]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
UBUNTU: [Config] Set CONFIG_KEXEC=y for all architectures
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
7c0f6ba6 71#include <linux/uaccess.h>
8697d331 72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
ef8f2327 135struct mem_cgroup_tree_per_node {
bb4cc1a8
AM
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
bb4cc1a8
AM
140struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142};
143
144static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
9490ff27
KH
146/* for OOM */
147struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150};
2e72b634 151
79bd9814
TH
152/*
153 * cgroup_event represents events which userspace want to receive.
154 */
3bc942f3 155struct mem_cgroup_event {
79bd9814 156 /*
59b6f873 157 * memcg which the event belongs to.
79bd9814 158 */
59b6f873 159 struct mem_cgroup *memcg;
79bd9814
TH
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
fba94807
TH
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
59b6f873 173 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 174 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
59b6f873 180 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 181 struct eventfd_ctx *eventfd);
79bd9814
TH
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190};
191
c0ff4b85
R
192static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 194
7dc74be0
DN
195/* Stuffs for move charges at task migration. */
196/*
1dfab5ab 197 * Types of charges to be moved.
7dc74be0 198 */
1dfab5ab
JW
199#define MOVE_ANON 0x1U
200#define MOVE_FILE 0x2U
201#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 202
4ffef5fe
DN
203/* "mc" and its members are protected by cgroup_mutex */
204static struct move_charge_struct {
b1dd693e 205 spinlock_t lock; /* for from, to */
264a0ae1 206 struct mm_struct *mm;
4ffef5fe
DN
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
1dfab5ab 209 unsigned long flags;
4ffef5fe 210 unsigned long precharge;
854ffa8d 211 unsigned long moved_charge;
483c30b5 212 unsigned long moved_swap;
8033b97c
DN
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215} mc = {
2bd9bb20 216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218};
4ffef5fe 219
4e416953
BS
220/*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
a0db00fc 224#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 225#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 226
217bc319
KH
227enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 229 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
232 NR_CHARGE_TYPE,
233};
234
8c7c6e34 235/* for encoding cft->private value on file */
86ae53e1
GC
236enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
510fc4e1 240 _KMEM,
d55f90bf 241 _TCP,
86ae53e1
GC
242};
243
a0db00fc
KS
244#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 246#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
247/* Used for OOM nofiier */
248#define OOM_CONTROL (0)
8c7c6e34 249
70ddf637
AV
250/* Some nice accessors for the vmpressure. */
251struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252{
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256}
257
258struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259{
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261}
262
7ffc0edc
MH
263static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264{
265 return (memcg == root_mem_cgroup);
266}
267
127424c8 268#ifndef CONFIG_SLOB
55007d84 269/*
f7ce3190 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
55007d84 276 *
dbcf73e2
VD
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
55007d84 279 */
dbcf73e2
VD
280static DEFINE_IDA(memcg_cache_ida);
281int memcg_nr_cache_ids;
749c5415 282
05257a1a
VD
283/* Protects memcg_nr_cache_ids */
284static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286void memcg_get_cache_ids(void)
287{
288 down_read(&memcg_cache_ids_sem);
289}
290
291void memcg_put_cache_ids(void)
292{
293 up_read(&memcg_cache_ids_sem);
294}
295
55007d84
GC
296/*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
b8627835 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
306 * increase ours as well if it increases.
307 */
308#define MEMCG_CACHES_MIN_SIZE 4
b8627835 309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 310
d7f25f8a
GC
311/*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
ef12947c 317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 318EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 319
127424c8 320#endif /* !CONFIG_SLOB */
a8964b9b 321
ad7fa852
TH
322/**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
ad7fa852
TH
332 */
333struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334{
335 struct mem_cgroup *memcg;
336
ad7fa852
TH
337 memcg = page->mem_cgroup;
338
9e10a130 339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
340 memcg = root_mem_cgroup;
341
ad7fa852
TH
342 return &memcg->css;
343}
344
2fc04524
VD
345/**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358ino_t page_cgroup_ino(struct page *page)
359{
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371}
372
ef8f2327
MG
373static struct mem_cgroup_per_node *
374mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 375{
97a6c37b 376 int nid = page_to_nid(page);
f64c3f54 377
ef8f2327 378 return memcg->nodeinfo[nid];
f64c3f54
BS
379}
380
ef8f2327
MG
381static struct mem_cgroup_tree_per_node *
382soft_limit_tree_node(int nid)
bb4cc1a8 383{
ef8f2327 384 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
385}
386
ef8f2327 387static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
388soft_limit_tree_from_page(struct page *page)
389{
390 int nid = page_to_nid(page);
bb4cc1a8 391
ef8f2327 392 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
393}
394
ef8f2327
MG
395static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 397 unsigned long new_usage_in_excess)
bb4cc1a8
AM
398{
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
ef8f2327 401 struct mem_cgroup_per_node *mz_node;
bb4cc1a8
AM
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
ef8f2327 411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8
AM
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425}
426
ef8f2327
MG
427static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
429{
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
ef8f2327
MG
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 438{
0a31bc97
JW
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 442 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 443 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
444}
445
3e32cb2e
JW
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
bb4cc1a8
AM
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
3e32cb2e 460 unsigned long excess;
ef8f2327
MG
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 463
e231875b 464 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
465 /*
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
468 */
469 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 470 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 471 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
472 /*
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
475 */
476 if (excess || mz->on_tree) {
0a31bc97
JW
477 unsigned long flags;
478
479 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
480 /* if on-tree, remove it */
481 if (mz->on_tree)
cf2c8127 482 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
483 /*
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
486 */
cf2c8127 487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 488 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
489 }
490 }
491}
492
493static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494{
ef8f2327
MG
495 struct mem_cgroup_tree_per_node *mctz;
496 struct mem_cgroup_per_node *mz;
497 int nid;
bb4cc1a8 498
e231875b 499 for_each_node(nid) {
ef8f2327
MG
500 mz = mem_cgroup_nodeinfo(memcg, nid);
501 mctz = soft_limit_tree_node(nid);
502 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
503 }
504}
505
ef8f2327
MG
506static struct mem_cgroup_per_node *
507__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
508{
509 struct rb_node *rightmost = NULL;
ef8f2327 510 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
511
512retry:
513 mz = NULL;
514 rightmost = rb_last(&mctz->rb_root);
515 if (!rightmost)
516 goto done; /* Nothing to reclaim from */
517
ef8f2327 518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
519 /*
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
523 */
cf2c8127 524 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 525 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 526 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
527 goto retry;
528done:
529 return mz;
530}
531
ef8f2327
MG
532static struct mem_cgroup_per_node *
533mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 534{
ef8f2327 535 struct mem_cgroup_per_node *mz;
bb4cc1a8 536
0a31bc97 537 spin_lock_irq(&mctz->lock);
bb4cc1a8 538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 539 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
540 return mz;
541}
542
711d3d2c 543/*
484ebb3b
GT
544 * Return page count for single (non recursive) @memcg.
545 *
711d3d2c
KH
546 * Implementation Note: reading percpu statistics for memcg.
547 *
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 551 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
552 *
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
558 *
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 561 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
562 * implemented.
563 */
484ebb3b
GT
564static unsigned long
565mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 566{
7a159cc9 567 long val = 0;
c62b1a3b 568 int cpu;
c62b1a3b 569
484ebb3b 570 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 571 for_each_possible_cpu(cpu)
c0ff4b85 572 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
573 /*
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
576 */
577 if (val < 0)
578 val = 0;
c62b1a3b
KH
579 return val;
580}
581
c0ff4b85 582static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
583 enum mem_cgroup_events_index idx)
584{
585 unsigned long val = 0;
586 int cpu;
587
733a572e 588 for_each_possible_cpu(cpu)
c0ff4b85 589 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
590 return val;
591}
592
c0ff4b85 593static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 594 struct page *page,
f627c2f5 595 bool compound, int nr_pages)
d52aa412 596{
b2402857
KH
597 /*
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
600 */
0a31bc97 601 if (PageAnon(page))
b2402857 602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 603 nr_pages);
d52aa412 604 else
b2402857 605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 606 nr_pages);
55e462b0 607
f627c2f5
KS
608 if (compound) {
609 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 nr_pages);
f627c2f5 612 }
b070e65c 613
e401f176
KH
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
c0ff4b85 616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 617 else {
c0ff4b85 618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
619 nr_pages = -nr_pages; /* for event */
620 }
e401f176 621
13114716 622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
623}
624
0a6b76dd
VD
625unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 int nid, unsigned int lru_mask)
bb2a0de9 627{
b4536f0c 628 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 629 unsigned long nr = 0;
ef8f2327 630 enum lru_list lru;
889976db 631
e231875b 632 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 633
ef8f2327
MG
634 for_each_lru(lru) {
635 if (!(BIT(lru) & lru_mask))
636 continue;
b4536f0c 637 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
638 }
639 return nr;
889976db 640}
bb2a0de9 641
c0ff4b85 642static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 643 unsigned int lru_mask)
6d12e2d8 644{
e231875b 645 unsigned long nr = 0;
889976db 646 int nid;
6d12e2d8 647
31aaea4a 648 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
649 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
650 return nr;
d52aa412
KH
651}
652
f53d7ce3
JW
653static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
654 enum mem_cgroup_events_target target)
7a159cc9
JW
655{
656 unsigned long val, next;
657
13114716 658 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 659 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 660 /* from time_after() in jiffies.h */
f53d7ce3
JW
661 if ((long)next - (long)val < 0) {
662 switch (target) {
663 case MEM_CGROUP_TARGET_THRESH:
664 next = val + THRESHOLDS_EVENTS_TARGET;
665 break;
bb4cc1a8
AM
666 case MEM_CGROUP_TARGET_SOFTLIMIT:
667 next = val + SOFTLIMIT_EVENTS_TARGET;
668 break;
f53d7ce3
JW
669 case MEM_CGROUP_TARGET_NUMAINFO:
670 next = val + NUMAINFO_EVENTS_TARGET;
671 break;
672 default:
673 break;
674 }
675 __this_cpu_write(memcg->stat->targets[target], next);
676 return true;
7a159cc9 677 }
f53d7ce3 678 return false;
d2265e6f
KH
679}
680
681/*
682 * Check events in order.
683 *
684 */
c0ff4b85 685static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
686{
687 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
688 if (unlikely(mem_cgroup_event_ratelimit(memcg,
689 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 690 bool do_softlimit;
82b3f2a7 691 bool do_numainfo __maybe_unused;
f53d7ce3 692
bb4cc1a8
AM
693 do_softlimit = mem_cgroup_event_ratelimit(memcg,
694 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
695#if MAX_NUMNODES > 1
696 do_numainfo = mem_cgroup_event_ratelimit(memcg,
697 MEM_CGROUP_TARGET_NUMAINFO);
698#endif
c0ff4b85 699 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
700 if (unlikely(do_softlimit))
701 mem_cgroup_update_tree(memcg, page);
453a9bf3 702#if MAX_NUMNODES > 1
f53d7ce3 703 if (unlikely(do_numainfo))
c0ff4b85 704 atomic_inc(&memcg->numainfo_events);
453a9bf3 705#endif
0a31bc97 706 }
d2265e6f
KH
707}
708
cf475ad2 709struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 710{
31a78f23
BS
711 /*
712 * mm_update_next_owner() may clear mm->owner to NULL
713 * if it races with swapoff, page migration, etc.
714 * So this can be called with p == NULL.
715 */
716 if (unlikely(!p))
717 return NULL;
718
073219e9 719 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 720}
33398cf2 721EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 722
df381975 723static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 724{
c0ff4b85 725 struct mem_cgroup *memcg = NULL;
0b7f569e 726
54595fe2
KH
727 rcu_read_lock();
728 do {
6f6acb00
MH
729 /*
730 * Page cache insertions can happen withou an
731 * actual mm context, e.g. during disk probing
732 * on boot, loopback IO, acct() writes etc.
733 */
734 if (unlikely(!mm))
df381975 735 memcg = root_mem_cgroup;
6f6acb00
MH
736 else {
737 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
738 if (unlikely(!memcg))
739 memcg = root_mem_cgroup;
740 }
ec903c0c 741 } while (!css_tryget_online(&memcg->css));
54595fe2 742 rcu_read_unlock();
c0ff4b85 743 return memcg;
54595fe2
KH
744}
745
5660048c
JW
746/**
747 * mem_cgroup_iter - iterate over memory cgroup hierarchy
748 * @root: hierarchy root
749 * @prev: previously returned memcg, NULL on first invocation
750 * @reclaim: cookie for shared reclaim walks, NULL for full walks
751 *
752 * Returns references to children of the hierarchy below @root, or
753 * @root itself, or %NULL after a full round-trip.
754 *
755 * Caller must pass the return value in @prev on subsequent
756 * invocations for reference counting, or use mem_cgroup_iter_break()
757 * to cancel a hierarchy walk before the round-trip is complete.
758 *
759 * Reclaimers can specify a zone and a priority level in @reclaim to
760 * divide up the memcgs in the hierarchy among all concurrent
761 * reclaimers operating on the same zone and priority.
762 */
694fbc0f 763struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 764 struct mem_cgroup *prev,
694fbc0f 765 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 766{
33398cf2 767 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 768 struct cgroup_subsys_state *css = NULL;
9f3a0d09 769 struct mem_cgroup *memcg = NULL;
5ac8fb31 770 struct mem_cgroup *pos = NULL;
711d3d2c 771
694fbc0f
AM
772 if (mem_cgroup_disabled())
773 return NULL;
5660048c 774
9f3a0d09
JW
775 if (!root)
776 root = root_mem_cgroup;
7d74b06f 777
9f3a0d09 778 if (prev && !reclaim)
5ac8fb31 779 pos = prev;
14067bb3 780
9f3a0d09
JW
781 if (!root->use_hierarchy && root != root_mem_cgroup) {
782 if (prev)
5ac8fb31 783 goto out;
694fbc0f 784 return root;
9f3a0d09 785 }
14067bb3 786
542f85f9 787 rcu_read_lock();
5f578161 788
5ac8fb31 789 if (reclaim) {
ef8f2327 790 struct mem_cgroup_per_node *mz;
5ac8fb31 791
ef8f2327 792 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
793 iter = &mz->iter[reclaim->priority];
794
795 if (prev && reclaim->generation != iter->generation)
796 goto out_unlock;
797
6df38689 798 while (1) {
4db0c3c2 799 pos = READ_ONCE(iter->position);
6df38689
VD
800 if (!pos || css_tryget(&pos->css))
801 break;
5ac8fb31 802 /*
6df38689
VD
803 * css reference reached zero, so iter->position will
804 * be cleared by ->css_released. However, we should not
805 * rely on this happening soon, because ->css_released
806 * is called from a work queue, and by busy-waiting we
807 * might block it. So we clear iter->position right
808 * away.
5ac8fb31 809 */
6df38689
VD
810 (void)cmpxchg(&iter->position, pos, NULL);
811 }
5ac8fb31
JW
812 }
813
814 if (pos)
815 css = &pos->css;
816
817 for (;;) {
818 css = css_next_descendant_pre(css, &root->css);
819 if (!css) {
820 /*
821 * Reclaimers share the hierarchy walk, and a
822 * new one might jump in right at the end of
823 * the hierarchy - make sure they see at least
824 * one group and restart from the beginning.
825 */
826 if (!prev)
827 continue;
828 break;
527a5ec9 829 }
7d74b06f 830
5ac8fb31
JW
831 /*
832 * Verify the css and acquire a reference. The root
833 * is provided by the caller, so we know it's alive
834 * and kicking, and don't take an extra reference.
835 */
836 memcg = mem_cgroup_from_css(css);
14067bb3 837
5ac8fb31
JW
838 if (css == &root->css)
839 break;
14067bb3 840
0b8f73e1
JW
841 if (css_tryget(css))
842 break;
9f3a0d09 843
5ac8fb31 844 memcg = NULL;
9f3a0d09 845 }
5ac8fb31
JW
846
847 if (reclaim) {
5ac8fb31 848 /*
6df38689
VD
849 * The position could have already been updated by a competing
850 * thread, so check that the value hasn't changed since we read
851 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 852 */
6df38689
VD
853 (void)cmpxchg(&iter->position, pos, memcg);
854
5ac8fb31
JW
855 if (pos)
856 css_put(&pos->css);
857
858 if (!memcg)
859 iter->generation++;
860 else if (!prev)
861 reclaim->generation = iter->generation;
9f3a0d09 862 }
5ac8fb31 863
542f85f9
MH
864out_unlock:
865 rcu_read_unlock();
5ac8fb31 866out:
c40046f3
MH
867 if (prev && prev != root)
868 css_put(&prev->css);
869
9f3a0d09 870 return memcg;
14067bb3 871}
7d74b06f 872
5660048c
JW
873/**
874 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
875 * @root: hierarchy root
876 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
877 */
878void mem_cgroup_iter_break(struct mem_cgroup *root,
879 struct mem_cgroup *prev)
9f3a0d09
JW
880{
881 if (!root)
882 root = root_mem_cgroup;
883 if (prev && prev != root)
884 css_put(&prev->css);
885}
7d74b06f 886
6df38689
VD
887static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
888{
889 struct mem_cgroup *memcg = dead_memcg;
890 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
891 struct mem_cgroup_per_node *mz;
892 int nid;
6df38689
VD
893 int i;
894
895 while ((memcg = parent_mem_cgroup(memcg))) {
896 for_each_node(nid) {
ef8f2327
MG
897 mz = mem_cgroup_nodeinfo(memcg, nid);
898 for (i = 0; i <= DEF_PRIORITY; i++) {
899 iter = &mz->iter[i];
900 cmpxchg(&iter->position,
901 dead_memcg, NULL);
6df38689
VD
902 }
903 }
904 }
905}
906
9f3a0d09
JW
907/*
908 * Iteration constructs for visiting all cgroups (under a tree). If
909 * loops are exited prematurely (break), mem_cgroup_iter_break() must
910 * be used for reference counting.
911 */
912#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 913 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 914 iter != NULL; \
527a5ec9 915 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 916
9f3a0d09 917#define for_each_mem_cgroup(iter) \
527a5ec9 918 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 919 iter != NULL; \
527a5ec9 920 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 921
7c5f64f8
VD
922/**
923 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
924 * @memcg: hierarchy root
925 * @fn: function to call for each task
926 * @arg: argument passed to @fn
927 *
928 * This function iterates over tasks attached to @memcg or to any of its
929 * descendants and calls @fn for each task. If @fn returns a non-zero
930 * value, the function breaks the iteration loop and returns the value.
931 * Otherwise, it will iterate over all tasks and return 0.
932 *
933 * This function must not be called for the root memory cgroup.
934 */
935int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
936 int (*fn)(struct task_struct *, void *), void *arg)
937{
938 struct mem_cgroup *iter;
939 int ret = 0;
940
941 BUG_ON(memcg == root_mem_cgroup);
942
943 for_each_mem_cgroup_tree(iter, memcg) {
944 struct css_task_iter it;
945 struct task_struct *task;
946
947 css_task_iter_start(&iter->css, &it);
948 while (!ret && (task = css_task_iter_next(&it)))
949 ret = fn(task, arg);
950 css_task_iter_end(&it);
951 if (ret) {
952 mem_cgroup_iter_break(memcg, iter);
953 break;
954 }
955 }
956 return ret;
957}
958
925b7673 959/**
dfe0e773 960 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 961 * @page: the page
fa9add64 962 * @zone: zone of the page
dfe0e773
JW
963 *
964 * This function is only safe when following the LRU page isolation
965 * and putback protocol: the LRU lock must be held, and the page must
966 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 967 */
599d0c95 968struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 969{
ef8f2327 970 struct mem_cgroup_per_node *mz;
925b7673 971 struct mem_cgroup *memcg;
bea8c150 972 struct lruvec *lruvec;
6d12e2d8 973
bea8c150 974 if (mem_cgroup_disabled()) {
599d0c95 975 lruvec = &pgdat->lruvec;
bea8c150
HD
976 goto out;
977 }
925b7673 978
1306a85a 979 memcg = page->mem_cgroup;
7512102c 980 /*
dfe0e773 981 * Swapcache readahead pages are added to the LRU - and
29833315 982 * possibly migrated - before they are charged.
7512102c 983 */
29833315
JW
984 if (!memcg)
985 memcg = root_mem_cgroup;
7512102c 986
ef8f2327 987 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
988 lruvec = &mz->lruvec;
989out:
990 /*
991 * Since a node can be onlined after the mem_cgroup was created,
992 * we have to be prepared to initialize lruvec->zone here;
993 * and if offlined then reonlined, we need to reinitialize it.
994 */
599d0c95
MG
995 if (unlikely(lruvec->pgdat != pgdat))
996 lruvec->pgdat = pgdat;
bea8c150 997 return lruvec;
08e552c6 998}
b69408e8 999
925b7673 1000/**
fa9add64
HD
1001 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1002 * @lruvec: mem_cgroup per zone lru vector
1003 * @lru: index of lru list the page is sitting on
b4536f0c 1004 * @zid: zone id of the accounted pages
fa9add64 1005 * @nr_pages: positive when adding or negative when removing
925b7673 1006 *
ca707239
HD
1007 * This function must be called under lru_lock, just before a page is added
1008 * to or just after a page is removed from an lru list (that ordering being
1009 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1010 */
fa9add64 1011void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1012 int zid, int nr_pages)
3f58a829 1013{
ef8f2327 1014 struct mem_cgroup_per_node *mz;
fa9add64 1015 unsigned long *lru_size;
ca707239 1016 long size;
3f58a829
MK
1017
1018 if (mem_cgroup_disabled())
1019 return;
1020
ef8f2327 1021 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1022 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1023
1024 if (nr_pages < 0)
1025 *lru_size += nr_pages;
1026
1027 size = *lru_size;
b4536f0c
MH
1028 if (WARN_ONCE(size < 0,
1029 "%s(%p, %d, %d): lru_size %ld\n",
1030 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1031 VM_BUG_ON(1);
1032 *lru_size = 0;
1033 }
1034
1035 if (nr_pages > 0)
1036 *lru_size += nr_pages;
08e552c6 1037}
544122e5 1038
2314b42d 1039bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1040{
2314b42d 1041 struct mem_cgroup *task_memcg;
158e0a2d 1042 struct task_struct *p;
ffbdccf5 1043 bool ret;
4c4a2214 1044
158e0a2d 1045 p = find_lock_task_mm(task);
de077d22 1046 if (p) {
2314b42d 1047 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1048 task_unlock(p);
1049 } else {
1050 /*
1051 * All threads may have already detached their mm's, but the oom
1052 * killer still needs to detect if they have already been oom
1053 * killed to prevent needlessly killing additional tasks.
