]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
mm: remove rest usage of VM_NONLINEAR and pte_file()
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
5ac8fb31
JW
146struct reclaim_iter {
147 struct mem_cgroup *position;
527a5ec9
JW
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
6d12e2d8
KH
152/*
153 * per-zone information in memory controller.
154 */
6d12e2d8 155struct mem_cgroup_per_zone {
6290df54 156 struct lruvec lruvec;
1eb49272 157 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 158
5ac8fb31 159 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 160
bb4cc1a8 161 struct rb_node tree_node; /* RB tree node */
3e32cb2e 162 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
163 /* the soft limit is exceeded*/
164 bool on_tree;
d79154bb 165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 166 /* use container_of */
6d12e2d8 167};
6d12e2d8
KH
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
bb4cc1a8
AM
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
2e72b634
KS
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
3e32cb2e 195 unsigned long threshold;
2e72b634
KS
196};
197
9490ff27 198/* For threshold */
2e72b634 199struct mem_cgroup_threshold_ary {
748dad36 200 /* An array index points to threshold just below or equal to usage. */
5407a562 201 int current_threshold;
2e72b634
KS
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
2c488db2
KS
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
9490ff27
KH
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
2e72b634 224
79bd9814
TH
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
3bc942f3 228struct mem_cgroup_event {
79bd9814 229 /*
59b6f873 230 * memcg which the event belongs to.
79bd9814 231 */
59b6f873 232 struct mem_cgroup *memcg;
79bd9814
TH
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
fba94807
TH
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
59b6f873 246 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 247 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
59b6f873 253 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 254 struct eventfd_ctx *eventfd);
79bd9814
TH
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
c0ff4b85
R
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 267
8cdea7c0
BS
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
8cdea7c0
BS
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
3e32cb2e
JW
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
59927fb9 288
70ddf637
AV
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
2f7dd7a4
JW
292 /* css_online() has been completed */
293 int initialized;
294
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
79dfdacc
MH
299
300 bool oom_lock;
301 atomic_t under_oom;
3812c8c8 302 atomic_t oom_wakeups;
79dfdacc 303
1f4c025b 304 int swappiness;
3c11ecf4
KH
305 /* OOM-Killer disable */
306 int oom_kill_disable;
a7885eb8 307
2e72b634
KS
308 /* protect arrays of thresholds */
309 struct mutex thresholds_lock;
310
311 /* thresholds for memory usage. RCU-protected */
2c488db2 312 struct mem_cgroup_thresholds thresholds;
907860ed 313
2e72b634 314 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 315 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 316
9490ff27
KH
317 /* For oom notifier event fd */
318 struct list_head oom_notify;
185efc0f 319
7dc74be0
DN
320 /*
321 * Should we move charges of a task when a task is moved into this
322 * mem_cgroup ? And what type of charges should we move ?
323 */
f894ffa8 324 unsigned long move_charge_at_immigrate;
619d094b
KH
325 /*
326 * set > 0 if pages under this cgroup are moving to other cgroup.
327 */
328 atomic_t moving_account;
312734c0
KH
329 /* taken only while moving_account > 0 */
330 spinlock_t move_lock;
d52aa412 331 /*
c62b1a3b 332 * percpu counter.
d52aa412 333 */
3a7951b4 334 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
335 /*
336 * used when a cpu is offlined or other synchronizations
337 * See mem_cgroup_read_stat().
338 */
339 struct mem_cgroup_stat_cpu nocpu_base;
340 spinlock_t pcp_counter_lock;
d1a4c0b3 341
4bd2c1ee 342#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 343 struct cg_proto tcp_mem;
d1a4c0b3 344#endif
2633d7a0 345#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
346 /* analogous to slab_common's slab_caches list, but per-memcg;
347 * protected by memcg_slab_mutex */
2633d7a0 348 struct list_head memcg_slab_caches;
2633d7a0
GC
349 /* Index in the kmem_cache->memcg_params->memcg_caches array */
350 int kmemcg_id;
351#endif
45cf7ebd
GC
352
353 int last_scanned_node;
354#if MAX_NUMNODES > 1
355 nodemask_t scan_nodes;
356 atomic_t numainfo_events;
357 atomic_t numainfo_updating;
358#endif
70ddf637 359
fba94807
TH
360 /* List of events which userspace want to receive */
361 struct list_head event_list;
362 spinlock_t event_list_lock;
363
54f72fe0
JW
364 struct mem_cgroup_per_node *nodeinfo[0];
365 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
366};
367
510fc4e1 368#ifdef CONFIG_MEMCG_KMEM
7de37682
GC
369static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
370{
900a38f0 371 return memcg->kmemcg_id >= 0;
7de37682 372}
510fc4e1
GC
373#endif
374
7dc74be0
DN
375/* Stuffs for move charges at task migration. */
376/*
ee5e8472
GC
377 * Types of charges to be moved. "move_charge_at_immitgrate" and
378 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
379 */
380enum move_type {
4ffef5fe 381 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 382 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
383 NR_MOVE_TYPE,
384};
385
4ffef5fe
DN
386/* "mc" and its members are protected by cgroup_mutex */
387static struct move_charge_struct {
b1dd693e 388 spinlock_t lock; /* for from, to */
4ffef5fe
DN
389 struct mem_cgroup *from;
390 struct mem_cgroup *to;
ee5e8472 391 unsigned long immigrate_flags;
4ffef5fe 392 unsigned long precharge;
854ffa8d 393 unsigned long moved_charge;
483c30b5 394 unsigned long moved_swap;
8033b97c
DN
395 struct task_struct *moving_task; /* a task moving charges */
396 wait_queue_head_t waitq; /* a waitq for other context */
397} mc = {
2bd9bb20 398 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
399 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
400};
4ffef5fe 401
90254a65
DN
402static bool move_anon(void)
403{
ee5e8472 404 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
405}
406
87946a72
DN
407static bool move_file(void)
408{
ee5e8472 409 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
410}
411
4e416953
BS
412/*
413 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
414 * limit reclaim to prevent infinite loops, if they ever occur.
415 */
a0db00fc 416#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 417#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 418
217bc319
KH
419enum charge_type {
420 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 421 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 422 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 423 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
424 NR_CHARGE_TYPE,
425};
426
8c7c6e34 427/* for encoding cft->private value on file */
86ae53e1
GC
428enum res_type {
429 _MEM,
430 _MEMSWAP,
431 _OOM_TYPE,
510fc4e1 432 _KMEM,
86ae53e1
GC
433};
434
a0db00fc
KS
435#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
436#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 437#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
438/* Used for OOM nofiier */
439#define OOM_CONTROL (0)
8c7c6e34 440
0999821b
GC
441/*
442 * The memcg_create_mutex will be held whenever a new cgroup is created.
443 * As a consequence, any change that needs to protect against new child cgroups
444 * appearing has to hold it as well.
445 */
446static DEFINE_MUTEX(memcg_create_mutex);
447
b2145145
WL
448struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
449{
a7c6d554 450 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
451}
452
70ddf637
AV
453/* Some nice accessors for the vmpressure. */
454struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
455{
456 if (!memcg)
457 memcg = root_mem_cgroup;
458 return &memcg->vmpressure;
459}
460
461struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
462{
463 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
464}
465
7ffc0edc
MH
466static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
467{
468 return (memcg == root_mem_cgroup);
469}
470
4219b2da
LZ
471/*
472 * We restrict the id in the range of [1, 65535], so it can fit into
473 * an unsigned short.
474 */
475#define MEM_CGROUP_ID_MAX USHRT_MAX
476
34c00c31
LZ
477static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
478{
15a4c835 479 return memcg->css.id;
34c00c31
LZ
480}
481
482static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
483{
484 struct cgroup_subsys_state *css;
485
7d699ddb 486 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
487 return mem_cgroup_from_css(css);
488}
489
e1aab161 490/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 491#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 492
e1aab161
GC
493void sock_update_memcg(struct sock *sk)
494{
376be5ff 495 if (mem_cgroup_sockets_enabled) {
e1aab161 496 struct mem_cgroup *memcg;
3f134619 497 struct cg_proto *cg_proto;
e1aab161
GC
498
499 BUG_ON(!sk->sk_prot->proto_cgroup);
500
f3f511e1
GC
501 /* Socket cloning can throw us here with sk_cgrp already
502 * filled. It won't however, necessarily happen from
503 * process context. So the test for root memcg given
504 * the current task's memcg won't help us in this case.
505 *
506 * Respecting the original socket's memcg is a better
507 * decision in this case.
508 */
509 if (sk->sk_cgrp) {
510 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 511 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
512 return;
513 }
514
e1aab161
GC
515 rcu_read_lock();
516 memcg = mem_cgroup_from_task(current);
3f134619 517 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 518 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
519 memcg_proto_active(cg_proto) &&
520 css_tryget_online(&memcg->css)) {
3f134619 521 sk->sk_cgrp = cg_proto;
e1aab161
GC
522 }
523 rcu_read_unlock();
524 }
525}
526EXPORT_SYMBOL(sock_update_memcg);
527
528void sock_release_memcg(struct sock *sk)
529{
376be5ff 530 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
531 struct mem_cgroup *memcg;
532 WARN_ON(!sk->sk_cgrp->memcg);
533 memcg = sk->sk_cgrp->memcg;
5347e5ae 534 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
535 }
536}
d1a4c0b3
GC
537
538struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
539{
540 if (!memcg || mem_cgroup_is_root(memcg))
541 return NULL;
542
2e685cad 543 return &memcg->tcp_mem;
d1a4c0b3
GC
544}
545EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 546
3f134619
GC
547static void disarm_sock_keys(struct mem_cgroup *memcg)
548{
2e685cad 549 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
550 return;
551 static_key_slow_dec(&memcg_socket_limit_enabled);
552}
553#else
554static void disarm_sock_keys(struct mem_cgroup *memcg)
555{
556}
557#endif
558
a8964b9b 559#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
560/*
561 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
562 * The main reason for not using cgroup id for this:
563 * this works better in sparse environments, where we have a lot of memcgs,
564 * but only a few kmem-limited. Or also, if we have, for instance, 200
565 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
566 * 200 entry array for that.
55007d84
GC
567 *
568 * The current size of the caches array is stored in
569 * memcg_limited_groups_array_size. It will double each time we have to
570 * increase it.
571 */
572static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
573int memcg_limited_groups_array_size;
574
55007d84
GC
575/*
576 * MIN_SIZE is different than 1, because we would like to avoid going through
577 * the alloc/free process all the time. In a small machine, 4 kmem-limited
578 * cgroups is a reasonable guess. In the future, it could be a parameter or
579 * tunable, but that is strictly not necessary.
580 *
b8627835 581 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
582 * this constant directly from cgroup, but it is understandable that this is
583 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 584 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
585 * increase ours as well if it increases.
586 */
587#define MEMCG_CACHES_MIN_SIZE 4
b8627835 588#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 589
d7f25f8a
GC
590/*
591 * A lot of the calls to the cache allocation functions are expected to be
592 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
593 * conditional to this static branch, we'll have to allow modules that does
594 * kmem_cache_alloc and the such to see this symbol as well
595 */
a8964b9b 596struct static_key memcg_kmem_enabled_key;
d7f25f8a 597EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 598
f3bb3043
VD
599static void memcg_free_cache_id(int id);
600
a8964b9b
GC
601static void disarm_kmem_keys(struct mem_cgroup *memcg)
602{
55007d84 603 if (memcg_kmem_is_active(memcg)) {
a8964b9b 604 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 605 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 606 }
bea207c8
GC
607 /*
608 * This check can't live in kmem destruction function,
609 * since the charges will outlive the cgroup
610 */
3e32cb2e 611 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
612}
613#else
614static void disarm_kmem_keys(struct mem_cgroup *memcg)
615{
616}
617#endif /* CONFIG_MEMCG_KMEM */
618
619static void disarm_static_keys(struct mem_cgroup *memcg)
620{
621 disarm_sock_keys(memcg);
622 disarm_kmem_keys(memcg);
623}
624
f64c3f54 625static struct mem_cgroup_per_zone *
e231875b 626mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 627{
e231875b
JZ
628 int nid = zone_to_nid(zone);
629 int zid = zone_idx(zone);
630
54f72fe0 631 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
632}
633
c0ff4b85 634struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 635{
c0ff4b85 636 return &memcg->css;
d324236b
WF
637}
638
f64c3f54 639static struct mem_cgroup_per_zone *
e231875b 640mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 641{
97a6c37b
JW
642 int nid = page_to_nid(page);
643 int zid = page_zonenum(page);
f64c3f54 644
e231875b 645 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
646}
647
bb4cc1a8
AM
648static struct mem_cgroup_tree_per_zone *
649soft_limit_tree_node_zone(int nid, int zid)
650{
651 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
652}
653
654static struct mem_cgroup_tree_per_zone *
655soft_limit_tree_from_page(struct page *page)
656{
657 int nid = page_to_nid(page);
658 int zid = page_zonenum(page);
659
660 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
661}
662
cf2c8127
JW
663static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
664 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 665 unsigned long new_usage_in_excess)
bb4cc1a8
AM
666{
667 struct rb_node **p = &mctz->rb_root.rb_node;
668 struct rb_node *parent = NULL;
669 struct mem_cgroup_per_zone *mz_node;
670
671 if (mz->on_tree)
672 return;
673
674 mz->usage_in_excess = new_usage_in_excess;
675 if (!mz->usage_in_excess)
676 return;
677 while (*p) {
678 parent = *p;
679 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
680 tree_node);
681 if (mz->usage_in_excess < mz_node->usage_in_excess)
682 p = &(*p)->rb_left;
683 /*
684 * We can't avoid mem cgroups that are over their soft
685 * limit by the same amount
686 */
687 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
688 p = &(*p)->rb_right;
689 }
690 rb_link_node(&mz->tree_node, parent, p);
691 rb_insert_color(&mz->tree_node, &mctz->rb_root);
692 mz->on_tree = true;
693}
694
cf2c8127
JW
695static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
696 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
697{
698 if (!mz->on_tree)
699 return;
700 rb_erase(&mz->tree_node, &mctz->rb_root);
701 mz->on_tree = false;
702}
703
cf2c8127
JW
704static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
705 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 706{
0a31bc97
JW
707 unsigned long flags;
708
709 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 710 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 711 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
712}
713
3e32cb2e
JW
714static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
715{
716 unsigned long nr_pages = page_counter_read(&memcg->memory);
717 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
718 unsigned long excess = 0;
719
720 if (nr_pages > soft_limit)
721 excess = nr_pages - soft_limit;
722
723 return excess;
724}
bb4cc1a8
AM
725
726static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
727{
3e32cb2e 728 unsigned long excess;
bb4cc1a8
AM
729 struct mem_cgroup_per_zone *mz;
730 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 731
e231875b 732 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
733 /*
734 * Necessary to update all ancestors when hierarchy is used.
735 * because their event counter is not touched.
736 */
737 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 738 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 739 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
740 /*
741 * We have to update the tree if mz is on RB-tree or
742 * mem is over its softlimit.
743 */
744 if (excess || mz->on_tree) {
0a31bc97
JW
745 unsigned long flags;
746
747 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
748 /* if on-tree, remove it */
749 if (mz->on_tree)
cf2c8127 750 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
751 /*
752 * Insert again. mz->usage_in_excess will be updated.
753 * If excess is 0, no tree ops.
754 */
cf2c8127 755 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 756 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
757 }
758 }
759}
760
761static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
762{
bb4cc1a8 763 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
764 struct mem_cgroup_per_zone *mz;
765 int nid, zid;
bb4cc1a8 766
e231875b
JZ
767 for_each_node(nid) {
768 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
769 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
770 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 771 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
772 }
773 }
774}
775
776static struct mem_cgroup_per_zone *
777__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
778{
779 struct rb_node *rightmost = NULL;
780 struct mem_cgroup_per_zone *mz;
781
782retry:
783 mz = NULL;
784 rightmost = rb_last(&mctz->rb_root);
785 if (!rightmost)
786 goto done; /* Nothing to reclaim from */
787
788 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
789 /*
790 * Remove the node now but someone else can add it back,
791 * we will to add it back at the end of reclaim to its correct
792 * position in the tree.
793 */
cf2c8127 794 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 795 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 796 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
797 goto retry;
798done:
799 return mz;
800}
801
802static struct mem_cgroup_per_zone *
803mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
804{
805 struct mem_cgroup_per_zone *mz;
806
0a31bc97 807 spin_lock_irq(&mctz->lock);
bb4cc1a8 808 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 809 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
810 return mz;
811}
812
711d3d2c
KH
813/*
814 * Implementation Note: reading percpu statistics for memcg.
815 *
816 * Both of vmstat[] and percpu_counter has threshold and do periodic
817 * synchronization to implement "quick" read. There are trade-off between
818 * reading cost and precision of value. Then, we may have a chance to implement
819 * a periodic synchronizion of counter in memcg's counter.
820 *
821 * But this _read() function is used for user interface now. The user accounts
822 * memory usage by memory cgroup and he _always_ requires exact value because
823 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
824 * have to visit all online cpus and make sum. So, for now, unnecessary
825 * synchronization is not implemented. (just implemented for cpu hotplug)
826 *
827 * If there are kernel internal actions which can make use of some not-exact
828 * value, and reading all cpu value can be performance bottleneck in some
829 * common workload, threashold and synchonization as vmstat[] should be
830 * implemented.
831 */
c0ff4b85 832static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 833 enum mem_cgroup_stat_index idx)
c62b1a3b 834{
7a159cc9 835 long val = 0;
c62b1a3b 836 int cpu;
c62b1a3b 837
711d3d2c
KH
838 get_online_cpus();
839 for_each_online_cpu(cpu)
c0ff4b85 840 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 841#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
842 spin_lock(&memcg->pcp_counter_lock);
843 val += memcg->nocpu_base.count[idx];
844 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
845#endif
846 put_online_cpus();
c62b1a3b
KH
847 return val;
848}
849
c0ff4b85 850static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
851 enum mem_cgroup_events_index idx)
852{
853 unsigned long val = 0;
854 int cpu;
855
9c567512 856 get_online_cpus();
e9f8974f 857 for_each_online_cpu(cpu)
c0ff4b85 858 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 859#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
860 spin_lock(&memcg->pcp_counter_lock);
861 val += memcg->nocpu_base.events[idx];
862 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 863#endif
9c567512 864 put_online_cpus();
e9f8974f
JW
865 return val;
866}
867
c0ff4b85 868static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 869 struct page *page,
0a31bc97 870 int nr_pages)
d52aa412 871{
b2402857
KH
872 /*
873 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
874 * counted as CACHE even if it's on ANON LRU.
875 */
0a31bc97 876 if (PageAnon(page))
b2402857 877 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 878 nr_pages);
d52aa412 879 else
b2402857 880 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 881 nr_pages);
55e462b0 882
b070e65c
DR
883 if (PageTransHuge(page))
884 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
885 nr_pages);
886
e401f176
KH
887 /* pagein of a big page is an event. So, ignore page size */
888 if (nr_pages > 0)
c0ff4b85 889 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 890 else {
c0ff4b85 891 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
892 nr_pages = -nr_pages; /* for event */
893 }
e401f176 894
13114716 895 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
896}
897
e231875b 898unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
899{
900 struct mem_cgroup_per_zone *mz;
901
902 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
903 return mz->lru_size[lru];
904}
905
e231875b
JZ
906static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
907 int nid,
908 unsigned int lru_mask)
bb2a0de9 909{
e231875b 910 unsigned long nr = 0;
889976db
YH
911 int zid;
912
e231875b 913 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 914
e231875b
JZ
915 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
916 struct mem_cgroup_per_zone *mz;
917 enum lru_list lru;
918
919 for_each_lru(lru) {
920 if (!(BIT(lru) & lru_mask))
921 continue;
922 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
923 nr += mz->lru_size[lru];
924 }
925 }
926 return nr;
889976db 927}
bb2a0de9 928
c0ff4b85 929static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 930 unsigned int lru_mask)
6d12e2d8 931{
e231875b 932 unsigned long nr = 0;
889976db 933 int nid;
6d12e2d8 934
31aaea4a 935 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
936 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
937 return nr;
d52aa412
KH
938}
939
f53d7ce3
JW
940static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
941 enum mem_cgroup_events_target target)
7a159cc9
JW
942{
943 unsigned long val, next;
944
13114716 945 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 946 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 947 /* from time_after() in jiffies.h */
f53d7ce3
JW
948 if ((long)next - (long)val < 0) {
949 switch (target) {
950 case MEM_CGROUP_TARGET_THRESH:
951 next = val + THRESHOLDS_EVENTS_TARGET;
952 break;
bb4cc1a8
AM
953 case MEM_CGROUP_TARGET_SOFTLIMIT:
954 next = val + SOFTLIMIT_EVENTS_TARGET;
955 break;
f53d7ce3
JW
956 case MEM_CGROUP_TARGET_NUMAINFO:
957 next = val + NUMAINFO_EVENTS_TARGET;
958 break;
959 default:
960 break;
961 }
962 __this_cpu_write(memcg->stat->targets[target], next);
963 return true;
7a159cc9 964 }
f53d7ce3 965 return false;
d2265e6f
KH
966}
967
968/*
969 * Check events in order.
970 *
971 */
c0ff4b85 972static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
973{
974 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
975 if (unlikely(mem_cgroup_event_ratelimit(memcg,
976 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 977 bool do_softlimit;
82b3f2a7 978 bool do_numainfo __maybe_unused;
f53d7ce3 979
bb4cc1a8
AM
980 do_softlimit = mem_cgroup_event_ratelimit(memcg,
981 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
982#if MAX_NUMNODES > 1
983 do_numainfo = mem_cgroup_event_ratelimit(memcg,
984 MEM_CGROUP_TARGET_NUMAINFO);
985#endif
c0ff4b85 986 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
987 if (unlikely(do_softlimit))
988 mem_cgroup_update_tree(memcg, page);
453a9bf3 989#if MAX_NUMNODES > 1
f53d7ce3 990 if (unlikely(do_numainfo))
c0ff4b85 991 atomic_inc(&memcg->numainfo_events);
453a9bf3 992#endif
0a31bc97 993 }
d2265e6f
KH
994}
995
cf475ad2 996struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 997{
31a78f23
BS
998 /*
999 * mm_update_next_owner() may clear mm->owner to NULL
1000 * if it races with swapoff, page migration, etc.
