]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/memcontrol.c
kasan, mm: fix crash with HW_TAGS and DEBUG_PAGEALLOC
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
6168d0da
AS
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
8cdea7c0
BS
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
a520110e 31#include <linux/pagewalk.h>
6e84f315 32#include <linux/sched/mm.h>
3a4f8a0b 33#include <linux/shmem_fs.h>
4ffef5fe 34#include <linux/hugetlb.h>
d13d1443 35#include <linux/pagemap.h>
1ff9e6e1 36#include <linux/vm_event_item.h>
d52aa412 37#include <linux/smp.h>
8a9f3ccd 38#include <linux/page-flags.h>
66e1707b 39#include <linux/backing-dev.h>
8a9f3ccd
BS
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
e222432b 42#include <linux/limits.h>
b9e15baf 43#include <linux/export.h>
8c7c6e34 44#include <linux/mutex.h>
bb4cc1a8 45#include <linux/rbtree.h>
b6ac57d5 46#include <linux/slab.h>
66e1707b 47#include <linux/swap.h>
02491447 48#include <linux/swapops.h>
66e1707b 49#include <linux/spinlock.h>
2e72b634 50#include <linux/eventfd.h>
79bd9814 51#include <linux/poll.h>
2e72b634 52#include <linux/sort.h>
66e1707b 53#include <linux/fs.h>
d2ceb9b7 54#include <linux/seq_file.h>
70ddf637 55#include <linux/vmpressure.h>
b69408e8 56#include <linux/mm_inline.h>
5d1ea48b 57#include <linux/swap_cgroup.h>
cdec2e42 58#include <linux/cpu.h>
158e0a2d 59#include <linux/oom.h>
0056f4e6 60#include <linux/lockdep.h>
79bd9814 61#include <linux/file.h>
b23afb93 62#include <linux/tracehook.h>
0e4b01df 63#include <linux/psi.h>
c8713d0b 64#include <linux/seq_buf.h>
08e552c6 65#include "internal.h"
d1a4c0b3 66#include <net/sock.h>
4bd2c1ee 67#include <net/ip.h>
f35c3a8e 68#include "slab.h"
8cdea7c0 69
7c0f6ba6 70#include <linux/uaccess.h>
8697d331 71
cc8e970c
KM
72#include <trace/events/vmscan.h>
73
073219e9
TH
74struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 76
7d828602
JW
77struct mem_cgroup *root_mem_cgroup __read_mostly;
78
37d5985c
RG
79/* Active memory cgroup to use from an interrupt context */
80DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
eccb52e7 90bool cgroup_memory_noswap __read_mostly;
c077719b 91#else
eccb52e7 92#define cgroup_memory_noswap 1
2d1c4980 93#endif
c077719b 94
97b27821
TH
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
7941d214
JW
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
eccb52e7 102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
103}
104
a0db00fc
KS
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
8c7c6e34 206/* for encoding cft->private value on file */
86ae53e1
GC
207enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _OOM_TYPE,
510fc4e1 211 _KMEM,
d55f90bf 212 _TCP,
86ae53e1
GC
213};
214
a0db00fc
KS
215#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 217#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
218/* Used for OOM nofiier */
219#define OOM_CONTROL (0)
8c7c6e34 220
b05706f1
KT
221/*
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
225 */
226#define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter != NULL; \
229 iter = mem_cgroup_iter(root, iter, NULL))
230
231#define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter != NULL; \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
235
7775face
TH
236static inline bool should_force_charge(void)
237{
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240}
241
70ddf637
AV
242/* Some nice accessors for the vmpressure. */
243struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244{
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248}
249
250struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251{
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253}
254
84c07d11 255#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
256extern spinlock_t css_set_lock;
257
258static void obj_cgroup_release(struct percpu_ref *ref)
259{
260 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
261 struct mem_cgroup *memcg;
262 unsigned int nr_bytes;
263 unsigned int nr_pages;
264 unsigned long flags;
265
266 /*
267 * At this point all allocated objects are freed, and
268 * objcg->nr_charged_bytes can't have an arbitrary byte value.
269 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270 *
271 * The following sequence can lead to it:
272 * 1) CPU0: objcg == stock->cached_objcg
273 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274 * PAGE_SIZE bytes are charged
275 * 3) CPU1: a process from another memcg is allocating something,
276 * the stock if flushed,
277 * objcg->nr_charged_bytes = PAGE_SIZE - 92
278 * 5) CPU0: we do release this object,
279 * 92 bytes are added to stock->nr_bytes
280 * 6) CPU0: stock is flushed,
281 * 92 bytes are added to objcg->nr_charged_bytes
282 *
283 * In the result, nr_charged_bytes == PAGE_SIZE.
284 * This page will be uncharged in obj_cgroup_release().
285 */
286 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288 nr_pages = nr_bytes >> PAGE_SHIFT;
289
290 spin_lock_irqsave(&css_set_lock, flags);
291 memcg = obj_cgroup_memcg(objcg);
292 if (nr_pages)
293 __memcg_kmem_uncharge(memcg, nr_pages);
294 list_del(&objcg->list);
295 mem_cgroup_put(memcg);
296 spin_unlock_irqrestore(&css_set_lock, flags);
297
298 percpu_ref_exit(ref);
299 kfree_rcu(objcg, rcu);
300}
301
302static struct obj_cgroup *obj_cgroup_alloc(void)
303{
304 struct obj_cgroup *objcg;
305 int ret;
306
307 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
308 if (!objcg)
309 return NULL;
310
311 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
312 GFP_KERNEL);
313 if (ret) {
314 kfree(objcg);
315 return NULL;
316 }
317 INIT_LIST_HEAD(&objcg->list);
318 return objcg;
319}
320
321static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
322 struct mem_cgroup *parent)
323{
324 struct obj_cgroup *objcg, *iter;
325
326 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
327
328 spin_lock_irq(&css_set_lock);
329
330 /* Move active objcg to the parent's list */
331 xchg(&objcg->memcg, parent);
332 css_get(&parent->css);
333 list_add(&objcg->list, &parent->objcg_list);
334
335 /* Move already reparented objcgs to the parent's list */
336 list_for_each_entry(iter, &memcg->objcg_list, list) {
337 css_get(&parent->css);
338 xchg(&iter->memcg, parent);
339 css_put(&memcg->css);
340 }
341 list_splice(&memcg->objcg_list, &parent->objcg_list);
342
343 spin_unlock_irq(&css_set_lock);
344
345 percpu_ref_kill(&objcg->refcnt);
346}
347
55007d84 348/*
9855609b 349 * This will be used as a shrinker list's index.
b8627835
LZ
350 * The main reason for not using cgroup id for this:
351 * this works better in sparse environments, where we have a lot of memcgs,
352 * but only a few kmem-limited. Or also, if we have, for instance, 200
353 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
354 * 200 entry array for that.
55007d84 355 *
dbcf73e2
VD
356 * The current size of the caches array is stored in memcg_nr_cache_ids. It
357 * will double each time we have to increase it.
55007d84 358 */
dbcf73e2
VD
359static DEFINE_IDA(memcg_cache_ida);
360int memcg_nr_cache_ids;
749c5415 361
05257a1a
VD
362/* Protects memcg_nr_cache_ids */
363static DECLARE_RWSEM(memcg_cache_ids_sem);
364
365void memcg_get_cache_ids(void)
366{
367 down_read(&memcg_cache_ids_sem);
368}
369
370void memcg_put_cache_ids(void)
371{
372 up_read(&memcg_cache_ids_sem);
373}
374
55007d84
GC
375/*
376 * MIN_SIZE is different than 1, because we would like to avoid going through
377 * the alloc/free process all the time. In a small machine, 4 kmem-limited
378 * cgroups is a reasonable guess. In the future, it could be a parameter or
379 * tunable, but that is strictly not necessary.
380 *
b8627835 381 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
382 * this constant directly from cgroup, but it is understandable that this is
383 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 384 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
385 * increase ours as well if it increases.
386 */
387#define MEMCG_CACHES_MIN_SIZE 4
b8627835 388#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 389
d7f25f8a
GC
390/*
391 * A lot of the calls to the cache allocation functions are expected to be
272911a4 392 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
393 * conditional to this static branch, we'll have to allow modules that does
394 * kmem_cache_alloc and the such to see this symbol as well
395 */
ef12947c 396DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 397EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 398#endif
17cc4dfe 399
0a4465d3
KT
400static int memcg_shrinker_map_size;
401static DEFINE_MUTEX(memcg_shrinker_map_mutex);
402
403static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
404{
405 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
406}
407
408static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
409 int size, int old_size)
410{
411 struct memcg_shrinker_map *new, *old;
412 int nid;
413
414 lockdep_assert_held(&memcg_shrinker_map_mutex);
415
416 for_each_node(nid) {
417 old = rcu_dereference_protected(
418 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
419 /* Not yet online memcg */
420 if (!old)
421 return 0;
422
86daf94e 423 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
424 if (!new)
425 return -ENOMEM;
426
427 /* Set all old bits, clear all new bits */
428 memset(new->map, (int)0xff, old_size);
429 memset((void *)new->map + old_size, 0, size - old_size);
430
431 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
432 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
433 }
434
435 return 0;
436}
437
438static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
439{
440 struct mem_cgroup_per_node *pn;
441 struct memcg_shrinker_map *map;
442 int nid;
443
444 if (mem_cgroup_is_root(memcg))
445 return;
446
447 for_each_node(nid) {
448 pn = mem_cgroup_nodeinfo(memcg, nid);
449 map = rcu_dereference_protected(pn->shrinker_map, true);
450 if (map)
451 kvfree(map);
452 rcu_assign_pointer(pn->shrinker_map, NULL);
453 }
454}
455
456static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
457{
458 struct memcg_shrinker_map *map;
459 int nid, size, ret = 0;
460
461 if (mem_cgroup_is_root(memcg))
462 return 0;
463
464 mutex_lock(&memcg_shrinker_map_mutex);
465 size = memcg_shrinker_map_size;
466 for_each_node(nid) {
86daf94e 467 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
468 if (!map) {
469 memcg_free_shrinker_maps(memcg);
470 ret = -ENOMEM;
471 break;
472 }
473 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
474 }
475 mutex_unlock(&memcg_shrinker_map_mutex);
476
477 return ret;
478}
479
480int memcg_expand_shrinker_maps(int new_id)
481{
482 int size, old_size, ret = 0;
483 struct mem_cgroup *memcg;
484
485 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
486 old_size = memcg_shrinker_map_size;
487 if (size <= old_size)
488 return 0;
489
490 mutex_lock(&memcg_shrinker_map_mutex);
491 if (!root_mem_cgroup)
492 goto unlock;
493
494 for_each_mem_cgroup(memcg) {
495 if (mem_cgroup_is_root(memcg))
496 continue;
497 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
498 if (ret) {
499 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 500 goto unlock;
75866af6 501 }
0a4465d3
KT
502 }
503unlock:
504 if (!ret)
505 memcg_shrinker_map_size = size;
506 mutex_unlock(&memcg_shrinker_map_mutex);
507 return ret;
508}
fae91d6d
KT
509
510void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
511{
512 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
513 struct memcg_shrinker_map *map;
514
515 rcu_read_lock();
516 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
517 /* Pairs with smp mb in shrink_slab() */
518 smp_mb__before_atomic();
fae91d6d
KT
519 set_bit(shrinker_id, map->map);
520 rcu_read_unlock();
521 }
522}
523
ad7fa852
TH
524/**
525 * mem_cgroup_css_from_page - css of the memcg associated with a page
526 * @page: page of interest
527 *
528 * If memcg is bound to the default hierarchy, css of the memcg associated
529 * with @page is returned. The returned css remains associated with @page
530 * until it is released.
531 *
532 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
533 * is returned.
ad7fa852
TH
534 */
535struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
536{
537 struct mem_cgroup *memcg;
538
bcfe06bf 539 memcg = page_memcg(page);
ad7fa852 540
9e10a130 541 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
542 memcg = root_mem_cgroup;
543
ad7fa852
TH
544 return &memcg->css;
545}
546
2fc04524
VD
547/**
548 * page_cgroup_ino - return inode number of the memcg a page is charged to
549 * @page: the page
550 *
551 * Look up the closest online ancestor of the memory cgroup @page is charged to
552 * and return its inode number or 0 if @page is not charged to any cgroup. It
553 * is safe to call this function without holding a reference to @page.
554 *
555 * Note, this function is inherently racy, because there is nothing to prevent
556 * the cgroup inode from getting torn down and potentially reallocated a moment
557 * after page_cgroup_ino() returns, so it only should be used by callers that
558 * do not care (such as procfs interfaces).
559 */
560ino_t page_cgroup_ino(struct page *page)
561{
562 struct mem_cgroup *memcg;
563 unsigned long ino = 0;
564
565 rcu_read_lock();
bcfe06bf 566 memcg = page_memcg_check(page);
286e04b8 567
2fc04524
VD
568 while (memcg && !(memcg->css.flags & CSS_ONLINE))
569 memcg = parent_mem_cgroup(memcg);
570 if (memcg)
571 ino = cgroup_ino(memcg->css.cgroup);
572 rcu_read_unlock();
573 return ino;
574}
575
ef8f2327
MG
576static struct mem_cgroup_per_node *
577mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 578{
97a6c37b 579 int nid = page_to_nid(page);
f64c3f54 580
ef8f2327 581 return memcg->nodeinfo[nid];
f64c3f54
BS
582}
583
ef8f2327
MG
584static struct mem_cgroup_tree_per_node *
585soft_limit_tree_node(int nid)
bb4cc1a8 586{
ef8f2327 587 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
588}
589
ef8f2327 590static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
591soft_limit_tree_from_page(struct page *page)
592{
593 int nid = page_to_nid(page);
bb4cc1a8 594
ef8f2327 595 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
596}
597
ef8f2327
MG
598static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
599 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 600 unsigned long new_usage_in_excess)
bb4cc1a8
AM
601{
602 struct rb_node **p = &mctz->rb_root.rb_node;
603 struct rb_node *parent = NULL;
ef8f2327 604 struct mem_cgroup_per_node *mz_node;
fa90b2fd 605 bool rightmost = true;
bb4cc1a8
AM
606
607 if (mz->on_tree)
608 return;
609
610 mz->usage_in_excess = new_usage_in_excess;
611 if (!mz->usage_in_excess)
612 return;
613 while (*p) {
614 parent = *p;
ef8f2327 615 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 616 tree_node);
fa90b2fd 617 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 618 p = &(*p)->rb_left;
fa90b2fd 619 rightmost = false;
378876b0 620 } else {
bb4cc1a8 621 p = &(*p)->rb_right;
378876b0 622 }
bb4cc1a8 623 }
fa90b2fd
DB
624
625 if (rightmost)
626 mctz->rb_rightmost = &mz->tree_node;
627
bb4cc1a8
AM
628 rb_link_node(&mz->tree_node, parent, p);
629 rb_insert_color(&mz->tree_node, &mctz->rb_root);
630 mz->on_tree = true;
631}
632
ef8f2327
MG
633static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
634 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
635{
636 if (!mz->on_tree)
637 return;
fa90b2fd
DB
638
639 if (&mz->tree_node == mctz->rb_rightmost)
640 mctz->rb_rightmost = rb_prev(&mz->tree_node);
641
bb4cc1a8
AM
642 rb_erase(&mz->tree_node, &mctz->rb_root);
643 mz->on_tree = false;
644}
645
ef8f2327
MG
646static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
647 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 648{
0a31bc97
JW
649 unsigned long flags;
650
651 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 652 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 653 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
654}
655
3e32cb2e
JW
656static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
657{
658 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 659 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
660 unsigned long excess = 0;
661
662 if (nr_pages > soft_limit)
663 excess = nr_pages - soft_limit;
664
665 return excess;
666}
bb4cc1a8
AM
667
668static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
669{
3e32cb2e 670 unsigned long excess;
ef8f2327
MG
671 struct mem_cgroup_per_node *mz;
672 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 673
e231875b 674 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
675 if (!mctz)
676 return;
bb4cc1a8
AM
677 /*
678 * Necessary to update all ancestors when hierarchy is used.
679 * because their event counter is not touched.
680 */
681 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 682 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 683 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
684 /*
685 * We have to update the tree if mz is on RB-tree or
686 * mem is over its softlimit.
687 */
688 if (excess || mz->on_tree) {
0a31bc97
JW
689 unsigned long flags;
690
691 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
692 /* if on-tree, remove it */
693 if (mz->on_tree)
cf2c8127 694 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
695 /*
696 * Insert again. mz->usage_in_excess will be updated.
697 * If excess is 0, no tree ops.
698 */
cf2c8127 699 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 700 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
701 }
702 }
703}
704
705static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
706{
ef8f2327
MG
707 struct mem_cgroup_tree_per_node *mctz;
708 struct mem_cgroup_per_node *mz;
709 int nid;
bb4cc1a8 710
e231875b 711 for_each_node(nid) {
ef8f2327
MG
712 mz = mem_cgroup_nodeinfo(memcg, nid);
713 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
714 if (mctz)
715 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
716 }
717}
718
ef8f2327
MG
719static struct mem_cgroup_per_node *
720__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 721{
ef8f2327 722 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
723
724retry:
725 mz = NULL;
fa90b2fd 726 if (!mctz->rb_rightmost)
bb4cc1a8
AM
727 goto done; /* Nothing to reclaim from */
728
fa90b2fd
DB
729 mz = rb_entry(mctz->rb_rightmost,
730 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
731 /*
732 * Remove the node now but someone else can add it back,
733 * we will to add it back at the end of reclaim to its correct
734 * position in the tree.
735 */
cf2c8127 736 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 737 if (!soft_limit_excess(mz->memcg) ||
8965aa28 738 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
739 goto retry;
740done:
741 return mz;
742}
743
ef8f2327
MG
744static struct mem_cgroup_per_node *
745mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 746{
ef8f2327 747 struct mem_cgroup_per_node *mz;
bb4cc1a8 748
0a31bc97 749 spin_lock_irq(&mctz->lock);
bb4cc1a8 750 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 751 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
752 return mz;
753}
754
db9adbcb
JW
755/**
756 * __mod_memcg_state - update cgroup memory statistics
757 * @memcg: the memory cgroup
758 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
759 * @val: delta to add to the counter, can be negative
760 */
761void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
762{
ea426c2a 763 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb
JW
764
765 if (mem_cgroup_disabled())
766 return;
767
772616b0 768 if (memcg_stat_item_in_bytes(idx))
ea426c2a
RG
769 threshold <<= PAGE_SHIFT;
770
db9adbcb 771 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
ea426c2a 772 if (unlikely(abs(x) > threshold)) {
42a30035
JW
773 struct mem_cgroup *mi;
774
766a4c19
YS
775 /*
776 * Batch local counters to keep them in sync with
777 * the hierarchical ones.
778 */
779 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
780 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
781 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
782 x = 0;
783 }
784 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
785}
786
42a30035
JW
787static struct mem_cgroup_per_node *
788parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
789{
790 struct mem_cgroup *parent;
791
792 parent = parent_mem_cgroup(pn->memcg);
793 if (!parent)
794 return NULL;
795 return mem_cgroup_nodeinfo(parent, nid);
796}
797
eedc4e5a
RG
798void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
799 int val)
db9adbcb
JW
800{
801 struct mem_cgroup_per_node *pn;
42a30035 802 struct mem_cgroup *memcg;
ea426c2a 803 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 804
db9adbcb 805 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 806 memcg = pn->memcg;
db9adbcb
JW
807
808 /* Update memcg */
42a30035 809 __mod_memcg_state(memcg, idx, val);
db9adbcb 810
b4c46484
RG
811 /* Update lruvec */
812 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
813
ea426c2a
RG
814 if (vmstat_item_in_bytes(idx))
815 threshold <<= PAGE_SHIFT;
816
db9adbcb 817 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 818 if (unlikely(abs(x) > threshold)) {
eedc4e5a 819 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
820 struct mem_cgroup_per_node *pi;
821
42a30035
JW
822 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
823 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
824 x = 0;
825 }
826 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
827}
828
eedc4e5a
RG
829/**
830 * __mod_lruvec_state - update lruvec memory statistics
831 * @lruvec: the lruvec
832 * @idx: the stat item
833 * @val: delta to add to the counter, can be negative
834 *
835 * The lruvec is the intersection of the NUMA node and a cgroup. This
836 * function updates the all three counters that are affected by a
837 * change of state at this level: per-node, per-cgroup, per-lruvec.
838 */
839void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
840 int val)
841{
842 /* Update node */
843 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
844
845 /* Update memcg and lruvec */
846 if (!mem_cgroup_disabled())
847 __mod_memcg_lruvec_state(lruvec, idx, val);
848}
849
c47d5032
SB
850void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
851 int val)
852{
853 struct page *head = compound_head(page); /* rmap on tail pages */
d635a69d 854 struct mem_cgroup *memcg = page_memcg(head);
c47d5032
SB
855 pg_data_t *pgdat = page_pgdat(page);
856 struct lruvec *lruvec;
857
858 /* Untracked pages have no memcg, no lruvec. Update only the node */
d635a69d 859 if (!memcg) {
c47d5032
SB
860 __mod_node_page_state(pgdat, idx, val);
861 return;
862 }
863
d635a69d 864 lruvec = mem_cgroup_lruvec(memcg, pgdat);
c47d5032
SB
865 __mod_lruvec_state(lruvec, idx, val);
866}
f0c0c115 867EXPORT_SYMBOL(__mod_lruvec_page_state);
c47d5032 868
da3ceeff 869void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
ec9f0238 870{
4f103c63 871 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
872 struct mem_cgroup *memcg;
873 struct lruvec *lruvec;
874
875 rcu_read_lock();
4f103c63 876 memcg = mem_cgroup_from_obj(p);
ec9f0238 877
8faeb1ff
MS
878 /*
879 * Untracked pages have no memcg, no lruvec. Update only the
880 * node. If we reparent the slab objects to the root memcg,
881 * when we free the slab object, we need to update the per-memcg
882 * vmstats to keep it correct for the root memcg.
883 */
884 if (!memcg) {
ec9f0238
RG
885 __mod_node_page_state(pgdat, idx, val);
886 } else {
867e5e1d 887 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
888 __mod_lruvec_state(lruvec, idx, val);
889 }
890 rcu_read_unlock();
891}
892
db9adbcb
JW
893/**
894 * __count_memcg_events - account VM events in a cgroup
895 * @memcg: the memory cgroup
896 * @idx: the event item
897 * @count: the number of events that occured
898 */
899void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
900 unsigned long count)
901{
902 unsigned long x;
903
904 if (mem_cgroup_disabled())
905 return;
906
907 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
908 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
909 struct mem_cgroup *mi;
910
766a4c19
YS
911 /*
912 * Batch local counters to keep them in sync with
913 * the hierarchical ones.
914 */
915 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
916 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
917 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
918 x = 0;
919 }
920 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
921}
922
42a30035 923static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 924{
871789d4 925 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
926}
927
42a30035
JW
928static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929{
815744d7
JW
930 long x = 0;
931 int cpu;
932
933 for_each_possible_cpu(cpu)
934 x += per_cpu(memcg->vmstats_local->events[event], cpu);
935 return x;
42a30035
JW
936}
937
c0ff4b85 938static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 939 struct page *page,
3fba69a5 940 int nr_pages)
d52aa412 941{
e401f176
KH
942 /* pagein of a big page is an event. So, ignore page size */
943 if (nr_pages > 0)
c9019e9b 944 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 945 else {
c9019e9b 946 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
947 nr_pages = -nr_pages; /* for event */
948 }
e401f176 949
871789d4 950 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
951}
952
f53d7ce3
JW
953static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
954 enum mem_cgroup_events_target target)
7a159cc9
JW
955{
956 unsigned long val, next;
957
871789d4
CD
958 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
959 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 960 /* from time_after() in jiffies.h */
6a1a8b80 961 if ((long)(next - val) < 0) {
f53d7ce3
JW
962 switch (target) {
963 case MEM_CGROUP_TARGET_THRESH:
964 next = val + THRESHOLDS_EVENTS_TARGET;
965 break;
bb4cc1a8
AM
966 case MEM_CGROUP_TARGET_SOFTLIMIT:
967 next = val + SOFTLIMIT_EVENTS_TARGET;
968 break;
f53d7ce3
JW
969 default:
970 break;
971 }
871789d4 972 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 973 return true;
7a159cc9 974 }
f53d7ce3 975 return false;
d2265e6f
KH
976}
977
978/*
979 * Check events in order.
980 *
981 */
c0ff4b85 982static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
983{
984 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
985 if (unlikely(mem_cgroup_event_ratelimit(memcg,
986 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 987 bool do_softlimit;
f53d7ce3 988
bb4cc1a8
AM
989 do_softlimit = mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 991 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
992 if (unlikely(do_softlimit))
993 mem_cgroup_update_tree(memcg, page);
0a31bc97 994 }
d2265e6f
KH
995}
996
cf475ad2 997struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 998{
31a78f23
BS
999 /*
1000 * mm_update_next_owner() may clear mm->owner to NULL
1001 * if it races with swapoff, page migration, etc.
1002 * So this can be called with p == NULL.
1003 */
1004 if (unlikely(!p))
1005 return NULL;
1006
073219e9 1007 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1008}
33398cf2 1009EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1010
d46eb14b
SB
1011/**
1012 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1013 * @mm: mm from which memcg should be extracted. It can be NULL.
1014 *
1015 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1016 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1017 * returned.
1018 */
1019struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1020{
d46eb14b
SB
1021 struct mem_cgroup *memcg;
1022
1023 if (mem_cgroup_disabled())
1024 return NULL;
0b7f569e 1025
54595fe2
KH
1026 rcu_read_lock();
1027 do {
6f6acb00
MH
1028 /*
1029 * Page cache insertions can happen withou an
1030 * actual mm context, e.g. during disk probing
1031 * on boot, loopback IO, acct() writes etc.
1032 */
1033 if (unlikely(!mm))
df381975 1034 memcg = root_mem_cgroup;
6f6acb00
MH
1035 else {
1036 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1037 if (unlikely(!memcg))
1038 memcg = root_mem_cgroup;
1039 }
00d484f3 1040 } while (!css_tryget(&memcg->css));
54595fe2 1041 rcu_read_unlock();
c0ff4b85 1042 return memcg;
54595fe2 1043}
d46eb14b
SB
1044EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1045
f745c6f5
SB
1046/**
1047 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1048 * @page: page from which memcg should be extracted.
1049 *
1050 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1051 * root_mem_cgroup is returned.
1052 */
1053struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1054{
bcfe06bf 1055 struct mem_cgroup *memcg = page_memcg(page);
f745c6f5
SB
1056
1057 if (mem_cgroup_disabled())
1058 return NULL;
1059
1060 rcu_read_lock();
8965aa28
SB
1061 /* Page should not get uncharged and freed memcg under us. */
1062 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
1063 memcg = root_mem_cgroup;
1064 rcu_read_unlock();
1065 return memcg;
1066}
1067EXPORT_SYMBOL(get_mem_cgroup_from_page);
1068
37d5985c 1069static __always_inline struct mem_cgroup *active_memcg(void)
d46eb14b 1070{
37d5985c
RG
1071 if (in_interrupt())
1072 return this_cpu_read(int_active_memcg);
1073 else
1074 return current->active_memcg;
1075}
279c3393 1076
37d5985c
RG
1077static __always_inline struct mem_cgroup *get_active_memcg(void)
1078{
1079 struct mem_cgroup *memcg;
d46eb14b 1080
37d5985c
RG
1081 rcu_read_lock();
1082 memcg = active_memcg();
2160777d
MS
1083 /* remote memcg must hold a ref. */
1084 if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
1085 memcg = root_mem_cgroup;
37d5985c
RG
1086 rcu_read_unlock();
1087
1088 return memcg;
1089}
1090
4127c650
RG
1091static __always_inline bool memcg_kmem_bypass(void)
1092{
1093 /* Allow remote memcg charging from any context. */
1094 if (unlikely(active_memcg()))
1095 return false;
1096
1097 /* Memcg to charge can't be determined. */
1098 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1099 return true;
1100
1101 return false;
1102}
1103
37d5985c
RG
1104/**
1105 * If active memcg is set, do not fallback to current->mm->memcg.
1106 */
1107static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1108{
1109 if (memcg_kmem_bypass())
1110 return NULL;
1111
1112 if (unlikely(active_memcg()))
1113 return get_active_memcg();
1114
d46eb14b
SB
1115 return get_mem_cgroup_from_mm(current->mm);
1116}
54595fe2 1117
5660048c
JW
1118/**
1119 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1120 * @root: hierarchy root
1121 * @prev: previously returned memcg, NULL on first invocation
1122 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1123 *
1124 * Returns references to children of the hierarchy below @root, or
1125 * @root itself, or %NULL after a full round-trip.
1126 *
1127 * Caller must pass the return value in @prev on subsequent
1128 * invocations for reference counting, or use mem_cgroup_iter_break()
1129 * to cancel a hierarchy walk before the round-trip is complete.
