JW
1593
1594 owait.memcg = memcg;
1595 owait.wait.flags = 0;
1596 owait.wait.func = memcg_oom_wake_function;
1597 owait.wait.private = current;
2055da97 1598 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1599
3812c8c8 1600 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1601 mem_cgroup_mark_under_oom(memcg);
1602
1603 locked = mem_cgroup_oom_trylock(memcg);
1604
1605 if (locked)
1606 mem_cgroup_oom_notify(memcg);
1607
1608 if (locked && !memcg->oom_kill_disable) {
1609 mem_cgroup_unmark_under_oom(memcg);
1610 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1611 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1612 current->memcg_oom_order);
49426420 1613 } else {
3812c8c8 1614 schedule();
49426420
JW
1615 mem_cgroup_unmark_under_oom(memcg);
1616 finish_wait(&memcg_oom_waitq, &owait.wait);
1617 }
1618
1619 if (locked) {
fb2a6fc5
JW
1620 mem_cgroup_oom_unlock(memcg);
1621 /*
1622 * There is no guarantee that an OOM-lock contender
1623 * sees the wakeups triggered by the OOM kill
1624 * uncharges. Wake any sleepers explicitely.
1625 */
1626 memcg_oom_recover(memcg);
1627 }
49426420 1628cleanup:
626ebc41 1629 current->memcg_in_oom = NULL;
3812c8c8 1630 css_put(&memcg->css);
867578cb 1631 return true;
0b7f569e
KH
1632}
1633
d7365e78 1634/**
81f8c3a4
JW
1635 * lock_page_memcg - lock a page->mem_cgroup binding
1636 * @page: the page
32047e2a 1637 *
81f8c3a4 1638 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1639 * another cgroup.
1640 *
1641 * It ensures lifetime of the returned memcg. Caller is responsible
1642 * for the lifetime of the page; __unlock_page_memcg() is available
1643 * when @page might get freed inside the locked section.
d69b042f 1644 */
739f79fc 1645struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1646{
1647 struct mem_cgroup *memcg;
6de22619 1648 unsigned long flags;
89c06bd5 1649
6de22619
JW
1650 /*
1651 * The RCU lock is held throughout the transaction. The fast
1652 * path can get away without acquiring the memcg->move_lock
1653 * because page moving starts with an RCU grace period.
739f79fc
JW
1654 *
1655 * The RCU lock also protects the memcg from being freed when
1656 * the page state that is going to change is the only thing
1657 * preventing the page itself from being freed. E.g. writeback
1658 * doesn't hold a page reference and relies on PG_writeback to
1659 * keep off truncation, migration and so forth.
1660 */
d7365e78
JW
1661 rcu_read_lock();
1662
1663 if (mem_cgroup_disabled())
739f79fc 1664 return NULL;
89c06bd5 1665again:
1306a85a 1666 memcg = page->mem_cgroup;
29833315 1667 if (unlikely(!memcg))
739f79fc 1668 return NULL;
d7365e78 1669
bdcbb659 1670 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1671 return memcg;
89c06bd5 1672
6de22619 1673 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1674 if (memcg != page->mem_cgroup) {
6de22619 1675 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1676 goto again;
1677 }
6de22619
JW
1678
1679 /*
1680 * When charge migration first begins, we can have locked and
1681 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1682 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1683 */
1684 memcg->move_lock_task = current;
1685 memcg->move_lock_flags = flags;
d7365e78 1686
739f79fc 1687 return memcg;
89c06bd5 1688}
81f8c3a4 1689EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1690
d7365e78 1691/**
739f79fc
JW
1692 * __unlock_page_memcg - unlock and unpin a memcg
1693 * @memcg: the memcg
1694 *
1695 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1696 */
739f79fc 1697void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1698{
6de22619
JW
1699 if (memcg && memcg->move_lock_task == current) {
1700 unsigned long flags = memcg->move_lock_flags;
1701
1702 memcg->move_lock_task = NULL;
1703 memcg->move_lock_flags = 0;
1704
1705 spin_unlock_irqrestore(&memcg->move_lock, flags);
1706 }
89c06bd5 1707
d7365e78 1708 rcu_read_unlock();
89c06bd5 1709}
739f79fc
JW
1710
1711/**
1712 * unlock_page_memcg - unlock a page->mem_cgroup binding
1713 * @page: the page
1714 */
1715void unlock_page_memcg(struct page *page)
1716{
1717 __unlock_page_memcg(page->mem_cgroup);
1718}
81f8c3a4 1719EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1720
cdec2e42
KH
1721/*
1722 * size of first charge trial. "32" comes from vmscan.c's magic value.
1723 * TODO: maybe necessary to use big numbers in big irons.
1724 */
7ec99d62 1725#define CHARGE_BATCH 32U
cdec2e42
KH
1726struct memcg_stock_pcp {
1727 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1728 unsigned int nr_pages;
cdec2e42 1729 struct work_struct work;
26fe6168 1730 unsigned long flags;
a0db00fc 1731#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1732};
1733static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1734static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1735
a0956d54
SS
1736/**
1737 * consume_stock: Try to consume stocked charge on this cpu.
1738 * @memcg: memcg to consume from.
1739 * @nr_pages: how many pages to charge.
1740 *
1741 * The charges will only happen if @memcg matches the current cpu's memcg
1742 * stock, and at least @nr_pages are available in that stock. Failure to
1743 * service an allocation will refill the stock.
1744 *
1745 * returns true if successful, false otherwise.
cdec2e42 1746 */
a0956d54 1747static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1748{
1749 struct memcg_stock_pcp *stock;
db2ba40c 1750 unsigned long flags;
3e32cb2e 1751 bool ret = false;
cdec2e42 1752
a0956d54 1753 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1754 return ret;
a0956d54 1755
db2ba40c
JW
1756 local_irq_save(flags);
1757
1758 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1759 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1760 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1761 ret = true;
1762 }
db2ba40c
JW
1763
1764 local_irq_restore(flags);
1765
cdec2e42
KH
1766 return ret;
1767}
1768
1769/*
3e32cb2e 1770 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1771 */
1772static void drain_stock(struct memcg_stock_pcp *stock)
1773{
1774 struct mem_cgroup *old = stock->cached;
1775
11c9ea4e 1776 if (stock->nr_pages) {
3e32cb2e 1777 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1778 if (do_memsw_account())
3e32cb2e 1779 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1780 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1781 stock->nr_pages = 0;
cdec2e42
KH
1782 }
1783 stock->cached = NULL;
cdec2e42
KH
1784}
1785
cdec2e42
KH
1786static void drain_local_stock(struct work_struct *dummy)
1787{
db2ba40c
JW
1788 struct memcg_stock_pcp *stock;
1789 unsigned long flags;
1790
72f0184c
MH
1791 /*
1792 * The only protection from memory hotplug vs. drain_stock races is
1793 * that we always operate on local CPU stock here with IRQ disabled
1794 */
db2ba40c
JW
1795 local_irq_save(flags);
1796
1797 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1798 drain_stock(stock);
26fe6168 1799 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1800
1801 local_irq_restore(flags);
cdec2e42
KH
1802}
1803
1804/*
3e32cb2e 1805 * Cache charges(val) to local per_cpu area.
320cc51d 1806 * This will be consumed by consume_stock() function, later.
cdec2e42 1807 */
c0ff4b85 1808static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1809{
db2ba40c
JW
1810 struct memcg_stock_pcp *stock;
1811 unsigned long flags;
1812
1813 local_irq_save(flags);
cdec2e42 1814
db2ba40c 1815 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1816 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1817 drain_stock(stock);
c0ff4b85 1818 stock->cached = memcg;
cdec2e42 1819 }
11c9ea4e 1820 stock->nr_pages += nr_pages;
db2ba40c 1821
475d0487
RG
1822 if (stock->nr_pages > CHARGE_BATCH)
1823 drain_stock(stock);
1824
db2ba40c 1825 local_irq_restore(flags);
cdec2e42
KH
1826}
1827
1828/*
c0ff4b85 1829 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1830 * of the hierarchy under it.
cdec2e42 1831 */
6d3d6aa2 1832static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1833{
26fe6168 1834 int cpu, curcpu;
d38144b7 1835
6d3d6aa2
JW
1836 /* If someone's already draining, avoid adding running more workers. */
1837 if (!mutex_trylock(&percpu_charge_mutex))
1838 return;
72f0184c
MH
1839 /*
1840 * Notify other cpus that system-wide "drain" is running
1841 * We do not care about races with the cpu hotplug because cpu down
1842 * as well as workers from this path always operate on the local
1843 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1844 */
5af12d0e 1845 curcpu = get_cpu();
cdec2e42
KH
1846 for_each_online_cpu(cpu) {
1847 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1848 struct mem_cgroup *memcg;
26fe6168 1849
c0ff4b85 1850 memcg = stock->cached;
72f0184c 1851 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 1852 continue;
72f0184c
MH
1853 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1854 css_put(&memcg->css);
3e92041d 1855 continue;
72f0184c 1856 }
d1a05b69
MH
1857 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1858 if (cpu == curcpu)
1859 drain_local_stock(&stock->work);
1860 else
1861 schedule_work_on(cpu, &stock->work);
1862 }
72f0184c 1863 css_put(&memcg->css);
cdec2e42 1864 }
5af12d0e 1865 put_cpu();
9f50fad6 1866 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1867}
1868
308167fc 1869static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 1870{
cdec2e42
KH
1871 struct memcg_stock_pcp *stock;
1872
cdec2e42
KH
1873 stock = &per_cpu(memcg_stock, cpu);
1874 drain_stock(stock);
308167fc 1875 return 0;
cdec2e42
KH
1876}
1877
f7e1cb6e
JW
1878static void reclaim_high(struct mem_cgroup *memcg,
1879 unsigned int nr_pages,
1880 gfp_t gfp_mask)
1881{
1882 do {
1883 if (page_counter_read(&memcg->memory) <= memcg->high)
1884 continue;
31176c78 1885 mem_cgroup_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
1886 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1887 } while ((memcg = parent_mem_cgroup(memcg)));
1888}
1889
1890static void high_work_func(struct work_struct *work)
1891{
1892 struct mem_cgroup *memcg;
1893
1894 memcg = container_of(work, struct mem_cgroup, high_work);
1895 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1896}
1897
b23afb93
TH
1898/*
1899 * Scheduled by try_charge() to be executed from the userland return path
1900 * and reclaims memory over the high limit.
1901 */
1902void mem_cgroup_handle_over_high(void)
1903{
1904 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1905 struct mem_cgroup *memcg;
b23afb93
TH
1906
1907 if (likely(!nr_pages))
1908 return;
1909
f7e1cb6e
JW
1910 memcg = get_mem_cgroup_from_mm(current->mm);
1911 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1912 css_put(&memcg->css);
1913 current->memcg_nr_pages_over_high = 0;
1914}
1915
00501b53
JW
1916static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1917 unsigned int nr_pages)
8a9f3ccd 1918{
7ec99d62 1919 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1920 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1921 struct mem_cgroup *mem_over_limit;
3e32cb2e 1922 struct page_counter *counter;
6539cc05 1923 unsigned long nr_reclaimed;
b70a2a21
JW
1924 bool may_swap = true;
1925 bool drained = false;
a636b327 1926
ce00a967 1927 if (mem_cgroup_is_root(memcg))
10d53c74 1928 return 0;
6539cc05 1929retry:
b6b6cc72 1930 if (consume_stock(memcg, nr_pages))
10d53c74 1931 return 0;
8a9f3ccd 1932
7941d214 1933 if (!do_memsw_account() ||
6071ca52
JW
1934 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1935 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1936 goto done_restock;
7941d214 1937 if (do_memsw_account())
3e32cb2e
JW
1938 page_counter_uncharge(&memcg->memsw, batch);
1939 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1940 } else {
3e32cb2e 1941 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1942 may_swap = false;
3fbe7244 1943 }
7a81b88c 1944
6539cc05
JW
1945 if (batch > nr_pages) {
1946 batch = nr_pages;
1947 goto retry;
1948 }
6d61ef40 1949
06b078fc
JW
1950 /*
1951 * Unlike in global OOM situations, memcg is not in a physical
1952 * memory shortage. Allow dying and OOM-killed tasks to
1953 * bypass the last charges so that they can exit quickly and
1954 * free their memory.
1955 */
d9e9af93 1956 if (unlikely(should_force_charge()))
10d53c74 1957 goto force;
06b078fc 1958
89a28483
JW
1959 /*
1960 * Prevent unbounded recursion when reclaim operations need to
1961 * allocate memory. This might exceed the limits temporarily,
1962 * but we prefer facilitating memory reclaim and getting back
1963 * under the limit over triggering OOM kills in these cases.
1964 */
1965 if (unlikely(current->flags & PF_MEMALLOC))
1966 goto force;
1967
06b078fc
JW
1968 if (unlikely(task_in_memcg_oom(current)))
1969 goto nomem;
1970
d0164adc 1971 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1972 goto nomem;
4b534334 1973
31176c78 1974 mem_cgroup_event(mem_over_limit, MEMCG_MAX);
241994ed 1975
b70a2a21
JW
1976 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1977 gfp_mask, may_swap);
6539cc05 1978
61e02c74 1979 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1980 goto retry;
28c34c29 1981
b70a2a21 1982 if (!drained) {
6d3d6aa2 1983 drain_all_stock(mem_over_limit);
b70a2a21
JW
1984 drained = true;
1985 goto retry;
1986 }
1987
28c34c29
JW
1988 if (gfp_mask & __GFP_NORETRY)
1989 goto nomem;
6539cc05
JW
1990 /*
1991 * Even though the limit is exceeded at this point, reclaim
1992 * may have been able to free some pages. Retry the charge
1993 * before killing the task.
1994 *
1995 * Only for regular pages, though: huge pages are rather
1996 * unlikely to succeed so close to the limit, and we fall back
1997 * to regular pages anyway in case of failure.
1998 */
61e02c74 1999 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2000 goto retry;
2001 /*
2002 * At task move, charge accounts can be doubly counted. So, it's
2003 * better to wait until the end of task_move if something is going on.
2004 */
2005 if (mem_cgroup_wait_acct_move(mem_over_limit))
2006 goto retry;
2007
9b130619
JW
2008 if (nr_retries--)
2009 goto retry;
2010
06b078fc 2011 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2012 goto force;
06b078fc 2013
6539cc05 2014 if (fatal_signal_pending(current))
10d53c74 2015 goto force;
6539cc05 2016
31176c78 2017 mem_cgroup_event(mem_over_limit, MEMCG_OOM);
241994ed 2018
3608de07
JM
2019 mem_cgroup_oom(mem_over_limit, gfp_mask,
2020 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2021nomem:
6d1fdc48 2022 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2023 return -ENOMEM;
10d53c74
TH
2024force:
2025 /*
2026 * The allocation either can't fail or will lead to more memory
2027 * being freed very soon. Allow memory usage go over the limit
2028 * temporarily by force charging it.
2029 */
2030 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2031 if (do_memsw_account())
10d53c74
TH
2032 page_counter_charge(&memcg->memsw, nr_pages);
2033 css_get_many(&memcg->css, nr_pages);
2034
2035 return 0;
6539cc05
JW
2036
2037done_restock:
e8ea14cc 2038 css_get_many(&memcg->css, batch);
6539cc05
JW
2039 if (batch > nr_pages)
2040 refill_stock(memcg, batch - nr_pages);
b23afb93 2041
241994ed 2042 /*
b23afb93
TH
2043 * If the hierarchy is above the normal consumption range, schedule
2044 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2045 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2046 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2047 * not recorded as it most likely matches current's and won't
2048 * change in the meantime. As high limit is checked again before
2049 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2050 */
2051 do {
b23afb93 2052 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2053 /* Don't bother a random interrupted task */
2054 if (in_interrupt()) {
2055 schedule_work(&memcg->high_work);
2056 break;
2057 }
9516a18a 2058 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2059 set_notify_resume(current);
2060 break;
2061 }
241994ed 2062 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2063
2064 return 0;
7a81b88c 2065}
8a9f3ccd 2066
00501b53 2067static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2068{
ce00a967
JW
2069 if (mem_cgroup_is_root(memcg))
2070 return;
2071
3e32cb2e 2072 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2073 if (do_memsw_account())
3e32cb2e 2074 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2075
e8ea14cc 2076 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2077}
2078
0a31bc97
JW
2079static void lock_page_lru(struct page *page, int *isolated)
2080{
2081 struct zone *zone = page_zone(page);
2082
a52633d8 2083 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2084 if (PageLRU(page)) {
2085 struct lruvec *lruvec;
2086
599d0c95 2087 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2088 ClearPageLRU(page);
2089 del_page_from_lru_list(page, lruvec, page_lru(page));
2090 *isolated = 1;
2091 } else
2092 *isolated = 0;
2093}
2094
2095static void unlock_page_lru(struct page *page, int isolated)
2096{
2097 struct zone *zone = page_zone(page);
2098
2099 if (isolated) {
2100 struct lruvec *lruvec;
2101
599d0c95 2102 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2103 VM_BUG_ON_PAGE(PageLRU(page), page);
2104 SetPageLRU(page);
2105 add_page_to_lru_list(page, lruvec, page_lru(page));
2106 }
a52633d8 2107 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2108}
2109
00501b53 2110static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2111 bool lrucare)
7a81b88c 2112{
0a31bc97 2113 int isolated;
9ce70c02 2114
1306a85a 2115 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2116
2117 /*
2118 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2119 * may already be on some other mem_cgroup's LRU. Take care of it.
2120 */
0a31bc97
JW
2121 if (lrucare)
2122 lock_page_lru(page, &isolated);
9ce70c02 2123
0a31bc97
JW
2124 /*
2125 * Nobody should be changing or seriously looking at
1306a85a 2126 * page->mem_cgroup at this point:
0a31bc97
JW
2127 *
2128 * - the page is uncharged
2129 *
2130 * - the page is off-LRU
2131 *
2132 * - an anonymous fault has exclusive page access, except for
2133 * a locked page table
2134 *
2135 * - a page cache insertion, a swapin fault, or a migration
2136 * have the page locked
2137 */
1306a85a 2138 page->mem_cgroup = memcg;
9ce70c02 2139
0a31bc97
JW
2140 if (lrucare)
2141 unlock_page_lru(page, isolated);
7a81b88c 2142}
66e1707b 2143
127424c8 2144#ifndef CONFIG_SLOB
f3bb3043 2145static int memcg_alloc_cache_id(void)
55007d84 2146{
f3bb3043
VD
2147 int id, size;
2148 int err;
2149
dbcf73e2 2150 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2151 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2152 if (id < 0)
2153 return id;
55007d84 2154
dbcf73e2 2155 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2156 return id;
2157
2158 /*
2159 * There's no space for the new id in memcg_caches arrays,
2160 * so we have to grow them.
