]>
Commit | Line | Data |
---|---|---|
8cdea7c0 BS |
1 | /* memcontrol.c - Memory Controller |
2 | * | |
3 | * Copyright IBM Corporation, 2007 | |
4 | * Author Balbir Singh <balbir@linux.vnet.ibm.com> | |
5 | * | |
78fb7466 PE |
6 | * Copyright 2007 OpenVZ SWsoft Inc |
7 | * Author: Pavel Emelianov <xemul@openvz.org> | |
8 | * | |
2e72b634 KS |
9 | * Memory thresholds |
10 | * Copyright (C) 2009 Nokia Corporation | |
11 | * Author: Kirill A. Shutemov | |
12 | * | |
7ae1e1d0 GC |
13 | * Kernel Memory Controller |
14 | * Copyright (C) 2012 Parallels Inc. and Google Inc. | |
15 | * Authors: Glauber Costa and Suleiman Souhlal | |
16 | * | |
8cdea7c0 BS |
17 | * This program is free software; you can redistribute it and/or modify |
18 | * it under the terms of the GNU General Public License as published by | |
19 | * the Free Software Foundation; either version 2 of the License, or | |
20 | * (at your option) any later version. | |
21 | * | |
22 | * This program is distributed in the hope that it will be useful, | |
23 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
24 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
25 | * GNU General Public License for more details. | |
26 | */ | |
27 | ||
3e32cb2e | 28 | #include <linux/page_counter.h> |
8cdea7c0 BS |
29 | #include <linux/memcontrol.h> |
30 | #include <linux/cgroup.h> | |
78fb7466 | 31 | #include <linux/mm.h> |
4ffef5fe | 32 | #include <linux/hugetlb.h> |
d13d1443 | 33 | #include <linux/pagemap.h> |
d52aa412 | 34 | #include <linux/smp.h> |
8a9f3ccd | 35 | #include <linux/page-flags.h> |
66e1707b | 36 | #include <linux/backing-dev.h> |
8a9f3ccd BS |
37 | #include <linux/bit_spinlock.h> |
38 | #include <linux/rcupdate.h> | |
e222432b | 39 | #include <linux/limits.h> |
b9e15baf | 40 | #include <linux/export.h> |
8c7c6e34 | 41 | #include <linux/mutex.h> |
bb4cc1a8 | 42 | #include <linux/rbtree.h> |
b6ac57d5 | 43 | #include <linux/slab.h> |
66e1707b | 44 | #include <linux/swap.h> |
02491447 | 45 | #include <linux/swapops.h> |
66e1707b | 46 | #include <linux/spinlock.h> |
2e72b634 | 47 | #include <linux/eventfd.h> |
79bd9814 | 48 | #include <linux/poll.h> |
2e72b634 | 49 | #include <linux/sort.h> |
66e1707b | 50 | #include <linux/fs.h> |
d2ceb9b7 | 51 | #include <linux/seq_file.h> |
70ddf637 | 52 | #include <linux/vmpressure.h> |
b69408e8 | 53 | #include <linux/mm_inline.h> |
5d1ea48b | 54 | #include <linux/swap_cgroup.h> |
cdec2e42 | 55 | #include <linux/cpu.h> |
158e0a2d | 56 | #include <linux/oom.h> |
0056f4e6 | 57 | #include <linux/lockdep.h> |
79bd9814 | 58 | #include <linux/file.h> |
08e552c6 | 59 | #include "internal.h" |
d1a4c0b3 | 60 | #include <net/sock.h> |
4bd2c1ee | 61 | #include <net/ip.h> |
d1a4c0b3 | 62 | #include <net/tcp_memcontrol.h> |
f35c3a8e | 63 | #include "slab.h" |
8cdea7c0 | 64 | |
8697d331 BS |
65 | #include <asm/uaccess.h> |
66 | ||
cc8e970c KM |
67 | #include <trace/events/vmscan.h> |
68 | ||
073219e9 TH |
69 | struct cgroup_subsys memory_cgrp_subsys __read_mostly; |
70 | EXPORT_SYMBOL(memory_cgrp_subsys); | |
68ae564b | 71 | |
a181b0e8 | 72 | #define MEM_CGROUP_RECLAIM_RETRIES 5 |
6bbda35c | 73 | static struct mem_cgroup *root_mem_cgroup __read_mostly; |
8cdea7c0 | 74 | |
c255a458 | 75 | #ifdef CONFIG_MEMCG_SWAP |
338c8431 | 76 | /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */ |
c077719b | 77 | int do_swap_account __read_mostly; |
a42c390c MH |
78 | |
79 | /* for remember boot option*/ | |
c255a458 | 80 | #ifdef CONFIG_MEMCG_SWAP_ENABLED |
a42c390c MH |
81 | static int really_do_swap_account __initdata = 1; |
82 | #else | |
ada4ba59 | 83 | static int really_do_swap_account __initdata; |
a42c390c MH |
84 | #endif |
85 | ||
c077719b | 86 | #else |
a0db00fc | 87 | #define do_swap_account 0 |
c077719b KH |
88 | #endif |
89 | ||
90 | ||
af7c4b0e JW |
91 | static const char * const mem_cgroup_stat_names[] = { |
92 | "cache", | |
93 | "rss", | |
b070e65c | 94 | "rss_huge", |
af7c4b0e | 95 | "mapped_file", |
3ea67d06 | 96 | "writeback", |
af7c4b0e JW |
97 | "swap", |
98 | }; | |
99 | ||
e9f8974f JW |
100 | enum mem_cgroup_events_index { |
101 | MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */ | |
102 | MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */ | |
456f998e YH |
103 | MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */ |
104 | MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */ | |
e9f8974f JW |
105 | MEM_CGROUP_EVENTS_NSTATS, |
106 | }; | |
af7c4b0e JW |
107 | |
108 | static const char * const mem_cgroup_events_names[] = { | |
109 | "pgpgin", | |
110 | "pgpgout", | |
111 | "pgfault", | |
112 | "pgmajfault", | |
113 | }; | |
114 | ||
58cf188e SZ |
115 | static const char * const mem_cgroup_lru_names[] = { |
116 | "inactive_anon", | |
117 | "active_anon", | |
118 | "inactive_file", | |
119 | "active_file", | |
120 | "unevictable", | |
121 | }; | |
122 | ||
7a159cc9 JW |
123 | /* |
124 | * Per memcg event counter is incremented at every pagein/pageout. With THP, | |
125 | * it will be incremated by the number of pages. This counter is used for | |
126 | * for trigger some periodic events. This is straightforward and better | |
127 | * than using jiffies etc. to handle periodic memcg event. | |
128 | */ | |
129 | enum mem_cgroup_events_target { | |
130 | MEM_CGROUP_TARGET_THRESH, | |
bb4cc1a8 | 131 | MEM_CGROUP_TARGET_SOFTLIMIT, |
453a9bf3 | 132 | MEM_CGROUP_TARGET_NUMAINFO, |
7a159cc9 JW |
133 | MEM_CGROUP_NTARGETS, |
134 | }; | |
a0db00fc KS |
135 | #define THRESHOLDS_EVENTS_TARGET 128 |
136 | #define SOFTLIMIT_EVENTS_TARGET 1024 | |
137 | #define NUMAINFO_EVENTS_TARGET 1024 | |
e9f8974f | 138 | |
d52aa412 | 139 | struct mem_cgroup_stat_cpu { |
7a159cc9 | 140 | long count[MEM_CGROUP_STAT_NSTATS]; |
e9f8974f | 141 | unsigned long events[MEM_CGROUP_EVENTS_NSTATS]; |
13114716 | 142 | unsigned long nr_page_events; |
7a159cc9 | 143 | unsigned long targets[MEM_CGROUP_NTARGETS]; |
d52aa412 KH |
144 | }; |
145 | ||
5ac8fb31 JW |
146 | struct reclaim_iter { |
147 | struct mem_cgroup *position; | |
527a5ec9 JW |
148 | /* scan generation, increased every round-trip */ |
149 | unsigned int generation; | |
150 | }; | |
151 | ||
6d12e2d8 KH |
152 | /* |
153 | * per-zone information in memory controller. | |
154 | */ | |
6d12e2d8 | 155 | struct mem_cgroup_per_zone { |
6290df54 | 156 | struct lruvec lruvec; |
1eb49272 | 157 | unsigned long lru_size[NR_LRU_LISTS]; |
3e2f41f1 | 158 | |
5ac8fb31 | 159 | struct reclaim_iter iter[DEF_PRIORITY + 1]; |
527a5ec9 | 160 | |
bb4cc1a8 | 161 | struct rb_node tree_node; /* RB tree node */ |
3e32cb2e | 162 | unsigned long usage_in_excess;/* Set to the value by which */ |
bb4cc1a8 AM |
163 | /* the soft limit is exceeded*/ |
164 | bool on_tree; | |
d79154bb | 165 | struct mem_cgroup *memcg; /* Back pointer, we cannot */ |
4e416953 | 166 | /* use container_of */ |
6d12e2d8 | 167 | }; |
6d12e2d8 KH |
168 | |
169 | struct mem_cgroup_per_node { | |
170 | struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES]; | |
171 | }; | |
172 | ||
bb4cc1a8 AM |
173 | /* |
174 | * Cgroups above their limits are maintained in a RB-Tree, independent of | |
175 | * their hierarchy representation | |
176 | */ | |
177 | ||
178 | struct mem_cgroup_tree_per_zone { | |
179 | struct rb_root rb_root; | |
180 | spinlock_t lock; | |
181 | }; | |
182 | ||
183 | struct mem_cgroup_tree_per_node { | |
184 | struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES]; | |
185 | }; | |
186 | ||
187 | struct mem_cgroup_tree { | |
188 | struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES]; | |
189 | }; | |
190 | ||
191 | static struct mem_cgroup_tree soft_limit_tree __read_mostly; | |
192 | ||
2e72b634 KS |
193 | struct mem_cgroup_threshold { |
194 | struct eventfd_ctx *eventfd; | |
3e32cb2e | 195 | unsigned long threshold; |
2e72b634 KS |
196 | }; |
197 | ||
9490ff27 | 198 | /* For threshold */ |
2e72b634 | 199 | struct mem_cgroup_threshold_ary { |
748dad36 | 200 | /* An array index points to threshold just below or equal to usage. */ |
5407a562 | 201 | int current_threshold; |
2e72b634 KS |
202 | /* Size of entries[] */ |
203 | unsigned int size; | |
204 | /* Array of thresholds */ | |
205 | struct mem_cgroup_threshold entries[0]; | |
206 | }; | |
2c488db2 KS |
207 | |
208 | struct mem_cgroup_thresholds { | |
209 | /* Primary thresholds array */ | |
210 | struct mem_cgroup_threshold_ary *primary; | |
211 | /* | |
212 | * Spare threshold array. | |
213 | * This is needed to make mem_cgroup_unregister_event() "never fail". | |
214 | * It must be able to store at least primary->size - 1 entries. | |
215 | */ | |
216 | struct mem_cgroup_threshold_ary *spare; | |
217 | }; | |
218 | ||
9490ff27 KH |
219 | /* for OOM */ |
220 | struct mem_cgroup_eventfd_list { | |
221 | struct list_head list; | |
222 | struct eventfd_ctx *eventfd; | |
223 | }; | |
2e72b634 | 224 | |
79bd9814 TH |
225 | /* |
226 | * cgroup_event represents events which userspace want to receive. | |
227 | */ | |
3bc942f3 | 228 | struct mem_cgroup_event { |
79bd9814 | 229 | /* |
59b6f873 | 230 | * memcg which the event belongs to. |
79bd9814 | 231 | */ |
59b6f873 | 232 | struct mem_cgroup *memcg; |
79bd9814 TH |
233 | /* |
234 | * eventfd to signal userspace about the event. | |
235 | */ | |
236 | struct eventfd_ctx *eventfd; | |
237 | /* | |
238 | * Each of these stored in a list by the cgroup. | |
239 | */ | |
240 | struct list_head list; | |
fba94807 TH |
241 | /* |
242 | * register_event() callback will be used to add new userspace | |
243 | * waiter for changes related to this event. Use eventfd_signal() | |
244 | * on eventfd to send notification to userspace. | |
245 | */ | |
59b6f873 | 246 | int (*register_event)(struct mem_cgroup *memcg, |
347c4a87 | 247 | struct eventfd_ctx *eventfd, const char *args); |
fba94807 TH |
248 | /* |
249 | * unregister_event() callback will be called when userspace closes | |
250 | * the eventfd or on cgroup removing. This callback must be set, | |
251 | * if you want provide notification functionality. | |
252 | */ | |
59b6f873 | 253 | void (*unregister_event)(struct mem_cgroup *memcg, |
fba94807 | 254 | struct eventfd_ctx *eventfd); |
79bd9814 TH |
255 | /* |
256 | * All fields below needed to unregister event when | |
257 | * userspace closes eventfd. | |
258 | */ | |
259 | poll_table pt; | |
260 | wait_queue_head_t *wqh; | |
261 | wait_queue_t wait; | |
262 | struct work_struct remove; | |
263 | }; | |
264 | ||
c0ff4b85 R |
265 | static void mem_cgroup_threshold(struct mem_cgroup *memcg); |
266 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg); | |
2e72b634 | 267 | |
8cdea7c0 BS |
268 | /* |
269 | * The memory controller data structure. The memory controller controls both | |
270 | * page cache and RSS per cgroup. We would eventually like to provide | |
271 | * statistics based on the statistics developed by Rik Van Riel for clock-pro, | |
272 | * to help the administrator determine what knobs to tune. | |
273 | * | |
274 | * TODO: Add a water mark for the memory controller. Reclaim will begin when | |
8a9f3ccd BS |
275 | * we hit the water mark. May be even add a low water mark, such that |
276 | * no reclaim occurs from a cgroup at it's low water mark, this is | |
277 | * a feature that will be implemented much later in the future. | |
8cdea7c0 BS |
278 | */ |
279 | struct mem_cgroup { | |
280 | struct cgroup_subsys_state css; | |
3e32cb2e JW |
281 | |
282 | /* Accounted resources */ | |
283 | struct page_counter memory; | |
284 | struct page_counter memsw; | |
285 | struct page_counter kmem; | |
286 | ||
287 | unsigned long soft_limit; | |
59927fb9 | 288 | |
70ddf637 AV |
289 | /* vmpressure notifications */ |
290 | struct vmpressure vmpressure; | |
291 | ||
2f7dd7a4 JW |
292 | /* css_online() has been completed */ |
293 | int initialized; | |
294 | ||
18f59ea7 BS |
295 | /* |
296 | * Should the accounting and control be hierarchical, per subtree? | |
297 | */ | |
298 | bool use_hierarchy; | |
79dfdacc MH |
299 | |
300 | bool oom_lock; | |
301 | atomic_t under_oom; | |
3812c8c8 | 302 | atomic_t oom_wakeups; |
79dfdacc | 303 | |
1f4c025b | 304 | int swappiness; |
3c11ecf4 KH |
305 | /* OOM-Killer disable */ |
306 | int oom_kill_disable; | |
a7885eb8 | 307 | |
2e72b634 KS |
308 | /* protect arrays of thresholds */ |
309 | struct mutex thresholds_lock; | |
310 | ||
311 | /* thresholds for memory usage. RCU-protected */ | |
2c488db2 | 312 | struct mem_cgroup_thresholds thresholds; |
907860ed | 313 | |
2e72b634 | 314 | /* thresholds for mem+swap usage. RCU-protected */ |
2c488db2 | 315 | struct mem_cgroup_thresholds memsw_thresholds; |
907860ed | 316 | |
9490ff27 KH |
317 | /* For oom notifier event fd */ |
318 | struct list_head oom_notify; | |
185efc0f | 319 | |
7dc74be0 DN |
320 | /* |
321 | * Should we move charges of a task when a task is moved into this | |
322 | * mem_cgroup ? And what type of charges should we move ? | |
323 | */ | |
f894ffa8 | 324 | unsigned long move_charge_at_immigrate; |
619d094b KH |
325 | /* |
326 | * set > 0 if pages under this cgroup are moving to other cgroup. | |
327 | */ | |
328 | atomic_t moving_account; | |
312734c0 KH |
329 | /* taken only while moving_account > 0 */ |
330 | spinlock_t move_lock; | |
d52aa412 | 331 | /* |
c62b1a3b | 332 | * percpu counter. |
d52aa412 | 333 | */ |
3a7951b4 | 334 | struct mem_cgroup_stat_cpu __percpu *stat; |
711d3d2c KH |
335 | /* |
336 | * used when a cpu is offlined or other synchronizations | |
337 | * See mem_cgroup_read_stat(). | |
338 | */ | |
339 | struct mem_cgroup_stat_cpu nocpu_base; | |
340 | spinlock_t pcp_counter_lock; | |
d1a4c0b3 | 341 | |
4bd2c1ee | 342 | #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET) |
2e685cad | 343 | struct cg_proto tcp_mem; |
d1a4c0b3 | 344 | #endif |
2633d7a0 | 345 | #if defined(CONFIG_MEMCG_KMEM) |
bd673145 VD |
346 | /* analogous to slab_common's slab_caches list, but per-memcg; |
347 | * protected by memcg_slab_mutex */ | |
2633d7a0 | 348 | struct list_head memcg_slab_caches; |
2633d7a0 GC |
349 | /* Index in the kmem_cache->memcg_params->memcg_caches array */ |
350 | int kmemcg_id; | |
351 | #endif | |
45cf7ebd GC |
352 | |
353 | int last_scanned_node; | |
354 | #if MAX_NUMNODES > 1 | |
355 | nodemask_t scan_nodes; | |
356 | atomic_t numainfo_events; | |
357 | atomic_t numainfo_updating; | |
358 | #endif | |
70ddf637 | 359 | |
fba94807 TH |
360 | /* List of events which userspace want to receive */ |
361 | struct list_head event_list; | |
362 | spinlock_t event_list_lock; | |
363 | ||
54f72fe0 JW |
364 | struct mem_cgroup_per_node *nodeinfo[0]; |
365 | /* WARNING: nodeinfo must be the last member here */ | |
8cdea7c0 BS |
366 | }; |
367 | ||
510fc4e1 | 368 | #ifdef CONFIG_MEMCG_KMEM |
7de37682 GC |
369 | static bool memcg_kmem_is_active(struct mem_cgroup *memcg) |
370 | { | |
900a38f0 | 371 | return memcg->kmemcg_id >= 0; |
7de37682 | 372 | } |
510fc4e1 GC |
373 | #endif |
374 | ||
7dc74be0 DN |
375 | /* Stuffs for move charges at task migration. */ |
376 | /* | |
ee5e8472 GC |
377 | * Types of charges to be moved. "move_charge_at_immitgrate" and |
378 | * "immigrate_flags" are treated as a left-shifted bitmap of these types. | |
7dc74be0 DN |
379 | */ |
380 | enum move_type { | |
4ffef5fe | 381 | MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */ |
87946a72 | 382 | MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */ |
7dc74be0 DN |
383 | NR_MOVE_TYPE, |
384 | }; | |
385 | ||
4ffef5fe DN |
386 | /* "mc" and its members are protected by cgroup_mutex */ |
387 | static struct move_charge_struct { | |
b1dd693e | 388 | spinlock_t lock; /* for from, to */ |
4ffef5fe DN |
389 | struct mem_cgroup *from; |
390 | struct mem_cgroup *to; | |
ee5e8472 | 391 | unsigned long immigrate_flags; |
4ffef5fe | 392 | unsigned long precharge; |
854ffa8d | 393 | unsigned long moved_charge; |
483c30b5 | 394 | unsigned long moved_swap; |
8033b97c DN |
395 | struct task_struct *moving_task; /* a task moving charges */ |
396 | wait_queue_head_t waitq; /* a waitq for other context */ | |
397 | } mc = { | |
2bd9bb20 | 398 | .lock = __SPIN_LOCK_UNLOCKED(mc.lock), |
8033b97c DN |
399 | .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq), |
400 | }; | |
4ffef5fe | 401 | |
90254a65 DN |
402 | static bool move_anon(void) |
403 | { | |
ee5e8472 | 404 | return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags); |
90254a65 DN |
405 | } |
406 | ||
87946a72 DN |
407 | static bool move_file(void) |
408 | { | |
ee5e8472 | 409 | return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags); |
87946a72 DN |
410 | } |
411 | ||
4e416953 BS |
412 | /* |
413 | * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft | |
414 | * limit reclaim to prevent infinite loops, if they ever occur. | |
415 | */ | |
a0db00fc | 416 | #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100 |
bb4cc1a8 | 417 | #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2 |
4e416953 | 418 | |
217bc319 KH |
419 | enum charge_type { |
420 | MEM_CGROUP_CHARGE_TYPE_CACHE = 0, | |
41326c17 | 421 | MEM_CGROUP_CHARGE_TYPE_ANON, |
d13d1443 | 422 | MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */ |
8a9478ca | 423 | MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */ |
c05555b5 KH |
424 | NR_CHARGE_TYPE, |
425 | }; | |
426 | ||
8c7c6e34 | 427 | /* for encoding cft->private value on file */ |
86ae53e1 GC |
428 | enum res_type { |
429 | _MEM, | |
430 | _MEMSWAP, | |
431 | _OOM_TYPE, | |
510fc4e1 | 432 | _KMEM, |
86ae53e1 GC |
433 | }; |
434 | ||
a0db00fc KS |
435 | #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val)) |
436 | #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff) | |
8c7c6e34 | 437 | #define MEMFILE_ATTR(val) ((val) & 0xffff) |
9490ff27 KH |
438 | /* Used for OOM nofiier */ |
439 | #define OOM_CONTROL (0) | |
8c7c6e34 | 440 | |
0999821b GC |
441 | /* |
442 | * The memcg_create_mutex will be held whenever a new cgroup is created. | |
443 | * As a consequence, any change that needs to protect against new child cgroups | |
444 | * appearing has to hold it as well. | |
445 | */ | |
446 | static DEFINE_MUTEX(memcg_create_mutex); | |
447 | ||
b2145145 WL |
448 | struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s) |
449 | { | |
a7c6d554 | 450 | return s ? container_of(s, struct mem_cgroup, css) : NULL; |
b2145145 WL |
451 | } |
452 | ||
70ddf637 AV |
453 | /* Some nice accessors for the vmpressure. */ |
454 | struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg) | |
455 | { | |
456 | if (!memcg) | |
457 | memcg = root_mem_cgroup; | |
458 | return &memcg->vmpressure; | |
459 | } | |
460 | ||
461 | struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr) | |
462 | { | |
463 | return &container_of(vmpr, struct mem_cgroup, vmpressure)->css; | |
464 | } | |
465 | ||
7ffc0edc MH |
466 | static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) |
467 | { | |
468 | return (memcg == root_mem_cgroup); | |
469 | } | |
470 | ||
4219b2da LZ |
471 | /* |
472 | * We restrict the id in the range of [1, 65535], so it can fit into | |
473 | * an unsigned short. | |
474 | */ | |
475 | #define MEM_CGROUP_ID_MAX USHRT_MAX | |
476 | ||
34c00c31 LZ |
477 | static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) |
478 | { | |
15a4c835 | 479 | return memcg->css.id; |
34c00c31 LZ |
480 | } |
481 | ||
482 | static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) | |
483 | { | |
484 | struct cgroup_subsys_state *css; | |
485 | ||
7d699ddb | 486 | css = css_from_id(id, &memory_cgrp_subsys); |
34c00c31 LZ |
487 | return mem_cgroup_from_css(css); |
488 | } | |
489 | ||
e1aab161 | 490 | /* Writing them here to avoid exposing memcg's inner layout */ |
4bd2c1ee | 491 | #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM) |
e1aab161 | 492 | |
e1aab161 GC |
493 | void sock_update_memcg(struct sock *sk) |
494 | { | |
376be5ff | 495 | if (mem_cgroup_sockets_enabled) { |
e1aab161 | 496 | struct mem_cgroup *memcg; |
3f134619 | 497 | struct cg_proto *cg_proto; |
e1aab161 GC |
498 | |
499 | BUG_ON(!sk->sk_prot->proto_cgroup); | |
500 | ||
f3f511e1 GC |
501 | /* Socket cloning can throw us here with sk_cgrp already |
502 | * filled. It won't however, necessarily happen from | |
503 | * process context. So the test for root memcg given | |
504 | * the current task's memcg won't help us in this case. | |
505 | * | |
506 | * Respecting the original socket's memcg is a better | |
507 | * decision in this case. | |
508 | */ | |
509 | if (sk->sk_cgrp) { | |
510 | BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg)); | |
5347e5ae | 511 | css_get(&sk->sk_cgrp->memcg->css); |
f3f511e1 GC |
512 | return; |
513 | } | |
514 | ||
e1aab161 GC |
515 | rcu_read_lock(); |
516 | memcg = mem_cgroup_from_task(current); | |
3f134619 | 517 | cg_proto = sk->sk_prot->proto_cgroup(memcg); |
5347e5ae | 518 | if (!mem_cgroup_is_root(memcg) && |
ec903c0c TH |
519 | memcg_proto_active(cg_proto) && |
520 | css_tryget_online(&memcg->css)) { | |
3f134619 | 521 | sk->sk_cgrp = cg_proto; |
e1aab161 GC |
522 | } |
523 | rcu_read_unlock(); | |
524 | } | |
525 | } | |
526 | EXPORT_SYMBOL(sock_update_memcg); | |
527 | ||
528 | void sock_release_memcg(struct sock *sk) | |
529 | { | |
376be5ff | 530 | if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { |
e1aab161 GC |
531 | struct mem_cgroup *memcg; |
532 | WARN_ON(!sk->sk_cgrp->memcg); | |
533 | memcg = sk->sk_cgrp->memcg; | |
5347e5ae | 534 | css_put(&sk->sk_cgrp->memcg->css); |
e1aab161 GC |
535 | } |
536 | } | |
d1a4c0b3 GC |
537 | |
538 | struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg) | |
539 | { | |
540 | if (!memcg || mem_cgroup_is_root(memcg)) | |
541 | return NULL; | |
542 | ||
2e685cad | 543 | return &memcg->tcp_mem; |
d1a4c0b3 GC |
544 | } |
545 | EXPORT_SYMBOL(tcp_proto_cgroup); | |
e1aab161 | 546 | |
3f134619 GC |
547 | static void disarm_sock_keys(struct mem_cgroup *memcg) |
548 | { | |
2e685cad | 549 | if (!memcg_proto_activated(&memcg->tcp_mem)) |
3f134619 GC |
550 | return; |
551 | static_key_slow_dec(&memcg_socket_limit_enabled); | |
552 | } | |
553 | #else | |
554 | static void disarm_sock_keys(struct mem_cgroup *memcg) | |
555 | { | |
556 | } | |
557 | #endif | |
558 | ||
a8964b9b | 559 | #ifdef CONFIG_MEMCG_KMEM |
55007d84 GC |
560 | /* |
561 | * This will be the memcg's index in each cache's ->memcg_params->memcg_caches. | |
b8627835 LZ |
562 | * The main reason for not using cgroup id for this: |
563 | * this works better in sparse environments, where we have a lot of memcgs, | |
564 | * but only a few kmem-limited. Or also, if we have, for instance, 200 | |
565 | * memcgs, and none but the 200th is kmem-limited, we'd have to have a | |
566 | * 200 entry array for that. | |
55007d84 GC |
567 | * |
568 | * The current size of the caches array is stored in | |
569 | * memcg_limited_groups_array_size. It will double each time we have to | |
570 | * increase it. | |
571 | */ | |
572 | static DEFINE_IDA(kmem_limited_groups); | |
749c5415 GC |
573 | int memcg_limited_groups_array_size; |
574 | ||
55007d84 GC |
575 | /* |
576 | * MIN_SIZE is different than 1, because we would like to avoid going through | |
577 | * the alloc/free process all the time. In a small machine, 4 kmem-limited | |
578 | * cgroups is a reasonable guess. In the future, it could be a parameter or | |
579 | * tunable, but that is strictly not necessary. | |
580 | * | |
b8627835 | 581 | * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get |
55007d84 GC |
582 | * this constant directly from cgroup, but it is understandable that this is |
583 | * better kept as an internal representation in cgroup.c. In any case, the | |
b8627835 | 584 | * cgrp_id space is not getting any smaller, and we don't have to necessarily |
55007d84 GC |
585 | * increase ours as well if it increases. |
586 | */ | |
587 | #define MEMCG_CACHES_MIN_SIZE 4 | |
b8627835 | 588 | #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX |
55007d84 | 589 | |
d7f25f8a GC |
590 | /* |
591 | * A lot of the calls to the cache allocation functions are expected to be | |
592 | * inlined by the compiler. Since the calls to memcg_kmem_get_cache are | |
593 | * conditional to this static branch, we'll have to allow modules that does | |
594 | * kmem_cache_alloc and the such to see this symbol as well | |
595 | */ | |
a8964b9b | 596 | struct static_key memcg_kmem_enabled_key; |
d7f25f8a | 597 | EXPORT_SYMBOL(memcg_kmem_enabled_key); |
a8964b9b | 598 | |
f3bb3043 VD |
599 | static void memcg_free_cache_id(int id); |
600 | ||
a8964b9b GC |
601 | static void disarm_kmem_keys(struct mem_cgroup *memcg) |
602 | { | |
55007d84 | 603 | if (memcg_kmem_is_active(memcg)) { |
a8964b9b | 604 | static_key_slow_dec(&memcg_kmem_enabled_key); |
f3bb3043 | 605 | memcg_free_cache_id(memcg->kmemcg_id); |
55007d84 | 606 | } |
bea207c8 GC |
607 | /* |
608 | * This check can't live in kmem destruction function, | |
609 | * since the charges will outlive the cgroup | |
610 | */ | |
3e32cb2e | 611 | WARN_ON(page_counter_read(&memcg->kmem)); |
a8964b9b GC |
612 | } |
613 | #else | |
614 | static void disarm_kmem_keys(struct mem_cgroup *memcg) | |
615 | { | |
616 | } | |
617 | #endif /* CONFIG_MEMCG_KMEM */ | |
618 | ||
619 | static void disarm_static_keys(struct mem_cgroup *memcg) | |
620 | { | |
621 | disarm_sock_keys(memcg); | |
622 | disarm_kmem_keys(memcg); | |
623 | } | |
624 | ||
f64c3f54 | 625 | static struct mem_cgroup_per_zone * |
e231875b | 626 | mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone) |
f64c3f54 | 627 | { |
e231875b JZ |
628 | int nid = zone_to_nid(zone); |
629 | int zid = zone_idx(zone); | |
630 | ||
54f72fe0 | 631 | return &memcg->nodeinfo[nid]->zoneinfo[zid]; |
f64c3f54 BS |
632 | } |
633 | ||
c0ff4b85 | 634 | struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg) |
d324236b | 635 | { |
c0ff4b85 | 636 | return &memcg->css; |
d324236b WF |
637 | } |
638 | ||
f64c3f54 | 639 | static struct mem_cgroup_per_zone * |
e231875b | 640 | mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page) |
f64c3f54 | 641 | { |
97a6c37b JW |
642 | int nid = page_to_nid(page); |
643 | int zid = page_zonenum(page); | |
f64c3f54 | 644 | |
e231875b | 645 | return &memcg->nodeinfo[nid]->zoneinfo[zid]; |
f64c3f54 BS |
646 | } |
647 | ||
bb4cc1a8 AM |
648 | static struct mem_cgroup_tree_per_zone * |
649 | soft_limit_tree_node_zone(int nid, int zid) | |
650 | { | |
651 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | |
652 | } | |
653 | ||
654 | static struct mem_cgroup_tree_per_zone * | |
655 | soft_limit_tree_from_page(struct page *page) | |
656 | { | |
657 | int nid = page_to_nid(page); | |
658 | int zid = page_zonenum(page); | |
659 | ||
660 | return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid]; | |
661 | } | |
662 | ||
cf2c8127 JW |
663 | static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz, |
664 | struct mem_cgroup_tree_per_zone *mctz, | |
3e32cb2e | 665 | unsigned long new_usage_in_excess) |
bb4cc1a8 AM |
666 | { |
667 | struct rb_node **p = &mctz->rb_root.rb_node; | |
668 | struct rb_node *parent = NULL; | |
669 | struct mem_cgroup_per_zone *mz_node; | |
670 | ||
671 | if (mz->on_tree) | |
672 | return; | |
673 | ||
674 | mz->usage_in_excess = new_usage_in_excess; | |
675 | if (!mz->usage_in_excess) | |
676 | return; | |
677 | while (*p) { | |
678 | parent = *p; | |
679 | mz_node = rb_entry(parent, struct mem_cgroup_per_zone, | |
680 | tree_node); | |
681 | if (mz->usage_in_excess < mz_node->usage_in_excess) | |
682 | p = &(*p)->rb_left; | |
683 | /* | |
684 | * We can't avoid mem cgroups that are over their soft | |
685 | * limit by the same amount | |
686 | */ | |
687 | else if (mz->usage_in_excess >= mz_node->usage_in_excess) | |
688 | p = &(*p)->rb_right; | |
689 | } | |
690 | rb_link_node(&mz->tree_node, parent, p); | |
691 | rb_insert_color(&mz->tree_node, &mctz->rb_root); | |
692 | mz->on_tree = true; | |
693 | } | |
694 | ||
cf2c8127 JW |
695 | static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, |
696 | struct mem_cgroup_tree_per_zone *mctz) | |
bb4cc1a8 AM |
697 | { |
698 | if (!mz->on_tree) | |
699 | return; | |
700 | rb_erase(&mz->tree_node, &mctz->rb_root); | |
701 | mz->on_tree = false; | |
702 | } | |
703 | ||
cf2c8127 JW |
704 | static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz, |
705 | struct mem_cgroup_tree_per_zone *mctz) | |
bb4cc1a8 | 706 | { |
0a31bc97 JW |
707 | unsigned long flags; |
708 | ||
709 | spin_lock_irqsave(&mctz->lock, flags); | |
cf2c8127 | 710 | __mem_cgroup_remove_exceeded(mz, mctz); |
0a31bc97 | 711 | spin_unlock_irqrestore(&mctz->lock, flags); |
bb4cc1a8 AM |
712 | } |
713 | ||
3e32cb2e JW |
714 | static unsigned long soft_limit_excess(struct mem_cgroup *memcg) |
715 | { | |
716 | unsigned long nr_pages = page_counter_read(&memcg->memory); | |
717 | unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit); | |
718 | unsigned long excess = 0; | |
719 | ||
720 | if (nr_pages > soft_limit) | |