1130 *
05bdc520
ML
1131 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1132 * in the hierarchy among all concurrent reclaimers operating on the
1133 * same node.
5660048c 1134 */
694fbc0f 1135struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1136 struct mem_cgroup *prev,
694fbc0f 1137 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1138{
3f649ab7 1139 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1140 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1141 struct mem_cgroup *memcg = NULL;
5ac8fb31 1142 struct mem_cgroup *pos = NULL;
711d3d2c 1143
694fbc0f
AM
1144 if (mem_cgroup_disabled())
1145 return NULL;
5660048c 1146
9f3a0d09
JW
1147 if (!root)
1148 root = root_mem_cgroup;
7d74b06f 1149
9f3a0d09 1150 if (prev && !reclaim)
5ac8fb31 1151 pos = prev;
14067bb3 1152
542f85f9 1153 rcu_read_lock();
5f578161 1154
5ac8fb31 1155 if (reclaim) {
ef8f2327 1156 struct mem_cgroup_per_node *mz;
5ac8fb31 1157
ef8f2327 1158 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1159 iter = &mz->iter;
5ac8fb31
JW
1160
1161 if (prev && reclaim->generation != iter->generation)
1162 goto out_unlock;
1163
6df38689 1164 while (1) {
4db0c3c2 1165 pos = READ_ONCE(iter->position);
6df38689
VD
1166 if (!pos || css_tryget(&pos->css))
1167 break;
5ac8fb31 1168 /*
6df38689
VD
1169 * css reference reached zero, so iter->position will
1170 * be cleared by ->css_released. However, we should not
1171 * rely on this happening soon, because ->css_released
1172 * is called from a work queue, and by busy-waiting we
1173 * might block it. So we clear iter->position right
1174 * away.
5ac8fb31 1175 */
6df38689
VD
1176 (void)cmpxchg(&iter->position, pos, NULL);
1177 }
5ac8fb31
JW
1178 }
1179
1180 if (pos)
1181 css = &pos->css;
1182
1183 for (;;) {
1184 css = css_next_descendant_pre(css, &root->css);
1185 if (!css) {
1186 /*
1187 * Reclaimers share the hierarchy walk, and a
1188 * new one might jump in right at the end of
1189 * the hierarchy - make sure they see at least
1190 * one group and restart from the beginning.
1191 */
1192 if (!prev)
1193 continue;
1194 break;
527a5ec9 1195 }
7d74b06f 1196
5ac8fb31
JW
1197 /*
1198 * Verify the css and acquire a reference. The root
1199 * is provided by the caller, so we know it's alive
1200 * and kicking, and don't take an extra reference.
1201 */
1202 memcg = mem_cgroup_from_css(css);
14067bb3 1203
5ac8fb31
JW
1204 if (css == &root->css)
1205 break;
14067bb3 1206
0b8f73e1
JW
1207 if (css_tryget(css))
1208 break;
9f3a0d09 1209
5ac8fb31 1210 memcg = NULL;
9f3a0d09 1211 }
5ac8fb31
JW
1212
1213 if (reclaim) {
5ac8fb31 1214 /*
6df38689
VD
1215 * The position could have already been updated by a competing
1216 * thread, so check that the value hasn't changed since we read
1217 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1218 */
6df38689
VD
1219 (void)cmpxchg(&iter->position, pos, memcg);
1220
5ac8fb31
JW
1221 if (pos)
1222 css_put(&pos->css);
1223
1224 if (!memcg)
1225 iter->generation++;
1226 else if (!prev)
1227 reclaim->generation = iter->generation;
9f3a0d09 1228 }
5ac8fb31 1229
542f85f9
MH
1230out_unlock:
1231 rcu_read_unlock();
c40046f3
MH
1232 if (prev && prev != root)
1233 css_put(&prev->css);
1234
9f3a0d09 1235 return memcg;
14067bb3 1236}
7d74b06f 1237
5660048c
JW
1238/**
1239 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1240 * @root: hierarchy root
1241 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1242 */
1243void mem_cgroup_iter_break(struct mem_cgroup *root,
1244 struct mem_cgroup *prev)
9f3a0d09
JW
1245{
1246 if (!root)
1247 root = root_mem_cgroup;
1248 if (prev && prev != root)
1249 css_put(&prev->css);
1250}
7d74b06f 1251
54a83d6b
MC
1252static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1253 struct mem_cgroup *dead_memcg)
6df38689 1254{
6df38689 1255 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1256 struct mem_cgroup_per_node *mz;
1257 int nid;
6df38689 1258
54a83d6b
MC
1259 for_each_node(nid) {
1260 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1261 iter = &mz->iter;
1262 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1263 }
1264}
1265
54a83d6b
MC
1266static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1267{
1268 struct mem_cgroup *memcg = dead_memcg;
1269 struct mem_cgroup *last;
1270
1271 do {
1272 __invalidate_reclaim_iterators(memcg, dead_memcg);
1273 last = memcg;
1274 } while ((memcg = parent_mem_cgroup(memcg)));
1275
1276 /*
1277 * When cgruop1 non-hierarchy mode is used,
1278 * parent_mem_cgroup() does not walk all the way up to the
1279 * cgroup root (root_mem_cgroup). So we have to handle
1280 * dead_memcg from cgroup root separately.
1281 */
1282 if (last != root_mem_cgroup)
1283 __invalidate_reclaim_iterators(root_mem_cgroup,
1284 dead_memcg);
1285}
1286
7c5f64f8
VD
1287/**
1288 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1289 * @memcg: hierarchy root
1290 * @fn: function to call for each task
1291 * @arg: argument passed to @fn
1292 *
1293 * This function iterates over tasks attached to @memcg or to any of its
1294 * descendants and calls @fn for each task. If @fn returns a non-zero
1295 * value, the function breaks the iteration loop and returns the value.
1296 * Otherwise, it will iterate over all tasks and return 0.
1297 *
1298 * This function must not be called for the root memory cgroup.
1299 */
1300int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1301 int (*fn)(struct task_struct *, void *), void *arg)
1302{
1303 struct mem_cgroup *iter;
1304 int ret = 0;
1305
1306 BUG_ON(memcg == root_mem_cgroup);
1307
1308 for_each_mem_cgroup_tree(iter, memcg) {
1309 struct css_task_iter it;
1310 struct task_struct *task;
1311
f168a9a5 1312 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1313 while (!ret && (task = css_task_iter_next(&it)))
1314 ret = fn(task, arg);
1315 css_task_iter_end(&it);
1316 if (ret) {
1317 mem_cgroup_iter_break(memcg, iter);
1318 break;
1319 }
1320 }
1321 return ret;
1322}
1323
6168d0da
AS
1324#ifdef CONFIG_DEBUG_VM
1325void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1326{
1327 struct mem_cgroup *memcg;
1328
1329 if (mem_cgroup_disabled())
1330 return;
1331
1332 memcg = page_memcg(page);
1333
1334 if (!memcg)
1335 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1336 else
1337 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1338}
1339#endif
1340
6168d0da
AS
1341/**
1342 * lock_page_lruvec - lock and return lruvec for a given page.
1343 * @page: the page
1344 *
1345 * This series functions should be used in either conditions:
1346 * PageLRU is cleared or unset
1347 * or page->_refcount is zero
1348 * or page is locked.
1349 */
1350struct lruvec *lock_page_lruvec(struct page *page)
1351{
1352 struct lruvec *lruvec;
1353 struct pglist_data *pgdat = page_pgdat(page);
1354
1355 rcu_read_lock();
1356 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1357 spin_lock(&lruvec->lru_lock);
1358 rcu_read_unlock();
1359
1360 lruvec_memcg_debug(lruvec, page);
1361
1362 return lruvec;
1363}
1364
1365struct lruvec *lock_page_lruvec_irq(struct page *page)
1366{
1367 struct lruvec *lruvec;
1368 struct pglist_data *pgdat = page_pgdat(page);
1369
1370 rcu_read_lock();
1371 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1372 spin_lock_irq(&lruvec->lru_lock);
1373 rcu_read_unlock();
1374
1375 lruvec_memcg_debug(lruvec, page);
1376
1377 return lruvec;
1378}
1379
1380struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1381{
1382 struct lruvec *lruvec;
1383 struct pglist_data *pgdat = page_pgdat(page);
1384
1385 rcu_read_lock();
1386 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1387 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1388 rcu_read_unlock();
1389
1390 lruvec_memcg_debug(lruvec, page);
1391
1392 return lruvec;
1393}
1394
925b7673 1395/**
fa9add64
HD
1396 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1397 * @lruvec: mem_cgroup per zone lru vector
1398 * @lru: index of lru list the page is sitting on
b4536f0c 1399 * @zid: zone id of the accounted pages
fa9add64 1400 * @nr_pages: positive when adding or negative when removing
925b7673 1401 *
ca707239
HD
1402 * This function must be called under lru_lock, just before a page is added
1403 * to or just after a page is removed from an lru list (that ordering being
1404 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1405 */
fa9add64 1406void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1407 int zid, int nr_pages)
3f58a829 1408{
ef8f2327 1409 struct mem_cgroup_per_node *mz;
fa9add64 1410 unsigned long *lru_size;
ca707239 1411 long size;
3f58a829
MK
1412
1413 if (mem_cgroup_disabled())
1414 return;
1415
ef8f2327 1416 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1417 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1418
1419 if (nr_pages < 0)
1420 *lru_size += nr_pages;
1421
1422 size = *lru_size;
b4536f0c
MH
1423 if (WARN_ONCE(size < 0,
1424 "%s(%p, %d, %d): lru_size %ld\n",
1425 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1426 VM_BUG_ON(1);
1427 *lru_size = 0;
1428 }
1429
1430 if (nr_pages > 0)
1431 *lru_size += nr_pages;
08e552c6 1432}
544122e5 1433
19942822 1434/**
9d11ea9f 1435 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1436 * @memcg: the memory cgroup
19942822 1437 *
9d11ea9f 1438 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1439 * pages.
19942822 1440 */
c0ff4b85 1441static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1442{
3e32cb2e
JW
1443 unsigned long margin = 0;
1444 unsigned long count;
1445 unsigned long limit;
9d11ea9f 1446
3e32cb2e 1447 count = page_counter_read(&memcg->memory);
bbec2e15 1448 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1449 if (count < limit)
1450 margin = limit - count;
1451
7941d214 1452 if (do_memsw_account()) {
3e32cb2e 1453 count = page_counter_read(&memcg->memsw);
bbec2e15 1454 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1455 if (count < limit)
3e32cb2e 1456 margin = min(margin, limit - count);
cbedbac3
LR
1457 else
1458 margin = 0;
3e32cb2e
JW
1459 }
1460
1461 return margin;
19942822
JW
1462}
1463
32047e2a 1464/*
bdcbb659 1465 * A routine for checking "mem" is under move_account() or not.
32047e2a 1466 *
bdcbb659
QH
1467 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1468 * moving cgroups. This is for waiting at high-memory pressure
1469 * caused by "move".
32047e2a 1470 */
c0ff4b85 1471static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1472{
2bd9bb20
KH
1473 struct mem_cgroup *from;
1474 struct mem_cgroup *to;
4b534334 1475 bool ret = false;
2bd9bb20
KH
1476 /*
1477 * Unlike task_move routines, we access mc.to, mc.from not under
1478 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1479 */
1480 spin_lock(&mc.lock);
1481 from = mc.from;
1482 to = mc.to;
1483 if (!from)
1484 goto unlock;
3e92041d 1485
2314b42d
JW
1486 ret = mem_cgroup_is_descendant(from, memcg) ||
1487 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1488unlock:
1489 spin_unlock(&mc.lock);
4b534334
KH
1490 return ret;
1491}
1492
c0ff4b85 1493static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1494{
1495 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1496 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1497 DEFINE_WAIT(wait);
1498 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1499 /* moving charge context might have finished. */
1500 if (mc.moving_task)
1501 schedule();
1502 finish_wait(&mc.waitq, &wait);
1503 return true;
1504 }
1505 }
1506 return false;
1507}
1508
5f9a4f4a
MS
1509struct memory_stat {
1510 const char *name;
1511 unsigned int ratio;
1512 unsigned int idx;
1513};
1514
1515static struct memory_stat memory_stats[] = {
1516 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1517 { "file", PAGE_SIZE, NR_FILE_PAGES },
1518 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
f0c0c115 1519 { "pagetables", PAGE_SIZE, NR_PAGETABLE },
5f9a4f4a
MS
1520 { "percpu", 1, MEMCG_PERCPU_B },
1521 { "sock", PAGE_SIZE, MEMCG_SOCK },
1522 { "shmem", PAGE_SIZE, NR_SHMEM },
1523 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1524 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1525 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1526#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1527 /*
1528 * The ratio will be initialized in memory_stats_init(). Because
1529 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1530 * constant(e.g. powerpc).
1531 */
1532 { "anon_thp", 0, NR_ANON_THPS },
b8eddff8
JW
1533 { "file_thp", 0, NR_FILE_THPS },
1534 { "shmem_thp", 0, NR_SHMEM_THPS },
5f9a4f4a
MS
1535#endif
1536 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1537 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1538 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1539 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1540 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1541
1542 /*
1543 * Note: The slab_reclaimable and slab_unreclaimable must be
1544 * together and slab_reclaimable must be in front.
1545 */
1546 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1547 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1548
1549 /* The memory events */
1550 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1551 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1552 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1553 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1554 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1555 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1556 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1557};
1558
1559static int __init memory_stats_init(void)
1560{
1561 int i;
1562
1563 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1564#ifdef CONFIG_TRANSPARENT_HUGEPAGE
b8eddff8
JW
1565 if (memory_stats[i].idx == NR_ANON_THPS ||
1566 memory_stats[i].idx == NR_FILE_THPS ||
1567 memory_stats[i].idx == NR_SHMEM_THPS)
5f9a4f4a
MS
1568 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1569#endif
1570 VM_BUG_ON(!memory_stats[i].ratio);
1571 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1572 }
1573
1574 return 0;
1575}
1576pure_initcall(memory_stats_init);
1577
c8713d0b
JW
1578static char *memory_stat_format(struct mem_cgroup *memcg)
1579{
1580 struct seq_buf s;
1581 int i;
71cd3113 1582
c8713d0b
JW
1583 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1584 if (!s.buffer)
1585 return NULL;
1586
1587 /*
1588 * Provide statistics on the state of the memory subsystem as
1589 * well as cumulative event counters that show past behavior.
1590 *
1591 * This list is ordered following a combination of these gradients:
1592 * 1) generic big picture -> specifics and details
1593 * 2) reflecting userspace activity -> reflecting kernel heuristics
1594 *
1595 * Current memory state:
1596 */
1597
5f9a4f4a
MS
1598 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1599 u64 size;
c8713d0b 1600
5f9a4f4a
MS
1601 size = memcg_page_state(memcg, memory_stats[i].idx);
1602 size *= memory_stats[i].ratio;
1603 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
c8713d0b 1604
5f9a4f4a
MS
1605 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1606 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1607 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1608 seq_buf_printf(&s, "slab %llu\n", size);
1609 }
1610 }
c8713d0b
JW
1611
1612 /* Accumulated memory events */
1613
ebc5d83d
KK
1614 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1615 memcg_events(memcg, PGFAULT));
1616 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1617 memcg_events(memcg, PGMAJFAULT));
ebc5d83d
KK
1618 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1619 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1620 seq_buf_printf(&s, "pgscan %lu\n",
1621 memcg_events(memcg, PGSCAN_KSWAPD) +
1622 memcg_events(memcg, PGSCAN_DIRECT));
1623 seq_buf_printf(&s, "pgsteal %lu\n",
1624 memcg_events(memcg, PGSTEAL_KSWAPD) +
1625 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1626 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1627 memcg_events(memcg, PGACTIVATE));
1628 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1629 memcg_events(memcg, PGDEACTIVATE));
1630 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1631 memcg_events(memcg, PGLAZYFREE));
1632 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1633 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1634
1635#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1636 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1637 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1638 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1639 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1640#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1641
1642 /* The above should easily fit into one page */
1643 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1644
1645 return s.buffer;
1646}
71cd3113 1647
58cf188e 1648#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1649/**
f0c867d9 1650 * mem_cgroup_print_oom_context: Print OOM information relevant to
1651 * memory controller.
e222432b
BS
1652 * @memcg: The memory cgroup that went over limit
1653 * @p: Task that is going to be killed
1654 *
1655 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1656 * enabled
1657 */
f0c867d9 1658void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1659{
e222432b
BS
1660 rcu_read_lock();
1661
f0c867d9 1662 if (memcg) {
1663 pr_cont(",oom_memcg=");
1664 pr_cont_cgroup_path(memcg->css.cgroup);
1665 } else
1666 pr_cont(",global_oom");
2415b9f5 1667 if (p) {
f0c867d9 1668 pr_cont(",task_memcg=");
2415b9f5 1669 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1670 }
e222432b 1671 rcu_read_unlock();
f0c867d9 1672}
1673
1674/**
1675 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1676 * memory controller.
1677 * @memcg: The memory cgroup that went over limit
1678 */
1679void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1680{
c8713d0b 1681 char *buf;
e222432b 1682
3e32cb2e
JW
1683 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1684 K((u64)page_counter_read(&memcg->memory)),
15b42562 1685 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1686 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1687 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1688 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1689 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1690 else {
1691 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1692 K((u64)page_counter_read(&memcg->memsw)),
1693 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1694 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1695 K((u64)page_counter_read(&memcg->kmem)),
1696 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1697 }
c8713d0b
JW
1698
1699 pr_info("Memory cgroup stats for ");
1700 pr_cont_cgroup_path(memcg->css.cgroup);
1701 pr_cont(":");
1702 buf = memory_stat_format(memcg);
1703 if (!buf)
1704 return;
1705 pr_info("%s", buf);
1706 kfree(buf);
e222432b
BS
1707}
1708
a63d83f4
DR
1709/*
1710 * Return the memory (and swap, if configured) limit for a memcg.
1711 */
bbec2e15 1712unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1713{
8d387a5f
WL
1714 unsigned long max = READ_ONCE(memcg->memory.max);
1715
1716 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1717 if (mem_cgroup_swappiness(memcg))
1718 max += min(READ_ONCE(memcg->swap.max),
1719 (unsigned long)total_swap_pages);
1720 } else { /* v1 */
1721 if (mem_cgroup_swappiness(memcg)) {
1722 /* Calculate swap excess capacity from memsw limit */
1723 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1724
1725 max += min(swap, (unsigned long)total_swap_pages);
1726 }
9a5a8f19 1727 }
bbec2e15 1728 return max;
a63d83f4
DR
1729}
1730
9783aa99
CD
1731unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1732{
1733 return page_counter_read(&memcg->memory);
1734}
1735
b6e6edcf 1736static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1737 int order)
9cbb78bb 1738{
6e0fc46d
DR
1739 struct oom_control oc = {
1740 .zonelist = NULL,
1741 .nodemask = NULL,
2a966b77 1742 .memcg = memcg,
6e0fc46d
DR
1743 .gfp_mask = gfp_mask,
1744 .order = order,
6e0fc46d 1745 };
1378b37d 1746 bool ret = true;
9cbb78bb 1747
7775face
TH
1748 if (mutex_lock_killable(&oom_lock))
1749 return true;
1378b37d
YS
1750
1751 if (mem_cgroup_margin(memcg) >= (1 << order))
1752 goto unlock;
1753
7775face
TH
1754 /*
1755 * A few threads which were not waiting at mutex_lock_killable() can
1756 * fail to bail out. Therefore, check again after holding oom_lock.
1757 */
1758 ret = should_force_charge() || out_of_memory(&oc);
1378b37d
YS
1759
1760unlock:
dc56401f 1761 mutex_unlock(&oom_lock);
7c5f64f8 1762 return ret;
9cbb78bb
DR
1763}
1764
0608f43d 1765static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1766 pg_data_t *pgdat,
0608f43d
AM
1767 gfp_t gfp_mask,
1768 unsigned long *total_scanned)
1769{
1770 struct mem_cgroup *victim = NULL;
1771 int total = 0;
1772 int loop = 0;
1773 unsigned long excess;
1774 unsigned long nr_scanned;
1775 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1776 .pgdat = pgdat,
0608f43d
AM
1777 };
1778
3e32cb2e 1779 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1780
1781 while (1) {
1782 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1783 if (!victim) {
1784 loop++;
1785 if (loop >= 2) {
1786 /*
1787 * If we have not been able to reclaim
1788 * anything, it might because there are
1789 * no reclaimable pages under this hierarchy
1790 */
1791 if (!total)
1792 break;
1793 /*
1794 * We want to do more targeted reclaim.
1795 * excess >> 2 is not to excessive so as to
1796 * reclaim too much, nor too less that we keep
1797 * coming back to reclaim from this cgroup
1798 */
1799 if (total >= (excess >> 2) ||
1800 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1801 break;
1802 }
1803 continue;
1804 }
a9dd0a83 1805 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1806 pgdat, &nr_scanned);
0608f43d 1807 *total_scanned += nr_scanned;
3e32cb2e 1808 if (!soft_limit_excess(root_memcg))
0608f43d 1809 break;
6d61ef40 1810 }
0608f43d
AM
1811 mem_cgroup_iter_break(root_memcg, victim);
1812 return total;
6d61ef40
BS
1813}
1814
0056f4e6
JW
1815#ifdef CONFIG_LOCKDEP
1816static struct lockdep_map memcg_oom_lock_dep_map = {
1817 .name = "memcg_oom_lock",
1818};
1819#endif
1820
fb2a6fc5
JW
1821static DEFINE_SPINLOCK(memcg_oom_lock);
1822
867578cb
KH
1823/*
1824 * Check OOM-Killer is already running under our hierarchy.
1825 * If someone is running, return false.
1826 */
fb2a6fc5 1827static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1828{
79dfdacc 1829 struct mem_cgroup *iter, *failed = NULL;
a636b327 1830
fb2a6fc5
JW
1831 spin_lock(&memcg_oom_lock);
1832
9f3a0d09 1833 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1834 if (iter->oom_lock) {
79dfdacc
MH
1835 /*
1836 * this subtree of our hierarchy is already locked
1837 * so we cannot give a lock.
1838 */
79dfdacc 1839 failed = iter;
9f3a0d09
JW
1840 mem_cgroup_iter_break(memcg, iter);
1841 break;
23751be0
JW
1842 } else
1843 iter->oom_lock = true;
7d74b06f 1844 }
867578cb 1845
fb2a6fc5
JW
1846 if (failed) {
1847 /*
1848 * OK, we failed to lock the whole subtree so we have
1849 * to clean up what we set up to the failing subtree
1850 */
1851 for_each_mem_cgroup_tree(iter, memcg) {
1852 if (iter == failed) {
1853 mem_cgroup_iter_break(memcg, iter);
1854 break;
1855 }
1856 iter->oom_lock = false;
79dfdacc 1857 }
0056f4e6
JW
1858 } else
1859 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1860
1861 spin_unlock(&memcg_oom_lock);
1862
1863 return !failed;
a636b327 1864}
0b7f569e 1865
fb2a6fc5 1866static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1867{
7d74b06f
KH
1868 struct mem_cgroup *iter;
1869
fb2a6fc5 1870 spin_lock(&memcg_oom_lock);
5facae4f 1871 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1872 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1873 iter->oom_lock = false;
fb2a6fc5 1874 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1875}
1876
c0ff4b85 1877static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1878{
1879 struct mem_cgroup *iter;
1880
c2b42d3c 1881 spin_lock(&memcg_oom_lock);
c0ff4b85 1882 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1883 iter->under_oom++;
1884 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1885}
1886
c0ff4b85 1887static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1888{
1889 struct mem_cgroup *iter;
1890
867578cb 1891 /*
7a52d4d8
ML
1892 * Be careful about under_oom underflows becase a child memcg
1893 * could have been added after mem_cgroup_mark_under_oom.
867578cb 1894 */
c2b42d3c 1895 spin_lock(&memcg_oom_lock);
c0ff4b85 1896 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1897 if (iter->under_oom > 0)
1898 iter->under_oom--;
1899 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1900}
1901
867578cb
KH
1902static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1903
dc98df5a 1904struct oom_wait_info {
d79154bb 1905 struct mem_cgroup *memcg;
ac6424b9 1906 wait_queue_entry_t wait;
dc98df5a
KH
1907};
1908
ac6424b9 1909static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1910 unsigned mode, int sync, void *arg)
1911{
d79154bb
HD
1912 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1913 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1914 struct oom_wait_info *oom_wait_info;
1915
1916 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1917 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1918
2314b42d
JW
1919 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1920 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1921 return 0;
dc98df5a
KH
1922 return autoremove_wake_function(wait, mode, sync, arg);
1923}
1924
c0ff4b85 1925static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1926{
c2b42d3c
TH
1927 /*
1928 * For the following lockless ->under_oom test, the only required
1929 * guarantee is that it must see the state asserted by an OOM when
1930 * this function is called as a result of userland actions
1931 * triggered by the notification of the OOM. This is trivially
1932 * achieved by invoking mem_cgroup_mark_under_oom() before
1933 * triggering notification.
1934 */
1935 if (memcg && memcg->under_oom)
f4b90b70 1936 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1937}
1938
29ef680a
MH
1939enum oom_status {
1940 OOM_SUCCESS,
1941 OOM_FAILED,
1942 OOM_ASYNC,
1943 OOM_SKIPPED
1944};
1945
1946static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1947{
7056d3a3
MH
1948 enum oom_status ret;
1949 bool locked;
1950
29ef680a
MH
1951 if (order > PAGE_ALLOC_COSTLY_ORDER)
1952 return OOM_SKIPPED;
1953
7a1adfdd
RG
1954 memcg_memory_event(memcg, MEMCG_OOM);
1955
867578cb 1956 /*
49426420
JW
1957 * We are in the middle of the charge context here, so we
1958 * don't want to block when potentially sitting on a callstack
1959 * that holds all kinds of filesystem and mm locks.
1960 *
29ef680a
MH
1961 * cgroup1 allows disabling the OOM killer and waiting for outside
1962 * handling until the charge can succeed; remember the context and put
1963 * the task to sleep at the end of the page fault when all locks are
1964 * released.
49426420 1965 *
29ef680a
MH
1966 * On the other hand, in-kernel OOM killer allows for an async victim
1967 * memory reclaim (oom_reaper) and that means that we are not solely
1968 * relying on the oom victim to make a forward progress and we can
1969 * invoke the oom killer here.
1970 *
1971 * Please note that mem_cgroup_out_of_memory might fail to find a
1972 * victim and then we have to bail out from the charge path.
867578cb 1973 */
29ef680a
MH
1974 if (memcg->oom_kill_disable) {
1975 if (!current->in_user_fault)
1976 return OOM_SKIPPED;
1977 css_get(&memcg->css);
1978 current->memcg_in_oom = memcg;
1979 current->memcg_oom_gfp_mask = mask;
1980 current->memcg_oom_order = order;
1981
1982 return OOM_ASYNC;
1983 }
1984
7056d3a3
MH
1985 mem_cgroup_mark_under_oom(memcg);
1986
1987 locked = mem_cgroup_oom_trylock(memcg);
1988
1989 if (locked)
1990 mem_cgroup_oom_notify(memcg);
1991
1992 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1993 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1994 ret = OOM_SUCCESS;
1995 else
1996 ret = OOM_FAILED;
1997
1998 if (locked)
1999 mem_cgroup_oom_unlock(memcg);
29ef680a 2000
7056d3a3 2001 return ret;
3812c8c8
JW
2002}
2003
2004/**
2005 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2006 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2007 *
49426420
JW
2008 * This has to be called at the end of a page fault if the memcg OOM
2009 * handler was enabled.
3812c8c8 2010 *
49426420 2011 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2012 * sleep on a waitqueue until the userspace task resolves the
2013 * situation. Sleeping directly in the charge context with all kinds
2014 * of locks held is not a good idea, instead we remember an OOM state
2015 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2016 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2017 *
2018 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2019 * completed, %false otherwise.
3812c8c8 2020 */
49426420 2021bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2022{
626ebc41 2023 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 2024 struct oom_wait_info owait;
49426420 2025 bool locked;
3812c8c8
JW
2026
2027 /* OOM is global, do not handle */
3812c8c8 2028 if (!memcg)
49426420 2029 return false;
3812c8c8 2030
7c5f64f8 2031 if (!handle)
49426420 2032 goto cleanup;
3812c8c8
JW
2033
2034 owait.memcg = memcg;
2035 owait.wait.flags = 0;
2036 owait.wait.func = memcg_oom_wake_function;
2037 owait.wait.private = current;
2055da97 2038 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 2039
3812c8c8 2040 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2041 mem_cgroup_mark_under_oom(memcg);
2042
2043 locked = mem_cgroup_oom_trylock(memcg);
2044
2045 if (locked)
2046 mem_cgroup_oom_notify(memcg);
2047
2048 if (locked && !memcg->oom_kill_disable) {
2049 mem_cgroup_unmark_under_oom(memcg);
2050 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
2051 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2052 current->memcg_oom_order);
49426420 2053 } else {
3812c8c8 2054 schedule();
49426420
JW
2055 mem_cgroup_unmark_under_oom(memcg);
2056 finish_wait(&memcg_oom_waitq, &owait.wait);
2057 }
2058
2059 if (locked) {
fb2a6fc5
JW
2060 mem_cgroup_oom_unlock(memcg);
2061 /*
2062 * There is no guarantee that an OOM-lock contender
2063 * sees the wakeups triggered by the OOM kill
2064 * uncharges. Wake any sleepers explicitely.