2161 */
05257a1a 2162 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2163
2164 size = 2 * (id + 1);
55007d84
GC
2165 if (size < MEMCG_CACHES_MIN_SIZE)
2166 size = MEMCG_CACHES_MIN_SIZE;
2167 else if (size > MEMCG_CACHES_MAX_SIZE)
2168 size = MEMCG_CACHES_MAX_SIZE;
2169
f3bb3043 2170 err = memcg_update_all_caches(size);
60d3fd32
VD
2171 if (!err)
2172 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2173 if (!err)
2174 memcg_nr_cache_ids = size;
2175
2176 up_write(&memcg_cache_ids_sem);
2177
f3bb3043 2178 if (err) {
dbcf73e2 2179 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2180 return err;
2181 }
2182 return id;
2183}
2184
2185static void memcg_free_cache_id(int id)
2186{
dbcf73e2 2187 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2188}
2189
d5b3cf71 2190struct memcg_kmem_cache_create_work {
5722d094
VD
2191 struct mem_cgroup *memcg;
2192 struct kmem_cache *cachep;
2193 struct work_struct work;
2194};
2195
d5b3cf71 2196static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2197{
d5b3cf71
VD
2198 struct memcg_kmem_cache_create_work *cw =
2199 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2200 struct mem_cgroup *memcg = cw->memcg;
2201 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2202
d5b3cf71 2203 memcg_create_kmem_cache(memcg, cachep);
bd673145 2204
5722d094 2205 css_put(&memcg->css);
d7f25f8a
GC
2206 kfree(cw);
2207}
2208
2209/*
2210 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2211 */
d5b3cf71
VD
2212static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2213 struct kmem_cache *cachep)
d7f25f8a 2214{
d5b3cf71 2215 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2216
8954327d 2217 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2218 if (!cw)
d7f25f8a 2219 return;
8135be5a
VD
2220
2221 css_get(&memcg->css);
d7f25f8a
GC
2222
2223 cw->memcg = memcg;
2224 cw->cachep = cachep;
d5b3cf71 2225 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2226
17cc4dfe 2227 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2228}
2229
d5b3cf71
VD
2230static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2231 struct kmem_cache *cachep)
0e9d92f2
GC
2232{
2233 /*
2234 * We need to stop accounting when we kmalloc, because if the
2235 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2236 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2237 *
2238 * However, it is better to enclose the whole function. Depending on
2239 * the debugging options enabled, INIT_WORK(), for instance, can
2240 * trigger an allocation. This too, will make us recurse. Because at
2241 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2242 * the safest choice is to do it like this, wrapping the whole function.
2243 */
6f185c29 2244 current->memcg_kmem_skip_account = 1;
d5b3cf71 2245 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2246 current->memcg_kmem_skip_account = 0;
0e9d92f2 2247}
c67a8a68 2248
45264778
VD
2249static inline bool memcg_kmem_bypass(void)
2250{
2251 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2252 return true;
2253 return false;
2254}
2255
2256/**
2257 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2258 * @cachep: the original global kmem cache
2259 *
d7f25f8a
GC
2260 * Return the kmem_cache we're supposed to use for a slab allocation.
2261 * We try to use the current memcg's version of the cache.
2262 *
45264778
VD
2263 * If the cache does not exist yet, if we are the first user of it, we
2264 * create it asynchronously in a workqueue and let the current allocation
2265 * go through with the original cache.
d7f25f8a 2266 *
45264778
VD
2267 * This function takes a reference to the cache it returns to assure it
2268 * won't get destroyed while we are working with it. Once the caller is
2269 * done with it, memcg_kmem_put_cache() must be called to release the
2270 * reference.
d7f25f8a 2271 */
45264778 2272struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2273{
2274 struct mem_cgroup *memcg;
959c8963 2275 struct kmem_cache *memcg_cachep;
2a4db7eb 2276 int kmemcg_id;
d7f25f8a 2277
f7ce3190 2278 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2279
45264778 2280 if (memcg_kmem_bypass())
230e9fc2
VD
2281 return cachep;
2282
9d100c5e 2283 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2284 return cachep;
2285
8135be5a 2286 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2287 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2288 if (kmemcg_id < 0)
ca0dde97 2289 goto out;
d7f25f8a 2290
2a4db7eb 2291 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2292 if (likely(memcg_cachep))
2293 return memcg_cachep;
ca0dde97
LZ
2294
2295 /*
2296 * If we are in a safe context (can wait, and not in interrupt
2297 * context), we could be be predictable and return right away.
2298 * This would guarantee that the allocation being performed
2299 * already belongs in the new cache.
2300 *
2301 * However, there are some clashes that can arrive from locking.
2302 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2303 * memcg_create_kmem_cache, this means no further allocation
2304 * could happen with the slab_mutex held. So it's better to
2305 * defer everything.
ca0dde97 2306 */
d5b3cf71 2307 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2308out:
8135be5a 2309 css_put(&memcg->css);
ca0dde97 2310 return cachep;
d7f25f8a 2311}
d7f25f8a 2312
45264778
VD
2313/**
2314 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2315 * @cachep: the cache returned by memcg_kmem_get_cache
2316 */
2317void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2318{
2319 if (!is_root_cache(cachep))
f7ce3190 2320 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2321}
2322
45264778
VD
2323/**
2324 * memcg_kmem_charge: charge a kmem page
2325 * @page: page to charge
2326 * @gfp: reclaim mode
2327 * @order: allocation order
2328 * @memcg: memory cgroup to charge
2329 *
2330 * Returns 0 on success, an error code on failure.
2331 */
2332int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2333 struct mem_cgroup *memcg)
7ae1e1d0 2334{
f3ccb2c4
VD
2335 unsigned int nr_pages = 1 << order;
2336 struct page_counter *counter;
7ae1e1d0
GC
2337 int ret;
2338
f3ccb2c4 2339 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2340 if (ret)
f3ccb2c4 2341 return ret;
52c29b04
JW
2342
2343 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2344 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2345 cancel_charge(memcg, nr_pages);
2346 return -ENOMEM;
7ae1e1d0
GC
2347 }
2348
f3ccb2c4 2349 page->mem_cgroup = memcg;
7ae1e1d0 2350
f3ccb2c4 2351 return 0;
7ae1e1d0
GC
2352}
2353
45264778
VD
2354/**
2355 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2356 * @page: page to charge
2357 * @gfp: reclaim mode
2358 * @order: allocation order
2359 *
2360 * Returns 0 on success, an error code on failure.
2361 */
2362int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2363{
f3ccb2c4 2364 struct mem_cgroup *memcg;
fcff7d7e 2365 int ret = 0;
7ae1e1d0 2366
45264778
VD
2367 if (memcg_kmem_bypass())
2368 return 0;
2369
f3ccb2c4 2370 memcg = get_mem_cgroup_from_mm(current->mm);
c4159a75 2371 if (!mem_cgroup_is_root(memcg)) {
45264778 2372 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2373 if (!ret)
2374 __SetPageKmemcg(page);
2375 }
7ae1e1d0 2376 css_put(&memcg->css);
d05e83a6 2377 return ret;
7ae1e1d0 2378}
45264778
VD
2379/**
2380 * memcg_kmem_uncharge: uncharge a kmem page
2381 * @page: page to uncharge
2382 * @order: allocation order
2383 */
2384void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2385{
1306a85a 2386 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2387 unsigned int nr_pages = 1 << order;
7ae1e1d0 2388
7ae1e1d0
GC
2389 if (!memcg)
2390 return;
2391
309381fe 2392 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2393
52c29b04
JW
2394 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2395 page_counter_uncharge(&memcg->kmem, nr_pages);
2396
f3ccb2c4 2397 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2398 if (do_memsw_account())
f3ccb2c4 2399 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2400
1306a85a 2401 page->mem_cgroup = NULL;
c4159a75
VD
2402
2403 /* slab pages do not have PageKmemcg flag set */
2404 if (PageKmemcg(page))
2405 __ClearPageKmemcg(page);
2406
f3ccb2c4 2407 css_put_many(&memcg->css, nr_pages);
60d3fd32 2408}
127424c8 2409#endif /* !CONFIG_SLOB */
7ae1e1d0 2410
ca3e0214
KH
2411#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2412
ca3e0214
KH
2413/*
2414 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2415 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2416 */
e94c8a9c 2417void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2418{
e94c8a9c 2419 int i;
ca3e0214 2420
3d37c4a9
KH
2421 if (mem_cgroup_disabled())
2422 return;
b070e65c 2423
29833315 2424 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2425 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2426
71cd3113 2427 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
b070e65c 2428 HPAGE_PMD_NR);
ca3e0214 2429}
12d27107 2430#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2431
c255a458 2432#ifdef CONFIG_MEMCG_SWAP
0a31bc97 2433static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
38d8b4e6 2434 int nr_entries)
d13d1443 2435{
38d8b4e6 2436 this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
d13d1443 2437}
02491447
DN
2438
2439/**
2440 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2441 * @entry: swap entry to be moved
2442 * @from: mem_cgroup which the entry is moved from
2443 * @to: mem_cgroup which the entry is moved to
2444 *
2445 * It succeeds only when the swap_cgroup's record for this entry is the same
2446 * as the mem_cgroup's id of @from.
2447 *
2448 * Returns 0 on success, -EINVAL on failure.
2449 *
3e32cb2e 2450 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2451 * both res and memsw, and called css_get().
2452 */
2453static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2454 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2455{
2456 unsigned short old_id, new_id;
2457
34c00c31
LZ
2458 old_id = mem_cgroup_id(from);
2459 new_id = mem_cgroup_id(to);
02491447
DN
2460
2461 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
38d8b4e6
HY
2462 mem_cgroup_swap_statistics(from, -1);
2463 mem_cgroup_swap_statistics(to, 1);
02491447
DN
2464 return 0;
2465 }
2466 return -EINVAL;
2467}
2468#else
2469static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2470 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2471{
2472 return -EINVAL;
2473}
8c7c6e34 2474#endif
d13d1443 2475
3e32cb2e 2476static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2477
d38d2a75 2478static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2479 unsigned long limit)
628f4235 2480{
3e32cb2e
JW
2481 unsigned long curusage;
2482 unsigned long oldusage;
2483 bool enlarge = false;
81d39c20 2484 int retry_count;
3e32cb2e 2485 int ret;
81d39c20
KH
2486
2487 /*
2488 * For keeping hierarchical_reclaim simple, how long we should retry
2489 * is depends on callers. We set our retry-count to be function
2490 * of # of children which we should visit in this loop.
2491 */
3e32cb2e
JW
2492 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2493 mem_cgroup_count_children(memcg);
81d39c20 2494
3e32cb2e 2495 oldusage = page_counter_read(&memcg->memory);
628f4235 2496
3e32cb2e 2497 do {
628f4235
KH
2498 if (signal_pending(current)) {
2499 ret = -EINTR;
2500 break;
2501 }
3e32cb2e
JW
2502
2503 mutex_lock(&memcg_limit_mutex);
2504 if (limit > memcg->memsw.limit) {
2505 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2506 ret = -EINVAL;
628f4235
KH
2507 break;
2508 }
3e32cb2e
JW
2509 if (limit > memcg->memory.limit)
2510 enlarge = true;
2511 ret = page_counter_limit(&memcg->memory, limit);
2512 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2513
2514 if (!ret)
2515 break;
2516
b70a2a21
JW
2517 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2518
3e32cb2e 2519 curusage = page_counter_read(&memcg->memory);
81d39c20 2520 /* Usage is reduced ? */
f894ffa8 2521 if (curusage >= oldusage)
81d39c20
KH
2522 retry_count--;
2523 else
2524 oldusage = curusage;
3e32cb2e
JW
2525 } while (retry_count);
2526
3c11ecf4
KH
2527 if (!ret && enlarge)
2528 memcg_oom_recover(memcg);
14797e23 2529
8c7c6e34
KH
2530 return ret;
2531}
2532
338c8431 2533static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2534 unsigned long limit)
8c7c6e34 2535{
3e32cb2e
JW
2536 unsigned long curusage;
2537 unsigned long oldusage;
2538 bool enlarge = false;
81d39c20 2539 int retry_count;
3e32cb2e 2540 int ret;
8c7c6e34 2541
81d39c20 2542 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2543 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2544 mem_cgroup_count_children(memcg);
2545
2546 oldusage = page_counter_read(&memcg->memsw);
2547
2548 do {
8c7c6e34
KH
2549 if (signal_pending(current)) {
2550 ret = -EINTR;
2551 break;
2552 }
3e32cb2e
JW
2553
2554 mutex_lock(&memcg_limit_mutex);
2555 if (limit < memcg->memory.limit) {
2556 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2557 ret = -EINVAL;
8c7c6e34
KH
2558 break;
2559 }
3e32cb2e
JW
2560 if (limit > memcg->memsw.limit)
2561 enlarge = true;
2562 ret = page_counter_limit(&memcg->memsw, limit);
2563 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2564
2565 if (!ret)
2566 break;
2567
b70a2a21
JW
2568 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2569
3e32cb2e 2570 curusage = page_counter_read(&memcg->memsw);
81d39c20 2571 /* Usage is reduced ? */
8c7c6e34 2572 if (curusage >= oldusage)
628f4235 2573 retry_count--;
81d39c20
KH
2574 else
2575 oldusage = curusage;
3e32cb2e
JW
2576 } while (retry_count);
2577
3c11ecf4
KH
2578 if (!ret && enlarge)
2579 memcg_oom_recover(memcg);
3e32cb2e 2580
628f4235
KH
2581 return ret;
2582}
2583
ef8f2327 2584unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2585 gfp_t gfp_mask,
2586 unsigned long *total_scanned)
2587{
2588 unsigned long nr_reclaimed = 0;
ef8f2327 2589 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2590 unsigned long reclaimed;
2591 int loop = 0;
ef8f2327 2592 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2593 unsigned long excess;
0608f43d
AM
2594 unsigned long nr_scanned;
2595
2596 if (order > 0)
2597 return 0;
2598
ef8f2327 2599 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2600
2601 /*
2602 * Do not even bother to check the largest node if the root
2603 * is empty. Do it lockless to prevent lock bouncing. Races
2604 * are acceptable as soft limit is best effort anyway.
2605 */
bfc7228b 2606 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2607 return 0;
2608
0608f43d
AM
2609 /*
2610 * This loop can run a while, specially if mem_cgroup's continuously
2611 * keep exceeding their soft limit and putting the system under
2612 * pressure
2613 */
2614 do {
2615 if (next_mz)
2616 mz = next_mz;
2617 else
2618 mz = mem_cgroup_largest_soft_limit_node(mctz);
2619 if (!mz)
2620 break;
2621
2622 nr_scanned = 0;
ef8f2327 2623 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2624 gfp_mask, &nr_scanned);
2625 nr_reclaimed += reclaimed;
2626 *total_scanned += nr_scanned;
0a31bc97 2627 spin_lock_irq(&mctz->lock);
bc2f2e7f 2628 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2629
2630 /*
2631 * If we failed to reclaim anything from this memory cgroup
2632 * it is time to move on to the next cgroup
2633 */
2634 next_mz = NULL;
bc2f2e7f
VD
2635 if (!reclaimed)
2636 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2637
3e32cb2e 2638 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2639 /*
2640 * One school of thought says that we should not add
2641 * back the node to the tree if reclaim returns 0.
2642 * But our reclaim could return 0, simply because due
2643 * to priority we are exposing a smaller subset of
2644 * memory to reclaim from. Consider this as a longer
2645 * term TODO.
2646 */
2647 /* If excess == 0, no tree ops */
cf2c8127 2648 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2649 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2650 css_put(&mz->memcg->css);
2651 loop++;
2652 /*
2653 * Could not reclaim anything and there are no more
2654 * mem cgroups to try or we seem to be looping without
2655 * reclaiming anything.
2656 */
2657 if (!nr_reclaimed &&
2658 (next_mz == NULL ||
2659 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2660 break;
2661 } while (!nr_reclaimed);
2662 if (next_mz)
2663 css_put(&next_mz->memcg->css);
2664 return nr_reclaimed;
2665}
2666
ea280e7b
TH
2667/*
2668 * Test whether @memcg has children, dead or alive. Note that this
2669 * function doesn't care whether @memcg has use_hierarchy enabled and
2670 * returns %true if there are child csses according to the cgroup
2671 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2672 */
b5f99b53
GC
2673static inline bool memcg_has_children(struct mem_cgroup *memcg)
2674{
ea280e7b
TH
2675 bool ret;
2676
ea280e7b
TH
2677 rcu_read_lock();
2678 ret = css_next_child(NULL, &memcg->css);
2679 rcu_read_unlock();
2680 return ret;
b5f99b53
GC
2681}
2682
c26251f9 2683/*
51038171 2684 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2685 *
2686 * Caller is responsible for holding css reference for memcg.
2687 */
2688static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2689{
2690 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2691
c1e862c1
KH
2692 /* we call try-to-free pages for make this cgroup empty */
2693 lru_add_drain_all();
f817ed48 2694 /* try to free all pages in this cgroup */
3e32cb2e 2695 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2696 int progress;
c1e862c1 2697
c26251f9
MH
2698 if (signal_pending(current))
2699 return -EINTR;
2700
b70a2a21
JW
2701 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2702 GFP_KERNEL, true);
c1e862c1 2703 if (!progress) {
f817ed48 2704 nr_retries--;
c1e862c1 2705 /* maybe some writeback is necessary */
8aa7e847 2706 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2707 }
f817ed48
KH
2708
2709 }
ab5196c2
MH
2710
2711 return 0;
cc847582
KH
2712}
2713
6770c64e
TH
2714static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2715 char *buf, size_t nbytes,
2716 loff_t off)
c1e862c1 2717{
6770c64e 2718 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2719
d8423011
MH
2720 if (mem_cgroup_is_root(memcg))
2721 return -EINVAL;
6770c64e 2722 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2723}
2724
182446d0
TH
2725static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2726 struct cftype *cft)
18f59ea7 2727{
182446d0 2728 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2729}
2730
182446d0
TH
2731static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2732 struct cftype *cft, u64 val)
18f59ea7
BS
2733{
2734 int retval = 0;
182446d0 2735 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2736 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2737
567fb435 2738 if (memcg->use_hierarchy == val)
0b8f73e1 2739 return 0;
567fb435 2740
18f59ea7 2741 /*
af901ca1 2742 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2743 * in the child subtrees. If it is unset, then the change can
2744 * occur, provided the current cgroup has no children.
2745 *
2746 * For the root cgroup, parent_mem is NULL, we allow value to be
2747 * set if there are no children.