721 | excess = nr_pages - soft_limit; | |
722 | ||
723 | return excess; | |
724 | } | |
bb4cc1a8 AM |
725 | |
726 | static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page) | |
727 | { | |
3e32cb2e | 728 | unsigned long excess; |
bb4cc1a8 AM |
729 | struct mem_cgroup_per_zone *mz; |
730 | struct mem_cgroup_tree_per_zone *mctz; | |
bb4cc1a8 | 731 | |
e231875b | 732 | mctz = soft_limit_tree_from_page(page); |
bb4cc1a8 AM |
733 | /* |
734 | * Necessary to update all ancestors when hierarchy is used. | |
735 | * because their event counter is not touched. | |
736 | */ | |
737 | for (; memcg; memcg = parent_mem_cgroup(memcg)) { | |
e231875b | 738 | mz = mem_cgroup_page_zoneinfo(memcg, page); |
3e32cb2e | 739 | excess = soft_limit_excess(memcg); |
bb4cc1a8 AM |
740 | /* |
741 | * We have to update the tree if mz is on RB-tree or | |
742 | * mem is over its softlimit. | |
743 | */ | |
744 | if (excess || mz->on_tree) { | |
0a31bc97 JW |
745 | unsigned long flags; |
746 | ||
747 | spin_lock_irqsave(&mctz->lock, flags); | |
bb4cc1a8 AM |
748 | /* if on-tree, remove it */ |
749 | if (mz->on_tree) | |
cf2c8127 | 750 | __mem_cgroup_remove_exceeded(mz, mctz); |
bb4cc1a8 AM |
751 | /* |
752 | * Insert again. mz->usage_in_excess will be updated. | |
753 | * If excess is 0, no tree ops. | |
754 | */ | |
cf2c8127 | 755 | __mem_cgroup_insert_exceeded(mz, mctz, excess); |
0a31bc97 | 756 | spin_unlock_irqrestore(&mctz->lock, flags); |
bb4cc1a8 AM |
757 | } |
758 | } | |
759 | } | |
760 | ||
761 | static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg) | |
762 | { | |
bb4cc1a8 | 763 | struct mem_cgroup_tree_per_zone *mctz; |
e231875b JZ |
764 | struct mem_cgroup_per_zone *mz; |
765 | int nid, zid; | |
bb4cc1a8 | 766 | |
e231875b JZ |
767 | for_each_node(nid) { |
768 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
769 | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; | |
770 | mctz = soft_limit_tree_node_zone(nid, zid); | |
cf2c8127 | 771 | mem_cgroup_remove_exceeded(mz, mctz); |
bb4cc1a8 AM |
772 | } |
773 | } | |
774 | } | |
775 | ||
776 | static struct mem_cgroup_per_zone * | |
777 | __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |
778 | { | |
779 | struct rb_node *rightmost = NULL; | |
780 | struct mem_cgroup_per_zone *mz; | |
781 | ||
782 | retry: | |
783 | mz = NULL; | |
784 | rightmost = rb_last(&mctz->rb_root); | |
785 | if (!rightmost) | |
786 | goto done; /* Nothing to reclaim from */ | |
787 | ||
788 | mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node); | |
789 | /* | |
790 | * Remove the node now but someone else can add it back, | |
791 | * we will to add it back at the end of reclaim to its correct | |
792 | * position in the tree. | |
793 | */ | |
cf2c8127 | 794 | __mem_cgroup_remove_exceeded(mz, mctz); |
3e32cb2e | 795 | if (!soft_limit_excess(mz->memcg) || |
ec903c0c | 796 | !css_tryget_online(&mz->memcg->css)) |
bb4cc1a8 AM |
797 | goto retry; |
798 | done: | |
799 | return mz; | |
800 | } | |
801 | ||
802 | static struct mem_cgroup_per_zone * | |
803 | mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz) | |
804 | { | |
805 | struct mem_cgroup_per_zone *mz; | |
806 | ||
0a31bc97 | 807 | spin_lock_irq(&mctz->lock); |
bb4cc1a8 | 808 | mz = __mem_cgroup_largest_soft_limit_node(mctz); |
0a31bc97 | 809 | spin_unlock_irq(&mctz->lock); |
bb4cc1a8 AM |
810 | return mz; |
811 | } | |
812 | ||
711d3d2c KH |
813 | /* |
814 | * Implementation Note: reading percpu statistics for memcg. | |
815 | * | |
816 | * Both of vmstat[] and percpu_counter has threshold and do periodic | |
817 | * synchronization to implement "quick" read. There are trade-off between | |
818 | * reading cost and precision of value. Then, we may have a chance to implement | |
819 | * a periodic synchronizion of counter in memcg's counter. | |
820 | * | |
821 | * But this _read() function is used for user interface now. The user accounts | |
822 | * memory usage by memory cgroup and he _always_ requires exact value because | |
823 | * he accounts memory. Even if we provide quick-and-fuzzy read, we always | |
824 | * have to visit all online cpus and make sum. So, for now, unnecessary | |
825 | * synchronization is not implemented. (just implemented for cpu hotplug) | |
826 | * | |
827 | * If there are kernel internal actions which can make use of some not-exact | |
828 | * value, and reading all cpu value can be performance bottleneck in some | |
829 | * common workload, threashold and synchonization as vmstat[] should be | |
830 | * implemented. | |
831 | */ | |
c0ff4b85 | 832 | static long mem_cgroup_read_stat(struct mem_cgroup *memcg, |
7a159cc9 | 833 | enum mem_cgroup_stat_index idx) |
c62b1a3b | 834 | { |
7a159cc9 | 835 | long val = 0; |
c62b1a3b | 836 | int cpu; |
c62b1a3b | 837 | |
711d3d2c KH |
838 | get_online_cpus(); |
839 | for_each_online_cpu(cpu) | |
c0ff4b85 | 840 | val += per_cpu(memcg->stat->count[idx], cpu); |
711d3d2c | 841 | #ifdef CONFIG_HOTPLUG_CPU |
c0ff4b85 R |
842 | spin_lock(&memcg->pcp_counter_lock); |
843 | val += memcg->nocpu_base.count[idx]; | |
844 | spin_unlock(&memcg->pcp_counter_lock); | |
711d3d2c KH |
845 | #endif |
846 | put_online_cpus(); | |
c62b1a3b KH |
847 | return val; |
848 | } | |
849 | ||
c0ff4b85 | 850 | static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg, |
e9f8974f JW |
851 | enum mem_cgroup_events_index idx) |
852 | { | |
853 | unsigned long val = 0; | |
854 | int cpu; | |
855 | ||
9c567512 | 856 | get_online_cpus(); |
e9f8974f | 857 | for_each_online_cpu(cpu) |
c0ff4b85 | 858 | val += per_cpu(memcg->stat->events[idx], cpu); |
e9f8974f | 859 | #ifdef CONFIG_HOTPLUG_CPU |
c0ff4b85 R |
860 | spin_lock(&memcg->pcp_counter_lock); |
861 | val += memcg->nocpu_base.events[idx]; | |
862 | spin_unlock(&memcg->pcp_counter_lock); | |
e9f8974f | 863 | #endif |
9c567512 | 864 | put_online_cpus(); |
e9f8974f JW |
865 | return val; |
866 | } | |
867 | ||
c0ff4b85 | 868 | static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg, |
b070e65c | 869 | struct page *page, |
0a31bc97 | 870 | int nr_pages) |
d52aa412 | 871 | { |
b2402857 KH |
872 | /* |
873 | * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is | |
874 | * counted as CACHE even if it's on ANON LRU. | |
875 | */ | |
0a31bc97 | 876 | if (PageAnon(page)) |
b2402857 | 877 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS], |
c0ff4b85 | 878 | nr_pages); |
d52aa412 | 879 | else |
b2402857 | 880 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE], |
c0ff4b85 | 881 | nr_pages); |
55e462b0 | 882 | |
b070e65c DR |
883 | if (PageTransHuge(page)) |
884 | __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], | |
885 | nr_pages); | |
886 | ||
e401f176 KH |
887 | /* pagein of a big page is an event. So, ignore page size */ |
888 | if (nr_pages > 0) | |
c0ff4b85 | 889 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]); |
3751d604 | 890 | else { |
c0ff4b85 | 891 | __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]); |
3751d604 KH |
892 | nr_pages = -nr_pages; /* for event */ |
893 | } | |
e401f176 | 894 | |
13114716 | 895 | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); |
6d12e2d8 KH |
896 | } |
897 | ||
e231875b | 898 | unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru) |
074291fe KK |
899 | { |
900 | struct mem_cgroup_per_zone *mz; | |
901 | ||
902 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); | |
903 | return mz->lru_size[lru]; | |
904 | } | |
905 | ||
e231875b JZ |
906 | static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg, |
907 | int nid, | |
908 | unsigned int lru_mask) | |
bb2a0de9 | 909 | { |
e231875b | 910 | unsigned long nr = 0; |
889976db YH |
911 | int zid; |
912 | ||
e231875b | 913 | VM_BUG_ON((unsigned)nid >= nr_node_ids); |
bb2a0de9 | 914 | |
e231875b JZ |
915 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { |
916 | struct mem_cgroup_per_zone *mz; | |
917 | enum lru_list lru; | |
918 | ||
919 | for_each_lru(lru) { | |
920 | if (!(BIT(lru) & lru_mask)) | |
921 | continue; | |
922 | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; | |
923 | nr += mz->lru_size[lru]; | |
924 | } | |
925 | } | |
926 | return nr; | |
889976db | 927 | } |
bb2a0de9 | 928 | |
c0ff4b85 | 929 | static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg, |
bb2a0de9 | 930 | unsigned int lru_mask) |
6d12e2d8 | 931 | { |
e231875b | 932 | unsigned long nr = 0; |
889976db | 933 | int nid; |
6d12e2d8 | 934 | |
31aaea4a | 935 | for_each_node_state(nid, N_MEMORY) |
e231875b JZ |
936 | nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask); |
937 | return nr; | |
d52aa412 KH |
938 | } |
939 | ||
f53d7ce3 JW |
940 | static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg, |
941 | enum mem_cgroup_events_target target) | |
7a159cc9 JW |
942 | { |
943 | unsigned long val, next; | |
944 | ||
13114716 | 945 | val = __this_cpu_read(memcg->stat->nr_page_events); |
4799401f | 946 | next = __this_cpu_read(memcg->stat->targets[target]); |
7a159cc9 | 947 | /* from time_after() in jiffies.h */ |
f53d7ce3 JW |
948 | if ((long)next - (long)val < 0) { |
949 | switch (target) { | |
950 | case MEM_CGROUP_TARGET_THRESH: | |
951 | next = val + THRESHOLDS_EVENTS_TARGET; | |
952 | break; | |
bb4cc1a8 AM |
953 | case MEM_CGROUP_TARGET_SOFTLIMIT: |
954 | next = val + SOFTLIMIT_EVENTS_TARGET; | |
955 | break; | |
f53d7ce3 JW |
956 | case MEM_CGROUP_TARGET_NUMAINFO: |
957 | next = val + NUMAINFO_EVENTS_TARGET; | |
958 | break; | |
959 | default: | |
960 | break; | |
961 | } | |
962 | __this_cpu_write(memcg->stat->targets[target], next); | |
963 | return true; | |
7a159cc9 | 964 | } |
f53d7ce3 | 965 | return false; |
d2265e6f KH |
966 | } |
967 | ||
968 | /* | |
969 | * Check events in order. | |
970 | * | |
971 | */ | |
c0ff4b85 | 972 | static void memcg_check_events(struct mem_cgroup *memcg, struct page *page) |
d2265e6f KH |
973 | { |
974 | /* threshold event is triggered in finer grain than soft limit */ | |
f53d7ce3 JW |
975 | if (unlikely(mem_cgroup_event_ratelimit(memcg, |
976 | MEM_CGROUP_TARGET_THRESH))) { | |
bb4cc1a8 | 977 | bool do_softlimit; |
82b3f2a7 | 978 | bool do_numainfo __maybe_unused; |
f53d7ce3 | 979 | |
bb4cc1a8 AM |
980 | do_softlimit = mem_cgroup_event_ratelimit(memcg, |
981 | MEM_CGROUP_TARGET_SOFTLIMIT); | |
f53d7ce3 JW |
982 | #if MAX_NUMNODES > 1 |
983 | do_numainfo = mem_cgroup_event_ratelimit(memcg, | |
984 | MEM_CGROUP_TARGET_NUMAINFO); | |
985 | #endif | |
c0ff4b85 | 986 | mem_cgroup_threshold(memcg); |
bb4cc1a8 AM |
987 | if (unlikely(do_softlimit)) |
988 | mem_cgroup_update_tree(memcg, page); | |
453a9bf3 | 989 | #if MAX_NUMNODES > 1 |
f53d7ce3 | 990 | if (unlikely(do_numainfo)) |
c0ff4b85 | 991 | atomic_inc(&memcg->numainfo_events); |
453a9bf3 | 992 | #endif |
0a31bc97 | 993 | } |
d2265e6f KH |
994 | } |
995 | ||
cf475ad2 | 996 | struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p) |
78fb7466 | 997 | { |
31a78f23 BS |
998 | /* |
999 | * mm_update_next_owner() may clear mm->owner to NULL | |
1000 | * if it races with swapoff, page migration, etc. | |
1001 | * So this can be called with p == NULL. | |
1002 | */ | |
1003 | if (unlikely(!p)) | |
1004 | return NULL; | |
1005 | ||
073219e9 | 1006 | return mem_cgroup_from_css(task_css(p, memory_cgrp_id)); |
78fb7466 PE |
1007 | } |
1008 | ||
df381975 | 1009 | static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) |
54595fe2 | 1010 | { |
c0ff4b85 | 1011 | struct mem_cgroup *memcg = NULL; |
0b7f569e | 1012 | |
54595fe2 KH |
1013 | rcu_read_lock(); |
1014 | do { | |
6f6acb00 MH |
1015 | /* |
1016 | * Page cache insertions can happen withou an | |
1017 | * actual mm context, e.g. during disk probing | |
1018 | * on boot, loopback IO, acct() writes etc. | |
1019 | */ | |
1020 | if (unlikely(!mm)) | |
df381975 | 1021 | memcg = root_mem_cgroup; |
6f6acb00 MH |
1022 | else { |
1023 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); | |
1024 | if (unlikely(!memcg)) | |
1025 | memcg = root_mem_cgroup; | |
1026 | } | |
ec903c0c | 1027 | } while (!css_tryget_online(&memcg->css)); |
54595fe2 | 1028 | rcu_read_unlock(); |
c0ff4b85 | 1029 | return memcg; |
54595fe2 KH |
1030 | } |
1031 | ||
5660048c JW |
1032 | /** |
1033 | * mem_cgroup_iter - iterate over memory cgroup hierarchy | |
1034 | * @root: hierarchy root | |
1035 | * @prev: previously returned memcg, NULL on first invocation | |
1036 | * @reclaim: cookie for shared reclaim walks, NULL for full walks | |
1037 | * | |
1038 | * Returns references to children of the hierarchy below @root, or | |
1039 | * @root itself, or %NULL after a full round-trip. | |
1040 | * | |
1041 | * Caller must pass the return value in @prev on subsequent | |
1042 | * invocations for reference counting, or use mem_cgroup_iter_break() | |
1043 | * to cancel a hierarchy walk before the round-trip is complete. | |
1044 | * | |
1045 | * Reclaimers can specify a zone and a priority level in @reclaim to | |
1046 | * divide up the memcgs in the hierarchy among all concurrent | |
1047 | * reclaimers operating on the same zone and priority. | |
1048 | */ | |
694fbc0f | 1049 | struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root, |
5660048c | 1050 | struct mem_cgroup *prev, |
694fbc0f | 1051 | struct mem_cgroup_reclaim_cookie *reclaim) |
14067bb3 | 1052 | { |
5ac8fb31 JW |
1053 | struct reclaim_iter *uninitialized_var(iter); |
1054 | struct cgroup_subsys_state *css = NULL; | |
9f3a0d09 | 1055 | struct mem_cgroup *memcg = NULL; |
5ac8fb31 | 1056 | struct mem_cgroup *pos = NULL; |
711d3d2c | 1057 | |
694fbc0f AM |
1058 | if (mem_cgroup_disabled()) |
1059 | return NULL; | |
5660048c | 1060 | |
9f3a0d09 JW |
1061 | if (!root) |
1062 | root = root_mem_cgroup; | |
7d74b06f | 1063 | |
9f3a0d09 | 1064 | if (prev && !reclaim) |
5ac8fb31 | 1065 | pos = prev; |
14067bb3 | 1066 | |
9f3a0d09 JW |
1067 | if (!root->use_hierarchy && root != root_mem_cgroup) { |
1068 | if (prev) | |
5ac8fb31 | 1069 | goto out; |
694fbc0f | 1070 | return root; |
9f3a0d09 | 1071 | } |
14067bb3 | 1072 | |
542f85f9 | 1073 | rcu_read_lock(); |
5f578161 | 1074 | |
5ac8fb31 JW |
1075 | if (reclaim) { |
1076 | struct mem_cgroup_per_zone *mz; | |
1077 | ||
1078 | mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone); | |
1079 | iter = &mz->iter[reclaim->priority]; | |
1080 | ||
1081 | if (prev && reclaim->generation != iter->generation) | |
1082 | goto out_unlock; | |
1083 | ||
1084 | do { | |
1085 | pos = ACCESS_ONCE(iter->position); | |
1086 | /* | |
1087 | * A racing update may change the position and | |
1088 | * put the last reference, hence css_tryget(), | |
1089 | * or retry to see the updated position. | |
1090 | */ | |
1091 | } while (pos && !css_tryget(&pos->css)); | |
1092 | } | |
1093 | ||
1094 | if (pos) | |
1095 | css = &pos->css; | |
1096 | ||
1097 | for (;;) { | |
1098 | css = css_next_descendant_pre(css, &root->css); | |
1099 | if (!css) { | |
1100 | /* | |
1101 | * Reclaimers share the hierarchy walk, and a | |
1102 | * new one might jump in right at the end of | |
1103 | * the hierarchy - make sure they see at least | |
1104 | * one group and restart from the beginning. | |
1105 | */ | |
1106 | if (!prev) | |
1107 | continue; | |
1108 | break; | |
527a5ec9 | 1109 | } |
7d74b06f | 1110 | |
5ac8fb31 JW |
1111 | /* |
1112 | * Verify the css and acquire a reference. The root | |
1113 | * is provided by the caller, so we know it's alive | |
1114 | * and kicking, and don't take an extra reference. | |
1115 | */ | |
1116 | memcg = mem_cgroup_from_css(css); | |
14067bb3 | 1117 | |
5ac8fb31 JW |
1118 | if (css == &root->css) |
1119 | break; | |
14067bb3 | 1120 | |
b2052564 | 1121 | if (css_tryget(css)) { |
5ac8fb31 JW |
1122 | /* |
1123 | * Make sure the memcg is initialized: | |
1124 | * mem_cgroup_css_online() orders the the | |
1125 | * initialization against setting the flag. | |
1126 | */ | |
1127 | if (smp_load_acquire(&memcg->initialized)) | |
1128 | break; | |
542f85f9 | 1129 | |
5ac8fb31 | 1130 | css_put(css); |
527a5ec9 | 1131 | } |
9f3a0d09 | 1132 | |
5ac8fb31 | 1133 | memcg = NULL; |
9f3a0d09 | 1134 | } |
5ac8fb31 JW |
1135 | |
1136 | if (reclaim) { | |
1137 | if (cmpxchg(&iter->position, pos, memcg) == pos) { | |
1138 | if (memcg) | |
1139 | css_get(&memcg->css); | |
1140 | if (pos) | |
1141 | css_put(&pos->css); | |
1142 | } | |
1143 | ||
1144 | /* | |
1145 | * pairs with css_tryget when dereferencing iter->position | |
1146 | * above. | |
1147 | */ | |
1148 | if (pos) | |
1149 | css_put(&pos->css); | |
1150 | ||
1151 | if (!memcg) | |
1152 | iter->generation++; | |
1153 | else if (!prev) | |
1154 | reclaim->generation = iter->generation; | |
9f3a0d09 | 1155 | } |
5ac8fb31 | 1156 | |
542f85f9 MH |
1157 | out_unlock: |
1158 | rcu_read_unlock(); | |
5ac8fb31 | 1159 | out: |
c40046f3 MH |
1160 | if (prev && prev != root) |
1161 | css_put(&prev->css); | |
1162 | ||
9f3a0d09 | 1163 | return memcg; |
14067bb3 | 1164 | } |
7d74b06f | 1165 | |
5660048c JW |
1166 | /** |
1167 | * mem_cgroup_iter_break - abort a hierarchy walk prematurely | |
1168 | * @root: hierarchy root | |
1169 | * @prev: last visited hierarchy member as returned by mem_cgroup_iter() | |
1170 | */ | |
1171 | void mem_cgroup_iter_break(struct mem_cgroup *root, | |
1172 | struct mem_cgroup *prev) | |
9f3a0d09 JW |
1173 | { |
1174 | if (!root) | |
1175 | root = root_mem_cgroup; | |
1176 | if (prev && prev != root) | |
1177 | css_put(&prev->css); | |
1178 | } | |
7d74b06f | 1179 | |
9f3a0d09 JW |
1180 | /* |
1181 | * Iteration constructs for visiting all cgroups (under a tree). If | |
1182 | * loops are exited prematurely (break), mem_cgroup_iter_break() must | |
1183 | * be used for reference counting. | |
1184 | */ | |
1185 | #define for_each_mem_cgroup_tree(iter, root) \ | |
527a5ec9 | 1186 | for (iter = mem_cgroup_iter(root, NULL, NULL); \ |
9f3a0d09 | 1187 | iter != NULL; \ |
527a5ec9 | 1188 | iter = mem_cgroup_iter(root, iter, NULL)) |
711d3d2c | 1189 | |
9f3a0d09 | 1190 | #define for_each_mem_cgroup(iter) \ |
527a5ec9 | 1191 | for (iter = mem_cgroup_iter(NULL, NULL, NULL); \ |
9f3a0d09 | 1192 | iter != NULL; \ |
527a5ec9 | 1193 | iter = mem_cgroup_iter(NULL, iter, NULL)) |
14067bb3 | 1194 | |
68ae564b | 1195 | void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx) |
456f998e | 1196 | { |
c0ff4b85 | 1197 | struct mem_cgroup *memcg; |
456f998e | 1198 | |
456f998e | 1199 | rcu_read_lock(); |
c0ff4b85 R |
1200 | memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); |
1201 | if (unlikely(!memcg)) | |
456f998e YH |
1202 | goto out; |
1203 | ||
1204 | switch (idx) { | |
456f998e | 1205 | case PGFAULT: |
0e574a93 JW |
1206 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]); |
1207 | break; | |
1208 | case PGMAJFAULT: | |
1209 | this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]); | |
456f998e YH |
1210 | break; |
1211 | default: | |
1212 | BUG(); | |
1213 | } | |
1214 | out: | |
1215 | rcu_read_unlock(); | |
1216 | } | |
68ae564b | 1217 | EXPORT_SYMBOL(__mem_cgroup_count_vm_event); |
456f998e | 1218 | |
925b7673 JW |
1219 | /** |
1220 | * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg | |
1221 | * @zone: zone of the wanted lruvec | |
fa9add64 | 1222 | * @memcg: memcg of the wanted lruvec |
925b7673 JW |
1223 | * |
1224 | * Returns the lru list vector holding pages for the given @zone and | |
1225 | * @mem. This can be the global zone lruvec, if the memory controller | |
1226 | * is disabled. | |
1227 | */ | |
1228 | struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone, | |
1229 | struct mem_cgroup *memcg) | |
1230 | { | |
1231 | struct mem_cgroup_per_zone *mz; | |
bea8c150 | 1232 | struct lruvec *lruvec; |
925b7673 | 1233 | |
bea8c150 HD |
1234 | if (mem_cgroup_disabled()) { |
1235 | lruvec = &zone->lruvec; | |
1236 | goto out; | |
1237 | } | |
925b7673 | 1238 | |
e231875b | 1239 | mz = mem_cgroup_zone_zoneinfo(memcg, zone); |
bea8c150 HD |
1240 | lruvec = &mz->lruvec; |
1241 | out: | |
1242 | /* | |
1243 | * Since a node can be onlined after the mem_cgroup was created, | |
1244 | * we have to be prepared to initialize lruvec->zone here; | |
1245 | * and if offlined then reonlined, we need to reinitialize it. | |
1246 | */ | |
1247 | if (unlikely(lruvec->zone != zone)) | |
1248 | lruvec->zone = zone; | |
1249 | return lruvec; | |
925b7673 JW |
1250 | } |
1251 | ||
925b7673 | 1252 | /** |
dfe0e773 | 1253 | * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page |
925b7673 | 1254 | * @page: the page |
fa9add64 | 1255 | * @zone: zone of the page |
dfe0e773 JW |
1256 | * |
1257 | * This function is only safe when following the LRU page isolation | |
1258 | * and putback protocol: the LRU lock must be held, and the page must | |
1259 | * either be PageLRU() or the caller must have isolated/allocated it. | |
925b7673 | 1260 | */ |
fa9add64 | 1261 | struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone) |
08e552c6 | 1262 | { |
08e552c6 | 1263 | struct mem_cgroup_per_zone *mz; |
925b7673 | 1264 | struct mem_cgroup *memcg; |
bea8c150 | 1265 | struct lruvec *lruvec; |
6d12e2d8 | 1266 | |
bea8c150 HD |
1267 | if (mem_cgroup_disabled()) { |
1268 | lruvec = &zone->lruvec; | |
1269 | goto out; | |
1270 | } | |
925b7673 | 1271 | |
1306a85a | 1272 | memcg = page->mem_cgroup; |
7512102c | 1273 | /* |
dfe0e773 | 1274 | * Swapcache readahead pages are added to the LRU - and |
29833315 | 1275 | * possibly migrated - before they are charged. |
7512102c | 1276 | */ |
29833315 JW |
1277 | if (!memcg) |
1278 | memcg = root_mem_cgroup; | |
7512102c | 1279 | |
e231875b | 1280 | mz = mem_cgroup_page_zoneinfo(memcg, page); |
bea8c150 HD |
1281 | lruvec = &mz->lruvec; |
1282 | out: | |
1283 | /* | |
1284 | * Since a node can be onlined after the mem_cgroup was created, | |
1285 | * we have to be prepared to initialize lruvec->zone here; | |
1286 | * and if offlined then reonlined, we need to reinitialize it. | |
1287 | */ | |
1288 | if (unlikely(lruvec->zone != zone)) | |
1289 | lruvec->zone = zone; | |
1290 | return lruvec; | |
08e552c6 | 1291 | } |
b69408e8 | 1292 | |
925b7673 | 1293 | /** |
fa9add64 HD |
1294 | * mem_cgroup_update_lru_size - account for adding or removing an lru page |
1295 | * @lruvec: mem_cgroup per zone lru vector | |
1296 | * @lru: index of lru list the page is sitting on | |
1297 | * @nr_pages: positive when adding or negative when removing | |
925b7673 | 1298 | * |
fa9add64 HD |
1299 | * This function must be called when a page is added to or removed from an |
1300 | * lru list. | |
3f58a829 | 1301 | */ |
fa9add64 HD |
1302 | void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, |
1303 | int nr_pages) | |
3f58a829 MK |
1304 | { |
1305 | struct mem_cgroup_per_zone *mz; | |
fa9add64 | 1306 | unsigned long *lru_size; |
3f58a829 MK |
1307 | |
1308 | if (mem_cgroup_disabled()) | |
1309 | return; | |
1310 | ||
fa9add64 HD |
1311 | mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec); |
1312 | lru_size = mz->lru_size + lru; | |
1313 | *lru_size += nr_pages; | |
1314 | VM_BUG_ON((long)(*lru_size) < 0); | |
08e552c6 | 1315 | } |
544122e5 | 1316 | |
2314b42d | 1317 | bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root) |
3e92041d | 1318 | { |
2314b42d | 1319 | if (root == memcg) |
91c63734 | 1320 | return true; |
2314b42d | 1321 | if (!root->use_hierarchy) |
91c63734 | 1322 | return false; |
2314b42d | 1323 | return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); |
c3ac9a8a JW |
1324 | } |
1325 | ||
2314b42d | 1326 | bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg) |
c3ac9a8a | 1327 | { |
2314b42d | 1328 | struct mem_cgroup *task_memcg; |
158e0a2d | 1329 | struct task_struct *p; |
ffbdccf5 | 1330 | bool ret; |
4c4a2214 | 1331 | |
158e0a2d | 1332 | p = find_lock_task_mm(task); |
de077d22 | 1333 | if (p) { |
2314b42d | 1334 | task_memcg = get_mem_cgroup_from_mm(p->mm); |
de077d22 DR |
1335 | task_unlock(p); |
1336 | } else { | |
1337 | /* | |
1338 | * All threads may have already detached their mm's, but the oom | |
1339 | * killer still needs to detect if they have already been oom | |
1340 | * killed to prevent needlessly killing additional tasks. | |
1341 | */ | |
ffbdccf5 | 1342 | rcu_read_lock(); |
2314b42d JW |
1343 | task_memcg = mem_cgroup_from_task(task); |
1344 | css_get(&task_memcg->css); | |
ffbdccf5 | 1345 | rcu_read_unlock(); |
de077d22 | 1346 | } |
2314b42d JW |
1347 | ret = mem_cgroup_is_descendant(task_memcg, memcg); |
1348 | css_put(&task_memcg->css); | |
4c4a2214 DR |
1349 | return ret; |
1350 | } | |
1351 | ||
c56d5c7d | 1352 | int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec) |
14797e23 | 1353 | { |
9b272977 | 1354 | unsigned long inactive_ratio; |
14797e23 | 1355 | unsigned long inactive; |
9b272977 | 1356 | unsigned long active; |
c772be93 | 1357 | unsigned long gb; |
14797e23 | 1358 | |
4d7dcca2 HD |
1359 | inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON); |
1360 | active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON); | |
14797e23 | 1361 | |
c772be93 KM |
1362 | gb = (inactive + active) >> (30 - PAGE_SHIFT); |
1363 | if (gb) | |
1364 | inactive_ratio = int_sqrt(10 * gb); | |
1365 | else | |
1366 | inactive_ratio = 1; | |
1367 | ||
9b272977 | 1368 | return inactive * inactive_ratio < active; |
14797e23 KM |
1369 | } |
1370 | ||
3e32cb2e | 1371 | #define mem_cgroup_from_counter(counter, member) \ |
6d61ef40 BS |
1372 | container_of(counter, struct mem_cgroup, member) |
1373 | ||
19942822 | 1374 | /** |
9d11ea9f | 1375 | * mem_cgroup_margin - calculate chargeable space of a memory cgroup |
dad7557e | 1376 | * @memcg: the memory cgroup |
19942822 | 1377 | * |
9d11ea9f | 1378 | * Returns the maximum amount of memory @mem can be charged with, in |
7ec99d62 | 1379 | * pages. |
19942822 | 1380 | */ |
c0ff4b85 | 1381 | static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg) |
19942822 | 1382 | { |
3e32cb2e JW |
1383 | unsigned long margin = 0; |
1384 | unsigned long count; | |
1385 | unsigned long limit; | |
9d11ea9f | 1386 | |
3e32cb2e JW |
1387 | count = page_counter_read(&memcg->memory); |
1388 | limit = ACCESS_ONCE(memcg->memory.limit); | |
1389 | if (count < limit) | |
1390 | margin = limit - count; | |
1391 | ||
1392 | if (do_swap_account) { | |
1393 | count = page_counter_read(&memcg->memsw); | |
1394 | limit = ACCESS_ONCE(memcg->memsw.limit); | |
1395 | if (count <= limit) | |
1396 | margin = min(margin, limit - count); | |
1397 | } | |
1398 | ||
1399 | return margin; | |
19942822 JW |
1400 | } |
1401 | ||
1f4c025b | 1402 | int mem_cgroup_swappiness(struct mem_cgroup *memcg) |
a7885eb8 | 1403 | { |
a7885eb8 | 1404 | /* root ? */ |
14208b0e | 1405 | if (mem_cgroup_disabled() || !memcg->css.parent) |
a7885eb8 KM |
1406 | return vm_swappiness; |
1407 | ||
bf1ff263 | 1408 | return memcg->swappiness; |
a7885eb8 KM |
1409 | } |
1410 | ||
32047e2a | 1411 | /* |
bdcbb659 | 1412 | * A routine for checking "mem" is under move_account() or not. |
32047e2a | 1413 | * |
bdcbb659 QH |
1414 | * Checking a cgroup is mc.from or mc.to or under hierarchy of |
1415 | * moving cgroups. This is for waiting at high-memory pressure | |
1416 | * caused by "move". | |
32047e2a | 1417 | */ |
c0ff4b85 | 1418 | static bool mem_cgroup_under_move(struct mem_cgroup *memcg) |
4b534334 | 1419 | { |
2bd9bb20 KH |
1420 | struct mem_cgroup *from; |
1421 | struct mem_cgroup *to; | |
4b534334 | 1422 | bool ret = false; |
2bd9bb20 KH |
1423 | /* |
1424 | * Unlike task_move routines, we access mc.to, mc.from not under | |
1425 | * mutual exclusion by cgroup_mutex. Here, we take spinlock instead. | |
1426 | */ | |
1427 | spin_lock(&mc.lock); | |
1428 | from = mc.from; | |
1429 | to = mc.to; | |
1430 | if (!from) | |
1431 | goto unlock; | |
3e92041d | 1432 | |
2314b42d JW |
1433 | ret = mem_cgroup_is_descendant(from, memcg) || |
1434 | mem_cgroup_is_descendant(to, memcg); | |
2bd9bb20 KH |
1435 | unlock: |
1436 | spin_unlock(&mc.lock); | |
4b534334 KH |
1437 | return ret; |
1438 | } | |
1439 | ||
c0ff4b85 | 1440 | static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg) |
4b534334 KH |
1441 | { |
1442 | if (mc.moving_task && current != mc.moving_task) { | |
c0ff4b85 | 1443 | if (mem_cgroup_under_move(memcg)) { |
4b534334 KH |
1444 | DEFINE_WAIT(wait); |
1445 | prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE); | |
1446 | /* moving charge context might have finished. */ | |
1447 | if (mc.moving_task) | |
1448 | schedule(); | |
1449 | finish_wait(&mc.waitq, &wait); | |
1450 | return true; | |
1451 | } | |
1452 | } | |
1453 | return false; | |
1454 | } | |
1455 | ||
58cf188e | 1456 | #define K(x) ((x) << (PAGE_SHIFT-10)) |
e222432b | 1457 | /** |
58cf188e | 1458 | * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller. |
e222432b BS |
1459 | * @memcg: The memory cgroup that went over limit |
1460 | * @p: Task that is going to be killed | |
1461 | * | |
1462 | * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is | |
1463 | * enabled | |
1464 | */ | |
1465 | void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p) | |