2065 */
2066 memcg_oom_recover(memcg);
2067 }
49426420 2068cleanup:
626ebc41 2069 current->memcg_in_oom = NULL;
3812c8c8 2070 css_put(&memcg->css);
867578cb 2071 return true;
0b7f569e
KH
2072}
2073
3d8b38eb
RG
2074/**
2075 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2076 * @victim: task to be killed by the OOM killer
2077 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2078 *
2079 * Returns a pointer to a memory cgroup, which has to be cleaned up
2080 * by killing all belonging OOM-killable tasks.
2081 *
2082 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2083 */
2084struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2085 struct mem_cgroup *oom_domain)
2086{
2087 struct mem_cgroup *oom_group = NULL;
2088 struct mem_cgroup *memcg;
2089
2090 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2091 return NULL;
2092
2093 if (!oom_domain)
2094 oom_domain = root_mem_cgroup;
2095
2096 rcu_read_lock();
2097
2098 memcg = mem_cgroup_from_task(victim);
2099 if (memcg == root_mem_cgroup)
2100 goto out;
2101
48fe267c
RG
2102 /*
2103 * If the victim task has been asynchronously moved to a different
2104 * memory cgroup, we might end up killing tasks outside oom_domain.
2105 * In this case it's better to ignore memory.group.oom.
2106 */
2107 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2108 goto out;
2109
3d8b38eb
RG
2110 /*
2111 * Traverse the memory cgroup hierarchy from the victim task's
2112 * cgroup up to the OOMing cgroup (or root) to find the
2113 * highest-level memory cgroup with oom.group set.
2114 */
2115 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2116 if (memcg->oom_group)
2117 oom_group = memcg;
2118
2119 if (memcg == oom_domain)
2120 break;
2121 }
2122
2123 if (oom_group)
2124 css_get(&oom_group->css);
2125out:
2126 rcu_read_unlock();
2127
2128 return oom_group;
2129}
2130
2131void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2132{
2133 pr_info("Tasks in ");
2134 pr_cont_cgroup_path(memcg->css.cgroup);
2135 pr_cont(" are going to be killed due to memory.oom.group set\n");
2136}
2137
d7365e78 2138/**
bcfe06bf 2139 * lock_page_memcg - lock a page and memcg binding
81f8c3a4 2140 * @page: the page
32047e2a 2141 *
81f8c3a4 2142 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2143 * another cgroup.
2144 *
2145 * It ensures lifetime of the returned memcg. Caller is responsible
2146 * for the lifetime of the page; __unlock_page_memcg() is available
2147 * when @page might get freed inside the locked section.
d69b042f 2148 */
739f79fc 2149struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5 2150{
9da7b521 2151 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2152 struct mem_cgroup *memcg;
6de22619 2153 unsigned long flags;
89c06bd5 2154
6de22619
JW
2155 /*
2156 * The RCU lock is held throughout the transaction. The fast
2157 * path can get away without acquiring the memcg->move_lock
2158 * because page moving starts with an RCU grace period.
739f79fc
JW
2159 *
2160 * The RCU lock also protects the memcg from being freed when
2161 * the page state that is going to change is the only thing
2162 * preventing the page itself from being freed. E.g. writeback
2163 * doesn't hold a page reference and relies on PG_writeback to
2164 * keep off truncation, migration and so forth.
2165 */
d7365e78
JW
2166 rcu_read_lock();
2167
2168 if (mem_cgroup_disabled())
739f79fc 2169 return NULL;
89c06bd5 2170again:
bcfe06bf 2171 memcg = page_memcg(head);
29833315 2172 if (unlikely(!memcg))
739f79fc 2173 return NULL;
d7365e78 2174
20ad50d6
AS
2175#ifdef CONFIG_PROVE_LOCKING
2176 local_irq_save(flags);
2177 might_lock(&memcg->move_lock);
2178 local_irq_restore(flags);
2179#endif
2180
bdcbb659 2181 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2182 return memcg;
89c06bd5 2183
6de22619 2184 spin_lock_irqsave(&memcg->move_lock, flags);
bcfe06bf 2185 if (memcg != page_memcg(head)) {
6de22619 2186 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2187 goto again;
2188 }
6de22619
JW
2189
2190 /*
2191 * When charge migration first begins, we can have locked and
2192 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2193 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2194 */
2195 memcg->move_lock_task = current;
2196 memcg->move_lock_flags = flags;
d7365e78 2197
739f79fc 2198 return memcg;
89c06bd5 2199}
81f8c3a4 2200EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2201
d7365e78 2202/**
739f79fc
JW
2203 * __unlock_page_memcg - unlock and unpin a memcg
2204 * @memcg: the memcg
2205 *
2206 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2207 */
739f79fc 2208void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2209{
6de22619
JW
2210 if (memcg && memcg->move_lock_task == current) {
2211 unsigned long flags = memcg->move_lock_flags;
2212
2213 memcg->move_lock_task = NULL;
2214 memcg->move_lock_flags = 0;
2215
2216 spin_unlock_irqrestore(&memcg->move_lock, flags);
2217 }
89c06bd5 2218
d7365e78 2219 rcu_read_unlock();
89c06bd5 2220}
739f79fc
JW
2221
2222/**
bcfe06bf 2223 * unlock_page_memcg - unlock a page and memcg binding
739f79fc
JW
2224 * @page: the page
2225 */
2226void unlock_page_memcg(struct page *page)
2227{
9da7b521
JW
2228 struct page *head = compound_head(page);
2229
bcfe06bf 2230 __unlock_page_memcg(page_memcg(head));
739f79fc 2231}
81f8c3a4 2232EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2233
cdec2e42
KH
2234struct memcg_stock_pcp {
2235 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2236 unsigned int nr_pages;
bf4f0599
RG
2237
2238#ifdef CONFIG_MEMCG_KMEM
2239 struct obj_cgroup *cached_objcg;
2240 unsigned int nr_bytes;
2241#endif
2242
cdec2e42 2243 struct work_struct work;
26fe6168 2244 unsigned long flags;
a0db00fc 2245#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2246};
2247static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2248static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2249
bf4f0599
RG
2250#ifdef CONFIG_MEMCG_KMEM
2251static void drain_obj_stock(struct memcg_stock_pcp *stock);
2252static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2253 struct mem_cgroup *root_memcg);
2254
2255#else
2256static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2257{
2258}
2259static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2260 struct mem_cgroup *root_memcg)
2261{
2262 return false;
2263}
2264#endif
2265
a0956d54
SS
2266/**
2267 * consume_stock: Try to consume stocked charge on this cpu.
2268 * @memcg: memcg to consume from.
2269 * @nr_pages: how many pages to charge.
2270 *
2271 * The charges will only happen if @memcg matches the current cpu's memcg
2272 * stock, and at least @nr_pages are available in that stock. Failure to
2273 * service an allocation will refill the stock.
2274 *
2275 * returns true if successful, false otherwise.
cdec2e42 2276 */
a0956d54 2277static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2278{
2279 struct memcg_stock_pcp *stock;
db2ba40c 2280 unsigned long flags;
3e32cb2e 2281 bool ret = false;
cdec2e42 2282
a983b5eb 2283 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2284 return ret;
a0956d54 2285
db2ba40c
JW
2286 local_irq_save(flags);
2287
2288 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2289 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2290 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2291 ret = true;
2292 }
db2ba40c
JW
2293
2294 local_irq_restore(flags);
2295
cdec2e42
KH
2296 return ret;
2297}
2298
2299/*
3e32cb2e 2300 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2301 */
2302static void drain_stock(struct memcg_stock_pcp *stock)
2303{
2304 struct mem_cgroup *old = stock->cached;
2305
1a3e1f40
JW
2306 if (!old)
2307 return;
2308
11c9ea4e 2309 if (stock->nr_pages) {
3e32cb2e 2310 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2311 if (do_memsw_account())
3e32cb2e 2312 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2313 stock->nr_pages = 0;
cdec2e42 2314 }
1a3e1f40
JW
2315
2316 css_put(&old->css);
cdec2e42 2317 stock->cached = NULL;
cdec2e42
KH
2318}
2319
cdec2e42
KH
2320static void drain_local_stock(struct work_struct *dummy)
2321{
db2ba40c
JW
2322 struct memcg_stock_pcp *stock;
2323 unsigned long flags;
2324
72f0184c
MH
2325 /*
2326 * The only protection from memory hotplug vs. drain_stock races is
2327 * that we always operate on local CPU stock here with IRQ disabled
2328 */
db2ba40c
JW
2329 local_irq_save(flags);
2330
2331 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 2332 drain_obj_stock(stock);
cdec2e42 2333 drain_stock(stock);
26fe6168 2334 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2335
2336 local_irq_restore(flags);
cdec2e42
KH
2337}
2338
2339/*
3e32cb2e 2340 * Cache charges(val) to local per_cpu area.
320cc51d 2341 * This will be consumed by consume_stock() function, later.
cdec2e42 2342 */
c0ff4b85 2343static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2344{
db2ba40c
JW
2345 struct memcg_stock_pcp *stock;
2346 unsigned long flags;
2347
2348 local_irq_save(flags);
cdec2e42 2349
db2ba40c 2350 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2351 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2352 drain_stock(stock);
1a3e1f40 2353 css_get(&memcg->css);
c0ff4b85 2354 stock->cached = memcg;
cdec2e42 2355 }
11c9ea4e 2356 stock->nr_pages += nr_pages;
db2ba40c 2357
a983b5eb 2358 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2359 drain_stock(stock);
2360
db2ba40c 2361 local_irq_restore(flags);
cdec2e42
KH
2362}
2363
2364/*
c0ff4b85 2365 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2366 * of the hierarchy under it.
cdec2e42 2367 */
6d3d6aa2 2368static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2369{
26fe6168 2370 int cpu, curcpu;
d38144b7 2371
6d3d6aa2
JW
2372 /* If someone's already draining, avoid adding running more workers. */
2373 if (!mutex_trylock(&percpu_charge_mutex))
2374 return;
72f0184c
MH
2375 /*
2376 * Notify other cpus that system-wide "drain" is running
2377 * We do not care about races with the cpu hotplug because cpu down
2378 * as well as workers from this path always operate on the local
2379 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2380 */
5af12d0e 2381 curcpu = get_cpu();
cdec2e42
KH
2382 for_each_online_cpu(cpu) {
2383 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2384 struct mem_cgroup *memcg;
e1a366be 2385 bool flush = false;
26fe6168 2386
e1a366be 2387 rcu_read_lock();
c0ff4b85 2388 memcg = stock->cached;
e1a366be
RG
2389 if (memcg && stock->nr_pages &&
2390 mem_cgroup_is_descendant(memcg, root_memcg))
2391 flush = true;
bf4f0599
RG
2392 if (obj_stock_flush_required(stock, root_memcg))
2393 flush = true;
e1a366be
RG
2394 rcu_read_unlock();
2395
2396 if (flush &&
2397 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2398 if (cpu == curcpu)
2399 drain_local_stock(&stock->work);
2400 else
2401 schedule_work_on(cpu, &stock->work);
2402 }
cdec2e42 2403 }
5af12d0e 2404 put_cpu();
9f50fad6 2405 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2406}
2407
308167fc 2408static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2409{
cdec2e42 2410 struct memcg_stock_pcp *stock;
42a30035 2411 struct mem_cgroup *memcg, *mi;
cdec2e42 2412
cdec2e42
KH
2413 stock = &per_cpu(memcg_stock, cpu);
2414 drain_stock(stock);
a983b5eb
JW
2415
2416 for_each_mem_cgroup(memcg) {
2417 int i;
2418
2419 for (i = 0; i < MEMCG_NR_STAT; i++) {
2420 int nid;
2421 long x;
2422
871789d4 2423 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2424 if (x)
42a30035
JW
2425 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2426 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2427
2428 if (i >= NR_VM_NODE_STAT_ITEMS)
2429 continue;
2430
2431 for_each_node(nid) {
2432 struct mem_cgroup_per_node *pn;
2433
2434 pn = mem_cgroup_nodeinfo(memcg, nid);
2435 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2436 if (x)
42a30035
JW
2437 do {
2438 atomic_long_add(x, &pn->lruvec_stat[i]);
2439 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2440 }
2441 }
2442
e27be240 2443 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2444 long x;
2445
871789d4 2446 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2447 if (x)
42a30035
JW
2448 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2449 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2450 }
2451 }
2452
308167fc 2453 return 0;
cdec2e42
KH
2454}
2455
b3ff9291
CD
2456static unsigned long reclaim_high(struct mem_cgroup *memcg,
2457 unsigned int nr_pages,
2458 gfp_t gfp_mask)
f7e1cb6e 2459{
b3ff9291
CD
2460 unsigned long nr_reclaimed = 0;
2461
f7e1cb6e 2462 do {
e22c6ed9
JW
2463 unsigned long pflags;
2464
d1663a90
JK
2465 if (page_counter_read(&memcg->memory) <=
2466 READ_ONCE(memcg->memory.high))
f7e1cb6e 2467 continue;
e22c6ed9 2468
e27be240 2469 memcg_memory_event(memcg, MEMCG_HIGH);
e22c6ed9
JW
2470
2471 psi_memstall_enter(&pflags);
b3ff9291
CD
2472 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2473 gfp_mask, true);
e22c6ed9 2474 psi_memstall_leave(&pflags);
4bf17307
CD
2475 } while ((memcg = parent_mem_cgroup(memcg)) &&
2476 !mem_cgroup_is_root(memcg));
b3ff9291
CD
2477
2478 return nr_reclaimed;
f7e1cb6e
JW
2479}
2480
2481static void high_work_func(struct work_struct *work)
2482{
2483 struct mem_cgroup *memcg;
2484
2485 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2486 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2487}
2488
0e4b01df
CD
2489/*
2490 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2491 * enough to still cause a significant slowdown in most cases, while still
2492 * allowing diagnostics and tracing to proceed without becoming stuck.
2493 */
2494#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2495
2496/*
2497 * When calculating the delay, we use these either side of the exponentiation to
2498 * maintain precision and scale to a reasonable number of jiffies (see the table
2499 * below.
2500 *
2501 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2502 * overage ratio to a delay.
ac5ddd0f 2503 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
0e4b01df
CD
2504 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2505 * to produce a reasonable delay curve.
2506 *
2507 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2508 * reasonable delay curve compared to precision-adjusted overage, not
2509 * penalising heavily at first, but still making sure that growth beyond the
2510 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2511 * example, with a high of 100 megabytes:
2512 *
2513 * +-------+------------------------+
2514 * | usage | time to allocate in ms |
2515 * +-------+------------------------+
2516 * | 100M | 0 |
2517 * | 101M | 6 |
2518 * | 102M | 25 |
2519 * | 103M | 57 |
2520 * | 104M | 102 |
2521 * | 105M | 159 |
2522 * | 106M | 230 |
2523 * | 107M | 313 |
2524 * | 108M | 409 |
2525 * | 109M | 518 |
2526 * | 110M | 639 |
2527 * | 111M | 774 |
2528 * | 112M | 921 |
2529 * | 113M | 1081 |
2530 * | 114M | 1254 |
2531 * | 115M | 1439 |
2532 * | 116M | 1638 |
2533 * | 117M | 1849 |
2534 * | 118M | 2000 |
2535 * | 119M | 2000 |
2536 * | 120M | 2000 |
2537 * +-------+------------------------+
2538 */
2539 #define MEMCG_DELAY_PRECISION_SHIFT 20
2540 #define MEMCG_DELAY_SCALING_SHIFT 14
2541
8a5dbc65 2542static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2543{
8a5dbc65 2544 u64 overage;
b23afb93 2545
8a5dbc65
JK
2546 if (usage <= high)
2547 return 0;
e26733e0 2548
8a5dbc65
JK
2549 /*
2550 * Prevent division by 0 in overage calculation by acting as if
2551 * it was a threshold of 1 page
2552 */
2553 high = max(high, 1UL);
9b8b1754 2554
8a5dbc65
JK
2555 overage = usage - high;
2556 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2557 return div64_u64(overage, high);
2558}
e26733e0 2559
8a5dbc65
JK
2560static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2561{
2562 u64 overage, max_overage = 0;
e26733e0 2563
8a5dbc65
JK
2564 do {
2565 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2566 READ_ONCE(memcg->memory.high));
8a5dbc65 2567 max_overage = max(overage, max_overage);
e26733e0
CD
2568 } while ((memcg = parent_mem_cgroup(memcg)) &&
2569 !mem_cgroup_is_root(memcg));
2570
8a5dbc65
JK
2571 return max_overage;
2572}
2573
4b82ab4f
JK
2574static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2575{
2576 u64 overage, max_overage = 0;
2577
2578 do {
2579 overage = calculate_overage(page_counter_read(&memcg->swap),
2580 READ_ONCE(memcg->swap.high));
2581 if (overage)
2582 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2583 max_overage = max(overage, max_overage);
2584 } while ((memcg = parent_mem_cgroup(memcg)) &&
2585 !mem_cgroup_is_root(memcg));
2586
2587 return max_overage;
2588}
2589
8a5dbc65
JK
2590/*
2591 * Get the number of jiffies that we should penalise a mischievous cgroup which
2592 * is exceeding its memory.high by checking both it and its ancestors.
2593 */
2594static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2595 unsigned int nr_pages,
2596 u64 max_overage)
2597{
2598 unsigned long penalty_jiffies;
2599
e26733e0
CD
2600 if (!max_overage)
2601 return 0;
0e4b01df
CD
2602
2603 /*
0e4b01df
CD
2604 * We use overage compared to memory.high to calculate the number of
2605 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2606 * fairly lenient on small overages, and increasingly harsh when the
2607 * memcg in question makes it clear that it has no intention of stopping
2608 * its crazy behaviour, so we exponentially increase the delay based on
2609 * overage amount.
2610 */
e26733e0
CD
2611 penalty_jiffies = max_overage * max_overage * HZ;
2612 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2613 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2614
2615 /*
2616 * Factor in the task's own contribution to the overage, such that four
2617 * N-sized allocations are throttled approximately the same as one
2618 * 4N-sized allocation.
2619 *
2620 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2621 * larger the current charge patch is than that.
2622 */
ff144e69 2623 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2624}
2625
2626/*
2627 * Scheduled by try_charge() to be executed from the userland return path
2628 * and reclaims memory over the high limit.
2629 */
2630void mem_cgroup_handle_over_high(void)
2631{
2632 unsigned long penalty_jiffies;
2633 unsigned long pflags;
b3ff9291 2634 unsigned long nr_reclaimed;
e26733e0 2635 unsigned int nr_pages = current->memcg_nr_pages_over_high;
d977aa93 2636 int nr_retries = MAX_RECLAIM_RETRIES;
e26733e0 2637 struct mem_cgroup *memcg;
b3ff9291 2638 bool in_retry = false;
e26733e0
CD
2639
2640 if (likely(!nr_pages))
2641 return;
2642
2643 memcg = get_mem_cgroup_from_mm(current->mm);
e26733e0
CD
2644 current->memcg_nr_pages_over_high = 0;
2645
b3ff9291
CD
2646retry_reclaim:
2647 /*
2648 * The allocating task should reclaim at least the batch size, but for
2649 * subsequent retries we only want to do what's necessary to prevent oom
2650 * or breaching resource isolation.
2651 *
2652 * This is distinct from memory.max or page allocator behaviour because
2653 * memory.high is currently batched, whereas memory.max and the page
2654 * allocator run every time an allocation is made.
2655 */
2656 nr_reclaimed = reclaim_high(memcg,
2657 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2658 GFP_KERNEL);
2659
e26733e0
CD
2660 /*
2661 * memory.high is breached and reclaim is unable to keep up. Throttle
2662 * allocators proactively to slow down excessive growth.
2663 */
8a5dbc65
JK
2664 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2665 mem_find_max_overage(memcg));
0e4b01df 2666
4b82ab4f
JK
2667 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2668 swap_find_max_overage(memcg));
2669
ff144e69
JK
2670 /*
2671 * Clamp the max delay per usermode return so as to still keep the
2672 * application moving forwards and also permit diagnostics, albeit
2673 * extremely slowly.
2674 */
2675 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2676
0e4b01df
CD
2677 /*
2678 * Don't sleep if the amount of jiffies this memcg owes us is so low
2679 * that it's not even worth doing, in an attempt to be nice to those who
2680 * go only a small amount over their memory.high value and maybe haven't
2681 * been aggressively reclaimed enough yet.
2682 */
2683 if (penalty_jiffies <= HZ / 100)
2684 goto out;
2685
b3ff9291
CD
2686 /*
2687 * If reclaim is making forward progress but we're still over
2688 * memory.high, we want to encourage that rather than doing allocator
2689 * throttling.
2690 */
2691 if (nr_reclaimed || nr_retries--) {
2692 in_retry = true;
2693 goto retry_reclaim;
2694 }
2695
0e4b01df
CD
2696 /*
2697 * If we exit early, we're guaranteed to die (since
2698 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2699 * need to account for any ill-begotten jiffies to pay them off later.
2700 */
2701 psi_memstall_enter(&pflags);
2702 schedule_timeout_killable(penalty_jiffies);
2703 psi_memstall_leave(&pflags);
2704
2705out:
2706 css_put(&memcg->css);
b23afb93
TH
2707}
2708
00501b53
JW
2709static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2710 unsigned int nr_pages)
8a9f3ccd 2711{
a983b5eb 2712 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
d977aa93 2713 int nr_retries = MAX_RECLAIM_RETRIES;
6539cc05 2714 struct mem_cgroup *mem_over_limit;
3e32cb2e 2715 struct page_counter *counter;
e22c6ed9 2716 enum oom_status oom_status;
6539cc05 2717 unsigned long nr_reclaimed;
b70a2a21
JW
2718 bool may_swap = true;
2719 bool drained = false;
e22c6ed9 2720 unsigned long pflags;
a636b327 2721
ce00a967 2722 if (mem_cgroup_is_root(memcg))
10d53c74 2723 return 0;
6539cc05 2724retry:
b6b6cc72 2725 if (consume_stock(memcg, nr_pages))
10d53c74 2726 return 0;
8a9f3ccd 2727
7941d214 2728 if (!do_memsw_account() ||
6071ca52
JW
2729 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2730 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2731 goto done_restock;
7941d214 2732 if (do_memsw_account())
3e32cb2e
JW
2733 page_counter_uncharge(&memcg->memsw, batch);
2734 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2735 } else {
3e32cb2e 2736 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2737 may_swap = false;
3fbe7244 2738 }
7a81b88c 2739
6539cc05
JW
2740 if (batch > nr_pages) {
2741 batch = nr_pages;
2742 goto retry;
2743 }
6d61ef40 2744
869712fd
JW
2745 /*
2746 * Memcg doesn't have a dedicated reserve for atomic
2747 * allocations. But like the global atomic pool, we need to
2748 * put the burden of reclaim on regular allocation requests
2749 * and let these go through as privileged allocations.
2750 */
2751 if (gfp_mask & __GFP_ATOMIC)
2752 goto force;
2753
06b078fc
JW
2754 /*
2755 * Unlike in global OOM situations, memcg is not in a physical
2756 * memory shortage. Allow dying and OOM-killed tasks to
2757 * bypass the last charges so that they can exit quickly and
2758 * free their memory.
2759 */
7775face 2760 if (unlikely(should_force_charge()))
10d53c74 2761 goto force;
06b078fc 2762
89a28483
JW
2763 /*
2764 * Prevent unbounded recursion when reclaim operations need to
2765 * allocate memory. This might exceed the limits temporarily,
2766 * but we prefer facilitating memory reclaim and getting back
2767 * under the limit over triggering OOM kills in these cases.
2768 */
2769 if (unlikely(current->flags & PF_MEMALLOC))
2770 goto force;
2771
06b078fc
JW
2772 if (unlikely(task_in_memcg_oom(current)))
2773 goto nomem;
2774
d0164adc 2775 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2776 goto nomem;
4b534334 2777
e27be240 2778 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2779
e22c6ed9 2780 psi_memstall_enter(&pflags);
b70a2a21
JW
2781 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2782 gfp_mask, may_swap);
e22c6ed9 2783 psi_memstall_leave(&pflags);
6539cc05 2784
61e02c74 2785 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2786 goto retry;
28c34c29 2787
b70a2a21 2788 if (!drained) {
6d3d6aa2 2789 drain_all_stock(mem_over_limit);
b70a2a21
JW
2790 drained = true;
2791 goto retry;
2792 }
2793
28c34c29
JW
2794 if (gfp_mask & __GFP_NORETRY)
2795 goto nomem;
6539cc05
JW
2796 /*
2797 * Even though the limit is exceeded at this point, reclaim
2798 * may have been able to free some pages. Retry the charge
2799 * before killing the task.
2800 *
2801 * Only for regular pages, though: huge pages are rather
2802 * unlikely to succeed so close to the limit, and we fall back
2803 * to regular pages anyway in case of failure.
2804 */
61e02c74 2805 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2806 goto retry;
2807 /*
2808 * At task move, charge accounts can be doubly counted. So, it's
2809 * better to wait until the end of task_move if something is going on.
2810 */
2811 if (mem_cgroup_wait_acct_move(mem_over_limit))
2812 goto retry;
2813
9b130619
JW
2814 if (nr_retries--)
2815 goto retry;
2816
38d38493 2817 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2818 goto nomem;
2819
06b078fc 2820 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2821 goto force;
06b078fc 2822
6539cc05 2823 if (fatal_signal_pending(current))
10d53c74 2824 goto force;
6539cc05 2825
29ef680a
MH
2826 /*
2827 * keep retrying as long as the memcg oom killer is able to make
2828 * a forward progress or bypass the charge if the oom killer
2829 * couldn't make any progress.
2830 */
2831 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2832 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2833 switch (oom_status) {
2834 case OOM_SUCCESS:
d977aa93 2835 nr_retries = MAX_RECLAIM_RETRIES;
29ef680a
MH
2836 goto retry;
2837 case OOM_FAILED:
2838 goto force;
2839 default:
2840 goto nomem;
2841 }
7a81b88c 2842nomem:
6d1fdc48 2843 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2844 return -ENOMEM;
10d53c74
TH
2845force:
2846 /*
2847 * The allocation either can't fail or will lead to more memory
2848 * being freed very soon. Allow memory usage go over the limit
2849 * temporarily by force charging it.
2850 */
2851 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2852 if (do_memsw_account())
10d53c74 2853 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2854
2855 return 0;
6539cc05
JW
2856
2857done_restock:
2858 if (batch > nr_pages)
2859 refill_stock(memcg, batch - nr_pages);
b23afb93 2860
241994ed 2861 /*
b23afb93
TH
2862 * If the hierarchy is above the normal consumption range, schedule
2863 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2864 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2865 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2866 * not recorded as it most likely matches current's and won't
2867 * change in the meantime. As high limit is checked again before
2868 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2869 */
2870 do {
4b82ab4f
JK
2871 bool mem_high, swap_high;
2872
2873 mem_high = page_counter_read(&memcg->memory) >
2874 READ_ONCE(memcg->memory.high);
2875 swap_high = page_counter_read(&memcg->swap) >
2876 READ_ONCE(memcg->swap.high);
2877
2878 /* Don't bother a random interrupted task */
2879 if (in_interrupt()) {
2880 if (mem_high) {
f7e1cb6e
JW
2881 schedule_work(&memcg->high_work);
2882 break;
2883 }
4b82ab4f
JK
2884 continue;
2885 }
2886
2887 if (mem_high || swap_high) {
2888 /*
2889 * The allocating tasks in this cgroup will need to do
2890 * reclaim or be throttled to prevent further growth
2891 * of the memory or swap footprints.
2892 *
2893 * Target some best-effort fairness between the tasks,
2894 * and distribute reclaim work and delay penalties
2895 * based on how much each task is actually allocating.