2748 */
c0ff4b85 2749 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2750 (val == 1 || val == 0)) {
ea280e7b 2751 if (!memcg_has_children(memcg))
c0ff4b85 2752 memcg->use_hierarchy = val;
18f59ea7
BS
2753 else
2754 retval = -EBUSY;
2755 } else
2756 retval = -EINVAL;
567fb435 2757
18f59ea7
BS
2758 return retval;
2759}
2760
72b54e73 2761static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2762{
2763 struct mem_cgroup *iter;
72b54e73 2764 int i;
ce00a967 2765
72b54e73 2766 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2767
72b54e73
VD
2768 for_each_mem_cgroup_tree(iter, memcg) {
2769 for (i = 0; i < MEMCG_NR_STAT; i++)
ccda7f43 2770 stat[i] += memcg_page_state(iter, i);
72b54e73 2771 }
ce00a967
JW
2772}
2773
72b54e73 2774static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2775{
2776 struct mem_cgroup *iter;
72b54e73 2777 int i;
587d9f72 2778
72b54e73 2779 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2780
72b54e73
VD
2781 for_each_mem_cgroup_tree(iter, memcg) {
2782 for (i = 0; i < MEMCG_NR_EVENTS; i++)
ccda7f43 2783 events[i] += memcg_sum_events(iter, i);
72b54e73 2784 }
587d9f72
JW
2785}
2786
6f646156 2787static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2788{
72b54e73 2789 unsigned long val = 0;
ce00a967 2790
3e32cb2e 2791 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2792 struct mem_cgroup *iter;
2793
2794 for_each_mem_cgroup_tree(iter, memcg) {
ccda7f43
JW
2795 val += memcg_page_state(iter, MEMCG_CACHE);
2796 val += memcg_page_state(iter, MEMCG_RSS);
72b54e73 2797 if (swap)
ccda7f43 2798 val += memcg_page_state(iter, MEMCG_SWAP);
72b54e73 2799 }
3e32cb2e 2800 } else {
ce00a967 2801 if (!swap)
3e32cb2e 2802 val = page_counter_read(&memcg->memory);
ce00a967 2803 else
3e32cb2e 2804 val = page_counter_read(&memcg->memsw);
ce00a967 2805 }
c12176d3 2806 return val;
ce00a967
JW
2807}
2808
3e32cb2e
JW
2809enum {
2810 RES_USAGE,
2811 RES_LIMIT,
2812 RES_MAX_USAGE,
2813 RES_FAILCNT,
2814 RES_SOFT_LIMIT,
2815};
ce00a967 2816
791badbd 2817static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2818 struct cftype *cft)
8cdea7c0 2819{
182446d0 2820 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2821 struct page_counter *counter;
af36f906 2822
3e32cb2e 2823 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2824 case _MEM:
3e32cb2e
JW
2825 counter = &memcg->memory;
2826 break;
8c7c6e34 2827 case _MEMSWAP:
3e32cb2e
JW
2828 counter = &memcg->memsw;
2829 break;
510fc4e1 2830 case _KMEM:
3e32cb2e 2831 counter = &memcg->kmem;
510fc4e1 2832 break;
d55f90bf 2833 case _TCP:
0db15298 2834 counter = &memcg->tcpmem;
d55f90bf 2835 break;
8c7c6e34
KH
2836 default:
2837 BUG();
8c7c6e34 2838 }
3e32cb2e
JW
2839
2840 switch (MEMFILE_ATTR(cft->private)) {
2841 case RES_USAGE:
2842 if (counter == &memcg->memory)
c12176d3 2843 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2844 if (counter == &memcg->memsw)
c12176d3 2845 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2846 return (u64)page_counter_read(counter) * PAGE_SIZE;
2847 case RES_LIMIT:
2848 return (u64)counter->limit * PAGE_SIZE;
2849 case RES_MAX_USAGE:
2850 return (u64)counter->watermark * PAGE_SIZE;
2851 case RES_FAILCNT:
2852 return counter->failcnt;
2853 case RES_SOFT_LIMIT:
2854 return (u64)memcg->soft_limit * PAGE_SIZE;
2855 default:
2856 BUG();
2857 }
8cdea7c0 2858}
510fc4e1 2859
127424c8 2860#ifndef CONFIG_SLOB
567e9ab2 2861static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2862{
d6441637
VD
2863 int memcg_id;
2864
b313aeee
VD
2865 if (cgroup_memory_nokmem)
2866 return 0;
2867
2a4db7eb 2868 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2869 BUG_ON(memcg->kmem_state);
d6441637 2870
f3bb3043 2871 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2872 if (memcg_id < 0)
2873 return memcg_id;
d6441637 2874
ef12947c 2875 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2876 /*
567e9ab2 2877 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2878 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2879 * guarantee no one starts accounting before all call sites are
2880 * patched.
2881 */
900a38f0 2882 memcg->kmemcg_id = memcg_id;
567e9ab2 2883 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 2884 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
2885
2886 return 0;
d6441637
VD
2887}
2888
8e0a8912
JW
2889static void memcg_offline_kmem(struct mem_cgroup *memcg)
2890{
2891 struct cgroup_subsys_state *css;
2892 struct mem_cgroup *parent, *child;
2893 int kmemcg_id;
2894
2895 if (memcg->kmem_state != KMEM_ONLINE)
2896 return;
2897 /*
2898 * Clear the online state before clearing memcg_caches array
2899 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2900 * guarantees that no cache will be created for this cgroup
2901 * after we are done (see memcg_create_kmem_cache()).
2902 */
2903 memcg->kmem_state = KMEM_ALLOCATED;
2904
2905 memcg_deactivate_kmem_caches(memcg);
2906
2907 kmemcg_id = memcg->kmemcg_id;
2908 BUG_ON(kmemcg_id < 0);
2909
2910 parent = parent_mem_cgroup(memcg);
2911 if (!parent)
2912 parent = root_mem_cgroup;
2913
2914 /*
2915 * Change kmemcg_id of this cgroup and all its descendants to the
2916 * parent's id, and then move all entries from this cgroup's list_lrus
2917 * to ones of the parent. After we have finished, all list_lrus
2918 * corresponding to this cgroup are guaranteed to remain empty. The
2919 * ordering is imposed by list_lru_node->lock taken by
2920 * memcg_drain_all_list_lrus().
2921 */
3a06bb78 2922 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2923 css_for_each_descendant_pre(css, &memcg->css) {
2924 child = mem_cgroup_from_css(css);
2925 BUG_ON(child->kmemcg_id != kmemcg_id);
2926 child->kmemcg_id = parent->kmemcg_id;
2927 if (!memcg->use_hierarchy)
2928 break;
2929 }
3a06bb78
TH
2930 rcu_read_unlock();
2931
8e0a8912
JW
2932 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2933
2934 memcg_free_cache_id(kmemcg_id);
2935}
2936
2937static void memcg_free_kmem(struct mem_cgroup *memcg)
2938{
0b8f73e1
JW
2939 /* css_alloc() failed, offlining didn't happen */
2940 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2941 memcg_offline_kmem(memcg);
2942
8e0a8912
JW
2943 if (memcg->kmem_state == KMEM_ALLOCATED) {
2944 memcg_destroy_kmem_caches(memcg);
2945 static_branch_dec(&memcg_kmem_enabled_key);
2946 WARN_ON(page_counter_read(&memcg->kmem));
2947 }
8e0a8912 2948}
d6441637 2949#else
0b8f73e1 2950static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2951{
2952 return 0;
2953}
2954static void memcg_offline_kmem(struct mem_cgroup *memcg)
2955{
2956}
2957static void memcg_free_kmem(struct mem_cgroup *memcg)
2958{
2959}
2960#endif /* !CONFIG_SLOB */
2961
d6441637 2962static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2963 unsigned long limit)
d6441637 2964{
b313aeee 2965 int ret;
127424c8
JW
2966
2967 mutex_lock(&memcg_limit_mutex);
127424c8 2968 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2969 mutex_unlock(&memcg_limit_mutex);
2970 return ret;
d6441637 2971}
510fc4e1 2972
d55f90bf
VD
2973static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2974{
2975 int ret;
2976
2977 mutex_lock(&memcg_limit_mutex);
2978
0db15298 2979 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2980 if (ret)
2981 goto out;
2982
0db15298 2983 if (!memcg->tcpmem_active) {
d55f90bf
VD
2984 /*
2985 * The active flag needs to be written after the static_key
2986 * update. This is what guarantees that the socket activation
2d758073
JW
2987 * function is the last one to run. See mem_cgroup_sk_alloc()
2988 * for details, and note that we don't mark any socket as
2989 * belonging to this memcg until that flag is up.
d55f90bf
VD
2990 *
2991 * We need to do this, because static_keys will span multiple
2992 * sites, but we can't control their order. If we mark a socket
2993 * as accounted, but the accounting functions are not patched in
2994 * yet, we'll lose accounting.
2995 *
2d758073 2996 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
2997 * because when this value change, the code to process it is not
2998 * patched in yet.
2999 */
3000 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3001 memcg->tcpmem_active = true;
d55f90bf
VD
3002 }
3003out:
3004 mutex_unlock(&memcg_limit_mutex);
3005 return ret;
3006}
d55f90bf 3007
628f4235
KH
3008/*
3009 * The user of this function is...
3010 * RES_LIMIT.
3011 */
451af504
TH
3012static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3013 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3014{
451af504 3015 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3016 unsigned long nr_pages;
628f4235
KH
3017 int ret;
3018
451af504 3019 buf = strstrip(buf);
650c5e56 3020 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3021 if (ret)
3022 return ret;
af36f906 3023
3e32cb2e 3024 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3025 case RES_LIMIT:
4b3bde4c
BS
3026 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3027 ret = -EINVAL;
3028 break;
3029 }
3e32cb2e
JW
3030 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3031 case _MEM:
3032 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3033 break;
3e32cb2e
JW
3034 case _MEMSWAP:
3035 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3036 break;
3e32cb2e
JW
3037 case _KMEM:
3038 ret = memcg_update_kmem_limit(memcg, nr_pages);
3039 break;
d55f90bf
VD
3040 case _TCP:
3041 ret = memcg_update_tcp_limit(memcg, nr_pages);
3042 break;
3e32cb2e 3043 }
296c81d8 3044 break;
3e32cb2e
JW
3045 case RES_SOFT_LIMIT:
3046 memcg->soft_limit = nr_pages;
3047 ret = 0;
628f4235
KH
3048 break;
3049 }
451af504 3050 return ret ?: nbytes;
8cdea7c0
BS
3051}
3052
6770c64e
TH
3053static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3054 size_t nbytes, loff_t off)
c84872e1 3055{
6770c64e 3056 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3057 struct page_counter *counter;
c84872e1 3058
3e32cb2e
JW
3059 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3060 case _MEM:
3061 counter = &memcg->memory;
3062 break;
3063 case _MEMSWAP:
3064 counter = &memcg->memsw;
3065 break;
3066 case _KMEM:
3067 counter = &memcg->kmem;
3068 break;
d55f90bf 3069 case _TCP:
0db15298 3070 counter = &memcg->tcpmem;
d55f90bf 3071 break;
3e32cb2e
JW
3072 default:
3073 BUG();
3074 }
af36f906 3075
3e32cb2e 3076 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3077 case RES_MAX_USAGE:
3e32cb2e 3078 page_counter_reset_watermark(counter);
29f2a4da
PE
3079 break;
3080 case RES_FAILCNT:
3e32cb2e 3081 counter->failcnt = 0;
29f2a4da 3082 break;
3e32cb2e
JW
3083 default:
3084 BUG();
29f2a4da 3085 }
f64c3f54 3086
6770c64e 3087 return nbytes;
c84872e1
PE
3088}
3089
182446d0 3090static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3091 struct cftype *cft)
3092{
182446d0 3093 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3094}
3095
02491447 3096#ifdef CONFIG_MMU
182446d0 3097static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3098 struct cftype *cft, u64 val)
3099{
182446d0 3100 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3101
1dfab5ab 3102 if (val & ~MOVE_MASK)
7dc74be0 3103 return -EINVAL;
ee5e8472 3104
7dc74be0 3105 /*
ee5e8472
GC
3106 * No kind of locking is needed in here, because ->can_attach() will
3107 * check this value once in the beginning of the process, and then carry
3108 * on with stale data. This means that changes to this value will only
3109 * affect task migrations starting after the change.
7dc74be0 3110 */
c0ff4b85 3111 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3112 return 0;
3113}
02491447 3114#else
182446d0 3115static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3116 struct cftype *cft, u64 val)
3117{
3118 return -ENOSYS;
3119}
3120#endif
7dc74be0 3121
406eb0c9 3122#ifdef CONFIG_NUMA
2da8ca82 3123static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3124{
25485de6
GT
3125 struct numa_stat {
3126 const char *name;
3127 unsigned int lru_mask;
3128 };
3129
3130 static const struct numa_stat stats[] = {
3131 { "total", LRU_ALL },
3132 { "file", LRU_ALL_FILE },
3133 { "anon", LRU_ALL_ANON },
3134 { "unevictable", BIT(LRU_UNEVICTABLE) },
3135 };
3136 const struct numa_stat *stat;
406eb0c9 3137 int nid;
25485de6 3138 unsigned long nr;
2da8ca82 3139 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3140
25485de6
GT
3141 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3142 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3143 seq_printf(m, "%s=%lu", stat->name, nr);
3144 for_each_node_state(nid, N_MEMORY) {
3145 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3146 stat->lru_mask);
3147 seq_printf(m, " N%d=%lu", nid, nr);
3148 }
3149 seq_putc(m, '\n');
406eb0c9 3150 }
406eb0c9 3151
071aee13
YH
3152 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3153 struct mem_cgroup *iter;
3154
3155 nr = 0;
3156 for_each_mem_cgroup_tree(iter, memcg)
3157 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3158 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3159 for_each_node_state(nid, N_MEMORY) {
3160 nr = 0;
3161 for_each_mem_cgroup_tree(iter, memcg)
3162 nr += mem_cgroup_node_nr_lru_pages(
3163 iter, nid, stat->lru_mask);
3164 seq_printf(m, " N%d=%lu", nid, nr);
3165 }
3166 seq_putc(m, '\n');
406eb0c9 3167 }
406eb0c9 3168
406eb0c9
YH
3169 return 0;
3170}
3171#endif /* CONFIG_NUMA */
3172
df0e53d0
JW
3173/* Universal VM events cgroup1 shows, original sort order */
3174unsigned int memcg1_events[] = {
3175 PGPGIN,
3176 PGPGOUT,
3177 PGFAULT,
3178 PGMAJFAULT,
3179};
3180
3181static const char *const memcg1_event_names[] = {
3182 "pgpgin",
3183 "pgpgout",
3184 "pgfault",
3185 "pgmajfault",
3186};
3187
2da8ca82 3188static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3189{
2da8ca82 3190 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3191 unsigned long memory, memsw;
af7c4b0e
JW
3192 struct mem_cgroup *mi;
3193 unsigned int i;
406eb0c9 3194
71cd3113 3195 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3196 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3197
71cd3113
JW
3198 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3199 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3200 continue;
71cd3113 3201 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
ccda7f43 3202 memcg_page_state(memcg, memcg1_stats[i]) *
71cd3113 3203 PAGE_SIZE);
1dd3a273 3204 }
7b854121 3205
df0e53d0
JW
3206 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3207 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
ccda7f43 3208 memcg_sum_events(memcg, memcg1_events[i]));
af7c4b0e
JW
3209
3210 for (i = 0; i < NR_LRU_LISTS; i++)
3211 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3212 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3213
14067bb3 3214 /* Hierarchical information */
3e32cb2e
JW
3215 memory = memsw = PAGE_COUNTER_MAX;
3216 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3217 memory = min(memory, mi->memory.limit);
3218 memsw = min(memsw, mi->memsw.limit);
fee7b548 3219 }
3e32cb2e
JW
3220 seq_printf(m, "hierarchical_memory_limit %llu\n",
3221 (u64)memory * PAGE_SIZE);
7941d214 3222 if (do_memsw_account())
3e32cb2e
JW
3223 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3224 (u64)memsw * PAGE_SIZE);
7f016ee8 3225
71cd3113 3226 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
484ebb3b 3227 unsigned long long val = 0;
af7c4b0e 3228
71cd3113 3229 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3230 continue;
af7c4b0e 3231 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3232 val += memcg_page_state(mi, memcg1_stats[i]) *
71cd3113
JW
3233 PAGE_SIZE;
3234 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
af7c4b0e
JW
3235 }
3236
df0e53d0 3237 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
af7c4b0e
JW
3238 unsigned long long val = 0;
3239
3240 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3241 val += memcg_sum_events(mi, memcg1_events[i]);
df0e53d0 3242 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
af7c4b0e
JW
3243 }
3244
3245 for (i = 0; i < NR_LRU_LISTS; i++) {
3246 unsigned long long val = 0;
3247
3248 for_each_mem_cgroup_tree(mi, memcg)
3249 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3250 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3251 }
14067bb3 3252
7f016ee8 3253#ifdef CONFIG_DEBUG_VM
7f016ee8 3254 {
ef8f2327
MG
3255 pg_data_t *pgdat;
3256 struct mem_cgroup_per_node *mz;
89abfab1 3257 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3258 unsigned long recent_rotated[2] = {0, 0};
3259 unsigned long recent_scanned[2] = {0, 0};
3260
ef8f2327
MG
3261 for_each_online_pgdat(pgdat) {
3262 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3263 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3264
ef8f2327
MG
3265 recent_rotated[0] += rstat->recent_rotated[0];
3266 recent_rotated[1] += rstat->recent_rotated[1];
3267 recent_scanned[0] += rstat->recent_scanned[0];
3268 recent_scanned[1] += rstat->recent_scanned[1];
3269 }
78ccf5b5
JW
3270 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3271 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3272 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3273 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3274 }
3275#endif
3276
d2ceb9b7
KH
3277 return 0;
3278}
3279
182446d0
TH
3280static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3281 struct cftype *cft)
a7885eb8 3282{
182446d0 3283 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3284
1f4c025b 3285 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3286}
3287
182446d0
TH
3288static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3289 struct cftype *cft, u64 val)
a7885eb8 3290{
182446d0 3291 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3292
3dae7fec 3293 if (val > 100)
a7885eb8
KM
3294 return -EINVAL;
3295
14208b0e 3296 if (css->parent)
3dae7fec
JW
3297 memcg->swappiness = val;
3298 else
3299 vm_swappiness = val;
068b38c1 3300
a7885eb8
KM
3301 return 0;
3302}
3303
2e72b634
KS
3304static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3305{
3306 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3307 unsigned long usage;
2e72b634
KS
3308 int i;
3309
3310 rcu_read_lock();
3311 if (!swap)
2c488db2 3312 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3313 else
2c488db2 3314 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3315
3316 if (!t)
3317 goto unlock;
3318
ce00a967 3319 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3320
3321 /*
748dad36 3322 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3323 * If it's not true, a threshold was crossed after last
3324 * call of __mem_cgroup_threshold().
3325 */
5407a562 3326 i = t->current_threshold;
2e72b634
KS
3327
3328 /*
3329 * Iterate backward over array of thresholds starting from
3330 * current_threshold and check if a threshold is crossed.
