]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
mm: do_migrate_pages(): rename arguments
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 62struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b
KH
75#else
76#define do_swap_account (0)
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
d52aa412
KH
92 MEM_CGROUP_STAT_NSTATS,
93};
94
e9f8974f
JW
95enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
101 MEM_CGROUP_EVENTS_NSTATS,
102};
7a159cc9
JW
103/*
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
108 */
109enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 112 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
113 MEM_CGROUP_NTARGETS,
114};
115#define THRESHOLDS_EVENTS_TARGET (128)
116#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 117#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 118
d52aa412 119struct mem_cgroup_stat_cpu {
7a159cc9 120 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 122 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
123};
124
527a5ec9
JW
125struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
130};
131
6d12e2d8
KH
132/*
133 * per-zone information in memory controller.
134 */
6d12e2d8 135struct mem_cgroup_per_zone {
6290df54 136 struct lruvec lruvec;
1eb49272 137 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 138
527a5ec9
JW
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140
3e2f41f1 141 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
142 struct rb_node tree_node; /* RB tree node */
143 unsigned long long usage_in_excess;/* Set to the value by which */
144 /* the soft limit is exceeded*/
145 bool on_tree;
d79154bb 146 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 147 /* use container_of */
6d12e2d8 148};
6d12e2d8
KH
149
150struct mem_cgroup_per_node {
151 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_lru_info {
155 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
156};
157
f64c3f54
BS
158/*
159 * Cgroups above their limits are maintained in a RB-Tree, independent of
160 * their hierarchy representation
161 */
162
163struct mem_cgroup_tree_per_zone {
164 struct rb_root rb_root;
165 spinlock_t lock;
166};
167
168struct mem_cgroup_tree_per_node {
169 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
170};
171
172struct mem_cgroup_tree {
173 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
174};
175
176static struct mem_cgroup_tree soft_limit_tree __read_mostly;
177
2e72b634
KS
178struct mem_cgroup_threshold {
179 struct eventfd_ctx *eventfd;
180 u64 threshold;
181};
182
9490ff27 183/* For threshold */
2e72b634
KS
184struct mem_cgroup_threshold_ary {
185 /* An array index points to threshold just below usage. */
5407a562 186 int current_threshold;
2e72b634
KS
187 /* Size of entries[] */
188 unsigned int size;
189 /* Array of thresholds */
190 struct mem_cgroup_threshold entries[0];
191};
2c488db2
KS
192
193struct mem_cgroup_thresholds {
194 /* Primary thresholds array */
195 struct mem_cgroup_threshold_ary *primary;
196 /*
197 * Spare threshold array.
198 * This is needed to make mem_cgroup_unregister_event() "never fail".
199 * It must be able to store at least primary->size - 1 entries.
200 */
201 struct mem_cgroup_threshold_ary *spare;
202};
203
9490ff27
KH
204/* for OOM */
205struct mem_cgroup_eventfd_list {
206 struct list_head list;
207 struct eventfd_ctx *eventfd;
208};
2e72b634 209
c0ff4b85
R
210static void mem_cgroup_threshold(struct mem_cgroup *memcg);
211static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 212
8cdea7c0
BS
213/*
214 * The memory controller data structure. The memory controller controls both
215 * page cache and RSS per cgroup. We would eventually like to provide
216 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
217 * to help the administrator determine what knobs to tune.
218 *
219 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
220 * we hit the water mark. May be even add a low water mark, such that
221 * no reclaim occurs from a cgroup at it's low water mark, this is
222 * a feature that will be implemented much later in the future.
8cdea7c0
BS
223 */
224struct mem_cgroup {
225 struct cgroup_subsys_state css;
226 /*
227 * the counter to account for memory usage
228 */
229 struct res_counter res;
59927fb9
HD
230
231 union {
232 /*
233 * the counter to account for mem+swap usage.
234 */
235 struct res_counter memsw;
236
237 /*
238 * rcu_freeing is used only when freeing struct mem_cgroup,
239 * so put it into a union to avoid wasting more memory.
240 * It must be disjoint from the css field. It could be
241 * in a union with the res field, but res plays a much
242 * larger part in mem_cgroup life than memsw, and might
243 * be of interest, even at time of free, when debugging.
244 * So share rcu_head with the less interesting memsw.
245 */
246 struct rcu_head rcu_freeing;
247 /*
248 * But when using vfree(), that cannot be done at
249 * interrupt time, so we must then queue the work.
250 */
251 struct work_struct work_freeing;
252 };
253
78fb7466
PE
254 /*
255 * Per cgroup active and inactive list, similar to the
256 * per zone LRU lists.
78fb7466 257 */
6d12e2d8 258 struct mem_cgroup_lru_info info;
889976db
YH
259 int last_scanned_node;
260#if MAX_NUMNODES > 1
261 nodemask_t scan_nodes;
453a9bf3
KH
262 atomic_t numainfo_events;
263 atomic_t numainfo_updating;
889976db 264#endif
18f59ea7
BS
265 /*
266 * Should the accounting and control be hierarchical, per subtree?
267 */
268 bool use_hierarchy;
79dfdacc
MH
269
270 bool oom_lock;
271 atomic_t under_oom;
272
8c7c6e34 273 atomic_t refcnt;
14797e23 274
1f4c025b 275 int swappiness;
3c11ecf4
KH
276 /* OOM-Killer disable */
277 int oom_kill_disable;
a7885eb8 278
22a668d7
KH
279 /* set when res.limit == memsw.limit */
280 bool memsw_is_minimum;
281
2e72b634
KS
282 /* protect arrays of thresholds */
283 struct mutex thresholds_lock;
284
285 /* thresholds for memory usage. RCU-protected */
2c488db2 286 struct mem_cgroup_thresholds thresholds;
907860ed 287
2e72b634 288 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 289 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 290
9490ff27
KH
291 /* For oom notifier event fd */
292 struct list_head oom_notify;
185efc0f 293
7dc74be0
DN
294 /*
295 * Should we move charges of a task when a task is moved into this
296 * mem_cgroup ? And what type of charges should we move ?
297 */
298 unsigned long move_charge_at_immigrate;
619d094b
KH
299 /*
300 * set > 0 if pages under this cgroup are moving to other cgroup.
301 */
302 atomic_t moving_account;
312734c0
KH
303 /* taken only while moving_account > 0 */
304 spinlock_t move_lock;
d52aa412 305 /*
c62b1a3b 306 * percpu counter.
d52aa412 307 */
c62b1a3b 308 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
309 /*
310 * used when a cpu is offlined or other synchronizations
311 * See mem_cgroup_read_stat().
312 */
313 struct mem_cgroup_stat_cpu nocpu_base;
314 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
315
316#ifdef CONFIG_INET
317 struct tcp_memcontrol tcp_mem;
318#endif
8cdea7c0
BS
319};
320
7dc74be0
DN
321/* Stuffs for move charges at task migration. */
322/*
323 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
324 * left-shifted bitmap of these types.
325 */
326enum move_type {
4ffef5fe 327 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 328 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
329 NR_MOVE_TYPE,
330};
331
4ffef5fe
DN
332/* "mc" and its members are protected by cgroup_mutex */
333static struct move_charge_struct {
b1dd693e 334 spinlock_t lock; /* for from, to */
4ffef5fe
DN
335 struct mem_cgroup *from;
336 struct mem_cgroup *to;
337 unsigned long precharge;
854ffa8d 338 unsigned long moved_charge;
483c30b5 339 unsigned long moved_swap;
8033b97c
DN
340 struct task_struct *moving_task; /* a task moving charges */
341 wait_queue_head_t waitq; /* a waitq for other context */
342} mc = {
2bd9bb20 343 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
344 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
345};
4ffef5fe 346
90254a65
DN
347static bool move_anon(void)
348{
349 return test_bit(MOVE_CHARGE_TYPE_ANON,
350 &mc.to->move_charge_at_immigrate);
351}
352
87946a72
DN
353static bool move_file(void)
354{
355 return test_bit(MOVE_CHARGE_TYPE_FILE,
356 &mc.to->move_charge_at_immigrate);
357}
358
4e416953
BS
359/*
360 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
361 * limit reclaim to prevent infinite loops, if they ever occur.
362 */
363#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
364#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
365
217bc319
KH
366enum charge_type {
367 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
368 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 369 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 370 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 371 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 372 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
373 NR_CHARGE_TYPE,
374};
375
8c7c6e34 376/* for encoding cft->private value on file */
65c64ce8
GC
377#define _MEM (0)
378#define _MEMSWAP (1)
379#define _OOM_TYPE (2)
8c7c6e34
KH
380#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
381#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
382#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
383/* Used for OOM nofiier */
384#define OOM_CONTROL (0)
8c7c6e34 385
75822b44
BS
386/*
387 * Reclaim flags for mem_cgroup_hierarchical_reclaim
388 */
389#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
390#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
391#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
392#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
393
c0ff4b85
R
394static void mem_cgroup_get(struct mem_cgroup *memcg);
395static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
396
397/* Writing them here to avoid exposing memcg's inner layout */
398#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e1aab161 399#include <net/sock.h>
d1a4c0b3 400#include <net/ip.h>
e1aab161
GC
401
402static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
403void sock_update_memcg(struct sock *sk)
404{
376be5ff 405 if (mem_cgroup_sockets_enabled) {
e1aab161
GC
406 struct mem_cgroup *memcg;
407
408 BUG_ON(!sk->sk_prot->proto_cgroup);
409
f3f511e1
GC
410 /* Socket cloning can throw us here with sk_cgrp already
411 * filled. It won't however, necessarily happen from
412 * process context. So the test for root memcg given
413 * the current task's memcg won't help us in this case.
414 *
415 * Respecting the original socket's memcg is a better
416 * decision in this case.
417 */
418 if (sk->sk_cgrp) {
419 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
420 mem_cgroup_get(sk->sk_cgrp->memcg);
421 return;
422 }
423
e1aab161
GC
424 rcu_read_lock();
425 memcg = mem_cgroup_from_task(current);
426 if (!mem_cgroup_is_root(memcg)) {
427 mem_cgroup_get(memcg);
428 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
429 }
430 rcu_read_unlock();
431 }
432}
433EXPORT_SYMBOL(sock_update_memcg);
434
435void sock_release_memcg(struct sock *sk)
436{
376be5ff 437 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
438 struct mem_cgroup *memcg;
439 WARN_ON(!sk->sk_cgrp->memcg);
440 memcg = sk->sk_cgrp->memcg;
441 mem_cgroup_put(memcg);
442 }
443}
d1a4c0b3 444
319d3b9c 445#ifdef CONFIG_INET
d1a4c0b3
GC
446struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
447{
448 if (!memcg || mem_cgroup_is_root(memcg))
449 return NULL;
450
451 return &memcg->tcp_mem.cg_proto;
452}
453EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
454#endif /* CONFIG_INET */
455#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
456
c0ff4b85 457static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 458
f64c3f54 459static struct mem_cgroup_per_zone *
c0ff4b85 460mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 461{
c0ff4b85 462 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
463}
464
c0ff4b85 465struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 466{
c0ff4b85 467 return &memcg->css;
d324236b
WF
468}
469
f64c3f54 470static struct mem_cgroup_per_zone *
c0ff4b85 471page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 472{
97a6c37b
JW
473 int nid = page_to_nid(page);
474 int zid = page_zonenum(page);
f64c3f54 475
c0ff4b85 476 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
477}
478
479static struct mem_cgroup_tree_per_zone *
480soft_limit_tree_node_zone(int nid, int zid)
481{
482 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
483}
484
485static struct mem_cgroup_tree_per_zone *
486soft_limit_tree_from_page(struct page *page)
487{
488 int nid = page_to_nid(page);
489 int zid = page_zonenum(page);
490
491 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
492}
493
494static void
c0ff4b85 495__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 496 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
497 struct mem_cgroup_tree_per_zone *mctz,
498 unsigned long long new_usage_in_excess)
f64c3f54
BS
499{
500 struct rb_node **p = &mctz->rb_root.rb_node;
501 struct rb_node *parent = NULL;
502 struct mem_cgroup_per_zone *mz_node;
503
504 if (mz->on_tree)
505 return;
506
ef8745c1
KH
507 mz->usage_in_excess = new_usage_in_excess;
508 if (!mz->usage_in_excess)
509 return;
f64c3f54
BS
510 while (*p) {
511 parent = *p;
512 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 tree_node);
514 if (mz->usage_in_excess < mz_node->usage_in_excess)
515 p = &(*p)->rb_left;
516 /*
517 * We can't avoid mem cgroups that are over their soft
518 * limit by the same amount
519 */
520 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 p = &(*p)->rb_right;
522 }
523 rb_link_node(&mz->tree_node, parent, p);
524 rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 mz->on_tree = true;
4e416953
BS
526}
527
528static void
c0ff4b85 529__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
530 struct mem_cgroup_per_zone *mz,
531 struct mem_cgroup_tree_per_zone *mctz)
532{
533 if (!mz->on_tree)
534 return;
535 rb_erase(&mz->tree_node, &mctz->rb_root);
536 mz->on_tree = false;
537}
538
f64c3f54 539static void
c0ff4b85 540mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
541 struct mem_cgroup_per_zone *mz,
542 struct mem_cgroup_tree_per_zone *mctz)
543{
544 spin_lock(&mctz->lock);
c0ff4b85 545 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
546 spin_unlock(&mctz->lock);
547}
548
f64c3f54 549
c0ff4b85 550static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 551{
ef8745c1 552 unsigned long long excess;
f64c3f54
BS
553 struct mem_cgroup_per_zone *mz;
554 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
555 int nid = page_to_nid(page);
556 int zid = page_zonenum(page);
f64c3f54
BS
557 mctz = soft_limit_tree_from_page(page);
558
559 /*
4e649152
KH
560 * Necessary to update all ancestors when hierarchy is used.
561 * because their event counter is not touched.
f64c3f54 562 */
c0ff4b85
R
563 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
564 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
565 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
566 /*
567 * We have to update the tree if mz is on RB-tree or
568 * mem is over its softlimit.
569 */
ef8745c1 570 if (excess || mz->on_tree) {
4e649152
KH
571 spin_lock(&mctz->lock);
572 /* if on-tree, remove it */
573 if (mz->on_tree)
c0ff4b85 574 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 575 /*
ef8745c1
KH
576 * Insert again. mz->usage_in_excess will be updated.
577 * If excess is 0, no tree ops.
4e649152 578 */
c0ff4b85 579 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
580 spin_unlock(&mctz->lock);
581 }
f64c3f54
BS
582 }
583}
584
c0ff4b85 585static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
586{
587 int node, zone;
588 struct mem_cgroup_per_zone *mz;
589 struct mem_cgroup_tree_per_zone *mctz;
590
3ed28fa1 591 for_each_node(node) {
f64c3f54 592 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 593 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 594 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 595 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
596 }
597 }
598}
599
4e416953
BS
600static struct mem_cgroup_per_zone *
601__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
602{
603 struct rb_node *rightmost = NULL;
26251eaf 604 struct mem_cgroup_per_zone *mz;
4e416953
BS
605
606retry:
26251eaf 607 mz = NULL;
4e416953
BS
608 rightmost = rb_last(&mctz->rb_root);
609 if (!rightmost)
610 goto done; /* Nothing to reclaim from */
611
612 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
613 /*
614 * Remove the node now but someone else can add it back,
615 * we will to add it back at the end of reclaim to its correct
616 * position in the tree.
617 */
d79154bb
HD
618 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
619 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
620 !css_tryget(&mz->memcg->css))
4e416953
BS
621 goto retry;
622done:
623 return mz;
624}
625
626static struct mem_cgroup_per_zone *
627mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
628{
629 struct mem_cgroup_per_zone *mz;
630
631 spin_lock(&mctz->lock);
632 mz = __mem_cgroup_largest_soft_limit_node(mctz);
633 spin_unlock(&mctz->lock);
634 return mz;
635}
636
711d3d2c
KH
637/*
638 * Implementation Note: reading percpu statistics for memcg.
639 *
640 * Both of vmstat[] and percpu_counter has threshold and do periodic
641 * synchronization to implement "quick" read. There are trade-off between
642 * reading cost and precision of value. Then, we may have a chance to implement
643 * a periodic synchronizion of counter in memcg's counter.
644 *
645 * But this _read() function is used for user interface now. The user accounts
646 * memory usage by memory cgroup and he _always_ requires exact value because
647 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
648 * have to visit all online cpus and make sum. So, for now, unnecessary
649 * synchronization is not implemented. (just implemented for cpu hotplug)
650 *
651 * If there are kernel internal actions which can make use of some not-exact
652 * value, and reading all cpu value can be performance bottleneck in some
653 * common workload, threashold and synchonization as vmstat[] should be
654 * implemented.
655 */
c0ff4b85 656static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 657 enum mem_cgroup_stat_index idx)
c62b1a3b 658{
7a159cc9 659 long val = 0;
c62b1a3b 660 int cpu;
c62b1a3b 661
711d3d2c
KH
662 get_online_cpus();
663 for_each_online_cpu(cpu)
c0ff4b85 664 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 665#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
666 spin_lock(&memcg->pcp_counter_lock);
667 val += memcg->nocpu_base.count[idx];
668 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
669#endif
670 put_online_cpus();
c62b1a3b
KH
671 return val;
672}
673
c0ff4b85 674static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
675 bool charge)
676{
677 int val = (charge) ? 1 : -1;
c0ff4b85 678 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
679}
680
c0ff4b85 681static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
682 enum mem_cgroup_events_index idx)
683{
684 unsigned long val = 0;
685 int cpu;
686
687 for_each_online_cpu(cpu)
c0ff4b85 688 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 689#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
690 spin_lock(&memcg->pcp_counter_lock);
691 val += memcg->nocpu_base.events[idx];
692 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
693#endif
694 return val;
695}
696
c0ff4b85 697static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 698 bool anon, int nr_pages)
d52aa412 699{
c62b1a3b
KH
700 preempt_disable();
701
b2402857
KH
702 /*
703 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
704 * counted as CACHE even if it's on ANON LRU.
705 */
706 if (anon)
707 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 708 nr_pages);
d52aa412 709 else
b2402857 710 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 711 nr_pages);
55e462b0 712
e401f176
KH
713 /* pagein of a big page is an event. So, ignore page size */
714 if (nr_pages > 0)
c0ff4b85 715 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 716 else {
c0ff4b85 717 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
718 nr_pages = -nr_pages; /* for event */
719 }
e401f176 720
c0ff4b85 721 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 722
c62b1a3b 723 preempt_enable();
6d12e2d8
KH
724}
725
bb2a0de9 726unsigned long
c0ff4b85 727mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 728 unsigned int lru_mask)
889976db
YH
729{
730 struct mem_cgroup_per_zone *mz;
f156ab93 731 enum lru_list lru;
bb2a0de9
KH
732 unsigned long ret = 0;
733
c0ff4b85 734 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 735
f156ab93
HD
736 for_each_lru(lru) {
737 if (BIT(lru) & lru_mask)
738 ret += mz->lru_size[lru];
bb2a0de9
KH
739 }
740 return ret;
741}
742
743static unsigned long
c0ff4b85 744mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
745 int nid, unsigned int lru_mask)
746{
889976db
YH
747 u64 total = 0;
748 int zid;
749
bb2a0de9 750 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
751 total += mem_cgroup_zone_nr_lru_pages(memcg,
752 nid, zid, lru_mask);
bb2a0de9 753
889976db
YH
754 return total;
755}
bb2a0de9 756
c0ff4b85 757static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 758 unsigned int lru_mask)
6d12e2d8 759{
889976db 760 int nid;
6d12e2d8
KH
761 u64 total = 0;
762
bb2a0de9 763 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 764 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 765 return total;
d52aa412
KH
766}
767
f53d7ce3
JW
768static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
769 enum mem_cgroup_events_target target)
7a159cc9
JW
770{
771 unsigned long val, next;
772
4799401f
SR
773 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
774 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 775 /* from time_after() in jiffies.h */
f53d7ce3
JW
776 if ((long)next - (long)val < 0) {
777 switch (target) {
778 case MEM_CGROUP_TARGET_THRESH:
779 next = val + THRESHOLDS_EVENTS_TARGET;
780 break;
781 case MEM_CGROUP_TARGET_SOFTLIMIT:
782 next = val + SOFTLIMIT_EVENTS_TARGET;
783 break;
784 case MEM_CGROUP_TARGET_NUMAINFO:
785 next = val + NUMAINFO_EVENTS_TARGET;
786 break;
787 default:
788 break;
789 }
790 __this_cpu_write(memcg->stat->targets[target], next);
791 return true;
7a159cc9 792 }
f53d7ce3 793 return false;
d2265e6f
KH
794}
795
796/*
797 * Check events in order.