1466 | { | |
e61734c5 | 1467 | /* oom_info_lock ensures that parallel ooms do not interleave */ |
08088cb9 | 1468 | static DEFINE_MUTEX(oom_info_lock); |
58cf188e SZ |
1469 | struct mem_cgroup *iter; |
1470 | unsigned int i; | |
e222432b | 1471 | |
58cf188e | 1472 | if (!p) |
e222432b BS |
1473 | return; |
1474 | ||
08088cb9 | 1475 | mutex_lock(&oom_info_lock); |
e222432b BS |
1476 | rcu_read_lock(); |
1477 | ||
e61734c5 TH |
1478 | pr_info("Task in "); |
1479 | pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id)); | |
0346dadb | 1480 | pr_cont(" killed as a result of limit of "); |
e61734c5 | 1481 | pr_cont_cgroup_path(memcg->css.cgroup); |
0346dadb | 1482 | pr_cont("\n"); |
e222432b | 1483 | |
e222432b BS |
1484 | rcu_read_unlock(); |
1485 | ||
3e32cb2e JW |
1486 | pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n", |
1487 | K((u64)page_counter_read(&memcg->memory)), | |
1488 | K((u64)memcg->memory.limit), memcg->memory.failcnt); | |
1489 | pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n", | |
1490 | K((u64)page_counter_read(&memcg->memsw)), | |
1491 | K((u64)memcg->memsw.limit), memcg->memsw.failcnt); | |
1492 | pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n", | |
1493 | K((u64)page_counter_read(&memcg->kmem)), | |
1494 | K((u64)memcg->kmem.limit), memcg->kmem.failcnt); | |
58cf188e SZ |
1495 | |
1496 | for_each_mem_cgroup_tree(iter, memcg) { | |
e61734c5 TH |
1497 | pr_info("Memory cgroup stats for "); |
1498 | pr_cont_cgroup_path(iter->css.cgroup); | |
58cf188e SZ |
1499 | pr_cont(":"); |
1500 | ||
1501 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { | |
1502 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) | |
1503 | continue; | |
1504 | pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i], | |
1505 | K(mem_cgroup_read_stat(iter, i))); | |
1506 | } | |
1507 | ||
1508 | for (i = 0; i < NR_LRU_LISTS; i++) | |
1509 | pr_cont(" %s:%luKB", mem_cgroup_lru_names[i], | |
1510 | K(mem_cgroup_nr_lru_pages(iter, BIT(i)))); | |
1511 | ||
1512 | pr_cont("\n"); | |
1513 | } | |
08088cb9 | 1514 | mutex_unlock(&oom_info_lock); |
e222432b BS |
1515 | } |
1516 | ||
81d39c20 KH |
1517 | /* |
1518 | * This function returns the number of memcg under hierarchy tree. Returns | |
1519 | * 1(self count) if no children. | |
1520 | */ | |
c0ff4b85 | 1521 | static int mem_cgroup_count_children(struct mem_cgroup *memcg) |
81d39c20 KH |
1522 | { |
1523 | int num = 0; | |
7d74b06f KH |
1524 | struct mem_cgroup *iter; |
1525 | ||
c0ff4b85 | 1526 | for_each_mem_cgroup_tree(iter, memcg) |
7d74b06f | 1527 | num++; |
81d39c20 KH |
1528 | return num; |
1529 | } | |
1530 | ||
a63d83f4 DR |
1531 | /* |
1532 | * Return the memory (and swap, if configured) limit for a memcg. | |
1533 | */ | |
3e32cb2e | 1534 | static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg) |
a63d83f4 | 1535 | { |
3e32cb2e | 1536 | unsigned long limit; |
f3e8eb70 | 1537 | |
3e32cb2e | 1538 | limit = memcg->memory.limit; |
9a5a8f19 | 1539 | if (mem_cgroup_swappiness(memcg)) { |
3e32cb2e | 1540 | unsigned long memsw_limit; |
9a5a8f19 | 1541 | |
3e32cb2e JW |
1542 | memsw_limit = memcg->memsw.limit; |
1543 | limit = min(limit + total_swap_pages, memsw_limit); | |
9a5a8f19 | 1544 | } |
9a5a8f19 | 1545 | return limit; |
a63d83f4 DR |
1546 | } |
1547 | ||
19965460 DR |
1548 | static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask, |
1549 | int order) | |
9cbb78bb DR |
1550 | { |
1551 | struct mem_cgroup *iter; | |
1552 | unsigned long chosen_points = 0; | |
1553 | unsigned long totalpages; | |
1554 | unsigned int points = 0; | |
1555 | struct task_struct *chosen = NULL; | |
1556 | ||
876aafbf | 1557 | /* |
465adcf1 DR |
1558 | * If current has a pending SIGKILL or is exiting, then automatically |
1559 | * select it. The goal is to allow it to allocate so that it may | |
1560 | * quickly exit and free its memory. | |
876aafbf | 1561 | */ |
d003f371 | 1562 | if (fatal_signal_pending(current) || task_will_free_mem(current)) { |
876aafbf DR |
1563 | set_thread_flag(TIF_MEMDIE); |
1564 | return; | |
1565 | } | |
1566 | ||
1567 | check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL); | |
3e32cb2e | 1568 | totalpages = mem_cgroup_get_limit(memcg) ? : 1; |
9cbb78bb | 1569 | for_each_mem_cgroup_tree(iter, memcg) { |
72ec7029 | 1570 | struct css_task_iter it; |
9cbb78bb DR |
1571 | struct task_struct *task; |
1572 | ||
72ec7029 TH |
1573 | css_task_iter_start(&iter->css, &it); |
1574 | while ((task = css_task_iter_next(&it))) { | |
9cbb78bb DR |
1575 | switch (oom_scan_process_thread(task, totalpages, NULL, |
1576 | false)) { | |
1577 | case OOM_SCAN_SELECT: | |
1578 | if (chosen) | |
1579 | put_task_struct(chosen); | |
1580 | chosen = task; | |
1581 | chosen_points = ULONG_MAX; | |
1582 | get_task_struct(chosen); | |
1583 | /* fall through */ | |
1584 | case OOM_SCAN_CONTINUE: | |
1585 | continue; | |
1586 | case OOM_SCAN_ABORT: | |
72ec7029 | 1587 | css_task_iter_end(&it); |
9cbb78bb DR |
1588 | mem_cgroup_iter_break(memcg, iter); |
1589 | if (chosen) | |
1590 | put_task_struct(chosen); | |
1591 | return; | |
1592 | case OOM_SCAN_OK: | |
1593 | break; | |
1594 | }; | |
1595 | points = oom_badness(task, memcg, NULL, totalpages); | |
d49ad935 DR |
1596 | if (!points || points < chosen_points) |
1597 | continue; | |
1598 | /* Prefer thread group leaders for display purposes */ | |
1599 | if (points == chosen_points && | |
1600 | thread_group_leader(chosen)) | |
1601 | continue; | |
1602 | ||
1603 | if (chosen) | |
1604 | put_task_struct(chosen); | |
1605 | chosen = task; | |
1606 | chosen_points = points; | |
1607 | get_task_struct(chosen); | |
9cbb78bb | 1608 | } |
72ec7029 | 1609 | css_task_iter_end(&it); |
9cbb78bb DR |
1610 | } |
1611 | ||
1612 | if (!chosen) | |
1613 | return; | |
1614 | points = chosen_points * 1000 / totalpages; | |
9cbb78bb DR |
1615 | oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg, |
1616 | NULL, "Memory cgroup out of memory"); | |
9cbb78bb DR |
1617 | } |
1618 | ||
ae6e71d3 MC |
1619 | #if MAX_NUMNODES > 1 |
1620 | ||
4d0c066d KH |
1621 | /** |
1622 | * test_mem_cgroup_node_reclaimable | |
dad7557e | 1623 | * @memcg: the target memcg |
4d0c066d KH |
1624 | * @nid: the node ID to be checked. |
1625 | * @noswap : specify true here if the user wants flle only information. | |
1626 | * | |
1627 | * This function returns whether the specified memcg contains any | |
1628 | * reclaimable pages on a node. Returns true if there are any reclaimable | |
1629 | * pages in the node. | |
1630 | */ | |
c0ff4b85 | 1631 | static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg, |
4d0c066d KH |
1632 | int nid, bool noswap) |
1633 | { | |
c0ff4b85 | 1634 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE)) |
4d0c066d KH |
1635 | return true; |
1636 | if (noswap || !total_swap_pages) | |
1637 | return false; | |
c0ff4b85 | 1638 | if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON)) |
4d0c066d KH |
1639 | return true; |
1640 | return false; | |
1641 | ||
1642 | } | |
889976db YH |
1643 | |
1644 | /* | |
1645 | * Always updating the nodemask is not very good - even if we have an empty | |
1646 | * list or the wrong list here, we can start from some node and traverse all | |
1647 | * nodes based on the zonelist. So update the list loosely once per 10 secs. | |
1648 | * | |
1649 | */ | |
c0ff4b85 | 1650 | static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg) |
889976db YH |
1651 | { |
1652 | int nid; | |
453a9bf3 KH |
1653 | /* |
1654 | * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET | |
1655 | * pagein/pageout changes since the last update. | |
1656 | */ | |
c0ff4b85 | 1657 | if (!atomic_read(&memcg->numainfo_events)) |
453a9bf3 | 1658 | return; |
c0ff4b85 | 1659 | if (atomic_inc_return(&memcg->numainfo_updating) > 1) |
889976db YH |
1660 | return; |
1661 | ||
889976db | 1662 | /* make a nodemask where this memcg uses memory from */ |
31aaea4a | 1663 | memcg->scan_nodes = node_states[N_MEMORY]; |
889976db | 1664 | |
31aaea4a | 1665 | for_each_node_mask(nid, node_states[N_MEMORY]) { |
889976db | 1666 | |
c0ff4b85 R |
1667 | if (!test_mem_cgroup_node_reclaimable(memcg, nid, false)) |
1668 | node_clear(nid, memcg->scan_nodes); | |
889976db | 1669 | } |
453a9bf3 | 1670 | |
c0ff4b85 R |
1671 | atomic_set(&memcg->numainfo_events, 0); |
1672 | atomic_set(&memcg->numainfo_updating, 0); | |
889976db YH |
1673 | } |
1674 | ||
1675 | /* | |
1676 | * Selecting a node where we start reclaim from. Because what we need is just | |
1677 | * reducing usage counter, start from anywhere is O,K. Considering | |
1678 | * memory reclaim from current node, there are pros. and cons. | |
1679 | * | |
1680 | * Freeing memory from current node means freeing memory from a node which | |
1681 | * we'll use or we've used. So, it may make LRU bad. And if several threads | |
1682 | * hit limits, it will see a contention on a node. But freeing from remote | |
1683 | * node means more costs for memory reclaim because of memory latency. | |
1684 | * | |
1685 | * Now, we use round-robin. Better algorithm is welcomed. | |
1686 | */ | |
c0ff4b85 | 1687 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) |
889976db YH |
1688 | { |
1689 | int node; | |
1690 | ||
c0ff4b85 R |
1691 | mem_cgroup_may_update_nodemask(memcg); |
1692 | node = memcg->last_scanned_node; | |
889976db | 1693 | |
c0ff4b85 | 1694 | node = next_node(node, memcg->scan_nodes); |
889976db | 1695 | if (node == MAX_NUMNODES) |
c0ff4b85 | 1696 | node = first_node(memcg->scan_nodes); |
889976db YH |
1697 | /* |
1698 | * We call this when we hit limit, not when pages are added to LRU. | |
1699 | * No LRU may hold pages because all pages are UNEVICTABLE or | |
1700 | * memcg is too small and all pages are not on LRU. In that case, | |
1701 | * we use curret node. | |
1702 | */ | |
1703 | if (unlikely(node == MAX_NUMNODES)) | |
1704 | node = numa_node_id(); | |
1705 | ||
c0ff4b85 | 1706 | memcg->last_scanned_node = node; |
889976db YH |
1707 | return node; |
1708 | } | |
889976db | 1709 | #else |
c0ff4b85 | 1710 | int mem_cgroup_select_victim_node(struct mem_cgroup *memcg) |
889976db YH |
1711 | { |
1712 | return 0; | |
1713 | } | |
1714 | #endif | |
1715 | ||
0608f43d AM |
1716 | static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg, |
1717 | struct zone *zone, | |
1718 | gfp_t gfp_mask, | |
1719 | unsigned long *total_scanned) | |
1720 | { | |
1721 | struct mem_cgroup *victim = NULL; | |
1722 | int total = 0; | |
1723 | int loop = 0; | |
1724 | unsigned long excess; | |
1725 | unsigned long nr_scanned; | |
1726 | struct mem_cgroup_reclaim_cookie reclaim = { | |
1727 | .zone = zone, | |
1728 | .priority = 0, | |
1729 | }; | |
1730 | ||
3e32cb2e | 1731 | excess = soft_limit_excess(root_memcg); |
0608f43d AM |
1732 | |
1733 | while (1) { | |
1734 | victim = mem_cgroup_iter(root_memcg, victim, &reclaim); | |
1735 | if (!victim) { | |
1736 | loop++; | |
1737 | if (loop >= 2) { | |
1738 | /* | |
1739 | * If we have not been able to reclaim | |
1740 | * anything, it might because there are | |
1741 | * no reclaimable pages under this hierarchy | |
1742 | */ | |
1743 | if (!total) | |
1744 | break; | |
1745 | /* | |
1746 | * We want to do more targeted reclaim. | |
1747 | * excess >> 2 is not to excessive so as to | |
1748 | * reclaim too much, nor too less that we keep | |
1749 | * coming back to reclaim from this cgroup | |
1750 | */ | |
1751 | if (total >= (excess >> 2) || | |
1752 | (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) | |
1753 | break; | |
1754 | } | |
1755 | continue; | |
1756 | } | |
0608f43d AM |
1757 | total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false, |
1758 | zone, &nr_scanned); | |
1759 | *total_scanned += nr_scanned; | |
3e32cb2e | 1760 | if (!soft_limit_excess(root_memcg)) |
0608f43d | 1761 | break; |
6d61ef40 | 1762 | } |
0608f43d AM |
1763 | mem_cgroup_iter_break(root_memcg, victim); |
1764 | return total; | |
6d61ef40 BS |
1765 | } |
1766 | ||
0056f4e6 JW |
1767 | #ifdef CONFIG_LOCKDEP |
1768 | static struct lockdep_map memcg_oom_lock_dep_map = { | |
1769 | .name = "memcg_oom_lock", | |
1770 | }; | |
1771 | #endif | |
1772 | ||
fb2a6fc5 JW |
1773 | static DEFINE_SPINLOCK(memcg_oom_lock); |
1774 | ||
867578cb KH |
1775 | /* |
1776 | * Check OOM-Killer is already running under our hierarchy. | |
1777 | * If someone is running, return false. | |
1778 | */ | |
fb2a6fc5 | 1779 | static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg) |
867578cb | 1780 | { |
79dfdacc | 1781 | struct mem_cgroup *iter, *failed = NULL; |
a636b327 | 1782 | |
fb2a6fc5 JW |
1783 | spin_lock(&memcg_oom_lock); |
1784 | ||
9f3a0d09 | 1785 | for_each_mem_cgroup_tree(iter, memcg) { |
23751be0 | 1786 | if (iter->oom_lock) { |
79dfdacc MH |
1787 | /* |
1788 | * this subtree of our hierarchy is already locked | |
1789 | * so we cannot give a lock. | |
1790 | */ | |
79dfdacc | 1791 | failed = iter; |
9f3a0d09 JW |
1792 | mem_cgroup_iter_break(memcg, iter); |
1793 | break; | |
23751be0 JW |
1794 | } else |
1795 | iter->oom_lock = true; | |
7d74b06f | 1796 | } |
867578cb | 1797 | |
fb2a6fc5 JW |
1798 | if (failed) { |
1799 | /* | |
1800 | * OK, we failed to lock the whole subtree so we have | |
1801 | * to clean up what we set up to the failing subtree | |
1802 | */ | |
1803 | for_each_mem_cgroup_tree(iter, memcg) { | |
1804 | if (iter == failed) { | |
1805 | mem_cgroup_iter_break(memcg, iter); | |
1806 | break; | |
1807 | } | |
1808 | iter->oom_lock = false; | |
79dfdacc | 1809 | } |
0056f4e6 JW |
1810 | } else |
1811 | mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_); | |
fb2a6fc5 JW |
1812 | |
1813 | spin_unlock(&memcg_oom_lock); | |
1814 | ||
1815 | return !failed; | |
a636b327 | 1816 | } |
0b7f569e | 1817 | |
fb2a6fc5 | 1818 | static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg) |
0b7f569e | 1819 | { |
7d74b06f KH |
1820 | struct mem_cgroup *iter; |
1821 | ||
fb2a6fc5 | 1822 | spin_lock(&memcg_oom_lock); |
0056f4e6 | 1823 | mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_); |
c0ff4b85 | 1824 | for_each_mem_cgroup_tree(iter, memcg) |
79dfdacc | 1825 | iter->oom_lock = false; |
fb2a6fc5 | 1826 | spin_unlock(&memcg_oom_lock); |
79dfdacc MH |
1827 | } |
1828 | ||
c0ff4b85 | 1829 | static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg) |
79dfdacc MH |
1830 | { |
1831 | struct mem_cgroup *iter; | |
1832 | ||
c0ff4b85 | 1833 | for_each_mem_cgroup_tree(iter, memcg) |
79dfdacc MH |
1834 | atomic_inc(&iter->under_oom); |
1835 | } | |
1836 | ||
c0ff4b85 | 1837 | static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg) |
79dfdacc MH |
1838 | { |
1839 | struct mem_cgroup *iter; | |
1840 | ||
867578cb KH |
1841 | /* |
1842 | * When a new child is created while the hierarchy is under oom, | |
1843 | * mem_cgroup_oom_lock() may not be called. We have to use | |
1844 | * atomic_add_unless() here. | |
1845 | */ | |
c0ff4b85 | 1846 | for_each_mem_cgroup_tree(iter, memcg) |
79dfdacc | 1847 | atomic_add_unless(&iter->under_oom, -1, 0); |
0b7f569e KH |
1848 | } |
1849 | ||
867578cb KH |
1850 | static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq); |
1851 | ||
dc98df5a | 1852 | struct oom_wait_info { |
d79154bb | 1853 | struct mem_cgroup *memcg; |
dc98df5a KH |
1854 | wait_queue_t wait; |
1855 | }; | |
1856 | ||
1857 | static int memcg_oom_wake_function(wait_queue_t *wait, | |
1858 | unsigned mode, int sync, void *arg) | |
1859 | { | |
d79154bb HD |
1860 | struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg; |
1861 | struct mem_cgroup *oom_wait_memcg; | |
dc98df5a KH |
1862 | struct oom_wait_info *oom_wait_info; |
1863 | ||
1864 | oom_wait_info = container_of(wait, struct oom_wait_info, wait); | |
d79154bb | 1865 | oom_wait_memcg = oom_wait_info->memcg; |
dc98df5a | 1866 | |
2314b42d JW |
1867 | if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) && |
1868 | !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg)) | |
dc98df5a | 1869 | return 0; |
dc98df5a KH |
1870 | return autoremove_wake_function(wait, mode, sync, arg); |
1871 | } | |
1872 | ||
c0ff4b85 | 1873 | static void memcg_wakeup_oom(struct mem_cgroup *memcg) |
dc98df5a | 1874 | { |
3812c8c8 | 1875 | atomic_inc(&memcg->oom_wakeups); |
c0ff4b85 R |
1876 | /* for filtering, pass "memcg" as argument. */ |
1877 | __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg); | |
dc98df5a KH |
1878 | } |
1879 | ||
c0ff4b85 | 1880 | static void memcg_oom_recover(struct mem_cgroup *memcg) |
3c11ecf4 | 1881 | { |
c0ff4b85 R |
1882 | if (memcg && atomic_read(&memcg->under_oom)) |
1883 | memcg_wakeup_oom(memcg); | |
3c11ecf4 KH |
1884 | } |
1885 | ||
3812c8c8 | 1886 | static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order) |
0b7f569e | 1887 | { |
3812c8c8 JW |
1888 | if (!current->memcg_oom.may_oom) |
1889 | return; | |
867578cb | 1890 | /* |
49426420 JW |
1891 | * We are in the middle of the charge context here, so we |
1892 | * don't want to block when potentially sitting on a callstack | |
1893 | * that holds all kinds of filesystem and mm locks. | |
1894 | * | |
1895 | * Also, the caller may handle a failed allocation gracefully | |
1896 | * (like optional page cache readahead) and so an OOM killer | |
1897 | * invocation might not even be necessary. | |
1898 | * | |
1899 | * That's why we don't do anything here except remember the | |
1900 | * OOM context and then deal with it at the end of the page | |
1901 | * fault when the stack is unwound, the locks are released, | |
1902 | * and when we know whether the fault was overall successful. | |
867578cb | 1903 | */ |
49426420 JW |
1904 | css_get(&memcg->css); |
1905 | current->memcg_oom.memcg = memcg; | |
1906 | current->memcg_oom.gfp_mask = mask; | |
1907 | current->memcg_oom.order = order; | |
3812c8c8 JW |
1908 | } |
1909 | ||
1910 | /** | |
1911 | * mem_cgroup_oom_synchronize - complete memcg OOM handling | |
49426420 | 1912 | * @handle: actually kill/wait or just clean up the OOM state |
3812c8c8 | 1913 | * |
49426420 JW |
1914 | * This has to be called at the end of a page fault if the memcg OOM |
1915 | * handler was enabled. | |
3812c8c8 | 1916 | * |
49426420 | 1917 | * Memcg supports userspace OOM handling where failed allocations must |
3812c8c8 JW |
1918 | * sleep on a waitqueue until the userspace task resolves the |
1919 | * situation. Sleeping directly in the charge context with all kinds | |
1920 | * of locks held is not a good idea, instead we remember an OOM state | |
1921 | * in the task and mem_cgroup_oom_synchronize() has to be called at | |
49426420 | 1922 | * the end of the page fault to complete the OOM handling. |
3812c8c8 JW |
1923 | * |
1924 | * Returns %true if an ongoing memcg OOM situation was detected and | |
49426420 | 1925 | * completed, %false otherwise. |
3812c8c8 | 1926 | */ |
49426420 | 1927 | bool mem_cgroup_oom_synchronize(bool handle) |
3812c8c8 | 1928 | { |
49426420 | 1929 | struct mem_cgroup *memcg = current->memcg_oom.memcg; |
3812c8c8 | 1930 | struct oom_wait_info owait; |
49426420 | 1931 | bool locked; |
3812c8c8 JW |
1932 | |
1933 | /* OOM is global, do not handle */ | |
3812c8c8 | 1934 | if (!memcg) |
49426420 | 1935 | return false; |
3812c8c8 | 1936 | |
49426420 JW |
1937 | if (!handle) |
1938 | goto cleanup; | |
3812c8c8 JW |
1939 | |
1940 | owait.memcg = memcg; | |
1941 | owait.wait.flags = 0; | |
1942 | owait.wait.func = memcg_oom_wake_function; | |
1943 | owait.wait.private = current; | |
1944 | INIT_LIST_HEAD(&owait.wait.task_list); | |
867578cb | 1945 | |
3812c8c8 | 1946 | prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE); |
49426420 JW |
1947 | mem_cgroup_mark_under_oom(memcg); |
1948 | ||
1949 | locked = mem_cgroup_oom_trylock(memcg); | |
1950 | ||
1951 | if (locked) | |
1952 | mem_cgroup_oom_notify(memcg); | |
1953 | ||
1954 | if (locked && !memcg->oom_kill_disable) { | |
1955 | mem_cgroup_unmark_under_oom(memcg); | |
1956 | finish_wait(&memcg_oom_waitq, &owait.wait); | |
1957 | mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask, | |
1958 | current->memcg_oom.order); | |
1959 | } else { | |
3812c8c8 | 1960 | schedule(); |
49426420 JW |
1961 | mem_cgroup_unmark_under_oom(memcg); |
1962 | finish_wait(&memcg_oom_waitq, &owait.wait); | |
1963 | } | |
1964 | ||
1965 | if (locked) { | |
fb2a6fc5 JW |
1966 | mem_cgroup_oom_unlock(memcg); |
1967 | /* | |
1968 | * There is no guarantee that an OOM-lock contender | |
1969 | * sees the wakeups triggered by the OOM kill | |
1970 | * uncharges. Wake any sleepers explicitely. | |
1971 | */ | |
1972 | memcg_oom_recover(memcg); | |
1973 | } | |
49426420 JW |
1974 | cleanup: |
1975 | current->memcg_oom.memcg = NULL; | |
3812c8c8 | 1976 | css_put(&memcg->css); |
867578cb | 1977 | return true; |
0b7f569e KH |
1978 | } |
1979 | ||
d7365e78 JW |
1980 | /** |
1981 | * mem_cgroup_begin_page_stat - begin a page state statistics transaction | |
1982 | * @page: page that is going to change accounted state | |
1983 | * @locked: &memcg->move_lock slowpath was taken | |
1984 | * @flags: IRQ-state flags for &memcg->move_lock | |
32047e2a | 1985 | * |
d7365e78 JW |
1986 | * This function must mark the beginning of an accounted page state |
1987 | * change to prevent double accounting when the page is concurrently | |
1988 | * being moved to another memcg: | |
32047e2a | 1989 | * |
d7365e78 JW |
1990 | * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags); |
1991 | * if (TestClearPageState(page)) | |
1992 | * mem_cgroup_update_page_stat(memcg, state, -1); | |
1993 | * mem_cgroup_end_page_stat(memcg, locked, flags); | |
32047e2a | 1994 | * |
d7365e78 JW |
1995 | * The RCU lock is held throughout the transaction. The fast path can |
1996 | * get away without acquiring the memcg->move_lock (@locked is false) | |
1997 | * because page moving starts with an RCU grace period. | |
32047e2a | 1998 | * |
d7365e78 JW |
1999 | * The RCU lock also protects the memcg from being freed when the page |
2000 | * state that is going to change is the only thing preventing the page | |
2001 | * from being uncharged. E.g. end-writeback clearing PageWriteback(), | |
2002 | * which allows migration to go ahead and uncharge the page before the | |
2003 | * account transaction might be complete. | |
d69b042f | 2004 | */ |
d7365e78 JW |
2005 | struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page, |
2006 | bool *locked, | |
2007 | unsigned long *flags) | |
89c06bd5 KH |
2008 | { |
2009 | struct mem_cgroup *memcg; | |
89c06bd5 | 2010 | |
d7365e78 JW |
2011 | rcu_read_lock(); |
2012 | ||
2013 | if (mem_cgroup_disabled()) | |
2014 | return NULL; | |
89c06bd5 | 2015 | again: |
1306a85a | 2016 | memcg = page->mem_cgroup; |
29833315 | 2017 | if (unlikely(!memcg)) |
d7365e78 JW |
2018 | return NULL; |
2019 | ||
2020 | *locked = false; | |
bdcbb659 | 2021 | if (atomic_read(&memcg->moving_account) <= 0) |
d7365e78 | 2022 | return memcg; |
89c06bd5 | 2023 | |
354a4783 | 2024 | spin_lock_irqsave(&memcg->move_lock, *flags); |
1306a85a | 2025 | if (memcg != page->mem_cgroup) { |
354a4783 | 2026 | spin_unlock_irqrestore(&memcg->move_lock, *flags); |
89c06bd5 KH |
2027 | goto again; |
2028 | } | |
2029 | *locked = true; | |
d7365e78 JW |
2030 | |
2031 | return memcg; | |
89c06bd5 KH |
2032 | } |
2033 | ||
d7365e78 JW |
2034 | /** |
2035 | * mem_cgroup_end_page_stat - finish a page state statistics transaction | |
2036 | * @memcg: the memcg that was accounted against | |
2037 | * @locked: value received from mem_cgroup_begin_page_stat() | |
2038 | * @flags: value received from mem_cgroup_begin_page_stat() | |
2039 | */ | |
e4bd6a02 MH |
2040 | void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked, |
2041 | unsigned long *flags) | |
89c06bd5 | 2042 | { |
e4bd6a02 MH |
2043 | if (memcg && *locked) |
2044 | spin_unlock_irqrestore(&memcg->move_lock, *flags); | |
89c06bd5 | 2045 | |
d7365e78 | 2046 | rcu_read_unlock(); |
89c06bd5 KH |
2047 | } |
2048 | ||
d7365e78 JW |
2049 | /** |
2050 | * mem_cgroup_update_page_stat - update page state statistics | |
2051 | * @memcg: memcg to account against | |
2052 | * @idx: page state item to account | |
2053 | * @val: number of pages (positive or negative) | |
2054 | * | |
2055 | * See mem_cgroup_begin_page_stat() for locking requirements. | |
2056 | */ | |
2057 | void mem_cgroup_update_page_stat(struct mem_cgroup *memcg, | |
68b4876d | 2058 | enum mem_cgroup_stat_index idx, int val) |
d69b042f | 2059 | { |
658b72c5 | 2060 | VM_BUG_ON(!rcu_read_lock_held()); |
26174efd | 2061 | |
d7365e78 JW |
2062 | if (memcg) |
2063 | this_cpu_add(memcg->stat->count[idx], val); | |
d69b042f | 2064 | } |
26174efd | 2065 | |
cdec2e42 KH |
2066 | /* |
2067 | * size of first charge trial. "32" comes from vmscan.c's magic value. | |
2068 | * TODO: maybe necessary to use big numbers in big irons. | |
2069 | */ | |
7ec99d62 | 2070 | #define CHARGE_BATCH 32U |
cdec2e42 KH |
2071 | struct memcg_stock_pcp { |
2072 | struct mem_cgroup *cached; /* this never be root cgroup */ | |
11c9ea4e | 2073 | unsigned int nr_pages; |
cdec2e42 | 2074 | struct work_struct work; |
26fe6168 | 2075 | unsigned long flags; |
a0db00fc | 2076 | #define FLUSHING_CACHED_CHARGE 0 |
cdec2e42 KH |
2077 | }; |
2078 | static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock); | |
9f50fad6 | 2079 | static DEFINE_MUTEX(percpu_charge_mutex); |
cdec2e42 | 2080 | |
a0956d54 SS |
2081 | /** |
2082 | * consume_stock: Try to consume stocked charge on this cpu. | |
2083 | * @memcg: memcg to consume from. | |
2084 | * @nr_pages: how many pages to charge. | |
2085 | * | |
2086 | * The charges will only happen if @memcg matches the current cpu's memcg | |
2087 | * stock, and at least @nr_pages are available in that stock. Failure to | |
2088 | * service an allocation will refill the stock. | |
2089 | * | |
2090 | * returns true if successful, false otherwise. | |
cdec2e42 | 2091 | */ |
a0956d54 | 2092 | static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
cdec2e42 KH |
2093 | { |
2094 | struct memcg_stock_pcp *stock; | |
3e32cb2e | 2095 | bool ret = false; |
cdec2e42 | 2096 | |
a0956d54 | 2097 | if (nr_pages > CHARGE_BATCH) |
3e32cb2e | 2098 | return ret; |
a0956d54 | 2099 | |
cdec2e42 | 2100 | stock = &get_cpu_var(memcg_stock); |
3e32cb2e | 2101 | if (memcg == stock->cached && stock->nr_pages >= nr_pages) { |
a0956d54 | 2102 | stock->nr_pages -= nr_pages; |
3e32cb2e JW |
2103 | ret = true; |
2104 | } | |
cdec2e42 KH |
2105 | put_cpu_var(memcg_stock); |
2106 | return ret; | |
2107 | } | |
2108 | ||
2109 | /* | |
3e32cb2e | 2110 | * Returns stocks cached in percpu and reset cached information. |
cdec2e42 KH |
2111 | */ |
2112 | static void drain_stock(struct memcg_stock_pcp *stock) | |
2113 | { | |
2114 | struct mem_cgroup *old = stock->cached; | |
2115 | ||
11c9ea4e | 2116 | if (stock->nr_pages) { |
3e32cb2e | 2117 | page_counter_uncharge(&old->memory, stock->nr_pages); |
cdec2e42 | 2118 | if (do_swap_account) |
3e32cb2e | 2119 | page_counter_uncharge(&old->memsw, stock->nr_pages); |
e8ea14cc | 2120 | css_put_many(&old->css, stock->nr_pages); |
11c9ea4e | 2121 | stock->nr_pages = 0; |
cdec2e42 KH |
2122 | } |
2123 | stock->cached = NULL; | |
cdec2e42 KH |
2124 | } |
2125 | ||
2126 | /* | |
2127 | * This must be called under preempt disabled or must be called by | |
2128 | * a thread which is pinned to local cpu. | |
2129 | */ | |
2130 | static void drain_local_stock(struct work_struct *dummy) | |
2131 | { | |
7c8e0181 | 2132 | struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock); |
cdec2e42 | 2133 | drain_stock(stock); |
26fe6168 | 2134 | clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags); |
cdec2e42 KH |
2135 | } |
2136 | ||
e4777496 MH |
2137 | static void __init memcg_stock_init(void) |
2138 | { | |
2139 | int cpu; | |
2140 | ||
2141 | for_each_possible_cpu(cpu) { | |
2142 | struct memcg_stock_pcp *stock = | |
2143 | &per_cpu(memcg_stock, cpu); | |
2144 | INIT_WORK(&stock->work, drain_local_stock); | |
2145 | } | |
2146 | } | |
2147 | ||
cdec2e42 | 2148 | /* |
3e32cb2e | 2149 | * Cache charges(val) to local per_cpu area. |
320cc51d | 2150 | * This will be consumed by consume_stock() function, later. |
cdec2e42 | 2151 | */ |
c0ff4b85 | 2152 | static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages) |
cdec2e42 KH |
2153 | { |
2154 | struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock); | |
2155 | ||
c0ff4b85 | 2156 | if (stock->cached != memcg) { /* reset if necessary */ |
cdec2e42 | 2157 | drain_stock(stock); |
c0ff4b85 | 2158 | stock->cached = memcg; |
cdec2e42 | 2159 | } |
11c9ea4e | 2160 | stock->nr_pages += nr_pages; |
cdec2e42 KH |
2161 | put_cpu_var(memcg_stock); |
2162 | } | |
2163 | ||
2164 | /* | |
c0ff4b85 | 2165 | * Drains all per-CPU charge caches for given root_memcg resp. subtree |
6d3d6aa2 | 2166 | * of the hierarchy under it. |
cdec2e42 | 2167 | */ |
6d3d6aa2 | 2168 | static void drain_all_stock(struct mem_cgroup *root_memcg) |