3331 * If none of thresholds below usage is crossed, we read
3332 * only one element of the array here.
3333 */
3334 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3335 eventfd_signal(t->entries[i].eventfd, 1);
3336
3337 /* i = current_threshold + 1 */
3338 i++;
3339
3340 /*
3341 * Iterate forward over array of thresholds starting from
3342 * current_threshold+1 and check if a threshold is crossed.
3343 * If none of thresholds above usage is crossed, we read
3344 * only one element of the array here.
3345 */
3346 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3347 eventfd_signal(t->entries[i].eventfd, 1);
3348
3349 /* Update current_threshold */
5407a562 3350 t->current_threshold = i - 1;
2e72b634
KS
3351unlock:
3352 rcu_read_unlock();
3353}
3354
3355static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3356{
ad4ca5f4
KS
3357 while (memcg) {
3358 __mem_cgroup_threshold(memcg, false);
7941d214 3359 if (do_memsw_account())
ad4ca5f4
KS
3360 __mem_cgroup_threshold(memcg, true);
3361
3362 memcg = parent_mem_cgroup(memcg);
3363 }
2e72b634
KS
3364}
3365
3366static int compare_thresholds(const void *a, const void *b)
3367{
3368 const struct mem_cgroup_threshold *_a = a;
3369 const struct mem_cgroup_threshold *_b = b;
3370
2bff24a3
GT
3371 if (_a->threshold > _b->threshold)
3372 return 1;
3373
3374 if (_a->threshold < _b->threshold)
3375 return -1;
3376
3377 return 0;
2e72b634
KS
3378}
3379
c0ff4b85 3380static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3381{
3382 struct mem_cgroup_eventfd_list *ev;
3383
2bcf2e92
MH
3384 spin_lock(&memcg_oom_lock);
3385
c0ff4b85 3386 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3387 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3388
3389 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3390 return 0;
3391}
3392
c0ff4b85 3393static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3394{
7d74b06f
KH
3395 struct mem_cgroup *iter;
3396
c0ff4b85 3397 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3398 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3399}
3400
59b6f873 3401static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3402 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3403{
2c488db2
KS
3404 struct mem_cgroup_thresholds *thresholds;
3405 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3406 unsigned long threshold;
3407 unsigned long usage;
2c488db2 3408 int i, size, ret;
2e72b634 3409
650c5e56 3410 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3411 if (ret)
3412 return ret;
3413
3414 mutex_lock(&memcg->thresholds_lock);
2c488db2 3415
05b84301 3416 if (type == _MEM) {
2c488db2 3417 thresholds = &memcg->thresholds;
ce00a967 3418 usage = mem_cgroup_usage(memcg, false);
05b84301 3419 } else if (type == _MEMSWAP) {
2c488db2 3420 thresholds = &memcg->memsw_thresholds;
ce00a967 3421 usage = mem_cgroup_usage(memcg, true);
05b84301 3422 } else
2e72b634
KS
3423 BUG();
3424
2e72b634 3425 /* Check if a threshold crossed before adding a new one */
2c488db2 3426 if (thresholds->primary)
2e72b634
KS
3427 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3428
2c488db2 3429 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3430
3431 /* Allocate memory for new array of thresholds */
2c488db2 3432 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3433 GFP_KERNEL);
2c488db2 3434 if (!new) {
2e72b634
KS
3435 ret = -ENOMEM;
3436 goto unlock;
3437 }
2c488db2 3438 new->size = size;
2e72b634
KS
3439
3440 /* Copy thresholds (if any) to new array */
2c488db2
KS
3441 if (thresholds->primary) {
3442 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3443 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3444 }
3445
2e72b634 3446 /* Add new threshold */
2c488db2
KS
3447 new->entries[size - 1].eventfd = eventfd;
3448 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3449
3450 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3451 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3452 compare_thresholds, NULL);
3453
3454 /* Find current threshold */
2c488db2 3455 new->current_threshold = -1;
2e72b634 3456 for (i = 0; i < size; i++) {
748dad36 3457 if (new->entries[i].threshold <= usage) {
2e72b634 3458 /*
2c488db2
KS
3459 * new->current_threshold will not be used until
3460 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3461 * it here.
3462 */
2c488db2 3463 ++new->current_threshold;
748dad36
SZ
3464 } else
3465 break;
2e72b634
KS
3466 }
3467
2c488db2
KS
3468 /* Free old spare buffer and save old primary buffer as spare */
3469 kfree(thresholds->spare);
3470 thresholds->spare = thresholds->primary;
3471
3472 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3473
907860ed 3474 /* To be sure that nobody uses thresholds */
2e72b634
KS
3475 synchronize_rcu();
3476
2e72b634
KS
3477unlock:
3478 mutex_unlock(&memcg->thresholds_lock);
3479
3480 return ret;
3481}
3482
59b6f873 3483static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3484 struct eventfd_ctx *eventfd, const char *args)
3485{
59b6f873 3486 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3487}
3488
59b6f873 3489static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3490 struct eventfd_ctx *eventfd, const char *args)
3491{
59b6f873 3492 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3493}
3494
59b6f873 3495static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3496 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3497{
2c488db2
KS
3498 struct mem_cgroup_thresholds *thresholds;
3499 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3500 unsigned long usage;
2c488db2 3501 int i, j, size;
2e72b634
KS
3502
3503 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3504
3505 if (type == _MEM) {
2c488db2 3506 thresholds = &memcg->thresholds;
ce00a967 3507 usage = mem_cgroup_usage(memcg, false);
05b84301 3508 } else if (type == _MEMSWAP) {
2c488db2 3509 thresholds = &memcg->memsw_thresholds;
ce00a967 3510 usage = mem_cgroup_usage(memcg, true);
05b84301 3511 } else
2e72b634
KS
3512 BUG();
3513
371528ca
AV
3514 if (!thresholds->primary)
3515 goto unlock;
3516
2e72b634
KS
3517 /* Check if a threshold crossed before removing */
3518 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3519
3520 /* Calculate new number of threshold */
2c488db2
KS
3521 size = 0;
3522 for (i = 0; i < thresholds->primary->size; i++) {
3523 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3524 size++;
3525 }
3526
2c488db2 3527 new = thresholds->spare;
907860ed 3528
2e72b634
KS
3529 /* Set thresholds array to NULL if we don't have thresholds */
3530 if (!size) {
2c488db2
KS
3531 kfree(new);
3532 new = NULL;
907860ed 3533 goto swap_buffers;
2e72b634
KS
3534 }
3535
2c488db2 3536 new->size = size;
2e72b634
KS
3537
3538 /* Copy thresholds and find current threshold */
2c488db2
KS
3539 new->current_threshold = -1;
3540 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3541 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3542 continue;
3543
2c488db2 3544 new->entries[j] = thresholds->primary->entries[i];
748dad36 3545 if (new->entries[j].threshold <= usage) {
2e72b634 3546 /*
2c488db2 3547 * new->current_threshold will not be used
2e72b634
KS
3548 * until rcu_assign_pointer(), so it's safe to increment
3549 * it here.
3550 */
2c488db2 3551 ++new->current_threshold;
2e72b634
KS
3552 }
3553 j++;
3554 }
3555
907860ed 3556swap_buffers:
2c488db2
KS
3557 /* Swap primary and spare array */
3558 thresholds->spare = thresholds->primary;
8c757763 3559
2c488db2 3560 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3561
907860ed 3562 /* To be sure that nobody uses thresholds */
2e72b634 3563 synchronize_rcu();
6611d8d7
MC
3564
3565 /* If all events are unregistered, free the spare array */
3566 if (!new) {
3567 kfree(thresholds->spare);
3568 thresholds->spare = NULL;
3569 }
371528ca 3570unlock:
2e72b634 3571 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3572}
c1e862c1 3573
59b6f873 3574static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3575 struct eventfd_ctx *eventfd)
3576{
59b6f873 3577 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3578}
3579
59b6f873 3580static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3581 struct eventfd_ctx *eventfd)
3582{
59b6f873 3583 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3584}
3585
59b6f873 3586static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3587 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3588{
9490ff27 3589 struct mem_cgroup_eventfd_list *event;
9490ff27 3590
9490ff27
KH
3591 event = kmalloc(sizeof(*event), GFP_KERNEL);
3592 if (!event)
3593 return -ENOMEM;
3594
1af8efe9 3595 spin_lock(&memcg_oom_lock);
9490ff27
KH
3596
3597 event->eventfd = eventfd;
3598 list_add(&event->list, &memcg->oom_notify);
3599
3600 /* already in OOM ? */
c2b42d3c 3601 if (memcg->under_oom)
9490ff27 3602 eventfd_signal(eventfd, 1);
1af8efe9 3603 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3604
3605 return 0;
3606}
3607
59b6f873 3608static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3609 struct eventfd_ctx *eventfd)
9490ff27 3610{
9490ff27 3611 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3612
1af8efe9 3613 spin_lock(&memcg_oom_lock);
9490ff27 3614
c0ff4b85 3615 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3616 if (ev->eventfd == eventfd) {
3617 list_del(&ev->list);
3618 kfree(ev);
3619 }
3620 }
3621
1af8efe9 3622 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3623}
3624
2da8ca82 3625static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3626{
2da8ca82 3627 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3628
791badbd 3629 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3630 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
8e675f7a 3631 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3c11ecf4
KH
3632 return 0;
3633}
3634
182446d0 3635static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3636 struct cftype *cft, u64 val)
3637{
182446d0 3638 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3639
3640 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3641 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3642 return -EINVAL;
3643
c0ff4b85 3644 memcg->oom_kill_disable = val;
4d845ebf 3645 if (!val)
c0ff4b85 3646 memcg_oom_recover(memcg);
3dae7fec 3647
3c11ecf4
KH
3648 return 0;
3649}
3650
52ebea74
TH
3651#ifdef CONFIG_CGROUP_WRITEBACK
3652
3653struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3654{
3655 return &memcg->cgwb_list;
3656}
3657
841710aa
TH
3658static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3659{
3660 return wb_domain_init(&memcg->cgwb_domain, gfp);
3661}
3662
3663static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3664{
3665 wb_domain_exit(&memcg->cgwb_domain);
3666}
3667
2529bb3a
TH
3668static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3669{
3670 wb_domain_size_changed(&memcg->cgwb_domain);
3671}
3672
841710aa
TH
3673struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3674{
3675 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3676
3677 if (!memcg->css.parent)
3678 return NULL;
3679
3680 return &memcg->cgwb_domain;
3681}
3682
c2aa723a
TH
3683/**
3684 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3685 * @wb: bdi_writeback in question
c5edf9cd
TH
3686 * @pfilepages: out parameter for number of file pages
3687 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3688 * @pdirty: out parameter for number of dirty pages
3689 * @pwriteback: out parameter for number of pages under writeback
3690 *
c5edf9cd
TH
3691 * Determine the numbers of file, headroom, dirty, and writeback pages in
3692 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3693 * is a bit more involved.
c2aa723a 3694 *
c5edf9cd
TH
3695 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3696 * headroom is calculated as the lowest headroom of itself and the
3697 * ancestors. Note that this doesn't consider the actual amount of
3698 * available memory in the system. The caller should further cap
3699 * *@pheadroom accordingly.
c2aa723a 3700 */
c5edf9cd
TH
3701void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3702 unsigned long *pheadroom, unsigned long *pdirty,
3703 unsigned long *pwriteback)
c2aa723a
TH
3704{
3705 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3706 struct mem_cgroup *parent;
c2aa723a 3707
ccda7f43 3708 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3709
3710 /* this should eventually include NR_UNSTABLE_NFS */
ccda7f43 3711 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
c5edf9cd
TH
3712 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3713 (1 << LRU_ACTIVE_FILE));
3714 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3715
c2aa723a
TH
3716 while ((parent = parent_mem_cgroup(memcg))) {
3717 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3718 unsigned long used = page_counter_read(&memcg->memory);
3719
c5edf9cd 3720 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3721 memcg = parent;
3722 }
c2aa723a
TH
3723}
3724
841710aa
TH
3725#else /* CONFIG_CGROUP_WRITEBACK */
3726
3727static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3728{
3729 return 0;
3730}
3731
3732static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3733{
3734}
3735
2529bb3a
TH
3736static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3737{
3738}
3739
52ebea74
TH
3740#endif /* CONFIG_CGROUP_WRITEBACK */
3741
3bc942f3
TH
3742/*
3743 * DO NOT USE IN NEW FILES.
3744 *
3745 * "cgroup.event_control" implementation.
3746 *
3747 * This is way over-engineered. It tries to support fully configurable
3748 * events for each user. Such level of flexibility is completely
3749 * unnecessary especially in the light of the planned unified hierarchy.
3750 *
3751 * Please deprecate this and replace with something simpler if at all
3752 * possible.
3753 */
3754
79bd9814
TH
3755/*
3756 * Unregister event and free resources.
3757 *
3758 * Gets called from workqueue.
3759 */
3bc942f3 3760static void memcg_event_remove(struct work_struct *work)
79bd9814 3761{
3bc942f3
TH
3762 struct mem_cgroup_event *event =
3763 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3764 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3765
3766 remove_wait_queue(event->wqh, &event->wait);
3767
59b6f873 3768 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3769
3770 /* Notify userspace the event is going away. */
3771 eventfd_signal(event->eventfd, 1);
3772
3773 eventfd_ctx_put(event->eventfd);
3774 kfree(event);
59b6f873 3775 css_put(&memcg->css);
79bd9814
TH
3776}
3777
3778/*
3779 * Gets called on POLLHUP on eventfd when user closes it.
3780 *
3781 * Called with wqh->lock held and interrupts disabled.
3782 */
ac6424b9 3783static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 3784 int sync, void *key)
79bd9814 3785{
3bc942f3
TH
3786 struct mem_cgroup_event *event =
3787 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3788 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3789 unsigned long flags = (unsigned long)key;
3790
3791 if (flags & POLLHUP) {
3792 /*
3793 * If the event has been detached at cgroup removal, we
3794 * can simply return knowing the other side will cleanup
3795 * for us.
3796 *
3797 * We can't race against event freeing since the other
3798 * side will require wqh->lock via remove_wait_queue(),
3799 * which we hold.
3800 */
fba94807 3801 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3802 if (!list_empty(&event->list)) {
3803 list_del_init(&event->list);
3804 /*
3805 * We are in atomic context, but cgroup_event_remove()
3806 * may sleep, so we have to call it in workqueue.
3807 */
3808 schedule_work(&event->remove);
3809 }
fba94807 3810 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3811 }
3812
3813 return 0;
3814}
3815
3bc942f3 3816static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3817 wait_queue_head_t *wqh, poll_table *pt)
3818{
3bc942f3
TH
3819 struct mem_cgroup_event *event =
3820 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3821
3822 event->wqh = wqh;
3823 add_wait_queue(wqh, &event->wait);
3824}
3825
3826/*
3bc942f3
TH
3827 * DO NOT USE IN NEW FILES.
3828 *
79bd9814
TH
3829 * Parse input and register new cgroup event handler.
3830 *
3831 * Input must be in format '<event_fd> <control_fd> <args>'.
3832 * Interpretation of args is defined by control file implementation.
3833 */
451af504
TH
3834static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3835 char *buf, size_t nbytes, loff_t off)
79bd9814 3836{
451af504 3837 struct cgroup_subsys_state *css = of_css(of);
fba94807 3838 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3839 struct mem_cgroup_event *event;
79bd9814
TH
3840 struct cgroup_subsys_state *cfile_css;
3841 unsigned int efd, cfd;
3842 struct fd efile;
3843 struct fd cfile;
fba94807 3844 const char *name;
79bd9814
TH
3845 char *endp;
3846 int ret;
3847
451af504
TH
3848 buf = strstrip(buf);
3849
3850 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3851 if (*endp != ' ')
3852 return -EINVAL;
451af504 3853 buf = endp + 1;
79bd9814 3854
451af504 3855 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3856 if ((*endp != ' ') && (*endp != '\0'))
3857 return -EINVAL;
451af504 3858 buf = endp + 1;
79bd9814
TH
3859
3860 event = kzalloc(sizeof(*event), GFP_KERNEL);
3861 if (!event)
3862 return -ENOMEM;
3863
59b6f873 3864 event->memcg = memcg;
79bd9814 3865 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3866 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3867 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3868 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3869
3870 efile = fdget(efd);
3871 if (!efile.file) {
3872 ret = -EBADF;
3873 goto out_kfree;
3874 }
3875
3876 event->eventfd = eventfd_ctx_fileget(efile.file);
3877 if (IS_ERR(event->eventfd)) {
3878 ret = PTR_ERR(event->eventfd);
3879 goto out_put_efile;
3880 }
3881
3882 cfile = fdget(cfd);
3883 if (!cfile.file) {
3884 ret = -EBADF;
3885 goto out_put_eventfd;
3886 }
3887
3888 /* the process need read permission on control file */
3889 /* AV: shouldn't we check that it's been opened for read instead? */
3890 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3891 if (ret < 0)
3892 goto out_put_cfile;
3893
fba94807
TH
3894 /*
3895 * Determine the event callbacks and set them in @event. This used
3896 * to be done via struct cftype but cgroup core no longer knows
3897 * about these events. The following is crude but the whole thing
3898 * is for compatibility anyway.
3bc942f3
TH
3899 *
3900 * DO NOT ADD NEW FILES.
fba94807 3901 */
b583043e 3902 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3903
3904 if (!strcmp(name, "memory.usage_in_bytes")) {
3905 event->register_event = mem_cgroup_usage_register_event;
3906 event->unregister_event = mem_cgroup_usage_unregister_event;
3907 } else if (!strcmp(name, "memory.oom_control")) {
3908 event->register_event = mem_cgroup_oom_register_event;
3909 event->unregister_event = mem_cgroup_oom_unregister_event;
3910 } else if (!strcmp(name, "memory.pressure_level")) {
3911 event->register_event = vmpressure_register_event;
3912 event->unregister_event = vmpressure_unregister_event;
3913 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3914 event->register_event = memsw_cgroup_usage_register_event;
3915 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3916 } else {
3917 ret = -EINVAL;
3918 goto out_put_cfile;
3919 }
3920
79bd9814 3921 /*
b5557c4c
TH
3922 * Verify @cfile should belong to @css. Also, remaining events are
3923 * automatically removed on cgroup destruction but the removal is
3924 * asynchronous, so take an extra ref on @css.