798 *
799 */
c0ff4b85 800static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 801{
4799401f 802 preempt_disable();
d2265e6f 803 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
804 if (unlikely(mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
806 bool do_softlimit;
807 bool do_numainfo __maybe_unused;
f53d7ce3
JW
808
809 do_softlimit = mem_cgroup_event_ratelimit(memcg,
810 MEM_CGROUP_TARGET_SOFTLIMIT);
811#if MAX_NUMNODES > 1
812 do_numainfo = mem_cgroup_event_ratelimit(memcg,
813 MEM_CGROUP_TARGET_NUMAINFO);
814#endif
815 preempt_enable();
816
c0ff4b85 817 mem_cgroup_threshold(memcg);
f53d7ce3 818 if (unlikely(do_softlimit))
c0ff4b85 819 mem_cgroup_update_tree(memcg, page);
453a9bf3 820#if MAX_NUMNODES > 1
f53d7ce3 821 if (unlikely(do_numainfo))
c0ff4b85 822 atomic_inc(&memcg->numainfo_events);
453a9bf3 823#endif
f53d7ce3
JW
824 } else
825 preempt_enable();
d2265e6f
KH
826}
827
d1a4c0b3 828struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
829{
830 return container_of(cgroup_subsys_state(cont,
831 mem_cgroup_subsys_id), struct mem_cgroup,
832 css);
833}
834
cf475ad2 835struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 836{
31a78f23
BS
837 /*
838 * mm_update_next_owner() may clear mm->owner to NULL
839 * if it races with swapoff, page migration, etc.
840 * So this can be called with p == NULL.
841 */
842 if (unlikely(!p))
843 return NULL;
844
78fb7466
PE
845 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
846 struct mem_cgroup, css);
847}
848
a433658c 849struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 850{
c0ff4b85 851 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
852
853 if (!mm)
854 return NULL;
54595fe2
KH
855 /*
856 * Because we have no locks, mm->owner's may be being moved to other
857 * cgroup. We use css_tryget() here even if this looks
858 * pessimistic (rather than adding locks here).
859 */
860 rcu_read_lock();
861 do {
c0ff4b85
R
862 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
863 if (unlikely(!memcg))
54595fe2 864 break;
c0ff4b85 865 } while (!css_tryget(&memcg->css));
54595fe2 866 rcu_read_unlock();
c0ff4b85 867 return memcg;
54595fe2
KH
868}
869
5660048c
JW
870/**
871 * mem_cgroup_iter - iterate over memory cgroup hierarchy
872 * @root: hierarchy root
873 * @prev: previously returned memcg, NULL on first invocation
874 * @reclaim: cookie for shared reclaim walks, NULL for full walks
875 *
876 * Returns references to children of the hierarchy below @root, or
877 * @root itself, or %NULL after a full round-trip.
878 *
879 * Caller must pass the return value in @prev on subsequent
880 * invocations for reference counting, or use mem_cgroup_iter_break()
881 * to cancel a hierarchy walk before the round-trip is complete.
882 *
883 * Reclaimers can specify a zone and a priority level in @reclaim to
884 * divide up the memcgs in the hierarchy among all concurrent
885 * reclaimers operating on the same zone and priority.
886 */
887struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
888 struct mem_cgroup *prev,
889 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 890{
9f3a0d09
JW
891 struct mem_cgroup *memcg = NULL;
892 int id = 0;
711d3d2c 893
5660048c
JW
894 if (mem_cgroup_disabled())
895 return NULL;
896
9f3a0d09
JW
897 if (!root)
898 root = root_mem_cgroup;
7d74b06f 899
9f3a0d09
JW
900 if (prev && !reclaim)
901 id = css_id(&prev->css);
14067bb3 902
9f3a0d09
JW
903 if (prev && prev != root)
904 css_put(&prev->css);
14067bb3 905
9f3a0d09
JW
906 if (!root->use_hierarchy && root != root_mem_cgroup) {
907 if (prev)
908 return NULL;
909 return root;
910 }
14067bb3 911
9f3a0d09 912 while (!memcg) {
527a5ec9 913 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 914 struct cgroup_subsys_state *css;
711d3d2c 915
527a5ec9
JW
916 if (reclaim) {
917 int nid = zone_to_nid(reclaim->zone);
918 int zid = zone_idx(reclaim->zone);
919 struct mem_cgroup_per_zone *mz;
920
921 mz = mem_cgroup_zoneinfo(root, nid, zid);
922 iter = &mz->reclaim_iter[reclaim->priority];
923 if (prev && reclaim->generation != iter->generation)
924 return NULL;
925 id = iter->position;
926 }
7d74b06f 927
9f3a0d09
JW
928 rcu_read_lock();
929 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
930 if (css) {
931 if (css == &root->css || css_tryget(css))
932 memcg = container_of(css,
933 struct mem_cgroup, css);
934 } else
935 id = 0;
14067bb3 936 rcu_read_unlock();
14067bb3 937
527a5ec9
JW
938 if (reclaim) {
939 iter->position = id;
940 if (!css)
941 iter->generation++;
942 else if (!prev && memcg)
943 reclaim->generation = iter->generation;
944 }
9f3a0d09
JW
945
946 if (prev && !css)
947 return NULL;
948 }
949 return memcg;
14067bb3 950}
7d74b06f 951
5660048c
JW
952/**
953 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
954 * @root: hierarchy root
955 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
956 */
957void mem_cgroup_iter_break(struct mem_cgroup *root,
958 struct mem_cgroup *prev)
9f3a0d09
JW
959{
960 if (!root)
961 root = root_mem_cgroup;
962 if (prev && prev != root)
963 css_put(&prev->css);
964}
7d74b06f 965
9f3a0d09
JW
966/*
967 * Iteration constructs for visiting all cgroups (under a tree). If
968 * loops are exited prematurely (break), mem_cgroup_iter_break() must
969 * be used for reference counting.
970 */
971#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 972 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 973 iter != NULL; \
527a5ec9 974 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 975
9f3a0d09 976#define for_each_mem_cgroup(iter) \
527a5ec9 977 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 978 iter != NULL; \
527a5ec9 979 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 980
c0ff4b85 981static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 982{
c0ff4b85 983 return (memcg == root_mem_cgroup);
4b3bde4c
BS
984}
985
456f998e
YH
986void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
987{
c0ff4b85 988 struct mem_cgroup *memcg;
456f998e
YH
989
990 if (!mm)
991 return;
992
993 rcu_read_lock();
c0ff4b85
R
994 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
995 if (unlikely(!memcg))
456f998e
YH
996 goto out;
997
998 switch (idx) {
456f998e 999 case PGFAULT:
0e574a93
JW
1000 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1001 break;
1002 case PGMAJFAULT:
1003 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1004 break;
1005 default:
1006 BUG();
1007 }
1008out:
1009 rcu_read_unlock();
1010}
1011EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1012
925b7673
JW
1013/**
1014 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1015 * @zone: zone of the wanted lruvec
1016 * @mem: memcg of the wanted lruvec
1017 *
1018 * Returns the lru list vector holding pages for the given @zone and
1019 * @mem. This can be the global zone lruvec, if the memory controller
1020 * is disabled.
1021 */
1022struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1023 struct mem_cgroup *memcg)
1024{
1025 struct mem_cgroup_per_zone *mz;
1026
1027 if (mem_cgroup_disabled())
1028 return &zone->lruvec;
1029
1030 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1031 return &mz->lruvec;
1032}
1033
08e552c6
KH
1034/*
1035 * Following LRU functions are allowed to be used without PCG_LOCK.
1036 * Operations are called by routine of global LRU independently from memcg.
1037 * What we have to take care of here is validness of pc->mem_cgroup.
1038 *
1039 * Changes to pc->mem_cgroup happens when
1040 * 1. charge
1041 * 2. moving account
1042 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1043 * It is added to LRU before charge.
1044 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1045 * When moving account, the page is not on LRU. It's isolated.
1046 */
4f98a2fe 1047
925b7673
JW
1048/**
1049 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1050 * @zone: zone of the page
1051 * @page: the page
1052 * @lru: current lru
1053 *
1054 * This function accounts for @page being added to @lru, and returns
1055 * the lruvec for the given @zone and the memcg @page is charged to.
1056 *
1057 * The callsite is then responsible for physically linking the page to
1058 * the returned lruvec->lists[@lru].
1059 */
1060struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1061 enum lru_list lru)
08e552c6 1062{
08e552c6 1063 struct mem_cgroup_per_zone *mz;
925b7673
JW
1064 struct mem_cgroup *memcg;
1065 struct page_cgroup *pc;
6d12e2d8 1066
f8d66542 1067 if (mem_cgroup_disabled())
925b7673
JW
1068 return &zone->lruvec;
1069
08e552c6 1070 pc = lookup_page_cgroup(page);
38c5d72f 1071 memcg = pc->mem_cgroup;
7512102c
HD
1072
1073 /*
1074 * Surreptitiously switch any uncharged page to root:
1075 * an uncharged page off lru does nothing to secure
1076 * its former mem_cgroup from sudden removal.
1077 *
1078 * Our caller holds lru_lock, and PageCgroupUsed is updated
1079 * under page_cgroup lock: between them, they make all uses
1080 * of pc->mem_cgroup safe.
1081 */
1082 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1083 pc->mem_cgroup = memcg = root_mem_cgroup;
1084
925b7673
JW
1085 mz = page_cgroup_zoneinfo(memcg, page);
1086 /* compound_order() is stabilized through lru_lock */
1eb49272 1087 mz->lru_size[lru] += 1 << compound_order(page);
925b7673 1088 return &mz->lruvec;
08e552c6 1089}
b69408e8 1090
925b7673
JW
1091/**
1092 * mem_cgroup_lru_del_list - account for removing an lru page
1093 * @page: the page
1094 * @lru: target lru
1095 *
1096 * This function accounts for @page being removed from @lru.
1097 *
1098 * The callsite is then responsible for physically unlinking
1099 * @page->lru.
3f58a829 1100 */
925b7673 1101void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
3f58a829
MK
1102{
1103 struct mem_cgroup_per_zone *mz;
925b7673 1104 struct mem_cgroup *memcg;
3f58a829 1105 struct page_cgroup *pc;
3f58a829
MK
1106
1107 if (mem_cgroup_disabled())
1108 return;
1109
1110 pc = lookup_page_cgroup(page);
38c5d72f
KH
1111 memcg = pc->mem_cgroup;
1112 VM_BUG_ON(!memcg);
925b7673
JW
1113 mz = page_cgroup_zoneinfo(memcg, page);
1114 /* huge page split is done under lru_lock. so, we have no races. */
1eb49272
HD
1115 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1116 mz->lru_size[lru] -= 1 << compound_order(page);
3f58a829
MK
1117}
1118
925b7673 1119void mem_cgroup_lru_del(struct page *page)
08e552c6 1120{
925b7673 1121 mem_cgroup_lru_del_list(page, page_lru(page));
6d12e2d8
KH
1122}
1123
925b7673
JW
1124/**
1125 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1126 * @zone: zone of the page
1127 * @page: the page
1128 * @from: current lru
1129 * @to: target lru
1130 *
1131 * This function accounts for @page being moved between the lrus @from
1132 * and @to, and returns the lruvec for the given @zone and the memcg
1133 * @page is charged to.
1134 *
1135 * The callsite is then responsible for physically relinking
1136 * @page->lru to the returned lruvec->lists[@to].
1137 */
1138struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1139 struct page *page,
1140 enum lru_list from,
1141 enum lru_list to)
66e1707b 1142{
925b7673
JW
1143 /* XXX: Optimize this, especially for @from == @to */
1144 mem_cgroup_lru_del_list(page, from);
1145 return mem_cgroup_lru_add_list(zone, page, to);
08e552c6 1146}
544122e5 1147
3e92041d 1148/*
c0ff4b85 1149 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1150 * hierarchy subtree
1151 */
c0ff4b85
R
1152static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1153 struct mem_cgroup *memcg)
3e92041d 1154{
c0ff4b85
R
1155 if (root_memcg != memcg) {
1156 return (root_memcg->use_hierarchy &&
1157 css_is_ancestor(&memcg->css, &root_memcg->css));
3e92041d
MH
1158 }
1159
1160 return true;
1161}
1162
c0ff4b85 1163int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1164{
1165 int ret;
0b7f569e 1166 struct mem_cgroup *curr = NULL;
158e0a2d 1167 struct task_struct *p;
4c4a2214 1168
158e0a2d 1169 p = find_lock_task_mm(task);
de077d22
DR
1170 if (p) {
1171 curr = try_get_mem_cgroup_from_mm(p->mm);
1172 task_unlock(p);
1173 } else {
1174 /*
1175 * All threads may have already detached their mm's, but the oom
1176 * killer still needs to detect if they have already been oom
1177 * killed to prevent needlessly killing additional tasks.
1178 */
1179 task_lock(task);
1180 curr = mem_cgroup_from_task(task);
1181 if (curr)
1182 css_get(&curr->css);
1183 task_unlock(task);
1184 }
0b7f569e
KH
1185 if (!curr)
1186 return 0;
d31f56db 1187 /*
c0ff4b85 1188 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1189 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1190 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1191 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1192 */
c0ff4b85 1193 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1194 css_put(&curr->css);
4c4a2214
DR
1195 return ret;
1196}
1197
9b272977 1198int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1199{
9b272977
JW
1200 unsigned long inactive_ratio;
1201 int nid = zone_to_nid(zone);
1202 int zid = zone_idx(zone);
14797e23 1203 unsigned long inactive;
9b272977 1204 unsigned long active;
c772be93 1205 unsigned long gb;
14797e23 1206
9b272977
JW
1207 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1208 BIT(LRU_INACTIVE_ANON));
1209 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1210 BIT(LRU_ACTIVE_ANON));
14797e23 1211
c772be93
KM
1212 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1213 if (gb)
1214 inactive_ratio = int_sqrt(10 * gb);
1215 else
1216 inactive_ratio = 1;
1217
9b272977 1218 return inactive * inactive_ratio < active;
14797e23
KM
1219}
1220
9b272977 1221int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1222{
1223 unsigned long active;
1224 unsigned long inactive;
9b272977
JW
1225 int zid = zone_idx(zone);
1226 int nid = zone_to_nid(zone);
56e49d21 1227
9b272977
JW
1228 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1229 BIT(LRU_INACTIVE_FILE));
1230 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1231 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1232
1233 return (active > inactive);
1234}
1235
3e2f41f1
KM
1236struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1237 struct zone *zone)
1238{
13d7e3a2 1239 int nid = zone_to_nid(zone);
3e2f41f1
KM
1240 int zid = zone_idx(zone);
1241 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1242
1243 return &mz->reclaim_stat;
1244}
1245
1246struct zone_reclaim_stat *
1247mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1248{
1249 struct page_cgroup *pc;
1250 struct mem_cgroup_per_zone *mz;
1251
1252 if (mem_cgroup_disabled())
1253 return NULL;
1254
1255 pc = lookup_page_cgroup(page);
bd112db8
DN
1256 if (!PageCgroupUsed(pc))
1257 return NULL;
713735b4
JW
1258 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1259 smp_rmb();
97a6c37b 1260 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1261 return &mz->reclaim_stat;
1262}
1263
6d61ef40
BS
1264#define mem_cgroup_from_res_counter(counter, member) \
1265 container_of(counter, struct mem_cgroup, member)
1266
19942822 1267/**
9d11ea9f
JW
1268 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1269 * @mem: the memory cgroup
19942822 1270 *
9d11ea9f 1271 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1272 * pages.
19942822 1273 */
c0ff4b85 1274static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1275{
9d11ea9f
JW
1276 unsigned long long margin;
1277
c0ff4b85 1278 margin = res_counter_margin(&memcg->res);
9d11ea9f 1279 if (do_swap_account)
c0ff4b85 1280 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1281 return margin >> PAGE_SHIFT;
19942822
JW
1282}
1283
1f4c025b 1284int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1285{
1286 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1287
1288 /* root ? */
1289 if (cgrp->parent == NULL)
1290 return vm_swappiness;
1291
bf1ff263 1292 return memcg->swappiness;
a7885eb8
KM
1293}
1294
619d094b
KH
1295/*
1296 * memcg->moving_account is used for checking possibility that some thread is
1297 * calling move_account(). When a thread on CPU-A starts moving pages under
1298 * a memcg, other threads should check memcg->moving_account under
1299 * rcu_read_lock(), like this:
1300 *
1301 * CPU-A CPU-B
1302 * rcu_read_lock()
1303 * memcg->moving_account+1 if (memcg->mocing_account)
1304 * take heavy locks.
1305 * synchronize_rcu() update something.
1306 * rcu_read_unlock()
1307 * start move here.
1308 */
4331f7d3
KH
1309
1310/* for quick checking without looking up memcg */
1311atomic_t memcg_moving __read_mostly;
1312
c0ff4b85 1313static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1314{
4331f7d3 1315 atomic_inc(&memcg_moving);
619d094b 1316 atomic_inc(&memcg->moving_account);
32047e2a
KH
1317 synchronize_rcu();
1318}
1319
c0ff4b85 1320static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1321{
619d094b
KH
1322 /*
1323 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1324 * We check NULL in callee rather than caller.
1325 */
4331f7d3
KH
1326 if (memcg) {
1327 atomic_dec(&memcg_moving);
619d094b 1328 atomic_dec(&memcg->moving_account);
4331f7d3 1329 }
32047e2a 1330}
619d094b 1331
32047e2a
KH
1332/*
1333 * 2 routines for checking "mem" is under move_account() or not.
1334 *
13fd1dd9
AM
1335 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1336 * is used for avoiding races in accounting. If true,
32047e2a
KH
1337 * pc->mem_cgroup may be overwritten.
1338 *
1339 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1340 * under hierarchy of moving cgroups. This is for
1341 * waiting at hith-memory prressure caused by "move".
1342 */
1343
13fd1dd9 1344static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1345{
1346 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1347 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1348}
4b534334 1349
c0ff4b85 1350static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1351{
2bd9bb20
KH
1352 struct mem_cgroup *from;
1353 struct mem_cgroup *to;
4b534334 1354 bool ret = false;
2bd9bb20
KH
1355 /*
1356 * Unlike task_move routines, we access mc.to, mc.from not under
1357 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1358 */
1359 spin_lock(&mc.lock);
1360 from = mc.from;
1361 to = mc.to;
1362 if (!from)
1363 goto unlock;
3e92041d 1364
c0ff4b85
R
1365 ret = mem_cgroup_same_or_subtree(memcg, from)
1366 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1367unlock:
1368 spin_unlock(&mc.lock);
4b534334
KH
1369 return ret;
1370}
1371
c0ff4b85 1372static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1373{
1374 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1375 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1376 DEFINE_WAIT(wait);
1377 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1378 /* moving charge context might have finished. */
1379 if (mc.moving_task)
1380 schedule();
1381 finish_wait(&mc.waitq, &wait);
1382 return true;
1383 }
1384 }
1385 return false;
1386}
1387
312734c0
KH
1388/*
1389 * Take this lock when
1390 * - a code tries to modify page's memcg while it's USED.
1391 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1392 * see mem_cgroup_stolen(), too.
312734c0
KH
1393 */
1394static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1395 unsigned long *flags)
1396{
1397 spin_lock_irqsave(&memcg->move_lock, *flags);
1398}
1399
1400static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1401 unsigned long *flags)
1402{
1403 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1404}
1405
e222432b 1406/**
6a6135b6 1407 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1408 * @memcg: The memory cgroup that went over limit
1409 * @p: Task that is going to be killed
1410 *
1411 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1412 * enabled
1413 */
1414void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1415{
1416 struct cgroup *task_cgrp;
1417 struct cgroup *mem_cgrp;
1418 /*
1419 * Need a buffer in BSS, can't rely on allocations. The code relies
1420 * on the assumption that OOM is serialized for memory controller.