1054 */
ffbdccf5 1055 rcu_read_lock();
2314b42d
JW
1056 task_memcg = mem_cgroup_from_task(task);
1057 css_get(&task_memcg->css);
ffbdccf5 1058 rcu_read_unlock();
de077d22 1059 }
2314b42d
JW
1060 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1061 css_put(&task_memcg->css);
4c4a2214
DR
1062 return ret;
1063}
1064
19942822 1065/**
9d11ea9f 1066 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1067 * @memcg: the memory cgroup
19942822 1068 *
9d11ea9f 1069 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1070 * pages.
19942822 1071 */
c0ff4b85 1072static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1073{
3e32cb2e
JW
1074 unsigned long margin = 0;
1075 unsigned long count;
1076 unsigned long limit;
9d11ea9f 1077
3e32cb2e 1078 count = page_counter_read(&memcg->memory);
4db0c3c2 1079 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1080 if (count < limit)
1081 margin = limit - count;
1082
7941d214 1083 if (do_memsw_account()) {
3e32cb2e 1084 count = page_counter_read(&memcg->memsw);
4db0c3c2 1085 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1086 if (count <= limit)
1087 margin = min(margin, limit - count);
cbedbac3
LR
1088 else
1089 margin = 0;
3e32cb2e
JW
1090 }
1091
1092 return margin;
19942822
JW
1093}
1094
32047e2a 1095/*
bdcbb659 1096 * A routine for checking "mem" is under move_account() or not.
32047e2a 1097 *
bdcbb659
QH
1098 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1099 * moving cgroups. This is for waiting at high-memory pressure
1100 * caused by "move".
32047e2a 1101 */
c0ff4b85 1102static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1103{
2bd9bb20
KH
1104 struct mem_cgroup *from;
1105 struct mem_cgroup *to;
4b534334 1106 bool ret = false;
2bd9bb20
KH
1107 /*
1108 * Unlike task_move routines, we access mc.to, mc.from not under
1109 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1110 */
1111 spin_lock(&mc.lock);
1112 from = mc.from;
1113 to = mc.to;
1114 if (!from)
1115 goto unlock;
3e92041d 1116
2314b42d
JW
1117 ret = mem_cgroup_is_descendant(from, memcg) ||
1118 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1119unlock:
1120 spin_unlock(&mc.lock);
4b534334
KH
1121 return ret;
1122}
1123
c0ff4b85 1124static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1125{
1126 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1127 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1128 DEFINE_WAIT(wait);
1129 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1130 /* moving charge context might have finished. */
1131 if (mc.moving_task)
1132 schedule();
1133 finish_wait(&mc.waitq, &wait);
1134 return true;
1135 }
1136 }
1137 return false;
1138}
1139
58cf188e 1140#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1141/**
58cf188e 1142 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1143 * @memcg: The memory cgroup that went over limit
1144 * @p: Task that is going to be killed
1145 *
1146 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1147 * enabled
1148 */
1149void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1150{
58cf188e
SZ
1151 struct mem_cgroup *iter;
1152 unsigned int i;
e222432b 1153
e222432b
BS
1154 rcu_read_lock();
1155
2415b9f5
BV
1156 if (p) {
1157 pr_info("Task in ");
1158 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1159 pr_cont(" killed as a result of limit of ");
1160 } else {
1161 pr_info("Memory limit reached of cgroup ");
1162 }
1163
e61734c5 1164 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1165 pr_cont("\n");
e222432b 1166
e222432b
BS
1167 rcu_read_unlock();
1168
3e32cb2e
JW
1169 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1170 K((u64)page_counter_read(&memcg->memory)),
1171 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1172 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memsw)),
1174 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1175 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->kmem)),
1177 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1178
1179 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1180 pr_info("Memory cgroup stats for ");
1181 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1182 pr_cont(":");
1183
1184 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1185 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1186 continue;
484ebb3b 1187 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1188 K(mem_cgroup_read_stat(iter, i)));
1189 }
1190
1191 for (i = 0; i < NR_LRU_LISTS; i++)
1192 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1193 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1194
1195 pr_cont("\n");
1196 }
e222432b
BS
1197}
1198
81d39c20
KH
1199/*
1200 * This function returns the number of memcg under hierarchy tree. Returns
1201 * 1(self count) if no children.
1202 */
c0ff4b85 1203static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1204{
1205 int num = 0;
7d74b06f
KH
1206 struct mem_cgroup *iter;
1207
c0ff4b85 1208 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1209 num++;
81d39c20
KH
1210 return num;
1211}
1212
a63d83f4
DR
1213/*
1214 * Return the memory (and swap, if configured) limit for a memcg.
1215 */
7c5f64f8 1216unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1217{
3e32cb2e 1218 unsigned long limit;
f3e8eb70 1219
3e32cb2e 1220 limit = memcg->memory.limit;
9a5a8f19 1221 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1222 unsigned long memsw_limit;
37e84351 1223 unsigned long swap_limit;
9a5a8f19 1224
3e32cb2e 1225 memsw_limit = memcg->memsw.limit;
37e84351
VD
1226 swap_limit = memcg->swap.limit;
1227 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1228 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1229 }
9a5a8f19 1230 return limit;
a63d83f4
DR
1231}
1232
b6e6edcf 1233static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1234 int order)
9cbb78bb 1235{
6e0fc46d
DR
1236 struct oom_control oc = {
1237 .zonelist = NULL,
1238 .nodemask = NULL,
2a966b77 1239 .memcg = memcg,
6e0fc46d
DR
1240 .gfp_mask = gfp_mask,
1241 .order = order,
6e0fc46d 1242 };
7c5f64f8 1243 bool ret;
9cbb78bb 1244
dc56401f 1245 mutex_lock(&oom_lock);
7c5f64f8 1246 ret = out_of_memory(&oc);
dc56401f 1247 mutex_unlock(&oom_lock);
7c5f64f8 1248 return ret;
9cbb78bb
DR
1249}
1250
ae6e71d3
MC
1251#if MAX_NUMNODES > 1
1252
4d0c066d
KH
1253/**
1254 * test_mem_cgroup_node_reclaimable
dad7557e 1255 * @memcg: the target memcg
4d0c066d
KH
1256 * @nid: the node ID to be checked.
1257 * @noswap : specify true here if the user wants flle only information.
1258 *
1259 * This function returns whether the specified memcg contains any
1260 * reclaimable pages on a node. Returns true if there are any reclaimable
1261 * pages in the node.
1262 */
c0ff4b85 1263static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1264 int nid, bool noswap)
1265{
c0ff4b85 1266 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1267 return true;
1268 if (noswap || !total_swap_pages)
1269 return false;
c0ff4b85 1270 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1271 return true;
1272 return false;
1273
1274}
889976db
YH
1275
1276/*
1277 * Always updating the nodemask is not very good - even if we have an empty
1278 * list or the wrong list here, we can start from some node and traverse all
1279 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1280 *
1281 */
c0ff4b85 1282static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1283{
1284 int nid;
453a9bf3
KH
1285 /*
1286 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1287 * pagein/pageout changes since the last update.
1288 */
c0ff4b85 1289 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1290 return;
c0ff4b85 1291 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1292 return;
1293
889976db 1294 /* make a nodemask where this memcg uses memory from */
31aaea4a 1295 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1296
31aaea4a 1297 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1298
c0ff4b85
R
1299 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1300 node_clear(nid, memcg->scan_nodes);
889976db 1301 }
453a9bf3 1302
c0ff4b85
R
1303 atomic_set(&memcg->numainfo_events, 0);
1304 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1305}
1306
1307/*
1308 * Selecting a node where we start reclaim from. Because what we need is just
1309 * reducing usage counter, start from anywhere is O,K. Considering
1310 * memory reclaim from current node, there are pros. and cons.
1311 *
1312 * Freeing memory from current node means freeing memory from a node which
1313 * we'll use or we've used. So, it may make LRU bad. And if several threads
1314 * hit limits, it will see a contention on a node. But freeing from remote
1315 * node means more costs for memory reclaim because of memory latency.
1316 *
1317 * Now, we use round-robin. Better algorithm is welcomed.
1318 */
c0ff4b85 1319int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1320{
1321 int node;
1322
c0ff4b85
R
1323 mem_cgroup_may_update_nodemask(memcg);
1324 node = memcg->last_scanned_node;
889976db 1325
0edaf86c 1326 node = next_node_in(node, memcg->scan_nodes);
889976db 1327 /*
fda3d69b
MH
1328 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1329 * last time it really checked all the LRUs due to rate limiting.
1330 * Fallback to the current node in that case for simplicity.
889976db
YH
1331 */
1332 if (unlikely(node == MAX_NUMNODES))
1333 node = numa_node_id();
1334
c0ff4b85 1335 memcg->last_scanned_node = node;
889976db
YH
1336 return node;
1337}
889976db 1338#else
c0ff4b85 1339int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1340{
1341 return 0;
1342}
1343#endif
1344
0608f43d 1345static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1346 pg_data_t *pgdat,
0608f43d
AM
1347 gfp_t gfp_mask,
1348 unsigned long *total_scanned)
1349{
1350 struct mem_cgroup *victim = NULL;
1351 int total = 0;
1352 int loop = 0;
1353 unsigned long excess;
1354 unsigned long nr_scanned;
1355 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1356 .pgdat = pgdat,
0608f43d
AM
1357 .priority = 0,
1358 };
1359
3e32cb2e 1360 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1361
1362 while (1) {
1363 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1364 if (!victim) {
1365 loop++;
1366 if (loop >= 2) {
1367 /*
1368 * If we have not been able to reclaim
1369 * anything, it might because there are
1370 * no reclaimable pages under this hierarchy
1371 */
1372 if (!total)
1373 break;
1374 /*
1375 * We want to do more targeted reclaim.
1376 * excess >> 2 is not to excessive so as to
1377 * reclaim too much, nor too less that we keep
1378 * coming back to reclaim from this cgroup
1379 */
1380 if (total >= (excess >> 2) ||
1381 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1382 break;
1383 }
1384 continue;
1385 }
a9dd0a83 1386 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1387 pgdat, &nr_scanned);
0608f43d 1388 *total_scanned += nr_scanned;
3e32cb2e 1389 if (!soft_limit_excess(root_memcg))
0608f43d 1390 break;
6d61ef40 1391 }
0608f43d
AM
1392 mem_cgroup_iter_break(root_memcg, victim);
1393 return total;
6d61ef40
BS
1394}
1395
0056f4e6
JW
1396#ifdef CONFIG_LOCKDEP
1397static struct lockdep_map memcg_oom_lock_dep_map = {
1398 .name = "memcg_oom_lock",
1399};
1400#endif
1401
fb2a6fc5
JW
1402static DEFINE_SPINLOCK(memcg_oom_lock);
1403
867578cb
KH
1404/*
1405 * Check OOM-Killer is already running under our hierarchy.
1406 * If someone is running, return false.
1407 */
fb2a6fc5 1408static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1409{
79dfdacc 1410 struct mem_cgroup *iter, *failed = NULL;
a636b327 1411
fb2a6fc5
JW
1412 spin_lock(&memcg_oom_lock);
1413
9f3a0d09 1414 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1415 if (iter->oom_lock) {
79dfdacc
MH
1416 /*
1417 * this subtree of our hierarchy is already locked
1418 * so we cannot give a lock.
1419 */
79dfdacc 1420 failed = iter;
9f3a0d09
JW
1421 mem_cgroup_iter_break(memcg, iter);
1422 break;
23751be0
JW
1423 } else
1424 iter->oom_lock = true;
7d74b06f 1425 }
867578cb 1426
fb2a6fc5
JW
1427 if (failed) {
1428 /*
1429 * OK, we failed to lock the whole subtree so we have
1430 * to clean up what we set up to the failing subtree
1431 */
1432 for_each_mem_cgroup_tree(iter, memcg) {
1433 if (iter == failed) {
1434 mem_cgroup_iter_break(memcg, iter);
1435 break;
1436 }
1437 iter->oom_lock = false;
79dfdacc 1438 }
0056f4e6
JW
1439 } else
1440 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1441
1442 spin_unlock(&memcg_oom_lock);
1443
1444 return !failed;
a636b327 1445}
0b7f569e 1446
fb2a6fc5 1447static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1448{
7d74b06f
KH
1449 struct mem_cgroup *iter;
1450
fb2a6fc5 1451 spin_lock(&memcg_oom_lock);
0056f4e6 1452 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1453 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1454 iter->oom_lock = false;
fb2a6fc5 1455 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1456}
1457
c0ff4b85 1458static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1459{
1460 struct mem_cgroup *iter;
1461
c2b42d3c 1462 spin_lock(&memcg_oom_lock);
c0ff4b85 1463 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1464 iter->under_oom++;
1465 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1466}
1467
c0ff4b85 1468static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1469{
1470 struct mem_cgroup *iter;
1471
867578cb
KH
1472 /*
1473 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1474 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1475 */
c2b42d3c 1476 spin_lock(&memcg_oom_lock);
c0ff4b85 1477 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1478 if (iter->under_oom > 0)
1479 iter->under_oom--;
1480 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1481}
1482
867578cb
KH
1483static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1484
dc98df5a 1485struct oom_wait_info {
d79154bb 1486 struct mem_cgroup *memcg;
dc98df5a
KH
1487 wait_queue_t wait;
1488};
1489
1490static int memcg_oom_wake_function(wait_queue_t *wait,
1491 unsigned mode, int sync, void *arg)
1492{
d79154bb
HD
1493 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1494 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1495 struct oom_wait_info *oom_wait_info;
1496
1497 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1498 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1499
2314b42d
JW
1500 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1501 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1502 return 0;
dc98df5a
KH
1503 return autoremove_wake_function(wait, mode, sync, arg);
1504}
1505
c0ff4b85 1506static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1507{
c2b42d3c
TH
1508 /*
1509 * For the following lockless ->under_oom test, the only required
1510 * guarantee is that it must see the state asserted by an OOM when
1511 * this function is called as a result of userland actions
1512 * triggered by the notification of the OOM. This is trivially
1513 * achieved by invoking mem_cgroup_mark_under_oom() before
1514 * triggering notification.
1515 */
1516 if (memcg && memcg->under_oom)
f4b90b70 1517 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1518}
1519
3812c8c8 1520static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1521{
d0db7afa 1522 if (!current->memcg_may_oom)
3812c8c8 1523 return;
867578cb 1524 /*
49426420
JW
1525 * We are in the middle of the charge context here, so we
1526 * don't want to block when potentially sitting on a callstack
1527 * that holds all kinds of filesystem and mm locks.
1528 *
1529 * Also, the caller may handle a failed allocation gracefully
1530 * (like optional page cache readahead) and so an OOM killer
1531 * invocation might not even be necessary.
1532 *
1533 * That's why we don't do anything here except remember the
1534 * OOM context and then deal with it at the end of the page
1535 * fault when the stack is unwound, the locks are released,
1536 * and when we know whether the fault was overall successful.
867578cb 1537 */
49426420 1538 css_get(&memcg->css);
626ebc41
TH
1539 current->memcg_in_oom = memcg;
1540 current->memcg_oom_gfp_mask = mask;
1541 current->memcg_oom_order = order;
3812c8c8
JW
1542}
1543
1544/**
1545 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1546 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1547 *
49426420
JW
1548 * This has to be called at the end of a page fault if the memcg OOM
1549 * handler was enabled.
3812c8c8 1550 *
49426420 1551 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1552 * sleep on a waitqueue until the userspace task resolves the
1553 * situation. Sleeping directly in the charge context with all kinds
1554 * of locks held is not a good idea, instead we remember an OOM state
1555 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1556 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1557 *
1558 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1559 * completed, %false otherwise.
3812c8c8 1560 */
49426420 1561bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1562{
626ebc41 1563 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1564 struct oom_wait_info owait;
49426420 1565 bool locked;
3812c8c8
JW
1566
1567 /* OOM is global, do not handle */
3812c8c8 1568 if (!memcg)
49426420 1569 return false;
3812c8c8 1570
7c5f64f8 1571 if (!handle)
49426420 1572 goto cleanup;
3812c8c8
JW
1573
1574 owait.memcg = memcg;
1575 owait.wait.flags = 0;
1576 owait.wait.func = memcg_oom_wake_function;
1577 owait.wait.private = current;
1578 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1579
3812c8c8 1580 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1581 mem_cgroup_mark_under_oom(memcg);
1582
1583 locked = mem_cgroup_oom_trylock(memcg);
1584
1585 if (locked)
1586 mem_cgroup_oom_notify(memcg);
1587
1588 if (locked && !memcg->oom_kill_disable) {
1589 mem_cgroup_unmark_under_oom(memcg);
1590 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1591 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1592 current->memcg_oom_order);
49426420 1593 } else {
3812c8c8 1594 schedule();
49426420
JW
1595 mem_cgroup_unmark_under_oom(memcg);
1596 finish_wait(&memcg_oom_waitq, &owait.wait);
1597 }
1598
1599 if (locked) {
fb2a6fc5
JW
1600 mem_cgroup_oom_unlock(memcg);
1601 /*
1602 * There is no guarantee that an OOM-lock contender
1603 * sees the wakeups triggered by the OOM kill
1604 * uncharges. Wake any sleepers explicitely.
1605 */
1606 memcg_oom_recover(memcg);
1607 }
49426420 1608cleanup:
626ebc41 1609 current->memcg_in_oom = NULL;
3812c8c8 1610 css_put(&memcg->css);
867578cb 1611 return true;
0b7f569e
KH
1612}
1613
d7365e78 1614/**
81f8c3a4
JW
1615 * lock_page_memcg - lock a page->mem_cgroup binding
1616 * @page: the page
32047e2a 1617 *
81f8c3a4
JW
1618 * This function protects unlocked LRU pages from being moved to
1619 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1620 */
62cccb8c 1621void lock_page_memcg(struct page *page)
89c06bd5
KH
1622{
1623 struct mem_cgroup *memcg;
6de22619 1624 unsigned long flags;
89c06bd5 1625
6de22619
JW
1626 /*
1627 * The RCU lock is held throughout the transaction. The fast
1628 * path can get away without acquiring the memcg->move_lock
1629 * because page moving starts with an RCU grace period.
6de22619 1630 */
d7365e78
JW
1631 rcu_read_lock();
1632
1633 if (mem_cgroup_disabled())
62cccb8c 1634 return;
89c06bd5 1635again:
1306a85a 1636 memcg = page->mem_cgroup;
29833315 1637 if (unlikely(!memcg))
62cccb8c 1638 return;
d7365e78 1639
bdcbb659 1640 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1641 return;
89c06bd5 1642
6de22619 1643 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1644 if (memcg != page->mem_cgroup) {
6de22619 1645 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1646 goto again;
1647 }
6de22619
JW
1648
1649 /*
1650 * When charge migration first begins, we can have locked and
1651 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1652 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1653 */
1654 memcg->move_lock_task = current;
1655 memcg->move_lock_flags = flags;
d7365e78 1656
62cccb8c 1657 return;
89c06bd5 1658}
81f8c3a4 1659EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1660
d7365e78 1661/**
81f8c3a4 1662 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1663 * @page: the page
d7365e78 1664 */
62cccb8c 1665void unlock_page_memcg(struct page *page)
89c06bd5 1666{
62cccb8c
JW
1667 struct mem_cgroup *memcg = page->mem_cgroup;
1668
6de22619
JW
1669 if (memcg && memcg->move_lock_task == current) {
1670 unsigned long flags = memcg->move_lock_flags;
1671
1672 memcg->move_lock_task = NULL;
1673 memcg->move_lock_flags = 0;
1674
1675 spin_unlock_irqrestore(&memcg->move_lock, flags);
1676 }
89c06bd5 1677
d7365e78 1678 rcu_read_unlock();
89c06bd5 1679}
81f8c3a4 1680EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1681
cdec2e42
KH
1682/*
1683 * size of first charge trial. "32" comes from vmscan.c's magic value.
1684 * TODO: maybe necessary to use big numbers in big irons.
1685 */
7ec99d62 1686#define CHARGE_BATCH 32U
cdec2e42
KH
1687struct memcg_stock_pcp {
1688 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1689 unsigned int nr_pages;
cdec2e42 1690 struct work_struct work;
26fe6168 1691 unsigned long flags;
a0db00fc 1692#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1693};
1694static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1695static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1696
a0956d54
SS
1697/**
1698 * consume_stock: Try to consume stocked charge on this cpu.
1699 * @memcg: memcg to consume from.
1700 * @nr_pages: how many pages to charge.
1701 *
1702 * The charges will only happen if @memcg matches the current cpu's memcg
1703 * stock, and at least @nr_pages are available in that stock. Failure to
1704 * service an allocation will refill the stock.
1705 *
1706 * returns true if successful, false otherwise.
cdec2e42 1707 */
a0956d54 1708static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1709{
1710 struct memcg_stock_pcp *stock;
db2ba40c 1711 unsigned long flags;
3e32cb2e 1712 bool ret = false;
cdec2e42 1713
a0956d54 1714 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1715 return ret;
a0956d54 1716
db2ba40c
JW
1717 local_irq_save(flags);
1718
1719 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1720 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1721 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1722 ret = true;
1723 }
db2ba40c
JW
1724
1725 local_irq_restore(flags);
1726
cdec2e42
KH
1727 return ret;
1728}
1729
1730/*
3e32cb2e 1731 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1732 */
1733static void drain_stock(struct memcg_stock_pcp *stock)
1734{
1735 struct mem_cgroup *old = stock->cached;
1736
11c9ea4e 1737 if (stock->nr_pages) {
3e32cb2e 1738 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1739 if (do_memsw_account())
3e32cb2e 1740 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1741 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1742 stock->nr_pages = 0;
cdec2e42
KH
1743 }
1744 stock->cached = NULL;
cdec2e42
KH
1745}
1746
cdec2e42
KH
1747static void drain_local_stock(struct work_struct *dummy)
1748{
db2ba40c
JW
1749 struct memcg_stock_pcp *stock;
1750 unsigned long flags;
1751
1752 local_irq_save(flags);
1753
1754 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1755 drain_stock(stock);
26fe6168 1756 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1757
1758 local_irq_restore(flags);
cdec2e42
KH
1759}
1760
1761/*
3e32cb2e 1762 * Cache charges(val) to local per_cpu area.