cdec2e42 | 2169 | { |
26fe6168 | 2170 | int cpu, curcpu; |
d38144b7 | 2171 | |
6d3d6aa2 JW |
2172 | /* If someone's already draining, avoid adding running more workers. */ |
2173 | if (!mutex_trylock(&percpu_charge_mutex)) | |
2174 | return; | |
cdec2e42 | 2175 | /* Notify other cpus that system-wide "drain" is running */ |
cdec2e42 | 2176 | get_online_cpus(); |
5af12d0e | 2177 | curcpu = get_cpu(); |
cdec2e42 KH |
2178 | for_each_online_cpu(cpu) { |
2179 | struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu); | |
c0ff4b85 | 2180 | struct mem_cgroup *memcg; |
26fe6168 | 2181 | |
c0ff4b85 R |
2182 | memcg = stock->cached; |
2183 | if (!memcg || !stock->nr_pages) | |
26fe6168 | 2184 | continue; |
2314b42d | 2185 | if (!mem_cgroup_is_descendant(memcg, root_memcg)) |
3e92041d | 2186 | continue; |
d1a05b69 MH |
2187 | if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) { |
2188 | if (cpu == curcpu) | |
2189 | drain_local_stock(&stock->work); | |
2190 | else | |
2191 | schedule_work_on(cpu, &stock->work); | |
2192 | } | |
cdec2e42 | 2193 | } |
5af12d0e | 2194 | put_cpu(); |
f894ffa8 | 2195 | put_online_cpus(); |
9f50fad6 | 2196 | mutex_unlock(&percpu_charge_mutex); |
cdec2e42 KH |
2197 | } |
2198 | ||
711d3d2c KH |
2199 | /* |
2200 | * This function drains percpu counter value from DEAD cpu and | |
2201 | * move it to local cpu. Note that this function can be preempted. | |
2202 | */ | |
c0ff4b85 | 2203 | static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu) |
711d3d2c KH |
2204 | { |
2205 | int i; | |
2206 | ||
c0ff4b85 | 2207 | spin_lock(&memcg->pcp_counter_lock); |
6104621d | 2208 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
c0ff4b85 | 2209 | long x = per_cpu(memcg->stat->count[i], cpu); |
711d3d2c | 2210 | |
c0ff4b85 R |
2211 | per_cpu(memcg->stat->count[i], cpu) = 0; |
2212 | memcg->nocpu_base.count[i] += x; | |
711d3d2c | 2213 | } |
e9f8974f | 2214 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { |
c0ff4b85 | 2215 | unsigned long x = per_cpu(memcg->stat->events[i], cpu); |
e9f8974f | 2216 | |
c0ff4b85 R |
2217 | per_cpu(memcg->stat->events[i], cpu) = 0; |
2218 | memcg->nocpu_base.events[i] += x; | |
e9f8974f | 2219 | } |
c0ff4b85 | 2220 | spin_unlock(&memcg->pcp_counter_lock); |
711d3d2c KH |
2221 | } |
2222 | ||
0db0628d | 2223 | static int memcg_cpu_hotplug_callback(struct notifier_block *nb, |
cdec2e42 KH |
2224 | unsigned long action, |
2225 | void *hcpu) | |
2226 | { | |
2227 | int cpu = (unsigned long)hcpu; | |
2228 | struct memcg_stock_pcp *stock; | |
711d3d2c | 2229 | struct mem_cgroup *iter; |
cdec2e42 | 2230 | |
619d094b | 2231 | if (action == CPU_ONLINE) |
1489ebad | 2232 | return NOTIFY_OK; |
1489ebad | 2233 | |
d833049b | 2234 | if (action != CPU_DEAD && action != CPU_DEAD_FROZEN) |
cdec2e42 | 2235 | return NOTIFY_OK; |
711d3d2c | 2236 | |
9f3a0d09 | 2237 | for_each_mem_cgroup(iter) |
711d3d2c KH |
2238 | mem_cgroup_drain_pcp_counter(iter, cpu); |
2239 | ||
cdec2e42 KH |
2240 | stock = &per_cpu(memcg_stock, cpu); |
2241 | drain_stock(stock); | |
2242 | return NOTIFY_OK; | |
2243 | } | |
2244 | ||
00501b53 JW |
2245 | static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask, |
2246 | unsigned int nr_pages) | |
8a9f3ccd | 2247 | { |
7ec99d62 | 2248 | unsigned int batch = max(CHARGE_BATCH, nr_pages); |
9b130619 | 2249 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; |
6539cc05 | 2250 | struct mem_cgroup *mem_over_limit; |
3e32cb2e | 2251 | struct page_counter *counter; |
6539cc05 | 2252 | unsigned long nr_reclaimed; |
b70a2a21 JW |
2253 | bool may_swap = true; |
2254 | bool drained = false; | |
05b84301 | 2255 | int ret = 0; |
a636b327 | 2256 | |
ce00a967 JW |
2257 | if (mem_cgroup_is_root(memcg)) |
2258 | goto done; | |
6539cc05 | 2259 | retry: |
b6b6cc72 MH |
2260 | if (consume_stock(memcg, nr_pages)) |
2261 | goto done; | |
8a9f3ccd | 2262 | |
3fbe7244 | 2263 | if (!do_swap_account || |
3e32cb2e JW |
2264 | !page_counter_try_charge(&memcg->memsw, batch, &counter)) { |
2265 | if (!page_counter_try_charge(&memcg->memory, batch, &counter)) | |
6539cc05 | 2266 | goto done_restock; |
3fbe7244 | 2267 | if (do_swap_account) |
3e32cb2e JW |
2268 | page_counter_uncharge(&memcg->memsw, batch); |
2269 | mem_over_limit = mem_cgroup_from_counter(counter, memory); | |
3fbe7244 | 2270 | } else { |
3e32cb2e | 2271 | mem_over_limit = mem_cgroup_from_counter(counter, memsw); |
b70a2a21 | 2272 | may_swap = false; |
3fbe7244 | 2273 | } |
7a81b88c | 2274 | |
6539cc05 JW |
2275 | if (batch > nr_pages) { |
2276 | batch = nr_pages; | |
2277 | goto retry; | |
2278 | } | |
6d61ef40 | 2279 | |
06b078fc JW |
2280 | /* |
2281 | * Unlike in global OOM situations, memcg is not in a physical | |
2282 | * memory shortage. Allow dying and OOM-killed tasks to | |
2283 | * bypass the last charges so that they can exit quickly and | |
2284 | * free their memory. | |
2285 | */ | |
2286 | if (unlikely(test_thread_flag(TIF_MEMDIE) || | |
2287 | fatal_signal_pending(current) || | |
2288 | current->flags & PF_EXITING)) | |
2289 | goto bypass; | |
2290 | ||
2291 | if (unlikely(task_in_memcg_oom(current))) | |
2292 | goto nomem; | |
2293 | ||
6539cc05 JW |
2294 | if (!(gfp_mask & __GFP_WAIT)) |
2295 | goto nomem; | |
4b534334 | 2296 | |
b70a2a21 JW |
2297 | nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages, |
2298 | gfp_mask, may_swap); | |
6539cc05 | 2299 | |
61e02c74 | 2300 | if (mem_cgroup_margin(mem_over_limit) >= nr_pages) |
6539cc05 | 2301 | goto retry; |
28c34c29 | 2302 | |
b70a2a21 | 2303 | if (!drained) { |
6d3d6aa2 | 2304 | drain_all_stock(mem_over_limit); |
b70a2a21 JW |
2305 | drained = true; |
2306 | goto retry; | |
2307 | } | |
2308 | ||
28c34c29 JW |
2309 | if (gfp_mask & __GFP_NORETRY) |
2310 | goto nomem; | |
6539cc05 JW |
2311 | /* |
2312 | * Even though the limit is exceeded at this point, reclaim | |
2313 | * may have been able to free some pages. Retry the charge | |
2314 | * before killing the task. | |
2315 | * | |
2316 | * Only for regular pages, though: huge pages are rather | |
2317 | * unlikely to succeed so close to the limit, and we fall back | |
2318 | * to regular pages anyway in case of failure. | |
2319 | */ | |
61e02c74 | 2320 | if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER)) |
6539cc05 JW |
2321 | goto retry; |
2322 | /* | |
2323 | * At task move, charge accounts can be doubly counted. So, it's | |
2324 | * better to wait until the end of task_move if something is going on. | |
2325 | */ | |
2326 | if (mem_cgroup_wait_acct_move(mem_over_limit)) | |
2327 | goto retry; | |
2328 | ||
9b130619 JW |
2329 | if (nr_retries--) |
2330 | goto retry; | |
2331 | ||
06b078fc JW |
2332 | if (gfp_mask & __GFP_NOFAIL) |
2333 | goto bypass; | |
2334 | ||
6539cc05 JW |
2335 | if (fatal_signal_pending(current)) |
2336 | goto bypass; | |
2337 | ||
61e02c74 | 2338 | mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages)); |
7a81b88c | 2339 | nomem: |
6d1fdc48 | 2340 | if (!(gfp_mask & __GFP_NOFAIL)) |
3168ecbe | 2341 | return -ENOMEM; |
867578cb | 2342 | bypass: |
ce00a967 | 2343 | return -EINTR; |
6539cc05 JW |
2344 | |
2345 | done_restock: | |
e8ea14cc | 2346 | css_get_many(&memcg->css, batch); |
6539cc05 JW |
2347 | if (batch > nr_pages) |
2348 | refill_stock(memcg, batch - nr_pages); | |
2349 | done: | |
05b84301 | 2350 | return ret; |
7a81b88c | 2351 | } |
8a9f3ccd | 2352 | |
00501b53 | 2353 | static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages) |
a3032a2c | 2354 | { |
ce00a967 JW |
2355 | if (mem_cgroup_is_root(memcg)) |
2356 | return; | |
2357 | ||
3e32cb2e | 2358 | page_counter_uncharge(&memcg->memory, nr_pages); |
05b84301 | 2359 | if (do_swap_account) |
3e32cb2e | 2360 | page_counter_uncharge(&memcg->memsw, nr_pages); |
ce00a967 | 2361 | |
e8ea14cc | 2362 | css_put_many(&memcg->css, nr_pages); |
d01dd17f KH |
2363 | } |
2364 | ||
a3b2d692 KH |
2365 | /* |
2366 | * A helper function to get mem_cgroup from ID. must be called under | |
ec903c0c TH |
2367 | * rcu_read_lock(). The caller is responsible for calling |
2368 | * css_tryget_online() if the mem_cgroup is used for charging. (dropping | |
2369 | * refcnt from swap can be called against removed memcg.) | |
a3b2d692 KH |
2370 | */ |
2371 | static struct mem_cgroup *mem_cgroup_lookup(unsigned short id) | |
2372 | { | |
a3b2d692 KH |
2373 | /* ID 0 is unused ID */ |
2374 | if (!id) | |
2375 | return NULL; | |
34c00c31 | 2376 | return mem_cgroup_from_id(id); |
a3b2d692 KH |
2377 | } |
2378 | ||
0a31bc97 JW |
2379 | /* |
2380 | * try_get_mem_cgroup_from_page - look up page's memcg association | |
2381 | * @page: the page | |
2382 | * | |
2383 | * Look up, get a css reference, and return the memcg that owns @page. | |
2384 | * | |
2385 | * The page must be locked to prevent racing with swap-in and page | |
2386 | * cache charges. If coming from an unlocked page table, the caller | |
2387 | * must ensure the page is on the LRU or this can race with charging. | |
2388 | */ | |
e42d9d5d | 2389 | struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page) |
b5a84319 | 2390 | { |
29833315 | 2391 | struct mem_cgroup *memcg; |
a3b2d692 | 2392 | unsigned short id; |
b5a84319 KH |
2393 | swp_entry_t ent; |
2394 | ||
309381fe | 2395 | VM_BUG_ON_PAGE(!PageLocked(page), page); |
3c776e64 | 2396 | |
1306a85a | 2397 | memcg = page->mem_cgroup; |
29833315 JW |
2398 | if (memcg) { |
2399 | if (!css_tryget_online(&memcg->css)) | |
c0ff4b85 | 2400 | memcg = NULL; |
e42d9d5d | 2401 | } else if (PageSwapCache(page)) { |
3c776e64 | 2402 | ent.val = page_private(page); |
9fb4b7cc | 2403 | id = lookup_swap_cgroup_id(ent); |
a3b2d692 | 2404 | rcu_read_lock(); |
c0ff4b85 | 2405 | memcg = mem_cgroup_lookup(id); |
ec903c0c | 2406 | if (memcg && !css_tryget_online(&memcg->css)) |
c0ff4b85 | 2407 | memcg = NULL; |
a3b2d692 | 2408 | rcu_read_unlock(); |
3c776e64 | 2409 | } |
c0ff4b85 | 2410 | return memcg; |
b5a84319 KH |
2411 | } |
2412 | ||
0a31bc97 JW |
2413 | static void lock_page_lru(struct page *page, int *isolated) |
2414 | { | |
2415 | struct zone *zone = page_zone(page); | |
2416 | ||
2417 | spin_lock_irq(&zone->lru_lock); | |
2418 | if (PageLRU(page)) { | |
2419 | struct lruvec *lruvec; | |
2420 | ||
2421 | lruvec = mem_cgroup_page_lruvec(page, zone); | |
2422 | ClearPageLRU(page); | |
2423 | del_page_from_lru_list(page, lruvec, page_lru(page)); | |
2424 | *isolated = 1; | |
2425 | } else | |
2426 | *isolated = 0; | |
2427 | } | |
2428 | ||
2429 | static void unlock_page_lru(struct page *page, int isolated) | |
2430 | { | |
2431 | struct zone *zone = page_zone(page); | |
2432 | ||
2433 | if (isolated) { | |
2434 | struct lruvec *lruvec; | |
2435 | ||
2436 | lruvec = mem_cgroup_page_lruvec(page, zone); | |
2437 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
2438 | SetPageLRU(page); | |
2439 | add_page_to_lru_list(page, lruvec, page_lru(page)); | |
2440 | } | |
2441 | spin_unlock_irq(&zone->lru_lock); | |
2442 | } | |
2443 | ||
00501b53 | 2444 | static void commit_charge(struct page *page, struct mem_cgroup *memcg, |
6abb5a86 | 2445 | bool lrucare) |
7a81b88c | 2446 | { |
0a31bc97 | 2447 | int isolated; |
9ce70c02 | 2448 | |
1306a85a | 2449 | VM_BUG_ON_PAGE(page->mem_cgroup, page); |
9ce70c02 HD |
2450 | |
2451 | /* | |
2452 | * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page | |
2453 | * may already be on some other mem_cgroup's LRU. Take care of it. | |
2454 | */ | |
0a31bc97 JW |
2455 | if (lrucare) |
2456 | lock_page_lru(page, &isolated); | |
9ce70c02 | 2457 | |
0a31bc97 JW |
2458 | /* |
2459 | * Nobody should be changing or seriously looking at | |
1306a85a | 2460 | * page->mem_cgroup at this point: |
0a31bc97 JW |
2461 | * |
2462 | * - the page is uncharged | |
2463 | * | |
2464 | * - the page is off-LRU | |
2465 | * | |
2466 | * - an anonymous fault has exclusive page access, except for | |
2467 | * a locked page table | |
2468 | * | |
2469 | * - a page cache insertion, a swapin fault, or a migration | |
2470 | * have the page locked | |
2471 | */ | |
1306a85a | 2472 | page->mem_cgroup = memcg; |
9ce70c02 | 2473 | |
0a31bc97 JW |
2474 | if (lrucare) |
2475 | unlock_page_lru(page, isolated); | |
7a81b88c | 2476 | } |
66e1707b | 2477 | |
7ae1e1d0 | 2478 | #ifdef CONFIG_MEMCG_KMEM |
bd673145 VD |
2479 | /* |
2480 | * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or | |
2481 | * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists. | |
2482 | */ | |
2483 | static DEFINE_MUTEX(memcg_slab_mutex); | |
2484 | ||
1f458cbf GC |
2485 | /* |
2486 | * This is a bit cumbersome, but it is rarely used and avoids a backpointer | |
2487 | * in the memcg_cache_params struct. | |
2488 | */ | |
2489 | static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p) | |
2490 | { | |
2491 | struct kmem_cache *cachep; | |
2492 | ||
2493 | VM_BUG_ON(p->is_root_cache); | |
2494 | cachep = p->root_cache; | |
7a67d7ab | 2495 | return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg)); |
1f458cbf GC |
2496 | } |
2497 | ||
3e32cb2e JW |
2498 | static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, |
2499 | unsigned long nr_pages) | |
7ae1e1d0 | 2500 | { |
3e32cb2e | 2501 | struct page_counter *counter; |
7ae1e1d0 | 2502 | int ret = 0; |
7ae1e1d0 | 2503 | |
3e32cb2e JW |
2504 | ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter); |
2505 | if (ret < 0) | |
7ae1e1d0 GC |
2506 | return ret; |
2507 | ||
3e32cb2e | 2508 | ret = try_charge(memcg, gfp, nr_pages); |
7ae1e1d0 GC |
2509 | if (ret == -EINTR) { |
2510 | /* | |
00501b53 JW |
2511 | * try_charge() chose to bypass to root due to OOM kill or |
2512 | * fatal signal. Since our only options are to either fail | |
2513 | * the allocation or charge it to this cgroup, do it as a | |
2514 | * temporary condition. But we can't fail. From a kmem/slab | |
2515 | * perspective, the cache has already been selected, by | |
2516 | * mem_cgroup_kmem_get_cache(), so it is too late to change | |
7ae1e1d0 GC |
2517 | * our minds. |
2518 | * | |
2519 | * This condition will only trigger if the task entered | |
00501b53 JW |
2520 | * memcg_charge_kmem in a sane state, but was OOM-killed |
2521 | * during try_charge() above. Tasks that were already dying | |
2522 | * when the allocation triggers should have been already | |
7ae1e1d0 GC |
2523 | * directed to the root cgroup in memcontrol.h |
2524 | */ | |
3e32cb2e | 2525 | page_counter_charge(&memcg->memory, nr_pages); |
7ae1e1d0 | 2526 | if (do_swap_account) |
3e32cb2e | 2527 | page_counter_charge(&memcg->memsw, nr_pages); |
e8ea14cc | 2528 | css_get_many(&memcg->css, nr_pages); |
7ae1e1d0 GC |
2529 | ret = 0; |
2530 | } else if (ret) | |
3e32cb2e | 2531 | page_counter_uncharge(&memcg->kmem, nr_pages); |
7ae1e1d0 GC |
2532 | |
2533 | return ret; | |
2534 | } | |
2535 | ||
3e32cb2e JW |
2536 | static void memcg_uncharge_kmem(struct mem_cgroup *memcg, |
2537 | unsigned long nr_pages) | |
7ae1e1d0 | 2538 | { |
3e32cb2e | 2539 | page_counter_uncharge(&memcg->memory, nr_pages); |
7ae1e1d0 | 2540 | if (do_swap_account) |
3e32cb2e | 2541 | page_counter_uncharge(&memcg->memsw, nr_pages); |
7de37682 | 2542 | |
64f21993 | 2543 | page_counter_uncharge(&memcg->kmem, nr_pages); |
7de37682 | 2544 | |
e8ea14cc | 2545 | css_put_many(&memcg->css, nr_pages); |
7ae1e1d0 GC |
2546 | } |
2547 | ||
2633d7a0 GC |
2548 | /* |
2549 | * helper for acessing a memcg's index. It will be used as an index in the | |
2550 | * child cache array in kmem_cache, and also to derive its name. This function | |
2551 | * will return -1 when this is not a kmem-limited memcg. | |
2552 | */ | |
2553 | int memcg_cache_id(struct mem_cgroup *memcg) | |
2554 | { | |
2555 | return memcg ? memcg->kmemcg_id : -1; | |
2556 | } | |
2557 | ||
f3bb3043 | 2558 | static int memcg_alloc_cache_id(void) |
55007d84 | 2559 | { |
f3bb3043 VD |
2560 | int id, size; |
2561 | int err; | |
2562 | ||
2563 | id = ida_simple_get(&kmem_limited_groups, | |
2564 | 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL); | |
2565 | if (id < 0) | |
2566 | return id; | |
55007d84 | 2567 | |
f3bb3043 VD |
2568 | if (id < memcg_limited_groups_array_size) |
2569 | return id; | |
2570 | ||
2571 | /* | |
2572 | * There's no space for the new id in memcg_caches arrays, | |
2573 | * so we have to grow them. | |
2574 | */ | |
2575 | ||
2576 | size = 2 * (id + 1); | |
55007d84 GC |
2577 | if (size < MEMCG_CACHES_MIN_SIZE) |
2578 | size = MEMCG_CACHES_MIN_SIZE; | |
2579 | else if (size > MEMCG_CACHES_MAX_SIZE) | |
2580 | size = MEMCG_CACHES_MAX_SIZE; | |
2581 | ||
f3bb3043 VD |
2582 | mutex_lock(&memcg_slab_mutex); |
2583 | err = memcg_update_all_caches(size); | |
2584 | mutex_unlock(&memcg_slab_mutex); | |
2585 | ||
2586 | if (err) { | |
2587 | ida_simple_remove(&kmem_limited_groups, id); | |
2588 | return err; | |
2589 | } | |
2590 | return id; | |
2591 | } | |
2592 | ||
2593 | static void memcg_free_cache_id(int id) | |
2594 | { | |
2595 | ida_simple_remove(&kmem_limited_groups, id); | |
55007d84 GC |
2596 | } |
2597 | ||
2598 | /* | |
2599 | * We should update the current array size iff all caches updates succeed. This | |
2600 | * can only be done from the slab side. The slab mutex needs to be held when | |
2601 | * calling this. | |
2602 | */ | |
2603 | void memcg_update_array_size(int num) | |
2604 | { | |
f3bb3043 | 2605 | memcg_limited_groups_array_size = num; |
55007d84 GC |
2606 | } |
2607 | ||
776ed0f0 VD |
2608 | static void memcg_register_cache(struct mem_cgroup *memcg, |
2609 | struct kmem_cache *root_cache) | |
2633d7a0 | 2610 | { |
93f39eea VD |
2611 | static char memcg_name_buf[NAME_MAX + 1]; /* protected by |
2612 | memcg_slab_mutex */ | |
bd673145 | 2613 | struct kmem_cache *cachep; |
d7f25f8a GC |
2614 | int id; |
2615 | ||
bd673145 VD |
2616 | lockdep_assert_held(&memcg_slab_mutex); |
2617 | ||
2618 | id = memcg_cache_id(memcg); | |
2619 | ||
2620 | /* | |
2621 | * Since per-memcg caches are created asynchronously on first | |
2622 | * allocation (see memcg_kmem_get_cache()), several threads can try to | |
2623 | * create the same cache, but only one of them may succeed. | |
2624 | */ | |
2625 | if (cache_from_memcg_idx(root_cache, id)) | |
1aa13254 VD |
2626 | return; |
2627 | ||
073ee1c6 | 2628 | cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1); |
776ed0f0 | 2629 | cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf); |
2edefe11 | 2630 | /* |
bd673145 VD |
2631 | * If we could not create a memcg cache, do not complain, because |
2632 | * that's not critical at all as we can always proceed with the root | |
2633 | * cache. | |
2edefe11 | 2634 | */ |
bd673145 VD |
2635 | if (!cachep) |
2636 | return; | |
2edefe11 | 2637 | |
bd673145 | 2638 | list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches); |
1aa13254 | 2639 | |
d7f25f8a | 2640 | /* |
959c8963 VD |
2641 | * Since readers won't lock (see cache_from_memcg_idx()), we need a |
2642 | * barrier here to ensure nobody will see the kmem_cache partially | |
2643 | * initialized. | |
d7f25f8a | 2644 | */ |
959c8963 VD |
2645 | smp_wmb(); |
2646 | ||
bd673145 VD |
2647 | BUG_ON(root_cache->memcg_params->memcg_caches[id]); |
2648 | root_cache->memcg_params->memcg_caches[id] = cachep; | |
1aa13254 | 2649 | } |
d7f25f8a | 2650 | |
776ed0f0 | 2651 | static void memcg_unregister_cache(struct kmem_cache *cachep) |
1aa13254 | 2652 | { |
bd673145 | 2653 | struct kmem_cache *root_cache; |
1aa13254 VD |
2654 | struct mem_cgroup *memcg; |
2655 | int id; | |
2656 | ||
bd673145 | 2657 | lockdep_assert_held(&memcg_slab_mutex); |
d7f25f8a | 2658 | |
bd673145 | 2659 | BUG_ON(is_root_cache(cachep)); |
2edefe11 | 2660 | |
bd673145 VD |
2661 | root_cache = cachep->memcg_params->root_cache; |
2662 | memcg = cachep->memcg_params->memcg; | |
96403da2 | 2663 | id = memcg_cache_id(memcg); |
d7f25f8a | 2664 | |
bd673145 VD |
2665 | BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep); |
2666 | root_cache->memcg_params->memcg_caches[id] = NULL; | |
d7f25f8a | 2667 | |
bd673145 VD |
2668 | list_del(&cachep->memcg_params->list); |
2669 | ||
2670 | kmem_cache_destroy(cachep); | |
2633d7a0 GC |
2671 | } |
2672 | ||
776ed0f0 | 2673 | int __memcg_cleanup_cache_params(struct kmem_cache *s) |
7cf27982 GC |
2674 | { |
2675 | struct kmem_cache *c; | |
b8529907 | 2676 | int i, failed = 0; |
7cf27982 | 2677 | |
bd673145 | 2678 | mutex_lock(&memcg_slab_mutex); |
7a67d7ab QH |
2679 | for_each_memcg_cache_index(i) { |
2680 | c = cache_from_memcg_idx(s, i); | |
7cf27982 GC |
2681 | if (!c) |
2682 | continue; | |
2683 | ||
776ed0f0 | 2684 | memcg_unregister_cache(c); |
b8529907 VD |
2685 | |
2686 | if (cache_from_memcg_idx(s, i)) | |
2687 | failed++; | |
7cf27982 | 2688 | } |
bd673145 | 2689 | mutex_unlock(&memcg_slab_mutex); |
b8529907 | 2690 | return failed; |
7cf27982 GC |
2691 | } |
2692 | ||
776ed0f0 | 2693 | static void memcg_unregister_all_caches(struct mem_cgroup *memcg) |
1f458cbf GC |
2694 | { |
2695 | struct kmem_cache *cachep; | |
bd673145 | 2696 | struct memcg_cache_params *params, *tmp; |
1f458cbf GC |
2697 | |
2698 | if (!memcg_kmem_is_active(memcg)) | |
2699 | return; | |
2700 | ||
bd673145 VD |
2701 | mutex_lock(&memcg_slab_mutex); |
2702 | list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) { | |
1f458cbf | 2703 | cachep = memcg_params_to_cache(params); |
8135be5a | 2704 | memcg_unregister_cache(cachep); |
1f458cbf | 2705 | } |
bd673145 | 2706 | mutex_unlock(&memcg_slab_mutex); |
1f458cbf GC |
2707 | } |
2708 | ||
776ed0f0 | 2709 | struct memcg_register_cache_work { |
5722d094 VD |
2710 | struct mem_cgroup *memcg; |
2711 | struct kmem_cache *cachep; | |
2712 | struct work_struct work; | |
2713 | }; | |
2714 | ||
776ed0f0 | 2715 | static void memcg_register_cache_func(struct work_struct *w) |
d7f25f8a | 2716 | { |
776ed0f0 VD |
2717 | struct memcg_register_cache_work *cw = |
2718 | container_of(w, struct memcg_register_cache_work, work); | |
5722d094 VD |
2719 | struct mem_cgroup *memcg = cw->memcg; |
2720 | struct kmem_cache *cachep = cw->cachep; | |
d7f25f8a | 2721 | |
bd673145 | 2722 | mutex_lock(&memcg_slab_mutex); |
776ed0f0 | 2723 | memcg_register_cache(memcg, cachep); |
bd673145 VD |
2724 | mutex_unlock(&memcg_slab_mutex); |
2725 | ||
5722d094 | 2726 | css_put(&memcg->css); |
d7f25f8a GC |
2727 | kfree(cw); |
2728 | } | |
2729 | ||
2730 | /* | |
2731 | * Enqueue the creation of a per-memcg kmem_cache. | |
d7f25f8a | 2732 | */ |
776ed0f0 VD |
2733 | static void __memcg_schedule_register_cache(struct mem_cgroup *memcg, |
2734 | struct kmem_cache *cachep) | |
d7f25f8a | 2735 | { |
776ed0f0 | 2736 | struct memcg_register_cache_work *cw; |
d7f25f8a | 2737 | |
776ed0f0 | 2738 | cw = kmalloc(sizeof(*cw), GFP_NOWAIT); |
8135be5a | 2739 | if (!cw) |
d7f25f8a | 2740 | return; |
8135be5a VD |
2741 | |
2742 | css_get(&memcg->css); | |
d7f25f8a GC |
2743 | |
2744 | cw->memcg = memcg; | |
2745 | cw->cachep = cachep; | |
2746 | ||
776ed0f0 | 2747 | INIT_WORK(&cw->work, memcg_register_cache_func); |
d7f25f8a GC |
2748 | schedule_work(&cw->work); |
2749 | } | |
2750 | ||
776ed0f0 VD |
2751 | static void memcg_schedule_register_cache(struct mem_cgroup *memcg, |
2752 | struct kmem_cache *cachep) | |
0e9d92f2 GC |
2753 | { |
2754 | /* | |
2755 | * We need to stop accounting when we kmalloc, because if the | |
2756 | * corresponding kmalloc cache is not yet created, the first allocation | |
776ed0f0 | 2757 | * in __memcg_schedule_register_cache will recurse. |
0e9d92f2 GC |
2758 | * |
2759 | * However, it is better to enclose the whole function. Depending on | |
2760 | * the debugging options enabled, INIT_WORK(), for instance, can | |
2761 | * trigger an allocation. This too, will make us recurse. Because at | |
2762 | * this point we can't allow ourselves back into memcg_kmem_get_cache, | |
2763 | * the safest choice is to do it like this, wrapping the whole function. | |
2764 | */ | |
6f185c29 | 2765 | current->memcg_kmem_skip_account = 1; |
776ed0f0 | 2766 | __memcg_schedule_register_cache(memcg, cachep); |
6f185c29 | 2767 | current->memcg_kmem_skip_account = 0; |
0e9d92f2 | 2768 | } |
c67a8a68 VD |
2769 | |
2770 | int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order) | |
2771 | { | |
3e32cb2e | 2772 | unsigned int nr_pages = 1 << order; |
c67a8a68 | 2773 | |
8135be5a | 2774 | return memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages); |
c67a8a68 VD |
2775 | } |
2776 | ||
2777 | void __memcg_uncharge_slab(struct kmem_cache *cachep, int order) | |
2778 | { | |
3e32cb2e JW |
2779 | unsigned int nr_pages = 1 << order; |
2780 | ||
2781 | memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages); | |
c67a8a68 VD |
2782 | } |
2783 | ||
d7f25f8a GC |
2784 | /* |
2785 | * Return the kmem_cache we're supposed to use for a slab allocation. | |
2786 | * We try to use the current memcg's version of the cache. | |
2787 | * | |
2788 | * If the cache does not exist yet, if we are the first user of it, | |
2789 | * we either create it immediately, if possible, or create it asynchronously | |
2790 | * in a workqueue. | |
2791 | * In the latter case, we will let the current allocation go through with | |
2792 | * the original cache. | |
2793 | * | |
2794 | * Can't be called in interrupt context or from kernel threads. | |
2795 | * This function needs to be called with rcu_read_lock() held. | |
2796 | */ | |
056b7cce | 2797 | struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep) |
d7f25f8a GC |
2798 | { |
2799 | struct mem_cgroup *memcg; | |
959c8963 | 2800 | struct kmem_cache *memcg_cachep; |
d7f25f8a GC |
2801 | |
2802 | VM_BUG_ON(!cachep->memcg_params); | |
2803 | VM_BUG_ON(!cachep->memcg_params->is_root_cache); | |
2804 | ||
9d100c5e | 2805 | if (current->memcg_kmem_skip_account) |
0e9d92f2 GC |
2806 | return cachep; |
2807 | ||
8135be5a | 2808 | memcg = get_mem_cgroup_from_mm(current->mm); |
cf2b8fbf | 2809 | if (!memcg_kmem_is_active(memcg)) |
ca0dde97 | 2810 | goto out; |
d7f25f8a | 2811 | |
959c8963 | 2812 | memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg)); |
8135be5a VD |
2813 | if (likely(memcg_cachep)) |
2814 | return memcg_cachep; | |
ca0dde97 LZ |
2815 | |
2816 | /* | |
2817 | * If we are in a safe context (can wait, and not in interrupt | |
2818 | * context), we could be be predictable and return right away. | |
2819 | * This would guarantee that the allocation being performed | |
2820 | * already belongs in the new cache. | |
2821 | * | |
2822 | * However, there are some clashes that can arrive from locking. | |
2823 | * For instance, because we acquire the slab_mutex while doing | |
776ed0f0 VD |
2824 | * memcg_create_kmem_cache, this means no further allocation |
2825 | * could happen with the slab_mutex held. So it's better to | |
2826 | * defer everything. | |
ca0dde97 | 2827 | */ |
776ed0f0 | 2828 | memcg_schedule_register_cache(memcg, cachep); |
ca0dde97 | 2829 | out: |
8135be5a | 2830 | css_put(&memcg->css); |
ca0dde97 | 2831 | return cachep; |
d7f25f8a | 2832 | } |
d7f25f8a | 2833 | |
8135be5a VD |
2834 | void __memcg_kmem_put_cache(struct kmem_cache *cachep) |
2835 | { | |
2836 | if (!is_root_cache(cachep)) | |
2837 | css_put(&cachep->memcg_params->memcg->css); | |
2838 | } | |
2839 | ||
7ae1e1d0 GC |
2840 | /* |
2841 | * We need to verify if the allocation against current->mm->owner's memcg is | |
2842 | * possible for the given order. But the page is not allocated yet, so we'll | |
2843 | * need a further commit step to do the final arrangements. | |
2844 | * | |
2845 | * It is possible for the task to switch cgroups in this mean time, so at | |
2846 | * commit time, we can't rely on task conversion any longer. We'll then use | |
2847 | * the handle argument to return to the caller which cgroup we should commit | |
2848 | * against. We could also return the memcg directly and avoid the pointer | |
2849 | * passing, but a boolean return value gives better semantics considering | |
2850 | * the compiled-out case as well. | |
2851 | * | |
2852 | * Returning true means the allocation is possible. | |
2853 | */ | |
2854 | bool | |
2855 | __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order) | |
2856 | { | |
2857 | struct mem_cgroup *memcg; | |
2858 | int ret; | |
2859 | ||
2860 | *_memcg = NULL; | |
6d42c232 | 2861 | |
df381975 | 2862 | memcg = get_mem_cgroup_from_mm(current->mm); |
7ae1e1d0 | 2863 | |
cf2b8fbf | 2864 | if (!memcg_kmem_is_active(memcg)) { |
7ae1e1d0 GC |
2865 | css_put(&memcg->css); |
2866 | return true; | |
2867 | } | |
2868 | ||
3e32cb2e | 2869 | ret = memcg_charge_kmem(memcg, gfp, 1 << order); |
7ae1e1d0 GC |
2870 | if (!ret) |
2871 | *_memcg = memcg; | |
7ae1e1d0 GC |
2872 | |
2873 | css_put(&memcg->css); | |
2874 | return (ret == 0); | |
2875 | } | |
2876 | ||
2877 | void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg, | |
2878 | int order) | |
2879 | { | |
7ae1e1d0 GC |
2880 | VM_BUG_ON(mem_cgroup_is_root(memcg)); |
2881 | ||
2882 | /* The page allocation failed. Revert */ | |
2883 | if (!page) { | |
