]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/memcontrol.c
Merge branches 'acpi-scan' and 'acpi-prm'
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
b69408e8 56#include <linux/mm_inline.h>
5d1ea48b 57#include <linux/swap_cgroup.h>
cdec2e42 58#include <linux/cpu.h>
158e0a2d 59#include <linux/oom.h>
0056f4e6 60#include <linux/lockdep.h>
79bd9814 61#include <linux/file.h>
b23afb93 62#include <linux/tracehook.h>
0e4b01df 63#include <linux/psi.h>
c8713d0b 64#include <linux/seq_buf.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
f35c3a8e 68#include "slab.h"
8cdea7c0 69
7c0f6ba6 70#include <linux/uaccess.h>
8697d331 71
cc8e970c
KM
72#include <trace/events/vmscan.h>
73
073219e9
TH
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 76
7d828602
JW
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
37d5985c
RG
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
c74d40e8 81EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
37d5985c 82
f7e1cb6e 83/* Socket memory accounting disabled? */
0f0cace3 84static bool cgroup_memory_nosocket __ro_after_init;
f7e1cb6e 85
04823c83 86/* Kernel memory accounting disabled? */
e267992f 87bool cgroup_memory_nokmem __ro_after_init;
04823c83 88
21afa38e 89/* Whether the swap controller is active */
c255a458 90#ifdef CONFIG_MEMCG_SWAP
0f0cace3 91bool cgroup_memory_noswap __ro_after_init;
c077719b 92#else
eccb52e7 93#define cgroup_memory_noswap 1
2d1c4980 94#endif
c077719b 95
97b27821
TH
96#ifdef CONFIG_CGROUP_WRITEBACK
97static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98#endif
99
7941d214
JW
100/* Whether legacy memory+swap accounting is active */
101static bool do_memsw_account(void)
102{
eccb52e7 103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
104}
105
aa48e47e
SB
106/* memcg and lruvec stats flushing */
107static void flush_memcg_stats_dwork(struct work_struct *w);
108static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
109static void flush_memcg_stats_work(struct work_struct *w);
110static DECLARE_WORK(stats_flush_work, flush_memcg_stats_work);
111static DEFINE_PER_CPU(unsigned int, stats_flush_threshold);
112static DEFINE_SPINLOCK(stats_flush_lock);
113
a0db00fc
KS
114#define THRESHOLDS_EVENTS_TARGET 128
115#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 116
bb4cc1a8
AM
117/*
118 * Cgroups above their limits are maintained in a RB-Tree, independent of
119 * their hierarchy representation
120 */
121
ef8f2327 122struct mem_cgroup_tree_per_node {
bb4cc1a8 123 struct rb_root rb_root;
fa90b2fd 124 struct rb_node *rb_rightmost;
bb4cc1a8
AM
125 spinlock_t lock;
126};
127
bb4cc1a8
AM
128struct mem_cgroup_tree {
129 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
130};
131
132static struct mem_cgroup_tree soft_limit_tree __read_mostly;
133
9490ff27
KH
134/* for OOM */
135struct mem_cgroup_eventfd_list {
136 struct list_head list;
137 struct eventfd_ctx *eventfd;
138};
2e72b634 139
79bd9814
TH
140/*
141 * cgroup_event represents events which userspace want to receive.
142 */
3bc942f3 143struct mem_cgroup_event {
79bd9814 144 /*
59b6f873 145 * memcg which the event belongs to.
79bd9814 146 */
59b6f873 147 struct mem_cgroup *memcg;
79bd9814
TH
148 /*
149 * eventfd to signal userspace about the event.
150 */
151 struct eventfd_ctx *eventfd;
152 /*
153 * Each of these stored in a list by the cgroup.
154 */
155 struct list_head list;
fba94807
TH
156 /*
157 * register_event() callback will be used to add new userspace
158 * waiter for changes related to this event. Use eventfd_signal()
159 * on eventfd to send notification to userspace.
160 */
59b6f873 161 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 162 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
163 /*
164 * unregister_event() callback will be called when userspace closes
165 * the eventfd or on cgroup removing. This callback must be set,
166 * if you want provide notification functionality.
167 */
59b6f873 168 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 169 struct eventfd_ctx *eventfd);
79bd9814
TH
170 /*
171 * All fields below needed to unregister event when
172 * userspace closes eventfd.
173 */
174 poll_table pt;
175 wait_queue_head_t *wqh;
ac6424b9 176 wait_queue_entry_t wait;
79bd9814
TH
177 struct work_struct remove;
178};
179
c0ff4b85
R
180static void mem_cgroup_threshold(struct mem_cgroup *memcg);
181static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 182
7dc74be0
DN
183/* Stuffs for move charges at task migration. */
184/*
1dfab5ab 185 * Types of charges to be moved.
7dc74be0 186 */
1dfab5ab
JW
187#define MOVE_ANON 0x1U
188#define MOVE_FILE 0x2U
189#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 190
4ffef5fe
DN
191/* "mc" and its members are protected by cgroup_mutex */
192static struct move_charge_struct {
b1dd693e 193 spinlock_t lock; /* for from, to */
264a0ae1 194 struct mm_struct *mm;
4ffef5fe
DN
195 struct mem_cgroup *from;
196 struct mem_cgroup *to;
1dfab5ab 197 unsigned long flags;
4ffef5fe 198 unsigned long precharge;
854ffa8d 199 unsigned long moved_charge;
483c30b5 200 unsigned long moved_swap;
8033b97c
DN
201 struct task_struct *moving_task; /* a task moving charges */
202 wait_queue_head_t waitq; /* a waitq for other context */
203} mc = {
2bd9bb20 204 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
205 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
206};
4ffef5fe 207
4e416953
BS
208/*
209 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
210 * limit reclaim to prevent infinite loops, if they ever occur.
211 */
a0db00fc 212#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 213#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 214
8c7c6e34 215/* for encoding cft->private value on file */
86ae53e1
GC
216enum res_type {
217 _MEM,
218 _MEMSWAP,
219 _OOM_TYPE,
510fc4e1 220 _KMEM,
d55f90bf 221 _TCP,
86ae53e1
GC
222};
223
a0db00fc
KS
224#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
225#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 226#define MEMFILE_ATTR(val) ((val) & 0xffff)
f0953a1b 227/* Used for OOM notifier */
9490ff27 228#define OOM_CONTROL (0)
8c7c6e34 229
b05706f1
KT
230/*
231 * Iteration constructs for visiting all cgroups (under a tree). If
232 * loops are exited prematurely (break), mem_cgroup_iter_break() must
233 * be used for reference counting.
234 */
235#define for_each_mem_cgroup_tree(iter, root) \
236 for (iter = mem_cgroup_iter(root, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(root, iter, NULL))
239
240#define for_each_mem_cgroup(iter) \
241 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
242 iter != NULL; \
243 iter = mem_cgroup_iter(NULL, iter, NULL))
244
7775face
TH
245static inline bool should_force_charge(void)
246{
247 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
248 (current->flags & PF_EXITING);
249}
250
70ddf637
AV
251/* Some nice accessors for the vmpressure. */
252struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253{
254 if (!memcg)
255 memcg = root_mem_cgroup;
256 return &memcg->vmpressure;
257}
258
9647875b 259struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
70ddf637 260{
9647875b 261 return container_of(vmpr, struct mem_cgroup, vmpressure);
70ddf637
AV
262}
263
84c07d11 264#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
265extern spinlock_t css_set_lock;
266
4d5c8aed
RG
267bool mem_cgroup_kmem_disabled(void)
268{
269 return cgroup_memory_nokmem;
270}
271
f1286fae
MS
272static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
273 unsigned int nr_pages);
c1a660de 274
bf4f0599
RG
275static void obj_cgroup_release(struct percpu_ref *ref)
276{
277 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
bf4f0599
RG
278 unsigned int nr_bytes;
279 unsigned int nr_pages;
280 unsigned long flags;
281
282 /*
283 * At this point all allocated objects are freed, and
284 * objcg->nr_charged_bytes can't have an arbitrary byte value.
285 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
286 *
287 * The following sequence can lead to it:
288 * 1) CPU0: objcg == stock->cached_objcg
289 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
290 * PAGE_SIZE bytes are charged
291 * 3) CPU1: a process from another memcg is allocating something,
292 * the stock if flushed,
293 * objcg->nr_charged_bytes = PAGE_SIZE - 92
294 * 5) CPU0: we do release this object,
295 * 92 bytes are added to stock->nr_bytes
296 * 6) CPU0: stock is flushed,
297 * 92 bytes are added to objcg->nr_charged_bytes
298 *
299 * In the result, nr_charged_bytes == PAGE_SIZE.
300 * This page will be uncharged in obj_cgroup_release().
301 */
302 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
303 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
304 nr_pages = nr_bytes >> PAGE_SHIFT;
305
bf4f0599 306 if (nr_pages)
f1286fae 307 obj_cgroup_uncharge_pages(objcg, nr_pages);
271dd6b1
MS
308
309 spin_lock_irqsave(&css_set_lock, flags);
bf4f0599 310 list_del(&objcg->list);
bf4f0599
RG
311 spin_unlock_irqrestore(&css_set_lock, flags);
312
313 percpu_ref_exit(ref);
314 kfree_rcu(objcg, rcu);
315}
316
317static struct obj_cgroup *obj_cgroup_alloc(void)
318{
319 struct obj_cgroup *objcg;
320 int ret;
321
322 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
323 if (!objcg)
324 return NULL;
325
326 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
327 GFP_KERNEL);
328 if (ret) {
329 kfree(objcg);
330 return NULL;
331 }
332 INIT_LIST_HEAD(&objcg->list);
333 return objcg;
334}
335
336static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
337 struct mem_cgroup *parent)
338{
339 struct obj_cgroup *objcg, *iter;
340
341 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
342
343 spin_lock_irq(&css_set_lock);
344
9838354e
MS
345 /* 1) Ready to reparent active objcg. */
346 list_add(&objcg->list, &memcg->objcg_list);
347 /* 2) Reparent active objcg and already reparented objcgs to parent. */
348 list_for_each_entry(iter, &memcg->objcg_list, list)
349 WRITE_ONCE(iter->memcg, parent);
350 /* 3) Move already reparented objcgs to the parent's list */
bf4f0599
RG
351 list_splice(&memcg->objcg_list, &parent->objcg_list);
352
353 spin_unlock_irq(&css_set_lock);
354
355 percpu_ref_kill(&objcg->refcnt);
356}
357
55007d84 358/*
9855609b 359 * This will be used as a shrinker list's index.
b8627835
LZ
360 * The main reason for not using cgroup id for this:
361 * this works better in sparse environments, where we have a lot of memcgs,
362 * but only a few kmem-limited. Or also, if we have, for instance, 200
363 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
364 * 200 entry array for that.
55007d84 365 *
dbcf73e2
VD
366 * The current size of the caches array is stored in memcg_nr_cache_ids. It
367 * will double each time we have to increase it.
55007d84 368 */
dbcf73e2
VD
369static DEFINE_IDA(memcg_cache_ida);
370int memcg_nr_cache_ids;
749c5415 371
05257a1a
VD
372/* Protects memcg_nr_cache_ids */
373static DECLARE_RWSEM(memcg_cache_ids_sem);
374
375void memcg_get_cache_ids(void)
376{
377 down_read(&memcg_cache_ids_sem);
378}
379
380void memcg_put_cache_ids(void)
381{
382 up_read(&memcg_cache_ids_sem);
383}
384
55007d84
GC
385/*
386 * MIN_SIZE is different than 1, because we would like to avoid going through
387 * the alloc/free process all the time. In a small machine, 4 kmem-limited
388 * cgroups is a reasonable guess. In the future, it could be a parameter or
389 * tunable, but that is strictly not necessary.
390 *
b8627835 391 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
392 * this constant directly from cgroup, but it is understandable that this is
393 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 394 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
395 * increase ours as well if it increases.
396 */
397#define MEMCG_CACHES_MIN_SIZE 4
b8627835 398#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 399
d7f25f8a
GC
400/*
401 * A lot of the calls to the cache allocation functions are expected to be
272911a4 402 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
403 * conditional to this static branch, we'll have to allow modules that does
404 * kmem_cache_alloc and the such to see this symbol as well
405 */
ef12947c 406DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 407EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 408#endif
17cc4dfe 409
ad7fa852
TH
410/**
411 * mem_cgroup_css_from_page - css of the memcg associated with a page
412 * @page: page of interest
413 *
414 * If memcg is bound to the default hierarchy, css of the memcg associated
415 * with @page is returned. The returned css remains associated with @page
416 * until it is released.
417 *
418 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
419 * is returned.
ad7fa852
TH
420 */
421struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
422{
423 struct mem_cgroup *memcg;
424
bcfe06bf 425 memcg = page_memcg(page);
ad7fa852 426
9e10a130 427 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
428 memcg = root_mem_cgroup;
429
ad7fa852
TH
430 return &memcg->css;
431}
432
2fc04524
VD
433/**
434 * page_cgroup_ino - return inode number of the memcg a page is charged to
435 * @page: the page
436 *
437 * Look up the closest online ancestor of the memory cgroup @page is charged to
438 * and return its inode number or 0 if @page is not charged to any cgroup. It
439 * is safe to call this function without holding a reference to @page.
440 *
441 * Note, this function is inherently racy, because there is nothing to prevent
442 * the cgroup inode from getting torn down and potentially reallocated a moment
443 * after page_cgroup_ino() returns, so it only should be used by callers that
444 * do not care (such as procfs interfaces).
445 */
446ino_t page_cgroup_ino(struct page *page)
447{
448 struct mem_cgroup *memcg;
449 unsigned long ino = 0;
450
451 rcu_read_lock();
bcfe06bf 452 memcg = page_memcg_check(page);
286e04b8 453
2fc04524
VD
454 while (memcg && !(memcg->css.flags & CSS_ONLINE))
455 memcg = parent_mem_cgroup(memcg);
456 if (memcg)
457 ino = cgroup_ino(memcg->css.cgroup);
458 rcu_read_unlock();
459 return ino;
460}
461
ef8f2327
MG
462static struct mem_cgroup_per_node *
463mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 464{
97a6c37b 465 int nid = page_to_nid(page);
f64c3f54 466
ef8f2327 467 return memcg->nodeinfo[nid];
f64c3f54
BS
468}
469
ef8f2327
MG
470static struct mem_cgroup_tree_per_node *
471soft_limit_tree_node(int nid)
bb4cc1a8 472{
ef8f2327 473 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
474}
475
ef8f2327 476static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
477soft_limit_tree_from_page(struct page *page)
478{
479 int nid = page_to_nid(page);
bb4cc1a8 480
ef8f2327 481 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
482}
483
ef8f2327
MG
484static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
485 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 486 unsigned long new_usage_in_excess)
bb4cc1a8
AM
487{
488 struct rb_node **p = &mctz->rb_root.rb_node;
489 struct rb_node *parent = NULL;
ef8f2327 490 struct mem_cgroup_per_node *mz_node;
fa90b2fd 491 bool rightmost = true;
bb4cc1a8
AM
492
493 if (mz->on_tree)
494 return;
495
496 mz->usage_in_excess = new_usage_in_excess;
497 if (!mz->usage_in_excess)
498 return;
499 while (*p) {
500 parent = *p;
ef8f2327 501 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 502 tree_node);
fa90b2fd 503 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 504 p = &(*p)->rb_left;
fa90b2fd 505 rightmost = false;
378876b0 506 } else {
bb4cc1a8 507 p = &(*p)->rb_right;
378876b0 508 }
bb4cc1a8 509 }
fa90b2fd
DB
510
511 if (rightmost)
512 mctz->rb_rightmost = &mz->tree_node;
513
bb4cc1a8
AM
514 rb_link_node(&mz->tree_node, parent, p);
515 rb_insert_color(&mz->tree_node, &mctz->rb_root);
516 mz->on_tree = true;
517}
518
ef8f2327
MG
519static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
520 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
521{
522 if (!mz->on_tree)
523 return;
fa90b2fd
DB
524
525 if (&mz->tree_node == mctz->rb_rightmost)
526 mctz->rb_rightmost = rb_prev(&mz->tree_node);
527
bb4cc1a8
AM
528 rb_erase(&mz->tree_node, &mctz->rb_root);
529 mz->on_tree = false;
530}
531
ef8f2327
MG
532static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
533 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 534{
0a31bc97
JW
535 unsigned long flags;
536
537 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 538 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 539 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
540}
541
3e32cb2e
JW
542static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
543{
544 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 545 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
546 unsigned long excess = 0;
547
548 if (nr_pages > soft_limit)
549 excess = nr_pages - soft_limit;
550
551 return excess;
552}
bb4cc1a8
AM
553
554static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
555{
3e32cb2e 556 unsigned long excess;
ef8f2327
MG
557 struct mem_cgroup_per_node *mz;
558 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 559
e231875b 560 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
561 if (!mctz)
562 return;
bb4cc1a8
AM
563 /*
564 * Necessary to update all ancestors when hierarchy is used.
565 * because their event counter is not touched.
566 */
567 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 568 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 569 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
570 /*
571 * We have to update the tree if mz is on RB-tree or
572 * mem is over its softlimit.
573 */
574 if (excess || mz->on_tree) {
0a31bc97
JW
575 unsigned long flags;
576
577 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
578 /* if on-tree, remove it */
579 if (mz->on_tree)
cf2c8127 580 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
581 /*
582 * Insert again. mz->usage_in_excess will be updated.
583 * If excess is 0, no tree ops.
584 */
cf2c8127 585 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 586 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
587 }
588 }
589}
590
591static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
592{
ef8f2327
MG
593 struct mem_cgroup_tree_per_node *mctz;
594 struct mem_cgroup_per_node *mz;
595 int nid;
bb4cc1a8 596
e231875b 597 for_each_node(nid) {
a3747b53 598 mz = memcg->nodeinfo[nid];
ef8f2327 599 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
600 if (mctz)
601 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
602 }
603}
604
ef8f2327
MG
605static struct mem_cgroup_per_node *
606__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 607{
ef8f2327 608 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
609
610retry:
611 mz = NULL;
fa90b2fd 612 if (!mctz->rb_rightmost)
bb4cc1a8
AM
613 goto done; /* Nothing to reclaim from */
614
fa90b2fd
DB
615 mz = rb_entry(mctz->rb_rightmost,
616 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
617 /*
618 * Remove the node now but someone else can add it back,
619 * we will to add it back at the end of reclaim to its correct
620 * position in the tree.
621 */
cf2c8127 622 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 623 if (!soft_limit_excess(mz->memcg) ||
8965aa28 624 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
625 goto retry;
626done:
627 return mz;
628}
629
ef8f2327
MG
630static struct mem_cgroup_per_node *
631mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 632{
ef8f2327 633 struct mem_cgroup_per_node *mz;
bb4cc1a8 634
0a31bc97 635 spin_lock_irq(&mctz->lock);
bb4cc1a8 636 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 637 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
638 return mz;
639}
640
db9adbcb
JW
641/**
642 * __mod_memcg_state - update cgroup memory statistics
643 * @memcg: the memory cgroup
644 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
645 * @val: delta to add to the counter, can be negative
646 */
647void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
648{
db9adbcb
JW
649 if (mem_cgroup_disabled())
650 return;
651
2d146aa3
JW
652 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
653 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
db9adbcb
JW
654}
655
2d146aa3 656/* idx can be of type enum memcg_stat_item or node_stat_item. */
a18e6e6e
JW
657static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
658{
659 long x = 0;
660 int cpu;
661
662 for_each_possible_cpu(cpu)
2d146aa3 663 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
a18e6e6e
JW
664#ifdef CONFIG_SMP
665 if (x < 0)
666 x = 0;
667#endif
668 return x;
669}
670
eedc4e5a
RG
671void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
672 int val)
db9adbcb
JW
673{
674 struct mem_cgroup_per_node *pn;
42a30035 675 struct mem_cgroup *memcg;
db9adbcb 676
db9adbcb 677 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 678 memcg = pn->memcg;
db9adbcb
JW
679
680 /* Update memcg */
42a30035 681 __mod_memcg_state(memcg, idx, val);
db9adbcb 682
b4c46484 683 /* Update lruvec */
7e1c0d6f 684 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
aa48e47e
SB
685 if (!(__this_cpu_inc_return(stats_flush_threshold) % MEMCG_CHARGE_BATCH))
686 queue_work(system_unbound_wq, &stats_flush_work);
db9adbcb
JW
687}
688
eedc4e5a
RG
689/**
690 * __mod_lruvec_state - update lruvec memory statistics
691 * @lruvec: the lruvec
692 * @idx: the stat item
693 * @val: delta to add to the counter, can be negative
694 *
695 * The lruvec is the intersection of the NUMA node and a cgroup. This
696 * function updates the all three counters that are affected by a
697 * change of state at this level: per-node, per-cgroup, per-lruvec.
698 */
699void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
700 int val)
701{
702 /* Update node */
703 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
704
705 /* Update memcg and lruvec */
706 if (!mem_cgroup_disabled())
707 __mod_memcg_lruvec_state(lruvec, idx, val);
708}
709
c47d5032
SB
710void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
711 int val)
712{
713 struct page *head = compound_head(page); /* rmap on tail pages */
b4e0b68f 714 struct mem_cgroup *memcg;
c47d5032
SB
715 pg_data_t *pgdat = page_pgdat(page);
716 struct lruvec *lruvec;
717
b4e0b68f
MS
718 rcu_read_lock();
719 memcg = page_memcg(head);
c47d5032 720 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 721 if (!memcg) {
b4e0b68f 722 rcu_read_unlock();
c47d5032
SB
723 __mod_node_page_state(pgdat, idx, val);
724 return;
725 }
726
d635a69d 727 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032 728 __mod_lruvec_state(lruvec, idx, val);
b4e0b68f 729 rcu_read_unlock();
c47d5032 730}
f0c0c115 731EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 732
da3ceeff 733void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 734{
4f103c63 735 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
736 struct mem_cgroup *memcg;
737 struct lruvec *lruvec;
738
739 rcu_read_lock();
4f103c63 740 memcg = mem_cgroup_from_obj(p);
ec9f0238 741
8faeb1ff
MS
742 /*
743 * Untracked pages have no memcg, no lruvec. Update only the
744 * node. If we reparent the slab objects to the root memcg,
745 * when we free the slab object, we need to update the per-memcg
746 * vmstats to keep it correct for the root memcg.
747 */
748 if (!memcg) {
ec9f0238
RG
749 __mod_node_page_state(pgdat, idx, val);
750 } else {
867e5e1d 751 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
752 __mod_lruvec_state(lruvec, idx, val);
753 }
754 rcu_read_unlock();
755}
756
55927114
WL
757/*
758 * mod_objcg_mlstate() may be called with irq enabled, so
759 * mod_memcg_lruvec_state() should be used.
760 */
68ac5b3c
WL
761static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
762 struct pglist_data *pgdat,
763 enum node_stat_item idx, int nr)
fdbcb2a6
WL
764{
765 struct mem_cgroup *memcg;
766 struct lruvec *lruvec;
767
768 rcu_read_lock();
769 memcg = obj_cgroup_memcg(objcg);
770 lruvec = mem_cgroup_lruvec(memcg, pgdat);
55927114 771 mod_memcg_lruvec_state(lruvec, idx, nr);
fdbcb2a6
WL
772 rcu_read_unlock();
773}
774
db9adbcb
JW
775/**
776 * __count_memcg_events - account VM events in a cgroup
777 * @memcg: the memory cgroup
778 * @idx: the event item
f0953a1b 779 * @count: the number of events that occurred
db9adbcb
JW
780 */
781void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
782 unsigned long count)
783{
db9adbcb
JW
784 if (mem_cgroup_disabled())
785 return;
786
2d146aa3
JW
787 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
788 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
db9adbcb
JW
789}
790
42a30035 791static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 792{
2d146aa3 793 return READ_ONCE(memcg->vmstats.events[event]);
e9f8974f
JW
794}
795
42a30035
JW
796static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
797{
815744d7
JW
798 long x = 0;
799 int cpu;
800
801 for_each_possible_cpu(cpu)
2d146aa3 802 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
815744d7 803 return x;
42a30035
JW
804}
805
c0ff4b85 806static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 807 struct page *page,
3fba69a5 808 int nr_pages)
d52aa412 809{
e401f176
KH
810 /* pagein of a big page is an event. So, ignore page size */
811 if (nr_pages > 0)
c9019e9b 812 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 813 else {
c9019e9b 814 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
815 nr_pages = -nr_pages; /* for event */
816 }
e401f176 817
871789d4 818 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
819}
820
f53d7ce3
JW
821static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
822 enum mem_cgroup_events_target target)
7a159cc9
JW
823{
824 unsigned long val, next;
825
871789d4
CD
826 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
827 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 828 /* from time_after() in jiffies.h */
6a1a8b80 829 if ((long)(next - val) < 0) {
f53d7ce3
JW
830 switch (target) {
831 case MEM_CGROUP_TARGET_THRESH:
832 next = val + THRESHOLDS_EVENTS_TARGET;
833 break;
bb4cc1a8
AM
834 case MEM_CGROUP_TARGET_SOFTLIMIT:
835 next = val + SOFTLIMIT_EVENTS_TARGET;
836 break;
f53d7ce3
JW
837 default:
838 break;
839 }
871789d4 840 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 841 return true;
7a159cc9 842 }
f53d7ce3 843 return false;
d2265e6f
KH
844}
845
846/*
847 * Check events in order.
848 *
849 */
c0ff4b85 850static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
851{
852 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
853 if (unlikely(mem_cgroup_event_ratelimit(memcg,
854 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 855 bool do_softlimit;
f53d7ce3 856
bb4cc1a8
AM
857 do_softlimit = mem_cgroup_event_ratelimit(memcg,
858 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 859 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
860 if (unlikely(do_softlimit))
861 mem_cgroup_update_tree(memcg, page);
0a31bc97 862 }
d2265e6f
KH
863}
864
cf475ad2 865struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 866{
31a78f23
BS
867 /*
868 * mm_update_next_owner() may clear mm->owner to NULL
869 * if it races with swapoff, page migration, etc.
870 * So this can be called with p == NULL.
871 */
872 if (unlikely(!p))
873 return NULL;
874
073219e9 875 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 876}
33398cf2 877EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 878
04f94e3f
DS
879static __always_inline struct mem_cgroup *active_memcg(void)
880{
55a68c82 881 if (!in_task())
04f94e3f
DS
882 return this_cpu_read(int_active_memcg);
883 else
884 return current->active_memcg;
885}
886
d46eb14b
SB
887/**
888 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
889 * @mm: mm from which memcg should be extracted. It can be NULL.
890 *
04f94e3f
DS
891 * Obtain a reference on mm->memcg and returns it if successful. If mm
892 * is NULL, then the memcg is chosen as follows:
893 * 1) The active memcg, if set.
894 * 2) current->mm->memcg, if available
895 * 3) root memcg
896 * If mem_cgroup is disabled, NULL is returned.
d46eb14b
SB
897 */
898struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 899{
d46eb14b
SB
900 struct mem_cgroup *memcg;
901
902 if (mem_cgroup_disabled())
903 return NULL;
0b7f569e 904
2884b6b7
MS
905 /*
906 * Page cache insertions can happen without an
907 * actual mm context, e.g. during disk probing
908 * on boot, loopback IO, acct() writes etc.
909 *
910 * No need to css_get on root memcg as the reference
911 * counting is disabled on the root level in the
912 * cgroup core. See CSS_NO_REF.
913 */
04f94e3f
DS
914 if (unlikely(!mm)) {
915 memcg = active_memcg();
916 if (unlikely(memcg)) {
917 /* remote memcg must hold a ref */
918 css_get(&memcg->css);
919 return memcg;
920 }
921 mm = current->mm;
922 if (unlikely(!mm))
923 return root_mem_cgroup;
924 }
2884b6b7 925
54595fe2
KH
926 rcu_read_lock();
927 do {
2884b6b7
MS
928 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
929 if (unlikely(!memcg))
df381975 930 memcg = root_mem_cgroup;
00d484f3 931 } while (!css_tryget(&memcg->css));
54595fe2 932 rcu_read_unlock();
c0ff4b85 933 return memcg;
54595fe2 934}
d46eb14b
SB
935EXPORT_SYMBOL(get_mem_cgroup_from_mm);
936
4127c650
RG
937static __always_inline bool memcg_kmem_bypass(void)
938{
939 /* Allow remote memcg charging from any context. */
940 if (unlikely(active_memcg()))
941 return false;
942
943 /* Memcg to charge can't be determined. */
6126891c 944 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
4127c650
RG
945 return true;
946
947 return false;
948}
949
5660048c
JW
950/**
951 * mem_cgroup_iter - iterate over memory cgroup hierarchy
952 * @root: hierarchy root
953 * @prev: previously returned memcg, NULL on first invocation
954 * @reclaim: cookie for shared reclaim walks, NULL for full walks
955 *
956 * Returns references to children of the hierarchy below @root, or
957 * @root itself, or %NULL after a full round-trip.
958 *
959 * Caller must pass the return value in @prev on subsequent
960 * invocations for reference counting, or use mem_cgroup_iter_break()
961 * to cancel a hierarchy walk before the round-trip is complete.
962 *
05bdc520
ML
963 * Reclaimers can specify a node in @reclaim to divide up the memcgs
964 * in the hierarchy among all concurrent reclaimers operating on the
965 * same node.
5660048c 966 */
694fbc0f 967struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 968 struct mem_cgroup *prev,
694fbc0f 969 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 970{
3f649ab7 971 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 972 struct cgroup_subsys_state *css = NULL;
9f3a0d09 973 struct mem_cgroup *memcg = NULL;
5ac8fb31 974 struct mem_cgroup *pos = NULL;
711d3d2c 975
694fbc0f
AM
976 if (mem_cgroup_disabled())
977 return NULL;
5660048c 978
9f3a0d09
JW
979 if (!root)
980 root = root_mem_cgroup;
7d74b06f 981
9f3a0d09 982 if (prev && !reclaim)
5ac8fb31 983 pos = prev;
14067bb3 984
542f85f9 985 rcu_read_lock();
5f578161 986
5ac8fb31 987 if (reclaim) {
ef8f2327 988 struct mem_cgroup_per_node *mz;
5ac8fb31 989
a3747b53 990 mz = root->nodeinfo[reclaim->pgdat->node_id];
9da83f3f 991 iter = &mz->iter;
5ac8fb31
JW
992
993 if (prev && reclaim->generation != iter->generation)
994 goto out_unlock;
995
6df38689 996 while (1) {
4db0c3c2 997 pos = READ_ONCE(iter->position);
6df38689
VD
998 if (!pos || css_tryget(&pos->css))
999 break;
5ac8fb31 1000 /*
6df38689
VD
1001 * css reference reached zero, so iter->position will
1002 * be cleared by ->css_released. However, we should not
1003 * rely on this happening soon, because ->css_released
1004 * is called from a work queue, and by busy-waiting we
1005 * might block it. So we clear iter->position right
1006 * away.