1001 * So this can be called with p == NULL.
1002 */
1003 if (unlikely(!p))
1004 return NULL;
1005
073219e9 1006 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1007}
1008
df381975 1009static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1010{
c0ff4b85 1011 struct mem_cgroup *memcg = NULL;
0b7f569e 1012
54595fe2
KH
1013 rcu_read_lock();
1014 do {
6f6acb00
MH
1015 /*
1016 * Page cache insertions can happen withou an
1017 * actual mm context, e.g. during disk probing
1018 * on boot, loopback IO, acct() writes etc.
1019 */
1020 if (unlikely(!mm))
df381975 1021 memcg = root_mem_cgroup;
6f6acb00
MH
1022 else {
1023 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1024 if (unlikely(!memcg))
1025 memcg = root_mem_cgroup;
1026 }
ec903c0c 1027 } while (!css_tryget_online(&memcg->css));
54595fe2 1028 rcu_read_unlock();
c0ff4b85 1029 return memcg;
54595fe2
KH
1030}
1031
5660048c
JW
1032/**
1033 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1034 * @root: hierarchy root
1035 * @prev: previously returned memcg, NULL on first invocation
1036 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1037 *
1038 * Returns references to children of the hierarchy below @root, or
1039 * @root itself, or %NULL after a full round-trip.
1040 *
1041 * Caller must pass the return value in @prev on subsequent
1042 * invocations for reference counting, or use mem_cgroup_iter_break()
1043 * to cancel a hierarchy walk before the round-trip is complete.
1044 *
1045 * Reclaimers can specify a zone and a priority level in @reclaim to
1046 * divide up the memcgs in the hierarchy among all concurrent
1047 * reclaimers operating on the same zone and priority.
1048 */
694fbc0f 1049struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1050 struct mem_cgroup *prev,
694fbc0f 1051 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1052{
5ac8fb31
JW
1053 struct reclaim_iter *uninitialized_var(iter);
1054 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1055 struct mem_cgroup *memcg = NULL;
5ac8fb31 1056 struct mem_cgroup *pos = NULL;
711d3d2c 1057
694fbc0f
AM
1058 if (mem_cgroup_disabled())
1059 return NULL;
5660048c 1060
9f3a0d09
JW
1061 if (!root)
1062 root = root_mem_cgroup;
7d74b06f 1063
9f3a0d09 1064 if (prev && !reclaim)
5ac8fb31 1065 pos = prev;
14067bb3 1066
9f3a0d09
JW
1067 if (!root->use_hierarchy && root != root_mem_cgroup) {
1068 if (prev)
5ac8fb31 1069 goto out;
694fbc0f 1070 return root;
9f3a0d09 1071 }
14067bb3 1072
542f85f9 1073 rcu_read_lock();
5f578161 1074
5ac8fb31
JW
1075 if (reclaim) {
1076 struct mem_cgroup_per_zone *mz;
1077
1078 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1079 iter = &mz->iter[reclaim->priority];
1080
1081 if (prev && reclaim->generation != iter->generation)
1082 goto out_unlock;
1083
1084 do {
1085 pos = ACCESS_ONCE(iter->position);
1086 /*
1087 * A racing update may change the position and
1088 * put the last reference, hence css_tryget(),
1089 * or retry to see the updated position.
1090 */
1091 } while (pos && !css_tryget(&pos->css));
1092 }
1093
1094 if (pos)
1095 css = &pos->css;
1096
1097 for (;;) {
1098 css = css_next_descendant_pre(css, &root->css);
1099 if (!css) {
1100 /*
1101 * Reclaimers share the hierarchy walk, and a
1102 * new one might jump in right at the end of
1103 * the hierarchy - make sure they see at least
1104 * one group and restart from the beginning.
1105 */
1106 if (!prev)
1107 continue;
1108 break;
527a5ec9 1109 }
7d74b06f 1110
5ac8fb31
JW
1111 /*
1112 * Verify the css and acquire a reference. The root
1113 * is provided by the caller, so we know it's alive
1114 * and kicking, and don't take an extra reference.
1115 */
1116 memcg = mem_cgroup_from_css(css);
14067bb3 1117
5ac8fb31
JW
1118 if (css == &root->css)
1119 break;
14067bb3 1120
b2052564 1121 if (css_tryget(css)) {
5ac8fb31
JW
1122 /*
1123 * Make sure the memcg is initialized:
1124 * mem_cgroup_css_online() orders the the
1125 * initialization against setting the flag.
1126 */
1127 if (smp_load_acquire(&memcg->initialized))
1128 break;
542f85f9 1129
5ac8fb31 1130 css_put(css);
527a5ec9 1131 }
9f3a0d09 1132
5ac8fb31 1133 memcg = NULL;
9f3a0d09 1134 }
5ac8fb31
JW
1135
1136 if (reclaim) {
1137 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1138 if (memcg)
1139 css_get(&memcg->css);
1140 if (pos)
1141 css_put(&pos->css);
1142 }
1143
1144 /*
1145 * pairs with css_tryget when dereferencing iter->position
1146 * above.
1147 */
1148 if (pos)
1149 css_put(&pos->css);
1150
1151 if (!memcg)
1152 iter->generation++;
1153 else if (!prev)
1154 reclaim->generation = iter->generation;
9f3a0d09 1155 }
5ac8fb31 1156
542f85f9
MH
1157out_unlock:
1158 rcu_read_unlock();
5ac8fb31 1159out:
c40046f3
MH
1160 if (prev && prev != root)
1161 css_put(&prev->css);
1162
9f3a0d09 1163 return memcg;
14067bb3 1164}
7d74b06f 1165
5660048c
JW
1166/**
1167 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1168 * @root: hierarchy root
1169 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1170 */
1171void mem_cgroup_iter_break(struct mem_cgroup *root,
1172 struct mem_cgroup *prev)
9f3a0d09
JW
1173{
1174 if (!root)
1175 root = root_mem_cgroup;
1176 if (prev && prev != root)
1177 css_put(&prev->css);
1178}
7d74b06f 1179
9f3a0d09
JW
1180/*
1181 * Iteration constructs for visiting all cgroups (under a tree). If
1182 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1183 * be used for reference counting.
1184 */
1185#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1186 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1187 iter != NULL; \
527a5ec9 1188 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1189
9f3a0d09 1190#define for_each_mem_cgroup(iter) \
527a5ec9 1191 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1192 iter != NULL; \
527a5ec9 1193 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1194
68ae564b 1195void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1196{
c0ff4b85 1197 struct mem_cgroup *memcg;
456f998e 1198
456f998e 1199 rcu_read_lock();
c0ff4b85
R
1200 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1201 if (unlikely(!memcg))
456f998e
YH
1202 goto out;
1203
1204 switch (idx) {
456f998e 1205 case PGFAULT:
0e574a93
JW
1206 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1207 break;
1208 case PGMAJFAULT:
1209 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1210 break;
1211 default:
1212 BUG();
1213 }
1214out:
1215 rcu_read_unlock();
1216}
68ae564b 1217EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1218
925b7673
JW
1219/**
1220 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1221 * @zone: zone of the wanted lruvec
fa9add64 1222 * @memcg: memcg of the wanted lruvec
925b7673
JW
1223 *
1224 * Returns the lru list vector holding pages for the given @zone and
1225 * @mem. This can be the global zone lruvec, if the memory controller
1226 * is disabled.
1227 */
1228struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1229 struct mem_cgroup *memcg)
1230{
1231 struct mem_cgroup_per_zone *mz;
bea8c150 1232 struct lruvec *lruvec;
925b7673 1233
bea8c150
HD
1234 if (mem_cgroup_disabled()) {
1235 lruvec = &zone->lruvec;
1236 goto out;
1237 }
925b7673 1238
e231875b 1239 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1240 lruvec = &mz->lruvec;
1241out:
1242 /*
1243 * Since a node can be onlined after the mem_cgroup was created,
1244 * we have to be prepared to initialize lruvec->zone here;
1245 * and if offlined then reonlined, we need to reinitialize it.
1246 */
1247 if (unlikely(lruvec->zone != zone))
1248 lruvec->zone = zone;
1249 return lruvec;
925b7673
JW
1250}
1251
925b7673 1252/**
dfe0e773 1253 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1254 * @page: the page
fa9add64 1255 * @zone: zone of the page
dfe0e773
JW
1256 *
1257 * This function is only safe when following the LRU page isolation
1258 * and putback protocol: the LRU lock must be held, and the page must
1259 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1260 */
fa9add64 1261struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1262{
08e552c6 1263 struct mem_cgroup_per_zone *mz;
925b7673 1264 struct mem_cgroup *memcg;
bea8c150 1265 struct lruvec *lruvec;
6d12e2d8 1266
bea8c150
HD
1267 if (mem_cgroup_disabled()) {
1268 lruvec = &zone->lruvec;
1269 goto out;
1270 }
925b7673 1271
1306a85a 1272 memcg = page->mem_cgroup;
7512102c 1273 /*
dfe0e773 1274 * Swapcache readahead pages are added to the LRU - and
29833315 1275 * possibly migrated - before they are charged.
7512102c 1276 */
29833315
JW
1277 if (!memcg)
1278 memcg = root_mem_cgroup;
7512102c 1279
e231875b 1280 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1281 lruvec = &mz->lruvec;
1282out:
1283 /*
1284 * Since a node can be onlined after the mem_cgroup was created,
1285 * we have to be prepared to initialize lruvec->zone here;
1286 * and if offlined then reonlined, we need to reinitialize it.
1287 */
1288 if (unlikely(lruvec->zone != zone))
1289 lruvec->zone = zone;
1290 return lruvec;
08e552c6 1291}
b69408e8 1292
925b7673 1293/**
fa9add64
HD
1294 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1295 * @lruvec: mem_cgroup per zone lru vector
1296 * @lru: index of lru list the page is sitting on
1297 * @nr_pages: positive when adding or negative when removing
925b7673 1298 *
fa9add64
HD
1299 * This function must be called when a page is added to or removed from an
1300 * lru list.
3f58a829 1301 */
fa9add64
HD
1302void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1303 int nr_pages)
3f58a829
MK
1304{
1305 struct mem_cgroup_per_zone *mz;
fa9add64 1306 unsigned long *lru_size;
3f58a829
MK
1307
1308 if (mem_cgroup_disabled())
1309 return;
1310
fa9add64
HD
1311 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1312 lru_size = mz->lru_size + lru;
1313 *lru_size += nr_pages;
1314 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1315}
544122e5 1316
2314b42d 1317bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1318{
2314b42d 1319 if (root == memcg)
91c63734 1320 return true;
2314b42d 1321 if (!root->use_hierarchy)
91c63734 1322 return false;
2314b42d 1323 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1324}
1325
2314b42d 1326bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1327{
2314b42d 1328 struct mem_cgroup *task_memcg;
158e0a2d 1329 struct task_struct *p;
ffbdccf5 1330 bool ret;
4c4a2214 1331
158e0a2d 1332 p = find_lock_task_mm(task);
de077d22 1333 if (p) {
2314b42d 1334 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1335 task_unlock(p);
1336 } else {
1337 /*
1338 * All threads may have already detached their mm's, but the oom
1339 * killer still needs to detect if they have already been oom
1340 * killed to prevent needlessly killing additional tasks.
1341 */
ffbdccf5 1342 rcu_read_lock();
2314b42d
JW
1343 task_memcg = mem_cgroup_from_task(task);
1344 css_get(&task_memcg->css);
ffbdccf5 1345 rcu_read_unlock();
de077d22 1346 }
2314b42d
JW
1347 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1348 css_put(&task_memcg->css);
4c4a2214
DR
1349 return ret;
1350}
1351
c56d5c7d 1352int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1353{
9b272977 1354 unsigned long inactive_ratio;
14797e23 1355 unsigned long inactive;
9b272977 1356 unsigned long active;
c772be93 1357 unsigned long gb;
14797e23 1358
4d7dcca2
HD
1359 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1360 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1361
c772be93
KM
1362 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1363 if (gb)
1364 inactive_ratio = int_sqrt(10 * gb);
1365 else
1366 inactive_ratio = 1;
1367
9b272977 1368 return inactive * inactive_ratio < active;
14797e23
KM
1369}
1370
3e32cb2e 1371#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1372 container_of(counter, struct mem_cgroup, member)
1373
19942822 1374/**
9d11ea9f 1375 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1376 * @memcg: the memory cgroup
19942822 1377 *
9d11ea9f 1378 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1379 * pages.
19942822 1380 */
c0ff4b85 1381static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1382{
3e32cb2e
JW
1383 unsigned long margin = 0;
1384 unsigned long count;
1385 unsigned long limit;
9d11ea9f 1386
3e32cb2e
JW
1387 count = page_counter_read(&memcg->memory);
1388 limit = ACCESS_ONCE(memcg->memory.limit);
1389 if (count < limit)
1390 margin = limit - count;
1391
1392 if (do_swap_account) {
1393 count = page_counter_read(&memcg->memsw);
1394 limit = ACCESS_ONCE(memcg->memsw.limit);
1395 if (count <= limit)
1396 margin = min(margin, limit - count);
1397 }
1398
1399 return margin;
19942822
JW
1400}
1401
1f4c025b 1402int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1403{
a7885eb8 1404 /* root ? */
14208b0e 1405 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1406 return vm_swappiness;
1407
bf1ff263 1408 return memcg->swappiness;
a7885eb8
KM
1409}
1410
32047e2a 1411/*
bdcbb659 1412 * A routine for checking "mem" is under move_account() or not.
32047e2a 1413 *
bdcbb659
QH
1414 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1415 * moving cgroups. This is for waiting at high-memory pressure
1416 * caused by "move".
32047e2a 1417 */
c0ff4b85 1418static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1419{
2bd9bb20
KH
1420 struct mem_cgroup *from;
1421 struct mem_cgroup *to;
4b534334 1422 bool ret = false;
2bd9bb20
KH
1423 /*
1424 * Unlike task_move routines, we access mc.to, mc.from not under
1425 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1426 */
1427 spin_lock(&mc.lock);
1428 from = mc.from;
1429 to = mc.to;
1430 if (!from)
1431 goto unlock;
3e92041d 1432
2314b42d
JW
1433 ret = mem_cgroup_is_descendant(from, memcg) ||
1434 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1435unlock:
1436 spin_unlock(&mc.lock);
4b534334
KH
1437 return ret;
1438}
1439
c0ff4b85 1440static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1441{
1442 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1443 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1444 DEFINE_WAIT(wait);
1445 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1446 /* moving charge context might have finished. */
1447 if (mc.moving_task)
1448 schedule();
1449 finish_wait(&mc.waitq, &wait);
1450 return true;
1451 }
1452 }
1453 return false;
1454}
1455
58cf188e 1456#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1457/**
58cf188e 1458 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1459 * @memcg: The memory cgroup that went over limit
1460 * @p: Task that is going to be killed
1461 *
1462 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1463 * enabled
1464 */
1465void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1466{
e61734c5 1467 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1468 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1469 struct mem_cgroup *iter;
1470 unsigned int i;
e222432b 1471
58cf188e 1472 if (!p)
e222432b
BS
1473 return;
1474
08088cb9 1475 mutex_lock(&oom_info_lock);
e222432b
BS
1476 rcu_read_lock();
1477
e61734c5
TH
1478 pr_info("Task in ");
1479 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
0346dadb 1480 pr_cont(" killed as a result of limit of ");
e61734c5 1481 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1482 pr_cont("\n");
e222432b 1483
e222432b
BS
1484 rcu_read_unlock();
1485
3e32cb2e
JW
1486 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1487 K((u64)page_counter_read(&memcg->memory)),
1488 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1489 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1490 K((u64)page_counter_read(&memcg->memsw)),
1491 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1492 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1493 K((u64)page_counter_read(&memcg->kmem)),
1494 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1495
1496 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1497 pr_info("Memory cgroup stats for ");
1498 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1499 pr_cont(":");
1500
1501 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1502 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1503 continue;
1504 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1505 K(mem_cgroup_read_stat(iter, i)));
1506 }
1507
1508 for (i = 0; i < NR_LRU_LISTS; i++)
1509 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1510 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1511
1512 pr_cont("\n");
1513 }
08088cb9 1514 mutex_unlock(&oom_info_lock);
e222432b
BS
1515}
1516
81d39c20
KH
1517/*
1518 * This function returns the number of memcg under hierarchy tree. Returns
1519 * 1(self count) if no children.
1520 */
c0ff4b85 1521static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1522{
1523 int num = 0;
7d74b06f
KH
1524 struct mem_cgroup *iter;
1525
c0ff4b85 1526 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1527 num++;
81d39c20
KH
1528 return num;
1529}
1530
a63d83f4
DR
1531/*
1532 * Return the memory (and swap, if configured) limit for a memcg.
1533 */
3e32cb2e 1534static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1535{
3e32cb2e 1536 unsigned long limit;
f3e8eb70 1537
3e32cb2e 1538 limit = memcg->memory.limit;
9a5a8f19 1539 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1540 unsigned long memsw_limit;
9a5a8f19 1541
3e32cb2e
JW
1542 memsw_limit = memcg->memsw.limit;
1543 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1544 }
9a5a8f19 1545 return limit;
a63d83f4
DR
1546}
1547
19965460
DR
1548static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1549 int order)
9cbb78bb
DR
1550{
1551 struct mem_cgroup *iter;
1552 unsigned long chosen_points = 0;
1553 unsigned long totalpages;
1554 unsigned int points = 0;
1555 struct task_struct *chosen = NULL;
1556
876aafbf 1557 /*
465adcf1
DR
1558 * If current has a pending SIGKILL or is exiting, then automatically
1559 * select it. The goal is to allow it to allocate so that it may
1560 * quickly exit and free its memory.
876aafbf 1561 */
d003f371 1562 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
876aafbf
DR
1563 set_thread_flag(TIF_MEMDIE);
1564 return;
1565 }
1566
1567 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1568 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1569 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1570 struct css_task_iter it;
9cbb78bb
DR
1571 struct task_struct *task;
1572
72ec7029
TH
1573 css_task_iter_start(&iter->css, &it);
1574 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1575 switch (oom_scan_process_thread(task, totalpages, NULL,
1576 false)) {
1577 case OOM_SCAN_SELECT:
1578 if (chosen)
1579 put_task_struct(chosen);
1580 chosen = task;
1581 chosen_points = ULONG_MAX;
1582 get_task_struct(chosen);
1583 /* fall through */
1584 case OOM_SCAN_CONTINUE:
1585 continue;
1586 case OOM_SCAN_ABORT:
72ec7029 1587 css_task_iter_end(&it);
9cbb78bb
DR
1588 mem_cgroup_iter_break(memcg, iter);
1589 if (chosen)
1590 put_task_struct(chosen);
1591 return;
1592 case OOM_SCAN_OK:
1593 break;
1594 };
1595 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1596 if (!points || points < chosen_points)
1597 continue;
1598 /* Prefer thread group leaders for display purposes */
1599 if (points == chosen_points &&
1600 thread_group_leader(chosen))
1601 continue;
1602
1603 if (chosen)
1604 put_task_struct(chosen);
1605 chosen = task;
1606 chosen_points = points;
1607 get_task_struct(chosen);
9cbb78bb 1608 }
72ec7029 1609 css_task_iter_end(&it);
9cbb78bb
DR
1610 }
1611
1612 if (!chosen)
1613 return;
1614 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1615 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1616 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1617}
1618
ae6e71d3
MC
1619#if MAX_NUMNODES > 1
1620
4d0c066d
KH
1621/**
1622 * test_mem_cgroup_node_reclaimable
dad7557e 1623 * @memcg: the target memcg
4d0c066d
KH
1624 * @nid: the node ID to be checked.
1625 * @noswap : specify true here if the user wants flle only information.
1626 *
1627 * This function returns whether the specified memcg contains any
1628 * reclaimable pages on a node. Returns true if there are any reclaimable
1629 * pages in the node.
1630 */
c0ff4b85 1631static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1632 int nid, bool noswap)
1633{
c0ff4b85 1634 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1635 return true;
1636 if (noswap || !total_swap_pages)
1637 return false;
c0ff4b85 1638 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1639 return true;
1640 return false;
1641
1642}
889976db
YH
1643
1644/*
1645 * Always updating the nodemask is not very good - even if we have an empty
1646 * list or the wrong list here, we can start from some node and traverse all
1647 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1648 *
1649 */
c0ff4b85 1650static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1651{
1652 int nid;
453a9bf3
KH
1653 /*
1654 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1655 * pagein/pageout changes since the last update.
1656 */
c0ff4b85 1657 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1658 return;
c0ff4b85 1659 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1660 return;
1661
889976db 1662 /* make a nodemask where this memcg uses memory from */
31aaea4a 1663 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1664
31aaea4a 1665 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1666
c0ff4b85
R
1667 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1668 node_clear(nid, memcg->scan_nodes);
889976db 1669 }
453a9bf3 1670
c0ff4b85
R
1671 atomic_set(&memcg->numainfo_events, 0);
1672 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1673}
1674
1675/*
1676 * Selecting a node where we start reclaim from. Because what we need is just
1677 * reducing usage counter, start from anywhere is O,K. Considering
1678 * memory reclaim from current node, there are pros. and cons.
1679 *
1680 * Freeing memory from current node means freeing memory from a node which
1681 * we'll use or we've used. So, it may make LRU bad. And if several threads
1682 * hit limits, it will see a contention on a node. But freeing from remote
1683 * node means more costs for memory reclaim because of memory latency.
1684 *
1685 * Now, we use round-robin. Better algorithm is welcomed.
1686 */
c0ff4b85 1687int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1688{
1689 int node;
1690
c0ff4b85
R
1691 mem_cgroup_may_update_nodemask(memcg);
1692 node = memcg->last_scanned_node;
889976db 1693
c0ff4b85 1694 node = next_node(node, memcg->scan_nodes);
889976db 1695 if (node == MAX_NUMNODES)
c0ff4b85 1696 node = first_node(memcg->scan_nodes);
889976db
YH
1697 /*
1698 * We call this when we hit limit, not when pages are added to LRU.