3e32cb2e | 2884 | memcg_uncharge_kmem(memcg, 1 << order); |
7ae1e1d0 GC |
2885 | return; |
2886 | } | |
1306a85a | 2887 | page->mem_cgroup = memcg; |
7ae1e1d0 GC |
2888 | } |
2889 | ||
2890 | void __memcg_kmem_uncharge_pages(struct page *page, int order) | |
2891 | { | |
1306a85a | 2892 | struct mem_cgroup *memcg = page->mem_cgroup; |
7ae1e1d0 | 2893 | |
7ae1e1d0 GC |
2894 | if (!memcg) |
2895 | return; | |
2896 | ||
309381fe | 2897 | VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page); |
29833315 | 2898 | |
3e32cb2e | 2899 | memcg_uncharge_kmem(memcg, 1 << order); |
1306a85a | 2900 | page->mem_cgroup = NULL; |
7ae1e1d0 GC |
2901 | } |
2902 | #endif /* CONFIG_MEMCG_KMEM */ | |
2903 | ||
ca3e0214 KH |
2904 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
2905 | ||
ca3e0214 KH |
2906 | /* |
2907 | * Because tail pages are not marked as "used", set it. We're under | |
e94c8a9c KH |
2908 | * zone->lru_lock, 'splitting on pmd' and compound_lock. |
2909 | * charge/uncharge will be never happen and move_account() is done under | |
2910 | * compound_lock(), so we don't have to take care of races. | |
ca3e0214 | 2911 | */ |
e94c8a9c | 2912 | void mem_cgroup_split_huge_fixup(struct page *head) |
ca3e0214 | 2913 | { |
e94c8a9c | 2914 | int i; |
ca3e0214 | 2915 | |
3d37c4a9 KH |
2916 | if (mem_cgroup_disabled()) |
2917 | return; | |
b070e65c | 2918 | |
29833315 | 2919 | for (i = 1; i < HPAGE_PMD_NR; i++) |
1306a85a | 2920 | head[i].mem_cgroup = head->mem_cgroup; |
b9982f8d | 2921 | |
1306a85a | 2922 | __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE], |
b070e65c | 2923 | HPAGE_PMD_NR); |
ca3e0214 | 2924 | } |
12d27107 | 2925 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ |
ca3e0214 | 2926 | |
f817ed48 | 2927 | /** |
de3638d9 | 2928 | * mem_cgroup_move_account - move account of the page |
5564e88b | 2929 | * @page: the page |
7ec99d62 | 2930 | * @nr_pages: number of regular pages (>1 for huge pages) |
f817ed48 KH |
2931 | * @from: mem_cgroup which the page is moved from. |
2932 | * @to: mem_cgroup which the page is moved to. @from != @to. | |
2933 | * | |
2934 | * The caller must confirm following. | |
08e552c6 | 2935 | * - page is not on LRU (isolate_page() is useful.) |
7ec99d62 | 2936 | * - compound_lock is held when nr_pages > 1 |
f817ed48 | 2937 | * |
2f3479b1 KH |
2938 | * This function doesn't do "charge" to new cgroup and doesn't do "uncharge" |
2939 | * from old cgroup. | |
f817ed48 | 2940 | */ |
7ec99d62 JW |
2941 | static int mem_cgroup_move_account(struct page *page, |
2942 | unsigned int nr_pages, | |
7ec99d62 | 2943 | struct mem_cgroup *from, |
2f3479b1 | 2944 | struct mem_cgroup *to) |
f817ed48 | 2945 | { |
de3638d9 JW |
2946 | unsigned long flags; |
2947 | int ret; | |
987eba66 | 2948 | |
f817ed48 | 2949 | VM_BUG_ON(from == to); |
309381fe | 2950 | VM_BUG_ON_PAGE(PageLRU(page), page); |
de3638d9 JW |
2951 | /* |
2952 | * The page is isolated from LRU. So, collapse function | |
2953 | * will not handle this page. But page splitting can happen. | |
2954 | * Do this check under compound_page_lock(). The caller should | |
2955 | * hold it. | |
2956 | */ | |
2957 | ret = -EBUSY; | |
7ec99d62 | 2958 | if (nr_pages > 1 && !PageTransHuge(page)) |
de3638d9 JW |
2959 | goto out; |
2960 | ||
0a31bc97 | 2961 | /* |
1306a85a | 2962 | * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup |
0a31bc97 JW |
2963 | * of its source page while we change it: page migration takes |
2964 | * both pages off the LRU, but page cache replacement doesn't. | |
2965 | */ | |
2966 | if (!trylock_page(page)) | |
2967 | goto out; | |
de3638d9 JW |
2968 | |
2969 | ret = -EINVAL; | |
1306a85a | 2970 | if (page->mem_cgroup != from) |
0a31bc97 | 2971 | goto out_unlock; |
de3638d9 | 2972 | |
354a4783 | 2973 | spin_lock_irqsave(&from->move_lock, flags); |
f817ed48 | 2974 | |
0a31bc97 | 2975 | if (!PageAnon(page) && page_mapped(page)) { |
59d1d256 JW |
2976 | __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], |
2977 | nr_pages); | |
2978 | __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED], | |
2979 | nr_pages); | |
2980 | } | |
3ea67d06 | 2981 | |
59d1d256 JW |
2982 | if (PageWriteback(page)) { |
2983 | __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK], | |
2984 | nr_pages); | |
2985 | __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK], | |
2986 | nr_pages); | |
2987 | } | |
3ea67d06 | 2988 | |
0a31bc97 | 2989 | /* |
1306a85a | 2990 | * It is safe to change page->mem_cgroup here because the page |
0a31bc97 JW |
2991 | * is referenced, charged, and isolated - we can't race with |
2992 | * uncharging, charging, migration, or LRU putback. | |
2993 | */ | |
d69b042f | 2994 | |
854ffa8d | 2995 | /* caller should have done css_get */ |
1306a85a | 2996 | page->mem_cgroup = to; |
354a4783 JW |
2997 | spin_unlock_irqrestore(&from->move_lock, flags); |
2998 | ||
de3638d9 | 2999 | ret = 0; |
0a31bc97 JW |
3000 | |
3001 | local_irq_disable(); | |
3002 | mem_cgroup_charge_statistics(to, page, nr_pages); | |
5564e88b | 3003 | memcg_check_events(to, page); |
0a31bc97 | 3004 | mem_cgroup_charge_statistics(from, page, -nr_pages); |
5564e88b | 3005 | memcg_check_events(from, page); |
0a31bc97 JW |
3006 | local_irq_enable(); |
3007 | out_unlock: | |
3008 | unlock_page(page); | |
de3638d9 | 3009 | out: |
f817ed48 KH |
3010 | return ret; |
3011 | } | |
3012 | ||
c255a458 | 3013 | #ifdef CONFIG_MEMCG_SWAP |
0a31bc97 JW |
3014 | static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg, |
3015 | bool charge) | |
d13d1443 | 3016 | { |
0a31bc97 JW |
3017 | int val = (charge) ? 1 : -1; |
3018 | this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val); | |
d13d1443 | 3019 | } |
02491447 DN |
3020 | |
3021 | /** | |
3022 | * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record. | |
3023 | * @entry: swap entry to be moved | |
3024 | * @from: mem_cgroup which the entry is moved from | |
3025 | * @to: mem_cgroup which the entry is moved to | |
3026 | * | |
3027 | * It succeeds only when the swap_cgroup's record for this entry is the same | |
3028 | * as the mem_cgroup's id of @from. | |
3029 | * | |
3030 | * Returns 0 on success, -EINVAL on failure. | |
3031 | * | |
3e32cb2e | 3032 | * The caller must have charged to @to, IOW, called page_counter_charge() about |
02491447 DN |
3033 | * both res and memsw, and called css_get(). |
3034 | */ | |
3035 | static int mem_cgroup_move_swap_account(swp_entry_t entry, | |
e91cbb42 | 3036 | struct mem_cgroup *from, struct mem_cgroup *to) |
02491447 DN |
3037 | { |
3038 | unsigned short old_id, new_id; | |
3039 | ||
34c00c31 LZ |
3040 | old_id = mem_cgroup_id(from); |
3041 | new_id = mem_cgroup_id(to); | |
02491447 DN |
3042 | |
3043 | if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) { | |
02491447 | 3044 | mem_cgroup_swap_statistics(from, false); |
483c30b5 | 3045 | mem_cgroup_swap_statistics(to, true); |
02491447 DN |
3046 | return 0; |
3047 | } | |
3048 | return -EINVAL; | |
3049 | } | |
3050 | #else | |
3051 | static inline int mem_cgroup_move_swap_account(swp_entry_t entry, | |
e91cbb42 | 3052 | struct mem_cgroup *from, struct mem_cgroup *to) |
02491447 DN |
3053 | { |
3054 | return -EINVAL; | |
3055 | } | |
8c7c6e34 | 3056 | #endif |
d13d1443 | 3057 | |
3e32cb2e | 3058 | static DEFINE_MUTEX(memcg_limit_mutex); |
f212ad7c | 3059 | |
d38d2a75 | 3060 | static int mem_cgroup_resize_limit(struct mem_cgroup *memcg, |
3e32cb2e | 3061 | unsigned long limit) |
628f4235 | 3062 | { |
3e32cb2e JW |
3063 | unsigned long curusage; |
3064 | unsigned long oldusage; | |
3065 | bool enlarge = false; | |
81d39c20 | 3066 | int retry_count; |
3e32cb2e | 3067 | int ret; |
81d39c20 KH |
3068 | |
3069 | /* | |
3070 | * For keeping hierarchical_reclaim simple, how long we should retry | |
3071 | * is depends on callers. We set our retry-count to be function | |
3072 | * of # of children which we should visit in this loop. | |
3073 | */ | |
3e32cb2e JW |
3074 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * |
3075 | mem_cgroup_count_children(memcg); | |
81d39c20 | 3076 | |
3e32cb2e | 3077 | oldusage = page_counter_read(&memcg->memory); |
628f4235 | 3078 | |
3e32cb2e | 3079 | do { |
628f4235 KH |
3080 | if (signal_pending(current)) { |
3081 | ret = -EINTR; | |
3082 | break; | |
3083 | } | |
3e32cb2e JW |
3084 | |
3085 | mutex_lock(&memcg_limit_mutex); | |
3086 | if (limit > memcg->memsw.limit) { | |
3087 | mutex_unlock(&memcg_limit_mutex); | |
8c7c6e34 | 3088 | ret = -EINVAL; |
628f4235 KH |
3089 | break; |
3090 | } | |
3e32cb2e JW |
3091 | if (limit > memcg->memory.limit) |
3092 | enlarge = true; | |
3093 | ret = page_counter_limit(&memcg->memory, limit); | |
3094 | mutex_unlock(&memcg_limit_mutex); | |
8c7c6e34 KH |
3095 | |
3096 | if (!ret) | |
3097 | break; | |
3098 | ||
b70a2a21 JW |
3099 | try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true); |
3100 | ||
3e32cb2e | 3101 | curusage = page_counter_read(&memcg->memory); |
81d39c20 | 3102 | /* Usage is reduced ? */ |
f894ffa8 | 3103 | if (curusage >= oldusage) |
81d39c20 KH |
3104 | retry_count--; |
3105 | else | |
3106 | oldusage = curusage; | |
3e32cb2e JW |
3107 | } while (retry_count); |
3108 | ||
3c11ecf4 KH |
3109 | if (!ret && enlarge) |
3110 | memcg_oom_recover(memcg); | |
14797e23 | 3111 | |
8c7c6e34 KH |
3112 | return ret; |
3113 | } | |
3114 | ||
338c8431 | 3115 | static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg, |
3e32cb2e | 3116 | unsigned long limit) |
8c7c6e34 | 3117 | { |
3e32cb2e JW |
3118 | unsigned long curusage; |
3119 | unsigned long oldusage; | |
3120 | bool enlarge = false; | |
81d39c20 | 3121 | int retry_count; |
3e32cb2e | 3122 | int ret; |
8c7c6e34 | 3123 | |
81d39c20 | 3124 | /* see mem_cgroup_resize_res_limit */ |
3e32cb2e JW |
3125 | retry_count = MEM_CGROUP_RECLAIM_RETRIES * |
3126 | mem_cgroup_count_children(memcg); | |
3127 | ||
3128 | oldusage = page_counter_read(&memcg->memsw); | |
3129 | ||
3130 | do { | |
8c7c6e34 KH |
3131 | if (signal_pending(current)) { |
3132 | ret = -EINTR; | |
3133 | break; | |
3134 | } | |
3e32cb2e JW |
3135 | |
3136 | mutex_lock(&memcg_limit_mutex); | |
3137 | if (limit < memcg->memory.limit) { | |
3138 | mutex_unlock(&memcg_limit_mutex); | |
8c7c6e34 | 3139 | ret = -EINVAL; |
8c7c6e34 KH |
3140 | break; |
3141 | } | |
3e32cb2e JW |
3142 | if (limit > memcg->memsw.limit) |
3143 | enlarge = true; | |
3144 | ret = page_counter_limit(&memcg->memsw, limit); | |
3145 | mutex_unlock(&memcg_limit_mutex); | |
8c7c6e34 KH |
3146 | |
3147 | if (!ret) | |
3148 | break; | |
3149 | ||
b70a2a21 JW |
3150 | try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false); |
3151 | ||
3e32cb2e | 3152 | curusage = page_counter_read(&memcg->memsw); |
81d39c20 | 3153 | /* Usage is reduced ? */ |
8c7c6e34 | 3154 | if (curusage >= oldusage) |
628f4235 | 3155 | retry_count--; |
81d39c20 KH |
3156 | else |
3157 | oldusage = curusage; | |
3e32cb2e JW |
3158 | } while (retry_count); |
3159 | ||
3c11ecf4 KH |
3160 | if (!ret && enlarge) |
3161 | memcg_oom_recover(memcg); | |
3e32cb2e | 3162 | |
628f4235 KH |
3163 | return ret; |
3164 | } | |
3165 | ||
0608f43d AM |
3166 | unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order, |
3167 | gfp_t gfp_mask, | |
3168 | unsigned long *total_scanned) | |
3169 | { | |
3170 | unsigned long nr_reclaimed = 0; | |
3171 | struct mem_cgroup_per_zone *mz, *next_mz = NULL; | |
3172 | unsigned long reclaimed; | |
3173 | int loop = 0; | |
3174 | struct mem_cgroup_tree_per_zone *mctz; | |
3e32cb2e | 3175 | unsigned long excess; |
0608f43d AM |
3176 | unsigned long nr_scanned; |
3177 | ||
3178 | if (order > 0) | |
3179 | return 0; | |
3180 | ||
3181 | mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone)); | |
3182 | /* | |
3183 | * This loop can run a while, specially if mem_cgroup's continuously | |
3184 | * keep exceeding their soft limit and putting the system under | |
3185 | * pressure | |
3186 | */ | |
3187 | do { | |
3188 | if (next_mz) | |
3189 | mz = next_mz; | |
3190 | else | |
3191 | mz = mem_cgroup_largest_soft_limit_node(mctz); | |
3192 | if (!mz) | |
3193 | break; | |
3194 | ||
3195 | nr_scanned = 0; | |
3196 | reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone, | |
3197 | gfp_mask, &nr_scanned); | |
3198 | nr_reclaimed += reclaimed; | |
3199 | *total_scanned += nr_scanned; | |
0a31bc97 | 3200 | spin_lock_irq(&mctz->lock); |
bc2f2e7f | 3201 | __mem_cgroup_remove_exceeded(mz, mctz); |
0608f43d AM |
3202 | |
3203 | /* | |
3204 | * If we failed to reclaim anything from this memory cgroup | |
3205 | * it is time to move on to the next cgroup | |
3206 | */ | |
3207 | next_mz = NULL; | |
bc2f2e7f VD |
3208 | if (!reclaimed) |
3209 | next_mz = __mem_cgroup_largest_soft_limit_node(mctz); | |
3210 | ||
3e32cb2e | 3211 | excess = soft_limit_excess(mz->memcg); |
0608f43d AM |
3212 | /* |
3213 | * One school of thought says that we should not add | |
3214 | * back the node to the tree if reclaim returns 0. | |
3215 | * But our reclaim could return 0, simply because due | |
3216 | * to priority we are exposing a smaller subset of | |
3217 | * memory to reclaim from. Consider this as a longer | |
3218 | * term TODO. | |
3219 | */ | |
3220 | /* If excess == 0, no tree ops */ | |
cf2c8127 | 3221 | __mem_cgroup_insert_exceeded(mz, mctz, excess); |
0a31bc97 | 3222 | spin_unlock_irq(&mctz->lock); |
0608f43d AM |
3223 | css_put(&mz->memcg->css); |
3224 | loop++; | |
3225 | /* | |
3226 | * Could not reclaim anything and there are no more | |
3227 | * mem cgroups to try or we seem to be looping without | |
3228 | * reclaiming anything. | |
3229 | */ | |
3230 | if (!nr_reclaimed && | |
3231 | (next_mz == NULL || | |
3232 | loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS)) | |
3233 | break; | |
3234 | } while (!nr_reclaimed); | |
3235 | if (next_mz) | |
3236 | css_put(&next_mz->memcg->css); | |
3237 | return nr_reclaimed; | |
3238 | } | |
3239 | ||
ea280e7b TH |
3240 | /* |
3241 | * Test whether @memcg has children, dead or alive. Note that this | |
3242 | * function doesn't care whether @memcg has use_hierarchy enabled and | |
3243 | * returns %true if there are child csses according to the cgroup | |
3244 | * hierarchy. Testing use_hierarchy is the caller's responsiblity. | |
3245 | */ | |
b5f99b53 GC |
3246 | static inline bool memcg_has_children(struct mem_cgroup *memcg) |
3247 | { | |
ea280e7b TH |
3248 | bool ret; |
3249 | ||
696ac172 | 3250 | /* |
ea280e7b TH |
3251 | * The lock does not prevent addition or deletion of children, but |
3252 | * it prevents a new child from being initialized based on this | |
3253 | * parent in css_online(), so it's enough to decide whether | |
3254 | * hierarchically inherited attributes can still be changed or not. | |
696ac172 | 3255 | */ |
ea280e7b TH |
3256 | lockdep_assert_held(&memcg_create_mutex); |
3257 | ||
3258 | rcu_read_lock(); | |
3259 | ret = css_next_child(NULL, &memcg->css); | |
3260 | rcu_read_unlock(); | |
3261 | return ret; | |
b5f99b53 GC |
3262 | } |
3263 | ||
c26251f9 MH |
3264 | /* |
3265 | * Reclaims as many pages from the given memcg as possible and moves | |
3266 | * the rest to the parent. | |
3267 | * | |
3268 | * Caller is responsible for holding css reference for memcg. | |
3269 | */ | |
3270 | static int mem_cgroup_force_empty(struct mem_cgroup *memcg) | |
3271 | { | |
3272 | int nr_retries = MEM_CGROUP_RECLAIM_RETRIES; | |
c26251f9 | 3273 | |
c1e862c1 KH |
3274 | /* we call try-to-free pages for make this cgroup empty */ |
3275 | lru_add_drain_all(); | |
f817ed48 | 3276 | /* try to free all pages in this cgroup */ |
3e32cb2e | 3277 | while (nr_retries && page_counter_read(&memcg->memory)) { |
f817ed48 | 3278 | int progress; |
c1e862c1 | 3279 | |
c26251f9 MH |
3280 | if (signal_pending(current)) |
3281 | return -EINTR; | |
3282 | ||
b70a2a21 JW |
3283 | progress = try_to_free_mem_cgroup_pages(memcg, 1, |
3284 | GFP_KERNEL, true); | |
c1e862c1 | 3285 | if (!progress) { |
f817ed48 | 3286 | nr_retries--; |
c1e862c1 | 3287 | /* maybe some writeback is necessary */ |
8aa7e847 | 3288 | congestion_wait(BLK_RW_ASYNC, HZ/10); |
c1e862c1 | 3289 | } |
f817ed48 KH |
3290 | |
3291 | } | |
ab5196c2 MH |
3292 | |
3293 | return 0; | |
cc847582 KH |
3294 | } |
3295 | ||
6770c64e TH |
3296 | static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of, |
3297 | char *buf, size_t nbytes, | |
3298 | loff_t off) | |
c1e862c1 | 3299 | { |
6770c64e | 3300 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
c26251f9 | 3301 | |
d8423011 MH |
3302 | if (mem_cgroup_is_root(memcg)) |
3303 | return -EINVAL; | |
6770c64e | 3304 | return mem_cgroup_force_empty(memcg) ?: nbytes; |
c1e862c1 KH |
3305 | } |
3306 | ||
182446d0 TH |
3307 | static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css, |
3308 | struct cftype *cft) | |
18f59ea7 | 3309 | { |
182446d0 | 3310 | return mem_cgroup_from_css(css)->use_hierarchy; |
18f59ea7 BS |
3311 | } |
3312 | ||
182446d0 TH |
3313 | static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css, |
3314 | struct cftype *cft, u64 val) | |
18f59ea7 BS |
3315 | { |
3316 | int retval = 0; | |
182446d0 | 3317 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5c9d535b | 3318 | struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent); |
18f59ea7 | 3319 | |
0999821b | 3320 | mutex_lock(&memcg_create_mutex); |
567fb435 GC |
3321 | |
3322 | if (memcg->use_hierarchy == val) | |
3323 | goto out; | |
3324 | ||
18f59ea7 | 3325 | /* |
af901ca1 | 3326 | * If parent's use_hierarchy is set, we can't make any modifications |
18f59ea7 BS |
3327 | * in the child subtrees. If it is unset, then the change can |
3328 | * occur, provided the current cgroup has no children. | |
3329 | * | |
3330 | * For the root cgroup, parent_mem is NULL, we allow value to be | |
3331 | * set if there are no children. | |
3332 | */ | |
c0ff4b85 | 3333 | if ((!parent_memcg || !parent_memcg->use_hierarchy) && |
18f59ea7 | 3334 | (val == 1 || val == 0)) { |
ea280e7b | 3335 | if (!memcg_has_children(memcg)) |
c0ff4b85 | 3336 | memcg->use_hierarchy = val; |
18f59ea7 BS |
3337 | else |
3338 | retval = -EBUSY; | |
3339 | } else | |
3340 | retval = -EINVAL; | |
567fb435 GC |
3341 | |
3342 | out: | |
0999821b | 3343 | mutex_unlock(&memcg_create_mutex); |
18f59ea7 BS |
3344 | |
3345 | return retval; | |
3346 | } | |
3347 | ||
3e32cb2e JW |
3348 | static unsigned long tree_stat(struct mem_cgroup *memcg, |
3349 | enum mem_cgroup_stat_index idx) | |
ce00a967 JW |
3350 | { |
3351 | struct mem_cgroup *iter; | |
3352 | long val = 0; | |
3353 | ||
3354 | /* Per-cpu values can be negative, use a signed accumulator */ | |
3355 | for_each_mem_cgroup_tree(iter, memcg) | |
3356 | val += mem_cgroup_read_stat(iter, idx); | |
3357 | ||
3358 | if (val < 0) /* race ? */ | |
3359 | val = 0; | |
3360 | return val; | |
3361 | } | |
3362 | ||
3363 | static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap) | |
3364 | { | |
3365 | u64 val; | |
3366 | ||
3e32cb2e JW |
3367 | if (mem_cgroup_is_root(memcg)) { |
3368 | val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE); | |
3369 | val += tree_stat(memcg, MEM_CGROUP_STAT_RSS); | |
3370 | if (swap) | |
3371 | val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP); | |
3372 | } else { | |
ce00a967 | 3373 | if (!swap) |
3e32cb2e | 3374 | val = page_counter_read(&memcg->memory); |
ce00a967 | 3375 | else |
3e32cb2e | 3376 | val = page_counter_read(&memcg->memsw); |
ce00a967 | 3377 | } |
ce00a967 JW |
3378 | return val << PAGE_SHIFT; |
3379 | } | |
3380 | ||
3e32cb2e JW |
3381 | enum { |
3382 | RES_USAGE, | |
3383 | RES_LIMIT, | |
3384 | RES_MAX_USAGE, | |
3385 | RES_FAILCNT, | |
3386 | RES_SOFT_LIMIT, | |
3387 | }; | |
ce00a967 | 3388 | |
791badbd | 3389 | static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css, |
05b84301 | 3390 | struct cftype *cft) |
8cdea7c0 | 3391 | { |
182446d0 | 3392 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3e32cb2e | 3393 | struct page_counter *counter; |
af36f906 | 3394 | |
3e32cb2e | 3395 | switch (MEMFILE_TYPE(cft->private)) { |
8c7c6e34 | 3396 | case _MEM: |
3e32cb2e JW |
3397 | counter = &memcg->memory; |
3398 | break; | |
8c7c6e34 | 3399 | case _MEMSWAP: |
3e32cb2e JW |
3400 | counter = &memcg->memsw; |
3401 | break; | |
510fc4e1 | 3402 | case _KMEM: |
3e32cb2e | 3403 | counter = &memcg->kmem; |
510fc4e1 | 3404 | break; |
8c7c6e34 KH |
3405 | default: |
3406 | BUG(); | |
8c7c6e34 | 3407 | } |
3e32cb2e JW |
3408 | |
3409 | switch (MEMFILE_ATTR(cft->private)) { | |
3410 | case RES_USAGE: | |
3411 | if (counter == &memcg->memory) | |
3412 | return mem_cgroup_usage(memcg, false); | |
3413 | if (counter == &memcg->memsw) | |
3414 | return mem_cgroup_usage(memcg, true); | |
3415 | return (u64)page_counter_read(counter) * PAGE_SIZE; | |
3416 | case RES_LIMIT: | |
3417 | return (u64)counter->limit * PAGE_SIZE; | |
3418 | case RES_MAX_USAGE: | |
3419 | return (u64)counter->watermark * PAGE_SIZE; | |
3420 | case RES_FAILCNT: | |
3421 | return counter->failcnt; | |
3422 | case RES_SOFT_LIMIT: | |
3423 | return (u64)memcg->soft_limit * PAGE_SIZE; | |
3424 | default: | |
3425 | BUG(); | |
3426 | } | |
8cdea7c0 | 3427 | } |
510fc4e1 | 3428 | |
510fc4e1 | 3429 | #ifdef CONFIG_MEMCG_KMEM |
8c0145b6 VD |
3430 | static int memcg_activate_kmem(struct mem_cgroup *memcg, |
3431 | unsigned long nr_pages) | |
d6441637 VD |
3432 | { |
3433 | int err = 0; | |
3434 | int memcg_id; | |
3435 | ||
3436 | if (memcg_kmem_is_active(memcg)) | |
3437 | return 0; | |
3438 | ||
510fc4e1 GC |
3439 | /* |
3440 | * For simplicity, we won't allow this to be disabled. It also can't | |
3441 | * be changed if the cgroup has children already, or if tasks had | |
3442 | * already joined. | |
3443 | * | |
3444 | * If tasks join before we set the limit, a person looking at | |
3445 | * kmem.usage_in_bytes will have no way to determine when it took | |
3446 | * place, which makes the value quite meaningless. | |
3447 | * | |
3448 | * After it first became limited, changes in the value of the limit are | |
3449 | * of course permitted. | |
510fc4e1 | 3450 | */ |
0999821b | 3451 | mutex_lock(&memcg_create_mutex); |
ea280e7b TH |
3452 | if (cgroup_has_tasks(memcg->css.cgroup) || |
3453 | (memcg->use_hierarchy && memcg_has_children(memcg))) | |
d6441637 VD |
3454 | err = -EBUSY; |
3455 | mutex_unlock(&memcg_create_mutex); | |
3456 | if (err) | |
3457 | goto out; | |
510fc4e1 | 3458 | |
f3bb3043 | 3459 | memcg_id = memcg_alloc_cache_id(); |
d6441637 VD |
3460 | if (memcg_id < 0) { |
3461 | err = memcg_id; | |
3462 | goto out; | |
3463 | } | |
3464 | ||
d6441637 | 3465 | /* |
900a38f0 VD |
3466 | * We couldn't have accounted to this cgroup, because it hasn't got |
3467 | * activated yet, so this should succeed. | |
d6441637 | 3468 | */ |
3e32cb2e | 3469 | err = page_counter_limit(&memcg->kmem, nr_pages); |
d6441637 VD |
3470 | VM_BUG_ON(err); |
3471 | ||
3472 | static_key_slow_inc(&memcg_kmem_enabled_key); | |
3473 | /* | |
900a38f0 VD |
3474 | * A memory cgroup is considered kmem-active as soon as it gets |
3475 | * kmemcg_id. Setting the id after enabling static branching will | |
d6441637 VD |
3476 | * guarantee no one starts accounting before all call sites are |
3477 | * patched. | |
3478 | */ | |
900a38f0 | 3479 | memcg->kmemcg_id = memcg_id; |
510fc4e1 | 3480 | out: |
d6441637 | 3481 | return err; |
d6441637 VD |
3482 | } |
3483 | ||
d6441637 | 3484 | static int memcg_update_kmem_limit(struct mem_cgroup *memcg, |
3e32cb2e | 3485 | unsigned long limit) |
d6441637 VD |
3486 | { |
3487 | int ret; | |
3488 | ||
3e32cb2e | 3489 | mutex_lock(&memcg_limit_mutex); |
d6441637 | 3490 | if (!memcg_kmem_is_active(memcg)) |
3e32cb2e | 3491 | ret = memcg_activate_kmem(memcg, limit); |
d6441637 | 3492 | else |
3e32cb2e JW |
3493 | ret = page_counter_limit(&memcg->kmem, limit); |
3494 | mutex_unlock(&memcg_limit_mutex); | |
510fc4e1 GC |
3495 | return ret; |
3496 | } | |
3497 | ||
55007d84 | 3498 | static int memcg_propagate_kmem(struct mem_cgroup *memcg) |
510fc4e1 | 3499 | { |
55007d84 | 3500 | int ret = 0; |
510fc4e1 | 3501 | struct mem_cgroup *parent = parent_mem_cgroup(memcg); |
55007d84 | 3502 | |
d6441637 VD |
3503 | if (!parent) |
3504 | return 0; | |
55007d84 | 3505 | |
8c0145b6 | 3506 | mutex_lock(&memcg_limit_mutex); |
55007d84 | 3507 | /* |
d6441637 VD |
3508 | * If the parent cgroup is not kmem-active now, it cannot be activated |
3509 | * after this point, because it has at least one child already. | |
55007d84 | 3510 | */ |
d6441637 | 3511 | if (memcg_kmem_is_active(parent)) |
8c0145b6 VD |
3512 | ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX); |
3513 | mutex_unlock(&memcg_limit_mutex); | |
55007d84 | 3514 | return ret; |
510fc4e1 | 3515 | } |
d6441637 VD |
3516 | #else |
3517 | static int memcg_update_kmem_limit(struct mem_cgroup *memcg, | |
3e32cb2e | 3518 | unsigned long limit) |
d6441637 VD |
3519 | { |
3520 | return -EINVAL; | |
3521 | } | |
6d043990 | 3522 | #endif /* CONFIG_MEMCG_KMEM */ |
510fc4e1 | 3523 | |
628f4235 KH |
3524 | /* |
3525 | * The user of this function is... | |
3526 | * RES_LIMIT. | |
3527 | */ | |
451af504 TH |
3528 | static ssize_t mem_cgroup_write(struct kernfs_open_file *of, |
3529 | char *buf, size_t nbytes, loff_t off) | |
8cdea7c0 | 3530 | { |
451af504 | 3531 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
3e32cb2e | 3532 | unsigned long nr_pages; |
628f4235 KH |
3533 | int ret; |
3534 | ||
451af504 | 3535 | buf = strstrip(buf); |
3e32cb2e JW |
3536 | ret = page_counter_memparse(buf, &nr_pages); |
3537 | if (ret) | |
3538 | return ret; | |
af36f906 | 3539 | |
3e32cb2e | 3540 | switch (MEMFILE_ATTR(of_cft(of)->private)) { |
628f4235 | 3541 | case RES_LIMIT: |
4b3bde4c BS |
3542 | if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */ |
3543 | ret = -EINVAL; | |
3544 | break; | |
3545 | } | |
3e32cb2e JW |
3546 | switch (MEMFILE_TYPE(of_cft(of)->private)) { |
3547 | case _MEM: | |
3548 | ret = mem_cgroup_resize_limit(memcg, nr_pages); | |
8c7c6e34 | 3549 | break; |
3e32cb2e JW |
3550 | case _MEMSWAP: |
3551 | ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages); | |
296c81d8 | 3552 | break; |
3e32cb2e JW |
3553 | case _KMEM: |
3554 | ret = memcg_update_kmem_limit(memcg, nr_pages); | |
3555 | break; | |
3556 | } | |
296c81d8 | 3557 | break; |
3e32cb2e JW |
3558 | case RES_SOFT_LIMIT: |
3559 | memcg->soft_limit = nr_pages; | |
3560 | ret = 0; | |
628f4235 KH |
3561 | break; |
3562 | } | |
451af504 | 3563 | return ret ?: nbytes; |
8cdea7c0 BS |
3564 | } |
3565 | ||
6770c64e TH |
3566 | static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf, |
3567 | size_t nbytes, loff_t off) | |
c84872e1 | 3568 | { |
6770c64e | 3569 | struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of)); |
3e32cb2e | 3570 | struct page_counter *counter; |
c84872e1 | 3571 | |
3e32cb2e JW |
3572 | switch (MEMFILE_TYPE(of_cft(of)->private)) { |
3573 | case _MEM: | |
3574 | counter = &memcg->memory; | |
3575 | break; | |
3576 | case _MEMSWAP: | |
3577 | counter = &memcg->memsw; | |
3578 | break; | |
3579 | case _KMEM: | |
3580 | counter = &memcg->kmem; | |
3581 | break; | |
3582 | default: | |
3583 | BUG(); | |
3584 | } | |
af36f906 | 3585 | |
3e32cb2e | 3586 | switch (MEMFILE_ATTR(of_cft(of)->private)) { |
29f2a4da | 3587 | case RES_MAX_USAGE: |
3e32cb2e | 3588 | page_counter_reset_watermark(counter); |
29f2a4da PE |
3589 | break; |
3590 | case RES_FAILCNT: | |
3e32cb2e | 3591 | counter->failcnt = 0; |
29f2a4da | 3592 | break; |
3e32cb2e JW |
3593 | default: |
3594 | BUG(); | |
29f2a4da | 3595 | } |
f64c3f54 | 3596 | |
6770c64e | 3597 | return nbytes; |
c84872e1 PE |
3598 | } |
3599 | ||
182446d0 | 3600 | static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css, |
7dc74be0 DN |
3601 | struct cftype *cft) |
3602 | { | |
182446d0 | 3603 | return mem_cgroup_from_css(css)->move_charge_at_immigrate; |
7dc74be0 DN |
3604 | } |
3605 | ||
02491447 | 3606 | #ifdef CONFIG_MMU |
182446d0 | 3607 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, |
7dc74be0 DN |
3608 | struct cftype *cft, u64 val) |
3609 | { | |
182446d0 | 3610 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
7dc74be0 DN |
3611 | |
3612 | if (val >= (1 << NR_MOVE_TYPE)) | |
3613 | return -EINVAL; | |
ee5e8472 | 3614 | |
7dc74be0 | 3615 | /* |
ee5e8472 GC |
3616 | * No kind of locking is needed in here, because ->can_attach() will |
3617 | * check this value once in the beginning of the process, and then carry | |
3618 | * on with stale data. This means that changes to this value will only | |
3619 | * affect task migrations starting after the change. | |
7dc74be0 | 3620 | */ |
c0ff4b85 | 3621 | memcg->move_charge_at_immigrate = val; |
7dc74be0 DN |
3622 | return 0; |
3623 | } | |
02491447 | 3624 | #else |
182446d0 | 3625 | static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css, |
02491447 DN |
3626 | struct cftype *cft, u64 val) |
3627 | { | |
3628 | return -ENOSYS; | |
3629 | } | |
3630 | #endif | |