5ac8fb31 1007 */
6df38689
VD
1008 (void)cmpxchg(&iter->position, pos, NULL);
1009 }
5ac8fb31
JW
1010 }
1011
1012 if (pos)
1013 css = &pos->css;
1014
1015 for (;;) {
1016 css = css_next_descendant_pre(css, &root->css);
1017 if (!css) {
1018 /*
1019 * Reclaimers share the hierarchy walk, and a
1020 * new one might jump in right at the end of
1021 * the hierarchy - make sure they see at least
1022 * one group and restart from the beginning.
1023 */
1024 if (!prev)
1025 continue;
1026 break;
527a5ec9 1027 }
7d74b06f 1028
5ac8fb31
JW
1029 /*
1030 * Verify the css and acquire a reference. The root
1031 * is provided by the caller, so we know it's alive
1032 * and kicking, and don't take an extra reference.
1033 */
1034 memcg = mem_cgroup_from_css(css);
14067bb3 1035
5ac8fb31
JW
1036 if (css == &root->css)
1037 break;
14067bb3 1038
0b8f73e1
JW
1039 if (css_tryget(css))
1040 break;
9f3a0d09 1041
5ac8fb31 1042 memcg = NULL;
9f3a0d09 1043 }
5ac8fb31
JW
1044
1045 if (reclaim) {
5ac8fb31 1046 /*
6df38689
VD
1047 * The position could have already been updated by a competing
1048 * thread, so check that the value hasn't changed since we read
1049 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1050 */
6df38689
VD
1051 (void)cmpxchg(&iter->position, pos, memcg);
1052
5ac8fb31
JW
1053 if (pos)
1054 css_put(&pos->css);
1055
1056 if (!memcg)
1057 iter->generation++;
1058 else if (!prev)
1059 reclaim->generation = iter->generation;
9f3a0d09 1060 }
5ac8fb31 1061
542f85f9
MH
1062out_unlock:
1063 rcu_read_unlock();
c40046f3
MH
1064 if (prev && prev != root)
1065 css_put(&prev->css);
1066
9f3a0d09 1067 return memcg;
14067bb3 1068}
7d74b06f 1069
5660048c
JW
1070/**
1071 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1072 * @root: hierarchy root
1073 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1074 */
1075void mem_cgroup_iter_break(struct mem_cgroup *root,
1076 struct mem_cgroup *prev)
9f3a0d09
JW
1077{
1078 if (!root)
1079 root = root_mem_cgroup;
1080 if (prev && prev != root)
1081 css_put(&prev->css);
1082}
7d74b06f 1083
54a83d6b
MC
1084static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1085 struct mem_cgroup *dead_memcg)
6df38689 1086{
6df38689 1087 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1088 struct mem_cgroup_per_node *mz;
1089 int nid;
6df38689 1090
54a83d6b 1091 for_each_node(nid) {
a3747b53 1092 mz = from->nodeinfo[nid];
9da83f3f
YS
1093 iter = &mz->iter;
1094 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1095 }
1096}
1097
54a83d6b
MC
1098static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1099{
1100 struct mem_cgroup *memcg = dead_memcg;
1101 struct mem_cgroup *last;
1102
1103 do {
1104 __invalidate_reclaim_iterators(memcg, dead_memcg);
1105 last = memcg;
1106 } while ((memcg = parent_mem_cgroup(memcg)));
1107
1108 /*
1109 * When cgruop1 non-hierarchy mode is used,
1110 * parent_mem_cgroup() does not walk all the way up to the
1111 * cgroup root (root_mem_cgroup). So we have to handle
1112 * dead_memcg from cgroup root separately.
1113 */
1114 if (last != root_mem_cgroup)
1115 __invalidate_reclaim_iterators(root_mem_cgroup,
1116 dead_memcg);
1117}
1118
7c5f64f8
VD
1119/**
1120 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1121 * @memcg: hierarchy root
1122 * @fn: function to call for each task
1123 * @arg: argument passed to @fn
1124 *
1125 * This function iterates over tasks attached to @memcg or to any of its
1126 * descendants and calls @fn for each task. If @fn returns a non-zero
1127 * value, the function breaks the iteration loop and returns the value.
1128 * Otherwise, it will iterate over all tasks and return 0.
1129 *
1130 * This function must not be called for the root memory cgroup.
1131 */
1132int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1133 int (*fn)(struct task_struct *, void *), void *arg)
1134{
1135 struct mem_cgroup *iter;
1136 int ret = 0;
1137
1138 BUG_ON(memcg == root_mem_cgroup);
1139
1140 for_each_mem_cgroup_tree(iter, memcg) {
1141 struct css_task_iter it;
1142 struct task_struct *task;
1143
f168a9a5 1144 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1145 while (!ret && (task = css_task_iter_next(&it)))
1146 ret = fn(task, arg);
1147 css_task_iter_end(&it);
1148 if (ret) {
1149 mem_cgroup_iter_break(memcg, iter);
1150 break;
1151 }
1152 }
1153 return ret;
1154}
1155
6168d0da
AS
1156#ifdef CONFIG_DEBUG_VM
1157void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1158{
1159 struct mem_cgroup *memcg;
1160
1161 if (mem_cgroup_disabled())
1162 return;
1163
1164 memcg = page_memcg(page);
1165
1166 if (!memcg)
1167 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1168 else
1169 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1170}
1171#endif
1172
6168d0da
AS
1173/**
1174 * lock_page_lruvec - lock and return lruvec for a given page.
1175 * @page: the page
1176 *
d7e3aba5
AS
1177 * These functions are safe to use under any of the following conditions:
1178 * - page locked
1179 * - PageLRU cleared
1180 * - lock_page_memcg()
1181 * - page->_refcount is zero
6168d0da
AS
1182 */
1183struct lruvec *lock_page_lruvec(struct page *page)
1184{
1185 struct lruvec *lruvec;
6168d0da 1186
a984226f 1187 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1188 spin_lock(&lruvec->lru_lock);
6168d0da
AS
1189
1190 lruvec_memcg_debug(lruvec, page);
1191
1192 return lruvec;
1193}
1194
1195struct lruvec *lock_page_lruvec_irq(struct page *page)
1196{
1197 struct lruvec *lruvec;
6168d0da 1198
a984226f 1199 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1200 spin_lock_irq(&lruvec->lru_lock);
6168d0da
AS
1201
1202 lruvec_memcg_debug(lruvec, page);
1203
1204 return lruvec;
1205}
1206
1207struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1208{
1209 struct lruvec *lruvec;
6168d0da 1210
a984226f 1211 lruvec = mem_cgroup_page_lruvec(page);
6168d0da 1212 spin_lock_irqsave(&lruvec->lru_lock, *flags);
6168d0da
AS
1213
1214 lruvec_memcg_debug(lruvec, page);
1215
1216 return lruvec;
1217}
1218
925b7673 1219/**
fa9add64
HD
1220 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1221 * @lruvec: mem_cgroup per zone lru vector
1222 * @lru: index of lru list the page is sitting on
b4536f0c 1223 * @zid: zone id of the accounted pages
fa9add64 1224 * @nr_pages: positive when adding or negative when removing
925b7673 1225 *
ca707239
HD
1226 * This function must be called under lru_lock, just before a page is added
1227 * to or just after a page is removed from an lru list (that ordering being
1228 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1229 */
fa9add64 1230void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1231 int zid, int nr_pages)
3f58a829 1232{
ef8f2327 1233 struct mem_cgroup_per_node *mz;
fa9add64 1234 unsigned long *lru_size;
ca707239 1235 long size;
3f58a829
MK
1236
1237 if (mem_cgroup_disabled())
1238 return;
1239
ef8f2327 1240 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1241 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1242
1243 if (nr_pages < 0)
1244 *lru_size += nr_pages;
1245
1246 size = *lru_size;
b4536f0c
MH
1247 if (WARN_ONCE(size < 0,
1248 "%s(%p, %d, %d): lru_size %ld\n",
1249 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1250 VM_BUG_ON(1);
1251 *lru_size = 0;
1252 }
1253
1254 if (nr_pages > 0)
1255 *lru_size += nr_pages;
08e552c6 1256}
544122e5 1257
19942822 1258/**
9d11ea9f 1259 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1260 * @memcg: the memory cgroup
19942822 1261 *
9d11ea9f 1262 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1263 * pages.
19942822 1264 */
c0ff4b85 1265static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1266{
3e32cb2e
JW
1267 unsigned long margin = 0;
1268 unsigned long count;
1269 unsigned long limit;
9d11ea9f 1270
3e32cb2e 1271 count = page_counter_read(&memcg->memory);
bbec2e15 1272 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1273 if (count < limit)
1274 margin = limit - count;
1275
7941d214 1276 if (do_memsw_account()) {
3e32cb2e 1277 count = page_counter_read(&memcg->memsw);
bbec2e15 1278 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1279 if (count < limit)
3e32cb2e 1280 margin = min(margin, limit - count);
cbedbac3
LR
1281 else
1282 margin = 0;
3e32cb2e
JW
1283 }
1284
1285 return margin;
19942822
JW
1286}
1287
32047e2a 1288/*
bdcbb659 1289 * A routine for checking "mem" is under move_account() or not.
32047e2a 1290 *
bdcbb659
QH
1291 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1292 * moving cgroups. This is for waiting at high-memory pressure
1293 * caused by "move".
32047e2a 1294 */
c0ff4b85 1295static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1296{
2bd9bb20
KH
1297 struct mem_cgroup *from;
1298 struct mem_cgroup *to;
4b534334 1299 bool ret = false;
2bd9bb20
KH
1300 /*
1301 * Unlike task_move routines, we access mc.to, mc.from not under
1302 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1303 */
1304 spin_lock(&mc.lock);
1305 from = mc.from;
1306 to = mc.to;
1307 if (!from)
1308 goto unlock;
3e92041d 1309
2314b42d
JW
1310 ret = mem_cgroup_is_descendant(from, memcg) ||
1311 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1312unlock:
1313 spin_unlock(&mc.lock);
4b534334
KH
1314 return ret;
1315}
1316
c0ff4b85 1317static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1318{
1319 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1320 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1321 DEFINE_WAIT(wait);
1322 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1323 /* moving charge context might have finished. */
1324 if (mc.moving_task)
1325 schedule();
1326 finish_wait(&mc.waitq, &wait);
1327 return true;
1328 }
1329 }
1330 return false;
1331}
1332
5f9a4f4a
MS
1333struct memory_stat {
1334 const char *name;
5f9a4f4a
MS
1335 unsigned int idx;
1336};
1337
57b2847d 1338static const struct memory_stat memory_stats[] = {
fff66b79
MS
1339 { "anon", NR_ANON_MAPPED },
1340 { "file", NR_FILE_PAGES },
1341 { "kernel_stack", NR_KERNEL_STACK_KB },
1342 { "pagetables", NR_PAGETABLE },
1343 { "percpu", MEMCG_PERCPU_B },
1344 { "sock", MEMCG_SOCK },
1345 { "shmem", NR_SHMEM },
1346 { "file_mapped", NR_FILE_MAPPED },
1347 { "file_dirty", NR_FILE_DIRTY },
1348 { "file_writeback", NR_WRITEBACK },
b6038942
SB
1349#ifdef CONFIG_SWAP
1350 { "swapcached", NR_SWAPCACHE },
1351#endif
5f9a4f4a 1352#ifdef CONFIG_TRANSPARENT_HUGEPAGE
fff66b79
MS
1353 { "anon_thp", NR_ANON_THPS },
1354 { "file_thp", NR_FILE_THPS },
1355 { "shmem_thp", NR_SHMEM_THPS },
5f9a4f4a 1356#endif
fff66b79
MS
1357 { "inactive_anon", NR_INACTIVE_ANON },
1358 { "active_anon", NR_ACTIVE_ANON },
1359 { "inactive_file", NR_INACTIVE_FILE },
1360 { "active_file", NR_ACTIVE_FILE },
1361 { "unevictable", NR_UNEVICTABLE },
1362 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1363 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
5f9a4f4a
MS
1364
1365 /* The memory events */
fff66b79
MS
1366 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1367 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1368 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1369 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1370 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1371 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1372 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
5f9a4f4a
MS
1373};
1374
fff66b79
MS
1375/* Translate stat items to the correct unit for memory.stat output */
1376static int memcg_page_state_unit(int item)
1377{
1378 switch (item) {
1379 case MEMCG_PERCPU_B:
1380 case NR_SLAB_RECLAIMABLE_B:
1381 case NR_SLAB_UNRECLAIMABLE_B:
1382 case WORKINGSET_REFAULT_ANON:
1383 case WORKINGSET_REFAULT_FILE:
1384 case WORKINGSET_ACTIVATE_ANON:
1385 case WORKINGSET_ACTIVATE_FILE:
1386 case WORKINGSET_RESTORE_ANON:
1387 case WORKINGSET_RESTORE_FILE:
1388 case WORKINGSET_NODERECLAIM:
1389 return 1;
1390 case NR_KERNEL_STACK_KB:
1391 return SZ_1K;
1392 default:
1393 return PAGE_SIZE;
1394 }
1395}
1396
1397static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1398 int item)
1399{
1400 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1401}
1402
c8713d0b
JW
1403static char *memory_stat_format(struct mem_cgroup *memcg)
1404{
1405 struct seq_buf s;
1406 int i;
71cd3113 1407
c8713d0b
JW
1408 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1409 if (!s.buffer)
1410 return NULL;
1411
1412 /*
1413 * Provide statistics on the state of the memory subsystem as
1414 * well as cumulative event counters that show past behavior.
1415 *
1416 * This list is ordered following a combination of these gradients:
1417 * 1) generic big picture -> specifics and details
1418 * 2) reflecting userspace activity -> reflecting kernel heuristics
1419 *
1420 * Current memory state:
1421 */
2d146aa3 1422 cgroup_rstat_flush(memcg->css.cgroup);
c8713d0b 1423
5f9a4f4a
MS
1424 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1425 u64 size;
c8713d0b 1426
fff66b79 1427 size = memcg_page_state_output(memcg, memory_stats[i].idx);
5f9a4f4a 1428 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1429
5f9a4f4a 1430 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
fff66b79
MS
1431 size += memcg_page_state_output(memcg,
1432 NR_SLAB_RECLAIMABLE_B);
5f9a4f4a
MS
1433 seq_buf_printf(&s, "slab %llu\n", size);
1434 }
1435 }
c8713d0b
JW
1436
1437 /* Accumulated memory events */
1438
ebc5d83d
KK
1439 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1440 memcg_events(memcg, PGFAULT));
1441 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1442 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1443 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1444 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1445 seq_buf_printf(&s, "pgscan %lu\n",
1446 memcg_events(memcg, PGSCAN_KSWAPD) +
1447 memcg_events(memcg, PGSCAN_DIRECT));
1448 seq_buf_printf(&s, "pgsteal %lu\n",
1449 memcg_events(memcg, PGSTEAL_KSWAPD) +
1450 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1452 memcg_events(memcg, PGACTIVATE));
1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1454 memcg_events(memcg, PGDEACTIVATE));
1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1456 memcg_events(memcg, PGLAZYFREE));
1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1458 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1459
1460#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1461 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1462 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1463 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1464 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1465#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1466
1467 /* The above should easily fit into one page */
1468 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1469
1470 return s.buffer;
1471}
71cd3113 1472
58cf188e 1473#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1474/**
f0c867d9 1475 * mem_cgroup_print_oom_context: Print OOM information relevant to
1476 * memory controller.
e222432b
BS
1477 * @memcg: The memory cgroup that went over limit
1478 * @p: Task that is going to be killed
1479 *
1480 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1481 * enabled
1482 */
f0c867d9 1483void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1484{
e222432b
BS
1485 rcu_read_lock();
1486
f0c867d9 1487 if (memcg) {
1488 pr_cont(",oom_memcg=");
1489 pr_cont_cgroup_path(memcg->css.cgroup);
1490 } else
1491 pr_cont(",global_oom");
2415b9f5 1492 if (p) {
f0c867d9 1493 pr_cont(",task_memcg=");
2415b9f5 1494 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1495 }
e222432b 1496 rcu_read_unlock();
f0c867d9 1497}
1498
1499/**
1500 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1501 * memory controller.
1502 * @memcg: The memory cgroup that went over limit
1503 */
1504void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1505{
c8713d0b 1506 char *buf;
e222432b 1507
3e32cb2e
JW
1508 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1509 K((u64)page_counter_read(&memcg->memory)),
15b42562 1510 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1511 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1512 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1513 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1514 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1515 else {
1516 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1517 K((u64)page_counter_read(&memcg->memsw)),
1518 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1519 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1520 K((u64)page_counter_read(&memcg->kmem)),
1521 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1522 }
c8713d0b
JW
1523
1524 pr_info("Memory cgroup stats for ");
1525 pr_cont_cgroup_path(memcg->css.cgroup);
1526 pr_cont(":");
1527 buf = memory_stat_format(memcg);
1528 if (!buf)
1529 return;
1530 pr_info("%s", buf);
1531 kfree(buf);
e222432b
BS
1532}
1533
a63d83f4
DR
1534/*
1535 * Return the memory (and swap, if configured) limit for a memcg.
1536 */
bbec2e15 1537unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1538{
8d387a5f
WL
1539 unsigned long max = READ_ONCE(memcg->memory.max);
1540
1541 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1542 if (mem_cgroup_swappiness(memcg))
1543 max += min(READ_ONCE(memcg->swap.max),
1544 (unsigned long)total_swap_pages);
1545 } else { /* v1 */
1546 if (mem_cgroup_swappiness(memcg)) {
1547 /* Calculate swap excess capacity from memsw limit */
1548 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1549
1550 max += min(swap, (unsigned long)total_swap_pages);
1551 }
9a5a8f19 1552 }
bbec2e15 1553 return max;
a63d83f4
DR
1554}
1555
9783aa99
CD
1556unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1557{
1558 return page_counter_read(&memcg->memory);
1559}
1560
b6e6edcf 1561static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1562 int order)
9cbb78bb 1563{
6e0fc46d
DR
1564 struct oom_control oc = {
1565 .zonelist = NULL,
1566 .nodemask = NULL,
2a966b77 1567 .memcg = memcg,
6e0fc46d
DR
1568 .gfp_mask = gfp_mask,
1569 .order = order,
6e0fc46d 1570 };
1378b37d 1571 bool ret = true;
9cbb78bb 1572
7775face
TH
1573 if (mutex_lock_killable(&oom_lock))
1574 return true;
1378b37d
YS
1575
1576 if (mem_cgroup_margin(memcg) >= (1 << order))
1577 goto unlock;
1578
7775face
TH
1579 /*
1580 * A few threads which were not waiting at mutex_lock_killable() can
1581 * fail to bail out. Therefore, check again after holding oom_lock.
1582 */
1583 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1584
1585unlock:
dc56401f 1586 mutex_unlock(&oom_lock);
7c5f64f8 1587 return ret;
9cbb78bb
DR
1588}
1589
0608f43d 1590static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1591 pg_data_t *pgdat,
0608f43d
AM
1592 gfp_t gfp_mask,
1593 unsigned long *total_scanned)
1594{
1595 struct mem_cgroup *victim = NULL;
1596 int total = 0;
1597 int loop = 0;
1598 unsigned long excess;
1599 unsigned long nr_scanned;
1600 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1601 .pgdat = pgdat,
0608f43d
AM
1602 };
1603
3e32cb2e 1604 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1605
1606 while (1) {
1607 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1608 if (!victim) {
1609 loop++;
1610 if (loop >= 2) {
1611 /*
1612 * If we have not been able to reclaim
1613 * anything, it might because there are
1614 * no reclaimable pages under this hierarchy
1615 */
1616 if (!total)
1617 break;
1618 /*
1619 * We want to do more targeted reclaim.
1620 * excess >> 2 is not to excessive so as to
1621 * reclaim too much, nor too less that we keep
1622 * coming back to reclaim from this cgroup
1623 */
1624 if (total >= (excess >> 2) ||
1625 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1626 break;
1627 }
1628 continue;
1629 }
a9dd0a83 1630 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1631 pgdat, &nr_scanned);
0608f43d 1632 *total_scanned += nr_scanned;
3e32cb2e 1633 if (!soft_limit_excess(root_memcg))
0608f43d 1634 break;
6d61ef40 1635 }
0608f43d
AM
1636 mem_cgroup_iter_break(root_memcg, victim);
1637 return total;
6d61ef40
BS
1638}
1639
0056f4e6
JW
1640#ifdef CONFIG_LOCKDEP
1641static struct lockdep_map memcg_oom_lock_dep_map = {
1642 .name = "memcg_oom_lock",
1643};
1644#endif
1645
fb2a6fc5
JW
1646static DEFINE_SPINLOCK(memcg_oom_lock);
1647
867578cb
KH
1648/*
1649 * Check OOM-Killer is already running under our hierarchy.
1650 * If someone is running, return false.
1651 */
fb2a6fc5 1652static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1653{
79dfdacc 1654 struct mem_cgroup *iter, *failed = NULL;
a636b327 1655
fb2a6fc5
JW
1656 spin_lock(&memcg_oom_lock);
1657
9f3a0d09 1658 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1659 if (iter->oom_lock) {
79dfdacc
MH
1660 /*
1661 * this subtree of our hierarchy is already locked
1662 * so we cannot give a lock.
1663 */
79dfdacc 1664 failed = iter;
9f3a0d09
JW
1665 mem_cgroup_iter_break(memcg, iter);
1666 break;
23751be0
JW
1667 } else
1668 iter->oom_lock = true;
7d74b06f 1669 }
867578cb 1670
fb2a6fc5
JW
1671 if (failed) {
1672 /*
1673 * OK, we failed to lock the whole subtree so we have
1674 * to clean up what we set up to the failing subtree
1675 */
1676 for_each_mem_cgroup_tree(iter, memcg) {
1677 if (iter == failed) {
1678 mem_cgroup_iter_break(memcg, iter);
1679 break;
1680 }
1681 iter->oom_lock = false;
79dfdacc 1682 }
0056f4e6
JW
1683 } else
1684 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1685
1686 spin_unlock(&memcg_oom_lock);
1687
1688 return !failed;
a636b327 1689}
0b7f569e 1690
fb2a6fc5 1691static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1692{
7d74b06f
KH
1693 struct mem_cgroup *iter;
1694
fb2a6fc5 1695 spin_lock(&memcg_oom_lock);
5facae4f 1696 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1697 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1698 iter->oom_lock = false;
fb2a6fc5 1699 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1700}
1701
c0ff4b85 1702static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1703{
1704 struct mem_cgroup *iter;
1705
c2b42d3c 1706 spin_lock(&memcg_oom_lock);
c0ff4b85 1707 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1708 iter->under_oom++;
1709 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1710}
1711
c0ff4b85 1712static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1713{
1714 struct mem_cgroup *iter;
1715
867578cb 1716 /*
f0953a1b 1717 * Be careful about under_oom underflows because a child memcg
7a52d4d8 1718 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1719 */
c2b42d3c 1720 spin_lock(&memcg_oom_lock);
c0ff4b85 1721 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1722 if (iter->under_oom > 0)
1723 iter->under_oom--;
1724 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1725}
1726
867578cb
KH
1727static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1728
dc98df5a 1729struct oom_wait_info {
d79154bb 1730 struct mem_cgroup *memcg;
ac6424b9 1731 wait_queue_entry_t wait;
dc98df5a
KH
1732};
1733
ac6424b9 1734static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1735 unsigned mode, int sync, void *arg)
1736{
d79154bb
HD
1737 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1738 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1739 struct oom_wait_info *oom_wait_info;
1740
1741 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1742 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1743
2314b42d
JW
1744 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1745 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1746 return 0;
dc98df5a
KH
1747 return autoremove_wake_function(wait, mode, sync, arg);
1748}
1749
c0ff4b85 1750static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1751{
c2b42d3c
TH
1752 /*
1753 * For the following lockless ->under_oom test, the only required
1754 * guarantee is that it must see the state asserted by an OOM when
1755 * this function is called as a result of userland actions
1756 * triggered by the notification of the OOM. This is trivially
1757 * achieved by invoking mem_cgroup_mark_under_oom() before
1758 * triggering notification.
1759 */
1760 if (memcg && memcg->under_oom)
f4b90b70 1761 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1762}
1763
29ef680a
MH
1764enum oom_status {
1765 OOM_SUCCESS,
1766 OOM_FAILED,
1767 OOM_ASYNC,
1768 OOM_SKIPPED
1769};
1770
1771static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1772{
7056d3a3
MH
1773 enum oom_status ret;
1774 bool locked;
1775
29ef680a
MH
1776 if (order > PAGE_ALLOC_COSTLY_ORDER)
1777 return OOM_SKIPPED;
1778
7a1adfdd
RG
1779 memcg_memory_event(memcg, MEMCG_OOM);
1780
867578cb 1781 /*
49426420
JW
1782 * We are in the middle of the charge context here, so we
1783 * don't want to block when potentially sitting on a callstack
1784 * that holds all kinds of filesystem and mm locks.
1785 *
29ef680a
MH
1786 * cgroup1 allows disabling the OOM killer and waiting for outside
1787 * handling until the charge can succeed; remember the context and put
1788 * the task to sleep at the end of the page fault when all locks are
1789 * released.
49426420 1790 *
29ef680a
MH
1791 * On the other hand, in-kernel OOM killer allows for an async victim
1792 * memory reclaim (oom_reaper) and that means that we are not solely
1793 * relying on the oom victim to make a forward progress and we can
1794 * invoke the oom killer here.
1795 *
1796 * Please note that mem_cgroup_out_of_memory might fail to find a
1797 * victim and then we have to bail out from the charge path.
867578cb 1798 */
29ef680a
MH
1799 if (memcg->oom_kill_disable) {
1800 if (!current->in_user_fault)
1801 return OOM_SKIPPED;
1802 css_get(&memcg->css);
1803 current->memcg_in_oom = memcg;
1804 current->memcg_oom_gfp_mask = mask;
1805 current->memcg_oom_order = order;
1806
1807 return OOM_ASYNC;
1808 }
1809
7056d3a3
MH
1810 mem_cgroup_mark_under_oom(memcg);
1811
1812 locked = mem_cgroup_oom_trylock(memcg);
1813
1814 if (locked)
1815 mem_cgroup_oom_notify(memcg);
1816
1817 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1818 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1819 ret = OOM_SUCCESS;
1820 else
1821 ret = OOM_FAILED;
1822
1823 if (locked)
1824 mem_cgroup_oom_unlock(memcg);
29ef680a 1825
7056d3a3 1826 return ret;
3812c8c8
JW
1827}
1828
1829/**
1830 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1831 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1832 *
49426420
JW
1833 * This has to be called at the end of a page fault if the memcg OOM
1834 * handler was enabled.
3812c8c8 1835 *
49426420 1836 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1837 * sleep on a waitqueue until the userspace task resolves the
1838 * situation. Sleeping directly in the charge context with all kinds
1839 * of locks held is not a good idea, instead we remember an OOM state
1840 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1841 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1842 *
1843 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1844 * completed, %false otherwise.
3812c8c8 1845 */
49426420 1846bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1847{
626ebc41 1848 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1849 struct oom_wait_info owait;
49426420 1850 bool locked;
3812c8c8
JW
1851
1852 /* OOM is global, do not handle */
3812c8c8 1853 if (!memcg)
49426420 1854 return false;
3812c8c8 1855
7c5f64f8 1856 if (!handle)
49426420 1857 goto cleanup;
3812c8c8
JW
1858
1859 owait.memcg = memcg;
1860 owait.wait.flags = 0;
1861 owait.wait.func = memcg_oom_wake_function;
1862 owait.wait.private = current;
2055da97 1863 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1864
3812c8c8 1865 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1866 mem_cgroup_mark_under_oom(memcg);
1867
1868 locked = mem_cgroup_oom_trylock(memcg);
1869
1870 if (locked)
1871 mem_cgroup_oom_notify(memcg);
1872
1873 if (locked && !memcg->oom_kill_disable) {
1874 mem_cgroup_unmark_under_oom(memcg);
1875 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1876 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1877 current->memcg_oom_order);
49426420 1878 } else {
3812c8c8 1879 schedule();
49426420
JW
1880 mem_cgroup_unmark_under_oom(memcg);
1881 finish_wait(&memcg_oom_waitq, &owait.wait);
1882 }
1883
1884 if (locked) {
fb2a6fc5
JW
1885 mem_cgroup_oom_unlock(memcg);
1886 /*
1887 * There is no guarantee that an OOM-lock contender
1888 * sees the wakeups triggered by the OOM kill
f0953a1b 1889 * uncharges. Wake any sleepers explicitly.
fb2a6fc5
JW
1890 */
1891 memcg_oom_recover(memcg);
1892 }
49426420 1893cleanup:
626ebc41 1894 current->memcg_in_oom = NULL;
3812c8c8 1895 css_put(&memcg->css);
867578cb 1896 return true;
0b7f569e
KH
1897}
1898
3d8b38eb
RG
1899/**
1900 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1901 * @victim: task to be killed by the OOM killer
1902 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1903 *
1904 * Returns a pointer to a memory cgroup, which has to be cleaned up
1905 * by killing all belonging OOM-killable tasks.