320cc51d 1763 * This will be consumed by consume_stock() function, later.
cdec2e42 1764 */
c0ff4b85 1765static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1766{
db2ba40c
JW
1767 struct memcg_stock_pcp *stock;
1768 unsigned long flags;
1769
1770 local_irq_save(flags);
cdec2e42 1771
db2ba40c 1772 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1773 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1774 drain_stock(stock);
c0ff4b85 1775 stock->cached = memcg;
cdec2e42 1776 }
11c9ea4e 1777 stock->nr_pages += nr_pages;
db2ba40c
JW
1778
1779 local_irq_restore(flags);
cdec2e42
KH
1780}
1781
1782/*
c0ff4b85 1783 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1784 * of the hierarchy under it.
cdec2e42 1785 */
6d3d6aa2 1786static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1787{
26fe6168 1788 int cpu, curcpu;
d38144b7 1789
6d3d6aa2
JW
1790 /* If someone's already draining, avoid adding running more workers. */
1791 if (!mutex_trylock(&percpu_charge_mutex))
1792 return;
cdec2e42 1793 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1794 get_online_cpus();
5af12d0e 1795 curcpu = get_cpu();
cdec2e42
KH
1796 for_each_online_cpu(cpu) {
1797 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1798 struct mem_cgroup *memcg;
26fe6168 1799
c0ff4b85
R
1800 memcg = stock->cached;
1801 if (!memcg || !stock->nr_pages)
26fe6168 1802 continue;
2314b42d 1803 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1804 continue;
d1a05b69
MH
1805 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1806 if (cpu == curcpu)
1807 drain_local_stock(&stock->work);
1808 else
1809 schedule_work_on(cpu, &stock->work);
1810 }
cdec2e42 1811 }
5af12d0e 1812 put_cpu();
f894ffa8 1813 put_online_cpus();
9f50fad6 1814 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1815}
1816
308167fc 1817static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 1818{
cdec2e42
KH
1819 struct memcg_stock_pcp *stock;
1820
cdec2e42
KH
1821 stock = &per_cpu(memcg_stock, cpu);
1822 drain_stock(stock);
308167fc 1823 return 0;
cdec2e42
KH
1824}
1825
f7e1cb6e
JW
1826static void reclaim_high(struct mem_cgroup *memcg,
1827 unsigned int nr_pages,
1828 gfp_t gfp_mask)
1829{
1830 do {
1831 if (page_counter_read(&memcg->memory) <= memcg->high)
1832 continue;
1833 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1834 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1835 } while ((memcg = parent_mem_cgroup(memcg)));
1836}
1837
1838static void high_work_func(struct work_struct *work)
1839{
1840 struct mem_cgroup *memcg;
1841
1842 memcg = container_of(work, struct mem_cgroup, high_work);
1843 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1844}
1845
b23afb93
TH
1846/*
1847 * Scheduled by try_charge() to be executed from the userland return path
1848 * and reclaims memory over the high limit.
1849 */
1850void mem_cgroup_handle_over_high(void)
1851{
1852 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1853 struct mem_cgroup *memcg;
b23afb93
TH
1854
1855 if (likely(!nr_pages))
1856 return;
1857
f7e1cb6e
JW
1858 memcg = get_mem_cgroup_from_mm(current->mm);
1859 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1860 css_put(&memcg->css);
1861 current->memcg_nr_pages_over_high = 0;
1862}
1863
00501b53
JW
1864static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1865 unsigned int nr_pages)
8a9f3ccd 1866{
7ec99d62 1867 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1868 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1869 struct mem_cgroup *mem_over_limit;
3e32cb2e 1870 struct page_counter *counter;
6539cc05 1871 unsigned long nr_reclaimed;
b70a2a21
JW
1872 bool may_swap = true;
1873 bool drained = false;
a636b327 1874
ce00a967 1875 if (mem_cgroup_is_root(memcg))
10d53c74 1876 return 0;
6539cc05 1877retry:
b6b6cc72 1878 if (consume_stock(memcg, nr_pages))
10d53c74 1879 return 0;
8a9f3ccd 1880
7941d214 1881 if (!do_memsw_account() ||
6071ca52
JW
1882 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1883 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1884 goto done_restock;
7941d214 1885 if (do_memsw_account())
3e32cb2e
JW
1886 page_counter_uncharge(&memcg->memsw, batch);
1887 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1888 } else {
3e32cb2e 1889 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1890 may_swap = false;
3fbe7244 1891 }
7a81b88c 1892
6539cc05
JW
1893 if (batch > nr_pages) {
1894 batch = nr_pages;
1895 goto retry;
1896 }
6d61ef40 1897
06b078fc
JW
1898 /*
1899 * Unlike in global OOM situations, memcg is not in a physical
1900 * memory shortage. Allow dying and OOM-killed tasks to
1901 * bypass the last charges so that they can exit quickly and
1902 * free their memory.
1903 */
1904 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1905 fatal_signal_pending(current) ||
1906 current->flags & PF_EXITING))
10d53c74 1907 goto force;
06b078fc 1908
89a28483
JW
1909 /*
1910 * Prevent unbounded recursion when reclaim operations need to
1911 * allocate memory. This might exceed the limits temporarily,
1912 * but we prefer facilitating memory reclaim and getting back
1913 * under the limit over triggering OOM kills in these cases.
1914 */
1915 if (unlikely(current->flags & PF_MEMALLOC))
1916 goto force;
1917
06b078fc
JW
1918 if (unlikely(task_in_memcg_oom(current)))
1919 goto nomem;
1920
d0164adc 1921 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1922 goto nomem;
4b534334 1923
241994ed
JW
1924 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1925
b70a2a21
JW
1926 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1927 gfp_mask, may_swap);
6539cc05 1928
61e02c74 1929 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1930 goto retry;
28c34c29 1931
b70a2a21 1932 if (!drained) {
6d3d6aa2 1933 drain_all_stock(mem_over_limit);
b70a2a21
JW
1934 drained = true;
1935 goto retry;
1936 }
1937
28c34c29
JW
1938 if (gfp_mask & __GFP_NORETRY)
1939 goto nomem;
6539cc05
JW
1940 /*
1941 * Even though the limit is exceeded at this point, reclaim
1942 * may have been able to free some pages. Retry the charge
1943 * before killing the task.
1944 *
1945 * Only for regular pages, though: huge pages are rather
1946 * unlikely to succeed so close to the limit, and we fall back
1947 * to regular pages anyway in case of failure.
1948 */
61e02c74 1949 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1950 goto retry;
1951 /*
1952 * At task move, charge accounts can be doubly counted. So, it's
1953 * better to wait until the end of task_move if something is going on.
1954 */
1955 if (mem_cgroup_wait_acct_move(mem_over_limit))
1956 goto retry;
1957
9b130619
JW
1958 if (nr_retries--)
1959 goto retry;
1960
06b078fc 1961 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1962 goto force;
06b078fc 1963
6539cc05 1964 if (fatal_signal_pending(current))
10d53c74 1965 goto force;
6539cc05 1966
241994ed
JW
1967 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1968
3608de07
JM
1969 mem_cgroup_oom(mem_over_limit, gfp_mask,
1970 get_order(nr_pages * PAGE_SIZE));
7a81b88c 1971nomem:
6d1fdc48 1972 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 1973 return -ENOMEM;
10d53c74
TH
1974force:
1975 /*
1976 * The allocation either can't fail or will lead to more memory
1977 * being freed very soon. Allow memory usage go over the limit
1978 * temporarily by force charging it.
1979 */
1980 page_counter_charge(&memcg->memory, nr_pages);
7941d214 1981 if (do_memsw_account())
10d53c74
TH
1982 page_counter_charge(&memcg->memsw, nr_pages);
1983 css_get_many(&memcg->css, nr_pages);
1984
1985 return 0;
6539cc05
JW
1986
1987done_restock:
e8ea14cc 1988 css_get_many(&memcg->css, batch);
6539cc05
JW
1989 if (batch > nr_pages)
1990 refill_stock(memcg, batch - nr_pages);
b23afb93 1991
241994ed 1992 /*
b23afb93
TH
1993 * If the hierarchy is above the normal consumption range, schedule
1994 * reclaim on returning to userland. We can perform reclaim here
71baba4b 1995 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
1996 * GFP_KERNEL can consistently be used during reclaim. @memcg is
1997 * not recorded as it most likely matches current's and won't
1998 * change in the meantime. As high limit is checked again before
1999 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2000 */
2001 do {
b23afb93 2002 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2003 /* Don't bother a random interrupted task */
2004 if (in_interrupt()) {
2005 schedule_work(&memcg->high_work);
2006 break;
2007 }
9516a18a 2008 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2009 set_notify_resume(current);
2010 break;
2011 }
241994ed 2012 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2013
2014 return 0;
7a81b88c 2015}
8a9f3ccd 2016
00501b53 2017static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2018{
ce00a967
JW
2019 if (mem_cgroup_is_root(memcg))
2020 return;
2021
3e32cb2e 2022 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2023 if (do_memsw_account())
3e32cb2e 2024 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2025
e8ea14cc 2026 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2027}
2028
0a31bc97
JW
2029static void lock_page_lru(struct page *page, int *isolated)
2030{
2031 struct zone *zone = page_zone(page);
2032
a52633d8 2033 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2034 if (PageLRU(page)) {
2035 struct lruvec *lruvec;
2036
599d0c95 2037 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2038 ClearPageLRU(page);
2039 del_page_from_lru_list(page, lruvec, page_lru(page));
2040 *isolated = 1;
2041 } else
2042 *isolated = 0;
2043}
2044
2045static void unlock_page_lru(struct page *page, int isolated)
2046{
2047 struct zone *zone = page_zone(page);
2048
2049 if (isolated) {
2050 struct lruvec *lruvec;
2051
599d0c95 2052 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2053 VM_BUG_ON_PAGE(PageLRU(page), page);
2054 SetPageLRU(page);
2055 add_page_to_lru_list(page, lruvec, page_lru(page));
2056 }
a52633d8 2057 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2058}
2059
00501b53 2060static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2061 bool lrucare)
7a81b88c 2062{
0a31bc97 2063 int isolated;
9ce70c02 2064
1306a85a 2065 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2066
2067 /*
2068 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2069 * may already be on some other mem_cgroup's LRU. Take care of it.
2070 */
0a31bc97
JW
2071 if (lrucare)
2072 lock_page_lru(page, &isolated);
9ce70c02 2073
0a31bc97
JW
2074 /*
2075 * Nobody should be changing or seriously looking at
1306a85a 2076 * page->mem_cgroup at this point:
0a31bc97
JW
2077 *
2078 * - the page is uncharged
2079 *
2080 * - the page is off-LRU
2081 *
2082 * - an anonymous fault has exclusive page access, except for
2083 * a locked page table
2084 *
2085 * - a page cache insertion, a swapin fault, or a migration
2086 * have the page locked
2087 */
1306a85a 2088 page->mem_cgroup = memcg;
9ce70c02 2089
0a31bc97
JW
2090 if (lrucare)
2091 unlock_page_lru(page, isolated);
7a81b88c 2092}
66e1707b 2093
127424c8 2094#ifndef CONFIG_SLOB
f3bb3043 2095static int memcg_alloc_cache_id(void)
55007d84 2096{
f3bb3043
VD
2097 int id, size;
2098 int err;
2099
dbcf73e2 2100 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2101 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2102 if (id < 0)
2103 return id;
55007d84 2104
dbcf73e2 2105 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2106 return id;
2107
2108 /*
2109 * There's no space for the new id in memcg_caches arrays,
2110 * so we have to grow them.
2111 */
05257a1a 2112 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2113
2114 size = 2 * (id + 1);
55007d84
GC
2115 if (size < MEMCG_CACHES_MIN_SIZE)
2116 size = MEMCG_CACHES_MIN_SIZE;
2117 else if (size > MEMCG_CACHES_MAX_SIZE)
2118 size = MEMCG_CACHES_MAX_SIZE;
2119
f3bb3043 2120 err = memcg_update_all_caches(size);
60d3fd32
VD
2121 if (!err)
2122 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2123 if (!err)
2124 memcg_nr_cache_ids = size;
2125
2126 up_write(&memcg_cache_ids_sem);
2127
f3bb3043 2128 if (err) {
dbcf73e2 2129 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2130 return err;
2131 }
2132 return id;
2133}
2134
2135static void memcg_free_cache_id(int id)
2136{
dbcf73e2 2137 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2138}
2139
d5b3cf71 2140struct memcg_kmem_cache_create_work {
5722d094
VD
2141 struct mem_cgroup *memcg;
2142 struct kmem_cache *cachep;
2143 struct work_struct work;
2144};
2145
13583c3d
VD
2146static struct workqueue_struct *memcg_kmem_cache_create_wq;
2147
d5b3cf71 2148static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2149{
d5b3cf71
VD
2150 struct memcg_kmem_cache_create_work *cw =
2151 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2152 struct mem_cgroup *memcg = cw->memcg;
2153 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2154
d5b3cf71 2155 memcg_create_kmem_cache(memcg, cachep);
bd673145 2156
5722d094 2157 css_put(&memcg->css);
d7f25f8a
GC
2158 kfree(cw);
2159}
2160
2161/*
2162 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2163 */
d5b3cf71
VD
2164static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2165 struct kmem_cache *cachep)
d7f25f8a 2166{
d5b3cf71 2167 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2168
776ed0f0 2169 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2170 if (!cw)
d7f25f8a 2171 return;
8135be5a
VD
2172
2173 css_get(&memcg->css);
d7f25f8a
GC
2174
2175 cw->memcg = memcg;
2176 cw->cachep = cachep;
d5b3cf71 2177 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2178
13583c3d 2179 queue_work(memcg_kmem_cache_create_wq, &cw->work);
d7f25f8a
GC
2180}
2181
d5b3cf71
VD
2182static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2183 struct kmem_cache *cachep)
0e9d92f2
GC
2184{
2185 /*
2186 * We need to stop accounting when we kmalloc, because if the
2187 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2188 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2189 *
2190 * However, it is better to enclose the whole function. Depending on
2191 * the debugging options enabled, INIT_WORK(), for instance, can
2192 * trigger an allocation. This too, will make us recurse. Because at
2193 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2194 * the safest choice is to do it like this, wrapping the whole function.
2195 */
6f185c29 2196 current->memcg_kmem_skip_account = 1;
d5b3cf71 2197 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2198 current->memcg_kmem_skip_account = 0;
0e9d92f2 2199}
c67a8a68 2200
45264778
VD
2201static inline bool memcg_kmem_bypass(void)
2202{
2203 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2204 return true;
2205 return false;
2206}
2207
2208/**
2209 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2210 * @cachep: the original global kmem cache
2211 *
d7f25f8a
GC
2212 * Return the kmem_cache we're supposed to use for a slab allocation.
2213 * We try to use the current memcg's version of the cache.
2214 *
45264778
VD
2215 * If the cache does not exist yet, if we are the first user of it, we
2216 * create it asynchronously in a workqueue and let the current allocation
2217 * go through with the original cache.
d7f25f8a 2218 *
45264778
VD
2219 * This function takes a reference to the cache it returns to assure it
2220 * won't get destroyed while we are working with it. Once the caller is
2221 * done with it, memcg_kmem_put_cache() must be called to release the
2222 * reference.
d7f25f8a 2223 */
45264778 2224struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2225{
2226 struct mem_cgroup *memcg;
959c8963 2227 struct kmem_cache *memcg_cachep;
2a4db7eb 2228 int kmemcg_id;
d7f25f8a 2229
f7ce3190 2230 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2231
45264778 2232 if (memcg_kmem_bypass())
230e9fc2
VD
2233 return cachep;
2234
9d100c5e 2235 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2236 return cachep;
2237
8135be5a 2238 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2239 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2240 if (kmemcg_id < 0)
ca0dde97 2241 goto out;
d7f25f8a 2242
2a4db7eb 2243 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2244 if (likely(memcg_cachep))
2245 return memcg_cachep;
ca0dde97
LZ
2246
2247 /*
2248 * If we are in a safe context (can wait, and not in interrupt
2249 * context), we could be be predictable and return right away.
2250 * This would guarantee that the allocation being performed
2251 * already belongs in the new cache.
2252 *
2253 * However, there are some clashes that can arrive from locking.
2254 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2255 * memcg_create_kmem_cache, this means no further allocation
2256 * could happen with the slab_mutex held. So it's better to
2257 * defer everything.
ca0dde97 2258 */
d5b3cf71 2259 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2260out:
8135be5a 2261 css_put(&memcg->css);
ca0dde97 2262 return cachep;
d7f25f8a 2263}
d7f25f8a 2264
45264778
VD
2265/**
2266 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2267 * @cachep: the cache returned by memcg_kmem_get_cache
2268 */
2269void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2270{
2271 if (!is_root_cache(cachep))
f7ce3190 2272 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2273}
2274
45264778
VD
2275/**
2276 * memcg_kmem_charge: charge a kmem page
2277 * @page: page to charge
2278 * @gfp: reclaim mode
2279 * @order: allocation order
2280 * @memcg: memory cgroup to charge
2281 *
2282 * Returns 0 on success, an error code on failure.
2283 */
2284int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2285 struct mem_cgroup *memcg)
7ae1e1d0 2286{
f3ccb2c4
VD
2287 unsigned int nr_pages = 1 << order;
2288 struct page_counter *counter;
7ae1e1d0
GC
2289 int ret;
2290
f3ccb2c4 2291 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2292 if (ret)
f3ccb2c4 2293 return ret;
52c29b04
JW
2294
2295 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2296 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2297 cancel_charge(memcg, nr_pages);
2298 return -ENOMEM;
7ae1e1d0
GC
2299 }
2300
f3ccb2c4 2301 page->mem_cgroup = memcg;
7ae1e1d0 2302
f3ccb2c4 2303 return 0;
7ae1e1d0
GC
2304}
2305
45264778
VD
2306/**
2307 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2308 * @page: page to charge
2309 * @gfp: reclaim mode
2310 * @order: allocation order
2311 *
2312 * Returns 0 on success, an error code on failure.
2313 */
2314int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2315{
f3ccb2c4 2316 struct mem_cgroup *memcg;
fcff7d7e 2317 int ret = 0;
7ae1e1d0 2318
45264778
VD
2319 if (memcg_kmem_bypass())
2320 return 0;
2321
f3ccb2c4 2322 memcg = get_mem_cgroup_from_mm(current->mm);
c4159a75 2323 if (!mem_cgroup_is_root(memcg)) {
45264778 2324 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2325 if (!ret)
2326 __SetPageKmemcg(page);
2327 }
7ae1e1d0 2328 css_put(&memcg->css);
d05e83a6 2329 return ret;
7ae1e1d0 2330}
45264778
VD
2331/**
2332 * memcg_kmem_uncharge: uncharge a kmem page
2333 * @page: page to uncharge
2334 * @order: allocation order
2335 */
2336void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2337{
1306a85a 2338 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2339 unsigned int nr_pages = 1 << order;
7ae1e1d0 2340
7ae1e1d0
GC
2341 if (!memcg)
2342 return;
2343
309381fe 2344 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2345
52c29b04
JW
2346 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2347 page_counter_uncharge(&memcg->kmem, nr_pages);
2348
f3ccb2c4 2349 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2350 if (do_memsw_account())
f3ccb2c4 2351 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2352
1306a85a 2353 page->mem_cgroup = NULL;
c4159a75
VD
2354
2355 /* slab pages do not have PageKmemcg flag set */
2356 if (PageKmemcg(page))
2357 __ClearPageKmemcg(page);
2358
f3ccb2c4 2359 css_put_many(&memcg->css, nr_pages);
60d3fd32 2360}
127424c8 2361#endif /* !CONFIG_SLOB */
7ae1e1d0 2362
ca3e0214
KH
2363#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2364
ca3e0214
KH
2365/*
2366 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2367 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2368 */
e94c8a9c 2369void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2370{
e94c8a9c 2371 int i;
ca3e0214 2372
3d37c4a9
KH
2373 if (mem_cgroup_disabled())
2374 return;
b070e65c 2375
29833315 2376 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2377 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2378
1306a85a 2379 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2380 HPAGE_PMD_NR);
ca3e0214 2381}
12d27107 2382#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2383
c255a458 2384#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2385static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2386 bool charge)
d13d1443 2387{
0a31bc97
JW
2388 int val = (charge) ? 1 : -1;
2389 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2390}
02491447
DN
2391
2392/**
2393 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2394 * @entry: swap entry to be moved
2395 * @from: mem_cgroup which the entry is moved from
2396 * @to: mem_cgroup which the entry is moved to
2397 *
2398 * It succeeds only when the swap_cgroup's record for this entry is the same
2399 * as the mem_cgroup's id of @from.
2400 *
2401 * Returns 0 on success, -EINVAL on failure.
2402 *
3e32cb2e 2403 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2404 * both res and memsw, and called css_get().
2405 */
2406static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2407 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2408{
2409 unsigned short old_id, new_id;
2410
34c00c31
LZ
2411 old_id = mem_cgroup_id(from);
2412 new_id = mem_cgroup_id(to);
02491447
DN
2413
2414 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2415 mem_cgroup_swap_statistics(from, false);
483c30b5 2416 mem_cgroup_swap_statistics(to, true);
02491447
DN
2417 return 0;
2418 }
2419 return -EINVAL;
2420}
2421#else
2422static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2423 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2424{
2425 return -EINVAL;
2426}
8c7c6e34 2427#endif
d13d1443 2428
3e32cb2e 2429static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2430
d38d2a75 2431static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2432 unsigned long limit)
628f4235 2433{
3e32cb2e
JW
2434 unsigned long curusage;
2435 unsigned long oldusage;
2436 bool enlarge = false;
81d39c20 2437 int retry_count;
3e32cb2e 2438 int ret;
81d39c20
KH
2439
2440 /*
2441 * For keeping hierarchical_reclaim simple, how long we should retry
2442 * is depends on callers. We set our retry-count to be function
2443 * of # of children which we should visit in this loop.
