]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/memcontrol.c
Merge tag 'mediatek-drm-fixes-6.0' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
dc90f084 56#include <linux/memremap.h>
b69408e8 57#include <linux/mm_inline.h>
5d1ea48b 58#include <linux/swap_cgroup.h>
cdec2e42 59#include <linux/cpu.h>
158e0a2d 60#include <linux/oom.h>
0056f4e6 61#include <linux/lockdep.h>
79bd9814 62#include <linux/file.h>
03248add 63#include <linux/resume_user_mode.h>
0e4b01df 64#include <linux/psi.h>
c8713d0b 65#include <linux/seq_buf.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
014bb1de 70#include "swap.h"
8cdea7c0 71
7c0f6ba6 72#include <linux/uaccess.h>
8697d331 73
cc8e970c
KM
74#include <trace/events/vmscan.h>
75
073219e9
TH
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 78
7d828602
JW
79struct mem_cgroup *root_mem_cgroup __read_mostly;
80
37d5985c
RG
81/* Active memory cgroup to use from an interrupt context */
82DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 83EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 84
f7e1cb6e 85/* Socket memory accounting disabled? */
0f0cace3 86static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 87
04823c83 88/* Kernel memory accounting disabled? */
17c17367 89static bool cgroup_memory_nokmem __ro_after_init;
04823c83 90
21afa38e 91/* Whether the swap controller is active */
c255a458 92#ifdef CONFIG_MEMCG_SWAP
ef7a4ffc 93static bool cgroup_memory_noswap __ro_after_init;
c077719b 94#else
eccb52e7 95#define cgroup_memory_noswap 1
2d1c4980 96#endif
c077719b 97
97b27821
TH
98#ifdef CONFIG_CGROUP_WRITEBACK
99static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
100#endif
101
7941d214
JW
102/* Whether legacy memory+swap accounting is active */
103static bool do_memsw_account(void)
104{
eccb52e7 105 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
106}
107
a0db00fc
KS
108#define THRESHOLDS_EVENTS_TARGET 128
109#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 110
bb4cc1a8
AM
111/*
112 * Cgroups above their limits are maintained in a RB-Tree, independent of
113 * their hierarchy representation
114 */
115
ef8f2327 116struct mem_cgroup_tree_per_node {
bb4cc1a8 117 struct rb_root rb_root;
fa90b2fd 118 struct rb_node *rb_rightmost;
bb4cc1a8
AM
119 spinlock_t lock;
120};
121
bb4cc1a8
AM
122struct mem_cgroup_tree {
123 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
124};
125
126static struct mem_cgroup_tree soft_limit_tree __read_mostly;
127
9490ff27
KH
128/* for OOM */
129struct mem_cgroup_eventfd_list {
130 struct list_head list;
131 struct eventfd_ctx *eventfd;
132};
2e72b634 133
79bd9814
TH
134/*
135 * cgroup_event represents events which userspace want to receive.
136 */
3bc942f3 137struct mem_cgroup_event {
79bd9814 138 /*
59b6f873 139 * memcg which the event belongs to.
79bd9814 140 */
59b6f873 141 struct mem_cgroup *memcg;
79bd9814
TH
142 /*
143 * eventfd to signal userspace about the event.
144 */
145 struct eventfd_ctx *eventfd;
146 /*
147 * Each of these stored in a list by the cgroup.
148 */
149 struct list_head list;
fba94807
TH
150 /*
151 * register_event() callback will be used to add new userspace
152 * waiter for changes related to this event. Use eventfd_signal()
153 * on eventfd to send notification to userspace.
154 */
59b6f873 155 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 156 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
157 /*
158 * unregister_event() callback will be called when userspace closes
159 * the eventfd or on cgroup removing. This callback must be set,
160 * if you want provide notification functionality.
161 */
59b6f873 162 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 163 struct eventfd_ctx *eventfd);
79bd9814
TH
164 /*
165 * All fields below needed to unregister event when
166 * userspace closes eventfd.
167 */
168 poll_table pt;
169 wait_queue_head_t *wqh;
ac6424b9 170 wait_queue_entry_t wait;
79bd9814
TH
171 struct work_struct remove;
172};
173
c0ff4b85
R
174static void mem_cgroup_threshold(struct mem_cgroup *memcg);
175static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 176
7dc74be0
DN
177/* Stuffs for move charges at task migration. */
178/*
1dfab5ab 179 * Types of charges to be moved.
7dc74be0 180 */
1dfab5ab
JW
181#define MOVE_ANON 0x1U
182#define MOVE_FILE 0x2U
183#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 184
4ffef5fe
DN
185/* "mc" and its members are protected by cgroup_mutex */
186static struct move_charge_struct {
b1dd693e 187 spinlock_t lock; /* for from, to */
264a0ae1 188 struct mm_struct *mm;
4ffef5fe
DN
189 struct mem_cgroup *from;
190 struct mem_cgroup *to;
1dfab5ab 191 unsigned long flags;
4ffef5fe 192 unsigned long precharge;
854ffa8d 193 unsigned long moved_charge;
483c30b5 194 unsigned long moved_swap;
8033b97c
DN
195 struct task_struct *moving_task; /* a task moving charges */
196 wait_queue_head_t waitq; /* a waitq for other context */
197} mc = {
2bd9bb20 198 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
199 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
200};
4ffef5fe 201
4e416953
BS
202/*
203 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
204 * limit reclaim to prevent infinite loops, if they ever occur.
205 */
a0db00fc 206#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 207#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 208
8c7c6e34 209/* for encoding cft->private value on file */
86ae53e1
GC
210enum res_type {
211 _MEM,
212 _MEMSWAP,
510fc4e1 213 _KMEM,
d55f90bf 214 _TCP,
86ae53e1
GC
215};
216
a0db00fc
KS
217#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
218#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34
KH
219#define MEMFILE_ATTR(val) ((val) & 0xffff)
220
b05706f1
KT
221/*
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
225 */
226#define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter != NULL; \
229 iter = mem_cgroup_iter(root, iter, NULL))
230
231#define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter != NULL; \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
235
a4ebf1b6 236static inline bool task_is_dying(void)
7775face
TH
237{
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240}
241
70ddf637
AV
242/* Some nice accessors for the vmpressure. */
243struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244{
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248}
249
9647875b 250struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 251{
9647875b 252 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
253}
254
84c07d11 255#ifdef CONFIG_MEMCG_KMEM
0764db9b 256static DEFINE_SPINLOCK(objcg_lock);
bf4f0599 257
4d5c8aed
RG
258bool mem_cgroup_kmem_disabled(void)
259{
260 return cgroup_memory_nokmem;
261}
262
f1286fae
MS
263static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
264 unsigned int nr_pages);
c1a660de 265
bf4f0599
RG
266static void obj_cgroup_release(struct percpu_ref *ref)
267{
268 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
269 unsigned int nr_bytes;
270 unsigned int nr_pages;
271 unsigned long flags;
272
273 /*
274 * At this point all allocated objects are freed, and
275 * objcg->nr_charged_bytes can't have an arbitrary byte value.
276 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
277 *
278 * The following sequence can lead to it:
279 * 1) CPU0: objcg == stock->cached_objcg
280 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
281 * PAGE_SIZE bytes are charged
282 * 3) CPU1: a process from another memcg is allocating something,
283 * the stock if flushed,
284 * objcg->nr_charged_bytes = PAGE_SIZE - 92
285 * 5) CPU0: we do release this object,
286 * 92 bytes are added to stock->nr_bytes
287 * 6) CPU0: stock is flushed,
288 * 92 bytes are added to objcg->nr_charged_bytes
289 *
290 * In the result, nr_charged_bytes == PAGE_SIZE.
291 * This page will be uncharged in obj_cgroup_release().
292 */
293 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
294 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
295 nr_pages = nr_bytes >> PAGE_SHIFT;
296
bf4f0599 297 if (nr_pages)
f1286fae 298 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1 299
0764db9b 300 spin_lock_irqsave(&objcg_lock, flags);
bf4f0599 301 list_del(&objcg->list);
0764db9b 302 spin_unlock_irqrestore(&objcg_lock, flags);
bf4f0599
RG
303
304 percpu_ref_exit(ref);
305 kfree_rcu(objcg, rcu);
306}
307
308static struct obj_cgroup *obj_cgroup_alloc(void)
309{
310 struct obj_cgroup *objcg;
311 int ret;
312
313 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
314 if (!objcg)
315 return NULL;
316
317 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
318 GFP_KERNEL);
319 if (ret) {
320 kfree(objcg);
321 return NULL;
322 }
323 INIT_LIST_HEAD(&objcg->list);
324 return objcg;
325}
326
327static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
328 struct mem_cgroup *parent)
329{
330 struct obj_cgroup *objcg, *iter;
331
332 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
333
0764db9b 334 spin_lock_irq(&objcg_lock);
bf4f0599 335
9838354e
MS
336 /* 1) Ready to reparent active objcg. */
337 list_add(&objcg->list, &memcg->objcg_list);
338 /* 2) Reparent active objcg and already reparented objcgs to parent. */
339 list_for_each_entry(iter, &memcg->objcg_list, list)
340 WRITE_ONCE(iter->memcg, parent);
341 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
342 list_splice(&memcg->objcg_list, &parent->objcg_list);
343
0764db9b 344 spin_unlock_irq(&objcg_lock);
bf4f0599
RG
345
346 percpu_ref_kill(&objcg->refcnt);
347}
348
d7f25f8a
GC
349/*
350 * A lot of the calls to the cache allocation functions are expected to be
272911a4 351 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
352 * conditional to this static branch, we'll have to allow modules that does
353 * kmem_cache_alloc and the such to see this symbol as well
354 */
ef12947c 355DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 356EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 357#endif
17cc4dfe 358
ad7fa852
TH
359/**
360 * mem_cgroup_css_from_page - css of the memcg associated with a page
361 * @page: page of interest
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
364 * with @page is returned. The returned css remains associated with @page
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
ad7fa852
TH
369 */
370struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
371{
372 struct mem_cgroup *memcg;
373
bcfe06bf 374 memcg = page_memcg(page);
ad7fa852 375
9e10a130 376 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
377 memcg = root_mem_cgroup;
378
ad7fa852
TH
379 return &memcg->css;
380}
381
2fc04524
VD
382/**
383 * page_cgroup_ino - return inode number of the memcg a page is charged to
384 * @page: the page
385 *
386 * Look up the closest online ancestor of the memory cgroup @page is charged to
387 * and return its inode number or 0 if @page is not charged to any cgroup. It
388 * is safe to call this function without holding a reference to @page.
389 *
390 * Note, this function is inherently racy, because there is nothing to prevent
391 * the cgroup inode from getting torn down and potentially reallocated a moment
392 * after page_cgroup_ino() returns, so it only should be used by callers that
393 * do not care (such as procfs interfaces).
394 */
395ino_t page_cgroup_ino(struct page *page)
396{
397 struct mem_cgroup *memcg;
398 unsigned long ino = 0;
399
400 rcu_read_lock();
bcfe06bf 401 memcg = page_memcg_check(page);
286e04b8 402
2fc04524
VD
403 while (memcg && !(memcg->css.flags & CSS_ONLINE))
404 memcg = parent_mem_cgroup(memcg);
405 if (memcg)
406 ino = cgroup_ino(memcg->css.cgroup);
407 rcu_read_unlock();
408 return ino;
409}
410
ef8f2327
MG
411static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
412 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 413 unsigned long new_usage_in_excess)
bb4cc1a8
AM
414{
415 struct rb_node **p = &mctz->rb_root.rb_node;
416 struct rb_node *parent = NULL;
ef8f2327 417 struct mem_cgroup_per_node *mz_node;
fa90b2fd 418 bool rightmost = true;
bb4cc1a8
AM
419
420 if (mz->on_tree)
421 return;
422
423 mz->usage_in_excess = new_usage_in_excess;
424 if (!mz->usage_in_excess)
425 return;
426 while (*p) {
427 parent = *p;
ef8f2327 428 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 429 tree_node);
fa90b2fd 430 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 431 p = &(*p)->rb_left;
fa90b2fd 432 rightmost = false;
378876b0 433 } else {
bb4cc1a8 434 p = &(*p)->rb_right;
378876b0 435 }
bb4cc1a8 436 }
fa90b2fd
DB
437
438 if (rightmost)
439 mctz->rb_rightmost = &mz->tree_node;
440
bb4cc1a8
AM
441 rb_link_node(&mz->tree_node, parent, p);
442 rb_insert_color(&mz->tree_node, &mctz->rb_root);
443 mz->on_tree = true;
444}
445
ef8f2327
MG
446static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
447 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
448{
449 if (!mz->on_tree)
450 return;
fa90b2fd
DB
451
452 if (&mz->tree_node == mctz->rb_rightmost)
453 mctz->rb_rightmost = rb_prev(&mz->tree_node);
454
bb4cc1a8
AM
455 rb_erase(&mz->tree_node, &mctz->rb_root);
456 mz->on_tree = false;
457}
458
ef8f2327
MG
459static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
460 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 461{
0a31bc97
JW
462 unsigned long flags;
463
464 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 465 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 466 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
467}
468
3e32cb2e
JW
469static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
470{
471 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 472 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
473 unsigned long excess = 0;
474
475 if (nr_pages > soft_limit)
476 excess = nr_pages - soft_limit;
477
478 return excess;
479}
bb4cc1a8 480
658b69c9 481static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
bb4cc1a8 482{
3e32cb2e 483 unsigned long excess;
ef8f2327
MG
484 struct mem_cgroup_per_node *mz;
485 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 486
2ab082ba 487 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
488 if (!mctz)
489 return;
bb4cc1a8
AM
490 /*
491 * Necessary to update all ancestors when hierarchy is used.
492 * because their event counter is not touched.
493 */
494 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
658b69c9 495 mz = memcg->nodeinfo[nid];
3e32cb2e 496 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
497 /*
498 * We have to update the tree if mz is on RB-tree or
499 * mem is over its softlimit.
500 */
501 if (excess || mz->on_tree) {
0a31bc97
JW
502 unsigned long flags;
503
504 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
505 /* if on-tree, remove it */
506 if (mz->on_tree)
cf2c8127 507 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
508 /*
509 * Insert again. mz->usage_in_excess will be updated.
510 * If excess is 0, no tree ops.
511 */
cf2c8127 512 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 513 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
514 }
515 }
516}
517
518static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
519{
ef8f2327
MG
520 struct mem_cgroup_tree_per_node *mctz;
521 struct mem_cgroup_per_node *mz;
522 int nid;
bb4cc1a8 523
e231875b 524 for_each_node(nid) {
a3747b53 525 mz = memcg->nodeinfo[nid];
2ab082ba 526 mctz = soft_limit_tree.rb_tree_per_node[nid];
bfc7228b
LD
527 if (mctz)
528 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
529 }
530}
531
ef8f2327
MG
532static struct mem_cgroup_per_node *
533__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 534{
ef8f2327 535 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
536
537retry:
538 mz = NULL;
fa90b2fd 539 if (!mctz->rb_rightmost)
bb4cc1a8
AM
540 goto done; /* Nothing to reclaim from */
541
fa90b2fd
DB
542 mz = rb_entry(mctz->rb_rightmost,
543 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
544 /*
545 * Remove the node now but someone else can add it back,
546 * we will to add it back at the end of reclaim to its correct
547 * position in the tree.
548 */
cf2c8127 549 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 550 if (!soft_limit_excess(mz->memcg) ||
8965aa28 551 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
552 goto retry;
553done:
554 return mz;
555}
556
ef8f2327
MG
557static struct mem_cgroup_per_node *
558mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 559{
ef8f2327 560 struct mem_cgroup_per_node *mz;
bb4cc1a8 561
0a31bc97 562 spin_lock_irq(&mctz->lock);
bb4cc1a8 563 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 564 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
565 return mz;
566}
567
11192d9c
SB
568/*
569 * memcg and lruvec stats flushing
570 *
571 * Many codepaths leading to stats update or read are performance sensitive and
572 * adding stats flushing in such codepaths is not desirable. So, to optimize the
573 * flushing the kernel does:
574 *
575 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
576 * rstat update tree grow unbounded.
577 *
578 * 2) Flush the stats synchronously on reader side only when there are more than
579 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
580 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
581 * only for 2 seconds due to (1).
582 */
583static void flush_memcg_stats_dwork(struct work_struct *w);
584static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
585static DEFINE_SPINLOCK(stats_flush_lock);
586static DEFINE_PER_CPU(unsigned int, stats_updates);
587static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
9b301615
SB
588static u64 flush_next_time;
589
590#define FLUSH_TIME (2UL*HZ)
11192d9c 591
be3e67b5
SAS
592/*
593 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
594 * not rely on this as part of an acquired spinlock_t lock. These functions are
595 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
596 * is sufficient.
597 */
598static void memcg_stats_lock(void)
599{
600#ifdef CONFIG_PREEMPT_RT
601 preempt_disable();
602#else
603 VM_BUG_ON(!irqs_disabled());
604#endif
605}
606
607static void __memcg_stats_lock(void)
608{
609#ifdef CONFIG_PREEMPT_RT
610 preempt_disable();
611#endif
612}
613
614static void memcg_stats_unlock(void)
615{
616#ifdef CONFIG_PREEMPT_RT
617 preempt_enable();
618#endif
619}
620
5b3be698 621static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
11192d9c 622{
5b3be698
SB
623 unsigned int x;
624
11192d9c 625 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
5b3be698
SB
626
627 x = __this_cpu_add_return(stats_updates, abs(val));
628 if (x > MEMCG_CHARGE_BATCH) {
873f64b7
JS
629 /*
630 * If stats_flush_threshold exceeds the threshold
631 * (>num_online_cpus()), cgroup stats update will be triggered
632 * in __mem_cgroup_flush_stats(). Increasing this var further
633 * is redundant and simply adds overhead in atomic update.
634 */
635 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
636 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
5b3be698
SB
637 __this_cpu_write(stats_updates, 0);
638 }
11192d9c
SB
639}
640
641static void __mem_cgroup_flush_stats(void)
642{
fd25a9e0
SB
643 unsigned long flag;
644
645 if (!spin_trylock_irqsave(&stats_flush_lock, flag))
11192d9c
SB
646 return;
647
9b301615 648 flush_next_time = jiffies_64 + 2*FLUSH_TIME;
11192d9c
SB
649 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
650 atomic_set(&stats_flush_threshold, 0);
fd25a9e0 651 spin_unlock_irqrestore(&stats_flush_lock, flag);
11192d9c
SB
652}
653
654void mem_cgroup_flush_stats(void)
655{
656 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
657 __mem_cgroup_flush_stats();
658}
659
9b301615
SB
660void mem_cgroup_flush_stats_delayed(void)
661{
662 if (time_after64(jiffies_64, flush_next_time))
663 mem_cgroup_flush_stats();
664}
665
11192d9c
SB
666static void flush_memcg_stats_dwork(struct work_struct *w)
667{
5b3be698 668 __mem_cgroup_flush_stats();
9b301615 669 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
11192d9c
SB
670}
671
db9adbcb
JW
672/**
673 * __mod_memcg_state - update cgroup memory statistics
674 * @memcg: the memory cgroup
675 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
676 * @val: delta to add to the counter, can be negative
677 */
678void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
679{
db9adbcb
JW
680 if (mem_cgroup_disabled())
681 return;
682
2d146aa3 683 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
5b3be698 684 memcg_rstat_updated(memcg, val);
db9adbcb
JW
685}
686
2d146aa3 687/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
688static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
689{
690 long x = 0;
691 int cpu;
692
693 for_each_possible_cpu(cpu)
2d146aa3 694 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
695#ifdef CONFIG_SMP
696 if (x < 0)
697 x = 0;
698#endif
699 return x;
700}
701
eedc4e5a
RG
702void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
703 int val)
db9adbcb
JW
704{
705 struct mem_cgroup_per_node *pn;
42a30035 706 struct mem_cgroup *memcg;
db9adbcb 707
db9adbcb 708 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 709 memcg = pn->memcg;
db9adbcb 710
be3e67b5
SAS
711 /*
712 * The caller from rmap relay on disabled preemption becase they never
713 * update their counter from in-interrupt context. For these two
714 * counters we check that the update is never performed from an
715 * interrupt context while other caller need to have disabled interrupt.
716 */
717 __memcg_stats_lock();
718 if (IS_ENABLED(CONFIG_DEBUG_VM) && !IS_ENABLED(CONFIG_PREEMPT_RT)) {
719 switch (idx) {
720 case NR_ANON_MAPPED:
721 case NR_FILE_MAPPED:
722 case NR_ANON_THPS:
723 case NR_SHMEM_PMDMAPPED:
724 case NR_FILE_PMDMAPPED:
725 WARN_ON_ONCE(!in_task());
726 break;
727 default:
728 WARN_ON_ONCE(!irqs_disabled());
729 }
730 }
731
db9adbcb 732 /* Update memcg */
11192d9c 733 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
db9adbcb 734
b4c46484 735 /* Update lruvec */
7e1c0d6f 736 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
11192d9c 737
5b3be698 738 memcg_rstat_updated(memcg, val);
be3e67b5 739 memcg_stats_unlock();
db9adbcb
JW
740}
741
eedc4e5a
RG
742/**
743 * __mod_lruvec_state - update lruvec memory statistics
744 * @lruvec: the lruvec
745 * @idx: the stat item
746 * @val: delta to add to the counter, can be negative
747 *
748 * The lruvec is the intersection of the NUMA node and a cgroup. This
749 * function updates the all three counters that are affected by a
750 * change of state at this level: per-node, per-cgroup, per-lruvec.
751 */
752void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
753 int val)
754{
755 /* Update node */
756 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
757
758 /* Update memcg and lruvec */
759 if (!mem_cgroup_disabled())
760 __mod_memcg_lruvec_state(lruvec, idx, val);
761}
762
c47d5032
SB
763void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
764 int val)
765{
766 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 767 struct mem_cgroup *memcg;
c47d5032
SB
768 pg_data_t *pgdat = page_pgdat(page);
769 struct lruvec *lruvec;
770
b4e0b68f
MS
771 rcu_read_lock();
772 memcg = page_memcg(head);
c47d5032 773 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 774 if (!memcg) {
b4e0b68f 775 rcu_read_unlock();
c47d5032
SB
776 __mod_node_page_state(pgdat, idx, val);
777 return;
778 }
779
d635a69d 780 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 781 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 782 rcu_read_unlock();
c47d5032 783}
f0c0c115 784EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 785
da3ceeff 786void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 787{
4f103c63 788 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
789 struct mem_cgroup *memcg;
790 struct lruvec *lruvec;
791
792 rcu_read_lock();
fc4db90f 793 memcg = mem_cgroup_from_slab_obj(p);
ec9f0238 794
8faeb1ff
MS
795 /*
796 * Untracked pages have no memcg, no lruvec. Update only the
797 * node. If we reparent the slab objects to the root memcg,
798 * when we free the slab object, we need to update the per-memcg
799 * vmstats to keep it correct for the root memcg.
800 */
801 if (!memcg) {
ec9f0238
RG
802 __mod_node_page_state(pgdat, idx, val);
803 } else {
867e5e1d 804 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
805 __mod_lruvec_state(lruvec, idx, val);
806 }
807 rcu_read_unlock();
808}
809
db9adbcb
JW
810/**
811 * __count_memcg_events - account VM events in a cgroup
812 * @memcg: the memory cgroup
813 * @idx: the event item
f0953a1b 814 * @count: the number of events that occurred
db9adbcb
JW
815 */
816void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
817 unsigned long count)
818{
db9adbcb
JW
819 if (mem_cgroup_disabled())
820 return;
821
be3e67b5 822 memcg_stats_lock();
2d146aa3 823 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
5b3be698 824 memcg_rstat_updated(memcg, count);
be3e67b5 825 memcg_stats_unlock();
db9adbcb
JW
826}
827
42a30035 828static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 829{
2d146aa3 830 return READ_ONCE(memcg->vmstats.events[event]);
e9f8974f
JW
831}
832
42a30035
JW
833static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
834{
815744d7
JW
835 long x = 0;
836 int cpu;
837
838 for_each_possible_cpu(cpu)
2d146aa3 839 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
815744d7 840 return x;
42a30035
JW
841}
842
c0ff4b85 843static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
3fba69a5 844 int nr_pages)
d52aa412 845{
e401f176
KH
846 /* pagein of a big page is an event. So, ignore page size */
847 if (nr_pages > 0)
c9019e9b 848 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 849 else {
c9019e9b 850 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
851 nr_pages = -nr_pages; /* for event */
852 }
e401f176 853
871789d4 854 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
855}
856
f53d7ce3
JW
857static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
858 enum mem_cgroup_events_target target)
7a159cc9
JW
859{
860 unsigned long val, next;
861
871789d4
CD
862 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
863 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 864 /* from time_after() in jiffies.h */
6a1a8b80 865 if ((long)(next - val) < 0) {
f53d7ce3
JW
866 switch (target) {
867 case MEM_CGROUP_TARGET_THRESH:
868 next = val + THRESHOLDS_EVENTS_TARGET;
869 break;
bb4cc1a8
AM
870 case MEM_CGROUP_TARGET_SOFTLIMIT:
871 next = val + SOFTLIMIT_EVENTS_TARGET;
872 break;
f53d7ce3
JW
873 default:
874 break;
875 }
871789d4 876 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 877 return true;
7a159cc9 878 }
f53d7ce3 879 return false;
d2265e6f
KH
880}
881
882/*
883 * Check events in order.
884 *
885 */
8e88bd2d 886static void memcg_check_events(struct mem_cgroup *memcg, int nid)
d2265e6f 887{
2343e88d
SAS
888 if (IS_ENABLED(CONFIG_PREEMPT_RT))
889 return;
890
d2265e6f 891 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
892 if (unlikely(mem_cgroup_event_ratelimit(memcg,
893 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 894 bool do_softlimit;
f53d7ce3 895
bb4cc1a8
AM
896 do_softlimit = mem_cgroup_event_ratelimit(memcg,
897 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 898 mem_cgroup_threshold(memcg);
bb4cc1a8 899 if (unlikely(do_softlimit))
8e88bd2d 900 mem_cgroup_update_tree(memcg, nid);
0a31bc97 901 }
d2265e6f
KH
902}
903
cf475ad2 904struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 905{
31a78f23
BS
906 /*
907 * mm_update_next_owner() may clear mm->owner to NULL
908 * if it races with swapoff, page migration, etc.
909 * So this can be called with p == NULL.
910 */
911 if (unlikely(!p))
912 return NULL;
913
073219e9 914 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 915}
33398cf2 916EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 917
04f94e3f
DS
918static __always_inline struct mem_cgroup *active_memcg(void)
919{
55a68c82 920 if (!in_task())
04f94e3f
DS
921 return this_cpu_read(int_active_memcg);
922 else
923 return current->active_memcg;
924}
925
d46eb14b
SB
926/**
927 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
928 * @mm: mm from which memcg should be extracted. It can be NULL.
929 *
04f94e3f
DS
930 * Obtain a reference on mm->memcg and returns it if successful. If mm
931 * is NULL, then the memcg is chosen as follows:
932 * 1) The active memcg, if set.
933 * 2) current->mm->memcg, if available
934 * 3) root memcg
935 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
936 */
937struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 938{
d46eb14b
SB
939 struct mem_cgroup *memcg;
940
941 if (mem_cgroup_disabled())
942 return NULL;
0b7f569e 943
2884b6b7
MS
944 /*
945 * Page cache insertions can happen without an
946 * actual mm context, e.g. during disk probing
947 * on boot, loopback IO, acct() writes etc.
948 *
949 * No need to css_get on root memcg as the reference
950 * counting is disabled on the root level in the
951 * cgroup core. See CSS_NO_REF.
952 */
04f94e3f
DS
953 if (unlikely(!mm)) {
954 memcg = active_memcg();
955 if (unlikely(memcg)) {
956 /* remote memcg must hold a ref */
957 css_get(&memcg->css);
958 return memcg;
959 }
960 mm = current->mm;
961 if (unlikely(!mm))
962 return root_mem_cgroup;
963 }
2884b6b7 964
54595fe2
KH
965 rcu_read_lock();
966 do {
2884b6b7
MS
967 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
968 if (unlikely(!memcg))
df381975 969 memcg = root_mem_cgroup;
00d484f3 970 } while (!css_tryget(&memcg->css));
54595fe2 971 rcu_read_unlock();
c0ff4b85 972 return memcg;
54595fe2 973}
d46eb14b
SB
974EXPORT_SYMBOL(get_mem_cgroup_from_mm);
975
4127c650
RG
976static __always_inline bool memcg_kmem_bypass(void)
977{
978 /* Allow remote memcg charging from any context. */
979 if (unlikely(active_memcg()))
980 return false;
981
982 /* Memcg to charge can't be determined. */
6126891c 983 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
4127c650
RG
984 return true;
985
986 return false;
987}
988
5660048c
JW
989/**
990 * mem_cgroup_iter - iterate over memory cgroup hierarchy
991 * @root: hierarchy root
992 * @prev: previously returned memcg, NULL on first invocation
993 * @reclaim: cookie for shared reclaim walks, NULL for full walks
994 *
995 * Returns references to children of the hierarchy below @root, or
996 * @root itself, or %NULL after a full round-trip.
997 *
998 * Caller must pass the return value in @prev on subsequent
999 * invocations for reference counting, or use mem_cgroup_iter_break()
1000 * to cancel a hierarchy walk before the round-trip is complete.
1001 *
05bdc520
ML
1002 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1003 * in the hierarchy among all concurrent reclaimers operating on the
1004 * same node.
5660048c 1005 */
694fbc0f 1006struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1007 struct mem_cgroup *prev,
694fbc0f 1008 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1009{
3f649ab7 1010 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1011 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1012 struct mem_cgroup *memcg = NULL;
5ac8fb31 1013 struct mem_cgroup *pos = NULL;
711d3d2c 1014
694fbc0f
AM
1015 if (mem_cgroup_disabled())
1016 return NULL;
5660048c 1017
9f3a0d09
JW
1018 if (!root)
1019 root = root_mem_cgroup;
7d74b06f 1020
542f85f9 1021 rcu_read_lock();
5f578161 1022
5ac8fb31 1023 if (reclaim) {
ef8f2327 1024 struct mem_cgroup_per_node *mz;
5ac8fb31 1025
a3747b53 1026 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 1027 iter = &mz->iter;
5ac8fb31 1028
a9320aae
WY
1029 /*
1030 * On start, join the current reclaim iteration cycle.
1031 * Exit when a concurrent walker completes it.
1032 */
1033 if (!prev)
1034 reclaim->generation = iter->generation;
1035 else if (reclaim->generation != iter->generation)
5ac8fb31
JW
1036 goto out_unlock;
1037
6df38689 1038 while (1) {
4db0c3c2 1039 pos = READ_ONCE(iter->position);
6df38689
VD
1040 if (!pos || css_tryget(&pos->css))
1041 break;
5ac8fb31 1042 /*
6df38689
VD
1043 * css reference reached zero, so iter->position will
1044 * be cleared by ->css_released. However, we should not
1045 * rely on this happening soon, because ->css_released
1046 * is called from a work queue, and by busy-waiting we
1047 * might block it. So we clear iter->position right
1048 * away.