1906 *
1907 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1908 */
1909struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1910 struct mem_cgroup *oom_domain)
1911{
1912 struct mem_cgroup *oom_group = NULL;
1913 struct mem_cgroup *memcg;
1914
1915 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1916 return NULL;
1917
1918 if (!oom_domain)
1919 oom_domain = root_mem_cgroup;
1920
1921 rcu_read_lock();
1922
1923 memcg = mem_cgroup_from_task(victim);
1924 if (memcg == root_mem_cgroup)
1925 goto out;
1926
48fe267c
RG
1927 /*
1928 * If the victim task has been asynchronously moved to a different
1929 * memory cgroup, we might end up killing tasks outside oom_domain.
1930 * In this case it's better to ignore memory.group.oom.
1931 */
1932 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1933 goto out;
1934
3d8b38eb
RG
1935 /*
1936 * Traverse the memory cgroup hierarchy from the victim task's
1937 * cgroup up to the OOMing cgroup (or root) to find the
1938 * highest-level memory cgroup with oom.group set.
1939 */
1940 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1941 if (memcg->oom_group)
1942 oom_group = memcg;
1943
1944 if (memcg == oom_domain)
1945 break;
1946 }
1947
1948 if (oom_group)
1949 css_get(&oom_group->css);
1950out:
1951 rcu_read_unlock();
1952
1953 return oom_group;
1954}
1955
1956void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1957{
1958 pr_info("Tasks in ");
1959 pr_cont_cgroup_path(memcg->css.cgroup);
1960 pr_cont(" are going to be killed due to memory.oom.group set\n");
1961}
1962
d7365e78 1963/**
bcfe06bf 1964 * lock_page_memcg - lock a page and memcg binding
81f8c3a4 1965 * @page: the page
32047e2a 1966 *
81f8c3a4 1967 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1968 * another cgroup.
1969 *
1c824a68
JW
1970 * It ensures lifetime of the locked memcg. Caller is responsible
1971 * for the lifetime of the page.
d69b042f 1972 */
1c824a68 1973void lock_page_memcg(struct page *page)
89c06bd5 1974{
9da7b521 1975 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 1976 struct mem_cgroup *memcg;
6de22619 1977 unsigned long flags;
89c06bd5 1978
6de22619
JW
1979 /*
1980 * The RCU lock is held throughout the transaction. The fast
1981 * path can get away without acquiring the memcg->move_lock
1982 * because page moving starts with an RCU grace period.
739f79fc 1983 */
d7365e78
JW
1984 rcu_read_lock();
1985
1986 if (mem_cgroup_disabled())
1c824a68 1987 return;
89c06bd5 1988again:
bcfe06bf 1989 memcg = page_memcg(head);
29833315 1990 if (unlikely(!memcg))
1c824a68 1991 return;
d7365e78 1992
20ad50d6
AS
1993#ifdef CONFIG_PROVE_LOCKING
1994 local_irq_save(flags);
1995 might_lock(&memcg->move_lock);
1996 local_irq_restore(flags);
1997#endif
1998
bdcbb659 1999 if (atomic_read(&memcg->moving_account) <= 0)
1c824a68 2000 return;
89c06bd5 2001
6de22619 2002 spin_lock_irqsave(&memcg->move_lock, flags);
bcfe06bf 2003 if (memcg != page_memcg(head)) {
6de22619 2004 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2005 goto again;
2006 }
6de22619
JW
2007
2008 /*
1c824a68
JW
2009 * When charge migration first begins, we can have multiple
2010 * critical sections holding the fast-path RCU lock and one
2011 * holding the slowpath move_lock. Track the task who has the
2012 * move_lock for unlock_page_memcg().
6de22619
JW
2013 */
2014 memcg->move_lock_task = current;
2015 memcg->move_lock_flags = flags;
89c06bd5 2016}
81f8c3a4 2017EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2018
1c824a68 2019static void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2020{
6de22619
JW
2021 if (memcg && memcg->move_lock_task == current) {
2022 unsigned long flags = memcg->move_lock_flags;
2023
2024 memcg->move_lock_task = NULL;
2025 memcg->move_lock_flags = 0;
2026
2027 spin_unlock_irqrestore(&memcg->move_lock, flags);
2028 }
89c06bd5 2029
d7365e78 2030 rcu_read_unlock();
89c06bd5 2031}
739f79fc
JW
2032
2033/**
bcfe06bf 2034 * unlock_page_memcg - unlock a page and memcg binding
739f79fc
JW
2035 * @page: the page
2036 */
2037void unlock_page_memcg(struct page *page)
2038{
9da7b521
JW
2039 struct page *head = compound_head(page);
2040
bcfe06bf 2041 __unlock_page_memcg(page_memcg(head));
739f79fc 2042}
81f8c3a4 2043EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2044
55927114 2045struct obj_stock {
bf4f0599
RG
2046#ifdef CONFIG_MEMCG_KMEM
2047 struct obj_cgroup *cached_objcg;
68ac5b3c 2048 struct pglist_data *cached_pgdat;
bf4f0599 2049 unsigned int nr_bytes;
68ac5b3c
WL
2050 int nr_slab_reclaimable_b;
2051 int nr_slab_unreclaimable_b;
55927114
WL
2052#else
2053 int dummy[0];
bf4f0599 2054#endif
55927114
WL
2055};
2056
2057struct memcg_stock_pcp {
2058 struct mem_cgroup *cached; /* this never be root cgroup */
2059 unsigned int nr_pages;
2060 struct obj_stock task_obj;
2061 struct obj_stock irq_obj;
bf4f0599 2062
cdec2e42 2063 struct work_struct work;
26fe6168 2064 unsigned long flags;
a0db00fc 2065#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2066};
2067static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2068static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2069
bf4f0599 2070#ifdef CONFIG_MEMCG_KMEM
55927114 2071static void drain_obj_stock(struct obj_stock *stock);
bf4f0599
RG
2072static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2073 struct mem_cgroup *root_memcg);
2074
2075#else
55927114 2076static inline void drain_obj_stock(struct obj_stock *stock)
bf4f0599
RG
2077{
2078}
2079static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2080 struct mem_cgroup *root_memcg)
2081{
2082 return false;
2083}
2084#endif
2085
55927114
WL
2086/*
2087 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2088 * sequence used in this case to access content from object stock is slow.
2089 * To optimize for user context access, there are now two object stocks for
2090 * task context and interrupt context access respectively.
2091 *
2092 * The task context object stock can be accessed by disabling preemption only
2093 * which is cheap in non-preempt kernel. The interrupt context object stock
2094 * can only be accessed after disabling interrupt. User context code can
2095 * access interrupt object stock, but not vice versa.
2096 */
2097static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2098{
2099 struct memcg_stock_pcp *stock;
2100
2101 if (likely(in_task())) {
2102 *pflags = 0UL;
2103 preempt_disable();
2104 stock = this_cpu_ptr(&memcg_stock);
2105 return &stock->task_obj;
2106 }
2107
2108 local_irq_save(*pflags);
2109 stock = this_cpu_ptr(&memcg_stock);
2110 return &stock->irq_obj;
2111}
2112
2113static inline void put_obj_stock(unsigned long flags)
2114{
2115 if (likely(in_task()))
2116 preempt_enable();
2117 else
2118 local_irq_restore(flags);
2119}
2120
a0956d54
SS
2121/**
2122 * consume_stock: Try to consume stocked charge on this cpu.
2123 * @memcg: memcg to consume from.
2124 * @nr_pages: how many pages to charge.
2125 *
2126 * The charges will only happen if @memcg matches the current cpu's memcg
2127 * stock, and at least @nr_pages are available in that stock. Failure to
2128 * service an allocation will refill the stock.
2129 *
2130 * returns true if successful, false otherwise.
cdec2e42 2131 */
a0956d54 2132static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2133{
2134 struct memcg_stock_pcp *stock;
db2ba40c 2135 unsigned long flags;
3e32cb2e 2136 bool ret = false;
cdec2e42 2137
a983b5eb 2138 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2139 return ret;
a0956d54 2140
db2ba40c
JW
2141 local_irq_save(flags);
2142
2143 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2144 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2145 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2146 ret = true;
2147 }
db2ba40c
JW
2148
2149 local_irq_restore(flags);
2150
cdec2e42
KH
2151 return ret;
2152}
2153
2154/*
3e32cb2e 2155 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2156 */
2157static void drain_stock(struct memcg_stock_pcp *stock)
2158{
2159 struct mem_cgroup *old = stock->cached;
2160
1a3e1f40
JW
2161 if (!old)
2162 return;
2163
11c9ea4e 2164 if (stock->nr_pages) {
3e32cb2e 2165 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2166 if (do_memsw_account())
3e32cb2e 2167 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2168 stock->nr_pages = 0;
cdec2e42 2169 }
1a3e1f40
JW
2170
2171 css_put(&old->css);
cdec2e42 2172 stock->cached = NULL;
cdec2e42
KH
2173}
2174
cdec2e42
KH
2175static void drain_local_stock(struct work_struct *dummy)
2176{
db2ba40c
JW
2177 struct memcg_stock_pcp *stock;
2178 unsigned long flags;
2179
72f0184c 2180 /*
5c49cf9a
MH
2181 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2182 * drain_stock races is that we always operate on local CPU stock
2183 * here with IRQ disabled
72f0184c 2184 */
db2ba40c
JW
2185 local_irq_save(flags);
2186
2187 stock = this_cpu_ptr(&memcg_stock);
55927114
WL
2188 drain_obj_stock(&stock->irq_obj);
2189 if (in_task())
2190 drain_obj_stock(&stock->task_obj);
cdec2e42 2191 drain_stock(stock);
26fe6168 2192 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2193
2194 local_irq_restore(flags);
cdec2e42
KH
2195}
2196
2197/*
3e32cb2e 2198 * Cache charges(val) to local per_cpu area.
320cc51d 2199 * This will be consumed by consume_stock() function, later.
cdec2e42 2200 */
c0ff4b85 2201static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2202{
db2ba40c
JW
2203 struct memcg_stock_pcp *stock;
2204 unsigned long flags;
2205
2206 local_irq_save(flags);
cdec2e42 2207
db2ba40c 2208 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2209 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2210 drain_stock(stock);
1a3e1f40 2211 css_get(&memcg->css);
c0ff4b85 2212 stock->cached = memcg;
cdec2e42 2213 }
11c9ea4e 2214 stock->nr_pages += nr_pages;
db2ba40c 2215
a983b5eb 2216 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2217 drain_stock(stock);
2218
db2ba40c 2219 local_irq_restore(flags);
cdec2e42
KH
2220}
2221
2222/*
c0ff4b85 2223 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2224 * of the hierarchy under it.
cdec2e42 2225 */
6d3d6aa2 2226static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2227{
26fe6168 2228 int cpu, curcpu;
d38144b7 2229
6d3d6aa2
JW
2230 /* If someone's already draining, avoid adding running more workers. */
2231 if (!mutex_trylock(&percpu_charge_mutex))
2232 return;
72f0184c
MH
2233 /*
2234 * Notify other cpus that system-wide "drain" is running
2235 * We do not care about races with the cpu hotplug because cpu down
2236 * as well as workers from this path always operate on the local
2237 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2238 */
5af12d0e 2239 curcpu = get_cpu();
cdec2e42
KH
2240 for_each_online_cpu(cpu) {
2241 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2242 struct mem_cgroup *memcg;
e1a366be 2243 bool flush = false;
26fe6168 2244
e1a366be 2245 rcu_read_lock();
c0ff4b85 2246 memcg = stock->cached;
e1a366be
RG
2247 if (memcg && stock->nr_pages &&
2248 mem_cgroup_is_descendant(memcg, root_memcg))
2249 flush = true;
27fb0956 2250 else if (obj_stock_flush_required(stock, root_memcg))
bf4f0599 2251 flush = true;
e1a366be
RG
2252 rcu_read_unlock();
2253
2254 if (flush &&
2255 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2256 if (cpu == curcpu)
2257 drain_local_stock(&stock->work);
2258 else
2259 schedule_work_on(cpu, &stock->work);
2260 }
cdec2e42 2261 }
5af12d0e 2262 put_cpu();
9f50fad6 2263 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2264}
2265
2cd21c89
JW
2266static int memcg_hotplug_cpu_dead(unsigned int cpu)
2267{
2268 struct memcg_stock_pcp *stock;
a3d4c05a 2269
2cd21c89
JW
2270 stock = &per_cpu(memcg_stock, cpu);
2271 drain_stock(stock);
a3d4c05a 2272
308167fc 2273 return 0;
cdec2e42
KH
2274}
2275
b3ff9291
CD
2276static unsigned long reclaim_high(struct mem_cgroup *memcg,
2277 unsigned int nr_pages,
2278 gfp_t gfp_mask)
f7e1cb6e 2279{
b3ff9291
CD
2280 unsigned long nr_reclaimed = 0;
2281
f7e1cb6e 2282 do {
e22c6ed9
JW
2283 unsigned long pflags;
2284
d1663a90
JK
2285 if (page_counter_read(&memcg->memory) <=
2286 READ_ONCE(memcg->memory.high))
f7e1cb6e 2287 continue;
e22c6ed9 2288
e27be240 2289 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2290
2291 psi_memstall_enter(&pflags);
b3ff9291
CD
2292 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2293 gfp_mask, true);
e22c6ed9 2294 psi_memstall_leave(&pflags);
4bf17307
CD
2295 } while ((memcg = parent_mem_cgroup(memcg)) &&
2296 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2297
2298 return nr_reclaimed;
f7e1cb6e
JW
2299}
2300
2301static void high_work_func(struct work_struct *work)
2302{
2303 struct mem_cgroup *memcg;
2304
2305 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2306 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2307}
2308
0e4b01df
CD
2309/*
2310 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2311 * enough to still cause a significant slowdown in most cases, while still
2312 * allowing diagnostics and tracing to proceed without becoming stuck.
2313 */
2314#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2315
2316/*
2317 * When calculating the delay, we use these either side of the exponentiation to
2318 * maintain precision and scale to a reasonable number of jiffies (see the table
2319 * below.
2320 *
2321 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2322 * overage ratio to a delay.
ac5ddd0f 2323 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2324 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2325 * to produce a reasonable delay curve.
2326 *
2327 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2328 * reasonable delay curve compared to precision-adjusted overage, not
2329 * penalising heavily at first, but still making sure that growth beyond the
2330 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2331 * example, with a high of 100 megabytes:
2332 *
2333 * +-------+------------------------+
2334 * | usage | time to allocate in ms |
2335 * +-------+------------------------+
2336 * | 100M | 0 |
2337 * | 101M | 6 |
2338 * | 102M | 25 |
2339 * | 103M | 57 |
2340 * | 104M | 102 |
2341 * | 105M | 159 |
2342 * | 106M | 230 |
2343 * | 107M | 313 |
2344 * | 108M | 409 |
2345 * | 109M | 518 |
2346 * | 110M | 639 |
2347 * | 111M | 774 |
2348 * | 112M | 921 |
2349 * | 113M | 1081 |
2350 * | 114M | 1254 |
2351 * | 115M | 1439 |
2352 * | 116M | 1638 |
2353 * | 117M | 1849 |
2354 * | 118M | 2000 |
2355 * | 119M | 2000 |
2356 * | 120M | 2000 |
2357 * +-------+------------------------+
2358 */
2359 #define MEMCG_DELAY_PRECISION_SHIFT 20
2360 #define MEMCG_DELAY_SCALING_SHIFT 14
2361
8a5dbc65 2362static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2363{
8a5dbc65 2364 u64 overage;
b23afb93 2365
8a5dbc65
JK
2366 if (usage <= high)
2367 return 0;
e26733e0 2368
8a5dbc65
JK
2369 /*
2370 * Prevent division by 0 in overage calculation by acting as if
2371 * it was a threshold of 1 page
2372 */
2373 high = max(high, 1UL);
9b8b1754 2374
8a5dbc65
JK
2375 overage = usage - high;
2376 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2377 return div64_u64(overage, high);
2378}
e26733e0 2379
8a5dbc65
JK
2380static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2381{
2382 u64 overage, max_overage = 0;
e26733e0 2383
8a5dbc65
JK
2384 do {
2385 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2386 READ_ONCE(memcg->memory.high));
8a5dbc65 2387 max_overage = max(overage, max_overage);
e26733e0
CD
2388 } while ((memcg = parent_mem_cgroup(memcg)) &&
2389 !mem_cgroup_is_root(memcg));
2390
8a5dbc65
JK
2391 return max_overage;
2392}
2393
4b82ab4f
JK
2394static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2395{
2396 u64 overage, max_overage = 0;
2397
2398 do {
2399 overage = calculate_overage(page_counter_read(&memcg->swap),
2400 READ_ONCE(memcg->swap.high));
2401 if (overage)
2402 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2403 max_overage = max(overage, max_overage);
2404 } while ((memcg = parent_mem_cgroup(memcg)) &&
2405 !mem_cgroup_is_root(memcg));
2406
2407 return max_overage;
2408}
2409
8a5dbc65
JK
2410/*
2411 * Get the number of jiffies that we should penalise a mischievous cgroup which
2412 * is exceeding its memory.high by checking both it and its ancestors.
2413 */
2414static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2415 unsigned int nr_pages,
2416 u64 max_overage)
2417{
2418 unsigned long penalty_jiffies;
2419
e26733e0
CD
2420 if (!max_overage)
2421 return 0;
0e4b01df
CD
2422
2423 /*
0e4b01df
CD
2424 * We use overage compared to memory.high to calculate the number of
2425 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2426 * fairly lenient on small overages, and increasingly harsh when the
2427 * memcg in question makes it clear that it has no intention of stopping
2428 * its crazy behaviour, so we exponentially increase the delay based on
2429 * overage amount.
2430 */
e26733e0
CD
2431 penalty_jiffies = max_overage * max_overage * HZ;
2432 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2433 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2434
2435 /*
2436 * Factor in the task's own contribution to the overage, such that four
2437 * N-sized allocations are throttled approximately the same as one
2438 * 4N-sized allocation.
2439 *
2440 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2441 * larger the current charge patch is than that.
2442 */
ff144e69 2443 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2444}
2445
2446/*
2447 * Scheduled by try_charge() to be executed from the userland return path
2448 * and reclaims memory over the high limit.
2449 */
2450void mem_cgroup_handle_over_high(void)
2451{
2452 unsigned long penalty_jiffies;
2453 unsigned long pflags;
b3ff9291 2454 unsigned long nr_reclaimed;
e26733e0 2455 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2456 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2457 struct mem_cgroup *memcg;
b3ff9291 2458 bool in_retry = false;
e26733e0
CD
2459
2460 if (likely(!nr_pages))
2461 return;
2462
2463 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2464 current->memcg_nr_pages_over_high = 0;
2465
b3ff9291
CD
2466retry_reclaim:
2467 /*
2468 * The allocating task should reclaim at least the batch size, but for
2469 * subsequent retries we only want to do what's necessary to prevent oom
2470 * or breaching resource isolation.
2471 *
2472 * This is distinct from memory.max or page allocator behaviour because
2473 * memory.high is currently batched, whereas memory.max and the page
2474 * allocator run every time an allocation is made.
2475 */
2476 nr_reclaimed = reclaim_high(memcg,
2477 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2478 GFP_KERNEL);
2479
e26733e0
CD
2480 /*
2481 * memory.high is breached and reclaim is unable to keep up. Throttle
2482 * allocators proactively to slow down excessive growth.
2483 */
8a5dbc65
JK
2484 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2485 mem_find_max_overage(memcg));
0e4b01df 2486
4b82ab4f
JK
2487 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2488 swap_find_max_overage(memcg));
2489
ff144e69
JK
2490 /*
2491 * Clamp the max delay per usermode return so as to still keep the
2492 * application moving forwards and also permit diagnostics, albeit
2493 * extremely slowly.
2494 */
2495 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2496
0e4b01df
CD
2497 /*
2498 * Don't sleep if the amount of jiffies this memcg owes us is so low
2499 * that it's not even worth doing, in an attempt to be nice to those who
2500 * go only a small amount over their memory.high value and maybe haven't
2501 * been aggressively reclaimed enough yet.
2502 */
2503 if (penalty_jiffies <= HZ / 100)
2504 goto out;
2505
b3ff9291
CD
2506 /*
2507 * If reclaim is making forward progress but we're still over
2508 * memory.high, we want to encourage that rather than doing allocator
2509 * throttling.
2510 */
2511 if (nr_reclaimed || nr_retries--) {
2512 in_retry = true;
2513 goto retry_reclaim;
2514 }
2515
0e4b01df
CD
2516 /*
2517 * If we exit early, we're guaranteed to die (since
2518 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2519 * need to account for any ill-begotten jiffies to pay them off later.
2520 */
2521 psi_memstall_enter(&pflags);
2522 schedule_timeout_killable(penalty_jiffies);
2523 psi_memstall_leave(&pflags);
2524
2525out:
2526 css_put(&memcg->css);
b23afb93
TH
2527}
2528
c5c8b16b
MS
2529static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2530 unsigned int nr_pages)
8a9f3ccd 2531{
a983b5eb 2532 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2533 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2534 struct mem_cgroup *mem_over_limit;
3e32cb2e 2535 struct page_counter *counter;
e22c6ed9 2536 enum oom_status oom_status;
6539cc05 2537 unsigned long nr_reclaimed;
b70a2a21
JW
2538 bool may_swap = true;
2539 bool drained = false;
e22c6ed9 2540 unsigned long pflags;
a636b327 2541
6539cc05 2542retry:
b6b6cc72 2543 if (consume_stock(memcg, nr_pages))
10d53c74 2544 return 0;
8a9f3ccd 2545
7941d214 2546 if (!do_memsw_account() ||
6071ca52
JW
2547 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2548 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2549 goto done_restock;
7941d214 2550 if (do_memsw_account())
3e32cb2e
JW
2551 page_counter_uncharge(&memcg->memsw, batch);
2552 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2553 } else {
3e32cb2e 2554 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2555 may_swap = false;
3fbe7244 2556 }
7a81b88c 2557
6539cc05
JW
2558 if (batch > nr_pages) {
2559 batch = nr_pages;
2560 goto retry;
2561 }
6d61ef40 2562
869712fd
JW
2563 /*
2564 * Memcg doesn't have a dedicated reserve for atomic
2565 * allocations. But like the global atomic pool, we need to
2566 * put the burden of reclaim on regular allocation requests
2567 * and let these go through as privileged allocations.
2568 */
2569 if (gfp_mask & __GFP_ATOMIC)
2570 goto force;
2571
06b078fc
JW
2572 /*
2573 * Unlike in global OOM situations, memcg is not in a physical
2574 * memory shortage. Allow dying and OOM-killed tasks to
2575 * bypass the last charges so that they can exit quickly and
2576 * free their memory.
2577 */
7775face 2578 if (unlikely(should_force_charge()))
10d53c74 2579 goto force;
06b078fc 2580
89a28483
JW
2581 /*
2582 * Prevent unbounded recursion when reclaim operations need to
2583 * allocate memory. This might exceed the limits temporarily,
2584 * but we prefer facilitating memory reclaim and getting back
2585 * under the limit over triggering OOM kills in these cases.
2586 */
2587 if (unlikely(current->flags & PF_MEMALLOC))
2588 goto force;
2589
06b078fc
JW
2590 if (unlikely(task_in_memcg_oom(current)))
2591 goto nomem;
2592
d0164adc 2593 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2594 goto nomem;
4b534334 2595
e27be240 2596 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2597
e22c6ed9 2598 psi_memstall_enter(&pflags);
b70a2a21
JW
2599 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2600 gfp_mask, may_swap);
e22c6ed9 2601 psi_memstall_leave(&pflags);
6539cc05 2602
61e02c74 2603 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2604 goto retry;
28c34c29 2605
b70a2a21 2606 if (!drained) {
6d3d6aa2 2607 drain_all_stock(mem_over_limit);
b70a2a21
JW
2608 drained = true;
2609 goto retry;
2610 }
2611
28c34c29
JW
2612 if (gfp_mask & __GFP_NORETRY)
2613 goto nomem;
6539cc05
JW
2614 /*
2615 * Even though the limit is exceeded at this point, reclaim
2616 * may have been able to free some pages. Retry the charge
2617 * before killing the task.
2618 *
2619 * Only for regular pages, though: huge pages are rather
2620 * unlikely to succeed so close to the limit, and we fall back
2621 * to regular pages anyway in case of failure.
2622 */
61e02c74 2623 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2624 goto retry;
2625 /*
2626 * At task move, charge accounts can be doubly counted. So, it's
2627 * better to wait until the end of task_move if something is going on.
2628 */
2629 if (mem_cgroup_wait_acct_move(mem_over_limit))
2630 goto retry;
2631
9b130619
JW
2632 if (nr_retries--)
2633 goto retry;
2634
38d38493 2635 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2636 goto nomem;
2637
6539cc05 2638 if (fatal_signal_pending(current))
10d53c74 2639 goto force;
6539cc05 2640
29ef680a
MH
2641 /*
2642 * keep retrying as long as the memcg oom killer is able to make
2643 * a forward progress or bypass the charge if the oom killer
2644 * couldn't make any progress.
2645 */
2646 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2647 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2648 switch (oom_status) {
2649 case OOM_SUCCESS:
d977aa93 2650 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2651 goto retry;
2652 case OOM_FAILED:
2653 goto force;
2654 default:
2655 goto nomem;
2656 }
7a81b88c 2657nomem:
6d1fdc48 2658 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2659 return -ENOMEM;
10d53c74
TH
2660force:
2661 /*
2662 * The allocation either can't fail or will lead to more memory
2663 * being freed very soon. Allow memory usage go over the limit
2664 * temporarily by force charging it.
2665 */
2666 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2667 if (do_memsw_account())
10d53c74 2668 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2669
2670 return 0;
6539cc05
JW
2671
2672done_restock:
2673 if (batch > nr_pages)
2674 refill_stock(memcg, batch - nr_pages);
b23afb93 2675
241994ed 2676 /*
b23afb93
TH
2677 * If the hierarchy is above the normal consumption range, schedule
2678 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2679 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2680 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2681 * not recorded as it most likely matches current's and won't
2682 * change in the meantime. As high limit is checked again before
2683 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2684 */
2685 do {
4b82ab4f
JK
2686 bool mem_high, swap_high;
2687
2688 mem_high = page_counter_read(&memcg->memory) >
2689 READ_ONCE(memcg->memory.high);
2690 swap_high = page_counter_read(&memcg->swap) >
2691 READ_ONCE(memcg->swap.high);
2692
2693 /* Don't bother a random interrupted task */
2694 if (in_interrupt()) {
2695 if (mem_high) {
f7e1cb6e
JW
2696 schedule_work(&memcg->high_work);
2697 break;
2698 }
4b82ab4f
JK
2699 continue;
2700 }
2701
2702 if (mem_high || swap_high) {
2703 /*
2704 * The allocating tasks in this cgroup will need to do
2705 * reclaim or be throttled to prevent further growth
2706 * of the memory or swap footprints.
2707 *
2708 * Target some best-effort fairness between the tasks,
2709 * and distribute reclaim work and delay penalties
2710 * based on how much each task is actually allocating.
2711 */
9516a18a 2712 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2713 set_notify_resume(current);
2714 break;
2715 }
241994ed 2716 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2717
2718 return 0;
7a81b88c 2719}
8a9f3ccd 2720
c5c8b16b
MS
2721static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2722 unsigned int nr_pages)
2723{
2724 if (mem_cgroup_is_root(memcg))
2725 return 0;
2726
2727 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2728}
2729
f0e45fb4 2730#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2731static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2732{
ce00a967
JW
2733 if (mem_cgroup_is_root(memcg))
2734 return;
2735
3e32cb2e 2736 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2737 if (do_memsw_account())
3e32cb2e 2738 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2739}
f0e45fb4 2740#endif
d01dd17f 2741
d9eb1ea2 2742static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2743{
bcfe06bf 2744 VM_BUG_ON_PAGE(page_memcg(page), page);
0a31bc97 2745 /*
a5eb011a 2746 * Any of the following ensures page's memcg stability:
0a31bc97 2747 *
a0b5b414
JW
2748 * - the page lock
2749 * - LRU isolation
2750 * - lock_page_memcg()
2751 * - exclusive reference
0a31bc97 2752 */
bcfe06bf 2753 page->memcg_data = (unsigned long)memcg;
7a81b88c 2754}
66e1707b 2755
e74d2259
MS
2756static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2757{
2758 struct mem_cgroup *memcg;
2759
2760 rcu_read_lock();
2761retry:
2762 memcg = obj_cgroup_memcg(objcg);
2763 if (unlikely(!css_tryget(&memcg->css)))
2764 goto retry;
2765 rcu_read_unlock();
2766
2767 return memcg;
2768}
2769
84c07d11 2770#ifdef CONFIG_MEMCG_KMEM
41eb5df1
WL
2771/*
2772 * The allocated objcg pointers array is not accounted directly.
2773 * Moreover, it should not come from DMA buffer and is not readily
2774 * reclaimable. So those GFP bits should be masked off.
2775 */
2776#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2777
10befea9 2778int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2e9bd483 2779 gfp_t gfp, bool new_page)
10befea9
RG
2780{
2781 unsigned int objects = objs_per_slab_page(s, page);
2e9bd483 2782 unsigned long memcg_data;
10befea9
RG
2783 void *vec;
2784
41eb5df1 2785 gfp &= ~OBJCGS_CLEAR_MASK;
10befea9
RG
2786 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2787 page_to_nid(page));
2788 if (!vec)
2789 return -ENOMEM;
2790
2e9bd483
RG
2791 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2792 if (new_page) {
2793 /*
2794 * If the slab page is brand new and nobody can yet access
2795 * it's memcg_data, no synchronization is required and
2796 * memcg_data can be simply assigned.
2797 */
2798 page->memcg_data = memcg_data;
2799 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2800 /*
2801 * If the slab page is already in use, somebody can allocate
2802 * and assign obj_cgroups in parallel. In this case the existing
2803 * objcg vector should be reused.
2804 */
10befea9 2805 kfree(vec);
2e9bd483
RG
2806 return 0;
2807 }
10befea9 2808
2e9bd483 2809 kmemleak_not_leak(vec);
10befea9
RG
2810 return 0;
2811}
2812
8380ce47
RG
2813/*
2814 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2815 *
bcfe06bf
RG
2816 * A passed kernel object can be a slab object or a generic kernel page, so
2817 * different mechanisms for getting the memory cgroup pointer should be used.
2818 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2819 * can not know for sure how the kernel object is implemented.