1421 * If this assumption is broken, revisit this code.
1422 */
1423 static char memcg_name[PATH_MAX];
1424 int ret;
1425
d31f56db 1426 if (!memcg || !p)
e222432b
BS
1427 return;
1428
e222432b
BS
1429 rcu_read_lock();
1430
1431 mem_cgrp = memcg->css.cgroup;
1432 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1433
1434 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1435 if (ret < 0) {
1436 /*
1437 * Unfortunately, we are unable to convert to a useful name
1438 * But we'll still print out the usage information
1439 */
1440 rcu_read_unlock();
1441 goto done;
1442 }
1443 rcu_read_unlock();
1444
1445 printk(KERN_INFO "Task in %s killed", memcg_name);
1446
1447 rcu_read_lock();
1448 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1449 if (ret < 0) {
1450 rcu_read_unlock();
1451 goto done;
1452 }
1453 rcu_read_unlock();
1454
1455 /*
1456 * Continues from above, so we don't need an KERN_ level
1457 */
1458 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1459done:
1460
1461 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1462 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1463 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1464 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1465 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1466 "failcnt %llu\n",
1467 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1468 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1469 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1470}
1471
81d39c20
KH
1472/*
1473 * This function returns the number of memcg under hierarchy tree. Returns
1474 * 1(self count) if no children.
1475 */
c0ff4b85 1476static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1477{
1478 int num = 0;
7d74b06f
KH
1479 struct mem_cgroup *iter;
1480
c0ff4b85 1481 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1482 num++;
81d39c20
KH
1483 return num;
1484}
1485
a63d83f4
DR
1486/*
1487 * Return the memory (and swap, if configured) limit for a memcg.
1488 */
1489u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1490{
1491 u64 limit;
1492 u64 memsw;
1493
f3e8eb70
JW
1494 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1495 limit += total_swap_pages << PAGE_SHIFT;
1496
a63d83f4
DR
1497 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1498 /*
1499 * If memsw is finite and limits the amount of swap space available
1500 * to this memcg, return that limit.
1501 */
1502 return min(limit, memsw);
1503}
1504
5660048c
JW
1505static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1506 gfp_t gfp_mask,
1507 unsigned long flags)
1508{
1509 unsigned long total = 0;
1510 bool noswap = false;
1511 int loop;
1512
1513 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1514 noswap = true;
1515 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1516 noswap = true;
1517
1518 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1519 if (loop)
1520 drain_all_stock_async(memcg);
1521 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1522 /*
1523 * Allow limit shrinkers, which are triggered directly
1524 * by userspace, to catch signals and stop reclaim
1525 * after minimal progress, regardless of the margin.
1526 */
1527 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1528 break;
1529 if (mem_cgroup_margin(memcg))
1530 break;
1531 /*
1532 * If nothing was reclaimed after two attempts, there
1533 * may be no reclaimable pages in this hierarchy.
1534 */
1535 if (loop && !total)
1536 break;
1537 }
1538 return total;
1539}
1540
4d0c066d
KH
1541/**
1542 * test_mem_cgroup_node_reclaimable
1543 * @mem: the target memcg
1544 * @nid: the node ID to be checked.
1545 * @noswap : specify true here if the user wants flle only information.
1546 *
1547 * This function returns whether the specified memcg contains any
1548 * reclaimable pages on a node. Returns true if there are any reclaimable
1549 * pages in the node.
1550 */
c0ff4b85 1551static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1552 int nid, bool noswap)
1553{
c0ff4b85 1554 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1555 return true;
1556 if (noswap || !total_swap_pages)
1557 return false;
c0ff4b85 1558 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1559 return true;
1560 return false;
1561
1562}
889976db
YH
1563#if MAX_NUMNODES > 1
1564
1565/*
1566 * Always updating the nodemask is not very good - even if we have an empty
1567 * list or the wrong list here, we can start from some node and traverse all
1568 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1569 *
1570 */
c0ff4b85 1571static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1572{
1573 int nid;
453a9bf3
KH
1574 /*
1575 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1576 * pagein/pageout changes since the last update.
1577 */
c0ff4b85 1578 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1579 return;
c0ff4b85 1580 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1581 return;
1582
889976db 1583 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1584 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1585
1586 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1587
c0ff4b85
R
1588 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1589 node_clear(nid, memcg->scan_nodes);
889976db 1590 }
453a9bf3 1591
c0ff4b85
R
1592 atomic_set(&memcg->numainfo_events, 0);
1593 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1594}
1595
1596/*
1597 * Selecting a node where we start reclaim from. Because what we need is just
1598 * reducing usage counter, start from anywhere is O,K. Considering
1599 * memory reclaim from current node, there are pros. and cons.
1600 *
1601 * Freeing memory from current node means freeing memory from a node which
1602 * we'll use or we've used. So, it may make LRU bad. And if several threads
1603 * hit limits, it will see a contention on a node. But freeing from remote
1604 * node means more costs for memory reclaim because of memory latency.
1605 *
1606 * Now, we use round-robin. Better algorithm is welcomed.
1607 */
c0ff4b85 1608int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1609{
1610 int node;
1611
c0ff4b85
R
1612 mem_cgroup_may_update_nodemask(memcg);
1613 node = memcg->last_scanned_node;
889976db 1614
c0ff4b85 1615 node = next_node(node, memcg->scan_nodes);
889976db 1616 if (node == MAX_NUMNODES)
c0ff4b85 1617 node = first_node(memcg->scan_nodes);
889976db
YH
1618 /*
1619 * We call this when we hit limit, not when pages are added to LRU.
1620 * No LRU may hold pages because all pages are UNEVICTABLE or
1621 * memcg is too small and all pages are not on LRU. In that case,
1622 * we use curret node.
1623 */
1624 if (unlikely(node == MAX_NUMNODES))
1625 node = numa_node_id();
1626
c0ff4b85 1627 memcg->last_scanned_node = node;
889976db
YH
1628 return node;
1629}
1630
4d0c066d
KH
1631/*
1632 * Check all nodes whether it contains reclaimable pages or not.
1633 * For quick scan, we make use of scan_nodes. This will allow us to skip
1634 * unused nodes. But scan_nodes is lazily updated and may not cotain
1635 * enough new information. We need to do double check.
1636 */
c0ff4b85 1637bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1638{
1639 int nid;
1640
1641 /*
1642 * quick check...making use of scan_node.
1643 * We can skip unused nodes.
1644 */
c0ff4b85
R
1645 if (!nodes_empty(memcg->scan_nodes)) {
1646 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1647 nid < MAX_NUMNODES;
c0ff4b85 1648 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1649
c0ff4b85 1650 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1651 return true;
1652 }
1653 }
1654 /*
1655 * Check rest of nodes.
1656 */
1657 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1658 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1659 continue;
c0ff4b85 1660 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1661 return true;
1662 }
1663 return false;
1664}
1665
889976db 1666#else
c0ff4b85 1667int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1668{
1669 return 0;
1670}
4d0c066d 1671
c0ff4b85 1672bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1673{
c0ff4b85 1674 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1675}
889976db
YH
1676#endif
1677
5660048c
JW
1678static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1679 struct zone *zone,
1680 gfp_t gfp_mask,
1681 unsigned long *total_scanned)
6d61ef40 1682{
9f3a0d09 1683 struct mem_cgroup *victim = NULL;
5660048c 1684 int total = 0;
04046e1a 1685 int loop = 0;
9d11ea9f 1686 unsigned long excess;
185efc0f 1687 unsigned long nr_scanned;
527a5ec9
JW
1688 struct mem_cgroup_reclaim_cookie reclaim = {
1689 .zone = zone,
1690 .priority = 0,
1691 };
9d11ea9f 1692
c0ff4b85 1693 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1694
4e416953 1695 while (1) {
527a5ec9 1696 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1697 if (!victim) {
04046e1a 1698 loop++;
4e416953
BS
1699 if (loop >= 2) {
1700 /*
1701 * If we have not been able to reclaim
1702 * anything, it might because there are
1703 * no reclaimable pages under this hierarchy
1704 */
5660048c 1705 if (!total)
4e416953 1706 break;
4e416953 1707 /*
25985edc 1708 * We want to do more targeted reclaim.
4e416953
BS
1709 * excess >> 2 is not to excessive so as to
1710 * reclaim too much, nor too less that we keep
1711 * coming back to reclaim from this cgroup
1712 */
1713 if (total >= (excess >> 2) ||
9f3a0d09 1714 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1715 break;
4e416953 1716 }
9f3a0d09 1717 continue;
4e416953 1718 }
5660048c 1719 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1720 continue;
5660048c
JW
1721 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1722 zone, &nr_scanned);
1723 *total_scanned += nr_scanned;
1724 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1725 break;
6d61ef40 1726 }
9f3a0d09 1727 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1728 return total;
6d61ef40
BS
1729}
1730
867578cb
KH
1731/*
1732 * Check OOM-Killer is already running under our hierarchy.
1733 * If someone is running, return false.
1af8efe9 1734 * Has to be called with memcg_oom_lock
867578cb 1735 */
c0ff4b85 1736static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1737{
79dfdacc 1738 struct mem_cgroup *iter, *failed = NULL;
a636b327 1739
9f3a0d09 1740 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1741 if (iter->oom_lock) {
79dfdacc
MH
1742 /*
1743 * this subtree of our hierarchy is already locked
1744 * so we cannot give a lock.
1745 */
79dfdacc 1746 failed = iter;
9f3a0d09
JW
1747 mem_cgroup_iter_break(memcg, iter);
1748 break;
23751be0
JW
1749 } else
1750 iter->oom_lock = true;
7d74b06f 1751 }
867578cb 1752
79dfdacc 1753 if (!failed)
23751be0 1754 return true;
79dfdacc
MH
1755
1756 /*
1757 * OK, we failed to lock the whole subtree so we have to clean up
1758 * what we set up to the failing subtree
1759 */
9f3a0d09 1760 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1761 if (iter == failed) {
9f3a0d09
JW
1762 mem_cgroup_iter_break(memcg, iter);
1763 break;
79dfdacc
MH
1764 }
1765 iter->oom_lock = false;
1766 }
23751be0 1767 return false;
a636b327 1768}
0b7f569e 1769
79dfdacc 1770/*
1af8efe9 1771 * Has to be called with memcg_oom_lock
79dfdacc 1772 */
c0ff4b85 1773static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1774{
7d74b06f
KH
1775 struct mem_cgroup *iter;
1776
c0ff4b85 1777 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1778 iter->oom_lock = false;
1779 return 0;
1780}
1781
c0ff4b85 1782static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1783{
1784 struct mem_cgroup *iter;
1785
c0ff4b85 1786 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1787 atomic_inc(&iter->under_oom);
1788}
1789
c0ff4b85 1790static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1791{
1792 struct mem_cgroup *iter;
1793
867578cb
KH
1794 /*
1795 * When a new child is created while the hierarchy is under oom,
1796 * mem_cgroup_oom_lock() may not be called. We have to use
1797 * atomic_add_unless() here.
1798 */
c0ff4b85 1799 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1800 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1801}
1802
1af8efe9 1803static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1804static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1805
dc98df5a 1806struct oom_wait_info {
d79154bb 1807 struct mem_cgroup *memcg;
dc98df5a
KH
1808 wait_queue_t wait;
1809};
1810
1811static int memcg_oom_wake_function(wait_queue_t *wait,
1812 unsigned mode, int sync, void *arg)
1813{
d79154bb
HD
1814 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1815 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1816 struct oom_wait_info *oom_wait_info;
1817
1818 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1819 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1820
dc98df5a 1821 /*
d79154bb 1822 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1823 * Then we can use css_is_ancestor without taking care of RCU.
1824 */
c0ff4b85
R
1825 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1826 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1827 return 0;
dc98df5a
KH
1828 return autoremove_wake_function(wait, mode, sync, arg);
1829}
1830
c0ff4b85 1831static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1832{
c0ff4b85
R
1833 /* for filtering, pass "memcg" as argument. */
1834 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1835}
1836
c0ff4b85 1837static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1838{
c0ff4b85
R
1839 if (memcg && atomic_read(&memcg->under_oom))
1840 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1841}
1842
867578cb
KH
1843/*
1844 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1845 */
e845e199 1846bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1847{
dc98df5a 1848 struct oom_wait_info owait;
3c11ecf4 1849 bool locked, need_to_kill;
867578cb 1850
d79154bb 1851 owait.memcg = memcg;
dc98df5a
KH
1852 owait.wait.flags = 0;
1853 owait.wait.func = memcg_oom_wake_function;
1854 owait.wait.private = current;
1855 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1856 need_to_kill = true;
c0ff4b85 1857 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1858
c0ff4b85 1859 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1860 spin_lock(&memcg_oom_lock);
c0ff4b85 1861 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1862 /*
1863 * Even if signal_pending(), we can't quit charge() loop without
1864 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1865 * under OOM is always welcomed, use TASK_KILLABLE here.
1866 */
3c11ecf4 1867 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1868 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1869 need_to_kill = false;
1870 if (locked)
c0ff4b85 1871 mem_cgroup_oom_notify(memcg);
1af8efe9 1872 spin_unlock(&memcg_oom_lock);
867578cb 1873
3c11ecf4
KH
1874 if (need_to_kill) {
1875 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1876 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1877 } else {
867578cb 1878 schedule();
dc98df5a 1879 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1880 }
1af8efe9 1881 spin_lock(&memcg_oom_lock);
79dfdacc 1882 if (locked)
c0ff4b85
R
1883 mem_cgroup_oom_unlock(memcg);
1884 memcg_wakeup_oom(memcg);
1af8efe9 1885 spin_unlock(&memcg_oom_lock);
867578cb 1886
c0ff4b85 1887 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1888
867578cb
KH
1889 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1890 return false;
1891 /* Give chance to dying process */
715a5ee8 1892 schedule_timeout_uninterruptible(1);
867578cb 1893 return true;
0b7f569e
KH
1894}
1895
d69b042f
BS
1896/*
1897 * Currently used to update mapped file statistics, but the routine can be
1898 * generalized to update other statistics as well.
32047e2a
KH
1899 *
1900 * Notes: Race condition
1901 *
1902 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1903 * it tends to be costly. But considering some conditions, we doesn't need
1904 * to do so _always_.
1905 *
1906 * Considering "charge", lock_page_cgroup() is not required because all
1907 * file-stat operations happen after a page is attached to radix-tree. There
1908 * are no race with "charge".
1909 *
1910 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1911 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1912 * if there are race with "uncharge". Statistics itself is properly handled
1913 * by flags.
1914 *
1915 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1916 * small, we check mm->moving_account and detect there are possibility of race
1917 * If there is, we take a lock.
d69b042f 1918 */
26174efd 1919
89c06bd5
KH
1920void __mem_cgroup_begin_update_page_stat(struct page *page,
1921 bool *locked, unsigned long *flags)
1922{
1923 struct mem_cgroup *memcg;
1924 struct page_cgroup *pc;
1925
1926 pc = lookup_page_cgroup(page);
1927again:
1928 memcg = pc->mem_cgroup;
1929 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1930 return;
1931 /*
1932 * If this memory cgroup is not under account moving, we don't
1933 * need to take move_lock_page_cgroup(). Because we already hold
1934 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1935 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 1936 */
13fd1dd9 1937 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
1938 return;
1939
1940 move_lock_mem_cgroup(memcg, flags);
1941 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1942 move_unlock_mem_cgroup(memcg, flags);
1943 goto again;
1944 }
1945 *locked = true;
1946}
1947
1948void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1949{
1950 struct page_cgroup *pc = lookup_page_cgroup(page);
1951
1952 /*
1953 * It's guaranteed that pc->mem_cgroup never changes while
1954 * lock is held because a routine modifies pc->mem_cgroup
1955 * should take move_lock_page_cgroup().
1956 */
1957 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1958}
1959
2a7106f2
GT
1960void mem_cgroup_update_page_stat(struct page *page,
1961 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1962{
c0ff4b85 1963 struct mem_cgroup *memcg;
32047e2a 1964 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 1965 unsigned long uninitialized_var(flags);
d69b042f 1966
cfa44946 1967 if (mem_cgroup_disabled())
d69b042f 1968 return;
89c06bd5 1969
c0ff4b85
R
1970 memcg = pc->mem_cgroup;
1971 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 1972 return;
26174efd 1973
26174efd 1974 switch (idx) {
2a7106f2 1975 case MEMCG_NR_FILE_MAPPED:
2a7106f2 1976 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1977 break;
1978 default:
1979 BUG();
8725d541 1980 }
d69b042f 1981
c0ff4b85 1982 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 1983}
26174efd 1984
cdec2e42
KH
1985/*
1986 * size of first charge trial. "32" comes from vmscan.c's magic value.
1987 * TODO: maybe necessary to use big numbers in big irons.
1988 */
7ec99d62 1989#define CHARGE_BATCH 32U
cdec2e42
KH
1990struct memcg_stock_pcp {
1991 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1992 unsigned int nr_pages;
cdec2e42 1993 struct work_struct work;
26fe6168
KH
1994 unsigned long flags;
1995#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
1996};
1997static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1998static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1999
2000/*
11c9ea4e 2001 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2002 * from local stock and true is returned. If the stock is 0 or charges from a
2003 * cgroup which is not current target, returns false. This stock will be
2004 * refilled.
2005 */
c0ff4b85 2006static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2007{
2008 struct memcg_stock_pcp *stock;
2009 bool ret = true;
2010
2011 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2012 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2013 stock->nr_pages--;
cdec2e42
KH
2014 else /* need to call res_counter_charge */
2015 ret = false;
2016 put_cpu_var(memcg_stock);
2017 return ret;
2018}
2019
2020/*
2021 * Returns stocks cached in percpu to res_counter and reset cached information.
2022 */
2023static void drain_stock(struct memcg_stock_pcp *stock)
2024{
2025 struct mem_cgroup *old = stock->cached;
2026
11c9ea4e
JW
2027 if (stock->nr_pages) {
2028 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2029
2030 res_counter_uncharge(&old->res, bytes);
cdec2e42 2031 if (do_swap_account)
11c9ea4e
JW
2032 res_counter_uncharge(&old->memsw, bytes);
2033 stock->nr_pages = 0;
cdec2e42
KH
2034 }
2035 stock->cached = NULL;
cdec2e42
KH
2036}
2037
2038/*
2039 * This must be called under preempt disabled or must be called by
2040 * a thread which is pinned to local cpu.
2041 */
2042static void drain_local_stock(struct work_struct *dummy)
2043{
2044 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2045 drain_stock(stock);
26fe6168 2046 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2047}
2048
2049/*
2050 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2051 * This will be consumed by consume_stock() function, later.
cdec2e42 2052 */
c0ff4b85 2053static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2054{
2055 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2056
c0ff4b85 2057 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2058 drain_stock(stock);
c0ff4b85 2059 stock->cached = memcg;
cdec2e42 2060 }
11c9ea4e 2061 stock->nr_pages += nr_pages;
cdec2e42
KH
2062 put_cpu_var(memcg_stock);
2063}
2064
2065/*
c0ff4b85 2066 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2067 * of the hierarchy under it. sync flag says whether we should block
2068 * until the work is done.
cdec2e42 2069 */
c0ff4b85 2070static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2071{
26fe6168 2072 int cpu, curcpu;
d38144b7 2073
cdec2e42 2074 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2075 get_online_cpus();
5af12d0e 2076 curcpu = get_cpu();
cdec2e42
KH
2077 for_each_online_cpu(cpu) {
2078 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2079 struct mem_cgroup *memcg;
26fe6168 2080
c0ff4b85
R
2081 memcg = stock->cached;
2082 if (!memcg || !stock->nr_pages)
26fe6168 2083 continue;
c0ff4b85 2084 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2085 continue;
d1a05b69
MH
2086 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2087 if (cpu == curcpu)
2088 drain_local_stock(&stock->work);
2089 else
2090 schedule_work_on(cpu, &stock->work);
2091 }
cdec2e42 2092 }
5af12d0e 2093 put_cpu();
d38144b7
MH
2094
2095 if (!sync)
2096 goto out;
2097
2098 for_each_online_cpu(cpu) {
2099 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2100 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2101 flush_work(&stock->work);
2102 }
2103out:
cdec2e42 2104 put_online_cpus();
d38144b7
MH
2105}
2106
2107/*
2108 * Tries to drain stocked charges in other cpus. This function is asynchronous
2109 * and just put a work per cpu for draining localy on each cpu. Caller can
2110 * expects some charges will be back to res_counter later but cannot wait for
2111 * it.