79bd9814 3925 */
b583043e 3926 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3927 &memory_cgrp_subsys);
79bd9814 3928 ret = -EINVAL;
5a17f543 3929 if (IS_ERR(cfile_css))
79bd9814 3930 goto out_put_cfile;
5a17f543
TH
3931 if (cfile_css != css) {
3932 css_put(cfile_css);
79bd9814 3933 goto out_put_cfile;
5a17f543 3934 }
79bd9814 3935
451af504 3936 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3937 if (ret)
3938 goto out_put_css;
3939
3940 efile.file->f_op->poll(efile.file, &event->pt);
3941
fba94807
TH
3942 spin_lock(&memcg->event_list_lock);
3943 list_add(&event->list, &memcg->event_list);
3944 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3945
3946 fdput(cfile);
3947 fdput(efile);
3948
451af504 3949 return nbytes;
79bd9814
TH
3950
3951out_put_css:
b5557c4c 3952 css_put(css);
79bd9814
TH
3953out_put_cfile:
3954 fdput(cfile);
3955out_put_eventfd:
3956 eventfd_ctx_put(event->eventfd);
3957out_put_efile:
3958 fdput(efile);
3959out_kfree:
3960 kfree(event);
3961
3962 return ret;
3963}
3964
241994ed 3965static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3966 {
0eea1030 3967 .name = "usage_in_bytes",
8c7c6e34 3968 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3969 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3970 },
c84872e1
PE
3971 {
3972 .name = "max_usage_in_bytes",
8c7c6e34 3973 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3974 .write = mem_cgroup_reset,
791badbd 3975 .read_u64 = mem_cgroup_read_u64,
c84872e1 3976 },
8cdea7c0 3977 {
0eea1030 3978 .name = "limit_in_bytes",
8c7c6e34 3979 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3980 .write = mem_cgroup_write,
791badbd 3981 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3982 },
296c81d8
BS
3983 {
3984 .name = "soft_limit_in_bytes",
3985 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3986 .write = mem_cgroup_write,
791badbd 3987 .read_u64 = mem_cgroup_read_u64,
296c81d8 3988 },
8cdea7c0
BS
3989 {
3990 .name = "failcnt",
8c7c6e34 3991 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3992 .write = mem_cgroup_reset,
791badbd 3993 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3994 },
d2ceb9b7
KH
3995 {
3996 .name = "stat",
2da8ca82 3997 .seq_show = memcg_stat_show,
d2ceb9b7 3998 },
c1e862c1
KH
3999 {
4000 .name = "force_empty",
6770c64e 4001 .write = mem_cgroup_force_empty_write,
c1e862c1 4002 },
18f59ea7
BS
4003 {
4004 .name = "use_hierarchy",
4005 .write_u64 = mem_cgroup_hierarchy_write,
4006 .read_u64 = mem_cgroup_hierarchy_read,
4007 },
79bd9814 4008 {
3bc942f3 4009 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4010 .write = memcg_write_event_control,
7dbdb199 4011 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4012 },
a7885eb8
KM
4013 {
4014 .name = "swappiness",
4015 .read_u64 = mem_cgroup_swappiness_read,
4016 .write_u64 = mem_cgroup_swappiness_write,
4017 },
7dc74be0
DN
4018 {
4019 .name = "move_charge_at_immigrate",
4020 .read_u64 = mem_cgroup_move_charge_read,
4021 .write_u64 = mem_cgroup_move_charge_write,
4022 },
9490ff27
KH
4023 {
4024 .name = "oom_control",
2da8ca82 4025 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4026 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4027 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4028 },
70ddf637
AV
4029 {
4030 .name = "pressure_level",
70ddf637 4031 },
406eb0c9
YH
4032#ifdef CONFIG_NUMA
4033 {
4034 .name = "numa_stat",
2da8ca82 4035 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4036 },
4037#endif
510fc4e1
GC
4038 {
4039 .name = "kmem.limit_in_bytes",
4040 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4041 .write = mem_cgroup_write,
791badbd 4042 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4043 },
4044 {
4045 .name = "kmem.usage_in_bytes",
4046 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4047 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4048 },
4049 {
4050 .name = "kmem.failcnt",
4051 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4052 .write = mem_cgroup_reset,
791badbd 4053 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4054 },
4055 {
4056 .name = "kmem.max_usage_in_bytes",
4057 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4058 .write = mem_cgroup_reset,
791badbd 4059 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4060 },
5b365771 4061#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4062 {
4063 .name = "kmem.slabinfo",
bc2791f8
TH
4064 .seq_start = memcg_slab_start,
4065 .seq_next = memcg_slab_next,
4066 .seq_stop = memcg_slab_stop,
b047501c 4067 .seq_show = memcg_slab_show,
749c5415
GC
4068 },
4069#endif
d55f90bf
VD
4070 {
4071 .name = "kmem.tcp.limit_in_bytes",
4072 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4073 .write = mem_cgroup_write,
4074 .read_u64 = mem_cgroup_read_u64,
4075 },
4076 {
4077 .name = "kmem.tcp.usage_in_bytes",
4078 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4079 .read_u64 = mem_cgroup_read_u64,
4080 },
4081 {
4082 .name = "kmem.tcp.failcnt",
4083 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4084 .write = mem_cgroup_reset,
4085 .read_u64 = mem_cgroup_read_u64,
4086 },
4087 {
4088 .name = "kmem.tcp.max_usage_in_bytes",
4089 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4090 .write = mem_cgroup_reset,
4091 .read_u64 = mem_cgroup_read_u64,
4092 },
6bc10349 4093 { }, /* terminate */
af36f906 4094};
8c7c6e34 4095
73f576c0
JW
4096/*
4097 * Private memory cgroup IDR
4098 *
4099 * Swap-out records and page cache shadow entries need to store memcg
4100 * references in constrained space, so we maintain an ID space that is
4101 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4102 * memory-controlled cgroups to 64k.
4103 *
4104 * However, there usually are many references to the oflline CSS after
4105 * the cgroup has been destroyed, such as page cache or reclaimable
4106 * slab objects, that don't need to hang on to the ID. We want to keep
4107 * those dead CSS from occupying IDs, or we might quickly exhaust the
4108 * relatively small ID space and prevent the creation of new cgroups
4109 * even when there are much fewer than 64k cgroups - possibly none.
4110 *
4111 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4112 * be freed and recycled when it's no longer needed, which is usually
4113 * when the CSS is offlined.
4114 *
4115 * The only exception to that are records of swapped out tmpfs/shmem
4116 * pages that need to be attributed to live ancestors on swapin. But
4117 * those references are manageable from userspace.
4118 */
4119
4120static DEFINE_IDR(mem_cgroup_idr);
4121
403a1579
KT
4122static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4123{
4124 if (memcg->id.id > 0) {
4125 idr_remove(&mem_cgroup_idr, memcg->id.id);
4126 memcg->id.id = 0;
4127 }
4128}
4129
615d66c3 4130static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4131{
58fa2a55 4132 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4133 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4134}
4135
615d66c3 4136static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4137{
58fa2a55 4138 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4139 if (atomic_sub_and_test(n, &memcg->id.ref)) {
403a1579 4140 mem_cgroup_id_remove(memcg);
73f576c0
JW
4141
4142 /* Memcg ID pins CSS */
4143 css_put(&memcg->css);
4144 }
4145}
4146
615d66c3
VD
4147static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4148{
4149 mem_cgroup_id_get_many(memcg, 1);
4150}
4151
4152static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4153{
4154 mem_cgroup_id_put_many(memcg, 1);
4155}
4156
73f576c0
JW
4157/**
4158 * mem_cgroup_from_id - look up a memcg from a memcg id
4159 * @id: the memcg id to look up
4160 *
4161 * Caller must hold rcu_read_lock().
4162 */
4163struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4164{
4165 WARN_ON_ONCE(!rcu_read_lock_held());
4166 return idr_find(&mem_cgroup_idr, id);
4167}
4168
ef8f2327 4169static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4170{
4171 struct mem_cgroup_per_node *pn;
ef8f2327 4172 int tmp = node;
1ecaab2b
KH
4173 /*
4174 * This routine is called against possible nodes.
4175 * But it's BUG to call kmalloc() against offline node.
4176 *
4177 * TODO: this routine can waste much memory for nodes which will
4178 * never be onlined. It's better to use memory hotplug callback
4179 * function.
4180 */
41e3355d
KH
4181 if (!node_state(node, N_NORMAL_MEMORY))
4182 tmp = -1;
17295c88 4183 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4184 if (!pn)
4185 return 1;
1ecaab2b 4186
00f3ca2c
JW
4187 pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4188 if (!pn->lruvec_stat) {
4189 kfree(pn);
4190 return 1;
4191 }
4192
ef8f2327
MG
4193 lruvec_init(&pn->lruvec);
4194 pn->usage_in_excess = 0;
4195 pn->on_tree = false;
4196 pn->memcg = memcg;
4197
54f72fe0 4198 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4199 return 0;
4200}
4201
ef8f2327 4202static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4203{
00f3ca2c
JW
4204 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4205
6d3d5ee1
MH
4206 if (!pn)
4207 return;
4208
00f3ca2c
JW
4209 free_percpu(pn->lruvec_stat);
4210 kfree(pn);
1ecaab2b
KH
4211}
4212
40e952f9 4213static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4214{
c8b2a36f 4215 int node;
59927fb9 4216
c8b2a36f 4217 for_each_node(node)
ef8f2327 4218 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4219 free_percpu(memcg->stat);
8ff69e2c 4220 kfree(memcg);
59927fb9 4221}
3afe36b1 4222
40e952f9
TE
4223static void mem_cgroup_free(struct mem_cgroup *memcg)
4224{
4225 memcg_wb_domain_exit(memcg);
4226 __mem_cgroup_free(memcg);
4227}
4228
0b8f73e1 4229static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4230{
d142e3e6 4231 struct mem_cgroup *memcg;
0b8f73e1 4232 size_t size;
6d12e2d8 4233 int node;
8cdea7c0 4234
0b8f73e1
JW
4235 size = sizeof(struct mem_cgroup);
4236 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4237
4238 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4239 if (!memcg)
0b8f73e1
JW
4240 return NULL;
4241
73f576c0
JW
4242 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4243 1, MEM_CGROUP_ID_MAX,
4244 GFP_KERNEL);
4245 if (memcg->id.id < 0)
4246 goto fail;
4247
0b8f73e1
JW
4248 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4249 if (!memcg->stat)
4250 goto fail;
78fb7466 4251
3ed28fa1 4252 for_each_node(node)
ef8f2327 4253 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4254 goto fail;
f64c3f54 4255
0b8f73e1
JW
4256 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4257 goto fail;
28dbc4b6 4258
f7e1cb6e 4259 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4260 memcg->last_scanned_node = MAX_NUMNODES;
4261 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4262 mutex_init(&memcg->thresholds_lock);
4263 spin_lock_init(&memcg->move_lock);
70ddf637 4264 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4265 INIT_LIST_HEAD(&memcg->event_list);
4266 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4267 memcg->socket_pressure = jiffies;
127424c8 4268#ifndef CONFIG_SLOB
900a38f0 4269 memcg->kmemcg_id = -1;
900a38f0 4270#endif
52ebea74
TH
4271#ifdef CONFIG_CGROUP_WRITEBACK
4272 INIT_LIST_HEAD(&memcg->cgwb_list);
4273#endif
73f576c0 4274 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4275 return memcg;
4276fail:
403a1579 4277 mem_cgroup_id_remove(memcg);
40e952f9 4278 __mem_cgroup_free(memcg);
0b8f73e1 4279 return NULL;
d142e3e6
GC
4280}
4281
0b8f73e1
JW
4282static struct cgroup_subsys_state * __ref
4283mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4284{
0b8f73e1
JW
4285 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4286 struct mem_cgroup *memcg;
4287 long error = -ENOMEM;
d142e3e6 4288
0b8f73e1
JW
4289 memcg = mem_cgroup_alloc();
4290 if (!memcg)
4291 return ERR_PTR(error);
d142e3e6 4292
0b8f73e1
JW
4293 memcg->high = PAGE_COUNTER_MAX;
4294 memcg->soft_limit = PAGE_COUNTER_MAX;
4295 if (parent) {
4296 memcg->swappiness = mem_cgroup_swappiness(parent);
4297 memcg->oom_kill_disable = parent->oom_kill_disable;
4298 }
4299 if (parent && parent->use_hierarchy) {
4300 memcg->use_hierarchy = true;
3e32cb2e 4301 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4302 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4303 page_counter_init(&memcg->memsw, &parent->memsw);
4304 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4305 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4306 } else {
3e32cb2e 4307 page_counter_init(&memcg->memory, NULL);
37e84351 4308 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4309 page_counter_init(&memcg->memsw, NULL);
4310 page_counter_init(&memcg->kmem, NULL);
0db15298 4311 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4312 /*
4313 * Deeper hierachy with use_hierarchy == false doesn't make
4314 * much sense so let cgroup subsystem know about this
4315 * unfortunate state in our controller.
4316 */
d142e3e6 4317 if (parent != root_mem_cgroup)
073219e9 4318 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4319 }
d6441637 4320
0b8f73e1
JW
4321 /* The following stuff does not apply to the root */
4322 if (!parent) {
4323 root_mem_cgroup = memcg;
4324 return &memcg->css;
4325 }
4326
b313aeee 4327 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4328 if (error)
4329 goto fail;
127424c8 4330
f7e1cb6e 4331 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4332 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4333
0b8f73e1
JW
4334 return &memcg->css;
4335fail:
403a1579 4336 mem_cgroup_id_remove(memcg);
0b8f73e1 4337 mem_cgroup_free(memcg);
ea3a9645 4338 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4339}
4340
73f576c0 4341static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4342{
58fa2a55
VD
4343 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4344
73f576c0 4345 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4346 atomic_set(&memcg->id.ref, 1);
73f576c0 4347 css_get(css);
2f7dd7a4 4348 return 0;
8cdea7c0
BS
4349}
4350
eb95419b 4351static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4352{
eb95419b 4353 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4354 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4355
4356 /*
4357 * Unregister events and notify userspace.
4358 * Notify userspace about cgroup removing only after rmdir of cgroup
4359 * directory to avoid race between userspace and kernelspace.
4360 */
fba94807
TH
4361 spin_lock(&memcg->event_list_lock);
4362 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4363 list_del_init(&event->list);
4364 schedule_work(&event->remove);
4365 }
fba94807 4366 spin_unlock(&memcg->event_list_lock);
ec64f515 4367
63677c74
RG
4368 memcg->low = 0;
4369
567e9ab2 4370 memcg_offline_kmem(memcg);
52ebea74 4371 wb_memcg_offline(memcg);
73f576c0
JW
4372
4373 mem_cgroup_id_put(memcg);
df878fb0
KH
4374}
4375
6df38689
VD
4376static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4377{
4378 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4379
4380 invalidate_reclaim_iterators(memcg);
4381}
4382
eb95419b 4383static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4384{
eb95419b 4385 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4386
f7e1cb6e 4387 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4388 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4389
0db15298 4390 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4391 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4392
0b8f73e1
JW
4393 vmpressure_cleanup(&memcg->vmpressure);
4394 cancel_work_sync(&memcg->high_work);
4395 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4396 memcg_free_kmem(memcg);
0b8f73e1 4397 mem_cgroup_free(memcg);
8cdea7c0
BS
4398}
4399
1ced953b
TH
4400/**
4401 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4402 * @css: the target css
4403 *
4404 * Reset the states of the mem_cgroup associated with @css. This is
4405 * invoked when the userland requests disabling on the default hierarchy
4406 * but the memcg is pinned through dependency. The memcg should stop
4407 * applying policies and should revert to the vanilla state as it may be
4408 * made visible again.
4409 *
4410 * The current implementation only resets the essential configurations.
4411 * This needs to be expanded to cover all the visible parts.
4412 */
4413static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4414{
4415 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4416
d334c9bc
VD
4417 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4418 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4419 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4420 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4421 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4422 memcg->low = 0;
4423 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4424 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4425 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4426}
4427
02491447 4428#ifdef CONFIG_MMU
7dc74be0 4429/* Handlers for move charge at task migration. */
854ffa8d 4430static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4431{
05b84301 4432 int ret;
9476db97 4433
d0164adc
MG
4434 /* Try a single bulk charge without reclaim first, kswapd may wake */
4435 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4436 if (!ret) {
854ffa8d 4437 mc.precharge += count;
854ffa8d
DN
4438 return ret;
4439 }
9476db97 4440
3674534b 4441 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4442 while (count--) {
3674534b 4443 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4444 if (ret)
38c5d72f 4445 return ret;
854ffa8d 4446 mc.precharge++;
9476db97 4447 cond_resched();
854ffa8d 4448 }
9476db97 4449 return 0;
4ffef5fe
DN
4450}
4451
4ffef5fe
DN
4452union mc_target {
4453 struct page *page;
02491447 4454 swp_entry_t ent;
4ffef5fe
DN
4455};
4456
4ffef5fe 4457enum mc_target_type {
8d32ff84 4458 MC_TARGET_NONE = 0,
4ffef5fe 4459 MC_TARGET_PAGE,
02491447 4460 MC_TARGET_SWAP,
c733a828 4461 MC_TARGET_DEVICE,
4ffef5fe
DN
4462};
4463
90254a65
DN
4464static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4465 unsigned long addr, pte_t ptent)
4ffef5fe 4466{
c733a828 4467 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4468
90254a65
DN
4469 if (!page || !page_mapped(page))
4470 return NULL;
4471 if (PageAnon(page)) {
1dfab5ab 4472 if (!(mc.flags & MOVE_ANON))
90254a65 4473 return NULL;
1dfab5ab
JW
4474 } else {
4475 if (!(mc.flags & MOVE_FILE))
4476 return NULL;
4477 }
90254a65
DN
4478 if (!get_page_unless_zero(page))
4479 return NULL;
4480
4481 return page;
4482}
4483
c733a828 4484#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4485static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4486 pte_t ptent, swp_entry_t *entry)
90254a65 4487{
90254a65
DN
4488 struct page *page = NULL;
4489 swp_entry_t ent = pte_to_swp_entry(ptent);
4490
1dfab5ab 4491 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4492 return NULL;
c733a828
JG
4493
4494 /*
4495 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4496 * a device and because they are not accessible by CPU they are store
4497 * as special swap entry in the CPU page table.
4498 */
4499 if (is_device_private_entry(ent)) {
4500 page = device_private_entry_to_page(ent);
4501 /*
4502 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4503 * a refcount of 1 when free (unlike normal page)
4504 */
4505 if (!page_ref_add_unless(page, 1, 1))
4506 return NULL;
4507 return page;
4508 }
4509
4b91355e
KH
4510 /*
4511 * Because lookup_swap_cache() updates some statistics counter,
4512 * we call find_get_page() with swapper_space directly.