2896 */
9516a18a 2897 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2898 set_notify_resume(current);
2899 break;
2900 }
241994ed 2901 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2902
2903 return 0;
7a81b88c 2904}
8a9f3ccd 2905
f0e45fb4 2906#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2907static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2908{
ce00a967
JW
2909 if (mem_cgroup_is_root(memcg))
2910 return;
2911
3e32cb2e 2912 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2913 if (do_memsw_account())
3e32cb2e 2914 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2915}
f0e45fb4 2916#endif
d01dd17f 2917
d9eb1ea2 2918static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2919{
bcfe06bf 2920 VM_BUG_ON_PAGE(page_memcg(page), page);
0a31bc97 2921 /*
a5eb011a 2922 * Any of the following ensures page's memcg stability:
0a31bc97 2923 *
a0b5b414
JW
2924 * - the page lock
2925 * - LRU isolation
2926 * - lock_page_memcg()
2927 * - exclusive reference
0a31bc97 2928 */
bcfe06bf 2929 page->memcg_data = (unsigned long)memcg;
7a81b88c 2930}
66e1707b 2931
84c07d11 2932#ifdef CONFIG_MEMCG_KMEM
10befea9
RG
2933int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2934 gfp_t gfp)
2935{
2936 unsigned int objects = objs_per_slab_page(s, page);
2937 void *vec;
2938
2939 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2940 page_to_nid(page));
2941 if (!vec)
2942 return -ENOMEM;
2943
270c6a71 2944 if (!set_page_objcgs(page, vec))
10befea9
RG
2945 kfree(vec);
2946 else
2947 kmemleak_not_leak(vec);
2948
2949 return 0;
2950}
2951
8380ce47
RG
2952/*
2953 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2954 *
bcfe06bf
RG
2955 * A passed kernel object can be a slab object or a generic kernel page, so
2956 * different mechanisms for getting the memory cgroup pointer should be used.
2957 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2958 * can not know for sure how the kernel object is implemented.
2959 * mem_cgroup_from_obj() can be safely used in such cases.
2960 *
8380ce47
RG
2961 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2962 * cgroup_mutex, etc.
2963 */
2964struct mem_cgroup *mem_cgroup_from_obj(void *p)
2965{
2966 struct page *page;
2967
2968 if (mem_cgroup_disabled())
2969 return NULL;
2970
2971 page = virt_to_head_page(p);
2972
2973 /*
9855609b
RG
2974 * Slab objects are accounted individually, not per-page.
2975 * Memcg membership data for each individual object is saved in
2976 * the page->obj_cgroups.
8380ce47 2977 */
270c6a71 2978 if (page_objcgs_check(page)) {
9855609b
RG
2979 struct obj_cgroup *objcg;
2980 unsigned int off;
2981
2982 off = obj_to_index(page->slab_cache, page, p);
270c6a71 2983 objcg = page_objcgs(page)[off];
10befea9
RG
2984 if (objcg)
2985 return obj_cgroup_memcg(objcg);
2986
2987 return NULL;
9855609b 2988 }
8380ce47 2989
bcfe06bf
RG
2990 /*
2991 * page_memcg_check() is used here, because page_has_obj_cgroups()
2992 * check above could fail because the object cgroups vector wasn't set
2993 * at that moment, but it can be set concurrently.
2994 * page_memcg_check(page) will guarantee that a proper memory
2995 * cgroup pointer or NULL will be returned.
2996 */
2997 return page_memcg_check(page);
8380ce47
RG
2998}
2999
bf4f0599
RG
3000__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3001{
3002 struct obj_cgroup *objcg = NULL;
3003 struct mem_cgroup *memcg;
3004
279c3393
RG
3005 if (memcg_kmem_bypass())
3006 return NULL;
3007
bf4f0599 3008 rcu_read_lock();
37d5985c
RG
3009 if (unlikely(active_memcg()))
3010 memcg = active_memcg();
bf4f0599
RG
3011 else
3012 memcg = mem_cgroup_from_task(current);
3013
3014 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3015 objcg = rcu_dereference(memcg->objcg);
3016 if (objcg && obj_cgroup_tryget(objcg))
3017 break;
2f7659a3 3018 objcg = NULL;
bf4f0599
RG
3019 }
3020 rcu_read_unlock();
3021
3022 return objcg;
3023}
3024
f3bb3043 3025static int memcg_alloc_cache_id(void)
55007d84 3026{
f3bb3043
VD
3027 int id, size;
3028 int err;
3029
dbcf73e2 3030 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
3031 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3032 if (id < 0)
3033 return id;
55007d84 3034
dbcf73e2 3035 if (id < memcg_nr_cache_ids)
f3bb3043
VD
3036 return id;
3037
3038 /*
3039 * There's no space for the new id in memcg_caches arrays,
3040 * so we have to grow them.
3041 */
05257a1a 3042 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
3043
3044 size = 2 * (id + 1);
55007d84
GC
3045 if (size < MEMCG_CACHES_MIN_SIZE)
3046 size = MEMCG_CACHES_MIN_SIZE;
3047 else if (size > MEMCG_CACHES_MAX_SIZE)
3048 size = MEMCG_CACHES_MAX_SIZE;
3049
9855609b 3050 err = memcg_update_all_list_lrus(size);
05257a1a
VD
3051 if (!err)
3052 memcg_nr_cache_ids = size;
3053
3054 up_write(&memcg_cache_ids_sem);
3055
f3bb3043 3056 if (err) {
dbcf73e2 3057 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
3058 return err;
3059 }
3060 return id;
3061}
3062
3063static void memcg_free_cache_id(int id)
3064{
dbcf73e2 3065 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
3066}
3067
45264778 3068/**
4b13f64d 3069 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 3070 * @memcg: memory cgroup to charge
45264778 3071 * @gfp: reclaim mode
92d0510c 3072 * @nr_pages: number of pages to charge
45264778
VD
3073 *
3074 * Returns 0 on success, an error code on failure.
3075 */
4b13f64d
RG
3076int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3077 unsigned int nr_pages)
7ae1e1d0 3078{
f3ccb2c4 3079 struct page_counter *counter;
7ae1e1d0
GC
3080 int ret;
3081
f3ccb2c4 3082 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 3083 if (ret)
f3ccb2c4 3084 return ret;
52c29b04
JW
3085
3086 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3087 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
3088
3089 /*
3090 * Enforce __GFP_NOFAIL allocation because callers are not
3091 * prepared to see failures and likely do not have any failure
3092 * handling code.
3093 */
3094 if (gfp & __GFP_NOFAIL) {
3095 page_counter_charge(&memcg->kmem, nr_pages);
3096 return 0;
3097 }
52c29b04
JW
3098 cancel_charge(memcg, nr_pages);
3099 return -ENOMEM;
7ae1e1d0 3100 }
f3ccb2c4 3101 return 0;
7ae1e1d0
GC
3102}
3103
4b13f64d
RG
3104/**
3105 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3106 * @memcg: memcg to uncharge
3107 * @nr_pages: number of pages to uncharge
3108 */
3109void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3110{
3111 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3112 page_counter_uncharge(&memcg->kmem, nr_pages);
3113
3de7d4f2 3114 refill_stock(memcg, nr_pages);
4b13f64d
RG
3115}
3116
45264778 3117/**
f4b00eab 3118 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
3119 * @page: page to charge
3120 * @gfp: reclaim mode
3121 * @order: allocation order
3122 *
3123 * Returns 0 on success, an error code on failure.
3124 */
f4b00eab 3125int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 3126{
f3ccb2c4 3127 struct mem_cgroup *memcg;
fcff7d7e 3128 int ret = 0;
7ae1e1d0 3129
d46eb14b 3130 memcg = get_mem_cgroup_from_current();
279c3393 3131 if (memcg && !mem_cgroup_is_root(memcg)) {
4b13f64d 3132 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35 3133 if (!ret) {
18b2db3b
RG
3134 page->memcg_data = (unsigned long)memcg |
3135 MEMCG_DATA_KMEM;
1a3e1f40 3136 return 0;
4d96ba35 3137 }
279c3393 3138 css_put(&memcg->css);
c4159a75 3139 }
d05e83a6 3140 return ret;
7ae1e1d0 3141}
49a18eae 3142
45264778 3143/**
f4b00eab 3144 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3145 * @page: page to uncharge
3146 * @order: allocation order
3147 */
f4b00eab 3148void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3149{
bcfe06bf 3150 struct mem_cgroup *memcg = page_memcg(page);
f3ccb2c4 3151 unsigned int nr_pages = 1 << order;
7ae1e1d0 3152
7ae1e1d0
GC
3153 if (!memcg)
3154 return;
3155
309381fe 3156 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3157 __memcg_kmem_uncharge(memcg, nr_pages);
bcfe06bf 3158 page->memcg_data = 0;
1a3e1f40 3159 css_put(&memcg->css);
60d3fd32 3160}
bf4f0599
RG
3161
3162static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3163{
3164 struct memcg_stock_pcp *stock;
3165 unsigned long flags;
3166 bool ret = false;
3167
3168 local_irq_save(flags);
3169
3170 stock = this_cpu_ptr(&memcg_stock);
3171 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3172 stock->nr_bytes -= nr_bytes;
3173 ret = true;
3174 }
3175
3176 local_irq_restore(flags);
3177
3178 return ret;
3179}
3180
3181static void drain_obj_stock(struct memcg_stock_pcp *stock)
3182{
3183 struct obj_cgroup *old = stock->cached_objcg;
3184
3185 if (!old)
3186 return;
3187
3188 if (stock->nr_bytes) {
3189 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3190 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3191
3192 if (nr_pages) {
3193 rcu_read_lock();
3194 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3195 rcu_read_unlock();
3196 }
3197
3198 /*
3199 * The leftover is flushed to the centralized per-memcg value.
3200 * On the next attempt to refill obj stock it will be moved
3201 * to a per-cpu stock (probably, on an other CPU), see
3202 * refill_obj_stock().
3203 *
3204 * How often it's flushed is a trade-off between the memory
3205 * limit enforcement accuracy and potential CPU contention,
3206 * so it might be changed in the future.
3207 */
3208 atomic_add(nr_bytes, &old->nr_charged_bytes);
3209 stock->nr_bytes = 0;
3210 }
3211
3212 obj_cgroup_put(old);
3213 stock->cached_objcg = NULL;
3214}
3215
3216static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3217 struct mem_cgroup *root_memcg)
3218{
3219 struct mem_cgroup *memcg;
3220
3221 if (stock->cached_objcg) {
3222 memcg = obj_cgroup_memcg(stock->cached_objcg);
3223 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3224 return true;
3225 }
3226
3227 return false;
3228}
3229
3230static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3231{
3232 struct memcg_stock_pcp *stock;
3233 unsigned long flags;
3234
3235 local_irq_save(flags);
3236
3237 stock = this_cpu_ptr(&memcg_stock);
3238 if (stock->cached_objcg != objcg) { /* reset if necessary */
3239 drain_obj_stock(stock);
3240 obj_cgroup_get(objcg);
3241 stock->cached_objcg = objcg;
3242 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3243 }
3244 stock->nr_bytes += nr_bytes;
3245
3246 if (stock->nr_bytes > PAGE_SIZE)
3247 drain_obj_stock(stock);
3248
3249 local_irq_restore(flags);
3250}
3251
3252int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3253{
3254 struct mem_cgroup *memcg;
3255 unsigned int nr_pages, nr_bytes;
3256 int ret;
3257
3258 if (consume_obj_stock(objcg, size))
3259 return 0;
3260
3261 /*
3262 * In theory, memcg->nr_charged_bytes can have enough
3263 * pre-charged bytes to satisfy the allocation. However,
3264 * flushing memcg->nr_charged_bytes requires two atomic
3265 * operations, and memcg->nr_charged_bytes can't be big,
3266 * so it's better to ignore it and try grab some new pages.
3267 * memcg->nr_charged_bytes will be flushed in
3268 * refill_obj_stock(), called from this function or
3269 * independently later.
3270 */
3271 rcu_read_lock();
eefbfa7f 3272retry:
bf4f0599 3273 memcg = obj_cgroup_memcg(objcg);
eefbfa7f
MS
3274 if (unlikely(!css_tryget(&memcg->css)))
3275 goto retry;
bf4f0599
RG
3276 rcu_read_unlock();
3277
3278 nr_pages = size >> PAGE_SHIFT;
3279 nr_bytes = size & (PAGE_SIZE - 1);
3280
3281 if (nr_bytes)
3282 nr_pages += 1;
3283
3284 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3285 if (!ret && nr_bytes)
3286 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3287
3288 css_put(&memcg->css);
3289 return ret;
3290}
3291
3292void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3293{
3294 refill_obj_stock(objcg, size);
3295}
3296
84c07d11 3297#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3298
ca3e0214 3299#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ca3e0214 3300/*
6168d0da 3301 * Because page_memcg(head) is not set on compound tails, set it now.
ca3e0214 3302 */
e94c8a9c 3303void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3304{
bcfe06bf 3305 struct mem_cgroup *memcg = page_memcg(head);
e94c8a9c 3306 int i;
ca3e0214 3307
3d37c4a9
KH
3308 if (mem_cgroup_disabled())
3309 return;
b070e65c 3310
1a3e1f40
JW
3311 for (i = 1; i < HPAGE_PMD_NR; i++) {
3312 css_get(&memcg->css);
bcfe06bf 3313 head[i].memcg_data = (unsigned long)memcg;
1a3e1f40 3314 }
ca3e0214 3315}
12d27107 3316#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3317
c255a458 3318#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3319/**
3320 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3321 * @entry: swap entry to be moved
3322 * @from: mem_cgroup which the entry is moved from
3323 * @to: mem_cgroup which the entry is moved to
3324 *
3325 * It succeeds only when the swap_cgroup's record for this entry is the same
3326 * as the mem_cgroup's id of @from.
3327 *
3328 * Returns 0 on success, -EINVAL on failure.
3329 *
3e32cb2e 3330 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3331 * both res and memsw, and called css_get().
3332 */
3333static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3334 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3335{
3336 unsigned short old_id, new_id;
3337
34c00c31
LZ
3338 old_id = mem_cgroup_id(from);
3339 new_id = mem_cgroup_id(to);
02491447
DN
3340
3341 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3342 mod_memcg_state(from, MEMCG_SWAP, -1);
3343 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3344 return 0;
3345 }
3346 return -EINVAL;
3347}
3348#else
3349static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3350 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3351{
3352 return -EINVAL;
3353}
8c7c6e34 3354#endif
d13d1443 3355
bbec2e15 3356static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3357
bbec2e15
RG
3358static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3359 unsigned long max, bool memsw)
628f4235 3360{
3e32cb2e 3361 bool enlarge = false;
bb4a7ea2 3362 bool drained = false;
3e32cb2e 3363 int ret;
c054a78c
YZ
3364 bool limits_invariant;
3365 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3366
3e32cb2e 3367 do {
628f4235
KH
3368 if (signal_pending(current)) {
3369 ret = -EINTR;
3370 break;
3371 }
3e32cb2e 3372
bbec2e15 3373 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3374 /*
3375 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3376 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3377 */
15b42562 3378 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3379 max <= memcg->memsw.max;
c054a78c 3380 if (!limits_invariant) {
bbec2e15 3381 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3382 ret = -EINVAL;
8c7c6e34
KH
3383 break;
3384 }
bbec2e15 3385 if (max > counter->max)
3e32cb2e 3386 enlarge = true;
bbec2e15
RG
3387 ret = page_counter_set_max(counter, max);
3388 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3389
3390 if (!ret)
3391 break;
3392
bb4a7ea2
SB
3393 if (!drained) {
3394 drain_all_stock(memcg);
3395 drained = true;
3396 continue;
3397 }
3398
1ab5c056
AR
3399 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3400 GFP_KERNEL, !memsw)) {
3401 ret = -EBUSY;
3402 break;
3403 }
3404 } while (true);
3e32cb2e 3405
3c11ecf4
KH
3406 if (!ret && enlarge)
3407 memcg_oom_recover(memcg);
3e32cb2e 3408
628f4235
KH
3409 return ret;
3410}
3411
ef8f2327 3412unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3413 gfp_t gfp_mask,
3414 unsigned long *total_scanned)
3415{
3416 unsigned long nr_reclaimed = 0;
ef8f2327 3417 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3418 unsigned long reclaimed;
3419 int loop = 0;
ef8f2327 3420 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3421 unsigned long excess;
0608f43d
AM
3422 unsigned long nr_scanned;
3423
3424 if (order > 0)
3425 return 0;
3426
ef8f2327 3427 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3428
3429 /*
3430 * Do not even bother to check the largest node if the root
3431 * is empty. Do it lockless to prevent lock bouncing. Races
3432 * are acceptable as soft limit is best effort anyway.
3433 */
bfc7228b 3434 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3435 return 0;
3436
0608f43d
AM
3437 /*
3438 * This loop can run a while, specially if mem_cgroup's continuously
3439 * keep exceeding their soft limit and putting the system under
3440 * pressure
3441 */
3442 do {
3443 if (next_mz)
3444 mz = next_mz;
3445 else
3446 mz = mem_cgroup_largest_soft_limit_node(mctz);
3447 if (!mz)
3448 break;
3449
3450 nr_scanned = 0;
ef8f2327 3451 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3452 gfp_mask, &nr_scanned);
3453 nr_reclaimed += reclaimed;
3454 *total_scanned += nr_scanned;
0a31bc97 3455 spin_lock_irq(&mctz->lock);
bc2f2e7f 3456 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3457
3458 /*
3459 * If we failed to reclaim anything from this memory cgroup
3460 * it is time to move on to the next cgroup
3461 */
3462 next_mz = NULL;
bc2f2e7f
VD
3463 if (!reclaimed)
3464 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3465
3e32cb2e 3466 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3467 /*
3468 * One school of thought says that we should not add
3469 * back the node to the tree if reclaim returns 0.
3470 * But our reclaim could return 0, simply because due
3471 * to priority we are exposing a smaller subset of
3472 * memory to reclaim from. Consider this as a longer
3473 * term TODO.
3474 */
3475 /* If excess == 0, no tree ops */
cf2c8127 3476 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3477 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3478 css_put(&mz->memcg->css);
3479 loop++;
3480 /*
3481 * Could not reclaim anything and there are no more
3482 * mem cgroups to try or we seem to be looping without
3483 * reclaiming anything.
3484 */
3485 if (!nr_reclaimed &&
3486 (next_mz == NULL ||
3487 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3488 break;
3489 } while (!nr_reclaimed);
3490 if (next_mz)
3491 css_put(&next_mz->memcg->css);
3492 return nr_reclaimed;
3493}
3494
c26251f9 3495/*
51038171 3496 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3497 *
3498 * Caller is responsible for holding css reference for memcg.
3499 */
3500static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3501{
d977aa93 3502 int nr_retries = MAX_RECLAIM_RETRIES;
c26251f9 3503
c1e862c1
KH
3504 /* we call try-to-free pages for make this cgroup empty */
3505 lru_add_drain_all();
d12c60f6
JS
3506
3507 drain_all_stock(memcg);
3508
f817ed48 3509 /* try to free all pages in this cgroup */
3e32cb2e 3510 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3511 int progress;
c1e862c1 3512
c26251f9
MH
3513 if (signal_pending(current))
3514 return -EINTR;
3515
b70a2a21
JW
3516 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3517 GFP_KERNEL, true);
c1e862c1 3518 if (!progress) {
f817ed48 3519 nr_retries--;
c1e862c1 3520 /* maybe some writeback is necessary */
8aa7e847 3521 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3522 }
f817ed48
KH
3523
3524 }
ab5196c2
MH
3525
3526 return 0;
cc847582
KH
3527}
3528
6770c64e
TH
3529static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3530 char *buf, size_t nbytes,
3531 loff_t off)
c1e862c1 3532{
6770c64e 3533 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3534
d8423011
MH
3535 if (mem_cgroup_is_root(memcg))
3536 return -EINVAL;
6770c64e 3537 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3538}
3539
182446d0
TH
3540static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3541 struct cftype *cft)
18f59ea7 3542{
bef8620c 3543 return 1;
18f59ea7
BS
3544}
3545
182446d0
TH
3546static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3547 struct cftype *cft, u64 val)
18f59ea7 3548{
bef8620c 3549 if (val == 1)
0b8f73e1 3550 return 0;
567fb435 3551
bef8620c
RG
3552 pr_warn_once("Non-hierarchical mode is deprecated. "
3553 "Please report your usecase to linux-mm@kvack.org if you "
3554 "depend on this functionality.\n");
567fb435 3555
bef8620c 3556 return -EINVAL;
18f59ea7
BS
3557}
3558
6f646156 3559static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3560{
42a30035 3561 unsigned long val;
ce00a967 3562
3e32cb2e 3563 if (mem_cgroup_is_root(memcg)) {
0d1c2072 3564 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3565 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3566 if (swap)
3567 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3568 } else {
ce00a967 3569 if (!swap)
3e32cb2e 3570 val = page_counter_read(&memcg->memory);
ce00a967 3571 else
3e32cb2e 3572 val = page_counter_read(&memcg->memsw);
ce00a967 3573 }
c12176d3 3574 return val;
ce00a967
JW
3575}
3576
3e32cb2e
JW
3577enum {
3578 RES_USAGE,
3579 RES_LIMIT,
3580 RES_MAX_USAGE,
3581 RES_FAILCNT,
3582 RES_SOFT_LIMIT,
3583};
ce00a967 3584
791badbd 3585static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3586 struct cftype *cft)
8cdea7c0 3587{
182446d0 3588 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3589 struct page_counter *counter;
af36f906 3590
3e32cb2e 3591 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3592 case _MEM:
3e32cb2e
JW
3593 counter = &memcg->memory;
3594 break;
8c7c6e34 3595 case _MEMSWAP:
3e32cb2e
JW
3596 counter = &memcg->memsw;
3597 break;
510fc4e1 3598 case _KMEM:
3e32cb2e 3599 counter = &memcg->kmem;
510fc4e1 3600 break;
d55f90bf 3601 case _TCP:
0db15298 3602 counter = &memcg->tcpmem;
d55f90bf 3603 break;
8c7c6e34
KH
3604 default:
3605 BUG();
8c7c6e34 3606 }
3e32cb2e
JW
3607
3608 switch (MEMFILE_ATTR(cft->private)) {
3609 case RES_USAGE:
3610 if (counter == &memcg->memory)
c12176d3 3611 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3612 if (counter == &memcg->memsw)
c12176d3 3613 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3614 return (u64)page_counter_read(counter) * PAGE_SIZE;
3615 case RES_LIMIT:
bbec2e15 3616 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3617 case RES_MAX_USAGE:
3618 return (u64)counter->watermark * PAGE_SIZE;
3619 case RES_FAILCNT:
3620 return counter->failcnt;
3621 case RES_SOFT_LIMIT:
3622 return (u64)memcg->soft_limit * PAGE_SIZE;
3623 default:
3624 BUG();
3625 }
8cdea7c0 3626}
510fc4e1 3627
4a87e2a2 3628static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3629{
4a87e2a2 3630 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3631 struct mem_cgroup *mi;
3632 int node, cpu, i;
c350a99e
RG
3633
3634 for_each_online_cpu(cpu)
4a87e2a2 3635 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3636 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3637
3638 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3639 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3640 atomic_long_add(stat[i], &mi->vmstats[i]);
3641
3642 for_each_node(node) {
3643 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3644 struct mem_cgroup_per_node *pi;
3645
4a87e2a2 3646 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3647 stat[i] = 0;
3648
3649 for_each_online_cpu(cpu)
4a87e2a2 3650 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3651 stat[i] += per_cpu(
3652 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3653
3654 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3655 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3656 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3657 }
3658}
3659
bb65f89b
RG
3660static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3661{
3662 unsigned long events[NR_VM_EVENT_ITEMS];
3663 struct mem_cgroup *mi;
3664 int cpu, i;
3665
3666 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3667 events[i] = 0;
3668
3669 for_each_online_cpu(cpu)
3670 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3671 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3672 cpu);
bb65f89b
RG
3673
3674 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3675 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3676 atomic_long_add(events[i], &mi->vmevents[i]);
3677}
3678
84c07d11 3679#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3680static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3681{
bf4f0599 3682 struct obj_cgroup *objcg;
d6441637
VD
3683 int memcg_id;
3684
b313aeee
VD
3685 if (cgroup_memory_nokmem)
3686 return 0;
3687
2a4db7eb 3688 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3689 BUG_ON(memcg->kmem_state);
d6441637 3690
f3bb3043 3691 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3692 if (memcg_id < 0)
3693 return memcg_id;
d6441637 3694
bf4f0599
RG
3695 objcg = obj_cgroup_alloc();
3696 if (!objcg) {
3697 memcg_free_cache_id(memcg_id);
3698 return -ENOMEM;
3699 }
3700 objcg->memcg = memcg;
3701 rcu_assign_pointer(memcg->objcg, objcg);
3702
d648bcc7
RG
3703 static_branch_enable(&memcg_kmem_enabled_key);
3704
900a38f0 3705 memcg->kmemcg_id = memcg_id;
567e9ab2 3706 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3707
3708 return 0;
d6441637
VD
3709}
3710
8e0a8912
JW
3711static void memcg_offline_kmem(struct mem_cgroup *memcg)
3712{
3713 struct cgroup_subsys_state *css;
3714 struct mem_cgroup *parent, *child;
3715 int kmemcg_id;
3716
3717 if (memcg->kmem_state != KMEM_ONLINE)
3718 return;
9855609b 3719
8e0a8912
JW
3720 memcg->kmem_state = KMEM_ALLOCATED;
3721
8e0a8912
JW
3722 parent = parent_mem_cgroup(memcg);
3723 if (!parent)
3724 parent = root_mem_cgroup;
3725
bf4f0599 3726 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3727
3728 kmemcg_id = memcg->kmemcg_id;
3729 BUG_ON(kmemcg_id < 0);
3730
8e0a8912
JW
3731 /*
3732 * Change kmemcg_id of this cgroup and all its descendants to the
3733 * parent's id, and then move all entries from this cgroup's list_lrus
3734 * to ones of the parent. After we have finished, all list_lrus
3735 * corresponding to this cgroup are guaranteed to remain empty. The
3736 * ordering is imposed by list_lru_node->lock taken by
3737 * memcg_drain_all_list_lrus().
3738 */
3a06bb78 3739 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3740 css_for_each_descendant_pre(css, &memcg->css) {
3741 child = mem_cgroup_from_css(css);
3742 BUG_ON(child->kmemcg_id != kmemcg_id);
3743 child->kmemcg_id = parent->kmemcg_id;
8e0a8912 3744 }
3a06bb78
TH
3745 rcu_read_unlock();
3746
9bec5c35 3747 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3748
3749 memcg_free_cache_id(kmemcg_id);
3750}
3751
3752static void memcg_free_kmem(struct mem_cgroup *memcg)
3753{
0b8f73e1
JW
3754 /* css_alloc() failed, offlining didn't happen */
3755 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3756 memcg_offline_kmem(memcg);
8e0a8912 3757}
d6441637 3758#else
0b8f73e1 3759static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3760{
3761 return 0;
3762}
3763static void memcg_offline_kmem(struct mem_cgroup *memcg)
3764{
3765}
3766static void memcg_free_kmem(struct mem_cgroup *memcg)
3767{
3768}
84c07d11 3769#endif /* CONFIG_MEMCG_KMEM */
127424c8 3770
bbec2e15
RG
3771static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3772 unsigned long max)
d6441637 3773{
b313aeee 3774 int ret;
127424c8 3775
bbec2e15
RG
3776 mutex_lock(&memcg_max_mutex);
3777 ret = page_counter_set_max(&memcg->kmem, max);
3778 mutex_unlock(&memcg_max_mutex);
127424c8 3779 return ret;
d6441637 3780}
510fc4e1 3781
bbec2e15 3782static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3783{
3784 int ret;
3785
bbec2e15 3786 mutex_lock(&memcg_max_mutex);
d55f90bf 3787
bbec2e15 3788 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3789 if (ret)
3790 goto out;
3791
0db15298 3792 if (!memcg->tcpmem_active) {
d55f90bf
VD
3793 /*
3794 * The active flag needs to be written after the static_key
3795 * update. This is what guarantees that the socket activation
2d758073
JW
3796 * function is the last one to run. See mem_cgroup_sk_alloc()
3797 * for details, and note that we don't mark any socket as
3798 * belonging to this memcg until that flag is up.
d55f90bf
VD
3799 *
3800 * We need to do this, because static_keys will span multiple
3801 * sites, but we can't control their order. If we mark a socket
3802 * as accounted, but the accounting functions are not patched in
3803 * yet, we'll lose accounting.
3804 *
2d758073 3805 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3806 * because when this value change, the code to process it is not
3807 * patched in yet.
3808 */
3809 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3810 memcg->tcpmem_active = true;
d55f90bf
VD
3811 }
3812out:
bbec2e15 3813 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3814 return ret;
3815}
d55f90bf 3816
628f4235
KH
3817/*
3818 * The user of this function is...
3819 * RES_LIMIT.