2444 */
3e32cb2e
JW
2445 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2446 mem_cgroup_count_children(memcg);
81d39c20 2447
3e32cb2e 2448 oldusage = page_counter_read(&memcg->memory);
628f4235 2449
3e32cb2e 2450 do {
628f4235
KH
2451 if (signal_pending(current)) {
2452 ret = -EINTR;
2453 break;
2454 }
3e32cb2e
JW
2455
2456 mutex_lock(&memcg_limit_mutex);
2457 if (limit > memcg->memsw.limit) {
2458 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2459 ret = -EINVAL;
628f4235
KH
2460 break;
2461 }
3e32cb2e
JW
2462 if (limit > memcg->memory.limit)
2463 enlarge = true;
2464 ret = page_counter_limit(&memcg->memory, limit);
2465 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2466
2467 if (!ret)
2468 break;
2469
b70a2a21
JW
2470 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2471
3e32cb2e 2472 curusage = page_counter_read(&memcg->memory);
81d39c20 2473 /* Usage is reduced ? */
f894ffa8 2474 if (curusage >= oldusage)
81d39c20
KH
2475 retry_count--;
2476 else
2477 oldusage = curusage;
3e32cb2e
JW
2478 } while (retry_count);
2479
3c11ecf4
KH
2480 if (!ret && enlarge)
2481 memcg_oom_recover(memcg);
14797e23 2482
8c7c6e34
KH
2483 return ret;
2484}
2485
338c8431 2486static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2487 unsigned long limit)
8c7c6e34 2488{
3e32cb2e
JW
2489 unsigned long curusage;
2490 unsigned long oldusage;
2491 bool enlarge = false;
81d39c20 2492 int retry_count;
3e32cb2e 2493 int ret;
8c7c6e34 2494
81d39c20 2495 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2496 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2497 mem_cgroup_count_children(memcg);
2498
2499 oldusage = page_counter_read(&memcg->memsw);
2500
2501 do {
8c7c6e34
KH
2502 if (signal_pending(current)) {
2503 ret = -EINTR;
2504 break;
2505 }
3e32cb2e
JW
2506
2507 mutex_lock(&memcg_limit_mutex);
2508 if (limit < memcg->memory.limit) {
2509 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2510 ret = -EINVAL;
8c7c6e34
KH
2511 break;
2512 }
3e32cb2e
JW
2513 if (limit > memcg->memsw.limit)
2514 enlarge = true;
2515 ret = page_counter_limit(&memcg->memsw, limit);
2516 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2517
2518 if (!ret)
2519 break;
2520
b70a2a21
JW
2521 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2522
3e32cb2e 2523 curusage = page_counter_read(&memcg->memsw);
81d39c20 2524 /* Usage is reduced ? */
8c7c6e34 2525 if (curusage >= oldusage)
628f4235 2526 retry_count--;
81d39c20
KH
2527 else
2528 oldusage = curusage;
3e32cb2e
JW
2529 } while (retry_count);
2530
3c11ecf4
KH
2531 if (!ret && enlarge)
2532 memcg_oom_recover(memcg);
3e32cb2e 2533
628f4235
KH
2534 return ret;
2535}
2536
ef8f2327 2537unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2538 gfp_t gfp_mask,
2539 unsigned long *total_scanned)
2540{
2541 unsigned long nr_reclaimed = 0;
ef8f2327 2542 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2543 unsigned long reclaimed;
2544 int loop = 0;
ef8f2327 2545 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2546 unsigned long excess;
0608f43d
AM
2547 unsigned long nr_scanned;
2548
2549 if (order > 0)
2550 return 0;
2551
ef8f2327 2552 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2553
2554 /*
2555 * Do not even bother to check the largest node if the root
2556 * is empty. Do it lockless to prevent lock bouncing. Races
2557 * are acceptable as soft limit is best effort anyway.
2558 */
2559 if (RB_EMPTY_ROOT(&mctz->rb_root))
2560 return 0;
2561
0608f43d
AM
2562 /*
2563 * This loop can run a while, specially if mem_cgroup's continuously
2564 * keep exceeding their soft limit and putting the system under
2565 * pressure
2566 */
2567 do {
2568 if (next_mz)
2569 mz = next_mz;
2570 else
2571 mz = mem_cgroup_largest_soft_limit_node(mctz);
2572 if (!mz)
2573 break;
2574
2575 nr_scanned = 0;
ef8f2327 2576 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2577 gfp_mask, &nr_scanned);
2578 nr_reclaimed += reclaimed;
2579 *total_scanned += nr_scanned;
0a31bc97 2580 spin_lock_irq(&mctz->lock);
bc2f2e7f 2581 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2582
2583 /*
2584 * If we failed to reclaim anything from this memory cgroup
2585 * it is time to move on to the next cgroup
2586 */
2587 next_mz = NULL;
bc2f2e7f
VD
2588 if (!reclaimed)
2589 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2590
3e32cb2e 2591 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2592 /*
2593 * One school of thought says that we should not add
2594 * back the node to the tree if reclaim returns 0.
2595 * But our reclaim could return 0, simply because due
2596 * to priority we are exposing a smaller subset of
2597 * memory to reclaim from. Consider this as a longer
2598 * term TODO.
2599 */
2600 /* If excess == 0, no tree ops */
cf2c8127 2601 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2602 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2603 css_put(&mz->memcg->css);
2604 loop++;
2605 /*
2606 * Could not reclaim anything and there are no more
2607 * mem cgroups to try or we seem to be looping without
2608 * reclaiming anything.
2609 */
2610 if (!nr_reclaimed &&
2611 (next_mz == NULL ||
2612 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2613 break;
2614 } while (!nr_reclaimed);
2615 if (next_mz)
2616 css_put(&next_mz->memcg->css);
2617 return nr_reclaimed;
2618}
2619
ea280e7b
TH
2620/*
2621 * Test whether @memcg has children, dead or alive. Note that this
2622 * function doesn't care whether @memcg has use_hierarchy enabled and
2623 * returns %true if there are child csses according to the cgroup
2624 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2625 */
b5f99b53
GC
2626static inline bool memcg_has_children(struct mem_cgroup *memcg)
2627{
ea280e7b
TH
2628 bool ret;
2629
ea280e7b
TH
2630 rcu_read_lock();
2631 ret = css_next_child(NULL, &memcg->css);
2632 rcu_read_unlock();
2633 return ret;
b5f99b53
GC
2634}
2635
c26251f9 2636/*
51038171 2637 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2638 *
2639 * Caller is responsible for holding css reference for memcg.
2640 */
2641static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2642{
2643 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2644
c1e862c1
KH
2645 /* we call try-to-free pages for make this cgroup empty */
2646 lru_add_drain_all();
f817ed48 2647 /* try to free all pages in this cgroup */
3e32cb2e 2648 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2649 int progress;
c1e862c1 2650
c26251f9
MH
2651 if (signal_pending(current))
2652 return -EINTR;
2653
b70a2a21
JW
2654 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2655 GFP_KERNEL, true);
c1e862c1 2656 if (!progress) {
f817ed48 2657 nr_retries--;
c1e862c1 2658 /* maybe some writeback is necessary */
8aa7e847 2659 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2660 }
f817ed48
KH
2661
2662 }
ab5196c2
MH
2663
2664 return 0;
cc847582
KH
2665}
2666
6770c64e
TH
2667static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2668 char *buf, size_t nbytes,
2669 loff_t off)
c1e862c1 2670{
6770c64e 2671 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2672
d8423011
MH
2673 if (mem_cgroup_is_root(memcg))
2674 return -EINVAL;
6770c64e 2675 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2676}
2677
182446d0
TH
2678static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2679 struct cftype *cft)
18f59ea7 2680{
182446d0 2681 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2682}
2683
182446d0
TH
2684static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2685 struct cftype *cft, u64 val)
18f59ea7
BS
2686{
2687 int retval = 0;
182446d0 2688 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2689 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2690
567fb435 2691 if (memcg->use_hierarchy == val)
0b8f73e1 2692 return 0;
567fb435 2693
18f59ea7 2694 /*
af901ca1 2695 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2696 * in the child subtrees. If it is unset, then the change can
2697 * occur, provided the current cgroup has no children.
2698 *
2699 * For the root cgroup, parent_mem is NULL, we allow value to be
2700 * set if there are no children.
2701 */
c0ff4b85 2702 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2703 (val == 1 || val == 0)) {
ea280e7b 2704 if (!memcg_has_children(memcg))
c0ff4b85 2705 memcg->use_hierarchy = val;
18f59ea7
BS
2706 else
2707 retval = -EBUSY;
2708 } else
2709 retval = -EINVAL;
567fb435 2710
18f59ea7
BS
2711 return retval;
2712}
2713
72b54e73 2714static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2715{
2716 struct mem_cgroup *iter;
72b54e73 2717 int i;
ce00a967 2718
72b54e73 2719 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2720
72b54e73
VD
2721 for_each_mem_cgroup_tree(iter, memcg) {
2722 for (i = 0; i < MEMCG_NR_STAT; i++)
2723 stat[i] += mem_cgroup_read_stat(iter, i);
2724 }
ce00a967
JW
2725}
2726
72b54e73 2727static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2728{
2729 struct mem_cgroup *iter;
72b54e73 2730 int i;
587d9f72 2731
72b54e73 2732 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2733
72b54e73
VD
2734 for_each_mem_cgroup_tree(iter, memcg) {
2735 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2736 events[i] += mem_cgroup_read_events(iter, i);
2737 }
587d9f72
JW
2738}
2739
6f646156 2740static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2741{
72b54e73 2742 unsigned long val = 0;
ce00a967 2743
3e32cb2e 2744 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2745 struct mem_cgroup *iter;
2746
2747 for_each_mem_cgroup_tree(iter, memcg) {
2748 val += mem_cgroup_read_stat(iter,
2749 MEM_CGROUP_STAT_CACHE);
2750 val += mem_cgroup_read_stat(iter,
2751 MEM_CGROUP_STAT_RSS);
2752 if (swap)
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_SWAP);
2755 }
3e32cb2e 2756 } else {
ce00a967 2757 if (!swap)
3e32cb2e 2758 val = page_counter_read(&memcg->memory);
ce00a967 2759 else
3e32cb2e 2760 val = page_counter_read(&memcg->memsw);
ce00a967 2761 }
c12176d3 2762 return val;
ce00a967
JW
2763}
2764
3e32cb2e
JW
2765enum {
2766 RES_USAGE,
2767 RES_LIMIT,
2768 RES_MAX_USAGE,
2769 RES_FAILCNT,
2770 RES_SOFT_LIMIT,
2771};
ce00a967 2772
791badbd 2773static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2774 struct cftype *cft)
8cdea7c0 2775{
182446d0 2776 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2777 struct page_counter *counter;
af36f906 2778
3e32cb2e 2779 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2780 case _MEM:
3e32cb2e
JW
2781 counter = &memcg->memory;
2782 break;
8c7c6e34 2783 case _MEMSWAP:
3e32cb2e
JW
2784 counter = &memcg->memsw;
2785 break;
510fc4e1 2786 case _KMEM:
3e32cb2e 2787 counter = &memcg->kmem;
510fc4e1 2788 break;
d55f90bf 2789 case _TCP:
0db15298 2790 counter = &memcg->tcpmem;
d55f90bf 2791 break;
8c7c6e34
KH
2792 default:
2793 BUG();
8c7c6e34 2794 }
3e32cb2e
JW
2795
2796 switch (MEMFILE_ATTR(cft->private)) {
2797 case RES_USAGE:
2798 if (counter == &memcg->memory)
c12176d3 2799 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2800 if (counter == &memcg->memsw)
c12176d3 2801 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2802 return (u64)page_counter_read(counter) * PAGE_SIZE;
2803 case RES_LIMIT:
2804 return (u64)counter->limit * PAGE_SIZE;
2805 case RES_MAX_USAGE:
2806 return (u64)counter->watermark * PAGE_SIZE;
2807 case RES_FAILCNT:
2808 return counter->failcnt;
2809 case RES_SOFT_LIMIT:
2810 return (u64)memcg->soft_limit * PAGE_SIZE;
2811 default:
2812 BUG();
2813 }
8cdea7c0 2814}
510fc4e1 2815
127424c8 2816#ifndef CONFIG_SLOB
567e9ab2 2817static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2818{
d6441637
VD
2819 int memcg_id;
2820
b313aeee
VD
2821 if (cgroup_memory_nokmem)
2822 return 0;
2823
2a4db7eb 2824 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2825 BUG_ON(memcg->kmem_state);
d6441637 2826
f3bb3043 2827 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2828 if (memcg_id < 0)
2829 return memcg_id;
d6441637 2830
ef12947c 2831 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2832 /*
567e9ab2 2833 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2834 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2835 * guarantee no one starts accounting before all call sites are
2836 * patched.
2837 */
900a38f0 2838 memcg->kmemcg_id = memcg_id;
567e9ab2 2839 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2840
2841 return 0;
d6441637
VD
2842}
2843
8e0a8912
JW
2844static void memcg_offline_kmem(struct mem_cgroup *memcg)
2845{
2846 struct cgroup_subsys_state *css;
2847 struct mem_cgroup *parent, *child;
2848 int kmemcg_id;
2849
2850 if (memcg->kmem_state != KMEM_ONLINE)
2851 return;
2852 /*
2853 * Clear the online state before clearing memcg_caches array
2854 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2855 * guarantees that no cache will be created for this cgroup
2856 * after we are done (see memcg_create_kmem_cache()).
2857 */
2858 memcg->kmem_state = KMEM_ALLOCATED;
2859
2860 memcg_deactivate_kmem_caches(memcg);
2861
2862 kmemcg_id = memcg->kmemcg_id;
2863 BUG_ON(kmemcg_id < 0);
2864
2865 parent = parent_mem_cgroup(memcg);
2866 if (!parent)
2867 parent = root_mem_cgroup;
2868
2869 /*
2870 * Change kmemcg_id of this cgroup and all its descendants to the
2871 * parent's id, and then move all entries from this cgroup's list_lrus
2872 * to ones of the parent. After we have finished, all list_lrus
2873 * corresponding to this cgroup are guaranteed to remain empty. The
2874 * ordering is imposed by list_lru_node->lock taken by
2875 * memcg_drain_all_list_lrus().
2876 */
3a06bb78 2877 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2878 css_for_each_descendant_pre(css, &memcg->css) {
2879 child = mem_cgroup_from_css(css);
2880 BUG_ON(child->kmemcg_id != kmemcg_id);
2881 child->kmemcg_id = parent->kmemcg_id;
2882 if (!memcg->use_hierarchy)
2883 break;
2884 }
3a06bb78
TH
2885 rcu_read_unlock();
2886
8e0a8912
JW
2887 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2888
2889 memcg_free_cache_id(kmemcg_id);
2890}
2891
2892static void memcg_free_kmem(struct mem_cgroup *memcg)
2893{
0b8f73e1
JW
2894 /* css_alloc() failed, offlining didn't happen */
2895 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2896 memcg_offline_kmem(memcg);
2897
8e0a8912
JW
2898 if (memcg->kmem_state == KMEM_ALLOCATED) {
2899 memcg_destroy_kmem_caches(memcg);
2900 static_branch_dec(&memcg_kmem_enabled_key);
2901 WARN_ON(page_counter_read(&memcg->kmem));
2902 }
8e0a8912 2903}
d6441637 2904#else
0b8f73e1 2905static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2906{
2907 return 0;
2908}
2909static void memcg_offline_kmem(struct mem_cgroup *memcg)
2910{
2911}
2912static void memcg_free_kmem(struct mem_cgroup *memcg)
2913{
2914}
2915#endif /* !CONFIG_SLOB */
2916
d6441637 2917static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2918 unsigned long limit)
d6441637 2919{
b313aeee 2920 int ret;
127424c8
JW
2921
2922 mutex_lock(&memcg_limit_mutex);
127424c8 2923 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2924 mutex_unlock(&memcg_limit_mutex);
2925 return ret;
d6441637 2926}
510fc4e1 2927
d55f90bf
VD
2928static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2929{
2930 int ret;
2931
2932 mutex_lock(&memcg_limit_mutex);
2933
0db15298 2934 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2935 if (ret)
2936 goto out;
2937
0db15298 2938 if (!memcg->tcpmem_active) {
d55f90bf
VD
2939 /*
2940 * The active flag needs to be written after the static_key
2941 * update. This is what guarantees that the socket activation
2d758073
JW
2942 * function is the last one to run. See mem_cgroup_sk_alloc()
2943 * for details, and note that we don't mark any socket as
2944 * belonging to this memcg until that flag is up.
d55f90bf
VD
2945 *
2946 * We need to do this, because static_keys will span multiple
2947 * sites, but we can't control their order. If we mark a socket
2948 * as accounted, but the accounting functions are not patched in
2949 * yet, we'll lose accounting.
2950 *
2d758073 2951 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
2952 * because when this value change, the code to process it is not
2953 * patched in yet.
2954 */
2955 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2956 memcg->tcpmem_active = true;
d55f90bf
VD
2957 }
2958out:
2959 mutex_unlock(&memcg_limit_mutex);
2960 return ret;
2961}
d55f90bf 2962
628f4235
KH
2963/*
2964 * The user of this function is...
2965 * RES_LIMIT.
2966 */
451af504
TH
2967static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2968 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2969{
451af504 2970 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2971 unsigned long nr_pages;
628f4235
KH
2972 int ret;
2973
451af504 2974 buf = strstrip(buf);
650c5e56 2975 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2976 if (ret)
2977 return ret;
af36f906 2978
3e32cb2e 2979 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2980 case RES_LIMIT:
4b3bde4c
BS
2981 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2982 ret = -EINVAL;
2983 break;
2984 }
3e32cb2e
JW
2985 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2986 case _MEM:
2987 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2988 break;
3e32cb2e
JW
2989 case _MEMSWAP:
2990 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 2991 break;
3e32cb2e
JW
2992 case _KMEM:
2993 ret = memcg_update_kmem_limit(memcg, nr_pages);
2994 break;
d55f90bf
VD
2995 case _TCP:
2996 ret = memcg_update_tcp_limit(memcg, nr_pages);
2997 break;
3e32cb2e 2998 }
296c81d8 2999 break;
3e32cb2e
JW
3000 case RES_SOFT_LIMIT:
3001 memcg->soft_limit = nr_pages;
3002 ret = 0;
628f4235
KH
3003 break;
3004 }
451af504 3005 return ret ?: nbytes;
8cdea7c0
BS
3006}
3007
6770c64e
TH
3008static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3009 size_t nbytes, loff_t off)
c84872e1 3010{
6770c64e 3011 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3012 struct page_counter *counter;
c84872e1 3013
3e32cb2e
JW
3014 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3015 case _MEM:
3016 counter = &memcg->memory;
3017 break;
3018 case _MEMSWAP:
3019 counter = &memcg->memsw;
3020 break;
3021 case _KMEM:
3022 counter = &memcg->kmem;
3023 break;
d55f90bf 3024 case _TCP:
0db15298 3025 counter = &memcg->tcpmem;
d55f90bf 3026 break;
3e32cb2e
JW
3027 default:
3028 BUG();
3029 }
af36f906 3030
3e32cb2e 3031 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3032 case RES_MAX_USAGE:
3e32cb2e 3033 page_counter_reset_watermark(counter);
29f2a4da
PE
3034 break;
3035 case RES_FAILCNT:
3e32cb2e 3036 counter->failcnt = 0;
29f2a4da 3037 break;
3e32cb2e
JW
3038 default:
3039 BUG();
29f2a4da 3040 }
f64c3f54 3041
6770c64e 3042 return nbytes;
c84872e1
PE
3043}
3044
182446d0 3045static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3046 struct cftype *cft)
3047{
182446d0 3048 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3049}
3050
02491447 3051#ifdef CONFIG_MMU
182446d0 3052static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3053 struct cftype *cft, u64 val)
3054{
182446d0 3055 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3056
1dfab5ab 3057 if (val & ~MOVE_MASK)
7dc74be0 3058 return -EINVAL;
ee5e8472 3059
7dc74be0 3060 /*
ee5e8472
GC
3061 * No kind of locking is needed in here, because ->can_attach() will
3062 * check this value once in the beginning of the process, and then carry
3063 * on with stale data. This means that changes to this value will only
3064 * affect task migrations starting after the change.
7dc74be0 3065 */
c0ff4b85 3066 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3067 return 0;
3068}
02491447 3069#else
182446d0 3070static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3071 struct cftype *cft, u64 val)
3072{
3073 return -ENOSYS;
3074}
3075#endif
7dc74be0 3076
406eb0c9 3077#ifdef CONFIG_NUMA
2da8ca82 3078static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3079{
25485de6
GT
3080 struct numa_stat {
3081 const char *name;
3082 unsigned int lru_mask;
3083 };
3084
3085 static const struct numa_stat stats[] = {
3086 { "total", LRU_ALL },
3087 { "file", LRU_ALL_FILE },
3088 { "anon", LRU_ALL_ANON },
3089 { "unevictable", BIT(LRU_UNEVICTABLE) },
3090 };
3091 const struct numa_stat *stat;
406eb0c9 3092 int nid;
25485de6 3093 unsigned long nr;
2da8ca82 3094 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3095
25485de6
GT
3096 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3097 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3098 seq_printf(m, "%s=%lu", stat->name, nr);
3099 for_each_node_state(nid, N_MEMORY) {
3100 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3101 stat->lru_mask);
3102 seq_printf(m, " N%d=%lu", nid, nr);
3103 }
3104 seq_putc(m, '\n');
406eb0c9 3105 }
406eb0c9 3106
071aee13
YH
3107 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108 struct mem_cgroup *iter;
3109
3110 nr = 0;
3111 for_each_mem_cgroup_tree(iter, memcg)
3112 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3113 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3114 for_each_node_state(nid, N_MEMORY) {
3115 nr = 0;
3116 for_each_mem_cgroup_tree(iter, memcg)
3117 nr += mem_cgroup_node_nr_lru_pages(
3118 iter, nid, stat->lru_mask);
3119 seq_printf(m, " N%d=%lu", nid, nr);
3120 }
3121 seq_putc(m, '\n');
406eb0c9 3122 }
406eb0c9 3123
406eb0c9
YH
3124 return 0;
3125}
3126#endif /* CONFIG_NUMA */
3127
2da8ca82 3128static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3129{
2da8ca82 3130 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3131 unsigned long memory, memsw;
af7c4b0e
JW
3132 struct mem_cgroup *mi;
3133 unsigned int i;
406eb0c9 3134
0ca44b14
GT
3135 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3136 MEM_CGROUP_STAT_NSTATS);
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3138 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3140
af7c4b0e 3141 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3142 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3143 continue;
484ebb3b 3144 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3145 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3146 }
7b854121 3147
af7c4b0e
JW
3148 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3149 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3150 mem_cgroup_read_events(memcg, i));
3151
3152 for (i = 0; i < NR_LRU_LISTS; i++)
3153 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3154 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3155
14067bb3 3156 /* Hierarchical information */
3e32cb2e
JW
3157 memory = memsw = PAGE_COUNTER_MAX;
3158 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3159 memory = min(memory, mi->memory.limit);
3160 memsw = min(memsw, mi->memsw.limit);
fee7b548 3161 }
3e32cb2e
JW
3162 seq_printf(m, "hierarchical_memory_limit %llu\n",
3163 (u64)memory * PAGE_SIZE);
7941d214 3164 if (do_memsw_account())
3e32cb2e
JW
3165 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3166 (u64)memsw * PAGE_SIZE);
7f016ee8 3167
af7c4b0e 3168 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3169 unsigned long long val = 0;
af7c4b0e 3170
7941d214 3171 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3172 continue;
af7c4b0e
JW
3173 for_each_mem_cgroup_tree(mi, memcg)
3174 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3175 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3176 }
3177
3178 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3179 unsigned long long val = 0;
3180
3181 for_each_mem_cgroup_tree(mi, memcg)
3182 val += mem_cgroup_read_events(mi, i);
3183 seq_printf(m, "total_%s %llu\n",
3184 mem_cgroup_events_names[i], val);
3185 }
3186
3187 for (i = 0; i < NR_LRU_LISTS; i++) {
3188 unsigned long long val = 0;
3189
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3193 }
14067bb3 3194
7f016ee8 3195#ifdef CONFIG_DEBUG_VM
7f016ee8 3196 {
ef8f2327
MG
3197 pg_data_t *pgdat;
3198 struct mem_cgroup_per_node *mz;
89abfab1 3199 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3200 unsigned long recent_rotated[2] = {0, 0};
3201 unsigned long recent_scanned[2] = {0, 0};
3202
ef8f2327
MG
3203 for_each_online_pgdat(pgdat) {
3204 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3205 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3206
ef8f2327
MG
3207 recent_rotated[0] += rstat->recent_rotated[0];
3208 recent_rotated[1] += rstat->recent_rotated[1];
3209 recent_scanned[0] += rstat->recent_scanned[0];
3210 recent_scanned[1] += rstat->recent_scanned[1];
3211 }
78ccf5b5
JW
3212 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3213 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3214 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3215 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3216 }
3217#endif
3218
d2ceb9b7
KH
3219 return 0;
3220}
3221
182446d0
TH
3222static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3223 struct cftype *cft)
a7885eb8 3224{
182446d0 3225 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3226
1f4c025b 3227 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3228}
3229
182446d0
TH
3230static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3231 struct cftype *cft, u64 val)
a7885eb8 3232{
182446d0 3233 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3234
3dae7fec 3235 if (val > 100)
a7885eb8
KM
3236 return -EINVAL;
3237
14208b0e 3238 if (css->parent)
3dae7fec
JW
3239 memcg->swappiness = val;
3240 else
3241 vm_swappiness = val;
068b38c1 3242
a7885eb8
KM
3243 return 0;
3244}
3245
2e72b634
KS
3246static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3247{
3248 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3249 unsigned long usage;
2e72b634
KS
3250 int i;
3251
3252 rcu_read_lock();
3253 if (!swap)
2c488db2 3254 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3255 else
2c488db2 3256 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3257
3258 if (!t)
3259 goto unlock;
3260
ce00a967 3261 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3262
3263 /*
748dad36 3264 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3265 * If it's not true, a threshold was crossed after last
3266 * call of __mem_cgroup_threshold().