5ac8fb31 1049 */
6df38689
VD
1050 (void)cmpxchg(&iter->position, pos, NULL);
1051 }
89d8330c
WY
1052 } else if (prev) {
1053 pos = prev;
5ac8fb31
JW
1054 }
1055
1056 if (pos)
1057 css = &pos->css;
1058
1059 for (;;) {
1060 css = css_next_descendant_pre(css, &root->css);
1061 if (!css) {
1062 /*
1063 * Reclaimers share the hierarchy walk, and a
1064 * new one might jump in right at the end of
1065 * the hierarchy - make sure they see at least
1066 * one group and restart from the beginning.
1067 */
1068 if (!prev)
1069 continue;
1070 break;
527a5ec9 1071 }
7d74b06f 1072
5ac8fb31
JW
1073 /*
1074 * Verify the css and acquire a reference. The root
1075 * is provided by the caller, so we know it's alive
1076 * and kicking, and don't take an extra reference.
1077 */
41555dad
WY
1078 if (css == &root->css || css_tryget(css)) {
1079 memcg = mem_cgroup_from_css(css);
0b8f73e1 1080 break;
41555dad 1081 }
9f3a0d09 1082 }
5ac8fb31
JW
1083
1084 if (reclaim) {
5ac8fb31 1085 /*
6df38689
VD
1086 * The position could have already been updated by a competing
1087 * thread, so check that the value hasn't changed since we read
1088 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1089 */
6df38689
VD
1090 (void)cmpxchg(&iter->position, pos, memcg);
1091
5ac8fb31
JW
1092 if (pos)
1093 css_put(&pos->css);
1094
1095 if (!memcg)
1096 iter->generation++;
9f3a0d09 1097 }
5ac8fb31 1098
542f85f9
MH
1099out_unlock:
1100 rcu_read_unlock();
c40046f3
MH
1101 if (prev && prev != root)
1102 css_put(&prev->css);
1103
9f3a0d09 1104 return memcg;
14067bb3 1105}
7d74b06f 1106
5660048c
JW
1107/**
1108 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1109 * @root: hierarchy root
1110 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1111 */
1112void mem_cgroup_iter_break(struct mem_cgroup *root,
1113 struct mem_cgroup *prev)
9f3a0d09
JW
1114{
1115 if (!root)
1116 root = root_mem_cgroup;
1117 if (prev && prev != root)
1118 css_put(&prev->css);
1119}
7d74b06f 1120
54a83d6b
MC
1121static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1122 struct mem_cgroup *dead_memcg)
6df38689 1123{
6df38689 1124 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1125 struct mem_cgroup_per_node *mz;
1126 int nid;
6df38689 1127
54a83d6b 1128 for_each_node(nid) {
a3747b53 1129 mz = from->nodeinfo[nid];
9da83f3f
YS
1130 iter = &mz->iter;
1131 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1132 }
1133}
1134
54a83d6b
MC
1135static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1136{
1137 struct mem_cgroup *memcg = dead_memcg;
1138 struct mem_cgroup *last;
1139
1140 do {
1141 __invalidate_reclaim_iterators(memcg, dead_memcg);
1142 last = memcg;
1143 } while ((memcg = parent_mem_cgroup(memcg)));
1144
1145 /*
1146 * When cgruop1 non-hierarchy mode is used,
1147 * parent_mem_cgroup() does not walk all the way up to the
1148 * cgroup root (root_mem_cgroup). So we have to handle
1149 * dead_memcg from cgroup root separately.
1150 */
1151 if (last != root_mem_cgroup)
1152 __invalidate_reclaim_iterators(root_mem_cgroup,
1153 dead_memcg);
1154}
1155
7c5f64f8
VD
1156/**
1157 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1158 * @memcg: hierarchy root
1159 * @fn: function to call for each task
1160 * @arg: argument passed to @fn
1161 *
1162 * This function iterates over tasks attached to @memcg or to any of its
1163 * descendants and calls @fn for each task. If @fn returns a non-zero
1164 * value, the function breaks the iteration loop and returns the value.
1165 * Otherwise, it will iterate over all tasks and return 0.
1166 *
1167 * This function must not be called for the root memory cgroup.
1168 */
1169int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1170 int (*fn)(struct task_struct *, void *), void *arg)
1171{
1172 struct mem_cgroup *iter;
1173 int ret = 0;
1174
1175 BUG_ON(memcg == root_mem_cgroup);
1176
1177 for_each_mem_cgroup_tree(iter, memcg) {
1178 struct css_task_iter it;
1179 struct task_struct *task;
1180
f168a9a5 1181 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1182 while (!ret && (task = css_task_iter_next(&it)))
1183 ret = fn(task, arg);
1184 css_task_iter_end(&it);
1185 if (ret) {
1186 mem_cgroup_iter_break(memcg, iter);
1187 break;
1188 }
1189 }
1190 return ret;
1191}
1192
6168d0da 1193#ifdef CONFIG_DEBUG_VM
e809c3fe 1194void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
6168d0da
AS
1195{
1196 struct mem_cgroup *memcg;
1197
1198 if (mem_cgroup_disabled())
1199 return;
1200
e809c3fe 1201 memcg = folio_memcg(folio);
6168d0da
AS
1202
1203 if (!memcg)
e809c3fe 1204 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != root_mem_cgroup, folio);
6168d0da 1205 else
e809c3fe 1206 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
6168d0da
AS
1207}
1208#endif
1209
6168d0da 1210/**
e809c3fe
MWO
1211 * folio_lruvec_lock - Lock the lruvec for a folio.
1212 * @folio: Pointer to the folio.
6168d0da 1213 *
d7e3aba5 1214 * These functions are safe to use under any of the following conditions:
e809c3fe
MWO
1215 * - folio locked
1216 * - folio_test_lru false
1217 * - folio_memcg_lock()
1218 * - folio frozen (refcount of 0)
1219 *
1220 * Return: The lruvec this folio is on with its lock held.
6168d0da 1221 */
e809c3fe 1222struct lruvec *folio_lruvec_lock(struct folio *folio)
6168d0da 1223{
e809c3fe 1224 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1225
6168d0da 1226 spin_lock(&lruvec->lru_lock);
e809c3fe 1227 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1228
1229 return lruvec;
1230}
1231
e809c3fe
MWO
1232/**
1233 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1234 * @folio: Pointer to the folio.
1235 *
1236 * These functions are safe to use under any of the following conditions:
1237 * - folio locked
1238 * - folio_test_lru false
1239 * - folio_memcg_lock()
1240 * - folio frozen (refcount of 0)
1241 *
1242 * Return: The lruvec this folio is on with its lock held and interrupts
1243 * disabled.
1244 */
1245struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
6168d0da 1246{
e809c3fe 1247 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1248
6168d0da 1249 spin_lock_irq(&lruvec->lru_lock);
e809c3fe 1250 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1251
1252 return lruvec;
1253}
1254
e809c3fe
MWO
1255/**
1256 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1257 * @folio: Pointer to the folio.
1258 * @flags: Pointer to irqsave flags.
1259 *
1260 * These functions are safe to use under any of the following conditions:
1261 * - folio locked
1262 * - folio_test_lru false
1263 * - folio_memcg_lock()
1264 * - folio frozen (refcount of 0)
1265 *
1266 * Return: The lruvec this folio is on with its lock held and interrupts
1267 * disabled.
1268 */
1269struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1270 unsigned long *flags)
6168d0da 1271{
e809c3fe 1272 struct lruvec *lruvec = folio_lruvec(folio);
6168d0da 1273
6168d0da 1274 spin_lock_irqsave(&lruvec->lru_lock, *flags);
e809c3fe 1275 lruvec_memcg_debug(lruvec, folio);
6168d0da
AS
1276
1277 return lruvec;
1278}
1279
925b7673 1280/**
fa9add64
HD
1281 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1282 * @lruvec: mem_cgroup per zone lru vector
1283 * @lru: index of lru list the page is sitting on
b4536f0c 1284 * @zid: zone id of the accounted pages
fa9add64 1285 * @nr_pages: positive when adding or negative when removing
925b7673 1286 *
ca707239 1287 * This function must be called under lru_lock, just before a page is added
07ca7606 1288 * to or just after a page is removed from an lru list.
3f58a829 1289 */
fa9add64 1290void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1291 int zid, int nr_pages)
3f58a829 1292{
ef8f2327 1293 struct mem_cgroup_per_node *mz;
fa9add64 1294 unsigned long *lru_size;
ca707239 1295 long size;
3f58a829
MK
1296
1297 if (mem_cgroup_disabled())
1298 return;
1299
ef8f2327 1300 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1301 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1302
1303 if (nr_pages < 0)
1304 *lru_size += nr_pages;
1305
1306 size = *lru_size;
b4536f0c
MH
1307 if (WARN_ONCE(size < 0,
1308 "%s(%p, %d, %d): lru_size %ld\n",
1309 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1310 VM_BUG_ON(1);
1311 *lru_size = 0;
1312 }
1313
1314 if (nr_pages > 0)
1315 *lru_size += nr_pages;
08e552c6 1316}
544122e5 1317
19942822 1318/**
9d11ea9f 1319 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1320 * @memcg: the memory cgroup
19942822 1321 *
9d11ea9f 1322 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1323 * pages.
19942822 1324 */
c0ff4b85 1325static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1326{
3e32cb2e
JW
1327 unsigned long margin = 0;
1328 unsigned long count;
1329 unsigned long limit;
9d11ea9f 1330
3e32cb2e 1331 count = page_counter_read(&memcg->memory);
bbec2e15 1332 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1333 if (count < limit)
1334 margin = limit - count;
1335
7941d214 1336 if (do_memsw_account()) {
3e32cb2e 1337 count = page_counter_read(&memcg->memsw);
bbec2e15 1338 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1339 if (count < limit)
3e32cb2e 1340 margin = min(margin, limit - count);
cbedbac3
LR
1341 else
1342 margin = 0;
3e32cb2e
JW
1343 }
1344
1345 return margin;
19942822
JW
1346}
1347
32047e2a 1348/*
bdcbb659 1349 * A routine for checking "mem" is under move_account() or not.
32047e2a 1350 *
bdcbb659
QH
1351 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1352 * moving cgroups. This is for waiting at high-memory pressure
1353 * caused by "move".
32047e2a 1354 */
c0ff4b85 1355static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1356{
2bd9bb20
KH
1357 struct mem_cgroup *from;
1358 struct mem_cgroup *to;
4b534334 1359 bool ret = false;
2bd9bb20
KH
1360 /*
1361 * Unlike task_move routines, we access mc.to, mc.from not under
1362 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1363 */
1364 spin_lock(&mc.lock);
1365 from = mc.from;
1366 to = mc.to;
1367 if (!from)
1368 goto unlock;
3e92041d 1369
2314b42d
JW
1370 ret = mem_cgroup_is_descendant(from, memcg) ||
1371 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1372unlock:
1373 spin_unlock(&mc.lock);
4b534334
KH
1374 return ret;
1375}
1376
c0ff4b85 1377static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1378{
1379 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1380 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1381 DEFINE_WAIT(wait);
1382 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1383 /* moving charge context might have finished. */
1384 if (mc.moving_task)
1385 schedule();
1386 finish_wait(&mc.waitq, &wait);
1387 return true;
1388 }
1389 }
1390 return false;
1391}
1392
5f9a4f4a
MS
1393struct memory_stat {
1394 const char *name;
5f9a4f4a
MS
1395 unsigned int idx;
1396};
1397
57b2847d 1398static const struct memory_stat memory_stats[] = {
fff66b79
MS
1399 { "anon", NR_ANON_MAPPED },
1400 { "file", NR_FILE_PAGES },
a8c49af3 1401 { "kernel", MEMCG_KMEM },
fff66b79
MS
1402 { "kernel_stack", NR_KERNEL_STACK_KB },
1403 { "pagetables", NR_PAGETABLE },
1404 { "percpu", MEMCG_PERCPU_B },
1405 { "sock", MEMCG_SOCK },
4e5aa1f4 1406 { "vmalloc", MEMCG_VMALLOC },
fff66b79 1407 { "shmem", NR_SHMEM },
f4840ccf
JW
1408#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1409 { "zswap", MEMCG_ZSWAP_B },
1410 { "zswapped", MEMCG_ZSWAPPED },
1411#endif
fff66b79
MS
1412 { "file_mapped", NR_FILE_MAPPED },
1413 { "file_dirty", NR_FILE_DIRTY },
1414 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1415#ifdef CONFIG_SWAP
1416 { "swapcached", NR_SWAPCACHE },
1417#endif
5f9a4f4a 1418#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1419 { "anon_thp", NR_ANON_THPS },
1420 { "file_thp", NR_FILE_THPS },
1421 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1422#endif
fff66b79
MS
1423 { "inactive_anon", NR_INACTIVE_ANON },
1424 { "active_anon", NR_ACTIVE_ANON },
1425 { "inactive_file", NR_INACTIVE_FILE },
1426 { "active_file", NR_ACTIVE_FILE },
1427 { "unevictable", NR_UNEVICTABLE },
1428 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1429 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1430
1431 /* The memory events */
fff66b79
MS
1432 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1433 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1434 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1435 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1436 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1437 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1438 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1439};
1440
fff66b79
MS
1441/* Translate stat items to the correct unit for memory.stat output */
1442static int memcg_page_state_unit(int item)
1443{
1444 switch (item) {
1445 case MEMCG_PERCPU_B:
f4840ccf 1446 case MEMCG_ZSWAP_B:
fff66b79
MS
1447 case NR_SLAB_RECLAIMABLE_B:
1448 case NR_SLAB_UNRECLAIMABLE_B:
1449 case WORKINGSET_REFAULT_ANON:
1450 case WORKINGSET_REFAULT_FILE:
1451 case WORKINGSET_ACTIVATE_ANON:
1452 case WORKINGSET_ACTIVATE_FILE:
1453 case WORKINGSET_RESTORE_ANON:
1454 case WORKINGSET_RESTORE_FILE:
1455 case WORKINGSET_NODERECLAIM:
1456 return 1;
1457 case NR_KERNEL_STACK_KB:
1458 return SZ_1K;
1459 default:
1460 return PAGE_SIZE;
1461 }
1462}
1463
1464static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1465 int item)
1466{
1467 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1468}
1469
673520f8
QZ
1470/* Subset of vm_event_item to report for memcg event stats */
1471static const unsigned int memcg_vm_event_stat[] = {
1472 PGSCAN_KSWAPD,
1473 PGSCAN_DIRECT,
1474 PGSTEAL_KSWAPD,
1475 PGSTEAL_DIRECT,
1476 PGFAULT,
1477 PGMAJFAULT,
1478 PGREFILL,
1479 PGACTIVATE,
1480 PGDEACTIVATE,
1481 PGLAZYFREE,
1482 PGLAZYFREED,
1483#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1484 ZSWPIN,
1485 ZSWPOUT,
1486#endif
1487#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1488 THP_FAULT_ALLOC,
1489 THP_COLLAPSE_ALLOC,
1490#endif
1491};
1492
68aaee14 1493static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
c8713d0b
JW
1494{
1495 struct seq_buf s;
1496 int i;
71cd3113 1497
68aaee14 1498 seq_buf_init(&s, buf, bufsize);
c8713d0b
JW
1499
1500 /*
1501 * Provide statistics on the state of the memory subsystem as
1502 * well as cumulative event counters that show past behavior.
1503 *
1504 * This list is ordered following a combination of these gradients:
1505 * 1) generic big picture -> specifics and details
1506 * 2) reflecting userspace activity -> reflecting kernel heuristics
1507 *
1508 * Current memory state:
1509 */
fd25a9e0 1510 mem_cgroup_flush_stats();
c8713d0b 1511
5f9a4f4a
MS
1512 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1513 u64 size;
c8713d0b 1514
fff66b79 1515 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1516 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1517
5f9a4f4a 1518 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1519 size += memcg_page_state_output(memcg,
1520 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1521 seq_buf_printf(&s, "slab %llu\n", size);
1522 }
1523 }
c8713d0b
JW
1524
1525 /* Accumulated memory events */
c8713d0b
JW
1526 seq_buf_printf(&s, "pgscan %lu\n",
1527 memcg_events(memcg, PGSCAN_KSWAPD) +
1528 memcg_events(memcg, PGSCAN_DIRECT));
1529 seq_buf_printf(&s, "pgsteal %lu\n",
1530 memcg_events(memcg, PGSTEAL_KSWAPD) +
1531 memcg_events(memcg, PGSTEAL_DIRECT));
c8713d0b 1532
673520f8
QZ
1533 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++)
1534 seq_buf_printf(&s, "%s %lu\n",
1535 vm_event_name(memcg_vm_event_stat[i]),
1536 memcg_events(memcg, memcg_vm_event_stat[i]));
c8713d0b
JW
1537
1538 /* The above should easily fit into one page */
1539 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
c8713d0b 1540}
71cd3113 1541
58cf188e 1542#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1543/**
f0c867d9 1544 * mem_cgroup_print_oom_context: Print OOM information relevant to
1545 * memory controller.
e222432b
BS
1546 * @memcg: The memory cgroup that went over limit
1547 * @p: Task that is going to be killed
1548 *
1549 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1550 * enabled
1551 */
f0c867d9 1552void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1553{
e222432b
BS
1554 rcu_read_lock();
1555
f0c867d9 1556 if (memcg) {
1557 pr_cont(",oom_memcg=");
1558 pr_cont_cgroup_path(memcg->css.cgroup);
1559 } else
1560 pr_cont(",global_oom");
2415b9f5 1561 if (p) {
f0c867d9 1562 pr_cont(",task_memcg=");
2415b9f5 1563 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1564 }
e222432b 1565 rcu_read_unlock();
f0c867d9 1566}
1567
1568/**
1569 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1570 * memory controller.
1571 * @memcg: The memory cgroup that went over limit
1572 */
1573void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1574{
68aaee14
TH
1575 /* Use static buffer, for the caller is holding oom_lock. */
1576 static char buf[PAGE_SIZE];
1577
1578 lockdep_assert_held(&oom_lock);
e222432b 1579
3e32cb2e
JW
1580 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1581 K((u64)page_counter_read(&memcg->memory)),
15b42562 1582 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1583 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1584 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1585 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1586 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1587 else {
1588 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1589 K((u64)page_counter_read(&memcg->memsw)),
1590 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1591 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1592 K((u64)page_counter_read(&memcg->kmem)),
1593 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1594 }
c8713d0b
JW
1595
1596 pr_info("Memory cgroup stats for ");
1597 pr_cont_cgroup_path(memcg->css.cgroup);
1598 pr_cont(":");
68aaee14 1599 memory_stat_format(memcg, buf, sizeof(buf));
c8713d0b 1600 pr_info("%s", buf);
e222432b
BS
1601}
1602
a63d83f4
DR
1603/*
1604 * Return the memory (and swap, if configured) limit for a memcg.
1605 */
bbec2e15 1606unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1607{
8d387a5f
WL
1608 unsigned long max = READ_ONCE(memcg->memory.max);
1609
1610 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1611 if (mem_cgroup_swappiness(memcg))
1612 max += min(READ_ONCE(memcg->swap.max),
1613 (unsigned long)total_swap_pages);
1614 } else { /* v1 */
1615 if (mem_cgroup_swappiness(memcg)) {
1616 /* Calculate swap excess capacity from memsw limit */
1617 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1618
1619 max += min(swap, (unsigned long)total_swap_pages);
1620 }
9a5a8f19 1621 }
bbec2e15 1622 return max;
a63d83f4
DR
1623}
1624
9783aa99
CD
1625unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1626{
1627 return page_counter_read(&memcg->memory);
1628}
1629
b6e6edcf 1630static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1631 int order)
9cbb78bb 1632{
6e0fc46d
DR
1633 struct oom_control oc = {
1634 .zonelist = NULL,
1635 .nodemask = NULL,
2a966b77 1636 .memcg = memcg,
6e0fc46d
DR
1637 .gfp_mask = gfp_mask,
1638 .order = order,
6e0fc46d 1639 };
1378b37d 1640 bool ret = true;
9cbb78bb 1641
7775face
TH
1642 if (mutex_lock_killable(&oom_lock))
1643 return true;
1378b37d
YS
1644
1645 if (mem_cgroup_margin(memcg) >= (1 << order))
1646 goto unlock;
1647
7775face
TH
1648 /*
1649 * A few threads which were not waiting at mutex_lock_killable() can
1650 * fail to bail out. Therefore, check again after holding oom_lock.
1651 */
a4ebf1b6 1652 ret = task_is_dying() || out_of_memory(&oc);
1378b37d
YS
1653
1654unlock:
dc56401f 1655 mutex_unlock(&oom_lock);
7c5f64f8 1656 return ret;
9cbb78bb
DR
1657}
1658
0608f43d 1659static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1660 pg_data_t *pgdat,
0608f43d
AM
1661 gfp_t gfp_mask,
1662 unsigned long *total_scanned)
1663{
1664 struct mem_cgroup *victim = NULL;
1665 int total = 0;
1666 int loop = 0;
1667 unsigned long excess;
1668 unsigned long nr_scanned;
1669 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1670 .pgdat = pgdat,
0608f43d
AM
1671 };
1672
3e32cb2e 1673 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1674
1675 while (1) {
1676 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1677 if (!victim) {
1678 loop++;
1679 if (loop >= 2) {
1680 /*
1681 * If we have not been able to reclaim
1682 * anything, it might because there are
1683 * no reclaimable pages under this hierarchy
1684 */
1685 if (!total)
1686 break;
1687 /*
1688 * We want to do more targeted reclaim.
1689 * excess >> 2 is not to excessive so as to
1690 * reclaim too much, nor too less that we keep
1691 * coming back to reclaim from this cgroup
1692 */
1693 if (total >= (excess >> 2) ||
1694 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1695 break;
1696 }
1697 continue;
1698 }
a9dd0a83 1699 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1700 pgdat, &nr_scanned);
0608f43d 1701 *total_scanned += nr_scanned;
3e32cb2e 1702 if (!soft_limit_excess(root_memcg))
0608f43d 1703 break;
6d61ef40 1704 }
0608f43d
AM
1705 mem_cgroup_iter_break(root_memcg, victim);
1706 return total;
6d61ef40
BS
1707}
1708
0056f4e6
JW
1709#ifdef CONFIG_LOCKDEP
1710static struct lockdep_map memcg_oom_lock_dep_map = {
1711 .name = "memcg_oom_lock",
1712};
1713#endif
1714
fb2a6fc5
JW
1715static DEFINE_SPINLOCK(memcg_oom_lock);
1716
867578cb
KH
1717/*
1718 * Check OOM-Killer is already running under our hierarchy.
1719 * If someone is running, return false.
1720 */
fb2a6fc5 1721static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1722{
79dfdacc 1723 struct mem_cgroup *iter, *failed = NULL;
a636b327 1724
fb2a6fc5
JW
1725 spin_lock(&memcg_oom_lock);
1726
9f3a0d09 1727 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1728 if (iter->oom_lock) {
79dfdacc
MH
1729 /*
1730 * this subtree of our hierarchy is already locked
1731 * so we cannot give a lock.
1732 */
79dfdacc 1733 failed = iter;
9f3a0d09
JW
1734 mem_cgroup_iter_break(memcg, iter);
1735 break;
23751be0
JW
1736 } else
1737 iter->oom_lock = true;
7d74b06f 1738 }
867578cb 1739
fb2a6fc5
JW
1740 if (failed) {
1741 /*
1742 * OK, we failed to lock the whole subtree so we have
1743 * to clean up what we set up to the failing subtree
1744 */
1745 for_each_mem_cgroup_tree(iter, memcg) {
1746 if (iter == failed) {
1747 mem_cgroup_iter_break(memcg, iter);
1748 break;
1749 }
1750 iter->oom_lock = false;
79dfdacc 1751 }
0056f4e6
JW
1752 } else
1753 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1754
1755 spin_unlock(&memcg_oom_lock);
1756
1757 return !failed;
a636b327 1758}
0b7f569e 1759
fb2a6fc5 1760static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1761{
7d74b06f
KH
1762 struct mem_cgroup *iter;
1763
fb2a6fc5 1764 spin_lock(&memcg_oom_lock);
5facae4f 1765 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1766 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1767 iter->oom_lock = false;
fb2a6fc5 1768 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1769}
1770
c0ff4b85 1771static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1772{
1773 struct mem_cgroup *iter;
1774
c2b42d3c 1775 spin_lock(&memcg_oom_lock);
c0ff4b85 1776 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1777 iter->under_oom++;
1778 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1779}
1780
c0ff4b85 1781static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1782{
1783 struct mem_cgroup *iter;
1784
867578cb 1785 /*
f0953a1b 1786 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1787 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1788 */
c2b42d3c 1789 spin_lock(&memcg_oom_lock);
c0ff4b85 1790 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1791 if (iter->under_oom > 0)
1792 iter->under_oom--;
1793 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1794}
1795
867578cb
KH
1796static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1797
dc98df5a 1798struct oom_wait_info {
d79154bb 1799 struct mem_cgroup *memcg;
ac6424b9 1800 wait_queue_entry_t wait;
dc98df5a
KH
1801};
1802
ac6424b9 1803static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1804 unsigned mode, int sync, void *arg)
1805{
d79154bb
HD
1806 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1807 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1808 struct oom_wait_info *oom_wait_info;
1809
1810 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1811 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1812
2314b42d
JW
1813 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1814 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1815 return 0;
dc98df5a
KH
1816 return autoremove_wake_function(wait, mode, sync, arg);
1817}
1818
c0ff4b85 1819static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1820{
c2b42d3c
TH
1821 /*
1822 * For the following lockless ->under_oom test, the only required
1823 * guarantee is that it must see the state asserted by an OOM when
1824 * this function is called as a result of userland actions
1825 * triggered by the notification of the OOM. This is trivially
1826 * achieved by invoking mem_cgroup_mark_under_oom() before
1827 * triggering notification.
1828 */
1829 if (memcg && memcg->under_oom)
f4b90b70 1830 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1831}
1832
becdf89d
SB
1833/*
1834 * Returns true if successfully killed one or more processes. Though in some
1835 * corner cases it can return true even without killing any process.
1836 */
1837static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1838{
becdf89d 1839 bool locked, ret;
7056d3a3 1840
29ef680a 1841 if (order > PAGE_ALLOC_COSTLY_ORDER)
becdf89d 1842 return false;
29ef680a 1843
7a1adfdd
RG
1844 memcg_memory_event(memcg, MEMCG_OOM);
1845
867578cb 1846 /*
49426420
JW
1847 * We are in the middle of the charge context here, so we
1848 * don't want to block when potentially sitting on a callstack
1849 * that holds all kinds of filesystem and mm locks.
1850 *
29ef680a
MH
1851 * cgroup1 allows disabling the OOM killer and waiting for outside
1852 * handling until the charge can succeed; remember the context and put
1853 * the task to sleep at the end of the page fault when all locks are
1854 * released.
49426420 1855 *
29ef680a
MH
1856 * On the other hand, in-kernel OOM killer allows for an async victim
1857 * memory reclaim (oom_reaper) and that means that we are not solely
1858 * relying on the oom victim to make a forward progress and we can
1859 * invoke the oom killer here.
1860 *
1861 * Please note that mem_cgroup_out_of_memory might fail to find a
1862 * victim and then we have to bail out from the charge path.
867578cb 1863 */
29ef680a 1864 if (memcg->oom_kill_disable) {
becdf89d
SB
1865 if (current->in_user_fault) {
1866 css_get(&memcg->css);
1867 current->memcg_in_oom = memcg;
1868 current->memcg_oom_gfp_mask = mask;
1869 current->memcg_oom_order = order;
1870 }
1871 return false;
29ef680a
MH
1872 }
1873
7056d3a3
MH
1874 mem_cgroup_mark_under_oom(memcg);
1875
1876 locked = mem_cgroup_oom_trylock(memcg);
1877
1878 if (locked)
1879 mem_cgroup_oom_notify(memcg);
1880
1881 mem_cgroup_unmark_under_oom(memcg);
becdf89d 1882 ret = mem_cgroup_out_of_memory(memcg, mask, order);
7056d3a3
MH
1883
1884 if (locked)
1885 mem_cgroup_oom_unlock(memcg);
29ef680a 1886
7056d3a3 1887 return ret;
3812c8c8
JW
1888}
1889
1890/**
1891 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1892 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1893 *
49426420
JW
1894 * This has to be called at the end of a page fault if the memcg OOM
1895 * handler was enabled.
3812c8c8 1896 *
49426420 1897 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1898 * sleep on a waitqueue until the userspace task resolves the
1899 * situation. Sleeping directly in the charge context with all kinds
1900 * of locks held is not a good idea, instead we remember an OOM state
1901 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1902 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1903 *
1904 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1905 * completed, %false otherwise.
3812c8c8 1906 */
49426420 1907bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1908{
626ebc41 1909 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1910 struct oom_wait_info owait;
49426420 1911 bool locked;
3812c8c8
JW
1912
1913 /* OOM is global, do not handle */
3812c8c8 1914 if (!memcg)
49426420 1915 return false;
3812c8c8 1916
7c5f64f8 1917 if (!handle)
49426420 1918 goto cleanup;
3812c8c8
JW
1919
1920 owait.memcg = memcg;
1921 owait.wait.flags = 0;
1922 owait.wait.func = memcg_oom_wake_function;
1923 owait.wait.private = current;
2055da97 1924 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1925
3812c8c8 1926 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1927 mem_cgroup_mark_under_oom(memcg);
1928
1929 locked = mem_cgroup_oom_trylock(memcg);
1930
1931 if (locked)
1932 mem_cgroup_oom_notify(memcg);
1933
1934 if (locked && !memcg->oom_kill_disable) {
1935 mem_cgroup_unmark_under_oom(memcg);
1936 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1937 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1938 current->memcg_oom_order);
49426420 1939 } else {
3812c8c8 1940 schedule();
49426420
JW
1941 mem_cgroup_unmark_under_oom(memcg);
1942 finish_wait(&memcg_oom_waitq, &owait.wait);
1943 }
1944
1945 if (locked) {
fb2a6fc5
JW
1946 mem_cgroup_oom_unlock(memcg);
1947 /*
1948 * There is no guarantee that an OOM-lock contender
1949 * sees the wakeups triggered by the OOM kill
f0953a1b 1950 * uncharges. Wake any sleepers explicitly.
fb2a6fc5
JW
1951 */
1952 memcg_oom_recover(memcg);
1953 }
49426420 1954cleanup:
626ebc41 1955 current->memcg_in_oom = NULL;
3812c8c8 1956 css_put(&memcg->css);
867578cb 1957 return true;
0b7f569e
KH
1958}
1959
3d8b38eb
RG
1960/**
1961 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1962 * @victim: task to be killed by the OOM killer
1963 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1964 *
1965 * Returns a pointer to a memory cgroup, which has to be cleaned up
1966 * by killing all belonging OOM-killable tasks.