4513 */
f6ab1f7f 4514 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4515 if (do_memsw_account())
90254a65
DN
4516 entry->val = ent.val;
4517
4518 return page;
4519}
4b91355e
KH
4520#else
4521static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4522 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4523{
4524 return NULL;
4525}
4526#endif
90254a65 4527
87946a72
DN
4528static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4529 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4530{
4531 struct page *page = NULL;
87946a72
DN
4532 struct address_space *mapping;
4533 pgoff_t pgoff;
4534
4535 if (!vma->vm_file) /* anonymous vma */
4536 return NULL;
1dfab5ab 4537 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4538 return NULL;
4539
87946a72 4540 mapping = vma->vm_file->f_mapping;
0661a336 4541 pgoff = linear_page_index(vma, addr);
87946a72
DN
4542
4543 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4544#ifdef CONFIG_SWAP
4545 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4546 if (shmem_mapping(mapping)) {
4547 page = find_get_entry(mapping, pgoff);
4548 if (radix_tree_exceptional_entry(page)) {
4549 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4550 if (do_memsw_account())
139b6a6f 4551 *entry = swp;
f6ab1f7f
HY
4552 page = find_get_page(swap_address_space(swp),
4553 swp_offset(swp));
139b6a6f
JW
4554 }
4555 } else
4556 page = find_get_page(mapping, pgoff);
4557#else
4558 page = find_get_page(mapping, pgoff);
aa3b1895 4559#endif
87946a72
DN
4560 return page;
4561}
4562
b1b0deab
CG
4563/**
4564 * mem_cgroup_move_account - move account of the page
4565 * @page: the page
25843c2b 4566 * @compound: charge the page as compound or small page
b1b0deab
CG
4567 * @from: mem_cgroup which the page is moved from.
4568 * @to: mem_cgroup which the page is moved to. @from != @to.
4569 *
3ac808fd 4570 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4571 *
4572 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4573 * from old cgroup.
4574 */
4575static int mem_cgroup_move_account(struct page *page,
f627c2f5 4576 bool compound,
b1b0deab
CG
4577 struct mem_cgroup *from,
4578 struct mem_cgroup *to)
4579{
4580 unsigned long flags;
f627c2f5 4581 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4582 int ret;
c4843a75 4583 bool anon;
b1b0deab
CG
4584
4585 VM_BUG_ON(from == to);
4586 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4587 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4588
4589 /*
6a93ca8f 4590 * Prevent mem_cgroup_migrate() from looking at
45637bab 4591 * page->mem_cgroup of its source page while we change it.
b1b0deab 4592 */
f627c2f5 4593 ret = -EBUSY;
b1b0deab
CG
4594 if (!trylock_page(page))
4595 goto out;
4596
4597 ret = -EINVAL;
4598 if (page->mem_cgroup != from)
4599 goto out_unlock;
4600
c4843a75
GT
4601 anon = PageAnon(page);
4602
b1b0deab
CG
4603 spin_lock_irqsave(&from->move_lock, flags);
4604
c4843a75 4605 if (!anon && page_mapped(page)) {
71cd3113
JW
4606 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4607 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
b1b0deab
CG
4608 }
4609
c4843a75
GT
4610 /*
4611 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4612 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4613 * So mapping should be stable for dirty pages.
4614 */
4615 if (!anon && PageDirty(page)) {
4616 struct address_space *mapping = page_mapping(page);
4617
4618 if (mapping_cap_account_dirty(mapping)) {
71cd3113 4619 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
c4843a75 4620 nr_pages);
71cd3113 4621 __this_cpu_add(to->stat->count[NR_FILE_DIRTY],
c4843a75
GT
4622 nr_pages);
4623 }
4624 }
4625
b1b0deab 4626 if (PageWriteback(page)) {
71cd3113
JW
4627 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4628 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
b1b0deab
CG
4629 }
4630
4631 /*
4632 * It is safe to change page->mem_cgroup here because the page
4633 * is referenced, charged, and isolated - we can't race with
4634 * uncharging, charging, migration, or LRU putback.
4635 */
4636
4637 /* caller should have done css_get */
4638 page->mem_cgroup = to;
4639 spin_unlock_irqrestore(&from->move_lock, flags);
4640
4641 ret = 0;
4642
4643 local_irq_disable();
f627c2f5 4644 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4645 memcg_check_events(to, page);
f627c2f5 4646 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4647 memcg_check_events(from, page);
4648 local_irq_enable();
4649out_unlock:
4650 unlock_page(page);
4651out:
4652 return ret;
4653}
4654
7cf7806c
LR
4655/**
4656 * get_mctgt_type - get target type of moving charge
4657 * @vma: the vma the pte to be checked belongs
4658 * @addr: the address corresponding to the pte to be checked
4659 * @ptent: the pte to be checked
4660 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4661 *
4662 * Returns
4663 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4664 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4665 * move charge. if @target is not NULL, the page is stored in target->page
4666 * with extra refcnt got(Callers should handle it).
4667 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4668 * target for charge migration. if @target is not NULL, the entry is stored
4669 * in target->ent.
df6ad698
JG
4670 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4671 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4672 * For now we such page is charge like a regular page would be as for all
4673 * intent and purposes it is just special memory taking the place of a
4674 * regular page.
c733a828
JG
4675 *
4676 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
4677 *
4678 * Called with pte lock held.
4679 */
4680
8d32ff84 4681static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4682 unsigned long addr, pte_t ptent, union mc_target *target)
4683{
4684 struct page *page = NULL;
8d32ff84 4685 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4686 swp_entry_t ent = { .val = 0 };
4687
4688 if (pte_present(ptent))
4689 page = mc_handle_present_pte(vma, addr, ptent);
4690 else if (is_swap_pte(ptent))
48406ef8 4691 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4692 else if (pte_none(ptent))
87946a72 4693 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4694
4695 if (!page && !ent.val)
8d32ff84 4696 return ret;
02491447 4697 if (page) {
02491447 4698 /*
0a31bc97 4699 * Do only loose check w/o serialization.
1306a85a 4700 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4701 * not under LRU exclusion.
02491447 4702 */
1306a85a 4703 if (page->mem_cgroup == mc.from) {
02491447 4704 ret = MC_TARGET_PAGE;
df6ad698
JG
4705 if (is_device_private_page(page) ||
4706 is_device_public_page(page))
c733a828 4707 ret = MC_TARGET_DEVICE;
02491447
DN
4708 if (target)
4709 target->page = page;
4710 }
4711 if (!ret || !target)
4712 put_page(page);
4713 }
3e14a57b
HY
4714 /*
4715 * There is a swap entry and a page doesn't exist or isn't charged.
4716 * But we cannot move a tail-page in a THP.
4717 */
4718 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 4719 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4720 ret = MC_TARGET_SWAP;
4721 if (target)
4722 target->ent = ent;
4ffef5fe 4723 }
4ffef5fe
DN
4724 return ret;
4725}
4726
12724850
NH
4727#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4728/*
d6810d73
HY
4729 * We don't consider PMD mapped swapping or file mapped pages because THP does
4730 * not support them for now.
12724850
NH
4731 * Caller should make sure that pmd_trans_huge(pmd) is true.
4732 */
4733static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4734 unsigned long addr, pmd_t pmd, union mc_target *target)
4735{
4736 struct page *page = NULL;
12724850
NH
4737 enum mc_target_type ret = MC_TARGET_NONE;
4738
84c3fc4e
ZY
4739 if (unlikely(is_swap_pmd(pmd))) {
4740 VM_BUG_ON(thp_migration_supported() &&
4741 !is_pmd_migration_entry(pmd));
4742 return ret;
4743 }
12724850 4744 page = pmd_page(pmd);
309381fe 4745 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4746 if (!(mc.flags & MOVE_ANON))
12724850 4747 return ret;
1306a85a 4748 if (page->mem_cgroup == mc.from) {
12724850
NH
4749 ret = MC_TARGET_PAGE;
4750 if (target) {
4751 get_page(page);
4752 target->page = page;
4753 }
4754 }
4755 return ret;
4756}
4757#else
4758static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4759 unsigned long addr, pmd_t pmd, union mc_target *target)
4760{
4761 return MC_TARGET_NONE;
4762}
4763#endif
4764
4ffef5fe
DN
4765static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4766 unsigned long addr, unsigned long end,
4767 struct mm_walk *walk)
4768{
26bcd64a 4769 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4770 pte_t *pte;
4771 spinlock_t *ptl;
4772
b6ec57f4
KS
4773 ptl = pmd_trans_huge_lock(pmd, vma);
4774 if (ptl) {
c733a828
JG
4775 /*
4776 * Note their can not be MC_TARGET_DEVICE for now as we do not
4777 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4778 * MEMORY_DEVICE_PRIVATE but this might change.
4779 */
12724850
NH
4780 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4781 mc.precharge += HPAGE_PMD_NR;
bf929152 4782 spin_unlock(ptl);
1a5a9906 4783 return 0;
12724850 4784 }
03319327 4785
45f83cef
AA
4786 if (pmd_trans_unstable(pmd))
4787 return 0;
4ffef5fe
DN
4788 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4789 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4790 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4791 mc.precharge++; /* increment precharge temporarily */
4792 pte_unmap_unlock(pte - 1, ptl);
4793 cond_resched();
4794
7dc74be0
DN
4795 return 0;
4796}
4797
4ffef5fe
DN
4798static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4799{
4800 unsigned long precharge;
4ffef5fe 4801
26bcd64a
NH
4802 struct mm_walk mem_cgroup_count_precharge_walk = {
4803 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4804 .mm = mm,
4805 };
dfe076b0 4806 down_read(&mm->mmap_sem);
0247f3f4
JM
4807 walk_page_range(0, mm->highest_vm_end,
4808 &mem_cgroup_count_precharge_walk);
dfe076b0 4809 up_read(&mm->mmap_sem);
4ffef5fe
DN
4810
4811 precharge = mc.precharge;
4812 mc.precharge = 0;
4813
4814 return precharge;
4815}
4816
4ffef5fe
DN
4817static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4818{
dfe076b0
DN
4819 unsigned long precharge = mem_cgroup_count_precharge(mm);
4820
4821 VM_BUG_ON(mc.moving_task);
4822 mc.moving_task = current;
4823 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4824}
4825
dfe076b0
DN
4826/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4827static void __mem_cgroup_clear_mc(void)
4ffef5fe 4828{
2bd9bb20
KH
4829 struct mem_cgroup *from = mc.from;
4830 struct mem_cgroup *to = mc.to;
4831
4ffef5fe 4832 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4833 if (mc.precharge) {
00501b53 4834 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4835 mc.precharge = 0;
4836 }
4837 /*
4838 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4839 * we must uncharge here.
4840 */
4841 if (mc.moved_charge) {
00501b53 4842 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4843 mc.moved_charge = 0;
4ffef5fe 4844 }
483c30b5
DN
4845 /* we must fixup refcnts and charges */
4846 if (mc.moved_swap) {
483c30b5 4847 /* uncharge swap account from the old cgroup */
ce00a967 4848 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4849 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4850
615d66c3
VD
4851 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4852
05b84301 4853 /*
3e32cb2e
JW
4854 * we charged both to->memory and to->memsw, so we
4855 * should uncharge to->memory.
05b84301 4856 */
ce00a967 4857 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4858 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4859
615d66c3
VD
4860 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4861 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 4862
483c30b5
DN
4863 mc.moved_swap = 0;
4864 }
dfe076b0
DN
4865 memcg_oom_recover(from);
4866 memcg_oom_recover(to);
4867 wake_up_all(&mc.waitq);
4868}
4869
4870static void mem_cgroup_clear_mc(void)
4871{
264a0ae1
TH
4872 struct mm_struct *mm = mc.mm;
4873
dfe076b0
DN
4874 /*
4875 * we must clear moving_task before waking up waiters at the end of
4876 * task migration.
4877 */
4878 mc.moving_task = NULL;
4879 __mem_cgroup_clear_mc();
2bd9bb20 4880 spin_lock(&mc.lock);
4ffef5fe
DN
4881 mc.from = NULL;
4882 mc.to = NULL;
264a0ae1 4883 mc.mm = NULL;
2bd9bb20 4884 spin_unlock(&mc.lock);
264a0ae1
TH
4885
4886 mmput(mm);
4ffef5fe
DN
4887}
4888
1f7dd3e5 4889static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4890{
1f7dd3e5 4891 struct cgroup_subsys_state *css;
eed67d75 4892 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4893 struct mem_cgroup *from;
4530eddb 4894 struct task_struct *leader, *p;
9f2115f9 4895 struct mm_struct *mm;
1dfab5ab 4896 unsigned long move_flags;
9f2115f9 4897 int ret = 0;
7dc74be0 4898
1f7dd3e5
TH
4899 /* charge immigration isn't supported on the default hierarchy */
4900 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4901 return 0;
4902
4530eddb
TH
4903 /*
4904 * Multi-process migrations only happen on the default hierarchy
4905 * where charge immigration is not used. Perform charge
4906 * immigration if @tset contains a leader and whine if there are
4907 * multiple.
4908 */
4909 p = NULL;
1f7dd3e5 4910 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4911 WARN_ON_ONCE(p);
4912 p = leader;
1f7dd3e5 4913 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4914 }
4915 if (!p)
4916 return 0;
4917
1f7dd3e5
TH
4918 /*
4919 * We are now commited to this value whatever it is. Changes in this
4920 * tunable will only affect upcoming migrations, not the current one.
4921 * So we need to save it, and keep it going.
4922 */
4923 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4924 if (!move_flags)
4925 return 0;
4926
9f2115f9
TH
4927 from = mem_cgroup_from_task(p);
4928
4929 VM_BUG_ON(from == memcg);
4930
4931 mm = get_task_mm(p);
4932 if (!mm)
4933 return 0;
4934 /* We move charges only when we move a owner of the mm */
4935 if (mm->owner == p) {
4936 VM_BUG_ON(mc.from);
4937 VM_BUG_ON(mc.to);
4938 VM_BUG_ON(mc.precharge);
4939 VM_BUG_ON(mc.moved_charge);
4940 VM_BUG_ON(mc.moved_swap);
4941
4942 spin_lock(&mc.lock);
264a0ae1 4943 mc.mm = mm;
9f2115f9
TH
4944 mc.from = from;
4945 mc.to = memcg;
4946 mc.flags = move_flags;
4947 spin_unlock(&mc.lock);
4948 /* We set mc.moving_task later */
4949
4950 ret = mem_cgroup_precharge_mc(mm);
4951 if (ret)
4952 mem_cgroup_clear_mc();
264a0ae1
TH
4953 } else {
4954 mmput(mm);
7dc74be0
DN
4955 }
4956 return ret;
4957}
4958
1f7dd3e5 4959static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4960{
4e2f245d
JW
4961 if (mc.to)
4962 mem_cgroup_clear_mc();
7dc74be0
DN
4963}
4964
4ffef5fe
DN
4965static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4966 unsigned long addr, unsigned long end,
4967 struct mm_walk *walk)
7dc74be0 4968{
4ffef5fe 4969 int ret = 0;
26bcd64a 4970 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4971 pte_t *pte;
4972 spinlock_t *ptl;
12724850
NH
4973 enum mc_target_type target_type;
4974 union mc_target target;
4975 struct page *page;
4ffef5fe 4976
b6ec57f4
KS
4977 ptl = pmd_trans_huge_lock(pmd, vma);
4978 if (ptl) {
62ade86a 4979 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4980 spin_unlock(ptl);
12724850
NH
4981 return 0;
4982 }
4983 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4984 if (target_type == MC_TARGET_PAGE) {
4985 page = target.page;
4986 if (!isolate_lru_page(page)) {
f627c2f5 4987 if (!mem_cgroup_move_account(page, true,
1306a85a 4988 mc.from, mc.to)) {
12724850
NH
4989 mc.precharge -= HPAGE_PMD_NR;
4990 mc.moved_charge += HPAGE_PMD_NR;
4991 }
4992 putback_lru_page(page);
4993 }
4994 put_page(page);
c733a828
JG
4995 } else if (target_type == MC_TARGET_DEVICE) {
4996 page = target.page;
4997 if (!mem_cgroup_move_account(page, true,
4998 mc.from, mc.to)) {
4999 mc.precharge -= HPAGE_PMD_NR;
5000 mc.moved_charge += HPAGE_PMD_NR;
5001 }
5002 put_page(page);
12724850 5003 }
bf929152 5004 spin_unlock(ptl);
1a5a9906 5005 return 0;
12724850
NH
5006 }
5007
45f83cef
AA
5008 if (pmd_trans_unstable(pmd))
5009 return 0;
4ffef5fe
DN
5010retry:
5011 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5012 for (; addr != end; addr += PAGE_SIZE) {
5013 pte_t ptent = *(pte++);
c733a828 5014 bool device = false;
02491447 5015 swp_entry_t ent;
4ffef5fe
DN
5016
5017 if (!mc.precharge)
5018 break;
5019
8d32ff84 5020 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5021 case MC_TARGET_DEVICE:
5022 device = true;
5023 /* fall through */
4ffef5fe
DN
5024 case MC_TARGET_PAGE:
5025 page = target.page;
53f9263b
KS
5026 /*
5027 * We can have a part of the split pmd here. Moving it
5028 * can be done but it would be too convoluted so simply
5029 * ignore such a partial THP and keep it in original
5030 * memcg. There should be somebody mapping the head.
5031 */
5032 if (PageTransCompound(page))
5033 goto put;
c733a828 5034 if (!device && isolate_lru_page(page))
4ffef5fe 5035 goto put;
f627c2f5
KS
5036 if (!mem_cgroup_move_account(page, false,
5037 mc.from, mc.to)) {
4ffef5fe 5038 mc.precharge--;
854ffa8d
DN
5039 /* we uncharge from mc.from later. */
5040 mc.moved_charge++;
4ffef5fe 5041 }
c733a828
JG
5042 if (!device)
5043 putback_lru_page(page);
8d32ff84 5044put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5045 put_page(page);
5046 break;
02491447
DN
5047 case MC_TARGET_SWAP:
5048 ent = target.ent;
e91cbb42 5049 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5050 mc.precharge--;
483c30b5
DN
5051 /* we fixup refcnts and charges later. */
5052 mc.moved_swap++;
5053 }
02491447 5054 break;
4ffef5fe
DN
5055 default:
5056 break;
5057 }
5058 }
5059 pte_unmap_unlock(pte - 1, ptl);
5060 cond_resched();
5061
5062 if (addr != end) {
5063 /*
5064 * We have consumed all precharges we got in can_attach().
5065 * We try charge one by one, but don't do any additional
5066 * charges to mc.to if we have failed in charge once in attach()
5067 * phase.
5068 */
854ffa8d 5069 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5070 if (!ret)
5071 goto retry;
5072 }
5073
5074 return ret;
5075}
5076
264a0ae1 5077static void mem_cgroup_move_charge(void)
4ffef5fe 5078{
26bcd64a
NH
5079 struct mm_walk mem_cgroup_move_charge_walk = {
5080 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5081 .mm = mc.mm,
26bcd64a 5082 };
4ffef5fe
DN
5083
5084 lru_add_drain_all();
312722cb 5085 /*
81f8c3a4
JW
5086 * Signal lock_page_memcg() to take the memcg's move_lock
5087 * while we're moving its pages to another memcg. Then wait
5088 * for already started RCU-only updates to finish.