1699 * No LRU may hold pages because all pages are UNEVICTABLE or
1700 * memcg is too small and all pages are not on LRU. In that case,
1701 * we use curret node.
1702 */
1703 if (unlikely(node == MAX_NUMNODES))
1704 node = numa_node_id();
1705
c0ff4b85 1706 memcg->last_scanned_node = node;
889976db
YH
1707 return node;
1708}
889976db 1709#else
c0ff4b85 1710int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1711{
1712 return 0;
1713}
1714#endif
1715
0608f43d
AM
1716static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1717 struct zone *zone,
1718 gfp_t gfp_mask,
1719 unsigned long *total_scanned)
1720{
1721 struct mem_cgroup *victim = NULL;
1722 int total = 0;
1723 int loop = 0;
1724 unsigned long excess;
1725 unsigned long nr_scanned;
1726 struct mem_cgroup_reclaim_cookie reclaim = {
1727 .zone = zone,
1728 .priority = 0,
1729 };
1730
3e32cb2e 1731 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1732
1733 while (1) {
1734 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1735 if (!victim) {
1736 loop++;
1737 if (loop >= 2) {
1738 /*
1739 * If we have not been able to reclaim
1740 * anything, it might because there are
1741 * no reclaimable pages under this hierarchy
1742 */
1743 if (!total)
1744 break;
1745 /*
1746 * We want to do more targeted reclaim.
1747 * excess >> 2 is not to excessive so as to
1748 * reclaim too much, nor too less that we keep
1749 * coming back to reclaim from this cgroup
1750 */
1751 if (total >= (excess >> 2) ||
1752 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1753 break;
1754 }
1755 continue;
1756 }
0608f43d
AM
1757 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1758 zone, &nr_scanned);
1759 *total_scanned += nr_scanned;
3e32cb2e 1760 if (!soft_limit_excess(root_memcg))
0608f43d 1761 break;
6d61ef40 1762 }
0608f43d
AM
1763 mem_cgroup_iter_break(root_memcg, victim);
1764 return total;
6d61ef40
BS
1765}
1766
0056f4e6
JW
1767#ifdef CONFIG_LOCKDEP
1768static struct lockdep_map memcg_oom_lock_dep_map = {
1769 .name = "memcg_oom_lock",
1770};
1771#endif
1772
fb2a6fc5
JW
1773static DEFINE_SPINLOCK(memcg_oom_lock);
1774
867578cb
KH
1775/*
1776 * Check OOM-Killer is already running under our hierarchy.
1777 * If someone is running, return false.
1778 */
fb2a6fc5 1779static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1780{
79dfdacc 1781 struct mem_cgroup *iter, *failed = NULL;
a636b327 1782
fb2a6fc5
JW
1783 spin_lock(&memcg_oom_lock);
1784
9f3a0d09 1785 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1786 if (iter->oom_lock) {
79dfdacc
MH
1787 /*
1788 * this subtree of our hierarchy is already locked
1789 * so we cannot give a lock.
1790 */
79dfdacc 1791 failed = iter;
9f3a0d09
JW
1792 mem_cgroup_iter_break(memcg, iter);
1793 break;
23751be0
JW
1794 } else
1795 iter->oom_lock = true;
7d74b06f 1796 }
867578cb 1797
fb2a6fc5
JW
1798 if (failed) {
1799 /*
1800 * OK, we failed to lock the whole subtree so we have
1801 * to clean up what we set up to the failing subtree
1802 */
1803 for_each_mem_cgroup_tree(iter, memcg) {
1804 if (iter == failed) {
1805 mem_cgroup_iter_break(memcg, iter);
1806 break;
1807 }
1808 iter->oom_lock = false;
79dfdacc 1809 }
0056f4e6
JW
1810 } else
1811 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1812
1813 spin_unlock(&memcg_oom_lock);
1814
1815 return !failed;
a636b327 1816}
0b7f569e 1817
fb2a6fc5 1818static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1819{
7d74b06f
KH
1820 struct mem_cgroup *iter;
1821
fb2a6fc5 1822 spin_lock(&memcg_oom_lock);
0056f4e6 1823 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1824 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1825 iter->oom_lock = false;
fb2a6fc5 1826 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1827}
1828
c0ff4b85 1829static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1830{
1831 struct mem_cgroup *iter;
1832
c0ff4b85 1833 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1834 atomic_inc(&iter->under_oom);
1835}
1836
c0ff4b85 1837static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1838{
1839 struct mem_cgroup *iter;
1840
867578cb
KH
1841 /*
1842 * When a new child is created while the hierarchy is under oom,
1843 * mem_cgroup_oom_lock() may not be called. We have to use
1844 * atomic_add_unless() here.
1845 */
c0ff4b85 1846 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1847 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1848}
1849
867578cb
KH
1850static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1851
dc98df5a 1852struct oom_wait_info {
d79154bb 1853 struct mem_cgroup *memcg;
dc98df5a
KH
1854 wait_queue_t wait;
1855};
1856
1857static int memcg_oom_wake_function(wait_queue_t *wait,
1858 unsigned mode, int sync, void *arg)
1859{
d79154bb
HD
1860 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1861 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1862 struct oom_wait_info *oom_wait_info;
1863
1864 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1865 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1866
2314b42d
JW
1867 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1868 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1869 return 0;
dc98df5a
KH
1870 return autoremove_wake_function(wait, mode, sync, arg);
1871}
1872
c0ff4b85 1873static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1874{
3812c8c8 1875 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1876 /* for filtering, pass "memcg" as argument. */
1877 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1878}
1879
c0ff4b85 1880static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1881{
c0ff4b85
R
1882 if (memcg && atomic_read(&memcg->under_oom))
1883 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1884}
1885
3812c8c8 1886static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1887{
3812c8c8
JW
1888 if (!current->memcg_oom.may_oom)
1889 return;
867578cb 1890 /*
49426420
JW
1891 * We are in the middle of the charge context here, so we
1892 * don't want to block when potentially sitting on a callstack
1893 * that holds all kinds of filesystem and mm locks.
1894 *
1895 * Also, the caller may handle a failed allocation gracefully
1896 * (like optional page cache readahead) and so an OOM killer
1897 * invocation might not even be necessary.
1898 *
1899 * That's why we don't do anything here except remember the
1900 * OOM context and then deal with it at the end of the page
1901 * fault when the stack is unwound, the locks are released,
1902 * and when we know whether the fault was overall successful.
867578cb 1903 */
49426420
JW
1904 css_get(&memcg->css);
1905 current->memcg_oom.memcg = memcg;
1906 current->memcg_oom.gfp_mask = mask;
1907 current->memcg_oom.order = order;
3812c8c8
JW
1908}
1909
1910/**
1911 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1912 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1913 *
49426420
JW
1914 * This has to be called at the end of a page fault if the memcg OOM
1915 * handler was enabled.
3812c8c8 1916 *
49426420 1917 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1918 * sleep on a waitqueue until the userspace task resolves the
1919 * situation. Sleeping directly in the charge context with all kinds
1920 * of locks held is not a good idea, instead we remember an OOM state
1921 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1922 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1923 *
1924 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1925 * completed, %false otherwise.
3812c8c8 1926 */
49426420 1927bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1928{
49426420 1929 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1930 struct oom_wait_info owait;
49426420 1931 bool locked;
3812c8c8
JW
1932
1933 /* OOM is global, do not handle */
3812c8c8 1934 if (!memcg)
49426420 1935 return false;
3812c8c8 1936
49426420
JW
1937 if (!handle)
1938 goto cleanup;
3812c8c8
JW
1939
1940 owait.memcg = memcg;
1941 owait.wait.flags = 0;
1942 owait.wait.func = memcg_oom_wake_function;
1943 owait.wait.private = current;
1944 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1945
3812c8c8 1946 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1947 mem_cgroup_mark_under_oom(memcg);
1948
1949 locked = mem_cgroup_oom_trylock(memcg);
1950
1951 if (locked)
1952 mem_cgroup_oom_notify(memcg);
1953
1954 if (locked && !memcg->oom_kill_disable) {
1955 mem_cgroup_unmark_under_oom(memcg);
1956 finish_wait(&memcg_oom_waitq, &owait.wait);
1957 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1958 current->memcg_oom.order);
1959 } else {
3812c8c8 1960 schedule();
49426420
JW
1961 mem_cgroup_unmark_under_oom(memcg);
1962 finish_wait(&memcg_oom_waitq, &owait.wait);
1963 }
1964
1965 if (locked) {
fb2a6fc5
JW
1966 mem_cgroup_oom_unlock(memcg);
1967 /*
1968 * There is no guarantee that an OOM-lock contender
1969 * sees the wakeups triggered by the OOM kill
1970 * uncharges. Wake any sleepers explicitely.
1971 */
1972 memcg_oom_recover(memcg);
1973 }
49426420
JW
1974cleanup:
1975 current->memcg_oom.memcg = NULL;
3812c8c8 1976 css_put(&memcg->css);
867578cb 1977 return true;
0b7f569e
KH
1978}
1979
d7365e78
JW
1980/**
1981 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1982 * @page: page that is going to change accounted state
1983 * @locked: &memcg->move_lock slowpath was taken
1984 * @flags: IRQ-state flags for &memcg->move_lock
32047e2a 1985 *
d7365e78
JW
1986 * This function must mark the beginning of an accounted page state
1987 * change to prevent double accounting when the page is concurrently
1988 * being moved to another memcg:
32047e2a 1989 *
d7365e78
JW
1990 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1991 * if (TestClearPageState(page))
1992 * mem_cgroup_update_page_stat(memcg, state, -1);
1993 * mem_cgroup_end_page_stat(memcg, locked, flags);
32047e2a 1994 *
d7365e78
JW
1995 * The RCU lock is held throughout the transaction. The fast path can
1996 * get away without acquiring the memcg->move_lock (@locked is false)
1997 * because page moving starts with an RCU grace period.
32047e2a 1998 *
d7365e78
JW
1999 * The RCU lock also protects the memcg from being freed when the page
2000 * state that is going to change is the only thing preventing the page
2001 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2002 * which allows migration to go ahead and uncharge the page before the
2003 * account transaction might be complete.
d69b042f 2004 */
d7365e78
JW
2005struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2006 bool *locked,
2007 unsigned long *flags)
89c06bd5
KH
2008{
2009 struct mem_cgroup *memcg;
89c06bd5 2010
d7365e78
JW
2011 rcu_read_lock();
2012
2013 if (mem_cgroup_disabled())
2014 return NULL;
89c06bd5 2015again:
1306a85a 2016 memcg = page->mem_cgroup;
29833315 2017 if (unlikely(!memcg))
d7365e78
JW
2018 return NULL;
2019
2020 *locked = false;
bdcbb659 2021 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2022 return memcg;
89c06bd5 2023
354a4783 2024 spin_lock_irqsave(&memcg->move_lock, *flags);
1306a85a 2025 if (memcg != page->mem_cgroup) {
354a4783 2026 spin_unlock_irqrestore(&memcg->move_lock, *flags);
89c06bd5
KH
2027 goto again;
2028 }
2029 *locked = true;
d7365e78
JW
2030
2031 return memcg;
89c06bd5
KH
2032}
2033
d7365e78
JW
2034/**
2035 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2036 * @memcg: the memcg that was accounted against
2037 * @locked: value received from mem_cgroup_begin_page_stat()
2038 * @flags: value received from mem_cgroup_begin_page_stat()
2039 */
e4bd6a02
MH
2040void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked,
2041 unsigned long *flags)
89c06bd5 2042{
e4bd6a02
MH
2043 if (memcg && *locked)
2044 spin_unlock_irqrestore(&memcg->move_lock, *flags);
89c06bd5 2045
d7365e78 2046 rcu_read_unlock();
89c06bd5
KH
2047}
2048
d7365e78
JW
2049/**
2050 * mem_cgroup_update_page_stat - update page state statistics
2051 * @memcg: memcg to account against
2052 * @idx: page state item to account
2053 * @val: number of pages (positive or negative)
2054 *
2055 * See mem_cgroup_begin_page_stat() for locking requirements.
2056 */
2057void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2058 enum mem_cgroup_stat_index idx, int val)
d69b042f 2059{
658b72c5 2060 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2061
d7365e78
JW
2062 if (memcg)
2063 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2064}
26174efd 2065
cdec2e42
KH
2066/*
2067 * size of first charge trial. "32" comes from vmscan.c's magic value.
2068 * TODO: maybe necessary to use big numbers in big irons.
2069 */
7ec99d62 2070#define CHARGE_BATCH 32U
cdec2e42
KH
2071struct memcg_stock_pcp {
2072 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2073 unsigned int nr_pages;
cdec2e42 2074 struct work_struct work;
26fe6168 2075 unsigned long flags;
a0db00fc 2076#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2077};
2078static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2079static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2080
a0956d54
SS
2081/**
2082 * consume_stock: Try to consume stocked charge on this cpu.
2083 * @memcg: memcg to consume from.
2084 * @nr_pages: how many pages to charge.
2085 *
2086 * The charges will only happen if @memcg matches the current cpu's memcg
2087 * stock, and at least @nr_pages are available in that stock. Failure to
2088 * service an allocation will refill the stock.
2089 *
2090 * returns true if successful, false otherwise.
cdec2e42 2091 */
a0956d54 2092static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2093{
2094 struct memcg_stock_pcp *stock;
3e32cb2e 2095 bool ret = false;
cdec2e42 2096
a0956d54 2097 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2098 return ret;
a0956d54 2099
cdec2e42 2100 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2101 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2102 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2103 ret = true;
2104 }
cdec2e42
KH
2105 put_cpu_var(memcg_stock);
2106 return ret;
2107}
2108
2109/*
3e32cb2e 2110 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2111 */
2112static void drain_stock(struct memcg_stock_pcp *stock)
2113{
2114 struct mem_cgroup *old = stock->cached;
2115
11c9ea4e 2116 if (stock->nr_pages) {
3e32cb2e 2117 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2118 if (do_swap_account)
3e32cb2e 2119 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2120 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2121 stock->nr_pages = 0;
cdec2e42
KH
2122 }
2123 stock->cached = NULL;
cdec2e42
KH
2124}
2125
2126/*
2127 * This must be called under preempt disabled or must be called by
2128 * a thread which is pinned to local cpu.
2129 */
2130static void drain_local_stock(struct work_struct *dummy)
2131{
7c8e0181 2132 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2133 drain_stock(stock);
26fe6168 2134 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2135}
2136
e4777496
MH
2137static void __init memcg_stock_init(void)
2138{
2139 int cpu;
2140
2141 for_each_possible_cpu(cpu) {
2142 struct memcg_stock_pcp *stock =
2143 &per_cpu(memcg_stock, cpu);
2144 INIT_WORK(&stock->work, drain_local_stock);
2145 }
2146}
2147
cdec2e42 2148/*
3e32cb2e 2149 * Cache charges(val) to local per_cpu area.
320cc51d 2150 * This will be consumed by consume_stock() function, later.
cdec2e42 2151 */
c0ff4b85 2152static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2153{
2154 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2155
c0ff4b85 2156 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2157 drain_stock(stock);
c0ff4b85 2158 stock->cached = memcg;
cdec2e42 2159 }
11c9ea4e 2160 stock->nr_pages += nr_pages;
cdec2e42
KH
2161 put_cpu_var(memcg_stock);
2162}
2163
2164/*
c0ff4b85 2165 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2166 * of the hierarchy under it.
cdec2e42 2167 */
6d3d6aa2 2168static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2169{
26fe6168 2170 int cpu, curcpu;
d38144b7 2171
6d3d6aa2
JW
2172 /* If someone's already draining, avoid adding running more workers. */
2173 if (!mutex_trylock(&percpu_charge_mutex))
2174 return;
cdec2e42 2175 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2176 get_online_cpus();
5af12d0e 2177 curcpu = get_cpu();
cdec2e42
KH
2178 for_each_online_cpu(cpu) {
2179 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2180 struct mem_cgroup *memcg;
26fe6168 2181
c0ff4b85
R
2182 memcg = stock->cached;
2183 if (!memcg || !stock->nr_pages)
26fe6168 2184 continue;
2314b42d 2185 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2186 continue;
d1a05b69
MH
2187 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2188 if (cpu == curcpu)
2189 drain_local_stock(&stock->work);
2190 else
2191 schedule_work_on(cpu, &stock->work);
2192 }
cdec2e42 2193 }
5af12d0e 2194 put_cpu();
f894ffa8 2195 put_online_cpus();
9f50fad6 2196 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2197}
2198
711d3d2c
KH
2199/*
2200 * This function drains percpu counter value from DEAD cpu and
2201 * move it to local cpu. Note that this function can be preempted.
2202 */
c0ff4b85 2203static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2204{
2205 int i;
2206
c0ff4b85 2207 spin_lock(&memcg->pcp_counter_lock);
6104621d 2208 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2209 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2210
c0ff4b85
R
2211 per_cpu(memcg->stat->count[i], cpu) = 0;
2212 memcg->nocpu_base.count[i] += x;
711d3d2c 2213 }
e9f8974f 2214 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2215 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2216
c0ff4b85
R
2217 per_cpu(memcg->stat->events[i], cpu) = 0;
2218 memcg->nocpu_base.events[i] += x;
e9f8974f 2219 }
c0ff4b85 2220 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2221}
2222
0db0628d 2223static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2224 unsigned long action,
2225 void *hcpu)
2226{
2227 int cpu = (unsigned long)hcpu;
2228 struct memcg_stock_pcp *stock;
711d3d2c 2229 struct mem_cgroup *iter;
cdec2e42 2230
619d094b 2231 if (action == CPU_ONLINE)
1489ebad 2232 return NOTIFY_OK;
1489ebad 2233
d833049b 2234 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2235 return NOTIFY_OK;
711d3d2c 2236
9f3a0d09 2237 for_each_mem_cgroup(iter)
711d3d2c
KH
2238 mem_cgroup_drain_pcp_counter(iter, cpu);
2239
cdec2e42
KH
2240 stock = &per_cpu(memcg_stock, cpu);
2241 drain_stock(stock);
2242 return NOTIFY_OK;
2243}
2244
00501b53
JW
2245static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2246 unsigned int nr_pages)
8a9f3ccd 2247{
7ec99d62 2248 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2249 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2250 struct mem_cgroup *mem_over_limit;
3e32cb2e 2251 struct page_counter *counter;
6539cc05 2252 unsigned long nr_reclaimed;
b70a2a21
JW
2253 bool may_swap = true;
2254 bool drained = false;
05b84301 2255 int ret = 0;
a636b327 2256
ce00a967
JW
2257 if (mem_cgroup_is_root(memcg))
2258 goto done;
6539cc05 2259retry:
b6b6cc72
MH
2260 if (consume_stock(memcg, nr_pages))
2261 goto done;
8a9f3ccd 2262
3fbe7244 2263 if (!do_swap_account ||
3e32cb2e
JW
2264 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2265 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2266 goto done_restock;
3fbe7244 2267 if (do_swap_account)
3e32cb2e
JW
2268 page_counter_uncharge(&memcg->memsw, batch);
2269 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2270 } else {
3e32cb2e 2271 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2272 may_swap = false;
3fbe7244 2273 }
7a81b88c 2274
6539cc05
JW
2275 if (batch > nr_pages) {
2276 batch = nr_pages;
2277 goto retry;
2278 }
6d61ef40 2279
06b078fc
JW
2280 /*
2281 * Unlike in global OOM situations, memcg is not in a physical
2282 * memory shortage. Allow dying and OOM-killed tasks to
2283 * bypass the last charges so that they can exit quickly and
2284 * free their memory.
2285 */
2286 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2287 fatal_signal_pending(current) ||
2288 current->flags & PF_EXITING))
2289 goto bypass;
2290
2291 if (unlikely(task_in_memcg_oom(current)))
2292 goto nomem;
2293
6539cc05
JW
2294 if (!(gfp_mask & __GFP_WAIT))
2295 goto nomem;
4b534334 2296
b70a2a21
JW
2297 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2298 gfp_mask, may_swap);
6539cc05 2299
61e02c74 2300 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2301 goto retry;
28c34c29 2302
b70a2a21 2303 if (!drained) {
6d3d6aa2 2304 drain_all_stock(mem_over_limit);
b70a2a21
JW
2305 drained = true;
2306 goto retry;
2307 }
2308
28c34c29
JW
2309 if (gfp_mask & __GFP_NORETRY)
2310 goto nomem;
6539cc05
JW
2311 /*
2312 * Even though the limit is exceeded at this point, reclaim
2313 * may have been able to free some pages. Retry the charge
2314 * before killing the task.
2315 *
2316 * Only for regular pages, though: huge pages are rather
2317 * unlikely to succeed so close to the limit, and we fall back
2318 * to regular pages anyway in case of failure.
2319 */
61e02c74 2320 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2321 goto retry;
2322 /*
2323 * At task move, charge accounts can be doubly counted. So, it's
2324 * better to wait until the end of task_move if something is going on.
2325 */
2326 if (mem_cgroup_wait_acct_move(mem_over_limit))
2327 goto retry;
2328
9b130619
JW
2329 if (nr_retries--)
2330 goto retry;
2331
06b078fc
JW
2332 if (gfp_mask & __GFP_NOFAIL)
2333 goto bypass;
2334
6539cc05
JW
2335 if (fatal_signal_pending(current))
2336 goto bypass;
2337
61e02c74 2338 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2339nomem:
6d1fdc48 2340 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2341 return -ENOMEM;
867578cb 2342bypass:
ce00a967 2343 return -EINTR;
6539cc05
JW
2344
2345done_restock:
e8ea14cc 2346 css_get_many(&memcg->css, batch);
6539cc05
JW
2347 if (batch > nr_pages)
2348 refill_stock(memcg, batch - nr_pages);
2349done:
05b84301 2350 return ret;
7a81b88c 2351}
8a9f3ccd 2352
00501b53 2353static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2354{
ce00a967
JW
2355 if (mem_cgroup_is_root(memcg))
2356 return;
2357
3e32cb2e 2358 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2359 if (do_swap_account)
3e32cb2e 2360 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2361
e8ea14cc 2362 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2363}
2364
a3b2d692
KH
2365/*
2366 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2367 * rcu_read_lock(). The caller is responsible for calling
2368 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2369 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2370 */
2371static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2372{
a3b2d692
KH
2373 /* ID 0 is unused ID */
2374 if (!id)
2375 return NULL;
34c00c31 2376 return mem_cgroup_from_id(id);
a3b2d692
KH
2377}
2378
0a31bc97
JW
2379/*
2380 * try_get_mem_cgroup_from_page - look up page's memcg association
2381 * @page: the page
2382 *
2383 * Look up, get a css reference, and return the memcg that owns @page.