1967 *
1968 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1969 */
1970struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1971 struct mem_cgroup *oom_domain)
1972{
1973 struct mem_cgroup *oom_group = NULL;
1974 struct mem_cgroup *memcg;
1975
1976 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1977 return NULL;
1978
1979 if (!oom_domain)
1980 oom_domain = root_mem_cgroup;
1981
1982 rcu_read_lock();
1983
1984 memcg = mem_cgroup_from_task(victim);
1985 if (memcg == root_mem_cgroup)
1986 goto out;
1987
48fe267c
RG
1988 /*
1989 * If the victim task has been asynchronously moved to a different
1990 * memory cgroup, we might end up killing tasks outside oom_domain.
1991 * In this case it's better to ignore memory.group.oom.
1992 */
1993 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1994 goto out;
1995
3d8b38eb
RG
1996 /*
1997 * Traverse the memory cgroup hierarchy from the victim task's
1998 * cgroup up to the OOMing cgroup (or root) to find the
1999 * highest-level memory cgroup with oom.group set.
2000 */
2001 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2002 if (memcg->oom_group)
2003 oom_group = memcg;
2004
2005 if (memcg == oom_domain)
2006 break;
2007 }
2008
2009 if (oom_group)
2010 css_get(&oom_group->css);
2011out:
2012 rcu_read_unlock();
2013
2014 return oom_group;
2015}
2016
2017void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2018{
2019 pr_info("Tasks in ");
2020 pr_cont_cgroup_path(memcg->css.cgroup);
2021 pr_cont(" are going to be killed due to memory.oom.group set\n");
2022}
2023
d7365e78 2024/**
f70ad448
MWO
2025 * folio_memcg_lock - Bind a folio to its memcg.
2026 * @folio: The folio.
32047e2a 2027 *
f70ad448 2028 * This function prevents unlocked LRU folios from being moved to
739f79fc
JW
2029 * another cgroup.
2030 *
f70ad448
MWO
2031 * It ensures lifetime of the bound memcg. The caller is responsible
2032 * for the lifetime of the folio.
d69b042f 2033 */
f70ad448 2034void folio_memcg_lock(struct folio *folio)
89c06bd5
KH
2035{
2036 struct mem_cgroup *memcg;
6de22619 2037 unsigned long flags;
89c06bd5 2038
6de22619
JW
2039 /*
2040 * The RCU lock is held throughout the transaction. The fast
2041 * path can get away without acquiring the memcg->move_lock
2042 * because page moving starts with an RCU grace period.
739f79fc 2043 */
d7365e78
JW
2044 rcu_read_lock();
2045
2046 if (mem_cgroup_disabled())
1c824a68 2047 return;
89c06bd5 2048again:
f70ad448 2049 memcg = folio_memcg(folio);
29833315 2050 if (unlikely(!memcg))
1c824a68 2051 return;
d7365e78 2052
20ad50d6
AS
2053#ifdef CONFIG_PROVE_LOCKING
2054 local_irq_save(flags);
2055 might_lock(&memcg->move_lock);
2056 local_irq_restore(flags);
2057#endif
2058
bdcbb659 2059 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2060 return;
89c06bd5 2061
6de22619 2062 spin_lock_irqsave(&memcg->move_lock, flags);
f70ad448 2063 if (memcg != folio_memcg(folio)) {
6de22619 2064 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2065 goto again;
2066 }
6de22619
JW
2067
2068 /*
1c824a68
JW
2069 * When charge migration first begins, we can have multiple
2070 * critical sections holding the fast-path RCU lock and one
2071 * holding the slowpath move_lock. Track the task who has the
2072 * move_lock for unlock_page_memcg().
6de22619
JW
2073 */
2074 memcg->move_lock_task = current;
2075 memcg->move_lock_flags = flags;
89c06bd5 2076}
f70ad448
MWO
2077
2078void lock_page_memcg(struct page *page)
2079{
2080 folio_memcg_lock(page_folio(page));
2081}
89c06bd5 2082
f70ad448 2083static void __folio_memcg_unlock(struct mem_cgroup *memcg)
89c06bd5 2084{
6de22619
JW
2085 if (memcg && memcg->move_lock_task == current) {
2086 unsigned long flags = memcg->move_lock_flags;
2087
2088 memcg->move_lock_task = NULL;
2089 memcg->move_lock_flags = 0;
2090
2091 spin_unlock_irqrestore(&memcg->move_lock, flags);
2092 }
89c06bd5 2093
d7365e78 2094 rcu_read_unlock();
89c06bd5 2095}
739f79fc
JW
2096
2097/**
f70ad448
MWO
2098 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2099 * @folio: The folio.
2100 *
2101 * This releases the binding created by folio_memcg_lock(). This does
2102 * not change the accounting of this folio to its memcg, but it does
2103 * permit others to change it.
739f79fc 2104 */
f70ad448 2105void folio_memcg_unlock(struct folio *folio)
739f79fc 2106{
f70ad448
MWO
2107 __folio_memcg_unlock(folio_memcg(folio));
2108}
9da7b521 2109
f70ad448
MWO
2110void unlock_page_memcg(struct page *page)
2111{
2112 folio_memcg_unlock(page_folio(page));
739f79fc 2113}
89c06bd5 2114
fead2b86 2115struct memcg_stock_pcp {
56751146 2116 local_lock_t stock_lock;
fead2b86
MH
2117 struct mem_cgroup *cached; /* this never be root cgroup */
2118 unsigned int nr_pages;
2119
bf4f0599
RG
2120#ifdef CONFIG_MEMCG_KMEM
2121 struct obj_cgroup *cached_objcg;
68ac5b3c 2122 struct pglist_data *cached_pgdat;
bf4f0599 2123 unsigned int nr_bytes;
68ac5b3c
WL
2124 int nr_slab_reclaimable_b;
2125 int nr_slab_unreclaimable_b;
bf4f0599
RG
2126#endif
2127
cdec2e42 2128 struct work_struct work;
26fe6168 2129 unsigned long flags;
a0db00fc 2130#define FLUSHING_CACHED_CHARGE 0
cdec2e42 2131};
56751146
SAS
2132static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2133 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2134};
9f50fad6 2135static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2136
bf4f0599 2137#ifdef CONFIG_MEMCG_KMEM
56751146 2138static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
bf4f0599
RG
2139static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2140 struct mem_cgroup *root_memcg);
a8c49af3 2141static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
bf4f0599
RG
2142
2143#else
56751146 2144static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599 2145{
56751146 2146 return NULL;
bf4f0599
RG
2147}
2148static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2149 struct mem_cgroup *root_memcg)
2150{
2151 return false;
2152}
a8c49af3
YA
2153static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2154{
2155}
bf4f0599
RG
2156#endif
2157
a0956d54
SS
2158/**
2159 * consume_stock: Try to consume stocked charge on this cpu.
2160 * @memcg: memcg to consume from.
2161 * @nr_pages: how many pages to charge.
2162 *
2163 * The charges will only happen if @memcg matches the current cpu's memcg
2164 * stock, and at least @nr_pages are available in that stock. Failure to
2165 * service an allocation will refill the stock.
2166 *
2167 * returns true if successful, false otherwise.
cdec2e42 2168 */
a0956d54 2169static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2170{
2171 struct memcg_stock_pcp *stock;
db2ba40c 2172 unsigned long flags;
3e32cb2e 2173 bool ret = false;
cdec2e42 2174
a983b5eb 2175 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2176 return ret;
a0956d54 2177
56751146 2178 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2179
2180 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2181 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2182 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2183 ret = true;
2184 }
db2ba40c 2185
56751146 2186 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
db2ba40c 2187
cdec2e42
KH
2188 return ret;
2189}
2190
2191/*
3e32cb2e 2192 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2193 */
2194static void drain_stock(struct memcg_stock_pcp *stock)
2195{
2196 struct mem_cgroup *old = stock->cached;
2197
1a3e1f40
JW
2198 if (!old)
2199 return;
2200
11c9ea4e 2201 if (stock->nr_pages) {
3e32cb2e 2202 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2203 if (do_memsw_account())
3e32cb2e 2204 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2205 stock->nr_pages = 0;
cdec2e42 2206 }
1a3e1f40
JW
2207
2208 css_put(&old->css);
cdec2e42 2209 stock->cached = NULL;
cdec2e42
KH
2210}
2211
cdec2e42
KH
2212static void drain_local_stock(struct work_struct *dummy)
2213{
db2ba40c 2214 struct memcg_stock_pcp *stock;
56751146 2215 struct obj_cgroup *old = NULL;
db2ba40c
JW
2216 unsigned long flags;
2217
72f0184c 2218 /*
5c49cf9a
MH
2219 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2220 * drain_stock races is that we always operate on local CPU stock
2221 * here with IRQ disabled
72f0184c 2222 */
56751146 2223 local_lock_irqsave(&memcg_stock.stock_lock, flags);
db2ba40c
JW
2224
2225 stock = this_cpu_ptr(&memcg_stock);
56751146 2226 old = drain_obj_stock(stock);
cdec2e42 2227 drain_stock(stock);
26fe6168 2228 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c 2229
56751146
SAS
2230 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2231 if (old)
2232 obj_cgroup_put(old);
cdec2e42
KH
2233}
2234
2235/*
3e32cb2e 2236 * Cache charges(val) to local per_cpu area.
320cc51d 2237 * This will be consumed by consume_stock() function, later.
cdec2e42 2238 */
af9a3b69 2239static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2240{
db2ba40c 2241 struct memcg_stock_pcp *stock;
cdec2e42 2242
db2ba40c 2243 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2244 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2245 drain_stock(stock);
1a3e1f40 2246 css_get(&memcg->css);
c0ff4b85 2247 stock->cached = memcg;
cdec2e42 2248 }
11c9ea4e 2249 stock->nr_pages += nr_pages;
db2ba40c 2250
a983b5eb 2251 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487 2252 drain_stock(stock);
af9a3b69
JW
2253}
2254
2255static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2256{
2257 unsigned long flags;
475d0487 2258
56751146 2259 local_lock_irqsave(&memcg_stock.stock_lock, flags);
af9a3b69 2260 __refill_stock(memcg, nr_pages);
56751146 2261 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
cdec2e42
KH
2262}
2263
2264/*
c0ff4b85 2265 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2266 * of the hierarchy under it.
cdec2e42 2267 */
6d3d6aa2 2268static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2269{
26fe6168 2270 int cpu, curcpu;
d38144b7 2271
6d3d6aa2
JW
2272 /* If someone's already draining, avoid adding running more workers. */
2273 if (!mutex_trylock(&percpu_charge_mutex))
2274 return;
72f0184c
MH
2275 /*
2276 * Notify other cpus that system-wide "drain" is running
2277 * We do not care about races with the cpu hotplug because cpu down
2278 * as well as workers from this path always operate on the local
2279 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2280 */
0790ed62
SAS
2281 migrate_disable();
2282 curcpu = smp_processor_id();
cdec2e42
KH
2283 for_each_online_cpu(cpu) {
2284 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2285 struct mem_cgroup *memcg;
e1a366be 2286 bool flush = false;
26fe6168 2287
e1a366be 2288 rcu_read_lock();
c0ff4b85 2289 memcg = stock->cached;
e1a366be
RG
2290 if (memcg && stock->nr_pages &&
2291 mem_cgroup_is_descendant(memcg, root_memcg))
2292 flush = true;
27fb0956 2293 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2294 flush = true;
e1a366be
RG
2295 rcu_read_unlock();
2296
2297 if (flush &&
2298 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2299 if (cpu == curcpu)
2300 drain_local_stock(&stock->work);
2301 else
2302 schedule_work_on(cpu, &stock->work);
2303 }
cdec2e42 2304 }
0790ed62 2305 migrate_enable();
9f50fad6 2306 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2307}
2308
2cd21c89
JW
2309static int memcg_hotplug_cpu_dead(unsigned int cpu)
2310{
2311 struct memcg_stock_pcp *stock;
a3d4c05a 2312
2cd21c89
JW
2313 stock = &per_cpu(memcg_stock, cpu);
2314 drain_stock(stock);
a3d4c05a 2315
308167fc 2316 return 0;
cdec2e42
KH
2317}
2318
b3ff9291
CD
2319static unsigned long reclaim_high(struct mem_cgroup *memcg,
2320 unsigned int nr_pages,
2321 gfp_t gfp_mask)
f7e1cb6e 2322{
b3ff9291
CD
2323 unsigned long nr_reclaimed = 0;
2324
f7e1cb6e 2325 do {
e22c6ed9
JW
2326 unsigned long pflags;
2327
d1663a90
JK
2328 if (page_counter_read(&memcg->memory) <=
2329 READ_ONCE(memcg->memory.high))
f7e1cb6e 2330 continue;
e22c6ed9 2331
e27be240 2332 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2333
2334 psi_memstall_enter(&pflags);
b3ff9291 2335 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
73b73bac
YA
2336 gfp_mask,
2337 MEMCG_RECLAIM_MAY_SWAP);
e22c6ed9 2338 psi_memstall_leave(&pflags);
4bf17307
CD
2339 } while ((memcg = parent_mem_cgroup(memcg)) &&
2340 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2341
2342 return nr_reclaimed;
f7e1cb6e
JW
2343}
2344
2345static void high_work_func(struct work_struct *work)
2346{
2347 struct mem_cgroup *memcg;
2348
2349 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2350 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2351}
2352
0e4b01df
CD
2353/*
2354 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2355 * enough to still cause a significant slowdown in most cases, while still
2356 * allowing diagnostics and tracing to proceed without becoming stuck.
2357 */
2358#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2359
2360/*
2361 * When calculating the delay, we use these either side of the exponentiation to
2362 * maintain precision and scale to a reasonable number of jiffies (see the table
2363 * below.
2364 *
2365 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2366 * overage ratio to a delay.
ac5ddd0f 2367 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2368 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2369 * to produce a reasonable delay curve.
2370 *
2371 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2372 * reasonable delay curve compared to precision-adjusted overage, not
2373 * penalising heavily at first, but still making sure that growth beyond the
2374 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2375 * example, with a high of 100 megabytes:
2376 *
2377 * +-------+------------------------+
2378 * | usage | time to allocate in ms |
2379 * +-------+------------------------+
2380 * | 100M | 0 |
2381 * | 101M | 6 |
2382 * | 102M | 25 |
2383 * | 103M | 57 |
2384 * | 104M | 102 |
2385 * | 105M | 159 |
2386 * | 106M | 230 |
2387 * | 107M | 313 |
2388 * | 108M | 409 |
2389 * | 109M | 518 |
2390 * | 110M | 639 |
2391 * | 111M | 774 |
2392 * | 112M | 921 |
2393 * | 113M | 1081 |
2394 * | 114M | 1254 |
2395 * | 115M | 1439 |
2396 * | 116M | 1638 |
2397 * | 117M | 1849 |
2398 * | 118M | 2000 |
2399 * | 119M | 2000 |
2400 * | 120M | 2000 |
2401 * +-------+------------------------+
2402 */
2403 #define MEMCG_DELAY_PRECISION_SHIFT 20
2404 #define MEMCG_DELAY_SCALING_SHIFT 14
2405
8a5dbc65 2406static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2407{
8a5dbc65 2408 u64 overage;
b23afb93 2409
8a5dbc65
JK
2410 if (usage <= high)
2411 return 0;
e26733e0 2412
8a5dbc65
JK
2413 /*
2414 * Prevent division by 0 in overage calculation by acting as if
2415 * it was a threshold of 1 page
2416 */
2417 high = max(high, 1UL);
9b8b1754 2418
8a5dbc65
JK
2419 overage = usage - high;
2420 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2421 return div64_u64(overage, high);
2422}
e26733e0 2423
8a5dbc65
JK
2424static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2425{
2426 u64 overage, max_overage = 0;
e26733e0 2427
8a5dbc65
JK
2428 do {
2429 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2430 READ_ONCE(memcg->memory.high));
8a5dbc65 2431 max_overage = max(overage, max_overage);
e26733e0
CD
2432 } while ((memcg = parent_mem_cgroup(memcg)) &&
2433 !mem_cgroup_is_root(memcg));
2434
8a5dbc65
JK
2435 return max_overage;
2436}
2437
4b82ab4f
JK
2438static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2439{
2440 u64 overage, max_overage = 0;
2441
2442 do {
2443 overage = calculate_overage(page_counter_read(&memcg->swap),
2444 READ_ONCE(memcg->swap.high));
2445 if (overage)
2446 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2447 max_overage = max(overage, max_overage);
2448 } while ((memcg = parent_mem_cgroup(memcg)) &&
2449 !mem_cgroup_is_root(memcg));
2450
2451 return max_overage;
2452}
2453
8a5dbc65
JK
2454/*
2455 * Get the number of jiffies that we should penalise a mischievous cgroup which
2456 * is exceeding its memory.high by checking both it and its ancestors.
2457 */
2458static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2459 unsigned int nr_pages,
2460 u64 max_overage)
2461{
2462 unsigned long penalty_jiffies;
2463
e26733e0
CD
2464 if (!max_overage)
2465 return 0;
0e4b01df
CD
2466
2467 /*
0e4b01df
CD
2468 * We use overage compared to memory.high to calculate the number of
2469 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2470 * fairly lenient on small overages, and increasingly harsh when the
2471 * memcg in question makes it clear that it has no intention of stopping
2472 * its crazy behaviour, so we exponentially increase the delay based on
2473 * overage amount.
2474 */
e26733e0
CD
2475 penalty_jiffies = max_overage * max_overage * HZ;
2476 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2477 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2478
2479 /*
2480 * Factor in the task's own contribution to the overage, such that four
2481 * N-sized allocations are throttled approximately the same as one
2482 * 4N-sized allocation.
2483 *
2484 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2485 * larger the current charge patch is than that.
2486 */
ff144e69 2487 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2488}
2489
2490/*
2491 * Scheduled by try_charge() to be executed from the userland return path
2492 * and reclaims memory over the high limit.
2493 */
2494void mem_cgroup_handle_over_high(void)
2495{
2496 unsigned long penalty_jiffies;
2497 unsigned long pflags;
b3ff9291 2498 unsigned long nr_reclaimed;
e26733e0 2499 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2500 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2501 struct mem_cgroup *memcg;
b3ff9291 2502 bool in_retry = false;
e26733e0
CD
2503
2504 if (likely(!nr_pages))
2505 return;
2506
2507 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2508 current->memcg_nr_pages_over_high = 0;
2509
b3ff9291
CD
2510retry_reclaim:
2511 /*
2512 * The allocating task should reclaim at least the batch size, but for
2513 * subsequent retries we only want to do what's necessary to prevent oom
2514 * or breaching resource isolation.
2515 *
2516 * This is distinct from memory.max or page allocator behaviour because
2517 * memory.high is currently batched, whereas memory.max and the page
2518 * allocator run every time an allocation is made.
2519 */
2520 nr_reclaimed = reclaim_high(memcg,
2521 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2522 GFP_KERNEL);
2523
e26733e0
CD
2524 /*
2525 * memory.high is breached and reclaim is unable to keep up. Throttle
2526 * allocators proactively to slow down excessive growth.
2527 */
8a5dbc65
JK
2528 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2529 mem_find_max_overage(memcg));
0e4b01df 2530
4b82ab4f
JK
2531 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2532 swap_find_max_overage(memcg));
2533
ff144e69
JK
2534 /*
2535 * Clamp the max delay per usermode return so as to still keep the
2536 * application moving forwards and also permit diagnostics, albeit
2537 * extremely slowly.
2538 */
2539 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2540
0e4b01df
CD
2541 /*
2542 * Don't sleep if the amount of jiffies this memcg owes us is so low
2543 * that it's not even worth doing, in an attempt to be nice to those who
2544 * go only a small amount over their memory.high value and maybe haven't
2545 * been aggressively reclaimed enough yet.
2546 */
2547 if (penalty_jiffies <= HZ / 100)
2548 goto out;
2549
b3ff9291
CD
2550 /*
2551 * If reclaim is making forward progress but we're still over
2552 * memory.high, we want to encourage that rather than doing allocator
2553 * throttling.
2554 */
2555 if (nr_reclaimed || nr_retries--) {
2556 in_retry = true;
2557 goto retry_reclaim;
2558 }
2559
0e4b01df
CD
2560 /*
2561 * If we exit early, we're guaranteed to die (since
2562 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2563 * need to account for any ill-begotten jiffies to pay them off later.
2564 */
2565 psi_memstall_enter(&pflags);
2566 schedule_timeout_killable(penalty_jiffies);
2567 psi_memstall_leave(&pflags);
2568
2569out:
2570 css_put(&memcg->css);
b23afb93
TH
2571}
2572
c5c8b16b
MS
2573static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2574 unsigned int nr_pages)
8a9f3ccd 2575{
a983b5eb 2576 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2577 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2578 struct mem_cgroup *mem_over_limit;
3e32cb2e 2579 struct page_counter *counter;
6539cc05 2580 unsigned long nr_reclaimed;
a4ebf1b6 2581 bool passed_oom = false;
73b73bac 2582 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
b70a2a21 2583 bool drained = false;
d6e103a7 2584 bool raised_max_event = false;
e22c6ed9 2585 unsigned long pflags;
a636b327 2586
6539cc05 2587retry:
b6b6cc72 2588 if (consume_stock(memcg, nr_pages))
10d53c74 2589 return 0;
8a9f3ccd 2590
7941d214 2591 if (!do_memsw_account() ||
6071ca52
JW
2592 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2593 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2594 goto done_restock;
7941d214 2595 if (do_memsw_account())
3e32cb2e
JW
2596 page_counter_uncharge(&memcg->memsw, batch);
2597 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2598 } else {
3e32cb2e 2599 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
73b73bac 2600 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
3fbe7244 2601 }
7a81b88c 2602
6539cc05
JW
2603 if (batch > nr_pages) {
2604 batch = nr_pages;
2605 goto retry;
2606 }
6d61ef40 2607
89a28483
JW
2608 /*
2609 * Prevent unbounded recursion when reclaim operations need to
2610 * allocate memory. This might exceed the limits temporarily,
2611 * but we prefer facilitating memory reclaim and getting back
2612 * under the limit over triggering OOM kills in these cases.
2613 */
2614 if (unlikely(current->flags & PF_MEMALLOC))
2615 goto force;
2616
06b078fc
JW
2617 if (unlikely(task_in_memcg_oom(current)))
2618 goto nomem;
2619
d0164adc 2620 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2621 goto nomem;
4b534334 2622
e27be240 2623 memcg_memory_event(mem_over_limit, MEMCG_MAX);
d6e103a7 2624 raised_max_event = true;
241994ed 2625
e22c6ed9 2626 psi_memstall_enter(&pflags);
b70a2a21 2627 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
73b73bac 2628 gfp_mask, reclaim_options);
e22c6ed9 2629 psi_memstall_leave(&pflags);
6539cc05 2630
61e02c74 2631 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2632 goto retry;
28c34c29 2633
b70a2a21 2634 if (!drained) {
6d3d6aa2 2635 drain_all_stock(mem_over_limit);
b70a2a21
JW
2636 drained = true;
2637 goto retry;
2638 }
2639
28c34c29
JW
2640 if (gfp_mask & __GFP_NORETRY)
2641 goto nomem;
6539cc05
JW
2642 /*
2643 * Even though the limit is exceeded at this point, reclaim
2644 * may have been able to free some pages. Retry the charge
2645 * before killing the task.
2646 *
2647 * Only for regular pages, though: huge pages are rather
2648 * unlikely to succeed so close to the limit, and we fall back
2649 * to regular pages anyway in case of failure.
2650 */
61e02c74 2651 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2652 goto retry;
2653 /*
2654 * At task move, charge accounts can be doubly counted. So, it's
2655 * better to wait until the end of task_move if something is going on.
2656 */
2657 if (mem_cgroup_wait_acct_move(mem_over_limit))
2658 goto retry;
2659
9b130619
JW
2660 if (nr_retries--)
2661 goto retry;
2662
38d38493 2663 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2664 goto nomem;
2665
a4ebf1b6
VA
2666 /* Avoid endless loop for tasks bypassed by the oom killer */
2667 if (passed_oom && task_is_dying())
2668 goto nomem;
6539cc05 2669
29ef680a
MH
2670 /*
2671 * keep retrying as long as the memcg oom killer is able to make
2672 * a forward progress or bypass the charge if the oom killer
2673 * couldn't make any progress.
2674 */
becdf89d
SB
2675 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2676 get_order(nr_pages * PAGE_SIZE))) {
a4ebf1b6 2677 passed_oom = true;
d977aa93 2678 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a 2679 goto retry;
29ef680a 2680 }
7a81b88c 2681nomem:
1461e8c2
SB
2682 /*
2683 * Memcg doesn't have a dedicated reserve for atomic
2684 * allocations. But like the global atomic pool, we need to
2685 * put the burden of reclaim on regular allocation requests
2686 * and let these go through as privileged allocations.
2687 */
2688 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
3168ecbe 2689 return -ENOMEM;
10d53c74 2690force:
d6e103a7
RG
2691 /*
2692 * If the allocation has to be enforced, don't forget to raise
2693 * a MEMCG_MAX event.
2694 */
2695 if (!raised_max_event)
2696 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2697
10d53c74
TH
2698 /*
2699 * The allocation either can't fail or will lead to more memory
2700 * being freed very soon. Allow memory usage go over the limit
2701 * temporarily by force charging it.
2702 */
2703 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2704 if (do_memsw_account())
10d53c74 2705 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2706
2707 return 0;
6539cc05
JW
2708
2709done_restock:
2710 if (batch > nr_pages)
2711 refill_stock(memcg, batch - nr_pages);
b23afb93 2712
241994ed 2713 /*
b23afb93
TH
2714 * If the hierarchy is above the normal consumption range, schedule
2715 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2716 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2717 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2718 * not recorded as it most likely matches current's and won't
2719 * change in the meantime. As high limit is checked again before
2720 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2721 */
2722 do {
4b82ab4f
JK
2723 bool mem_high, swap_high;
2724
2725 mem_high = page_counter_read(&memcg->memory) >
2726 READ_ONCE(memcg->memory.high);
2727 swap_high = page_counter_read(&memcg->swap) >
2728 READ_ONCE(memcg->swap.high);
2729
2730 /* Don't bother a random interrupted task */
086f694a 2731 if (!in_task()) {
4b82ab4f 2732 if (mem_high) {
f7e1cb6e
JW
2733 schedule_work(&memcg->high_work);
2734 break;
2735 }
4b82ab4f
JK
2736 continue;
2737 }
2738
2739 if (mem_high || swap_high) {
2740 /*
2741 * The allocating tasks in this cgroup will need to do
2742 * reclaim or be throttled to prevent further growth
2743 * of the memory or swap footprints.
2744 *
2745 * Target some best-effort fairness between the tasks,
2746 * and distribute reclaim work and delay penalties
2747 * based on how much each task is actually allocating.
2748 */
9516a18a 2749 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2750 set_notify_resume(current);
2751 break;
2752 }
241994ed 2753 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74 2754
c9afe31e
SB
2755 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2756 !(current->flags & PF_MEMALLOC) &&
2757 gfpflags_allow_blocking(gfp_mask)) {
2758 mem_cgroup_handle_over_high();
2759 }
10d53c74 2760 return 0;
7a81b88c 2761}
8a9f3ccd 2762
c5c8b16b
MS
2763static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2764 unsigned int nr_pages)
2765{
2766 if (mem_cgroup_is_root(memcg))
2767 return 0;
2768
2769 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2770}
2771
58056f77 2772static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2773{
ce00a967
JW
2774 if (mem_cgroup_is_root(memcg))
2775 return;
2776
3e32cb2e 2777 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2778 if (do_memsw_account())
3e32cb2e 2779 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f
KH
2780}
2781
118f2875 2782static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
0a31bc97 2783{
118f2875 2784 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
0a31bc97 2785 /*
a5eb011a 2786 * Any of the following ensures page's memcg stability:
0a31bc97 2787 *
a0b5b414
JW
2788 * - the page lock
2789 * - LRU isolation
2790 * - lock_page_memcg()
2791 * - exclusive reference
0a31bc97 2792 */
118f2875 2793 folio->memcg_data = (unsigned long)memcg;
7a81b88c 2794}
66e1707b 2795
84c07d11 2796#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2797/*
2798 * The allocated objcg pointers array is not accounted directly.
2799 * Moreover, it should not come from DMA buffer and is not readily
2800 * reclaimable. So those GFP bits should be masked off.
2801 */
2802#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2803
a7ebf564
WL
2804/*
2805 * mod_objcg_mlstate() may be called with irq enabled, so
2806 * mod_memcg_lruvec_state() should be used.
2807 */
2808static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2809 struct pglist_data *pgdat,
2810 enum node_stat_item idx, int nr)
2811{
2812 struct mem_cgroup *memcg;
2813 struct lruvec *lruvec;
2814
2815 rcu_read_lock();
2816 memcg = obj_cgroup_memcg(objcg);
2817 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2818 mod_memcg_lruvec_state(lruvec, idx, nr);
2819 rcu_read_unlock();
2820}
2821
4b5f8d9a
VB
2822int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2823 gfp_t gfp, bool new_slab)
10befea9 2824{
4b5f8d9a 2825 unsigned int objects = objs_per_slab(s, slab);
2e9bd483 2826 unsigned long memcg_data;
10befea9
RG
2827 void *vec;
2828
41eb5df1 2829 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9 2830 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
4b5f8d9a 2831 slab_nid(slab));
10befea9
RG
2832 if (!vec)
2833 return -ENOMEM;
2834
2e9bd483 2835 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
4b5f8d9a 2836 if (new_slab) {
2e9bd483 2837 /*
4b5f8d9a
VB
2838 * If the slab is brand new and nobody can yet access its
2839 * memcg_data, no synchronization is required and memcg_data can
2840 * be simply assigned.
2e9bd483 2841 */
4b5f8d9a
VB
2842 slab->memcg_data = memcg_data;
2843 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2e9bd483 2844 /*
4b5f8d9a
VB
2845 * If the slab is already in use, somebody can allocate and
2846 * assign obj_cgroups in parallel. In this case the existing
2e9bd483
RG
2847 * objcg vector should be reused.
2848 */
10befea9 2849 kfree(vec);
2e9bd483
RG
2850 return 0;
2851 }
10befea9 2852
2e9bd483 2853 kmemleak_not_leak(vec);
10befea9
RG
2854 return 0;
2855}
2856
fc4db90f
RG
2857static __always_inline
2858struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
8380ce47 2859{
8380ce47 2860 /*
9855609b
RG
2861 * Slab objects are accounted individually, not per-page.
2862 * Memcg membership data for each individual object is saved in
4b5f8d9a 2863 * slab->memcg_data.