3820 */
451af504
TH
3821static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3822 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3823{
451af504 3824 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3825 unsigned long nr_pages;
628f4235
KH
3826 int ret;
3827
451af504 3828 buf = strstrip(buf);
650c5e56 3829 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3830 if (ret)
3831 return ret;
af36f906 3832
3e32cb2e 3833 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3834 case RES_LIMIT:
4b3bde4c
BS
3835 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3836 ret = -EINVAL;
3837 break;
3838 }
3e32cb2e
JW
3839 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3840 case _MEM:
bbec2e15 3841 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3842 break;
3e32cb2e 3843 case _MEMSWAP:
bbec2e15 3844 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3845 break;
3e32cb2e 3846 case _KMEM:
0158115f
MH
3847 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3848 "Please report your usecase to linux-mm@kvack.org if you "
3849 "depend on this functionality.\n");
bbec2e15 3850 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3851 break;
d55f90bf 3852 case _TCP:
bbec2e15 3853 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3854 break;
3e32cb2e 3855 }
296c81d8 3856 break;
3e32cb2e
JW
3857 case RES_SOFT_LIMIT:
3858 memcg->soft_limit = nr_pages;
3859 ret = 0;
628f4235
KH
3860 break;
3861 }
451af504 3862 return ret ?: nbytes;
8cdea7c0
BS
3863}
3864
6770c64e
TH
3865static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3866 size_t nbytes, loff_t off)
c84872e1 3867{
6770c64e 3868 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3869 struct page_counter *counter;
c84872e1 3870
3e32cb2e
JW
3871 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3872 case _MEM:
3873 counter = &memcg->memory;
3874 break;
3875 case _MEMSWAP:
3876 counter = &memcg->memsw;
3877 break;
3878 case _KMEM:
3879 counter = &memcg->kmem;
3880 break;
d55f90bf 3881 case _TCP:
0db15298 3882 counter = &memcg->tcpmem;
d55f90bf 3883 break;
3e32cb2e
JW
3884 default:
3885 BUG();
3886 }
af36f906 3887
3e32cb2e 3888 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3889 case RES_MAX_USAGE:
3e32cb2e 3890 page_counter_reset_watermark(counter);
29f2a4da
PE
3891 break;
3892 case RES_FAILCNT:
3e32cb2e 3893 counter->failcnt = 0;
29f2a4da 3894 break;
3e32cb2e
JW
3895 default:
3896 BUG();
29f2a4da 3897 }
f64c3f54 3898
6770c64e 3899 return nbytes;
c84872e1
PE
3900}
3901
182446d0 3902static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3903 struct cftype *cft)
3904{
182446d0 3905 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3906}
3907
02491447 3908#ifdef CONFIG_MMU
182446d0 3909static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3910 struct cftype *cft, u64 val)
3911{
182446d0 3912 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3913
1dfab5ab 3914 if (val & ~MOVE_MASK)
7dc74be0 3915 return -EINVAL;
ee5e8472 3916
7dc74be0 3917 /*
ee5e8472
GC
3918 * No kind of locking is needed in here, because ->can_attach() will
3919 * check this value once in the beginning of the process, and then carry
3920 * on with stale data. This means that changes to this value will only
3921 * affect task migrations starting after the change.
7dc74be0 3922 */
c0ff4b85 3923 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3924 return 0;
3925}
02491447 3926#else
182446d0 3927static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3928 struct cftype *cft, u64 val)
3929{
3930 return -ENOSYS;
3931}
3932#endif
7dc74be0 3933
406eb0c9 3934#ifdef CONFIG_NUMA
113b7dfd
JW
3935
3936#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3937#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3938#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3939
3940static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3941 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3942{
867e5e1d 3943 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3944 unsigned long nr = 0;
3945 enum lru_list lru;
3946
3947 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3948
3949 for_each_lru(lru) {
3950 if (!(BIT(lru) & lru_mask))
3951 continue;
dd8657b6
SB
3952 if (tree)
3953 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3954 else
3955 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3956 }
3957 return nr;
3958}
3959
3960static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3961 unsigned int lru_mask,
3962 bool tree)
113b7dfd
JW
3963{
3964 unsigned long nr = 0;
3965 enum lru_list lru;
3966
3967 for_each_lru(lru) {
3968 if (!(BIT(lru) & lru_mask))
3969 continue;
dd8657b6
SB
3970 if (tree)
3971 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3972 else
3973 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3974 }
3975 return nr;
3976}
3977
2da8ca82 3978static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3979{
25485de6
GT
3980 struct numa_stat {
3981 const char *name;
3982 unsigned int lru_mask;
3983 };
3984
3985 static const struct numa_stat stats[] = {
3986 { "total", LRU_ALL },
3987 { "file", LRU_ALL_FILE },
3988 { "anon", LRU_ALL_ANON },
3989 { "unevictable", BIT(LRU_UNEVICTABLE) },
3990 };
3991 const struct numa_stat *stat;
406eb0c9 3992 int nid;
aa9694bb 3993 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3994
25485de6 3995 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3996 seq_printf(m, "%s=%lu", stat->name,
3997 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3998 false));
3999 for_each_node_state(nid, N_MEMORY)
4000 seq_printf(m, " N%d=%lu", nid,
4001 mem_cgroup_node_nr_lru_pages(memcg, nid,
4002 stat->lru_mask, false));
25485de6 4003 seq_putc(m, '\n');
406eb0c9 4004 }
406eb0c9 4005
071aee13 4006 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
4007
4008 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4009 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4010 true));
4011 for_each_node_state(nid, N_MEMORY)
4012 seq_printf(m, " N%d=%lu", nid,
4013 mem_cgroup_node_nr_lru_pages(memcg, nid,
4014 stat->lru_mask, true));
071aee13 4015 seq_putc(m, '\n');
406eb0c9 4016 }
406eb0c9 4017
406eb0c9
YH
4018 return 0;
4019}
4020#endif /* CONFIG_NUMA */
4021
c8713d0b 4022static const unsigned int memcg1_stats[] = {
0d1c2072 4023 NR_FILE_PAGES,
be5d0a74 4024 NR_ANON_MAPPED,
468c3982
JW
4025#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4026 NR_ANON_THPS,
4027#endif
c8713d0b
JW
4028 NR_SHMEM,
4029 NR_FILE_MAPPED,
4030 NR_FILE_DIRTY,
4031 NR_WRITEBACK,
4032 MEMCG_SWAP,
4033};
4034
4035static const char *const memcg1_stat_names[] = {
4036 "cache",
4037 "rss",
468c3982 4038#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 4039 "rss_huge",
468c3982 4040#endif
c8713d0b
JW
4041 "shmem",
4042 "mapped_file",
4043 "dirty",
4044 "writeback",
4045 "swap",
4046};
4047
df0e53d0 4048/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 4049static const unsigned int memcg1_events[] = {
df0e53d0
JW
4050 PGPGIN,
4051 PGPGOUT,
4052 PGFAULT,
4053 PGMAJFAULT,
4054};
4055
2da8ca82 4056static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 4057{
aa9694bb 4058 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 4059 unsigned long memory, memsw;
af7c4b0e
JW
4060 struct mem_cgroup *mi;
4061 unsigned int i;
406eb0c9 4062
71cd3113 4063 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 4064
71cd3113 4065 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
4066 unsigned long nr;
4067
71cd3113 4068 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4069 continue;
468c3982
JW
4070 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4071#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4072 if (memcg1_stats[i] == NR_ANON_THPS)
4073 nr *= HPAGE_PMD_NR;
4074#endif
4075 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 4076 }
7b854121 4077
df0e53d0 4078 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 4079 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 4080 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
4081
4082 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4083 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 4084 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 4085 PAGE_SIZE);
af7c4b0e 4086
14067bb3 4087 /* Hierarchical information */
3e32cb2e
JW
4088 memory = memsw = PAGE_COUNTER_MAX;
4089 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
4090 memory = min(memory, READ_ONCE(mi->memory.max));
4091 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4092 }
3e32cb2e
JW
4093 seq_printf(m, "hierarchical_memory_limit %llu\n",
4094 (u64)memory * PAGE_SIZE);
7941d214 4095 if (do_memsw_account())
3e32cb2e
JW
4096 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4097 (u64)memsw * PAGE_SIZE);
7f016ee8 4098
8de7ecc6 4099 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
7de2e9f1 4100 unsigned long nr;
4101
71cd3113 4102 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4103 continue;
7de2e9f1 4104 nr = memcg_page_state(memcg, memcg1_stats[i]);
4105#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4106 if (memcg1_stats[i] == NR_ANON_THPS)
4107 nr *= HPAGE_PMD_NR;
4108#endif
8de7ecc6 4109 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
7de2e9f1 4110 (u64)nr * PAGE_SIZE);
af7c4b0e
JW
4111 }
4112
8de7ecc6 4113 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4114 seq_printf(m, "total_%s %llu\n",
4115 vm_event_name(memcg1_events[i]),
dd923990 4116 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4117
8de7ecc6 4118 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4119 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4120 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4121 PAGE_SIZE);
14067bb3 4122
7f016ee8 4123#ifdef CONFIG_DEBUG_VM
7f016ee8 4124 {
ef8f2327
MG
4125 pg_data_t *pgdat;
4126 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4127 unsigned long anon_cost = 0;
4128 unsigned long file_cost = 0;
7f016ee8 4129
ef8f2327
MG
4130 for_each_online_pgdat(pgdat) {
4131 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
7f016ee8 4132
1431d4d1
JW
4133 anon_cost += mz->lruvec.anon_cost;
4134 file_cost += mz->lruvec.file_cost;
ef8f2327 4135 }
1431d4d1
JW
4136 seq_printf(m, "anon_cost %lu\n", anon_cost);
4137 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4138 }
4139#endif
4140
d2ceb9b7
KH
4141 return 0;
4142}
4143
182446d0
TH
4144static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4145 struct cftype *cft)
a7885eb8 4146{
182446d0 4147 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4148
1f4c025b 4149 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4150}
4151
182446d0
TH
4152static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4153 struct cftype *cft, u64 val)
a7885eb8 4154{
182446d0 4155 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4156
3dae7fec 4157 if (val > 100)
a7885eb8
KM
4158 return -EINVAL;
4159
14208b0e 4160 if (css->parent)
3dae7fec
JW
4161 memcg->swappiness = val;
4162 else
4163 vm_swappiness = val;
068b38c1 4164
a7885eb8
KM
4165 return 0;
4166}
4167
2e72b634
KS
4168static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4169{
4170 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4171 unsigned long usage;
2e72b634
KS
4172 int i;
4173
4174 rcu_read_lock();
4175 if (!swap)
2c488db2 4176 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4177 else
2c488db2 4178 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4179
4180 if (!t)
4181 goto unlock;
4182
ce00a967 4183 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4184
4185 /*
748dad36 4186 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4187 * If it's not true, a threshold was crossed after last
4188 * call of __mem_cgroup_threshold().
4189 */
5407a562 4190 i = t->current_threshold;
2e72b634
KS
4191
4192 /*
4193 * Iterate backward over array of thresholds starting from
4194 * current_threshold and check if a threshold is crossed.
4195 * If none of thresholds below usage is crossed, we read
4196 * only one element of the array here.
4197 */
4198 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4199 eventfd_signal(t->entries[i].eventfd, 1);
4200
4201 /* i = current_threshold + 1 */
4202 i++;
4203
4204 /*
4205 * Iterate forward over array of thresholds starting from
4206 * current_threshold+1 and check if a threshold is crossed.
4207 * If none of thresholds above usage is crossed, we read
4208 * only one element of the array here.
4209 */
4210 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4211 eventfd_signal(t->entries[i].eventfd, 1);
4212
4213 /* Update current_threshold */
5407a562 4214 t->current_threshold = i - 1;
2e72b634
KS
4215unlock:
4216 rcu_read_unlock();
4217}
4218
4219static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4220{
ad4ca5f4
KS
4221 while (memcg) {
4222 __mem_cgroup_threshold(memcg, false);
7941d214 4223 if (do_memsw_account())
ad4ca5f4
KS
4224 __mem_cgroup_threshold(memcg, true);
4225
4226 memcg = parent_mem_cgroup(memcg);
4227 }
2e72b634
KS
4228}
4229
4230static int compare_thresholds(const void *a, const void *b)
4231{
4232 const struct mem_cgroup_threshold *_a = a;
4233 const struct mem_cgroup_threshold *_b = b;
4234
2bff24a3
GT
4235 if (_a->threshold > _b->threshold)
4236 return 1;
4237
4238 if (_a->threshold < _b->threshold)
4239 return -1;
4240
4241 return 0;
2e72b634
KS
4242}
4243
c0ff4b85 4244static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4245{
4246 struct mem_cgroup_eventfd_list *ev;
4247
2bcf2e92
MH
4248 spin_lock(&memcg_oom_lock);
4249
c0ff4b85 4250 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4251 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4252
4253 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4254 return 0;
4255}
4256
c0ff4b85 4257static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4258{
7d74b06f
KH
4259 struct mem_cgroup *iter;
4260
c0ff4b85 4261 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4262 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4263}
4264
59b6f873 4265static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4266 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4267{
2c488db2
KS
4268 struct mem_cgroup_thresholds *thresholds;
4269 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4270 unsigned long threshold;
4271 unsigned long usage;
2c488db2 4272 int i, size, ret;
2e72b634 4273
650c5e56 4274 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4275 if (ret)
4276 return ret;
4277
4278 mutex_lock(&memcg->thresholds_lock);
2c488db2 4279
05b84301 4280 if (type == _MEM) {
2c488db2 4281 thresholds = &memcg->thresholds;
ce00a967 4282 usage = mem_cgroup_usage(memcg, false);
05b84301 4283 } else if (type == _MEMSWAP) {
2c488db2 4284 thresholds = &memcg->memsw_thresholds;
ce00a967 4285 usage = mem_cgroup_usage(memcg, true);
05b84301 4286 } else
2e72b634
KS
4287 BUG();
4288
2e72b634 4289 /* Check if a threshold crossed before adding a new one */
2c488db2 4290 if (thresholds->primary)
2e72b634
KS
4291 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4292
2c488db2 4293 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4294
4295 /* Allocate memory for new array of thresholds */
67b8046f 4296 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4297 if (!new) {
2e72b634
KS
4298 ret = -ENOMEM;
4299 goto unlock;
4300 }
2c488db2 4301 new->size = size;
2e72b634
KS
4302
4303 /* Copy thresholds (if any) to new array */
e90342e6
GS
4304 if (thresholds->primary)
4305 memcpy(new->entries, thresholds->primary->entries,
4306 flex_array_size(new, entries, size - 1));
2c488db2 4307
2e72b634 4308 /* Add new threshold */
2c488db2
KS
4309 new->entries[size - 1].eventfd = eventfd;
4310 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4311
4312 /* Sort thresholds. Registering of new threshold isn't time-critical */
61e604e6 4313 sort(new->entries, size, sizeof(*new->entries),
2e72b634
KS
4314 compare_thresholds, NULL);
4315
4316 /* Find current threshold */
2c488db2 4317 new->current_threshold = -1;
2e72b634 4318 for (i = 0; i < size; i++) {
748dad36 4319 if (new->entries[i].threshold <= usage) {
2e72b634 4320 /*
2c488db2
KS
4321 * new->current_threshold will not be used until
4322 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4323 * it here.
4324 */
2c488db2 4325 ++new->current_threshold;
748dad36
SZ
4326 } else
4327 break;
2e72b634
KS
4328 }
4329
2c488db2
KS
4330 /* Free old spare buffer and save old primary buffer as spare */
4331 kfree(thresholds->spare);
4332 thresholds->spare = thresholds->primary;
4333
4334 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4335
907860ed 4336 /* To be sure that nobody uses thresholds */
2e72b634
KS
4337 synchronize_rcu();
4338
2e72b634
KS
4339unlock:
4340 mutex_unlock(&memcg->thresholds_lock);
4341
4342 return ret;
4343}
4344
59b6f873 4345static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4346 struct eventfd_ctx *eventfd, const char *args)
4347{
59b6f873 4348 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4349}
4350
59b6f873 4351static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4352 struct eventfd_ctx *eventfd, const char *args)
4353{
59b6f873 4354 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4355}
4356
59b6f873 4357static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4358 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4359{
2c488db2
KS
4360 struct mem_cgroup_thresholds *thresholds;
4361 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4362 unsigned long usage;
7d36665a 4363 int i, j, size, entries;
2e72b634
KS
4364
4365 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4366
4367 if (type == _MEM) {
2c488db2 4368 thresholds = &memcg->thresholds;
ce00a967 4369 usage = mem_cgroup_usage(memcg, false);
05b84301 4370 } else if (type == _MEMSWAP) {
2c488db2 4371 thresholds = &memcg->memsw_thresholds;
ce00a967 4372 usage = mem_cgroup_usage(memcg, true);
05b84301 4373 } else
2e72b634
KS
4374 BUG();
4375
371528ca
AV
4376 if (!thresholds->primary)
4377 goto unlock;
4378
2e72b634
KS
4379 /* Check if a threshold crossed before removing */
4380 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4381
4382 /* Calculate new number of threshold */
7d36665a 4383 size = entries = 0;
2c488db2
KS
4384 for (i = 0; i < thresholds->primary->size; i++) {
4385 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4386 size++;
7d36665a
CX
4387 else
4388 entries++;
2e72b634
KS
4389 }
4390
2c488db2 4391 new = thresholds->spare;
907860ed 4392
7d36665a
CX
4393 /* If no items related to eventfd have been cleared, nothing to do */
4394 if (!entries)
4395 goto unlock;
4396
2e72b634
KS
4397 /* Set thresholds array to NULL if we don't have thresholds */
4398 if (!size) {
2c488db2
KS
4399 kfree(new);
4400 new = NULL;
907860ed 4401 goto swap_buffers;
2e72b634
KS
4402 }
4403
2c488db2 4404 new->size = size;
2e72b634
KS
4405
4406 /* Copy thresholds and find current threshold */
2c488db2
KS
4407 new->current_threshold = -1;
4408 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4409 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4410 continue;
4411
2c488db2 4412 new->entries[j] = thresholds->primary->entries[i];
748dad36 4413 if (new->entries[j].threshold <= usage) {
2e72b634 4414 /*
2c488db2 4415 * new->current_threshold will not be used
2e72b634
KS
4416 * until rcu_assign_pointer(), so it's safe to increment
4417 * it here.
4418 */
2c488db2 4419 ++new->current_threshold;
2e72b634
KS
4420 }
4421 j++;
4422 }
4423
907860ed 4424swap_buffers:
2c488db2
KS
4425 /* Swap primary and spare array */
4426 thresholds->spare = thresholds->primary;
8c757763 4427
2c488db2 4428 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4429
907860ed 4430 /* To be sure that nobody uses thresholds */
2e72b634 4431 synchronize_rcu();
6611d8d7
MC
4432
4433 /* If all events are unregistered, free the spare array */
4434 if (!new) {
4435 kfree(thresholds->spare);
4436 thresholds->spare = NULL;
4437 }
371528ca 4438unlock:
2e72b634 4439 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4440}
c1e862c1 4441
59b6f873 4442static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4443 struct eventfd_ctx *eventfd)
4444{
59b6f873 4445 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4446}
4447
59b6f873 4448static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4449 struct eventfd_ctx *eventfd)
4450{
59b6f873 4451 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4452}
4453
59b6f873 4454static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4455 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4456{
9490ff27 4457 struct mem_cgroup_eventfd_list *event;
9490ff27 4458
9490ff27
KH
4459 event = kmalloc(sizeof(*event), GFP_KERNEL);
4460 if (!event)
4461 return -ENOMEM;
4462
1af8efe9 4463 spin_lock(&memcg_oom_lock);
9490ff27
KH
4464
4465 event->eventfd = eventfd;
4466 list_add(&event->list, &memcg->oom_notify);
4467
4468 /* already in OOM ? */
c2b42d3c 4469 if (memcg->under_oom)
9490ff27 4470 eventfd_signal(eventfd, 1);
1af8efe9 4471 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4472
4473 return 0;
4474}
4475
59b6f873 4476static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4477 struct eventfd_ctx *eventfd)
9490ff27 4478{
9490ff27 4479 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4480
1af8efe9 4481 spin_lock(&memcg_oom_lock);
9490ff27 4482
c0ff4b85 4483 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4484 if (ev->eventfd == eventfd) {
4485 list_del(&ev->list);
4486 kfree(ev);
4487 }
4488 }
4489
1af8efe9 4490 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4491}
4492
2da8ca82 4493static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4494{
aa9694bb 4495 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4496
791badbd 4497 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4498 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4499 seq_printf(sf, "oom_kill %lu\n",
4500 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4501 return 0;
4502}
4503
182446d0 4504static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4505 struct cftype *cft, u64 val)
4506{
182446d0 4507 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4508
4509 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4510 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4511 return -EINVAL;
4512
c0ff4b85 4513 memcg->oom_kill_disable = val;
4d845ebf 4514 if (!val)
c0ff4b85 4515 memcg_oom_recover(memcg);
3dae7fec 4516
3c11ecf4
KH
4517 return 0;
4518}
4519
52ebea74
TH
4520#ifdef CONFIG_CGROUP_WRITEBACK
4521
3a8e9ac8
TH
4522#include <trace/events/writeback.h>
4523
841710aa
TH
4524static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4525{
4526 return wb_domain_init(&memcg->cgwb_domain, gfp);
4527}
4528
4529static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4530{
4531 wb_domain_exit(&memcg->cgwb_domain);
4532}
4533
2529bb3a
TH
4534static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4535{
4536 wb_domain_size_changed(&memcg->cgwb_domain);
4537}
4538
841710aa
TH
4539struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4540{
4541 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4542
4543 if (!memcg->css.parent)
4544 return NULL;
4545
4546 return &memcg->cgwb_domain;
4547}
4548
0b3d6e6f
GT
4549/*
4550 * idx can be of type enum memcg_stat_item or node_stat_item.
4551 * Keep in sync with memcg_exact_page().
4552 */
4553static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4554{
871789d4 4555 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4556 int cpu;
4557
4558 for_each_online_cpu(cpu)
871789d4 4559 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4560 if (x < 0)
4561 x = 0;
4562 return x;
4563}
4564
c2aa723a
TH
4565/**
4566 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4567 * @wb: bdi_writeback in question
c5edf9cd
TH
4568 * @pfilepages: out parameter for number of file pages
4569 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4570 * @pdirty: out parameter for number of dirty pages
4571 * @pwriteback: out parameter for number of pages under writeback
4572 *
c5edf9cd
TH
4573 * Determine the numbers of file, headroom, dirty, and writeback pages in
4574 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4575 * is a bit more involved.
c2aa723a 4576 *
c5edf9cd
TH
4577 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4578 * headroom is calculated as the lowest headroom of itself and the
4579 * ancestors. Note that this doesn't consider the actual amount of
4580 * available memory in the system. The caller should further cap
4581 * *@pheadroom accordingly.
c2aa723a 4582 */
c5edf9cd
TH
4583void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4584 unsigned long *pheadroom, unsigned long *pdirty,
4585 unsigned long *pwriteback)
c2aa723a
TH
4586{
4587 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4588 struct mem_cgroup *parent;
c2aa723a 4589
0b3d6e6f 4590 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4591
0b3d6e6f 4592 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4593 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4594 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4595 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4596
c2aa723a 4597 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4598 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4599 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4600 unsigned long used = page_counter_read(&memcg->memory);
4601
c5edf9cd 4602 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4603 memcg = parent;
4604 }
c2aa723a
TH
4605}
4606
97b27821
TH
4607/*
4608 * Foreign dirty flushing
4609 *
4610 * There's an inherent mismatch between memcg and writeback. The former
4611 * trackes ownership per-page while the latter per-inode. This was a
4612 * deliberate design decision because honoring per-page ownership in the
4613 * writeback path is complicated, may lead to higher CPU and IO overheads
4614 * and deemed unnecessary given that write-sharing an inode across
4615 * different cgroups isn't a common use-case.
4616 *
4617 * Combined with inode majority-writer ownership switching, this works well
4618 * enough in most cases but there are some pathological cases. For
4619 * example, let's say there are two cgroups A and B which keep writing to
4620 * different but confined parts of the same inode. B owns the inode and
4621 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4622 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4623 * triggering background writeback. A will be slowed down without a way to
4624 * make writeback of the dirty pages happen.
4625 *
4626 * Conditions like the above can lead to a cgroup getting repatedly and
4627 * severely throttled after making some progress after each
4628 * dirty_expire_interval while the underyling IO device is almost
4629 * completely idle.
4630 *
4631 * Solving this problem completely requires matching the ownership tracking
4632 * granularities between memcg and writeback in either direction. However,
4633 * the more egregious behaviors can be avoided by simply remembering the
4634 * most recent foreign dirtying events and initiating remote flushes on
4635 * them when local writeback isn't enough to keep the memory clean enough.
4636 *
4637 * The following two functions implement such mechanism. When a foreign
4638 * page - a page whose memcg and writeback ownerships don't match - is
4639 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4640 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4641 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4642 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4643 * foreign bdi_writebacks which haven't expired. Both the numbers of
4644 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4645 * limited to MEMCG_CGWB_FRN_CNT.
4646 *
4647 * The mechanism only remembers IDs and doesn't hold any object references.
4648 * As being wrong occasionally doesn't matter, updates and accesses to the
4649 * records are lockless and racy.
4650 */
4651void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4652 struct bdi_writeback *wb)
4653{
bcfe06bf 4654 struct mem_cgroup *memcg = page_memcg(page);
97b27821
TH
4655 struct memcg_cgwb_frn *frn;
4656 u64 now = get_jiffies_64();
4657 u64 oldest_at = now;
4658 int oldest = -1;
4659 int i;
4660
3a8e9ac8
TH
4661 trace_track_foreign_dirty(page, wb);
4662
97b27821
TH
4663 /*
4664 * Pick the slot to use. If there is already a slot for @wb, keep
4665 * using it. If not replace the oldest one which isn't being
4666 * written out.
4667 */
4668 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4669 frn = &memcg->cgwb_frn[i];
4670 if (frn->bdi_id == wb->bdi->id &&
4671 frn->memcg_id == wb->memcg_css->id)
4672 break;
4673 if (time_before64(frn->at, oldest_at) &&
4674 atomic_read(&frn->done.cnt) == 1) {
4675 oldest = i;
4676 oldest_at = frn->at;
4677 }
4678 }
4679
4680 if (i < MEMCG_CGWB_FRN_CNT) {
4681 /*
4682 * Re-using an existing one. Update timestamp lazily to
4683 * avoid making the cacheline hot. We want them to be
4684 * reasonably up-to-date and significantly shorter than
4685 * dirty_expire_interval as that's what expires the record.
4686 * Use the shorter of 1s and dirty_expire_interval / 8.
4687 */
4688 unsigned long update_intv =
4689 min_t(unsigned long, HZ,
4690 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4691
4692 if (time_before64(frn->at, now - update_intv))
4693 frn->at = now;
4694 } else if (oldest >= 0) {
4695 /* replace the oldest free one */
4696 frn = &memcg->cgwb_frn[oldest];
4697 frn->bdi_id = wb->bdi->id;
4698 frn->memcg_id = wb->memcg_css->id;
4699 frn->at = now;
4700 }
4701}
4702
4703/* issue foreign writeback flushes for recorded foreign dirtying events */
4704void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4705{
4706 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4707 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4708 u64 now = jiffies_64;
4709 int i;
4710
4711 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4712 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4713
4714 /*
4715 * If the record is older than dirty_expire_interval,
4716 * writeback on it has already started. No need to kick it
4717 * off again. Also, don't start a new one if there's
4718 * already one in flight.
4719 */
4720 if (time_after64(frn->at, now - intv) &&
4721 atomic_read(&frn->done.cnt) == 1) {
4722 frn->at = 0;
3a8e9ac8 4723 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4724 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4725 WB_REASON_FOREIGN_FLUSH,
4726 &frn->done);
4727 }
4728 }
4729}
4730
841710aa
TH
4731#else /* CONFIG_CGROUP_WRITEBACK */
4732
4733static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4734{
4735 return 0;
4736}
4737
4738static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4739{
4740}
4741
2529bb3a
TH
4742static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4743{
4744}
4745
52ebea74
TH
4746#endif /* CONFIG_CGROUP_WRITEBACK */
4747
3bc942f3
TH
4748/*
4749 * DO NOT USE IN NEW FILES.
4750 *
4751 * "cgroup.event_control" implementation.
4752 *
4753 * This is way over-engineered. It tries to support fully configurable
4754 * events for each user. Such level of flexibility is completely
4755 * unnecessary especially in the light of the planned unified hierarchy.
4756 *
4757 * Please deprecate this and replace with something simpler if at all
4758 * possible.
4759 */
4760
79bd9814
TH
4761/*
4762 * Unregister event and free resources.
4763 *
4764 * Gets called from workqueue.
4765 */
3bc942f3 4766static void memcg_event_remove(struct work_struct *work)
79bd9814 4767{
3bc942f3
TH
4768 struct mem_cgroup_event *event =
4769 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4770 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4771
4772 remove_wait_queue(event->wqh, &event->wait);
4773
59b6f873 4774 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4775
4776 /* Notify userspace the event is going away. */
4777 eventfd_signal(event->eventfd, 1);
4778
4779 eventfd_ctx_put(event->eventfd);
4780 kfree(event);
59b6f873 4781 css_put(&memcg->css);
79bd9814
TH
4782}
4783
4784/*
a9a08845 4785 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4786 *
4787 * Called with wqh->lock held and interrupts disabled.
4788 */
ac6424b9 4789static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4790 int sync, void *key)
79bd9814 4791{
3bc942f3
TH
4792 struct mem_cgroup_event *event =
4793 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4794 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4795 __poll_t flags = key_to_poll(key);
79bd9814 4796
a9a08845 4797 if (flags & EPOLLHUP) {
79bd9814
TH
4798 /*
4799 * If the event has been detached at cgroup removal, we
4800 * can simply return knowing the other side will cleanup
4801 * for us.