3267 */
5407a562 3268 i = t->current_threshold;
2e72b634
KS
3269
3270 /*
3271 * Iterate backward over array of thresholds starting from
3272 * current_threshold and check if a threshold is crossed.
3273 * If none of thresholds below usage is crossed, we read
3274 * only one element of the array here.
3275 */
3276 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3277 eventfd_signal(t->entries[i].eventfd, 1);
3278
3279 /* i = current_threshold + 1 */
3280 i++;
3281
3282 /*
3283 * Iterate forward over array of thresholds starting from
3284 * current_threshold+1 and check if a threshold is crossed.
3285 * If none of thresholds above usage is crossed, we read
3286 * only one element of the array here.
3287 */
3288 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3289 eventfd_signal(t->entries[i].eventfd, 1);
3290
3291 /* Update current_threshold */
5407a562 3292 t->current_threshold = i - 1;
2e72b634
KS
3293unlock:
3294 rcu_read_unlock();
3295}
3296
3297static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3298{
ad4ca5f4
KS
3299 while (memcg) {
3300 __mem_cgroup_threshold(memcg, false);
7941d214 3301 if (do_memsw_account())
ad4ca5f4
KS
3302 __mem_cgroup_threshold(memcg, true);
3303
3304 memcg = parent_mem_cgroup(memcg);
3305 }
2e72b634
KS
3306}
3307
3308static int compare_thresholds(const void *a, const void *b)
3309{
3310 const struct mem_cgroup_threshold *_a = a;
3311 const struct mem_cgroup_threshold *_b = b;
3312
2bff24a3
GT
3313 if (_a->threshold > _b->threshold)
3314 return 1;
3315
3316 if (_a->threshold < _b->threshold)
3317 return -1;
3318
3319 return 0;
2e72b634
KS
3320}
3321
c0ff4b85 3322static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3323{
3324 struct mem_cgroup_eventfd_list *ev;
3325
2bcf2e92
MH
3326 spin_lock(&memcg_oom_lock);
3327
c0ff4b85 3328 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3329 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3330
3331 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3332 return 0;
3333}
3334
c0ff4b85 3335static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3336{
7d74b06f
KH
3337 struct mem_cgroup *iter;
3338
c0ff4b85 3339 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3340 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3341}
3342
59b6f873 3343static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3344 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3345{
2c488db2
KS
3346 struct mem_cgroup_thresholds *thresholds;
3347 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3348 unsigned long threshold;
3349 unsigned long usage;
2c488db2 3350 int i, size, ret;
2e72b634 3351
650c5e56 3352 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3353 if (ret)
3354 return ret;
3355
3356 mutex_lock(&memcg->thresholds_lock);
2c488db2 3357
05b84301 3358 if (type == _MEM) {
2c488db2 3359 thresholds = &memcg->thresholds;
ce00a967 3360 usage = mem_cgroup_usage(memcg, false);
05b84301 3361 } else if (type == _MEMSWAP) {
2c488db2 3362 thresholds = &memcg->memsw_thresholds;
ce00a967 3363 usage = mem_cgroup_usage(memcg, true);
05b84301 3364 } else
2e72b634
KS
3365 BUG();
3366
2e72b634 3367 /* Check if a threshold crossed before adding a new one */
2c488db2 3368 if (thresholds->primary)
2e72b634
KS
3369 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3370
2c488db2 3371 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3372
3373 /* Allocate memory for new array of thresholds */
2c488db2 3374 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3375 GFP_KERNEL);
2c488db2 3376 if (!new) {
2e72b634
KS
3377 ret = -ENOMEM;
3378 goto unlock;
3379 }
2c488db2 3380 new->size = size;
2e72b634
KS
3381
3382 /* Copy thresholds (if any) to new array */
2c488db2
KS
3383 if (thresholds->primary) {
3384 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3385 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3386 }
3387
2e72b634 3388 /* Add new threshold */
2c488db2
KS
3389 new->entries[size - 1].eventfd = eventfd;
3390 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3391
3392 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3393 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3394 compare_thresholds, NULL);
3395
3396 /* Find current threshold */
2c488db2 3397 new->current_threshold = -1;
2e72b634 3398 for (i = 0; i < size; i++) {
748dad36 3399 if (new->entries[i].threshold <= usage) {
2e72b634 3400 /*
2c488db2
KS
3401 * new->current_threshold will not be used until
3402 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3403 * it here.
3404 */
2c488db2 3405 ++new->current_threshold;
748dad36
SZ
3406 } else
3407 break;
2e72b634
KS
3408 }
3409
2c488db2
KS
3410 /* Free old spare buffer and save old primary buffer as spare */
3411 kfree(thresholds->spare);
3412 thresholds->spare = thresholds->primary;
3413
3414 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3415
907860ed 3416 /* To be sure that nobody uses thresholds */
2e72b634
KS
3417 synchronize_rcu();
3418
2e72b634
KS
3419unlock:
3420 mutex_unlock(&memcg->thresholds_lock);
3421
3422 return ret;
3423}
3424
59b6f873 3425static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3426 struct eventfd_ctx *eventfd, const char *args)
3427{
59b6f873 3428 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3429}
3430
59b6f873 3431static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3432 struct eventfd_ctx *eventfd, const char *args)
3433{
59b6f873 3434 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3435}
3436
59b6f873 3437static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3438 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3439{
2c488db2
KS
3440 struct mem_cgroup_thresholds *thresholds;
3441 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3442 unsigned long usage;
2c488db2 3443 int i, j, size;
2e72b634
KS
3444
3445 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3446
3447 if (type == _MEM) {
2c488db2 3448 thresholds = &memcg->thresholds;
ce00a967 3449 usage = mem_cgroup_usage(memcg, false);
05b84301 3450 } else if (type == _MEMSWAP) {
2c488db2 3451 thresholds = &memcg->memsw_thresholds;
ce00a967 3452 usage = mem_cgroup_usage(memcg, true);
05b84301 3453 } else
2e72b634
KS
3454 BUG();
3455
371528ca
AV
3456 if (!thresholds->primary)
3457 goto unlock;
3458
2e72b634
KS
3459 /* Check if a threshold crossed before removing */
3460 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3461
3462 /* Calculate new number of threshold */
2c488db2
KS
3463 size = 0;
3464 for (i = 0; i < thresholds->primary->size; i++) {
3465 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3466 size++;
3467 }
3468
2c488db2 3469 new = thresholds->spare;
907860ed 3470
2e72b634
KS
3471 /* Set thresholds array to NULL if we don't have thresholds */
3472 if (!size) {
2c488db2
KS
3473 kfree(new);
3474 new = NULL;
907860ed 3475 goto swap_buffers;
2e72b634
KS
3476 }
3477
2c488db2 3478 new->size = size;
2e72b634
KS
3479
3480 /* Copy thresholds and find current threshold */
2c488db2
KS
3481 new->current_threshold = -1;
3482 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3483 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3484 continue;
3485
2c488db2 3486 new->entries[j] = thresholds->primary->entries[i];
748dad36 3487 if (new->entries[j].threshold <= usage) {
2e72b634 3488 /*
2c488db2 3489 * new->current_threshold will not be used
2e72b634
KS
3490 * until rcu_assign_pointer(), so it's safe to increment
3491 * it here.
3492 */
2c488db2 3493 ++new->current_threshold;
2e72b634
KS
3494 }
3495 j++;
3496 }
3497
907860ed 3498swap_buffers:
2c488db2
KS
3499 /* Swap primary and spare array */
3500 thresholds->spare = thresholds->primary;
8c757763 3501
2c488db2 3502 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3503
907860ed 3504 /* To be sure that nobody uses thresholds */
2e72b634 3505 synchronize_rcu();
6611d8d7
MC
3506
3507 /* If all events are unregistered, free the spare array */
3508 if (!new) {
3509 kfree(thresholds->spare);
3510 thresholds->spare = NULL;
3511 }
371528ca 3512unlock:
2e72b634 3513 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3514}
c1e862c1 3515
59b6f873 3516static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3517 struct eventfd_ctx *eventfd)
3518{
59b6f873 3519 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3520}
3521
59b6f873 3522static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3523 struct eventfd_ctx *eventfd)
3524{
59b6f873 3525 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3526}
3527
59b6f873 3528static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3529 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3530{
9490ff27 3531 struct mem_cgroup_eventfd_list *event;
9490ff27 3532
9490ff27
KH
3533 event = kmalloc(sizeof(*event), GFP_KERNEL);
3534 if (!event)
3535 return -ENOMEM;
3536
1af8efe9 3537 spin_lock(&memcg_oom_lock);
9490ff27
KH
3538
3539 event->eventfd = eventfd;
3540 list_add(&event->list, &memcg->oom_notify);
3541
3542 /* already in OOM ? */
c2b42d3c 3543 if (memcg->under_oom)
9490ff27 3544 eventfd_signal(eventfd, 1);
1af8efe9 3545 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3546
3547 return 0;
3548}
3549
59b6f873 3550static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3551 struct eventfd_ctx *eventfd)
9490ff27 3552{
9490ff27 3553 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3554
1af8efe9 3555 spin_lock(&memcg_oom_lock);
9490ff27 3556
c0ff4b85 3557 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3558 if (ev->eventfd == eventfd) {
3559 list_del(&ev->list);
3560 kfree(ev);
3561 }
3562 }
3563
1af8efe9 3564 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3565}
3566
2da8ca82 3567static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3568{
2da8ca82 3569 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3570
791badbd 3571 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3572 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3573 return 0;
3574}
3575
182446d0 3576static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3577 struct cftype *cft, u64 val)
3578{
182446d0 3579 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3580
3581 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3582 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3583 return -EINVAL;
3584
c0ff4b85 3585 memcg->oom_kill_disable = val;
4d845ebf 3586 if (!val)
c0ff4b85 3587 memcg_oom_recover(memcg);
3dae7fec 3588
3c11ecf4
KH
3589 return 0;
3590}
3591
52ebea74
TH
3592#ifdef CONFIG_CGROUP_WRITEBACK
3593
3594struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3595{
3596 return &memcg->cgwb_list;
3597}
3598
841710aa
TH
3599static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3600{
3601 return wb_domain_init(&memcg->cgwb_domain, gfp);
3602}
3603
3604static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3605{
3606 wb_domain_exit(&memcg->cgwb_domain);
3607}
3608
2529bb3a
TH
3609static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3610{
3611 wb_domain_size_changed(&memcg->cgwb_domain);
3612}
3613
841710aa
TH
3614struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3615{
3616 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3617
3618 if (!memcg->css.parent)
3619 return NULL;
3620
3621 return &memcg->cgwb_domain;
3622}
3623
c2aa723a
TH
3624/**
3625 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3626 * @wb: bdi_writeback in question
c5edf9cd
TH
3627 * @pfilepages: out parameter for number of file pages
3628 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3629 * @pdirty: out parameter for number of dirty pages
3630 * @pwriteback: out parameter for number of pages under writeback
3631 *
c5edf9cd
TH
3632 * Determine the numbers of file, headroom, dirty, and writeback pages in
3633 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3634 * is a bit more involved.
c2aa723a 3635 *
c5edf9cd
TH
3636 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3637 * headroom is calculated as the lowest headroom of itself and the
3638 * ancestors. Note that this doesn't consider the actual amount of
3639 * available memory in the system. The caller should further cap
3640 * *@pheadroom accordingly.
c2aa723a 3641 */
c5edf9cd
TH
3642void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3643 unsigned long *pheadroom, unsigned long *pdirty,
3644 unsigned long *pwriteback)
c2aa723a
TH
3645{
3646 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3647 struct mem_cgroup *parent;
c2aa723a
TH
3648
3649 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3650
3651 /* this should eventually include NR_UNSTABLE_NFS */
3652 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3653 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3654 (1 << LRU_ACTIVE_FILE));
3655 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3656
c2aa723a
TH
3657 while ((parent = parent_mem_cgroup(memcg))) {
3658 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3659 unsigned long used = page_counter_read(&memcg->memory);
3660
c5edf9cd 3661 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3662 memcg = parent;
3663 }
c2aa723a
TH
3664}
3665
841710aa
TH
3666#else /* CONFIG_CGROUP_WRITEBACK */
3667
3668static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3669{
3670 return 0;
3671}
3672
3673static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3674{
3675}
3676
2529bb3a
TH
3677static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3678{
3679}
3680
52ebea74
TH
3681#endif /* CONFIG_CGROUP_WRITEBACK */
3682
3bc942f3
TH
3683/*
3684 * DO NOT USE IN NEW FILES.
3685 *
3686 * "cgroup.event_control" implementation.
3687 *
3688 * This is way over-engineered. It tries to support fully configurable
3689 * events for each user. Such level of flexibility is completely
3690 * unnecessary especially in the light of the planned unified hierarchy.
3691 *
3692 * Please deprecate this and replace with something simpler if at all
3693 * possible.
3694 */
3695
79bd9814
TH
3696/*
3697 * Unregister event and free resources.
3698 *
3699 * Gets called from workqueue.
3700 */
3bc942f3 3701static void memcg_event_remove(struct work_struct *work)
79bd9814 3702{
3bc942f3
TH
3703 struct mem_cgroup_event *event =
3704 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3705 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3706
3707 remove_wait_queue(event->wqh, &event->wait);
3708
59b6f873 3709 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3710
3711 /* Notify userspace the event is going away. */
3712 eventfd_signal(event->eventfd, 1);
3713
3714 eventfd_ctx_put(event->eventfd);
3715 kfree(event);
59b6f873 3716 css_put(&memcg->css);
79bd9814
TH
3717}
3718
3719/*
3720 * Gets called on POLLHUP on eventfd when user closes it.
3721 *
3722 * Called with wqh->lock held and interrupts disabled.
3723 */
3bc942f3
TH
3724static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3725 int sync, void *key)
79bd9814 3726{
3bc942f3
TH
3727 struct mem_cgroup_event *event =
3728 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3729 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3730 unsigned long flags = (unsigned long)key;
3731
3732 if (flags & POLLHUP) {
3733 /*
3734 * If the event has been detached at cgroup removal, we
3735 * can simply return knowing the other side will cleanup
3736 * for us.
3737 *
3738 * We can't race against event freeing since the other
3739 * side will require wqh->lock via remove_wait_queue(),
3740 * which we hold.
3741 */
fba94807 3742 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3743 if (!list_empty(&event->list)) {
3744 list_del_init(&event->list);
3745 /*
3746 * We are in atomic context, but cgroup_event_remove()
3747 * may sleep, so we have to call it in workqueue.
3748 */
3749 schedule_work(&event->remove);
3750 }
fba94807 3751 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3752 }
3753
3754 return 0;
3755}
3756
3bc942f3 3757static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3758 wait_queue_head_t *wqh, poll_table *pt)
3759{
3bc942f3
TH
3760 struct mem_cgroup_event *event =
3761 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3762
3763 event->wqh = wqh;
3764 add_wait_queue(wqh, &event->wait);
3765}
3766
3767/*
3bc942f3
TH
3768 * DO NOT USE IN NEW FILES.
3769 *
79bd9814
TH
3770 * Parse input and register new cgroup event handler.
3771 *
3772 * Input must be in format '<event_fd> <control_fd> <args>'.
3773 * Interpretation of args is defined by control file implementation.
3774 */
451af504
TH
3775static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3776 char *buf, size_t nbytes, loff_t off)
79bd9814 3777{
451af504 3778 struct cgroup_subsys_state *css = of_css(of);
fba94807 3779 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3780 struct mem_cgroup_event *event;
79bd9814
TH
3781 struct cgroup_subsys_state *cfile_css;
3782 unsigned int efd, cfd;
3783 struct fd efile;
3784 struct fd cfile;
fba94807 3785 const char *name;
79bd9814
TH
3786 char *endp;
3787 int ret;
3788
451af504
TH
3789 buf = strstrip(buf);
3790
3791 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3792 if (*endp != ' ')
3793 return -EINVAL;
451af504 3794 buf = endp + 1;
79bd9814 3795
451af504 3796 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3797 if ((*endp != ' ') && (*endp != '\0'))
3798 return -EINVAL;
451af504 3799 buf = endp + 1;
79bd9814
TH
3800
3801 event = kzalloc(sizeof(*event), GFP_KERNEL);
3802 if (!event)
3803 return -ENOMEM;
3804
59b6f873 3805 event->memcg = memcg;
79bd9814 3806 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3807 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3808 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3809 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3810
3811 efile = fdget(efd);
3812 if (!efile.file) {
3813 ret = -EBADF;
3814 goto out_kfree;
3815 }
3816
3817 event->eventfd = eventfd_ctx_fileget(efile.file);
3818 if (IS_ERR(event->eventfd)) {
3819 ret = PTR_ERR(event->eventfd);
3820 goto out_put_efile;
3821 }
3822
3823 cfile = fdget(cfd);
3824 if (!cfile.file) {
3825 ret = -EBADF;
3826 goto out_put_eventfd;
3827 }
3828
3829 /* the process need read permission on control file */
3830 /* AV: shouldn't we check that it's been opened for read instead? */
3831 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3832 if (ret < 0)
3833 goto out_put_cfile;
3834
fba94807
TH
3835 /*
3836 * Determine the event callbacks and set them in @event. This used
3837 * to be done via struct cftype but cgroup core no longer knows
3838 * about these events. The following is crude but the whole thing
3839 * is for compatibility anyway.
3bc942f3
TH
3840 *
3841 * DO NOT ADD NEW FILES.
fba94807 3842 */
b583043e 3843 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3844
3845 if (!strcmp(name, "memory.usage_in_bytes")) {
3846 event->register_event = mem_cgroup_usage_register_event;
3847 event->unregister_event = mem_cgroup_usage_unregister_event;
3848 } else if (!strcmp(name, "memory.oom_control")) {
3849 event->register_event = mem_cgroup_oom_register_event;
3850 event->unregister_event = mem_cgroup_oom_unregister_event;
3851 } else if (!strcmp(name, "memory.pressure_level")) {
3852 event->register_event = vmpressure_register_event;
3853 event->unregister_event = vmpressure_unregister_event;
3854 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3855 event->register_event = memsw_cgroup_usage_register_event;
3856 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3857 } else {
3858 ret = -EINVAL;
3859 goto out_put_cfile;
3860 }
3861
79bd9814 3862 /*
b5557c4c
TH
3863 * Verify @cfile should belong to @css. Also, remaining events are
3864 * automatically removed on cgroup destruction but the removal is
3865 * asynchronous, so take an extra ref on @css.