8380ce47 2864 */
4b5f8d9a
VB
2865 if (folio_test_slab(folio)) {
2866 struct obj_cgroup **objcgs;
2867 struct slab *slab;
9855609b
RG
2868 unsigned int off;
2869
4b5f8d9a
VB
2870 slab = folio_slab(folio);
2871 objcgs = slab_objcgs(slab);
2872 if (!objcgs)
2873 return NULL;
2874
2875 off = obj_to_index(slab->slab_cache, slab, p);
2876 if (objcgs[off])
2877 return obj_cgroup_memcg(objcgs[off]);
10befea9
RG
2878
2879 return NULL;
9855609b 2880 }
8380ce47 2881
bcfe06bf 2882 /*
4b5f8d9a
VB
2883 * page_memcg_check() is used here, because in theory we can encounter
2884 * a folio where the slab flag has been cleared already, but
2885 * slab->memcg_data has not been freed yet
bcfe06bf
RG
2886 * page_memcg_check(page) will guarantee that a proper memory
2887 * cgroup pointer or NULL will be returned.
2888 */
4b5f8d9a 2889 return page_memcg_check(folio_page(folio, 0));
8380ce47
RG
2890}
2891
fc4db90f
RG
2892/*
2893 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2894 *
2895 * A passed kernel object can be a slab object, vmalloc object or a generic
2896 * kernel page, so different mechanisms for getting the memory cgroup pointer
2897 * should be used.
2898 *
2899 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2900 * can not know for sure how the kernel object is implemented.
2901 * mem_cgroup_from_obj() can be safely used in such cases.
2902 *
2903 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2904 * cgroup_mutex, etc.
2905 */
2906struct mem_cgroup *mem_cgroup_from_obj(void *p)
2907{
2908 struct folio *folio;
2909
2910 if (mem_cgroup_disabled())
2911 return NULL;
2912
2913 if (unlikely(is_vmalloc_addr(p)))
2914 folio = page_folio(vmalloc_to_page(p));
2915 else
2916 folio = virt_to_folio(p);
2917
2918 return mem_cgroup_from_obj_folio(folio, p);
2919}
2920
2921/*
2922 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2923 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2924 * allocated using vmalloc().
2925 *
2926 * A passed kernel object must be a slab object or a generic kernel page.
2927 *
2928 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2929 * cgroup_mutex, etc.
2930 */
2931struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
2932{
2933 if (mem_cgroup_disabled())
2934 return NULL;
2935
2936 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
2937}
2938
f4840ccf
JW
2939static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
2940{
2941 struct obj_cgroup *objcg = NULL;
2942
2943 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2944 objcg = rcu_dereference(memcg->objcg);
2945 if (objcg && obj_cgroup_tryget(objcg))
2946 break;
2947 objcg = NULL;
2948 }
2949 return objcg;
2950}
2951
bf4f0599
RG
2952__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2953{
2954 struct obj_cgroup *objcg = NULL;
2955 struct mem_cgroup *memcg;
2956
279c3393
RG
2957 if (memcg_kmem_bypass())
2958 return NULL;
2959
bf4f0599 2960 rcu_read_lock();
37d5985c
RG
2961 if (unlikely(active_memcg()))
2962 memcg = active_memcg();
bf4f0599
RG
2963 else
2964 memcg = mem_cgroup_from_task(current);
f4840ccf 2965 objcg = __get_obj_cgroup_from_memcg(memcg);
bf4f0599 2966 rcu_read_unlock();
f4840ccf
JW
2967 return objcg;
2968}
2969
2970struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
2971{
2972 struct obj_cgroup *objcg;
2973
2974 if (!memcg_kmem_enabled() || memcg_kmem_bypass())
2975 return NULL;
2976
2977 if (PageMemcgKmem(page)) {
2978 objcg = __folio_objcg(page_folio(page));
2979 obj_cgroup_get(objcg);
2980 } else {
2981 struct mem_cgroup *memcg;
bf4f0599 2982
f4840ccf
JW
2983 rcu_read_lock();
2984 memcg = __folio_memcg(page_folio(page));
2985 if (memcg)
2986 objcg = __get_obj_cgroup_from_memcg(memcg);
2987 else
2988 objcg = NULL;
2989 rcu_read_unlock();
2990 }
bf4f0599
RG
2991 return objcg;
2992}
2993
a8c49af3
YA
2994static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2995{
2996 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
2997 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
2998 if (nr_pages > 0)
2999 page_counter_charge(&memcg->kmem, nr_pages);
3000 else
3001 page_counter_uncharge(&memcg->kmem, -nr_pages);
3002 }
3003}
3004
3005
f1286fae
MS
3006/*
3007 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3008 * @objcg: object cgroup to uncharge
3009 * @nr_pages: number of pages to uncharge
3010 */
e74d2259
MS
3011static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3012 unsigned int nr_pages)
3013{
3014 struct mem_cgroup *memcg;
3015
3016 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 3017
a8c49af3 3018 memcg_account_kmem(memcg, -nr_pages);
f1286fae 3019 refill_stock(memcg, nr_pages);
e74d2259 3020
e74d2259 3021 css_put(&memcg->css);
e74d2259
MS
3022}
3023
f1286fae
MS
3024/*
3025 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3026 * @objcg: object cgroup to charge
45264778 3027 * @gfp: reclaim mode
92d0510c 3028 * @nr_pages: number of pages to charge
45264778
VD
3029 *
3030 * Returns 0 on success, an error code on failure.
3031 */
f1286fae
MS
3032static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3033 unsigned int nr_pages)
7ae1e1d0 3034{
f1286fae 3035 struct mem_cgroup *memcg;
7ae1e1d0
GC
3036 int ret;
3037
f1286fae
MS
3038 memcg = get_mem_cgroup_from_objcg(objcg);
3039
c5c8b16b 3040 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 3041 if (ret)
f1286fae 3042 goto out;
52c29b04 3043
a8c49af3 3044 memcg_account_kmem(memcg, nr_pages);
f1286fae
MS
3045out:
3046 css_put(&memcg->css);
4b13f64d 3047
f1286fae 3048 return ret;
4b13f64d
RG
3049}
3050
45264778 3051/**
f4b00eab 3052 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3053 * @page: page to charge
3054 * @gfp: reclaim mode
3055 * @order: allocation order
3056 *
3057 * Returns 0 on success, an error code on failure.
3058 */
f4b00eab 3059int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3060{
b4e0b68f 3061 struct obj_cgroup *objcg;
fcff7d7e 3062 int ret = 0;
7ae1e1d0 3063
b4e0b68f
MS
3064 objcg = get_obj_cgroup_from_current();
3065 if (objcg) {
3066 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3067 if (!ret) {
b4e0b68f 3068 page->memcg_data = (unsigned long)objcg |
18b2db3b 3069 MEMCG_DATA_KMEM;
1a3e1f40 3070 return 0;
4d96ba35 3071 }
b4e0b68f 3072 obj_cgroup_put(objcg);
c4159a75 3073 }
d05e83a6 3074 return ret;
7ae1e1d0 3075}
49a18eae 3076
45264778 3077/**
f4b00eab 3078 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3079 * @page: page to uncharge
3080 * @order: allocation order
3081 */
f4b00eab 3082void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3083{
1b7e4464 3084 struct folio *folio = page_folio(page);
b4e0b68f 3085 struct obj_cgroup *objcg;
f3ccb2c4 3086 unsigned int nr_pages = 1 << order;
7ae1e1d0 3087
1b7e4464 3088 if (!folio_memcg_kmem(folio))
7ae1e1d0
GC
3089 return;
3090
1b7e4464 3091 objcg = __folio_objcg(folio);
b4e0b68f 3092 obj_cgroup_uncharge_pages(objcg, nr_pages);
1b7e4464 3093 folio->memcg_data = 0;
b4e0b68f 3094 obj_cgroup_put(objcg);
60d3fd32 3095}
bf4f0599 3096
68ac5b3c
WL
3097void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3098 enum node_stat_item idx, int nr)
3099{
fead2b86 3100 struct memcg_stock_pcp *stock;
56751146 3101 struct obj_cgroup *old = NULL;
68ac5b3c
WL
3102 unsigned long flags;
3103 int *bytes;
3104
56751146 3105 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3106 stock = this_cpu_ptr(&memcg_stock);
3107
68ac5b3c
WL
3108 /*
3109 * Save vmstat data in stock and skip vmstat array update unless
3110 * accumulating over a page of vmstat data or when pgdat or idx
3111 * changes.
3112 */
3113 if (stock->cached_objcg != objcg) {
56751146 3114 old = drain_obj_stock(stock);
68ac5b3c
WL
3115 obj_cgroup_get(objcg);
3116 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3117 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3118 stock->cached_objcg = objcg;
3119 stock->cached_pgdat = pgdat;
3120 } else if (stock->cached_pgdat != pgdat) {
3121 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3122 struct pglist_data *oldpg = stock->cached_pgdat;
3123
68ac5b3c 3124 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3125 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3126 stock->nr_slab_reclaimable_b);
3127 stock->nr_slab_reclaimable_b = 0;
3128 }
3129 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3130 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3131 stock->nr_slab_unreclaimable_b);
3132 stock->nr_slab_unreclaimable_b = 0;
3133 }
3134 stock->cached_pgdat = pgdat;
3135 }
3136
3137 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3138 : &stock->nr_slab_unreclaimable_b;
3139 /*
3140 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3141 * cached locally at least once before pushing it out.
3142 */
3143 if (!*bytes) {
3144 *bytes = nr;
3145 nr = 0;
3146 } else {
3147 *bytes += nr;
3148 if (abs(*bytes) > PAGE_SIZE) {
3149 nr = *bytes;
3150 *bytes = 0;
3151 } else {
3152 nr = 0;
3153 }
3154 }
3155 if (nr)
3156 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3157
56751146
SAS
3158 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3159 if (old)
3160 obj_cgroup_put(old);
68ac5b3c
WL
3161}
3162
bf4f0599
RG
3163static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3164{
fead2b86 3165 struct memcg_stock_pcp *stock;
bf4f0599
RG
3166 unsigned long flags;
3167 bool ret = false;
3168
56751146 3169 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3170
3171 stock = this_cpu_ptr(&memcg_stock);
bf4f0599
RG
3172 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3173 stock->nr_bytes -= nr_bytes;
3174 ret = true;
3175 }
3176
56751146 3177 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
bf4f0599
RG
3178
3179 return ret;
3180}
3181
56751146 3182static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
bf4f0599
RG
3183{
3184 struct obj_cgroup *old = stock->cached_objcg;
3185
3186 if (!old)
56751146 3187 return NULL;
bf4f0599
RG
3188
3189 if (stock->nr_bytes) {
3190 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3191 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3192
af9a3b69
JW
3193 if (nr_pages) {
3194 struct mem_cgroup *memcg;
3195
3196 memcg = get_mem_cgroup_from_objcg(old);
3197
3198 memcg_account_kmem(memcg, -nr_pages);
3199 __refill_stock(memcg, nr_pages);
3200
3201 css_put(&memcg->css);
3202 }
bf4f0599
RG
3203
3204 /*
3205 * The leftover is flushed to the centralized per-memcg value.
3206 * On the next attempt to refill obj stock it will be moved
3207 * to a per-cpu stock (probably, on an other CPU), see
3208 * refill_obj_stock().
3209 *
3210 * How often it's flushed is a trade-off between the memory
3211 * limit enforcement accuracy and potential CPU contention,
3212 * so it might be changed in the future.
3213 */
3214 atomic_add(nr_bytes, &old->nr_charged_bytes);
3215 stock->nr_bytes = 0;
3216 }
3217
68ac5b3c
WL
3218 /*
3219 * Flush the vmstat data in current stock
3220 */
3221 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3222 if (stock->nr_slab_reclaimable_b) {
3223 mod_objcg_mlstate(old, stock->cached_pgdat,
3224 NR_SLAB_RECLAIMABLE_B,
3225 stock->nr_slab_reclaimable_b);
3226 stock->nr_slab_reclaimable_b = 0;
3227 }
3228 if (stock->nr_slab_unreclaimable_b) {
3229 mod_objcg_mlstate(old, stock->cached_pgdat,
3230 NR_SLAB_UNRECLAIMABLE_B,
3231 stock->nr_slab_unreclaimable_b);
3232 stock->nr_slab_unreclaimable_b = 0;
3233 }
3234 stock->cached_pgdat = NULL;
3235 }
3236
bf4f0599 3237 stock->cached_objcg = NULL;
56751146
SAS
3238 /*
3239 * The `old' objects needs to be released by the caller via
3240 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3241 */
3242 return old;
bf4f0599
RG
3243}
3244
3245static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3246 struct mem_cgroup *root_memcg)
3247{
3248 struct mem_cgroup *memcg;
3249
fead2b86
MH
3250 if (stock->cached_objcg) {
3251 memcg = obj_cgroup_memcg(stock->cached_objcg);
bf4f0599
RG
3252 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3253 return true;
3254 }
3255
3256 return false;
3257}
3258
5387c904
WL
3259static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3260 bool allow_uncharge)
bf4f0599 3261{
fead2b86 3262 struct memcg_stock_pcp *stock;
56751146 3263 struct obj_cgroup *old = NULL;
bf4f0599 3264 unsigned long flags;
5387c904 3265 unsigned int nr_pages = 0;
bf4f0599 3266
56751146 3267 local_lock_irqsave(&memcg_stock.stock_lock, flags);
fead2b86
MH
3268
3269 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 3270 if (stock->cached_objcg != objcg) { /* reset if necessary */
56751146 3271 old = drain_obj_stock(stock);
bf4f0599
RG
3272 obj_cgroup_get(objcg);
3273 stock->cached_objcg = objcg;
5387c904
WL
3274 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3275 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3276 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3277 }
3278 stock->nr_bytes += nr_bytes;
3279
5387c904
WL
3280 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3281 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3282 stock->nr_bytes &= (PAGE_SIZE - 1);
3283 }
bf4f0599 3284
56751146
SAS
3285 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3286 if (old)
3287 obj_cgroup_put(old);
5387c904
WL
3288
3289 if (nr_pages)
3290 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3291}
3292
3293int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3294{
bf4f0599
RG
3295 unsigned int nr_pages, nr_bytes;
3296 int ret;
3297
3298 if (consume_obj_stock(objcg, size))
3299 return 0;
3300
3301 /*
5387c904 3302 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3303 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3304 * flushing objcg->nr_charged_bytes requires two atomic
3305 * operations, and objcg->nr_charged_bytes can't be big.
3306 * The shared objcg->nr_charged_bytes can also become a
3307 * performance bottleneck if all tasks of the same memcg are
3308 * trying to update it. So it's better to ignore it and try
3309 * grab some new pages. The stock's nr_bytes will be flushed to
3310 * objcg->nr_charged_bytes later on when objcg changes.
3311 *
3312 * The stock's nr_bytes may contain enough pre-charged bytes
3313 * to allow one less page from being charged, but we can't rely
3314 * on the pre-charged bytes not being changed outside of
3315 * consume_obj_stock() or refill_obj_stock(). So ignore those
3316 * pre-charged bytes as well when charging pages. To avoid a
3317 * page uncharge right after a page charge, we set the
3318 * allow_uncharge flag to false when calling refill_obj_stock()
3319 * to temporarily allow the pre-charged bytes to exceed the page
3320 * size limit. The maximum reachable value of the pre-charged
3321 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3322 * race.
bf4f0599 3323 */
bf4f0599
RG
3324 nr_pages = size >> PAGE_SHIFT;
3325 nr_bytes = size & (PAGE_SIZE - 1);
3326
3327 if (nr_bytes)
3328 nr_pages += 1;
3329
e74d2259 3330 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3331 if (!ret && nr_bytes)
5387c904 3332 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3333
bf4f0599
RG
3334 return ret;
3335}
3336
3337void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3338{
5387c904 3339 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3340}
3341
84c07d11 3342#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3343
ca3e0214 3344/*
be6c8982 3345 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3346 */
be6c8982 3347void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3348{
1b7e4464
MWO
3349 struct folio *folio = page_folio(head);
3350 struct mem_cgroup *memcg = folio_memcg(folio);
e94c8a9c 3351 int i;
ca3e0214 3352
be6c8982 3353 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3354 return;
b070e65c 3355
be6c8982 3356 for (i = 1; i < nr; i++)
1b7e4464 3357 folio_page(folio, i)->memcg_data = folio->memcg_data;
b4e0b68f 3358
1b7e4464
MWO
3359 if (folio_memcg_kmem(folio))
3360 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
b4e0b68f
MS
3361 else
3362 css_get_many(&memcg->css, nr - 1);
ca3e0214 3363}
ca3e0214 3364
c255a458 3365#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3366/**
3367 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3368 * @entry: swap entry to be moved
3369 * @from: mem_cgroup which the entry is moved from
3370 * @to: mem_cgroup which the entry is moved to
3371 *
3372 * It succeeds only when the swap_cgroup's record for this entry is the same
3373 * as the mem_cgroup's id of @from.
3374 *
3375 * Returns 0 on success, -EINVAL on failure.
3376 *
3e32cb2e 3377 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3378 * both res and memsw, and called css_get().
3379 */
3380static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3381 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3382{
3383 unsigned short old_id, new_id;
3384
34c00c31
LZ
3385 old_id = mem_cgroup_id(from);
3386 new_id = mem_cgroup_id(to);
02491447
DN
3387
3388 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3389 mod_memcg_state(from, MEMCG_SWAP, -1);
3390 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3391 return 0;
3392 }
3393 return -EINVAL;
3394}
3395#else
3396static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3397 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3398{
3399 return -EINVAL;
3400}
8c7c6e34 3401#endif
d13d1443 3402
bbec2e15 3403static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3404
bbec2e15
RG
3405static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3406 unsigned long max, bool memsw)
628f4235 3407{
3e32cb2e 3408 bool enlarge = false;
bb4a7ea2 3409 bool drained = false;
3e32cb2e 3410 int ret;
c054a78c
YZ
3411 bool limits_invariant;
3412 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3413
3e32cb2e 3414 do {
628f4235
KH
3415 if (signal_pending(current)) {
3416 ret = -EINTR;
3417 break;
3418 }
3e32cb2e 3419
bbec2e15 3420 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3421 /*
3422 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3423 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3424 */
15b42562 3425 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3426 max <= memcg->memsw.max;
c054a78c 3427 if (!limits_invariant) {
bbec2e15 3428 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3429 ret = -EINVAL;
8c7c6e34
KH
3430 break;
3431 }
bbec2e15 3432 if (max > counter->max)
3e32cb2e 3433 enlarge = true;
bbec2e15
RG
3434 ret = page_counter_set_max(counter, max);
3435 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3436
3437 if (!ret)
3438 break;
3439
bb4a7ea2
SB
3440 if (!drained) {
3441 drain_all_stock(memcg);
3442 drained = true;
3443 continue;
3444 }
3445
73b73bac
YA
3446 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3447 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
1ab5c056
AR
3448 ret = -EBUSY;
3449 break;
3450 }
3451 } while (true);
3e32cb2e 3452
3c11ecf4
KH
3453 if (!ret && enlarge)
3454 memcg_oom_recover(memcg);
3e32cb2e 3455
628f4235
KH
3456 return ret;
3457}
3458
ef8f2327 3459unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3460 gfp_t gfp_mask,
3461 unsigned long *total_scanned)
3462{
3463 unsigned long nr_reclaimed = 0;
ef8f2327 3464 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3465 unsigned long reclaimed;
3466 int loop = 0;
ef8f2327 3467 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3468 unsigned long excess;
0608f43d
AM
3469
3470 if (order > 0)
3471 return 0;
3472
2ab082ba 3473 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
d6507ff5
MH
3474
3475 /*
3476 * Do not even bother to check the largest node if the root
3477 * is empty. Do it lockless to prevent lock bouncing. Races
3478 * are acceptable as soft limit is best effort anyway.
3479 */
bfc7228b 3480 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3481 return 0;
3482
0608f43d
AM
3483 /*
3484 * This loop can run a while, specially if mem_cgroup's continuously
3485 * keep exceeding their soft limit and putting the system under
3486 * pressure
3487 */
3488 do {
3489 if (next_mz)
3490 mz = next_mz;
3491 else
3492 mz = mem_cgroup_largest_soft_limit_node(mctz);
3493 if (!mz)
3494 break;
3495
ef8f2327 3496 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
d8f65338 3497 gfp_mask, total_scanned);
0608f43d 3498 nr_reclaimed += reclaimed;
0a31bc97 3499 spin_lock_irq(&mctz->lock);
0608f43d
AM
3500
3501 /*
3502 * If we failed to reclaim anything from this memory cgroup
3503 * it is time to move on to the next cgroup
3504 */
3505 next_mz = NULL;
bc2f2e7f
VD
3506 if (!reclaimed)
3507 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3508
3e32cb2e 3509 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3510 /*
3511 * One school of thought says that we should not add
3512 * back the node to the tree if reclaim returns 0.
3513 * But our reclaim could return 0, simply because due
3514 * to priority we are exposing a smaller subset of
3515 * memory to reclaim from. Consider this as a longer
3516 * term TODO.
3517 */
3518 /* If excess == 0, no tree ops */
cf2c8127 3519 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3520 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3521 css_put(&mz->memcg->css);
3522 loop++;
3523 /*
3524 * Could not reclaim anything and there are no more
3525 * mem cgroups to try or we seem to be looping without
3526 * reclaiming anything.
3527 */
3528 if (!nr_reclaimed &&
3529 (next_mz == NULL ||
3530 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3531 break;
3532 } while (!nr_reclaimed);
3533 if (next_mz)
3534 css_put(&next_mz->memcg->css);
3535 return nr_reclaimed;
3536}
3537
c26251f9 3538/*
51038171 3539 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3540 *
3541 * Caller is responsible for holding css reference for memcg.
3542 */
3543static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3544{
d977aa93 3545 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3546
c1e862c1
KH
3547 /* we call try-to-free pages for make this cgroup empty */
3548 lru_add_drain_all();
d12c60f6
JS
3549
3550 drain_all_stock(memcg);
3551
f817ed48 3552 /* try to free all pages in this cgroup */
3e32cb2e 3553 while (nr_retries && page_counter_read(&memcg->memory)) {
c26251f9
MH
3554 if (signal_pending(current))
3555 return -EINTR;
3556
73b73bac
YA
3557 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3558 MEMCG_RECLAIM_MAY_SWAP))
f817ed48 3559 nr_retries--;
f817ed48 3560 }
ab5196c2
MH
3561
3562 return 0;
cc847582
KH
3563}
3564
6770c64e
TH
3565static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3566 char *buf, size_t nbytes,
3567 loff_t off)
c1e862c1 3568{
6770c64e 3569 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3570
d8423011
MH
3571 if (mem_cgroup_is_root(memcg))
3572 return -EINVAL;
6770c64e 3573 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3574}
3575
182446d0
TH
3576static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3577 struct cftype *cft)
18f59ea7 3578{
bef8620c 3579 return 1;
18f59ea7
BS
3580}
3581
182446d0
TH
3582static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3583 struct cftype *cft, u64 val)
18f59ea7 3584{
bef8620c 3585 if (val == 1)
0b8f73e1 3586 return 0;
567fb435 3587
bef8620c
RG
3588 pr_warn_once("Non-hierarchical mode is deprecated. "
3589 "Please report your usecase to linux-mm@kvack.org if you "
3590 "depend on this functionality.\n");
567fb435 3591
bef8620c 3592 return -EINVAL;
18f59ea7
BS
3593}
3594
6f646156 3595static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3596{
42a30035 3597 unsigned long val;
ce00a967 3598
3e32cb2e 3599 if (mem_cgroup_is_root(memcg)) {
fd25a9e0 3600 mem_cgroup_flush_stats();
0d1c2072 3601 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3602 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3603 if (swap)
3604 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3605 } else {
ce00a967 3606 if (!swap)
3e32cb2e 3607 val = page_counter_read(&memcg->memory);
ce00a967 3608 else
3e32cb2e 3609 val = page_counter_read(&memcg->memsw);
ce00a967 3610 }
c12176d3 3611 return val;
ce00a967
JW
3612}
3613
3e32cb2e
JW
3614enum {
3615 RES_USAGE,
3616 RES_LIMIT,
3617 RES_MAX_USAGE,
3618 RES_FAILCNT,
3619 RES_SOFT_LIMIT,
3620};
ce00a967 3621
791badbd 3622static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3623 struct cftype *cft)
8cdea7c0 3624{
182446d0 3625 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3626 struct page_counter *counter;
af36f906 3627
3e32cb2e 3628 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3629 case _MEM:
3e32cb2e
JW
3630 counter = &memcg->memory;
3631 break;
8c7c6e34 3632 case _MEMSWAP:
3e32cb2e
JW
3633 counter = &memcg->memsw;
3634 break;
510fc4e1 3635 case _KMEM:
3e32cb2e 3636 counter = &memcg->kmem;
510fc4e1 3637 break;
d55f90bf 3638 case _TCP:
0db15298 3639 counter = &memcg->tcpmem;
d55f90bf 3640 break;
8c7c6e34
KH
3641 default:
3642 BUG();
8c7c6e34 3643 }
3e32cb2e
JW
3644
3645 switch (MEMFILE_ATTR(cft->private)) {
3646 case RES_USAGE:
3647 if (counter == &memcg->memory)
c12176d3 3648 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3649 if (counter == &memcg->memsw)
c12176d3 3650 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3651 return (u64)page_counter_read(counter) * PAGE_SIZE;
3652 case RES_LIMIT:
bbec2e15 3653 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3654 case RES_MAX_USAGE:
3655 return (u64)counter->watermark * PAGE_SIZE;
3656 case RES_FAILCNT:
3657 return counter->failcnt;
3658 case RES_SOFT_LIMIT:
3659 return (u64)memcg->soft_limit * PAGE_SIZE;
3660 default:
3661 BUG();
3662 }
8cdea7c0 3663}
510fc4e1 3664
84c07d11 3665#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3666static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3667{
bf4f0599 3668 struct obj_cgroup *objcg;
d6441637 3669
9c94bef9 3670 if (mem_cgroup_kmem_disabled())
b313aeee
VD
3671 return 0;
3672
da0efe30
MS
3673 if (unlikely(mem_cgroup_is_root(memcg)))
3674 return 0;
d6441637 3675
bf4f0599 3676 objcg = obj_cgroup_alloc();
f9c69d63 3677 if (!objcg)
bf4f0599 3678 return -ENOMEM;
f9c69d63 3679
bf4f0599
RG
3680 objcg->memcg = memcg;
3681 rcu_assign_pointer(memcg->objcg, objcg);
3682
d648bcc7
RG
3683 static_branch_enable(&memcg_kmem_enabled_key);
3684
f9c69d63 3685 memcg->kmemcg_id = memcg->id.id;
0b8f73e1
JW
3686
3687 return 0;
d6441637
VD
3688}
3689
8e0a8912
JW
3690static void memcg_offline_kmem(struct mem_cgroup *memcg)
3691{
64268868 3692 struct mem_cgroup *parent;
8e0a8912 3693
9c94bef9 3694 if (mem_cgroup_kmem_disabled())
da0efe30
MS
3695 return;
3696
3697 if (unlikely(mem_cgroup_is_root(memcg)))
8e0a8912 3698 return;
9855609b 3699
8e0a8912
JW
3700 parent = parent_mem_cgroup(memcg);
3701 if (!parent)
3702 parent = root_mem_cgroup;
3703
bf4f0599 3704 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a 3705
8e0a8912 3706 /*
64268868
MS
3707 * After we have finished memcg_reparent_objcgs(), all list_lrus
3708 * corresponding to this cgroup are guaranteed to remain empty.
3709 * The ordering is imposed by list_lru_node->lock taken by
1f391eb2 3710 * memcg_reparent_list_lrus().
8e0a8912 3711 */
1f391eb2 3712 memcg_reparent_list_lrus(memcg, parent);
8e0a8912 3713}
d6441637 3714#else
0b8f73e1 3715static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3716{
3717 return 0;
3718}
3719static void memcg_offline_kmem(struct mem_cgroup *memcg)
3720{
3721}
84c07d11 3722#endif /* CONFIG_MEMCG_KMEM */
127424c8 3723
bbec2e15 3724static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3725{
3726 int ret;
3727
bbec2e15 3728 mutex_lock(&memcg_max_mutex);
d55f90bf 3729
bbec2e15 3730 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3731 if (ret)
3732 goto out;
3733
0db15298 3734 if (!memcg->tcpmem_active) {
d55f90bf
VD
3735 /*
3736 * The active flag needs to be written after the static_key
3737 * update. This is what guarantees that the socket activation
2d758073
JW
3738 * function is the last one to run. See mem_cgroup_sk_alloc()
3739 * for details, and note that we don't mark any socket as
3740 * belonging to this memcg until that flag is up.
d55f90bf
VD
3741 *
3742 * We need to do this, because static_keys will span multiple
3743 * sites, but we can't control their order. If we mark a socket
3744 * as accounted, but the accounting functions are not patched in
3745 * yet, we'll lose accounting.
3746 *
2d758073 3747 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3748 * because when this value change, the code to process it is not
3749 * patched in yet.
3750 */
3751 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3752 memcg->tcpmem_active = true;
d55f90bf
VD
3753 }
3754out:
bbec2e15 3755 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3756 return ret;
3757}
d55f90bf 3758
628f4235
KH
3759/*
3760 * The user of this function is...
3761 * RES_LIMIT.
3762 */
451af504
TH
3763static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3764 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3765{
451af504 3766 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3767 unsigned long nr_pages;
628f4235
KH
3768 int ret;
3769
451af504 3770 buf = strstrip(buf);
650c5e56 3771 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3772 if (ret)
3773 return ret;
af36f906 3774
3e32cb2e 3775 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3776 case RES_LIMIT:
4b3bde4c
BS
3777 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3778 ret = -EINVAL;
3779 break;
3780 }
3e32cb2e
JW
3781 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3782 case _MEM:
bbec2e15 3783 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3784 break;
3e32cb2e 3785 case _MEMSWAP:
bbec2e15 3786 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3787 break;
3e32cb2e 3788 case _KMEM:
58056f77
SB
3789 /* kmem.limit_in_bytes is deprecated. */
3790 ret = -EOPNOTSUPP;
3e32cb2e 3791 break;
d55f90bf 3792 case _TCP:
bbec2e15 3793 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3794 break;
3e32cb2e 3795 }
296c81d8 3796 break;
3e32cb2e 3797 case RES_SOFT_LIMIT:
2343e88d
SAS
3798 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3799 ret = -EOPNOTSUPP;
3800 } else {
3801 memcg->soft_limit = nr_pages;
3802 ret = 0;
3803 }
628f4235
KH
3804 break;
3805 }
451af504 3806 return ret ?: nbytes;
8cdea7c0
BS
3807}
3808
6770c64e
TH
3809static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3810 size_t nbytes, loff_t off)
c84872e1 3811{
6770c64e 3812 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3813 struct page_counter *counter;
c84872e1 3814
3e32cb2e
JW
3815 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3816 case _MEM:
3817 counter = &memcg->memory;
3818 break;
3819 case _MEMSWAP:
3820 counter = &memcg->memsw;
3821 break;
3822 case _KMEM:
3823 counter = &memcg->kmem;
3824 break;
d55f90bf 3825 case _TCP:
0db15298 3826 counter = &memcg->tcpmem;
d55f90bf 3827 break;
3e32cb2e
JW
3828 default:
3829 BUG();
3830 }
af36f906 3831
3e32cb2e 3832 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3833 case RES_MAX_USAGE:
3e32cb2e 3834 page_counter_reset_watermark(counter);
29f2a4da
PE
3835 break;
3836 case RES_FAILCNT:
3e32cb2e 3837 counter->failcnt = 0;
29f2a4da 3838 break;
3e32cb2e
JW
3839 default:
3840 BUG();
29f2a4da 3841 }
f64c3f54 3842
6770c64e 3843 return nbytes;
c84872e1
PE
3844}
3845
182446d0 3846static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3847 struct cftype *cft)
3848{
182446d0 3849 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3850}
3851
02491447 3852#ifdef CONFIG_MMU
182446d0 3853static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3854 struct cftype *cft, u64 val)
3855{
182446d0 3856 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3857
1dfab5ab 3858 if (val & ~MOVE_MASK)
7dc74be0 3859 return -EINVAL;
ee5e8472 3860
7dc74be0 3861 /*
ee5e8472
GC
3862 * No kind of locking is needed in here, because ->can_attach() will
3863 * check this value once in the beginning of the process, and then carry
3864 * on with stale data. This means that changes to this value will only
3865 * affect task migrations starting after the change.