2384 *
2385 * The page must be locked to prevent racing with swap-in and page
2386 * cache charges. If coming from an unlocked page table, the caller
2387 * must ensure the page is on the LRU or this can race with charging.
2388 */
e42d9d5d 2389struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2390{
29833315 2391 struct mem_cgroup *memcg;
a3b2d692 2392 unsigned short id;
b5a84319
KH
2393 swp_entry_t ent;
2394
309381fe 2395 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2396
1306a85a 2397 memcg = page->mem_cgroup;
29833315
JW
2398 if (memcg) {
2399 if (!css_tryget_online(&memcg->css))
c0ff4b85 2400 memcg = NULL;
e42d9d5d 2401 } else if (PageSwapCache(page)) {
3c776e64 2402 ent.val = page_private(page);
9fb4b7cc 2403 id = lookup_swap_cgroup_id(ent);
a3b2d692 2404 rcu_read_lock();
c0ff4b85 2405 memcg = mem_cgroup_lookup(id);
ec903c0c 2406 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2407 memcg = NULL;
a3b2d692 2408 rcu_read_unlock();
3c776e64 2409 }
c0ff4b85 2410 return memcg;
b5a84319
KH
2411}
2412
0a31bc97
JW
2413static void lock_page_lru(struct page *page, int *isolated)
2414{
2415 struct zone *zone = page_zone(page);
2416
2417 spin_lock_irq(&zone->lru_lock);
2418 if (PageLRU(page)) {
2419 struct lruvec *lruvec;
2420
2421 lruvec = mem_cgroup_page_lruvec(page, zone);
2422 ClearPageLRU(page);
2423 del_page_from_lru_list(page, lruvec, page_lru(page));
2424 *isolated = 1;
2425 } else
2426 *isolated = 0;
2427}
2428
2429static void unlock_page_lru(struct page *page, int isolated)
2430{
2431 struct zone *zone = page_zone(page);
2432
2433 if (isolated) {
2434 struct lruvec *lruvec;
2435
2436 lruvec = mem_cgroup_page_lruvec(page, zone);
2437 VM_BUG_ON_PAGE(PageLRU(page), page);
2438 SetPageLRU(page);
2439 add_page_to_lru_list(page, lruvec, page_lru(page));
2440 }
2441 spin_unlock_irq(&zone->lru_lock);
2442}
2443
00501b53 2444static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2445 bool lrucare)
7a81b88c 2446{
0a31bc97 2447 int isolated;
9ce70c02 2448
1306a85a 2449 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2450
2451 /*
2452 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2453 * may already be on some other mem_cgroup's LRU. Take care of it.
2454 */
0a31bc97
JW
2455 if (lrucare)
2456 lock_page_lru(page, &isolated);
9ce70c02 2457
0a31bc97
JW
2458 /*
2459 * Nobody should be changing or seriously looking at
1306a85a 2460 * page->mem_cgroup at this point:
0a31bc97
JW
2461 *
2462 * - the page is uncharged
2463 *
2464 * - the page is off-LRU
2465 *
2466 * - an anonymous fault has exclusive page access, except for
2467 * a locked page table
2468 *
2469 * - a page cache insertion, a swapin fault, or a migration
2470 * have the page locked
2471 */
1306a85a 2472 page->mem_cgroup = memcg;
9ce70c02 2473
0a31bc97
JW
2474 if (lrucare)
2475 unlock_page_lru(page, isolated);
7a81b88c 2476}
66e1707b 2477
7ae1e1d0 2478#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2479/*
2480 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2481 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2482 */
2483static DEFINE_MUTEX(memcg_slab_mutex);
2484
1f458cbf
GC
2485/*
2486 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2487 * in the memcg_cache_params struct.
2488 */
2489static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2490{
2491 struct kmem_cache *cachep;
2492
2493 VM_BUG_ON(p->is_root_cache);
2494 cachep = p->root_cache;
7a67d7ab 2495 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2496}
2497
3e32cb2e
JW
2498static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2499 unsigned long nr_pages)
7ae1e1d0 2500{
3e32cb2e 2501 struct page_counter *counter;
7ae1e1d0 2502 int ret = 0;
7ae1e1d0 2503
3e32cb2e
JW
2504 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2505 if (ret < 0)
7ae1e1d0
GC
2506 return ret;
2507
3e32cb2e 2508 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2509 if (ret == -EINTR) {
2510 /*
00501b53
JW
2511 * try_charge() chose to bypass to root due to OOM kill or
2512 * fatal signal. Since our only options are to either fail
2513 * the allocation or charge it to this cgroup, do it as a
2514 * temporary condition. But we can't fail. From a kmem/slab
2515 * perspective, the cache has already been selected, by
2516 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2517 * our minds.
2518 *
2519 * This condition will only trigger if the task entered
00501b53
JW
2520 * memcg_charge_kmem in a sane state, but was OOM-killed
2521 * during try_charge() above. Tasks that were already dying
2522 * when the allocation triggers should have been already
7ae1e1d0
GC
2523 * directed to the root cgroup in memcontrol.h
2524 */
3e32cb2e 2525 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2526 if (do_swap_account)
3e32cb2e 2527 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2528 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2529 ret = 0;
2530 } else if (ret)
3e32cb2e 2531 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2532
2533 return ret;
2534}
2535
3e32cb2e
JW
2536static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2537 unsigned long nr_pages)
7ae1e1d0 2538{
3e32cb2e 2539 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2540 if (do_swap_account)
3e32cb2e 2541 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2542
64f21993 2543 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2544
e8ea14cc 2545 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2546}
2547
2633d7a0
GC
2548/*
2549 * helper for acessing a memcg's index. It will be used as an index in the
2550 * child cache array in kmem_cache, and also to derive its name. This function
2551 * will return -1 when this is not a kmem-limited memcg.
2552 */
2553int memcg_cache_id(struct mem_cgroup *memcg)
2554{
2555 return memcg ? memcg->kmemcg_id : -1;
2556}
2557
f3bb3043 2558static int memcg_alloc_cache_id(void)
55007d84 2559{
f3bb3043
VD
2560 int id, size;
2561 int err;
2562
2563 id = ida_simple_get(&kmem_limited_groups,
2564 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2565 if (id < 0)
2566 return id;
55007d84 2567
f3bb3043
VD
2568 if (id < memcg_limited_groups_array_size)
2569 return id;
2570
2571 /*
2572 * There's no space for the new id in memcg_caches arrays,
2573 * so we have to grow them.
2574 */
2575
2576 size = 2 * (id + 1);
55007d84
GC
2577 if (size < MEMCG_CACHES_MIN_SIZE)
2578 size = MEMCG_CACHES_MIN_SIZE;
2579 else if (size > MEMCG_CACHES_MAX_SIZE)
2580 size = MEMCG_CACHES_MAX_SIZE;
2581
f3bb3043
VD
2582 mutex_lock(&memcg_slab_mutex);
2583 err = memcg_update_all_caches(size);
2584 mutex_unlock(&memcg_slab_mutex);
2585
2586 if (err) {
2587 ida_simple_remove(&kmem_limited_groups, id);
2588 return err;
2589 }
2590 return id;
2591}
2592
2593static void memcg_free_cache_id(int id)
2594{
2595 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2596}
2597
2598/*
2599 * We should update the current array size iff all caches updates succeed. This
2600 * can only be done from the slab side. The slab mutex needs to be held when
2601 * calling this.
2602 */
2603void memcg_update_array_size(int num)
2604{
f3bb3043 2605 memcg_limited_groups_array_size = num;
55007d84
GC
2606}
2607
776ed0f0
VD
2608static void memcg_register_cache(struct mem_cgroup *memcg,
2609 struct kmem_cache *root_cache)
2633d7a0 2610{
93f39eea
VD
2611 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2612 memcg_slab_mutex */
bd673145 2613 struct kmem_cache *cachep;
d7f25f8a
GC
2614 int id;
2615
bd673145
VD
2616 lockdep_assert_held(&memcg_slab_mutex);
2617
2618 id = memcg_cache_id(memcg);
2619
2620 /*
2621 * Since per-memcg caches are created asynchronously on first
2622 * allocation (see memcg_kmem_get_cache()), several threads can try to
2623 * create the same cache, but only one of them may succeed.
2624 */
2625 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2626 return;
2627
073ee1c6 2628 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2629 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2630 /*
bd673145
VD
2631 * If we could not create a memcg cache, do not complain, because
2632 * that's not critical at all as we can always proceed with the root
2633 * cache.
2edefe11 2634 */
bd673145
VD
2635 if (!cachep)
2636 return;
2edefe11 2637
bd673145 2638 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2639
d7f25f8a 2640 /*
959c8963
VD
2641 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2642 * barrier here to ensure nobody will see the kmem_cache partially
2643 * initialized.
d7f25f8a 2644 */
959c8963
VD
2645 smp_wmb();
2646
bd673145
VD
2647 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2648 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2649}
d7f25f8a 2650
776ed0f0 2651static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 2652{
bd673145 2653 struct kmem_cache *root_cache;
1aa13254
VD
2654 struct mem_cgroup *memcg;
2655 int id;
2656
bd673145 2657 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 2658
bd673145 2659 BUG_ON(is_root_cache(cachep));
2edefe11 2660
bd673145
VD
2661 root_cache = cachep->memcg_params->root_cache;
2662 memcg = cachep->memcg_params->memcg;
96403da2 2663 id = memcg_cache_id(memcg);
d7f25f8a 2664
bd673145
VD
2665 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2666 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 2667
bd673145
VD
2668 list_del(&cachep->memcg_params->list);
2669
2670 kmem_cache_destroy(cachep);
2633d7a0
GC
2671}
2672
776ed0f0 2673int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
2674{
2675 struct kmem_cache *c;
b8529907 2676 int i, failed = 0;
7cf27982 2677
bd673145 2678 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
2679 for_each_memcg_cache_index(i) {
2680 c = cache_from_memcg_idx(s, i);
7cf27982
GC
2681 if (!c)
2682 continue;
2683
776ed0f0 2684 memcg_unregister_cache(c);
b8529907
VD
2685
2686 if (cache_from_memcg_idx(s, i))
2687 failed++;
7cf27982 2688 }
bd673145 2689 mutex_unlock(&memcg_slab_mutex);
b8529907 2690 return failed;
7cf27982
GC
2691}
2692
776ed0f0 2693static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2694{
2695 struct kmem_cache *cachep;
bd673145 2696 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
2697
2698 if (!memcg_kmem_is_active(memcg))
2699 return;
2700
bd673145
VD
2701 mutex_lock(&memcg_slab_mutex);
2702 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 2703 cachep = memcg_params_to_cache(params);
8135be5a 2704 memcg_unregister_cache(cachep);
1f458cbf 2705 }
bd673145 2706 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
2707}
2708
776ed0f0 2709struct memcg_register_cache_work {
5722d094
VD
2710 struct mem_cgroup *memcg;
2711 struct kmem_cache *cachep;
2712 struct work_struct work;
2713};
2714
776ed0f0 2715static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 2716{
776ed0f0
VD
2717 struct memcg_register_cache_work *cw =
2718 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
2719 struct mem_cgroup *memcg = cw->memcg;
2720 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2721
bd673145 2722 mutex_lock(&memcg_slab_mutex);
776ed0f0 2723 memcg_register_cache(memcg, cachep);
bd673145
VD
2724 mutex_unlock(&memcg_slab_mutex);
2725
5722d094 2726 css_put(&memcg->css);
d7f25f8a
GC
2727 kfree(cw);
2728}
2729
2730/*
2731 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2732 */
776ed0f0
VD
2733static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2734 struct kmem_cache *cachep)
d7f25f8a 2735{
776ed0f0 2736 struct memcg_register_cache_work *cw;
d7f25f8a 2737
776ed0f0 2738 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2739 if (!cw)
d7f25f8a 2740 return;
8135be5a
VD
2741
2742 css_get(&memcg->css);
d7f25f8a
GC
2743
2744 cw->memcg = memcg;
2745 cw->cachep = cachep;
2746
776ed0f0 2747 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
2748 schedule_work(&cw->work);
2749}
2750
776ed0f0
VD
2751static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2752 struct kmem_cache *cachep)
0e9d92f2
GC
2753{
2754 /*
2755 * We need to stop accounting when we kmalloc, because if the
2756 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 2757 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
2758 *
2759 * However, it is better to enclose the whole function. Depending on
2760 * the debugging options enabled, INIT_WORK(), for instance, can
2761 * trigger an allocation. This too, will make us recurse. Because at
2762 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2763 * the safest choice is to do it like this, wrapping the whole function.
2764 */
6f185c29 2765 current->memcg_kmem_skip_account = 1;
776ed0f0 2766 __memcg_schedule_register_cache(memcg, cachep);
6f185c29 2767 current->memcg_kmem_skip_account = 0;
0e9d92f2 2768}
c67a8a68
VD
2769
2770int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2771{
3e32cb2e 2772 unsigned int nr_pages = 1 << order;
c67a8a68 2773
8135be5a 2774 return memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
c67a8a68
VD
2775}
2776
2777void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2778{
3e32cb2e
JW
2779 unsigned int nr_pages = 1 << order;
2780
2781 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
c67a8a68
VD
2782}
2783
d7f25f8a
GC
2784/*
2785 * Return the kmem_cache we're supposed to use for a slab allocation.
2786 * We try to use the current memcg's version of the cache.
2787 *
2788 * If the cache does not exist yet, if we are the first user of it,
2789 * we either create it immediately, if possible, or create it asynchronously
2790 * in a workqueue.
2791 * In the latter case, we will let the current allocation go through with
2792 * the original cache.
2793 *
2794 * Can't be called in interrupt context or from kernel threads.
2795 * This function needs to be called with rcu_read_lock() held.
2796 */
056b7cce 2797struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2798{
2799 struct mem_cgroup *memcg;
959c8963 2800 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
2801
2802 VM_BUG_ON(!cachep->memcg_params);
2803 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2804
9d100c5e 2805 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2806 return cachep;
2807
8135be5a 2808 memcg = get_mem_cgroup_from_mm(current->mm);
cf2b8fbf 2809 if (!memcg_kmem_is_active(memcg))
ca0dde97 2810 goto out;
d7f25f8a 2811
959c8963 2812 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
8135be5a
VD
2813 if (likely(memcg_cachep))
2814 return memcg_cachep;
ca0dde97
LZ
2815
2816 /*
2817 * If we are in a safe context (can wait, and not in interrupt
2818 * context), we could be be predictable and return right away.
2819 * This would guarantee that the allocation being performed
2820 * already belongs in the new cache.
2821 *
2822 * However, there are some clashes that can arrive from locking.
2823 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2824 * memcg_create_kmem_cache, this means no further allocation
2825 * could happen with the slab_mutex held. So it's better to
2826 * defer everything.
ca0dde97 2827 */
776ed0f0 2828 memcg_schedule_register_cache(memcg, cachep);
ca0dde97 2829out:
8135be5a 2830 css_put(&memcg->css);
ca0dde97 2831 return cachep;
d7f25f8a 2832}
d7f25f8a 2833
8135be5a
VD
2834void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2835{
2836 if (!is_root_cache(cachep))
2837 css_put(&cachep->memcg_params->memcg->css);
2838}
2839
7ae1e1d0
GC
2840/*
2841 * We need to verify if the allocation against current->mm->owner's memcg is
2842 * possible for the given order. But the page is not allocated yet, so we'll
2843 * need a further commit step to do the final arrangements.
2844 *
2845 * It is possible for the task to switch cgroups in this mean time, so at
2846 * commit time, we can't rely on task conversion any longer. We'll then use
2847 * the handle argument to return to the caller which cgroup we should commit
2848 * against. We could also return the memcg directly and avoid the pointer
2849 * passing, but a boolean return value gives better semantics considering
2850 * the compiled-out case as well.
2851 *
2852 * Returning true means the allocation is possible.
2853 */
2854bool
2855__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2856{
2857 struct mem_cgroup *memcg;
2858 int ret;
2859
2860 *_memcg = NULL;
6d42c232 2861
df381975 2862 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2863
cf2b8fbf 2864 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2865 css_put(&memcg->css);
2866 return true;
2867 }
2868
3e32cb2e 2869 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2870 if (!ret)
2871 *_memcg = memcg;
7ae1e1d0
GC
2872
2873 css_put(&memcg->css);
2874 return (ret == 0);
2875}
2876
2877void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2878 int order)
2879{
7ae1e1d0
GC
2880 VM_BUG_ON(mem_cgroup_is_root(memcg));
2881
2882 /* The page allocation failed. Revert */
2883 if (!page) {
3e32cb2e 2884 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2885 return;
2886 }
1306a85a 2887 page->mem_cgroup = memcg;
7ae1e1d0
GC
2888}
2889
2890void __memcg_kmem_uncharge_pages(struct page *page, int order)
2891{
1306a85a 2892 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2893
7ae1e1d0
GC
2894 if (!memcg)
2895 return;
2896
309381fe 2897 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2898
3e32cb2e 2899 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2900 page->mem_cgroup = NULL;
7ae1e1d0
GC
2901}
2902#endif /* CONFIG_MEMCG_KMEM */
2903
ca3e0214
KH
2904#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2905
ca3e0214
KH
2906/*
2907 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2908 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2909 * charge/uncharge will be never happen and move_account() is done under
2910 * compound_lock(), so we don't have to take care of races.
ca3e0214 2911 */
e94c8a9c 2912void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2913{
e94c8a9c 2914 int i;
ca3e0214 2915
3d37c4a9
KH
2916 if (mem_cgroup_disabled())
2917 return;
b070e65c 2918
29833315 2919 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2920 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2921
1306a85a 2922 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2923 HPAGE_PMD_NR);
ca3e0214 2924}
12d27107 2925#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2926
f817ed48 2927/**
de3638d9 2928 * mem_cgroup_move_account - move account of the page
5564e88b 2929 * @page: the page
7ec99d62 2930 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2931 * @from: mem_cgroup which the page is moved from.
2932 * @to: mem_cgroup which the page is moved to. @from != @to.
2933 *
2934 * The caller must confirm following.
08e552c6 2935 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2936 * - compound_lock is held when nr_pages > 1
f817ed48 2937 *
2f3479b1
KH
2938 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2939 * from old cgroup.
f817ed48 2940 */
7ec99d62
JW
2941static int mem_cgroup_move_account(struct page *page,
2942 unsigned int nr_pages,
7ec99d62 2943 struct mem_cgroup *from,
2f3479b1 2944 struct mem_cgroup *to)
f817ed48 2945{
de3638d9
JW
2946 unsigned long flags;
2947 int ret;
987eba66 2948
f817ed48 2949 VM_BUG_ON(from == to);
309381fe 2950 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
2951 /*
2952 * The page is isolated from LRU. So, collapse function
2953 * will not handle this page. But page splitting can happen.
2954 * Do this check under compound_page_lock(). The caller should
2955 * hold it.
2956 */
2957 ret = -EBUSY;
7ec99d62 2958 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2959 goto out;
2960
0a31bc97 2961 /*
1306a85a 2962 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
0a31bc97
JW
2963 * of its source page while we change it: page migration takes
2964 * both pages off the LRU, but page cache replacement doesn't.
2965 */
2966 if (!trylock_page(page))
2967 goto out;
de3638d9
JW
2968
2969 ret = -EINVAL;
1306a85a 2970 if (page->mem_cgroup != from)
0a31bc97 2971 goto out_unlock;
de3638d9 2972
354a4783 2973 spin_lock_irqsave(&from->move_lock, flags);
f817ed48 2974
0a31bc97 2975 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
2976 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2977 nr_pages);
2978 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2979 nr_pages);
2980 }
3ea67d06 2981
59d1d256
JW
2982 if (PageWriteback(page)) {
2983 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2984 nr_pages);
2985 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2986 nr_pages);
2987 }
3ea67d06 2988
0a31bc97 2989 /*
1306a85a 2990 * It is safe to change page->mem_cgroup here because the page
0a31bc97
JW
2991 * is referenced, charged, and isolated - we can't race with
2992 * uncharging, charging, migration, or LRU putback.
2993 */
d69b042f 2994
854ffa8d 2995 /* caller should have done css_get */
1306a85a 2996 page->mem_cgroup = to;
354a4783
JW
2997 spin_unlock_irqrestore(&from->move_lock, flags);
2998
de3638d9 2999 ret = 0;
0a31bc97
JW
3000
3001 local_irq_disable();
3002 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3003 memcg_check_events(to, page);
0a31bc97 3004 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3005 memcg_check_events(from, page);
0a31bc97
JW
3006 local_irq_enable();
3007out_unlock:
3008 unlock_page(page);
de3638d9 3009out:
f817ed48
KH
3010 return ret;
3011}
3012
c255a458 3013#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3014static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3015 bool charge)
d13d1443 3016{
0a31bc97
JW
3017 int val = (charge) ? 1 : -1;
3018 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3019}
02491447
DN
3020
3021/**
3022 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3023 * @entry: swap entry to be moved
3024 * @from: mem_cgroup which the entry is moved from
3025 * @to: mem_cgroup which the entry is moved to
3026 *
3027 * It succeeds only when the swap_cgroup's record for this entry is the same
3028 * as the mem_cgroup's id of @from.
3029 *
3030 * Returns 0 on success, -EINVAL on failure.
3031 *
3e32cb2e 3032 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3033 * both res and memsw, and called css_get().