2820 * mem_cgroup_from_obj() can be safely used in such cases.
2821 *
8380ce47
RG
2822 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2823 * cgroup_mutex, etc.
2824 */
2825struct mem_cgroup *mem_cgroup_from_obj(void *p)
2826{
2827 struct page *page;
2828
2829 if (mem_cgroup_disabled())
2830 return NULL;
2831
2832 page = virt_to_head_page(p);
2833
2834 /*
9855609b
RG
2835 * Slab objects are accounted individually, not per-page.
2836 * Memcg membership data for each individual object is saved in
2837 * the page->obj_cgroups.
8380ce47 2838 */
270c6a71 2839 if (page_objcgs_check(page)) {
9855609b
RG
2840 struct obj_cgroup *objcg;
2841 unsigned int off;
2842
2843 off = obj_to_index(page->slab_cache, page, p);
270c6a71 2844 objcg = page_objcgs(page)[off];
10befea9
RG
2845 if (objcg)
2846 return obj_cgroup_memcg(objcg);
2847
2848 return NULL;
9855609b 2849 }
8380ce47 2850
bcfe06bf
RG
2851 /*
2852 * page_memcg_check() is used here, because page_has_obj_cgroups()
2853 * check above could fail because the object cgroups vector wasn't set
2854 * at that moment, but it can be set concurrently.
2855 * page_memcg_check(page) will guarantee that a proper memory
2856 * cgroup pointer or NULL will be returned.
2857 */
2858 return page_memcg_check(page);
8380ce47
RG
2859}
2860
bf4f0599
RG
2861__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2862{
2863 struct obj_cgroup *objcg = NULL;
2864 struct mem_cgroup *memcg;
2865
279c3393
RG
2866 if (memcg_kmem_bypass())
2867 return NULL;
2868
bf4f0599 2869 rcu_read_lock();
37d5985c
RG
2870 if (unlikely(active_memcg()))
2871 memcg = active_memcg();
bf4f0599
RG
2872 else
2873 memcg = mem_cgroup_from_task(current);
2874
2875 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2876 objcg = rcu_dereference(memcg->objcg);
2877 if (objcg && obj_cgroup_tryget(objcg))
2878 break;
2f7659a3 2879 objcg = NULL;
bf4f0599
RG
2880 }
2881 rcu_read_unlock();
2882
2883 return objcg;
2884}
2885
f3bb3043 2886static int memcg_alloc_cache_id(void)
55007d84 2887{
f3bb3043
VD
2888 int id, size;
2889 int err;
2890
dbcf73e2 2891 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2892 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2893 if (id < 0)
2894 return id;
55007d84 2895
dbcf73e2 2896 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2897 return id;
2898
2899 /*
2900 * There's no space for the new id in memcg_caches arrays,
2901 * so we have to grow them.
2902 */
05257a1a 2903 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2904
2905 size = 2 * (id + 1);
55007d84
GC
2906 if (size < MEMCG_CACHES_MIN_SIZE)
2907 size = MEMCG_CACHES_MIN_SIZE;
2908 else if (size > MEMCG_CACHES_MAX_SIZE)
2909 size = MEMCG_CACHES_MAX_SIZE;
2910
9855609b 2911 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2912 if (!err)
2913 memcg_nr_cache_ids = size;
2914
2915 up_write(&memcg_cache_ids_sem);
2916
f3bb3043 2917 if (err) {
dbcf73e2 2918 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2919 return err;
2920 }
2921 return id;
2922}
2923
2924static void memcg_free_cache_id(int id)
2925{
dbcf73e2 2926 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2927}
2928
f1286fae
MS
2929/*
2930 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2931 * @objcg: object cgroup to uncharge
2932 * @nr_pages: number of pages to uncharge
2933 */
e74d2259
MS
2934static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2935 unsigned int nr_pages)
2936{
2937 struct mem_cgroup *memcg;
2938
2939 memcg = get_mem_cgroup_from_objcg(objcg);
e74d2259 2940
f1286fae
MS
2941 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2942 page_counter_uncharge(&memcg->kmem, nr_pages);
2943 refill_stock(memcg, nr_pages);
e74d2259 2944
e74d2259 2945 css_put(&memcg->css);
e74d2259
MS
2946}
2947
f1286fae
MS
2948/*
2949 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2950 * @objcg: object cgroup to charge
45264778 2951 * @gfp: reclaim mode
92d0510c 2952 * @nr_pages: number of pages to charge
45264778
VD
2953 *
2954 * Returns 0 on success, an error code on failure.
2955 */
f1286fae
MS
2956static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2957 unsigned int nr_pages)
7ae1e1d0 2958{
f3ccb2c4 2959 struct page_counter *counter;
f1286fae 2960 struct mem_cgroup *memcg;
7ae1e1d0
GC
2961 int ret;
2962
f1286fae
MS
2963 memcg = get_mem_cgroup_from_objcg(objcg);
2964
c5c8b16b 2965 ret = try_charge_memcg(memcg, gfp, nr_pages);
52c29b04 2966 if (ret)
f1286fae 2967 goto out;
52c29b04
JW
2968
2969 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2970 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2971
2972 /*
2973 * Enforce __GFP_NOFAIL allocation because callers are not
2974 * prepared to see failures and likely do not have any failure
2975 * handling code.
2976 */
2977 if (gfp & __GFP_NOFAIL) {
2978 page_counter_charge(&memcg->kmem, nr_pages);
f1286fae 2979 goto out;
e55d9d9b 2980 }
52c29b04 2981 cancel_charge(memcg, nr_pages);
f1286fae 2982 ret = -ENOMEM;
7ae1e1d0 2983 }
f1286fae
MS
2984out:
2985 css_put(&memcg->css);
4b13f64d 2986
f1286fae 2987 return ret;
4b13f64d
RG
2988}
2989
45264778 2990/**
f4b00eab 2991 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
2992 * @page: page to charge
2993 * @gfp: reclaim mode
2994 * @order: allocation order
2995 *
2996 * Returns 0 on success, an error code on failure.
2997 */
f4b00eab 2998int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2999{
b4e0b68f 3000 struct obj_cgroup *objcg;
fcff7d7e 3001 int ret = 0;
7ae1e1d0 3002
b4e0b68f
MS
3003 objcg = get_obj_cgroup_from_current();
3004 if (objcg) {
3005 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
4d96ba35 3006 if (!ret) {
b4e0b68f 3007 page->memcg_data = (unsigned long)objcg |
18b2db3b 3008 MEMCG_DATA_KMEM;
1a3e1f40 3009 return 0;
4d96ba35 3010 }
b4e0b68f 3011 obj_cgroup_put(objcg);
c4159a75 3012 }
d05e83a6 3013 return ret;
7ae1e1d0 3014}
49a18eae 3015
45264778 3016/**
f4b00eab 3017 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3018 * @page: page to uncharge
3019 * @order: allocation order
3020 */
f4b00eab 3021void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3022{
b4e0b68f 3023 struct obj_cgroup *objcg;
f3ccb2c4 3024 unsigned int nr_pages = 1 << order;
7ae1e1d0 3025
b4e0b68f 3026 if (!PageMemcgKmem(page))
7ae1e1d0
GC
3027 return;
3028
b4e0b68f
MS
3029 objcg = __page_objcg(page);
3030 obj_cgroup_uncharge_pages(objcg, nr_pages);
bcfe06bf 3031 page->memcg_data = 0;
b4e0b68f 3032 obj_cgroup_put(objcg);
60d3fd32 3033}
bf4f0599 3034
68ac5b3c
WL
3035void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3036 enum node_stat_item idx, int nr)
3037{
68ac5b3c 3038 unsigned long flags;
55927114 3039 struct obj_stock *stock = get_obj_stock(&flags);
68ac5b3c
WL
3040 int *bytes;
3041
68ac5b3c
WL
3042 /*
3043 * Save vmstat data in stock and skip vmstat array update unless
3044 * accumulating over a page of vmstat data or when pgdat or idx
3045 * changes.
3046 */
3047 if (stock->cached_objcg != objcg) {
3048 drain_obj_stock(stock);
3049 obj_cgroup_get(objcg);
3050 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3051 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3052 stock->cached_objcg = objcg;
3053 stock->cached_pgdat = pgdat;
3054 } else if (stock->cached_pgdat != pgdat) {
3055 /* Flush the existing cached vmstat data */
7fa0dacb
WL
3056 struct pglist_data *oldpg = stock->cached_pgdat;
3057
68ac5b3c 3058 if (stock->nr_slab_reclaimable_b) {
7fa0dacb 3059 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
68ac5b3c
WL
3060 stock->nr_slab_reclaimable_b);
3061 stock->nr_slab_reclaimable_b = 0;
3062 }
3063 if (stock->nr_slab_unreclaimable_b) {
7fa0dacb 3064 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
68ac5b3c
WL
3065 stock->nr_slab_unreclaimable_b);
3066 stock->nr_slab_unreclaimable_b = 0;
3067 }
3068 stock->cached_pgdat = pgdat;
3069 }
3070
3071 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3072 : &stock->nr_slab_unreclaimable_b;
3073 /*
3074 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3075 * cached locally at least once before pushing it out.
3076 */
3077 if (!*bytes) {
3078 *bytes = nr;
3079 nr = 0;
3080 } else {
3081 *bytes += nr;
3082 if (abs(*bytes) > PAGE_SIZE) {
3083 nr = *bytes;
3084 *bytes = 0;
3085 } else {
3086 nr = 0;
3087 }
3088 }
3089 if (nr)
3090 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3091
55927114 3092 put_obj_stock(flags);
68ac5b3c
WL
3093}
3094
bf4f0599
RG
3095static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3096{
bf4f0599 3097 unsigned long flags;
55927114 3098 struct obj_stock *stock = get_obj_stock(&flags);
bf4f0599
RG
3099 bool ret = false;
3100
bf4f0599
RG
3101 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3102 stock->nr_bytes -= nr_bytes;
3103 ret = true;
3104 }
3105
55927114 3106 put_obj_stock(flags);
bf4f0599
RG
3107
3108 return ret;
3109}
3110
55927114 3111static void drain_obj_stock(struct obj_stock *stock)
bf4f0599
RG
3112{
3113 struct obj_cgroup *old = stock->cached_objcg;
3114
3115 if (!old)
3116 return;
3117
3118 if (stock->nr_bytes) {
3119 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3120 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3121
e74d2259
MS
3122 if (nr_pages)
3123 obj_cgroup_uncharge_pages(old, nr_pages);
bf4f0599
RG
3124
3125 /*
3126 * The leftover is flushed to the centralized per-memcg value.
3127 * On the next attempt to refill obj stock it will be moved
3128 * to a per-cpu stock (probably, on an other CPU), see
3129 * refill_obj_stock().
3130 *
3131 * How often it's flushed is a trade-off between the memory
3132 * limit enforcement accuracy and potential CPU contention,
3133 * so it might be changed in the future.
3134 */
3135 atomic_add(nr_bytes, &old->nr_charged_bytes);
3136 stock->nr_bytes = 0;
3137 }
3138
68ac5b3c
WL
3139 /*
3140 * Flush the vmstat data in current stock
3141 */
3142 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3143 if (stock->nr_slab_reclaimable_b) {
3144 mod_objcg_mlstate(old, stock->cached_pgdat,
3145 NR_SLAB_RECLAIMABLE_B,
3146 stock->nr_slab_reclaimable_b);
3147 stock->nr_slab_reclaimable_b = 0;
3148 }
3149 if (stock->nr_slab_unreclaimable_b) {
3150 mod_objcg_mlstate(old, stock->cached_pgdat,
3151 NR_SLAB_UNRECLAIMABLE_B,
3152 stock->nr_slab_unreclaimable_b);
3153 stock->nr_slab_unreclaimable_b = 0;
3154 }
3155 stock->cached_pgdat = NULL;
3156 }
3157
bf4f0599
RG
3158 obj_cgroup_put(old);
3159 stock->cached_objcg = NULL;
3160}
3161
3162static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3163 struct mem_cgroup *root_memcg)
3164{
3165 struct mem_cgroup *memcg;
3166
55927114
WL
3167 if (in_task() && stock->task_obj.cached_objcg) {
3168 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3169 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3170 return true;
3171 }
3172 if (stock->irq_obj.cached_objcg) {
3173 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
bf4f0599
RG
3174 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3175 return true;
3176 }
3177
3178 return false;
3179}
3180
5387c904
WL
3181static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3182 bool allow_uncharge)
bf4f0599 3183{
bf4f0599 3184 unsigned long flags;
55927114 3185 struct obj_stock *stock = get_obj_stock(&flags);
5387c904 3186 unsigned int nr_pages = 0;
bf4f0599 3187
bf4f0599
RG
3188 if (stock->cached_objcg != objcg) { /* reset if necessary */
3189 drain_obj_stock(stock);
3190 obj_cgroup_get(objcg);
3191 stock->cached_objcg = objcg;
5387c904
WL
3192 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3193 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3194 allow_uncharge = true; /* Allow uncharge when objcg changes */
bf4f0599
RG
3195 }
3196 stock->nr_bytes += nr_bytes;
3197
5387c904
WL
3198 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3199 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3200 stock->nr_bytes &= (PAGE_SIZE - 1);
3201 }
bf4f0599 3202
55927114 3203 put_obj_stock(flags);
5387c904
WL
3204
3205 if (nr_pages)
3206 obj_cgroup_uncharge_pages(objcg, nr_pages);
bf4f0599
RG
3207}
3208
3209int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3210{
bf4f0599
RG
3211 unsigned int nr_pages, nr_bytes;
3212 int ret;
3213
3214 if (consume_obj_stock(objcg, size))
3215 return 0;
3216
3217 /*
5387c904 3218 * In theory, objcg->nr_charged_bytes can have enough
bf4f0599 3219 * pre-charged bytes to satisfy the allocation. However,
5387c904
WL
3220 * flushing objcg->nr_charged_bytes requires two atomic
3221 * operations, and objcg->nr_charged_bytes can't be big.
3222 * The shared objcg->nr_charged_bytes can also become a
3223 * performance bottleneck if all tasks of the same memcg are
3224 * trying to update it. So it's better to ignore it and try
3225 * grab some new pages. The stock's nr_bytes will be flushed to
3226 * objcg->nr_charged_bytes later on when objcg changes.
3227 *
3228 * The stock's nr_bytes may contain enough pre-charged bytes
3229 * to allow one less page from being charged, but we can't rely
3230 * on the pre-charged bytes not being changed outside of
3231 * consume_obj_stock() or refill_obj_stock(). So ignore those
3232 * pre-charged bytes as well when charging pages. To avoid a
3233 * page uncharge right after a page charge, we set the
3234 * allow_uncharge flag to false when calling refill_obj_stock()
3235 * to temporarily allow the pre-charged bytes to exceed the page
3236 * size limit. The maximum reachable value of the pre-charged
3237 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3238 * race.
bf4f0599 3239 */
bf4f0599
RG
3240 nr_pages = size >> PAGE_SHIFT;
3241 nr_bytes = size & (PAGE_SIZE - 1);
3242
3243 if (nr_bytes)
3244 nr_pages += 1;
3245
e74d2259 3246 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
bf4f0599 3247 if (!ret && nr_bytes)
5387c904 3248 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
bf4f0599 3249
bf4f0599
RG
3250 return ret;
3251}
3252
3253void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3254{
5387c904 3255 refill_obj_stock(objcg, size, true);
bf4f0599
RG
3256}
3257
84c07d11 3258#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3259
ca3e0214 3260/*
be6c8982 3261 * Because page_memcg(head) is not set on tails, set it now.
ca3e0214 3262 */
be6c8982 3263void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214 3264{
bcfe06bf 3265 struct mem_cgroup *memcg = page_memcg(head);
e94c8a9c 3266 int i;
ca3e0214 3267
be6c8982 3268 if (mem_cgroup_disabled() || !memcg)
3d37c4a9 3269 return;
b070e65c 3270
be6c8982
ZG
3271 for (i = 1; i < nr; i++)
3272 head[i].memcg_data = head->memcg_data;
b4e0b68f
MS
3273
3274 if (PageMemcgKmem(head))
3275 obj_cgroup_get_many(__page_objcg(head), nr - 1);
3276 else
3277 css_get_many(&memcg->css, nr - 1);
ca3e0214 3278}
ca3e0214 3279
c255a458 3280#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3281/**
3282 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3283 * @entry: swap entry to be moved
3284 * @from: mem_cgroup which the entry is moved from
3285 * @to: mem_cgroup which the entry is moved to
3286 *
3287 * It succeeds only when the swap_cgroup's record for this entry is the same
3288 * as the mem_cgroup's id of @from.
3289 *
3290 * Returns 0 on success, -EINVAL on failure.
3291 *
3e32cb2e 3292 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3293 * both res and memsw, and called css_get().
3294 */
3295static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3296 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3297{
3298 unsigned short old_id, new_id;
3299
34c00c31
LZ
3300 old_id = mem_cgroup_id(from);
3301 new_id = mem_cgroup_id(to);
02491447
DN
3302
3303 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3304 mod_memcg_state(from, MEMCG_SWAP, -1);
3305 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3306 return 0;
3307 }
3308 return -EINVAL;
3309}
3310#else
3311static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3312 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3313{
3314 return -EINVAL;
3315}
8c7c6e34 3316#endif
d13d1443 3317
bbec2e15 3318static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3319
bbec2e15
RG
3320static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3321 unsigned long max, bool memsw)
628f4235 3322{
3e32cb2e 3323 bool enlarge = false;
bb4a7ea2 3324 bool drained = false;
3e32cb2e 3325 int ret;
c054a78c
YZ
3326 bool limits_invariant;
3327 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3328
3e32cb2e 3329 do {
628f4235
KH
3330 if (signal_pending(current)) {
3331 ret = -EINTR;
3332 break;
3333 }
3e32cb2e 3334
bbec2e15 3335 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3336 /*
3337 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3338 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3339 */
15b42562 3340 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3341 max <= memcg->memsw.max;
c054a78c 3342 if (!limits_invariant) {
bbec2e15 3343 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3344 ret = -EINVAL;
8c7c6e34
KH
3345 break;
3346 }
bbec2e15 3347 if (max > counter->max)
3e32cb2e 3348 enlarge = true;
bbec2e15
RG
3349 ret = page_counter_set_max(counter, max);
3350 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3351
3352 if (!ret)
3353 break;
3354
bb4a7ea2
SB
3355 if (!drained) {
3356 drain_all_stock(memcg);
3357 drained = true;
3358 continue;
3359 }
3360
1ab5c056
AR
3361 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3362 GFP_KERNEL, !memsw)) {
3363 ret = -EBUSY;
3364 break;
3365 }
3366 } while (true);
3e32cb2e 3367
3c11ecf4
KH
3368 if (!ret && enlarge)
3369 memcg_oom_recover(memcg);
3e32cb2e 3370
628f4235
KH
3371 return ret;
3372}
3373
ef8f2327 3374unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3375 gfp_t gfp_mask,
3376 unsigned long *total_scanned)
3377{
3378 unsigned long nr_reclaimed = 0;
ef8f2327 3379 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3380 unsigned long reclaimed;
3381 int loop = 0;
ef8f2327 3382 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3383 unsigned long excess;
0608f43d
AM
3384 unsigned long nr_scanned;
3385
3386 if (order > 0)
3387 return 0;
3388
ef8f2327 3389 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3390
3391 /*
3392 * Do not even bother to check the largest node if the root
3393 * is empty. Do it lockless to prevent lock bouncing. Races
3394 * are acceptable as soft limit is best effort anyway.
3395 */
bfc7228b 3396 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3397 return 0;
3398
0608f43d
AM
3399 /*
3400 * This loop can run a while, specially if mem_cgroup's continuously
3401 * keep exceeding their soft limit and putting the system under
3402 * pressure
3403 */
3404 do {
3405 if (next_mz)
3406 mz = next_mz;
3407 else
3408 mz = mem_cgroup_largest_soft_limit_node(mctz);
3409 if (!mz)
3410 break;
3411
3412 nr_scanned = 0;
ef8f2327 3413 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3414 gfp_mask, &nr_scanned);
3415 nr_reclaimed += reclaimed;
3416 *total_scanned += nr_scanned;
0a31bc97 3417 spin_lock_irq(&mctz->lock);
bc2f2e7f 3418 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3419
3420 /*
3421 * If we failed to reclaim anything from this memory cgroup
3422 * it is time to move on to the next cgroup
3423 */
3424 next_mz = NULL;
bc2f2e7f
VD
3425 if (!reclaimed)
3426 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3427
3e32cb2e 3428 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3429 /*
3430 * One school of thought says that we should not add
3431 * back the node to the tree if reclaim returns 0.
3432 * But our reclaim could return 0, simply because due
3433 * to priority we are exposing a smaller subset of
3434 * memory to reclaim from. Consider this as a longer
3435 * term TODO.
3436 */
3437 /* If excess == 0, no tree ops */
cf2c8127 3438 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3439 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3440 css_put(&mz->memcg->css);
3441 loop++;
3442 /*
3443 * Could not reclaim anything and there are no more
3444 * mem cgroups to try or we seem to be looping without
3445 * reclaiming anything.
3446 */
3447 if (!nr_reclaimed &&
3448 (next_mz == NULL ||
3449 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3450 break;
3451 } while (!nr_reclaimed);
3452 if (next_mz)
3453 css_put(&next_mz->memcg->css);
3454 return nr_reclaimed;
3455}
3456
c26251f9 3457/*
51038171 3458 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3459 *
3460 * Caller is responsible for holding css reference for memcg.
3461 */
3462static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3463{
d977aa93 3464 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3465
c1e862c1
KH
3466 /* we call try-to-free pages for make this cgroup empty */
3467 lru_add_drain_all();
d12c60f6
JS
3468
3469 drain_all_stock(memcg);
3470
f817ed48 3471 /* try to free all pages in this cgroup */
3e32cb2e 3472 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3473 int progress;
c1e862c1 3474
c26251f9
MH
3475 if (signal_pending(current))
3476 return -EINTR;
3477
b70a2a21
JW
3478 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3479 GFP_KERNEL, true);
c1e862c1 3480 if (!progress) {
f817ed48 3481 nr_retries--;
c1e862c1 3482 /* maybe some writeback is necessary */
8aa7e847 3483 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3484 }
f817ed48
KH
3485
3486 }
ab5196c2
MH
3487
3488 return 0;
cc847582
KH
3489}
3490
6770c64e
TH
3491static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3492 char *buf, size_t nbytes,
3493 loff_t off)
c1e862c1 3494{
6770c64e 3495 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3496
d8423011
MH
3497 if (mem_cgroup_is_root(memcg))
3498 return -EINVAL;
6770c64e 3499 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3500}
3501
182446d0
TH
3502static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3503 struct cftype *cft)
18f59ea7 3504{
bef8620c 3505 return 1;
18f59ea7
BS
3506}
3507
182446d0
TH
3508static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3509 struct cftype *cft, u64 val)
18f59ea7 3510{
bef8620c 3511 if (val == 1)
0b8f73e1 3512 return 0;
567fb435 3513
bef8620c
RG
3514 pr_warn_once("Non-hierarchical mode is deprecated. "
3515 "Please report your usecase to linux-mm@kvack.org if you "
3516 "depend on this functionality.\n");
567fb435 3517
bef8620c 3518 return -EINVAL;
18f59ea7
BS
3519}
3520
6f646156 3521static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3522{
42a30035 3523 unsigned long val;
ce00a967 3524
3e32cb2e 3525 if (mem_cgroup_is_root(memcg)) {
30def935
JW
3526 /* mem_cgroup_threshold() calls here from irqsafe context */
3527 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
0d1c2072 3528 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3529 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3530 if (swap)
3531 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3532 } else {
ce00a967 3533 if (!swap)
3e32cb2e 3534 val = page_counter_read(&memcg->memory);
ce00a967 3535 else
3e32cb2e 3536 val = page_counter_read(&memcg->memsw);
ce00a967 3537 }
c12176d3 3538 return val;
ce00a967
JW
3539}
3540
3e32cb2e
JW
3541enum {
3542 RES_USAGE,
3543 RES_LIMIT,
3544 RES_MAX_USAGE,
3545 RES_FAILCNT,
3546 RES_SOFT_LIMIT,
3547};
ce00a967 3548
791badbd 3549static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3550 struct cftype *cft)
8cdea7c0 3551{
182446d0 3552 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3553 struct page_counter *counter;
af36f906 3554
3e32cb2e 3555 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3556 case _MEM:
3e32cb2e
JW
3557 counter = &memcg->memory;
3558 break;
8c7c6e34 3559 case _MEMSWAP:
3e32cb2e
JW
3560 counter = &memcg->memsw;
3561 break;
510fc4e1 3562 case _KMEM:
3e32cb2e 3563 counter = &memcg->kmem;
510fc4e1 3564 break;
d55f90bf 3565 case _TCP:
0db15298 3566 counter = &memcg->tcpmem;
d55f90bf 3567 break;
8c7c6e34
KH
3568 default:
3569 BUG();
8c7c6e34 3570 }
3e32cb2e
JW
3571
3572 switch (MEMFILE_ATTR(cft->private)) {
3573 case RES_USAGE:
3574 if (counter == &memcg->memory)
c12176d3 3575 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3576 if (counter == &memcg->memsw)
c12176d3 3577 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3578 return (u64)page_counter_read(counter) * PAGE_SIZE;
3579 case RES_LIMIT:
bbec2e15 3580 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3581 case RES_MAX_USAGE:
3582 return (u64)counter->watermark * PAGE_SIZE;
3583 case RES_FAILCNT:
3584 return counter->failcnt;
3585 case RES_SOFT_LIMIT:
3586 return (u64)memcg->soft_limit * PAGE_SIZE;
3587 default:
3588 BUG();
3589 }
8cdea7c0 3590}
510fc4e1 3591
84c07d11 3592#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3593static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3594{
bf4f0599 3595 struct obj_cgroup *objcg;
d6441637
VD
3596 int memcg_id;
3597
b313aeee
VD
3598 if (cgroup_memory_nokmem)
3599 return 0;
3600
2a4db7eb 3601 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3602 BUG_ON(memcg->kmem_state);
d6441637 3603
f3bb3043 3604 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3605 if (memcg_id < 0)
3606 return memcg_id;
d6441637 3607
bf4f0599
RG
3608 objcg = obj_cgroup_alloc();
3609 if (!objcg) {
3610 memcg_free_cache_id(memcg_id);
3611 return -ENOMEM;
3612 }
3613 objcg->memcg = memcg;
3614 rcu_assign_pointer(memcg->objcg, objcg);
3615
d648bcc7
RG
3616 static_branch_enable(&memcg_kmem_enabled_key);
3617
900a38f0 3618 memcg->kmemcg_id = memcg_id;
567e9ab2 3619 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3620
3621 return 0;
d6441637
VD
3622}
3623
8e0a8912
JW
3624static void memcg_offline_kmem(struct mem_cgroup *memcg)
3625{
3626 struct cgroup_subsys_state *css;
3627 struct mem_cgroup *parent, *child;
3628 int kmemcg_id;
3629
3630 if (memcg->kmem_state != KMEM_ONLINE)
3631 return;
9855609b 3632
8e0a8912
JW
3633 memcg->kmem_state = KMEM_ALLOCATED;
3634
8e0a8912
JW
3635 parent = parent_mem_cgroup(memcg);
3636 if (!parent)
3637 parent = root_mem_cgroup;
3638
bf4f0599 3639 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3640
3641 kmemcg_id = memcg->kmemcg_id;
3642 BUG_ON(kmemcg_id < 0);
3643
8e0a8912
JW
3644 /*
3645 * Change kmemcg_id of this cgroup and all its descendants to the
3646 * parent's id, and then move all entries from this cgroup's list_lrus
3647 * to ones of the parent. After we have finished, all list_lrus
3648 * corresponding to this cgroup are guaranteed to remain empty. The
3649 * ordering is imposed by list_lru_node->lock taken by
3650 * memcg_drain_all_list_lrus().
3651 */
3a06bb78 3652 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3653 css_for_each_descendant_pre(css, &memcg->css) {
3654 child = mem_cgroup_from_css(css);
3655 BUG_ON(child->kmemcg_id != kmemcg_id);
3656 child->kmemcg_id = parent->kmemcg_id;
8e0a8912 3657 }
3a06bb78
TH
3658 rcu_read_unlock();
3659
9bec5c35 3660 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3661
3662 memcg_free_cache_id(kmemcg_id);
3663}
3664
3665static void memcg_free_kmem(struct mem_cgroup *memcg)
3666{
0b8f73e1
JW
3667 /* css_alloc() failed, offlining didn't happen */
3668 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3669 memcg_offline_kmem(memcg);
8e0a8912 3670}
d6441637 3671#else
0b8f73e1 3672static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3673{
3674 return 0;
3675}
3676static void memcg_offline_kmem(struct mem_cgroup *memcg)
3677{
3678}
3679static void memcg_free_kmem(struct mem_cgroup *memcg)
3680{
3681}
84c07d11 3682#endif /* CONFIG_MEMCG_KMEM */
127424c8 3683
bbec2e15
RG
3684static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3685 unsigned long max)
d6441637 3686{
b313aeee 3687 int ret;
127424c8 3688
bbec2e15
RG
3689 mutex_lock(&memcg_max_mutex);
3690 ret = page_counter_set_max(&memcg->kmem, max);
3691 mutex_unlock(&memcg_max_mutex);
127424c8 3692 return ret;
d6441637 3693}
510fc4e1 3694
bbec2e15 3695static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3696{
3697 int ret;
3698
bbec2e15 3699 mutex_lock(&memcg_max_mutex);
d55f90bf 3700
bbec2e15 3701 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3702 if (ret)
3703 goto out;
3704
0db15298 3705 if (!memcg->tcpmem_active) {
d55f90bf
VD
3706 /*
3707 * The active flag needs to be written after the static_key
3708 * update. This is what guarantees that the socket activation
2d758073
JW
3709 * function is the last one to run. See mem_cgroup_sk_alloc()
3710 * for details, and note that we don't mark any socket as
3711 * belonging to this memcg until that flag is up.
d55f90bf
VD
3712 *
3713 * We need to do this, because static_keys will span multiple
3714 * sites, but we can't control their order. If we mark a socket
3715 * as accounted, but the accounting functions are not patched in
3716 * yet, we'll lose accounting.