4802 *
4803 * We can't race against event freeing since the other
4804 * side will require wqh->lock via remove_wait_queue(),
4805 * which we hold.
4806 */
fba94807 4807 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4808 if (!list_empty(&event->list)) {
4809 list_del_init(&event->list);
4810 /*
4811 * We are in atomic context, but cgroup_event_remove()
4812 * may sleep, so we have to call it in workqueue.
4813 */
4814 schedule_work(&event->remove);
4815 }
fba94807 4816 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4817 }
4818
4819 return 0;
4820}
4821
3bc942f3 4822static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4823 wait_queue_head_t *wqh, poll_table *pt)
4824{
3bc942f3
TH
4825 struct mem_cgroup_event *event =
4826 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4827
4828 event->wqh = wqh;
4829 add_wait_queue(wqh, &event->wait);
4830}
4831
4832/*
3bc942f3
TH
4833 * DO NOT USE IN NEW FILES.
4834 *
79bd9814
TH
4835 * Parse input and register new cgroup event handler.
4836 *
4837 * Input must be in format '<event_fd> <control_fd> <args>'.
4838 * Interpretation of args is defined by control file implementation.
4839 */
451af504
TH
4840static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4841 char *buf, size_t nbytes, loff_t off)
79bd9814 4842{
451af504 4843 struct cgroup_subsys_state *css = of_css(of);
fba94807 4844 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4845 struct mem_cgroup_event *event;
79bd9814
TH
4846 struct cgroup_subsys_state *cfile_css;
4847 unsigned int efd, cfd;
4848 struct fd efile;
4849 struct fd cfile;
fba94807 4850 const char *name;
79bd9814
TH
4851 char *endp;
4852 int ret;
4853
451af504
TH
4854 buf = strstrip(buf);
4855
4856 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4857 if (*endp != ' ')
4858 return -EINVAL;
451af504 4859 buf = endp + 1;
79bd9814 4860
451af504 4861 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4862 if ((*endp != ' ') && (*endp != '\0'))
4863 return -EINVAL;
451af504 4864 buf = endp + 1;
79bd9814
TH
4865
4866 event = kzalloc(sizeof(*event), GFP_KERNEL);
4867 if (!event)
4868 return -ENOMEM;
4869
59b6f873 4870 event->memcg = memcg;
79bd9814 4871 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4872 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4873 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4874 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4875
4876 efile = fdget(efd);
4877 if (!efile.file) {
4878 ret = -EBADF;
4879 goto out_kfree;
4880 }
4881
4882 event->eventfd = eventfd_ctx_fileget(efile.file);
4883 if (IS_ERR(event->eventfd)) {
4884 ret = PTR_ERR(event->eventfd);
4885 goto out_put_efile;
4886 }
4887
4888 cfile = fdget(cfd);
4889 if (!cfile.file) {
4890 ret = -EBADF;
4891 goto out_put_eventfd;
4892 }
4893
4894 /* the process need read permission on control file */
4895 /* AV: shouldn't we check that it's been opened for read instead? */
4896 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4897 if (ret < 0)
4898 goto out_put_cfile;
4899
fba94807
TH
4900 /*
4901 * Determine the event callbacks and set them in @event. This used
4902 * to be done via struct cftype but cgroup core no longer knows
4903 * about these events. The following is crude but the whole thing
4904 * is for compatibility anyway.
3bc942f3
TH
4905 *
4906 * DO NOT ADD NEW FILES.
fba94807 4907 */
b583043e 4908 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4909
4910 if (!strcmp(name, "memory.usage_in_bytes")) {
4911 event->register_event = mem_cgroup_usage_register_event;
4912 event->unregister_event = mem_cgroup_usage_unregister_event;
4913 } else if (!strcmp(name, "memory.oom_control")) {
4914 event->register_event = mem_cgroup_oom_register_event;
4915 event->unregister_event = mem_cgroup_oom_unregister_event;
4916 } else if (!strcmp(name, "memory.pressure_level")) {
4917 event->register_event = vmpressure_register_event;
4918 event->unregister_event = vmpressure_unregister_event;
4919 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4920 event->register_event = memsw_cgroup_usage_register_event;
4921 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4922 } else {
4923 ret = -EINVAL;
4924 goto out_put_cfile;
4925 }
4926
79bd9814 4927 /*
b5557c4c
TH
4928 * Verify @cfile should belong to @css. Also, remaining events are
4929 * automatically removed on cgroup destruction but the removal is
4930 * asynchronous, so take an extra ref on @css.
79bd9814 4931 */
b583043e 4932 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4933 &memory_cgrp_subsys);
79bd9814 4934 ret = -EINVAL;
5a17f543 4935 if (IS_ERR(cfile_css))
79bd9814 4936 goto out_put_cfile;
5a17f543
TH
4937 if (cfile_css != css) {
4938 css_put(cfile_css);
79bd9814 4939 goto out_put_cfile;
5a17f543 4940 }
79bd9814 4941
451af504 4942 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4943 if (ret)
4944 goto out_put_css;
4945
9965ed17 4946 vfs_poll(efile.file, &event->pt);
79bd9814 4947
fba94807
TH
4948 spin_lock(&memcg->event_list_lock);
4949 list_add(&event->list, &memcg->event_list);
4950 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4951
4952 fdput(cfile);
4953 fdput(efile);
4954
451af504 4955 return nbytes;
79bd9814
TH
4956
4957out_put_css:
b5557c4c 4958 css_put(css);
79bd9814
TH
4959out_put_cfile:
4960 fdput(cfile);
4961out_put_eventfd:
4962 eventfd_ctx_put(event->eventfd);
4963out_put_efile:
4964 fdput(efile);
4965out_kfree:
4966 kfree(event);
4967
4968 return ret;
4969}
4970
241994ed 4971static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4972 {
0eea1030 4973 .name = "usage_in_bytes",
8c7c6e34 4974 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4975 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4976 },
c84872e1
PE
4977 {
4978 .name = "max_usage_in_bytes",
8c7c6e34 4979 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4980 .write = mem_cgroup_reset,
791badbd 4981 .read_u64 = mem_cgroup_read_u64,
c84872e1 4982 },
8cdea7c0 4983 {
0eea1030 4984 .name = "limit_in_bytes",
8c7c6e34 4985 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4986 .write = mem_cgroup_write,
791badbd 4987 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4988 },
296c81d8
BS
4989 {
4990 .name = "soft_limit_in_bytes",
4991 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4992 .write = mem_cgroup_write,
791badbd 4993 .read_u64 = mem_cgroup_read_u64,
296c81d8 4994 },
8cdea7c0
BS
4995 {
4996 .name = "failcnt",
8c7c6e34 4997 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4998 .write = mem_cgroup_reset,
791badbd 4999 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 5000 },
d2ceb9b7
KH
5001 {
5002 .name = "stat",
2da8ca82 5003 .seq_show = memcg_stat_show,
d2ceb9b7 5004 },
c1e862c1
KH
5005 {
5006 .name = "force_empty",
6770c64e 5007 .write = mem_cgroup_force_empty_write,
c1e862c1 5008 },
18f59ea7
BS
5009 {
5010 .name = "use_hierarchy",
5011 .write_u64 = mem_cgroup_hierarchy_write,
5012 .read_u64 = mem_cgroup_hierarchy_read,
5013 },
79bd9814 5014 {
3bc942f3 5015 .name = "cgroup.event_control", /* XXX: for compat */
451af504 5016 .write = memcg_write_event_control,
7dbdb199 5017 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 5018 },
a7885eb8
KM
5019 {
5020 .name = "swappiness",
5021 .read_u64 = mem_cgroup_swappiness_read,
5022 .write_u64 = mem_cgroup_swappiness_write,
5023 },
7dc74be0
DN
5024 {
5025 .name = "move_charge_at_immigrate",
5026 .read_u64 = mem_cgroup_move_charge_read,
5027 .write_u64 = mem_cgroup_move_charge_write,
5028 },
9490ff27
KH
5029 {
5030 .name = "oom_control",
2da8ca82 5031 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 5032 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5033 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5034 },
70ddf637
AV
5035 {
5036 .name = "pressure_level",
70ddf637 5037 },
406eb0c9
YH
5038#ifdef CONFIG_NUMA
5039 {
5040 .name = "numa_stat",
2da8ca82 5041 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
5042 },
5043#endif
510fc4e1
GC
5044 {
5045 .name = "kmem.limit_in_bytes",
5046 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 5047 .write = mem_cgroup_write,
791badbd 5048 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5049 },
5050 {
5051 .name = "kmem.usage_in_bytes",
5052 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 5053 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5054 },
5055 {
5056 .name = "kmem.failcnt",
5057 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 5058 .write = mem_cgroup_reset,
791badbd 5059 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
5060 },
5061 {
5062 .name = "kmem.max_usage_in_bytes",
5063 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 5064 .write = mem_cgroup_reset,
791badbd 5065 .read_u64 = mem_cgroup_read_u64,
510fc4e1 5066 },
a87425a3
YS
5067#if defined(CONFIG_MEMCG_KMEM) && \
5068 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
5069 {
5070 .name = "kmem.slabinfo",
b047501c 5071 .seq_show = memcg_slab_show,
749c5415
GC
5072 },
5073#endif
d55f90bf
VD
5074 {
5075 .name = "kmem.tcp.limit_in_bytes",
5076 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5077 .write = mem_cgroup_write,
5078 .read_u64 = mem_cgroup_read_u64,
5079 },
5080 {
5081 .name = "kmem.tcp.usage_in_bytes",
5082 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5083 .read_u64 = mem_cgroup_read_u64,
5084 },
5085 {
5086 .name = "kmem.tcp.failcnt",
5087 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5088 .write = mem_cgroup_reset,
5089 .read_u64 = mem_cgroup_read_u64,
5090 },
5091 {
5092 .name = "kmem.tcp.max_usage_in_bytes",
5093 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5094 .write = mem_cgroup_reset,
5095 .read_u64 = mem_cgroup_read_u64,
5096 },
6bc10349 5097 { }, /* terminate */
af36f906 5098};
8c7c6e34 5099
73f576c0
JW
5100/*
5101 * Private memory cgroup IDR
5102 *
5103 * Swap-out records and page cache shadow entries need to store memcg
5104 * references in constrained space, so we maintain an ID space that is
5105 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5106 * memory-controlled cgroups to 64k.
5107 *
b8f2935f 5108 * However, there usually are many references to the offline CSS after
73f576c0
JW
5109 * the cgroup has been destroyed, such as page cache or reclaimable
5110 * slab objects, that don't need to hang on to the ID. We want to keep
5111 * those dead CSS from occupying IDs, or we might quickly exhaust the
5112 * relatively small ID space and prevent the creation of new cgroups
5113 * even when there are much fewer than 64k cgroups - possibly none.
5114 *
5115 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5116 * be freed and recycled when it's no longer needed, which is usually
5117 * when the CSS is offlined.
5118 *
5119 * The only exception to that are records of swapped out tmpfs/shmem
5120 * pages that need to be attributed to live ancestors on swapin. But
5121 * those references are manageable from userspace.
5122 */
5123
5124static DEFINE_IDR(mem_cgroup_idr);
5125
7e97de0b
KT
5126static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5127{
5128 if (memcg->id.id > 0) {
5129 idr_remove(&mem_cgroup_idr, memcg->id.id);
5130 memcg->id.id = 0;
5131 }
5132}
5133
c1514c0a
VF
5134static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5135 unsigned int n)
73f576c0 5136{
1c2d479a 5137 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5138}
5139
615d66c3 5140static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5141{
1c2d479a 5142 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5143 mem_cgroup_id_remove(memcg);
73f576c0
JW
5144
5145 /* Memcg ID pins CSS */
5146 css_put(&memcg->css);
5147 }
5148}
5149
615d66c3
VD
5150static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5151{
5152 mem_cgroup_id_put_many(memcg, 1);
5153}
5154
73f576c0
JW
5155/**
5156 * mem_cgroup_from_id - look up a memcg from a memcg id
5157 * @id: the memcg id to look up
5158 *
5159 * Caller must hold rcu_read_lock().
5160 */
5161struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5162{
5163 WARN_ON_ONCE(!rcu_read_lock_held());
5164 return idr_find(&mem_cgroup_idr, id);
5165}
5166
ef8f2327 5167static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5168{
5169 struct mem_cgroup_per_node *pn;
ef8f2327 5170 int tmp = node;
1ecaab2b
KH
5171 /*
5172 * This routine is called against possible nodes.
5173 * But it's BUG to call kmalloc() against offline node.
5174 *
5175 * TODO: this routine can waste much memory for nodes which will
5176 * never be onlined. It's better to use memory hotplug callback
5177 * function.
5178 */
41e3355d
KH
5179 if (!node_state(node, N_NORMAL_MEMORY))
5180 tmp = -1;
17295c88 5181 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5182 if (!pn)
5183 return 1;
1ecaab2b 5184
3e38e0aa
RG
5185 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5186 GFP_KERNEL_ACCOUNT);
815744d7
JW
5187 if (!pn->lruvec_stat_local) {
5188 kfree(pn);
5189 return 1;
5190 }
5191
3e38e0aa
RG
5192 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5193 GFP_KERNEL_ACCOUNT);
a983b5eb 5194 if (!pn->lruvec_stat_cpu) {
815744d7 5195 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5196 kfree(pn);
5197 return 1;
5198 }
5199
ef8f2327
MG
5200 lruvec_init(&pn->lruvec);
5201 pn->usage_in_excess = 0;
5202 pn->on_tree = false;
5203 pn->memcg = memcg;
5204
54f72fe0 5205 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5206 return 0;
5207}
5208
ef8f2327 5209static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5210{
00f3ca2c
JW
5211 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5212
4eaf431f
MH
5213 if (!pn)
5214 return;
5215
a983b5eb 5216 free_percpu(pn->lruvec_stat_cpu);
815744d7 5217 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5218 kfree(pn);
1ecaab2b
KH
5219}
5220
40e952f9 5221static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5222{
c8b2a36f 5223 int node;
59927fb9 5224
c8b2a36f 5225 for_each_node(node)
ef8f2327 5226 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5227 free_percpu(memcg->vmstats_percpu);
815744d7 5228 free_percpu(memcg->vmstats_local);
8ff69e2c 5229 kfree(memcg);
59927fb9 5230}
3afe36b1 5231
40e952f9
TE
5232static void mem_cgroup_free(struct mem_cgroup *memcg)
5233{
5234 memcg_wb_domain_exit(memcg);
7961eee3
SB
5235 /*
5236 * Flush percpu vmstats and vmevents to guarantee the value correctness
5237 * on parent's and all ancestor levels.
5238 */
4a87e2a2 5239 memcg_flush_percpu_vmstats(memcg);
7961eee3 5240 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5241 __mem_cgroup_free(memcg);
5242}
5243
0b8f73e1 5244static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5245{
d142e3e6 5246 struct mem_cgroup *memcg;
b9726c26 5247 unsigned int size;
6d12e2d8 5248 int node;
97b27821 5249 int __maybe_unused i;
11d67612 5250 long error = -ENOMEM;
8cdea7c0 5251
0b8f73e1
JW
5252 size = sizeof(struct mem_cgroup);
5253 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5254
5255 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5256 if (!memcg)
11d67612 5257 return ERR_PTR(error);
0b8f73e1 5258
73f576c0
JW
5259 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5260 1, MEM_CGROUP_ID_MAX,
5261 GFP_KERNEL);
11d67612
YS
5262 if (memcg->id.id < 0) {
5263 error = memcg->id.id;
73f576c0 5264 goto fail;
11d67612 5265 }
73f576c0 5266
3e38e0aa
RG
5267 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5268 GFP_KERNEL_ACCOUNT);
815744d7
JW
5269 if (!memcg->vmstats_local)
5270 goto fail;
5271
3e38e0aa
RG
5272 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5273 GFP_KERNEL_ACCOUNT);
871789d4 5274 if (!memcg->vmstats_percpu)
0b8f73e1 5275 goto fail;
78fb7466 5276
3ed28fa1 5277 for_each_node(node)
ef8f2327 5278 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5279 goto fail;
f64c3f54 5280
0b8f73e1
JW
5281 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5282 goto fail;
28dbc4b6 5283
f7e1cb6e 5284 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5285 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5286 mutex_init(&memcg->thresholds_lock);
5287 spin_lock_init(&memcg->move_lock);
70ddf637 5288 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5289 INIT_LIST_HEAD(&memcg->event_list);
5290 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5291 memcg->socket_pressure = jiffies;
84c07d11 5292#ifdef CONFIG_MEMCG_KMEM
900a38f0 5293 memcg->kmemcg_id = -1;
bf4f0599 5294 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5295#endif
52ebea74
TH
5296#ifdef CONFIG_CGROUP_WRITEBACK
5297 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5298 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5299 memcg->cgwb_frn[i].done =
5300 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5301#endif
5302#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5303 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5304 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5305 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5306#endif
73f576c0 5307 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5308 return memcg;
5309fail:
7e97de0b 5310 mem_cgroup_id_remove(memcg);
40e952f9 5311 __mem_cgroup_free(memcg);
11d67612 5312 return ERR_PTR(error);
d142e3e6
GC
5313}
5314
0b8f73e1
JW
5315static struct cgroup_subsys_state * __ref
5316mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5317{
0b8f73e1 5318 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
b87d8cef 5319 struct mem_cgroup *memcg, *old_memcg;
0b8f73e1 5320 long error = -ENOMEM;
d142e3e6 5321
b87d8cef 5322 old_memcg = set_active_memcg(parent);
0b8f73e1 5323 memcg = mem_cgroup_alloc();
b87d8cef 5324 set_active_memcg(old_memcg);
11d67612
YS
5325 if (IS_ERR(memcg))
5326 return ERR_CAST(memcg);
d142e3e6 5327
d1663a90 5328 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5329 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5330 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5331 if (parent) {
5332 memcg->swappiness = mem_cgroup_swappiness(parent);
5333 memcg->oom_kill_disable = parent->oom_kill_disable;
bef8620c 5334
3e32cb2e 5335 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5336 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e 5337 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5338 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5339 } else {
bef8620c
RG
5340 page_counter_init(&memcg->memory, NULL);
5341 page_counter_init(&memcg->swap, NULL);
5342 page_counter_init(&memcg->kmem, NULL);
5343 page_counter_init(&memcg->tcpmem, NULL);
d6441637 5344
0b8f73e1
JW
5345 root_mem_cgroup = memcg;
5346 return &memcg->css;
5347 }
5348
bef8620c 5349 /* The following stuff does not apply to the root */
b313aeee 5350 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5351 if (error)
5352 goto fail;
127424c8 5353
f7e1cb6e 5354 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5355 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5356
0b8f73e1
JW
5357 return &memcg->css;
5358fail:
7e97de0b 5359 mem_cgroup_id_remove(memcg);
0b8f73e1 5360 mem_cgroup_free(memcg);
11d67612 5361 return ERR_PTR(error);
0b8f73e1
JW
5362}
5363
73f576c0 5364static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5365{
58fa2a55
VD
5366 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5367
0a4465d3
KT
5368 /*
5369 * A memcg must be visible for memcg_expand_shrinker_maps()
5370 * by the time the maps are allocated. So, we allocate maps
5371 * here, when for_each_mem_cgroup() can't skip it.
5372 */
5373 if (memcg_alloc_shrinker_maps(memcg)) {
5374 mem_cgroup_id_remove(memcg);
5375 return -ENOMEM;
5376 }
5377
73f576c0 5378 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5379 refcount_set(&memcg->id.ref, 1);
73f576c0 5380 css_get(css);
2f7dd7a4 5381 return 0;
8cdea7c0
BS
5382}
5383
eb95419b 5384static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5385{
eb95419b 5386 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5387 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5388
5389 /*
5390 * Unregister events and notify userspace.
5391 * Notify userspace about cgroup removing only after rmdir of cgroup
5392 * directory to avoid race between userspace and kernelspace.
5393 */
fba94807
TH
5394 spin_lock(&memcg->event_list_lock);
5395 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5396 list_del_init(&event->list);
5397 schedule_work(&event->remove);
5398 }
fba94807 5399 spin_unlock(&memcg->event_list_lock);
ec64f515 5400
bf8d5d52 5401 page_counter_set_min(&memcg->memory, 0);
23067153 5402 page_counter_set_low(&memcg->memory, 0);
63677c74 5403
567e9ab2 5404 memcg_offline_kmem(memcg);
52ebea74 5405 wb_memcg_offline(memcg);
73f576c0 5406
591edfb1
RG
5407 drain_all_stock(memcg);
5408
73f576c0 5409 mem_cgroup_id_put(memcg);
df878fb0
KH
5410}
5411
6df38689
VD
5412static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5413{
5414 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5415
5416 invalidate_reclaim_iterators(memcg);
5417}
5418
eb95419b 5419static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5420{
eb95419b 5421 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5422 int __maybe_unused i;
c268e994 5423
97b27821
TH
5424#ifdef CONFIG_CGROUP_WRITEBACK
5425 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5426 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5427#endif
f7e1cb6e 5428 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5429 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5430
0db15298 5431 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5432 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5433
0b8f73e1
JW
5434 vmpressure_cleanup(&memcg->vmpressure);
5435 cancel_work_sync(&memcg->high_work);
5436 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5437 memcg_free_shrinker_maps(memcg);
d886f4e4 5438 memcg_free_kmem(memcg);
0b8f73e1 5439 mem_cgroup_free(memcg);
8cdea7c0
BS
5440}
5441
1ced953b
TH
5442/**
5443 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5444 * @css: the target css
5445 *
5446 * Reset the states of the mem_cgroup associated with @css. This is
5447 * invoked when the userland requests disabling on the default hierarchy
5448 * but the memcg is pinned through dependency. The memcg should stop
5449 * applying policies and should revert to the vanilla state as it may be
5450 * made visible again.
5451 *
5452 * The current implementation only resets the essential configurations.
5453 * This needs to be expanded to cover all the visible parts.
5454 */
5455static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5456{
5457 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5458
bbec2e15
RG
5459 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5460 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
bbec2e15
RG
5461 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5462 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5463 page_counter_set_min(&memcg->memory, 0);
23067153 5464 page_counter_set_low(&memcg->memory, 0);
d1663a90 5465 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5466 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5467 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5468 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5469}
5470
02491447 5471#ifdef CONFIG_MMU
7dc74be0 5472/* Handlers for move charge at task migration. */
854ffa8d 5473static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5474{
05b84301 5475 int ret;
9476db97 5476
d0164adc
MG
5477 /* Try a single bulk charge without reclaim first, kswapd may wake */
5478 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5479 if (!ret) {
854ffa8d 5480 mc.precharge += count;
854ffa8d
DN
5481 return ret;
5482 }
9476db97 5483
3674534b 5484 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5485 while (count--) {
3674534b 5486 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5487 if (ret)
38c5d72f 5488 return ret;
854ffa8d 5489 mc.precharge++;
9476db97 5490 cond_resched();
854ffa8d 5491 }
9476db97 5492 return 0;
4ffef5fe
DN
5493}
5494
4ffef5fe
DN
5495union mc_target {
5496 struct page *page;
02491447 5497 swp_entry_t ent;
4ffef5fe
DN
5498};
5499
4ffef5fe 5500enum mc_target_type {
8d32ff84 5501 MC_TARGET_NONE = 0,
4ffef5fe 5502 MC_TARGET_PAGE,
02491447 5503 MC_TARGET_SWAP,
c733a828 5504 MC_TARGET_DEVICE,
4ffef5fe
DN
5505};
5506
90254a65
DN
5507static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5508 unsigned long addr, pte_t ptent)
4ffef5fe 5509{
25b2995a 5510 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5511
90254a65
DN
5512 if (!page || !page_mapped(page))
5513 return NULL;
5514 if (PageAnon(page)) {
1dfab5ab 5515 if (!(mc.flags & MOVE_ANON))
90254a65 5516 return NULL;
1dfab5ab
JW
5517 } else {
5518 if (!(mc.flags & MOVE_FILE))
5519 return NULL;
5520 }
90254a65
DN
5521 if (!get_page_unless_zero(page))
5522 return NULL;
5523
5524 return page;
5525}
5526
c733a828 5527#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5528static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5529 pte_t ptent, swp_entry_t *entry)
90254a65 5530{
90254a65
DN
5531 struct page *page = NULL;
5532 swp_entry_t ent = pte_to_swp_entry(ptent);
5533
9a137153 5534 if (!(mc.flags & MOVE_ANON))
90254a65 5535 return NULL;
c733a828
JG
5536
5537 /*
5538 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5539 * a device and because they are not accessible by CPU they are store
5540 * as special swap entry in the CPU page table.
5541 */
5542 if (is_device_private_entry(ent)) {
5543 page = device_private_entry_to_page(ent);
5544 /*
5545 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5546 * a refcount of 1 when free (unlike normal page)
5547 */
5548 if (!page_ref_add_unless(page, 1, 1))
5549 return NULL;
5550 return page;
5551 }
5552
9a137153
RC
5553 if (non_swap_entry(ent))
5554 return NULL;
5555
4b91355e
KH
5556 /*
5557 * Because lookup_swap_cache() updates some statistics counter,
5558 * we call find_get_page() with swapper_space directly.
5559 */
f6ab1f7f 5560 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5561 entry->val = ent.val;
90254a65
DN
5562
5563 return page;
5564}
4b91355e
KH
5565#else
5566static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5567 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5568{
5569 return NULL;
5570}
5571#endif
90254a65 5572
87946a72
DN
5573static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5574 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5575{
87946a72
DN
5576 if (!vma->vm_file) /* anonymous vma */
5577 return NULL;
1dfab5ab 5578 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5579 return NULL;
5580
87946a72 5581 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895 5582 /* shmem/tmpfs may report page out on swap: account for that too. */
f5df8635
MWO
5583 return find_get_incore_page(vma->vm_file->f_mapping,
5584 linear_page_index(vma, addr));
87946a72
DN
5585}
5586
b1b0deab
CG
5587/**
5588 * mem_cgroup_move_account - move account of the page
5589 * @page: the page
25843c2b 5590 * @compound: charge the page as compound or small page
b1b0deab
CG
5591 * @from: mem_cgroup which the page is moved from.
5592 * @to: mem_cgroup which the page is moved to. @from != @to.
5593 *
3ac808fd 5594 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5595 *
5596 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5597 * from old cgroup.
5598 */
5599static int mem_cgroup_move_account(struct page *page,
f627c2f5 5600 bool compound,
b1b0deab
CG
5601 struct mem_cgroup *from,
5602 struct mem_cgroup *to)
5603{
ae8af438
KK
5604 struct lruvec *from_vec, *to_vec;
5605 struct pglist_data *pgdat;
6c357848 5606 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
b1b0deab
CG
5607 int ret;
5608
5609 VM_BUG_ON(from == to);
5610 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5611 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5612
5613 /*
6a93ca8f 5614 * Prevent mem_cgroup_migrate() from looking at
bcfe06bf 5615 * page's memory cgroup of its source page while we change it.
b1b0deab 5616 */
f627c2f5 5617 ret = -EBUSY;
b1b0deab
CG
5618 if (!trylock_page(page))
5619 goto out;
5620
5621 ret = -EINVAL;
bcfe06bf 5622 if (page_memcg(page) != from)
b1b0deab
CG
5623 goto out_unlock;
5624
ae8af438 5625 pgdat = page_pgdat(page);
867e5e1d
JW
5626 from_vec = mem_cgroup_lruvec(from, pgdat);
5627 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5628
abb242f5 5629 lock_page_memcg(page);
b1b0deab 5630
be5d0a74
JW
5631 if (PageAnon(page)) {
5632 if (page_mapped(page)) {
5633 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5634 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982 5635 if (PageTransHuge(page)) {
ec6b4faf
MS
5636 __dec_lruvec_state(from_vec, NR_ANON_THPS);
5637 __inc_lruvec_state(to_vec, NR_ANON_THPS);
468c3982
JW
5638 }
5639
be5d0a74
JW
5640 }
5641 } else {
0d1c2072
JW
5642 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5643 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5644
5645 if (PageSwapBacked(page)) {
5646 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5647 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5648 }
5649
49e50d27
JW
5650 if (page_mapped(page)) {
5651 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5652 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5653 }
b1b0deab 5654
49e50d27
JW
5655 if (PageDirty(page)) {
5656 struct address_space *mapping = page_mapping(page);
c4843a75 5657
f56753ac 5658 if (mapping_can_writeback(mapping)) {
49e50d27
JW
5659 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5660 -nr_pages);
5661 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5662 nr_pages);
5663 }
c4843a75
GT
5664 }
5665 }
5666
b1b0deab 5667 if (PageWriteback(page)) {
ae8af438
KK
5668 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5669 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5670 }
5671
5672 /*
abb242f5
JW
5673 * All state has been migrated, let's switch to the new memcg.