312722cb
JW
5089 */
5090 atomic_inc(&mc.from->moving_account);
5091 synchronize_rcu();
dfe076b0 5092retry:
264a0ae1 5093 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5094 /*
5095 * Someone who are holding the mmap_sem might be waiting in
5096 * waitq. So we cancel all extra charges, wake up all waiters,
5097 * and retry. Because we cancel precharges, we might not be able
5098 * to move enough charges, but moving charge is a best-effort
5099 * feature anyway, so it wouldn't be a big problem.
5100 */
5101 __mem_cgroup_clear_mc();
5102 cond_resched();
5103 goto retry;
5104 }
26bcd64a
NH
5105 /*
5106 * When we have consumed all precharges and failed in doing
5107 * additional charge, the page walk just aborts.
5108 */
0247f3f4
JM
5109 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5110
264a0ae1 5111 up_read(&mc.mm->mmap_sem);
312722cb 5112 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5113}
5114
264a0ae1 5115static void mem_cgroup_move_task(void)
67e465a7 5116{
264a0ae1
TH
5117 if (mc.to) {
5118 mem_cgroup_move_charge();
a433658c 5119 mem_cgroup_clear_mc();
264a0ae1 5120 }
67e465a7 5121}
5cfb80a7 5122#else /* !CONFIG_MMU */
1f7dd3e5 5123static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5124{
5125 return 0;
5126}
1f7dd3e5 5127static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5128{
5129}
264a0ae1 5130static void mem_cgroup_move_task(void)
5cfb80a7
DN
5131{
5132}
5133#endif
67e465a7 5134
f00baae7
TH
5135/*
5136 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5137 * to verify whether we're attached to the default hierarchy on each mount
5138 * attempt.
f00baae7 5139 */
eb95419b 5140static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5141{
5142 /*
aa6ec29b 5143 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5144 * guarantees that @root doesn't have any children, so turning it
5145 * on for the root memcg is enough.
5146 */
9e10a130 5147 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5148 root_mem_cgroup->use_hierarchy = true;
5149 else
5150 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5151}
5152
241994ed
JW
5153static u64 memory_current_read(struct cgroup_subsys_state *css,
5154 struct cftype *cft)
5155{
f5fc3c5d
JW
5156 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5157
5158 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5159}
5160
5161static int memory_low_show(struct seq_file *m, void *v)
5162{
5163 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5164 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5165
5166 if (low == PAGE_COUNTER_MAX)
d2973697 5167 seq_puts(m, "max\n");
241994ed
JW
5168 else
5169 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5170
5171 return 0;
5172}
5173
5174static ssize_t memory_low_write(struct kernfs_open_file *of,
5175 char *buf, size_t nbytes, loff_t off)
5176{
5177 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5178 unsigned long low;
5179 int err;
5180
5181 buf = strstrip(buf);
d2973697 5182 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5183 if (err)
5184 return err;
5185
5186 memcg->low = low;
5187
5188 return nbytes;
5189}
5190
5191static int memory_high_show(struct seq_file *m, void *v)
5192{
5193 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5194 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5195
5196 if (high == PAGE_COUNTER_MAX)
d2973697 5197 seq_puts(m, "max\n");
241994ed
JW
5198 else
5199 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5200
5201 return 0;
5202}
5203
5204static ssize_t memory_high_write(struct kernfs_open_file *of,
5205 char *buf, size_t nbytes, loff_t off)
5206{
5207 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5208 unsigned long nr_pages;
241994ed
JW
5209 unsigned long high;
5210 int err;
5211
5212 buf = strstrip(buf);
d2973697 5213 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5214 if (err)
5215 return err;
5216
5217 memcg->high = high;
5218
588083bb
JW
5219 nr_pages = page_counter_read(&memcg->memory);
5220 if (nr_pages > high)
5221 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5222 GFP_KERNEL, true);
5223
2529bb3a 5224 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5225 return nbytes;
5226}
5227
5228static int memory_max_show(struct seq_file *m, void *v)
5229{
5230 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5231 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5232
5233 if (max == PAGE_COUNTER_MAX)
d2973697 5234 seq_puts(m, "max\n");
241994ed
JW
5235 else
5236 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5237
5238 return 0;
5239}
5240
5241static ssize_t memory_max_write(struct kernfs_open_file *of,
5242 char *buf, size_t nbytes, loff_t off)
5243{
5244 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5245 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5246 bool drained = false;
241994ed
JW
5247 unsigned long max;
5248 int err;
5249
5250 buf = strstrip(buf);
d2973697 5251 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5252 if (err)
5253 return err;
5254
b6e6edcf
JW
5255 xchg(&memcg->memory.limit, max);
5256
5257 for (;;) {
5258 unsigned long nr_pages = page_counter_read(&memcg->memory);
5259
5260 if (nr_pages <= max)
5261 break;
5262
5263 if (signal_pending(current)) {
5264 err = -EINTR;
5265 break;
5266 }
5267
5268 if (!drained) {
5269 drain_all_stock(memcg);
5270 drained = true;
5271 continue;
5272 }
5273
5274 if (nr_reclaims) {
5275 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5276 GFP_KERNEL, true))
5277 nr_reclaims--;
5278 continue;
5279 }
5280
31176c78 5281 mem_cgroup_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5282 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5283 break;
5284 }
241994ed 5285
2529bb3a 5286 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5287 return nbytes;
5288}
5289
5290static int memory_events_show(struct seq_file *m, void *v)
5291{
5292 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5293
ccda7f43
JW
5294 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5295 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5296 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5297 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
8e675f7a 5298 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
241994ed
JW
5299
5300 return 0;
5301}
5302
587d9f72
JW
5303static int memory_stat_show(struct seq_file *m, void *v)
5304{
5305 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5306 unsigned long stat[MEMCG_NR_STAT];
5307 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5308 int i;
5309
5310 /*
5311 * Provide statistics on the state of the memory subsystem as
5312 * well as cumulative event counters that show past behavior.
5313 *
5314 * This list is ordered following a combination of these gradients:
5315 * 1) generic big picture -> specifics and details
5316 * 2) reflecting userspace activity -> reflecting kernel heuristics
5317 *
5318 * Current memory state:
5319 */
5320
72b54e73
VD
5321 tree_stat(memcg, stat);
5322 tree_events(memcg, events);
5323
587d9f72 5324 seq_printf(m, "anon %llu\n",
71cd3113 5325 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5326 seq_printf(m, "file %llu\n",
71cd3113 5327 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5328 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5329 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5330 seq_printf(m, "slab %llu\n",
32049296
JW
5331 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5332 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5333 seq_printf(m, "sock %llu\n",
72b54e73 5334 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5335
9a4caf1e 5336 seq_printf(m, "shmem %llu\n",
71cd3113 5337 (u64)stat[NR_SHMEM] * PAGE_SIZE);
587d9f72 5338 seq_printf(m, "file_mapped %llu\n",
71cd3113 5339 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5340 seq_printf(m, "file_dirty %llu\n",
71cd3113 5341 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5342 seq_printf(m, "file_writeback %llu\n",
71cd3113 5343 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5344
5345 for (i = 0; i < NR_LRU_LISTS; i++) {
5346 struct mem_cgroup *mi;
5347 unsigned long val = 0;
5348
5349 for_each_mem_cgroup_tree(mi, memcg)
5350 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5351 seq_printf(m, "%s %llu\n",
5352 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5353 }
5354
27ee57c9 5355 seq_printf(m, "slab_reclaimable %llu\n",
32049296 5356 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5357 seq_printf(m, "slab_unreclaimable %llu\n",
32049296 5358 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5359
587d9f72
JW
5360 /* Accumulated memory events */
5361
df0e53d0
JW
5362 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5363 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
587d9f72 5364
2262185c
RG
5365 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5366 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5367 events[PGSCAN_DIRECT]);
5368 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5369 events[PGSTEAL_DIRECT]);
5370 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5371 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5372 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5373 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5374
2a2e4885 5375 seq_printf(m, "workingset_refault %lu\n",
71cd3113 5376 stat[WORKINGSET_REFAULT]);
2a2e4885 5377 seq_printf(m, "workingset_activate %lu\n",
71cd3113 5378 stat[WORKINGSET_ACTIVATE]);
2a2e4885 5379 seq_printf(m, "workingset_nodereclaim %lu\n",
71cd3113 5380 stat[WORKINGSET_NODERECLAIM]);
2a2e4885 5381
587d9f72
JW
5382 return 0;
5383}
5384
241994ed
JW
5385static struct cftype memory_files[] = {
5386 {
5387 .name = "current",
f5fc3c5d 5388 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5389 .read_u64 = memory_current_read,
5390 },
5391 {
5392 .name = "low",
5393 .flags = CFTYPE_NOT_ON_ROOT,
5394 .seq_show = memory_low_show,
5395 .write = memory_low_write,
5396 },
5397 {
5398 .name = "high",
5399 .flags = CFTYPE_NOT_ON_ROOT,
5400 .seq_show = memory_high_show,
5401 .write = memory_high_write,
5402 },
5403 {
5404 .name = "max",
5405 .flags = CFTYPE_NOT_ON_ROOT,
5406 .seq_show = memory_max_show,
5407 .write = memory_max_write,
5408 },
5409 {
5410 .name = "events",
5411 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5412 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5413 .seq_show = memory_events_show,
5414 },
587d9f72
JW
5415 {
5416 .name = "stat",
5417 .flags = CFTYPE_NOT_ON_ROOT,
5418 .seq_show = memory_stat_show,
5419 },
241994ed
JW
5420 { } /* terminate */
5421};
5422
073219e9 5423struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5424 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5425 .css_online = mem_cgroup_css_online,
92fb9748 5426 .css_offline = mem_cgroup_css_offline,
6df38689 5427 .css_released = mem_cgroup_css_released,
92fb9748 5428 .css_free = mem_cgroup_css_free,
1ced953b 5429 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5430 .can_attach = mem_cgroup_can_attach,
5431 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5432 .post_attach = mem_cgroup_move_task,
f00baae7 5433 .bind = mem_cgroup_bind,
241994ed
JW
5434 .dfl_cftypes = memory_files,
5435 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5436 .early_init = 0,
8cdea7c0 5437};
c077719b 5438
241994ed
JW
5439/**
5440 * mem_cgroup_low - check if memory consumption is below the normal range
34c81057 5441 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5442 * @memcg: the memory cgroup to check
5443 *
5444 * Returns %true if memory consumption of @memcg, and that of all
34c81057
SC
5445 * ancestors up to (but not including) @root, is below the normal range.
5446 *
5447 * @root is exclusive; it is never low when looked at directly and isn't
5448 * checked when traversing the hierarchy.
5449 *
5450 * Excluding @root enables using memory.low to prioritize memory usage
5451 * between cgroups within a subtree of the hierarchy that is limited by
5452 * memory.high or memory.max.
5453 *
5454 * For example, given cgroup A with children B and C:
5455 *
5456 * A
5457 * / \
5458 * B C
5459 *
5460 * and
5461 *
5462 * 1. A/memory.current > A/memory.high
5463 * 2. A/B/memory.current < A/B/memory.low
5464 * 3. A/C/memory.current >= A/C/memory.low
5465 *
5466 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5467 * should reclaim from 'C' until 'A' is no longer high or until we can
5468 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5469 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5470 * low and we will reclaim indiscriminately from both 'B' and 'C'.
241994ed
JW
5471 */
5472bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5473{
5474 if (mem_cgroup_disabled())
5475 return false;
5476
34c81057
SC
5477 if (!root)
5478 root = root_mem_cgroup;
5479 if (memcg == root)
241994ed
JW
5480 return false;
5481
34c81057 5482 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
4e54dede 5483 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5484 return false;
5485 }
34c81057 5486
241994ed
JW
5487 return true;
5488}
5489
00501b53
JW
5490/**
5491 * mem_cgroup_try_charge - try charging a page
5492 * @page: page to charge
5493 * @mm: mm context of the victim
5494 * @gfp_mask: reclaim mode
5495 * @memcgp: charged memcg return
25843c2b 5496 * @compound: charge the page as compound or small page
00501b53
JW
5497 *
5498 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5499 * pages according to @gfp_mask if necessary.
5500 *
5501 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5502 * Otherwise, an error code is returned.
5503 *
5504 * After page->mapping has been set up, the caller must finalize the
5505 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5506 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5507 */
5508int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5509 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5510 bool compound)
00501b53
JW
5511{
5512 struct mem_cgroup *memcg = NULL;
f627c2f5 5513 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5514 int ret = 0;
5515
5516 if (mem_cgroup_disabled())
5517 goto out;
5518
5519 if (PageSwapCache(page)) {
00501b53
JW
5520 /*
5521 * Every swap fault against a single page tries to charge the
5522 * page, bail as early as possible. shmem_unuse() encounters
5523 * already charged pages, too. The USED bit is protected by
5524 * the page lock, which serializes swap cache removal, which
5525 * in turn serializes uncharging.
5526 */
e993d905 5527 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 5528 if (compound_head(page)->mem_cgroup)
00501b53 5529 goto out;
e993d905 5530
37e84351 5531 if (do_swap_account) {
e993d905
VD
5532 swp_entry_t ent = { .val = page_private(page), };
5533 unsigned short id = lookup_swap_cgroup_id(ent);
5534
5535 rcu_read_lock();
5536 memcg = mem_cgroup_from_id(id);
5537 if (memcg && !css_tryget_online(&memcg->css))
5538 memcg = NULL;
5539 rcu_read_unlock();
5540 }
00501b53
JW
5541 }
5542
00501b53
JW
5543 if (!memcg)
5544 memcg = get_mem_cgroup_from_mm(mm);
5545
5546 ret = try_charge(memcg, gfp_mask, nr_pages);
5547
5548 css_put(&memcg->css);
00501b53
JW
5549out:
5550 *memcgp = memcg;
5551 return ret;
5552}
5553
5554/**
5555 * mem_cgroup_commit_charge - commit a page charge
5556 * @page: page to charge
5557 * @memcg: memcg to charge the page to
5558 * @lrucare: page might be on LRU already
25843c2b 5559 * @compound: charge the page as compound or small page
00501b53
JW
5560 *
5561 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5562 * after page->mapping has been set up. This must happen atomically
5563 * as part of the page instantiation, i.e. under the page table lock
5564 * for anonymous pages, under the page lock for page and swap cache.
5565 *
5566 * In addition, the page must not be on the LRU during the commit, to
5567 * prevent racing with task migration. If it might be, use @lrucare.
5568 *
5569 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5570 */
5571void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5572 bool lrucare, bool compound)
00501b53 5573{
f627c2f5 5574 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5575
5576 VM_BUG_ON_PAGE(!page->mapping, page);
5577 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5578
5579 if (mem_cgroup_disabled())
5580 return;
5581 /*
5582 * Swap faults will attempt to charge the same page multiple
5583 * times. But reuse_swap_page() might have removed the page
5584 * from swapcache already, so we can't check PageSwapCache().
5585 */
5586 if (!memcg)
5587 return;
5588
6abb5a86
JW
5589 commit_charge(page, memcg, lrucare);
5590
6abb5a86 5591 local_irq_disable();
f627c2f5 5592 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5593 memcg_check_events(memcg, page);
5594 local_irq_enable();
00501b53 5595
7941d214 5596 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5597 swp_entry_t entry = { .val = page_private(page) };
5598 /*
5599 * The swap entry might not get freed for a long time,
5600 * let's not wait for it. The page already received a
5601 * memory+swap charge, drop the swap entry duplicate.
5602 */
38d8b4e6 5603 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
5604 }
5605}
5606
5607/**
5608 * mem_cgroup_cancel_charge - cancel a page charge
5609 * @page: page to charge
5610 * @memcg: memcg to charge the page to
25843c2b 5611 * @compound: charge the page as compound or small page
00501b53
JW
5612 *
5613 * Cancel a charge transaction started by mem_cgroup_try_charge().
5614 */
f627c2f5
KS
5615void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5616 bool compound)
00501b53 5617{
f627c2f5 5618 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5619
5620 if (mem_cgroup_disabled())
5621 return;
5622 /*
5623 * Swap faults will attempt to charge the same page multiple
5624 * times. But reuse_swap_page() might have removed the page
5625 * from swapcache already, so we can't check PageSwapCache().
5626 */
5627 if (!memcg)
5628 return;
5629
00501b53
JW
5630 cancel_charge(memcg, nr_pages);
5631}
5632
a9d5adee
JG
5633struct uncharge_gather {
5634 struct mem_cgroup *memcg;
5635 unsigned long pgpgout;
5636 unsigned long nr_anon;
5637 unsigned long nr_file;
5638 unsigned long nr_kmem;
5639 unsigned long nr_huge;
5640 unsigned long nr_shmem;
5641 struct page *dummy_page;
5642};
5643
5644static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 5645{
a9d5adee
JG
5646 memset(ug, 0, sizeof(*ug));
5647}
5648
5649static void uncharge_batch(const struct uncharge_gather *ug)
5650{
5651 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
5652 unsigned long flags;
5653
a9d5adee
JG
5654 if (!mem_cgroup_is_root(ug->memcg)) {
5655 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 5656 if (do_memsw_account())
a9d5adee
JG
5657 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5658 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5659 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5660 memcg_oom_recover(ug->memcg);
ce00a967 5661 }
747db954
JW
5662
5663 local_irq_save(flags);
a9d5adee
JG
5664 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS], ug->nr_anon);
5665 __this_cpu_sub(ug->memcg->stat->count[MEMCG_CACHE], ug->nr_file);
5666 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS_HUGE], ug->nr_huge);
5667 __this_cpu_sub(ug->memcg->stat->count[NR_SHMEM], ug->nr_shmem);
5668 __this_cpu_add(ug->memcg->stat->events[PGPGOUT], ug->pgpgout);
5669 __this_cpu_add(ug->memcg->stat->nr_page_events, nr_pages);
5670 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 5671 local_irq_restore(flags);
e8ea14cc 5672
a9d5adee
JG
5673 if (!mem_cgroup_is_root(ug->memcg))
5674 css_put_many(&ug->memcg->css, nr_pages);
5675}
5676
5677static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5678{
5679 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
5680 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5681 !PageHWPoison(page) , page);
a9d5adee
JG
5682
5683 if (!page->mem_cgroup)
5684 return;
5685
5686 /*
5687 * Nobody should be changing or seriously looking at
5688 * page->mem_cgroup at this point, we have fully
5689 * exclusive access to the page.