7dc74be0 | 3631 | |
406eb0c9 | 3632 | #ifdef CONFIG_NUMA |
2da8ca82 | 3633 | static int memcg_numa_stat_show(struct seq_file *m, void *v) |
406eb0c9 | 3634 | { |
25485de6 GT |
3635 | struct numa_stat { |
3636 | const char *name; | |
3637 | unsigned int lru_mask; | |
3638 | }; | |
3639 | ||
3640 | static const struct numa_stat stats[] = { | |
3641 | { "total", LRU_ALL }, | |
3642 | { "file", LRU_ALL_FILE }, | |
3643 | { "anon", LRU_ALL_ANON }, | |
3644 | { "unevictable", BIT(LRU_UNEVICTABLE) }, | |
3645 | }; | |
3646 | const struct numa_stat *stat; | |
406eb0c9 | 3647 | int nid; |
25485de6 | 3648 | unsigned long nr; |
2da8ca82 | 3649 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); |
406eb0c9 | 3650 | |
25485de6 GT |
3651 | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { |
3652 | nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask); | |
3653 | seq_printf(m, "%s=%lu", stat->name, nr); | |
3654 | for_each_node_state(nid, N_MEMORY) { | |
3655 | nr = mem_cgroup_node_nr_lru_pages(memcg, nid, | |
3656 | stat->lru_mask); | |
3657 | seq_printf(m, " N%d=%lu", nid, nr); | |
3658 | } | |
3659 | seq_putc(m, '\n'); | |
406eb0c9 | 3660 | } |
406eb0c9 | 3661 | |
071aee13 YH |
3662 | for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) { |
3663 | struct mem_cgroup *iter; | |
3664 | ||
3665 | nr = 0; | |
3666 | for_each_mem_cgroup_tree(iter, memcg) | |
3667 | nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask); | |
3668 | seq_printf(m, "hierarchical_%s=%lu", stat->name, nr); | |
3669 | for_each_node_state(nid, N_MEMORY) { | |
3670 | nr = 0; | |
3671 | for_each_mem_cgroup_tree(iter, memcg) | |
3672 | nr += mem_cgroup_node_nr_lru_pages( | |
3673 | iter, nid, stat->lru_mask); | |
3674 | seq_printf(m, " N%d=%lu", nid, nr); | |
3675 | } | |
3676 | seq_putc(m, '\n'); | |
406eb0c9 | 3677 | } |
406eb0c9 | 3678 | |
406eb0c9 YH |
3679 | return 0; |
3680 | } | |
3681 | #endif /* CONFIG_NUMA */ | |
3682 | ||
2da8ca82 | 3683 | static int memcg_stat_show(struct seq_file *m, void *v) |
d2ceb9b7 | 3684 | { |
2da8ca82 | 3685 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m)); |
3e32cb2e | 3686 | unsigned long memory, memsw; |
af7c4b0e JW |
3687 | struct mem_cgroup *mi; |
3688 | unsigned int i; | |
406eb0c9 | 3689 | |
70bc068c RS |
3690 | BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS); |
3691 | ||
af7c4b0e | 3692 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
bff6bb83 | 3693 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) |
1dd3a273 | 3694 | continue; |
af7c4b0e JW |
3695 | seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i], |
3696 | mem_cgroup_read_stat(memcg, i) * PAGE_SIZE); | |
1dd3a273 | 3697 | } |
7b854121 | 3698 | |
af7c4b0e JW |
3699 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) |
3700 | seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i], | |
3701 | mem_cgroup_read_events(memcg, i)); | |
3702 | ||
3703 | for (i = 0; i < NR_LRU_LISTS; i++) | |
3704 | seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i], | |
3705 | mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE); | |
3706 | ||
14067bb3 | 3707 | /* Hierarchical information */ |
3e32cb2e JW |
3708 | memory = memsw = PAGE_COUNTER_MAX; |
3709 | for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) { | |
3710 | memory = min(memory, mi->memory.limit); | |
3711 | memsw = min(memsw, mi->memsw.limit); | |
fee7b548 | 3712 | } |
3e32cb2e JW |
3713 | seq_printf(m, "hierarchical_memory_limit %llu\n", |
3714 | (u64)memory * PAGE_SIZE); | |
3715 | if (do_swap_account) | |
3716 | seq_printf(m, "hierarchical_memsw_limit %llu\n", | |
3717 | (u64)memsw * PAGE_SIZE); | |
7f016ee8 | 3718 | |
af7c4b0e JW |
3719 | for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) { |
3720 | long long val = 0; | |
3721 | ||
bff6bb83 | 3722 | if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account) |
1dd3a273 | 3723 | continue; |
af7c4b0e JW |
3724 | for_each_mem_cgroup_tree(mi, memcg) |
3725 | val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE; | |
3726 | seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val); | |
3727 | } | |
3728 | ||
3729 | for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) { | |
3730 | unsigned long long val = 0; | |
3731 | ||
3732 | for_each_mem_cgroup_tree(mi, memcg) | |
3733 | val += mem_cgroup_read_events(mi, i); | |
3734 | seq_printf(m, "total_%s %llu\n", | |
3735 | mem_cgroup_events_names[i], val); | |
3736 | } | |
3737 | ||
3738 | for (i = 0; i < NR_LRU_LISTS; i++) { | |
3739 | unsigned long long val = 0; | |
3740 | ||
3741 | for_each_mem_cgroup_tree(mi, memcg) | |
3742 | val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE; | |
3743 | seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val); | |
1dd3a273 | 3744 | } |
14067bb3 | 3745 | |
7f016ee8 | 3746 | #ifdef CONFIG_DEBUG_VM |
7f016ee8 KM |
3747 | { |
3748 | int nid, zid; | |
3749 | struct mem_cgroup_per_zone *mz; | |
89abfab1 | 3750 | struct zone_reclaim_stat *rstat; |
7f016ee8 KM |
3751 | unsigned long recent_rotated[2] = {0, 0}; |
3752 | unsigned long recent_scanned[2] = {0, 0}; | |
3753 | ||
3754 | for_each_online_node(nid) | |
3755 | for (zid = 0; zid < MAX_NR_ZONES; zid++) { | |
e231875b | 3756 | mz = &memcg->nodeinfo[nid]->zoneinfo[zid]; |
89abfab1 | 3757 | rstat = &mz->lruvec.reclaim_stat; |
7f016ee8 | 3758 | |
89abfab1 HD |
3759 | recent_rotated[0] += rstat->recent_rotated[0]; |
3760 | recent_rotated[1] += rstat->recent_rotated[1]; | |
3761 | recent_scanned[0] += rstat->recent_scanned[0]; | |
3762 | recent_scanned[1] += rstat->recent_scanned[1]; | |
7f016ee8 | 3763 | } |
78ccf5b5 JW |
3764 | seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]); |
3765 | seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]); | |
3766 | seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]); | |
3767 | seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]); | |
7f016ee8 KM |
3768 | } |
3769 | #endif | |
3770 | ||
d2ceb9b7 KH |
3771 | return 0; |
3772 | } | |
3773 | ||
182446d0 TH |
3774 | static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css, |
3775 | struct cftype *cft) | |
a7885eb8 | 3776 | { |
182446d0 | 3777 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
a7885eb8 | 3778 | |
1f4c025b | 3779 | return mem_cgroup_swappiness(memcg); |
a7885eb8 KM |
3780 | } |
3781 | ||
182446d0 TH |
3782 | static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css, |
3783 | struct cftype *cft, u64 val) | |
a7885eb8 | 3784 | { |
182446d0 | 3785 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
a7885eb8 | 3786 | |
3dae7fec | 3787 | if (val > 100) |
a7885eb8 KM |
3788 | return -EINVAL; |
3789 | ||
14208b0e | 3790 | if (css->parent) |
3dae7fec JW |
3791 | memcg->swappiness = val; |
3792 | else | |
3793 | vm_swappiness = val; | |
068b38c1 | 3794 | |
a7885eb8 KM |
3795 | return 0; |
3796 | } | |
3797 | ||
2e72b634 KS |
3798 | static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap) |
3799 | { | |
3800 | struct mem_cgroup_threshold_ary *t; | |
3e32cb2e | 3801 | unsigned long usage; |
2e72b634 KS |
3802 | int i; |
3803 | ||
3804 | rcu_read_lock(); | |
3805 | if (!swap) | |
2c488db2 | 3806 | t = rcu_dereference(memcg->thresholds.primary); |
2e72b634 | 3807 | else |
2c488db2 | 3808 | t = rcu_dereference(memcg->memsw_thresholds.primary); |
2e72b634 KS |
3809 | |
3810 | if (!t) | |
3811 | goto unlock; | |
3812 | ||
ce00a967 | 3813 | usage = mem_cgroup_usage(memcg, swap); |
2e72b634 KS |
3814 | |
3815 | /* | |
748dad36 | 3816 | * current_threshold points to threshold just below or equal to usage. |
2e72b634 KS |
3817 | * If it's not true, a threshold was crossed after last |
3818 | * call of __mem_cgroup_threshold(). | |
3819 | */ | |
5407a562 | 3820 | i = t->current_threshold; |
2e72b634 KS |
3821 | |
3822 | /* | |
3823 | * Iterate backward over array of thresholds starting from | |
3824 | * current_threshold and check if a threshold is crossed. | |
3825 | * If none of thresholds below usage is crossed, we read | |
3826 | * only one element of the array here. | |
3827 | */ | |
3828 | for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--) | |
3829 | eventfd_signal(t->entries[i].eventfd, 1); | |
3830 | ||
3831 | /* i = current_threshold + 1 */ | |
3832 | i++; | |
3833 | ||
3834 | /* | |
3835 | * Iterate forward over array of thresholds starting from | |
3836 | * current_threshold+1 and check if a threshold is crossed. | |
3837 | * If none of thresholds above usage is crossed, we read | |
3838 | * only one element of the array here. | |
3839 | */ | |
3840 | for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++) | |
3841 | eventfd_signal(t->entries[i].eventfd, 1); | |
3842 | ||
3843 | /* Update current_threshold */ | |
5407a562 | 3844 | t->current_threshold = i - 1; |
2e72b634 KS |
3845 | unlock: |
3846 | rcu_read_unlock(); | |
3847 | } | |
3848 | ||
3849 | static void mem_cgroup_threshold(struct mem_cgroup *memcg) | |
3850 | { | |
ad4ca5f4 KS |
3851 | while (memcg) { |
3852 | __mem_cgroup_threshold(memcg, false); | |
3853 | if (do_swap_account) | |
3854 | __mem_cgroup_threshold(memcg, true); | |
3855 | ||
3856 | memcg = parent_mem_cgroup(memcg); | |
3857 | } | |
2e72b634 KS |
3858 | } |
3859 | ||
3860 | static int compare_thresholds(const void *a, const void *b) | |
3861 | { | |
3862 | const struct mem_cgroup_threshold *_a = a; | |
3863 | const struct mem_cgroup_threshold *_b = b; | |
3864 | ||
2bff24a3 GT |
3865 | if (_a->threshold > _b->threshold) |
3866 | return 1; | |
3867 | ||
3868 | if (_a->threshold < _b->threshold) | |
3869 | return -1; | |
3870 | ||
3871 | return 0; | |
2e72b634 KS |
3872 | } |
3873 | ||
c0ff4b85 | 3874 | static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg) |
9490ff27 KH |
3875 | { |
3876 | struct mem_cgroup_eventfd_list *ev; | |
3877 | ||
2bcf2e92 MH |
3878 | spin_lock(&memcg_oom_lock); |
3879 | ||
c0ff4b85 | 3880 | list_for_each_entry(ev, &memcg->oom_notify, list) |
9490ff27 | 3881 | eventfd_signal(ev->eventfd, 1); |
2bcf2e92 MH |
3882 | |
3883 | spin_unlock(&memcg_oom_lock); | |
9490ff27 KH |
3884 | return 0; |
3885 | } | |
3886 | ||
c0ff4b85 | 3887 | static void mem_cgroup_oom_notify(struct mem_cgroup *memcg) |
9490ff27 | 3888 | { |
7d74b06f KH |
3889 | struct mem_cgroup *iter; |
3890 | ||
c0ff4b85 | 3891 | for_each_mem_cgroup_tree(iter, memcg) |
7d74b06f | 3892 | mem_cgroup_oom_notify_cb(iter); |
9490ff27 KH |
3893 | } |
3894 | ||
59b6f873 | 3895 | static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg, |
347c4a87 | 3896 | struct eventfd_ctx *eventfd, const char *args, enum res_type type) |
2e72b634 | 3897 | { |
2c488db2 KS |
3898 | struct mem_cgroup_thresholds *thresholds; |
3899 | struct mem_cgroup_threshold_ary *new; | |
3e32cb2e JW |
3900 | unsigned long threshold; |
3901 | unsigned long usage; | |
2c488db2 | 3902 | int i, size, ret; |
2e72b634 | 3903 | |
3e32cb2e | 3904 | ret = page_counter_memparse(args, &threshold); |
2e72b634 KS |
3905 | if (ret) |
3906 | return ret; | |
3907 | ||
3908 | mutex_lock(&memcg->thresholds_lock); | |
2c488db2 | 3909 | |
05b84301 | 3910 | if (type == _MEM) { |
2c488db2 | 3911 | thresholds = &memcg->thresholds; |
ce00a967 | 3912 | usage = mem_cgroup_usage(memcg, false); |
05b84301 | 3913 | } else if (type == _MEMSWAP) { |
2c488db2 | 3914 | thresholds = &memcg->memsw_thresholds; |
ce00a967 | 3915 | usage = mem_cgroup_usage(memcg, true); |
05b84301 | 3916 | } else |
2e72b634 KS |
3917 | BUG(); |
3918 | ||
2e72b634 | 3919 | /* Check if a threshold crossed before adding a new one */ |
2c488db2 | 3920 | if (thresholds->primary) |
2e72b634 KS |
3921 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); |
3922 | ||
2c488db2 | 3923 | size = thresholds->primary ? thresholds->primary->size + 1 : 1; |
2e72b634 KS |
3924 | |
3925 | /* Allocate memory for new array of thresholds */ | |
2c488db2 | 3926 | new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold), |
2e72b634 | 3927 | GFP_KERNEL); |
2c488db2 | 3928 | if (!new) { |
2e72b634 KS |
3929 | ret = -ENOMEM; |
3930 | goto unlock; | |
3931 | } | |
2c488db2 | 3932 | new->size = size; |
2e72b634 KS |
3933 | |
3934 | /* Copy thresholds (if any) to new array */ | |
2c488db2 KS |
3935 | if (thresholds->primary) { |
3936 | memcpy(new->entries, thresholds->primary->entries, (size - 1) * | |
2e72b634 | 3937 | sizeof(struct mem_cgroup_threshold)); |
2c488db2 KS |
3938 | } |
3939 | ||
2e72b634 | 3940 | /* Add new threshold */ |
2c488db2 KS |
3941 | new->entries[size - 1].eventfd = eventfd; |
3942 | new->entries[size - 1].threshold = threshold; | |
2e72b634 KS |
3943 | |
3944 | /* Sort thresholds. Registering of new threshold isn't time-critical */ | |
2c488db2 | 3945 | sort(new->entries, size, sizeof(struct mem_cgroup_threshold), |
2e72b634 KS |
3946 | compare_thresholds, NULL); |
3947 | ||
3948 | /* Find current threshold */ | |
2c488db2 | 3949 | new->current_threshold = -1; |
2e72b634 | 3950 | for (i = 0; i < size; i++) { |
748dad36 | 3951 | if (new->entries[i].threshold <= usage) { |
2e72b634 | 3952 | /* |
2c488db2 KS |
3953 | * new->current_threshold will not be used until |
3954 | * rcu_assign_pointer(), so it's safe to increment | |
2e72b634 KS |
3955 | * it here. |
3956 | */ | |
2c488db2 | 3957 | ++new->current_threshold; |
748dad36 SZ |
3958 | } else |
3959 | break; | |
2e72b634 KS |
3960 | } |
3961 | ||
2c488db2 KS |
3962 | /* Free old spare buffer and save old primary buffer as spare */ |
3963 | kfree(thresholds->spare); | |
3964 | thresholds->spare = thresholds->primary; | |
3965 | ||
3966 | rcu_assign_pointer(thresholds->primary, new); | |
2e72b634 | 3967 | |
907860ed | 3968 | /* To be sure that nobody uses thresholds */ |
2e72b634 KS |
3969 | synchronize_rcu(); |
3970 | ||
2e72b634 KS |
3971 | unlock: |
3972 | mutex_unlock(&memcg->thresholds_lock); | |
3973 | ||
3974 | return ret; | |
3975 | } | |
3976 | ||
59b6f873 | 3977 | static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg, |
347c4a87 TH |
3978 | struct eventfd_ctx *eventfd, const char *args) |
3979 | { | |
59b6f873 | 3980 | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM); |
347c4a87 TH |
3981 | } |
3982 | ||
59b6f873 | 3983 | static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg, |
347c4a87 TH |
3984 | struct eventfd_ctx *eventfd, const char *args) |
3985 | { | |
59b6f873 | 3986 | return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP); |
347c4a87 TH |
3987 | } |
3988 | ||
59b6f873 | 3989 | static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, |
347c4a87 | 3990 | struct eventfd_ctx *eventfd, enum res_type type) |
2e72b634 | 3991 | { |
2c488db2 KS |
3992 | struct mem_cgroup_thresholds *thresholds; |
3993 | struct mem_cgroup_threshold_ary *new; | |
3e32cb2e | 3994 | unsigned long usage; |
2c488db2 | 3995 | int i, j, size; |
2e72b634 KS |
3996 | |
3997 | mutex_lock(&memcg->thresholds_lock); | |
05b84301 JW |
3998 | |
3999 | if (type == _MEM) { | |
2c488db2 | 4000 | thresholds = &memcg->thresholds; |
ce00a967 | 4001 | usage = mem_cgroup_usage(memcg, false); |
05b84301 | 4002 | } else if (type == _MEMSWAP) { |
2c488db2 | 4003 | thresholds = &memcg->memsw_thresholds; |
ce00a967 | 4004 | usage = mem_cgroup_usage(memcg, true); |
05b84301 | 4005 | } else |
2e72b634 KS |
4006 | BUG(); |
4007 | ||
371528ca AV |
4008 | if (!thresholds->primary) |
4009 | goto unlock; | |
4010 | ||
2e72b634 KS |
4011 | /* Check if a threshold crossed before removing */ |
4012 | __mem_cgroup_threshold(memcg, type == _MEMSWAP); | |
4013 | ||
4014 | /* Calculate new number of threshold */ | |
2c488db2 KS |
4015 | size = 0; |
4016 | for (i = 0; i < thresholds->primary->size; i++) { | |
4017 | if (thresholds->primary->entries[i].eventfd != eventfd) | |
2e72b634 KS |
4018 | size++; |
4019 | } | |
4020 | ||
2c488db2 | 4021 | new = thresholds->spare; |
907860ed | 4022 | |
2e72b634 KS |
4023 | /* Set thresholds array to NULL if we don't have thresholds */ |
4024 | if (!size) { | |
2c488db2 KS |
4025 | kfree(new); |
4026 | new = NULL; | |
907860ed | 4027 | goto swap_buffers; |
2e72b634 KS |
4028 | } |
4029 | ||
2c488db2 | 4030 | new->size = size; |
2e72b634 KS |
4031 | |
4032 | /* Copy thresholds and find current threshold */ | |
2c488db2 KS |
4033 | new->current_threshold = -1; |
4034 | for (i = 0, j = 0; i < thresholds->primary->size; i++) { | |
4035 | if (thresholds->primary->entries[i].eventfd == eventfd) | |
2e72b634 KS |
4036 | continue; |
4037 | ||
2c488db2 | 4038 | new->entries[j] = thresholds->primary->entries[i]; |
748dad36 | 4039 | if (new->entries[j].threshold <= usage) { |
2e72b634 | 4040 | /* |
2c488db2 | 4041 | * new->current_threshold will not be used |
2e72b634 KS |
4042 | * until rcu_assign_pointer(), so it's safe to increment |
4043 | * it here. | |
4044 | */ | |
2c488db2 | 4045 | ++new->current_threshold; |
2e72b634 KS |
4046 | } |
4047 | j++; | |
4048 | } | |
4049 | ||
907860ed | 4050 | swap_buffers: |
2c488db2 KS |
4051 | /* Swap primary and spare array */ |
4052 | thresholds->spare = thresholds->primary; | |
8c757763 SZ |
4053 | /* If all events are unregistered, free the spare array */ |
4054 | if (!new) { | |
4055 | kfree(thresholds->spare); | |
4056 | thresholds->spare = NULL; | |
4057 | } | |
4058 | ||
2c488db2 | 4059 | rcu_assign_pointer(thresholds->primary, new); |
2e72b634 | 4060 | |
907860ed | 4061 | /* To be sure that nobody uses thresholds */ |
2e72b634 | 4062 | synchronize_rcu(); |
371528ca | 4063 | unlock: |
2e72b634 | 4064 | mutex_unlock(&memcg->thresholds_lock); |
2e72b634 | 4065 | } |
c1e862c1 | 4066 | |
59b6f873 | 4067 | static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg, |
347c4a87 TH |
4068 | struct eventfd_ctx *eventfd) |
4069 | { | |
59b6f873 | 4070 | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM); |
347c4a87 TH |
4071 | } |
4072 | ||
59b6f873 | 4073 | static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg, |
347c4a87 TH |
4074 | struct eventfd_ctx *eventfd) |
4075 | { | |
59b6f873 | 4076 | return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP); |
347c4a87 TH |
4077 | } |
4078 | ||
59b6f873 | 4079 | static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg, |
347c4a87 | 4080 | struct eventfd_ctx *eventfd, const char *args) |
9490ff27 | 4081 | { |
9490ff27 | 4082 | struct mem_cgroup_eventfd_list *event; |
9490ff27 | 4083 | |
9490ff27 KH |
4084 | event = kmalloc(sizeof(*event), GFP_KERNEL); |
4085 | if (!event) | |
4086 | return -ENOMEM; | |
4087 | ||
1af8efe9 | 4088 | spin_lock(&memcg_oom_lock); |
9490ff27 KH |
4089 | |
4090 | event->eventfd = eventfd; | |
4091 | list_add(&event->list, &memcg->oom_notify); | |
4092 | ||
4093 | /* already in OOM ? */ | |
79dfdacc | 4094 | if (atomic_read(&memcg->under_oom)) |
9490ff27 | 4095 | eventfd_signal(eventfd, 1); |
1af8efe9 | 4096 | spin_unlock(&memcg_oom_lock); |
9490ff27 KH |
4097 | |
4098 | return 0; | |
4099 | } | |
4100 | ||
59b6f873 | 4101 | static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg, |
347c4a87 | 4102 | struct eventfd_ctx *eventfd) |
9490ff27 | 4103 | { |
9490ff27 | 4104 | struct mem_cgroup_eventfd_list *ev, *tmp; |
9490ff27 | 4105 | |
1af8efe9 | 4106 | spin_lock(&memcg_oom_lock); |
9490ff27 | 4107 | |
c0ff4b85 | 4108 | list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) { |
9490ff27 KH |
4109 | if (ev->eventfd == eventfd) { |
4110 | list_del(&ev->list); | |
4111 | kfree(ev); | |
4112 | } | |
4113 | } | |
4114 | ||
1af8efe9 | 4115 | spin_unlock(&memcg_oom_lock); |
9490ff27 KH |
4116 | } |
4117 | ||
2da8ca82 | 4118 | static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v) |
3c11ecf4 | 4119 | { |
2da8ca82 | 4120 | struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf)); |
3c11ecf4 | 4121 | |
791badbd TH |
4122 | seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable); |
4123 | seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom)); | |
3c11ecf4 KH |
4124 | return 0; |
4125 | } | |
4126 | ||
182446d0 | 4127 | static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css, |
3c11ecf4 KH |
4128 | struct cftype *cft, u64 val) |
4129 | { | |
182446d0 | 4130 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3c11ecf4 KH |
4131 | |
4132 | /* cannot set to root cgroup and only 0 and 1 are allowed */ | |
14208b0e | 4133 | if (!css->parent || !((val == 0) || (val == 1))) |
3c11ecf4 KH |
4134 | return -EINVAL; |
4135 | ||
c0ff4b85 | 4136 | memcg->oom_kill_disable = val; |
4d845ebf | 4137 | if (!val) |
c0ff4b85 | 4138 | memcg_oom_recover(memcg); |
3dae7fec | 4139 | |
3c11ecf4 KH |
4140 | return 0; |
4141 | } | |
4142 | ||
c255a458 | 4143 | #ifdef CONFIG_MEMCG_KMEM |
cbe128e3 | 4144 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) |
e5671dfa | 4145 | { |
55007d84 GC |
4146 | int ret; |
4147 | ||
55007d84 GC |
4148 | ret = memcg_propagate_kmem(memcg); |
4149 | if (ret) | |
4150 | return ret; | |
2633d7a0 | 4151 | |
1d62e436 | 4152 | return mem_cgroup_sockets_init(memcg, ss); |
573b400d | 4153 | } |
e5671dfa | 4154 | |
10d5ebf4 | 4155 | static void memcg_destroy_kmem(struct mem_cgroup *memcg) |
d1a4c0b3 | 4156 | { |
8135be5a | 4157 | memcg_unregister_all_caches(memcg); |
1d62e436 | 4158 | mem_cgroup_sockets_destroy(memcg); |
10d5ebf4 | 4159 | } |
e5671dfa | 4160 | #else |
cbe128e3 | 4161 | static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss) |
e5671dfa GC |
4162 | { |
4163 | return 0; | |
4164 | } | |
d1a4c0b3 | 4165 | |
10d5ebf4 LZ |
4166 | static void memcg_destroy_kmem(struct mem_cgroup *memcg) |
4167 | { | |
4168 | } | |
e5671dfa GC |
4169 | #endif |
4170 | ||
3bc942f3 TH |
4171 | /* |
4172 | * DO NOT USE IN NEW FILES. | |
4173 | * | |
4174 | * "cgroup.event_control" implementation. | |
4175 | * | |
4176 | * This is way over-engineered. It tries to support fully configurable | |
4177 | * events for each user. Such level of flexibility is completely | |
4178 | * unnecessary especially in the light of the planned unified hierarchy. | |
4179 | * | |
4180 | * Please deprecate this and replace with something simpler if at all | |
4181 | * possible. | |
4182 | */ | |
4183 | ||
79bd9814 TH |
4184 | /* |
4185 | * Unregister event and free resources. | |
4186 | * | |
4187 | * Gets called from workqueue. | |
4188 | */ | |
3bc942f3 | 4189 | static void memcg_event_remove(struct work_struct *work) |
79bd9814 | 4190 | { |
3bc942f3 TH |
4191 | struct mem_cgroup_event *event = |
4192 | container_of(work, struct mem_cgroup_event, remove); | |
59b6f873 | 4193 | struct mem_cgroup *memcg = event->memcg; |
79bd9814 TH |
4194 | |
4195 | remove_wait_queue(event->wqh, &event->wait); | |
4196 | ||
59b6f873 | 4197 | event->unregister_event(memcg, event->eventfd); |
79bd9814 TH |
4198 | |
4199 | /* Notify userspace the event is going away. */ | |
4200 | eventfd_signal(event->eventfd, 1); | |
4201 | ||
4202 | eventfd_ctx_put(event->eventfd); | |
4203 | kfree(event); | |
59b6f873 | 4204 | css_put(&memcg->css); |
79bd9814 TH |
4205 | } |
4206 | ||
4207 | /* | |
4208 | * Gets called on POLLHUP on eventfd when user closes it. | |
4209 | * | |
4210 | * Called with wqh->lock held and interrupts disabled. | |
4211 | */ | |
3bc942f3 TH |
4212 | static int memcg_event_wake(wait_queue_t *wait, unsigned mode, |
4213 | int sync, void *key) | |
79bd9814 | 4214 | { |
3bc942f3 TH |
4215 | struct mem_cgroup_event *event = |
4216 | container_of(wait, struct mem_cgroup_event, wait); | |
59b6f873 | 4217 | struct mem_cgroup *memcg = event->memcg; |
79bd9814 TH |
4218 | unsigned long flags = (unsigned long)key; |
4219 | ||
4220 | if (flags & POLLHUP) { | |
4221 | /* | |
4222 | * If the event has been detached at cgroup removal, we | |
4223 | * can simply return knowing the other side will cleanup | |
4224 | * for us. | |
4225 | * | |
4226 | * We can't race against event freeing since the other | |
4227 | * side will require wqh->lock via remove_wait_queue(), | |
4228 | * which we hold. | |
4229 | */ | |
fba94807 | 4230 | spin_lock(&memcg->event_list_lock); |
79bd9814 TH |
4231 | if (!list_empty(&event->list)) { |
4232 | list_del_init(&event->list); | |
4233 | /* | |
4234 | * We are in atomic context, but cgroup_event_remove() | |
4235 | * may sleep, so we have to call it in workqueue. | |
4236 | */ | |
4237 | schedule_work(&event->remove); | |
4238 | } | |
fba94807 | 4239 | spin_unlock(&memcg->event_list_lock); |
79bd9814 TH |
4240 | } |
4241 | ||
4242 | return 0; | |
4243 | } | |
4244 | ||
3bc942f3 | 4245 | static void memcg_event_ptable_queue_proc(struct file *file, |
79bd9814 TH |
4246 | wait_queue_head_t *wqh, poll_table *pt) |
4247 | { | |
3bc942f3 TH |
4248 | struct mem_cgroup_event *event = |
4249 | container_of(pt, struct mem_cgroup_event, pt); | |
79bd9814 TH |
4250 | |
4251 | event->wqh = wqh; | |
4252 | add_wait_queue(wqh, &event->wait); | |
4253 | } | |
4254 | ||
4255 | /* | |
3bc942f3 TH |
4256 | * DO NOT USE IN NEW FILES. |
4257 | * | |
79bd9814 TH |
4258 | * Parse input and register new cgroup event handler. |
4259 | * | |
4260 | * Input must be in format '<event_fd> <control_fd> <args>'. | |
4261 | * Interpretation of args is defined by control file implementation. | |
4262 | */ | |
451af504 TH |
4263 | static ssize_t memcg_write_event_control(struct kernfs_open_file *of, |
4264 | char *buf, size_t nbytes, loff_t off) | |
79bd9814 | 4265 | { |
451af504 | 4266 | struct cgroup_subsys_state *css = of_css(of); |
fba94807 | 4267 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3bc942f3 | 4268 | struct mem_cgroup_event *event; |
79bd9814 TH |
4269 | struct cgroup_subsys_state *cfile_css; |
4270 | unsigned int efd, cfd; | |
4271 | struct fd efile; | |
4272 | struct fd cfile; | |
fba94807 | 4273 | const char *name; |
79bd9814 TH |
4274 | char *endp; |
4275 | int ret; | |
4276 | ||
451af504 TH |
4277 | buf = strstrip(buf); |
4278 | ||
4279 | efd = simple_strtoul(buf, &endp, 10); | |
79bd9814 TH |
4280 | if (*endp != ' ') |
4281 | return -EINVAL; | |
451af504 | 4282 | buf = endp + 1; |
79bd9814 | 4283 | |
451af504 | 4284 | cfd = simple_strtoul(buf, &endp, 10); |
79bd9814 TH |
4285 | if ((*endp != ' ') && (*endp != '\0')) |
4286 | return -EINVAL; | |
451af504 | 4287 | buf = endp + 1; |
79bd9814 TH |
4288 | |
4289 | event = kzalloc(sizeof(*event), GFP_KERNEL); | |
4290 | if (!event) | |
4291 | return -ENOMEM; | |
4292 | ||
59b6f873 | 4293 | event->memcg = memcg; |
79bd9814 | 4294 | INIT_LIST_HEAD(&event->list); |
3bc942f3 TH |
4295 | init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc); |
4296 | init_waitqueue_func_entry(&event->wait, memcg_event_wake); | |
4297 | INIT_WORK(&event->remove, memcg_event_remove); | |
79bd9814 TH |
4298 | |
4299 | efile = fdget(efd); | |
4300 | if (!efile.file) { | |
4301 | ret = -EBADF; | |
4302 | goto out_kfree; | |
4303 | } | |
4304 | ||
4305 | event->eventfd = eventfd_ctx_fileget(efile.file); | |
4306 | if (IS_ERR(event->eventfd)) { | |
4307 | ret = PTR_ERR(event->eventfd); | |
4308 | goto out_put_efile; | |
4309 | } | |
4310 | ||
4311 | cfile = fdget(cfd); | |
4312 | if (!cfile.file) { | |
4313 | ret = -EBADF; | |
4314 | goto out_put_eventfd; | |
4315 | } | |
4316 | ||
4317 | /* the process need read permission on control file */ | |
4318 | /* AV: shouldn't we check that it's been opened for read instead? */ | |
4319 | ret = inode_permission(file_inode(cfile.file), MAY_READ); | |
4320 | if (ret < 0) | |
4321 | goto out_put_cfile; | |
4322 | ||
fba94807 TH |
4323 | /* |
4324 | * Determine the event callbacks and set them in @event. This used | |
4325 | * to be done via struct cftype but cgroup core no longer knows | |
4326 | * about these events. The following is crude but the whole thing | |
4327 | * is for compatibility anyway. | |
3bc942f3 TH |
4328 | * |
4329 | * DO NOT ADD NEW FILES. | |
fba94807 | 4330 | */ |
b583043e | 4331 | name = cfile.file->f_path.dentry->d_name.name; |
fba94807 TH |
4332 | |
4333 | if (!strcmp(name, "memory.usage_in_bytes")) { | |
4334 | event->register_event = mem_cgroup_usage_register_event; | |
4335 | event->unregister_event = mem_cgroup_usage_unregister_event; | |
4336 | } else if (!strcmp(name, "memory.oom_control")) { | |
4337 | event->register_event = mem_cgroup_oom_register_event; | |
4338 | event->unregister_event = mem_cgroup_oom_unregister_event; | |
4339 | } else if (!strcmp(name, "memory.pressure_level")) { | |
4340 | event->register_event = vmpressure_register_event; | |
4341 | event->unregister_event = vmpressure_unregister_event; | |
4342 | } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) { | |
347c4a87 TH |
4343 | event->register_event = memsw_cgroup_usage_register_event; |
4344 | event->unregister_event = memsw_cgroup_usage_unregister_event; | |
fba94807 TH |
4345 | } else { |
4346 | ret = -EINVAL; | |
4347 | goto out_put_cfile; | |
4348 | } | |
4349 | ||
79bd9814 | 4350 | /* |
b5557c4c TH |
4351 | * Verify @cfile should belong to @css. Also, remaining events are |
4352 | * automatically removed on cgroup destruction but the removal is | |
4353 | * asynchronous, so take an extra ref on @css. | |
79bd9814 | 4354 | */ |