2112 */
c0ff4b85 2113static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2114{
9f50fad6
MH
2115 /*
2116 * If someone calls draining, avoid adding more kworker runs.
2117 */
2118 if (!mutex_trylock(&percpu_charge_mutex))
2119 return;
c0ff4b85 2120 drain_all_stock(root_memcg, false);
9f50fad6 2121 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2122}
2123
2124/* This is a synchronous drain interface. */
c0ff4b85 2125static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2126{
2127 /* called when force_empty is called */
9f50fad6 2128 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2129 drain_all_stock(root_memcg, true);
9f50fad6 2130 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2131}
2132
711d3d2c
KH
2133/*
2134 * This function drains percpu counter value from DEAD cpu and
2135 * move it to local cpu. Note that this function can be preempted.
2136 */
c0ff4b85 2137static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2138{
2139 int i;
2140
c0ff4b85 2141 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2142 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2143 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2144
c0ff4b85
R
2145 per_cpu(memcg->stat->count[i], cpu) = 0;
2146 memcg->nocpu_base.count[i] += x;
711d3d2c 2147 }
e9f8974f 2148 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2149 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2150
c0ff4b85
R
2151 per_cpu(memcg->stat->events[i], cpu) = 0;
2152 memcg->nocpu_base.events[i] += x;
e9f8974f 2153 }
c0ff4b85 2154 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2155}
2156
2157static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2158 unsigned long action,
2159 void *hcpu)
2160{
2161 int cpu = (unsigned long)hcpu;
2162 struct memcg_stock_pcp *stock;
711d3d2c 2163 struct mem_cgroup *iter;
cdec2e42 2164
619d094b 2165 if (action == CPU_ONLINE)
1489ebad 2166 return NOTIFY_OK;
1489ebad 2167
d833049b 2168 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2169 return NOTIFY_OK;
711d3d2c 2170
9f3a0d09 2171 for_each_mem_cgroup(iter)
711d3d2c
KH
2172 mem_cgroup_drain_pcp_counter(iter, cpu);
2173
cdec2e42
KH
2174 stock = &per_cpu(memcg_stock, cpu);
2175 drain_stock(stock);
2176 return NOTIFY_OK;
2177}
2178
4b534334
KH
2179
2180/* See __mem_cgroup_try_charge() for details */
2181enum {
2182 CHARGE_OK, /* success */
2183 CHARGE_RETRY, /* need to retry but retry is not bad */
2184 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2185 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2186 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2187};
2188
c0ff4b85 2189static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2190 unsigned int nr_pages, bool oom_check)
4b534334 2191{
7ec99d62 2192 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2193 struct mem_cgroup *mem_over_limit;
2194 struct res_counter *fail_res;
2195 unsigned long flags = 0;
2196 int ret;
2197
c0ff4b85 2198 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2199
2200 if (likely(!ret)) {
2201 if (!do_swap_account)
2202 return CHARGE_OK;
c0ff4b85 2203 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2204 if (likely(!ret))
2205 return CHARGE_OK;
2206
c0ff4b85 2207 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2208 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2209 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2210 } else
2211 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2212 /*
7ec99d62
JW
2213 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2214 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2215 *
2216 * Never reclaim on behalf of optional batching, retry with a
2217 * single page instead.
2218 */
7ec99d62 2219 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2220 return CHARGE_RETRY;
2221
2222 if (!(gfp_mask & __GFP_WAIT))
2223 return CHARGE_WOULDBLOCK;
2224
5660048c 2225 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2226 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2227 return CHARGE_RETRY;
4b534334 2228 /*
19942822
JW
2229 * Even though the limit is exceeded at this point, reclaim
2230 * may have been able to free some pages. Retry the charge
2231 * before killing the task.
2232 *
2233 * Only for regular pages, though: huge pages are rather
2234 * unlikely to succeed so close to the limit, and we fall back
2235 * to regular pages anyway in case of failure.
4b534334 2236 */
7ec99d62 2237 if (nr_pages == 1 && ret)
4b534334
KH
2238 return CHARGE_RETRY;
2239
2240 /*
2241 * At task move, charge accounts can be doubly counted. So, it's
2242 * better to wait until the end of task_move if something is going on.
2243 */
2244 if (mem_cgroup_wait_acct_move(mem_over_limit))
2245 return CHARGE_RETRY;
2246
2247 /* If we don't need to call oom-killer at el, return immediately */
2248 if (!oom_check)
2249 return CHARGE_NOMEM;
2250 /* check OOM */
e845e199 2251 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2252 return CHARGE_OOM_DIE;
2253
2254 return CHARGE_RETRY;
2255}
2256
f817ed48 2257/*
38c5d72f
KH
2258 * __mem_cgroup_try_charge() does
2259 * 1. detect memcg to be charged against from passed *mm and *ptr,
2260 * 2. update res_counter
2261 * 3. call memory reclaim if necessary.
2262 *
2263 * In some special case, if the task is fatal, fatal_signal_pending() or
2264 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2265 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2266 * as possible without any hazards. 2: all pages should have a valid
2267 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2268 * pointer, that is treated as a charge to root_mem_cgroup.
2269 *
2270 * So __mem_cgroup_try_charge() will return
2271 * 0 ... on success, filling *ptr with a valid memcg pointer.
2272 * -ENOMEM ... charge failure because of resource limits.
2273 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2274 *
2275 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2276 * the oom-killer can be invoked.
8a9f3ccd 2277 */
f817ed48 2278static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2279 gfp_t gfp_mask,
7ec99d62 2280 unsigned int nr_pages,
c0ff4b85 2281 struct mem_cgroup **ptr,
7ec99d62 2282 bool oom)
8a9f3ccd 2283{
7ec99d62 2284 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2285 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2286 struct mem_cgroup *memcg = NULL;
4b534334 2287 int ret;
a636b327 2288
867578cb
KH
2289 /*
2290 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2291 * in system level. So, allow to go ahead dying process in addition to
2292 * MEMDIE process.
2293 */
2294 if (unlikely(test_thread_flag(TIF_MEMDIE)
2295 || fatal_signal_pending(current)))
2296 goto bypass;
a636b327 2297
8a9f3ccd 2298 /*
3be91277
HD
2299 * We always charge the cgroup the mm_struct belongs to.
2300 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2301 * thread group leader migrates. It's possible that mm is not
2302 * set, if so charge the init_mm (happens for pagecache usage).
2303 */
c0ff4b85 2304 if (!*ptr && !mm)
38c5d72f 2305 *ptr = root_mem_cgroup;
f75ca962 2306again:
c0ff4b85
R
2307 if (*ptr) { /* css should be a valid one */
2308 memcg = *ptr;
2309 VM_BUG_ON(css_is_removed(&memcg->css));
2310 if (mem_cgroup_is_root(memcg))
f75ca962 2311 goto done;
c0ff4b85 2312 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2313 goto done;
c0ff4b85 2314 css_get(&memcg->css);
4b534334 2315 } else {
f75ca962 2316 struct task_struct *p;
54595fe2 2317
f75ca962
KH
2318 rcu_read_lock();
2319 p = rcu_dereference(mm->owner);
f75ca962 2320 /*
ebb76ce1 2321 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2322 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2323 * race with swapoff. Then, we have small risk of mis-accouning.
2324 * But such kind of mis-account by race always happens because
2325 * we don't have cgroup_mutex(). It's overkill and we allo that
2326 * small race, here.
2327 * (*) swapoff at el will charge against mm-struct not against
2328 * task-struct. So, mm->owner can be NULL.
f75ca962 2329 */
c0ff4b85 2330 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2331 if (!memcg)
2332 memcg = root_mem_cgroup;
2333 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2334 rcu_read_unlock();
2335 goto done;
2336 }
c0ff4b85 2337 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2338 /*
2339 * It seems dagerous to access memcg without css_get().
2340 * But considering how consume_stok works, it's not
2341 * necessary. If consume_stock success, some charges
2342 * from this memcg are cached on this cpu. So, we
2343 * don't need to call css_get()/css_tryget() before
2344 * calling consume_stock().
2345 */
2346 rcu_read_unlock();
2347 goto done;
2348 }
2349 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2350 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2351 rcu_read_unlock();
2352 goto again;
2353 }
2354 rcu_read_unlock();
2355 }
8a9f3ccd 2356
4b534334
KH
2357 do {
2358 bool oom_check;
7a81b88c 2359
4b534334 2360 /* If killed, bypass charge */
f75ca962 2361 if (fatal_signal_pending(current)) {
c0ff4b85 2362 css_put(&memcg->css);
4b534334 2363 goto bypass;
f75ca962 2364 }
6d61ef40 2365
4b534334
KH
2366 oom_check = false;
2367 if (oom && !nr_oom_retries) {
2368 oom_check = true;
2369 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2370 }
66e1707b 2371
c0ff4b85 2372 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2373 switch (ret) {
2374 case CHARGE_OK:
2375 break;
2376 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2377 batch = nr_pages;
c0ff4b85
R
2378 css_put(&memcg->css);
2379 memcg = NULL;
f75ca962 2380 goto again;
4b534334 2381 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2382 css_put(&memcg->css);
4b534334
KH
2383 goto nomem;
2384 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2385 if (!oom) {
c0ff4b85 2386 css_put(&memcg->css);
867578cb 2387 goto nomem;
f75ca962 2388 }
4b534334
KH
2389 /* If oom, we never return -ENOMEM */
2390 nr_oom_retries--;
2391 break;
2392 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2393 css_put(&memcg->css);
867578cb 2394 goto bypass;
66e1707b 2395 }
4b534334
KH
2396 } while (ret != CHARGE_OK);
2397
7ec99d62 2398 if (batch > nr_pages)
c0ff4b85
R
2399 refill_stock(memcg, batch - nr_pages);
2400 css_put(&memcg->css);
0c3e73e8 2401done:
c0ff4b85 2402 *ptr = memcg;
7a81b88c
KH
2403 return 0;
2404nomem:
c0ff4b85 2405 *ptr = NULL;
7a81b88c 2406 return -ENOMEM;
867578cb 2407bypass:
38c5d72f
KH
2408 *ptr = root_mem_cgroup;
2409 return -EINTR;
7a81b88c 2410}
8a9f3ccd 2411
a3032a2c
DN
2412/*
2413 * Somemtimes we have to undo a charge we got by try_charge().
2414 * This function is for that and do uncharge, put css's refcnt.
2415 * gotten by try_charge().
2416 */
c0ff4b85 2417static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2418 unsigned int nr_pages)
a3032a2c 2419{
c0ff4b85 2420 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2421 unsigned long bytes = nr_pages * PAGE_SIZE;
2422
c0ff4b85 2423 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2424 if (do_swap_account)
c0ff4b85 2425 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2426 }
854ffa8d
DN
2427}
2428
a3b2d692
KH
2429/*
2430 * A helper function to get mem_cgroup from ID. must be called under
2431 * rcu_read_lock(). The caller must check css_is_removed() or some if
2432 * it's concern. (dropping refcnt from swap can be called against removed
2433 * memcg.)
2434 */
2435static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2436{
2437 struct cgroup_subsys_state *css;
2438
2439 /* ID 0 is unused ID */
2440 if (!id)
2441 return NULL;
2442 css = css_lookup(&mem_cgroup_subsys, id);
2443 if (!css)
2444 return NULL;
2445 return container_of(css, struct mem_cgroup, css);
2446}
2447
e42d9d5d 2448struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2449{
c0ff4b85 2450 struct mem_cgroup *memcg = NULL;
3c776e64 2451 struct page_cgroup *pc;
a3b2d692 2452 unsigned short id;
b5a84319
KH
2453 swp_entry_t ent;
2454
3c776e64
DN
2455 VM_BUG_ON(!PageLocked(page));
2456
3c776e64 2457 pc = lookup_page_cgroup(page);
c0bd3f63 2458 lock_page_cgroup(pc);
a3b2d692 2459 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2460 memcg = pc->mem_cgroup;
2461 if (memcg && !css_tryget(&memcg->css))
2462 memcg = NULL;
e42d9d5d 2463 } else if (PageSwapCache(page)) {
3c776e64 2464 ent.val = page_private(page);
9fb4b7cc 2465 id = lookup_swap_cgroup_id(ent);
a3b2d692 2466 rcu_read_lock();
c0ff4b85
R
2467 memcg = mem_cgroup_lookup(id);
2468 if (memcg && !css_tryget(&memcg->css))
2469 memcg = NULL;
a3b2d692 2470 rcu_read_unlock();
3c776e64 2471 }
c0bd3f63 2472 unlock_page_cgroup(pc);
c0ff4b85 2473 return memcg;
b5a84319
KH
2474}
2475
c0ff4b85 2476static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2477 struct page *page,
7ec99d62 2478 unsigned int nr_pages,
9ce70c02
HD
2479 enum charge_type ctype,
2480 bool lrucare)
7a81b88c 2481{
ce587e65 2482 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02
HD
2483 struct zone *uninitialized_var(zone);
2484 bool was_on_lru = false;
b2402857 2485 bool anon;
9ce70c02 2486
ca3e0214
KH
2487 lock_page_cgroup(pc);
2488 if (unlikely(PageCgroupUsed(pc))) {
2489 unlock_page_cgroup(pc);
c0ff4b85 2490 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2491 return;
2492 }
2493 /*
2494 * we don't need page_cgroup_lock about tail pages, becase they are not
2495 * accessed by any other context at this point.
2496 */
9ce70c02
HD
2497
2498 /*
2499 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2500 * may already be on some other mem_cgroup's LRU. Take care of it.
2501 */
2502 if (lrucare) {
2503 zone = page_zone(page);
2504 spin_lock_irq(&zone->lru_lock);
2505 if (PageLRU(page)) {
2506 ClearPageLRU(page);
2507 del_page_from_lru_list(zone, page, page_lru(page));
2508 was_on_lru = true;
2509 }
2510 }
2511
c0ff4b85 2512 pc->mem_cgroup = memcg;
261fb61a
KH
2513 /*
2514 * We access a page_cgroup asynchronously without lock_page_cgroup().
2515 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2516 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2517 * before USED bit, we need memory barrier here.
2518 * See mem_cgroup_add_lru_list(), etc.
2519 */
08e552c6 2520 smp_wmb();
b2402857 2521 SetPageCgroupUsed(pc);
3be91277 2522
9ce70c02
HD
2523 if (lrucare) {
2524 if (was_on_lru) {
2525 VM_BUG_ON(PageLRU(page));
2526 SetPageLRU(page);
2527 add_page_to_lru_list(zone, page, page_lru(page));
2528 }
2529 spin_unlock_irq(&zone->lru_lock);
2530 }
2531
b2402857
KH
2532 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2533 anon = true;
2534 else
2535 anon = false;
2536
2537 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2538 unlock_page_cgroup(pc);
9ce70c02 2539
430e4863
KH
2540 /*
2541 * "charge_statistics" updated event counter. Then, check it.
2542 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2543 * if they exceeds softlimit.
2544 */
c0ff4b85 2545 memcg_check_events(memcg, page);
7a81b88c 2546}
66e1707b 2547
ca3e0214
KH
2548#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2549
312734c0 2550#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
ca3e0214
KH
2551/*
2552 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2553 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2554 * charge/uncharge will be never happen and move_account() is done under
2555 * compound_lock(), so we don't have to take care of races.
ca3e0214 2556 */
e94c8a9c 2557void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2558{
2559 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2560 struct page_cgroup *pc;
2561 int i;
ca3e0214 2562
3d37c4a9
KH
2563 if (mem_cgroup_disabled())
2564 return;
e94c8a9c
KH
2565 for (i = 1; i < HPAGE_PMD_NR; i++) {
2566 pc = head_pc + i;
2567 pc->mem_cgroup = head_pc->mem_cgroup;
2568 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2569 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2570 }
ca3e0214 2571}
12d27107 2572#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2573
f817ed48 2574/**
de3638d9 2575 * mem_cgroup_move_account - move account of the page
5564e88b 2576 * @page: the page
7ec99d62 2577 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2578 * @pc: page_cgroup of the page.
2579 * @from: mem_cgroup which the page is moved from.
2580 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2581 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2582 *
2583 * The caller must confirm following.
08e552c6 2584 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2585 * - compound_lock is held when nr_pages > 1
f817ed48 2586 *
854ffa8d 2587 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2588 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2589 * true, this function does "uncharge" from old cgroup, but it doesn't if
2590 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2591 */
7ec99d62
JW
2592static int mem_cgroup_move_account(struct page *page,
2593 unsigned int nr_pages,
2594 struct page_cgroup *pc,
2595 struct mem_cgroup *from,
2596 struct mem_cgroup *to,
2597 bool uncharge)
f817ed48 2598{
de3638d9
JW
2599 unsigned long flags;
2600 int ret;
b2402857 2601 bool anon = PageAnon(page);
987eba66 2602
f817ed48 2603 VM_BUG_ON(from == to);
5564e88b 2604 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2605 /*
2606 * The page is isolated from LRU. So, collapse function
2607 * will not handle this page. But page splitting can happen.
2608 * Do this check under compound_page_lock(). The caller should
2609 * hold it.
2610 */
2611 ret = -EBUSY;
7ec99d62 2612 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2613 goto out;
2614
2615 lock_page_cgroup(pc);
2616
2617 ret = -EINVAL;
2618 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2619 goto unlock;
2620
312734c0 2621 move_lock_mem_cgroup(from, &flags);
f817ed48 2622
2ff76f11 2623 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2624 /* Update mapped_file data for mem_cgroup */
2625 preempt_disable();
2626 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2627 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2628 preempt_enable();
d69b042f 2629 }
b2402857 2630 mem_cgroup_charge_statistics(from, anon, -nr_pages);
854ffa8d
DN
2631 if (uncharge)
2632 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2633 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2634
854ffa8d 2635 /* caller should have done css_get */
08e552c6 2636 pc->mem_cgroup = to;
b2402857 2637 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2638 /*
2639 * We charges against "to" which may not have any tasks. Then, "to"
2640 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2641 * this function is just force_empty() and move charge, so it's
25985edc 2642 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2643 * status here.
88703267 2644 */
312734c0 2645 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2646 ret = 0;
2647unlock:
57f9fd7d 2648 unlock_page_cgroup(pc);
d2265e6f
KH
2649 /*
2650 * check events
2651 */
5564e88b
JW
2652 memcg_check_events(to, page);
2653 memcg_check_events(from, page);
de3638d9 2654out:
f817ed48
KH
2655 return ret;
2656}
2657
2658/*
2659 * move charges to its parent.
2660 */
2661
5564e88b
JW
2662static int mem_cgroup_move_parent(struct page *page,
2663 struct page_cgroup *pc,
f817ed48
KH
2664 struct mem_cgroup *child,
2665 gfp_t gfp_mask)
2666{
2667 struct cgroup *cg = child->css.cgroup;
2668 struct cgroup *pcg = cg->parent;
2669 struct mem_cgroup *parent;
7ec99d62 2670 unsigned int nr_pages;
4be4489f 2671 unsigned long uninitialized_var(flags);
f817ed48
KH
2672 int ret;
2673
2674 /* Is ROOT ? */
2675 if (!pcg)
2676 return -EINVAL;
2677
57f9fd7d
DN
2678 ret = -EBUSY;
2679 if (!get_page_unless_zero(page))
2680 goto out;
2681 if (isolate_lru_page(page))
2682 goto put;
52dbb905 2683
7ec99d62 2684 nr_pages = hpage_nr_pages(page);
08e552c6 2685
f817ed48 2686 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2687 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
38c5d72f 2688 if (ret)
57f9fd7d 2689 goto put_back;
f817ed48 2690
7ec99d62 2691 if (nr_pages > 1)
987eba66
KH
2692 flags = compound_lock_irqsave(page);
2693
7ec99d62 2694 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2695 if (ret)
7ec99d62 2696 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2697
7ec99d62 2698 if (nr_pages > 1)
987eba66 2699 compound_unlock_irqrestore(page, flags);
8dba474f 2700put_back:
08e552c6 2701 putback_lru_page(page);
57f9fd7d 2702put:
40d58138 2703 put_page(page);
57f9fd7d 2704out:
f817ed48
KH
2705 return ret;
2706}
2707
7a81b88c
KH
2708/*
2709 * Charge the memory controller for page usage.