3717 *
2d758073 3718 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3719 * because when this value change, the code to process it is not
3720 * patched in yet.
3721 */
3722 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3723 memcg->tcpmem_active = true;
d55f90bf
VD
3724 }
3725out:
bbec2e15 3726 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3727 return ret;
3728}
d55f90bf 3729
628f4235
KH
3730/*
3731 * The user of this function is...
3732 * RES_LIMIT.
3733 */
451af504
TH
3734static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3735 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3736{
451af504 3737 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3738 unsigned long nr_pages;
628f4235
KH
3739 int ret;
3740
451af504 3741 buf = strstrip(buf);
650c5e56 3742 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3743 if (ret)
3744 return ret;
af36f906 3745
3e32cb2e 3746 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3747 case RES_LIMIT:
4b3bde4c
BS
3748 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3749 ret = -EINVAL;
3750 break;
3751 }
3e32cb2e
JW
3752 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3753 case _MEM:
bbec2e15 3754 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3755 break;
3e32cb2e 3756 case _MEMSWAP:
bbec2e15 3757 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3758 break;
3e32cb2e 3759 case _KMEM:
0158115f
MH
3760 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3761 "Please report your usecase to linux-mm@kvack.org if you "
3762 "depend on this functionality.\n");
bbec2e15 3763 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3764 break;
d55f90bf 3765 case _TCP:
bbec2e15 3766 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3767 break;
3e32cb2e 3768 }
296c81d8 3769 break;
3e32cb2e
JW
3770 case RES_SOFT_LIMIT:
3771 memcg->soft_limit = nr_pages;
3772 ret = 0;
628f4235
KH
3773 break;
3774 }
451af504 3775 return ret ?: nbytes;
8cdea7c0
BS
3776}
3777
6770c64e
TH
3778static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3779 size_t nbytes, loff_t off)
c84872e1 3780{
6770c64e 3781 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3782 struct page_counter *counter;
c84872e1 3783
3e32cb2e
JW
3784 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3785 case _MEM:
3786 counter = &memcg->memory;
3787 break;
3788 case _MEMSWAP:
3789 counter = &memcg->memsw;
3790 break;
3791 case _KMEM:
3792 counter = &memcg->kmem;
3793 break;
d55f90bf 3794 case _TCP:
0db15298 3795 counter = &memcg->tcpmem;
d55f90bf 3796 break;
3e32cb2e
JW
3797 default:
3798 BUG();
3799 }
af36f906 3800
3e32cb2e 3801 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3802 case RES_MAX_USAGE:
3e32cb2e 3803 page_counter_reset_watermark(counter);
29f2a4da
PE
3804 break;
3805 case RES_FAILCNT:
3e32cb2e 3806 counter->failcnt = 0;
29f2a4da 3807 break;
3e32cb2e
JW
3808 default:
3809 BUG();
29f2a4da 3810 }
f64c3f54 3811
6770c64e 3812 return nbytes;
c84872e1
PE
3813}
3814
182446d0 3815static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3816 struct cftype *cft)
3817{
182446d0 3818 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3819}
3820
02491447 3821#ifdef CONFIG_MMU
182446d0 3822static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3823 struct cftype *cft, u64 val)
3824{
182446d0 3825 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3826
1dfab5ab 3827 if (val & ~MOVE_MASK)
7dc74be0 3828 return -EINVAL;
ee5e8472 3829
7dc74be0 3830 /*
ee5e8472
GC
3831 * No kind of locking is needed in here, because ->can_attach() will
3832 * check this value once in the beginning of the process, and then carry
3833 * on with stale data. This means that changes to this value will only
3834 * affect task migrations starting after the change.
7dc74be0 3835 */
c0ff4b85 3836 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3837 return 0;
3838}
02491447 3839#else
182446d0 3840static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3841 struct cftype *cft, u64 val)
3842{
3843 return -ENOSYS;
3844}
3845#endif
7dc74be0 3846
406eb0c9 3847#ifdef CONFIG_NUMA
113b7dfd
JW
3848
3849#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3850#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3851#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3852
3853static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3854 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3855{
867e5e1d 3856 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3857 unsigned long nr = 0;
3858 enum lru_list lru;
3859
3860 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3861
3862 for_each_lru(lru) {
3863 if (!(BIT(lru) & lru_mask))
3864 continue;
dd8657b6
SB
3865 if (tree)
3866 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3867 else
3868 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3869 }
3870 return nr;
3871}
3872
3873static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3874 unsigned int lru_mask,
3875 bool tree)
113b7dfd
JW
3876{
3877 unsigned long nr = 0;
3878 enum lru_list lru;
3879
3880 for_each_lru(lru) {
3881 if (!(BIT(lru) & lru_mask))
3882 continue;
dd8657b6
SB
3883 if (tree)
3884 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3885 else
3886 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3887 }
3888 return nr;
3889}
3890
2da8ca82 3891static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3892{
25485de6
GT
3893 struct numa_stat {
3894 const char *name;
3895 unsigned int lru_mask;
3896 };
3897
3898 static const struct numa_stat stats[] = {
3899 { "total", LRU_ALL },
3900 { "file", LRU_ALL_FILE },
3901 { "anon", LRU_ALL_ANON },
3902 { "unevictable", BIT(LRU_UNEVICTABLE) },
3903 };
3904 const struct numa_stat *stat;
406eb0c9 3905 int nid;
aa9694bb 3906 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3907
2d146aa3
JW
3908 cgroup_rstat_flush(memcg->css.cgroup);
3909
25485de6 3910 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3911 seq_printf(m, "%s=%lu", stat->name,
3912 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3913 false));
3914 for_each_node_state(nid, N_MEMORY)
3915 seq_printf(m, " N%d=%lu", nid,
3916 mem_cgroup_node_nr_lru_pages(memcg, nid,
3917 stat->lru_mask, false));
25485de6 3918 seq_putc(m, '\n');
406eb0c9 3919 }
406eb0c9 3920
071aee13 3921 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3922
3923 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3924 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3925 true));
3926 for_each_node_state(nid, N_MEMORY)
3927 seq_printf(m, " N%d=%lu", nid,
3928 mem_cgroup_node_nr_lru_pages(memcg, nid,
3929 stat->lru_mask, true));
071aee13 3930 seq_putc(m, '\n');
406eb0c9 3931 }
406eb0c9 3932
406eb0c9
YH
3933 return 0;
3934}
3935#endif /* CONFIG_NUMA */
3936
c8713d0b 3937static const unsigned int memcg1_stats[] = {
0d1c2072 3938 NR_FILE_PAGES,
be5d0a74 3939 NR_ANON_MAPPED,
468c3982
JW
3940#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3941 NR_ANON_THPS,
3942#endif
c8713d0b
JW
3943 NR_SHMEM,
3944 NR_FILE_MAPPED,
3945 NR_FILE_DIRTY,
3946 NR_WRITEBACK,
3947 MEMCG_SWAP,
3948};
3949
3950static const char *const memcg1_stat_names[] = {
3951 "cache",
3952 "rss",
468c3982 3953#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 3954 "rss_huge",
468c3982 3955#endif
c8713d0b
JW
3956 "shmem",
3957 "mapped_file",
3958 "dirty",
3959 "writeback",
3960 "swap",
3961};
3962
df0e53d0 3963/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3964static const unsigned int memcg1_events[] = {
df0e53d0
JW
3965 PGPGIN,
3966 PGPGOUT,
3967 PGFAULT,
3968 PGMAJFAULT,
3969};
3970
2da8ca82 3971static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3972{
aa9694bb 3973 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3974 unsigned long memory, memsw;
af7c4b0e
JW
3975 struct mem_cgroup *mi;
3976 unsigned int i;
406eb0c9 3977
71cd3113 3978 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3979
2d146aa3
JW
3980 cgroup_rstat_flush(memcg->css.cgroup);
3981
71cd3113 3982 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
3983 unsigned long nr;
3984
71cd3113 3985 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3986 continue;
468c3982 3987 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
468c3982 3988 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 3989 }
7b854121 3990
df0e53d0 3991 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3992 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3993 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3994
3995 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3996 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3997 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3998 PAGE_SIZE);
af7c4b0e 3999
14067bb3 4000 /* Hierarchical information */
3e32cb2e
JW
4001 memory = memsw = PAGE_COUNTER_MAX;
4002 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4003 memory = min(memory, READ_ONCE(mi->memory.max));
4004 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4005 }
3e32cb2e
JW
4006 seq_printf(m, "hierarchical_memory_limit %llu\n",
4007 (u64)memory * PAGE_SIZE);
7941d214 4008 if (do_memsw_account())
3e32cb2e
JW
4009 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4010 (u64)memsw * PAGE_SIZE);
7f016ee8 4011
8de7ecc6 4012 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4013 unsigned long nr;
4014
71cd3113 4015 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4016 continue;
7de2e9f1 4017 nr = memcg_page_state(memcg, memcg1_stats[i]);
8de7ecc6 4018 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4019 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4020 }
4021
8de7ecc6 4022 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4023 seq_printf(m, "total_%s %llu\n",
4024 vm_event_name(memcg1_events[i]),
dd923990 4025 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4026
8de7ecc6 4027 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4028 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4029 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4030 PAGE_SIZE);
14067bb3 4031
7f016ee8 4032#ifdef CONFIG_DEBUG_VM
7f016ee8 4033 {
ef8f2327
MG
4034 pg_data_t *pgdat;
4035 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4036 unsigned long anon_cost = 0;
4037 unsigned long file_cost = 0;
7f016ee8 4038
ef8f2327 4039 for_each_online_pgdat(pgdat) {
a3747b53 4040 mz = memcg->nodeinfo[pgdat->node_id];
7f016ee8 4041
1431d4d1
JW
4042 anon_cost += mz->lruvec.anon_cost;
4043 file_cost += mz->lruvec.file_cost;
ef8f2327 4044 }
1431d4d1
JW
4045 seq_printf(m, "anon_cost %lu\n", anon_cost);
4046 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4047 }
4048#endif
4049
d2ceb9b7
KH
4050 return 0;
4051}
4052
182446d0
TH
4053static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4054 struct cftype *cft)
a7885eb8 4055{
182446d0 4056 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4057
1f4c025b 4058 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4059}
4060
182446d0
TH
4061static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4062 struct cftype *cft, u64 val)
a7885eb8 4063{
182446d0 4064 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4065
37bc3cb9 4066 if (val > 200)
a7885eb8
KM
4067 return -EINVAL;
4068
a4792030 4069 if (!mem_cgroup_is_root(memcg))
3dae7fec
JW
4070 memcg->swappiness = val;
4071 else
4072 vm_swappiness = val;
068b38c1 4073
a7885eb8
KM
4074 return 0;
4075}
4076
2e72b634
KS
4077static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4078{
4079 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4080 unsigned long usage;
2e72b634
KS
4081 int i;
4082
4083 rcu_read_lock();
4084 if (!swap)
2c488db2 4085 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4086 else
2c488db2 4087 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4088
4089 if (!t)
4090 goto unlock;
4091
ce00a967 4092 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4093
4094 /*
748dad36 4095 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4096 * If it's not true, a threshold was crossed after last
4097 * call of __mem_cgroup_threshold().
4098 */
5407a562 4099 i = t->current_threshold;
2e72b634
KS
4100
4101 /*
4102 * Iterate backward over array of thresholds starting from
4103 * current_threshold and check if a threshold is crossed.
4104 * If none of thresholds below usage is crossed, we read
4105 * only one element of the array here.
4106 */
4107 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4108 eventfd_signal(t->entries[i].eventfd, 1);
4109
4110 /* i = current_threshold + 1 */
4111 i++;
4112
4113 /*
4114 * Iterate forward over array of thresholds starting from
4115 * current_threshold+1 and check if a threshold is crossed.
4116 * If none of thresholds above usage is crossed, we read
4117 * only one element of the array here.
4118 */
4119 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4120 eventfd_signal(t->entries[i].eventfd, 1);
4121
4122 /* Update current_threshold */
5407a562 4123 t->current_threshold = i - 1;
2e72b634
KS
4124unlock:
4125 rcu_read_unlock();
4126}
4127
4128static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4129{
ad4ca5f4
KS
4130 while (memcg) {
4131 __mem_cgroup_threshold(memcg, false);
7941d214 4132 if (do_memsw_account())
ad4ca5f4
KS
4133 __mem_cgroup_threshold(memcg, true);
4134
4135 memcg = parent_mem_cgroup(memcg);
4136 }
2e72b634
KS
4137}
4138
4139static int compare_thresholds(const void *a, const void *b)
4140{
4141 const struct mem_cgroup_threshold *_a = a;
4142 const struct mem_cgroup_threshold *_b = b;
4143
2bff24a3
GT
4144 if (_a->threshold > _b->threshold)
4145 return 1;
4146
4147 if (_a->threshold < _b->threshold)
4148 return -1;
4149
4150 return 0;
2e72b634
KS
4151}
4152
c0ff4b85 4153static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4154{
4155 struct mem_cgroup_eventfd_list *ev;
4156
2bcf2e92
MH
4157 spin_lock(&memcg_oom_lock);
4158
c0ff4b85 4159 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4160 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4161
4162 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4163 return 0;
4164}
4165
c0ff4b85 4166static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4167{
7d74b06f
KH
4168 struct mem_cgroup *iter;
4169
c0ff4b85 4170 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4171 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4172}
4173
59b6f873 4174static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4175 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4176{
2c488db2
KS
4177 struct mem_cgroup_thresholds *thresholds;
4178 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4179 unsigned long threshold;
4180 unsigned long usage;
2c488db2 4181 int i, size, ret;
2e72b634 4182
650c5e56 4183 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4184 if (ret)
4185 return ret;
4186
4187 mutex_lock(&memcg->thresholds_lock);
2c488db2 4188
05b84301 4189 if (type == _MEM) {
2c488db2 4190 thresholds = &memcg->thresholds;
ce00a967 4191 usage = mem_cgroup_usage(memcg, false);
05b84301 4192 } else if (type == _MEMSWAP) {
2c488db2 4193 thresholds = &memcg->memsw_thresholds;
ce00a967 4194 usage = mem_cgroup_usage(memcg, true);
05b84301 4195 } else
2e72b634
KS
4196 BUG();
4197
2e72b634 4198 /* Check if a threshold crossed before adding a new one */
2c488db2 4199 if (thresholds->primary)
2e72b634
KS
4200 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4201
2c488db2 4202 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4203
4204 /* Allocate memory for new array of thresholds */
67b8046f 4205 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4206 if (!new) {
2e72b634
KS
4207 ret = -ENOMEM;
4208 goto unlock;
4209 }
2c488db2 4210 new->size = size;
2e72b634
KS
4211
4212 /* Copy thresholds (if any) to new array */
e90342e6
GS
4213 if (thresholds->primary)
4214 memcpy(new->entries, thresholds->primary->entries,
4215 flex_array_size(new, entries, size - 1));
2c488db2 4216
2e72b634 4217 /* Add new threshold */
2c488db2
KS
4218 new->entries[size - 1].eventfd = eventfd;
4219 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4220
4221 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4222 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4223 compare_thresholds, NULL);
4224
4225 /* Find current threshold */
2c488db2 4226 new->current_threshold = -1;
2e72b634 4227 for (i = 0; i < size; i++) {
748dad36 4228 if (new->entries[i].threshold <= usage) {
2e72b634 4229 /*
2c488db2
KS
4230 * new->current_threshold will not be used until
4231 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4232 * it here.
4233 */
2c488db2 4234 ++new->current_threshold;
748dad36
SZ
4235 } else
4236 break;
2e72b634
KS
4237 }
4238
2c488db2
KS
4239 /* Free old spare buffer and save old primary buffer as spare */
4240 kfree(thresholds->spare);
4241 thresholds->spare = thresholds->primary;
4242
4243 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4244
907860ed 4245 /* To be sure that nobody uses thresholds */
2e72b634
KS
4246 synchronize_rcu();
4247
2e72b634
KS
4248unlock:
4249 mutex_unlock(&memcg->thresholds_lock);
4250
4251 return ret;
4252}
4253
59b6f873 4254static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4255 struct eventfd_ctx *eventfd, const char *args)
4256{
59b6f873 4257 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4258}
4259
59b6f873 4260static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4261 struct eventfd_ctx *eventfd, const char *args)
4262{
59b6f873 4263 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4264}
4265
59b6f873 4266static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4267 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4268{
2c488db2
KS
4269 struct mem_cgroup_thresholds *thresholds;
4270 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4271 unsigned long usage;
7d36665a 4272 int i, j, size, entries;
2e72b634
KS
4273
4274 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4275
4276 if (type == _MEM) {
2c488db2 4277 thresholds = &memcg->thresholds;
ce00a967 4278 usage = mem_cgroup_usage(memcg, false);
05b84301 4279 } else if (type == _MEMSWAP) {
2c488db2 4280 thresholds = &memcg->memsw_thresholds;
ce00a967 4281 usage = mem_cgroup_usage(memcg, true);
05b84301 4282 } else
2e72b634
KS
4283 BUG();
4284
371528ca
AV
4285 if (!thresholds->primary)
4286 goto unlock;
4287
2e72b634
KS
4288 /* Check if a threshold crossed before removing */
4289 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4290
4291 /* Calculate new number of threshold */
7d36665a 4292 size = entries = 0;
2c488db2
KS
4293 for (i = 0; i < thresholds->primary->size; i++) {
4294 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4295 size++;
7d36665a
CX
4296 else
4297 entries++;
2e72b634
KS
4298 }
4299
2c488db2 4300 new = thresholds->spare;
907860ed 4301
7d36665a
CX
4302 /* If no items related to eventfd have been cleared, nothing to do */
4303 if (!entries)
4304 goto unlock;
4305
2e72b634
KS
4306 /* Set thresholds array to NULL if we don't have thresholds */
4307 if (!size) {
2c488db2
KS
4308 kfree(new);
4309 new = NULL;
907860ed 4310 goto swap_buffers;
2e72b634
KS
4311 }
4312
2c488db2 4313 new->size = size;
2e72b634
KS
4314
4315 /* Copy thresholds and find current threshold */
2c488db2
KS
4316 new->current_threshold = -1;
4317 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4318 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4319 continue;
4320
2c488db2 4321 new->entries[j] = thresholds->primary->entries[i];
748dad36 4322 if (new->entries[j].threshold <= usage) {
2e72b634 4323 /*
2c488db2 4324 * new->current_threshold will not be used
2e72b634
KS
4325 * until rcu_assign_pointer(), so it's safe to increment
4326 * it here.
4327 */
2c488db2 4328 ++new->current_threshold;
2e72b634
KS
4329 }
4330 j++;
4331 }
4332
907860ed 4333swap_buffers:
2c488db2
KS
4334 /* Swap primary and spare array */
4335 thresholds->spare = thresholds->primary;
8c757763 4336
2c488db2 4337 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4338
907860ed 4339 /* To be sure that nobody uses thresholds */
2e72b634 4340 synchronize_rcu();
6611d8d7
MC
4341
4342 /* If all events are unregistered, free the spare array */
4343 if (!new) {
4344 kfree(thresholds->spare);
4345 thresholds->spare = NULL;
4346 }
371528ca 4347unlock:
2e72b634 4348 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4349}
c1e862c1 4350
59b6f873 4351static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4352 struct eventfd_ctx *eventfd)
4353{
59b6f873 4354 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4355}
4356
59b6f873 4357static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4358 struct eventfd_ctx *eventfd)
4359{
59b6f873 4360 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4361}
4362
59b6f873 4363static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4364 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4365{
9490ff27 4366 struct mem_cgroup_eventfd_list *event;
9490ff27 4367
9490ff27
KH
4368 event = kmalloc(sizeof(*event), GFP_KERNEL);
4369 if (!event)
4370 return -ENOMEM;
4371
1af8efe9 4372 spin_lock(&memcg_oom_lock);
9490ff27
KH
4373
4374 event->eventfd = eventfd;
4375 list_add(&event->list, &memcg->oom_notify);
4376
4377 /* already in OOM ? */
c2b42d3c 4378 if (memcg->under_oom)
9490ff27 4379 eventfd_signal(eventfd, 1);
1af8efe9 4380 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4381
4382 return 0;
4383}
4384
59b6f873 4385static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4386 struct eventfd_ctx *eventfd)
9490ff27 4387{
9490ff27 4388 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4389
1af8efe9 4390 spin_lock(&memcg_oom_lock);
9490ff27 4391
c0ff4b85 4392 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4393 if (ev->eventfd == eventfd) {
4394 list_del(&ev->list);
4395 kfree(ev);
4396 }
4397 }
4398
1af8efe9 4399 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4400}
4401
2da8ca82 4402static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4403{
aa9694bb 4404 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4405
791badbd 4406 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4407 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4408 seq_printf(sf, "oom_kill %lu\n",
4409 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4410 return 0;
4411}
4412
182446d0 4413static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4414 struct cftype *cft, u64 val)
4415{
182446d0 4416 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4417
4418 /* cannot set to root cgroup and only 0 and 1 are allowed */
a4792030 4419 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
3c11ecf4
KH
4420 return -EINVAL;
4421
c0ff4b85 4422 memcg->oom_kill_disable = val;
4d845ebf 4423 if (!val)
c0ff4b85 4424 memcg_oom_recover(memcg);
3dae7fec 4425
3c11ecf4
KH
4426 return 0;
4427}
4428
52ebea74
TH
4429#ifdef CONFIG_CGROUP_WRITEBACK
4430
3a8e9ac8
TH
4431#include <trace/events/writeback.h>
4432
841710aa
TH
4433static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4434{
4435 return wb_domain_init(&memcg->cgwb_domain, gfp);
4436}
4437
4438static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4439{
4440 wb_domain_exit(&memcg->cgwb_domain);
4441}
4442
2529bb3a
TH
4443static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4444{
4445 wb_domain_size_changed(&memcg->cgwb_domain);
4446}
4447
841710aa
TH
4448struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4449{
4450 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4451
4452 if (!memcg->css.parent)
4453 return NULL;
4454
4455 return &memcg->cgwb_domain;
4456}
4457
c2aa723a
TH
4458/**
4459 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4460 * @wb: bdi_writeback in question
c5edf9cd
TH
4461 * @pfilepages: out parameter for number of file pages
4462 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4463 * @pdirty: out parameter for number of dirty pages
4464 * @pwriteback: out parameter for number of pages under writeback
4465 *
c5edf9cd
TH
4466 * Determine the numbers of file, headroom, dirty, and writeback pages in
4467 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4468 * is a bit more involved.
c2aa723a 4469 *
c5edf9cd
TH
4470 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4471 * headroom is calculated as the lowest headroom of itself and the
4472 * ancestors. Note that this doesn't consider the actual amount of
4473 * available memory in the system. The caller should further cap
4474 * *@pheadroom accordingly.
c2aa723a 4475 */
c5edf9cd
TH
4476void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4477 unsigned long *pheadroom, unsigned long *pdirty,
4478 unsigned long *pwriteback)
c2aa723a
TH
4479{
4480 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4481 struct mem_cgroup *parent;
c2aa723a 4482
2d146aa3 4483 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
c2aa723a 4484
2d146aa3
JW
4485 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4486 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4487 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4488 memcg_page_state(memcg, NR_ACTIVE_FILE);
c2aa723a 4489
2d146aa3 4490 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4491 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4492 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4493 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4494 unsigned long used = page_counter_read(&memcg->memory);
4495
c5edf9cd 4496 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4497 memcg = parent;
4498 }
c2aa723a
TH
4499}
4500
97b27821
TH
4501/*
4502 * Foreign dirty flushing
4503 *
4504 * There's an inherent mismatch between memcg and writeback. The former
f0953a1b 4505 * tracks ownership per-page while the latter per-inode. This was a
97b27821
TH
4506 * deliberate design decision because honoring per-page ownership in the
4507 * writeback path is complicated, may lead to higher CPU and IO overheads
4508 * and deemed unnecessary given that write-sharing an inode across
4509 * different cgroups isn't a common use-case.
4510 *
4511 * Combined with inode majority-writer ownership switching, this works well
4512 * enough in most cases but there are some pathological cases. For
4513 * example, let's say there are two cgroups A and B which keep writing to
4514 * different but confined parts of the same inode. B owns the inode and
4515 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4516 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4517 * triggering background writeback. A will be slowed down without a way to
4518 * make writeback of the dirty pages happen.
4519 *
f0953a1b 4520 * Conditions like the above can lead to a cgroup getting repeatedly and
97b27821 4521 * severely throttled after making some progress after each
f0953a1b 4522 * dirty_expire_interval while the underlying IO device is almost
97b27821
TH
4523 * completely idle.
4524 *
4525 * Solving this problem completely requires matching the ownership tracking
4526 * granularities between memcg and writeback in either direction. However,
4527 * the more egregious behaviors can be avoided by simply remembering the
4528 * most recent foreign dirtying events and initiating remote flushes on
4529 * them when local writeback isn't enough to keep the memory clean enough.
4530 *
4531 * The following two functions implement such mechanism. When a foreign
4532 * page - a page whose memcg and writeback ownerships don't match - is
4533 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4534 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4535 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4536 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4537 * foreign bdi_writebacks which haven't expired. Both the numbers of
4538 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4539 * limited to MEMCG_CGWB_FRN_CNT.
4540 *
4541 * The mechanism only remembers IDs and doesn't hold any object references.
4542 * As being wrong occasionally doesn't matter, updates and accesses to the
4543 * records are lockless and racy.
4544 */
4545void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4546 struct bdi_writeback *wb)
4547{
bcfe06bf 4548 struct mem_cgroup *memcg = page_memcg(page);
97b27821
TH
4549 struct memcg_cgwb_frn *frn;
4550 u64 now = get_jiffies_64();
4551 u64 oldest_at = now;
4552 int oldest = -1;
4553 int i;
4554
3a8e9ac8
TH
4555 trace_track_foreign_dirty(page, wb);
4556
97b27821
TH
4557 /*
4558 * Pick the slot to use. If there is already a slot for @wb, keep
4559 * using it. If not replace the oldest one which isn't being
4560 * written out.
4561 */
4562 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4563 frn = &memcg->cgwb_frn[i];
4564 if (frn->bdi_id == wb->bdi->id &&
4565 frn->memcg_id == wb->memcg_css->id)
4566 break;
4567 if (time_before64(frn->at, oldest_at) &&
4568 atomic_read(&frn->done.cnt) == 1) {
4569 oldest = i;
4570 oldest_at = frn->at;
4571 }
4572 }
4573
4574 if (i < MEMCG_CGWB_FRN_CNT) {
4575 /*
4576 * Re-using an existing one. Update timestamp lazily to
4577 * avoid making the cacheline hot. We want them to be
4578 * reasonably up-to-date and significantly shorter than
4579 * dirty_expire_interval as that's what expires the record.
4580 * Use the shorter of 1s and dirty_expire_interval / 8.
4581 */
4582 unsigned long update_intv =
4583 min_t(unsigned long, HZ,
4584 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4585
4586 if (time_before64(frn->at, now - update_intv))
4587 frn->at = now;
4588 } else if (oldest >= 0) {
4589 /* replace the oldest free one */
4590 frn = &memcg->cgwb_frn[oldest];
4591 frn->bdi_id = wb->bdi->id;
4592 frn->memcg_id = wb->memcg_css->id;
4593 frn->at = now;
4594 }
4595}
4596
4597/* issue foreign writeback flushes for recorded foreign dirtying events */
4598void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4599{
4600 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4601 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4602 u64 now = jiffies_64;
4603 int i;
4604
4605 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4606 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4607
4608 /*
4609 * If the record is older than dirty_expire_interval,
4610 * writeback on it has already started. No need to kick it
4611 * off again. Also, don't start a new one if there's
4612 * already one in flight.
4613 */
4614 if (time_after64(frn->at, now - intv) &&
4615 atomic_read(&frn->done.cnt) == 1) {
4616 frn->at = 0;
3a8e9ac8 4617 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
7490a2d2 4618 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
97b27821
TH
4619 WB_REASON_FOREIGN_FLUSH,
4620 &frn->done);
4621 }
4622 }
4623}
4624
841710aa
TH
4625#else /* CONFIG_CGROUP_WRITEBACK */
4626
4627static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4628{
4629 return 0;
4630}
4631
4632static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4633{
4634}
4635
2529bb3a
TH
4636static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4637{
4638}
4639
52ebea74
TH
4640#endif /* CONFIG_CGROUP_WRITEBACK */
4641
3bc942f3
TH
4642/*
4643 * DO NOT USE IN NEW FILES.
4644 *
4645 * "cgroup.event_control" implementation.
4646 *
4647 * This is way over-engineered. It tries to support fully configurable
4648 * events for each user. Such level of flexibility is completely
4649 * unnecessary especially in the light of the planned unified hierarchy.
4650 *
4651 * Please deprecate this and replace with something simpler if at all
4652 * possible.
4653 */
4654
79bd9814
TH
4655/*
4656 * Unregister event and free resources.
4657 *
4658 * Gets called from workqueue.
4659 */
3bc942f3 4660static void memcg_event_remove(struct work_struct *work)
79bd9814 4661{
3bc942f3
TH
4662 struct mem_cgroup_event *event =
4663 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4664 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4665
4666 remove_wait_queue(event->wqh, &event->wait);
4667
59b6f873 4668 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4669
4670 /* Notify userspace the event is going away. */
4671 eventfd_signal(event->eventfd, 1);
4672
4673 eventfd_ctx_put(event->eventfd);
4674 kfree(event);
59b6f873 4675 css_put(&memcg->css);
79bd9814
TH
4676}
4677
4678/*
a9a08845 4679 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4680 *
4681 * Called with wqh->lock held and interrupts disabled.
4682 */
ac6424b9 4683static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4684 int sync, void *key)
79bd9814 4685{
3bc942f3
TH
4686 struct mem_cgroup_event *event =
4687 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4688 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4689 __poll_t flags = key_to_poll(key);
79bd9814 4690
a9a08845 4691 if (flags & EPOLLHUP) {
79bd9814
TH
4692 /*
4693 * If the event has been detached at cgroup removal, we
4694 * can simply return knowing the other side will cleanup
4695 * for us.