7dc74be0 3866 */
c0ff4b85 3867 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3868 return 0;
3869}
02491447 3870#else
182446d0 3871static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3872 struct cftype *cft, u64 val)
3873{
3874 return -ENOSYS;
3875}
3876#endif
7dc74be0 3877
406eb0c9 3878#ifdef CONFIG_NUMA
113b7dfd
JW
3879
3880#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3881#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3882#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3883
3884static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3885 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3886{
867e5e1d 3887 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3888 unsigned long nr = 0;
3889 enum lru_list lru;
3890
3891 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3892
3893 for_each_lru(lru) {
3894 if (!(BIT(lru) & lru_mask))
3895 continue;
dd8657b6
SB
3896 if (tree)
3897 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3898 else
3899 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3900 }
3901 return nr;
3902}
3903
3904static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3905 unsigned int lru_mask,
3906 bool tree)
113b7dfd
JW
3907{
3908 unsigned long nr = 0;
3909 enum lru_list lru;
3910
3911 for_each_lru(lru) {
3912 if (!(BIT(lru) & lru_mask))
3913 continue;
dd8657b6
SB
3914 if (tree)
3915 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3916 else
3917 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3918 }
3919 return nr;
3920}
3921
2da8ca82 3922static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3923{
25485de6
GT
3924 struct numa_stat {
3925 const char *name;
3926 unsigned int lru_mask;
3927 };
3928
3929 static const struct numa_stat stats[] = {
3930 { "total", LRU_ALL },
3931 { "file", LRU_ALL_FILE },
3932 { "anon", LRU_ALL_ANON },
3933 { "unevictable", BIT(LRU_UNEVICTABLE) },
3934 };
3935 const struct numa_stat *stat;
406eb0c9 3936 int nid;
aa9694bb 3937 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3938
fd25a9e0 3939 mem_cgroup_flush_stats();
2d146aa3 3940
25485de6 3941 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3942 seq_printf(m, "%s=%lu", stat->name,
3943 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3944 false));
3945 for_each_node_state(nid, N_MEMORY)
3946 seq_printf(m, " N%d=%lu", nid,
3947 mem_cgroup_node_nr_lru_pages(memcg, nid,
3948 stat->lru_mask, false));
25485de6 3949 seq_putc(m, '\n');
406eb0c9 3950 }
406eb0c9 3951
071aee13 3952 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3953
3954 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3955 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3956 true));
3957 for_each_node_state(nid, N_MEMORY)
3958 seq_printf(m, " N%d=%lu", nid,
3959 mem_cgroup_node_nr_lru_pages(memcg, nid,
3960 stat->lru_mask, true));
071aee13 3961 seq_putc(m, '\n');
406eb0c9 3962 }
406eb0c9 3963
406eb0c9
YH
3964 return 0;
3965}
3966#endif /* CONFIG_NUMA */
3967
c8713d0b 3968static const unsigned int memcg1_stats[] = {
0d1c2072 3969 NR_FILE_PAGES,
be5d0a74 3970 NR_ANON_MAPPED,
468c3982
JW
3971#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3972 NR_ANON_THPS,
3973#endif
c8713d0b
JW
3974 NR_SHMEM,
3975 NR_FILE_MAPPED,
3976 NR_FILE_DIRTY,
3977 NR_WRITEBACK,
3978 MEMCG_SWAP,
3979};
3980
3981static const char *const memcg1_stat_names[] = {
3982 "cache",
3983 "rss",
468c3982 3984#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 3985 "rss_huge",
468c3982 3986#endif
c8713d0b
JW
3987 "shmem",
3988 "mapped_file",
3989 "dirty",
3990 "writeback",
3991 "swap",
3992};
3993
df0e53d0 3994/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3995static const unsigned int memcg1_events[] = {
df0e53d0
JW
3996 PGPGIN,
3997 PGPGOUT,
3998 PGFAULT,
3999 PGMAJFAULT,
4000};
4001
2da8ca82 4002static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4003{
aa9694bb 4004 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4005 unsigned long memory, memsw;
af7c4b0e
JW
4006 struct mem_cgroup *mi;
4007 unsigned int i;
406eb0c9 4008
71cd3113 4009 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4010
fd25a9e0 4011 mem_cgroup_flush_stats();
2d146aa3 4012
71cd3113 4013 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4014 unsigned long nr;
4015
71cd3113 4016 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4017 continue;
468c3982 4018 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
468c3982 4019 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 4020 }
7b854121 4021
df0e53d0 4022 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4023 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4024 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4025
4026 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4027 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4028 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4029 PAGE_SIZE);
af7c4b0e 4030
14067bb3 4031 /* Hierarchical information */
3e32cb2e
JW
4032 memory = memsw = PAGE_COUNTER_MAX;
4033 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4034 memory = min(memory, READ_ONCE(mi->memory.max));
4035 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4036 }
3e32cb2e
JW
4037 seq_printf(m, "hierarchical_memory_limit %llu\n",
4038 (u64)memory * PAGE_SIZE);
7941d214 4039 if (do_memsw_account())
3e32cb2e
JW
4040 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4041 (u64)memsw * PAGE_SIZE);
7f016ee8 4042
8de7ecc6 4043 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4044 unsigned long nr;
4045
71cd3113 4046 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4047 continue;
7de2e9f1 4048 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4049 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4050 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4051 }
4052
8de7ecc6 4053 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4054 seq_printf(m, "total_%s %llu\n",
4055 vm_event_name(memcg1_events[i]),
dd923990 4056 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4057
8de7ecc6 4058 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4059 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4060 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4061 PAGE_SIZE);
14067bb3 4062
7f016ee8 4063#ifdef CONFIG_DEBUG_VM
7f016ee8 4064 {
ef8f2327
MG
4065 pg_data_t *pgdat;
4066 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4067 unsigned long anon_cost = 0;
4068 unsigned long file_cost = 0;
7f016ee8 4069
ef8f2327 4070 for_each_online_pgdat(pgdat) {
a3747b53 4071 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4072
1431d4d1
JW
4073 anon_cost += mz->lruvec.anon_cost;
4074 file_cost += mz->lruvec.file_cost;
ef8f2327 4075 }
1431d4d1
JW
4076 seq_printf(m, "anon_cost %lu\n", anon_cost);
4077 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4078 }
4079#endif
4080
d2ceb9b7
KH
4081 return 0;
4082}
4083
182446d0
TH
4084static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4085 struct cftype *cft)
a7885eb8 4086{
182446d0 4087 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4088
1f4c025b 4089 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4090}
4091
182446d0
TH
4092static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4093 struct cftype *cft, u64 val)
a7885eb8 4094{
182446d0 4095 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4096
37bc3cb9 4097 if (val > 200)
a7885eb8
KM
4098 return -EINVAL;
4099
a4792030 4100 if (!mem_cgroup_is_root(memcg))
3dae7fec
JW
4101 memcg->swappiness = val;
4102 else
4103 vm_swappiness = val;
068b38c1 4104
a7885eb8
KM
4105 return 0;
4106}
4107
2e72b634
KS
4108static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4109{
4110 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4111 unsigned long usage;
2e72b634
KS
4112 int i;
4113
4114 rcu_read_lock();
4115 if (!swap)
2c488db2 4116 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4117 else
2c488db2 4118 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4119
4120 if (!t)
4121 goto unlock;
4122
ce00a967 4123 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4124
4125 /*
748dad36 4126 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4127 * If it's not true, a threshold was crossed after last
4128 * call of __mem_cgroup_threshold().
4129 */
5407a562 4130 i = t->current_threshold;
2e72b634
KS
4131
4132 /*
4133 * Iterate backward over array of thresholds starting from
4134 * current_threshold and check if a threshold is crossed.
4135 * If none of thresholds below usage is crossed, we read
4136 * only one element of the array here.
4137 */
4138 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4139 eventfd_signal(t->entries[i].eventfd, 1);
4140
4141 /* i = current_threshold + 1 */
4142 i++;
4143
4144 /*
4145 * Iterate forward over array of thresholds starting from
4146 * current_threshold+1 and check if a threshold is crossed.
4147 * If none of thresholds above usage is crossed, we read
4148 * only one element of the array here.
4149 */
4150 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4151 eventfd_signal(t->entries[i].eventfd, 1);
4152
4153 /* Update current_threshold */
5407a562 4154 t->current_threshold = i - 1;
2e72b634
KS
4155unlock:
4156 rcu_read_unlock();
4157}
4158
4159static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4160{
ad4ca5f4
KS
4161 while (memcg) {
4162 __mem_cgroup_threshold(memcg, false);
7941d214 4163 if (do_memsw_account())
ad4ca5f4
KS
4164 __mem_cgroup_threshold(memcg, true);
4165
4166 memcg = parent_mem_cgroup(memcg);
4167 }
2e72b634
KS
4168}
4169
4170static int compare_thresholds(const void *a, const void *b)
4171{
4172 const struct mem_cgroup_threshold *_a = a;
4173 const struct mem_cgroup_threshold *_b = b;
4174
2bff24a3
GT
4175 if (_a->threshold > _b->threshold)
4176 return 1;
4177
4178 if (_a->threshold < _b->threshold)
4179 return -1;
4180
4181 return 0;
2e72b634
KS
4182}
4183
c0ff4b85 4184static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4185{
4186 struct mem_cgroup_eventfd_list *ev;
4187
2bcf2e92
MH
4188 spin_lock(&memcg_oom_lock);
4189
c0ff4b85 4190 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4191 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4192
4193 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4194 return 0;
4195}
4196
c0ff4b85 4197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4198{
7d74b06f
KH
4199 struct mem_cgroup *iter;
4200
c0ff4b85 4201 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4202 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4203}
4204
59b6f873 4205static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4206 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4207{
2c488db2
KS
4208 struct mem_cgroup_thresholds *thresholds;
4209 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4210 unsigned long threshold;
4211 unsigned long usage;
2c488db2 4212 int i, size, ret;
2e72b634 4213
650c5e56 4214 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4215 if (ret)
4216 return ret;
4217
4218 mutex_lock(&memcg->thresholds_lock);
2c488db2 4219
05b84301 4220 if (type == _MEM) {
2c488db2 4221 thresholds = &memcg->thresholds;
ce00a967 4222 usage = mem_cgroup_usage(memcg, false);
05b84301 4223 } else if (type == _MEMSWAP) {
2c488db2 4224 thresholds = &memcg->memsw_thresholds;
ce00a967 4225 usage = mem_cgroup_usage(memcg, true);
05b84301 4226 } else
2e72b634
KS
4227 BUG();
4228
2e72b634 4229 /* Check if a threshold crossed before adding a new one */
2c488db2 4230 if (thresholds->primary)
2e72b634
KS
4231 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4232
2c488db2 4233 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4234
4235 /* Allocate memory for new array of thresholds */
67b8046f 4236 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4237 if (!new) {
2e72b634
KS
4238 ret = -ENOMEM;
4239 goto unlock;
4240 }
2c488db2 4241 new->size = size;
2e72b634
KS
4242
4243 /* Copy thresholds (if any) to new array */
e90342e6
GS
4244 if (thresholds->primary)
4245 memcpy(new->entries, thresholds->primary->entries,
4246 flex_array_size(new, entries, size - 1));
2c488db2 4247
2e72b634 4248 /* Add new threshold */
2c488db2
KS
4249 new->entries[size - 1].eventfd = eventfd;
4250 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4251
4252 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4253 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4254 compare_thresholds, NULL);
4255
4256 /* Find current threshold */
2c488db2 4257 new->current_threshold = -1;
2e72b634 4258 for (i = 0; i < size; i++) {
748dad36 4259 if (new->entries[i].threshold <= usage) {
2e72b634 4260 /*
2c488db2
KS
4261 * new->current_threshold will not be used until
4262 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4263 * it here.
4264 */
2c488db2 4265 ++new->current_threshold;
748dad36
SZ
4266 } else
4267 break;
2e72b634
KS
4268 }
4269
2c488db2
KS
4270 /* Free old spare buffer and save old primary buffer as spare */
4271 kfree(thresholds->spare);
4272 thresholds->spare = thresholds->primary;
4273
4274 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4275
907860ed 4276 /* To be sure that nobody uses thresholds */
2e72b634
KS
4277 synchronize_rcu();
4278
2e72b634
KS
4279unlock:
4280 mutex_unlock(&memcg->thresholds_lock);
4281
4282 return ret;
4283}
4284
59b6f873 4285static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4286 struct eventfd_ctx *eventfd, const char *args)
4287{
59b6f873 4288 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4289}
4290
59b6f873 4291static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4292 struct eventfd_ctx *eventfd, const char *args)
4293{
59b6f873 4294 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4295}
4296
59b6f873 4297static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4298 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4299{
2c488db2
KS
4300 struct mem_cgroup_thresholds *thresholds;
4301 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4302 unsigned long usage;
7d36665a 4303 int i, j, size, entries;
2e72b634
KS
4304
4305 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4306
4307 if (type == _MEM) {
2c488db2 4308 thresholds = &memcg->thresholds;
ce00a967 4309 usage = mem_cgroup_usage(memcg, false);
05b84301 4310 } else if (type == _MEMSWAP) {
2c488db2 4311 thresholds = &memcg->memsw_thresholds;
ce00a967 4312 usage = mem_cgroup_usage(memcg, true);
05b84301 4313 } else
2e72b634
KS
4314 BUG();
4315
371528ca
AV
4316 if (!thresholds->primary)
4317 goto unlock;
4318
2e72b634
KS
4319 /* Check if a threshold crossed before removing */
4320 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4321
4322 /* Calculate new number of threshold */
7d36665a 4323 size = entries = 0;
2c488db2
KS
4324 for (i = 0; i < thresholds->primary->size; i++) {
4325 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4326 size++;
7d36665a
CX
4327 else
4328 entries++;
2e72b634
KS
4329 }
4330
2c488db2 4331 new = thresholds->spare;
907860ed 4332
7d36665a
CX
4333 /* If no items related to eventfd have been cleared, nothing to do */
4334 if (!entries)
4335 goto unlock;
4336
2e72b634
KS
4337 /* Set thresholds array to NULL if we don't have thresholds */
4338 if (!size) {
2c488db2
KS
4339 kfree(new);
4340 new = NULL;
907860ed 4341 goto swap_buffers;
2e72b634
KS
4342 }
4343
2c488db2 4344 new->size = size;
2e72b634
KS
4345
4346 /* Copy thresholds and find current threshold */
2c488db2
KS
4347 new->current_threshold = -1;
4348 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4349 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4350 continue;
4351
2c488db2 4352 new->entries[j] = thresholds->primary->entries[i];
748dad36 4353 if (new->entries[j].threshold <= usage) {
2e72b634 4354 /*
2c488db2 4355 * new->current_threshold will not be used
2e72b634
KS
4356 * until rcu_assign_pointer(), so it's safe to increment
4357 * it here.
4358 */
2c488db2 4359 ++new->current_threshold;
2e72b634
KS
4360 }
4361 j++;
4362 }
4363
907860ed 4364swap_buffers:
2c488db2
KS
4365 /* Swap primary and spare array */
4366 thresholds->spare = thresholds->primary;
8c757763 4367
2c488db2 4368 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4369
907860ed 4370 /* To be sure that nobody uses thresholds */
2e72b634 4371 synchronize_rcu();
6611d8d7
MC
4372
4373 /* If all events are unregistered, free the spare array */
4374 if (!new) {
4375 kfree(thresholds->spare);
4376 thresholds->spare = NULL;
4377 }
371528ca 4378unlock:
2e72b634 4379 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4380}
c1e862c1 4381
59b6f873 4382static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4383 struct eventfd_ctx *eventfd)
4384{
59b6f873 4385 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4386}
4387
59b6f873 4388static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4389 struct eventfd_ctx *eventfd)
4390{
59b6f873 4391 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4392}
4393
59b6f873 4394static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4395 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4396{
9490ff27 4397 struct mem_cgroup_eventfd_list *event;
9490ff27 4398
9490ff27
KH
4399 event = kmalloc(sizeof(*event), GFP_KERNEL);
4400 if (!event)
4401 return -ENOMEM;
4402
1af8efe9 4403 spin_lock(&memcg_oom_lock);
9490ff27
KH
4404
4405 event->eventfd = eventfd;
4406 list_add(&event->list, &memcg->oom_notify);
4407
4408 /* already in OOM ? */
c2b42d3c 4409 if (memcg->under_oom)
9490ff27 4410 eventfd_signal(eventfd, 1);
1af8efe9 4411 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4412
4413 return 0;
4414}
4415
59b6f873 4416static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4417 struct eventfd_ctx *eventfd)
9490ff27 4418{
9490ff27 4419 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4420
1af8efe9 4421 spin_lock(&memcg_oom_lock);
9490ff27 4422
c0ff4b85 4423 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4424 if (ev->eventfd == eventfd) {
4425 list_del(&ev->list);
4426 kfree(ev);
4427 }
4428 }
4429
1af8efe9 4430 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4431}
4432
2da8ca82 4433static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4434{
aa9694bb 4435 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4436
791badbd 4437 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4438 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4439 seq_printf(sf, "oom_kill %lu\n",
4440 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4441 return 0;
4442}
4443
182446d0 4444static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4445 struct cftype *cft, u64 val)
4446{
182446d0 4447 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4448
4449 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4450 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4451 return -EINVAL;
4452
c0ff4b85 4453 memcg->oom_kill_disable = val;
4d845ebf 4454 if (!val)
c0ff4b85 4455 memcg_oom_recover(memcg);
3dae7fec 4456
3c11ecf4
KH
4457 return 0;
4458}
4459
52ebea74
TH
4460#ifdef CONFIG_CGROUP_WRITEBACK
4461
3a8e9ac8
TH
4462#include <trace/events/writeback.h>
4463
841710aa
TH
4464static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4465{
4466 return wb_domain_init(&memcg->cgwb_domain, gfp);
4467}
4468
4469static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4470{
4471 wb_domain_exit(&memcg->cgwb_domain);
4472}
4473
2529bb3a
TH
4474static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4475{
4476 wb_domain_size_changed(&memcg->cgwb_domain);
4477}
4478
841710aa
TH
4479struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4480{
4481 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4482
4483 if (!memcg->css.parent)
4484 return NULL;
4485
4486 return &memcg->cgwb_domain;
4487}
4488
c2aa723a
TH
4489/**
4490 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4491 * @wb: bdi_writeback in question
c5edf9cd
TH
4492 * @pfilepages: out parameter for number of file pages
4493 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4494 * @pdirty: out parameter for number of dirty pages
4495 * @pwriteback: out parameter for number of pages under writeback
4496 *
c5edf9cd
TH
4497 * Determine the numbers of file, headroom, dirty, and writeback pages in
4498 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4499 * is a bit more involved.
c2aa723a 4500 *
c5edf9cd
TH
4501 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4502 * headroom is calculated as the lowest headroom of itself and the
4503 * ancestors. Note that this doesn't consider the actual amount of
4504 * available memory in the system. The caller should further cap
4505 * *@pheadroom accordingly.
c2aa723a 4506 */
c5edf9cd
TH
4507void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4508 unsigned long *pheadroom, unsigned long *pdirty,
4509 unsigned long *pwriteback)
c2aa723a
TH
4510{
4511 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4512 struct mem_cgroup *parent;
c2aa723a 4513
fd25a9e0 4514 mem_cgroup_flush_stats();
c2aa723a 4515
2d146aa3
JW
4516 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4517 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4518 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4519 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4520
2d146aa3 4521 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4522 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4523 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4524 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4525 unsigned long used = page_counter_read(&memcg->memory);
4526
c5edf9cd 4527 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4528 memcg = parent;
4529 }
c2aa723a
TH
4530}
4531
97b27821
TH
4532/*
4533 * Foreign dirty flushing
4534 *
4535 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4536 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4537 * deliberate design decision because honoring per-page ownership in the
4538 * writeback path is complicated, may lead to higher CPU and IO overheads
4539 * and deemed unnecessary given that write-sharing an inode across
4540 * different cgroups isn't a common use-case.
4541 *
4542 * Combined with inode majority-writer ownership switching, this works well
4543 * enough in most cases but there are some pathological cases. For
4544 * example, let's say there are two cgroups A and B which keep writing to
4545 * different but confined parts of the same inode. B owns the inode and
4546 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4547 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4548 * triggering background writeback. A will be slowed down without a way to
4549 * make writeback of the dirty pages happen.
4550 *
f0953a1b 4551 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4552 * severely throttled after making some progress after each
f0953a1b 4553 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4554 * completely idle.
4555 *
4556 * Solving this problem completely requires matching the ownership tracking
4557 * granularities between memcg and writeback in either direction. However,
4558 * the more egregious behaviors can be avoided by simply remembering the
4559 * most recent foreign dirtying events and initiating remote flushes on
4560 * them when local writeback isn't enough to keep the memory clean enough.
4561 *
4562 * The following two functions implement such mechanism. When a foreign
4563 * page - a page whose memcg and writeback ownerships don't match - is
4564 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4565 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4566 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4567 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4568 * foreign bdi_writebacks which haven't expired. Both the numbers of
4569 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4570 * limited to MEMCG_CGWB_FRN_CNT.
4571 *
4572 * The mechanism only remembers IDs and doesn't hold any object references.
4573 * As being wrong occasionally doesn't matter, updates and accesses to the
4574 * records are lockless and racy.
4575 */
9d8053fc 4576void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
97b27821
TH
4577 struct bdi_writeback *wb)
4578{
9d8053fc 4579 struct mem_cgroup *memcg = folio_memcg(folio);
97b27821
TH
4580 struct memcg_cgwb_frn *frn;
4581 u64 now = get_jiffies_64();
4582 u64 oldest_at = now;
4583 int oldest = -1;
4584 int i;
4585
9d8053fc 4586 trace_track_foreign_dirty(folio, wb);
3a8e9ac8 4587
97b27821
TH
4588 /*
4589 * Pick the slot to use. If there is already a slot for @wb, keep
4590 * using it. If not replace the oldest one which isn't being
4591 * written out.
4592 */
4593 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4594 frn = &memcg->cgwb_frn[i];
4595 if (frn->bdi_id == wb->bdi->id &&
4596 frn->memcg_id == wb->memcg_css->id)
4597 break;
4598 if (time_before64(frn->at, oldest_at) &&
4599 atomic_read(&frn->done.cnt) == 1) {
4600 oldest = i;
4601 oldest_at = frn->at;
4602 }
4603 }
4604
4605 if (i < MEMCG_CGWB_FRN_CNT) {
4606 /*
4607 * Re-using an existing one. Update timestamp lazily to
4608 * avoid making the cacheline hot. We want them to be
4609 * reasonably up-to-date and significantly shorter than
4610 * dirty_expire_interval as that's what expires the record.
4611 * Use the shorter of 1s and dirty_expire_interval / 8.
4612 */
4613 unsigned long update_intv =
4614 min_t(unsigned long, HZ,
4615 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4616
4617 if (time_before64(frn->at, now - update_intv))
4618 frn->at = now;
4619 } else if (oldest >= 0) {
4620 /* replace the oldest free one */
4621 frn = &memcg->cgwb_frn[oldest];
4622 frn->bdi_id = wb->bdi->id;
4623 frn->memcg_id = wb->memcg_css->id;
4624 frn->at = now;
4625 }
4626}
4627
4628/* issue foreign writeback flushes for recorded foreign dirtying events */
4629void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4630{
4631 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4632 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4633 u64 now = jiffies_64;
4634 int i;
4635
4636 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4637 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4638
4639 /*
4640 * If the record is older than dirty_expire_interval,
4641 * writeback on it has already started. No need to kick it
4642 * off again. Also, don't start a new one if there's
4643 * already one in flight.
4644 */
4645 if (time_after64(frn->at, now - intv) &&
4646 atomic_read(&frn->done.cnt) == 1) {
4647 frn->at = 0;
3a8e9ac8 4648 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4649 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4650 WB_REASON_FOREIGN_FLUSH,
4651 &frn->done);
4652 }
4653 }
4654}
4655
841710aa
TH
4656#else /* CONFIG_CGROUP_WRITEBACK */
4657
4658static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4659{
4660 return 0;
4661}
4662
4663static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4664{
4665}
4666
2529bb3a
TH
4667static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4668{
4669}
4670
52ebea74
TH
4671#endif /* CONFIG_CGROUP_WRITEBACK */
4672
3bc942f3
TH
4673/*
4674 * DO NOT USE IN NEW FILES.
4675 *
4676 * "cgroup.event_control" implementation.
4677 *
4678 * This is way over-engineered. It tries to support fully configurable
4679 * events for each user. Such level of flexibility is completely
4680 * unnecessary especially in the light of the planned unified hierarchy.
4681 *
4682 * Please deprecate this and replace with something simpler if at all
4683 * possible.
4684 */
4685
79bd9814
TH
4686/*
4687 * Unregister event and free resources.
4688 *
4689 * Gets called from workqueue.
4690 */
3bc942f3 4691static void memcg_event_remove(struct work_struct *work)
79bd9814 4692{
3bc942f3
TH
4693 struct mem_cgroup_event *event =
4694 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4695 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4696
4697 remove_wait_queue(event->wqh, &event->wait);
4698
59b6f873 4699 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4700
4701 /* Notify userspace the event is going away. */
4702 eventfd_signal(event->eventfd, 1);
4703
4704 eventfd_ctx_put(event->eventfd);
4705 kfree(event);
59b6f873 4706 css_put(&memcg->css);
79bd9814
TH
4707}
4708
4709/*
a9a08845 4710 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4711 *
4712 * Called with wqh->lock held and interrupts disabled.
4713 */
ac6424b9 4714static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4715 int sync, void *key)
79bd9814 4716{
3bc942f3
TH
4717 struct mem_cgroup_event *event =
4718 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4719 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4720 __poll_t flags = key_to_poll(key);
79bd9814 4721
a9a08845 4722 if (flags & EPOLLHUP) {
79bd9814
TH
4723 /*
4724 * If the event has been detached at cgroup removal, we
4725 * can simply return knowing the other side will cleanup
4726 * for us.
4727 *
4728 * We can't race against event freeing since the other
4729 * side will require wqh->lock via remove_wait_queue(),
4730 * which we hold.
4731 */
fba94807 4732 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4733 if (!list_empty(&event->list)) {
4734 list_del_init(&event->list);
4735 /*
4736 * We are in atomic context, but cgroup_event_remove()
4737 * may sleep, so we have to call it in workqueue.
4738 */
4739 schedule_work(&event->remove);
4740 }
fba94807 4741 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4742 }
4743
4744 return 0;
4745}
4746
3bc942f3 4747static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4748 wait_queue_head_t *wqh, poll_table *pt)
4749{
3bc942f3
TH
4750 struct mem_cgroup_event *event =
4751 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4752
4753 event->wqh = wqh;
4754 add_wait_queue(wqh, &event->wait);
4755}
4756
4757/*
3bc942f3
TH
4758 * DO NOT USE IN NEW FILES.
4759 *
79bd9814
TH
4760 * Parse input and register new cgroup event handler.
4761 *
4762 * Input must be in format '<event_fd> <control_fd> <args>'.
4763 * Interpretation of args is defined by control file implementation.
4764 */
451af504
TH
4765static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4766 char *buf, size_t nbytes, loff_t off)
79bd9814 4767{
451af504 4768 struct cgroup_subsys_state *css = of_css(of);
fba94807 4769 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4770 struct mem_cgroup_event *event;
79bd9814
TH
4771 struct cgroup_subsys_state *cfile_css;
4772 unsigned int efd, cfd;
4773 struct fd efile;
4774 struct fd cfile;
fba94807 4775 const char *name;
79bd9814
TH
4776 char *endp;
4777 int ret;
4778
2343e88d
SAS
4779 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4780 return -EOPNOTSUPP;
4781
451af504
TH
4782 buf = strstrip(buf);
4783
4784 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4785 if (*endp != ' ')
4786 return -EINVAL;
451af504 4787 buf = endp + 1;
79bd9814 4788
451af504 4789 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4790 if ((*endp != ' ') && (*endp != '\0'))
4791 return -EINVAL;
451af504 4792 buf = endp + 1;
79bd9814
TH
4793
4794 event = kzalloc(sizeof(*event), GFP_KERNEL);
4795 if (!event)
4796 return -ENOMEM;
4797
59b6f873 4798 event->memcg = memcg;
79bd9814 4799 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4800 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4801 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4802 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4803
4804 efile = fdget(efd);
4805 if (!efile.file) {
4806 ret = -EBADF;
4807 goto out_kfree;
4808 }
4809
4810 event->eventfd = eventfd_ctx_fileget(efile.file);
4811 if (IS_ERR(event->eventfd)) {
4812 ret = PTR_ERR(event->eventfd);
4813 goto out_put_efile;
4814 }
4815
4816 cfile = fdget(cfd);
4817 if (!cfile.file) {
4818 ret = -EBADF;
4819 goto out_put_eventfd;
4820 }
4821
4822 /* the process need read permission on control file */
4823 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4824 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4825 if (ret < 0)
4826 goto out_put_cfile;
4827
fba94807
TH
4828 /*
4829 * Determine the event callbacks and set them in @event. This used
4830 * to be done via struct cftype but cgroup core no longer knows
4831 * about these events. The following is crude but the whole thing
4832 * is for compatibility anyway.
3bc942f3
TH
4833 *
4834 * DO NOT ADD NEW FILES.
fba94807 4835 */
b583043e 4836 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4837
4838 if (!strcmp(name, "memory.usage_in_bytes")) {
4839 event->register_event = mem_cgroup_usage_register_event;
4840 event->unregister_event = mem_cgroup_usage_unregister_event;
4841 } else if (!strcmp(name, "memory.oom_control")) {
4842 event->register_event = mem_cgroup_oom_register_event;
4843 event->unregister_event = mem_cgroup_oom_unregister_event;
4844 } else if (!strcmp(name, "memory.pressure_level")) {
4845 event->register_event = vmpressure_register_event;
4846 event->unregister_event = vmpressure_unregister_event;
4847 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4848 event->register_event = memsw_cgroup_usage_register_event;
4849 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4850 } else {
4851 ret = -EINVAL;
4852 goto out_put_cfile;
4853 }
4854
79bd9814 4855 /*
b5557c4c
TH
4856 * Verify @cfile should belong to @css. Also, remaining events are
4857 * automatically removed on cgroup destruction but the removal is
4858 * asynchronous, so take an extra ref on @css.