2710 * Return
2711 * 0 if the charge was successful
2712 * < 0 if the cgroup is over its limit
2713 */
2714static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2715 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2716{
c0ff4b85 2717 struct mem_cgroup *memcg = NULL;
7ec99d62 2718 unsigned int nr_pages = 1;
8493ae43 2719 bool oom = true;
7a81b88c 2720 int ret;
ec168510 2721
37c2ac78 2722 if (PageTransHuge(page)) {
7ec99d62 2723 nr_pages <<= compound_order(page);
37c2ac78 2724 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2725 /*
2726 * Never OOM-kill a process for a huge page. The
2727 * fault handler will fall back to regular pages.
2728 */
2729 oom = false;
37c2ac78 2730 }
7a81b88c 2731
c0ff4b85 2732 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2733 if (ret == -ENOMEM)
7a81b88c 2734 return ret;
ce587e65 2735 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2736 return 0;
8a9f3ccd
BS
2737}
2738
7a81b88c
KH
2739int mem_cgroup_newpage_charge(struct page *page,
2740 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2741{
f8d66542 2742 if (mem_cgroup_disabled())
cede86ac 2743 return 0;
7a0524cf
JW
2744 VM_BUG_ON(page_mapped(page));
2745 VM_BUG_ON(page->mapping && !PageAnon(page));
2746 VM_BUG_ON(!mm);
217bc319 2747 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2748 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2749}
2750
83aae4c7
DN
2751static void
2752__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2753 enum charge_type ctype);
2754
e1a1cd59
BS
2755int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2756 gfp_t gfp_mask)
8697d331 2757{
c0ff4b85 2758 struct mem_cgroup *memcg = NULL;
dc67d504 2759 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2760 int ret;
2761
f8d66542 2762 if (mem_cgroup_disabled())
cede86ac 2763 return 0;
52d4b9ac
KH
2764 if (PageCompound(page))
2765 return 0;
accf163e 2766
73045c47 2767 if (unlikely(!mm))
8697d331 2768 mm = &init_mm;
dc67d504
KH
2769 if (!page_is_file_cache(page))
2770 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2771
38c5d72f 2772 if (!PageSwapCache(page))
dc67d504 2773 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2774 else { /* page is swapcache/shmem */
c0ff4b85 2775 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2776 if (!ret)
dc67d504
KH
2777 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2778 }
b5a84319 2779 return ret;
e8589cc1
KH
2780}
2781
54595fe2
KH
2782/*
2783 * While swap-in, try_charge -> commit or cancel, the page is locked.
2784 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2785 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2786 * "commit()" or removed by "cancel()"
2787 */
8c7c6e34
KH
2788int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2789 struct page *page,
72835c86 2790 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2791{
c0ff4b85 2792 struct mem_cgroup *memcg;
54595fe2 2793 int ret;
8c7c6e34 2794
72835c86 2795 *memcgp = NULL;
56039efa 2796
f8d66542 2797 if (mem_cgroup_disabled())
8c7c6e34
KH
2798 return 0;
2799
2800 if (!do_swap_account)
2801 goto charge_cur_mm;
8c7c6e34
KH
2802 /*
2803 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2804 * the pte, and even removed page from swap cache: in those cases
2805 * do_swap_page()'s pte_same() test will fail; but there's also a
2806 * KSM case which does need to charge the page.
8c7c6e34
KH
2807 */
2808 if (!PageSwapCache(page))
407f9c8b 2809 goto charge_cur_mm;
c0ff4b85
R
2810 memcg = try_get_mem_cgroup_from_page(page);
2811 if (!memcg)
54595fe2 2812 goto charge_cur_mm;
72835c86
JW
2813 *memcgp = memcg;
2814 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2815 css_put(&memcg->css);
38c5d72f
KH
2816 if (ret == -EINTR)
2817 ret = 0;
54595fe2 2818 return ret;
8c7c6e34
KH
2819charge_cur_mm:
2820 if (unlikely(!mm))
2821 mm = &init_mm;
38c5d72f
KH
2822 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2823 if (ret == -EINTR)
2824 ret = 0;
2825 return ret;
8c7c6e34
KH
2826}
2827
83aae4c7 2828static void
72835c86 2829__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2830 enum charge_type ctype)
7a81b88c 2831{
f8d66542 2832 if (mem_cgroup_disabled())
7a81b88c 2833 return;
72835c86 2834 if (!memcg)
7a81b88c 2835 return;
72835c86 2836 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2837
ce587e65 2838 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2839 /*
2840 * Now swap is on-memory. This means this page may be
2841 * counted both as mem and swap....double count.
03f3c433
KH
2842 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2843 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2844 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2845 */
03f3c433 2846 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2847 swp_entry_t ent = {.val = page_private(page)};
72835c86 2848 struct mem_cgroup *swap_memcg;
a3b2d692 2849 unsigned short id;
a3b2d692
KH
2850
2851 id = swap_cgroup_record(ent, 0);
2852 rcu_read_lock();
72835c86
JW
2853 swap_memcg = mem_cgroup_lookup(id);
2854 if (swap_memcg) {
a3b2d692
KH
2855 /*
2856 * This recorded memcg can be obsolete one. So, avoid
2857 * calling css_tryget
2858 */
72835c86
JW
2859 if (!mem_cgroup_is_root(swap_memcg))
2860 res_counter_uncharge(&swap_memcg->memsw,
2861 PAGE_SIZE);
2862 mem_cgroup_swap_statistics(swap_memcg, false);
2863 mem_cgroup_put(swap_memcg);
8c7c6e34 2864 }
a3b2d692 2865 rcu_read_unlock();
8c7c6e34 2866 }
88703267
KH
2867 /*
2868 * At swapin, we may charge account against cgroup which has no tasks.
2869 * So, rmdir()->pre_destroy() can be called while we do this charge.
2870 * In that case, we need to call pre_destroy() again. check it here.
2871 */
72835c86 2872 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2873}
2874
72835c86
JW
2875void mem_cgroup_commit_charge_swapin(struct page *page,
2876 struct mem_cgroup *memcg)
83aae4c7 2877{
72835c86
JW
2878 __mem_cgroup_commit_charge_swapin(page, memcg,
2879 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2880}
2881
c0ff4b85 2882void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2883{
f8d66542 2884 if (mem_cgroup_disabled())
7a81b88c 2885 return;
c0ff4b85 2886 if (!memcg)
7a81b88c 2887 return;
c0ff4b85 2888 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2889}
2890
c0ff4b85 2891static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2892 unsigned int nr_pages,
2893 const enum charge_type ctype)
569b846d
KH
2894{
2895 struct memcg_batch_info *batch = NULL;
2896 bool uncharge_memsw = true;
7ec99d62 2897
569b846d
KH
2898 /* If swapout, usage of swap doesn't decrease */
2899 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2900 uncharge_memsw = false;
569b846d
KH
2901
2902 batch = &current->memcg_batch;
2903 /*
2904 * In usual, we do css_get() when we remember memcg pointer.
2905 * But in this case, we keep res->usage until end of a series of
2906 * uncharges. Then, it's ok to ignore memcg's refcnt.
2907 */
2908 if (!batch->memcg)
c0ff4b85 2909 batch->memcg = memcg;
3c11ecf4
KH
2910 /*
2911 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2912 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2913 * the same cgroup and we have chance to coalesce uncharges.
2914 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2915 * because we want to do uncharge as soon as possible.
2916 */
2917
2918 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2919 goto direct_uncharge;
2920
7ec99d62 2921 if (nr_pages > 1)
ec168510
AA
2922 goto direct_uncharge;
2923
569b846d
KH
2924 /*
2925 * In typical case, batch->memcg == mem. This means we can
2926 * merge a series of uncharges to an uncharge of res_counter.
2927 * If not, we uncharge res_counter ony by one.
2928 */
c0ff4b85 2929 if (batch->memcg != memcg)
569b846d
KH
2930 goto direct_uncharge;
2931 /* remember freed charge and uncharge it later */
7ffd4ca7 2932 batch->nr_pages++;
569b846d 2933 if (uncharge_memsw)
7ffd4ca7 2934 batch->memsw_nr_pages++;
569b846d
KH
2935 return;
2936direct_uncharge:
c0ff4b85 2937 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2938 if (uncharge_memsw)
c0ff4b85
R
2939 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2940 if (unlikely(batch->memcg != memcg))
2941 memcg_oom_recover(memcg);
569b846d 2942}
7a81b88c 2943
8a9f3ccd 2944/*
69029cd5 2945 * uncharge if !page_mapped(page)
8a9f3ccd 2946 */
8c7c6e34 2947static struct mem_cgroup *
69029cd5 2948__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2949{
c0ff4b85 2950 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2951 unsigned int nr_pages = 1;
2952 struct page_cgroup *pc;
b2402857 2953 bool anon;
8a9f3ccd 2954
f8d66542 2955 if (mem_cgroup_disabled())
8c7c6e34 2956 return NULL;
4077960e 2957
d13d1443 2958 if (PageSwapCache(page))
8c7c6e34 2959 return NULL;
d13d1443 2960
37c2ac78 2961 if (PageTransHuge(page)) {
7ec99d62 2962 nr_pages <<= compound_order(page);
37c2ac78
AA
2963 VM_BUG_ON(!PageTransHuge(page));
2964 }
8697d331 2965 /*
3c541e14 2966 * Check if our page_cgroup is valid
8697d331 2967 */
52d4b9ac 2968 pc = lookup_page_cgroup(page);
cfa44946 2969 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2970 return NULL;
b9c565d5 2971
52d4b9ac 2972 lock_page_cgroup(pc);
d13d1443 2973
c0ff4b85 2974 memcg = pc->mem_cgroup;
8c7c6e34 2975
d13d1443
KH
2976 if (!PageCgroupUsed(pc))
2977 goto unlock_out;
2978
b2402857
KH
2979 anon = PageAnon(page);
2980
d13d1443
KH
2981 switch (ctype) {
2982 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2ff76f11
KH
2983 /*
2984 * Generally PageAnon tells if it's the anon statistics to be
2985 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2986 * used before page reached the stage of being marked PageAnon.
2987 */
b2402857
KH
2988 anon = true;
2989 /* fallthrough */
8a9478ca 2990 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
2991 /* See mem_cgroup_prepare_migration() */
2992 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2993 goto unlock_out;
2994 break;
2995 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2996 if (!PageAnon(page)) { /* Shared memory */
2997 if (page->mapping && !page_is_file_cache(page))
2998 goto unlock_out;
2999 } else if (page_mapped(page)) /* Anon */
3000 goto unlock_out;
3001 break;
3002 default:
3003 break;
52d4b9ac 3004 }
d13d1443 3005
b2402857 3006 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3007
52d4b9ac 3008 ClearPageCgroupUsed(pc);
544122e5
KH
3009 /*
3010 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3011 * freed from LRU. This is safe because uncharged page is expected not
3012 * to be reused (freed soon). Exception is SwapCache, it's handled by
3013 * special functions.
3014 */
b9c565d5 3015
52d4b9ac 3016 unlock_page_cgroup(pc);
f75ca962 3017 /*
c0ff4b85 3018 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3019 * will never be freed.
3020 */
c0ff4b85 3021 memcg_check_events(memcg, page);
f75ca962 3022 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3023 mem_cgroup_swap_statistics(memcg, true);
3024 mem_cgroup_get(memcg);
f75ca962 3025 }
c0ff4b85
R
3026 if (!mem_cgroup_is_root(memcg))
3027 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3028
c0ff4b85 3029 return memcg;
d13d1443
KH
3030
3031unlock_out:
3032 unlock_page_cgroup(pc);
8c7c6e34 3033 return NULL;
3c541e14
BS
3034}
3035
69029cd5
KH
3036void mem_cgroup_uncharge_page(struct page *page)
3037{
52d4b9ac
KH
3038 /* early check. */
3039 if (page_mapped(page))
3040 return;
40f23a21 3041 VM_BUG_ON(page->mapping && !PageAnon(page));
69029cd5
KH
3042 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3043}
3044
3045void mem_cgroup_uncharge_cache_page(struct page *page)
3046{
3047 VM_BUG_ON(page_mapped(page));
b7abea96 3048 VM_BUG_ON(page->mapping);
69029cd5
KH
3049 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3050}
3051
569b846d
KH
3052/*
3053 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3054 * In that cases, pages are freed continuously and we can expect pages
3055 * are in the same memcg. All these calls itself limits the number of
3056 * pages freed at once, then uncharge_start/end() is called properly.
3057 * This may be called prural(2) times in a context,
3058 */
3059
3060void mem_cgroup_uncharge_start(void)
3061{
3062 current->memcg_batch.do_batch++;
3063 /* We can do nest. */
3064 if (current->memcg_batch.do_batch == 1) {
3065 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3066 current->memcg_batch.nr_pages = 0;
3067 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3068 }
3069}
3070
3071void mem_cgroup_uncharge_end(void)
3072{
3073 struct memcg_batch_info *batch = &current->memcg_batch;
3074
3075 if (!batch->do_batch)
3076 return;
3077
3078 batch->do_batch--;
3079 if (batch->do_batch) /* If stacked, do nothing. */
3080 return;
3081
3082 if (!batch->memcg)
3083 return;
3084 /*
3085 * This "batch->memcg" is valid without any css_get/put etc...
3086 * bacause we hide charges behind us.
3087 */
7ffd4ca7
JW
3088 if (batch->nr_pages)
3089 res_counter_uncharge(&batch->memcg->res,
3090 batch->nr_pages * PAGE_SIZE);
3091 if (batch->memsw_nr_pages)
3092 res_counter_uncharge(&batch->memcg->memsw,
3093 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3094 memcg_oom_recover(batch->memcg);
569b846d
KH
3095 /* forget this pointer (for sanity check) */
3096 batch->memcg = NULL;
3097}
3098
e767e056 3099#ifdef CONFIG_SWAP
8c7c6e34 3100/*
e767e056 3101 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3102 * memcg information is recorded to swap_cgroup of "ent"
3103 */
8a9478ca
KH
3104void
3105mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3106{
3107 struct mem_cgroup *memcg;
8a9478ca
KH
3108 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3109
3110 if (!swapout) /* this was a swap cache but the swap is unused ! */
3111 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3112
3113 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3114
f75ca962
KH
3115 /*
3116 * record memcg information, if swapout && memcg != NULL,
3117 * mem_cgroup_get() was called in uncharge().
3118 */
3119 if (do_swap_account && swapout && memcg)
a3b2d692 3120 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3121}
e767e056 3122#endif
8c7c6e34
KH
3123
3124#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3125/*
3126 * called from swap_entry_free(). remove record in swap_cgroup and
3127 * uncharge "memsw" account.
3128 */
3129void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3130{
8c7c6e34 3131 struct mem_cgroup *memcg;
a3b2d692 3132 unsigned short id;
8c7c6e34
KH
3133
3134 if (!do_swap_account)
3135 return;
3136
a3b2d692
KH
3137 id = swap_cgroup_record(ent, 0);
3138 rcu_read_lock();
3139 memcg = mem_cgroup_lookup(id);
8c7c6e34 3140 if (memcg) {
a3b2d692
KH
3141 /*
3142 * We uncharge this because swap is freed.
3143 * This memcg can be obsolete one. We avoid calling css_tryget
3144 */
0c3e73e8 3145 if (!mem_cgroup_is_root(memcg))
4e649152 3146 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3147 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3148 mem_cgroup_put(memcg);
3149 }
a3b2d692 3150 rcu_read_unlock();
d13d1443 3151}
02491447
DN
3152
3153/**
3154 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3155 * @entry: swap entry to be moved
3156 * @from: mem_cgroup which the entry is moved from
3157 * @to: mem_cgroup which the entry is moved to
483c30b5 3158 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3159 *
3160 * It succeeds only when the swap_cgroup's record for this entry is the same
3161 * as the mem_cgroup's id of @from.
3162 *
3163 * Returns 0 on success, -EINVAL on failure.
3164 *
3165 * The caller must have charged to @to, IOW, called res_counter_charge() about
3166 * both res and memsw, and called css_get().
3167 */
3168static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3169 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3170{
3171 unsigned short old_id, new_id;
3172
3173 old_id = css_id(&from->css);
3174 new_id = css_id(&to->css);
3175
3176 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3177 mem_cgroup_swap_statistics(from, false);
483c30b5 3178 mem_cgroup_swap_statistics(to, true);
02491447 3179 /*
483c30b5
DN
3180 * This function is only called from task migration context now.
3181 * It postpones res_counter and refcount handling till the end
3182 * of task migration(mem_cgroup_clear_mc()) for performance
3183 * improvement. But we cannot postpone mem_cgroup_get(to)
3184 * because if the process that has been moved to @to does
3185 * swap-in, the refcount of @to might be decreased to 0.
02491447 3186 */
02491447 3187 mem_cgroup_get(to);
483c30b5
DN
3188 if (need_fixup) {
3189 if (!mem_cgroup_is_root(from))
3190 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3191 mem_cgroup_put(from);
3192 /*
3193 * we charged both to->res and to->memsw, so we should
3194 * uncharge to->res.
3195 */
3196 if (!mem_cgroup_is_root(to))
3197 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3198 }
02491447
DN
3199 return 0;
3200 }
3201 return -EINVAL;
3202}
3203#else
3204static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3205 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3206{
3207 return -EINVAL;
3208}
8c7c6e34 3209#endif
d13d1443 3210
ae41be37 3211/*
01b1ae63
KH
3212 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3213 * page belongs to.
ae41be37 3214 */
ac39cf8c 3215int mem_cgroup_prepare_migration(struct page *page,
72835c86 3216 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3217{
c0ff4b85 3218 struct mem_cgroup *memcg = NULL;
7ec99d62 3219 struct page_cgroup *pc;
ac39cf8c 3220 enum charge_type ctype;
e8589cc1 3221 int ret = 0;
8869b8f6 3222
72835c86 3223 *memcgp = NULL;
56039efa 3224
ec168510 3225 VM_BUG_ON(PageTransHuge(page));
f8d66542 3226 if (mem_cgroup_disabled())
4077960e
BS
3227 return 0;
3228
52d4b9ac
KH
3229 pc = lookup_page_cgroup(page);
3230 lock_page_cgroup(pc);
3231 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3232 memcg = pc->mem_cgroup;
3233 css_get(&memcg->css);
ac39cf8c
AM
3234 /*
3235 * At migrating an anonymous page, its mapcount goes down
3236 * to 0 and uncharge() will be called. But, even if it's fully
3237 * unmapped, migration may fail and this page has to be
3238 * charged again. We set MIGRATION flag here and delay uncharge
3239 * until end_migration() is called
3240 *
3241 * Corner Case Thinking
3242 * A)
3243 * When the old page was mapped as Anon and it's unmap-and-freed
3244 * while migration was ongoing.
3245 * If unmap finds the old page, uncharge() of it will be delayed
3246 * until end_migration(). If unmap finds a new page, it's
3247 * uncharged when it make mapcount to be 1->0. If unmap code
3248 * finds swap_migration_entry, the new page will not be mapped
3249 * and end_migration() will find it(mapcount==0).
3250 *
3251 * B)
3252 * When the old page was mapped but migraion fails, the kernel
3253 * remaps it. A charge for it is kept by MIGRATION flag even
3254 * if mapcount goes down to 0. We can do remap successfully
3255 * without charging it again.
3256 *
3257 * C)
3258 * The "old" page is under lock_page() until the end of
3259 * migration, so, the old page itself will not be swapped-out.
3260 * If the new page is swapped out before end_migraton, our
3261 * hook to usual swap-out path will catch the event.
3262 */
3263 if (PageAnon(page))
3264 SetPageCgroupMigration(pc);
e8589cc1 3265 }
52d4b9ac 3266 unlock_page_cgroup(pc);
ac39cf8c
AM
3267 /*
3268 * If the page is not charged at this point,
3269 * we return here.