4696 *
4697 * We can't race against event freeing since the other
4698 * side will require wqh->lock via remove_wait_queue(),
4699 * which we hold.
4700 */
fba94807 4701 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4702 if (!list_empty(&event->list)) {
4703 list_del_init(&event->list);
4704 /*
4705 * We are in atomic context, but cgroup_event_remove()
4706 * may sleep, so we have to call it in workqueue.
4707 */
4708 schedule_work(&event->remove);
4709 }
fba94807 4710 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4711 }
4712
4713 return 0;
4714}
4715
3bc942f3 4716static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4717 wait_queue_head_t *wqh, poll_table *pt)
4718{
3bc942f3
TH
4719 struct mem_cgroup_event *event =
4720 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4721
4722 event->wqh = wqh;
4723 add_wait_queue(wqh, &event->wait);
4724}
4725
4726/*
3bc942f3
TH
4727 * DO NOT USE IN NEW FILES.
4728 *
79bd9814
TH
4729 * Parse input and register new cgroup event handler.
4730 *
4731 * Input must be in format '<event_fd> <control_fd> <args>'.
4732 * Interpretation of args is defined by control file implementation.
4733 */
451af504
TH
4734static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4735 char *buf, size_t nbytes, loff_t off)
79bd9814 4736{
451af504 4737 struct cgroup_subsys_state *css = of_css(of);
fba94807 4738 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4739 struct mem_cgroup_event *event;
79bd9814
TH
4740 struct cgroup_subsys_state *cfile_css;
4741 unsigned int efd, cfd;
4742 struct fd efile;
4743 struct fd cfile;
fba94807 4744 const char *name;
79bd9814
TH
4745 char *endp;
4746 int ret;
4747
451af504
TH
4748 buf = strstrip(buf);
4749
4750 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4751 if (*endp != ' ')
4752 return -EINVAL;
451af504 4753 buf = endp + 1;
79bd9814 4754
451af504 4755 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4756 if ((*endp != ' ') && (*endp != '\0'))
4757 return -EINVAL;
451af504 4758 buf = endp + 1;
79bd9814
TH
4759
4760 event = kzalloc(sizeof(*event), GFP_KERNEL);
4761 if (!event)
4762 return -ENOMEM;
4763
59b6f873 4764 event->memcg = memcg;
79bd9814 4765 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4766 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4767 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4768 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4769
4770 efile = fdget(efd);
4771 if (!efile.file) {
4772 ret = -EBADF;
4773 goto out_kfree;
4774 }
4775
4776 event->eventfd = eventfd_ctx_fileget(efile.file);
4777 if (IS_ERR(event->eventfd)) {
4778 ret = PTR_ERR(event->eventfd);
4779 goto out_put_efile;
4780 }
4781
4782 cfile = fdget(cfd);
4783 if (!cfile.file) {
4784 ret = -EBADF;
4785 goto out_put_eventfd;
4786 }
4787
4788 /* the process need read permission on control file */
4789 /* AV: shouldn't we check that it's been opened for read instead? */
02f92b38 4790 ret = file_permission(cfile.file, MAY_READ);
79bd9814
TH
4791 if (ret < 0)
4792 goto out_put_cfile;
4793
fba94807
TH
4794 /*
4795 * Determine the event callbacks and set them in @event. This used
4796 * to be done via struct cftype but cgroup core no longer knows
4797 * about these events. The following is crude but the whole thing
4798 * is for compatibility anyway.
3bc942f3
TH
4799 *
4800 * DO NOT ADD NEW FILES.
fba94807 4801 */
b583043e 4802 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4803
4804 if (!strcmp(name, "memory.usage_in_bytes")) {
4805 event->register_event = mem_cgroup_usage_register_event;
4806 event->unregister_event = mem_cgroup_usage_unregister_event;
4807 } else if (!strcmp(name, "memory.oom_control")) {
4808 event->register_event = mem_cgroup_oom_register_event;
4809 event->unregister_event = mem_cgroup_oom_unregister_event;
4810 } else if (!strcmp(name, "memory.pressure_level")) {
4811 event->register_event = vmpressure_register_event;
4812 event->unregister_event = vmpressure_unregister_event;
4813 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4814 event->register_event = memsw_cgroup_usage_register_event;
4815 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4816 } else {
4817 ret = -EINVAL;
4818 goto out_put_cfile;
4819 }
4820
79bd9814 4821 /*
b5557c4c
TH
4822 * Verify @cfile should belong to @css. Also, remaining events are
4823 * automatically removed on cgroup destruction but the removal is
4824 * asynchronous, so take an extra ref on @css.
79bd9814 4825 */
b583043e 4826 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4827 &memory_cgrp_subsys);
79bd9814 4828 ret = -EINVAL;
5a17f543 4829 if (IS_ERR(cfile_css))
79bd9814 4830 goto out_put_cfile;
5a17f543
TH
4831 if (cfile_css != css) {
4832 css_put(cfile_css);
79bd9814 4833 goto out_put_cfile;
5a17f543 4834 }
79bd9814 4835
451af504 4836 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4837 if (ret)
4838 goto out_put_css;
4839
9965ed17 4840 vfs_poll(efile.file, &event->pt);
79bd9814 4841
4ba9515d 4842 spin_lock_irq(&memcg->event_list_lock);
fba94807 4843 list_add(&event->list, &memcg->event_list);
4ba9515d 4844 spin_unlock_irq(&memcg->event_list_lock);
79bd9814
TH
4845
4846 fdput(cfile);
4847 fdput(efile);
4848
451af504 4849 return nbytes;
79bd9814
TH
4850
4851out_put_css:
b5557c4c 4852 css_put(css);
79bd9814
TH
4853out_put_cfile:
4854 fdput(cfile);
4855out_put_eventfd:
4856 eventfd_ctx_put(event->eventfd);
4857out_put_efile:
4858 fdput(efile);
4859out_kfree:
4860 kfree(event);
4861
4862 return ret;
4863}
4864
241994ed 4865static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4866 {
0eea1030 4867 .name = "usage_in_bytes",
8c7c6e34 4868 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4869 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4870 },
c84872e1
PE
4871 {
4872 .name = "max_usage_in_bytes",
8c7c6e34 4873 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4874 .write = mem_cgroup_reset,
791badbd 4875 .read_u64 = mem_cgroup_read_u64,
c84872e1 4876 },
8cdea7c0 4877 {
0eea1030 4878 .name = "limit_in_bytes",
8c7c6e34 4879 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4880 .write = mem_cgroup_write,
791badbd 4881 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4882 },
296c81d8
BS
4883 {
4884 .name = "soft_limit_in_bytes",
4885 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4886 .write = mem_cgroup_write,
791badbd 4887 .read_u64 = mem_cgroup_read_u64,
296c81d8 4888 },
8cdea7c0
BS
4889 {
4890 .name = "failcnt",
8c7c6e34 4891 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4892 .write = mem_cgroup_reset,
791badbd 4893 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4894 },
d2ceb9b7
KH
4895 {
4896 .name = "stat",
2da8ca82 4897 .seq_show = memcg_stat_show,
d2ceb9b7 4898 },
c1e862c1
KH
4899 {
4900 .name = "force_empty",
6770c64e 4901 .write = mem_cgroup_force_empty_write,
c1e862c1 4902 },
18f59ea7
BS
4903 {
4904 .name = "use_hierarchy",
4905 .write_u64 = mem_cgroup_hierarchy_write,
4906 .read_u64 = mem_cgroup_hierarchy_read,
4907 },
79bd9814 4908 {
3bc942f3 4909 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4910 .write = memcg_write_event_control,
7dbdb199 4911 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4912 },
a7885eb8
KM
4913 {
4914 .name = "swappiness",
4915 .read_u64 = mem_cgroup_swappiness_read,
4916 .write_u64 = mem_cgroup_swappiness_write,
4917 },
7dc74be0
DN
4918 {
4919 .name = "move_charge_at_immigrate",
4920 .read_u64 = mem_cgroup_move_charge_read,
4921 .write_u64 = mem_cgroup_move_charge_write,
4922 },
9490ff27
KH
4923 {
4924 .name = "oom_control",
2da8ca82 4925 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4926 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4927 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4928 },
70ddf637
AV
4929 {
4930 .name = "pressure_level",
70ddf637 4931 },
406eb0c9
YH
4932#ifdef CONFIG_NUMA
4933 {
4934 .name = "numa_stat",
2da8ca82 4935 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4936 },
4937#endif
510fc4e1
GC
4938 {
4939 .name = "kmem.limit_in_bytes",
4940 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4941 .write = mem_cgroup_write,
791badbd 4942 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4943 },
4944 {
4945 .name = "kmem.usage_in_bytes",
4946 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4947 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4948 },
4949 {
4950 .name = "kmem.failcnt",
4951 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4952 .write = mem_cgroup_reset,
791badbd 4953 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4954 },
4955 {
4956 .name = "kmem.max_usage_in_bytes",
4957 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4958 .write = mem_cgroup_reset,
791badbd 4959 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4960 },
a87425a3
YS
4961#if defined(CONFIG_MEMCG_KMEM) && \
4962 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
4963 {
4964 .name = "kmem.slabinfo",
b047501c 4965 .seq_show = memcg_slab_show,
749c5415
GC
4966 },
4967#endif
d55f90bf
VD
4968 {
4969 .name = "kmem.tcp.limit_in_bytes",
4970 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4971 .write = mem_cgroup_write,
4972 .read_u64 = mem_cgroup_read_u64,
4973 },
4974 {
4975 .name = "kmem.tcp.usage_in_bytes",
4976 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4977 .read_u64 = mem_cgroup_read_u64,
4978 },
4979 {
4980 .name = "kmem.tcp.failcnt",
4981 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4982 .write = mem_cgroup_reset,
4983 .read_u64 = mem_cgroup_read_u64,
4984 },
4985 {
4986 .name = "kmem.tcp.max_usage_in_bytes",
4987 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4988 .write = mem_cgroup_reset,
4989 .read_u64 = mem_cgroup_read_u64,
4990 },
6bc10349 4991 { }, /* terminate */
af36f906 4992};
8c7c6e34 4993
73f576c0
JW
4994/*
4995 * Private memory cgroup IDR
4996 *
4997 * Swap-out records and page cache shadow entries need to store memcg
4998 * references in constrained space, so we maintain an ID space that is
4999 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5000 * memory-controlled cgroups to 64k.
5001 *
b8f2935f 5002 * However, there usually are many references to the offline CSS after
73f576c0
JW
5003 * the cgroup has been destroyed, such as page cache or reclaimable
5004 * slab objects, that don't need to hang on to the ID. We want to keep
5005 * those dead CSS from occupying IDs, or we might quickly exhaust the
5006 * relatively small ID space and prevent the creation of new cgroups
5007 * even when there are much fewer than 64k cgroups - possibly none.
5008 *
5009 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5010 * be freed and recycled when it's no longer needed, which is usually
5011 * when the CSS is offlined.
5012 *
5013 * The only exception to that are records of swapped out tmpfs/shmem
5014 * pages that need to be attributed to live ancestors on swapin. But
5015 * those references are manageable from userspace.
5016 */
5017
5018static DEFINE_IDR(mem_cgroup_idr);
5019
7e97de0b
KT
5020static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5021{
5022 if (memcg->id.id > 0) {
5023 idr_remove(&mem_cgroup_idr, memcg->id.id);
5024 memcg->id.id = 0;
5025 }
5026}
5027
c1514c0a
VF
5028static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5029 unsigned int n)
73f576c0 5030{
1c2d479a 5031 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5032}
5033
615d66c3 5034static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5035{
1c2d479a 5036 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5037 mem_cgroup_id_remove(memcg);
73f576c0
JW
5038
5039 /* Memcg ID pins CSS */
5040 css_put(&memcg->css);
5041 }
5042}
5043
615d66c3
VD
5044static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5045{
5046 mem_cgroup_id_put_many(memcg, 1);
5047}
5048
73f576c0
JW
5049/**
5050 * mem_cgroup_from_id - look up a memcg from a memcg id
5051 * @id: the memcg id to look up
5052 *
5053 * Caller must hold rcu_read_lock().
5054 */
5055struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5056{
5057 WARN_ON_ONCE(!rcu_read_lock_held());
5058 return idr_find(&mem_cgroup_idr, id);
5059}
5060
ef8f2327 5061static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5062{
5063 struct mem_cgroup_per_node *pn;
ef8f2327 5064 int tmp = node;
1ecaab2b
KH
5065 /*
5066 * This routine is called against possible nodes.
5067 * But it's BUG to call kmalloc() against offline node.
5068 *
5069 * TODO: this routine can waste much memory for nodes which will
5070 * never be onlined. It's better to use memory hotplug callback
5071 * function.
5072 */
41e3355d
KH
5073 if (!node_state(node, N_NORMAL_MEMORY))
5074 tmp = -1;
17295c88 5075 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5076 if (!pn)
5077 return 1;
1ecaab2b 5078
7e1c0d6f
SB
5079 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5080 GFP_KERNEL_ACCOUNT);
5081 if (!pn->lruvec_stats_percpu) {
00f3ca2c
JW
5082 kfree(pn);
5083 return 1;
5084 }
5085
ef8f2327
MG
5086 lruvec_init(&pn->lruvec);
5087 pn->usage_in_excess = 0;
5088 pn->on_tree = false;
5089 pn->memcg = memcg;
5090
54f72fe0 5091 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5092 return 0;
5093}
5094
ef8f2327 5095static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5096{
00f3ca2c
JW
5097 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5098
4eaf431f
MH
5099 if (!pn)
5100 return;
5101
7e1c0d6f 5102 free_percpu(pn->lruvec_stats_percpu);
00f3ca2c 5103 kfree(pn);
1ecaab2b
KH
5104}
5105
40e952f9 5106static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5107{
c8b2a36f 5108 int node;
59927fb9 5109
c8b2a36f 5110 for_each_node(node)
ef8f2327 5111 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5112 free_percpu(memcg->vmstats_percpu);
8ff69e2c 5113 kfree(memcg);
59927fb9 5114}
3afe36b1 5115
40e952f9
TE
5116static void mem_cgroup_free(struct mem_cgroup *memcg)
5117{
5118 memcg_wb_domain_exit(memcg);
5119 __mem_cgroup_free(memcg);
5120}
5121
0b8f73e1 5122static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5123{
d142e3e6 5124 struct mem_cgroup *memcg;
b9726c26 5125 unsigned int size;
6d12e2d8 5126 int node;
97b27821 5127 int __maybe_unused i;
11d67612 5128 long error = -ENOMEM;
8cdea7c0 5129
0b8f73e1
JW
5130 size = sizeof(struct mem_cgroup);
5131 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5132
5133 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5134 if (!memcg)
11d67612 5135 return ERR_PTR(error);
0b8f73e1 5136
73f576c0
JW
5137 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5138 1, MEM_CGROUP_ID_MAX,
5139 GFP_KERNEL);
11d67612
YS
5140 if (memcg->id.id < 0) {
5141 error = memcg->id.id;
73f576c0 5142 goto fail;
11d67612 5143 }
73f576c0 5144
3e38e0aa
RG
5145 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5146 GFP_KERNEL_ACCOUNT);
871789d4 5147 if (!memcg->vmstats_percpu)
0b8f73e1 5148 goto fail;
78fb7466 5149
3ed28fa1 5150 for_each_node(node)
ef8f2327 5151 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5152 goto fail;
f64c3f54 5153
0b8f73e1
JW
5154 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5155 goto fail;
28dbc4b6 5156
f7e1cb6e 5157 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5158 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5159 mutex_init(&memcg->thresholds_lock);
5160 spin_lock_init(&memcg->move_lock);
70ddf637 5161 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5162 INIT_LIST_HEAD(&memcg->event_list);
5163 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5164 memcg->socket_pressure = jiffies;
84c07d11 5165#ifdef CONFIG_MEMCG_KMEM
900a38f0 5166 memcg->kmemcg_id = -1;
bf4f0599 5167 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5168#endif
52ebea74
TH
5169#ifdef CONFIG_CGROUP_WRITEBACK
5170 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5171 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5172 memcg->cgwb_frn[i].done =
5173 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5174#endif
5175#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5176 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5177 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5178 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5179#endif
73f576c0 5180 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5181 return memcg;
5182fail:
7e97de0b 5183 mem_cgroup_id_remove(memcg);
40e952f9 5184 __mem_cgroup_free(memcg);
11d67612 5185 return ERR_PTR(error);
d142e3e6
GC
5186}
5187
0b8f73e1
JW
5188static struct cgroup_subsys_state * __ref
5189mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5190{
0b8f73e1 5191 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5192 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5193 long error = -ENOMEM;
d142e3e6 5194
b87d8cef 5195 old_memcg = set_active_memcg(parent);
0b8f73e1 5196 memcg = mem_cgroup_alloc();
b87d8cef 5197 set_active_memcg(old_memcg);
11d67612
YS
5198 if (IS_ERR(memcg))
5199 return ERR_CAST(memcg);
d142e3e6 5200
d1663a90 5201 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5202 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5203 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5204 if (parent) {
5205 memcg->swappiness = mem_cgroup_swappiness(parent);
5206 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5207
3e32cb2e 5208 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5209 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5210 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5211 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5212 } else {
bef8620c
RG
5213 page_counter_init(&memcg->memory, NULL);
5214 page_counter_init(&memcg->swap, NULL);
5215 page_counter_init(&memcg->kmem, NULL);
5216 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5217
0b8f73e1
JW
5218 root_mem_cgroup = memcg;
5219 return &memcg->css;
5220 }
5221
bef8620c 5222 /* The following stuff does not apply to the root */
b313aeee 5223 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5224 if (error)
5225 goto fail;
127424c8 5226
f7e1cb6e 5227 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5228 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5229
0b8f73e1
JW
5230 return &memcg->css;
5231fail:
7e97de0b 5232 mem_cgroup_id_remove(memcg);
0b8f73e1 5233 mem_cgroup_free(memcg);
11d67612 5234 return ERR_PTR(error);
0b8f73e1
JW
5235}
5236
73f576c0 5237static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5238{
58fa2a55
VD
5239 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5240
0a4465d3 5241 /*
e4262c4f 5242 * A memcg must be visible for expand_shrinker_info()
0a4465d3
KT
5243 * by the time the maps are allocated. So, we allocate maps
5244 * here, when for_each_mem_cgroup() can't skip it.
5245 */
e4262c4f 5246 if (alloc_shrinker_info(memcg)) {
0a4465d3
KT
5247 mem_cgroup_id_remove(memcg);
5248 return -ENOMEM;
5249 }
5250
73f576c0 5251 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5252 refcount_set(&memcg->id.ref, 1);
73f576c0 5253 css_get(css);
aa48e47e
SB
5254
5255 if (unlikely(mem_cgroup_is_root(memcg)))
5256 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5257 2UL*HZ);
2f7dd7a4 5258 return 0;
8cdea7c0
BS
5259}
5260
eb95419b 5261static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5262{
eb95419b 5263 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5264 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5265
5266 /*
5267 * Unregister events and notify userspace.
5268 * Notify userspace about cgroup removing only after rmdir of cgroup
5269 * directory to avoid race between userspace and kernelspace.
5270 */
4ba9515d 5271 spin_lock_irq(&memcg->event_list_lock);
fba94807 5272 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5273 list_del_init(&event->list);
5274 schedule_work(&event->remove);
5275 }
4ba9515d 5276 spin_unlock_irq(&memcg->event_list_lock);
ec64f515 5277
bf8d5d52 5278 page_counter_set_min(&memcg->memory, 0);
23067153 5279 page_counter_set_low(&memcg->memory, 0);
63677c74 5280
567e9ab2 5281 memcg_offline_kmem(memcg);
a178015c 5282 reparent_shrinker_deferred(memcg);
52ebea74 5283 wb_memcg_offline(memcg);
73f576c0 5284
591edfb1
RG
5285 drain_all_stock(memcg);
5286
73f576c0 5287 mem_cgroup_id_put(memcg);
df878fb0
KH
5288}
5289
6df38689
VD
5290static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5291{
5292 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5293
5294 invalidate_reclaim_iterators(memcg);
5295}
5296
eb95419b 5297static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5298{
eb95419b 5299 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5300 int __maybe_unused i;
c268e994 5301
97b27821
TH
5302#ifdef CONFIG_CGROUP_WRITEBACK
5303 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5304 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5305#endif
f7e1cb6e 5306 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5307 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5308
0db15298 5309 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5310 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5311
0b8f73e1
JW
5312 vmpressure_cleanup(&memcg->vmpressure);
5313 cancel_work_sync(&memcg->high_work);
5314 mem_cgroup_remove_from_trees(memcg);
e4262c4f 5315 free_shrinker_info(memcg);
d886f4e4 5316 memcg_free_kmem(memcg);
0b8f73e1 5317 mem_cgroup_free(memcg);
8cdea7c0
BS
5318}
5319
1ced953b
TH
5320/**
5321 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5322 * @css: the target css
5323 *
5324 * Reset the states of the mem_cgroup associated with @css. This is
5325 * invoked when the userland requests disabling on the default hierarchy
5326 * but the memcg is pinned through dependency. The memcg should stop
5327 * applying policies and should revert to the vanilla state as it may be
5328 * made visible again.
5329 *
5330 * The current implementation only resets the essential configurations.
5331 * This needs to be expanded to cover all the visible parts.
5332 */
5333static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5334{
5335 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5336
bbec2e15
RG
5337 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5338 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5339 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5340 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5341 page_counter_set_min(&memcg->memory, 0);
23067153 5342 page_counter_set_low(&memcg->memory, 0);
d1663a90 5343 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5344 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5345 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5346 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5347}
5348
aa48e47e
SB
5349void mem_cgroup_flush_stats(void)
5350{
5351 if (!spin_trylock(&stats_flush_lock))
5352 return;
5353
5354 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
5355 spin_unlock(&stats_flush_lock);
5356}
5357
5358static void flush_memcg_stats_dwork(struct work_struct *w)
5359{
5360 mem_cgroup_flush_stats();
5361 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
5362}
5363
5364static void flush_memcg_stats_work(struct work_struct *w)
5365{
5366 mem_cgroup_flush_stats();
5367}
5368
2d146aa3
JW
5369static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5370{
5371 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5372 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5373 struct memcg_vmstats_percpu *statc;
5374 long delta, v;
7e1c0d6f 5375 int i, nid;
2d146aa3
JW
5376
5377 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5378
5379 for (i = 0; i < MEMCG_NR_STAT; i++) {
5380 /*
5381 * Collect the aggregated propagation counts of groups
5382 * below us. We're in a per-cpu loop here and this is
5383 * a global counter, so the first cycle will get them.
5384 */
5385 delta = memcg->vmstats.state_pending[i];
5386 if (delta)
5387 memcg->vmstats.state_pending[i] = 0;
5388
5389 /* Add CPU changes on this level since the last flush */
5390 v = READ_ONCE(statc->state[i]);
5391 if (v != statc->state_prev[i]) {
5392 delta += v - statc->state_prev[i];
5393 statc->state_prev[i] = v;
5394 }
5395
5396 if (!delta)
5397 continue;
5398
5399 /* Aggregate counts on this level and propagate upwards */
5400 memcg->vmstats.state[i] += delta;
5401 if (parent)
5402 parent->vmstats.state_pending[i] += delta;
5403 }
5404
5405 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5406 delta = memcg->vmstats.events_pending[i];
5407 if (delta)
5408 memcg->vmstats.events_pending[i] = 0;
5409
5410 v = READ_ONCE(statc->events[i]);
5411 if (v != statc->events_prev[i]) {
5412 delta += v - statc->events_prev[i];
5413 statc->events_prev[i] = v;
5414 }
5415
5416 if (!delta)
5417 continue;
5418
5419 memcg->vmstats.events[i] += delta;
5420 if (parent)
5421 parent->vmstats.events_pending[i] += delta;
5422 }
7e1c0d6f
SB
5423
5424 for_each_node_state(nid, N_MEMORY) {
5425 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5426 struct mem_cgroup_per_node *ppn = NULL;
5427 struct lruvec_stats_percpu *lstatc;
5428
5429 if (parent)
5430 ppn = parent->nodeinfo[nid];
5431
5432 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5433
5434 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5435 delta = pn->lruvec_stats.state_pending[i];
5436 if (delta)
5437 pn->lruvec_stats.state_pending[i] = 0;
5438
5439 v = READ_ONCE(lstatc->state[i]);
5440 if (v != lstatc->state_prev[i]) {
5441 delta += v - lstatc->state_prev[i];
5442 lstatc->state_prev[i] = v;
5443 }
5444
5445 if (!delta)
5446 continue;
5447
5448 pn->lruvec_stats.state[i] += delta;
5449 if (ppn)
5450 ppn->lruvec_stats.state_pending[i] += delta;
5451 }
5452 }
2d146aa3
JW
5453}
5454
02491447 5455#ifdef CONFIG_MMU
7dc74be0 5456/* Handlers for move charge at task migration. */
854ffa8d 5457static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5458{
05b84301 5459 int ret;
9476db97 5460
d0164adc
MG
5461 /* Try a single bulk charge without reclaim first, kswapd may wake */
5462 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5463 if (!ret) {
854ffa8d 5464 mc.precharge += count;
854ffa8d
DN
5465 return ret;
5466 }
9476db97 5467
3674534b 5468 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5469 while (count--) {
3674534b 5470 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5471 if (ret)
38c5d72f 5472 return ret;
854ffa8d 5473 mc.precharge++;
9476db97 5474 cond_resched();
854ffa8d 5475 }
9476db97 5476 return 0;
4ffef5fe
DN
5477}
5478
4ffef5fe
DN
5479union mc_target {
5480 struct page *page;
02491447 5481 swp_entry_t ent;
4ffef5fe
DN
5482};
5483
4ffef5fe 5484enum mc_target_type {
8d32ff84 5485 MC_TARGET_NONE = 0,
4ffef5fe 5486 MC_TARGET_PAGE,
02491447 5487 MC_TARGET_SWAP,
c733a828 5488 MC_TARGET_DEVICE,
4ffef5fe
DN
5489};
5490
90254a65
DN
5491static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5492 unsigned long addr, pte_t ptent)
4ffef5fe 5493{
25b2995a 5494 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5495
90254a65
DN
5496 if (!page || !page_mapped(page))
5497 return NULL;
5498 if (PageAnon(page)) {
1dfab5ab 5499 if (!(mc.flags & MOVE_ANON))
90254a65 5500 return NULL;
1dfab5ab
JW
5501 } else {
5502 if (!(mc.flags & MOVE_FILE))
5503 return NULL;
5504 }
90254a65
DN
5505 if (!get_page_unless_zero(page))
5506 return NULL;
5507
5508 return page;
5509}
5510
c733a828 5511#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5512static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5513 pte_t ptent, swp_entry_t *entry)
90254a65 5514{
90254a65
DN
5515 struct page *page = NULL;
5516 swp_entry_t ent = pte_to_swp_entry(ptent);
5517
9a137153 5518 if (!(mc.flags & MOVE_ANON))
90254a65 5519 return NULL;
c733a828
JG
5520
5521 /*
5522 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5523 * a device and because they are not accessible by CPU they are store
5524 * as special swap entry in the CPU page table.
5525 */
5526 if (is_device_private_entry(ent)) {
af5cdaf8 5527 page = pfn_swap_entry_to_page(ent);
c733a828
JG
5528 /*
5529 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5530 * a refcount of 1 when free (unlike normal page)
5531 */
5532 if (!page_ref_add_unless(page, 1, 1))
5533 return NULL;
5534 return page;
5535 }
5536
9a137153
RC
5537 if (non_swap_entry(ent))
5538 return NULL;
5539
4b91355e
KH
5540 /*
5541 * Because lookup_swap_cache() updates some statistics counter,
5542 * we call find_get_page() with swapper_space directly.
5543 */
f6ab1f7f 5544 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5545 entry->val = ent.val;
90254a65
DN
5546
5547 return page;
5548}
4b91355e
KH
5549#else
5550static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5551 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5552{
5553 return NULL;
5554}
5555#endif
90254a65 5556
87946a72
DN
5557static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5558 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5559{
87946a72
DN
5560 if (!vma->vm_file) /* anonymous vma */
5561 return NULL;
1dfab5ab 5562 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5563 return NULL;
5564
87946a72 5565 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5566 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5567 return find_get_incore_page(vma->vm_file->f_mapping,
5568 linear_page_index(vma, addr));
87946a72
DN
5569}
5570
b1b0deab
CG
5571/**
5572 * mem_cgroup_move_account - move account of the page
5573 * @page: the page
25843c2b 5574 * @compound: charge the page as compound or small page
b1b0deab
CG
5575 * @from: mem_cgroup which the page is moved from.
5576 * @to: mem_cgroup which the page is moved to. @from != @to.
5577 *
3ac808fd 5578 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5579 *
5580 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5581 * from old cgroup.
5582 */
5583static int mem_cgroup_move_account(struct page *page,
f627c2f5 5584 bool compound,
b1b0deab
CG
5585 struct mem_cgroup *from,
5586 struct mem_cgroup *to)
5587{
ae8af438
KK
5588 struct lruvec *from_vec, *to_vec;
5589 struct pglist_data *pgdat;
6c357848 5590 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5591 int ret;
5592
5593 VM_BUG_ON(from == to);
5594 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5595 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5596
5597 /*
6a93ca8f 5598 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5599 * page's memory cgroup of its source page while we change it.
b1b0deab 5600 */
f627c2f5 5601 ret = -EBUSY;
b1b0deab
CG
5602 if (!trylock_page(page))
5603 goto out;
5604
5605 ret = -EINVAL;
bcfe06bf 5606 if (page_memcg(page) != from)
b1b0deab
CG
5607 goto out_unlock;
5608
ae8af438 5609 pgdat = page_pgdat(page);
867e5e1d
JW
5610 from_vec = mem_cgroup_lruvec(from, pgdat);
5611 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5612
abb242f5 5613 lock_page_memcg(page);
b1b0deab 5614
be5d0a74
JW
5615 if (PageAnon(page)) {
5616 if (page_mapped(page)) {
5617 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5618 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982 5619 if (PageTransHuge(page)) {
69473e5d
MS
5620 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5621 -nr_pages);
5622 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5623 nr_pages);
468c3982 5624 }
be5d0a74
JW
5625 }
5626 } else {
0d1c2072
JW
5627 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5628 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5629
5630 if (PageSwapBacked(page)) {
5631 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5632 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5633 }
5634
49e50d27
JW
5635 if (page_mapped(page)) {
5636 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5637 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5638 }
b1b0deab 5639
49e50d27
JW
5640 if (PageDirty(page)) {
5641 struct address_space *mapping = page_mapping(page);
c4843a75 5642
f56753ac 5643 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5644 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5645 -nr_pages);
5646 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5647 nr_pages);
5648 }
c4843a75
GT
5649 }
5650 }
5651
b1b0deab 5652 if (PageWriteback(page)) {
ae8af438
KK
5653 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5654 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5655 }
5656
5657 /*
abb242f5
JW
5658 * All state has been migrated, let's switch to the new memcg.