b583043e | 4355 | cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent, |
ec903c0c | 4356 | &memory_cgrp_subsys); |
79bd9814 | 4357 | ret = -EINVAL; |
5a17f543 | 4358 | if (IS_ERR(cfile_css)) |
79bd9814 | 4359 | goto out_put_cfile; |
5a17f543 TH |
4360 | if (cfile_css != css) { |
4361 | css_put(cfile_css); | |
79bd9814 | 4362 | goto out_put_cfile; |
5a17f543 | 4363 | } |
79bd9814 | 4364 | |
451af504 | 4365 | ret = event->register_event(memcg, event->eventfd, buf); |
79bd9814 TH |
4366 | if (ret) |
4367 | goto out_put_css; | |
4368 | ||
4369 | efile.file->f_op->poll(efile.file, &event->pt); | |
4370 | ||
fba94807 TH |
4371 | spin_lock(&memcg->event_list_lock); |
4372 | list_add(&event->list, &memcg->event_list); | |
4373 | spin_unlock(&memcg->event_list_lock); | |
79bd9814 TH |
4374 | |
4375 | fdput(cfile); | |
4376 | fdput(efile); | |
4377 | ||
451af504 | 4378 | return nbytes; |
79bd9814 TH |
4379 | |
4380 | out_put_css: | |
b5557c4c | 4381 | css_put(css); |
79bd9814 TH |
4382 | out_put_cfile: |
4383 | fdput(cfile); | |
4384 | out_put_eventfd: | |
4385 | eventfd_ctx_put(event->eventfd); | |
4386 | out_put_efile: | |
4387 | fdput(efile); | |
4388 | out_kfree: | |
4389 | kfree(event); | |
4390 | ||
4391 | return ret; | |
4392 | } | |
4393 | ||
8cdea7c0 BS |
4394 | static struct cftype mem_cgroup_files[] = { |
4395 | { | |
0eea1030 | 4396 | .name = "usage_in_bytes", |
8c7c6e34 | 4397 | .private = MEMFILE_PRIVATE(_MEM, RES_USAGE), |
791badbd | 4398 | .read_u64 = mem_cgroup_read_u64, |
8cdea7c0 | 4399 | }, |
c84872e1 PE |
4400 | { |
4401 | .name = "max_usage_in_bytes", | |
8c7c6e34 | 4402 | .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE), |
6770c64e | 4403 | .write = mem_cgroup_reset, |
791badbd | 4404 | .read_u64 = mem_cgroup_read_u64, |
c84872e1 | 4405 | }, |
8cdea7c0 | 4406 | { |
0eea1030 | 4407 | .name = "limit_in_bytes", |
8c7c6e34 | 4408 | .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT), |
451af504 | 4409 | .write = mem_cgroup_write, |
791badbd | 4410 | .read_u64 = mem_cgroup_read_u64, |
8cdea7c0 | 4411 | }, |
296c81d8 BS |
4412 | { |
4413 | .name = "soft_limit_in_bytes", | |
4414 | .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT), | |
451af504 | 4415 | .write = mem_cgroup_write, |
791badbd | 4416 | .read_u64 = mem_cgroup_read_u64, |
296c81d8 | 4417 | }, |
8cdea7c0 BS |
4418 | { |
4419 | .name = "failcnt", | |
8c7c6e34 | 4420 | .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT), |
6770c64e | 4421 | .write = mem_cgroup_reset, |
791badbd | 4422 | .read_u64 = mem_cgroup_read_u64, |
8cdea7c0 | 4423 | }, |
d2ceb9b7 KH |
4424 | { |
4425 | .name = "stat", | |
2da8ca82 | 4426 | .seq_show = memcg_stat_show, |
d2ceb9b7 | 4427 | }, |
c1e862c1 KH |
4428 | { |
4429 | .name = "force_empty", | |
6770c64e | 4430 | .write = mem_cgroup_force_empty_write, |
c1e862c1 | 4431 | }, |
18f59ea7 BS |
4432 | { |
4433 | .name = "use_hierarchy", | |
4434 | .write_u64 = mem_cgroup_hierarchy_write, | |
4435 | .read_u64 = mem_cgroup_hierarchy_read, | |
4436 | }, | |
79bd9814 | 4437 | { |
3bc942f3 | 4438 | .name = "cgroup.event_control", /* XXX: for compat */ |
451af504 | 4439 | .write = memcg_write_event_control, |
79bd9814 TH |
4440 | .flags = CFTYPE_NO_PREFIX, |
4441 | .mode = S_IWUGO, | |
4442 | }, | |
a7885eb8 KM |
4443 | { |
4444 | .name = "swappiness", | |
4445 | .read_u64 = mem_cgroup_swappiness_read, | |
4446 | .write_u64 = mem_cgroup_swappiness_write, | |
4447 | }, | |
7dc74be0 DN |
4448 | { |
4449 | .name = "move_charge_at_immigrate", | |
4450 | .read_u64 = mem_cgroup_move_charge_read, | |
4451 | .write_u64 = mem_cgroup_move_charge_write, | |
4452 | }, | |
9490ff27 KH |
4453 | { |
4454 | .name = "oom_control", | |
2da8ca82 | 4455 | .seq_show = mem_cgroup_oom_control_read, |
3c11ecf4 | 4456 | .write_u64 = mem_cgroup_oom_control_write, |
9490ff27 KH |
4457 | .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL), |
4458 | }, | |
70ddf637 AV |
4459 | { |
4460 | .name = "pressure_level", | |
70ddf637 | 4461 | }, |
406eb0c9 YH |
4462 | #ifdef CONFIG_NUMA |
4463 | { | |
4464 | .name = "numa_stat", | |
2da8ca82 | 4465 | .seq_show = memcg_numa_stat_show, |
406eb0c9 YH |
4466 | }, |
4467 | #endif | |
510fc4e1 GC |
4468 | #ifdef CONFIG_MEMCG_KMEM |
4469 | { | |
4470 | .name = "kmem.limit_in_bytes", | |
4471 | .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT), | |
451af504 | 4472 | .write = mem_cgroup_write, |
791badbd | 4473 | .read_u64 = mem_cgroup_read_u64, |
510fc4e1 GC |
4474 | }, |
4475 | { | |
4476 | .name = "kmem.usage_in_bytes", | |
4477 | .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE), | |
791badbd | 4478 | .read_u64 = mem_cgroup_read_u64, |
510fc4e1 GC |
4479 | }, |
4480 | { | |
4481 | .name = "kmem.failcnt", | |
4482 | .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT), | |
6770c64e | 4483 | .write = mem_cgroup_reset, |
791badbd | 4484 | .read_u64 = mem_cgroup_read_u64, |
510fc4e1 GC |
4485 | }, |
4486 | { | |
4487 | .name = "kmem.max_usage_in_bytes", | |
4488 | .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE), | |
6770c64e | 4489 | .write = mem_cgroup_reset, |
791badbd | 4490 | .read_u64 = mem_cgroup_read_u64, |
510fc4e1 | 4491 | }, |
749c5415 GC |
4492 | #ifdef CONFIG_SLABINFO |
4493 | { | |
4494 | .name = "kmem.slabinfo", | |
b047501c VD |
4495 | .seq_start = slab_start, |
4496 | .seq_next = slab_next, | |
4497 | .seq_stop = slab_stop, | |
4498 | .seq_show = memcg_slab_show, | |
749c5415 GC |
4499 | }, |
4500 | #endif | |
8c7c6e34 | 4501 | #endif |
6bc10349 | 4502 | { }, /* terminate */ |
af36f906 | 4503 | }; |
8c7c6e34 | 4504 | |
2d11085e MH |
4505 | #ifdef CONFIG_MEMCG_SWAP |
4506 | static struct cftype memsw_cgroup_files[] = { | |
4507 | { | |
4508 | .name = "memsw.usage_in_bytes", | |
4509 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE), | |
791badbd | 4510 | .read_u64 = mem_cgroup_read_u64, |
2d11085e MH |
4511 | }, |
4512 | { | |
4513 | .name = "memsw.max_usage_in_bytes", | |
4514 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE), | |
6770c64e | 4515 | .write = mem_cgroup_reset, |
791badbd | 4516 | .read_u64 = mem_cgroup_read_u64, |
2d11085e MH |
4517 | }, |
4518 | { | |
4519 | .name = "memsw.limit_in_bytes", | |
4520 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT), | |
451af504 | 4521 | .write = mem_cgroup_write, |
791badbd | 4522 | .read_u64 = mem_cgroup_read_u64, |
2d11085e MH |
4523 | }, |
4524 | { | |
4525 | .name = "memsw.failcnt", | |
4526 | .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT), | |
6770c64e | 4527 | .write = mem_cgroup_reset, |
791badbd | 4528 | .read_u64 = mem_cgroup_read_u64, |
2d11085e MH |
4529 | }, |
4530 | { }, /* terminate */ | |
4531 | }; | |
4532 | #endif | |
c0ff4b85 | 4533 | static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) |
6d12e2d8 KH |
4534 | { |
4535 | struct mem_cgroup_per_node *pn; | |
1ecaab2b | 4536 | struct mem_cgroup_per_zone *mz; |
41e3355d | 4537 | int zone, tmp = node; |
1ecaab2b KH |
4538 | /* |
4539 | * This routine is called against possible nodes. | |
4540 | * But it's BUG to call kmalloc() against offline node. | |
4541 | * | |
4542 | * TODO: this routine can waste much memory for nodes which will | |
4543 | * never be onlined. It's better to use memory hotplug callback | |
4544 | * function. | |
4545 | */ | |
41e3355d KH |
4546 | if (!node_state(node, N_NORMAL_MEMORY)) |
4547 | tmp = -1; | |
17295c88 | 4548 | pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp); |
6d12e2d8 KH |
4549 | if (!pn) |
4550 | return 1; | |
1ecaab2b | 4551 | |
1ecaab2b KH |
4552 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { |
4553 | mz = &pn->zoneinfo[zone]; | |
bea8c150 | 4554 | lruvec_init(&mz->lruvec); |
bb4cc1a8 AM |
4555 | mz->usage_in_excess = 0; |
4556 | mz->on_tree = false; | |
d79154bb | 4557 | mz->memcg = memcg; |
1ecaab2b | 4558 | } |
54f72fe0 | 4559 | memcg->nodeinfo[node] = pn; |
6d12e2d8 KH |
4560 | return 0; |
4561 | } | |
4562 | ||
c0ff4b85 | 4563 | static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node) |
1ecaab2b | 4564 | { |
54f72fe0 | 4565 | kfree(memcg->nodeinfo[node]); |
1ecaab2b KH |
4566 | } |
4567 | ||
33327948 KH |
4568 | static struct mem_cgroup *mem_cgroup_alloc(void) |
4569 | { | |
d79154bb | 4570 | struct mem_cgroup *memcg; |
8ff69e2c | 4571 | size_t size; |
33327948 | 4572 | |
8ff69e2c VD |
4573 | size = sizeof(struct mem_cgroup); |
4574 | size += nr_node_ids * sizeof(struct mem_cgroup_per_node *); | |
33327948 | 4575 | |
8ff69e2c | 4576 | memcg = kzalloc(size, GFP_KERNEL); |
d79154bb | 4577 | if (!memcg) |
e7bbcdf3 DC |
4578 | return NULL; |
4579 | ||
d79154bb HD |
4580 | memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu); |
4581 | if (!memcg->stat) | |
d2e61b8d | 4582 | goto out_free; |
d79154bb HD |
4583 | spin_lock_init(&memcg->pcp_counter_lock); |
4584 | return memcg; | |
d2e61b8d DC |
4585 | |
4586 | out_free: | |
8ff69e2c | 4587 | kfree(memcg); |
d2e61b8d | 4588 | return NULL; |
33327948 KH |
4589 | } |
4590 | ||
59927fb9 | 4591 | /* |
c8b2a36f GC |
4592 | * At destroying mem_cgroup, references from swap_cgroup can remain. |
4593 | * (scanning all at force_empty is too costly...) | |
4594 | * | |
4595 | * Instead of clearing all references at force_empty, we remember | |
4596 | * the number of reference from swap_cgroup and free mem_cgroup when | |
4597 | * it goes down to 0. | |
4598 | * | |
4599 | * Removal of cgroup itself succeeds regardless of refs from swap. | |
59927fb9 | 4600 | */ |
c8b2a36f GC |
4601 | |
4602 | static void __mem_cgroup_free(struct mem_cgroup *memcg) | |
59927fb9 | 4603 | { |
c8b2a36f | 4604 | int node; |
59927fb9 | 4605 | |
bb4cc1a8 | 4606 | mem_cgroup_remove_from_trees(memcg); |
c8b2a36f GC |
4607 | |
4608 | for_each_node(node) | |
4609 | free_mem_cgroup_per_zone_info(memcg, node); | |
4610 | ||
4611 | free_percpu(memcg->stat); | |
4612 | ||
a8964b9b | 4613 | disarm_static_keys(memcg); |
8ff69e2c | 4614 | kfree(memcg); |
59927fb9 | 4615 | } |
3afe36b1 | 4616 | |
7bcc1bb1 DN |
4617 | /* |
4618 | * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled. | |
4619 | */ | |
e1aab161 | 4620 | struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) |
7bcc1bb1 | 4621 | { |
3e32cb2e | 4622 | if (!memcg->memory.parent) |
7bcc1bb1 | 4623 | return NULL; |
3e32cb2e | 4624 | return mem_cgroup_from_counter(memcg->memory.parent, memory); |
7bcc1bb1 | 4625 | } |
e1aab161 | 4626 | EXPORT_SYMBOL(parent_mem_cgroup); |
33327948 | 4627 | |
bb4cc1a8 AM |
4628 | static void __init mem_cgroup_soft_limit_tree_init(void) |
4629 | { | |
4630 | struct mem_cgroup_tree_per_node *rtpn; | |
4631 | struct mem_cgroup_tree_per_zone *rtpz; | |
4632 | int tmp, node, zone; | |
4633 | ||
4634 | for_each_node(node) { | |
4635 | tmp = node; | |
4636 | if (!node_state(node, N_NORMAL_MEMORY)) | |
4637 | tmp = -1; | |
4638 | rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp); | |
4639 | BUG_ON(!rtpn); | |
4640 | ||
4641 | soft_limit_tree.rb_tree_per_node[node] = rtpn; | |
4642 | ||
4643 | for (zone = 0; zone < MAX_NR_ZONES; zone++) { | |
4644 | rtpz = &rtpn->rb_tree_per_zone[zone]; | |
4645 | rtpz->rb_root = RB_ROOT; | |
4646 | spin_lock_init(&rtpz->lock); | |
4647 | } | |
4648 | } | |
4649 | } | |
4650 | ||
0eb253e2 | 4651 | static struct cgroup_subsys_state * __ref |
eb95419b | 4652 | mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) |
8cdea7c0 | 4653 | { |
d142e3e6 | 4654 | struct mem_cgroup *memcg; |
04046e1a | 4655 | long error = -ENOMEM; |
6d12e2d8 | 4656 | int node; |
8cdea7c0 | 4657 | |
c0ff4b85 R |
4658 | memcg = mem_cgroup_alloc(); |
4659 | if (!memcg) | |
04046e1a | 4660 | return ERR_PTR(error); |
78fb7466 | 4661 | |
3ed28fa1 | 4662 | for_each_node(node) |
c0ff4b85 | 4663 | if (alloc_mem_cgroup_per_zone_info(memcg, node)) |
6d12e2d8 | 4664 | goto free_out; |
f64c3f54 | 4665 | |
c077719b | 4666 | /* root ? */ |
eb95419b | 4667 | if (parent_css == NULL) { |
a41c58a6 | 4668 | root_mem_cgroup = memcg; |
3e32cb2e | 4669 | page_counter_init(&memcg->memory, NULL); |
24d404dc | 4670 | memcg->soft_limit = PAGE_COUNTER_MAX; |
3e32cb2e JW |
4671 | page_counter_init(&memcg->memsw, NULL); |
4672 | page_counter_init(&memcg->kmem, NULL); | |
18f59ea7 | 4673 | } |
28dbc4b6 | 4674 | |
d142e3e6 GC |
4675 | memcg->last_scanned_node = MAX_NUMNODES; |
4676 | INIT_LIST_HEAD(&memcg->oom_notify); | |
d142e3e6 GC |
4677 | memcg->move_charge_at_immigrate = 0; |
4678 | mutex_init(&memcg->thresholds_lock); | |
4679 | spin_lock_init(&memcg->move_lock); | |
70ddf637 | 4680 | vmpressure_init(&memcg->vmpressure); |
fba94807 TH |
4681 | INIT_LIST_HEAD(&memcg->event_list); |
4682 | spin_lock_init(&memcg->event_list_lock); | |
900a38f0 VD |
4683 | #ifdef CONFIG_MEMCG_KMEM |
4684 | memcg->kmemcg_id = -1; | |
4685 | INIT_LIST_HEAD(&memcg->memcg_slab_caches); | |
4686 | #endif | |
d142e3e6 GC |
4687 | |
4688 | return &memcg->css; | |
4689 | ||
4690 | free_out: | |
4691 | __mem_cgroup_free(memcg); | |
4692 | return ERR_PTR(error); | |
4693 | } | |
4694 | ||
4695 | static int | |
eb95419b | 4696 | mem_cgroup_css_online(struct cgroup_subsys_state *css) |
d142e3e6 | 4697 | { |
eb95419b | 4698 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
5c9d535b | 4699 | struct mem_cgroup *parent = mem_cgroup_from_css(css->parent); |
2f7dd7a4 | 4700 | int ret; |
d142e3e6 | 4701 | |
15a4c835 | 4702 | if (css->id > MEM_CGROUP_ID_MAX) |
4219b2da LZ |
4703 | return -ENOSPC; |
4704 | ||
63876986 | 4705 | if (!parent) |
d142e3e6 GC |
4706 | return 0; |
4707 | ||
0999821b | 4708 | mutex_lock(&memcg_create_mutex); |
d142e3e6 GC |
4709 | |
4710 | memcg->use_hierarchy = parent->use_hierarchy; | |
4711 | memcg->oom_kill_disable = parent->oom_kill_disable; | |
4712 | memcg->swappiness = mem_cgroup_swappiness(parent); | |
4713 | ||
4714 | if (parent->use_hierarchy) { | |
3e32cb2e | 4715 | page_counter_init(&memcg->memory, &parent->memory); |
24d404dc | 4716 | memcg->soft_limit = PAGE_COUNTER_MAX; |
3e32cb2e JW |
4717 | page_counter_init(&memcg->memsw, &parent->memsw); |
4718 | page_counter_init(&memcg->kmem, &parent->kmem); | |
55007d84 | 4719 | |
7bcc1bb1 | 4720 | /* |
8d76a979 LZ |
4721 | * No need to take a reference to the parent because cgroup |
4722 | * core guarantees its existence. | |
7bcc1bb1 | 4723 | */ |
18f59ea7 | 4724 | } else { |
3e32cb2e | 4725 | page_counter_init(&memcg->memory, NULL); |
24d404dc | 4726 | memcg->soft_limit = PAGE_COUNTER_MAX; |
3e32cb2e JW |
4727 | page_counter_init(&memcg->memsw, NULL); |
4728 | page_counter_init(&memcg->kmem, NULL); | |
8c7f6edb TH |
4729 | /* |
4730 | * Deeper hierachy with use_hierarchy == false doesn't make | |
4731 | * much sense so let cgroup subsystem know about this | |
4732 | * unfortunate state in our controller. | |
4733 | */ | |
d142e3e6 | 4734 | if (parent != root_mem_cgroup) |
073219e9 | 4735 | memory_cgrp_subsys.broken_hierarchy = true; |
18f59ea7 | 4736 | } |
0999821b | 4737 | mutex_unlock(&memcg_create_mutex); |
d6441637 | 4738 | |
2f7dd7a4 JW |
4739 | ret = memcg_init_kmem(memcg, &memory_cgrp_subsys); |
4740 | if (ret) | |
4741 | return ret; | |
4742 | ||
4743 | /* | |
4744 | * Make sure the memcg is initialized: mem_cgroup_iter() | |
4745 | * orders reading memcg->initialized against its callers | |
4746 | * reading the memcg members. | |
4747 | */ | |
4748 | smp_store_release(&memcg->initialized, 1); | |
4749 | ||
4750 | return 0; | |
8cdea7c0 BS |
4751 | } |
4752 | ||
eb95419b | 4753 | static void mem_cgroup_css_offline(struct cgroup_subsys_state *css) |
df878fb0 | 4754 | { |
eb95419b | 4755 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
3bc942f3 | 4756 | struct mem_cgroup_event *event, *tmp; |
79bd9814 TH |
4757 | |
4758 | /* | |
4759 | * Unregister events and notify userspace. | |
4760 | * Notify userspace about cgroup removing only after rmdir of cgroup | |
4761 | * directory to avoid race between userspace and kernelspace. | |
4762 | */ | |
fba94807 TH |
4763 | spin_lock(&memcg->event_list_lock); |
4764 | list_for_each_entry_safe(event, tmp, &memcg->event_list, list) { | |
79bd9814 TH |
4765 | list_del_init(&event->list); |
4766 | schedule_work(&event->remove); | |
4767 | } | |
fba94807 | 4768 | spin_unlock(&memcg->event_list_lock); |
ec64f515 | 4769 | |
33cb876e | 4770 | vmpressure_cleanup(&memcg->vmpressure); |
df878fb0 KH |
4771 | } |
4772 | ||
eb95419b | 4773 | static void mem_cgroup_css_free(struct cgroup_subsys_state *css) |
8cdea7c0 | 4774 | { |
eb95419b | 4775 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
c268e994 | 4776 | |
10d5ebf4 | 4777 | memcg_destroy_kmem(memcg); |
465939a1 | 4778 | __mem_cgroup_free(memcg); |
8cdea7c0 BS |
4779 | } |
4780 | ||
1ced953b TH |
4781 | /** |
4782 | * mem_cgroup_css_reset - reset the states of a mem_cgroup | |
4783 | * @css: the target css | |
4784 | * | |
4785 | * Reset the states of the mem_cgroup associated with @css. This is | |
4786 | * invoked when the userland requests disabling on the default hierarchy | |
4787 | * but the memcg is pinned through dependency. The memcg should stop | |
4788 | * applying policies and should revert to the vanilla state as it may be | |
4789 | * made visible again. | |
4790 | * | |
4791 | * The current implementation only resets the essential configurations. | |
4792 | * This needs to be expanded to cover all the visible parts. | |
4793 | */ | |
4794 | static void mem_cgroup_css_reset(struct cgroup_subsys_state *css) | |
4795 | { | |
4796 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); | |
4797 | ||
3e32cb2e JW |
4798 | mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX); |
4799 | mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX); | |
4800 | memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX); | |
24d404dc | 4801 | memcg->soft_limit = PAGE_COUNTER_MAX; |
1ced953b TH |
4802 | } |
4803 | ||
02491447 | 4804 | #ifdef CONFIG_MMU |
7dc74be0 | 4805 | /* Handlers for move charge at task migration. */ |
854ffa8d | 4806 | static int mem_cgroup_do_precharge(unsigned long count) |
7dc74be0 | 4807 | { |
05b84301 | 4808 | int ret; |
9476db97 JW |
4809 | |
4810 | /* Try a single bulk charge without reclaim first */ | |
00501b53 | 4811 | ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count); |
9476db97 | 4812 | if (!ret) { |
854ffa8d | 4813 | mc.precharge += count; |
854ffa8d DN |
4814 | return ret; |
4815 | } | |
692e7c45 | 4816 | if (ret == -EINTR) { |
00501b53 | 4817 | cancel_charge(root_mem_cgroup, count); |
692e7c45 JW |
4818 | return ret; |
4819 | } | |
9476db97 JW |
4820 | |
4821 | /* Try charges one by one with reclaim */ | |
854ffa8d | 4822 | while (count--) { |
00501b53 | 4823 | ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1); |
9476db97 JW |
4824 | /* |
4825 | * In case of failure, any residual charges against | |
4826 | * mc.to will be dropped by mem_cgroup_clear_mc() | |
692e7c45 JW |
4827 | * later on. However, cancel any charges that are |
4828 | * bypassed to root right away or they'll be lost. | |
9476db97 | 4829 | */ |
692e7c45 | 4830 | if (ret == -EINTR) |
00501b53 | 4831 | cancel_charge(root_mem_cgroup, 1); |
38c5d72f | 4832 | if (ret) |
38c5d72f | 4833 | return ret; |
854ffa8d | 4834 | mc.precharge++; |
9476db97 | 4835 | cond_resched(); |
854ffa8d | 4836 | } |
9476db97 | 4837 | return 0; |
4ffef5fe DN |
4838 | } |
4839 | ||
4840 | /** | |
8d32ff84 | 4841 | * get_mctgt_type - get target type of moving charge |
4ffef5fe DN |
4842 | * @vma: the vma the pte to be checked belongs |
4843 | * @addr: the address corresponding to the pte to be checked | |
4844 | * @ptent: the pte to be checked | |
02491447 | 4845 | * @target: the pointer the target page or swap ent will be stored(can be NULL) |
4ffef5fe DN |
4846 | * |
4847 | * Returns | |
4848 | * 0(MC_TARGET_NONE): if the pte is not a target for move charge. | |
4849 | * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for | |
4850 | * move charge. if @target is not NULL, the page is stored in target->page | |
4851 | * with extra refcnt got(Callers should handle it). | |
02491447 DN |
4852 | * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a |
4853 | * target for charge migration. if @target is not NULL, the entry is stored | |
4854 | * in target->ent. | |
4ffef5fe DN |
4855 | * |
4856 | * Called with pte lock held. | |
4857 | */ | |
4ffef5fe DN |
4858 | union mc_target { |
4859 | struct page *page; | |
02491447 | 4860 | swp_entry_t ent; |
4ffef5fe DN |
4861 | }; |
4862 | ||
4ffef5fe | 4863 | enum mc_target_type { |
8d32ff84 | 4864 | MC_TARGET_NONE = 0, |
4ffef5fe | 4865 | MC_TARGET_PAGE, |
02491447 | 4866 | MC_TARGET_SWAP, |
4ffef5fe DN |
4867 | }; |
4868 | ||
90254a65 DN |
4869 | static struct page *mc_handle_present_pte(struct vm_area_struct *vma, |
4870 | unsigned long addr, pte_t ptent) | |
4ffef5fe | 4871 | { |
90254a65 | 4872 | struct page *page = vm_normal_page(vma, addr, ptent); |
4ffef5fe | 4873 | |
90254a65 DN |
4874 | if (!page || !page_mapped(page)) |
4875 | return NULL; | |
4876 | if (PageAnon(page)) { | |
4877 | /* we don't move shared anon */ | |
4b91355e | 4878 | if (!move_anon()) |
90254a65 | 4879 | return NULL; |
87946a72 DN |
4880 | } else if (!move_file()) |
4881 | /* we ignore mapcount for file pages */ | |
90254a65 DN |
4882 | return NULL; |
4883 | if (!get_page_unless_zero(page)) | |
4884 | return NULL; | |
4885 | ||
4886 | return page; | |
4887 | } | |
4888 | ||
4b91355e | 4889 | #ifdef CONFIG_SWAP |
90254a65 DN |
4890 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, |
4891 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
4892 | { | |
90254a65 DN |
4893 | struct page *page = NULL; |
4894 | swp_entry_t ent = pte_to_swp_entry(ptent); | |
4895 | ||
4896 | if (!move_anon() || non_swap_entry(ent)) | |
4897 | return NULL; | |
4b91355e KH |
4898 | /* |
4899 | * Because lookup_swap_cache() updates some statistics counter, | |
4900 | * we call find_get_page() with swapper_space directly. | |
4901 | */ | |
33806f06 | 4902 | page = find_get_page(swap_address_space(ent), ent.val); |
90254a65 DN |
4903 | if (do_swap_account) |
4904 | entry->val = ent.val; | |
4905 | ||
4906 | return page; | |
4907 | } | |
4b91355e KH |
4908 | #else |
4909 | static struct page *mc_handle_swap_pte(struct vm_area_struct *vma, | |
4910 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
4911 | { | |
4912 | return NULL; | |
4913 | } | |
4914 | #endif | |
90254a65 | 4915 | |
87946a72 DN |
4916 | static struct page *mc_handle_file_pte(struct vm_area_struct *vma, |
4917 | unsigned long addr, pte_t ptent, swp_entry_t *entry) | |
4918 | { | |
4919 | struct page *page = NULL; | |
87946a72 DN |
4920 | struct address_space *mapping; |
4921 | pgoff_t pgoff; | |
4922 | ||
4923 | if (!vma->vm_file) /* anonymous vma */ | |
4924 | return NULL; | |
4925 | if (!move_file()) | |
4926 | return NULL; | |
4927 | ||
87946a72 | 4928 | mapping = vma->vm_file->f_mapping; |
0661a336 | 4929 | pgoff = linear_page_index(vma, addr); |
87946a72 DN |
4930 | |
4931 | /* page is moved even if it's not RSS of this task(page-faulted). */ | |
aa3b1895 HD |
4932 | #ifdef CONFIG_SWAP |
4933 | /* shmem/tmpfs may report page out on swap: account for that too. */ | |
139b6a6f JW |
4934 | if (shmem_mapping(mapping)) { |
4935 | page = find_get_entry(mapping, pgoff); | |
4936 | if (radix_tree_exceptional_entry(page)) { | |
4937 | swp_entry_t swp = radix_to_swp_entry(page); | |
4938 | if (do_swap_account) | |
4939 | *entry = swp; | |
4940 | page = find_get_page(swap_address_space(swp), swp.val); | |
4941 | } | |
4942 | } else | |
4943 | page = find_get_page(mapping, pgoff); | |
4944 | #else | |
4945 | page = find_get_page(mapping, pgoff); | |
aa3b1895 | 4946 | #endif |
87946a72 DN |
4947 | return page; |
4948 | } | |
4949 | ||
8d32ff84 | 4950 | static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma, |
90254a65 DN |
4951 | unsigned long addr, pte_t ptent, union mc_target *target) |
4952 | { | |
4953 | struct page *page = NULL; | |
8d32ff84 | 4954 | enum mc_target_type ret = MC_TARGET_NONE; |
90254a65 DN |
4955 | swp_entry_t ent = { .val = 0 }; |
4956 | ||
4957 | if (pte_present(ptent)) | |
4958 | page = mc_handle_present_pte(vma, addr, ptent); | |
4959 | else if (is_swap_pte(ptent)) | |
4960 | page = mc_handle_swap_pte(vma, addr, ptent, &ent); | |
0661a336 | 4961 | else if (pte_none(ptent)) |
87946a72 | 4962 | page = mc_handle_file_pte(vma, addr, ptent, &ent); |
90254a65 DN |
4963 | |
4964 | if (!page && !ent.val) | |
8d32ff84 | 4965 | return ret; |
02491447 | 4966 | if (page) { |
02491447 | 4967 | /* |
0a31bc97 | 4968 | * Do only loose check w/o serialization. |
1306a85a | 4969 | * mem_cgroup_move_account() checks the page is valid or |
0a31bc97 | 4970 | * not under LRU exclusion. |
02491447 | 4971 | */ |
1306a85a | 4972 | if (page->mem_cgroup == mc.from) { |
02491447 DN |
4973 | ret = MC_TARGET_PAGE; |
4974 | if (target) | |
4975 | target->page = page; | |
4976 | } | |
4977 | if (!ret || !target) | |
4978 | put_page(page); | |
4979 | } | |
90254a65 DN |
4980 | /* There is a swap entry and a page doesn't exist or isn't charged */ |
4981 | if (ent.val && !ret && | |
34c00c31 | 4982 | mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) { |
7f0f1546 KH |
4983 | ret = MC_TARGET_SWAP; |
4984 | if (target) | |
4985 | target->ent = ent; | |
4ffef5fe | 4986 | } |
4ffef5fe DN |
4987 | return ret; |
4988 | } | |
4989 | ||
12724850 NH |
4990 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE |
4991 | /* | |
4992 | * We don't consider swapping or file mapped pages because THP does not | |
4993 | * support them for now. | |
4994 | * Caller should make sure that pmd_trans_huge(pmd) is true. | |
4995 | */ | |
4996 | static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | |
4997 | unsigned long addr, pmd_t pmd, union mc_target *target) | |
4998 | { | |
4999 | struct page *page = NULL; | |
12724850 NH |
5000 | enum mc_target_type ret = MC_TARGET_NONE; |
5001 | ||
5002 | page = pmd_page(pmd); | |
309381fe | 5003 | VM_BUG_ON_PAGE(!page || !PageHead(page), page); |
12724850 NH |
5004 | if (!move_anon()) |
5005 | return ret; | |
1306a85a | 5006 | if (page->mem_cgroup == mc.from) { |
12724850 NH |
5007 | ret = MC_TARGET_PAGE; |
5008 | if (target) { | |
5009 | get_page(page); | |
5010 | target->page = page; | |
5011 | } | |
5012 | } | |
5013 | return ret; | |
5014 | } | |
5015 | #else | |
5016 | static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma, | |
5017 | unsigned long addr, pmd_t pmd, union mc_target *target) | |
5018 | { | |
5019 | return MC_TARGET_NONE; | |
5020 | } | |
5021 | #endif | |
5022 | ||
4ffef5fe DN |
5023 | static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd, |
5024 | unsigned long addr, unsigned long end, | |
5025 | struct mm_walk *walk) | |
5026 | { | |
5027 | struct vm_area_struct *vma = walk->private; | |
5028 | pte_t *pte; | |
5029 | spinlock_t *ptl; | |
5030 | ||
bf929152 | 5031 | if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { |
12724850 NH |
5032 | if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE) |
5033 | mc.precharge += HPAGE_PMD_NR; | |
bf929152 | 5034 | spin_unlock(ptl); |
1a5a9906 | 5035 | return 0; |
12724850 | 5036 | } |
03319327 | 5037 | |
45f83cef AA |
5038 | if (pmd_trans_unstable(pmd)) |
5039 | return 0; | |
4ffef5fe DN |
5040 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); |
5041 | for (; addr != end; pte++, addr += PAGE_SIZE) | |
8d32ff84 | 5042 | if (get_mctgt_type(vma, addr, *pte, NULL)) |
4ffef5fe DN |
5043 | mc.precharge++; /* increment precharge temporarily */ |
5044 | pte_unmap_unlock(pte - 1, ptl); | |
5045 | cond_resched(); | |
5046 | ||
7dc74be0 DN |
5047 | return 0; |
5048 | } | |
5049 | ||
4ffef5fe DN |
5050 | static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm) |
5051 | { | |
5052 | unsigned long precharge; | |
5053 | struct vm_area_struct *vma; | |
5054 | ||
dfe076b0 | 5055 | down_read(&mm->mmap_sem); |
4ffef5fe DN |
5056 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
5057 | struct mm_walk mem_cgroup_count_precharge_walk = { | |
5058 | .pmd_entry = mem_cgroup_count_precharge_pte_range, | |
5059 | .mm = mm, | |
5060 | .private = vma, | |
5061 | }; | |
5062 | if (is_vm_hugetlb_page(vma)) | |
5063 | continue; | |
4ffef5fe DN |
5064 | walk_page_range(vma->vm_start, vma->vm_end, |
5065 | &mem_cgroup_count_precharge_walk); | |
5066 | } | |
dfe076b0 | 5067 | up_read(&mm->mmap_sem); |
4ffef5fe DN |
5068 | |
5069 | precharge = mc.precharge; | |
5070 | mc.precharge = 0; | |
5071 | ||
5072 | return precharge; | |
5073 | } | |
5074 | ||
4ffef5fe DN |
5075 | static int mem_cgroup_precharge_mc(struct mm_struct *mm) |
5076 | { | |
dfe076b0 DN |
5077 | unsigned long precharge = mem_cgroup_count_precharge(mm); |
5078 | ||
5079 | VM_BUG_ON(mc.moving_task); | |
5080 | mc.moving_task = current; | |
5081 | return mem_cgroup_do_precharge(precharge); | |
4ffef5fe DN |
5082 | } |
5083 | ||
dfe076b0 DN |
5084 | /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */ |
5085 | static void __mem_cgroup_clear_mc(void) | |
4ffef5fe | 5086 | { |
2bd9bb20 KH |