79bd9814 4859 */
b583043e 4860 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4861 &memory_cgrp_subsys);
79bd9814 4862 ret = -EINVAL;
5a17f543 4863 if (IS_ERR(cfile_css))
79bd9814 4864 goto out_put_cfile;
5a17f543
TH
4865 if (cfile_css != css) {
4866 css_put(cfile_css);
79bd9814 4867 goto out_put_cfile;
5a17f543 4868 }
79bd9814 4869
451af504 4870 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4871 if (ret)
4872 goto out_put_css;
4873
9965ed17 4874 vfs_poll(efile.file, &event->pt);
79bd9814 4875
4ba9515d 4876 spin_lock_irq(&memcg->event_list_lock);
fba94807 4877 list_add(&event->list, &memcg->event_list);
4ba9515d 4878 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
4879
4880 fdput(cfile);
4881 fdput(efile);
4882
451af504 4883 return nbytes;
79bd9814
TH
4884
4885out_put_css:
b5557c4c 4886 css_put(css);
79bd9814
TH
4887out_put_cfile:
4888 fdput(cfile);
4889out_put_eventfd:
4890 eventfd_ctx_put(event->eventfd);
4891out_put_efile:
4892 fdput(efile);
4893out_kfree:
4894 kfree(event);
4895
4896 return ret;
4897}
4898
c29b5b3d
MS
4899#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4900static int mem_cgroup_slab_show(struct seq_file *m, void *p)
4901{
4902 /*
4903 * Deprecated.
df4ae285 4904 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
c29b5b3d
MS
4905 */
4906 return 0;
4907}
4908#endif
4909
241994ed 4910static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4911 {
0eea1030 4912 .name = "usage_in_bytes",
8c7c6e34 4913 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4914 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4915 },
c84872e1
PE
4916 {
4917 .name = "max_usage_in_bytes",
8c7c6e34 4918 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4919 .write = mem_cgroup_reset,
791badbd 4920 .read_u64 = mem_cgroup_read_u64,
c84872e1 4921 },
8cdea7c0 4922 {
0eea1030 4923 .name = "limit_in_bytes",
8c7c6e34 4924 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4925 .write = mem_cgroup_write,
791badbd 4926 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4927 },
296c81d8
BS
4928 {
4929 .name = "soft_limit_in_bytes",
4930 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4931 .write = mem_cgroup_write,
791badbd 4932 .read_u64 = mem_cgroup_read_u64,
296c81d8 4933 },
8cdea7c0
BS
4934 {
4935 .name = "failcnt",
8c7c6e34 4936 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4937 .write = mem_cgroup_reset,
791badbd 4938 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4939 },
d2ceb9b7
KH
4940 {
4941 .name = "stat",
2da8ca82 4942 .seq_show = memcg_stat_show,
d2ceb9b7 4943 },
c1e862c1
KH
4944 {
4945 .name = "force_empty",
6770c64e 4946 .write = mem_cgroup_force_empty_write,
c1e862c1 4947 },
18f59ea7
BS
4948 {
4949 .name = "use_hierarchy",
4950 .write_u64 = mem_cgroup_hierarchy_write,
4951 .read_u64 = mem_cgroup_hierarchy_read,
4952 },
79bd9814 4953 {
3bc942f3 4954 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4955 .write = memcg_write_event_control,
7dbdb199 4956 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4957 },
a7885eb8
KM
4958 {
4959 .name = "swappiness",
4960 .read_u64 = mem_cgroup_swappiness_read,
4961 .write_u64 = mem_cgroup_swappiness_write,
4962 },
7dc74be0
DN
4963 {
4964 .name = "move_charge_at_immigrate",
4965 .read_u64 = mem_cgroup_move_charge_read,
4966 .write_u64 = mem_cgroup_move_charge_write,
4967 },
9490ff27
KH
4968 {
4969 .name = "oom_control",
2da8ca82 4970 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4971 .write_u64 = mem_cgroup_oom_control_write,
9490ff27 4972 },
70ddf637
AV
4973 {
4974 .name = "pressure_level",
70ddf637 4975 },
406eb0c9
YH
4976#ifdef CONFIG_NUMA
4977 {
4978 .name = "numa_stat",
2da8ca82 4979 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4980 },
4981#endif
510fc4e1
GC
4982 {
4983 .name = "kmem.limit_in_bytes",
4984 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4985 .write = mem_cgroup_write,
791badbd 4986 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4987 },
4988 {
4989 .name = "kmem.usage_in_bytes",
4990 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4991 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4992 },
4993 {
4994 .name = "kmem.failcnt",
4995 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4996 .write = mem_cgroup_reset,
791badbd 4997 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4998 },
4999 {
5000 .name = "kmem.max_usage_in_bytes",
5001 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5002 .write = mem_cgroup_reset,
791badbd 5003 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5004 },
a87425a3
YS
5005#if defined(CONFIG_MEMCG_KMEM) && \
5006 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5007 {
5008 .name = "kmem.slabinfo",
c29b5b3d 5009 .seq_show = mem_cgroup_slab_show,
749c5415
GC
5010 },
5011#endif
d55f90bf
VD
5012 {
5013 .name = "kmem.tcp.limit_in_bytes",
5014 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5015 .write = mem_cgroup_write,
5016 .read_u64 = mem_cgroup_read_u64,
5017 },
5018 {
5019 .name = "kmem.tcp.usage_in_bytes",
5020 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5021 .read_u64 = mem_cgroup_read_u64,
5022 },
5023 {
5024 .name = "kmem.tcp.failcnt",
5025 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5026 .write = mem_cgroup_reset,
5027 .read_u64 = mem_cgroup_read_u64,
5028 },
5029 {
5030 .name = "kmem.tcp.max_usage_in_bytes",
5031 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5032 .write = mem_cgroup_reset,
5033 .read_u64 = mem_cgroup_read_u64,
5034 },
6bc10349 5035 { }, /* terminate */
af36f906 5036};
8c7c6e34 5037
73f576c0
JW
5038/*
5039 * Private memory cgroup IDR
5040 *
5041 * Swap-out records and page cache shadow entries need to store memcg
5042 * references in constrained space, so we maintain an ID space that is
5043 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5044 * memory-controlled cgroups to 64k.
5045 *
b8f2935f 5046 * However, there usually are many references to the offline CSS after
73f576c0
JW
5047 * the cgroup has been destroyed, such as page cache or reclaimable
5048 * slab objects, that don't need to hang on to the ID. We want to keep
5049 * those dead CSS from occupying IDs, or we might quickly exhaust the
5050 * relatively small ID space and prevent the creation of new cgroups
5051 * even when there are much fewer than 64k cgroups - possibly none.
5052 *
5053 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5054 * be freed and recycled when it's no longer needed, which is usually
5055 * when the CSS is offlined.
5056 *
5057 * The only exception to that are records of swapped out tmpfs/shmem
5058 * pages that need to be attributed to live ancestors on swapin. But
5059 * those references are manageable from userspace.
5060 */
5061
5062static DEFINE_IDR(mem_cgroup_idr);
5063
7e97de0b
KT
5064static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5065{
5066 if (memcg->id.id > 0) {
5067 idr_remove(&mem_cgroup_idr, memcg->id.id);
5068 memcg->id.id = 0;
5069 }
5070}
5071
c1514c0a
VF
5072static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5073 unsigned int n)
73f576c0 5074{
1c2d479a 5075 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5076}
5077
615d66c3 5078static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5079{
1c2d479a 5080 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5081 mem_cgroup_id_remove(memcg);
73f576c0
JW
5082
5083 /* Memcg ID pins CSS */
5084 css_put(&memcg->css);
5085 }
5086}
5087
615d66c3
VD
5088static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5089{
5090 mem_cgroup_id_put_many(memcg, 1);
5091}
5092
73f576c0
JW
5093/**
5094 * mem_cgroup_from_id - look up a memcg from a memcg id
5095 * @id: the memcg id to look up
5096 *
5097 * Caller must hold rcu_read_lock().
5098 */
5099struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5100{
5101 WARN_ON_ONCE(!rcu_read_lock_held());
5102 return idr_find(&mem_cgroup_idr, id);
5103}
5104
c15187a4
RG
5105#ifdef CONFIG_SHRINKER_DEBUG
5106struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5107{
5108 struct cgroup *cgrp;
5109 struct cgroup_subsys_state *css;
5110 struct mem_cgroup *memcg;
5111
5112 cgrp = cgroup_get_from_id(ino);
5113 if (!cgrp)
5114 return ERR_PTR(-ENOENT);
5115
5116 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5117 if (css)
5118 memcg = container_of(css, struct mem_cgroup, css);
5119 else
5120 memcg = ERR_PTR(-ENOENT);
5121
5122 cgroup_put(cgrp);
5123
5124 return memcg;
5125}
5126#endif
5127
ef8f2327 5128static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5129{
5130 struct mem_cgroup_per_node *pn;
8c9bb398
WY
5131
5132 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
6d12e2d8
KH
5133 if (!pn)
5134 return 1;
1ecaab2b 5135
7e1c0d6f
SB
5136 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5137 GFP_KERNEL_ACCOUNT);
5138 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5139 kfree(pn);
5140 return 1;
5141 }
5142
ef8f2327 5143 lruvec_init(&pn->lruvec);
ef8f2327
MG
5144 pn->memcg = memcg;
5145
54f72fe0 5146 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5147 return 0;
5148}
5149
ef8f2327 5150static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5151{
00f3ca2c
JW
5152 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5153
4eaf431f
MH
5154 if (!pn)
5155 return;
5156
7e1c0d6f 5157 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5158 kfree(pn);
1ecaab2b
KH
5159}
5160
40e952f9 5161static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5162{
c8b2a36f 5163 int node;
59927fb9 5164
c8b2a36f 5165 for_each_node(node)
ef8f2327 5166 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5167 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5168 kfree(memcg);
59927fb9 5169}
3afe36b1 5170
40e952f9
TE
5171static void mem_cgroup_free(struct mem_cgroup *memcg)
5172{
5173 memcg_wb_domain_exit(memcg);
5174 __mem_cgroup_free(memcg);
5175}
5176
0b8f73e1 5177static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5178{
d142e3e6 5179 struct mem_cgroup *memcg;
6d12e2d8 5180 int node;
97b27821 5181 int __maybe_unused i;
11d67612 5182 long error = -ENOMEM;
8cdea7c0 5183
06b2c3b0 5184 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
c0ff4b85 5185 if (!memcg)
11d67612 5186 return ERR_PTR(error);
0b8f73e1 5187
73f576c0 5188 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
be740503 5189 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
11d67612
YS
5190 if (memcg->id.id < 0) {
5191 error = memcg->id.id;
73f576c0 5192 goto fail;
11d67612 5193 }
73f576c0 5194
3e38e0aa
RG
5195 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5196 GFP_KERNEL_ACCOUNT);
871789d4 5197 if (!memcg->vmstats_percpu)
0b8f73e1 5198 goto fail;
78fb7466 5199
3ed28fa1 5200 for_each_node(node)
ef8f2327 5201 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5202 goto fail;
f64c3f54 5203
0b8f73e1
JW
5204 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5205 goto fail;
28dbc4b6 5206
f7e1cb6e 5207 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5208 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5209 mutex_init(&memcg->thresholds_lock);
5210 spin_lock_init(&memcg->move_lock);
70ddf637 5211 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5212 INIT_LIST_HEAD(&memcg->event_list);
5213 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5214 memcg->socket_pressure = jiffies;
84c07d11 5215#ifdef CONFIG_MEMCG_KMEM
900a38f0 5216 memcg->kmemcg_id = -1;
bf4f0599 5217 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5218#endif
52ebea74
TH
5219#ifdef CONFIG_CGROUP_WRITEBACK
5220 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5221 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5222 memcg->cgwb_frn[i].done =
5223 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5224#endif
5225#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5226 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5227 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5228 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5229#endif
73f576c0 5230 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5231 return memcg;
5232fail:
7e97de0b 5233 mem_cgroup_id_remove(memcg);
40e952f9 5234 __mem_cgroup_free(memcg);
11d67612 5235 return ERR_PTR(error);
d142e3e6
GC
5236}
5237
0b8f73e1
JW
5238static struct cgroup_subsys_state * __ref
5239mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5240{
0b8f73e1 5241 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5242 struct mem_cgroup *memcg, *old_memcg;
d142e3e6 5243
b87d8cef 5244 old_memcg = set_active_memcg(parent);
0b8f73e1 5245 memcg = mem_cgroup_alloc();
b87d8cef 5246 set_active_memcg(old_memcg);
11d67612
YS
5247 if (IS_ERR(memcg))
5248 return ERR_CAST(memcg);
d142e3e6 5249
d1663a90 5250 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5251 memcg->soft_limit = PAGE_COUNTER_MAX;
f4840ccf
JW
5252#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5253 memcg->zswap_max = PAGE_COUNTER_MAX;
5254#endif
4b82ab4f 5255 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5256 if (parent) {
5257 memcg->swappiness = mem_cgroup_swappiness(parent);
5258 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5259
3e32cb2e 5260 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5261 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5262 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5263 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5264 } else {
bef8620c
RG
5265 page_counter_init(&memcg->memory, NULL);
5266 page_counter_init(&memcg->swap, NULL);
5267 page_counter_init(&memcg->kmem, NULL);
5268 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5269
0b8f73e1
JW
5270 root_mem_cgroup = memcg;
5271 return &memcg->css;
5272 }
5273
f7e1cb6e 5274 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5275 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5276
0b8f73e1 5277 return &memcg->css;
0b8f73e1
JW
5278}
5279
73f576c0 5280static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5281{
58fa2a55
VD
5282 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5283
da0efe30
MS
5284 if (memcg_online_kmem(memcg))
5285 goto remove_id;
5286
0a4465d3 5287 /*
e4262c4f 5288 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5289 * by the time the maps are allocated. So, we allocate maps
5290 * here, when for_each_mem_cgroup() can't skip it.
5291 */
da0efe30
MS
5292 if (alloc_shrinker_info(memcg))
5293 goto offline_kmem;
0a4465d3 5294
73f576c0 5295 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5296 refcount_set(&memcg->id.ref, 1);
73f576c0 5297 css_get(css);
aa48e47e
SB
5298
5299 if (unlikely(mem_cgroup_is_root(memcg)))
5300 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5301 2UL*HZ);
2f7dd7a4 5302 return 0;
da0efe30
MS
5303offline_kmem:
5304 memcg_offline_kmem(memcg);
5305remove_id:
5306 mem_cgroup_id_remove(memcg);
5307 return -ENOMEM;
8cdea7c0
BS
5308}
5309
eb95419b 5310static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5311{
eb95419b 5312 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5313 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5314
5315 /*
5316 * Unregister events and notify userspace.
5317 * Notify userspace about cgroup removing only after rmdir of cgroup
5318 * directory to avoid race between userspace and kernelspace.
5319 */
4ba9515d 5320 spin_lock_irq(&memcg->event_list_lock);
fba94807 5321 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5322 list_del_init(&event->list);
5323 schedule_work(&event->remove);
5324 }
4ba9515d 5325 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5326
bf8d5d52 5327 page_counter_set_min(&memcg->memory, 0);
23067153 5328 page_counter_set_low(&memcg->memory, 0);
63677c74 5329
567e9ab2 5330 memcg_offline_kmem(memcg);
a178015c 5331 reparent_shrinker_deferred(memcg);
52ebea74 5332 wb_memcg_offline(memcg);
73f576c0 5333
591edfb1
RG
5334 drain_all_stock(memcg);
5335
73f576c0 5336 mem_cgroup_id_put(memcg);
df878fb0
KH
5337}
5338
6df38689
VD
5339static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5340{
5341 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5342
5343 invalidate_reclaim_iterators(memcg);
5344}
5345
eb95419b 5346static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5347{
eb95419b 5348 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5349 int __maybe_unused i;
c268e994 5350
97b27821
TH
5351#ifdef CONFIG_CGROUP_WRITEBACK
5352 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5353 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5354#endif
f7e1cb6e 5355 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5356 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5357
0db15298 5358 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5359 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5360
0b8f73e1
JW
5361 vmpressure_cleanup(&memcg->vmpressure);
5362 cancel_work_sync(&memcg->high_work);
5363 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5364 free_shrinker_info(memcg);
0b8f73e1 5365 mem_cgroup_free(memcg);
8cdea7c0
BS
5366}
5367
1ced953b
TH
5368/**
5369 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5370 * @css: the target css
5371 *
5372 * Reset the states of the mem_cgroup associated with @css. This is
5373 * invoked when the userland requests disabling on the default hierarchy
5374 * but the memcg is pinned through dependency. The memcg should stop
5375 * applying policies and should revert to the vanilla state as it may be
5376 * made visible again.
5377 *
5378 * The current implementation only resets the essential configurations.
5379 * This needs to be expanded to cover all the visible parts.
5380 */
5381static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5382{
5383 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5384
bbec2e15
RG
5385 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5386 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5387 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5388 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5389 page_counter_set_min(&memcg->memory, 0);
23067153 5390 page_counter_set_low(&memcg->memory, 0);
d1663a90 5391 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5392 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5393 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5394 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5395}
5396
2d146aa3
JW
5397static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5398{
5399 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5400 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5401 struct memcg_vmstats_percpu *statc;
5402 long delta, v;
7e1c0d6f 5403 int i, nid;
2d146aa3
JW
5404
5405 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5406
5407 for (i = 0; i < MEMCG_NR_STAT; i++) {
5408 /*
5409 * Collect the aggregated propagation counts of groups
5410 * below us. We're in a per-cpu loop here and this is
5411 * a global counter, so the first cycle will get them.
5412 */
5413 delta = memcg->vmstats.state_pending[i];
5414 if (delta)
5415 memcg->vmstats.state_pending[i] = 0;
5416
5417 /* Add CPU changes on this level since the last flush */
5418 v = READ_ONCE(statc->state[i]);
5419 if (v != statc->state_prev[i]) {
5420 delta += v - statc->state_prev[i];
5421 statc->state_prev[i] = v;
5422 }
5423
5424 if (!delta)
5425 continue;
5426
5427 /* Aggregate counts on this level and propagate upwards */
5428 memcg->vmstats.state[i] += delta;
5429 if (parent)
5430 parent->vmstats.state_pending[i] += delta;
5431 }
5432
5433 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5434 delta = memcg->vmstats.events_pending[i];
5435 if (delta)
5436 memcg->vmstats.events_pending[i] = 0;
5437
5438 v = READ_ONCE(statc->events[i]);
5439 if (v != statc->events_prev[i]) {
5440 delta += v - statc->events_prev[i];
5441 statc->events_prev[i] = v;
5442 }
5443
5444 if (!delta)
5445 continue;
5446
5447 memcg->vmstats.events[i] += delta;
5448 if (parent)
5449 parent->vmstats.events_pending[i] += delta;
5450 }
7e1c0d6f
SB
5451
5452 for_each_node_state(nid, N_MEMORY) {
5453 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5454 struct mem_cgroup_per_node *ppn = NULL;
5455 struct lruvec_stats_percpu *lstatc;
5456
5457 if (parent)
5458 ppn = parent->nodeinfo[nid];
5459
5460 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5461
5462 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5463 delta = pn->lruvec_stats.state_pending[i];
5464 if (delta)
5465 pn->lruvec_stats.state_pending[i] = 0;
5466
5467 v = READ_ONCE(lstatc->state[i]);
5468 if (v != lstatc->state_prev[i]) {
5469 delta += v - lstatc->state_prev[i];
5470 lstatc->state_prev[i] = v;
5471 }
5472
5473 if (!delta)
5474 continue;
5475
5476 pn->lruvec_stats.state[i] += delta;
5477 if (ppn)
5478 ppn->lruvec_stats.state_pending[i] += delta;
5479 }
5480 }
2d146aa3
JW
5481}
5482
02491447 5483#ifdef CONFIG_MMU
7dc74be0 5484/* Handlers for move charge at task migration. */
854ffa8d 5485static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5486{
05b84301 5487 int ret;
9476db97 5488
d0164adc
MG
5489 /* Try a single bulk charge without reclaim first, kswapd may wake */
5490 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5491 if (!ret) {
854ffa8d 5492 mc.precharge += count;
854ffa8d
DN
5493 return ret;
5494 }
9476db97 5495
3674534b 5496 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5497 while (count--) {
3674534b 5498 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5499 if (ret)
38c5d72f 5500 return ret;
854ffa8d 5501 mc.precharge++;
9476db97 5502 cond_resched();
854ffa8d 5503 }
9476db97 5504 return 0;
4ffef5fe
DN
5505}
5506
4ffef5fe
DN
5507union mc_target {
5508 struct page *page;
02491447 5509 swp_entry_t ent;
4ffef5fe
DN
5510};
5511
4ffef5fe 5512enum mc_target_type {
8d32ff84 5513 MC_TARGET_NONE = 0,
4ffef5fe 5514 MC_TARGET_PAGE,
02491447 5515 MC_TARGET_SWAP,
c733a828 5516 MC_TARGET_DEVICE,
4ffef5fe
DN
5517};
5518
90254a65
DN
5519static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5520 unsigned long addr, pte_t ptent)
4ffef5fe 5521{
25b2995a 5522 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5523
90254a65
DN
5524 if (!page || !page_mapped(page))
5525 return NULL;
5526 if (PageAnon(page)) {
1dfab5ab 5527 if (!(mc.flags & MOVE_ANON))
90254a65 5528 return NULL;
1dfab5ab
JW
5529 } else {
5530 if (!(mc.flags & MOVE_FILE))
5531 return NULL;
5532 }
90254a65
DN
5533 if (!get_page_unless_zero(page))
5534 return NULL;
5535
5536 return page;
5537}
5538
c733a828 5539#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5540static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5541 pte_t ptent, swp_entry_t *entry)
90254a65 5542{
90254a65
DN
5543 struct page *page = NULL;
5544 swp_entry_t ent = pte_to_swp_entry(ptent);
5545
9a137153 5546 if (!(mc.flags & MOVE_ANON))
90254a65 5547 return NULL;
c733a828
JG
5548
5549 /*
27674ef6
CH
5550 * Handle device private pages that are not accessible by the CPU, but
5551 * stored as special swap entries in the page table.
c733a828
JG
5552 */
5553 if (is_device_private_entry(ent)) {
af5cdaf8 5554 page = pfn_swap_entry_to_page(ent);
27674ef6 5555 if (!get_page_unless_zero(page))
c733a828
JG
5556 return NULL;
5557 return page;
5558 }
5559
9a137153
RC
5560 if (non_swap_entry(ent))
5561 return NULL;
5562
4b91355e
KH
5563 /*
5564 * Because lookup_swap_cache() updates some statistics counter,
5565 * we call find_get_page() with swapper_space directly.
5566 */
f6ab1f7f 5567 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5568 entry->val = ent.val;
90254a65
DN
5569
5570 return page;
5571}
4b91355e
KH
5572#else
5573static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5574 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5575{
5576 return NULL;
5577}
5578#endif
90254a65 5579
87946a72 5580static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
48384b0b 5581 unsigned long addr, pte_t ptent)
87946a72 5582{
87946a72
DN
5583 if (!vma->vm_file) /* anonymous vma */
5584 return NULL;
1dfab5ab 5585 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5586 return NULL;
5587
87946a72 5588 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5589 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5590 return find_get_incore_page(vma->vm_file->f_mapping,
5591 linear_page_index(vma, addr));
87946a72
DN
5592}
5593
b1b0deab
CG
5594/**
5595 * mem_cgroup_move_account - move account of the page
5596 * @page: the page
25843c2b 5597 * @compound: charge the page as compound or small page
b1b0deab
CG
5598 * @from: mem_cgroup which the page is moved from.
5599 * @to: mem_cgroup which the page is moved to. @from != @to.
5600 *
3ac808fd 5601 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5602 *
5603 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5604 * from old cgroup.
5605 */
5606static int mem_cgroup_move_account(struct page *page,
f627c2f5 5607 bool compound,
b1b0deab
CG
5608 struct mem_cgroup *from,
5609 struct mem_cgroup *to)
5610{
fcce4672 5611 struct folio *folio = page_folio(page);
ae8af438
KK
5612 struct lruvec *from_vec, *to_vec;
5613 struct pglist_data *pgdat;
fcce4672 5614 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
8e88bd2d 5615 int nid, ret;
b1b0deab
CG
5616
5617 VM_BUG_ON(from == to);
fcce4672 5618 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
9c325215 5619 VM_BUG_ON(compound && !folio_test_large(folio));
b1b0deab
CG
5620
5621 /*
6a93ca8f 5622 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5623 * page's memory cgroup of its source page while we change it.
b1b0deab 5624 */
f627c2f5 5625 ret = -EBUSY;
fcce4672 5626 if (!folio_trylock(folio))
b1b0deab
CG
5627 goto out;
5628
5629 ret = -EINVAL;
fcce4672 5630 if (folio_memcg(folio) != from)
b1b0deab
CG
5631 goto out_unlock;
5632
fcce4672 5633 pgdat = folio_pgdat(folio);
867e5e1d
JW
5634 from_vec = mem_cgroup_lruvec(from, pgdat);
5635 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5636
fcce4672 5637 folio_memcg_lock(folio);
b1b0deab 5638
fcce4672
MWO
5639 if (folio_test_anon(folio)) {
5640 if (folio_mapped(folio)) {
be5d0a74
JW
5641 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5642 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
fcce4672 5643 if (folio_test_transhuge(folio)) {
69473e5d
MS
5644 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5645 -nr_pages);
5646 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5647 nr_pages);
468c3982 5648 }
be5d0a74
JW
5649 }
5650 } else {
0d1c2072
JW
5651 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5652 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5653
fcce4672 5654 if (folio_test_swapbacked(folio)) {
0d1c2072
JW
5655 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5656 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5657 }
5658
fcce4672 5659 if (folio_mapped(folio)) {
49e50d27
JW
5660 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5661 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5662 }
b1b0deab 5663
fcce4672
MWO
5664 if (folio_test_dirty(folio)) {
5665 struct address_space *mapping = folio_mapping(folio);
c4843a75 5666
f56753ac 5667 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5668 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5669 -nr_pages);
5670 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5671 nr_pages);
5672 }
c4843a75
GT
5673 }
5674 }
5675
fcce4672 5676 if (folio_test_writeback(folio)) {
ae8af438
KK
5677 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5678 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5679 }
5680
5681 /*
abb242f5
JW
5682 * All state has been migrated, let's switch to the new memcg.
5683 *
bcfe06bf 5684 * It is safe to change page's memcg here because the page
abb242f5
JW
5685 * is referenced, charged, isolated, and locked: we can't race
5686 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5687 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5688 *
5689 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5690 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5691 * new memcg that isn't locked, the above state can change
5692 * concurrently again. Make sure we're truly done with it.
b1b0deab 5693 */
abb242f5 5694 smp_mb();
b1b0deab 5695
1a3e1f40
JW
5696 css_get(&to->css);
5697 css_put(&from->css);
5698
fcce4672 5699 folio->memcg_data = (unsigned long)to;
87eaceb3 5700
f70ad448 5701 __folio_memcg_unlock(from);
b1b0deab
CG
5702
5703 ret = 0;
fcce4672 5704 nid = folio_nid(folio);
b1b0deab
CG
5705
5706 local_irq_disable();
6e0110c2 5707 mem_cgroup_charge_statistics(to, nr_pages);
8e88bd2d 5708 memcg_check_events(to, nid);
6e0110c2 5709 mem_cgroup_charge_statistics(from, -nr_pages);
8e88bd2d 5710 memcg_check_events(from, nid);
b1b0deab
CG
5711 local_irq_enable();
5712out_unlock:
fcce4672 5713 folio_unlock(folio);
b1b0deab
CG
5714out:
5715 return ret;
5716}
5717
7cf7806c
LR
5718/**
5719 * get_mctgt_type - get target type of moving charge
5720 * @vma: the vma the pte to be checked belongs
5721 * @addr: the address corresponding to the pte to be checked
5722 * @ptent: the pte to be checked
5723 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5724 *
5725 * Returns
5726 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5727 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5728 * move charge. if @target is not NULL, the page is stored in target->page
5729 * with extra refcnt got(Callers should handle it).
5730 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5731 * target for charge migration. if @target is not NULL, the entry is stored
5732 * in target->ent.
f25cbb7a
AS
5733 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5734 * thus not on the lru.
df6ad698
JG
5735 * For now we such page is charge like a regular page would be as for all
5736 * intent and purposes it is just special memory taking the place of a
5737 * regular page.
c733a828
JG
5738 *
5739 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5740 *
5741 * Called with pte lock held.
5742 */
5743
8d32ff84 5744static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5745 unsigned long addr, pte_t ptent, union mc_target *target)
5746{
5747 struct page *page = NULL;
8d32ff84 5748 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5749 swp_entry_t ent = { .val = 0 };
5750
5751 if (pte_present(ptent))
5752 page = mc_handle_present_pte(vma, addr, ptent);
5c041f5d
PX
5753 else if (pte_none_mostly(ptent))
5754 /*
5755 * PTE markers should be treated as a none pte here, separated
5756 * from other swap handling below.
5757 */
5758 page = mc_handle_file_pte(vma, addr, ptent);
90254a65 5759 else if (is_swap_pte(ptent))
48406ef8 5760 page = mc_handle_swap_pte(vma, ptent, &ent);
90254a65
DN
5761
5762 if (!page && !ent.val)
8d32ff84 5763 return ret;
02491447 5764 if (page) {
02491447 5765 /*
0a31bc97 5766 * Do only loose check w/o serialization.
1306a85a 5767 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5768 * not under LRU exclusion.
02491447 5769 */
bcfe06bf 5770 if (page_memcg(page) == mc.from) {
02491447 5771 ret = MC_TARGET_PAGE;
f25cbb7a
AS
5772 if (is_device_private_page(page) ||
5773 is_device_coherent_page(page))
c733a828 5774 ret = MC_TARGET_DEVICE;
02491447
DN
5775 if (target)
5776 target->page = page;
5777 }
5778 if (!ret || !target)
5779 put_page(page);
5780 }
3e14a57b
HY
5781 /*
5782 * There is a swap entry and a page doesn't exist or isn't charged.
5783 * But we cannot move a tail-page in a THP.
5784 */
5785 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5786 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5787 ret = MC_TARGET_SWAP;
5788 if (target)
5789 target->ent = ent;
4ffef5fe 5790 }
4ffef5fe
DN
5791 return ret;
5792}
5793
12724850
NH
5794#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5795/*
d6810d73
HY
5796 * We don't consider PMD mapped swapping or file mapped pages because THP does
5797 * not support them for now.