79bd9814 3866 */
b583043e 3867 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3868 &memory_cgrp_subsys);
79bd9814 3869 ret = -EINVAL;
5a17f543 3870 if (IS_ERR(cfile_css))
79bd9814 3871 goto out_put_cfile;
5a17f543
TH
3872 if (cfile_css != css) {
3873 css_put(cfile_css);
79bd9814 3874 goto out_put_cfile;
5a17f543 3875 }
79bd9814 3876
451af504 3877 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3878 if (ret)
3879 goto out_put_css;
3880
3881 efile.file->f_op->poll(efile.file, &event->pt);
3882
fba94807
TH
3883 spin_lock(&memcg->event_list_lock);
3884 list_add(&event->list, &memcg->event_list);
3885 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3886
3887 fdput(cfile);
3888 fdput(efile);
3889
451af504 3890 return nbytes;
79bd9814
TH
3891
3892out_put_css:
b5557c4c 3893 css_put(css);
79bd9814
TH
3894out_put_cfile:
3895 fdput(cfile);
3896out_put_eventfd:
3897 eventfd_ctx_put(event->eventfd);
3898out_put_efile:
3899 fdput(efile);
3900out_kfree:
3901 kfree(event);
3902
3903 return ret;
3904}
3905
241994ed 3906static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3907 {
0eea1030 3908 .name = "usage_in_bytes",
8c7c6e34 3909 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3910 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3911 },
c84872e1
PE
3912 {
3913 .name = "max_usage_in_bytes",
8c7c6e34 3914 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3915 .write = mem_cgroup_reset,
791badbd 3916 .read_u64 = mem_cgroup_read_u64,
c84872e1 3917 },
8cdea7c0 3918 {
0eea1030 3919 .name = "limit_in_bytes",
8c7c6e34 3920 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3921 .write = mem_cgroup_write,
791badbd 3922 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3923 },
296c81d8
BS
3924 {
3925 .name = "soft_limit_in_bytes",
3926 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3927 .write = mem_cgroup_write,
791badbd 3928 .read_u64 = mem_cgroup_read_u64,
296c81d8 3929 },
8cdea7c0
BS
3930 {
3931 .name = "failcnt",
8c7c6e34 3932 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3933 .write = mem_cgroup_reset,
791badbd 3934 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3935 },
d2ceb9b7
KH
3936 {
3937 .name = "stat",
2da8ca82 3938 .seq_show = memcg_stat_show,
d2ceb9b7 3939 },
c1e862c1
KH
3940 {
3941 .name = "force_empty",
6770c64e 3942 .write = mem_cgroup_force_empty_write,
c1e862c1 3943 },
18f59ea7
BS
3944 {
3945 .name = "use_hierarchy",
3946 .write_u64 = mem_cgroup_hierarchy_write,
3947 .read_u64 = mem_cgroup_hierarchy_read,
3948 },
79bd9814 3949 {
3bc942f3 3950 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3951 .write = memcg_write_event_control,
7dbdb199 3952 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3953 },
a7885eb8
KM
3954 {
3955 .name = "swappiness",
3956 .read_u64 = mem_cgroup_swappiness_read,
3957 .write_u64 = mem_cgroup_swappiness_write,
3958 },
7dc74be0
DN
3959 {
3960 .name = "move_charge_at_immigrate",
3961 .read_u64 = mem_cgroup_move_charge_read,
3962 .write_u64 = mem_cgroup_move_charge_write,
3963 },
9490ff27
KH
3964 {
3965 .name = "oom_control",
2da8ca82 3966 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3967 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3968 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3969 },
70ddf637
AV
3970 {
3971 .name = "pressure_level",
70ddf637 3972 },
406eb0c9
YH
3973#ifdef CONFIG_NUMA
3974 {
3975 .name = "numa_stat",
2da8ca82 3976 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3977 },
3978#endif
510fc4e1
GC
3979 {
3980 .name = "kmem.limit_in_bytes",
3981 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3982 .write = mem_cgroup_write,
791badbd 3983 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3984 },
3985 {
3986 .name = "kmem.usage_in_bytes",
3987 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 3988 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3989 },
3990 {
3991 .name = "kmem.failcnt",
3992 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 3993 .write = mem_cgroup_reset,
791badbd 3994 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3995 },
3996 {
3997 .name = "kmem.max_usage_in_bytes",
3998 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 3999 .write = mem_cgroup_reset,
791badbd 4000 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4001 },
749c5415
GC
4002#ifdef CONFIG_SLABINFO
4003 {
4004 .name = "kmem.slabinfo",
b047501c
VD
4005 .seq_start = slab_start,
4006 .seq_next = slab_next,
4007 .seq_stop = slab_stop,
4008 .seq_show = memcg_slab_show,
749c5415
GC
4009 },
4010#endif
d55f90bf
VD
4011 {
4012 .name = "kmem.tcp.limit_in_bytes",
4013 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4014 .write = mem_cgroup_write,
4015 .read_u64 = mem_cgroup_read_u64,
4016 },
4017 {
4018 .name = "kmem.tcp.usage_in_bytes",
4019 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4020 .read_u64 = mem_cgroup_read_u64,
4021 },
4022 {
4023 .name = "kmem.tcp.failcnt",
4024 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4025 .write = mem_cgroup_reset,
4026 .read_u64 = mem_cgroup_read_u64,
4027 },
4028 {
4029 .name = "kmem.tcp.max_usage_in_bytes",
4030 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4031 .write = mem_cgroup_reset,
4032 .read_u64 = mem_cgroup_read_u64,
4033 },
6bc10349 4034 { }, /* terminate */
af36f906 4035};
8c7c6e34 4036
73f576c0
JW
4037/*
4038 * Private memory cgroup IDR
4039 *
4040 * Swap-out records and page cache shadow entries need to store memcg
4041 * references in constrained space, so we maintain an ID space that is
4042 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4043 * memory-controlled cgroups to 64k.
4044 *
4045 * However, there usually are many references to the oflline CSS after
4046 * the cgroup has been destroyed, such as page cache or reclaimable
4047 * slab objects, that don't need to hang on to the ID. We want to keep
4048 * those dead CSS from occupying IDs, or we might quickly exhaust the
4049 * relatively small ID space and prevent the creation of new cgroups
4050 * even when there are much fewer than 64k cgroups - possibly none.
4051 *
4052 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4053 * be freed and recycled when it's no longer needed, which is usually
4054 * when the CSS is offlined.
4055 *
4056 * The only exception to that are records of swapped out tmpfs/shmem
4057 * pages that need to be attributed to live ancestors on swapin. But
4058 * those references are manageable from userspace.
4059 */
4060
4061static DEFINE_IDR(mem_cgroup_idr);
4062
615d66c3 4063static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4064{
58fa2a55 4065 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4066 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4067}
4068
615d66c3 4069static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4070{
58fa2a55 4071 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4072 if (atomic_sub_and_test(n, &memcg->id.ref)) {
73f576c0
JW
4073 idr_remove(&mem_cgroup_idr, memcg->id.id);
4074 memcg->id.id = 0;
4075
4076 /* Memcg ID pins CSS */
4077 css_put(&memcg->css);
4078 }
4079}
4080
615d66c3
VD
4081static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4082{
4083 mem_cgroup_id_get_many(memcg, 1);
4084}
4085
4086static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4087{
4088 mem_cgroup_id_put_many(memcg, 1);
4089}
4090
73f576c0
JW
4091/**
4092 * mem_cgroup_from_id - look up a memcg from a memcg id
4093 * @id: the memcg id to look up
4094 *
4095 * Caller must hold rcu_read_lock().
4096 */
4097struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4098{
4099 WARN_ON_ONCE(!rcu_read_lock_held());
4100 return idr_find(&mem_cgroup_idr, id);
4101}
4102
ef8f2327 4103static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4104{
4105 struct mem_cgroup_per_node *pn;
ef8f2327 4106 int tmp = node;
1ecaab2b
KH
4107 /*
4108 * This routine is called against possible nodes.
4109 * But it's BUG to call kmalloc() against offline node.
4110 *
4111 * TODO: this routine can waste much memory for nodes which will
4112 * never be onlined. It's better to use memory hotplug callback
4113 * function.
4114 */
41e3355d
KH
4115 if (!node_state(node, N_NORMAL_MEMORY))
4116 tmp = -1;
17295c88 4117 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4118 if (!pn)
4119 return 1;
1ecaab2b 4120
ef8f2327
MG
4121 lruvec_init(&pn->lruvec);
4122 pn->usage_in_excess = 0;
4123 pn->on_tree = false;
4124 pn->memcg = memcg;
4125
54f72fe0 4126 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4127 return 0;
4128}
4129
ef8f2327 4130static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4131{
54f72fe0 4132 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4133}
4134
0b8f73e1 4135static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4136{
c8b2a36f 4137 int node;
59927fb9 4138
0b8f73e1 4139 memcg_wb_domain_exit(memcg);
c8b2a36f 4140 for_each_node(node)
ef8f2327 4141 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4142 free_percpu(memcg->stat);
8ff69e2c 4143 kfree(memcg);
59927fb9 4144}
3afe36b1 4145
0b8f73e1 4146static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4147{
d142e3e6 4148 struct mem_cgroup *memcg;
0b8f73e1 4149 size_t size;
6d12e2d8 4150 int node;
8cdea7c0 4151
0b8f73e1
JW
4152 size = sizeof(struct mem_cgroup);
4153 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4154
4155 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4156 if (!memcg)
0b8f73e1
JW
4157 return NULL;
4158
73f576c0
JW
4159 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4160 1, MEM_CGROUP_ID_MAX,
4161 GFP_KERNEL);
4162 if (memcg->id.id < 0)
4163 goto fail;
4164
0b8f73e1
JW
4165 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4166 if (!memcg->stat)
4167 goto fail;
78fb7466 4168
3ed28fa1 4169 for_each_node(node)
ef8f2327 4170 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4171 goto fail;
f64c3f54 4172
0b8f73e1
JW
4173 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4174 goto fail;
28dbc4b6 4175
f7e1cb6e 4176 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4177 memcg->last_scanned_node = MAX_NUMNODES;
4178 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4179 mutex_init(&memcg->thresholds_lock);
4180 spin_lock_init(&memcg->move_lock);
70ddf637 4181 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4182 INIT_LIST_HEAD(&memcg->event_list);
4183 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4184 memcg->socket_pressure = jiffies;
127424c8 4185#ifndef CONFIG_SLOB
900a38f0 4186 memcg->kmemcg_id = -1;
900a38f0 4187#endif
52ebea74
TH
4188#ifdef CONFIG_CGROUP_WRITEBACK
4189 INIT_LIST_HEAD(&memcg->cgwb_list);
4190#endif
73f576c0 4191 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4192 return memcg;
4193fail:
73f576c0
JW
4194 if (memcg->id.id > 0)
4195 idr_remove(&mem_cgroup_idr, memcg->id.id);
0b8f73e1
JW
4196 mem_cgroup_free(memcg);
4197 return NULL;
d142e3e6
GC
4198}
4199
0b8f73e1
JW
4200static struct cgroup_subsys_state * __ref
4201mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4202{
0b8f73e1
JW
4203 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4204 struct mem_cgroup *memcg;
4205 long error = -ENOMEM;
d142e3e6 4206
0b8f73e1
JW
4207 memcg = mem_cgroup_alloc();
4208 if (!memcg)
4209 return ERR_PTR(error);
d142e3e6 4210
0b8f73e1
JW
4211 memcg->high = PAGE_COUNTER_MAX;
4212 memcg->soft_limit = PAGE_COUNTER_MAX;
4213 if (parent) {
4214 memcg->swappiness = mem_cgroup_swappiness(parent);
4215 memcg->oom_kill_disable = parent->oom_kill_disable;
4216 }
4217 if (parent && parent->use_hierarchy) {
4218 memcg->use_hierarchy = true;
3e32cb2e 4219 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4220 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4221 page_counter_init(&memcg->memsw, &parent->memsw);
4222 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4223 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4224 } else {
3e32cb2e 4225 page_counter_init(&memcg->memory, NULL);
37e84351 4226 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4227 page_counter_init(&memcg->memsw, NULL);
4228 page_counter_init(&memcg->kmem, NULL);
0db15298 4229 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4230 /*
4231 * Deeper hierachy with use_hierarchy == false doesn't make
4232 * much sense so let cgroup subsystem know about this
4233 * unfortunate state in our controller.
4234 */
d142e3e6 4235 if (parent != root_mem_cgroup)
073219e9 4236 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4237 }
d6441637 4238
0b8f73e1
JW
4239 /* The following stuff does not apply to the root */
4240 if (!parent) {
4241 root_mem_cgroup = memcg;
4242 return &memcg->css;
4243 }
4244
b313aeee 4245 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4246 if (error)
4247 goto fail;
127424c8 4248
f7e1cb6e 4249 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4250 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4251
0b8f73e1
JW
4252 return &memcg->css;
4253fail:
4254 mem_cgroup_free(memcg);
ea3a9645 4255 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4256}
4257
73f576c0 4258static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4259{
58fa2a55
VD
4260 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4261
73f576c0 4262 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4263 atomic_set(&memcg->id.ref, 1);
73f576c0 4264 css_get(css);
2f7dd7a4 4265 return 0;
8cdea7c0
BS
4266}
4267
eb95419b 4268static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4269{
eb95419b 4270 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4271 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4272
4273 /*
4274 * Unregister events and notify userspace.
4275 * Notify userspace about cgroup removing only after rmdir of cgroup
4276 * directory to avoid race between userspace and kernelspace.
4277 */
fba94807
TH
4278 spin_lock(&memcg->event_list_lock);
4279 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4280 list_del_init(&event->list);
4281 schedule_work(&event->remove);
4282 }
fba94807 4283 spin_unlock(&memcg->event_list_lock);
ec64f515 4284
567e9ab2 4285 memcg_offline_kmem(memcg);
52ebea74 4286 wb_memcg_offline(memcg);
73f576c0
JW
4287
4288 mem_cgroup_id_put(memcg);
df878fb0
KH
4289}
4290
6df38689
VD
4291static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4292{
4293 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4294
4295 invalidate_reclaim_iterators(memcg);
4296}
4297
eb95419b 4298static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4299{
eb95419b 4300 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4301
f7e1cb6e 4302 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4303 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4304
0db15298 4305 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4306 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4307
0b8f73e1
JW
4308 vmpressure_cleanup(&memcg->vmpressure);
4309 cancel_work_sync(&memcg->high_work);
4310 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4311 memcg_free_kmem(memcg);
0b8f73e1 4312 mem_cgroup_free(memcg);
8cdea7c0
BS
4313}
4314
1ced953b
TH
4315/**
4316 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4317 * @css: the target css
4318 *
4319 * Reset the states of the mem_cgroup associated with @css. This is
4320 * invoked when the userland requests disabling on the default hierarchy
4321 * but the memcg is pinned through dependency. The memcg should stop
4322 * applying policies and should revert to the vanilla state as it may be
4323 * made visible again.
4324 *
4325 * The current implementation only resets the essential configurations.
4326 * This needs to be expanded to cover all the visible parts.
4327 */
4328static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4329{
4330 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4331
d334c9bc
VD
4332 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4333 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4334 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4335 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4336 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4337 memcg->low = 0;
4338 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4339 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4340 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4341}
4342
02491447 4343#ifdef CONFIG_MMU
7dc74be0 4344/* Handlers for move charge at task migration. */
854ffa8d 4345static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4346{
05b84301 4347 int ret;
9476db97 4348
d0164adc
MG
4349 /* Try a single bulk charge without reclaim first, kswapd may wake */
4350 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4351 if (!ret) {
854ffa8d 4352 mc.precharge += count;
854ffa8d
DN
4353 return ret;
4354 }
9476db97 4355
3674534b 4356 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4357 while (count--) {
3674534b 4358 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4359 if (ret)
38c5d72f 4360 return ret;
854ffa8d 4361 mc.precharge++;
9476db97 4362 cond_resched();
854ffa8d 4363 }
9476db97 4364 return 0;
4ffef5fe
DN
4365}
4366
4ffef5fe
DN
4367union mc_target {
4368 struct page *page;
02491447 4369 swp_entry_t ent;
4ffef5fe
DN
4370};
4371
4ffef5fe 4372enum mc_target_type {
8d32ff84 4373 MC_TARGET_NONE = 0,
4ffef5fe 4374 MC_TARGET_PAGE,
02491447 4375 MC_TARGET_SWAP,
4ffef5fe
DN
4376};
4377
90254a65
DN
4378static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4379 unsigned long addr, pte_t ptent)
4ffef5fe 4380{
90254a65 4381 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4382
90254a65
DN
4383 if (!page || !page_mapped(page))
4384 return NULL;
4385 if (PageAnon(page)) {
1dfab5ab 4386 if (!(mc.flags & MOVE_ANON))
90254a65 4387 return NULL;
1dfab5ab
JW
4388 } else {
4389 if (!(mc.flags & MOVE_FILE))
4390 return NULL;
4391 }
90254a65
DN
4392 if (!get_page_unless_zero(page))
4393 return NULL;
4394
4395 return page;
4396}
4397
4b91355e 4398#ifdef CONFIG_SWAP
90254a65 4399static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4400 pte_t ptent, swp_entry_t *entry)
90254a65 4401{
90254a65
DN
4402 struct page *page = NULL;
4403 swp_entry_t ent = pte_to_swp_entry(ptent);
4404
1dfab5ab 4405 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4406 return NULL;
4b91355e
KH
4407 /*
4408 * Because lookup_swap_cache() updates some statistics counter,
4409 * we call find_get_page() with swapper_space directly.
4410 */
f6ab1f7f 4411 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4412 if (do_memsw_account())
90254a65
DN
4413 entry->val = ent.val;
4414
4415 return page;
4416}
4b91355e
KH
4417#else
4418static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4419 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4420{
4421 return NULL;
4422}
4423#endif
90254a65 4424
87946a72
DN
4425static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4426 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4427{
4428 struct page *page = NULL;
87946a72
DN
4429 struct address_space *mapping;
4430 pgoff_t pgoff;
4431
4432 if (!vma->vm_file) /* anonymous vma */
4433 return NULL;
1dfab5ab 4434 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4435 return NULL;
4436
87946a72 4437 mapping = vma->vm_file->f_mapping;
0661a336 4438 pgoff = linear_page_index(vma, addr);
87946a72
DN
4439
4440 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4441#ifdef CONFIG_SWAP
4442 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4443 if (shmem_mapping(mapping)) {
4444 page = find_get_entry(mapping, pgoff);
4445 if (radix_tree_exceptional_entry(page)) {
4446 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4447 if (do_memsw_account())
139b6a6f 4448 *entry = swp;
f6ab1f7f
HY
4449 page = find_get_page(swap_address_space(swp),
4450 swp_offset(swp));
139b6a6f
JW
4451 }
4452 } else
4453 page = find_get_page(mapping, pgoff);
4454#else
4455 page = find_get_page(mapping, pgoff);
aa3b1895 4456#endif
87946a72
DN
4457 return page;
4458}
4459
b1b0deab
CG
4460/**
4461 * mem_cgroup_move_account - move account of the page
4462 * @page: the page
25843c2b 4463 * @compound: charge the page as compound or small page
b1b0deab
CG
4464 * @from: mem_cgroup which the page is moved from.
4465 * @to: mem_cgroup which the page is moved to. @from != @to.
4466 *
3ac808fd 4467 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4468 *
4469 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4470 * from old cgroup.
4471 */
4472static int mem_cgroup_move_account(struct page *page,
f627c2f5 4473 bool compound,
b1b0deab
CG
4474 struct mem_cgroup *from,
4475 struct mem_cgroup *to)
4476{
4477 unsigned long flags;
f627c2f5 4478 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4479 int ret;
c4843a75 4480 bool anon;
b1b0deab
CG
4481
4482 VM_BUG_ON(from == to);
4483 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4484 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4485
4486 /*
6a93ca8f 4487 * Prevent mem_cgroup_migrate() from looking at
45637bab 4488 * page->mem_cgroup of its source page while we change it.
b1b0deab 4489 */
f627c2f5 4490 ret = -EBUSY;
b1b0deab
CG
4491 if (!trylock_page(page))
4492 goto out;
4493
4494 ret = -EINVAL;
4495 if (page->mem_cgroup != from)
4496 goto out_unlock;
4497
c4843a75
GT
4498 anon = PageAnon(page);
4499
b1b0deab
CG
4500 spin_lock_irqsave(&from->move_lock, flags);
4501
c4843a75 4502 if (!anon && page_mapped(page)) {
b1b0deab
CG
4503 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4504 nr_pages);
4505 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4506 nr_pages);
4507 }
4508
c4843a75
GT
4509 /*
4510 * move_lock grabbed above and caller set from->moving_account, so
4511 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4512 * So mapping should be stable for dirty pages.
4513 */
4514 if (!anon && PageDirty(page)) {
4515 struct address_space *mapping = page_mapping(page);
4516
4517 if (mapping_cap_account_dirty(mapping)) {
4518 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4519 nr_pages);
4520 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4521 nr_pages);
4522 }
4523 }
4524
b1b0deab
CG
4525 if (PageWriteback(page)) {
4526 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4527 nr_pages);
4528 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4529 nr_pages);
4530 }
4531
4532 /*
4533 * It is safe to change page->mem_cgroup here because the page
4534 * is referenced, charged, and isolated - we can't race with
4535 * uncharging, charging, migration, or LRU putback.
4536 */
4537
4538 /* caller should have done css_get */
4539 page->mem_cgroup = to;
4540 spin_unlock_irqrestore(&from->move_lock, flags);
4541
4542 ret = 0;
4543
4544 local_irq_disable();
f627c2f5 4545 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4546 memcg_check_events(to, page);
f627c2f5 4547 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4548 memcg_check_events(from, page);
4549 local_irq_enable();
4550out_unlock:
4551 unlock_page(page);
4552out:
4553 return ret;
4554}
4555
7cf7806c
LR
4556/**
4557 * get_mctgt_type - get target type of moving charge
4558 * @vma: the vma the pte to be checked belongs
4559 * @addr: the address corresponding to the pte to be checked
4560 * @ptent: the pte to be checked
4561 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4562 *
4563 * Returns
4564 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4565 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4566 * move charge. if @target is not NULL, the page is stored in target->page
4567 * with extra refcnt got(Callers should handle it).
4568 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4569 * target for charge migration. if @target is not NULL, the entry is stored
4570 * in target->ent.
4571 *
4572 * Called with pte lock held.
4573 */
4574
8d32ff84 4575static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4576 unsigned long addr, pte_t ptent, union mc_target *target)
4577{
4578 struct page *page = NULL;
8d32ff84 4579 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4580 swp_entry_t ent = { .val = 0 };
4581
4582 if (pte_present(ptent))
4583 page = mc_handle_present_pte(vma, addr, ptent);
4584 else if (is_swap_pte(ptent))
48406ef8 4585 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4586 else if (pte_none(ptent))
87946a72 4587 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4588
4589 if (!page && !ent.val)
8d32ff84 4590 return ret;
02491447 4591 if (page) {
02491447 4592 /*
0a31bc97 4593 * Do only loose check w/o serialization.
1306a85a 4594 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4595 * not under LRU exclusion.
02491447 4596 */
1306a85a 4597 if (page->mem_cgroup == mc.from) {
02491447
DN
4598 ret = MC_TARGET_PAGE;
4599 if (target)
4600 target->page = page;
4601 }
4602 if (!ret || !target)
4603 put_page(page);
4604 }
90254a65
DN
4605 /* There is a swap entry and a page doesn't exist or isn't charged */
4606 if (ent.val && !ret &&
34c00c31 4607 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4608 ret = MC_TARGET_SWAP;
4609 if (target)
4610 target->ent = ent;
4ffef5fe 4611 }
4ffef5fe
DN
4612 return ret;
4613}
4614
12724850
NH
4615#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4616/*
4617 * We don't consider swapping or file mapped pages because THP does not
4618 * support them for now.
4619 * Caller should make sure that pmd_trans_huge(pmd) is true.