3270 */
c0ff4b85 3271 if (!memcg)
ac39cf8c 3272 return 0;
01b1ae63 3273
72835c86
JW
3274 *memcgp = memcg;
3275 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3276 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3277 if (ret) {
ac39cf8c
AM
3278 if (PageAnon(page)) {
3279 lock_page_cgroup(pc);
3280 ClearPageCgroupMigration(pc);
3281 unlock_page_cgroup(pc);
3282 /*
3283 * The old page may be fully unmapped while we kept it.
3284 */
3285 mem_cgroup_uncharge_page(page);
3286 }
38c5d72f 3287 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3288 return -ENOMEM;
e8589cc1 3289 }
ac39cf8c
AM
3290 /*
3291 * We charge new page before it's used/mapped. So, even if unlock_page()
3292 * is called before end_migration, we can catch all events on this new
3293 * page. In the case new page is migrated but not remapped, new page's
3294 * mapcount will be finally 0 and we call uncharge in end_migration().
3295 */
ac39cf8c
AM
3296 if (PageAnon(page))
3297 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3298 else if (page_is_file_cache(page))
3299 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3300 else
3301 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ce587e65 3302 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
e8589cc1 3303 return ret;
ae41be37 3304}
8869b8f6 3305
69029cd5 3306/* remove redundant charge if migration failed*/
c0ff4b85 3307void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3308 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3309{
ac39cf8c 3310 struct page *used, *unused;
01b1ae63 3311 struct page_cgroup *pc;
b2402857 3312 bool anon;
01b1ae63 3313
c0ff4b85 3314 if (!memcg)
01b1ae63 3315 return;
ac39cf8c 3316 /* blocks rmdir() */
c0ff4b85 3317 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3318 if (!migration_ok) {
ac39cf8c
AM
3319 used = oldpage;
3320 unused = newpage;
01b1ae63 3321 } else {
ac39cf8c 3322 used = newpage;
01b1ae63
KH
3323 unused = oldpage;
3324 }
69029cd5 3325 /*
ac39cf8c
AM
3326 * We disallowed uncharge of pages under migration because mapcount
3327 * of the page goes down to zero, temporarly.
3328 * Clear the flag and check the page should be charged.
01b1ae63 3329 */
ac39cf8c
AM
3330 pc = lookup_page_cgroup(oldpage);
3331 lock_page_cgroup(pc);
3332 ClearPageCgroupMigration(pc);
3333 unlock_page_cgroup(pc);
b2402857
KH
3334 anon = PageAnon(used);
3335 __mem_cgroup_uncharge_common(unused,
3336 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3337 : MEM_CGROUP_CHARGE_TYPE_CACHE);
ac39cf8c 3338
01b1ae63 3339 /*
ac39cf8c
AM
3340 * If a page is a file cache, radix-tree replacement is very atomic
3341 * and we can skip this check. When it was an Anon page, its mapcount
3342 * goes down to 0. But because we added MIGRATION flage, it's not
3343 * uncharged yet. There are several case but page->mapcount check
3344 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3345 * check. (see prepare_charge() also)
69029cd5 3346 */
b2402857 3347 if (anon)
ac39cf8c 3348 mem_cgroup_uncharge_page(used);
88703267 3349 /*
ac39cf8c
AM
3350 * At migration, we may charge account against cgroup which has no
3351 * tasks.
88703267
KH
3352 * So, rmdir()->pre_destroy() can be called while we do this charge.
3353 * In that case, we need to call pre_destroy() again. check it here.
3354 */
c0ff4b85 3355 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3356}
78fb7466 3357
ab936cbc
KH
3358/*
3359 * At replace page cache, newpage is not under any memcg but it's on
3360 * LRU. So, this function doesn't touch res_counter but handles LRU
3361 * in correct way. Both pages are locked so we cannot race with uncharge.
3362 */
3363void mem_cgroup_replace_page_cache(struct page *oldpage,
3364 struct page *newpage)
3365{
3366 struct mem_cgroup *memcg;
3367 struct page_cgroup *pc;
ab936cbc 3368 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3369
3370 if (mem_cgroup_disabled())
3371 return;
3372
3373 pc = lookup_page_cgroup(oldpage);
3374 /* fix accounting on old pages */
3375 lock_page_cgroup(pc);
3376 memcg = pc->mem_cgroup;
b2402857 3377 mem_cgroup_charge_statistics(memcg, false, -1);
ab936cbc
KH
3378 ClearPageCgroupUsed(pc);
3379 unlock_page_cgroup(pc);
3380
3381 if (PageSwapBacked(oldpage))
3382 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3383
ab936cbc
KH
3384 /*
3385 * Even if newpage->mapping was NULL before starting replacement,
3386 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3387 * LRU while we overwrite pc->mem_cgroup.
3388 */
ce587e65 3389 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3390}
3391
f212ad7c
DN
3392#ifdef CONFIG_DEBUG_VM
3393static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3394{
3395 struct page_cgroup *pc;
3396
3397 pc = lookup_page_cgroup(page);
cfa44946
JW
3398 /*
3399 * Can be NULL while feeding pages into the page allocator for
3400 * the first time, i.e. during boot or memory hotplug;
3401 * or when mem_cgroup_disabled().
3402 */
f212ad7c
DN
3403 if (likely(pc) && PageCgroupUsed(pc))
3404 return pc;
3405 return NULL;
3406}
3407
3408bool mem_cgroup_bad_page_check(struct page *page)
3409{
3410 if (mem_cgroup_disabled())
3411 return false;
3412
3413 return lookup_page_cgroup_used(page) != NULL;
3414}
3415
3416void mem_cgroup_print_bad_page(struct page *page)
3417{
3418 struct page_cgroup *pc;
3419
3420 pc = lookup_page_cgroup_used(page);
3421 if (pc) {
90b3feae 3422 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3423 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3424 }
3425}
3426#endif
3427
8c7c6e34
KH
3428static DEFINE_MUTEX(set_limit_mutex);
3429
d38d2a75 3430static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3431 unsigned long long val)
628f4235 3432{
81d39c20 3433 int retry_count;
3c11ecf4 3434 u64 memswlimit, memlimit;
628f4235 3435 int ret = 0;
81d39c20
KH
3436 int children = mem_cgroup_count_children(memcg);
3437 u64 curusage, oldusage;
3c11ecf4 3438 int enlarge;
81d39c20
KH
3439
3440 /*
3441 * For keeping hierarchical_reclaim simple, how long we should retry
3442 * is depends on callers. We set our retry-count to be function
3443 * of # of children which we should visit in this loop.
3444 */
3445 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3446
3447 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3448
3c11ecf4 3449 enlarge = 0;
8c7c6e34 3450 while (retry_count) {
628f4235
KH
3451 if (signal_pending(current)) {
3452 ret = -EINTR;
3453 break;
3454 }
8c7c6e34
KH
3455 /*
3456 * Rather than hide all in some function, I do this in
3457 * open coded manner. You see what this really does.
c0ff4b85 3458 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3459 */
3460 mutex_lock(&set_limit_mutex);
3461 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3462 if (memswlimit < val) {
3463 ret = -EINVAL;
3464 mutex_unlock(&set_limit_mutex);
628f4235
KH
3465 break;
3466 }
3c11ecf4
KH
3467
3468 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3469 if (memlimit < val)
3470 enlarge = 1;
3471
8c7c6e34 3472 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3473 if (!ret) {
3474 if (memswlimit == val)
3475 memcg->memsw_is_minimum = true;
3476 else
3477 memcg->memsw_is_minimum = false;
3478 }
8c7c6e34
KH
3479 mutex_unlock(&set_limit_mutex);
3480
3481 if (!ret)
3482 break;
3483
5660048c
JW
3484 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3485 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3486 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3487 /* Usage is reduced ? */
3488 if (curusage >= oldusage)
3489 retry_count--;
3490 else
3491 oldusage = curusage;
8c7c6e34 3492 }
3c11ecf4
KH
3493 if (!ret && enlarge)
3494 memcg_oom_recover(memcg);
14797e23 3495
8c7c6e34
KH
3496 return ret;
3497}
3498
338c8431
LZ
3499static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3500 unsigned long long val)
8c7c6e34 3501{
81d39c20 3502 int retry_count;
3c11ecf4 3503 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3504 int children = mem_cgroup_count_children(memcg);
3505 int ret = -EBUSY;
3c11ecf4 3506 int enlarge = 0;
8c7c6e34 3507
81d39c20
KH
3508 /* see mem_cgroup_resize_res_limit */
3509 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3510 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3511 while (retry_count) {
3512 if (signal_pending(current)) {
3513 ret = -EINTR;
3514 break;
3515 }
3516 /*
3517 * Rather than hide all in some function, I do this in
3518 * open coded manner. You see what this really does.
c0ff4b85 3519 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3520 */
3521 mutex_lock(&set_limit_mutex);
3522 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3523 if (memlimit > val) {
3524 ret = -EINVAL;
3525 mutex_unlock(&set_limit_mutex);
3526 break;
3527 }
3c11ecf4
KH
3528 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3529 if (memswlimit < val)
3530 enlarge = 1;
8c7c6e34 3531 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3532 if (!ret) {
3533 if (memlimit == val)
3534 memcg->memsw_is_minimum = true;
3535 else
3536 memcg->memsw_is_minimum = false;
3537 }
8c7c6e34
KH
3538 mutex_unlock(&set_limit_mutex);
3539
3540 if (!ret)
3541 break;
3542
5660048c
JW
3543 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3544 MEM_CGROUP_RECLAIM_NOSWAP |
3545 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3546 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3547 /* Usage is reduced ? */
8c7c6e34 3548 if (curusage >= oldusage)
628f4235 3549 retry_count--;
81d39c20
KH
3550 else
3551 oldusage = curusage;
628f4235 3552 }
3c11ecf4
KH
3553 if (!ret && enlarge)
3554 memcg_oom_recover(memcg);
628f4235
KH
3555 return ret;
3556}
3557
4e416953 3558unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3559 gfp_t gfp_mask,
3560 unsigned long *total_scanned)
4e416953
BS
3561{
3562 unsigned long nr_reclaimed = 0;
3563 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3564 unsigned long reclaimed;
3565 int loop = 0;
3566 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3567 unsigned long long excess;
0ae5e89c 3568 unsigned long nr_scanned;
4e416953
BS
3569
3570 if (order > 0)
3571 return 0;
3572
00918b6a 3573 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3574 /*
3575 * This loop can run a while, specially if mem_cgroup's continuously
3576 * keep exceeding their soft limit and putting the system under
3577 * pressure
3578 */
3579 do {
3580 if (next_mz)
3581 mz = next_mz;
3582 else
3583 mz = mem_cgroup_largest_soft_limit_node(mctz);
3584 if (!mz)
3585 break;
3586
0ae5e89c 3587 nr_scanned = 0;
d79154bb 3588 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3589 gfp_mask, &nr_scanned);
4e416953 3590 nr_reclaimed += reclaimed;
0ae5e89c 3591 *total_scanned += nr_scanned;
4e416953
BS
3592 spin_lock(&mctz->lock);
3593
3594 /*
3595 * If we failed to reclaim anything from this memory cgroup
3596 * it is time to move on to the next cgroup
3597 */
3598 next_mz = NULL;
3599 if (!reclaimed) {
3600 do {
3601 /*
3602 * Loop until we find yet another one.
3603 *
3604 * By the time we get the soft_limit lock
3605 * again, someone might have aded the
3606 * group back on the RB tree. Iterate to
3607 * make sure we get a different mem.
3608 * mem_cgroup_largest_soft_limit_node returns
3609 * NULL if no other cgroup is present on
3610 * the tree
3611 */
3612 next_mz =
3613 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3614 if (next_mz == mz)
d79154bb 3615 css_put(&next_mz->memcg->css);
39cc98f1 3616 else /* next_mz == NULL or other memcg */
4e416953
BS
3617 break;
3618 } while (1);
3619 }
d79154bb
HD
3620 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3621 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3622 /*
3623 * One school of thought says that we should not add
3624 * back the node to the tree if reclaim returns 0.
3625 * But our reclaim could return 0, simply because due
3626 * to priority we are exposing a smaller subset of
3627 * memory to reclaim from. Consider this as a longer
3628 * term TODO.
3629 */
ef8745c1 3630 /* If excess == 0, no tree ops */
d79154bb 3631 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3632 spin_unlock(&mctz->lock);
d79154bb 3633 css_put(&mz->memcg->css);
4e416953
BS
3634 loop++;
3635 /*
3636 * Could not reclaim anything and there are no more
3637 * mem cgroups to try or we seem to be looping without
3638 * reclaiming anything.
3639 */
3640 if (!nr_reclaimed &&
3641 (next_mz == NULL ||
3642 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3643 break;
3644 } while (!nr_reclaimed);
3645 if (next_mz)
d79154bb 3646 css_put(&next_mz->memcg->css);
4e416953
BS
3647 return nr_reclaimed;
3648}
3649
cc847582
KH
3650/*
3651 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3652 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3653 */
c0ff4b85 3654static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3655 int node, int zid, enum lru_list lru)
cc847582 3656{
08e552c6 3657 struct mem_cgroup_per_zone *mz;
08e552c6 3658 unsigned long flags, loop;
072c56c1 3659 struct list_head *list;
925b7673
JW
3660 struct page *busy;
3661 struct zone *zone;
f817ed48 3662 int ret = 0;
072c56c1 3663
08e552c6 3664 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3665 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3666 list = &mz->lruvec.lists[lru];
cc847582 3667
1eb49272 3668 loop = mz->lru_size[lru];
f817ed48
KH
3669 /* give some margin against EBUSY etc...*/
3670 loop += 256;
3671 busy = NULL;
3672 while (loop--) {
925b7673 3673 struct page_cgroup *pc;
5564e88b
JW
3674 struct page *page;
3675
f817ed48 3676 ret = 0;
08e552c6 3677 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3678 if (list_empty(list)) {
08e552c6 3679 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3680 break;
f817ed48 3681 }
925b7673
JW
3682 page = list_entry(list->prev, struct page, lru);
3683 if (busy == page) {
3684 list_move(&page->lru, list);
648bcc77 3685 busy = NULL;
08e552c6 3686 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3687 continue;
3688 }
08e552c6 3689 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3690
925b7673 3691 pc = lookup_page_cgroup(page);
5564e88b 3692
c0ff4b85 3693 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
38c5d72f 3694 if (ret == -ENOMEM || ret == -EINTR)
52d4b9ac 3695 break;
f817ed48
KH
3696
3697 if (ret == -EBUSY || ret == -EINVAL) {
3698 /* found lock contention or "pc" is obsolete. */
925b7673 3699 busy = page;
f817ed48
KH
3700 cond_resched();
3701 } else
3702 busy = NULL;
cc847582 3703 }
08e552c6 3704
f817ed48
KH
3705 if (!ret && !list_empty(list))
3706 return -EBUSY;
3707 return ret;
cc847582
KH
3708}
3709
3710/*
3711 * make mem_cgroup's charge to be 0 if there is no task.
3712 * This enables deleting this mem_cgroup.
3713 */
c0ff4b85 3714static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3715{
f817ed48
KH
3716 int ret;
3717 int node, zid, shrink;
3718 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3719 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3720
c0ff4b85 3721 css_get(&memcg->css);
f817ed48
KH
3722
3723 shrink = 0;
c1e862c1
KH
3724 /* should free all ? */
3725 if (free_all)
3726 goto try_to_free;
f817ed48 3727move_account:
fce66477 3728 do {
f817ed48 3729 ret = -EBUSY;
c1e862c1
KH
3730 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3731 goto out;
3732 ret = -EINTR;
3733 if (signal_pending(current))
cc847582 3734 goto out;
52d4b9ac
KH
3735 /* This is for making all *used* pages to be on LRU. */
3736 lru_add_drain_all();
c0ff4b85 3737 drain_all_stock_sync(memcg);
f817ed48 3738 ret = 0;
c0ff4b85 3739 mem_cgroup_start_move(memcg);
299b4eaa 3740 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3741 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3742 enum lru_list lru;
3743 for_each_lru(lru) {
c0ff4b85 3744 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3745 node, zid, lru);
f817ed48
KH
3746 if (ret)
3747 break;
3748 }
1ecaab2b 3749 }
f817ed48
KH
3750 if (ret)
3751 break;
3752 }
c0ff4b85
R
3753 mem_cgroup_end_move(memcg);
3754 memcg_oom_recover(memcg);
f817ed48
KH
3755 /* it seems parent cgroup doesn't have enough mem */
3756 if (ret == -ENOMEM)
3757 goto try_to_free;
52d4b9ac 3758 cond_resched();
fce66477 3759 /* "ret" should also be checked to ensure all lists are empty. */
569530fb 3760 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
cc847582 3761out:
c0ff4b85 3762 css_put(&memcg->css);
cc847582 3763 return ret;
f817ed48
KH
3764
3765try_to_free:
c1e862c1
KH
3766 /* returns EBUSY if there is a task or if we come here twice. */
3767 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3768 ret = -EBUSY;
3769 goto out;
3770 }
c1e862c1
KH
3771 /* we call try-to-free pages for make this cgroup empty */
3772 lru_add_drain_all();
f817ed48
KH
3773 /* try to free all pages in this cgroup */
3774 shrink = 1;
569530fb 3775 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3776 int progress;
c1e862c1
KH
3777
3778 if (signal_pending(current)) {
3779 ret = -EINTR;
3780 goto out;
3781 }
c0ff4b85 3782 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3783 false);
c1e862c1 3784 if (!progress) {
f817ed48 3785 nr_retries--;
c1e862c1 3786 /* maybe some writeback is necessary */
8aa7e847 3787 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3788 }
f817ed48
KH
3789
3790 }
08e552c6 3791 lru_add_drain();
f817ed48 3792 /* try move_account...there may be some *locked* pages. */
fce66477 3793 goto move_account;
cc847582
KH
3794}
3795
c1e862c1
KH
3796int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3797{
3798 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3799}
3800
3801
18f59ea7
BS
3802static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3803{
3804 return mem_cgroup_from_cont(cont)->use_hierarchy;
3805}
3806
3807static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3808 u64 val)
3809{
3810 int retval = 0;
c0ff4b85 3811 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3812 struct cgroup *parent = cont->parent;
c0ff4b85 3813 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3814
3815 if (parent)
c0ff4b85 3816 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3817
3818 cgroup_lock();
3819 /*
af901ca1 3820 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3821 * in the child subtrees. If it is unset, then the change can
3822 * occur, provided the current cgroup has no children.
3823 *
3824 * For the root cgroup, parent_mem is NULL, we allow value to be
3825 * set if there are no children.
3826 */
c0ff4b85 3827 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3828 (val == 1 || val == 0)) {
3829 if (list_empty(&cont->children))
c0ff4b85 3830 memcg->use_hierarchy = val;
18f59ea7
BS
3831 else
3832 retval = -EBUSY;
3833 } else
3834 retval = -EINVAL;
3835 cgroup_unlock();
3836
3837 return retval;
3838}
3839
0c3e73e8 3840
c0ff4b85 3841static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3842 enum mem_cgroup_stat_index idx)
0c3e73e8 3843{
7d74b06f 3844 struct mem_cgroup *iter;
7a159cc9 3845 long val = 0;
0c3e73e8 3846
7a159cc9 3847 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3848 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3849 val += mem_cgroup_read_stat(iter, idx);
3850
3851 if (val < 0) /* race ? */
3852 val = 0;
3853 return val;
0c3e73e8
BS
3854}
3855
c0ff4b85 3856static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3857{
7d74b06f 3858 u64 val;
104f3928 3859
c0ff4b85 3860 if (!mem_cgroup_is_root(memcg)) {
104f3928 3861 if (!swap)
65c64ce8 3862 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3863 else
65c64ce8 3864 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3865 }
3866
c0ff4b85
R
3867 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3868 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3869
7d74b06f 3870 if (swap)
c0ff4b85 3871 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3872
3873 return val << PAGE_SHIFT;
3874}
3875
af36f906
TH
3876static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3877 struct file *file, char __user *buf,
3878 size_t nbytes, loff_t *ppos)
8cdea7c0 3879{
c0ff4b85 3880 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3881 char str[64];
104f3928 3882 u64 val;
af36f906 3883 int type, name, len;
8c7c6e34
KH
3884
3885 type = MEMFILE_TYPE(cft->private);
3886 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3887
3888 if (!do_swap_account && type == _MEMSWAP)
3889 return -EOPNOTSUPP;
3890
8c7c6e34
KH
3891 switch (type) {
3892 case _MEM:
104f3928 3893 if (name == RES_USAGE)
c0ff4b85 3894 val = mem_cgroup_usage(memcg, false);
104f3928 3895 else
c0ff4b85 3896 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3897 break;
3898 case _MEMSWAP:
104f3928 3899 if (name == RES_USAGE)
c0ff4b85 3900 val = mem_cgroup_usage(memcg, true);
104f3928 3901 else
c0ff4b85 3902 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3903 break;
3904 default:
3905 BUG();
8c7c6e34 3906 }
af36f906
TH
3907
3908 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3909 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3910}
628f4235
KH
3911/*
3912 * The user of this function is...