12724850
NH
5798 * Caller should make sure that pmd_trans_huge(pmd) is true.
5799 */
5800static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5801 unsigned long addr, pmd_t pmd, union mc_target *target)
5802{
5803 struct page *page = NULL;
12724850
NH
5804 enum mc_target_type ret = MC_TARGET_NONE;
5805
84c3fc4e
ZY
5806 if (unlikely(is_swap_pmd(pmd))) {
5807 VM_BUG_ON(thp_migration_supported() &&
5808 !is_pmd_migration_entry(pmd));
5809 return ret;
5810 }
12724850 5811 page = pmd_page(pmd);
309381fe 5812 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5813 if (!(mc.flags & MOVE_ANON))
12724850 5814 return ret;
bcfe06bf 5815 if (page_memcg(page) == mc.from) {
12724850
NH
5816 ret = MC_TARGET_PAGE;
5817 if (target) {
5818 get_page(page);
5819 target->page = page;
5820 }
5821 }
5822 return ret;
5823}
5824#else
5825static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5826 unsigned long addr, pmd_t pmd, union mc_target *target)
5827{
5828 return MC_TARGET_NONE;
5829}
5830#endif
5831
4ffef5fe
DN
5832static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5833 unsigned long addr, unsigned long end,
5834 struct mm_walk *walk)
5835{
26bcd64a 5836 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5837 pte_t *pte;
5838 spinlock_t *ptl;
5839
b6ec57f4
KS
5840 ptl = pmd_trans_huge_lock(pmd, vma);
5841 if (ptl) {
c733a828
JG
5842 /*
5843 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5844 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5845 * this might change.
c733a828 5846 */
12724850
NH
5847 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5848 mc.precharge += HPAGE_PMD_NR;
bf929152 5849 spin_unlock(ptl);
1a5a9906 5850 return 0;
12724850 5851 }
03319327 5852
45f83cef
AA
5853 if (pmd_trans_unstable(pmd))
5854 return 0;
4ffef5fe
DN
5855 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5856 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5857 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5858 mc.precharge++; /* increment precharge temporarily */
5859 pte_unmap_unlock(pte - 1, ptl);
5860 cond_resched();
5861
7dc74be0
DN
5862 return 0;
5863}
5864
7b86ac33
CH
5865static const struct mm_walk_ops precharge_walk_ops = {
5866 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5867};
5868
4ffef5fe
DN
5869static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5870{
5871 unsigned long precharge;
4ffef5fe 5872
d8ed45c5 5873 mmap_read_lock(mm);
7b86ac33 5874 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5875 mmap_read_unlock(mm);
4ffef5fe
DN
5876
5877 precharge = mc.precharge;
5878 mc.precharge = 0;
5879
5880 return precharge;
5881}
5882
4ffef5fe
DN
5883static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5884{
dfe076b0
DN
5885 unsigned long precharge = mem_cgroup_count_precharge(mm);
5886
5887 VM_BUG_ON(mc.moving_task);
5888 mc.moving_task = current;
5889 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5890}
5891
dfe076b0
DN
5892/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5893static void __mem_cgroup_clear_mc(void)
4ffef5fe 5894{
2bd9bb20
KH
5895 struct mem_cgroup *from = mc.from;
5896 struct mem_cgroup *to = mc.to;
5897
4ffef5fe 5898 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5899 if (mc.precharge) {
00501b53 5900 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5901 mc.precharge = 0;
5902 }
5903 /*
5904 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5905 * we must uncharge here.
5906 */
5907 if (mc.moved_charge) {
00501b53 5908 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5909 mc.moved_charge = 0;
4ffef5fe 5910 }
483c30b5
DN
5911 /* we must fixup refcnts and charges */
5912 if (mc.moved_swap) {
483c30b5 5913 /* uncharge swap account from the old cgroup */
ce00a967 5914 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5915 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5916
615d66c3
VD
5917 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5918
05b84301 5919 /*
3e32cb2e
JW
5920 * we charged both to->memory and to->memsw, so we
5921 * should uncharge to->memory.
05b84301 5922 */
ce00a967 5923 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5924 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5925
483c30b5
DN
5926 mc.moved_swap = 0;
5927 }
dfe076b0
DN
5928 memcg_oom_recover(from);
5929 memcg_oom_recover(to);
5930 wake_up_all(&mc.waitq);
5931}
5932
5933static void mem_cgroup_clear_mc(void)
5934{
264a0ae1
TH
5935 struct mm_struct *mm = mc.mm;
5936
dfe076b0
DN
5937 /*
5938 * we must clear moving_task before waking up waiters at the end of
5939 * task migration.
5940 */
5941 mc.moving_task = NULL;
5942 __mem_cgroup_clear_mc();
2bd9bb20 5943 spin_lock(&mc.lock);
4ffef5fe
DN
5944 mc.from = NULL;
5945 mc.to = NULL;
264a0ae1 5946 mc.mm = NULL;
2bd9bb20 5947 spin_unlock(&mc.lock);
264a0ae1
TH
5948
5949 mmput(mm);
4ffef5fe
DN
5950}
5951
1f7dd3e5 5952static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5953{
1f7dd3e5 5954 struct cgroup_subsys_state *css;
eed67d75 5955 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5956 struct mem_cgroup *from;
4530eddb 5957 struct task_struct *leader, *p;
9f2115f9 5958 struct mm_struct *mm;
1dfab5ab 5959 unsigned long move_flags;
9f2115f9 5960 int ret = 0;
7dc74be0 5961
1f7dd3e5
TH
5962 /* charge immigration isn't supported on the default hierarchy */
5963 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5964 return 0;
5965
4530eddb
TH
5966 /*
5967 * Multi-process migrations only happen on the default hierarchy
5968 * where charge immigration is not used. Perform charge
5969 * immigration if @tset contains a leader and whine if there are
5970 * multiple.
5971 */
5972 p = NULL;
1f7dd3e5 5973 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5974 WARN_ON_ONCE(p);
5975 p = leader;
1f7dd3e5 5976 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5977 }
5978 if (!p)
5979 return 0;
5980
1f7dd3e5 5981 /*
f0953a1b 5982 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
5983 * tunable will only affect upcoming migrations, not the current one.
5984 * So we need to save it, and keep it going.
5985 */
5986 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5987 if (!move_flags)
5988 return 0;
5989
9f2115f9
TH
5990 from = mem_cgroup_from_task(p);
5991
5992 VM_BUG_ON(from == memcg);
5993
5994 mm = get_task_mm(p);
5995 if (!mm)
5996 return 0;
5997 /* We move charges only when we move a owner of the mm */
5998 if (mm->owner == p) {
5999 VM_BUG_ON(mc.from);
6000 VM_BUG_ON(mc.to);
6001 VM_BUG_ON(mc.precharge);
6002 VM_BUG_ON(mc.moved_charge);
6003 VM_BUG_ON(mc.moved_swap);
6004
6005 spin_lock(&mc.lock);
264a0ae1 6006 mc.mm = mm;
9f2115f9
TH
6007 mc.from = from;
6008 mc.to = memcg;
6009 mc.flags = move_flags;
6010 spin_unlock(&mc.lock);
6011 /* We set mc.moving_task later */
6012
6013 ret = mem_cgroup_precharge_mc(mm);
6014 if (ret)
6015 mem_cgroup_clear_mc();
264a0ae1
TH
6016 } else {
6017 mmput(mm);
7dc74be0
DN
6018 }
6019 return ret;
6020}
6021
1f7dd3e5 6022static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6023{
4e2f245d
JW
6024 if (mc.to)
6025 mem_cgroup_clear_mc();
7dc74be0
DN
6026}
6027
4ffef5fe
DN
6028static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6029 unsigned long addr, unsigned long end,
6030 struct mm_walk *walk)
7dc74be0 6031{
4ffef5fe 6032 int ret = 0;
26bcd64a 6033 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6034 pte_t *pte;
6035 spinlock_t *ptl;
12724850
NH
6036 enum mc_target_type target_type;
6037 union mc_target target;
6038 struct page *page;
4ffef5fe 6039
b6ec57f4
KS
6040 ptl = pmd_trans_huge_lock(pmd, vma);
6041 if (ptl) {
62ade86a 6042 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6043 spin_unlock(ptl);
12724850
NH
6044 return 0;
6045 }
6046 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6047 if (target_type == MC_TARGET_PAGE) {
6048 page = target.page;
6049 if (!isolate_lru_page(page)) {
f627c2f5 6050 if (!mem_cgroup_move_account(page, true,
1306a85a 6051 mc.from, mc.to)) {
12724850
NH
6052 mc.precharge -= HPAGE_PMD_NR;
6053 mc.moved_charge += HPAGE_PMD_NR;
6054 }
6055 putback_lru_page(page);
6056 }
6057 put_page(page);
c733a828
JG
6058 } else if (target_type == MC_TARGET_DEVICE) {
6059 page = target.page;
6060 if (!mem_cgroup_move_account(page, true,
6061 mc.from, mc.to)) {
6062 mc.precharge -= HPAGE_PMD_NR;
6063 mc.moved_charge += HPAGE_PMD_NR;
6064 }
6065 put_page(page);
12724850 6066 }
bf929152 6067 spin_unlock(ptl);
1a5a9906 6068 return 0;
12724850
NH
6069 }
6070
45f83cef
AA
6071 if (pmd_trans_unstable(pmd))
6072 return 0;
4ffef5fe
DN
6073retry:
6074 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6075 for (; addr != end; addr += PAGE_SIZE) {
6076 pte_t ptent = *(pte++);
c733a828 6077 bool device = false;
02491447 6078 swp_entry_t ent;
4ffef5fe
DN
6079
6080 if (!mc.precharge)
6081 break;
6082
8d32ff84 6083 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6084 case MC_TARGET_DEVICE:
6085 device = true;
e4a9bc58 6086 fallthrough;
4ffef5fe
DN
6087 case MC_TARGET_PAGE:
6088 page = target.page;
53f9263b
KS
6089 /*
6090 * We can have a part of the split pmd here. Moving it
6091 * can be done but it would be too convoluted so simply
6092 * ignore such a partial THP and keep it in original
6093 * memcg. There should be somebody mapping the head.
6094 */
6095 if (PageTransCompound(page))
6096 goto put;
c733a828 6097 if (!device && isolate_lru_page(page))
4ffef5fe 6098 goto put;
f627c2f5
KS
6099 if (!mem_cgroup_move_account(page, false,
6100 mc.from, mc.to)) {
4ffef5fe 6101 mc.precharge--;
854ffa8d
DN
6102 /* we uncharge from mc.from later. */
6103 mc.moved_charge++;
4ffef5fe 6104 }
c733a828
JG
6105 if (!device)
6106 putback_lru_page(page);
8d32ff84 6107put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6108 put_page(page);
6109 break;
02491447
DN
6110 case MC_TARGET_SWAP:
6111 ent = target.ent;
e91cbb42 6112 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6113 mc.precharge--;
8d22a935
HD
6114 mem_cgroup_id_get_many(mc.to, 1);
6115 /* we fixup other refcnts and charges later. */
483c30b5
DN
6116 mc.moved_swap++;
6117 }
02491447 6118 break;
4ffef5fe
DN
6119 default:
6120 break;
6121 }
6122 }
6123 pte_unmap_unlock(pte - 1, ptl);
6124 cond_resched();
6125
6126 if (addr != end) {
6127 /*
6128 * We have consumed all precharges we got in can_attach().
6129 * We try charge one by one, but don't do any additional
6130 * charges to mc.to if we have failed in charge once in attach()
6131 * phase.
6132 */
854ffa8d 6133 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6134 if (!ret)
6135 goto retry;
6136 }
6137
6138 return ret;
6139}
6140
7b86ac33
CH
6141static const struct mm_walk_ops charge_walk_ops = {
6142 .pmd_entry = mem_cgroup_move_charge_pte_range,
6143};
6144
264a0ae1 6145static void mem_cgroup_move_charge(void)
4ffef5fe 6146{
4ffef5fe 6147 lru_add_drain_all();
312722cb 6148 /*
81f8c3a4
JW
6149 * Signal lock_page_memcg() to take the memcg's move_lock
6150 * while we're moving its pages to another memcg. Then wait
6151 * for already started RCU-only updates to finish.
312722cb
JW
6152 */
6153 atomic_inc(&mc.from->moving_account);
6154 synchronize_rcu();
dfe076b0 6155retry:
d8ed45c5 6156 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6157 /*
c1e8d7c6 6158 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6159 * waitq. So we cancel all extra charges, wake up all waiters,
6160 * and retry. Because we cancel precharges, we might not be able
6161 * to move enough charges, but moving charge is a best-effort
6162 * feature anyway, so it wouldn't be a big problem.
6163 */
6164 __mem_cgroup_clear_mc();
6165 cond_resched();
6166 goto retry;
6167 }
26bcd64a
NH
6168 /*
6169 * When we have consumed all precharges and failed in doing
6170 * additional charge, the page walk just aborts.
6171 */
7b86ac33
CH
6172 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6173 NULL);
0247f3f4 6174
d8ed45c5 6175 mmap_read_unlock(mc.mm);
312722cb 6176 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6177}
6178
264a0ae1 6179static void mem_cgroup_move_task(void)
67e465a7 6180{
264a0ae1
TH
6181 if (mc.to) {
6182 mem_cgroup_move_charge();
a433658c 6183 mem_cgroup_clear_mc();
264a0ae1 6184 }
67e465a7 6185}
5cfb80a7 6186#else /* !CONFIG_MMU */
1f7dd3e5 6187static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6188{
6189 return 0;
6190}
1f7dd3e5 6191static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6192{
6193}
264a0ae1 6194static void mem_cgroup_move_task(void)
5cfb80a7
DN
6195{
6196}
6197#endif
67e465a7 6198
677dc973
CD
6199static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6200{
6201 if (value == PAGE_COUNTER_MAX)
6202 seq_puts(m, "max\n");
6203 else
6204 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6205
6206 return 0;
6207}
6208
241994ed
JW
6209static u64 memory_current_read(struct cgroup_subsys_state *css,
6210 struct cftype *cft)
6211{
f5fc3c5d
JW
6212 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6213
6214 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6215}
6216
8e20d4b3
GR
6217static u64 memory_peak_read(struct cgroup_subsys_state *css,
6218 struct cftype *cft)
6219{
6220 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6221
6222 return (u64)memcg->memory.watermark * PAGE_SIZE;
6223}
6224
bf8d5d52
RG
6225static int memory_min_show(struct seq_file *m, void *v)
6226{
677dc973
CD
6227 return seq_puts_memcg_tunable(m,
6228 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6229}
6230
6231static ssize_t memory_min_write(struct kernfs_open_file *of,
6232 char *buf, size_t nbytes, loff_t off)
6233{
6234 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6235 unsigned long min;
6236 int err;
6237
6238 buf = strstrip(buf);
6239 err = page_counter_memparse(buf, "max", &min);
6240 if (err)
6241 return err;
6242
6243 page_counter_set_min(&memcg->memory, min);
6244
6245 return nbytes;
6246}
6247
241994ed
JW
6248static int memory_low_show(struct seq_file *m, void *v)
6249{
677dc973
CD
6250 return seq_puts_memcg_tunable(m,
6251 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6252}
6253
6254static ssize_t memory_low_write(struct kernfs_open_file *of,
6255 char *buf, size_t nbytes, loff_t off)
6256{
6257 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6258 unsigned long low;
6259 int err;
6260
6261 buf = strstrip(buf);
d2973697 6262 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6263 if (err)
6264 return err;
6265
23067153 6266 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6267
6268 return nbytes;
6269}
6270
6271static int memory_high_show(struct seq_file *m, void *v)
6272{
d1663a90
JK
6273 return seq_puts_memcg_tunable(m,
6274 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6275}
6276
6277static ssize_t memory_high_write(struct kernfs_open_file *of,
6278 char *buf, size_t nbytes, loff_t off)
6279{
6280 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6281 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6282 bool drained = false;
241994ed
JW
6283 unsigned long high;
6284 int err;
6285
6286 buf = strstrip(buf);
d2973697 6287 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6288 if (err)
6289 return err;
6290
e82553c1
JW
6291 page_counter_set_high(&memcg->memory, high);
6292
8c8c383c
JW
6293 for (;;) {
6294 unsigned long nr_pages = page_counter_read(&memcg->memory);
6295 unsigned long reclaimed;
6296
6297 if (nr_pages <= high)
6298 break;
6299
6300 if (signal_pending(current))
6301 break;
6302
6303 if (!drained) {
6304 drain_all_stock(memcg);
6305 drained = true;
6306 continue;
6307 }
6308
6309 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
73b73bac 6310 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
8c8c383c
JW
6311
6312 if (!reclaimed && !nr_retries--)
6313 break;
6314 }
588083bb 6315
19ce33ac 6316 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6317 return nbytes;
6318}
6319
6320static int memory_max_show(struct seq_file *m, void *v)
6321{
677dc973
CD
6322 return seq_puts_memcg_tunable(m,
6323 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6324}
6325
6326static ssize_t memory_max_write(struct kernfs_open_file *of,
6327 char *buf, size_t nbytes, loff_t off)
6328{
6329 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6330 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6331 bool drained = false;
241994ed
JW
6332 unsigned long max;
6333 int err;
6334
6335 buf = strstrip(buf);
d2973697 6336 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6337 if (err)
6338 return err;
6339
bbec2e15 6340 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6341
6342 for (;;) {
6343 unsigned long nr_pages = page_counter_read(&memcg->memory);
6344
6345 if (nr_pages <= max)
6346 break;
6347
7249c9f0 6348 if (signal_pending(current))
b6e6edcf 6349 break;
b6e6edcf
JW
6350
6351 if (!drained) {
6352 drain_all_stock(memcg);
6353 drained = true;
6354 continue;
6355 }
6356
6357 if (nr_reclaims) {
6358 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
73b73bac 6359 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
b6e6edcf
JW
6360 nr_reclaims--;
6361 continue;
6362 }
6363
e27be240 6364 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6365 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6366 break;
6367 }
241994ed 6368
2529bb3a 6369 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6370 return nbytes;
6371}
6372
1e577f97
SB
6373static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6374{
6375 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6376 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6377 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6378 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6379 seq_printf(m, "oom_kill %lu\n",
6380 atomic_long_read(&events[MEMCG_OOM_KILL]));
b6bf9abb
DS
6381 seq_printf(m, "oom_group_kill %lu\n",
6382 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
1e577f97
SB
6383}
6384
241994ed
JW
6385static int memory_events_show(struct seq_file *m, void *v)
6386{
aa9694bb 6387 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6388
1e577f97
SB
6389 __memory_events_show(m, memcg->memory_events);
6390 return 0;
6391}
6392
6393static int memory_events_local_show(struct seq_file *m, void *v)
6394{
6395 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6396
1e577f97 6397 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6398 return 0;
6399}
6400
587d9f72
JW
6401static int memory_stat_show(struct seq_file *m, void *v)
6402{
aa9694bb 6403 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
68aaee14 6404 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1ff9e6e1 6405
c8713d0b
JW
6406 if (!buf)
6407 return -ENOMEM;
68aaee14 6408 memory_stat_format(memcg, buf, PAGE_SIZE);
c8713d0b
JW
6409 seq_puts(m, buf);
6410 kfree(buf);
587d9f72
JW
6411 return 0;
6412}
6413
5f9a4f4a 6414#ifdef CONFIG_NUMA
fff66b79
MS
6415static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6416 int item)
6417{
6418 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6419}
6420
5f9a4f4a
MS
6421static int memory_numa_stat_show(struct seq_file *m, void *v)
6422{
6423 int i;
6424 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6425
fd25a9e0 6426 mem_cgroup_flush_stats();
7e1c0d6f 6427
5f9a4f4a
MS
6428 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6429 int nid;
6430
6431 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6432 continue;
6433
6434 seq_printf(m, "%s", memory_stats[i].name);
6435 for_each_node_state(nid, N_MEMORY) {
6436 u64 size;
6437 struct lruvec *lruvec;
6438
6439 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6440 size = lruvec_page_state_output(lruvec,
6441 memory_stats[i].idx);
5f9a4f4a
MS
6442 seq_printf(m, " N%d=%llu", nid, size);
6443 }
6444 seq_putc(m, '\n');
6445 }
6446
6447 return 0;
6448}
6449#endif
6450
3d8b38eb
RG
6451static int memory_oom_group_show(struct seq_file *m, void *v)
6452{
aa9694bb 6453 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6454
6455 seq_printf(m, "%d\n", memcg->oom_group);
6456
6457 return 0;
6458}
6459
6460static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6461 char *buf, size_t nbytes, loff_t off)
6462{
6463 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6464 int ret, oom_group;
6465
6466 buf = strstrip(buf);
6467 if (!buf)
6468 return -EINVAL;
6469
6470 ret = kstrtoint(buf, 0, &oom_group);
6471 if (ret)
6472 return ret;
6473
6474 if (oom_group != 0 && oom_group != 1)
6475 return -EINVAL;
6476
6477 memcg->oom_group = oom_group;
6478
6479 return nbytes;
6480}
6481
94968384
SB
6482static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6483 size_t nbytes, loff_t off)
6484{
6485 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6486 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6487 unsigned long nr_to_reclaim, nr_reclaimed = 0;
73b73bac 6488 unsigned int reclaim_options;
94968384
SB
6489 int err;
6490
6491 buf = strstrip(buf);
6492 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6493 if (err)
6494 return err;
6495
73b73bac 6496 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
94968384
SB
6497 while (nr_reclaimed < nr_to_reclaim) {
6498 unsigned long reclaimed;
6499
6500 if (signal_pending(current))
6501 return -EINTR;
6502
6503 /*
6504 * This is the final attempt, drain percpu lru caches in the
6505 * hope of introducing more evictable pages for
6506 * try_to_free_mem_cgroup_pages().
6507 */
6508 if (!nr_retries)
6509 lru_add_drain_all();
6510
6511 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6512 nr_to_reclaim - nr_reclaimed,
73b73bac 6513 GFP_KERNEL, reclaim_options);
94968384
SB
6514
6515 if (!reclaimed && !nr_retries--)
6516 return -EAGAIN;
6517
6518 nr_reclaimed += reclaimed;
6519 }
6520
6521 return nbytes;
6522}
6523
241994ed
JW
6524static struct cftype memory_files[] = {
6525 {
6526 .name = "current",
f5fc3c5d 6527 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6528 .read_u64 = memory_current_read,
6529 },
8e20d4b3
GR
6530 {
6531 .name = "peak",
6532 .flags = CFTYPE_NOT_ON_ROOT,
6533 .read_u64 = memory_peak_read,
6534 },
bf8d5d52
RG
6535 {
6536 .name = "min",
6537 .flags = CFTYPE_NOT_ON_ROOT,
6538 .seq_show = memory_min_show,
6539 .write = memory_min_write,
6540 },
241994ed
JW
6541 {
6542 .name = "low",
6543 .flags = CFTYPE_NOT_ON_ROOT,
6544 .seq_show = memory_low_show,
6545 .write = memory_low_write,
6546 },
6547 {
6548 .name = "high",
6549 .flags = CFTYPE_NOT_ON_ROOT,
6550 .seq_show = memory_high_show,
6551 .write = memory_high_write,
6552 },
6553 {
6554 .name = "max",
6555 .flags = CFTYPE_NOT_ON_ROOT,
6556 .seq_show = memory_max_show,
6557 .write = memory_max_write,
6558 },
6559 {
6560 .name = "events",
6561 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6562 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6563 .seq_show = memory_events_show,
6564 },
1e577f97
SB
6565 {
6566 .name = "events.local",
6567 .flags = CFTYPE_NOT_ON_ROOT,
6568 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6569 .seq_show = memory_events_local_show,
6570 },
587d9f72
JW
6571 {
6572 .name = "stat",
587d9f72
JW
6573 .seq_show = memory_stat_show,
6574 },
5f9a4f4a
MS
6575#ifdef CONFIG_NUMA
6576 {
6577 .name = "numa_stat",
6578 .seq_show = memory_numa_stat_show,
6579 },
6580#endif
3d8b38eb
RG
6581 {
6582 .name = "oom.group",
6583 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6584 .seq_show = memory_oom_group_show,
6585 .write = memory_oom_group_write,
6586 },
94968384
SB
6587 {
6588 .name = "reclaim",
6589 .flags = CFTYPE_NS_DELEGATABLE,
6590 .write = memory_reclaim,
6591 },
241994ed
JW
6592 { } /* terminate */
6593};
6594
073219e9 6595struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6596 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6597 .css_online = mem_cgroup_css_online,
92fb9748 6598 .css_offline = mem_cgroup_css_offline,
6df38689 6599 .css_released = mem_cgroup_css_released,
92fb9748 6600 .css_free = mem_cgroup_css_free,
1ced953b 6601 .css_reset = mem_cgroup_css_reset,
2d146aa3 6602 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0
DN
6603 .can_attach = mem_cgroup_can_attach,
6604 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6605 .post_attach = mem_cgroup_move_task,
241994ed
JW
6606 .dfl_cftypes = memory_files,
6607 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6608 .early_init = 0,
8cdea7c0 6609};
c077719b 6610
bc50bcc6
JW
6611/*
6612 * This function calculates an individual cgroup's effective
6613 * protection which is derived from its own memory.min/low, its
6614 * parent's and siblings' settings, as well as the actual memory
6615 * distribution in the tree.
6616 *
6617 * The following rules apply to the effective protection values:
6618 *
6619 * 1. At the first level of reclaim, effective protection is equal to
6620 * the declared protection in memory.min and memory.low.
6621 *
6622 * 2. To enable safe delegation of the protection configuration, at
6623 * subsequent levels the effective protection is capped to the
6624 * parent's effective protection.
6625 *
6626 * 3. To make complex and dynamic subtrees easier to configure, the
6627 * user is allowed to overcommit the declared protection at a given
6628 * level. If that is the case, the parent's effective protection is
6629 * distributed to the children in proportion to how much protection
6630 * they have declared and how much of it they are utilizing.
6631 *
6632 * This makes distribution proportional, but also work-conserving:
6633 * if one cgroup claims much more protection than it uses memory,
6634 * the unused remainder is available to its siblings.
6635 *
6636 * 4. Conversely, when the declared protection is undercommitted at a
6637 * given level, the distribution of the larger parental protection
6638 * budget is NOT proportional. A cgroup's protection from a sibling
6639 * is capped to its own memory.min/low setting.
6640 *
8a931f80
JW
6641 * 5. However, to allow protecting recursive subtrees from each other
6642 * without having to declare each individual cgroup's fixed share
6643 * of the ancestor's claim to protection, any unutilized -
6644 * "floating" - protection from up the tree is distributed in
6645 * proportion to each cgroup's *usage*. This makes the protection
6646 * neutral wrt sibling cgroups and lets them compete freely over
6647 * the shared parental protection budget, but it protects the
6648 * subtree as a whole from neighboring subtrees.
6649 *
6650 * Note that 4. and 5. are not in conflict: 4. is about protecting
6651 * against immediate siblings whereas 5. is about protecting against
6652 * neighboring subtrees.
bc50bcc6
JW
6653 */
6654static unsigned long effective_protection(unsigned long usage,
8a931f80 6655 unsigned long parent_usage,
bc50bcc6
JW
6656 unsigned long setting,
6657 unsigned long parent_effective,
6658 unsigned long siblings_protected)
6659{
6660 unsigned long protected;
8a931f80 6661 unsigned long ep;
bc50bcc6
JW
6662
6663 protected = min(usage, setting);
6664 /*
6665 * If all cgroups at this level combined claim and use more
6666 * protection then what the parent affords them, distribute
6667 * shares in proportion to utilization.
6668 *
6669 * We are using actual utilization rather than the statically
6670 * claimed protection in order to be work-conserving: claimed
6671 * but unused protection is available to siblings that would
6672 * otherwise get a smaller chunk than what they claimed.
6673 */
6674 if (siblings_protected > parent_effective)
6675 return protected * parent_effective / siblings_protected;
6676
6677 /*
6678 * Ok, utilized protection of all children is within what the
6679 * parent affords them, so we know whatever this child claims
6680 * and utilizes is effectively protected.
6681 *
6682 * If there is unprotected usage beyond this value, reclaim
6683 * will apply pressure in proportion to that amount.
6684 *
6685 * If there is unutilized protection, the cgroup will be fully
6686 * shielded from reclaim, but we do return a smaller value for
6687 * protection than what the group could enjoy in theory. This
6688 * is okay. With the overcommit distribution above, effective
6689 * protection is always dependent on how memory is actually
6690 * consumed among the siblings anyway.
6691 */
8a931f80
JW
6692 ep = protected;
6693
6694 /*
6695 * If the children aren't claiming (all of) the protection
6696 * afforded to them by the parent, distribute the remainder in
6697 * proportion to the (unprotected) memory of each cgroup. That
6698 * way, cgroups that aren't explicitly prioritized wrt each
6699 * other compete freely over the allowance, but they are
6700 * collectively protected from neighboring trees.
6701 *
6702 * We're using unprotected memory for the weight so that if
6703 * some cgroups DO claim explicit protection, we don't protect
6704 * the same bytes twice.
cd324edc
JW
6705 *
6706 * Check both usage and parent_usage against the respective
6707 * protected values. One should imply the other, but they
6708 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6709 */
6710 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6711 return ep;
cd324edc
JW
6712 if (parent_effective > siblings_protected &&
6713 parent_usage > siblings_protected &&
6714 usage > protected) {
8a931f80
JW
6715 unsigned long unclaimed;
6716
6717 unclaimed = parent_effective - siblings_protected;
6718 unclaimed *= usage - protected;
6719 unclaimed /= parent_usage - siblings_protected;
6720
6721 ep += unclaimed;
6722 }
6723
6724 return ep;
bc50bcc6
JW
6725}
6726
241994ed 6727/**
05395718 6728 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 6729 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6730 * @memcg: the memory cgroup to check
6731 *
23067153
RG
6732 * WARNING: This function is not stateless! It can only be used as part
6733 * of a top-down tree iteration, not for isolated queries.
241994ed 6734 */
45c7f7e1
CD
6735void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6736 struct mem_cgroup *memcg)
241994ed 6737{
8a931f80 6738 unsigned long usage, parent_usage;
23067153
RG
6739 struct mem_cgroup *parent;
6740
241994ed 6741 if (mem_cgroup_disabled())
45c7f7e1 6742 return;
241994ed 6743
34c81057
SC
6744 if (!root)
6745 root = root_mem_cgroup;
22f7496f
YS
6746
6747 /*
6748 * Effective values of the reclaim targets are ignored so they
6749 * can be stale. Have a look at mem_cgroup_protection for more
6750 * details.
6751 * TODO: calculation should be more robust so that we do not need
6752 * that special casing.