5659 *
bcfe06bf 5660 * It is safe to change page's memcg here because the page
abb242f5
JW
5661 * is referenced, charged, isolated, and locked: we can't race
5662 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5663 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5664 *
5665 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5666 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5667 * new memcg that isn't locked, the above state can change
5668 * concurrently again. Make sure we're truly done with it.
b1b0deab 5669 */
abb242f5 5670 smp_mb();
b1b0deab 5671
1a3e1f40
JW
5672 css_get(&to->css);
5673 css_put(&from->css);
5674
bcfe06bf 5675 page->memcg_data = (unsigned long)to;
87eaceb3 5676
abb242f5 5677 __unlock_page_memcg(from);
b1b0deab
CG
5678
5679 ret = 0;
5680
5681 local_irq_disable();
3fba69a5 5682 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5683 memcg_check_events(to, page);
3fba69a5 5684 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5685 memcg_check_events(from, page);
5686 local_irq_enable();
5687out_unlock:
5688 unlock_page(page);
5689out:
5690 return ret;
5691}
5692
7cf7806c
LR
5693/**
5694 * get_mctgt_type - get target type of moving charge
5695 * @vma: the vma the pte to be checked belongs
5696 * @addr: the address corresponding to the pte to be checked
5697 * @ptent: the pte to be checked
5698 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5699 *
5700 * Returns
5701 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5702 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5703 * move charge. if @target is not NULL, the page is stored in target->page
5704 * with extra refcnt got(Callers should handle it).
5705 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5706 * target for charge migration. if @target is not NULL, the entry is stored
5707 * in target->ent.
25b2995a
CH
5708 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5709 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5710 * For now we such page is charge like a regular page would be as for all
5711 * intent and purposes it is just special memory taking the place of a
5712 * regular page.
c733a828
JG
5713 *
5714 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5715 *
5716 * Called with pte lock held.
5717 */
5718
8d32ff84 5719static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5720 unsigned long addr, pte_t ptent, union mc_target *target)
5721{
5722 struct page *page = NULL;
8d32ff84 5723 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5724 swp_entry_t ent = { .val = 0 };
5725
5726 if (pte_present(ptent))
5727 page = mc_handle_present_pte(vma, addr, ptent);
5728 else if (is_swap_pte(ptent))
48406ef8 5729 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5730 else if (pte_none(ptent))
87946a72 5731 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5732
5733 if (!page && !ent.val)
8d32ff84 5734 return ret;
02491447 5735 if (page) {
02491447 5736 /*
0a31bc97 5737 * Do only loose check w/o serialization.
1306a85a 5738 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5739 * not under LRU exclusion.
02491447 5740 */
bcfe06bf 5741 if (page_memcg(page) == mc.from) {
02491447 5742 ret = MC_TARGET_PAGE;
25b2995a 5743 if (is_device_private_page(page))
c733a828 5744 ret = MC_TARGET_DEVICE;
02491447
DN
5745 if (target)
5746 target->page = page;
5747 }
5748 if (!ret || !target)
5749 put_page(page);
5750 }
3e14a57b
HY
5751 /*
5752 * There is a swap entry and a page doesn't exist or isn't charged.
5753 * But we cannot move a tail-page in a THP.
5754 */
5755 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5756 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5757 ret = MC_TARGET_SWAP;
5758 if (target)
5759 target->ent = ent;
4ffef5fe 5760 }
4ffef5fe
DN
5761 return ret;
5762}
5763
12724850
NH
5764#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5765/*
d6810d73
HY
5766 * We don't consider PMD mapped swapping or file mapped pages because THP does
5767 * not support them for now.
12724850
NH
5768 * Caller should make sure that pmd_trans_huge(pmd) is true.
5769 */
5770static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5771 unsigned long addr, pmd_t pmd, union mc_target *target)
5772{
5773 struct page *page = NULL;
12724850
NH
5774 enum mc_target_type ret = MC_TARGET_NONE;
5775
84c3fc4e
ZY
5776 if (unlikely(is_swap_pmd(pmd))) {
5777 VM_BUG_ON(thp_migration_supported() &&
5778 !is_pmd_migration_entry(pmd));
5779 return ret;
5780 }
12724850 5781 page = pmd_page(pmd);
309381fe 5782 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5783 if (!(mc.flags & MOVE_ANON))
12724850 5784 return ret;
bcfe06bf 5785 if (page_memcg(page) == mc.from) {
12724850
NH
5786 ret = MC_TARGET_PAGE;
5787 if (target) {
5788 get_page(page);
5789 target->page = page;
5790 }
5791 }
5792 return ret;
5793}
5794#else
5795static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5796 unsigned long addr, pmd_t pmd, union mc_target *target)
5797{
5798 return MC_TARGET_NONE;
5799}
5800#endif
5801
4ffef5fe
DN
5802static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5803 unsigned long addr, unsigned long end,
5804 struct mm_walk *walk)
5805{
26bcd64a 5806 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5807 pte_t *pte;
5808 spinlock_t *ptl;
5809
b6ec57f4
KS
5810 ptl = pmd_trans_huge_lock(pmd, vma);
5811 if (ptl) {
c733a828
JG
5812 /*
5813 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5814 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5815 * this might change.
c733a828 5816 */
12724850
NH
5817 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5818 mc.precharge += HPAGE_PMD_NR;
bf929152 5819 spin_unlock(ptl);
1a5a9906 5820 return 0;
12724850 5821 }
03319327 5822
45f83cef
AA
5823 if (pmd_trans_unstable(pmd))
5824 return 0;
4ffef5fe
DN
5825 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5826 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5827 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5828 mc.precharge++; /* increment precharge temporarily */
5829 pte_unmap_unlock(pte - 1, ptl);
5830 cond_resched();
5831
7dc74be0
DN
5832 return 0;
5833}
5834
7b86ac33
CH
5835static const struct mm_walk_ops precharge_walk_ops = {
5836 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5837};
5838
4ffef5fe
DN
5839static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5840{
5841 unsigned long precharge;
4ffef5fe 5842
d8ed45c5 5843 mmap_read_lock(mm);
7b86ac33 5844 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5845 mmap_read_unlock(mm);
4ffef5fe
DN
5846
5847 precharge = mc.precharge;
5848 mc.precharge = 0;
5849
5850 return precharge;
5851}
5852
4ffef5fe
DN
5853static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5854{
dfe076b0
DN
5855 unsigned long precharge = mem_cgroup_count_precharge(mm);
5856
5857 VM_BUG_ON(mc.moving_task);
5858 mc.moving_task = current;
5859 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5860}
5861
dfe076b0
DN
5862/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5863static void __mem_cgroup_clear_mc(void)
4ffef5fe 5864{
2bd9bb20
KH
5865 struct mem_cgroup *from = mc.from;
5866 struct mem_cgroup *to = mc.to;
5867
4ffef5fe 5868 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5869 if (mc.precharge) {
00501b53 5870 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5871 mc.precharge = 0;
5872 }
5873 /*
5874 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5875 * we must uncharge here.
5876 */
5877 if (mc.moved_charge) {
00501b53 5878 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5879 mc.moved_charge = 0;
4ffef5fe 5880 }
483c30b5
DN
5881 /* we must fixup refcnts and charges */
5882 if (mc.moved_swap) {
483c30b5 5883 /* uncharge swap account from the old cgroup */
ce00a967 5884 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5885 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5886
615d66c3
VD
5887 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5888
05b84301 5889 /*
3e32cb2e
JW
5890 * we charged both to->memory and to->memsw, so we
5891 * should uncharge to->memory.
05b84301 5892 */
ce00a967 5893 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5894 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5895
483c30b5
DN
5896 mc.moved_swap = 0;
5897 }
dfe076b0
DN
5898 memcg_oom_recover(from);
5899 memcg_oom_recover(to);
5900 wake_up_all(&mc.waitq);
5901}
5902
5903static void mem_cgroup_clear_mc(void)
5904{
264a0ae1
TH
5905 struct mm_struct *mm = mc.mm;
5906
dfe076b0
DN
5907 /*
5908 * we must clear moving_task before waking up waiters at the end of
5909 * task migration.
5910 */
5911 mc.moving_task = NULL;
5912 __mem_cgroup_clear_mc();
2bd9bb20 5913 spin_lock(&mc.lock);
4ffef5fe
DN
5914 mc.from = NULL;
5915 mc.to = NULL;
264a0ae1 5916 mc.mm = NULL;
2bd9bb20 5917 spin_unlock(&mc.lock);
264a0ae1
TH
5918
5919 mmput(mm);
4ffef5fe
DN
5920}
5921
1f7dd3e5 5922static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5923{
1f7dd3e5 5924 struct cgroup_subsys_state *css;
eed67d75 5925 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5926 struct mem_cgroup *from;
4530eddb 5927 struct task_struct *leader, *p;
9f2115f9 5928 struct mm_struct *mm;
1dfab5ab 5929 unsigned long move_flags;
9f2115f9 5930 int ret = 0;
7dc74be0 5931
1f7dd3e5
TH
5932 /* charge immigration isn't supported on the default hierarchy */
5933 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5934 return 0;
5935
4530eddb
TH
5936 /*
5937 * Multi-process migrations only happen on the default hierarchy
5938 * where charge immigration is not used. Perform charge
5939 * immigration if @tset contains a leader and whine if there are
5940 * multiple.
5941 */
5942 p = NULL;
1f7dd3e5 5943 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5944 WARN_ON_ONCE(p);
5945 p = leader;
1f7dd3e5 5946 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5947 }
5948 if (!p)
5949 return 0;
5950
1f7dd3e5 5951 /*
f0953a1b 5952 * We are now committed to this value whatever it is. Changes in this
1f7dd3e5
TH
5953 * tunable will only affect upcoming migrations, not the current one.
5954 * So we need to save it, and keep it going.
5955 */
5956 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5957 if (!move_flags)
5958 return 0;
5959
9f2115f9
TH
5960 from = mem_cgroup_from_task(p);
5961
5962 VM_BUG_ON(from == memcg);
5963
5964 mm = get_task_mm(p);
5965 if (!mm)
5966 return 0;
5967 /* We move charges only when we move a owner of the mm */
5968 if (mm->owner == p) {
5969 VM_BUG_ON(mc.from);
5970 VM_BUG_ON(mc.to);
5971 VM_BUG_ON(mc.precharge);
5972 VM_BUG_ON(mc.moved_charge);
5973 VM_BUG_ON(mc.moved_swap);
5974
5975 spin_lock(&mc.lock);
264a0ae1 5976 mc.mm = mm;
9f2115f9
TH
5977 mc.from = from;
5978 mc.to = memcg;
5979 mc.flags = move_flags;
5980 spin_unlock(&mc.lock);
5981 /* We set mc.moving_task later */
5982
5983 ret = mem_cgroup_precharge_mc(mm);
5984 if (ret)
5985 mem_cgroup_clear_mc();
264a0ae1
TH
5986 } else {
5987 mmput(mm);
7dc74be0
DN
5988 }
5989 return ret;
5990}
5991
1f7dd3e5 5992static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5993{
4e2f245d
JW
5994 if (mc.to)
5995 mem_cgroup_clear_mc();
7dc74be0
DN
5996}
5997
4ffef5fe
DN
5998static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5999 unsigned long addr, unsigned long end,
6000 struct mm_walk *walk)
7dc74be0 6001{
4ffef5fe 6002 int ret = 0;
26bcd64a 6003 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6004 pte_t *pte;
6005 spinlock_t *ptl;
12724850
NH
6006 enum mc_target_type target_type;
6007 union mc_target target;
6008 struct page *page;
4ffef5fe 6009
b6ec57f4
KS
6010 ptl = pmd_trans_huge_lock(pmd, vma);
6011 if (ptl) {
62ade86a 6012 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6013 spin_unlock(ptl);
12724850
NH
6014 return 0;
6015 }
6016 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6017 if (target_type == MC_TARGET_PAGE) {
6018 page = target.page;
6019 if (!isolate_lru_page(page)) {
f627c2f5 6020 if (!mem_cgroup_move_account(page, true,
1306a85a 6021 mc.from, mc.to)) {
12724850
NH
6022 mc.precharge -= HPAGE_PMD_NR;
6023 mc.moved_charge += HPAGE_PMD_NR;
6024 }
6025 putback_lru_page(page);
6026 }
6027 put_page(page);
c733a828
JG
6028 } else if (target_type == MC_TARGET_DEVICE) {
6029 page = target.page;
6030 if (!mem_cgroup_move_account(page, true,
6031 mc.from, mc.to)) {
6032 mc.precharge -= HPAGE_PMD_NR;
6033 mc.moved_charge += HPAGE_PMD_NR;
6034 }
6035 put_page(page);
12724850 6036 }
bf929152 6037 spin_unlock(ptl);
1a5a9906 6038 return 0;
12724850
NH
6039 }
6040
45f83cef
AA
6041 if (pmd_trans_unstable(pmd))
6042 return 0;
4ffef5fe
DN
6043retry:
6044 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6045 for (; addr != end; addr += PAGE_SIZE) {
6046 pte_t ptent = *(pte++);
c733a828 6047 bool device = false;
02491447 6048 swp_entry_t ent;
4ffef5fe
DN
6049
6050 if (!mc.precharge)
6051 break;
6052
8d32ff84 6053 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6054 case MC_TARGET_DEVICE:
6055 device = true;
e4a9bc58 6056 fallthrough;
4ffef5fe
DN
6057 case MC_TARGET_PAGE:
6058 page = target.page;
53f9263b
KS
6059 /*
6060 * We can have a part of the split pmd here. Moving it
6061 * can be done but it would be too convoluted so simply
6062 * ignore such a partial THP and keep it in original
6063 * memcg. There should be somebody mapping the head.
6064 */
6065 if (PageTransCompound(page))
6066 goto put;
c733a828 6067 if (!device && isolate_lru_page(page))
4ffef5fe 6068 goto put;
f627c2f5
KS
6069 if (!mem_cgroup_move_account(page, false,
6070 mc.from, mc.to)) {
4ffef5fe 6071 mc.precharge--;
854ffa8d
DN
6072 /* we uncharge from mc.from later. */
6073 mc.moved_charge++;
4ffef5fe 6074 }
c733a828
JG
6075 if (!device)
6076 putback_lru_page(page);
8d32ff84 6077put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6078 put_page(page);
6079 break;
02491447
DN
6080 case MC_TARGET_SWAP:
6081 ent = target.ent;
e91cbb42 6082 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6083 mc.precharge--;
8d22a935
HD
6084 mem_cgroup_id_get_many(mc.to, 1);
6085 /* we fixup other refcnts and charges later. */
483c30b5
DN
6086 mc.moved_swap++;
6087 }
02491447 6088 break;
4ffef5fe
DN
6089 default:
6090 break;
6091 }
6092 }
6093 pte_unmap_unlock(pte - 1, ptl);
6094 cond_resched();
6095
6096 if (addr != end) {
6097 /*
6098 * We have consumed all precharges we got in can_attach().
6099 * We try charge one by one, but don't do any additional
6100 * charges to mc.to if we have failed in charge once in attach()
6101 * phase.
6102 */
854ffa8d 6103 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6104 if (!ret)
6105 goto retry;
6106 }
6107
6108 return ret;
6109}
6110
7b86ac33
CH
6111static const struct mm_walk_ops charge_walk_ops = {
6112 .pmd_entry = mem_cgroup_move_charge_pte_range,
6113};
6114
264a0ae1 6115static void mem_cgroup_move_charge(void)
4ffef5fe 6116{
4ffef5fe 6117 lru_add_drain_all();
312722cb 6118 /*
81f8c3a4
JW
6119 * Signal lock_page_memcg() to take the memcg's move_lock
6120 * while we're moving its pages to another memcg. Then wait
6121 * for already started RCU-only updates to finish.
312722cb
JW
6122 */
6123 atomic_inc(&mc.from->moving_account);
6124 synchronize_rcu();
dfe076b0 6125retry:
d8ed45c5 6126 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6127 /*
c1e8d7c6 6128 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6129 * waitq. So we cancel all extra charges, wake up all waiters,
6130 * and retry. Because we cancel precharges, we might not be able
6131 * to move enough charges, but moving charge is a best-effort
6132 * feature anyway, so it wouldn't be a big problem.
6133 */
6134 __mem_cgroup_clear_mc();
6135 cond_resched();
6136 goto retry;
6137 }
26bcd64a
NH
6138 /*
6139 * When we have consumed all precharges and failed in doing
6140 * additional charge, the page walk just aborts.
6141 */
7b86ac33
CH
6142 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6143 NULL);
0247f3f4 6144
d8ed45c5 6145 mmap_read_unlock(mc.mm);
312722cb 6146 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6147}
6148
264a0ae1 6149static void mem_cgroup_move_task(void)
67e465a7 6150{
264a0ae1
TH
6151 if (mc.to) {
6152 mem_cgroup_move_charge();
a433658c 6153 mem_cgroup_clear_mc();
264a0ae1 6154 }
67e465a7 6155}
5cfb80a7 6156#else /* !CONFIG_MMU */
1f7dd3e5 6157static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6158{
6159 return 0;
6160}
1f7dd3e5 6161static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6162{
6163}
264a0ae1 6164static void mem_cgroup_move_task(void)
5cfb80a7
DN
6165{
6166}
6167#endif
67e465a7 6168
677dc973
CD
6169static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6170{
6171 if (value == PAGE_COUNTER_MAX)
6172 seq_puts(m, "max\n");
6173 else
6174 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6175
6176 return 0;
6177}
6178
241994ed
JW
6179static u64 memory_current_read(struct cgroup_subsys_state *css,
6180 struct cftype *cft)
6181{
f5fc3c5d
JW
6182 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6183
6184 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6185}
6186
bf8d5d52
RG
6187static int memory_min_show(struct seq_file *m, void *v)
6188{
677dc973
CD
6189 return seq_puts_memcg_tunable(m,
6190 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6191}
6192
6193static ssize_t memory_min_write(struct kernfs_open_file *of,
6194 char *buf, size_t nbytes, loff_t off)
6195{
6196 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6197 unsigned long min;
6198 int err;
6199
6200 buf = strstrip(buf);
6201 err = page_counter_memparse(buf, "max", &min);
6202 if (err)
6203 return err;
6204
6205 page_counter_set_min(&memcg->memory, min);
6206
6207 return nbytes;
6208}
6209
241994ed
JW
6210static int memory_low_show(struct seq_file *m, void *v)
6211{
677dc973
CD
6212 return seq_puts_memcg_tunable(m,
6213 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6214}
6215
6216static ssize_t memory_low_write(struct kernfs_open_file *of,
6217 char *buf, size_t nbytes, loff_t off)
6218{
6219 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6220 unsigned long low;
6221 int err;
6222
6223 buf = strstrip(buf);
d2973697 6224 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6225 if (err)
6226 return err;
6227
23067153 6228 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6229
6230 return nbytes;
6231}
6232
6233static int memory_high_show(struct seq_file *m, void *v)
6234{
d1663a90
JK
6235 return seq_puts_memcg_tunable(m,
6236 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6237}
6238
6239static ssize_t memory_high_write(struct kernfs_open_file *of,
6240 char *buf, size_t nbytes, loff_t off)
6241{
6242 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6243 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6244 bool drained = false;
241994ed
JW
6245 unsigned long high;
6246 int err;
6247
6248 buf = strstrip(buf);
d2973697 6249 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6250 if (err)
6251 return err;
6252
e82553c1
JW
6253 page_counter_set_high(&memcg->memory, high);
6254
8c8c383c
JW
6255 for (;;) {
6256 unsigned long nr_pages = page_counter_read(&memcg->memory);
6257 unsigned long reclaimed;
6258
6259 if (nr_pages <= high)
6260 break;
6261
6262 if (signal_pending(current))
6263 break;
6264
6265 if (!drained) {
6266 drain_all_stock(memcg);
6267 drained = true;
6268 continue;
6269 }
6270
6271 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6272 GFP_KERNEL, true);
6273
6274 if (!reclaimed && !nr_retries--)
6275 break;
6276 }
588083bb 6277
19ce33ac 6278 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6279 return nbytes;
6280}
6281
6282static int memory_max_show(struct seq_file *m, void *v)
6283{
677dc973
CD
6284 return seq_puts_memcg_tunable(m,
6285 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6286}
6287
6288static ssize_t memory_max_write(struct kernfs_open_file *of,
6289 char *buf, size_t nbytes, loff_t off)
6290{
6291 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6292 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6293 bool drained = false;
241994ed
JW
6294 unsigned long max;
6295 int err;
6296
6297 buf = strstrip(buf);
d2973697 6298 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6299 if (err)
6300 return err;
6301
bbec2e15 6302 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6303
6304 for (;;) {
6305 unsigned long nr_pages = page_counter_read(&memcg->memory);
6306
6307 if (nr_pages <= max)
6308 break;
6309
7249c9f0 6310 if (signal_pending(current))
b6e6edcf 6311 break;
b6e6edcf
JW
6312
6313 if (!drained) {
6314 drain_all_stock(memcg);
6315 drained = true;
6316 continue;
6317 }
6318
6319 if (nr_reclaims) {
6320 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6321 GFP_KERNEL, true))
6322 nr_reclaims--;
6323 continue;
6324 }
6325
e27be240 6326 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6327 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6328 break;
6329 }
241994ed 6330
2529bb3a 6331 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6332 return nbytes;
6333}
6334
1e577f97
SB
6335static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6336{
6337 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6338 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6339 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6340 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6341 seq_printf(m, "oom_kill %lu\n",
6342 atomic_long_read(&events[MEMCG_OOM_KILL]));
6343}
6344
241994ed
JW
6345static int memory_events_show(struct seq_file *m, void *v)
6346{
aa9694bb 6347 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6348
1e577f97
SB
6349 __memory_events_show(m, memcg->memory_events);
6350 return 0;
6351}
6352
6353static int memory_events_local_show(struct seq_file *m, void *v)
6354{
6355 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6356
1e577f97 6357 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6358 return 0;
6359}
6360
587d9f72
JW
6361static int memory_stat_show(struct seq_file *m, void *v)
6362{
aa9694bb 6363 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6364 char *buf;
1ff9e6e1 6365
c8713d0b
JW
6366 buf = memory_stat_format(memcg);
6367 if (!buf)
6368 return -ENOMEM;
6369 seq_puts(m, buf);
6370 kfree(buf);
587d9f72
JW
6371 return 0;
6372}
6373
5f9a4f4a 6374#ifdef CONFIG_NUMA
fff66b79
MS
6375static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6376 int item)
6377{
6378 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6379}
6380
5f9a4f4a
MS
6381static int memory_numa_stat_show(struct seq_file *m, void *v)
6382{
6383 int i;
6384 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6385
7e1c0d6f
SB
6386 cgroup_rstat_flush(memcg->css.cgroup);
6387
5f9a4f4a
MS
6388 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6389 int nid;
6390
6391 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6392 continue;
6393
6394 seq_printf(m, "%s", memory_stats[i].name);
6395 for_each_node_state(nid, N_MEMORY) {
6396 u64 size;
6397 struct lruvec *lruvec;
6398
6399 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
fff66b79
MS
6400 size = lruvec_page_state_output(lruvec,
6401 memory_stats[i].idx);
5f9a4f4a
MS
6402 seq_printf(m, " N%d=%llu", nid, size);
6403 }
6404 seq_putc(m, '\n');
6405 }
6406
6407 return 0;
6408}
6409#endif
6410
3d8b38eb
RG
6411static int memory_oom_group_show(struct seq_file *m, void *v)
6412{
aa9694bb 6413 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6414
6415 seq_printf(m, "%d\n", memcg->oom_group);
6416
6417 return 0;
6418}
6419
6420static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6421 char *buf, size_t nbytes, loff_t off)
6422{
6423 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6424 int ret, oom_group;
6425
6426 buf = strstrip(buf);
6427 if (!buf)
6428 return -EINVAL;
6429
6430 ret = kstrtoint(buf, 0, &oom_group);
6431 if (ret)
6432 return ret;
6433
6434 if (oom_group != 0 && oom_group != 1)
6435 return -EINVAL;
6436
6437 memcg->oom_group = oom_group;
6438
6439 return nbytes;
6440}
6441
241994ed
JW
6442static struct cftype memory_files[] = {
6443 {
6444 .name = "current",
f5fc3c5d 6445 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6446 .read_u64 = memory_current_read,
6447 },
bf8d5d52
RG
6448 {
6449 .name = "min",
6450 .flags = CFTYPE_NOT_ON_ROOT,
6451 .seq_show = memory_min_show,
6452 .write = memory_min_write,
6453 },
241994ed
JW
6454 {
6455 .name = "low",
6456 .flags = CFTYPE_NOT_ON_ROOT,
6457 .seq_show = memory_low_show,
6458 .write = memory_low_write,
6459 },
6460 {
6461 .name = "high",
6462 .flags = CFTYPE_NOT_ON_ROOT,
6463 .seq_show = memory_high_show,
6464 .write = memory_high_write,
6465 },
6466 {
6467 .name = "max",
6468 .flags = CFTYPE_NOT_ON_ROOT,
6469 .seq_show = memory_max_show,
6470 .write = memory_max_write,
6471 },
6472 {
6473 .name = "events",
6474 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6475 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6476 .seq_show = memory_events_show,
6477 },
1e577f97
SB
6478 {
6479 .name = "events.local",
6480 .flags = CFTYPE_NOT_ON_ROOT,
6481 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6482 .seq_show = memory_events_local_show,
6483 },
587d9f72
JW
6484 {
6485 .name = "stat",
587d9f72
JW
6486 .seq_show = memory_stat_show,
6487 },
5f9a4f4a
MS
6488#ifdef CONFIG_NUMA
6489 {
6490 .name = "numa_stat",
6491 .seq_show = memory_numa_stat_show,
6492 },
6493#endif
3d8b38eb
RG
6494 {
6495 .name = "oom.group",
6496 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6497 .seq_show = memory_oom_group_show,
6498 .write = memory_oom_group_write,
6499 },
241994ed
JW
6500 { } /* terminate */
6501};
6502
073219e9 6503struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6504 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6505 .css_online = mem_cgroup_css_online,
92fb9748 6506 .css_offline = mem_cgroup_css_offline,
6df38689 6507 .css_released = mem_cgroup_css_released,
92fb9748 6508 .css_free = mem_cgroup_css_free,
1ced953b 6509 .css_reset = mem_cgroup_css_reset,
2d146aa3 6510 .css_rstat_flush = mem_cgroup_css_rstat_flush,
7dc74be0
DN
6511 .can_attach = mem_cgroup_can_attach,
6512 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6513 .post_attach = mem_cgroup_move_task,
241994ed
JW
6514 .dfl_cftypes = memory_files,
6515 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6516 .early_init = 0,
8cdea7c0 6517};
c077719b 6518
bc50bcc6
JW
6519/*
6520 * This function calculates an individual cgroup's effective
6521 * protection which is derived from its own memory.min/low, its
6522 * parent's and siblings' settings, as well as the actual memory
6523 * distribution in the tree.
6524 *
6525 * The following rules apply to the effective protection values:
6526 *
6527 * 1. At the first level of reclaim, effective protection is equal to
6528 * the declared protection in memory.min and memory.low.
6529 *
6530 * 2. To enable safe delegation of the protection configuration, at
6531 * subsequent levels the effective protection is capped to the
6532 * parent's effective protection.
6533 *
6534 * 3. To make complex and dynamic subtrees easier to configure, the
6535 * user is allowed to overcommit the declared protection at a given
6536 * level. If that is the case, the parent's effective protection is
6537 * distributed to the children in proportion to how much protection
6538 * they have declared and how much of it they are utilizing.
6539 *
6540 * This makes distribution proportional, but also work-conserving:
6541 * if one cgroup claims much more protection than it uses memory,
6542 * the unused remainder is available to its siblings.
6543 *
6544 * 4. Conversely, when the declared protection is undercommitted at a
6545 * given level, the distribution of the larger parental protection
6546 * budget is NOT proportional. A cgroup's protection from a sibling
6547 * is capped to its own memory.min/low setting.
6548 *
8a931f80
JW
6549 * 5. However, to allow protecting recursive subtrees from each other
6550 * without having to declare each individual cgroup's fixed share
6551 * of the ancestor's claim to protection, any unutilized -
6552 * "floating" - protection from up the tree is distributed in
6553 * proportion to each cgroup's *usage*. This makes the protection
6554 * neutral wrt sibling cgroups and lets them compete freely over
6555 * the shared parental protection budget, but it protects the
6556 * subtree as a whole from neighboring subtrees.
6557 *
6558 * Note that 4. and 5. are not in conflict: 4. is about protecting
6559 * against immediate siblings whereas 5. is about protecting against
6560 * neighboring subtrees.
bc50bcc6
JW
6561 */
6562static unsigned long effective_protection(unsigned long usage,
8a931f80 6563 unsigned long parent_usage,
bc50bcc6
JW
6564 unsigned long setting,
6565 unsigned long parent_effective,
6566 unsigned long siblings_protected)
6567{
6568 unsigned long protected;
8a931f80 6569 unsigned long ep;
bc50bcc6
JW
6570
6571 protected = min(usage, setting);
6572 /*
6573 * If all cgroups at this level combined claim and use more
6574 * protection then what the parent affords them, distribute
6575 * shares in proportion to utilization.
6576 *
6577 * We are using actual utilization rather than the statically
6578 * claimed protection in order to be work-conserving: claimed
6579 * but unused protection is available to siblings that would
6580 * otherwise get a smaller chunk than what they claimed.