3913 * RES_LIMIT.
3914 */
856c13aa
PM
3915static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3916 const char *buffer)
8cdea7c0 3917{
628f4235 3918 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3919 int type, name;
628f4235
KH
3920 unsigned long long val;
3921 int ret;
3922
8c7c6e34
KH
3923 type = MEMFILE_TYPE(cft->private);
3924 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3925
3926 if (!do_swap_account && type == _MEMSWAP)
3927 return -EOPNOTSUPP;
3928
8c7c6e34 3929 switch (name) {
628f4235 3930 case RES_LIMIT:
4b3bde4c
BS
3931 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3932 ret = -EINVAL;
3933 break;
3934 }
628f4235
KH
3935 /* This function does all necessary parse...reuse it */
3936 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3937 if (ret)
3938 break;
3939 if (type == _MEM)
628f4235 3940 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3941 else
3942 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3943 break;
296c81d8
BS
3944 case RES_SOFT_LIMIT:
3945 ret = res_counter_memparse_write_strategy(buffer, &val);
3946 if (ret)
3947 break;
3948 /*
3949 * For memsw, soft limits are hard to implement in terms
3950 * of semantics, for now, we support soft limits for
3951 * control without swap
3952 */
3953 if (type == _MEM)
3954 ret = res_counter_set_soft_limit(&memcg->res, val);
3955 else
3956 ret = -EINVAL;
3957 break;
628f4235
KH
3958 default:
3959 ret = -EINVAL; /* should be BUG() ? */
3960 break;
3961 }
3962 return ret;
8cdea7c0
BS
3963}
3964
fee7b548
KH
3965static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3966 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3967{
3968 struct cgroup *cgroup;
3969 unsigned long long min_limit, min_memsw_limit, tmp;
3970
3971 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3972 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3973 cgroup = memcg->css.cgroup;
3974 if (!memcg->use_hierarchy)
3975 goto out;
3976
3977 while (cgroup->parent) {
3978 cgroup = cgroup->parent;
3979 memcg = mem_cgroup_from_cont(cgroup);
3980 if (!memcg->use_hierarchy)
3981 break;
3982 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3983 min_limit = min(min_limit, tmp);
3984 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3985 min_memsw_limit = min(min_memsw_limit, tmp);
3986 }
3987out:
3988 *mem_limit = min_limit;
3989 *memsw_limit = min_memsw_limit;
fee7b548
KH
3990}
3991
29f2a4da 3992static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3993{
af36f906 3994 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3995 int type, name;
c84872e1 3996
8c7c6e34
KH
3997 type = MEMFILE_TYPE(event);
3998 name = MEMFILE_ATTR(event);
af36f906
TH
3999
4000 if (!do_swap_account && type == _MEMSWAP)
4001 return -EOPNOTSUPP;
4002
8c7c6e34 4003 switch (name) {
29f2a4da 4004 case RES_MAX_USAGE:
8c7c6e34 4005 if (type == _MEM)
c0ff4b85 4006 res_counter_reset_max(&memcg->res);
8c7c6e34 4007 else
c0ff4b85 4008 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4009 break;
4010 case RES_FAILCNT:
8c7c6e34 4011 if (type == _MEM)
c0ff4b85 4012 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4013 else
c0ff4b85 4014 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4015 break;
4016 }
f64c3f54 4017
85cc59db 4018 return 0;
c84872e1
PE
4019}
4020
7dc74be0
DN
4021static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4022 struct cftype *cft)
4023{
4024 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4025}
4026
02491447 4027#ifdef CONFIG_MMU
7dc74be0
DN
4028static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4029 struct cftype *cft, u64 val)
4030{
c0ff4b85 4031 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4032
4033 if (val >= (1 << NR_MOVE_TYPE))
4034 return -EINVAL;
4035 /*
4036 * We check this value several times in both in can_attach() and
4037 * attach(), so we need cgroup lock to prevent this value from being
4038 * inconsistent.
4039 */
4040 cgroup_lock();
c0ff4b85 4041 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4042 cgroup_unlock();
4043
4044 return 0;
4045}
02491447
DN
4046#else
4047static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4048 struct cftype *cft, u64 val)
4049{
4050 return -ENOSYS;
4051}
4052#endif
7dc74be0 4053
14067bb3
KH
4054
4055/* For read statistics */
4056enum {
4057 MCS_CACHE,
4058 MCS_RSS,
d8046582 4059 MCS_FILE_MAPPED,
14067bb3
KH
4060 MCS_PGPGIN,
4061 MCS_PGPGOUT,
1dd3a273 4062 MCS_SWAP,
456f998e
YH
4063 MCS_PGFAULT,
4064 MCS_PGMAJFAULT,
14067bb3
KH
4065 MCS_INACTIVE_ANON,
4066 MCS_ACTIVE_ANON,
4067 MCS_INACTIVE_FILE,
4068 MCS_ACTIVE_FILE,
4069 MCS_UNEVICTABLE,
4070 NR_MCS_STAT,
4071};
4072
4073struct mcs_total_stat {
4074 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4075};
4076
14067bb3
KH
4077struct {
4078 char *local_name;
4079 char *total_name;
4080} memcg_stat_strings[NR_MCS_STAT] = {
4081 {"cache", "total_cache"},
4082 {"rss", "total_rss"},
d69b042f 4083 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4084 {"pgpgin", "total_pgpgin"},
4085 {"pgpgout", "total_pgpgout"},
1dd3a273 4086 {"swap", "total_swap"},
456f998e
YH
4087 {"pgfault", "total_pgfault"},
4088 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4089 {"inactive_anon", "total_inactive_anon"},
4090 {"active_anon", "total_active_anon"},
4091 {"inactive_file", "total_inactive_file"},
4092 {"active_file", "total_active_file"},
4093 {"unevictable", "total_unevictable"}
4094};
4095
4096
7d74b06f 4097static void
c0ff4b85 4098mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4099{
14067bb3
KH
4100 s64 val;
4101
4102 /* per cpu stat */
c0ff4b85 4103 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4104 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4105 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4106 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4107 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4108 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4109 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4110 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4111 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4112 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4113 if (do_swap_account) {
c0ff4b85 4114 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4115 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4116 }
c0ff4b85 4117 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4118 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4119 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4120 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4121
4122 /* per zone stat */
c0ff4b85 4123 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4124 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4125 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4126 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4127 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4128 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4129 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4130 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4131 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4132 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4133}
4134
4135static void
c0ff4b85 4136mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4137{
7d74b06f
KH
4138 struct mem_cgroup *iter;
4139
c0ff4b85 4140 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4141 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4142}
4143
406eb0c9
YH
4144#ifdef CONFIG_NUMA
4145static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4146{
4147 int nid;
4148 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4149 unsigned long node_nr;
4150 struct cgroup *cont = m->private;
d79154bb 4151 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4152
d79154bb 4153 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4154 seq_printf(m, "total=%lu", total_nr);
4155 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4156 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4157 seq_printf(m, " N%d=%lu", nid, node_nr);
4158 }
4159 seq_putc(m, '\n');
4160
d79154bb 4161 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4162 seq_printf(m, "file=%lu", file_nr);
4163 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4164 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4165 LRU_ALL_FILE);
406eb0c9
YH
4166 seq_printf(m, " N%d=%lu", nid, node_nr);
4167 }
4168 seq_putc(m, '\n');
4169
d79154bb 4170 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4171 seq_printf(m, "anon=%lu", anon_nr);
4172 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4173 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4174 LRU_ALL_ANON);
406eb0c9
YH
4175 seq_printf(m, " N%d=%lu", nid, node_nr);
4176 }
4177 seq_putc(m, '\n');
4178
d79154bb 4179 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4180 seq_printf(m, "unevictable=%lu", unevictable_nr);
4181 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4182 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4183 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4184 seq_printf(m, " N%d=%lu", nid, node_nr);
4185 }
4186 seq_putc(m, '\n');
4187 return 0;
4188}
4189#endif /* CONFIG_NUMA */
4190
c64745cf
PM
4191static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4192 struct cgroup_map_cb *cb)
d2ceb9b7 4193{
d79154bb 4194 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
14067bb3 4195 struct mcs_total_stat mystat;
d2ceb9b7
KH
4196 int i;
4197
14067bb3 4198 memset(&mystat, 0, sizeof(mystat));
d79154bb 4199 mem_cgroup_get_local_stat(memcg, &mystat);
d2ceb9b7 4200
406eb0c9 4201
1dd3a273
DN
4202 for (i = 0; i < NR_MCS_STAT; i++) {
4203 if (i == MCS_SWAP && !do_swap_account)
4204 continue;
14067bb3 4205 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4206 }
7b854121 4207
14067bb3 4208 /* Hierarchical information */
fee7b548
KH
4209 {
4210 unsigned long long limit, memsw_limit;
d79154bb 4211 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
fee7b548
KH
4212 cb->fill(cb, "hierarchical_memory_limit", limit);
4213 if (do_swap_account)
4214 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4215 }
7f016ee8 4216
14067bb3 4217 memset(&mystat, 0, sizeof(mystat));
d79154bb 4218 mem_cgroup_get_total_stat(memcg, &mystat);
1dd3a273
DN
4219 for (i = 0; i < NR_MCS_STAT; i++) {
4220 if (i == MCS_SWAP && !do_swap_account)
4221 continue;
14067bb3 4222 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4223 }
14067bb3 4224
7f016ee8 4225#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4226 {
4227 int nid, zid;
4228 struct mem_cgroup_per_zone *mz;
4229 unsigned long recent_rotated[2] = {0, 0};
4230 unsigned long recent_scanned[2] = {0, 0};
4231
4232 for_each_online_node(nid)
4233 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4234 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
7f016ee8
KM
4235
4236 recent_rotated[0] +=
4237 mz->reclaim_stat.recent_rotated[0];
4238 recent_rotated[1] +=
4239 mz->reclaim_stat.recent_rotated[1];
4240 recent_scanned[0] +=
4241 mz->reclaim_stat.recent_scanned[0];
4242 recent_scanned[1] +=
4243 mz->reclaim_stat.recent_scanned[1];
4244 }
4245 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4246 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4247 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4248 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4249 }
4250#endif
4251
d2ceb9b7
KH
4252 return 0;
4253}
4254
a7885eb8
KM
4255static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4256{
4257 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4258
1f4c025b 4259 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4260}
4261
4262static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4263 u64 val)
4264{
4265 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4266 struct mem_cgroup *parent;
068b38c1 4267
a7885eb8
KM
4268 if (val > 100)
4269 return -EINVAL;
4270
4271 if (cgrp->parent == NULL)
4272 return -EINVAL;
4273
4274 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4275
4276 cgroup_lock();
4277
a7885eb8
KM
4278 /* If under hierarchy, only empty-root can set this value */
4279 if ((parent->use_hierarchy) ||
068b38c1
LZ
4280 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4281 cgroup_unlock();
a7885eb8 4282 return -EINVAL;
068b38c1 4283 }
a7885eb8 4284
a7885eb8 4285 memcg->swappiness = val;
a7885eb8 4286
068b38c1
LZ
4287 cgroup_unlock();
4288
a7885eb8
KM
4289 return 0;
4290}
4291
2e72b634
KS
4292static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4293{
4294 struct mem_cgroup_threshold_ary *t;
4295 u64 usage;
4296 int i;
4297
4298 rcu_read_lock();
4299 if (!swap)
2c488db2 4300 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4301 else
2c488db2 4302 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4303
4304 if (!t)
4305 goto unlock;
4306
4307 usage = mem_cgroup_usage(memcg, swap);
4308
4309 /*
4310 * current_threshold points to threshold just below usage.
4311 * If it's not true, a threshold was crossed after last
4312 * call of __mem_cgroup_threshold().
4313 */
5407a562 4314 i = t->current_threshold;
2e72b634
KS
4315
4316 /*
4317 * Iterate backward over array of thresholds starting from
4318 * current_threshold and check if a threshold is crossed.
4319 * If none of thresholds below usage is crossed, we read
4320 * only one element of the array here.
4321 */
4322 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4323 eventfd_signal(t->entries[i].eventfd, 1);
4324
4325 /* i = current_threshold + 1 */
4326 i++;
4327
4328 /*
4329 * Iterate forward over array of thresholds starting from
4330 * current_threshold+1 and check if a threshold is crossed.
4331 * If none of thresholds above usage is crossed, we read
4332 * only one element of the array here.
4333 */
4334 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4335 eventfd_signal(t->entries[i].eventfd, 1);
4336
4337 /* Update current_threshold */
5407a562 4338 t->current_threshold = i - 1;
2e72b634
KS
4339unlock:
4340 rcu_read_unlock();
4341}
4342
4343static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4344{
ad4ca5f4
KS
4345 while (memcg) {
4346 __mem_cgroup_threshold(memcg, false);
4347 if (do_swap_account)
4348 __mem_cgroup_threshold(memcg, true);
4349
4350 memcg = parent_mem_cgroup(memcg);
4351 }
2e72b634
KS
4352}
4353
4354static int compare_thresholds(const void *a, const void *b)
4355{
4356 const struct mem_cgroup_threshold *_a = a;
4357 const struct mem_cgroup_threshold *_b = b;
4358
4359 return _a->threshold - _b->threshold;
4360}
4361
c0ff4b85 4362static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4363{
4364 struct mem_cgroup_eventfd_list *ev;
4365
c0ff4b85 4366 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4367 eventfd_signal(ev->eventfd, 1);
4368 return 0;
4369}
4370
c0ff4b85 4371static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4372{
7d74b06f
KH
4373 struct mem_cgroup *iter;
4374
c0ff4b85 4375 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4376 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4377}
4378
4379static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4380 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4381{
4382 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4383 struct mem_cgroup_thresholds *thresholds;
4384 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4385 int type = MEMFILE_TYPE(cft->private);
4386 u64 threshold, usage;
2c488db2 4387 int i, size, ret;
2e72b634
KS
4388
4389 ret = res_counter_memparse_write_strategy(args, &threshold);
4390 if (ret)
4391 return ret;
4392
4393 mutex_lock(&memcg->thresholds_lock);
2c488db2 4394
2e72b634 4395 if (type == _MEM)
2c488db2 4396 thresholds = &memcg->thresholds;
2e72b634 4397 else if (type == _MEMSWAP)
2c488db2 4398 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4399 else
4400 BUG();
4401
4402 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4403
4404 /* Check if a threshold crossed before adding a new one */
2c488db2 4405 if (thresholds->primary)
2e72b634
KS
4406 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4407
2c488db2 4408 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4409
4410 /* Allocate memory for new array of thresholds */
2c488db2 4411 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4412 GFP_KERNEL);
2c488db2 4413 if (!new) {
2e72b634
KS
4414 ret = -ENOMEM;
4415 goto unlock;
4416 }
2c488db2 4417 new->size = size;
2e72b634
KS
4418
4419 /* Copy thresholds (if any) to new array */
2c488db2
KS
4420 if (thresholds->primary) {
4421 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4422 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4423 }
4424
2e72b634 4425 /* Add new threshold */
2c488db2
KS
4426 new->entries[size - 1].eventfd = eventfd;
4427 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4428
4429 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4430 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4431 compare_thresholds, NULL);
4432
4433 /* Find current threshold */
2c488db2 4434 new->current_threshold = -1;
2e72b634 4435 for (i = 0; i < size; i++) {
2c488db2 4436 if (new->entries[i].threshold < usage) {
2e72b634 4437 /*
2c488db2
KS
4438 * new->current_threshold will not be used until
4439 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4440 * it here.
4441 */
2c488db2 4442 ++new->current_threshold;
2e72b634
KS
4443 }
4444 }
4445
2c488db2
KS
4446 /* Free old spare buffer and save old primary buffer as spare */
4447 kfree(thresholds->spare);
4448 thresholds->spare = thresholds->primary;
4449
4450 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4451
907860ed 4452 /* To be sure that nobody uses thresholds */
2e72b634
KS
4453 synchronize_rcu();
4454
2e72b634
KS
4455unlock:
4456 mutex_unlock(&memcg->thresholds_lock);
4457
4458 return ret;
4459}
4460
907860ed 4461static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4462 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4463{
4464 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4465 struct mem_cgroup_thresholds *thresholds;
4466 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4467 int type = MEMFILE_TYPE(cft->private);
4468 u64 usage;
2c488db2 4469 int i, j, size;
2e72b634
KS
4470
4471 mutex_lock(&memcg->thresholds_lock);
4472 if (type == _MEM)
2c488db2 4473 thresholds = &memcg->thresholds;
2e72b634 4474 else if (type == _MEMSWAP)
2c488db2 4475 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4476 else
4477 BUG();
4478
371528ca
AV
4479 if (!thresholds->primary)
4480 goto unlock;
4481
2e72b634
KS
4482 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4483
4484 /* Check if a threshold crossed before removing */
4485 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4486
4487 /* Calculate new number of threshold */
2c488db2
KS
4488 size = 0;
4489 for (i = 0; i < thresholds->primary->size; i++) {
4490 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4491 size++;
4492 }
4493
2c488db2 4494 new = thresholds->spare;
907860ed 4495
2e72b634
KS
4496 /* Set thresholds array to NULL if we don't have thresholds */
4497 if (!size) {
2c488db2
KS
4498 kfree(new);
4499 new = NULL;
907860ed 4500 goto swap_buffers;
2e72b634
KS
4501 }
4502
2c488db2 4503 new->size = size;
2e72b634
KS
4504
4505 /* Copy thresholds and find current threshold */
2c488db2
KS
4506 new->current_threshold = -1;
4507 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4508 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4509 continue;
4510
2c488db2
KS
4511 new->entries[j] = thresholds->primary->entries[i];
4512 if (new->entries[j].threshold < usage) {
2e72b634 4513 /*
2c488db2 4514 * new->current_threshold will not be used
2e72b634
KS
4515 * until rcu_assign_pointer(), so it's safe to increment
4516 * it here.