5674 *
bcfe06bf 5675 * It is safe to change page's memcg here because the page
abb242f5
JW
5676 * is referenced, charged, isolated, and locked: we can't race
5677 * with (un)charging, migration, LRU putback, or anything else
bcfe06bf 5678 * that would rely on a stable page's memory cgroup.
abb242f5
JW
5679 *
5680 * Note that lock_page_memcg is a memcg lock, not a page lock,
bcfe06bf 5681 * to save space. As soon as we switch page's memory cgroup to a
abb242f5
JW
5682 * new memcg that isn't locked, the above state can change
5683 * concurrently again. Make sure we're truly done with it.
b1b0deab 5684 */
abb242f5 5685 smp_mb();
b1b0deab 5686
1a3e1f40
JW
5687 css_get(&to->css);
5688 css_put(&from->css);
5689
bcfe06bf 5690 page->memcg_data = (unsigned long)to;
87eaceb3 5691
abb242f5 5692 __unlock_page_memcg(from);
b1b0deab
CG
5693
5694 ret = 0;
5695
5696 local_irq_disable();
3fba69a5 5697 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5698 memcg_check_events(to, page);
3fba69a5 5699 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5700 memcg_check_events(from, page);
5701 local_irq_enable();
5702out_unlock:
5703 unlock_page(page);
5704out:
5705 return ret;
5706}
5707
7cf7806c
LR
5708/**
5709 * get_mctgt_type - get target type of moving charge
5710 * @vma: the vma the pte to be checked belongs
5711 * @addr: the address corresponding to the pte to be checked
5712 * @ptent: the pte to be checked
5713 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5714 *
5715 * Returns
5716 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5717 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5718 * move charge. if @target is not NULL, the page is stored in target->page
5719 * with extra refcnt got(Callers should handle it).
5720 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5721 * target for charge migration. if @target is not NULL, the entry is stored
5722 * in target->ent.
25b2995a
CH
5723 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5724 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5725 * For now we such page is charge like a regular page would be as for all
5726 * intent and purposes it is just special memory taking the place of a
5727 * regular page.
c733a828
JG
5728 *
5729 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5730 *
5731 * Called with pte lock held.
5732 */
5733
8d32ff84 5734static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5735 unsigned long addr, pte_t ptent, union mc_target *target)
5736{
5737 struct page *page = NULL;
8d32ff84 5738 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5739 swp_entry_t ent = { .val = 0 };
5740
5741 if (pte_present(ptent))
5742 page = mc_handle_present_pte(vma, addr, ptent);
5743 else if (is_swap_pte(ptent))
48406ef8 5744 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5745 else if (pte_none(ptent))
87946a72 5746 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5747
5748 if (!page && !ent.val)
8d32ff84 5749 return ret;
02491447 5750 if (page) {
02491447 5751 /*
0a31bc97 5752 * Do only loose check w/o serialization.
1306a85a 5753 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5754 * not under LRU exclusion.
02491447 5755 */
bcfe06bf 5756 if (page_memcg(page) == mc.from) {
02491447 5757 ret = MC_TARGET_PAGE;
25b2995a 5758 if (is_device_private_page(page))
c733a828 5759 ret = MC_TARGET_DEVICE;
02491447
DN
5760 if (target)
5761 target->page = page;
5762 }
5763 if (!ret || !target)
5764 put_page(page);
5765 }
3e14a57b
HY
5766 /*
5767 * There is a swap entry and a page doesn't exist or isn't charged.
5768 * But we cannot move a tail-page in a THP.
5769 */
5770 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5771 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5772 ret = MC_TARGET_SWAP;
5773 if (target)
5774 target->ent = ent;
4ffef5fe 5775 }
4ffef5fe
DN
5776 return ret;
5777}
5778
12724850
NH
5779#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5780/*
d6810d73
HY
5781 * We don't consider PMD mapped swapping or file mapped pages because THP does
5782 * not support them for now.
12724850
NH
5783 * Caller should make sure that pmd_trans_huge(pmd) is true.
5784 */
5785static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5786 unsigned long addr, pmd_t pmd, union mc_target *target)
5787{
5788 struct page *page = NULL;
12724850
NH
5789 enum mc_target_type ret = MC_TARGET_NONE;
5790
84c3fc4e
ZY
5791 if (unlikely(is_swap_pmd(pmd))) {
5792 VM_BUG_ON(thp_migration_supported() &&
5793 !is_pmd_migration_entry(pmd));
5794 return ret;
5795 }
12724850 5796 page = pmd_page(pmd);
309381fe 5797 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5798 if (!(mc.flags & MOVE_ANON))
12724850 5799 return ret;
bcfe06bf 5800 if (page_memcg(page) == mc.from) {
12724850
NH
5801 ret = MC_TARGET_PAGE;
5802 if (target) {
5803 get_page(page);
5804 target->page = page;
5805 }
5806 }
5807 return ret;
5808}
5809#else
5810static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5811 unsigned long addr, pmd_t pmd, union mc_target *target)
5812{
5813 return MC_TARGET_NONE;
5814}
5815#endif
5816
4ffef5fe
DN
5817static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5818 unsigned long addr, unsigned long end,
5819 struct mm_walk *walk)
5820{
26bcd64a 5821 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5822 pte_t *pte;
5823 spinlock_t *ptl;
5824
b6ec57f4
KS
5825 ptl = pmd_trans_huge_lock(pmd, vma);
5826 if (ptl) {
c733a828
JG
5827 /*
5828 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5829 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5830 * this might change.
c733a828 5831 */
12724850
NH
5832 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5833 mc.precharge += HPAGE_PMD_NR;
bf929152 5834 spin_unlock(ptl);
1a5a9906 5835 return 0;
12724850 5836 }
03319327 5837
45f83cef
AA
5838 if (pmd_trans_unstable(pmd))
5839 return 0;
4ffef5fe
DN
5840 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5841 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5842 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5843 mc.precharge++; /* increment precharge temporarily */
5844 pte_unmap_unlock(pte - 1, ptl);
5845 cond_resched();
5846
7dc74be0
DN
5847 return 0;
5848}
5849
7b86ac33
CH
5850static const struct mm_walk_ops precharge_walk_ops = {
5851 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5852};
5853
4ffef5fe
DN
5854static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5855{
5856 unsigned long precharge;
4ffef5fe 5857
d8ed45c5 5858 mmap_read_lock(mm);
7b86ac33 5859 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5860 mmap_read_unlock(mm);
4ffef5fe
DN
5861
5862 precharge = mc.precharge;
5863 mc.precharge = 0;
5864
5865 return precharge;
5866}
5867
4ffef5fe
DN
5868static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5869{
dfe076b0
DN
5870 unsigned long precharge = mem_cgroup_count_precharge(mm);
5871
5872 VM_BUG_ON(mc.moving_task);
5873 mc.moving_task = current;
5874 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5875}
5876
dfe076b0
DN
5877/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5878static void __mem_cgroup_clear_mc(void)
4ffef5fe 5879{
2bd9bb20
KH
5880 struct mem_cgroup *from = mc.from;
5881 struct mem_cgroup *to = mc.to;
5882
4ffef5fe 5883 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5884 if (mc.precharge) {
00501b53 5885 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5886 mc.precharge = 0;
5887 }
5888 /*
5889 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5890 * we must uncharge here.
5891 */
5892 if (mc.moved_charge) {
00501b53 5893 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5894 mc.moved_charge = 0;
4ffef5fe 5895 }
483c30b5
DN
5896 /* we must fixup refcnts and charges */
5897 if (mc.moved_swap) {
483c30b5 5898 /* uncharge swap account from the old cgroup */
ce00a967 5899 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5900 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5901
615d66c3
VD
5902 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5903
05b84301 5904 /*
3e32cb2e
JW
5905 * we charged both to->memory and to->memsw, so we
5906 * should uncharge to->memory.
05b84301 5907 */
ce00a967 5908 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5909 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5910
483c30b5
DN
5911 mc.moved_swap = 0;
5912 }
dfe076b0
DN
5913 memcg_oom_recover(from);
5914 memcg_oom_recover(to);
5915 wake_up_all(&mc.waitq);
5916}
5917
5918static void mem_cgroup_clear_mc(void)
5919{
264a0ae1
TH
5920 struct mm_struct *mm = mc.mm;
5921
dfe076b0
DN
5922 /*
5923 * we must clear moving_task before waking up waiters at the end of
5924 * task migration.
5925 */
5926 mc.moving_task = NULL;
5927 __mem_cgroup_clear_mc();
2bd9bb20 5928 spin_lock(&mc.lock);
4ffef5fe
DN
5929 mc.from = NULL;
5930 mc.to = NULL;
264a0ae1 5931 mc.mm = NULL;
2bd9bb20 5932 spin_unlock(&mc.lock);
264a0ae1
TH
5933
5934 mmput(mm);
4ffef5fe
DN
5935}
5936
1f7dd3e5 5937static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5938{
1f7dd3e5 5939 struct cgroup_subsys_state *css;
eed67d75 5940 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5941 struct mem_cgroup *from;
4530eddb 5942 struct task_struct *leader, *p;
9f2115f9 5943 struct mm_struct *mm;
1dfab5ab 5944 unsigned long move_flags;
9f2115f9 5945 int ret = 0;
7dc74be0 5946
1f7dd3e5
TH
5947 /* charge immigration isn't supported on the default hierarchy */
5948 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5949 return 0;
5950
4530eddb
TH
5951 /*
5952 * Multi-process migrations only happen on the default hierarchy
5953 * where charge immigration is not used. Perform charge
5954 * immigration if @tset contains a leader and whine if there are
5955 * multiple.
5956 */
5957 p = NULL;
1f7dd3e5 5958 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5959 WARN_ON_ONCE(p);
5960 p = leader;
1f7dd3e5 5961 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5962 }
5963 if (!p)
5964 return 0;
5965
1f7dd3e5
TH
5966 /*
5967 * We are now commited to this value whatever it is. Changes in this
5968 * tunable will only affect upcoming migrations, not the current one.
5969 * So we need to save it, and keep it going.
5970 */
5971 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5972 if (!move_flags)
5973 return 0;
5974
9f2115f9
TH
5975 from = mem_cgroup_from_task(p);
5976
5977 VM_BUG_ON(from == memcg);
5978
5979 mm = get_task_mm(p);
5980 if (!mm)
5981 return 0;
5982 /* We move charges only when we move a owner of the mm */
5983 if (mm->owner == p) {
5984 VM_BUG_ON(mc.from);
5985 VM_BUG_ON(mc.to);
5986 VM_BUG_ON(mc.precharge);
5987 VM_BUG_ON(mc.moved_charge);
5988 VM_BUG_ON(mc.moved_swap);
5989
5990 spin_lock(&mc.lock);
264a0ae1 5991 mc.mm = mm;
9f2115f9
TH
5992 mc.from = from;
5993 mc.to = memcg;
5994 mc.flags = move_flags;
5995 spin_unlock(&mc.lock);
5996 /* We set mc.moving_task later */
5997
5998 ret = mem_cgroup_precharge_mc(mm);
5999 if (ret)
6000 mem_cgroup_clear_mc();
264a0ae1
TH
6001 } else {
6002 mmput(mm);
7dc74be0
DN
6003 }
6004 return ret;
6005}
6006
1f7dd3e5 6007static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 6008{
4e2f245d
JW
6009 if (mc.to)
6010 mem_cgroup_clear_mc();
7dc74be0
DN
6011}
6012
4ffef5fe
DN
6013static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6014 unsigned long addr, unsigned long end,
6015 struct mm_walk *walk)
7dc74be0 6016{
4ffef5fe 6017 int ret = 0;
26bcd64a 6018 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
6019 pte_t *pte;
6020 spinlock_t *ptl;
12724850
NH
6021 enum mc_target_type target_type;
6022 union mc_target target;
6023 struct page *page;
4ffef5fe 6024
b6ec57f4
KS
6025 ptl = pmd_trans_huge_lock(pmd, vma);
6026 if (ptl) {
62ade86a 6027 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6028 spin_unlock(ptl);
12724850
NH
6029 return 0;
6030 }
6031 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6032 if (target_type == MC_TARGET_PAGE) {
6033 page = target.page;
6034 if (!isolate_lru_page(page)) {
f627c2f5 6035 if (!mem_cgroup_move_account(page, true,
1306a85a 6036 mc.from, mc.to)) {
12724850
NH
6037 mc.precharge -= HPAGE_PMD_NR;
6038 mc.moved_charge += HPAGE_PMD_NR;
6039 }
6040 putback_lru_page(page);
6041 }
6042 put_page(page);
c733a828
JG
6043 } else if (target_type == MC_TARGET_DEVICE) {
6044 page = target.page;
6045 if (!mem_cgroup_move_account(page, true,
6046 mc.from, mc.to)) {
6047 mc.precharge -= HPAGE_PMD_NR;
6048 mc.moved_charge += HPAGE_PMD_NR;
6049 }
6050 put_page(page);
12724850 6051 }
bf929152 6052 spin_unlock(ptl);
1a5a9906 6053 return 0;
12724850
NH
6054 }
6055
45f83cef
AA
6056 if (pmd_trans_unstable(pmd))
6057 return 0;
4ffef5fe
DN
6058retry:
6059 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6060 for (; addr != end; addr += PAGE_SIZE) {
6061 pte_t ptent = *(pte++);
c733a828 6062 bool device = false;
02491447 6063 swp_entry_t ent;
4ffef5fe
DN
6064
6065 if (!mc.precharge)
6066 break;
6067
8d32ff84 6068 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
6069 case MC_TARGET_DEVICE:
6070 device = true;
e4a9bc58 6071 fallthrough;
4ffef5fe
DN
6072 case MC_TARGET_PAGE:
6073 page = target.page;
53f9263b
KS
6074 /*
6075 * We can have a part of the split pmd here. Moving it
6076 * can be done but it would be too convoluted so simply
6077 * ignore such a partial THP and keep it in original
6078 * memcg. There should be somebody mapping the head.
6079 */
6080 if (PageTransCompound(page))
6081 goto put;
c733a828 6082 if (!device && isolate_lru_page(page))
4ffef5fe 6083 goto put;
f627c2f5
KS
6084 if (!mem_cgroup_move_account(page, false,
6085 mc.from, mc.to)) {
4ffef5fe 6086 mc.precharge--;
854ffa8d
DN
6087 /* we uncharge from mc.from later. */
6088 mc.moved_charge++;
4ffef5fe 6089 }
c733a828
JG
6090 if (!device)
6091 putback_lru_page(page);
8d32ff84 6092put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6093 put_page(page);
6094 break;
02491447
DN
6095 case MC_TARGET_SWAP:
6096 ent = target.ent;
e91cbb42 6097 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6098 mc.precharge--;
8d22a935
HD
6099 mem_cgroup_id_get_many(mc.to, 1);
6100 /* we fixup other refcnts and charges later. */
483c30b5
DN
6101 mc.moved_swap++;
6102 }
02491447 6103 break;
4ffef5fe
DN
6104 default:
6105 break;
6106 }
6107 }
6108 pte_unmap_unlock(pte - 1, ptl);
6109 cond_resched();
6110
6111 if (addr != end) {
6112 /*
6113 * We have consumed all precharges we got in can_attach().
6114 * We try charge one by one, but don't do any additional
6115 * charges to mc.to if we have failed in charge once in attach()
6116 * phase.
6117 */
854ffa8d 6118 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6119 if (!ret)
6120 goto retry;
6121 }
6122
6123 return ret;
6124}
6125
7b86ac33
CH
6126static const struct mm_walk_ops charge_walk_ops = {
6127 .pmd_entry = mem_cgroup_move_charge_pte_range,
6128};
6129
264a0ae1 6130static void mem_cgroup_move_charge(void)
4ffef5fe 6131{
4ffef5fe 6132 lru_add_drain_all();
312722cb 6133 /*
81f8c3a4
JW
6134 * Signal lock_page_memcg() to take the memcg's move_lock
6135 * while we're moving its pages to another memcg. Then wait
6136 * for already started RCU-only updates to finish.
312722cb
JW
6137 */
6138 atomic_inc(&mc.from->moving_account);
6139 synchronize_rcu();
dfe076b0 6140retry:
d8ed45c5 6141 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6142 /*
c1e8d7c6 6143 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6144 * waitq. So we cancel all extra charges, wake up all waiters,
6145 * and retry. Because we cancel precharges, we might not be able
6146 * to move enough charges, but moving charge is a best-effort
6147 * feature anyway, so it wouldn't be a big problem.
6148 */
6149 __mem_cgroup_clear_mc();
6150 cond_resched();
6151 goto retry;
6152 }
26bcd64a
NH
6153 /*
6154 * When we have consumed all precharges and failed in doing
6155 * additional charge, the page walk just aborts.
6156 */
7b86ac33
CH
6157 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6158 NULL);
0247f3f4 6159
d8ed45c5 6160 mmap_read_unlock(mc.mm);
312722cb 6161 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6162}
6163
264a0ae1 6164static void mem_cgroup_move_task(void)
67e465a7 6165{
264a0ae1
TH
6166 if (mc.to) {
6167 mem_cgroup_move_charge();
a433658c 6168 mem_cgroup_clear_mc();
264a0ae1 6169 }
67e465a7 6170}
5cfb80a7 6171#else /* !CONFIG_MMU */
1f7dd3e5 6172static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6173{
6174 return 0;
6175}
1f7dd3e5 6176static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6177{
6178}
264a0ae1 6179static void mem_cgroup_move_task(void)
5cfb80a7
DN
6180{
6181}
6182#endif
67e465a7 6183
677dc973
CD
6184static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6185{
6186 if (value == PAGE_COUNTER_MAX)
6187 seq_puts(m, "max\n");
6188 else
6189 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6190
6191 return 0;
6192}
6193
241994ed
JW
6194static u64 memory_current_read(struct cgroup_subsys_state *css,
6195 struct cftype *cft)
6196{
f5fc3c5d
JW
6197 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6198
6199 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6200}
6201
bf8d5d52
RG
6202static int memory_min_show(struct seq_file *m, void *v)
6203{
677dc973
CD
6204 return seq_puts_memcg_tunable(m,
6205 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6206}
6207
6208static ssize_t memory_min_write(struct kernfs_open_file *of,
6209 char *buf, size_t nbytes, loff_t off)
6210{
6211 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6212 unsigned long min;
6213 int err;
6214
6215 buf = strstrip(buf);
6216 err = page_counter_memparse(buf, "max", &min);
6217 if (err)
6218 return err;
6219
6220 page_counter_set_min(&memcg->memory, min);
6221
6222 return nbytes;
6223}
6224
241994ed
JW
6225static int memory_low_show(struct seq_file *m, void *v)
6226{
677dc973
CD
6227 return seq_puts_memcg_tunable(m,
6228 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6229}
6230
6231static ssize_t memory_low_write(struct kernfs_open_file *of,
6232 char *buf, size_t nbytes, loff_t off)
6233{
6234 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6235 unsigned long low;
6236 int err;
6237
6238 buf = strstrip(buf);
d2973697 6239 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6240 if (err)
6241 return err;
6242
23067153 6243 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6244
6245 return nbytes;
6246}
6247
6248static int memory_high_show(struct seq_file *m, void *v)
6249{
d1663a90
JK
6250 return seq_puts_memcg_tunable(m,
6251 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6252}
6253
6254static ssize_t memory_high_write(struct kernfs_open_file *of,
6255 char *buf, size_t nbytes, loff_t off)
6256{
6257 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6258 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
8c8c383c 6259 bool drained = false;
241994ed
JW
6260 unsigned long high;
6261 int err;
6262
6263 buf = strstrip(buf);
d2973697 6264 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6265 if (err)
6266 return err;
6267
e82553c1
JW
6268 page_counter_set_high(&memcg->memory, high);
6269
8c8c383c
JW
6270 for (;;) {
6271 unsigned long nr_pages = page_counter_read(&memcg->memory);
6272 unsigned long reclaimed;
6273
6274 if (nr_pages <= high)
6275 break;
6276
6277 if (signal_pending(current))
6278 break;
6279
6280 if (!drained) {
6281 drain_all_stock(memcg);
6282 drained = true;
6283 continue;
6284 }
6285
6286 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6287 GFP_KERNEL, true);
6288
6289 if (!reclaimed && !nr_retries--)
6290 break;
6291 }
588083bb 6292
19ce33ac 6293 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6294 return nbytes;
6295}
6296
6297static int memory_max_show(struct seq_file *m, void *v)
6298{
677dc973
CD
6299 return seq_puts_memcg_tunable(m,
6300 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6301}
6302
6303static ssize_t memory_max_write(struct kernfs_open_file *of,
6304 char *buf, size_t nbytes, loff_t off)
6305{
6306 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
d977aa93 6307 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
b6e6edcf 6308 bool drained = false;
241994ed
JW
6309 unsigned long max;
6310 int err;
6311
6312 buf = strstrip(buf);
d2973697 6313 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6314 if (err)
6315 return err;
6316
bbec2e15 6317 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6318
6319 for (;;) {
6320 unsigned long nr_pages = page_counter_read(&memcg->memory);
6321
6322 if (nr_pages <= max)
6323 break;
6324
7249c9f0 6325 if (signal_pending(current))
b6e6edcf 6326 break;
b6e6edcf
JW
6327
6328 if (!drained) {
6329 drain_all_stock(memcg);
6330 drained = true;
6331 continue;
6332 }
6333
6334 if (nr_reclaims) {
6335 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6336 GFP_KERNEL, true))
6337 nr_reclaims--;
6338 continue;
6339 }
6340
e27be240 6341 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6342 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6343 break;
6344 }
241994ed 6345
2529bb3a 6346 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6347 return nbytes;
6348}
6349
1e577f97
SB
6350static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6351{
6352 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6353 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6354 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6355 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6356 seq_printf(m, "oom_kill %lu\n",
6357 atomic_long_read(&events[MEMCG_OOM_KILL]));
6358}
6359
241994ed
JW
6360static int memory_events_show(struct seq_file *m, void *v)
6361{
aa9694bb 6362 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6363
1e577f97
SB
6364 __memory_events_show(m, memcg->memory_events);
6365 return 0;
6366}
6367
6368static int memory_events_local_show(struct seq_file *m, void *v)
6369{
6370 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6371
1e577f97 6372 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6373 return 0;
6374}
6375
587d9f72
JW
6376static int memory_stat_show(struct seq_file *m, void *v)
6377{
aa9694bb 6378 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6379 char *buf;
1ff9e6e1 6380
c8713d0b
JW
6381 buf = memory_stat_format(memcg);
6382 if (!buf)
6383 return -ENOMEM;
6384 seq_puts(m, buf);
6385 kfree(buf);
587d9f72
JW
6386 return 0;
6387}
6388
5f9a4f4a
MS
6389#ifdef CONFIG_NUMA
6390static int memory_numa_stat_show(struct seq_file *m, void *v)
6391{
6392 int i;
6393 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6394
6395 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6396 int nid;
6397
6398 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6399 continue;
6400
6401 seq_printf(m, "%s", memory_stats[i].name);
6402 for_each_node_state(nid, N_MEMORY) {
6403 u64 size;
6404 struct lruvec *lruvec;
6405
6406 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6407 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6408 size *= memory_stats[i].ratio;
6409 seq_printf(m, " N%d=%llu", nid, size);
6410 }
6411 seq_putc(m, '\n');
6412 }
6413
6414 return 0;
6415}
6416#endif
6417
3d8b38eb
RG
6418static int memory_oom_group_show(struct seq_file *m, void *v)
6419{
aa9694bb 6420 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6421
6422 seq_printf(m, "%d\n", memcg->oom_group);
6423
6424 return 0;
6425}
6426
6427static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6428 char *buf, size_t nbytes, loff_t off)
6429{
6430 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6431 int ret, oom_group;
6432
6433 buf = strstrip(buf);
6434 if (!buf)
6435 return -EINVAL;
6436
6437 ret = kstrtoint(buf, 0, &oom_group);
6438 if (ret)
6439 return ret;
6440
6441 if (oom_group != 0 && oom_group != 1)
6442 return -EINVAL;
6443
6444 memcg->oom_group = oom_group;
6445
6446 return nbytes;
6447}
6448
241994ed
JW
6449static struct cftype memory_files[] = {
6450 {
6451 .name = "current",
f5fc3c5d 6452 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6453 .read_u64 = memory_current_read,
6454 },
bf8d5d52
RG
6455 {
6456 .name = "min",
6457 .flags = CFTYPE_NOT_ON_ROOT,
6458 .seq_show = memory_min_show,
6459 .write = memory_min_write,
6460 },
241994ed
JW
6461 {
6462 .name = "low",
6463 .flags = CFTYPE_NOT_ON_ROOT,
6464 .seq_show = memory_low_show,
6465 .write = memory_low_write,
6466 },
6467 {
6468 .name = "high",
6469 .flags = CFTYPE_NOT_ON_ROOT,
6470 .seq_show = memory_high_show,
6471 .write = memory_high_write,
6472 },
6473 {
6474 .name = "max",
6475 .flags = CFTYPE_NOT_ON_ROOT,
6476 .seq_show = memory_max_show,
6477 .write = memory_max_write,
6478 },
6479 {
6480 .name = "events",
6481 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6482 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6483 .seq_show = memory_events_show,
6484 },
1e577f97
SB
6485 {
6486 .name = "events.local",
6487 .flags = CFTYPE_NOT_ON_ROOT,
6488 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6489 .seq_show = memory_events_local_show,
6490 },
587d9f72
JW
6491 {
6492 .name = "stat",
587d9f72
JW
6493 .seq_show = memory_stat_show,
6494 },
5f9a4f4a
MS
6495#ifdef CONFIG_NUMA
6496 {
6497 .name = "numa_stat",
6498 .seq_show = memory_numa_stat_show,
6499 },
6500#endif
3d8b38eb
RG
6501 {
6502 .name = "oom.group",
6503 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6504 .seq_show = memory_oom_group_show,
6505 .write = memory_oom_group_write,
6506 },
241994ed
JW
6507 { } /* terminate */
6508};
6509
073219e9 6510struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6511 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6512 .css_online = mem_cgroup_css_online,
92fb9748 6513 .css_offline = mem_cgroup_css_offline,
6df38689 6514 .css_released = mem_cgroup_css_released,
92fb9748 6515 .css_free = mem_cgroup_css_free,
1ced953b 6516 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6517 .can_attach = mem_cgroup_can_attach,
6518 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6519 .post_attach = mem_cgroup_move_task,
241994ed
JW
6520 .dfl_cftypes = memory_files,
6521 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6522 .early_init = 0,
8cdea7c0 6523};
c077719b 6524
bc50bcc6
JW
6525/*
6526 * This function calculates an individual cgroup's effective
6527 * protection which is derived from its own memory.min/low, its
6528 * parent's and siblings' settings, as well as the actual memory
6529 * distribution in the tree.
6530 *
6531 * The following rules apply to the effective protection values:
6532 *
6533 * 1. At the first level of reclaim, effective protection is equal to
6534 * the declared protection in memory.min and memory.low.
6535 *
6536 * 2. To enable safe delegation of the protection configuration, at
6537 * subsequent levels the effective protection is capped to the
6538 * parent's effective protection.
6539 *
6540 * 3. To make complex and dynamic subtrees easier to configure, the
6541 * user is allowed to overcommit the declared protection at a given
6542 * level. If that is the case, the parent's effective protection is
6543 * distributed to the children in proportion to how much protection
6544 * they have declared and how much of it they are utilizing.
6545 *
6546 * This makes distribution proportional, but also work-conserving:
6547 * if one cgroup claims much more protection than it uses memory,
6548 * the unused remainder is available to its siblings.
6549 *
6550 * 4. Conversely, when the declared protection is undercommitted at a
6551 * given level, the distribution of the larger parental protection
6552 * budget is NOT proportional. A cgroup's protection from a sibling
6553 * is capped to its own memory.min/low setting.
6554 *
8a931f80
JW
6555 * 5. However, to allow protecting recursive subtrees from each other
6556 * without having to declare each individual cgroup's fixed share
6557 * of the ancestor's claim to protection, any unutilized -
6558 * "floating" - protection from up the tree is distributed in
6559 * proportion to each cgroup's *usage*. This makes the protection
6560 * neutral wrt sibling cgroups and lets them compete freely over
6561 * the shared parental protection budget, but it protects the
6562 * subtree as a whole from neighboring subtrees.
6563 *
6564 * Note that 4. and 5. are not in conflict: 4. is about protecting
6565 * against immediate siblings whereas 5. is about protecting against
6566 * neighboring subtrees.
bc50bcc6
JW
6567 */
6568static unsigned long effective_protection(unsigned long usage,
8a931f80 6569 unsigned long parent_usage,
bc50bcc6
JW
6570 unsigned long setting,
6571 unsigned long parent_effective,
6572 unsigned long siblings_protected)
6573{
6574 unsigned long protected;
8a931f80 6575 unsigned long ep;
bc50bcc6
JW
6576
6577 protected = min(usage, setting);
6578 /*
6579 * If all cgroups at this level combined claim and use more
6580 * protection then what the parent affords them, distribute
6581 * shares in proportion to utilization.