5087 | struct mem_cgroup *from = mc.from; |
5088 | struct mem_cgroup *to = mc.to; | |
5089 | ||
4ffef5fe | 5090 | /* we must uncharge all the leftover precharges from mc.to */ |
854ffa8d | 5091 | if (mc.precharge) { |
00501b53 | 5092 | cancel_charge(mc.to, mc.precharge); |
854ffa8d DN |
5093 | mc.precharge = 0; |
5094 | } | |
5095 | /* | |
5096 | * we didn't uncharge from mc.from at mem_cgroup_move_account(), so | |
5097 | * we must uncharge here. | |
5098 | */ | |
5099 | if (mc.moved_charge) { | |
00501b53 | 5100 | cancel_charge(mc.from, mc.moved_charge); |
854ffa8d | 5101 | mc.moved_charge = 0; |
4ffef5fe | 5102 | } |
483c30b5 DN |
5103 | /* we must fixup refcnts and charges */ |
5104 | if (mc.moved_swap) { | |
483c30b5 | 5105 | /* uncharge swap account from the old cgroup */ |
ce00a967 | 5106 | if (!mem_cgroup_is_root(mc.from)) |
3e32cb2e | 5107 | page_counter_uncharge(&mc.from->memsw, mc.moved_swap); |
483c30b5 | 5108 | |
05b84301 | 5109 | /* |
3e32cb2e JW |
5110 | * we charged both to->memory and to->memsw, so we |
5111 | * should uncharge to->memory. | |
05b84301 | 5112 | */ |
ce00a967 | 5113 | if (!mem_cgroup_is_root(mc.to)) |
3e32cb2e JW |
5114 | page_counter_uncharge(&mc.to->memory, mc.moved_swap); |
5115 | ||
e8ea14cc | 5116 | css_put_many(&mc.from->css, mc.moved_swap); |
3e32cb2e | 5117 | |
4050377b | 5118 | /* we've already done css_get(mc.to) */ |
483c30b5 DN |
5119 | mc.moved_swap = 0; |
5120 | } | |
dfe076b0 DN |
5121 | memcg_oom_recover(from); |
5122 | memcg_oom_recover(to); | |
5123 | wake_up_all(&mc.waitq); | |
5124 | } | |
5125 | ||
5126 | static void mem_cgroup_clear_mc(void) | |
5127 | { | |
dfe076b0 DN |
5128 | /* |
5129 | * we must clear moving_task before waking up waiters at the end of | |
5130 | * task migration. | |
5131 | */ | |
5132 | mc.moving_task = NULL; | |
5133 | __mem_cgroup_clear_mc(); | |
2bd9bb20 | 5134 | spin_lock(&mc.lock); |
4ffef5fe DN |
5135 | mc.from = NULL; |
5136 | mc.to = NULL; | |
2bd9bb20 | 5137 | spin_unlock(&mc.lock); |
4ffef5fe DN |
5138 | } |
5139 | ||
eb95419b | 5140 | static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, |
761b3ef5 | 5141 | struct cgroup_taskset *tset) |
7dc74be0 | 5142 | { |
2f7ee569 | 5143 | struct task_struct *p = cgroup_taskset_first(tset); |
7dc74be0 | 5144 | int ret = 0; |
eb95419b | 5145 | struct mem_cgroup *memcg = mem_cgroup_from_css(css); |
ee5e8472 | 5146 | unsigned long move_charge_at_immigrate; |
7dc74be0 | 5147 | |
ee5e8472 GC |
5148 | /* |
5149 | * We are now commited to this value whatever it is. Changes in this | |
5150 | * tunable will only affect upcoming migrations, not the current one. | |
5151 | * So we need to save it, and keep it going. | |
5152 | */ | |
5153 | move_charge_at_immigrate = memcg->move_charge_at_immigrate; | |
5154 | if (move_charge_at_immigrate) { | |
7dc74be0 DN |
5155 | struct mm_struct *mm; |
5156 | struct mem_cgroup *from = mem_cgroup_from_task(p); | |
5157 | ||
c0ff4b85 | 5158 | VM_BUG_ON(from == memcg); |
7dc74be0 DN |
5159 | |
5160 | mm = get_task_mm(p); | |
5161 | if (!mm) | |
5162 | return 0; | |
7dc74be0 | 5163 | /* We move charges only when we move a owner of the mm */ |
4ffef5fe DN |
5164 | if (mm->owner == p) { |
5165 | VM_BUG_ON(mc.from); | |
5166 | VM_BUG_ON(mc.to); | |
5167 | VM_BUG_ON(mc.precharge); | |
854ffa8d | 5168 | VM_BUG_ON(mc.moved_charge); |
483c30b5 | 5169 | VM_BUG_ON(mc.moved_swap); |
247b1447 | 5170 | |
2bd9bb20 | 5171 | spin_lock(&mc.lock); |
4ffef5fe | 5172 | mc.from = from; |
c0ff4b85 | 5173 | mc.to = memcg; |
ee5e8472 | 5174 | mc.immigrate_flags = move_charge_at_immigrate; |
2bd9bb20 | 5175 | spin_unlock(&mc.lock); |
dfe076b0 | 5176 | /* We set mc.moving_task later */ |
4ffef5fe DN |
5177 | |
5178 | ret = mem_cgroup_precharge_mc(mm); | |
5179 | if (ret) | |
5180 | mem_cgroup_clear_mc(); | |
dfe076b0 DN |
5181 | } |
5182 | mmput(mm); | |
7dc74be0 DN |
5183 | } |
5184 | return ret; | |
5185 | } | |
5186 | ||
eb95419b | 5187 | static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, |
761b3ef5 | 5188 | struct cgroup_taskset *tset) |
7dc74be0 | 5189 | { |
4e2f245d JW |
5190 | if (mc.to) |
5191 | mem_cgroup_clear_mc(); | |
7dc74be0 DN |
5192 | } |
5193 | ||
4ffef5fe DN |
5194 | static int mem_cgroup_move_charge_pte_range(pmd_t *pmd, |
5195 | unsigned long addr, unsigned long end, | |
5196 | struct mm_walk *walk) | |
7dc74be0 | 5197 | { |
4ffef5fe DN |
5198 | int ret = 0; |
5199 | struct vm_area_struct *vma = walk->private; | |
5200 | pte_t *pte; | |
5201 | spinlock_t *ptl; | |
12724850 NH |
5202 | enum mc_target_type target_type; |
5203 | union mc_target target; | |
5204 | struct page *page; | |
4ffef5fe | 5205 | |
12724850 NH |
5206 | /* |
5207 | * We don't take compound_lock() here but no race with splitting thp | |
5208 | * happens because: | |
5209 | * - if pmd_trans_huge_lock() returns 1, the relevant thp is not | |
5210 | * under splitting, which means there's no concurrent thp split, | |
5211 | * - if another thread runs into split_huge_page() just after we | |
5212 | * entered this if-block, the thread must wait for page table lock | |
5213 | * to be unlocked in __split_huge_page_splitting(), where the main | |
5214 | * part of thp split is not executed yet. | |
5215 | */ | |
bf929152 | 5216 | if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) { |
62ade86a | 5217 | if (mc.precharge < HPAGE_PMD_NR) { |
bf929152 | 5218 | spin_unlock(ptl); |
12724850 NH |
5219 | return 0; |
5220 | } | |
5221 | target_type = get_mctgt_type_thp(vma, addr, *pmd, &target); | |
5222 | if (target_type == MC_TARGET_PAGE) { | |
5223 | page = target.page; | |
5224 | if (!isolate_lru_page(page)) { | |
12724850 | 5225 | if (!mem_cgroup_move_account(page, HPAGE_PMD_NR, |
1306a85a | 5226 | mc.from, mc.to)) { |
12724850 NH |
5227 | mc.precharge -= HPAGE_PMD_NR; |
5228 | mc.moved_charge += HPAGE_PMD_NR; | |
5229 | } | |
5230 | putback_lru_page(page); | |
5231 | } | |
5232 | put_page(page); | |
5233 | } | |
bf929152 | 5234 | spin_unlock(ptl); |
1a5a9906 | 5235 | return 0; |
12724850 NH |
5236 | } |
5237 | ||
45f83cef AA |
5238 | if (pmd_trans_unstable(pmd)) |
5239 | return 0; | |
4ffef5fe DN |
5240 | retry: |
5241 | pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl); | |
5242 | for (; addr != end; addr += PAGE_SIZE) { | |
5243 | pte_t ptent = *(pte++); | |
02491447 | 5244 | swp_entry_t ent; |
4ffef5fe DN |
5245 | |
5246 | if (!mc.precharge) | |
5247 | break; | |
5248 | ||
8d32ff84 | 5249 | switch (get_mctgt_type(vma, addr, ptent, &target)) { |
4ffef5fe DN |
5250 | case MC_TARGET_PAGE: |
5251 | page = target.page; | |
5252 | if (isolate_lru_page(page)) | |
5253 | goto put; | |
1306a85a | 5254 | if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) { |
4ffef5fe | 5255 | mc.precharge--; |
854ffa8d DN |
5256 | /* we uncharge from mc.from later. */ |
5257 | mc.moved_charge++; | |
4ffef5fe DN |
5258 | } |
5259 | putback_lru_page(page); | |
8d32ff84 | 5260 | put: /* get_mctgt_type() gets the page */ |
4ffef5fe DN |
5261 | put_page(page); |
5262 | break; | |
02491447 DN |
5263 | case MC_TARGET_SWAP: |
5264 | ent = target.ent; | |
e91cbb42 | 5265 | if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) { |
02491447 | 5266 | mc.precharge--; |
483c30b5 DN |
5267 | /* we fixup refcnts and charges later. */ |
5268 | mc.moved_swap++; | |
5269 | } | |
02491447 | 5270 | break; |
4ffef5fe DN |
5271 | default: |
5272 | break; | |
5273 | } | |
5274 | } | |
5275 | pte_unmap_unlock(pte - 1, ptl); | |
5276 | cond_resched(); | |
5277 | ||
5278 | if (addr != end) { | |
5279 | /* | |
5280 | * We have consumed all precharges we got in can_attach(). | |
5281 | * We try charge one by one, but don't do any additional | |
5282 | * charges to mc.to if we have failed in charge once in attach() | |
5283 | * phase. | |
5284 | */ | |
854ffa8d | 5285 | ret = mem_cgroup_do_precharge(1); |
4ffef5fe DN |
5286 | if (!ret) |
5287 | goto retry; | |
5288 | } | |
5289 | ||
5290 | return ret; | |
5291 | } | |
5292 | ||
5293 | static void mem_cgroup_move_charge(struct mm_struct *mm) | |
5294 | { | |
5295 | struct vm_area_struct *vma; | |
5296 | ||
5297 | lru_add_drain_all(); | |
312722cb JW |
5298 | /* |
5299 | * Signal mem_cgroup_begin_page_stat() to take the memcg's | |
5300 | * move_lock while we're moving its pages to another memcg. | |
5301 | * Then wait for already started RCU-only updates to finish. | |
5302 | */ | |
5303 | atomic_inc(&mc.from->moving_account); | |
5304 | synchronize_rcu(); | |
dfe076b0 DN |
5305 | retry: |
5306 | if (unlikely(!down_read_trylock(&mm->mmap_sem))) { | |
5307 | /* | |
5308 | * Someone who are holding the mmap_sem might be waiting in | |
5309 | * waitq. So we cancel all extra charges, wake up all waiters, | |
5310 | * and retry. Because we cancel precharges, we might not be able | |
5311 | * to move enough charges, but moving charge is a best-effort | |
5312 | * feature anyway, so it wouldn't be a big problem. | |
5313 | */ | |
5314 | __mem_cgroup_clear_mc(); | |
5315 | cond_resched(); | |
5316 | goto retry; | |
5317 | } | |
4ffef5fe DN |
5318 | for (vma = mm->mmap; vma; vma = vma->vm_next) { |
5319 | int ret; | |
5320 | struct mm_walk mem_cgroup_move_charge_walk = { | |
5321 | .pmd_entry = mem_cgroup_move_charge_pte_range, | |
5322 | .mm = mm, | |
5323 | .private = vma, | |
5324 | }; | |
5325 | if (is_vm_hugetlb_page(vma)) | |
5326 | continue; | |
4ffef5fe DN |
5327 | ret = walk_page_range(vma->vm_start, vma->vm_end, |
5328 | &mem_cgroup_move_charge_walk); | |
5329 | if (ret) | |
5330 | /* | |
5331 | * means we have consumed all precharges and failed in | |
5332 | * doing additional charge. Just abandon here. | |
5333 | */ | |
5334 | break; | |
5335 | } | |
dfe076b0 | 5336 | up_read(&mm->mmap_sem); |
312722cb | 5337 | atomic_dec(&mc.from->moving_account); |
7dc74be0 DN |
5338 | } |
5339 | ||
eb95419b | 5340 | static void mem_cgroup_move_task(struct cgroup_subsys_state *css, |
761b3ef5 | 5341 | struct cgroup_taskset *tset) |
67e465a7 | 5342 | { |
2f7ee569 | 5343 | struct task_struct *p = cgroup_taskset_first(tset); |
a433658c | 5344 | struct mm_struct *mm = get_task_mm(p); |
dfe076b0 | 5345 | |
dfe076b0 | 5346 | if (mm) { |
a433658c KM |
5347 | if (mc.to) |
5348 | mem_cgroup_move_charge(mm); | |
dfe076b0 DN |
5349 | mmput(mm); |
5350 | } | |
a433658c KM |
5351 | if (mc.to) |
5352 | mem_cgroup_clear_mc(); | |
67e465a7 | 5353 | } |
5cfb80a7 | 5354 | #else /* !CONFIG_MMU */ |
eb95419b | 5355 | static int mem_cgroup_can_attach(struct cgroup_subsys_state *css, |
761b3ef5 | 5356 | struct cgroup_taskset *tset) |
5cfb80a7 DN |
5357 | { |
5358 | return 0; | |
5359 | } | |
eb95419b | 5360 | static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css, |
761b3ef5 | 5361 | struct cgroup_taskset *tset) |
5cfb80a7 DN |
5362 | { |
5363 | } | |
eb95419b | 5364 | static void mem_cgroup_move_task(struct cgroup_subsys_state *css, |
761b3ef5 | 5365 | struct cgroup_taskset *tset) |
5cfb80a7 DN |
5366 | { |
5367 | } | |
5368 | #endif | |
67e465a7 | 5369 | |
f00baae7 TH |
5370 | /* |
5371 | * Cgroup retains root cgroups across [un]mount cycles making it necessary | |
aa6ec29b TH |
5372 | * to verify whether we're attached to the default hierarchy on each mount |
5373 | * attempt. | |
f00baae7 | 5374 | */ |
eb95419b | 5375 | static void mem_cgroup_bind(struct cgroup_subsys_state *root_css) |
f00baae7 TH |
5376 | { |
5377 | /* | |
aa6ec29b | 5378 | * use_hierarchy is forced on the default hierarchy. cgroup core |
f00baae7 TH |
5379 | * guarantees that @root doesn't have any children, so turning it |
5380 | * on for the root memcg is enough. | |
5381 | */ | |
aa6ec29b | 5382 | if (cgroup_on_dfl(root_css->cgroup)) |
eb95419b | 5383 | mem_cgroup_from_css(root_css)->use_hierarchy = true; |
f00baae7 TH |
5384 | } |
5385 | ||
073219e9 | 5386 | struct cgroup_subsys memory_cgrp_subsys = { |
92fb9748 | 5387 | .css_alloc = mem_cgroup_css_alloc, |
d142e3e6 | 5388 | .css_online = mem_cgroup_css_online, |
92fb9748 TH |
5389 | .css_offline = mem_cgroup_css_offline, |
5390 | .css_free = mem_cgroup_css_free, | |
1ced953b | 5391 | .css_reset = mem_cgroup_css_reset, |
7dc74be0 DN |
5392 | .can_attach = mem_cgroup_can_attach, |
5393 | .cancel_attach = mem_cgroup_cancel_attach, | |
67e465a7 | 5394 | .attach = mem_cgroup_move_task, |
f00baae7 | 5395 | .bind = mem_cgroup_bind, |
5577964e | 5396 | .legacy_cftypes = mem_cgroup_files, |
6d12e2d8 | 5397 | .early_init = 0, |
8cdea7c0 | 5398 | }; |
c077719b | 5399 | |
c255a458 | 5400 | #ifdef CONFIG_MEMCG_SWAP |
a42c390c MH |
5401 | static int __init enable_swap_account(char *s) |
5402 | { | |
a2c8990a | 5403 | if (!strcmp(s, "1")) |
a42c390c | 5404 | really_do_swap_account = 1; |
a2c8990a | 5405 | else if (!strcmp(s, "0")) |
a42c390c MH |
5406 | really_do_swap_account = 0; |
5407 | return 1; | |
5408 | } | |
a2c8990a | 5409 | __setup("swapaccount=", enable_swap_account); |
c077719b | 5410 | |
2d11085e MH |
5411 | static void __init memsw_file_init(void) |
5412 | { | |
2cf669a5 TH |
5413 | WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, |
5414 | memsw_cgroup_files)); | |
6acc8b02 MH |
5415 | } |
5416 | ||
5417 | static void __init enable_swap_cgroup(void) | |
5418 | { | |
5419 | if (!mem_cgroup_disabled() && really_do_swap_account) { | |
5420 | do_swap_account = 1; | |
5421 | memsw_file_init(); | |
5422 | } | |
2d11085e | 5423 | } |
6acc8b02 | 5424 | |
2d11085e | 5425 | #else |
6acc8b02 | 5426 | static void __init enable_swap_cgroup(void) |
2d11085e MH |
5427 | { |
5428 | } | |
c077719b | 5429 | #endif |
2d11085e | 5430 | |
0a31bc97 JW |
5431 | #ifdef CONFIG_MEMCG_SWAP |
5432 | /** | |
5433 | * mem_cgroup_swapout - transfer a memsw charge to swap | |
5434 | * @page: page whose memsw charge to transfer | |
5435 | * @entry: swap entry to move the charge to | |
5436 | * | |
5437 | * Transfer the memsw charge of @page to @entry. | |
5438 | */ | |
5439 | void mem_cgroup_swapout(struct page *page, swp_entry_t entry) | |
5440 | { | |
7bdd143c | 5441 | struct mem_cgroup *memcg; |
0a31bc97 JW |
5442 | unsigned short oldid; |
5443 | ||
5444 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
5445 | VM_BUG_ON_PAGE(page_count(page), page); | |
5446 | ||
5447 | if (!do_swap_account) | |
5448 | return; | |
5449 | ||
1306a85a | 5450 | memcg = page->mem_cgroup; |
0a31bc97 JW |
5451 | |
5452 | /* Readahead page, never charged */ | |
29833315 | 5453 | if (!memcg) |
0a31bc97 JW |
5454 | return; |
5455 | ||
7bdd143c | 5456 | oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg)); |
0a31bc97 | 5457 | VM_BUG_ON_PAGE(oldid, page); |
7bdd143c JW |
5458 | mem_cgroup_swap_statistics(memcg, true); |
5459 | ||
1306a85a | 5460 | page->mem_cgroup = NULL; |
0a31bc97 | 5461 | |
7bdd143c JW |
5462 | if (!mem_cgroup_is_root(memcg)) |
5463 | page_counter_uncharge(&memcg->memory, 1); | |
5464 | ||
5465 | /* XXX: caller holds IRQ-safe mapping->tree_lock */ | |
5466 | VM_BUG_ON(!irqs_disabled()); | |
0a31bc97 | 5467 | |
7bdd143c JW |
5468 | mem_cgroup_charge_statistics(memcg, page, -1); |
5469 | memcg_check_events(memcg, page); | |
0a31bc97 JW |
5470 | } |
5471 | ||
5472 | /** | |
5473 | * mem_cgroup_uncharge_swap - uncharge a swap entry | |
5474 | * @entry: swap entry to uncharge | |
5475 | * | |
5476 | * Drop the memsw charge associated with @entry. | |
5477 | */ | |
5478 | void mem_cgroup_uncharge_swap(swp_entry_t entry) | |
5479 | { | |
5480 | struct mem_cgroup *memcg; | |
5481 | unsigned short id; | |
5482 | ||
5483 | if (!do_swap_account) | |
5484 | return; | |
5485 | ||
5486 | id = swap_cgroup_record(entry, 0); | |
5487 | rcu_read_lock(); | |
5488 | memcg = mem_cgroup_lookup(id); | |
5489 | if (memcg) { | |
ce00a967 | 5490 | if (!mem_cgroup_is_root(memcg)) |
3e32cb2e | 5491 | page_counter_uncharge(&memcg->memsw, 1); |
0a31bc97 JW |
5492 | mem_cgroup_swap_statistics(memcg, false); |
5493 | css_put(&memcg->css); | |
5494 | } | |
5495 | rcu_read_unlock(); | |
5496 | } | |
5497 | #endif | |
5498 | ||
00501b53 JW |
5499 | /** |
5500 | * mem_cgroup_try_charge - try charging a page | |
5501 | * @page: page to charge | |
5502 | * @mm: mm context of the victim | |
5503 | * @gfp_mask: reclaim mode | |
5504 | * @memcgp: charged memcg return | |
5505 | * | |
5506 | * Try to charge @page to the memcg that @mm belongs to, reclaiming | |
5507 | * pages according to @gfp_mask if necessary. | |
5508 | * | |
5509 | * Returns 0 on success, with *@memcgp pointing to the charged memcg. | |
5510 | * Otherwise, an error code is returned. | |
5511 | * | |
5512 | * After page->mapping has been set up, the caller must finalize the | |
5513 | * charge with mem_cgroup_commit_charge(). Or abort the transaction | |
5514 | * with mem_cgroup_cancel_charge() in case page instantiation fails. | |
5515 | */ | |
5516 | int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm, | |
5517 | gfp_t gfp_mask, struct mem_cgroup **memcgp) | |
5518 | { | |
5519 | struct mem_cgroup *memcg = NULL; | |
5520 | unsigned int nr_pages = 1; | |
5521 | int ret = 0; | |
5522 | ||
5523 | if (mem_cgroup_disabled()) | |
5524 | goto out; | |
5525 | ||
5526 | if (PageSwapCache(page)) { | |
00501b53 JW |
5527 | /* |
5528 | * Every swap fault against a single page tries to charge the | |
5529 | * page, bail as early as possible. shmem_unuse() encounters | |
5530 | * already charged pages, too. The USED bit is protected by | |
5531 | * the page lock, which serializes swap cache removal, which | |
5532 | * in turn serializes uncharging. | |
5533 | */ | |
1306a85a | 5534 | if (page->mem_cgroup) |
00501b53 JW |
5535 | goto out; |
5536 | } | |
5537 | ||
5538 | if (PageTransHuge(page)) { | |
5539 | nr_pages <<= compound_order(page); | |
5540 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
5541 | } | |
5542 | ||
5543 | if (do_swap_account && PageSwapCache(page)) | |
5544 | memcg = try_get_mem_cgroup_from_page(page); | |
5545 | if (!memcg) | |
5546 | memcg = get_mem_cgroup_from_mm(mm); | |
5547 | ||
5548 | ret = try_charge(memcg, gfp_mask, nr_pages); | |
5549 | ||
5550 | css_put(&memcg->css); | |
5551 | ||
5552 | if (ret == -EINTR) { | |
5553 | memcg = root_mem_cgroup; | |
5554 | ret = 0; | |
5555 | } | |
5556 | out: | |
5557 | *memcgp = memcg; | |
5558 | return ret; | |
5559 | } | |
5560 | ||
5561 | /** | |
5562 | * mem_cgroup_commit_charge - commit a page charge | |
5563 | * @page: page to charge | |
5564 | * @memcg: memcg to charge the page to | |
5565 | * @lrucare: page might be on LRU already | |
5566 | * | |
5567 | * Finalize a charge transaction started by mem_cgroup_try_charge(), | |
5568 | * after page->mapping has been set up. This must happen atomically | |
5569 | * as part of the page instantiation, i.e. under the page table lock | |
5570 | * for anonymous pages, under the page lock for page and swap cache. | |
5571 | * | |
5572 | * In addition, the page must not be on the LRU during the commit, to | |
5573 | * prevent racing with task migration. If it might be, use @lrucare. | |
5574 | * | |
5575 | * Use mem_cgroup_cancel_charge() to cancel the transaction instead. | |
5576 | */ | |
5577 | void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg, | |
5578 | bool lrucare) | |
5579 | { | |
5580 | unsigned int nr_pages = 1; | |
5581 | ||
5582 | VM_BUG_ON_PAGE(!page->mapping, page); | |
5583 | VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page); | |
5584 | ||
5585 | if (mem_cgroup_disabled()) | |
5586 | return; | |
5587 | /* | |
5588 | * Swap faults will attempt to charge the same page multiple | |
5589 | * times. But reuse_swap_page() might have removed the page | |
5590 | * from swapcache already, so we can't check PageSwapCache(). | |
5591 | */ | |
5592 | if (!memcg) | |
5593 | return; | |
5594 | ||
6abb5a86 JW |
5595 | commit_charge(page, memcg, lrucare); |
5596 | ||
00501b53 JW |
5597 | if (PageTransHuge(page)) { |
5598 | nr_pages <<= compound_order(page); | |
5599 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
5600 | } | |
5601 | ||
6abb5a86 JW |
5602 | local_irq_disable(); |
5603 | mem_cgroup_charge_statistics(memcg, page, nr_pages); | |
5604 | memcg_check_events(memcg, page); | |
5605 | local_irq_enable(); | |
00501b53 JW |
5606 | |
5607 | if (do_swap_account && PageSwapCache(page)) { | |
5608 | swp_entry_t entry = { .val = page_private(page) }; | |
5609 | /* | |
5610 | * The swap entry might not get freed for a long time, | |
5611 | * let's not wait for it. The page already received a | |
5612 | * memory+swap charge, drop the swap entry duplicate. | |
5613 | */ | |
5614 | mem_cgroup_uncharge_swap(entry); | |
5615 | } | |
5616 | } | |
5617 | ||
5618 | /** | |
5619 | * mem_cgroup_cancel_charge - cancel a page charge | |
5620 | * @page: page to charge | |
5621 | * @memcg: memcg to charge the page to | |
5622 | * | |
5623 | * Cancel a charge transaction started by mem_cgroup_try_charge(). | |
5624 | */ | |
5625 | void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg) | |
5626 | { | |
5627 | unsigned int nr_pages = 1; | |
5628 | ||
5629 | if (mem_cgroup_disabled()) | |
5630 | return; | |
5631 | /* | |
5632 | * Swap faults will attempt to charge the same page multiple | |
5633 | * times. But reuse_swap_page() might have removed the page | |
5634 | * from swapcache already, so we can't check PageSwapCache(). | |
5635 | */ | |
5636 | if (!memcg) | |
5637 | return; | |
5638 | ||
5639 | if (PageTransHuge(page)) { | |
5640 | nr_pages <<= compound_order(page); | |
5641 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
5642 | } | |
5643 | ||
5644 | cancel_charge(memcg, nr_pages); | |
5645 | } | |
5646 | ||
747db954 | 5647 | static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout, |
747db954 JW |
5648 | unsigned long nr_anon, unsigned long nr_file, |
5649 | unsigned long nr_huge, struct page *dummy_page) | |
5650 | { | |
18eca2e6 | 5651 | unsigned long nr_pages = nr_anon + nr_file; |
747db954 JW |
5652 | unsigned long flags; |
5653 | ||
ce00a967 | 5654 | if (!mem_cgroup_is_root(memcg)) { |
18eca2e6 JW |
5655 | page_counter_uncharge(&memcg->memory, nr_pages); |
5656 | if (do_swap_account) | |
5657 | page_counter_uncharge(&memcg->memsw, nr_pages); | |
ce00a967 JW |
5658 | memcg_oom_recover(memcg); |
5659 | } | |
747db954 JW |
5660 | |
5661 | local_irq_save(flags); | |
5662 | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon); | |
5663 | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file); | |
5664 | __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge); | |
5665 | __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout); | |
18eca2e6 | 5666 | __this_cpu_add(memcg->stat->nr_page_events, nr_pages); |
747db954 JW |
5667 | memcg_check_events(memcg, dummy_page); |
5668 | local_irq_restore(flags); | |
e8ea14cc JW |
5669 | |
5670 | if (!mem_cgroup_is_root(memcg)) | |
18eca2e6 | 5671 | css_put_many(&memcg->css, nr_pages); |
747db954 JW |
5672 | } |
5673 | ||
5674 | static void uncharge_list(struct list_head *page_list) | |
5675 | { | |
5676 | struct mem_cgroup *memcg = NULL; | |
747db954 JW |
5677 | unsigned long nr_anon = 0; |
5678 | unsigned long nr_file = 0; | |
5679 | unsigned long nr_huge = 0; | |
5680 | unsigned long pgpgout = 0; | |
747db954 JW |
5681 | struct list_head *next; |
5682 | struct page *page; | |
5683 | ||
5684 | next = page_list->next; | |
5685 | do { | |
5686 | unsigned int nr_pages = 1; | |
747db954 JW |
5687 | |
5688 | page = list_entry(next, struct page, lru); | |
5689 | next = page->lru.next; | |
5690 | ||
5691 | VM_BUG_ON_PAGE(PageLRU(page), page); | |
5692 | VM_BUG_ON_PAGE(page_count(page), page); | |
5693 | ||
1306a85a | 5694 | if (!page->mem_cgroup) |
747db954 JW |
5695 | continue; |
5696 | ||
5697 | /* | |
5698 | * Nobody should be changing or seriously looking at | |
1306a85a | 5699 | * page->mem_cgroup at this point, we have fully |
29833315 | 5700 | * exclusive access to the page. |
747db954 JW |
5701 | */ |
5702 | ||
1306a85a | 5703 | if (memcg != page->mem_cgroup) { |
747db954 | 5704 | if (memcg) { |
18eca2e6 JW |
5705 | uncharge_batch(memcg, pgpgout, nr_anon, nr_file, |
5706 | nr_huge, page); | |
5707 | pgpgout = nr_anon = nr_file = nr_huge = 0; | |
747db954 | 5708 | } |
1306a85a | 5709 | memcg = page->mem_cgroup; |
747db954 JW |
5710 | } |
5711 | ||
5712 | if (PageTransHuge(page)) { | |
5713 | nr_pages <<= compound_order(page); | |
5714 | VM_BUG_ON_PAGE(!PageTransHuge(page), page); | |
5715 | nr_huge += nr_pages; | |
5716 | } | |
5717 | ||
5718 | if (PageAnon(page)) | |
5719 | nr_anon += nr_pages; | |
5720 | else | |
5721 | nr_file += nr_pages; | |
5722 | ||
1306a85a | 5723 | page->mem_cgroup = NULL; |
747db954 JW |
5724 | |
5725 | pgpgout++; | |
5726 | } while (next != page_list); | |
5727 | ||
5728 | if (memcg) | |
18eca2e6 JW |
5729 | uncharge_batch(memcg, pgpgout, nr_anon, nr_file, |
5730 | nr_huge, page); | |
747db954 JW |
5731 | } |
5732 | ||
0a31bc97 JW |
5733 | /** |
5734 | * mem_cgroup_uncharge - uncharge a page | |
5735 | * @page: page to uncharge | |
5736 | * | |
5737 | * Uncharge a page previously charged with mem_cgroup_try_charge() and | |
5738 | * mem_cgroup_commit_charge(). | |
5739 | */ | |
5740 | void mem_cgroup_uncharge(struct page *page) | |
5741 | { | |
0a31bc97 JW |
5742 | if (mem_cgroup_disabled()) |
5743 | return; | |
5744 | ||
747db954 | 5745 | /* Don't touch page->lru of any random page, pre-check: */ |
1306a85a | 5746 | if (!page->mem_cgroup) |
0a31bc97 JW |
5747 | return; |
5748 | ||
747db954 JW |
5749 | INIT_LIST_HEAD(&page->lru); |
5750 | uncharge_list(&page->lru); | |
5751 | } | |
0a31bc97 | 5752 | |
747db954 JW |
5753 | /** |
5754 | * mem_cgroup_uncharge_list - uncharge a list of page | |
5755 | * @page_list: list of pages to uncharge | |
5756 | * | |
5757 | * Uncharge a list of pages previously charged with | |
5758 | * mem_cgroup_try_charge() and mem_cgroup_commit_charge(). | |
5759 | */ | |
5760 | void mem_cgroup_uncharge_list(struct list_head *page_list) | |
5761 | { | |
5762 | if (mem_cgroup_disabled()) | |
5763 | return; | |
0a31bc97 | 5764 | |
747db954 JW |
5765 | if (!list_empty(page_list)) |
5766 | uncharge_list(page_list); | |
0a31bc97 JW |
5767 | } |
5768 | ||
5769 | /** | |
5770 | * mem_cgroup_migrate - migrate a charge to another page | |
5771 | * @oldpage: currently charged page | |
5772 | * @newpage: page to transfer the charge to | |
f5e03a49 | 5773 | * @lrucare: either or both pages might be on the LRU already |
0a31bc97 JW |
5774 | * |
5775 | * Migrate the charge from @oldpage to @newpage. | |
5776 | * | |
5777 | * Both pages must be locked, @newpage->mapping must be set up. | |
5778 | */ | |
5779 | void mem_cgroup_migrate(struct page *oldpage, struct page *newpage, | |
5780 | bool lrucare) | |
5781 | { | |
29833315 | 5782 | struct mem_cgroup *memcg; |
0a31bc97 JW |
5783 | int isolated; |
5784 | ||
5785 | VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage); | |
5786 | VM_BUG_ON_PAGE(!PageLocked(newpage), newpage); | |
5787 | VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage); | |
5788 | VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage); | |
5789 | VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage); | |
6abb5a86 JW |
5790 | VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage), |
5791 | newpage); | |
0a31bc97 JW |
5792 | |
5793 | if (mem_cgroup_disabled()) | |
5794 | return; | |
5795 | ||
5796 | /* Page cache replacement: new page already charged? */ | |
1306a85a | 5797 | if (newpage->mem_cgroup) |
0a31bc97 JW |
5798 | return; |
5799 | ||
7d5e3245 JW |
5800 | /* |
5801 | * Swapcache readahead pages can get migrated before being | |
5802 | * charged, and migration from compaction can happen to an | |
5803 | * uncharged page when the PFN walker finds a page that | |
5804 | * reclaim just put back on the LRU but has not released yet. | |
5805 | */ | |
1306a85a | 5806 | memcg = oldpage->mem_cgroup; |
29833315 | 5807 | if (!memcg) |
0a31bc97 JW |
5808 | return; |
5809 | ||
0a31bc97 JW |
5810 | if (lrucare) |
5811 | lock_page_lru(oldpage, &isolated); | |
5812 | ||
1306a85a | 5813 | oldpage->mem_cgroup = NULL; |
0a31bc97 JW |
5814 | |
5815 | if (lrucare) | |
5816 | unlock_page_lru(oldpage, isolated); | |
5817 | ||
29833315 | 5818 | commit_charge(newpage, memcg, lrucare); |
0a31bc97 JW |
5819 | } |
5820 | ||
2d11085e | 5821 | /* |
1081312f MH |
5822 | * subsys_initcall() for memory controller. |
5823 | * | |
5824 | * Some parts like hotcpu_notifier() have to be initialized from this context | |
5825 | * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically | |
5826 | * everything that doesn't depend on a specific mem_cgroup structure should | |
5827 | * be initialized from here. | |
2d11085e MH |
5828 | */ |
5829 | static int __init mem_cgroup_init(void) | |
5830 | { | |
5831 | hotcpu_notifier(memcg_cpu_hotplug_callback, 0); | |
6acc8b02 | 5832 | enable_swap_cgroup(); |
bb4cc1a8 | 5833 | mem_cgroup_soft_limit_tree_init(); |
e4777496 | 5834 | memcg_stock_init(); |
2d11085e MH |
5835 | return 0; |
5836 | } | |
5837 | subsys_initcall(mem_cgroup_init); |