4620 */
4621static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4622 unsigned long addr, pmd_t pmd, union mc_target *target)
4623{
4624 struct page *page = NULL;
12724850
NH
4625 enum mc_target_type ret = MC_TARGET_NONE;
4626
4627 page = pmd_page(pmd);
309381fe 4628 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4629 if (!(mc.flags & MOVE_ANON))
12724850 4630 return ret;
1306a85a 4631 if (page->mem_cgroup == mc.from) {
12724850
NH
4632 ret = MC_TARGET_PAGE;
4633 if (target) {
4634 get_page(page);
4635 target->page = page;
4636 }
4637 }
4638 return ret;
4639}
4640#else
4641static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4642 unsigned long addr, pmd_t pmd, union mc_target *target)
4643{
4644 return MC_TARGET_NONE;
4645}
4646#endif
4647
4ffef5fe
DN
4648static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4649 unsigned long addr, unsigned long end,
4650 struct mm_walk *walk)
4651{
26bcd64a 4652 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4653 pte_t *pte;
4654 spinlock_t *ptl;
4655
b6ec57f4
KS
4656 ptl = pmd_trans_huge_lock(pmd, vma);
4657 if (ptl) {
12724850
NH
4658 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4659 mc.precharge += HPAGE_PMD_NR;
bf929152 4660 spin_unlock(ptl);
1a5a9906 4661 return 0;
12724850 4662 }
03319327 4663
45f83cef
AA
4664 if (pmd_trans_unstable(pmd))
4665 return 0;
4ffef5fe
DN
4666 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4667 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4668 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4669 mc.precharge++; /* increment precharge temporarily */
4670 pte_unmap_unlock(pte - 1, ptl);
4671 cond_resched();
4672
7dc74be0
DN
4673 return 0;
4674}
4675
4ffef5fe
DN
4676static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4677{
4678 unsigned long precharge;
4ffef5fe 4679
26bcd64a
NH
4680 struct mm_walk mem_cgroup_count_precharge_walk = {
4681 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4682 .mm = mm,
4683 };
dfe076b0 4684 down_read(&mm->mmap_sem);
0247f3f4
JM
4685 walk_page_range(0, mm->highest_vm_end,
4686 &mem_cgroup_count_precharge_walk);
dfe076b0 4687 up_read(&mm->mmap_sem);
4ffef5fe
DN
4688
4689 precharge = mc.precharge;
4690 mc.precharge = 0;
4691
4692 return precharge;
4693}
4694
4ffef5fe
DN
4695static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4696{
dfe076b0
DN
4697 unsigned long precharge = mem_cgroup_count_precharge(mm);
4698
4699 VM_BUG_ON(mc.moving_task);
4700 mc.moving_task = current;
4701 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4702}
4703
dfe076b0
DN
4704/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4705static void __mem_cgroup_clear_mc(void)
4ffef5fe 4706{
2bd9bb20
KH
4707 struct mem_cgroup *from = mc.from;
4708 struct mem_cgroup *to = mc.to;
4709
4ffef5fe 4710 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4711 if (mc.precharge) {
00501b53 4712 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4713 mc.precharge = 0;
4714 }
4715 /*
4716 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4717 * we must uncharge here.
4718 */
4719 if (mc.moved_charge) {
00501b53 4720 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4721 mc.moved_charge = 0;
4ffef5fe 4722 }
483c30b5
DN
4723 /* we must fixup refcnts and charges */
4724 if (mc.moved_swap) {
483c30b5 4725 /* uncharge swap account from the old cgroup */
ce00a967 4726 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4727 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4728
615d66c3
VD
4729 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4730
05b84301 4731 /*
3e32cb2e
JW
4732 * we charged both to->memory and to->memsw, so we
4733 * should uncharge to->memory.
05b84301 4734 */
ce00a967 4735 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4736 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4737
615d66c3
VD
4738 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4739 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 4740
483c30b5
DN
4741 mc.moved_swap = 0;
4742 }
dfe076b0
DN
4743 memcg_oom_recover(from);
4744 memcg_oom_recover(to);
4745 wake_up_all(&mc.waitq);
4746}
4747
4748static void mem_cgroup_clear_mc(void)
4749{
264a0ae1
TH
4750 struct mm_struct *mm = mc.mm;
4751
dfe076b0
DN
4752 /*
4753 * we must clear moving_task before waking up waiters at the end of
4754 * task migration.
4755 */
4756 mc.moving_task = NULL;
4757 __mem_cgroup_clear_mc();
2bd9bb20 4758 spin_lock(&mc.lock);
4ffef5fe
DN
4759 mc.from = NULL;
4760 mc.to = NULL;
264a0ae1 4761 mc.mm = NULL;
2bd9bb20 4762 spin_unlock(&mc.lock);
264a0ae1
TH
4763
4764 mmput(mm);
4ffef5fe
DN
4765}
4766
1f7dd3e5 4767static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4768{
1f7dd3e5 4769 struct cgroup_subsys_state *css;
eed67d75 4770 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4771 struct mem_cgroup *from;
4530eddb 4772 struct task_struct *leader, *p;
9f2115f9 4773 struct mm_struct *mm;
1dfab5ab 4774 unsigned long move_flags;
9f2115f9 4775 int ret = 0;
7dc74be0 4776
1f7dd3e5
TH
4777 /* charge immigration isn't supported on the default hierarchy */
4778 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4779 return 0;
4780
4530eddb
TH
4781 /*
4782 * Multi-process migrations only happen on the default hierarchy
4783 * where charge immigration is not used. Perform charge
4784 * immigration if @tset contains a leader and whine if there are
4785 * multiple.
4786 */
4787 p = NULL;
1f7dd3e5 4788 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4789 WARN_ON_ONCE(p);
4790 p = leader;
1f7dd3e5 4791 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4792 }
4793 if (!p)
4794 return 0;
4795
1f7dd3e5
TH
4796 /*
4797 * We are now commited to this value whatever it is. Changes in this
4798 * tunable will only affect upcoming migrations, not the current one.
4799 * So we need to save it, and keep it going.
4800 */
4801 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4802 if (!move_flags)
4803 return 0;
4804
9f2115f9
TH
4805 from = mem_cgroup_from_task(p);
4806
4807 VM_BUG_ON(from == memcg);
4808
4809 mm = get_task_mm(p);
4810 if (!mm)
4811 return 0;
4812 /* We move charges only when we move a owner of the mm */
4813 if (mm->owner == p) {
4814 VM_BUG_ON(mc.from);
4815 VM_BUG_ON(mc.to);
4816 VM_BUG_ON(mc.precharge);
4817 VM_BUG_ON(mc.moved_charge);
4818 VM_BUG_ON(mc.moved_swap);
4819
4820 spin_lock(&mc.lock);
264a0ae1 4821 mc.mm = mm;
9f2115f9
TH
4822 mc.from = from;
4823 mc.to = memcg;
4824 mc.flags = move_flags;
4825 spin_unlock(&mc.lock);
4826 /* We set mc.moving_task later */
4827
4828 ret = mem_cgroup_precharge_mc(mm);
4829 if (ret)
4830 mem_cgroup_clear_mc();
264a0ae1
TH
4831 } else {
4832 mmput(mm);
7dc74be0
DN
4833 }
4834 return ret;
4835}
4836
1f7dd3e5 4837static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4838{
4e2f245d
JW
4839 if (mc.to)
4840 mem_cgroup_clear_mc();
7dc74be0
DN
4841}
4842
4ffef5fe
DN
4843static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4844 unsigned long addr, unsigned long end,
4845 struct mm_walk *walk)
7dc74be0 4846{
4ffef5fe 4847 int ret = 0;
26bcd64a 4848 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4849 pte_t *pte;
4850 spinlock_t *ptl;
12724850
NH
4851 enum mc_target_type target_type;
4852 union mc_target target;
4853 struct page *page;
4ffef5fe 4854
b6ec57f4
KS
4855 ptl = pmd_trans_huge_lock(pmd, vma);
4856 if (ptl) {
62ade86a 4857 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4858 spin_unlock(ptl);
12724850
NH
4859 return 0;
4860 }
4861 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4862 if (target_type == MC_TARGET_PAGE) {
4863 page = target.page;
4864 if (!isolate_lru_page(page)) {
f627c2f5 4865 if (!mem_cgroup_move_account(page, true,
1306a85a 4866 mc.from, mc.to)) {
12724850
NH
4867 mc.precharge -= HPAGE_PMD_NR;
4868 mc.moved_charge += HPAGE_PMD_NR;
4869 }
4870 putback_lru_page(page);
4871 }
4872 put_page(page);
4873 }
bf929152 4874 spin_unlock(ptl);
1a5a9906 4875 return 0;
12724850
NH
4876 }
4877
45f83cef
AA
4878 if (pmd_trans_unstable(pmd))
4879 return 0;
4ffef5fe
DN
4880retry:
4881 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4882 for (; addr != end; addr += PAGE_SIZE) {
4883 pte_t ptent = *(pte++);
02491447 4884 swp_entry_t ent;
4ffef5fe
DN
4885
4886 if (!mc.precharge)
4887 break;
4888
8d32ff84 4889 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4890 case MC_TARGET_PAGE:
4891 page = target.page;
53f9263b
KS
4892 /*
4893 * We can have a part of the split pmd here. Moving it
4894 * can be done but it would be too convoluted so simply
4895 * ignore such a partial THP and keep it in original
4896 * memcg. There should be somebody mapping the head.
4897 */
4898 if (PageTransCompound(page))
4899 goto put;
4ffef5fe
DN
4900 if (isolate_lru_page(page))
4901 goto put;
f627c2f5
KS
4902 if (!mem_cgroup_move_account(page, false,
4903 mc.from, mc.to)) {
4ffef5fe 4904 mc.precharge--;
854ffa8d
DN
4905 /* we uncharge from mc.from later. */
4906 mc.moved_charge++;
4ffef5fe
DN
4907 }
4908 putback_lru_page(page);
8d32ff84 4909put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4910 put_page(page);
4911 break;
02491447
DN
4912 case MC_TARGET_SWAP:
4913 ent = target.ent;
e91cbb42 4914 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4915 mc.precharge--;
483c30b5
DN
4916 /* we fixup refcnts and charges later. */
4917 mc.moved_swap++;
4918 }
02491447 4919 break;
4ffef5fe
DN
4920 default:
4921 break;
4922 }
4923 }
4924 pte_unmap_unlock(pte - 1, ptl);
4925 cond_resched();
4926
4927 if (addr != end) {
4928 /*
4929 * We have consumed all precharges we got in can_attach().
4930 * We try charge one by one, but don't do any additional
4931 * charges to mc.to if we have failed in charge once in attach()
4932 * phase.
4933 */
854ffa8d 4934 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4935 if (!ret)
4936 goto retry;
4937 }
4938
4939 return ret;
4940}
4941
264a0ae1 4942static void mem_cgroup_move_charge(void)
4ffef5fe 4943{
26bcd64a
NH
4944 struct mm_walk mem_cgroup_move_charge_walk = {
4945 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4946 .mm = mc.mm,
26bcd64a 4947 };
4ffef5fe
DN
4948
4949 lru_add_drain_all();
312722cb 4950 /*
81f8c3a4
JW
4951 * Signal lock_page_memcg() to take the memcg's move_lock
4952 * while we're moving its pages to another memcg. Then wait
4953 * for already started RCU-only updates to finish.
312722cb
JW
4954 */
4955 atomic_inc(&mc.from->moving_account);
4956 synchronize_rcu();
dfe076b0 4957retry:
264a0ae1 4958 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4959 /*
4960 * Someone who are holding the mmap_sem might be waiting in
4961 * waitq. So we cancel all extra charges, wake up all waiters,
4962 * and retry. Because we cancel precharges, we might not be able
4963 * to move enough charges, but moving charge is a best-effort
4964 * feature anyway, so it wouldn't be a big problem.
4965 */
4966 __mem_cgroup_clear_mc();
4967 cond_resched();
4968 goto retry;
4969 }
26bcd64a
NH
4970 /*
4971 * When we have consumed all precharges and failed in doing
4972 * additional charge, the page walk just aborts.
4973 */
0247f3f4
JM
4974 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4975
264a0ae1 4976 up_read(&mc.mm->mmap_sem);
312722cb 4977 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4978}
4979
264a0ae1 4980static void mem_cgroup_move_task(void)
67e465a7 4981{
264a0ae1
TH
4982 if (mc.to) {
4983 mem_cgroup_move_charge();
a433658c 4984 mem_cgroup_clear_mc();
264a0ae1 4985 }
67e465a7 4986}
5cfb80a7 4987#else /* !CONFIG_MMU */
1f7dd3e5 4988static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4989{
4990 return 0;
4991}
1f7dd3e5 4992static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4993{
4994}
264a0ae1 4995static void mem_cgroup_move_task(void)
5cfb80a7
DN
4996{
4997}
4998#endif
67e465a7 4999
f00baae7
TH
5000/*
5001 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5002 * to verify whether we're attached to the default hierarchy on each mount
5003 * attempt.
f00baae7 5004 */
eb95419b 5005static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5006{
5007 /*
aa6ec29b 5008 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5009 * guarantees that @root doesn't have any children, so turning it
5010 * on for the root memcg is enough.
5011 */
9e10a130 5012 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5013 root_mem_cgroup->use_hierarchy = true;
5014 else
5015 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5016}
5017
241994ed
JW
5018static u64 memory_current_read(struct cgroup_subsys_state *css,
5019 struct cftype *cft)
5020{
f5fc3c5d
JW
5021 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5022
5023 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5024}
5025
5026static int memory_low_show(struct seq_file *m, void *v)
5027{
5028 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5029 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5030
5031 if (low == PAGE_COUNTER_MAX)
d2973697 5032 seq_puts(m, "max\n");
241994ed
JW
5033 else
5034 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5035
5036 return 0;
5037}
5038
5039static ssize_t memory_low_write(struct kernfs_open_file *of,
5040 char *buf, size_t nbytes, loff_t off)
5041{
5042 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5043 unsigned long low;
5044 int err;
5045
5046 buf = strstrip(buf);
d2973697 5047 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5048 if (err)
5049 return err;
5050
5051 memcg->low = low;
5052
5053 return nbytes;
5054}
5055
5056static int memory_high_show(struct seq_file *m, void *v)
5057{
5058 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5059 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5060
5061 if (high == PAGE_COUNTER_MAX)
d2973697 5062 seq_puts(m, "max\n");
241994ed
JW
5063 else
5064 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5065
5066 return 0;
5067}
5068
5069static ssize_t memory_high_write(struct kernfs_open_file *of,
5070 char *buf, size_t nbytes, loff_t off)
5071{
5072 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5073 unsigned long nr_pages;
241994ed
JW
5074 unsigned long high;
5075 int err;
5076
5077 buf = strstrip(buf);
d2973697 5078 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5079 if (err)
5080 return err;
5081
5082 memcg->high = high;
5083
588083bb
JW
5084 nr_pages = page_counter_read(&memcg->memory);
5085 if (nr_pages > high)
5086 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5087 GFP_KERNEL, true);
5088
2529bb3a 5089 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5090 return nbytes;
5091}
5092
5093static int memory_max_show(struct seq_file *m, void *v)
5094{
5095 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5096 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5097
5098 if (max == PAGE_COUNTER_MAX)
d2973697 5099 seq_puts(m, "max\n");
241994ed
JW
5100 else
5101 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5102
5103 return 0;
5104}
5105
5106static ssize_t memory_max_write(struct kernfs_open_file *of,
5107 char *buf, size_t nbytes, loff_t off)
5108{
5109 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5110 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5111 bool drained = false;
241994ed
JW
5112 unsigned long max;
5113 int err;
5114
5115 buf = strstrip(buf);
d2973697 5116 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5117 if (err)
5118 return err;
5119
b6e6edcf
JW
5120 xchg(&memcg->memory.limit, max);
5121
5122 for (;;) {
5123 unsigned long nr_pages = page_counter_read(&memcg->memory);
5124
5125 if (nr_pages <= max)
5126 break;
5127
5128 if (signal_pending(current)) {
5129 err = -EINTR;
5130 break;
5131 }
5132
5133 if (!drained) {
5134 drain_all_stock(memcg);
5135 drained = true;
5136 continue;
5137 }
5138
5139 if (nr_reclaims) {
5140 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5141 GFP_KERNEL, true))
5142 nr_reclaims--;
5143 continue;
5144 }
5145
5146 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5147 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5148 break;
5149 }
241994ed 5150
2529bb3a 5151 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5152 return nbytes;
5153}
5154
5155static int memory_events_show(struct seq_file *m, void *v)
5156{
5157 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5158
5159 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5160 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5161 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5162 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5163
5164 return 0;
5165}
5166
587d9f72
JW
5167static int memory_stat_show(struct seq_file *m, void *v)
5168{
5169 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5170 unsigned long stat[MEMCG_NR_STAT];
5171 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5172 int i;
5173
5174 /*
5175 * Provide statistics on the state of the memory subsystem as
5176 * well as cumulative event counters that show past behavior.
5177 *
5178 * This list is ordered following a combination of these gradients:
5179 * 1) generic big picture -> specifics and details
5180 * 2) reflecting userspace activity -> reflecting kernel heuristics
5181 *
5182 * Current memory state:
5183 */
5184
72b54e73
VD
5185 tree_stat(memcg, stat);
5186 tree_events(memcg, events);
5187
587d9f72 5188 seq_printf(m, "anon %llu\n",
72b54e73 5189 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5190 seq_printf(m, "file %llu\n",
72b54e73 5191 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b 5192 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5193 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9
VD
5194 seq_printf(m, "slab %llu\n",
5195 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5196 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5197 seq_printf(m, "sock %llu\n",
72b54e73 5198 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5199
5200 seq_printf(m, "file_mapped %llu\n",
72b54e73 5201 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5202 seq_printf(m, "file_dirty %llu\n",
72b54e73 5203 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5204 seq_printf(m, "file_writeback %llu\n",
72b54e73 5205 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5206
5207 for (i = 0; i < NR_LRU_LISTS; i++) {
5208 struct mem_cgroup *mi;
5209 unsigned long val = 0;
5210
5211 for_each_mem_cgroup_tree(mi, memcg)
5212 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5213 seq_printf(m, "%s %llu\n",
5214 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5215 }
5216
27ee57c9
VD
5217 seq_printf(m, "slab_reclaimable %llu\n",
5218 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5219 seq_printf(m, "slab_unreclaimable %llu\n",
5220 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5221
587d9f72
JW
5222 /* Accumulated memory events */
5223
5224 seq_printf(m, "pgfault %lu\n",
72b54e73 5225 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5226 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5227 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5228
5229 return 0;
5230}
5231
241994ed
JW
5232static struct cftype memory_files[] = {
5233 {
5234 .name = "current",
f5fc3c5d 5235 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5236 .read_u64 = memory_current_read,
5237 },
5238 {
5239 .name = "low",
5240 .flags = CFTYPE_NOT_ON_ROOT,
5241 .seq_show = memory_low_show,
5242 .write = memory_low_write,
5243 },
5244 {
5245 .name = "high",
5246 .flags = CFTYPE_NOT_ON_ROOT,
5247 .seq_show = memory_high_show,
5248 .write = memory_high_write,
5249 },
5250 {
5251 .name = "max",
5252 .flags = CFTYPE_NOT_ON_ROOT,
5253 .seq_show = memory_max_show,
5254 .write = memory_max_write,
5255 },
5256 {
5257 .name = "events",
5258 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5259 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5260 .seq_show = memory_events_show,
5261 },
587d9f72
JW
5262 {
5263 .name = "stat",
5264 .flags = CFTYPE_NOT_ON_ROOT,
5265 .seq_show = memory_stat_show,
5266 },
241994ed
JW
5267 { } /* terminate */
5268};
5269
073219e9 5270struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5271 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5272 .css_online = mem_cgroup_css_online,
92fb9748 5273 .css_offline = mem_cgroup_css_offline,
6df38689 5274 .css_released = mem_cgroup_css_released,
92fb9748 5275 .css_free = mem_cgroup_css_free,
1ced953b 5276 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5277 .can_attach = mem_cgroup_can_attach,
5278 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5279 .post_attach = mem_cgroup_move_task,
f00baae7 5280 .bind = mem_cgroup_bind,
241994ed
JW
5281 .dfl_cftypes = memory_files,
5282 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5283 .early_init = 0,
8cdea7c0 5284};
c077719b 5285
241994ed
JW
5286/**
5287 * mem_cgroup_low - check if memory consumption is below the normal range
5288 * @root: the highest ancestor to consider
5289 * @memcg: the memory cgroup to check
5290 *
5291 * Returns %true if memory consumption of @memcg, and that of all
5292 * configurable ancestors up to @root, is below the normal range.
5293 */
5294bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5295{
5296 if (mem_cgroup_disabled())
5297 return false;
5298
5299 /*
5300 * The toplevel group doesn't have a configurable range, so
5301 * it's never low when looked at directly, and it is not
5302 * considered an ancestor when assessing the hierarchy.
5303 */
5304
5305 if (memcg == root_mem_cgroup)
5306 return false;
5307
4e54dede 5308 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5309 return false;
5310
5311 while (memcg != root) {
5312 memcg = parent_mem_cgroup(memcg);
5313
5314 if (memcg == root_mem_cgroup)
5315 break;
5316
4e54dede 5317 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5318 return false;
5319 }
5320 return true;
5321}
5322
00501b53
JW
5323/**
5324 * mem_cgroup_try_charge - try charging a page
5325 * @page: page to charge
5326 * @mm: mm context of the victim
5327 * @gfp_mask: reclaim mode
5328 * @memcgp: charged memcg return
25843c2b 5329 * @compound: charge the page as compound or small page
00501b53
JW
5330 *
5331 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5332 * pages according to @gfp_mask if necessary.
5333 *
5334 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5335 * Otherwise, an error code is returned.
5336 *
5337 * After page->mapping has been set up, the caller must finalize the
5338 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5339 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5340 */
5341int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5342 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5343 bool compound)
00501b53
JW
5344{
5345 struct mem_cgroup *memcg = NULL;
f627c2f5 5346 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5347 int ret = 0;
5348
5349 if (mem_cgroup_disabled())
5350 goto out;
5351
5352 if (PageSwapCache(page)) {
00501b53
JW
5353 /*
5354 * Every swap fault against a single page tries to charge the
5355 * page, bail as early as possible. shmem_unuse() encounters
5356 * already charged pages, too. The USED bit is protected by
5357 * the page lock, which serializes swap cache removal, which
5358 * in turn serializes uncharging.
5359 */
e993d905 5360 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5361 if (page->mem_cgroup)
00501b53 5362 goto out;
e993d905 5363
37e84351 5364 if (do_swap_account) {
e993d905
VD
5365 swp_entry_t ent = { .val = page_private(page), };
5366 unsigned short id = lookup_swap_cgroup_id(ent);
5367
5368 rcu_read_lock();
5369 memcg = mem_cgroup_from_id(id);
5370 if (memcg && !css_tryget_online(&memcg->css))
5371 memcg = NULL;
5372 rcu_read_unlock();
5373 }
00501b53
JW
5374 }
5375
00501b53
JW
5376 if (!memcg)
5377 memcg = get_mem_cgroup_from_mm(mm);
5378
5379 ret = try_charge(memcg, gfp_mask, nr_pages);
5380
5381 css_put(&memcg->css);
00501b53
JW
5382out:
5383 *memcgp = memcg;
5384 return ret;
5385}
5386
5387/**
5388 * mem_cgroup_commit_charge - commit a page charge
5389 * @page: page to charge
5390 * @memcg: memcg to charge the page to
5391 * @lrucare: page might be on LRU already
25843c2b 5392 * @compound: charge the page as compound or small page
00501b53
JW
5393 *
5394 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5395 * after page->mapping has been set up. This must happen atomically
5396 * as part of the page instantiation, i.e. under the page table lock
5397 * for anonymous pages, under the page lock for page and swap cache.
5398 *
5399 * In addition, the page must not be on the LRU during the commit, to
5400 * prevent racing with task migration. If it might be, use @lrucare.