3034 */
3035static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3036 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3037{
3038 unsigned short old_id, new_id;
3039
34c00c31
LZ
3040 old_id = mem_cgroup_id(from);
3041 new_id = mem_cgroup_id(to);
02491447
DN
3042
3043 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3044 mem_cgroup_swap_statistics(from, false);
483c30b5 3045 mem_cgroup_swap_statistics(to, true);
02491447
DN
3046 return 0;
3047 }
3048 return -EINVAL;
3049}
3050#else
3051static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3052 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3053{
3054 return -EINVAL;
3055}
8c7c6e34 3056#endif
d13d1443 3057
3e32cb2e 3058static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 3059
d38d2a75 3060static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 3061 unsigned long limit)
628f4235 3062{
3e32cb2e
JW
3063 unsigned long curusage;
3064 unsigned long oldusage;
3065 bool enlarge = false;
81d39c20 3066 int retry_count;
3e32cb2e 3067 int ret;
81d39c20
KH
3068
3069 /*
3070 * For keeping hierarchical_reclaim simple, how long we should retry
3071 * is depends on callers. We set our retry-count to be function
3072 * of # of children which we should visit in this loop.
3073 */
3e32cb2e
JW
3074 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3075 mem_cgroup_count_children(memcg);
81d39c20 3076
3e32cb2e 3077 oldusage = page_counter_read(&memcg->memory);
628f4235 3078
3e32cb2e 3079 do {
628f4235
KH
3080 if (signal_pending(current)) {
3081 ret = -EINTR;
3082 break;
3083 }
3e32cb2e
JW
3084
3085 mutex_lock(&memcg_limit_mutex);
3086 if (limit > memcg->memsw.limit) {
3087 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3088 ret = -EINVAL;
628f4235
KH
3089 break;
3090 }
3e32cb2e
JW
3091 if (limit > memcg->memory.limit)
3092 enlarge = true;
3093 ret = page_counter_limit(&memcg->memory, limit);
3094 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3095
3096 if (!ret)
3097 break;
3098
b70a2a21
JW
3099 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3100
3e32cb2e 3101 curusage = page_counter_read(&memcg->memory);
81d39c20 3102 /* Usage is reduced ? */
f894ffa8 3103 if (curusage >= oldusage)
81d39c20
KH
3104 retry_count--;
3105 else
3106 oldusage = curusage;
3e32cb2e
JW
3107 } while (retry_count);
3108
3c11ecf4
KH
3109 if (!ret && enlarge)
3110 memcg_oom_recover(memcg);
14797e23 3111
8c7c6e34
KH
3112 return ret;
3113}
3114
338c8431 3115static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 3116 unsigned long limit)
8c7c6e34 3117{
3e32cb2e
JW
3118 unsigned long curusage;
3119 unsigned long oldusage;
3120 bool enlarge = false;
81d39c20 3121 int retry_count;
3e32cb2e 3122 int ret;
8c7c6e34 3123
81d39c20 3124 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3125 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3126 mem_cgroup_count_children(memcg);
3127
3128 oldusage = page_counter_read(&memcg->memsw);
3129
3130 do {
8c7c6e34
KH
3131 if (signal_pending(current)) {
3132 ret = -EINTR;
3133 break;
3134 }
3e32cb2e
JW
3135
3136 mutex_lock(&memcg_limit_mutex);
3137 if (limit < memcg->memory.limit) {
3138 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3139 ret = -EINVAL;
8c7c6e34
KH
3140 break;
3141 }
3e32cb2e
JW
3142 if (limit > memcg->memsw.limit)
3143 enlarge = true;
3144 ret = page_counter_limit(&memcg->memsw, limit);
3145 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3146
3147 if (!ret)
3148 break;
3149
b70a2a21
JW
3150 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3151
3e32cb2e 3152 curusage = page_counter_read(&memcg->memsw);
81d39c20 3153 /* Usage is reduced ? */
8c7c6e34 3154 if (curusage >= oldusage)
628f4235 3155 retry_count--;
81d39c20
KH
3156 else
3157 oldusage = curusage;
3e32cb2e
JW
3158 } while (retry_count);
3159
3c11ecf4
KH
3160 if (!ret && enlarge)
3161 memcg_oom_recover(memcg);
3e32cb2e 3162
628f4235
KH
3163 return ret;
3164}
3165
0608f43d
AM
3166unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3167 gfp_t gfp_mask,
3168 unsigned long *total_scanned)
3169{
3170 unsigned long nr_reclaimed = 0;
3171 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3172 unsigned long reclaimed;
3173 int loop = 0;
3174 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3175 unsigned long excess;
0608f43d
AM
3176 unsigned long nr_scanned;
3177
3178 if (order > 0)
3179 return 0;
3180
3181 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3182 /*
3183 * This loop can run a while, specially if mem_cgroup's continuously
3184 * keep exceeding their soft limit and putting the system under
3185 * pressure
3186 */
3187 do {
3188 if (next_mz)
3189 mz = next_mz;
3190 else
3191 mz = mem_cgroup_largest_soft_limit_node(mctz);
3192 if (!mz)
3193 break;
3194
3195 nr_scanned = 0;
3196 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3197 gfp_mask, &nr_scanned);
3198 nr_reclaimed += reclaimed;
3199 *total_scanned += nr_scanned;
0a31bc97 3200 spin_lock_irq(&mctz->lock);
bc2f2e7f 3201 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3202
3203 /*
3204 * If we failed to reclaim anything from this memory cgroup
3205 * it is time to move on to the next cgroup
3206 */
3207 next_mz = NULL;
bc2f2e7f
VD
3208 if (!reclaimed)
3209 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3210
3e32cb2e 3211 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3212 /*
3213 * One school of thought says that we should not add
3214 * back the node to the tree if reclaim returns 0.
3215 * But our reclaim could return 0, simply because due
3216 * to priority we are exposing a smaller subset of
3217 * memory to reclaim from. Consider this as a longer
3218 * term TODO.
3219 */
3220 /* If excess == 0, no tree ops */
cf2c8127 3221 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3222 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3223 css_put(&mz->memcg->css);
3224 loop++;
3225 /*
3226 * Could not reclaim anything and there are no more
3227 * mem cgroups to try or we seem to be looping without
3228 * reclaiming anything.
3229 */
3230 if (!nr_reclaimed &&
3231 (next_mz == NULL ||
3232 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3233 break;
3234 } while (!nr_reclaimed);
3235 if (next_mz)
3236 css_put(&next_mz->memcg->css);
3237 return nr_reclaimed;
3238}
3239
ea280e7b
TH
3240/*
3241 * Test whether @memcg has children, dead or alive. Note that this
3242 * function doesn't care whether @memcg has use_hierarchy enabled and
3243 * returns %true if there are child csses according to the cgroup
3244 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3245 */
b5f99b53
GC
3246static inline bool memcg_has_children(struct mem_cgroup *memcg)
3247{
ea280e7b
TH
3248 bool ret;
3249
696ac172 3250 /*
ea280e7b
TH
3251 * The lock does not prevent addition or deletion of children, but
3252 * it prevents a new child from being initialized based on this
3253 * parent in css_online(), so it's enough to decide whether
3254 * hierarchically inherited attributes can still be changed or not.
696ac172 3255 */
ea280e7b
TH
3256 lockdep_assert_held(&memcg_create_mutex);
3257
3258 rcu_read_lock();
3259 ret = css_next_child(NULL, &memcg->css);
3260 rcu_read_unlock();
3261 return ret;
b5f99b53
GC
3262}
3263
c26251f9
MH
3264/*
3265 * Reclaims as many pages from the given memcg as possible and moves
3266 * the rest to the parent.
3267 *
3268 * Caller is responsible for holding css reference for memcg.
3269 */
3270static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3271{
3272 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3273
c1e862c1
KH
3274 /* we call try-to-free pages for make this cgroup empty */
3275 lru_add_drain_all();
f817ed48 3276 /* try to free all pages in this cgroup */
3e32cb2e 3277 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3278 int progress;
c1e862c1 3279
c26251f9
MH
3280 if (signal_pending(current))
3281 return -EINTR;
3282
b70a2a21
JW
3283 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3284 GFP_KERNEL, true);
c1e862c1 3285 if (!progress) {
f817ed48 3286 nr_retries--;
c1e862c1 3287 /* maybe some writeback is necessary */
8aa7e847 3288 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3289 }
f817ed48
KH
3290
3291 }
ab5196c2
MH
3292
3293 return 0;
cc847582
KH
3294}
3295
6770c64e
TH
3296static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3297 char *buf, size_t nbytes,
3298 loff_t off)
c1e862c1 3299{
6770c64e 3300 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3301
d8423011
MH
3302 if (mem_cgroup_is_root(memcg))
3303 return -EINVAL;
6770c64e 3304 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3305}
3306
182446d0
TH
3307static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3308 struct cftype *cft)
18f59ea7 3309{
182446d0 3310 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3311}
3312
182446d0
TH
3313static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3314 struct cftype *cft, u64 val)
18f59ea7
BS
3315{
3316 int retval = 0;
182446d0 3317 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3318 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3319
0999821b 3320 mutex_lock(&memcg_create_mutex);
567fb435
GC
3321
3322 if (memcg->use_hierarchy == val)
3323 goto out;
3324
18f59ea7 3325 /*
af901ca1 3326 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3327 * in the child subtrees. If it is unset, then the change can
3328 * occur, provided the current cgroup has no children.
3329 *
3330 * For the root cgroup, parent_mem is NULL, we allow value to be
3331 * set if there are no children.
3332 */
c0ff4b85 3333 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3334 (val == 1 || val == 0)) {
ea280e7b 3335 if (!memcg_has_children(memcg))
c0ff4b85 3336 memcg->use_hierarchy = val;
18f59ea7
BS
3337 else
3338 retval = -EBUSY;
3339 } else
3340 retval = -EINVAL;
567fb435
GC
3341
3342out:
0999821b 3343 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3344
3345 return retval;
3346}
3347
3e32cb2e
JW
3348static unsigned long tree_stat(struct mem_cgroup *memcg,
3349 enum mem_cgroup_stat_index idx)
ce00a967
JW
3350{
3351 struct mem_cgroup *iter;
3352 long val = 0;
3353
3354 /* Per-cpu values can be negative, use a signed accumulator */
3355 for_each_mem_cgroup_tree(iter, memcg)
3356 val += mem_cgroup_read_stat(iter, idx);
3357
3358 if (val < 0) /* race ? */
3359 val = 0;
3360 return val;
3361}
3362
3363static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3364{
3365 u64 val;
3366
3e32cb2e
JW
3367 if (mem_cgroup_is_root(memcg)) {
3368 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3369 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3370 if (swap)
3371 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3372 } else {
ce00a967 3373 if (!swap)
3e32cb2e 3374 val = page_counter_read(&memcg->memory);
ce00a967 3375 else
3e32cb2e 3376 val = page_counter_read(&memcg->memsw);
ce00a967 3377 }
ce00a967
JW
3378 return val << PAGE_SHIFT;
3379}
3380
3e32cb2e
JW
3381enum {
3382 RES_USAGE,
3383 RES_LIMIT,
3384 RES_MAX_USAGE,
3385 RES_FAILCNT,
3386 RES_SOFT_LIMIT,
3387};
ce00a967 3388
791badbd 3389static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3390 struct cftype *cft)
8cdea7c0 3391{
182446d0 3392 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3393 struct page_counter *counter;
af36f906 3394
3e32cb2e 3395 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3396 case _MEM:
3e32cb2e
JW
3397 counter = &memcg->memory;
3398 break;
8c7c6e34 3399 case _MEMSWAP:
3e32cb2e
JW
3400 counter = &memcg->memsw;
3401 break;
510fc4e1 3402 case _KMEM:
3e32cb2e 3403 counter = &memcg->kmem;
510fc4e1 3404 break;
8c7c6e34
KH
3405 default:
3406 BUG();
8c7c6e34 3407 }
3e32cb2e
JW
3408
3409 switch (MEMFILE_ATTR(cft->private)) {
3410 case RES_USAGE:
3411 if (counter == &memcg->memory)
3412 return mem_cgroup_usage(memcg, false);
3413 if (counter == &memcg->memsw)
3414 return mem_cgroup_usage(memcg, true);
3415 return (u64)page_counter_read(counter) * PAGE_SIZE;
3416 case RES_LIMIT:
3417 return (u64)counter->limit * PAGE_SIZE;
3418 case RES_MAX_USAGE:
3419 return (u64)counter->watermark * PAGE_SIZE;
3420 case RES_FAILCNT:
3421 return counter->failcnt;
3422 case RES_SOFT_LIMIT:
3423 return (u64)memcg->soft_limit * PAGE_SIZE;
3424 default:
3425 BUG();
3426 }
8cdea7c0 3427}
510fc4e1 3428
510fc4e1 3429#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3430static int memcg_activate_kmem(struct mem_cgroup *memcg,
3431 unsigned long nr_pages)
d6441637
VD
3432{
3433 int err = 0;
3434 int memcg_id;
3435
3436 if (memcg_kmem_is_active(memcg))
3437 return 0;
3438
510fc4e1
GC
3439 /*
3440 * For simplicity, we won't allow this to be disabled. It also can't
3441 * be changed if the cgroup has children already, or if tasks had
3442 * already joined.
3443 *
3444 * If tasks join before we set the limit, a person looking at
3445 * kmem.usage_in_bytes will have no way to determine when it took
3446 * place, which makes the value quite meaningless.
3447 *
3448 * After it first became limited, changes in the value of the limit are
3449 * of course permitted.
510fc4e1 3450 */
0999821b 3451 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3452 if (cgroup_has_tasks(memcg->css.cgroup) ||
3453 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3454 err = -EBUSY;
3455 mutex_unlock(&memcg_create_mutex);
3456 if (err)
3457 goto out;
510fc4e1 3458
f3bb3043 3459 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3460 if (memcg_id < 0) {
3461 err = memcg_id;
3462 goto out;
3463 }
3464
d6441637 3465 /*
900a38f0
VD
3466 * We couldn't have accounted to this cgroup, because it hasn't got
3467 * activated yet, so this should succeed.
d6441637 3468 */
3e32cb2e 3469 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3470 VM_BUG_ON(err);
3471
3472 static_key_slow_inc(&memcg_kmem_enabled_key);
3473 /*
900a38f0
VD
3474 * A memory cgroup is considered kmem-active as soon as it gets
3475 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3476 * guarantee no one starts accounting before all call sites are
3477 * patched.
3478 */
900a38f0 3479 memcg->kmemcg_id = memcg_id;
510fc4e1 3480out:
d6441637 3481 return err;
d6441637
VD
3482}
3483
d6441637 3484static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3485 unsigned long limit)
d6441637
VD
3486{
3487 int ret;
3488
3e32cb2e 3489 mutex_lock(&memcg_limit_mutex);
d6441637 3490 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3491 ret = memcg_activate_kmem(memcg, limit);
d6441637 3492 else
3e32cb2e
JW
3493 ret = page_counter_limit(&memcg->kmem, limit);
3494 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3495 return ret;
3496}
3497
55007d84 3498static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3499{
55007d84 3500 int ret = 0;
510fc4e1 3501 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3502
d6441637
VD
3503 if (!parent)
3504 return 0;
55007d84 3505
8c0145b6 3506 mutex_lock(&memcg_limit_mutex);
55007d84 3507 /*
d6441637
VD
3508 * If the parent cgroup is not kmem-active now, it cannot be activated
3509 * after this point, because it has at least one child already.
55007d84 3510 */
d6441637 3511 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3512 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3513 mutex_unlock(&memcg_limit_mutex);
55007d84 3514 return ret;
510fc4e1 3515}
d6441637
VD
3516#else
3517static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3518 unsigned long limit)
d6441637
VD
3519{
3520 return -EINVAL;
3521}
6d043990 3522#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3523
628f4235
KH
3524/*
3525 * The user of this function is...
3526 * RES_LIMIT.
3527 */
451af504
TH
3528static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3529 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3530{
451af504 3531 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3532 unsigned long nr_pages;
628f4235
KH
3533 int ret;
3534
451af504 3535 buf = strstrip(buf);
3e32cb2e
JW
3536 ret = page_counter_memparse(buf, &nr_pages);
3537 if (ret)
3538 return ret;
af36f906 3539
3e32cb2e 3540 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3541 case RES_LIMIT:
4b3bde4c
BS
3542 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3543 ret = -EINVAL;
3544 break;
3545 }
3e32cb2e
JW
3546 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3547 case _MEM:
3548 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3549 break;
3e32cb2e
JW
3550 case _MEMSWAP:
3551 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3552 break;
3e32cb2e
JW
3553 case _KMEM:
3554 ret = memcg_update_kmem_limit(memcg, nr_pages);
3555 break;
3556 }
296c81d8 3557 break;
3e32cb2e
JW
3558 case RES_SOFT_LIMIT:
3559 memcg->soft_limit = nr_pages;
3560 ret = 0;
628f4235
KH
3561 break;
3562 }
451af504 3563 return ret ?: nbytes;
8cdea7c0
BS
3564}
3565
6770c64e
TH
3566static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3567 size_t nbytes, loff_t off)
c84872e1 3568{
6770c64e 3569 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3570 struct page_counter *counter;
c84872e1 3571
3e32cb2e
JW
3572 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3573 case _MEM:
3574 counter = &memcg->memory;
3575 break;
3576 case _MEMSWAP:
3577 counter = &memcg->memsw;
3578 break;
3579 case _KMEM:
3580 counter = &memcg->kmem;
3581 break;
3582 default:
3583 BUG();
3584 }
af36f906 3585
3e32cb2e 3586 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3587 case RES_MAX_USAGE:
3e32cb2e 3588 page_counter_reset_watermark(counter);
29f2a4da
PE
3589 break;
3590 case RES_FAILCNT:
3e32cb2e 3591 counter->failcnt = 0;
29f2a4da 3592 break;
3e32cb2e
JW
3593 default:
3594 BUG();
29f2a4da 3595 }
f64c3f54 3596
6770c64e 3597 return nbytes;
c84872e1
PE
3598}
3599
182446d0 3600static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3601 struct cftype *cft)
3602{
182446d0 3603 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3604}
3605
02491447 3606#ifdef CONFIG_MMU
182446d0 3607static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3608 struct cftype *cft, u64 val)
3609{
182446d0 3610 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
3611
3612 if (val >= (1 << NR_MOVE_TYPE))
3613 return -EINVAL;
ee5e8472 3614
7dc74be0 3615 /*
ee5e8472
GC
3616 * No kind of locking is needed in here, because ->can_attach() will
3617 * check this value once in the beginning of the process, and then carry
3618 * on with stale data. This means that changes to this value will only
3619 * affect task migrations starting after the change.
7dc74be0 3620 */
c0ff4b85 3621 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3622 return 0;
3623}
02491447 3624#else
182446d0 3625static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3626 struct cftype *cft, u64 val)
3627{
3628 return -ENOSYS;
3629}
3630#endif
7dc74be0 3631
406eb0c9 3632#ifdef CONFIG_NUMA
2da8ca82 3633static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3634{
25485de6
GT
3635 struct numa_stat {
3636 const char *name;
3637 unsigned int lru_mask;
3638 };
3639
3640 static const struct numa_stat stats[] = {
3641 { "total", LRU_ALL },
3642 { "file", LRU_ALL_FILE },
3643 { "anon", LRU_ALL_ANON },
3644 { "unevictable", BIT(LRU_UNEVICTABLE) },
3645 };
3646 const struct numa_stat *stat;
406eb0c9 3647 int nid;
25485de6 3648 unsigned long nr;
2da8ca82 3649 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3650
25485de6
GT
3651 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3652 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3653 seq_printf(m, "%s=%lu", stat->name, nr);
3654 for_each_node_state(nid, N_MEMORY) {
3655 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3656 stat->lru_mask);
3657 seq_printf(m, " N%d=%lu", nid, nr);
3658 }
3659 seq_putc(m, '\n');
406eb0c9 3660 }
406eb0c9 3661
071aee13
YH
3662 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3663 struct mem_cgroup *iter;
3664
3665 nr = 0;
3666 for_each_mem_cgroup_tree(iter, memcg)
3667 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3668 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3669 for_each_node_state(nid, N_MEMORY) {
3670 nr = 0;
3671 for_each_mem_cgroup_tree(iter, memcg)
3672 nr += mem_cgroup_node_nr_lru_pages(
3673 iter, nid, stat->lru_mask);
3674 seq_printf(m, " N%d=%lu", nid, nr);
3675 }
3676 seq_putc(m, '\n');
406eb0c9 3677 }
406eb0c9 3678
406eb0c9
YH
3679 return 0;
3680}
3681#endif /* CONFIG_NUMA */
3682
2da8ca82 3683static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3684{
2da8ca82 3685 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3686 unsigned long memory, memsw;
af7c4b0e
JW
3687 struct mem_cgroup *mi;
3688 unsigned int i;
406eb0c9 3689
70bc068c
RS
3690 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3691
af7c4b0e 3692 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3693 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3694 continue;
af7c4b0e
JW
3695 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3696 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3697 }
7b854121 3698
af7c4b0e
JW
3699 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3700 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3701 mem_cgroup_read_events(memcg, i));
3702
3703 for (i = 0; i < NR_LRU_LISTS; i++)
3704 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3705 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3706
14067bb3 3707 /* Hierarchical information */
3e32cb2e
JW
3708 memory = memsw = PAGE_COUNTER_MAX;
3709 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3710 memory = min(memory, mi->memory.limit);
3711 memsw = min(memsw, mi->memsw.limit);
fee7b548 3712 }
3e32cb2e
JW
3713 seq_printf(m, "hierarchical_memory_limit %llu\n",
3714 (u64)memory * PAGE_SIZE);
3715 if (do_swap_account)
3716 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3717 (u64)memsw * PAGE_SIZE);
7f016ee8 3718
af7c4b0e
JW
3719 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3720 long long val = 0;
3721
bff6bb83 3722 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3723 continue;
af7c4b0e
JW
3724 for_each_mem_cgroup_tree(mi, memcg)
3725 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3726 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3727 }
3728
3729 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3730 unsigned long long val = 0;
3731
3732 for_each_mem_cgroup_tree(mi, memcg)
3733 val += mem_cgroup_read_events(mi, i);
3734 seq_printf(m, "total_%s %llu\n",
3735 mem_cgroup_events_names[i], val);
3736 }
3737
3738 for (i = 0; i < NR_LRU_LISTS; i++) {
3739 unsigned long long val = 0;
3740
3741 for_each_mem_cgroup_tree(mi, memcg)
3742 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3743 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3744 }
14067bb3 3745
7f016ee8 3746#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3747 {
3748 int nid, zid;
3749 struct mem_cgroup_per_zone *mz;
89abfab1 3750 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3751 unsigned long recent_rotated[2] = {0, 0};
3752 unsigned long recent_scanned[2] = {0, 0};
3753
3754 for_each_online_node(nid)
3755 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3756 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3757 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3758
89abfab1
HD
3759 recent_rotated[0] += rstat->recent_rotated[0];
3760 recent_rotated[1] += rstat->recent_rotated[1];
3761 recent_scanned[0] += rstat->recent_scanned[0];
3762 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3763 }
78ccf5b5
JW
3764 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3765 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3766 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3767 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3768 }
3769#endif
3770
d2ceb9b7
KH
3771 return 0;
3772}
3773
182446d0
TH
3774static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3775 struct cftype *cft)
a7885eb8 3776{
182446d0 3777 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3778
1f4c025b 3779 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3780}
3781
182446d0
TH
3782static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3783 struct cftype *cft, u64 val)
a7885eb8 3784{
182446d0 3785 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3786
3dae7fec 3787 if (val > 100)
a7885eb8
KM
3788 return -EINVAL;
3789
14208b0e 3790 if (css->parent)
3dae7fec
JW
3791 memcg->swappiness = val;
3792 else
3793 vm_swappiness = val;
068b38c1 3794
a7885eb8
KM
3795 return 0;
3796}
3797
2e72b634
KS
3798static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3799{
3800 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3801 unsigned long usage;
2e72b634
KS
3802 int i;
3803
3804 rcu_read_lock();
3805 if (!swap)
2c488db2 3806 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3807 else
2c488db2 3808 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3809
3810 if (!t)
3811 goto unlock;
3812
ce00a967 3813 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3814
3815 /*
748dad36 3816 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3817 * If it's not true, a threshold was crossed after last
3818 * call of __mem_cgroup_threshold().