6582 *
6583 * We are using actual utilization rather than the statically
6584 * claimed protection in order to be work-conserving: claimed
6585 * but unused protection is available to siblings that would
6586 * otherwise get a smaller chunk than what they claimed.
6587 */
6588 if (siblings_protected > parent_effective)
6589 return protected * parent_effective / siblings_protected;
6590
6591 /*
6592 * Ok, utilized protection of all children is within what the
6593 * parent affords them, so we know whatever this child claims
6594 * and utilizes is effectively protected.
6595 *
6596 * If there is unprotected usage beyond this value, reclaim
6597 * will apply pressure in proportion to that amount.
6598 *
6599 * If there is unutilized protection, the cgroup will be fully
6600 * shielded from reclaim, but we do return a smaller value for
6601 * protection than what the group could enjoy in theory. This
6602 * is okay. With the overcommit distribution above, effective
6603 * protection is always dependent on how memory is actually
6604 * consumed among the siblings anyway.
6605 */
8a931f80
JW
6606 ep = protected;
6607
6608 /*
6609 * If the children aren't claiming (all of) the protection
6610 * afforded to them by the parent, distribute the remainder in
6611 * proportion to the (unprotected) memory of each cgroup. That
6612 * way, cgroups that aren't explicitly prioritized wrt each
6613 * other compete freely over the allowance, but they are
6614 * collectively protected from neighboring trees.
6615 *
6616 * We're using unprotected memory for the weight so that if
6617 * some cgroups DO claim explicit protection, we don't protect
6618 * the same bytes twice.
cd324edc
JW
6619 *
6620 * Check both usage and parent_usage against the respective
6621 * protected values. One should imply the other, but they
6622 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6623 */
6624 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6625 return ep;
cd324edc
JW
6626 if (parent_effective > siblings_protected &&
6627 parent_usage > siblings_protected &&
6628 usage > protected) {
8a931f80
JW
6629 unsigned long unclaimed;
6630
6631 unclaimed = parent_effective - siblings_protected;
6632 unclaimed *= usage - protected;
6633 unclaimed /= parent_usage - siblings_protected;
6634
6635 ep += unclaimed;
6636 }
6637
6638 return ep;
bc50bcc6
JW
6639}
6640
241994ed 6641/**
bf8d5d52 6642 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6643 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6644 * @memcg: the memory cgroup to check
6645 *
23067153
RG
6646 * WARNING: This function is not stateless! It can only be used as part
6647 * of a top-down tree iteration, not for isolated queries.
241994ed 6648 */
45c7f7e1
CD
6649void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6650 struct mem_cgroup *memcg)
241994ed 6651{
8a931f80 6652 unsigned long usage, parent_usage;
23067153
RG
6653 struct mem_cgroup *parent;
6654
241994ed 6655 if (mem_cgroup_disabled())
45c7f7e1 6656 return;
241994ed 6657
34c81057
SC
6658 if (!root)
6659 root = root_mem_cgroup;
22f7496f
YS
6660
6661 /*
6662 * Effective values of the reclaim targets are ignored so they
6663 * can be stale. Have a look at mem_cgroup_protection for more
6664 * details.
6665 * TODO: calculation should be more robust so that we do not need
6666 * that special casing.
6667 */
34c81057 6668 if (memcg == root)
45c7f7e1 6669 return;
241994ed 6670
23067153 6671 usage = page_counter_read(&memcg->memory);
bf8d5d52 6672 if (!usage)
45c7f7e1 6673 return;
bf8d5d52 6674
bf8d5d52 6675 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6676 /* No parent means a non-hierarchical mode on v1 memcg */
6677 if (!parent)
45c7f7e1 6678 return;
df2a4196 6679
bc50bcc6 6680 if (parent == root) {
c3d53200 6681 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6682 memcg->memory.elow = READ_ONCE(memcg->memory.low);
45c7f7e1 6683 return;
bf8d5d52
RG
6684 }
6685
8a931f80
JW
6686 parent_usage = page_counter_read(&parent->memory);
6687
b3a7822e 6688 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6689 READ_ONCE(memcg->memory.min),
6690 READ_ONCE(parent->memory.emin),
b3a7822e 6691 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6692
b3a7822e 6693 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6694 READ_ONCE(memcg->memory.low),
6695 READ_ONCE(parent->memory.elow),
b3a7822e 6696 atomic_long_read(&parent->memory.children_low_usage)));
241994ed
JW
6697}
6698
00501b53 6699/**
f0e45fb4 6700 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6701 * @page: page to charge
6702 * @mm: mm context of the victim
6703 * @gfp_mask: reclaim mode
00501b53
JW
6704 *
6705 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6706 * pages according to @gfp_mask if necessary.
6707 *
f0e45fb4 6708 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6709 */
d9eb1ea2 6710int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6711{
6c357848 6712 unsigned int nr_pages = thp_nr_pages(page);
00501b53 6713 struct mem_cgroup *memcg = NULL;
00501b53
JW
6714 int ret = 0;
6715
6716 if (mem_cgroup_disabled())
6717 goto out;
6718
6719 if (PageSwapCache(page)) {
2d1c4980
JW
6720 swp_entry_t ent = { .val = page_private(page), };
6721 unsigned short id;
6722
00501b53
JW
6723 /*
6724 * Every swap fault against a single page tries to charge the
6725 * page, bail as early as possible. shmem_unuse() encounters
bcfe06bf
RG
6726 * already charged pages, too. page and memcg binding is
6727 * protected by the page lock, which serializes swap cache
6728 * removal, which in turn serializes uncharging.
00501b53 6729 */
e993d905 6730 VM_BUG_ON_PAGE(!PageLocked(page), page);
bcfe06bf 6731 if (page_memcg(compound_head(page)))
00501b53 6732 goto out;
e993d905 6733
2d1c4980
JW
6734 id = lookup_swap_cgroup_id(ent);
6735 rcu_read_lock();
6736 memcg = mem_cgroup_from_id(id);
6737 if (memcg && !css_tryget_online(&memcg->css))
6738 memcg = NULL;
6739 rcu_read_unlock();
00501b53
JW
6740 }
6741
00501b53
JW
6742 if (!memcg)
6743 memcg = get_mem_cgroup_from_mm(mm);
6744
6745 ret = try_charge(memcg, gfp_mask, nr_pages);
f0e45fb4
JW
6746 if (ret)
6747 goto out_put;
00501b53 6748
1a3e1f40 6749 css_get(&memcg->css);
d9eb1ea2 6750 commit_charge(page, memcg);
6abb5a86 6751
6abb5a86 6752 local_irq_disable();
3fba69a5 6753 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6754 memcg_check_events(memcg, page);
6755 local_irq_enable();
00501b53 6756
22b0c73a
MS
6757 /*
6758 * Cgroup1's unified memory+swap counter has been charged with the
6759 * new swapcache page, finish the transfer by uncharging the swap
6760 * slot. The swap slot would also get uncharged when it dies, but
6761 * it can stick around indefinitely and we'd count the page twice
6762 * the entire time.
6763 *
6764 * Cgroup2 has separate resource counters for memory and swap,
6765 * so this is a non-issue here. Memory and swap charge lifetimes
6766 * correspond 1:1 to page and swap slot lifetimes: we charge the
6767 * page to memory here, and uncharge swap when the slot is freed.
6768 */
6769 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6770 swp_entry_t entry = { .val = page_private(page) };
6771 /*
6772 * The swap entry might not get freed for a long time,
6773 * let's not wait for it. The page already received a
6774 * memory+swap charge, drop the swap entry duplicate.
6775 */
38d8b4e6 6776 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53 6777 }
00501b53 6778
f0e45fb4
JW
6779out_put:
6780 css_put(&memcg->css);
6781out:
6782 return ret;
3fea5a49
JW
6783}
6784
a9d5adee
JG
6785struct uncharge_gather {
6786 struct mem_cgroup *memcg;
9f762dbe 6787 unsigned long nr_pages;
a9d5adee 6788 unsigned long pgpgout;
a9d5adee 6789 unsigned long nr_kmem;
a9d5adee
JG
6790 struct page *dummy_page;
6791};
6792
6793static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6794{
a9d5adee
JG
6795 memset(ug, 0, sizeof(*ug));
6796}
6797
6798static void uncharge_batch(const struct uncharge_gather *ug)
6799{
747db954
JW
6800 unsigned long flags;
6801
a9d5adee 6802 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6803 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6804 if (do_memsw_account())
9f762dbe 6805 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6806 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6807 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6808 memcg_oom_recover(ug->memcg);
ce00a967 6809 }
747db954
JW
6810
6811 local_irq_save(flags);
c9019e9b 6812 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6813 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6814 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6815 local_irq_restore(flags);
f1796544
MH
6816
6817 /* drop reference from uncharge_page */
6818 css_put(&ug->memcg->css);
a9d5adee
JG
6819}
6820
6821static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6822{
9f762dbe
JW
6823 unsigned long nr_pages;
6824
a9d5adee 6825 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee 6826
bcfe06bf 6827 if (!page_memcg(page))
a9d5adee
JG
6828 return;
6829
6830 /*
6831 * Nobody should be changing or seriously looking at
bcfe06bf 6832 * page_memcg(page) at this point, we have fully
a9d5adee
JG
6833 * exclusive access to the page.
6834 */
6835
bcfe06bf 6836 if (ug->memcg != page_memcg(page)) {
a9d5adee
JG
6837 if (ug->memcg) {
6838 uncharge_batch(ug);
6839 uncharge_gather_clear(ug);
6840 }
bcfe06bf 6841 ug->memcg = page_memcg(page);
f1796544
MH
6842
6843 /* pairs with css_put in uncharge_batch */
6844 css_get(&ug->memcg->css);
a9d5adee
JG
6845 }
6846
9f762dbe
JW
6847 nr_pages = compound_nr(page);
6848 ug->nr_pages += nr_pages;
a9d5adee 6849
18b2db3b 6850 if (PageMemcgKmem(page))
9f762dbe 6851 ug->nr_kmem += nr_pages;
18b2db3b
RG
6852 else
6853 ug->pgpgout++;
a9d5adee
JG
6854
6855 ug->dummy_page = page;
bcfe06bf 6856 page->memcg_data = 0;
1a3e1f40 6857 css_put(&ug->memcg->css);
747db954
JW
6858}
6859
6860static void uncharge_list(struct list_head *page_list)
6861{
a9d5adee 6862 struct uncharge_gather ug;
747db954 6863 struct list_head *next;
a9d5adee
JG
6864
6865 uncharge_gather_clear(&ug);
747db954 6866
8b592656
JW
6867 /*
6868 * Note that the list can be a single page->lru; hence the
6869 * do-while loop instead of a simple list_for_each_entry().
6870 */
747db954
JW
6871 next = page_list->next;
6872 do {
a9d5adee
JG
6873 struct page *page;
6874
747db954
JW
6875 page = list_entry(next, struct page, lru);
6876 next = page->lru.next;
6877
a9d5adee 6878 uncharge_page(page, &ug);
747db954
JW
6879 } while (next != page_list);
6880
a9d5adee
JG
6881 if (ug.memcg)
6882 uncharge_batch(&ug);
747db954
JW
6883}
6884
0a31bc97
JW
6885/**
6886 * mem_cgroup_uncharge - uncharge a page
6887 * @page: page to uncharge
6888 *
f0e45fb4 6889 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6890 */
6891void mem_cgroup_uncharge(struct page *page)
6892{
a9d5adee
JG
6893 struct uncharge_gather ug;
6894
0a31bc97
JW
6895 if (mem_cgroup_disabled())
6896 return;
6897
747db954 6898 /* Don't touch page->lru of any random page, pre-check: */
bcfe06bf 6899 if (!page_memcg(page))
0a31bc97
JW
6900 return;
6901
a9d5adee
JG
6902 uncharge_gather_clear(&ug);
6903 uncharge_page(page, &ug);
6904 uncharge_batch(&ug);
747db954 6905}
0a31bc97 6906
747db954
JW
6907/**
6908 * mem_cgroup_uncharge_list - uncharge a list of page
6909 * @page_list: list of pages to uncharge
6910 *
6911 * Uncharge a list of pages previously charged with
f0e45fb4 6912 * mem_cgroup_charge().
747db954
JW
6913 */
6914void mem_cgroup_uncharge_list(struct list_head *page_list)
6915{
6916 if (mem_cgroup_disabled())
6917 return;
0a31bc97 6918
747db954
JW
6919 if (!list_empty(page_list))
6920 uncharge_list(page_list);
0a31bc97
JW
6921}
6922
6923/**
6a93ca8f
JW
6924 * mem_cgroup_migrate - charge a page's replacement
6925 * @oldpage: currently circulating page
6926 * @newpage: replacement page
0a31bc97 6927 *
6a93ca8f
JW
6928 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6929 * be uncharged upon free.
0a31bc97
JW
6930 *
6931 * Both pages must be locked, @newpage->mapping must be set up.
6932 */
6a93ca8f 6933void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6934{
29833315 6935 struct mem_cgroup *memcg;
44b7a8d3 6936 unsigned int nr_pages;
d93c4130 6937 unsigned long flags;
0a31bc97
JW
6938
6939 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6940 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6941 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6942 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6943 newpage);
0a31bc97
JW
6944
6945 if (mem_cgroup_disabled())
6946 return;
6947
6948 /* Page cache replacement: new page already charged? */
bcfe06bf 6949 if (page_memcg(newpage))
0a31bc97
JW
6950 return;
6951
bcfe06bf 6952 memcg = page_memcg(oldpage);
a4055888 6953 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
29833315 6954 if (!memcg)
0a31bc97
JW
6955 return;
6956
44b7a8d3 6957 /* Force-charge the new page. The old one will be freed soon */
6c357848 6958 nr_pages = thp_nr_pages(newpage);
44b7a8d3
JW
6959
6960 page_counter_charge(&memcg->memory, nr_pages);
6961 if (do_memsw_account())
6962 page_counter_charge(&memcg->memsw, nr_pages);
0a31bc97 6963
1a3e1f40 6964 css_get(&memcg->css);
d9eb1ea2 6965 commit_charge(newpage, memcg);
44b7a8d3 6966
d93c4130 6967 local_irq_save(flags);
3fba69a5 6968 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6969 memcg_check_events(memcg, newpage);
d93c4130 6970 local_irq_restore(flags);
0a31bc97
JW
6971}
6972
ef12947c 6973DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6974EXPORT_SYMBOL(memcg_sockets_enabled_key);
6975
2d758073 6976void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6977{
6978 struct mem_cgroup *memcg;
6979
2d758073
JW
6980 if (!mem_cgroup_sockets_enabled)
6981 return;
6982
e876ecc6
SB
6983 /* Do not associate the sock with unrelated interrupted task's memcg. */
6984 if (in_interrupt())
6985 return;
6986
11092087
JW
6987 rcu_read_lock();
6988 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6989 if (memcg == root_mem_cgroup)
6990 goto out;
0db15298 6991 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6992 goto out;
8965aa28 6993 if (css_tryget(&memcg->css))
11092087 6994 sk->sk_memcg = memcg;
f7e1cb6e 6995out:
11092087
JW
6996 rcu_read_unlock();
6997}
11092087 6998
2d758073 6999void mem_cgroup_sk_free(struct sock *sk)
11092087 7000{
2d758073
JW
7001 if (sk->sk_memcg)
7002 css_put(&sk->sk_memcg->css);
11092087
JW
7003}
7004
7005/**
7006 * mem_cgroup_charge_skmem - charge socket memory
7007 * @memcg: memcg to charge
7008 * @nr_pages: number of pages to charge
7009 *
7010 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7011 * @memcg's configured limit, %false if the charge had to be forced.
7012 */
7013bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7014{
f7e1cb6e 7015 gfp_t gfp_mask = GFP_KERNEL;
11092087 7016
f7e1cb6e 7017 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7018 struct page_counter *fail;
f7e1cb6e 7019
0db15298
JW
7020 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7021 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
7022 return true;
7023 }
0db15298
JW
7024 page_counter_charge(&memcg->tcpmem, nr_pages);
7025 memcg->tcpmem_pressure = 1;
f7e1cb6e 7026 return false;
11092087 7027 }
d886f4e4 7028
f7e1cb6e
JW
7029 /* Don't block in the packet receive path */
7030 if (in_softirq())
7031 gfp_mask = GFP_NOWAIT;
7032
c9019e9b 7033 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 7034
f7e1cb6e
JW
7035 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7036 return true;
7037
7038 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
7039 return false;
7040}
7041
7042/**
7043 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
7044 * @memcg: memcg to uncharge
7045 * @nr_pages: number of pages to uncharge
11092087
JW
7046 */
7047void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7048{
f7e1cb6e 7049 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 7050 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
7051 return;
7052 }
d886f4e4 7053
c9019e9b 7054 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 7055
475d0487 7056 refill_stock(memcg, nr_pages);
11092087
JW
7057}
7058
f7e1cb6e
JW
7059static int __init cgroup_memory(char *s)
7060{
7061 char *token;
7062
7063 while ((token = strsep(&s, ",")) != NULL) {
7064 if (!*token)
7065 continue;
7066 if (!strcmp(token, "nosocket"))
7067 cgroup_memory_nosocket = true;
04823c83
VD
7068 if (!strcmp(token, "nokmem"))
7069 cgroup_memory_nokmem = true;
f7e1cb6e
JW
7070 }
7071 return 0;
7072}
7073__setup("cgroup.memory=", cgroup_memory);
11092087 7074
2d11085e 7075/*
1081312f
MH
7076 * subsys_initcall() for memory controller.
7077 *
308167fc
SAS
7078 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7079 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7080 * basically everything that doesn't depend on a specific mem_cgroup structure
7081 * should be initialized from here.
2d11085e
MH
7082 */
7083static int __init mem_cgroup_init(void)
7084{
95a045f6
JW
7085 int cpu, node;
7086
308167fc
SAS
7087 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7088 memcg_hotplug_cpu_dead);
95a045f6
JW
7089
7090 for_each_possible_cpu(cpu)
7091 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7092 drain_local_stock);
7093
7094 for_each_node(node) {
7095 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
7096
7097 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7098 node_online(node) ? node : NUMA_NO_NODE);
7099
ef8f2327 7100 rtpn->rb_root = RB_ROOT;
fa90b2fd 7101 rtpn->rb_rightmost = NULL;
ef8f2327 7102 spin_lock_init(&rtpn->lock);
95a045f6
JW
7103 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7104 }
7105
2d11085e
MH
7106 return 0;
7107}
7108subsys_initcall(mem_cgroup_init);
21afa38e
JW
7109
7110#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7111static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7112{
1c2d479a 7113 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7114 /*
7115 * The root cgroup cannot be destroyed, so it's refcount must
7116 * always be >= 1.
7117 */
7118 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7119 VM_BUG_ON(1);
7120 break;
7121 }
7122 memcg = parent_mem_cgroup(memcg);
7123 if (!memcg)
7124 memcg = root_mem_cgroup;
7125 }
7126 return memcg;
7127}
7128
21afa38e
JW
7129/**
7130 * mem_cgroup_swapout - transfer a memsw charge to swap
7131 * @page: page whose memsw charge to transfer
7132 * @entry: swap entry to move the charge to
7133 *
7134 * Transfer the memsw charge of @page to @entry.
7135 */
7136void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7137{
1f47b61f 7138 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7139 unsigned int nr_entries;
21afa38e
JW
7140 unsigned short oldid;
7141
7142 VM_BUG_ON_PAGE(PageLRU(page), page);
7143 VM_BUG_ON_PAGE(page_count(page), page);
7144
76358ab5
AS
7145 if (mem_cgroup_disabled())
7146 return;
7147
2d1c4980 7148 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7149 return;
7150
bcfe06bf 7151 memcg = page_memcg(page);
21afa38e 7152
a4055888 7153 VM_WARN_ON_ONCE_PAGE(!memcg, page);
21afa38e
JW
7154 if (!memcg)
7155 return;
7156
1f47b61f
VD
7157 /*
7158 * In case the memcg owning these pages has been offlined and doesn't
7159 * have an ID allocated to it anymore, charge the closest online
7160 * ancestor for the swap instead and transfer the memory+swap charge.
7161 */
7162 swap_memcg = mem_cgroup_id_get_online(memcg);
6c357848 7163 nr_entries = thp_nr_pages(page);
d6810d73
HY
7164 /* Get references for the tail pages, too */
7165 if (nr_entries > 1)
7166 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7167 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7168 nr_entries);
21afa38e 7169 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7170 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e 7171
bcfe06bf 7172 page->memcg_data = 0;
21afa38e
JW
7173
7174 if (!mem_cgroup_is_root(memcg))
d6810d73 7175 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7176
2d1c4980 7177 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7178 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7179 page_counter_charge(&swap_memcg->memsw, nr_entries);
7180 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7181 }
7182
ce9ce665
SAS
7183 /*
7184 * Interrupts should be disabled here because the caller holds the
b93b0163 7185 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7186 * important here to have the interrupts disabled because it is the
b93b0163 7187 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7188 */
7189 VM_BUG_ON(!irqs_disabled());
3fba69a5 7190 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7191 memcg_check_events(memcg, page);
73f576c0 7192
1a3e1f40 7193 css_put(&memcg->css);
21afa38e
JW
7194}
7195
38d8b4e6
HY
7196/**
7197 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7198 * @page: page being added to swap
7199 * @entry: swap entry to charge
7200 *
38d8b4e6 7201 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7202 *
7203 * Returns 0 on success, -ENOMEM on failure.
7204 */
7205int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7206{
6c357848 7207 unsigned int nr_pages = thp_nr_pages(page);
37e84351 7208 struct page_counter *counter;
38d8b4e6 7209 struct mem_cgroup *memcg;
37e84351
VD
7210 unsigned short oldid;
7211
76358ab5
AS
7212 if (mem_cgroup_disabled())
7213 return 0;
7214
2d1c4980 7215 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7216 return 0;
7217
bcfe06bf 7218 memcg = page_memcg(page);
37e84351 7219
a4055888 7220 VM_WARN_ON_ONCE_PAGE(!memcg, page);
37e84351
VD
7221 if (!memcg)
7222 return 0;
7223
f3a53a3a
TH
7224 if (!entry.val) {
7225 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7226 return 0;
f3a53a3a 7227 }
bb98f2c5 7228
1f47b61f
VD
7229 memcg = mem_cgroup_id_get_online(memcg);
7230
2d1c4980 7231 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7232 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7233 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7234 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7235 mem_cgroup_id_put(memcg);
37e84351 7236 return -ENOMEM;
1f47b61f 7237 }
37e84351 7238
38d8b4e6
HY
7239 /* Get references for the tail pages, too */
7240 if (nr_pages > 1)
7241 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7242 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7243 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7244 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7245
37e84351
VD
7246 return 0;
7247}
7248
21afa38e 7249/**
38d8b4e6 7250 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7251 * @entry: swap entry to uncharge
38d8b4e6 7252 * @nr_pages: the amount of swap space to uncharge
21afa38e 7253 */
38d8b4e6 7254void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7255{
7256 struct mem_cgroup *memcg;
7257 unsigned short id;
7258
38d8b4e6 7259 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7260 rcu_read_lock();
adbe427b 7261 memcg = mem_cgroup_from_id(id);
21afa38e 7262 if (memcg) {
2d1c4980 7263 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7264 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7265 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7266 else
38d8b4e6 7267 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7268 }
c9019e9b 7269 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7270 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7271 }
7272 rcu_read_unlock();
7273}
7274
d8b38438
VD
7275long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7276{
7277 long nr_swap_pages = get_nr_swap_pages();
7278
eccb52e7 7279 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7280 return nr_swap_pages;
7281 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7282 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7283 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7284 page_counter_read(&memcg->swap));
7285 return nr_swap_pages;
7286}
7287
5ccc5aba
VD
7288bool mem_cgroup_swap_full(struct page *page)
7289{
7290 struct mem_cgroup *memcg;
7291
7292 VM_BUG_ON_PAGE(!PageLocked(page), page);
7293
7294 if (vm_swap_full())
7295 return true;
eccb52e7 7296 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7297 return false;
7298
bcfe06bf 7299 memcg = page_memcg(page);
5ccc5aba
VD
7300 if (!memcg)
7301 return false;
7302
4b82ab4f
JK
7303 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7304 unsigned long usage = page_counter_read(&memcg->swap);
7305
7306 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7307 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7308 return true;
4b82ab4f 7309 }
5ccc5aba
VD
7310
7311 return false;
7312}
7313
eccb52e7 7314static int __init setup_swap_account(char *s)
21afa38e
JW
7315{
7316 if (!strcmp(s, "1"))
5ab92901 7317 cgroup_memory_noswap = false;
21afa38e 7318 else if (!strcmp(s, "0"))
5ab92901 7319 cgroup_memory_noswap = true;
21afa38e
JW
7320 return 1;
7321}
eccb52e7 7322__setup("swapaccount=", setup_swap_account);
21afa38e 7323
37e84351
VD
7324static u64 swap_current_read(struct cgroup_subsys_state *css,
7325 struct cftype *cft)
7326{
7327 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7328
7329 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7330}
7331
4b82ab4f
JK
7332static int swap_high_show(struct seq_file *m, void *v)
7333{
7334 return seq_puts_memcg_tunable(m,
7335 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7336}
7337
7338static ssize_t swap_high_write(struct kernfs_open_file *of,
7339 char *buf, size_t nbytes, loff_t off)
7340{
7341 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7342 unsigned long high;
7343 int err;
7344
7345 buf = strstrip(buf);
7346 err = page_counter_memparse(buf, "max", &high);
7347 if (err)
7348 return err;
7349
7350 page_counter_set_high(&memcg->swap, high);
7351
7352 return nbytes;
7353}
7354
37e84351
VD
7355static int swap_max_show(struct seq_file *m, void *v)
7356{
677dc973
CD
7357 return seq_puts_memcg_tunable(m,
7358 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7359}
7360
7361static ssize_t swap_max_write(struct kernfs_open_file *of,
7362 char *buf, size_t nbytes, loff_t off)
7363{
7364 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7365 unsigned long max;
7366 int err;
7367
7368 buf = strstrip(buf);
7369 err = page_counter_memparse(buf, "max", &max);
7370 if (err)
7371 return err;
7372
be09102b 7373 xchg(&memcg->swap.max, max);
37e84351
VD
7374
7375 return nbytes;
7376}
7377
f3a53a3a
TH
7378static int swap_events_show(struct seq_file *m, void *v)
7379{
aa9694bb 7380 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7381
4b82ab4f
JK
7382 seq_printf(m, "high %lu\n",
7383 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7384 seq_printf(m, "max %lu\n",
7385 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7386 seq_printf(m, "fail %lu\n",
7387 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7388
7389 return 0;
7390}
7391
37e84351
VD
7392static struct cftype swap_files[] = {
7393 {
7394 .name = "swap.current",
7395 .flags = CFTYPE_NOT_ON_ROOT,
7396 .read_u64 = swap_current_read,
7397 },
4b82ab4f
JK
7398 {
7399 .name = "swap.high",
7400 .flags = CFTYPE_NOT_ON_ROOT,
7401 .seq_show = swap_high_show,
7402 .write = swap_high_write,
7403 },
37e84351
VD
7404 {
7405 .name = "swap.max",
7406 .flags = CFTYPE_NOT_ON_ROOT,
7407 .seq_show = swap_max_show,
7408 .write = swap_max_write,
7409 },
f3a53a3a
TH
7410 {
7411 .name = "swap.events",
7412 .flags = CFTYPE_NOT_ON_ROOT,
7413 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7414 .seq_show = swap_events_show,
7415 },
37e84351
VD
7416 { } /* terminate */
7417};
7418
eccb52e7 7419static struct cftype memsw_files[] = {
21afa38e
JW
7420 {
7421 .name = "memsw.usage_in_bytes",
7422 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7423 .read_u64 = mem_cgroup_read_u64,
7424 },
7425 {
7426 .name = "memsw.max_usage_in_bytes",
7427 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7428 .write = mem_cgroup_reset,
7429 .read_u64 = mem_cgroup_read_u64,
7430 },
7431 {
7432 .name = "memsw.limit_in_bytes",
7433 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7434 .write = mem_cgroup_write,
7435 .read_u64 = mem_cgroup_read_u64,
7436 },
7437 {
7438 .name = "memsw.failcnt",
7439 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7440 .write = mem_cgroup_reset,
7441 .read_u64 = mem_cgroup_read_u64,
7442 },
7443 { }, /* terminate */
7444};
7445
82ff165c
BS
7446/*
7447 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7448 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7449 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7450 * boot parameter. This may result in premature OOPS inside
7451 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7452 */
21afa38e
JW
7453static int __init mem_cgroup_swap_init(void)
7454{
2d1c4980
JW
7455 /* No memory control -> no swap control */
7456 if (mem_cgroup_disabled())
7457 cgroup_memory_noswap = true;
7458
7459 if (cgroup_memory_noswap)
eccb52e7
JW
7460 return 0;
7461
7462 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7463 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7464
21afa38e
JW
7465 return 0;
7466}
82ff165c 7467core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7468
7469#endif /* CONFIG_MEMCG_SWAP */