6753 */
34c81057 6754 if (memcg == root)
45c7f7e1 6755 return;
241994ed 6756
23067153 6757 usage = page_counter_read(&memcg->memory);
bf8d5d52 6758 if (!usage)
45c7f7e1 6759 return;
bf8d5d52 6760
bf8d5d52 6761 parent = parent_mem_cgroup(memcg);
df2a4196 6762
bc50bcc6 6763 if (parent == root) {
c3d53200 6764 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6765 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6766 return;
bf8d5d52
RG
6767 }
6768
8a931f80
JW
6769 parent_usage = page_counter_read(&parent->memory);
6770
b3a7822e 6771 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6772 READ_ONCE(memcg->memory.min),
6773 READ_ONCE(parent->memory.emin),
b3a7822e 6774 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6775
b3a7822e 6776 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6777 READ_ONCE(memcg->memory.low),
6778 READ_ONCE(parent->memory.elow),
b3a7822e 6779 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6780}
6781
8f425e4e
MWO
6782static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6783 gfp_t gfp)
0add0c77 6784{
118f2875 6785 long nr_pages = folio_nr_pages(folio);
0add0c77
SB
6786 int ret;
6787
6788 ret = try_charge(memcg, gfp, nr_pages);
6789 if (ret)
6790 goto out;
6791
6792 css_get(&memcg->css);
118f2875 6793 commit_charge(folio, memcg);
0add0c77
SB
6794
6795 local_irq_disable();
6e0110c2 6796 mem_cgroup_charge_statistics(memcg, nr_pages);
8f425e4e 6797 memcg_check_events(memcg, folio_nid(folio));
0add0c77
SB
6798 local_irq_enable();
6799out:
6800 return ret;
6801}
6802
8f425e4e 6803int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
00501b53 6804{
0add0c77
SB
6805 struct mem_cgroup *memcg;
6806 int ret;
00501b53 6807
0add0c77 6808 memcg = get_mem_cgroup_from_mm(mm);
8f425e4e 6809 ret = charge_memcg(folio, memcg, gfp);
0add0c77 6810 css_put(&memcg->css);
2d1c4980 6811
0add0c77
SB
6812 return ret;
6813}
e993d905 6814
0add0c77
SB
6815/**
6816 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6817 * @page: page to charge
6818 * @mm: mm context of the victim
6819 * @gfp: reclaim mode
6820 * @entry: swap entry for which the page is allocated
6821 *
6822 * This function charges a page allocated for swapin. Please call this before
6823 * adding the page to the swapcache.
6824 *
6825 * Returns 0 on success. Otherwise, an error code is returned.
6826 */
6827int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6828 gfp_t gfp, swp_entry_t entry)
6829{
8f425e4e 6830 struct folio *folio = page_folio(page);
0add0c77
SB
6831 struct mem_cgroup *memcg;
6832 unsigned short id;
6833 int ret;
00501b53 6834
0add0c77
SB
6835 if (mem_cgroup_disabled())
6836 return 0;
00501b53 6837
0add0c77
SB
6838 id = lookup_swap_cgroup_id(entry);
6839 rcu_read_lock();
6840 memcg = mem_cgroup_from_id(id);
6841 if (!memcg || !css_tryget_online(&memcg->css))
6842 memcg = get_mem_cgroup_from_mm(mm);
6843 rcu_read_unlock();
00501b53 6844
8f425e4e 6845 ret = charge_memcg(folio, memcg, gfp);
6abb5a86 6846
0add0c77
SB
6847 css_put(&memcg->css);
6848 return ret;
6849}
00501b53 6850
0add0c77
SB
6851/*
6852 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6853 * @entry: swap entry for which the page is charged
6854 *
6855 * Call this function after successfully adding the charged page to swapcache.
6856 *
6857 * Note: This function assumes the page for which swap slot is being uncharged
6858 * is order 0 page.
6859 */
6860void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6861{
cae3af62
MS
6862 /*
6863 * Cgroup1's unified memory+swap counter has been charged with the
6864 * new swapcache page, finish the transfer by uncharging the swap
6865 * slot. The swap slot would also get uncharged when it dies, but
6866 * it can stick around indefinitely and we'd count the page twice
6867 * the entire time.
6868 *
6869 * Cgroup2 has separate resource counters for memory and swap,
6870 * so this is a non-issue here. Memory and swap charge lifetimes
6871 * correspond 1:1 to page and swap slot lifetimes: we charge the
6872 * page to memory here, and uncharge swap when the slot is freed.
6873 */
0add0c77 6874 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
6875 /*
6876 * The swap entry might not get freed for a long time,
6877 * let's not wait for it. The page already received a
6878 * memory+swap charge, drop the swap entry duplicate.
6879 */
0add0c77 6880 mem_cgroup_uncharge_swap(entry, 1);
00501b53 6881 }
3fea5a49
JW
6882}
6883
a9d5adee
JG
6884struct uncharge_gather {
6885 struct mem_cgroup *memcg;
b4e0b68f 6886 unsigned long nr_memory;
a9d5adee 6887 unsigned long pgpgout;
a9d5adee 6888 unsigned long nr_kmem;
8e88bd2d 6889 int nid;
a9d5adee
JG
6890};
6891
6892static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6893{
a9d5adee
JG
6894 memset(ug, 0, sizeof(*ug));
6895}
6896
6897static void uncharge_batch(const struct uncharge_gather *ug)
6898{
747db954
JW
6899 unsigned long flags;
6900
b4e0b68f
MS
6901 if (ug->nr_memory) {
6902 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 6903 if (do_memsw_account())
b4e0b68f 6904 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a8c49af3
YA
6905 if (ug->nr_kmem)
6906 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
a9d5adee 6907 memcg_oom_recover(ug->memcg);
ce00a967 6908 }
747db954
JW
6909
6910 local_irq_save(flags);
c9019e9b 6911 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 6912 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
8e88bd2d 6913 memcg_check_events(ug->memcg, ug->nid);
747db954 6914 local_irq_restore(flags);
f1796544 6915
c4ed6ebf 6916 /* drop reference from uncharge_folio */
f1796544 6917 css_put(&ug->memcg->css);
a9d5adee
JG
6918}
6919
c4ed6ebf 6920static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
a9d5adee 6921{
c4ed6ebf 6922 long nr_pages;
b4e0b68f
MS
6923 struct mem_cgroup *memcg;
6924 struct obj_cgroup *objcg;
9f762dbe 6925
c4ed6ebf 6926 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
a9d5adee 6927
a9d5adee
JG
6928 /*
6929 * Nobody should be changing or seriously looking at
c4ed6ebf
MWO
6930 * folio memcg or objcg at this point, we have fully
6931 * exclusive access to the folio.
a9d5adee 6932 */
fead2b86 6933 if (folio_memcg_kmem(folio)) {
1b7e4464 6934 objcg = __folio_objcg(folio);
b4e0b68f
MS
6935 /*
6936 * This get matches the put at the end of the function and
6937 * kmem pages do not hold memcg references anymore.
6938 */
6939 memcg = get_mem_cgroup_from_objcg(objcg);
6940 } else {
1b7e4464 6941 memcg = __folio_memcg(folio);
b4e0b68f 6942 }
a9d5adee 6943
b4e0b68f
MS
6944 if (!memcg)
6945 return;
6946
6947 if (ug->memcg != memcg) {
a9d5adee
JG
6948 if (ug->memcg) {
6949 uncharge_batch(ug);
6950 uncharge_gather_clear(ug);
6951 }
b4e0b68f 6952 ug->memcg = memcg;
c4ed6ebf 6953 ug->nid = folio_nid(folio);
f1796544
MH
6954
6955 /* pairs with css_put in uncharge_batch */
b4e0b68f 6956 css_get(&memcg->css);
a9d5adee
JG
6957 }
6958
c4ed6ebf 6959 nr_pages = folio_nr_pages(folio);
a9d5adee 6960
fead2b86 6961 if (folio_memcg_kmem(folio)) {
b4e0b68f 6962 ug->nr_memory += nr_pages;
9f762dbe 6963 ug->nr_kmem += nr_pages;
b4e0b68f 6964
c4ed6ebf 6965 folio->memcg_data = 0;
b4e0b68f
MS
6966 obj_cgroup_put(objcg);
6967 } else {
6968 /* LRU pages aren't accounted at the root level */
6969 if (!mem_cgroup_is_root(memcg))
6970 ug->nr_memory += nr_pages;
18b2db3b 6971 ug->pgpgout++;
a9d5adee 6972
c4ed6ebf 6973 folio->memcg_data = 0;
b4e0b68f
MS
6974 }
6975
6976 css_put(&memcg->css);
747db954
JW
6977}
6978
bbc6b703 6979void __mem_cgroup_uncharge(struct folio *folio)
0a31bc97 6980{
a9d5adee
JG
6981 struct uncharge_gather ug;
6982
bbc6b703
MWO
6983 /* Don't touch folio->lru of any random page, pre-check: */
6984 if (!folio_memcg(folio))
0a31bc97
JW
6985 return;
6986
a9d5adee 6987 uncharge_gather_clear(&ug);
bbc6b703 6988 uncharge_folio(folio, &ug);
a9d5adee 6989 uncharge_batch(&ug);
747db954 6990}
0a31bc97 6991
747db954 6992/**
2c8d8f97 6993 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
6994 * @page_list: list of pages to uncharge
6995 *
6996 * Uncharge a list of pages previously charged with
2c8d8f97 6997 * __mem_cgroup_charge().
747db954 6998 */
2c8d8f97 6999void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 7000{
c41a40b6 7001 struct uncharge_gather ug;
c4ed6ebf 7002 struct folio *folio;
c41a40b6 7003
c41a40b6 7004 uncharge_gather_clear(&ug);
c4ed6ebf
MWO
7005 list_for_each_entry(folio, page_list, lru)
7006 uncharge_folio(folio, &ug);
c41a40b6
MS
7007 if (ug.memcg)
7008 uncharge_batch(&ug);
0a31bc97
JW
7009}
7010
7011/**
d21bba2b
MWO
7012 * mem_cgroup_migrate - Charge a folio's replacement.
7013 * @old: Currently circulating folio.
7014 * @new: Replacement folio.
0a31bc97 7015 *
d21bba2b 7016 * Charge @new as a replacement folio for @old. @old will
6a93ca8f 7017 * be uncharged upon free.
0a31bc97 7018 *
d21bba2b 7019 * Both folios must be locked, @new->mapping must be set up.
0a31bc97 7020 */
d21bba2b 7021void mem_cgroup_migrate(struct folio *old, struct folio *new)
0a31bc97 7022{
29833315 7023 struct mem_cgroup *memcg;
d21bba2b 7024 long nr_pages = folio_nr_pages(new);
d93c4130 7025 unsigned long flags;
0a31bc97 7026
d21bba2b
MWO
7027 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7028 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7029 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7030 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
0a31bc97
JW
7031
7032 if (mem_cgroup_disabled())
7033 return;
7034
d21bba2b
MWO
7035 /* Page cache replacement: new folio already charged? */
7036 if (folio_memcg(new))
0a31bc97
JW
7037 return;
7038
d21bba2b
MWO
7039 memcg = folio_memcg(old);
7040 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
29833315 7041 if (!memcg)
0a31bc97
JW
7042 return;
7043
44b7a8d3 7044 /* Force-charge the new page. The old one will be freed soon */
8dc87c7d
MS
7045 if (!mem_cgroup_is_root(memcg)) {
7046 page_counter_charge(&memcg->memory, nr_pages);
7047 if (do_memsw_account())
7048 page_counter_charge(&memcg->memsw, nr_pages);
7049 }
0a31bc97 7050
1a3e1f40 7051 css_get(&memcg->css);
d21bba2b 7052 commit_charge(new, memcg);
44b7a8d3 7053
d93c4130 7054 local_irq_save(flags);
6e0110c2 7055 mem_cgroup_charge_statistics(memcg, nr_pages);
d21bba2b 7056 memcg_check_events(memcg, folio_nid(new));
d93c4130 7057 local_irq_restore(flags);
0a31bc97
JW
7058}
7059
ef12947c 7060DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
7061EXPORT_SYMBOL(memcg_sockets_enabled_key);
7062
2d758073 7063void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
7064{
7065 struct mem_cgroup *memcg;
7066
2d758073
JW
7067 if (!mem_cgroup_sockets_enabled)
7068 return;
7069
e876ecc6 7070 /* Do not associate the sock with unrelated interrupted task's memcg. */
086f694a 7071 if (!in_task())
e876ecc6
SB
7072 return;
7073
11092087
JW
7074 rcu_read_lock();
7075 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
7076 if (memcg == root_mem_cgroup)
7077 goto out;
0db15298 7078 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7079 goto out;
8965aa28 7080 if (css_tryget(&memcg->css))
11092087 7081 sk->sk_memcg = memcg;
f7e1cb6e 7082out:
11092087
JW
7083 rcu_read_unlock();
7084}
11092087 7085
2d758073 7086void mem_cgroup_sk_free(struct sock *sk)
11092087 7087{
2d758073
JW
7088 if (sk->sk_memcg)
7089 css_put(&sk->sk_memcg->css);
11092087
JW
7090}
7091
7092/**
7093 * mem_cgroup_charge_skmem - charge socket memory
7094 * @memcg: memcg to charge
7095 * @nr_pages: number of pages to charge
4b1327be 7096 * @gfp_mask: reclaim mode
11092087
JW
7097 *
7098 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 7099 * @memcg's configured limit, %false if it doesn't.
11092087 7100 */
4b1327be
WW
7101bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7102 gfp_t gfp_mask)
11092087 7103{
f7e1cb6e 7104 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7105 struct page_counter *fail;
f7e1cb6e 7106
0db15298
JW
7107 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7108 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7109 return true;
7110 }
0db15298 7111 memcg->tcpmem_pressure = 1;
4b1327be
WW
7112 if (gfp_mask & __GFP_NOFAIL) {
7113 page_counter_charge(&memcg->tcpmem, nr_pages);
7114 return true;
7115 }
f7e1cb6e 7116 return false;
11092087 7117 }
d886f4e4 7118
4b1327be
WW
7119 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7120 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7121 return true;
4b1327be 7122 }
f7e1cb6e 7123
11092087
JW
7124 return false;
7125}
7126
7127/**
7128 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7129 * @memcg: memcg to uncharge
7130 * @nr_pages: number of pages to uncharge
11092087
JW
7131 */
7132void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7133{
f7e1cb6e 7134 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7135 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7136 return;
7137 }
d886f4e4 7138
c9019e9b 7139 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7140
475d0487 7141 refill_stock(memcg, nr_pages);
11092087
JW
7142}
7143
f7e1cb6e
JW
7144static int __init cgroup_memory(char *s)
7145{
7146 char *token;
7147
7148 while ((token = strsep(&s, ",")) != NULL) {
7149 if (!*token)
7150 continue;
7151 if (!strcmp(token, "nosocket"))
7152 cgroup_memory_nosocket = true;
04823c83
VD
7153 if (!strcmp(token, "nokmem"))
7154 cgroup_memory_nokmem = true;
f7e1cb6e 7155 }
460a79e1 7156 return 1;
f7e1cb6e
JW
7157}
7158__setup("cgroup.memory=", cgroup_memory);
11092087 7159
2d11085e 7160/*
1081312f
MH
7161 * subsys_initcall() for memory controller.
7162 *
308167fc
SAS
7163 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7164 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7165 * basically everything that doesn't depend on a specific mem_cgroup structure
7166 * should be initialized from here.
2d11085e
MH
7167 */
7168static int __init mem_cgroup_init(void)
7169{
95a045f6
JW
7170 int cpu, node;
7171
f3344adf
MS
7172 /*
7173 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7174 * used for per-memcg-per-cpu caching of per-node statistics. In order
7175 * to work fine, we should make sure that the overfill threshold can't
7176 * exceed S32_MAX / PAGE_SIZE.
7177 */
7178 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7179
308167fc
SAS
7180 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7181 memcg_hotplug_cpu_dead);
95a045f6
JW
7182
7183 for_each_possible_cpu(cpu)
7184 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7185 drain_local_stock);
7186
7187 for_each_node(node) {
7188 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7189
7190 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7191 node_online(node) ? node : NUMA_NO_NODE);
7192
ef8f2327 7193 rtpn->rb_root = RB_ROOT;
fa90b2fd 7194 rtpn->rb_rightmost = NULL;
ef8f2327 7195 spin_lock_init(&rtpn->lock);
95a045f6
JW
7196 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7197 }
7198
2d11085e
MH
7199 return 0;
7200}
7201subsys_initcall(mem_cgroup_init);
21afa38e
JW
7202
7203#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7204static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7205{
1c2d479a 7206 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7207 /*
7208 * The root cgroup cannot be destroyed, so it's refcount must
7209 * always be >= 1.
7210 */
7211 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7212 VM_BUG_ON(1);
7213 break;
7214 }
7215 memcg = parent_mem_cgroup(memcg);
7216 if (!memcg)
7217 memcg = root_mem_cgroup;
7218 }
7219 return memcg;
7220}
7221
21afa38e
JW
7222/**
7223 * mem_cgroup_swapout - transfer a memsw charge to swap
3ecb0087 7224 * @folio: folio whose memsw charge to transfer
21afa38e
JW
7225 * @entry: swap entry to move the charge to
7226 *
3ecb0087 7227 * Transfer the memsw charge of @folio to @entry.
21afa38e 7228 */
3ecb0087 7229void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
21afa38e 7230{
1f47b61f 7231 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7232 unsigned int nr_entries;
21afa38e
JW
7233 unsigned short oldid;
7234
3ecb0087
MWO
7235 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7236 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
21afa38e 7237
76358ab5
AS
7238 if (mem_cgroup_disabled())
7239 return;
7240
2d1c4980 7241 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7242 return;
7243
3ecb0087 7244 memcg = folio_memcg(folio);
21afa38e 7245
3ecb0087 7246 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
21afa38e
JW
7247 if (!memcg)
7248 return;
7249
1f47b61f
VD
7250 /*
7251 * In case the memcg owning these pages has been offlined and doesn't
7252 * have an ID allocated to it anymore, charge the closest online
7253 * ancestor for the swap instead and transfer the memory+swap charge.
7254 */
7255 swap_memcg = mem_cgroup_id_get_online(memcg);
3ecb0087 7256 nr_entries = folio_nr_pages(folio);
d6810d73
HY
7257 /* Get references for the tail pages, too */
7258 if (nr_entries > 1)
7259 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7260 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7261 nr_entries);
3ecb0087 7262 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7263 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7264
3ecb0087 7265 folio->memcg_data = 0;
21afa38e
JW
7266
7267 if (!mem_cgroup_is_root(memcg))
d6810d73 7268 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7269
2d1c4980 7270 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7271 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7272 page_counter_charge(&swap_memcg->memsw, nr_entries);
7273 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7274 }
7275
ce9ce665
SAS
7276 /*
7277 * Interrupts should be disabled here because the caller holds the
b93b0163 7278 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7279 * important here to have the interrupts disabled because it is the
b93b0163 7280 * only synchronisation we have for updating the per-CPU variables.
ce9ce665 7281 */
be3e67b5 7282 memcg_stats_lock();
6e0110c2 7283 mem_cgroup_charge_statistics(memcg, -nr_entries);
be3e67b5 7284 memcg_stats_unlock();
3ecb0087 7285 memcg_check_events(memcg, folio_nid(folio));
73f576c0 7286
1a3e1f40 7287 css_put(&memcg->css);
21afa38e
JW
7288}
7289
38d8b4e6 7290/**
e2e3fdc7
MWO
7291 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7292 * @folio: folio being added to swap
37e84351
VD
7293 * @entry: swap entry to charge
7294 *
e2e3fdc7 7295 * Try to charge @folio's memcg for the swap space at @entry.
37e84351
VD
7296 *
7297 * Returns 0 on success, -ENOMEM on failure.
7298 */
e2e3fdc7 7299int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
37e84351 7300{
e2e3fdc7 7301 unsigned int nr_pages = folio_nr_pages(folio);
37e84351 7302 struct page_counter *counter;
38d8b4e6 7303 struct mem_cgroup *memcg;
37e84351
VD
7304 unsigned short oldid;
7305
2d1c4980 7306 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7307 return 0;
7308
e2e3fdc7 7309 memcg = folio_memcg(folio);
37e84351 7310
e2e3fdc7 7311 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
37e84351
VD
7312 if (!memcg)
7313 return 0;
7314
f3a53a3a
TH
7315 if (!entry.val) {
7316 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7317 return 0;
f3a53a3a 7318 }
bb98f2c5 7319
1f47b61f
VD
7320 memcg = mem_cgroup_id_get_online(memcg);
7321
2d1c4980 7322 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7323 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7324 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7325 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7326 mem_cgroup_id_put(memcg);
37e84351 7327 return -ENOMEM;
1f47b61f 7328 }
37e84351 7329
38d8b4e6
HY
7330 /* Get references for the tail pages, too */
7331 if (nr_pages > 1)
7332 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7333 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
e2e3fdc7 7334 VM_BUG_ON_FOLIO(oldid, folio);
c9019e9b 7335 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7336
37e84351
VD
7337 return 0;
7338}
7339
21afa38e 7340/**
01c4b28c 7341 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7342 * @entry: swap entry to uncharge
38d8b4e6 7343 * @nr_pages: the amount of swap space to uncharge
21afa38e 7344 */
01c4b28c 7345void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7346{
7347 struct mem_cgroup *memcg;
7348 unsigned short id;
7349
38d8b4e6 7350 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7351 rcu_read_lock();
adbe427b 7352 memcg = mem_cgroup_from_id(id);
21afa38e 7353 if (memcg) {
2d1c4980 7354 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7355 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7356 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7357 else
38d8b4e6 7358 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7359 }
c9019e9b 7360 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7361 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7362 }
7363 rcu_read_unlock();
7364}
7365
d8b38438
VD
7366long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7367{
7368 long nr_swap_pages = get_nr_swap_pages();
7369
eccb52e7 7370 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7371 return nr_swap_pages;
7372 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7373 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7374 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7375 page_counter_read(&memcg->swap));
7376 return nr_swap_pages;
7377}
7378
5ccc5aba
VD
7379bool mem_cgroup_swap_full(struct page *page)
7380{
7381 struct mem_cgroup *memcg;
7382
7383 VM_BUG_ON_PAGE(!PageLocked(page), page);
7384
7385 if (vm_swap_full())
7386 return true;
eccb52e7 7387 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7388 return false;
7389
bcfe06bf 7390 memcg = page_memcg(page);
5ccc5aba
VD
7391 if (!memcg)
7392 return false;
7393
4b82ab4f
JK
7394 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7395 unsigned long usage = page_counter_read(&memcg->swap);
7396
7397 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7398 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7399 return true;
4b82ab4f 7400 }
5ccc5aba
VD
7401
7402 return false;
7403}
7404
eccb52e7 7405static int __init setup_swap_account(char *s)
21afa38e
JW
7406{
7407 if (!strcmp(s, "1"))
5ab92901 7408 cgroup_memory_noswap = false;
21afa38e 7409 else if (!strcmp(s, "0"))
5ab92901 7410 cgroup_memory_noswap = true;
21afa38e
JW
7411 return 1;
7412}
eccb52e7 7413__setup("swapaccount=", setup_swap_account);
21afa38e 7414
37e84351
VD
7415static u64 swap_current_read(struct cgroup_subsys_state *css,
7416 struct cftype *cft)
7417{
7418 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7419
7420 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7421}
7422
4b82ab4f
JK
7423static int swap_high_show(struct seq_file *m, void *v)
7424{
7425 return seq_puts_memcg_tunable(m,
7426 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7427}
7428
7429static ssize_t swap_high_write(struct kernfs_open_file *of,
7430 char *buf, size_t nbytes, loff_t off)
7431{
7432 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7433 unsigned long high;
7434 int err;
7435
7436 buf = strstrip(buf);
7437 err = page_counter_memparse(buf, "max", &high);
7438 if (err)
7439 return err;
7440
7441 page_counter_set_high(&memcg->swap, high);
7442
7443 return nbytes;
7444}
7445
37e84351
VD
7446static int swap_max_show(struct seq_file *m, void *v)
7447{
677dc973
CD
7448 return seq_puts_memcg_tunable(m,
7449 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7450}
7451
7452static ssize_t swap_max_write(struct kernfs_open_file *of,
7453 char *buf, size_t nbytes, loff_t off)
7454{
7455 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7456 unsigned long max;
7457 int err;
7458
7459 buf = strstrip(buf);
7460 err = page_counter_memparse(buf, "max", &max);
7461 if (err)
7462 return err;
7463
be09102b 7464 xchg(&memcg->swap.max, max);
37e84351
VD
7465
7466 return nbytes;
7467}
7468
f3a53a3a
TH
7469static int swap_events_show(struct seq_file *m, void *v)
7470{
aa9694bb 7471 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7472
4b82ab4f
JK
7473 seq_printf(m, "high %lu\n",
7474 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7475 seq_printf(m, "max %lu\n",
7476 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7477 seq_printf(m, "fail %lu\n",
7478 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7479
7480 return 0;
7481}
7482
37e84351
VD
7483static struct cftype swap_files[] = {
7484 {
7485 .name = "swap.current",
7486 .flags = CFTYPE_NOT_ON_ROOT,
7487 .read_u64 = swap_current_read,
7488 },
4b82ab4f
JK
7489 {
7490 .name = "swap.high",
7491 .flags = CFTYPE_NOT_ON_ROOT,
7492 .seq_show = swap_high_show,
7493 .write = swap_high_write,
7494 },
37e84351
VD
7495 {
7496 .name = "swap.max",
7497 .flags = CFTYPE_NOT_ON_ROOT,
7498 .seq_show = swap_max_show,
7499 .write = swap_max_write,
7500 },
f3a53a3a
TH
7501 {
7502 .name = "swap.events",
7503 .flags = CFTYPE_NOT_ON_ROOT,
7504 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7505 .seq_show = swap_events_show,
7506 },
37e84351
VD
7507 { } /* terminate */
7508};
7509
eccb52e7 7510static struct cftype memsw_files[] = {
21afa38e
JW
7511 {
7512 .name = "memsw.usage_in_bytes",
7513 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7514 .read_u64 = mem_cgroup_read_u64,
7515 },
7516 {
7517 .name = "memsw.max_usage_in_bytes",
7518 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7519 .write = mem_cgroup_reset,
7520 .read_u64 = mem_cgroup_read_u64,
7521 },
7522 {
7523 .name = "memsw.limit_in_bytes",
7524 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7525 .write = mem_cgroup_write,
7526 .read_u64 = mem_cgroup_read_u64,
7527 },
7528 {
7529 .name = "memsw.failcnt",
7530 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7531 .write = mem_cgroup_reset,
7532 .read_u64 = mem_cgroup_read_u64,
7533 },
7534 { }, /* terminate */
7535};
7536
f4840ccf
JW
7537#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7538/**
7539 * obj_cgroup_may_zswap - check if this cgroup can zswap
7540 * @objcg: the object cgroup
7541 *
7542 * Check if the hierarchical zswap limit has been reached.
7543 *
7544 * This doesn't check for specific headroom, and it is not atomic
7545 * either. But with zswap, the size of the allocation is only known
7546 * once compression has occured, and this optimistic pre-check avoids
7547 * spending cycles on compression when there is already no room left
7548 * or zswap is disabled altogether somewhere in the hierarchy.
7549 */
7550bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7551{
7552 struct mem_cgroup *memcg, *original_memcg;
7553 bool ret = true;
7554
7555 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7556 return true;
7557
7558 original_memcg = get_mem_cgroup_from_objcg(objcg);
7559 for (memcg = original_memcg; memcg != root_mem_cgroup;
7560 memcg = parent_mem_cgroup(memcg)) {
7561 unsigned long max = READ_ONCE(memcg->zswap_max);
7562 unsigned long pages;
7563
7564 if (max == PAGE_COUNTER_MAX)
7565 continue;
7566 if (max == 0) {
7567 ret = false;
7568 break;
7569 }
7570
7571 cgroup_rstat_flush(memcg->css.cgroup);
7572 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7573 if (pages < max)
7574 continue;
7575 ret = false;
7576 break;
7577 }
7578 mem_cgroup_put(original_memcg);
7579 return ret;
7580}
7581
7582/**
7583 * obj_cgroup_charge_zswap - charge compression backend memory
7584 * @objcg: the object cgroup
7585 * @size: size of compressed object
7586 *
7587 * This forces the charge after obj_cgroup_may_swap() allowed
7588 * compression and storage in zwap for this cgroup to go ahead.
7589 */
7590void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7591{
7592 struct mem_cgroup *memcg;
7593
7594 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7595 return;
7596
7597 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7598
7599 /* PF_MEMALLOC context, charging must succeed */
7600 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7601 VM_WARN_ON_ONCE(1);
7602
7603 rcu_read_lock();
7604 memcg = obj_cgroup_memcg(objcg);
7605 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7606 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7607 rcu_read_unlock();
7608}
7609
7610/**
7611 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7612 * @objcg: the object cgroup
7613 * @size: size of compressed object
7614 *
7615 * Uncharges zswap memory on page in.
7616 */
7617void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7618{
7619 struct mem_cgroup *memcg;
7620
7621 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7622 return;
7623
7624 obj_cgroup_uncharge(objcg, size);
7625
7626 rcu_read_lock();
7627 memcg = obj_cgroup_memcg(objcg);
7628 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7629 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7630 rcu_read_unlock();
7631}
7632
7633static u64 zswap_current_read(struct cgroup_subsys_state *css,
7634 struct cftype *cft)
7635{
7636 cgroup_rstat_flush(css->cgroup);
7637 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7638}
7639
7640static int zswap_max_show(struct seq_file *m, void *v)
7641{
7642 return seq_puts_memcg_tunable(m,
7643 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7644}
7645
7646static ssize_t zswap_max_write(struct kernfs_open_file *of,
7647 char *buf, size_t nbytes, loff_t off)
7648{
7649 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7650 unsigned long max;
7651 int err;
7652
7653 buf = strstrip(buf);
7654 err = page_counter_memparse(buf, "max", &max);
7655 if (err)
7656 return err;
7657
7658 xchg(&memcg->zswap_max, max);
7659
7660 return nbytes;
7661}
7662
7663static struct cftype zswap_files[] = {
7664 {
7665 .name = "zswap.current",
7666 .flags = CFTYPE_NOT_ON_ROOT,
7667 .read_u64 = zswap_current_read,
7668 },
7669 {
7670 .name = "zswap.max",
7671 .flags = CFTYPE_NOT_ON_ROOT,
7672 .seq_show = zswap_max_show,
7673 .write = zswap_max_write,
7674 },
7675 { } /* terminate */
7676};
7677#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7678
82ff165c
BS
7679/*
7680 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7681 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7682 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7683 * boot parameter. This may result in premature OOPS inside
7684 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7685 */
21afa38e
JW
7686static int __init mem_cgroup_swap_init(void)
7687{
2d1c4980
JW
7688 /* No memory control -> no swap control */
7689 if (mem_cgroup_disabled())
7690 cgroup_memory_noswap = true;
7691
7692 if (cgroup_memory_noswap)
eccb52e7
JW
7693 return 0;
7694
7695 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7696 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
f4840ccf
JW
7697#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7698 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7699#endif
21afa38e
JW
7700 return 0;
7701}
82ff165c 7702core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7703
7704#endif /* CONFIG_MEMCG_SWAP */