3819 */
5407a562 3820 i = t->current_threshold;
2e72b634
KS
3821
3822 /*
3823 * Iterate backward over array of thresholds starting from
3824 * current_threshold and check if a threshold is crossed.
3825 * If none of thresholds below usage is crossed, we read
3826 * only one element of the array here.
3827 */
3828 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3829 eventfd_signal(t->entries[i].eventfd, 1);
3830
3831 /* i = current_threshold + 1 */
3832 i++;
3833
3834 /*
3835 * Iterate forward over array of thresholds starting from
3836 * current_threshold+1 and check if a threshold is crossed.
3837 * If none of thresholds above usage is crossed, we read
3838 * only one element of the array here.
3839 */
3840 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3841 eventfd_signal(t->entries[i].eventfd, 1);
3842
3843 /* Update current_threshold */
5407a562 3844 t->current_threshold = i - 1;
2e72b634
KS
3845unlock:
3846 rcu_read_unlock();
3847}
3848
3849static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3850{
ad4ca5f4
KS
3851 while (memcg) {
3852 __mem_cgroup_threshold(memcg, false);
3853 if (do_swap_account)
3854 __mem_cgroup_threshold(memcg, true);
3855
3856 memcg = parent_mem_cgroup(memcg);
3857 }
2e72b634
KS
3858}
3859
3860static int compare_thresholds(const void *a, const void *b)
3861{
3862 const struct mem_cgroup_threshold *_a = a;
3863 const struct mem_cgroup_threshold *_b = b;
3864
2bff24a3
GT
3865 if (_a->threshold > _b->threshold)
3866 return 1;
3867
3868 if (_a->threshold < _b->threshold)
3869 return -1;
3870
3871 return 0;
2e72b634
KS
3872}
3873
c0ff4b85 3874static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3875{
3876 struct mem_cgroup_eventfd_list *ev;
3877
2bcf2e92
MH
3878 spin_lock(&memcg_oom_lock);
3879
c0ff4b85 3880 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3881 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3882
3883 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3884 return 0;
3885}
3886
c0ff4b85 3887static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3888{
7d74b06f
KH
3889 struct mem_cgroup *iter;
3890
c0ff4b85 3891 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3892 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3893}
3894
59b6f873 3895static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3896 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3897{
2c488db2
KS
3898 struct mem_cgroup_thresholds *thresholds;
3899 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3900 unsigned long threshold;
3901 unsigned long usage;
2c488db2 3902 int i, size, ret;
2e72b634 3903
3e32cb2e 3904 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
3905 if (ret)
3906 return ret;
3907
3908 mutex_lock(&memcg->thresholds_lock);
2c488db2 3909
05b84301 3910 if (type == _MEM) {
2c488db2 3911 thresholds = &memcg->thresholds;
ce00a967 3912 usage = mem_cgroup_usage(memcg, false);
05b84301 3913 } else if (type == _MEMSWAP) {
2c488db2 3914 thresholds = &memcg->memsw_thresholds;
ce00a967 3915 usage = mem_cgroup_usage(memcg, true);
05b84301 3916 } else
2e72b634
KS
3917 BUG();
3918
2e72b634 3919 /* Check if a threshold crossed before adding a new one */
2c488db2 3920 if (thresholds->primary)
2e72b634
KS
3921 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3922
2c488db2 3923 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3924
3925 /* Allocate memory for new array of thresholds */
2c488db2 3926 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3927 GFP_KERNEL);
2c488db2 3928 if (!new) {
2e72b634
KS
3929 ret = -ENOMEM;
3930 goto unlock;
3931 }
2c488db2 3932 new->size = size;
2e72b634
KS
3933
3934 /* Copy thresholds (if any) to new array */
2c488db2
KS
3935 if (thresholds->primary) {
3936 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3937 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3938 }
3939
2e72b634 3940 /* Add new threshold */
2c488db2
KS
3941 new->entries[size - 1].eventfd = eventfd;
3942 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3943
3944 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3945 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3946 compare_thresholds, NULL);
3947
3948 /* Find current threshold */
2c488db2 3949 new->current_threshold = -1;
2e72b634 3950 for (i = 0; i < size; i++) {
748dad36 3951 if (new->entries[i].threshold <= usage) {
2e72b634 3952 /*
2c488db2
KS
3953 * new->current_threshold will not be used until
3954 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3955 * it here.
3956 */
2c488db2 3957 ++new->current_threshold;
748dad36
SZ
3958 } else
3959 break;
2e72b634
KS
3960 }
3961
2c488db2
KS
3962 /* Free old spare buffer and save old primary buffer as spare */
3963 kfree(thresholds->spare);
3964 thresholds->spare = thresholds->primary;
3965
3966 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3967
907860ed 3968 /* To be sure that nobody uses thresholds */
2e72b634
KS
3969 synchronize_rcu();
3970
2e72b634
KS
3971unlock:
3972 mutex_unlock(&memcg->thresholds_lock);
3973
3974 return ret;
3975}
3976
59b6f873 3977static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3978 struct eventfd_ctx *eventfd, const char *args)
3979{
59b6f873 3980 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3981}
3982
59b6f873 3983static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3984 struct eventfd_ctx *eventfd, const char *args)
3985{
59b6f873 3986 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3987}
3988
59b6f873 3989static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3990 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3991{
2c488db2
KS
3992 struct mem_cgroup_thresholds *thresholds;
3993 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3994 unsigned long usage;
2c488db2 3995 int i, j, size;
2e72b634
KS
3996
3997 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3998
3999 if (type == _MEM) {
2c488db2 4000 thresholds = &memcg->thresholds;
ce00a967 4001 usage = mem_cgroup_usage(memcg, false);
05b84301 4002 } else if (type == _MEMSWAP) {
2c488db2 4003 thresholds = &memcg->memsw_thresholds;
ce00a967 4004 usage = mem_cgroup_usage(memcg, true);
05b84301 4005 } else
2e72b634
KS
4006 BUG();
4007
371528ca
AV
4008 if (!thresholds->primary)
4009 goto unlock;
4010
2e72b634
KS
4011 /* Check if a threshold crossed before removing */
4012 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4013
4014 /* Calculate new number of threshold */
2c488db2
KS
4015 size = 0;
4016 for (i = 0; i < thresholds->primary->size; i++) {
4017 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4018 size++;
4019 }
4020
2c488db2 4021 new = thresholds->spare;
907860ed 4022
2e72b634
KS
4023 /* Set thresholds array to NULL if we don't have thresholds */
4024 if (!size) {
2c488db2
KS
4025 kfree(new);
4026 new = NULL;
907860ed 4027 goto swap_buffers;
2e72b634
KS
4028 }
4029
2c488db2 4030 new->size = size;
2e72b634
KS
4031
4032 /* Copy thresholds and find current threshold */
2c488db2
KS
4033 new->current_threshold = -1;
4034 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4035 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4036 continue;
4037
2c488db2 4038 new->entries[j] = thresholds->primary->entries[i];
748dad36 4039 if (new->entries[j].threshold <= usage) {
2e72b634 4040 /*
2c488db2 4041 * new->current_threshold will not be used
2e72b634
KS
4042 * until rcu_assign_pointer(), so it's safe to increment
4043 * it here.
4044 */
2c488db2 4045 ++new->current_threshold;
2e72b634
KS
4046 }
4047 j++;
4048 }
4049
907860ed 4050swap_buffers:
2c488db2
KS
4051 /* Swap primary and spare array */
4052 thresholds->spare = thresholds->primary;
8c757763
SZ
4053 /* If all events are unregistered, free the spare array */
4054 if (!new) {
4055 kfree(thresholds->spare);
4056 thresholds->spare = NULL;
4057 }
4058
2c488db2 4059 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4060
907860ed 4061 /* To be sure that nobody uses thresholds */
2e72b634 4062 synchronize_rcu();
371528ca 4063unlock:
2e72b634 4064 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4065}
c1e862c1 4066
59b6f873 4067static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4068 struct eventfd_ctx *eventfd)
4069{
59b6f873 4070 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4071}
4072
59b6f873 4073static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4074 struct eventfd_ctx *eventfd)
4075{
59b6f873 4076 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4077}
4078
59b6f873 4079static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4080 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4081{
9490ff27 4082 struct mem_cgroup_eventfd_list *event;
9490ff27 4083
9490ff27
KH
4084 event = kmalloc(sizeof(*event), GFP_KERNEL);
4085 if (!event)
4086 return -ENOMEM;
4087
1af8efe9 4088 spin_lock(&memcg_oom_lock);
9490ff27
KH
4089
4090 event->eventfd = eventfd;
4091 list_add(&event->list, &memcg->oom_notify);
4092
4093 /* already in OOM ? */
79dfdacc 4094 if (atomic_read(&memcg->under_oom))
9490ff27 4095 eventfd_signal(eventfd, 1);
1af8efe9 4096 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4097
4098 return 0;
4099}
4100
59b6f873 4101static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4102 struct eventfd_ctx *eventfd)
9490ff27 4103{
9490ff27 4104 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4105
1af8efe9 4106 spin_lock(&memcg_oom_lock);
9490ff27 4107
c0ff4b85 4108 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4109 if (ev->eventfd == eventfd) {
4110 list_del(&ev->list);
4111 kfree(ev);
4112 }
4113 }
4114
1af8efe9 4115 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4116}
4117
2da8ca82 4118static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4119{
2da8ca82 4120 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4121
791badbd
TH
4122 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4123 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4124 return 0;
4125}
4126
182446d0 4127static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4128 struct cftype *cft, u64 val)
4129{
182446d0 4130 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4131
4132 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4133 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4134 return -EINVAL;
4135
c0ff4b85 4136 memcg->oom_kill_disable = val;
4d845ebf 4137 if (!val)
c0ff4b85 4138 memcg_oom_recover(memcg);
3dae7fec 4139
3c11ecf4
KH
4140 return 0;
4141}
4142
c255a458 4143#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4144static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4145{
55007d84
GC
4146 int ret;
4147
55007d84
GC
4148 ret = memcg_propagate_kmem(memcg);
4149 if (ret)
4150 return ret;
2633d7a0 4151
1d62e436 4152 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4153}
e5671dfa 4154
10d5ebf4 4155static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4156{
8135be5a 4157 memcg_unregister_all_caches(memcg);
1d62e436 4158 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4159}
e5671dfa 4160#else
cbe128e3 4161static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4162{
4163 return 0;
4164}
d1a4c0b3 4165
10d5ebf4
LZ
4166static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4167{
4168}
e5671dfa
GC
4169#endif
4170
3bc942f3
TH
4171/*
4172 * DO NOT USE IN NEW FILES.
4173 *
4174 * "cgroup.event_control" implementation.
4175 *
4176 * This is way over-engineered. It tries to support fully configurable
4177 * events for each user. Such level of flexibility is completely
4178 * unnecessary especially in the light of the planned unified hierarchy.
4179 *
4180 * Please deprecate this and replace with something simpler if at all
4181 * possible.
4182 */
4183
79bd9814
TH
4184/*
4185 * Unregister event and free resources.
4186 *
4187 * Gets called from workqueue.
4188 */
3bc942f3 4189static void memcg_event_remove(struct work_struct *work)
79bd9814 4190{
3bc942f3
TH
4191 struct mem_cgroup_event *event =
4192 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4193 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4194
4195 remove_wait_queue(event->wqh, &event->wait);
4196
59b6f873 4197 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4198
4199 /* Notify userspace the event is going away. */
4200 eventfd_signal(event->eventfd, 1);
4201
4202 eventfd_ctx_put(event->eventfd);
4203 kfree(event);
59b6f873 4204 css_put(&memcg->css);
79bd9814
TH
4205}
4206
4207/*
4208 * Gets called on POLLHUP on eventfd when user closes it.
4209 *
4210 * Called with wqh->lock held and interrupts disabled.
4211 */
3bc942f3
TH
4212static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4213 int sync, void *key)
79bd9814 4214{
3bc942f3
TH
4215 struct mem_cgroup_event *event =
4216 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4217 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4218 unsigned long flags = (unsigned long)key;
4219
4220 if (flags & POLLHUP) {
4221 /*
4222 * If the event has been detached at cgroup removal, we
4223 * can simply return knowing the other side will cleanup
4224 * for us.
4225 *
4226 * We can't race against event freeing since the other
4227 * side will require wqh->lock via remove_wait_queue(),
4228 * which we hold.
4229 */
fba94807 4230 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4231 if (!list_empty(&event->list)) {
4232 list_del_init(&event->list);
4233 /*
4234 * We are in atomic context, but cgroup_event_remove()
4235 * may sleep, so we have to call it in workqueue.
4236 */
4237 schedule_work(&event->remove);
4238 }
fba94807 4239 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4240 }
4241
4242 return 0;
4243}
4244
3bc942f3 4245static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4246 wait_queue_head_t *wqh, poll_table *pt)
4247{
3bc942f3
TH
4248 struct mem_cgroup_event *event =
4249 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4250
4251 event->wqh = wqh;
4252 add_wait_queue(wqh, &event->wait);
4253}
4254
4255/*
3bc942f3
TH
4256 * DO NOT USE IN NEW FILES.
4257 *
79bd9814
TH
4258 * Parse input and register new cgroup event handler.
4259 *
4260 * Input must be in format '<event_fd> <control_fd> <args>'.
4261 * Interpretation of args is defined by control file implementation.
4262 */
451af504
TH
4263static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4264 char *buf, size_t nbytes, loff_t off)
79bd9814 4265{
451af504 4266 struct cgroup_subsys_state *css = of_css(of);
fba94807 4267 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4268 struct mem_cgroup_event *event;
79bd9814
TH
4269 struct cgroup_subsys_state *cfile_css;
4270 unsigned int efd, cfd;
4271 struct fd efile;
4272 struct fd cfile;
fba94807 4273 const char *name;
79bd9814
TH
4274 char *endp;
4275 int ret;
4276
451af504
TH
4277 buf = strstrip(buf);
4278
4279 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4280 if (*endp != ' ')
4281 return -EINVAL;
451af504 4282 buf = endp + 1;
79bd9814 4283
451af504 4284 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4285 if ((*endp != ' ') && (*endp != '\0'))
4286 return -EINVAL;
451af504 4287 buf = endp + 1;
79bd9814
TH
4288
4289 event = kzalloc(sizeof(*event), GFP_KERNEL);
4290 if (!event)
4291 return -ENOMEM;
4292
59b6f873 4293 event->memcg = memcg;
79bd9814 4294 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4295 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4296 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4297 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4298
4299 efile = fdget(efd);
4300 if (!efile.file) {
4301 ret = -EBADF;
4302 goto out_kfree;
4303 }
4304
4305 event->eventfd = eventfd_ctx_fileget(efile.file);
4306 if (IS_ERR(event->eventfd)) {
4307 ret = PTR_ERR(event->eventfd);
4308 goto out_put_efile;
4309 }
4310
4311 cfile = fdget(cfd);
4312 if (!cfile.file) {
4313 ret = -EBADF;
4314 goto out_put_eventfd;
4315 }
4316
4317 /* the process need read permission on control file */
4318 /* AV: shouldn't we check that it's been opened for read instead? */
4319 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4320 if (ret < 0)
4321 goto out_put_cfile;
4322
fba94807
TH
4323 /*
4324 * Determine the event callbacks and set them in @event. This used
4325 * to be done via struct cftype but cgroup core no longer knows
4326 * about these events. The following is crude but the whole thing
4327 * is for compatibility anyway.
3bc942f3
TH
4328 *
4329 * DO NOT ADD NEW FILES.
fba94807 4330 */
b583043e 4331 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4332
4333 if (!strcmp(name, "memory.usage_in_bytes")) {
4334 event->register_event = mem_cgroup_usage_register_event;
4335 event->unregister_event = mem_cgroup_usage_unregister_event;
4336 } else if (!strcmp(name, "memory.oom_control")) {
4337 event->register_event = mem_cgroup_oom_register_event;
4338 event->unregister_event = mem_cgroup_oom_unregister_event;
4339 } else if (!strcmp(name, "memory.pressure_level")) {
4340 event->register_event = vmpressure_register_event;
4341 event->unregister_event = vmpressure_unregister_event;
4342 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4343 event->register_event = memsw_cgroup_usage_register_event;
4344 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4345 } else {
4346 ret = -EINVAL;
4347 goto out_put_cfile;
4348 }
4349
79bd9814 4350 /*
b5557c4c
TH
4351 * Verify @cfile should belong to @css. Also, remaining events are
4352 * automatically removed on cgroup destruction but the removal is
4353 * asynchronous, so take an extra ref on @css.
79bd9814 4354 */
b583043e 4355 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4356 &memory_cgrp_subsys);
79bd9814 4357 ret = -EINVAL;
5a17f543 4358 if (IS_ERR(cfile_css))
79bd9814 4359 goto out_put_cfile;
5a17f543
TH
4360 if (cfile_css != css) {
4361 css_put(cfile_css);
79bd9814 4362 goto out_put_cfile;
5a17f543 4363 }
79bd9814 4364
451af504 4365 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4366 if (ret)
4367 goto out_put_css;
4368
4369 efile.file->f_op->poll(efile.file, &event->pt);
4370
fba94807
TH
4371 spin_lock(&memcg->event_list_lock);
4372 list_add(&event->list, &memcg->event_list);
4373 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4374
4375 fdput(cfile);
4376 fdput(efile);
4377
451af504 4378 return nbytes;
79bd9814
TH
4379
4380out_put_css:
b5557c4c 4381 css_put(css);
79bd9814
TH
4382out_put_cfile:
4383 fdput(cfile);
4384out_put_eventfd:
4385 eventfd_ctx_put(event->eventfd);
4386out_put_efile:
4387 fdput(efile);
4388out_kfree:
4389 kfree(event);
4390
4391 return ret;
4392}
4393
8cdea7c0
BS
4394static struct cftype mem_cgroup_files[] = {
4395 {
0eea1030 4396 .name = "usage_in_bytes",
8c7c6e34 4397 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4398 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4399 },
c84872e1
PE
4400 {
4401 .name = "max_usage_in_bytes",
8c7c6e34 4402 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4403 .write = mem_cgroup_reset,
791badbd 4404 .read_u64 = mem_cgroup_read_u64,
c84872e1 4405 },
8cdea7c0 4406 {
0eea1030 4407 .name = "limit_in_bytes",
8c7c6e34 4408 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4409 .write = mem_cgroup_write,
791badbd 4410 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4411 },
296c81d8
BS
4412 {
4413 .name = "soft_limit_in_bytes",
4414 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4415 .write = mem_cgroup_write,
791badbd 4416 .read_u64 = mem_cgroup_read_u64,
296c81d8 4417 },
8cdea7c0
BS
4418 {
4419 .name = "failcnt",
8c7c6e34 4420 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4421 .write = mem_cgroup_reset,
791badbd 4422 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4423 },
d2ceb9b7
KH
4424 {
4425 .name = "stat",
2da8ca82 4426 .seq_show = memcg_stat_show,
d2ceb9b7 4427 },
c1e862c1
KH
4428 {
4429 .name = "force_empty",
6770c64e 4430 .write = mem_cgroup_force_empty_write,
c1e862c1 4431 },
18f59ea7
BS
4432 {
4433 .name = "use_hierarchy",
4434 .write_u64 = mem_cgroup_hierarchy_write,
4435 .read_u64 = mem_cgroup_hierarchy_read,
4436 },
79bd9814 4437 {
3bc942f3 4438 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4439 .write = memcg_write_event_control,
79bd9814
TH
4440 .flags = CFTYPE_NO_PREFIX,
4441 .mode = S_IWUGO,
4442 },
a7885eb8
KM
4443 {
4444 .name = "swappiness",
4445 .read_u64 = mem_cgroup_swappiness_read,
4446 .write_u64 = mem_cgroup_swappiness_write,
4447 },
7dc74be0
DN
4448 {
4449 .name = "move_charge_at_immigrate",
4450 .read_u64 = mem_cgroup_move_charge_read,
4451 .write_u64 = mem_cgroup_move_charge_write,
4452 },
9490ff27
KH
4453 {
4454 .name = "oom_control",
2da8ca82 4455 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4456 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4457 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4458 },
70ddf637
AV
4459 {
4460 .name = "pressure_level",
70ddf637 4461 },
406eb0c9
YH
4462#ifdef CONFIG_NUMA
4463 {
4464 .name = "numa_stat",
2da8ca82 4465 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4466 },
4467#endif
510fc4e1
GC
4468#ifdef CONFIG_MEMCG_KMEM
4469 {
4470 .name = "kmem.limit_in_bytes",
4471 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4472 .write = mem_cgroup_write,
791badbd 4473 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4474 },
4475 {
4476 .name = "kmem.usage_in_bytes",
4477 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4478 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4479 },
4480 {
4481 .name = "kmem.failcnt",
4482 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4483 .write = mem_cgroup_reset,
791badbd 4484 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4485 },
4486 {
4487 .name = "kmem.max_usage_in_bytes",
4488 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4489 .write = mem_cgroup_reset,
791badbd 4490 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4491 },
749c5415
GC
4492#ifdef CONFIG_SLABINFO
4493 {
4494 .name = "kmem.slabinfo",
b047501c
VD
4495 .seq_start = slab_start,
4496 .seq_next = slab_next,
4497 .seq_stop = slab_stop,
4498 .seq_show = memcg_slab_show,
749c5415
GC
4499 },
4500#endif
8c7c6e34 4501#endif
6bc10349 4502 { }, /* terminate */
af36f906 4503};
8c7c6e34 4504
2d11085e
MH
4505#ifdef CONFIG_MEMCG_SWAP
4506static struct cftype memsw_cgroup_files[] = {
4507 {
4508 .name = "memsw.usage_in_bytes",
4509 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 4510 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4511 },
4512 {
4513 .name = "memsw.max_usage_in_bytes",
4514 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 4515 .write = mem_cgroup_reset,
791badbd 4516 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4517 },
4518 {
4519 .name = "memsw.limit_in_bytes",
4520 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 4521 .write = mem_cgroup_write,
791badbd 4522 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4523 },
4524 {
4525 .name = "memsw.failcnt",
4526 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 4527 .write = mem_cgroup_reset,
791badbd 4528 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4529 },
4530 { }, /* terminate */
4531};
4532#endif
c0ff4b85 4533static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4534{
4535 struct mem_cgroup_per_node *pn;
1ecaab2b 4536 struct mem_cgroup_per_zone *mz;
41e3355d 4537 int zone, tmp = node;
1ecaab2b
KH
4538 /*
4539 * This routine is called against possible nodes.