5690 */
5691
5692 if (ug->memcg != page->mem_cgroup) {
5693 if (ug->memcg) {
5694 uncharge_batch(ug);
5695 uncharge_gather_clear(ug);
5696 }
5697 ug->memcg = page->mem_cgroup;
5698 }
5699
5700 if (!PageKmemcg(page)) {
5701 unsigned int nr_pages = 1;
5702
5703 if (PageTransHuge(page)) {
5704 nr_pages <<= compound_order(page);
5705 ug->nr_huge += nr_pages;
5706 }
5707 if (PageAnon(page))
5708 ug->nr_anon += nr_pages;
5709 else {
5710 ug->nr_file += nr_pages;
5711 if (PageSwapBacked(page))
5712 ug->nr_shmem += nr_pages;
5713 }
5714 ug->pgpgout++;
5715 } else {
5716 ug->nr_kmem += 1 << compound_order(page);
5717 __ClearPageKmemcg(page);
5718 }
5719
5720 ug->dummy_page = page;
5721 page->mem_cgroup = NULL;
747db954
JW
5722}
5723
5724static void uncharge_list(struct list_head *page_list)
5725{
a9d5adee 5726 struct uncharge_gather ug;
747db954 5727 struct list_head *next;
a9d5adee
JG
5728
5729 uncharge_gather_clear(&ug);
747db954 5730
8b592656
JW
5731 /*
5732 * Note that the list can be a single page->lru; hence the
5733 * do-while loop instead of a simple list_for_each_entry().
5734 */
747db954
JW
5735 next = page_list->next;
5736 do {
a9d5adee
JG
5737 struct page *page;
5738
747db954
JW
5739 page = list_entry(next, struct page, lru);
5740 next = page->lru.next;
5741
a9d5adee 5742 uncharge_page(page, &ug);
747db954
JW
5743 } while (next != page_list);
5744
a9d5adee
JG
5745 if (ug.memcg)
5746 uncharge_batch(&ug);
747db954
JW
5747}
5748
0a31bc97
JW
5749/**
5750 * mem_cgroup_uncharge - uncharge a page
5751 * @page: page to uncharge
5752 *
5753 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5754 * mem_cgroup_commit_charge().
5755 */
5756void mem_cgroup_uncharge(struct page *page)
5757{
a9d5adee
JG
5758 struct uncharge_gather ug;
5759
0a31bc97
JW
5760 if (mem_cgroup_disabled())
5761 return;
5762
747db954 5763 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5764 if (!page->mem_cgroup)
0a31bc97
JW
5765 return;
5766
a9d5adee
JG
5767 uncharge_gather_clear(&ug);
5768 uncharge_page(page, &ug);
5769 uncharge_batch(&ug);
747db954 5770}
0a31bc97 5771
747db954
JW
5772/**
5773 * mem_cgroup_uncharge_list - uncharge a list of page
5774 * @page_list: list of pages to uncharge
5775 *
5776 * Uncharge a list of pages previously charged with
5777 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5778 */
5779void mem_cgroup_uncharge_list(struct list_head *page_list)
5780{
5781 if (mem_cgroup_disabled())
5782 return;
0a31bc97 5783
747db954
JW
5784 if (!list_empty(page_list))
5785 uncharge_list(page_list);
0a31bc97
JW
5786}
5787
5788/**
6a93ca8f
JW
5789 * mem_cgroup_migrate - charge a page's replacement
5790 * @oldpage: currently circulating page
5791 * @newpage: replacement page
0a31bc97 5792 *
6a93ca8f
JW
5793 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5794 * be uncharged upon free.
0a31bc97
JW
5795 *
5796 * Both pages must be locked, @newpage->mapping must be set up.
5797 */
6a93ca8f 5798void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5799{
29833315 5800 struct mem_cgroup *memcg;
44b7a8d3
JW
5801 unsigned int nr_pages;
5802 bool compound;
d93c4130 5803 unsigned long flags;
0a31bc97
JW
5804
5805 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5806 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5807 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5808 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5809 newpage);
0a31bc97
JW
5810
5811 if (mem_cgroup_disabled())
5812 return;
5813
5814 /* Page cache replacement: new page already charged? */
1306a85a 5815 if (newpage->mem_cgroup)
0a31bc97
JW
5816 return;
5817
45637bab 5818 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5819 memcg = oldpage->mem_cgroup;
29833315 5820 if (!memcg)
0a31bc97
JW
5821 return;
5822
44b7a8d3
JW
5823 /* Force-charge the new page. The old one will be freed soon */
5824 compound = PageTransHuge(newpage);
5825 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5826
5827 page_counter_charge(&memcg->memory, nr_pages);
5828 if (do_memsw_account())
5829 page_counter_charge(&memcg->memsw, nr_pages);
5830 css_get_many(&memcg->css, nr_pages);
0a31bc97 5831
9cf7666a 5832 commit_charge(newpage, memcg, false);
44b7a8d3 5833
d93c4130 5834 local_irq_save(flags);
44b7a8d3
JW
5835 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5836 memcg_check_events(memcg, newpage);
d93c4130 5837 local_irq_restore(flags);
0a31bc97
JW
5838}
5839
ef12947c 5840DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5841EXPORT_SYMBOL(memcg_sockets_enabled_key);
5842
2d758073 5843void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
5844{
5845 struct mem_cgroup *memcg;
5846
2d758073
JW
5847 if (!mem_cgroup_sockets_enabled)
5848 return;
5849
344ae441
RG
5850 /*
5851 * Socket cloning can throw us here with sk_memcg already
5852 * filled. It won't however, necessarily happen from
5853 * process context. So the test for root memcg given
5854 * the current task's memcg won't help us in this case.
5855 *
5856 * Respecting the original socket's memcg is a better
5857 * decision in this case.
5858 */
5859 if (sk->sk_memcg) {
5860 css_get(&sk->sk_memcg->css);
5861 return;
5862 }
5863
11092087
JW
5864 rcu_read_lock();
5865 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5866 if (memcg == root_mem_cgroup)
5867 goto out;
0db15298 5868 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5869 goto out;
f7e1cb6e 5870 if (css_tryget_online(&memcg->css))
11092087 5871 sk->sk_memcg = memcg;
f7e1cb6e 5872out:
11092087
JW
5873 rcu_read_unlock();
5874}
11092087 5875
2d758073 5876void mem_cgroup_sk_free(struct sock *sk)
11092087 5877{
2d758073
JW
5878 if (sk->sk_memcg)
5879 css_put(&sk->sk_memcg->css);
11092087
JW
5880}
5881
5882/**
5883 * mem_cgroup_charge_skmem - charge socket memory
5884 * @memcg: memcg to charge
5885 * @nr_pages: number of pages to charge
5886 *
5887 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5888 * @memcg's configured limit, %false if the charge had to be forced.
5889 */
5890bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5891{
f7e1cb6e 5892 gfp_t gfp_mask = GFP_KERNEL;
11092087 5893
f7e1cb6e 5894 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5895 struct page_counter *fail;
f7e1cb6e 5896
0db15298
JW
5897 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5898 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5899 return true;
5900 }
0db15298
JW
5901 page_counter_charge(&memcg->tcpmem, nr_pages);
5902 memcg->tcpmem_pressure = 1;
f7e1cb6e 5903 return false;
11092087 5904 }
d886f4e4 5905
f7e1cb6e
JW
5906 /* Don't block in the packet receive path */
5907 if (in_softirq())
5908 gfp_mask = GFP_NOWAIT;
5909
b2807f07
JW
5910 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5911
f7e1cb6e
JW
5912 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5913 return true;
5914
5915 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5916 return false;
5917}
5918
5919/**
5920 * mem_cgroup_uncharge_skmem - uncharge socket memory
5921 * @memcg - memcg to uncharge
5922 * @nr_pages - number of pages to uncharge
5923 */
5924void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5925{
f7e1cb6e 5926 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5927 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5928 return;
5929 }
d886f4e4 5930
b2807f07
JW
5931 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5932
475d0487 5933 refill_stock(memcg, nr_pages);
11092087
JW
5934}
5935
f7e1cb6e
JW
5936static int __init cgroup_memory(char *s)
5937{
5938 char *token;
5939
5940 while ((token = strsep(&s, ",")) != NULL) {
5941 if (!*token)
5942 continue;
5943 if (!strcmp(token, "nosocket"))
5944 cgroup_memory_nosocket = true;
04823c83
VD
5945 if (!strcmp(token, "nokmem"))
5946 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5947 }
5948 return 0;
5949}
5950__setup("cgroup.memory=", cgroup_memory);
11092087 5951
2d11085e 5952/*
1081312f
MH
5953 * subsys_initcall() for memory controller.
5954 *
308167fc
SAS
5955 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5956 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5957 * basically everything that doesn't depend on a specific mem_cgroup structure
5958 * should be initialized from here.
2d11085e
MH
5959 */
5960static int __init mem_cgroup_init(void)
5961{
95a045f6
JW
5962 int cpu, node;
5963
13583c3d
VD
5964#ifndef CONFIG_SLOB
5965 /*
5966 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
5967 * so use a workqueue with limited concurrency to avoid stalling
5968 * all worker threads in case lots of cgroups are created and
5969 * destroyed simultaneously.
13583c3d 5970 */
17cc4dfe
TH
5971 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5972 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
5973#endif
5974
308167fc
SAS
5975 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5976 memcg_hotplug_cpu_dead);
95a045f6
JW
5977
5978 for_each_possible_cpu(cpu)
5979 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5980 drain_local_stock);
5981
5982 for_each_node(node) {
5983 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5984
5985 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5986 node_online(node) ? node : NUMA_NO_NODE);
5987
ef8f2327 5988 rtpn->rb_root = RB_ROOT;
fa90b2fd 5989 rtpn->rb_rightmost = NULL;
ef8f2327 5990 spin_lock_init(&rtpn->lock);
95a045f6
JW
5991 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5992 }
5993
2d11085e
MH
5994 return 0;
5995}
5996subsys_initcall(mem_cgroup_init);
21afa38e
JW
5997
5998#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
5999static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6000{
6001 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6002 /*
6003 * The root cgroup cannot be destroyed, so it's refcount must
6004 * always be >= 1.
6005 */
6006 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6007 VM_BUG_ON(1);
6008 break;
6009 }
6010 memcg = parent_mem_cgroup(memcg);
6011 if (!memcg)
6012 memcg = root_mem_cgroup;
6013 }
6014 return memcg;
6015}
6016
21afa38e
JW
6017/**
6018 * mem_cgroup_swapout - transfer a memsw charge to swap
6019 * @page: page whose memsw charge to transfer
6020 * @entry: swap entry to move the charge to
6021 *
6022 * Transfer the memsw charge of @page to @entry.
6023 */
6024void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6025{
1f47b61f 6026 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6027 unsigned int nr_entries;
21afa38e
JW
6028 unsigned short oldid;
6029
6030 VM_BUG_ON_PAGE(PageLRU(page), page);
6031 VM_BUG_ON_PAGE(page_count(page), page);
6032
7941d214 6033 if (!do_memsw_account())
21afa38e
JW
6034 return;
6035
6036 memcg = page->mem_cgroup;
6037
6038 /* Readahead page, never charged */
6039 if (!memcg)
6040 return;
6041
1f47b61f
VD
6042 /*
6043 * In case the memcg owning these pages has been offlined and doesn't
6044 * have an ID allocated to it anymore, charge the closest online
6045 * ancestor for the swap instead and transfer the memory+swap charge.
6046 */
6047 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6048 nr_entries = hpage_nr_pages(page);
6049 /* Get references for the tail pages, too */
6050 if (nr_entries > 1)
6051 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6052 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6053 nr_entries);
21afa38e 6054 VM_BUG_ON_PAGE(oldid, page);
d6810d73 6055 mem_cgroup_swap_statistics(swap_memcg, nr_entries);
21afa38e
JW
6056
6057 page->mem_cgroup = NULL;
6058
6059 if (!mem_cgroup_is_root(memcg))
d6810d73 6060 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6061
1f47b61f
VD
6062 if (memcg != swap_memcg) {
6063 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6064 page_counter_charge(&swap_memcg->memsw, nr_entries);
6065 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6066 }
6067
ce9ce665
SAS
6068 /*
6069 * Interrupts should be disabled here because the caller holds the
6070 * mapping->tree_lock lock which is taken with interrupts-off. It is
6071 * important here to have the interrupts disabled because it is the
6072 * only synchronisation we have for udpating the per-CPU variables.
6073 */
6074 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6075 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6076 -nr_entries);
21afa38e 6077 memcg_check_events(memcg, page);
73f576c0
JW
6078
6079 if (!mem_cgroup_is_root(memcg))
d08afa14 6080 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6081}
6082
38d8b4e6
HY
6083/**
6084 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6085 * @page: page being added to swap
6086 * @entry: swap entry to charge
6087 *
38d8b4e6 6088 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6089 *
6090 * Returns 0 on success, -ENOMEM on failure.
6091 */
6092int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6093{
38d8b4e6 6094 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6095 struct page_counter *counter;
38d8b4e6 6096 struct mem_cgroup *memcg;
37e84351
VD
6097 unsigned short oldid;
6098
6099 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6100 return 0;
6101
6102 memcg = page->mem_cgroup;
6103
6104 /* Readahead page, never charged */
6105 if (!memcg)
6106 return 0;
6107
1f47b61f
VD
6108 memcg = mem_cgroup_id_get_online(memcg);
6109
37e84351 6110 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6111 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
1f47b61f 6112 mem_cgroup_id_put(memcg);
37e84351 6113 return -ENOMEM;
1f47b61f 6114 }
37e84351 6115
38d8b4e6
HY
6116 /* Get references for the tail pages, too */
6117 if (nr_pages > 1)
6118 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6119 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6120 VM_BUG_ON_PAGE(oldid, page);
38d8b4e6 6121 mem_cgroup_swap_statistics(memcg, nr_pages);
37e84351 6122
37e84351
VD
6123 return 0;
6124}
6125
21afa38e 6126/**
38d8b4e6 6127 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6128 * @entry: swap entry to uncharge
38d8b4e6 6129 * @nr_pages: the amount of swap space to uncharge
21afa38e 6130 */
38d8b4e6 6131void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6132{
6133 struct mem_cgroup *memcg;
6134 unsigned short id;
6135
37e84351 6136 if (!do_swap_account)
21afa38e
JW
6137 return;
6138
38d8b4e6 6139 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6140 rcu_read_lock();
adbe427b 6141 memcg = mem_cgroup_from_id(id);
21afa38e 6142 if (memcg) {
37e84351
VD
6143 if (!mem_cgroup_is_root(memcg)) {
6144 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6145 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6146 else
38d8b4e6 6147 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6148 }
38d8b4e6
HY
6149 mem_cgroup_swap_statistics(memcg, -nr_pages);
6150 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6151 }
6152 rcu_read_unlock();
6153}
6154
d8b38438
VD
6155long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6156{
6157 long nr_swap_pages = get_nr_swap_pages();
6158
6159 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6160 return nr_swap_pages;
6161 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6162 nr_swap_pages = min_t(long, nr_swap_pages,
6163 READ_ONCE(memcg->swap.limit) -
6164 page_counter_read(&memcg->swap));
6165 return nr_swap_pages;
6166}
6167
5ccc5aba
VD
6168bool mem_cgroup_swap_full(struct page *page)
6169{
6170 struct mem_cgroup *memcg;
6171
6172 VM_BUG_ON_PAGE(!PageLocked(page), page);
6173
6174 if (vm_swap_full())
6175 return true;
6176 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6177 return false;
6178
6179 memcg = page->mem_cgroup;
6180 if (!memcg)
6181 return false;
6182
6183 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6184 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6185 return true;
6186
6187 return false;
6188}
6189
21afa38e
JW
6190/* for remember boot option*/
6191#ifdef CONFIG_MEMCG_SWAP_ENABLED
6192static int really_do_swap_account __initdata = 1;
6193#else
6194static int really_do_swap_account __initdata;
6195#endif
6196
6197static int __init enable_swap_account(char *s)
6198{
6199 if (!strcmp(s, "1"))
6200 really_do_swap_account = 1;
6201 else if (!strcmp(s, "0"))
6202 really_do_swap_account = 0;
6203 return 1;
6204}
6205__setup("swapaccount=", enable_swap_account);
6206
37e84351
VD
6207static u64 swap_current_read(struct cgroup_subsys_state *css,
6208 struct cftype *cft)
6209{
6210 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6211
6212 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6213}
6214
6215static int swap_max_show(struct seq_file *m, void *v)
6216{
6217 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6218 unsigned long max = READ_ONCE(memcg->swap.limit);
6219
6220 if (max == PAGE_COUNTER_MAX)
6221 seq_puts(m, "max\n");
6222 else
6223 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6224
6225 return 0;
6226}
6227
6228static ssize_t swap_max_write(struct kernfs_open_file *of,
6229 char *buf, size_t nbytes, loff_t off)
6230{
6231 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6232 unsigned long max;
6233 int err;
6234
6235 buf = strstrip(buf);
6236 err = page_counter_memparse(buf, "max", &max);
6237 if (err)
6238 return err;
6239
6240 mutex_lock(&memcg_limit_mutex);
6241 err = page_counter_limit(&memcg->swap, max);
6242 mutex_unlock(&memcg_limit_mutex);
6243 if (err)
6244 return err;
6245
6246 return nbytes;
6247}
6248
6249static struct cftype swap_files[] = {
6250 {
6251 .name = "swap.current",
6252 .flags = CFTYPE_NOT_ON_ROOT,
6253 .read_u64 = swap_current_read,
6254 },
6255 {
6256 .name = "swap.max",
6257 .flags = CFTYPE_NOT_ON_ROOT,
6258 .seq_show = swap_max_show,
6259 .write = swap_max_write,
6260 },
6261 { } /* terminate */
6262};
6263
21afa38e
JW
6264static struct cftype memsw_cgroup_files[] = {
6265 {
6266 .name = "memsw.usage_in_bytes",
6267 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6268 .read_u64 = mem_cgroup_read_u64,
6269 },
6270 {
6271 .name = "memsw.max_usage_in_bytes",
6272 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6273 .write = mem_cgroup_reset,
6274 .read_u64 = mem_cgroup_read_u64,
6275 },
6276 {
6277 .name = "memsw.limit_in_bytes",
6278 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6279 .write = mem_cgroup_write,
6280 .read_u64 = mem_cgroup_read_u64,
6281 },
6282 {
6283 .name = "memsw.failcnt",
6284 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6285 .write = mem_cgroup_reset,
6286 .read_u64 = mem_cgroup_read_u64,
6287 },
6288 { }, /* terminate */
6289};
6290
6291static int __init mem_cgroup_swap_init(void)
6292{
6293 if (!mem_cgroup_disabled() && really_do_swap_account) {
6294 do_swap_account = 1;
37e84351
VD
6295 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6296 swap_files));
21afa38e
JW
6297 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6298 memsw_cgroup_files));
6299 }
6300 return 0;
6301}
6302subsys_initcall(mem_cgroup_swap_init);
6303
6304#endif /* CONFIG_MEMCG_SWAP */