5401 *
5402 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5403 */
5404void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5405 bool lrucare, bool compound)
00501b53 5406{
f627c2f5 5407 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5408
5409 VM_BUG_ON_PAGE(!page->mapping, page);
5410 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5411
5412 if (mem_cgroup_disabled())
5413 return;
5414 /*
5415 * Swap faults will attempt to charge the same page multiple
5416 * times. But reuse_swap_page() might have removed the page
5417 * from swapcache already, so we can't check PageSwapCache().
5418 */
5419 if (!memcg)
5420 return;
5421
6abb5a86
JW
5422 commit_charge(page, memcg, lrucare);
5423
6abb5a86 5424 local_irq_disable();
f627c2f5 5425 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5426 memcg_check_events(memcg, page);
5427 local_irq_enable();
00501b53 5428
7941d214 5429 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5430 swp_entry_t entry = { .val = page_private(page) };
5431 /*
5432 * The swap entry might not get freed for a long time,
5433 * let's not wait for it. The page already received a
5434 * memory+swap charge, drop the swap entry duplicate.
5435 */
5436 mem_cgroup_uncharge_swap(entry);
5437 }
5438}
5439
5440/**
5441 * mem_cgroup_cancel_charge - cancel a page charge
5442 * @page: page to charge
5443 * @memcg: memcg to charge the page to
25843c2b 5444 * @compound: charge the page as compound or small page
00501b53
JW
5445 *
5446 * Cancel a charge transaction started by mem_cgroup_try_charge().
5447 */
f627c2f5
KS
5448void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5449 bool compound)
00501b53 5450{
f627c2f5 5451 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5452
5453 if (mem_cgroup_disabled())
5454 return;
5455 /*
5456 * Swap faults will attempt to charge the same page multiple
5457 * times. But reuse_swap_page() might have removed the page
5458 * from swapcache already, so we can't check PageSwapCache().
5459 */
5460 if (!memcg)
5461 return;
5462
00501b53
JW
5463 cancel_charge(memcg, nr_pages);
5464}
5465
747db954 5466static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954 5467 unsigned long nr_anon, unsigned long nr_file,
5e8d35f8
VD
5468 unsigned long nr_huge, unsigned long nr_kmem,
5469 struct page *dummy_page)
747db954 5470{
5e8d35f8 5471 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
747db954
JW
5472 unsigned long flags;
5473
ce00a967 5474 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5475 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5476 if (do_memsw_account())
18eca2e6 5477 page_counter_uncharge(&memcg->memsw, nr_pages);
5e8d35f8
VD
5478 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5479 page_counter_uncharge(&memcg->kmem, nr_kmem);
ce00a967
JW
5480 memcg_oom_recover(memcg);
5481 }
747db954
JW
5482
5483 local_irq_save(flags);
5484 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5485 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5486 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5487 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5488 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5489 memcg_check_events(memcg, dummy_page);
5490 local_irq_restore(flags);
e8ea14cc
JW
5491
5492 if (!mem_cgroup_is_root(memcg))
18eca2e6 5493 css_put_many(&memcg->css, nr_pages);
747db954
JW
5494}
5495
5496static void uncharge_list(struct list_head *page_list)
5497{
5498 struct mem_cgroup *memcg = NULL;
747db954
JW
5499 unsigned long nr_anon = 0;
5500 unsigned long nr_file = 0;
5501 unsigned long nr_huge = 0;
5e8d35f8 5502 unsigned long nr_kmem = 0;
747db954 5503 unsigned long pgpgout = 0;
747db954
JW
5504 struct list_head *next;
5505 struct page *page;
5506
8b592656
JW
5507 /*
5508 * Note that the list can be a single page->lru; hence the
5509 * do-while loop instead of a simple list_for_each_entry().
5510 */
747db954
JW
5511 next = page_list->next;
5512 do {
747db954
JW
5513 page = list_entry(next, struct page, lru);
5514 next = page->lru.next;
5515
5516 VM_BUG_ON_PAGE(PageLRU(page), page);
5517 VM_BUG_ON_PAGE(page_count(page), page);
5518
1306a85a 5519 if (!page->mem_cgroup)
747db954
JW
5520 continue;
5521
5522 /*
5523 * Nobody should be changing or seriously looking at
1306a85a 5524 * page->mem_cgroup at this point, we have fully
29833315 5525 * exclusive access to the page.
747db954
JW
5526 */
5527
1306a85a 5528 if (memcg != page->mem_cgroup) {
747db954 5529 if (memcg) {
18eca2e6 5530 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8
VD
5531 nr_huge, nr_kmem, page);
5532 pgpgout = nr_anon = nr_file =
5533 nr_huge = nr_kmem = 0;
747db954 5534 }
1306a85a 5535 memcg = page->mem_cgroup;
747db954
JW
5536 }
5537
5e8d35f8
VD
5538 if (!PageKmemcg(page)) {
5539 unsigned int nr_pages = 1;
747db954 5540
5e8d35f8
VD
5541 if (PageTransHuge(page)) {
5542 nr_pages <<= compound_order(page);
5e8d35f8
VD
5543 nr_huge += nr_pages;
5544 }
5545 if (PageAnon(page))
5546 nr_anon += nr_pages;
5547 else
5548 nr_file += nr_pages;
5549 pgpgout++;
c4159a75 5550 } else {
5e8d35f8 5551 nr_kmem += 1 << compound_order(page);
c4159a75
VD
5552 __ClearPageKmemcg(page);
5553 }
747db954 5554
1306a85a 5555 page->mem_cgroup = NULL;
747db954
JW
5556 } while (next != page_list);
5557
5558 if (memcg)
18eca2e6 5559 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8 5560 nr_huge, nr_kmem, page);
747db954
JW
5561}
5562
0a31bc97
JW
5563/**
5564 * mem_cgroup_uncharge - uncharge a page
5565 * @page: page to uncharge
5566 *
5567 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5568 * mem_cgroup_commit_charge().
5569 */
5570void mem_cgroup_uncharge(struct page *page)
5571{
0a31bc97
JW
5572 if (mem_cgroup_disabled())
5573 return;
5574
747db954 5575 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5576 if (!page->mem_cgroup)
0a31bc97
JW
5577 return;
5578
747db954
JW
5579 INIT_LIST_HEAD(&page->lru);
5580 uncharge_list(&page->lru);
5581}
0a31bc97 5582
747db954
JW
5583/**
5584 * mem_cgroup_uncharge_list - uncharge a list of page
5585 * @page_list: list of pages to uncharge
5586 *
5587 * Uncharge a list of pages previously charged with
5588 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5589 */
5590void mem_cgroup_uncharge_list(struct list_head *page_list)
5591{
5592 if (mem_cgroup_disabled())
5593 return;
0a31bc97 5594
747db954
JW
5595 if (!list_empty(page_list))
5596 uncharge_list(page_list);
0a31bc97
JW
5597}
5598
5599/**
6a93ca8f
JW
5600 * mem_cgroup_migrate - charge a page's replacement
5601 * @oldpage: currently circulating page
5602 * @newpage: replacement page
0a31bc97 5603 *
6a93ca8f
JW
5604 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5605 * be uncharged upon free.
0a31bc97
JW
5606 *
5607 * Both pages must be locked, @newpage->mapping must be set up.
5608 */
6a93ca8f 5609void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5610{
29833315 5611 struct mem_cgroup *memcg;
44b7a8d3
JW
5612 unsigned int nr_pages;
5613 bool compound;
d93c4130 5614 unsigned long flags;
0a31bc97
JW
5615
5616 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5617 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5618 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5619 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5620 newpage);
0a31bc97
JW
5621
5622 if (mem_cgroup_disabled())
5623 return;
5624
5625 /* Page cache replacement: new page already charged? */
1306a85a 5626 if (newpage->mem_cgroup)
0a31bc97
JW
5627 return;
5628
45637bab 5629 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5630 memcg = oldpage->mem_cgroup;
29833315 5631 if (!memcg)
0a31bc97
JW
5632 return;
5633
44b7a8d3
JW
5634 /* Force-charge the new page. The old one will be freed soon */
5635 compound = PageTransHuge(newpage);
5636 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5637
5638 page_counter_charge(&memcg->memory, nr_pages);
5639 if (do_memsw_account())
5640 page_counter_charge(&memcg->memsw, nr_pages);
5641 css_get_many(&memcg->css, nr_pages);
0a31bc97 5642
9cf7666a 5643 commit_charge(newpage, memcg, false);
44b7a8d3 5644
d93c4130 5645 local_irq_save(flags);
44b7a8d3
JW
5646 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5647 memcg_check_events(memcg, newpage);
d93c4130 5648 local_irq_restore(flags);
0a31bc97
JW
5649}
5650
ef12947c 5651DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5652EXPORT_SYMBOL(memcg_sockets_enabled_key);
5653
2d758073 5654void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
5655{
5656 struct mem_cgroup *memcg;
5657
2d758073
JW
5658 if (!mem_cgroup_sockets_enabled)
5659 return;
5660
5661 /*
5662 * Socket cloning can throw us here with sk_memcg already
11092087
JW
5663 * filled. It won't however, necessarily happen from
5664 * process context. So the test for root memcg given
5665 * the current task's memcg won't help us in this case.
5666 *
5667 * Respecting the original socket's memcg is a better
5668 * decision in this case.
5669 */
5670 if (sk->sk_memcg) {
5671 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5672 css_get(&sk->sk_memcg->css);
5673 return;
5674 }
5675
5676 rcu_read_lock();
5677 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5678 if (memcg == root_mem_cgroup)
5679 goto out;
0db15298 5680 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5681 goto out;
f7e1cb6e 5682 if (css_tryget_online(&memcg->css))
11092087 5683 sk->sk_memcg = memcg;
f7e1cb6e 5684out:
11092087
JW
5685 rcu_read_unlock();
5686}
11092087 5687
2d758073 5688void mem_cgroup_sk_free(struct sock *sk)
11092087 5689{
2d758073
JW
5690 if (sk->sk_memcg)
5691 css_put(&sk->sk_memcg->css);
11092087
JW
5692}
5693
5694/**
5695 * mem_cgroup_charge_skmem - charge socket memory
5696 * @memcg: memcg to charge
5697 * @nr_pages: number of pages to charge
5698 *
5699 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5700 * @memcg's configured limit, %false if the charge had to be forced.
5701 */
5702bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5703{
f7e1cb6e 5704 gfp_t gfp_mask = GFP_KERNEL;
11092087 5705
f7e1cb6e 5706 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5707 struct page_counter *fail;
f7e1cb6e 5708
0db15298
JW
5709 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5710 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5711 return true;
5712 }
0db15298
JW
5713 page_counter_charge(&memcg->tcpmem, nr_pages);
5714 memcg->tcpmem_pressure = 1;
f7e1cb6e 5715 return false;
11092087 5716 }
d886f4e4 5717
f7e1cb6e
JW
5718 /* Don't block in the packet receive path */
5719 if (in_softirq())
5720 gfp_mask = GFP_NOWAIT;
5721
b2807f07
JW
5722 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5723
f7e1cb6e
JW
5724 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5725 return true;
5726
5727 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5728 return false;
5729}
5730
5731/**
5732 * mem_cgroup_uncharge_skmem - uncharge socket memory
5733 * @memcg - memcg to uncharge
5734 * @nr_pages - number of pages to uncharge
5735 */
5736void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5737{
f7e1cb6e 5738 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5739 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5740 return;
5741 }
d886f4e4 5742
b2807f07
JW
5743 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5744
f7e1cb6e
JW
5745 page_counter_uncharge(&memcg->memory, nr_pages);
5746 css_put_many(&memcg->css, nr_pages);
11092087
JW
5747}
5748
f7e1cb6e
JW
5749static int __init cgroup_memory(char *s)
5750{
5751 char *token;
5752
5753 while ((token = strsep(&s, ",")) != NULL) {
5754 if (!*token)
5755 continue;
5756 if (!strcmp(token, "nosocket"))
5757 cgroup_memory_nosocket = true;
04823c83
VD
5758 if (!strcmp(token, "nokmem"))
5759 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5760 }
5761 return 0;
5762}
5763__setup("cgroup.memory=", cgroup_memory);
11092087 5764
2d11085e 5765/*
1081312f
MH
5766 * subsys_initcall() for memory controller.
5767 *
308167fc
SAS
5768 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5769 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5770 * basically everything that doesn't depend on a specific mem_cgroup structure
5771 * should be initialized from here.
2d11085e
MH
5772 */
5773static int __init mem_cgroup_init(void)
5774{
95a045f6
JW
5775 int cpu, node;
5776
13583c3d
VD
5777#ifndef CONFIG_SLOB
5778 /*
5779 * Kmem cache creation is mostly done with the slab_mutex held,
5780 * so use a special workqueue to avoid stalling all worker
5781 * threads in case lots of cgroups are created simultaneously.
5782 */
5783 memcg_kmem_cache_create_wq =
5784 alloc_ordered_workqueue("memcg_kmem_cache_create", 0);
5785 BUG_ON(!memcg_kmem_cache_create_wq);
5786#endif
5787
308167fc
SAS
5788 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5789 memcg_hotplug_cpu_dead);
95a045f6
JW
5790
5791 for_each_possible_cpu(cpu)
5792 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5793 drain_local_stock);
5794
5795 for_each_node(node) {
5796 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5797
5798 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5799 node_online(node) ? node : NUMA_NO_NODE);
5800
ef8f2327
MG
5801 rtpn->rb_root = RB_ROOT;
5802 spin_lock_init(&rtpn->lock);
95a045f6
JW
5803 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5804 }
5805
2d11085e
MH
5806 return 0;
5807}
5808subsys_initcall(mem_cgroup_init);
21afa38e
JW
5809
5810#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
5811static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5812{
5813 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5814 /*
5815 * The root cgroup cannot be destroyed, so it's refcount must
5816 * always be >= 1.
5817 */
5818 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5819 VM_BUG_ON(1);
5820 break;
5821 }
5822 memcg = parent_mem_cgroup(memcg);
5823 if (!memcg)
5824 memcg = root_mem_cgroup;
5825 }
5826 return memcg;
5827}
5828
21afa38e
JW
5829/**
5830 * mem_cgroup_swapout - transfer a memsw charge to swap
5831 * @page: page whose memsw charge to transfer
5832 * @entry: swap entry to move the charge to
5833 *
5834 * Transfer the memsw charge of @page to @entry.
5835 */
5836void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5837{
1f47b61f 5838 struct mem_cgroup *memcg, *swap_memcg;
21afa38e
JW
5839 unsigned short oldid;
5840
5841 VM_BUG_ON_PAGE(PageLRU(page), page);
5842 VM_BUG_ON_PAGE(page_count(page), page);
5843
7941d214 5844 if (!do_memsw_account())
21afa38e
JW
5845 return;
5846
5847 memcg = page->mem_cgroup;
5848
5849 /* Readahead page, never charged */
5850 if (!memcg)
5851 return;
5852
1f47b61f
VD
5853 /*
5854 * In case the memcg owning these pages has been offlined and doesn't
5855 * have an ID allocated to it anymore, charge the closest online
5856 * ancestor for the swap instead and transfer the memory+swap charge.
5857 */
5858 swap_memcg = mem_cgroup_id_get_online(memcg);
5859 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
21afa38e 5860 VM_BUG_ON_PAGE(oldid, page);
1f47b61f 5861 mem_cgroup_swap_statistics(swap_memcg, true);
21afa38e
JW
5862
5863 page->mem_cgroup = NULL;
5864
5865 if (!mem_cgroup_is_root(memcg))
5866 page_counter_uncharge(&memcg->memory, 1);
5867
1f47b61f
VD
5868 if (memcg != swap_memcg) {
5869 if (!mem_cgroup_is_root(swap_memcg))
5870 page_counter_charge(&swap_memcg->memsw, 1);
5871 page_counter_uncharge(&memcg->memsw, 1);
5872 }
5873
ce9ce665
SAS
5874 /*
5875 * Interrupts should be disabled here because the caller holds the
5876 * mapping->tree_lock lock which is taken with interrupts-off. It is
5877 * important here to have the interrupts disabled because it is the
5878 * only synchronisation we have for udpating the per-CPU variables.
5879 */
5880 VM_BUG_ON(!irqs_disabled());
f627c2f5 5881 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e 5882 memcg_check_events(memcg, page);
73f576c0
JW
5883
5884 if (!mem_cgroup_is_root(memcg))
5885 css_put(&memcg->css);
21afa38e
JW
5886}
5887
37e84351
VD
5888/*
5889 * mem_cgroup_try_charge_swap - try charging a swap entry
5890 * @page: page being added to swap
5891 * @entry: swap entry to charge
5892 *
5893 * Try to charge @entry to the memcg that @page belongs to.
5894 *
5895 * Returns 0 on success, -ENOMEM on failure.
5896 */
5897int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5898{
5899 struct mem_cgroup *memcg;
5900 struct page_counter *counter;
5901 unsigned short oldid;
5902
5903 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5904 return 0;
5905
5906 memcg = page->mem_cgroup;
5907
5908 /* Readahead page, never charged */
5909 if (!memcg)
5910 return 0;
5911
1f47b61f
VD
5912 memcg = mem_cgroup_id_get_online(memcg);
5913
37e84351 5914 if (!mem_cgroup_is_root(memcg) &&
1f47b61f
VD
5915 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5916 mem_cgroup_id_put(memcg);
37e84351 5917 return -ENOMEM;
1f47b61f 5918 }
37e84351
VD
5919
5920 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5921 VM_BUG_ON_PAGE(oldid, page);
5922 mem_cgroup_swap_statistics(memcg, true);
5923
37e84351
VD
5924 return 0;
5925}
5926
21afa38e
JW
5927/**
5928 * mem_cgroup_uncharge_swap - uncharge a swap entry
5929 * @entry: swap entry to uncharge
5930 *
37e84351 5931 * Drop the swap charge associated with @entry.
21afa38e
JW
5932 */
5933void mem_cgroup_uncharge_swap(swp_entry_t entry)
5934{
5935 struct mem_cgroup *memcg;
5936 unsigned short id;
5937
37e84351 5938 if (!do_swap_account)
21afa38e
JW
5939 return;
5940
5941 id = swap_cgroup_record(entry, 0);
5942 rcu_read_lock();
adbe427b 5943 memcg = mem_cgroup_from_id(id);
21afa38e 5944 if (memcg) {
37e84351
VD
5945 if (!mem_cgroup_is_root(memcg)) {
5946 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5947 page_counter_uncharge(&memcg->swap, 1);
5948 else
5949 page_counter_uncharge(&memcg->memsw, 1);
5950 }
21afa38e 5951 mem_cgroup_swap_statistics(memcg, false);
73f576c0 5952 mem_cgroup_id_put(memcg);
21afa38e
JW
5953 }
5954 rcu_read_unlock();
5955}
5956
d8b38438
VD
5957long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5958{
5959 long nr_swap_pages = get_nr_swap_pages();
5960
5961 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5962 return nr_swap_pages;
5963 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5964 nr_swap_pages = min_t(long, nr_swap_pages,
5965 READ_ONCE(memcg->swap.limit) -
5966 page_counter_read(&memcg->swap));
5967 return nr_swap_pages;
5968}
5969
5ccc5aba
VD
5970bool mem_cgroup_swap_full(struct page *page)
5971{
5972 struct mem_cgroup *memcg;
5973
5974 VM_BUG_ON_PAGE(!PageLocked(page), page);
5975
5976 if (vm_swap_full())
5977 return true;
5978 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5979 return false;
5980
5981 memcg = page->mem_cgroup;
5982 if (!memcg)
5983 return false;
5984
5985 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5986 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5987 return true;
5988
5989 return false;
5990}
5991
21afa38e
JW
5992/* for remember boot option*/
5993#ifdef CONFIG_MEMCG_SWAP_ENABLED
5994static int really_do_swap_account __initdata = 1;
5995#else
5996static int really_do_swap_account __initdata;
5997#endif
5998
5999static int __init enable_swap_account(char *s)
6000{
6001 if (!strcmp(s, "1"))
6002 really_do_swap_account = 1;
6003 else if (!strcmp(s, "0"))
6004 really_do_swap_account = 0;
6005 return 1;
6006}
6007__setup("swapaccount=", enable_swap_account);
6008
37e84351
VD
6009static u64 swap_current_read(struct cgroup_subsys_state *css,
6010 struct cftype *cft)
6011{
6012 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6013
6014 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6015}
6016
6017static int swap_max_show(struct seq_file *m, void *v)
6018{
6019 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6020 unsigned long max = READ_ONCE(memcg->swap.limit);
6021
6022 if (max == PAGE_COUNTER_MAX)
6023 seq_puts(m, "max\n");
6024 else
6025 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6026
6027 return 0;
6028}
6029
6030static ssize_t swap_max_write(struct kernfs_open_file *of,
6031 char *buf, size_t nbytes, loff_t off)
6032{
6033 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6034 unsigned long max;
6035 int err;
6036
6037 buf = strstrip(buf);
6038 err = page_counter_memparse(buf, "max", &max);
6039 if (err)
6040 return err;
6041
6042 mutex_lock(&memcg_limit_mutex);
6043 err = page_counter_limit(&memcg->swap, max);
6044 mutex_unlock(&memcg_limit_mutex);
6045 if (err)
6046 return err;
6047
6048 return nbytes;
6049}
6050
6051static struct cftype swap_files[] = {
6052 {
6053 .name = "swap.current",
6054 .flags = CFTYPE_NOT_ON_ROOT,
6055 .read_u64 = swap_current_read,
6056 },
6057 {
6058 .name = "swap.max",
6059 .flags = CFTYPE_NOT_ON_ROOT,
6060 .seq_show = swap_max_show,
6061 .write = swap_max_write,
6062 },
6063 { } /* terminate */
6064};
6065
21afa38e
JW
6066static struct cftype memsw_cgroup_files[] = {
6067 {
6068 .name = "memsw.usage_in_bytes",
6069 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6070 .read_u64 = mem_cgroup_read_u64,
6071 },
6072 {
6073 .name = "memsw.max_usage_in_bytes",
6074 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6075 .write = mem_cgroup_reset,
6076 .read_u64 = mem_cgroup_read_u64,
6077 },
6078 {
6079 .name = "memsw.limit_in_bytes",
6080 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6081 .write = mem_cgroup_write,
6082 .read_u64 = mem_cgroup_read_u64,
6083 },
6084 {
6085 .name = "memsw.failcnt",
6086 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6087 .write = mem_cgroup_reset,
6088 .read_u64 = mem_cgroup_read_u64,
6089 },
6090 { }, /* terminate */
6091};
6092
6093static int __init mem_cgroup_swap_init(void)
6094{
6095 if (!mem_cgroup_disabled() && really_do_swap_account) {
6096 do_swap_account = 1;
37e84351
VD
6097 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6098 swap_files));
21afa38e
JW
6099 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6100 memsw_cgroup_files));
6101 }
6102 return 0;
6103}
6104subsys_initcall(mem_cgroup_swap_init);
6105
6106#endif /* CONFIG_MEMCG_SWAP */