6581 */
6582 if (siblings_protected > parent_effective)
6583 return protected * parent_effective / siblings_protected;
6584
6585 /*
6586 * Ok, utilized protection of all children is within what the
6587 * parent affords them, so we know whatever this child claims
6588 * and utilizes is effectively protected.
6589 *
6590 * If there is unprotected usage beyond this value, reclaim
6591 * will apply pressure in proportion to that amount.
6592 *
6593 * If there is unutilized protection, the cgroup will be fully
6594 * shielded from reclaim, but we do return a smaller value for
6595 * protection than what the group could enjoy in theory. This
6596 * is okay. With the overcommit distribution above, effective
6597 * protection is always dependent on how memory is actually
6598 * consumed among the siblings anyway.
6599 */
8a931f80
JW
6600 ep = protected;
6601
6602 /*
6603 * If the children aren't claiming (all of) the protection
6604 * afforded to them by the parent, distribute the remainder in
6605 * proportion to the (unprotected) memory of each cgroup. That
6606 * way, cgroups that aren't explicitly prioritized wrt each
6607 * other compete freely over the allowance, but they are
6608 * collectively protected from neighboring trees.
6609 *
6610 * We're using unprotected memory for the weight so that if
6611 * some cgroups DO claim explicit protection, we don't protect
6612 * the same bytes twice.
cd324edc
JW
6613 *
6614 * Check both usage and parent_usage against the respective
6615 * protected values. One should imply the other, but they
6616 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6617 */
6618 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6619 return ep;
cd324edc
JW
6620 if (parent_effective > siblings_protected &&
6621 parent_usage > siblings_protected &&
6622 usage > protected) {
8a931f80
JW
6623 unsigned long unclaimed;
6624
6625 unclaimed = parent_effective - siblings_protected;
6626 unclaimed *= usage - protected;
6627 unclaimed /= parent_usage - siblings_protected;
6628
6629 ep += unclaimed;
6630 }
6631
6632 return ep;
bc50bcc6
JW
6633}
6634
241994ed 6635/**
05395718 6636 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
34c81057 6637 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6638 * @memcg: the memory cgroup to check
6639 *
23067153
RG
6640 * WARNING: This function is not stateless! It can only be used as part
6641 * of a top-down tree iteration, not for isolated queries.
241994ed 6642 */
45c7f7e1
CD
6643void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6644 struct mem_cgroup *memcg)
241994ed 6645{
8a931f80 6646 unsigned long usage, parent_usage;
23067153
RG
6647 struct mem_cgroup *parent;
6648
241994ed 6649 if (mem_cgroup_disabled())
45c7f7e1 6650 return;
241994ed 6651
34c81057
SC
6652 if (!root)
6653 root = root_mem_cgroup;
22f7496f
YS
6654
6655 /*
6656 * Effective values of the reclaim targets are ignored so they
6657 * can be stale. Have a look at mem_cgroup_protection for more
6658 * details.
6659 * TODO: calculation should be more robust so that we do not need
6660 * that special casing.
6661 */
34c81057 6662 if (memcg == root)
45c7f7e1 6663 return;
241994ed 6664
23067153 6665 usage = page_counter_read(&memcg->memory);
bf8d5d52 6666 if (!usage)
45c7f7e1 6667 return;
bf8d5d52 6668
bf8d5d52 6669 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6670 /* No parent means a non-hierarchical mode on v1 memcg */
6671 if (!parent)
45c7f7e1 6672 return;
df2a4196 6673
bc50bcc6 6674 if (parent == root) {
c3d53200 6675 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6676 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6677 return;
bf8d5d52
RG
6678 }
6679
8a931f80
JW
6680 parent_usage = page_counter_read(&parent->memory);
6681
b3a7822e 6682 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6683 READ_ONCE(memcg->memory.min),
6684 READ_ONCE(parent->memory.emin),
b3a7822e 6685 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6686
b3a7822e 6687 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6688 READ_ONCE(memcg->memory.low),
6689 READ_ONCE(parent->memory.elow),
b3a7822e 6690 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6691}
6692
2c8d8f97 6693static int charge_memcg(struct page *page, struct mem_cgroup *memcg, gfp_t gfp)
0add0c77
SB
6694{
6695 unsigned int nr_pages = thp_nr_pages(page);
6696 int ret;
6697
6698 ret = try_charge(memcg, gfp, nr_pages);
6699 if (ret)
6700 goto out;
6701
6702 css_get(&memcg->css);
6703 commit_charge(page, memcg);
6704
6705 local_irq_disable();
6706 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6707 memcg_check_events(memcg, page);
6708 local_irq_enable();
6709out:
6710 return ret;
6711}
6712
00501b53 6713/**
2c8d8f97 6714 * __mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6715 * @page: page to charge
6716 * @mm: mm context of the victim
6717 * @gfp_mask: reclaim mode
00501b53
JW
6718 *
6719 * Try to charge @page to the memcg that @mm belongs to, reclaiming
04f94e3f
DS
6720 * pages according to @gfp_mask if necessary. if @mm is NULL, try to
6721 * charge to the active memcg.
00501b53 6722 *
0add0c77
SB
6723 * Do not use this for pages allocated for swapin.
6724 *
f0e45fb4 6725 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6726 */
2c8d8f97
SB
6727int __mem_cgroup_charge(struct page *page, struct mm_struct *mm,
6728 gfp_t gfp_mask)
00501b53 6729{
0add0c77
SB
6730 struct mem_cgroup *memcg;
6731 int ret;
00501b53 6732
0add0c77 6733 memcg = get_mem_cgroup_from_mm(mm);
2c8d8f97 6734 ret = charge_memcg(page, memcg, gfp_mask);
0add0c77 6735 css_put(&memcg->css);
2d1c4980 6736
0add0c77
SB
6737 return ret;
6738}
e993d905 6739
0add0c77
SB
6740/**
6741 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6742 * @page: page to charge
6743 * @mm: mm context of the victim
6744 * @gfp: reclaim mode
6745 * @entry: swap entry for which the page is allocated
6746 *
6747 * This function charges a page allocated for swapin. Please call this before
6748 * adding the page to the swapcache.
6749 *
6750 * Returns 0 on success. Otherwise, an error code is returned.
6751 */
6752int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6753 gfp_t gfp, swp_entry_t entry)
6754{
6755 struct mem_cgroup *memcg;
6756 unsigned short id;
6757 int ret;
00501b53 6758
0add0c77
SB
6759 if (mem_cgroup_disabled())
6760 return 0;
00501b53 6761
0add0c77
SB
6762 id = lookup_swap_cgroup_id(entry);
6763 rcu_read_lock();
6764 memcg = mem_cgroup_from_id(id);
6765 if (!memcg || !css_tryget_online(&memcg->css))
6766 memcg = get_mem_cgroup_from_mm(mm);
6767 rcu_read_unlock();
00501b53 6768
2c8d8f97 6769 ret = charge_memcg(page, memcg, gfp);
6abb5a86 6770
0add0c77
SB
6771 css_put(&memcg->css);
6772 return ret;
6773}
00501b53 6774
0add0c77
SB
6775/*
6776 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6777 * @entry: swap entry for which the page is charged
6778 *
6779 * Call this function after successfully adding the charged page to swapcache.
6780 *
6781 * Note: This function assumes the page for which swap slot is being uncharged
6782 * is order 0 page.
6783 */
6784void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6785{
cae3af62
MS
6786 /*
6787 * Cgroup1's unified memory+swap counter has been charged with the
6788 * new swapcache page, finish the transfer by uncharging the swap
6789 * slot. The swap slot would also get uncharged when it dies, but
6790 * it can stick around indefinitely and we'd count the page twice
6791 * the entire time.
6792 *
6793 * Cgroup2 has separate resource counters for memory and swap,
6794 * so this is a non-issue here. Memory and swap charge lifetimes
6795 * correspond 1:1 to page and swap slot lifetimes: we charge the
6796 * page to memory here, and uncharge swap when the slot is freed.
6797 */
0add0c77 6798 if (!mem_cgroup_disabled() && do_memsw_account()) {
00501b53
JW
6799 /*
6800 * The swap entry might not get freed for a long time,
6801 * let's not wait for it. The page already received a
6802 * memory+swap charge, drop the swap entry duplicate.
6803 */
0add0c77 6804 mem_cgroup_uncharge_swap(entry, 1);
00501b53 6805 }
3fea5a49
JW
6806}
6807
a9d5adee
JG
6808struct uncharge_gather {
6809 struct mem_cgroup *memcg;
b4e0b68f 6810 unsigned long nr_memory;
a9d5adee 6811 unsigned long pgpgout;
a9d5adee 6812 unsigned long nr_kmem;
a9d5adee
JG
6813 struct page *dummy_page;
6814};
6815
6816static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6817{
a9d5adee
JG
6818 memset(ug, 0, sizeof(*ug));
6819}
6820
6821static void uncharge_batch(const struct uncharge_gather *ug)
6822{
747db954
JW
6823 unsigned long flags;
6824
b4e0b68f
MS
6825 if (ug->nr_memory) {
6826 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7941d214 6827 if (do_memsw_account())
b4e0b68f 6828 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
a9d5adee
JG
6829 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6830 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6831 memcg_oom_recover(ug->memcg);
ce00a967 6832 }
747db954
JW
6833
6834 local_irq_save(flags);
c9019e9b 6835 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
b4e0b68f 6836 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
a9d5adee 6837 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6838 local_irq_restore(flags);
f1796544
MH
6839
6840 /* drop reference from uncharge_page */
6841 css_put(&ug->memcg->css);
a9d5adee
JG
6842}
6843
6844static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6845{
9f762dbe 6846 unsigned long nr_pages;
b4e0b68f
MS
6847 struct mem_cgroup *memcg;
6848 struct obj_cgroup *objcg;
55927114 6849 bool use_objcg = PageMemcgKmem(page);
9f762dbe 6850
a9d5adee 6851 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee 6852
a9d5adee
JG
6853 /*
6854 * Nobody should be changing or seriously looking at
b4e0b68f 6855 * page memcg or objcg at this point, we have fully
a9d5adee
JG
6856 * exclusive access to the page.
6857 */
55927114 6858 if (use_objcg) {
b4e0b68f
MS
6859 objcg = __page_objcg(page);
6860 /*
6861 * This get matches the put at the end of the function and
6862 * kmem pages do not hold memcg references anymore.
6863 */
6864 memcg = get_mem_cgroup_from_objcg(objcg);
6865 } else {
6866 memcg = __page_memcg(page);
6867 }
a9d5adee 6868
b4e0b68f
MS
6869 if (!memcg)
6870 return;
6871
6872 if (ug->memcg != memcg) {
a9d5adee
JG
6873 if (ug->memcg) {
6874 uncharge_batch(ug);
6875 uncharge_gather_clear(ug);
6876 }
b4e0b68f 6877 ug->memcg = memcg;
7ab345a8 6878 ug->dummy_page = page;
f1796544
MH
6879
6880 /* pairs with css_put in uncharge_batch */
b4e0b68f 6881 css_get(&memcg->css);
a9d5adee
JG
6882 }
6883
9f762dbe 6884 nr_pages = compound_nr(page);
a9d5adee 6885
55927114 6886 if (use_objcg) {
b4e0b68f 6887 ug->nr_memory += nr_pages;
9f762dbe 6888 ug->nr_kmem += nr_pages;
b4e0b68f
MS
6889
6890 page->memcg_data = 0;
6891 obj_cgroup_put(objcg);
6892 } else {
6893 /* LRU pages aren't accounted at the root level */
6894 if (!mem_cgroup_is_root(memcg))
6895 ug->nr_memory += nr_pages;
18b2db3b 6896 ug->pgpgout++;
a9d5adee 6897
b4e0b68f
MS
6898 page->memcg_data = 0;
6899 }
6900
6901 css_put(&memcg->css);
747db954
JW
6902}
6903
0a31bc97 6904/**
2c8d8f97 6905 * __mem_cgroup_uncharge - uncharge a page
0a31bc97
JW
6906 * @page: page to uncharge
6907 *
2c8d8f97 6908 * Uncharge a page previously charged with __mem_cgroup_charge().
0a31bc97 6909 */
2c8d8f97 6910void __mem_cgroup_uncharge(struct page *page)
0a31bc97 6911{
a9d5adee
JG
6912 struct uncharge_gather ug;
6913
747db954 6914 /* Don't touch page->lru of any random page, pre-check: */
bcfe06bf 6915 if (!page_memcg(page))
0a31bc97
JW
6916 return;
6917
a9d5adee
JG
6918 uncharge_gather_clear(&ug);
6919 uncharge_page(page, &ug);
6920 uncharge_batch(&ug);
747db954 6921}
0a31bc97 6922
747db954 6923/**
2c8d8f97 6924 * __mem_cgroup_uncharge_list - uncharge a list of page
747db954
JW
6925 * @page_list: list of pages to uncharge
6926 *
6927 * Uncharge a list of pages previously charged with
2c8d8f97 6928 * __mem_cgroup_charge().
747db954 6929 */
2c8d8f97 6930void __mem_cgroup_uncharge_list(struct list_head *page_list)
747db954 6931{
c41a40b6
MS
6932 struct uncharge_gather ug;
6933 struct page *page;
6934
c41a40b6
MS
6935 uncharge_gather_clear(&ug);
6936 list_for_each_entry(page, page_list, lru)
6937 uncharge_page(page, &ug);
6938 if (ug.memcg)
6939 uncharge_batch(&ug);
0a31bc97
JW
6940}
6941
6942/**
6a93ca8f
JW
6943 * mem_cgroup_migrate - charge a page's replacement
6944 * @oldpage: currently circulating page
6945 * @newpage: replacement page
0a31bc97 6946 *
6a93ca8f
JW
6947 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6948 * be uncharged upon free.
0a31bc97
JW
6949 *
6950 * Both pages must be locked, @newpage->mapping must be set up.
6951 */
6a93ca8f 6952void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6953{
29833315 6954 struct mem_cgroup *memcg;
44b7a8d3 6955 unsigned int nr_pages;
d93c4130 6956 unsigned long flags;
0a31bc97
JW
6957
6958 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6959 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6960 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6961 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6962 newpage);
0a31bc97
JW
6963
6964 if (mem_cgroup_disabled())
6965 return;
6966
6967 /* Page cache replacement: new page already charged? */
bcfe06bf 6968 if (page_memcg(newpage))
0a31bc97
JW
6969 return;
6970
bcfe06bf 6971 memcg = page_memcg(oldpage);
a4055888 6972 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
29833315 6973 if (!memcg)
0a31bc97
JW
6974 return;
6975
44b7a8d3 6976 /* Force-charge the new page. The old one will be freed soon */
6c357848 6977 nr_pages = thp_nr_pages(newpage);
44b7a8d3 6978
8dc87c7d
MS
6979 if (!mem_cgroup_is_root(memcg)) {
6980 page_counter_charge(&memcg->memory, nr_pages);
6981 if (do_memsw_account())
6982 page_counter_charge(&memcg->memsw, nr_pages);
6983 }
0a31bc97 6984
1a3e1f40 6985 css_get(&memcg->css);
d9eb1ea2 6986 commit_charge(newpage, memcg);
44b7a8d3 6987
d93c4130 6988 local_irq_save(flags);
3fba69a5 6989 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6990 memcg_check_events(memcg, newpage);
d93c4130 6991 local_irq_restore(flags);
0a31bc97
JW
6992}
6993
ef12947c 6994DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6995EXPORT_SYMBOL(memcg_sockets_enabled_key);
6996
2d758073 6997void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6998{
6999 struct mem_cgroup *memcg;
7000
2d758073
JW
7001 if (!mem_cgroup_sockets_enabled)
7002 return;
7003
e876ecc6
SB
7004 /* Do not associate the sock with unrelated interrupted task's memcg. */
7005 if (in_interrupt())
7006 return;
7007
11092087
JW
7008 rcu_read_lock();
7009 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
7010 if (memcg == root_mem_cgroup)
7011 goto out;
0db15298 7012 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 7013 goto out;
8965aa28 7014 if (css_tryget(&memcg->css))
11092087 7015 sk->sk_memcg = memcg;
f7e1cb6e 7016out:
11092087
JW
7017 rcu_read_unlock();
7018}
11092087 7019
2d758073 7020void mem_cgroup_sk_free(struct sock *sk)
11092087 7021{
2d758073
JW
7022 if (sk->sk_memcg)
7023 css_put(&sk->sk_memcg->css);
11092087
JW
7024}
7025
7026/**
7027 * mem_cgroup_charge_skmem - charge socket memory
7028 * @memcg: memcg to charge
7029 * @nr_pages: number of pages to charge
4b1327be 7030 * @gfp_mask: reclaim mode
11092087
JW
7031 *
7032 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
4b1327be 7033 * @memcg's configured limit, %false if it doesn't.
11092087 7034 */
4b1327be
WW
7035bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7036 gfp_t gfp_mask)
11092087 7037{
f7e1cb6e 7038 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7039 struct page_counter *fail;
f7e1cb6e 7040
0db15298
JW
7041 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7042 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7043 return true;
7044 }
0db15298 7045 memcg->tcpmem_pressure = 1;
4b1327be
WW
7046 if (gfp_mask & __GFP_NOFAIL) {
7047 page_counter_charge(&memcg->tcpmem, nr_pages);
7048 return true;
7049 }
f7e1cb6e 7050 return false;
11092087 7051 }
d886f4e4 7052
4b1327be
WW
7053 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7054 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
f7e1cb6e 7055 return true;
4b1327be 7056 }
f7e1cb6e 7057
11092087
JW
7058 return false;
7059}
7060
7061/**
7062 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7063 * @memcg: memcg to uncharge
7064 * @nr_pages: number of pages to uncharge
11092087
JW
7065 */
7066void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7067{
f7e1cb6e 7068 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7069 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7070 return;
7071 }
d886f4e4 7072
c9019e9b 7073 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7074
475d0487 7075 refill_stock(memcg, nr_pages);
11092087
JW
7076}
7077
f7e1cb6e
JW
7078static int __init cgroup_memory(char *s)
7079{
7080 char *token;
7081
7082 while ((token = strsep(&s, ",")) != NULL) {
7083 if (!*token)
7084 continue;
7085 if (!strcmp(token, "nosocket"))
7086 cgroup_memory_nosocket = true;
04823c83
VD
7087 if (!strcmp(token, "nokmem"))
7088 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7089 }
7090 return 0;
7091}
7092__setup("cgroup.memory=", cgroup_memory);
11092087 7093
2d11085e 7094/*
1081312f
MH
7095 * subsys_initcall() for memory controller.
7096 *
308167fc
SAS
7097 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7098 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7099 * basically everything that doesn't depend on a specific mem_cgroup structure
7100 * should be initialized from here.
2d11085e
MH
7101 */
7102static int __init mem_cgroup_init(void)
7103{
95a045f6
JW
7104 int cpu, node;
7105
f3344adf
MS
7106 /*
7107 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7108 * used for per-memcg-per-cpu caching of per-node statistics. In order
7109 * to work fine, we should make sure that the overfill threshold can't
7110 * exceed S32_MAX / PAGE_SIZE.
7111 */
7112 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7113
308167fc
SAS
7114 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7115 memcg_hotplug_cpu_dead);
95a045f6
JW
7116
7117 for_each_possible_cpu(cpu)
7118 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7119 drain_local_stock);
7120
7121 for_each_node(node) {
7122 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7123
7124 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7125 node_online(node) ? node : NUMA_NO_NODE);
7126
ef8f2327 7127 rtpn->rb_root = RB_ROOT;
fa90b2fd 7128 rtpn->rb_rightmost = NULL;
ef8f2327 7129 spin_lock_init(&rtpn->lock);
95a045f6
JW
7130 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7131 }
7132
2d11085e
MH
7133 return 0;
7134}
7135subsys_initcall(mem_cgroup_init);
21afa38e
JW
7136
7137#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7138static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7139{
1c2d479a 7140 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7141 /*
7142 * The root cgroup cannot be destroyed, so it's refcount must
7143 * always be >= 1.
7144 */
7145 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7146 VM_BUG_ON(1);
7147 break;
7148 }
7149 memcg = parent_mem_cgroup(memcg);
7150 if (!memcg)
7151 memcg = root_mem_cgroup;
7152 }
7153 return memcg;
7154}
7155
21afa38e
JW
7156/**
7157 * mem_cgroup_swapout - transfer a memsw charge to swap
7158 * @page: page whose memsw charge to transfer
7159 * @entry: swap entry to move the charge to
7160 *
7161 * Transfer the memsw charge of @page to @entry.
7162 */
7163void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7164{
1f47b61f 7165 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7166 unsigned int nr_entries;
21afa38e
JW
7167 unsigned short oldid;
7168
7169 VM_BUG_ON_PAGE(PageLRU(page), page);
7170 VM_BUG_ON_PAGE(page_count(page), page);
7171
76358ab5
AS
7172 if (mem_cgroup_disabled())
7173 return;
7174
2d1c4980 7175 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7176 return;
7177
bcfe06bf 7178 memcg = page_memcg(page);
21afa38e 7179
a4055888 7180 VM_WARN_ON_ONCE_PAGE(!memcg, page);
21afa38e
JW
7181 if (!memcg)
7182 return;
7183
1f47b61f
VD
7184 /*
7185 * In case the memcg owning these pages has been offlined and doesn't
7186 * have an ID allocated to it anymore, charge the closest online
7187 * ancestor for the swap instead and transfer the memory+swap charge.
7188 */
7189 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7190 nr_entries = thp_nr_pages(page);
d6810d73
HY
7191 /* Get references for the tail pages, too */
7192 if (nr_entries > 1)
7193 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7194 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7195 nr_entries);
21afa38e 7196 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7197 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7198
bcfe06bf 7199 page->memcg_data = 0;
21afa38e
JW
7200
7201 if (!mem_cgroup_is_root(memcg))
d6810d73 7202 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7203
2d1c4980 7204 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7205 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7206 page_counter_charge(&swap_memcg->memsw, nr_entries);
7207 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7208 }
7209
ce9ce665
SAS
7210 /*
7211 * Interrupts should be disabled here because the caller holds the
b93b0163 7212 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7213 * important here to have the interrupts disabled because it is the
b93b0163 7214 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7215 */
7216 VM_BUG_ON(!irqs_disabled());
3fba69a5 7217 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7218 memcg_check_events(memcg, page);
73f576c0 7219
1a3e1f40 7220 css_put(&memcg->css);
21afa38e
JW
7221}
7222
38d8b4e6 7223/**
01c4b28c 7224 * __mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7225 * @page: page being added to swap
7226 * @entry: swap entry to charge
7227 *
38d8b4e6 7228 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7229 *
7230 * Returns 0 on success, -ENOMEM on failure.
7231 */
01c4b28c 7232int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
37e84351 7233{
6c357848 7234 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7235 struct page_counter *counter;
38d8b4e6 7236 struct mem_cgroup *memcg;
37e84351
VD
7237 unsigned short oldid;
7238
2d1c4980 7239 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7240 return 0;
7241
bcfe06bf 7242 memcg = page_memcg(page);
37e84351 7243
a4055888 7244 VM_WARN_ON_ONCE_PAGE(!memcg, page);
37e84351
VD
7245 if (!memcg)
7246 return 0;
7247
f3a53a3a
TH
7248 if (!entry.val) {
7249 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7250 return 0;
f3a53a3a 7251 }
bb98f2c5 7252
1f47b61f
VD
7253 memcg = mem_cgroup_id_get_online(memcg);
7254
2d1c4980 7255 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7256 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7257 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7258 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7259 mem_cgroup_id_put(memcg);
37e84351 7260 return -ENOMEM;
1f47b61f 7261 }
37e84351 7262
38d8b4e6
HY
7263 /* Get references for the tail pages, too */
7264 if (nr_pages > 1)
7265 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7266 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7267 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7268 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7269
37e84351
VD
7270 return 0;
7271}
7272
21afa38e 7273/**
01c4b28c 7274 * __mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7275 * @entry: swap entry to uncharge
38d8b4e6 7276 * @nr_pages: the amount of swap space to uncharge
21afa38e 7277 */
01c4b28c 7278void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7279{
7280 struct mem_cgroup *memcg;
7281 unsigned short id;
7282
38d8b4e6 7283 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7284 rcu_read_lock();
adbe427b 7285 memcg = mem_cgroup_from_id(id);
21afa38e 7286 if (memcg) {
2d1c4980 7287 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7288 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7289 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7290 else
38d8b4e6 7291 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7292 }
c9019e9b 7293 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7294 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7295 }
7296 rcu_read_unlock();
7297}
7298
d8b38438
VD
7299long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7300{
7301 long nr_swap_pages = get_nr_swap_pages();
7302
eccb52e7 7303 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7304 return nr_swap_pages;
7305 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7306 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7307 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7308 page_counter_read(&memcg->swap));
7309 return nr_swap_pages;
7310}
7311
5ccc5aba
VD
7312bool mem_cgroup_swap_full(struct page *page)
7313{
7314 struct mem_cgroup *memcg;
7315
7316 VM_BUG_ON_PAGE(!PageLocked(page), page);
7317
7318 if (vm_swap_full())
7319 return true;
eccb52e7 7320 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7321 return false;
7322
bcfe06bf 7323 memcg = page_memcg(page);
5ccc5aba
VD
7324 if (!memcg)
7325 return false;
7326
4b82ab4f
JK
7327 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7328 unsigned long usage = page_counter_read(&memcg->swap);
7329
7330 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7331 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7332 return true;
4b82ab4f 7333 }
5ccc5aba
VD
7334
7335 return false;
7336}
7337
eccb52e7 7338static int __init setup_swap_account(char *s)
21afa38e
JW
7339{
7340 if (!strcmp(s, "1"))
5ab92901 7341 cgroup_memory_noswap = false;
21afa38e 7342 else if (!strcmp(s, "0"))
5ab92901 7343 cgroup_memory_noswap = true;
21afa38e
JW
7344 return 1;
7345}
eccb52e7 7346__setup("swapaccount=", setup_swap_account);
21afa38e 7347
37e84351
VD
7348static u64 swap_current_read(struct cgroup_subsys_state *css,
7349 struct cftype *cft)
7350{
7351 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7352
7353 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7354}
7355
4b82ab4f
JK
7356static int swap_high_show(struct seq_file *m, void *v)
7357{
7358 return seq_puts_memcg_tunable(m,
7359 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7360}
7361
7362static ssize_t swap_high_write(struct kernfs_open_file *of,
7363 char *buf, size_t nbytes, loff_t off)
7364{
7365 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7366 unsigned long high;
7367 int err;
7368
7369 buf = strstrip(buf);
7370 err = page_counter_memparse(buf, "max", &high);
7371 if (err)
7372 return err;
7373
7374 page_counter_set_high(&memcg->swap, high);
7375
7376 return nbytes;
7377}
7378
37e84351
VD
7379static int swap_max_show(struct seq_file *m, void *v)
7380{
677dc973
CD
7381 return seq_puts_memcg_tunable(m,
7382 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7383}
7384
7385static ssize_t swap_max_write(struct kernfs_open_file *of,
7386 char *buf, size_t nbytes, loff_t off)
7387{
7388 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7389 unsigned long max;
7390 int err;
7391
7392 buf = strstrip(buf);
7393 err = page_counter_memparse(buf, "max", &max);
7394 if (err)
7395 return err;
7396
be09102b 7397 xchg(&memcg->swap.max, max);
37e84351
VD
7398
7399 return nbytes;
7400}
7401
f3a53a3a
TH
7402static int swap_events_show(struct seq_file *m, void *v)
7403{
aa9694bb 7404 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7405
4b82ab4f
JK
7406 seq_printf(m, "high %lu\n",
7407 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7408 seq_printf(m, "max %lu\n",
7409 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7410 seq_printf(m, "fail %lu\n",
7411 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7412
7413 return 0;
7414}
7415
37e84351
VD
7416static struct cftype swap_files[] = {
7417 {
7418 .name = "swap.current",
7419 .flags = CFTYPE_NOT_ON_ROOT,
7420 .read_u64 = swap_current_read,
7421 },
4b82ab4f
JK
7422 {
7423 .name = "swap.high",
7424 .flags = CFTYPE_NOT_ON_ROOT,
7425 .seq_show = swap_high_show,
7426 .write = swap_high_write,
7427 },
37e84351
VD
7428 {
7429 .name = "swap.max",
7430 .flags = CFTYPE_NOT_ON_ROOT,
7431 .seq_show = swap_max_show,
7432 .write = swap_max_write,
7433 },
f3a53a3a
TH
7434 {
7435 .name = "swap.events",
7436 .flags = CFTYPE_NOT_ON_ROOT,
7437 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7438 .seq_show = swap_events_show,
7439 },
37e84351
VD
7440 { } /* terminate */
7441};
7442
eccb52e7 7443static struct cftype memsw_files[] = {
21afa38e
JW
7444 {
7445 .name = "memsw.usage_in_bytes",
7446 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7447 .read_u64 = mem_cgroup_read_u64,
7448 },
7449 {
7450 .name = "memsw.max_usage_in_bytes",
7451 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7452 .write = mem_cgroup_reset,
7453 .read_u64 = mem_cgroup_read_u64,
7454 },
7455 {
7456 .name = "memsw.limit_in_bytes",
7457 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7458 .write = mem_cgroup_write,
7459 .read_u64 = mem_cgroup_read_u64,
7460 },
7461 {
7462 .name = "memsw.failcnt",
7463 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7464 .write = mem_cgroup_reset,
7465 .read_u64 = mem_cgroup_read_u64,
7466 },
7467 { }, /* terminate */
7468};
7469
82ff165c
BS
7470/*
7471 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7472 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7473 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7474 * boot parameter. This may result in premature OOPS inside
7475 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7476 */
21afa38e
JW
7477static int __init mem_cgroup_swap_init(void)
7478{
2d1c4980
JW
7479 /* No memory control -> no swap control */
7480 if (mem_cgroup_disabled())
7481 cgroup_memory_noswap = true;
7482
7483 if (cgroup_memory_noswap)
eccb52e7
JW
7484 return 0;
7485
7486 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7487 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7488
21afa38e
JW
7489 return 0;
7490}
82ff165c 7491core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7492
7493#endif /* CONFIG_MEMCG_SWAP */