4540 * But it's BUG to call kmalloc() against offline node.
4541 *
4542 * TODO: this routine can waste much memory for nodes which will
4543 * never be onlined. It's better to use memory hotplug callback
4544 * function.
4545 */
41e3355d
KH
4546 if (!node_state(node, N_NORMAL_MEMORY))
4547 tmp = -1;
17295c88 4548 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4549 if (!pn)
4550 return 1;
1ecaab2b 4551
1ecaab2b
KH
4552 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4553 mz = &pn->zoneinfo[zone];
bea8c150 4554 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4555 mz->usage_in_excess = 0;
4556 mz->on_tree = false;
d79154bb 4557 mz->memcg = memcg;
1ecaab2b 4558 }
54f72fe0 4559 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4560 return 0;
4561}
4562
c0ff4b85 4563static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4564{
54f72fe0 4565 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4566}
4567
33327948
KH
4568static struct mem_cgroup *mem_cgroup_alloc(void)
4569{
d79154bb 4570 struct mem_cgroup *memcg;
8ff69e2c 4571 size_t size;
33327948 4572
8ff69e2c
VD
4573 size = sizeof(struct mem_cgroup);
4574 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4575
8ff69e2c 4576 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4577 if (!memcg)
e7bbcdf3
DC
4578 return NULL;
4579
d79154bb
HD
4580 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4581 if (!memcg->stat)
d2e61b8d 4582 goto out_free;
d79154bb
HD
4583 spin_lock_init(&memcg->pcp_counter_lock);
4584 return memcg;
d2e61b8d
DC
4585
4586out_free:
8ff69e2c 4587 kfree(memcg);
d2e61b8d 4588 return NULL;
33327948
KH
4589}
4590
59927fb9 4591/*
c8b2a36f
GC
4592 * At destroying mem_cgroup, references from swap_cgroup can remain.
4593 * (scanning all at force_empty is too costly...)
4594 *
4595 * Instead of clearing all references at force_empty, we remember
4596 * the number of reference from swap_cgroup and free mem_cgroup when
4597 * it goes down to 0.
4598 *
4599 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4600 */
c8b2a36f
GC
4601
4602static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4603{
c8b2a36f 4604 int node;
59927fb9 4605
bb4cc1a8 4606 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4607
4608 for_each_node(node)
4609 free_mem_cgroup_per_zone_info(memcg, node);
4610
4611 free_percpu(memcg->stat);
4612
a8964b9b 4613 disarm_static_keys(memcg);
8ff69e2c 4614 kfree(memcg);
59927fb9 4615}
3afe36b1 4616
7bcc1bb1
DN
4617/*
4618 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4619 */
e1aab161 4620struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4621{
3e32cb2e 4622 if (!memcg->memory.parent)
7bcc1bb1 4623 return NULL;
3e32cb2e 4624 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4625}
e1aab161 4626EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4627
bb4cc1a8
AM
4628static void __init mem_cgroup_soft_limit_tree_init(void)
4629{
4630 struct mem_cgroup_tree_per_node *rtpn;
4631 struct mem_cgroup_tree_per_zone *rtpz;
4632 int tmp, node, zone;
4633
4634 for_each_node(node) {
4635 tmp = node;
4636 if (!node_state(node, N_NORMAL_MEMORY))
4637 tmp = -1;
4638 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4639 BUG_ON(!rtpn);
4640
4641 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4642
4643 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4644 rtpz = &rtpn->rb_tree_per_zone[zone];
4645 rtpz->rb_root = RB_ROOT;
4646 spin_lock_init(&rtpz->lock);
4647 }
4648 }
4649}
4650
0eb253e2 4651static struct cgroup_subsys_state * __ref
eb95419b 4652mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4653{
d142e3e6 4654 struct mem_cgroup *memcg;
04046e1a 4655 long error = -ENOMEM;
6d12e2d8 4656 int node;
8cdea7c0 4657
c0ff4b85
R
4658 memcg = mem_cgroup_alloc();
4659 if (!memcg)
04046e1a 4660 return ERR_PTR(error);
78fb7466 4661
3ed28fa1 4662 for_each_node(node)
c0ff4b85 4663 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4664 goto free_out;
f64c3f54 4665
c077719b 4666 /* root ? */
eb95419b 4667 if (parent_css == NULL) {
a41c58a6 4668 root_mem_cgroup = memcg;
3e32cb2e 4669 page_counter_init(&memcg->memory, NULL);
24d404dc 4670 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4671 page_counter_init(&memcg->memsw, NULL);
4672 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4673 }
28dbc4b6 4674
d142e3e6
GC
4675 memcg->last_scanned_node = MAX_NUMNODES;
4676 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4677 memcg->move_charge_at_immigrate = 0;
4678 mutex_init(&memcg->thresholds_lock);
4679 spin_lock_init(&memcg->move_lock);
70ddf637 4680 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4681 INIT_LIST_HEAD(&memcg->event_list);
4682 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4683#ifdef CONFIG_MEMCG_KMEM
4684 memcg->kmemcg_id = -1;
4685 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4686#endif
d142e3e6
GC
4687
4688 return &memcg->css;
4689
4690free_out:
4691 __mem_cgroup_free(memcg);
4692 return ERR_PTR(error);
4693}
4694
4695static int
eb95419b 4696mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4697{
eb95419b 4698 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4699 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4700 int ret;
d142e3e6 4701
15a4c835 4702 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4703 return -ENOSPC;
4704
63876986 4705 if (!parent)
d142e3e6
GC
4706 return 0;
4707
0999821b 4708 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4709
4710 memcg->use_hierarchy = parent->use_hierarchy;
4711 memcg->oom_kill_disable = parent->oom_kill_disable;
4712 memcg->swappiness = mem_cgroup_swappiness(parent);
4713
4714 if (parent->use_hierarchy) {
3e32cb2e 4715 page_counter_init(&memcg->memory, &parent->memory);
24d404dc 4716 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4717 page_counter_init(&memcg->memsw, &parent->memsw);
4718 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4719
7bcc1bb1 4720 /*
8d76a979
LZ
4721 * No need to take a reference to the parent because cgroup
4722 * core guarantees its existence.
7bcc1bb1 4723 */
18f59ea7 4724 } else {
3e32cb2e 4725 page_counter_init(&memcg->memory, NULL);
24d404dc 4726 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4727 page_counter_init(&memcg->memsw, NULL);
4728 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4729 /*
4730 * Deeper hierachy with use_hierarchy == false doesn't make
4731 * much sense so let cgroup subsystem know about this
4732 * unfortunate state in our controller.
4733 */
d142e3e6 4734 if (parent != root_mem_cgroup)
073219e9 4735 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4736 }
0999821b 4737 mutex_unlock(&memcg_create_mutex);
d6441637 4738
2f7dd7a4
JW
4739 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4740 if (ret)
4741 return ret;
4742
4743 /*
4744 * Make sure the memcg is initialized: mem_cgroup_iter()
4745 * orders reading memcg->initialized against its callers
4746 * reading the memcg members.
4747 */
4748 smp_store_release(&memcg->initialized, 1);
4749
4750 return 0;
8cdea7c0
BS
4751}
4752
eb95419b 4753static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4754{
eb95419b 4755 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4756 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4757
4758 /*
4759 * Unregister events and notify userspace.
4760 * Notify userspace about cgroup removing only after rmdir of cgroup
4761 * directory to avoid race between userspace and kernelspace.
4762 */
fba94807
TH
4763 spin_lock(&memcg->event_list_lock);
4764 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4765 list_del_init(&event->list);
4766 schedule_work(&event->remove);
4767 }
fba94807 4768 spin_unlock(&memcg->event_list_lock);
ec64f515 4769
33cb876e 4770 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
4771}
4772
eb95419b 4773static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4774{
eb95419b 4775 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4776
10d5ebf4 4777 memcg_destroy_kmem(memcg);
465939a1 4778 __mem_cgroup_free(memcg);
8cdea7c0
BS
4779}
4780
1ced953b
TH
4781/**
4782 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4783 * @css: the target css
4784 *
4785 * Reset the states of the mem_cgroup associated with @css. This is
4786 * invoked when the userland requests disabling on the default hierarchy
4787 * but the memcg is pinned through dependency. The memcg should stop
4788 * applying policies and should revert to the vanilla state as it may be
4789 * made visible again.
4790 *
4791 * The current implementation only resets the essential configurations.
4792 * This needs to be expanded to cover all the visible parts.
4793 */
4794static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4795{
4796 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4797
3e32cb2e
JW
4798 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4799 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4800 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
24d404dc 4801 memcg->soft_limit = PAGE_COUNTER_MAX;
1ced953b
TH
4802}
4803
02491447 4804#ifdef CONFIG_MMU
7dc74be0 4805/* Handlers for move charge at task migration. */
854ffa8d 4806static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4807{
05b84301 4808 int ret;
9476db97
JW
4809
4810 /* Try a single bulk charge without reclaim first */
00501b53 4811 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4812 if (!ret) {
854ffa8d 4813 mc.precharge += count;
854ffa8d
DN
4814 return ret;
4815 }
692e7c45 4816 if (ret == -EINTR) {
00501b53 4817 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4818 return ret;
4819 }
9476db97
JW
4820
4821 /* Try charges one by one with reclaim */
854ffa8d 4822 while (count--) {
00501b53 4823 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4824 /*
4825 * In case of failure, any residual charges against
4826 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4827 * later on. However, cancel any charges that are
4828 * bypassed to root right away or they'll be lost.
9476db97 4829 */
692e7c45 4830 if (ret == -EINTR)
00501b53 4831 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4832 if (ret)
38c5d72f 4833 return ret;
854ffa8d 4834 mc.precharge++;
9476db97 4835 cond_resched();
854ffa8d 4836 }
9476db97 4837 return 0;
4ffef5fe
DN
4838}
4839
4840/**
8d32ff84 4841 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4842 * @vma: the vma the pte to be checked belongs
4843 * @addr: the address corresponding to the pte to be checked
4844 * @ptent: the pte to be checked
02491447 4845 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4846 *
4847 * Returns
4848 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4849 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4850 * move charge. if @target is not NULL, the page is stored in target->page
4851 * with extra refcnt got(Callers should handle it).
02491447
DN
4852 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4853 * target for charge migration. if @target is not NULL, the entry is stored
4854 * in target->ent.
4ffef5fe
DN
4855 *
4856 * Called with pte lock held.
4857 */
4ffef5fe
DN
4858union mc_target {
4859 struct page *page;
02491447 4860 swp_entry_t ent;
4ffef5fe
DN
4861};
4862
4ffef5fe 4863enum mc_target_type {
8d32ff84 4864 MC_TARGET_NONE = 0,
4ffef5fe 4865 MC_TARGET_PAGE,
02491447 4866 MC_TARGET_SWAP,
4ffef5fe
DN
4867};
4868
90254a65
DN
4869static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4870 unsigned long addr, pte_t ptent)
4ffef5fe 4871{
90254a65 4872 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4873
90254a65
DN
4874 if (!page || !page_mapped(page))
4875 return NULL;
4876 if (PageAnon(page)) {
4877 /* we don't move shared anon */
4b91355e 4878 if (!move_anon())
90254a65 4879 return NULL;
87946a72
DN
4880 } else if (!move_file())
4881 /* we ignore mapcount for file pages */
90254a65
DN
4882 return NULL;
4883 if (!get_page_unless_zero(page))
4884 return NULL;
4885
4886 return page;
4887}
4888
4b91355e 4889#ifdef CONFIG_SWAP
90254a65
DN
4890static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4891 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4892{
90254a65
DN
4893 struct page *page = NULL;
4894 swp_entry_t ent = pte_to_swp_entry(ptent);
4895
4896 if (!move_anon() || non_swap_entry(ent))
4897 return NULL;
4b91355e
KH
4898 /*
4899 * Because lookup_swap_cache() updates some statistics counter,
4900 * we call find_get_page() with swapper_space directly.
4901 */
33806f06 4902 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4903 if (do_swap_account)
4904 entry->val = ent.val;
4905
4906 return page;
4907}
4b91355e
KH
4908#else
4909static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4910 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4911{
4912 return NULL;
4913}
4914#endif
90254a65 4915
87946a72
DN
4916static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4917 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4918{
4919 struct page *page = NULL;
87946a72
DN
4920 struct address_space *mapping;
4921 pgoff_t pgoff;
4922
4923 if (!vma->vm_file) /* anonymous vma */
4924 return NULL;
4925 if (!move_file())
4926 return NULL;
4927
87946a72 4928 mapping = vma->vm_file->f_mapping;
0661a336 4929 pgoff = linear_page_index(vma, addr);
87946a72
DN
4930
4931 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4932#ifdef CONFIG_SWAP
4933 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4934 if (shmem_mapping(mapping)) {
4935 page = find_get_entry(mapping, pgoff);
4936 if (radix_tree_exceptional_entry(page)) {
4937 swp_entry_t swp = radix_to_swp_entry(page);
4938 if (do_swap_account)
4939 *entry = swp;
4940 page = find_get_page(swap_address_space(swp), swp.val);
4941 }
4942 } else
4943 page = find_get_page(mapping, pgoff);
4944#else
4945 page = find_get_page(mapping, pgoff);
aa3b1895 4946#endif
87946a72
DN
4947 return page;
4948}
4949
8d32ff84 4950static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4951 unsigned long addr, pte_t ptent, union mc_target *target)
4952{
4953 struct page *page = NULL;
8d32ff84 4954 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4955 swp_entry_t ent = { .val = 0 };
4956
4957 if (pte_present(ptent))
4958 page = mc_handle_present_pte(vma, addr, ptent);
4959 else if (is_swap_pte(ptent))
4960 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4961 else if (pte_none(ptent))
87946a72 4962 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4963
4964 if (!page && !ent.val)
8d32ff84 4965 return ret;
02491447 4966 if (page) {
02491447 4967 /*
0a31bc97 4968 * Do only loose check w/o serialization.
1306a85a 4969 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4970 * not under LRU exclusion.
02491447 4971 */
1306a85a 4972 if (page->mem_cgroup == mc.from) {
02491447
DN
4973 ret = MC_TARGET_PAGE;
4974 if (target)
4975 target->page = page;
4976 }
4977 if (!ret || !target)
4978 put_page(page);
4979 }
90254a65
DN
4980 /* There is a swap entry and a page doesn't exist or isn't charged */
4981 if (ent.val && !ret &&
34c00c31 4982 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4983 ret = MC_TARGET_SWAP;
4984 if (target)
4985 target->ent = ent;
4ffef5fe 4986 }
4ffef5fe
DN
4987 return ret;
4988}
4989
12724850
NH
4990#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4991/*
4992 * We don't consider swapping or file mapped pages because THP does not
4993 * support them for now.
4994 * Caller should make sure that pmd_trans_huge(pmd) is true.
4995 */
4996static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4997 unsigned long addr, pmd_t pmd, union mc_target *target)
4998{
4999 struct page *page = NULL;
12724850
NH
5000 enum mc_target_type ret = MC_TARGET_NONE;
5001
5002 page = pmd_page(pmd);
309381fe 5003 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5004 if (!move_anon())
5005 return ret;
1306a85a 5006 if (page->mem_cgroup == mc.from) {
12724850
NH
5007 ret = MC_TARGET_PAGE;
5008 if (target) {
5009 get_page(page);
5010 target->page = page;
5011 }
5012 }
5013 return ret;
5014}
5015#else
5016static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5017 unsigned long addr, pmd_t pmd, union mc_target *target)
5018{
5019 return MC_TARGET_NONE;
5020}
5021#endif
5022
4ffef5fe
DN
5023static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5024 unsigned long addr, unsigned long end,
5025 struct mm_walk *walk)
5026{
5027 struct vm_area_struct *vma = walk->private;
5028 pte_t *pte;
5029 spinlock_t *ptl;
5030
bf929152 5031 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5032 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5033 mc.precharge += HPAGE_PMD_NR;
bf929152 5034 spin_unlock(ptl);
1a5a9906 5035 return 0;
12724850 5036 }
03319327 5037
45f83cef
AA
5038 if (pmd_trans_unstable(pmd))
5039 return 0;
4ffef5fe
DN
5040 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5041 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5042 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5043 mc.precharge++; /* increment precharge temporarily */
5044 pte_unmap_unlock(pte - 1, ptl);
5045 cond_resched();
5046
7dc74be0
DN
5047 return 0;
5048}
5049
4ffef5fe
DN
5050static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5051{
5052 unsigned long precharge;
5053 struct vm_area_struct *vma;
5054
dfe076b0 5055 down_read(&mm->mmap_sem);
4ffef5fe
DN
5056 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5057 struct mm_walk mem_cgroup_count_precharge_walk = {
5058 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5059 .mm = mm,
5060 .private = vma,
5061 };
5062 if (is_vm_hugetlb_page(vma))
5063 continue;
4ffef5fe
DN
5064 walk_page_range(vma->vm_start, vma->vm_end,
5065 &mem_cgroup_count_precharge_walk);
5066 }
dfe076b0 5067 up_read(&mm->mmap_sem);
4ffef5fe
DN
5068
5069 precharge = mc.precharge;
5070 mc.precharge = 0;
5071
5072 return precharge;
5073}
5074
4ffef5fe
DN
5075static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5076{
dfe076b0
DN
5077 unsigned long precharge = mem_cgroup_count_precharge(mm);
5078
5079 VM_BUG_ON(mc.moving_task);
5080 mc.moving_task = current;
5081 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5082}
5083
dfe076b0
DN
5084/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5085static void __mem_cgroup_clear_mc(void)
4ffef5fe 5086{
2bd9bb20
KH
5087 struct mem_cgroup *from = mc.from;
5088 struct mem_cgroup *to = mc.to;
5089
4ffef5fe 5090 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5091 if (mc.precharge) {
00501b53 5092 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5093 mc.precharge = 0;
5094 }
5095 /*
5096 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5097 * we must uncharge here.
5098 */
5099 if (mc.moved_charge) {
00501b53 5100 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5101 mc.moved_charge = 0;
4ffef5fe 5102 }
483c30b5
DN
5103 /* we must fixup refcnts and charges */
5104 if (mc.moved_swap) {
483c30b5 5105 /* uncharge swap account from the old cgroup */
ce00a967 5106 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5107 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5108
05b84301 5109 /*
3e32cb2e
JW
5110 * we charged both to->memory and to->memsw, so we
5111 * should uncharge to->memory.
05b84301 5112 */
ce00a967 5113 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5114 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5115
e8ea14cc 5116 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5117
4050377b 5118 /* we've already done css_get(mc.to) */
483c30b5
DN
5119 mc.moved_swap = 0;
5120 }
dfe076b0
DN
5121 memcg_oom_recover(from);
5122 memcg_oom_recover(to);
5123 wake_up_all(&mc.waitq);
5124}
5125
5126static void mem_cgroup_clear_mc(void)
5127{
dfe076b0
DN
5128 /*
5129 * we must clear moving_task before waking up waiters at the end of
5130 * task migration.
5131 */
5132 mc.moving_task = NULL;
5133 __mem_cgroup_clear_mc();
2bd9bb20 5134 spin_lock(&mc.lock);
4ffef5fe
DN
5135 mc.from = NULL;
5136 mc.to = NULL;
2bd9bb20 5137 spin_unlock(&mc.lock);
4ffef5fe
DN
5138}
5139
eb95419b 5140static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5141 struct cgroup_taskset *tset)
7dc74be0 5142{
2f7ee569 5143 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5144 int ret = 0;
eb95419b 5145 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5146 unsigned long move_charge_at_immigrate;
7dc74be0 5147
ee5e8472
GC
5148 /*
5149 * We are now commited to this value whatever it is. Changes in this
5150 * tunable will only affect upcoming migrations, not the current one.
5151 * So we need to save it, and keep it going.
5152 */
5153 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5154 if (move_charge_at_immigrate) {
7dc74be0
DN
5155 struct mm_struct *mm;
5156 struct mem_cgroup *from = mem_cgroup_from_task(p);
5157
c0ff4b85 5158 VM_BUG_ON(from == memcg);
7dc74be0
DN
5159
5160 mm = get_task_mm(p);
5161 if (!mm)
5162 return 0;
7dc74be0 5163 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5164 if (mm->owner == p) {
5165 VM_BUG_ON(mc.from);
5166 VM_BUG_ON(mc.to);
5167 VM_BUG_ON(mc.precharge);
854ffa8d 5168 VM_BUG_ON(mc.moved_charge);
483c30b5 5169 VM_BUG_ON(mc.moved_swap);
247b1447 5170
2bd9bb20 5171 spin_lock(&mc.lock);
4ffef5fe 5172 mc.from = from;
c0ff4b85 5173 mc.to = memcg;
ee5e8472 5174 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5175 spin_unlock(&mc.lock);
dfe076b0 5176 /* We set mc.moving_task later */
4ffef5fe
DN
5177
5178 ret = mem_cgroup_precharge_mc(mm);
5179 if (ret)
5180 mem_cgroup_clear_mc();
dfe076b0
DN
5181 }
5182 mmput(mm);
7dc74be0
DN
5183 }
5184 return ret;
5185}
5186
eb95419b 5187static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5188 struct cgroup_taskset *tset)
7dc74be0 5189{
4e2f245d
JW
5190 if (mc.to)
5191 mem_cgroup_clear_mc();
7dc74be0
DN
5192}
5193
4ffef5fe
DN
5194static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5195 unsigned long addr, unsigned long end,
5196 struct mm_walk *walk)
7dc74be0 5197{
4ffef5fe
DN
5198 int ret = 0;
5199 struct vm_area_struct *vma = walk->private;
5200 pte_t *pte;
5201 spinlock_t *ptl;
12724850
NH
5202 enum mc_target_type target_type;
5203 union mc_target target;
5204 struct page *page;
4ffef5fe 5205
12724850
NH
5206 /*
5207 * We don't take compound_lock() here but no race with splitting thp
5208 * happens because:
5209 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5210 * under splitting, which means there's no concurrent thp split,
5211 * - if another thread runs into split_huge_page() just after we
5212 * entered this if-block, the thread must wait for page table lock
5213 * to be unlocked in __split_huge_page_splitting(), where the main
5214 * part of thp split is not executed yet.
5215 */
bf929152 5216 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5217 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5218 spin_unlock(ptl);
12724850
NH
5219 return 0;
5220 }
5221 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5222 if (target_type == MC_TARGET_PAGE) {
5223 page = target.page;
5224 if (!isolate_lru_page(page)) {
12724850 5225 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5226 mc.from, mc.to)) {
12724850
NH
5227 mc.precharge -= HPAGE_PMD_NR;
5228 mc.moved_charge += HPAGE_PMD_NR;
5229 }
5230 putback_lru_page(page);
5231 }
5232 put_page(page);
5233 }
bf929152 5234 spin_unlock(ptl);
1a5a9906 5235 return 0;
12724850
NH
5236 }
5237
45f83cef
AA
5238 if (pmd_trans_unstable(pmd))
5239 return 0;
4ffef5fe
DN
5240retry:
5241 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5242 for (; addr != end; addr += PAGE_SIZE) {
5243 pte_t ptent = *(pte++);
02491447 5244 swp_entry_t ent;
4ffef5fe
DN
5245
5246 if (!mc.precharge)
5247 break;
5248
8d32ff84 5249 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5250 case MC_TARGET_PAGE:
5251 page = target.page;
5252 if (isolate_lru_page(page))
5253 goto put;
1306a85a 5254 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5255 mc.precharge--;
854ffa8d
DN
5256 /* we uncharge from mc.from later. */
5257 mc.moved_charge++;
4ffef5fe
DN
5258 }
5259 putback_lru_page(page);
8d32ff84 5260put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5261 put_page(page);
5262 break;
02491447
DN
5263 case MC_TARGET_SWAP:
5264 ent = target.ent;
e91cbb42 5265 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5266 mc.precharge--;
483c30b5
DN
5267 /* we fixup refcnts and charges later. */
5268 mc.moved_swap++;
5269 }
02491447 5270 break;
4ffef5fe
DN
5271 default:
5272 break;
5273 }
5274 }
5275 pte_unmap_unlock(pte - 1, ptl);
5276 cond_resched();
5277
5278 if (addr != end) {
5279 /*
5280 * We have consumed all precharges we got in can_attach().
5281 * We try charge one by one, but don't do any additional
5282 * charges to mc.to if we have failed in charge once in attach()
5283 * phase.
5284 */
854ffa8d 5285 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5286 if (!ret)
5287 goto retry;
5288 }
5289
5290 return ret;
5291}
5292
5293static void mem_cgroup_move_charge(struct mm_struct *mm)
5294{
5295 struct vm_area_struct *vma;
5296
5297 lru_add_drain_all();
312722cb
JW
5298 /*
5299 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5300 * move_lock while we're moving its pages to another memcg.
5301 * Then wait for already started RCU-only updates to finish.
5302 */
5303 atomic_inc(&mc.from->moving_account);
5304 synchronize_rcu();
dfe076b0
DN
5305retry:
5306 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5307 /*
5308 * Someone who are holding the mmap_sem might be waiting in
5309 * waitq. So we cancel all extra charges, wake up all waiters,
5310 * and retry. Because we cancel precharges, we might not be able
5311 * to move enough charges, but moving charge is a best-effort
5312 * feature anyway, so it wouldn't be a big problem.
5313 */
5314 __mem_cgroup_clear_mc();
5315 cond_resched();
5316 goto retry;
5317 }
4ffef5fe
DN
5318 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5319 int ret;
5320 struct mm_walk mem_cgroup_move_charge_walk = {
5321 .pmd_entry = mem_cgroup_move_charge_pte_range,
5322 .mm = mm,
5323 .private = vma,
5324 };
5325 if (is_vm_hugetlb_page(vma))
5326 continue;
4ffef5fe
DN
5327 ret = walk_page_range(vma->vm_start, vma->vm_end,
5328 &mem_cgroup_move_charge_walk);
5329 if (ret)
5330 /*
5331 * means we have consumed all precharges and failed in
5332 * doing additional charge. Just abandon here.
5333 */
5334 break;
5335 }
dfe076b0 5336 up_read(&mm->mmap_sem);
312722cb 5337 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5338}
5339
eb95419b 5340static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5341 struct cgroup_taskset *tset)
67e465a7 5342{
2f7ee569 5343 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5344 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5345
dfe076b0 5346 if (mm) {
a433658c
KM
5347 if (mc.to)
5348 mem_cgroup_move_charge(mm);
dfe076b0
DN
5349 mmput(mm);
5350 }
a433658c
KM
5351 if (mc.to)
5352 mem_cgroup_clear_mc();
67e465a7 5353}
5cfb80a7 5354#else /* !CONFIG_MMU */
eb95419b 5355static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5356 struct cgroup_taskset *tset)
5cfb80a7
DN
5357{
5358 return 0;
5359}
eb95419b 5360static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5361 struct cgroup_taskset *tset)
5cfb80a7
DN
5362{
5363}
eb95419b 5364static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5365 struct cgroup_taskset *tset)
5cfb80a7
DN
5366{
5367}
5368#endif
67e465a7 5369
f00baae7
TH
5370/*
5371 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5372 * to verify whether we're attached to the default hierarchy on each mount
5373 * attempt.
f00baae7 5374 */
eb95419b 5375static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5376{
5377 /*
aa6ec29b 5378 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5379 * guarantees that @root doesn't have any children, so turning it
5380 * on for the root memcg is enough.
5381 */
aa6ec29b 5382 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5383 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5384}
5385
073219e9 5386struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5387 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5388 .css_online = mem_cgroup_css_online,
92fb9748
TH
5389 .css_offline = mem_cgroup_css_offline,
5390 .css_free = mem_cgroup_css_free,
1ced953b 5391 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5392 .can_attach = mem_cgroup_can_attach,
5393 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5394 .attach = mem_cgroup_move_task,
f00baae7 5395 .bind = mem_cgroup_bind,
5577964e 5396 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 5397 .early_init = 0,
8cdea7c0 5398};
c077719b 5399
c255a458 5400#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5401static int __init enable_swap_account(char *s)
5402{
a2c8990a 5403 if (!strcmp(s, "1"))
a42c390c 5404 really_do_swap_account = 1;
a2c8990a 5405 else if (!strcmp(s, "0"))
a42c390c
MH
5406 really_do_swap_account = 0;
5407 return 1;
5408}
a2c8990a 5409__setup("swapaccount=", enable_swap_account);
c077719b 5410
2d11085e
MH
5411static void __init memsw_file_init(void)
5412{
2cf669a5
TH
5413 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5414 memsw_cgroup_files));
6acc8b02
MH
5415}
5416
5417static void __init enable_swap_cgroup(void)
5418{
5419 if (!mem_cgroup_disabled() && really_do_swap_account) {
5420 do_swap_account = 1;
5421 memsw_file_init();
5422 }
2d11085e 5423}
6acc8b02 5424
2d11085e 5425#else
6acc8b02 5426static void __init enable_swap_cgroup(void)
2d11085e
MH
5427{
5428}
c077719b 5429#endif
2d11085e 5430
0a31bc97
JW
5431#ifdef CONFIG_MEMCG_SWAP
5432/**
5433 * mem_cgroup_swapout - transfer a memsw charge to swap
5434 * @page: page whose memsw charge to transfer
5435 * @entry: swap entry to move the charge to
5436 *
5437 * Transfer the memsw charge of @page to @entry.
5438 */
5439void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5440{
7bdd143c 5441 struct mem_cgroup *memcg;
0a31bc97
JW
5442 unsigned short oldid;
5443
5444 VM_BUG_ON_PAGE(PageLRU(page), page);
5445 VM_BUG_ON_PAGE(page_count(page), page);
5446
5447 if (!do_swap_account)
5448 return;
5449
1306a85a 5450 memcg = page->mem_cgroup;
0a31bc97
JW
5451
5452 /* Readahead page, never charged */
29833315 5453 if (!memcg)
0a31bc97
JW
5454 return;
5455
7bdd143c 5456 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
0a31bc97 5457 VM_BUG_ON_PAGE(oldid, page);
7bdd143c
JW
5458 mem_cgroup_swap_statistics(memcg, true);
5459
1306a85a 5460 page->mem_cgroup = NULL;
0a31bc97 5461
7bdd143c
JW
5462 if (!mem_cgroup_is_root(memcg))
5463 page_counter_uncharge(&memcg->memory, 1);
5464
5465 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5466 VM_BUG_ON(!irqs_disabled());
0a31bc97 5467
7bdd143c
JW
5468 mem_cgroup_charge_statistics(memcg, page, -1);
5469 memcg_check_events(memcg, page);
0a31bc97
JW
5470}
5471
5472/**
5473 * mem_cgroup_uncharge_swap - uncharge a swap entry
5474 * @entry: swap entry to uncharge
5475 *
5476 * Drop the memsw charge associated with @entry.
5477 */
5478void mem_cgroup_uncharge_swap(swp_entry_t entry)
5479{
5480 struct mem_cgroup *memcg;
5481 unsigned short id;
5482
5483 if (!do_swap_account)
5484 return;
5485
5486 id = swap_cgroup_record(entry, 0);
5487 rcu_read_lock();
5488 memcg = mem_cgroup_lookup(id);
5489 if (memcg) {
ce00a967 5490 if (!mem_cgroup_is_root(memcg))
3e32cb2e 5491 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
5492 mem_cgroup_swap_statistics(memcg, false);
5493 css_put(&memcg->css);
5494 }
5495 rcu_read_unlock();
5496}
5497#endif
5498
00501b53
JW
5499/**
5500 * mem_cgroup_try_charge - try charging a page
5501 * @page: page to charge
5502 * @mm: mm context of the victim
5503 * @gfp_mask: reclaim mode
5504 * @memcgp: charged memcg return
5505 *
5506 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5507 * pages according to @gfp_mask if necessary.
5508 *
5509 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5510 * Otherwise, an error code is returned.
5511 *
5512 * After page->mapping has been set up, the caller must finalize the
5513 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5514 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5515 */
5516int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5517 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5518{
5519 struct mem_cgroup *memcg = NULL;
5520 unsigned int nr_pages = 1;
5521 int ret = 0;
5522
5523 if (mem_cgroup_disabled())
5524 goto out;
5525
5526 if (PageSwapCache(page)) {
00501b53
JW
5527 /*
5528 * Every swap fault against a single page tries to charge the
5529 * page, bail as early as possible. shmem_unuse() encounters
5530 * already charged pages, too. The USED bit is protected by
5531 * the page lock, which serializes swap cache removal, which
5532 * in turn serializes uncharging.
5533 */
1306a85a 5534 if (page->mem_cgroup)
00501b53
JW
5535 goto out;
5536 }
5537
5538 if (PageTransHuge(page)) {
5539 nr_pages <<= compound_order(page);
5540 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5541 }
5542
5543 if (do_swap_account && PageSwapCache(page))
5544 memcg = try_get_mem_cgroup_from_page(page);
5545 if (!memcg)
5546 memcg = get_mem_cgroup_from_mm(mm);
5547
5548 ret = try_charge(memcg, gfp_mask, nr_pages);
5549
5550 css_put(&memcg->css);
5551
5552 if (ret == -EINTR) {
5553 memcg = root_mem_cgroup;
5554 ret = 0;
5555 }
5556out:
5557 *memcgp = memcg;
5558 return ret;
5559}
5560
5561/**
5562 * mem_cgroup_commit_charge - commit a page charge
5563 * @page: page to charge
5564 * @memcg: memcg to charge the page to
5565 * @lrucare: page might be on LRU already
5566 *
5567 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5568 * after page->mapping has been set up. This must happen atomically
5569 * as part of the page instantiation, i.e. under the page table lock
5570 * for anonymous pages, under the page lock for page and swap cache.
5571 *
5572 * In addition, the page must not be on the LRU during the commit, to
5573 * prevent racing with task migration. If it might be, use @lrucare.
5574 *
5575 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5576 */
5577void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5578 bool lrucare)
5579{
5580 unsigned int nr_pages = 1;
5581
5582 VM_BUG_ON_PAGE(!page->mapping, page);
5583 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5584
5585 if (mem_cgroup_disabled())
5586 return;
5587 /*
5588 * Swap faults will attempt to charge the same page multiple
5589 * times. But reuse_swap_page() might have removed the page
5590 * from swapcache already, so we can't check PageSwapCache().
5591 */
5592 if (!memcg)
5593 return;
5594
6abb5a86
JW
5595 commit_charge(page, memcg, lrucare);
5596
00501b53
JW
5597 if (PageTransHuge(page)) {
5598 nr_pages <<= compound_order(page);
5599 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5600 }
5601
6abb5a86
JW
5602 local_irq_disable();
5603 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5604 memcg_check_events(memcg, page);
5605 local_irq_enable();
00501b53
JW
5606
5607 if (do_swap_account && PageSwapCache(page)) {
5608 swp_entry_t entry = { .val = page_private(page) };
5609 /*
5610 * The swap entry might not get freed for a long time,
5611 * let's not wait for it. The page already received a
5612 * memory+swap charge, drop the swap entry duplicate.
5613 */
5614 mem_cgroup_uncharge_swap(entry);
5615 }
5616}
5617
5618/**
5619 * mem_cgroup_cancel_charge - cancel a page charge
5620 * @page: page to charge
5621 * @memcg: memcg to charge the page to
5622 *
5623 * Cancel a charge transaction started by mem_cgroup_try_charge().
5624 */
5625void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5626{
5627 unsigned int nr_pages = 1;
5628
5629 if (mem_cgroup_disabled())
5630 return;
5631 /*
5632 * Swap faults will attempt to charge the same page multiple
5633 * times. But reuse_swap_page() might have removed the page
5634 * from swapcache already, so we can't check PageSwapCache().
5635 */
5636 if (!memcg)
5637 return;
5638
5639 if (PageTransHuge(page)) {
5640 nr_pages <<= compound_order(page);
5641 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5642 }
5643
5644 cancel_charge(memcg, nr_pages);
5645}
5646
747db954 5647static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5648 unsigned long nr_anon, unsigned long nr_file,
5649 unsigned long nr_huge, struct page *dummy_page)
5650{
18eca2e6 5651 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5652 unsigned long flags;
5653
ce00a967 5654 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5655 page_counter_uncharge(&memcg->memory, nr_pages);
5656 if (do_swap_account)
5657 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5658 memcg_oom_recover(memcg);
5659 }
747db954
JW
5660
5661 local_irq_save(flags);
5662 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5663 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5664 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5665 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5666 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5667 memcg_check_events(memcg, dummy_page);
5668 local_irq_restore(flags);
e8ea14cc
JW
5669
5670 if (!mem_cgroup_is_root(memcg))
18eca2e6 5671 css_put_many(&memcg->css, nr_pages);
747db954
JW
5672}
5673
5674static void uncharge_list(struct list_head *page_list)
5675{
5676 struct mem_cgroup *memcg = NULL;
747db954
JW
5677 unsigned long nr_anon = 0;
5678 unsigned long nr_file = 0;
5679 unsigned long nr_huge = 0;
5680 unsigned long pgpgout = 0;
747db954
JW
5681 struct list_head *next;
5682 struct page *page;
5683
5684 next = page_list->next;
5685 do {
5686 unsigned int nr_pages = 1;
747db954
JW
5687
5688 page = list_entry(next, struct page, lru);
5689 next = page->lru.next;
5690
5691 VM_BUG_ON_PAGE(PageLRU(page), page);
5692 VM_BUG_ON_PAGE(page_count(page), page);
5693
1306a85a 5694 if (!page->mem_cgroup)
747db954
JW
5695 continue;
5696
5697 /*
5698 * Nobody should be changing or seriously looking at
1306a85a 5699 * page->mem_cgroup at this point, we have fully
29833315 5700 * exclusive access to the page.
747db954
JW
5701 */
5702
1306a85a 5703 if (memcg != page->mem_cgroup) {
747db954 5704 if (memcg) {
18eca2e6
JW
5705 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5706 nr_huge, page);
5707 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5708 }
1306a85a 5709 memcg = page->mem_cgroup;
747db954
JW
5710 }
5711
5712 if (PageTransHuge(page)) {
5713 nr_pages <<= compound_order(page);
5714 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5715 nr_huge += nr_pages;
5716 }
5717
5718 if (PageAnon(page))
5719 nr_anon += nr_pages;
5720 else
5721 nr_file += nr_pages;
5722
1306a85a 5723 page->mem_cgroup = NULL;
747db954
JW
5724
5725 pgpgout++;
5726 } while (next != page_list);
5727
5728 if (memcg)
18eca2e6
JW
5729 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5730 nr_huge, page);
747db954
JW
5731}
5732
0a31bc97
JW
5733/**
5734 * mem_cgroup_uncharge - uncharge a page
5735 * @page: page to uncharge
5736 *
5737 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5738 * mem_cgroup_commit_charge().
5739 */
5740void mem_cgroup_uncharge(struct page *page)
5741{
0a31bc97
JW
5742 if (mem_cgroup_disabled())
5743 return;
5744
747db954 5745 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5746 if (!page->mem_cgroup)
0a31bc97
JW
5747 return;
5748
747db954
JW
5749 INIT_LIST_HEAD(&page->lru);
5750 uncharge_list(&page->lru);
5751}
0a31bc97 5752
747db954
JW
5753/**
5754 * mem_cgroup_uncharge_list - uncharge a list of page
5755 * @page_list: list of pages to uncharge
5756 *
5757 * Uncharge a list of pages previously charged with
5758 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5759 */
5760void mem_cgroup_uncharge_list(struct list_head *page_list)
5761{
5762 if (mem_cgroup_disabled())
5763 return;
0a31bc97 5764
747db954
JW
5765 if (!list_empty(page_list))
5766 uncharge_list(page_list);
0a31bc97
JW
5767}
5768
5769/**
5770 * mem_cgroup_migrate - migrate a charge to another page
5771 * @oldpage: currently charged page
5772 * @newpage: page to transfer the charge to
f5e03a49 5773 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5774 *
5775 * Migrate the charge from @oldpage to @newpage.
5776 *
5777 * Both pages must be locked, @newpage->mapping must be set up.
5778 */
5779void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5780 bool lrucare)
5781{
29833315 5782 struct mem_cgroup *memcg;
0a31bc97
JW
5783 int isolated;
5784
5785 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5786 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5787 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5788 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5789 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5790 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5791 newpage);
0a31bc97
JW
5792
5793 if (mem_cgroup_disabled())
5794 return;
5795
5796 /* Page cache replacement: new page already charged? */
1306a85a 5797 if (newpage->mem_cgroup)
0a31bc97
JW
5798 return;
5799
7d5e3245
JW
5800 /*
5801 * Swapcache readahead pages can get migrated before being
5802 * charged, and migration from compaction can happen to an
5803 * uncharged page when the PFN walker finds a page that
5804 * reclaim just put back on the LRU but has not released yet.
5805 */
1306a85a 5806 memcg = oldpage->mem_cgroup;
29833315 5807 if (!memcg)
0a31bc97
JW
5808 return;
5809
0a31bc97
JW
5810 if (lrucare)
5811 lock_page_lru(oldpage, &isolated);
5812
1306a85a 5813 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5814
5815 if (lrucare)
5816 unlock_page_lru(oldpage, isolated);
5817
29833315 5818 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5819}
5820
2d11085e 5821/*
1081312f
MH
5822 * subsys_initcall() for memory controller.
5823 *
5824 * Some parts like hotcpu_notifier() have to be initialized from this context
5825 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5826 * everything that doesn't depend on a specific mem_cgroup structure should
5827 * be initialized from here.
2d11085e
MH
5828 */
5829static int __init mem_cgroup_init(void)
5830{
5831 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 5832 enable_swap_cgroup();
bb4cc1a8 5833 mem_cgroup_soft_limit_tree_init();
e4777496 5834 memcg_stock_init();
2d11085e
MH
5835 return 0;
5836}
5837subsys_initcall(mem_cgroup_init);