4517 */
2c488db2 4518 ++new->current_threshold;
2e72b634
KS
4519 }
4520 j++;
4521 }
4522
907860ed 4523swap_buffers:
2c488db2
KS
4524 /* Swap primary and spare array */
4525 thresholds->spare = thresholds->primary;
8c757763
SZ
4526 /* If all events are unregistered, free the spare array */
4527 if (!new) {
4528 kfree(thresholds->spare);
4529 thresholds->spare = NULL;
4530 }
4531
2c488db2 4532 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4533
907860ed 4534 /* To be sure that nobody uses thresholds */
2e72b634 4535 synchronize_rcu();
371528ca 4536unlock:
2e72b634 4537 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4538}
c1e862c1 4539
9490ff27
KH
4540static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4541 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4542{
4543 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4544 struct mem_cgroup_eventfd_list *event;
4545 int type = MEMFILE_TYPE(cft->private);
4546
4547 BUG_ON(type != _OOM_TYPE);
4548 event = kmalloc(sizeof(*event), GFP_KERNEL);
4549 if (!event)
4550 return -ENOMEM;
4551
1af8efe9 4552 spin_lock(&memcg_oom_lock);
9490ff27
KH
4553
4554 event->eventfd = eventfd;
4555 list_add(&event->list, &memcg->oom_notify);
4556
4557 /* already in OOM ? */
79dfdacc 4558 if (atomic_read(&memcg->under_oom))
9490ff27 4559 eventfd_signal(eventfd, 1);
1af8efe9 4560 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4561
4562 return 0;
4563}
4564
907860ed 4565static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4566 struct cftype *cft, struct eventfd_ctx *eventfd)
4567{
c0ff4b85 4568 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4569 struct mem_cgroup_eventfd_list *ev, *tmp;
4570 int type = MEMFILE_TYPE(cft->private);
4571
4572 BUG_ON(type != _OOM_TYPE);
4573
1af8efe9 4574 spin_lock(&memcg_oom_lock);
9490ff27 4575
c0ff4b85 4576 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4577 if (ev->eventfd == eventfd) {
4578 list_del(&ev->list);
4579 kfree(ev);
4580 }
4581 }
4582
1af8efe9 4583 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4584}
4585
3c11ecf4
KH
4586static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4587 struct cftype *cft, struct cgroup_map_cb *cb)
4588{
c0ff4b85 4589 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4590
c0ff4b85 4591 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4592
c0ff4b85 4593 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4594 cb->fill(cb, "under_oom", 1);
4595 else
4596 cb->fill(cb, "under_oom", 0);
4597 return 0;
4598}
4599
3c11ecf4
KH
4600static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4601 struct cftype *cft, u64 val)
4602{
c0ff4b85 4603 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4604 struct mem_cgroup *parent;
4605
4606 /* cannot set to root cgroup and only 0 and 1 are allowed */
4607 if (!cgrp->parent || !((val == 0) || (val == 1)))
4608 return -EINVAL;
4609
4610 parent = mem_cgroup_from_cont(cgrp->parent);
4611
4612 cgroup_lock();
4613 /* oom-kill-disable is a flag for subhierarchy. */
4614 if ((parent->use_hierarchy) ||
c0ff4b85 4615 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4616 cgroup_unlock();
4617 return -EINVAL;
4618 }
c0ff4b85 4619 memcg->oom_kill_disable = val;
4d845ebf 4620 if (!val)
c0ff4b85 4621 memcg_oom_recover(memcg);
3c11ecf4
KH
4622 cgroup_unlock();
4623 return 0;
4624}
4625
406eb0c9
YH
4626#ifdef CONFIG_NUMA
4627static const struct file_operations mem_control_numa_stat_file_operations = {
4628 .read = seq_read,
4629 .llseek = seq_lseek,
4630 .release = single_release,
4631};
4632
4633static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4634{
4635 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4636
4637 file->f_op = &mem_control_numa_stat_file_operations;
4638 return single_open(file, mem_control_numa_stat_show, cont);
4639}
4640#endif /* CONFIG_NUMA */
4641
e5671dfa 4642#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
cbe128e3 4643static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4644{
1d62e436 4645 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4646};
4647
1d62e436 4648static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4649{
1d62e436 4650 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4651}
e5671dfa 4652#else
cbe128e3 4653static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4654{
4655 return 0;
4656}
d1a4c0b3 4657
1d62e436 4658static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4659{
4660}
e5671dfa
GC
4661#endif
4662
8cdea7c0
BS
4663static struct cftype mem_cgroup_files[] = {
4664 {
0eea1030 4665 .name = "usage_in_bytes",
8c7c6e34 4666 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4667 .read = mem_cgroup_read,
9490ff27
KH
4668 .register_event = mem_cgroup_usage_register_event,
4669 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4670 },
c84872e1
PE
4671 {
4672 .name = "max_usage_in_bytes",
8c7c6e34 4673 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4674 .trigger = mem_cgroup_reset,
af36f906 4675 .read = mem_cgroup_read,
c84872e1 4676 },
8cdea7c0 4677 {
0eea1030 4678 .name = "limit_in_bytes",
8c7c6e34 4679 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4680 .write_string = mem_cgroup_write,
af36f906 4681 .read = mem_cgroup_read,
8cdea7c0 4682 },
296c81d8
BS
4683 {
4684 .name = "soft_limit_in_bytes",
4685 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4686 .write_string = mem_cgroup_write,
af36f906 4687 .read = mem_cgroup_read,
296c81d8 4688 },
8cdea7c0
BS
4689 {
4690 .name = "failcnt",
8c7c6e34 4691 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4692 .trigger = mem_cgroup_reset,
af36f906 4693 .read = mem_cgroup_read,
8cdea7c0 4694 },
d2ceb9b7
KH
4695 {
4696 .name = "stat",
c64745cf 4697 .read_map = mem_control_stat_show,
d2ceb9b7 4698 },
c1e862c1
KH
4699 {
4700 .name = "force_empty",
4701 .trigger = mem_cgroup_force_empty_write,
4702 },
18f59ea7
BS
4703 {
4704 .name = "use_hierarchy",
4705 .write_u64 = mem_cgroup_hierarchy_write,
4706 .read_u64 = mem_cgroup_hierarchy_read,
4707 },
a7885eb8
KM
4708 {
4709 .name = "swappiness",
4710 .read_u64 = mem_cgroup_swappiness_read,
4711 .write_u64 = mem_cgroup_swappiness_write,
4712 },
7dc74be0
DN
4713 {
4714 .name = "move_charge_at_immigrate",
4715 .read_u64 = mem_cgroup_move_charge_read,
4716 .write_u64 = mem_cgroup_move_charge_write,
4717 },
9490ff27
KH
4718 {
4719 .name = "oom_control",
3c11ecf4
KH
4720 .read_map = mem_cgroup_oom_control_read,
4721 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4722 .register_event = mem_cgroup_oom_register_event,
4723 .unregister_event = mem_cgroup_oom_unregister_event,
4724 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4725 },
406eb0c9
YH
4726#ifdef CONFIG_NUMA
4727 {
4728 .name = "numa_stat",
4729 .open = mem_control_numa_stat_open,
89577127 4730 .mode = S_IRUGO,
406eb0c9
YH
4731 },
4732#endif
8c7c6e34 4733#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
8c7c6e34
KH
4734 {
4735 .name = "memsw.usage_in_bytes",
4736 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4737 .read = mem_cgroup_read,
9490ff27
KH
4738 .register_event = mem_cgroup_usage_register_event,
4739 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4740 },
4741 {
4742 .name = "memsw.max_usage_in_bytes",
4743 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4744 .trigger = mem_cgroup_reset,
af36f906 4745 .read = mem_cgroup_read,
8c7c6e34
KH
4746 },
4747 {
4748 .name = "memsw.limit_in_bytes",
4749 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4750 .write_string = mem_cgroup_write,
af36f906 4751 .read = mem_cgroup_read,
8c7c6e34
KH
4752 },
4753 {
4754 .name = "memsw.failcnt",
4755 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4756 .trigger = mem_cgroup_reset,
af36f906 4757 .read = mem_cgroup_read,
8c7c6e34 4758 },
8c7c6e34 4759#endif
6bc10349 4760 { }, /* terminate */
af36f906 4761};
8c7c6e34 4762
c0ff4b85 4763static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4764{
4765 struct mem_cgroup_per_node *pn;
1ecaab2b 4766 struct mem_cgroup_per_zone *mz;
f156ab93 4767 enum lru_list lru;
41e3355d 4768 int zone, tmp = node;
1ecaab2b
KH
4769 /*
4770 * This routine is called against possible nodes.
4771 * But it's BUG to call kmalloc() against offline node.
4772 *
4773 * TODO: this routine can waste much memory for nodes which will
4774 * never be onlined. It's better to use memory hotplug callback
4775 * function.
4776 */
41e3355d
KH
4777 if (!node_state(node, N_NORMAL_MEMORY))
4778 tmp = -1;
17295c88 4779 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4780 if (!pn)
4781 return 1;
1ecaab2b 4782
1ecaab2b
KH
4783 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4784 mz = &pn->zoneinfo[zone];
f156ab93
HD
4785 for_each_lru(lru)
4786 INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
f64c3f54 4787 mz->usage_in_excess = 0;
4e416953 4788 mz->on_tree = false;
d79154bb 4789 mz->memcg = memcg;
1ecaab2b 4790 }
0a619e58 4791 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4792 return 0;
4793}
4794
c0ff4b85 4795static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4796{
c0ff4b85 4797 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4798}
4799
33327948
KH
4800static struct mem_cgroup *mem_cgroup_alloc(void)
4801{
d79154bb 4802 struct mem_cgroup *memcg;
c62b1a3b 4803 int size = sizeof(struct mem_cgroup);
33327948 4804
c62b1a3b 4805 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4806 if (size < PAGE_SIZE)
d79154bb 4807 memcg = kzalloc(size, GFP_KERNEL);
33327948 4808 else
d79154bb 4809 memcg = vzalloc(size);
33327948 4810
d79154bb 4811 if (!memcg)
e7bbcdf3
DC
4812 return NULL;
4813
d79154bb
HD
4814 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4815 if (!memcg->stat)
d2e61b8d 4816 goto out_free;
d79154bb
HD
4817 spin_lock_init(&memcg->pcp_counter_lock);
4818 return memcg;
d2e61b8d
DC
4819
4820out_free:
4821 if (size < PAGE_SIZE)
d79154bb 4822 kfree(memcg);
d2e61b8d 4823 else
d79154bb 4824 vfree(memcg);
d2e61b8d 4825 return NULL;
33327948
KH
4826}
4827
59927fb9
HD
4828/*
4829 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4830 * but in process context. The work_freeing structure is overlaid
4831 * on the rcu_freeing structure, which itself is overlaid on memsw.
4832 */
4833static void vfree_work(struct work_struct *work)
4834{
4835 struct mem_cgroup *memcg;
4836
4837 memcg = container_of(work, struct mem_cgroup, work_freeing);
4838 vfree(memcg);
4839}
4840static void vfree_rcu(struct rcu_head *rcu_head)
4841{
4842 struct mem_cgroup *memcg;
4843
4844 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4845 INIT_WORK(&memcg->work_freeing, vfree_work);
4846 schedule_work(&memcg->work_freeing);
4847}
4848
8c7c6e34
KH
4849/*
4850 * At destroying mem_cgroup, references from swap_cgroup can remain.
4851 * (scanning all at force_empty is too costly...)
4852 *
4853 * Instead of clearing all references at force_empty, we remember
4854 * the number of reference from swap_cgroup and free mem_cgroup when
4855 * it goes down to 0.
4856 *
8c7c6e34
KH
4857 * Removal of cgroup itself succeeds regardless of refs from swap.
4858 */
4859
c0ff4b85 4860static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4861{
08e552c6
KH
4862 int node;
4863
c0ff4b85
R
4864 mem_cgroup_remove_from_trees(memcg);
4865 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4866
3ed28fa1 4867 for_each_node(node)
c0ff4b85 4868 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4869
c0ff4b85 4870 free_percpu(memcg->stat);
c62b1a3b 4871 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
59927fb9 4872 kfree_rcu(memcg, rcu_freeing);
33327948 4873 else
59927fb9 4874 call_rcu(&memcg->rcu_freeing, vfree_rcu);
33327948
KH
4875}
4876
c0ff4b85 4877static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4878{
c0ff4b85 4879 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4880}
4881
c0ff4b85 4882static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4883{
c0ff4b85
R
4884 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4885 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4886 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4887 if (parent)
4888 mem_cgroup_put(parent);
4889 }
8c7c6e34
KH
4890}
4891
c0ff4b85 4892static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4893{
c0ff4b85 4894 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4895}
4896
7bcc1bb1
DN
4897/*
4898 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4899 */
e1aab161 4900struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4901{
c0ff4b85 4902 if (!memcg->res.parent)
7bcc1bb1 4903 return NULL;
c0ff4b85 4904 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4905}
e1aab161 4906EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4907
c077719b
KH
4908#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4909static void __init enable_swap_cgroup(void)
4910{
f8d66542 4911 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4912 do_swap_account = 1;
4913}
4914#else
4915static void __init enable_swap_cgroup(void)
4916{
4917}
4918#endif
4919
f64c3f54
BS
4920static int mem_cgroup_soft_limit_tree_init(void)
4921{
4922 struct mem_cgroup_tree_per_node *rtpn;
4923 struct mem_cgroup_tree_per_zone *rtpz;
4924 int tmp, node, zone;
4925
3ed28fa1 4926 for_each_node(node) {
f64c3f54
BS
4927 tmp = node;
4928 if (!node_state(node, N_NORMAL_MEMORY))
4929 tmp = -1;
4930 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4931 if (!rtpn)
c3cecc68 4932 goto err_cleanup;
f64c3f54
BS
4933
4934 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4935
4936 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4937 rtpz = &rtpn->rb_tree_per_zone[zone];
4938 rtpz->rb_root = RB_ROOT;
4939 spin_lock_init(&rtpz->lock);
4940 }
4941 }
4942 return 0;
c3cecc68
MH
4943
4944err_cleanup:
3ed28fa1 4945 for_each_node(node) {
c3cecc68
MH
4946 if (!soft_limit_tree.rb_tree_per_node[node])
4947 break;
4948 kfree(soft_limit_tree.rb_tree_per_node[node]);
4949 soft_limit_tree.rb_tree_per_node[node] = NULL;
4950 }
4951 return 1;
4952
f64c3f54
BS
4953}
4954
0eb253e2 4955static struct cgroup_subsys_state * __ref
761b3ef5 4956mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4957{
c0ff4b85 4958 struct mem_cgroup *memcg, *parent;
04046e1a 4959 long error = -ENOMEM;
6d12e2d8 4960 int node;
8cdea7c0 4961
c0ff4b85
R
4962 memcg = mem_cgroup_alloc();
4963 if (!memcg)
04046e1a 4964 return ERR_PTR(error);
78fb7466 4965
3ed28fa1 4966 for_each_node(node)
c0ff4b85 4967 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4968 goto free_out;
f64c3f54 4969
c077719b 4970 /* root ? */
28dbc4b6 4971 if (cont->parent == NULL) {
cdec2e42 4972 int cpu;
c077719b 4973 enable_swap_cgroup();
28dbc4b6 4974 parent = NULL;
f64c3f54
BS
4975 if (mem_cgroup_soft_limit_tree_init())
4976 goto free_out;
a41c58a6 4977 root_mem_cgroup = memcg;
cdec2e42
KH
4978 for_each_possible_cpu(cpu) {
4979 struct memcg_stock_pcp *stock =
4980 &per_cpu(memcg_stock, cpu);
4981 INIT_WORK(&stock->work, drain_local_stock);
4982 }
711d3d2c 4983 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4984 } else {
28dbc4b6 4985 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4986 memcg->use_hierarchy = parent->use_hierarchy;
4987 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4988 }
28dbc4b6 4989
18f59ea7 4990 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4991 res_counter_init(&memcg->res, &parent->res);
4992 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4993 /*
4994 * We increment refcnt of the parent to ensure that we can
4995 * safely access it on res_counter_charge/uncharge.
4996 * This refcnt will be decremented when freeing this
4997 * mem_cgroup(see mem_cgroup_put).
4998 */
4999 mem_cgroup_get(parent);
18f59ea7 5000 } else {
c0ff4b85
R
5001 res_counter_init(&memcg->res, NULL);
5002 res_counter_init(&memcg->memsw, NULL);
18f59ea7 5003 }
c0ff4b85
R
5004 memcg->last_scanned_node = MAX_NUMNODES;
5005 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 5006
a7885eb8 5007 if (parent)
c0ff4b85
R
5008 memcg->swappiness = mem_cgroup_swappiness(parent);
5009 atomic_set(&memcg->refcnt, 1);
5010 memcg->move_charge_at_immigrate = 0;
5011 mutex_init(&memcg->thresholds_lock);
312734c0 5012 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
5013
5014 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5015 if (error) {
5016 /*
5017 * We call put now because our (and parent's) refcnts
5018 * are already in place. mem_cgroup_put() will internally
5019 * call __mem_cgroup_free, so return directly
5020 */
5021 mem_cgroup_put(memcg);
5022 return ERR_PTR(error);
5023 }
c0ff4b85 5024 return &memcg->css;
6d12e2d8 5025free_out:
c0ff4b85 5026 __mem_cgroup_free(memcg);
04046e1a 5027 return ERR_PTR(error);
8cdea7c0
BS
5028}
5029
761b3ef5 5030static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 5031{
c0ff4b85 5032 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5033
c0ff4b85 5034 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5035}
5036
761b3ef5 5037static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 5038{
c0ff4b85 5039 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5040
1d62e436 5041 kmem_cgroup_destroy(memcg);
d1a4c0b3 5042
c0ff4b85 5043 mem_cgroup_put(memcg);
8cdea7c0
BS
5044}
5045
02491447 5046#ifdef CONFIG_MMU
7dc74be0 5047/* Handlers for move charge at task migration. */
854ffa8d
DN
5048#define PRECHARGE_COUNT_AT_ONCE 256
5049static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5050{
854ffa8d
DN
5051 int ret = 0;
5052 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5053 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5054
c0ff4b85 5055 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5056 mc.precharge += count;
5057 /* we don't need css_get for root */
5058 return ret;
5059 }
5060 /* try to charge at once */
5061 if (count > 1) {
5062 struct res_counter *dummy;
5063 /*
c0ff4b85 5064 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5065 * by cgroup_lock_live_cgroup() that it is not removed and we
5066 * are still under the same cgroup_mutex. So we can postpone
5067 * css_get().
5068 */
c0ff4b85 5069 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5070 goto one_by_one;
c0ff4b85 5071 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5072 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5073 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5074 goto one_by_one;
5075 }
5076 mc.precharge += count;
854ffa8d
DN
5077 return ret;
5078 }
5079one_by_one:
5080 /* fall back to one by one charge */
5081 while (count--) {
5082 if (signal_pending(current)) {
5083 ret = -EINTR;
5084 break;
5085 }
5086 if (!batch_count--) {
5087 batch_count = PRECHARGE_COUNT_AT_ONCE;
5088 cond_resched();
5089 }
c0ff4b85
R
5090 ret = __mem_cgroup_try_charge(NULL,
5091 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5092 if (ret)
854ffa8d 5093 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5094 return ret;
854ffa8d
DN
5095 mc.precharge++;
5096 }
4ffef5fe
DN
5097 return ret;
5098}
5099
5100/**
8d32ff84 5101 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5102 * @vma: the vma the pte to be checked belongs
5103 * @addr: the address corresponding to the pte to be checked
5104 * @ptent: the pte to be checked
02491447 5105 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5106 *
5107 * Returns
5108 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5109 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5110 * move charge. if @target is not NULL, the page is stored in target->page
5111 * with extra refcnt got(Callers should handle it).
02491447
DN
5112 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5113 * target for charge migration. if @target is not NULL, the entry is stored
5114 * in target->ent.
4ffef5fe
DN
5115 *
5116 * Called with pte lock held.
5117 */
4ffef5fe
DN
5118union mc_target {
5119 struct page *page;
02491447 5120 swp_entry_t ent;
4ffef5fe
DN
5121};
5122
4ffef5fe 5123enum mc_target_type {
8d32ff84 5124 MC_TARGET_NONE = 0,
4ffef5fe 5125 MC_TARGET_PAGE,
02491447 5126 MC_TARGET_SWAP,
4ffef5fe
DN
5127};
5128
90254a65
DN
5129static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5130 unsigned long addr, pte_t ptent)
4ffef5fe 5131{
90254a65 5132 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5133
90254a65
DN
5134 if (!page || !page_mapped(page))
5135 return NULL;
5136 if (PageAnon(page)) {
5137 /* we don't move shared anon */
be22aece 5138 if (!move_anon() || page_mapcount(page) > 2)
90254a65 5139 return NULL;
87946a72
DN
5140 } else if (!move_file())
5141 /* we ignore mapcount for file pages */
90254a65
DN
5142 return NULL;
5143 if (!get_page_unless_zero(page))
5144 return NULL;
5145
5146 return page;
5147}
5148
5149static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5150 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5151{
5152 int usage_count;
5153 struct page *page = NULL;
5154 swp_entry_t ent = pte_to_swp_entry(ptent);
5155
5156 if (!move_anon() || non_swap_entry(ent))
5157 return NULL;
5158 usage_count = mem_cgroup_count_swap_user(ent, &page);
5159 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5160 if (page)
5161 put_page(page);
90254a65 5162 return NULL;
02491447 5163 }
90254a65
DN
5164 if (do_swap_account)
5165 entry->val = ent.val;
5166
5167 return page;
5168}
5169
87946a72
DN
5170static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5171 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5172{
5173 struct page *page = NULL;
5174 struct inode *inode;
5175 struct address_space *mapping;
5176 pgoff_t pgoff;
5177
5178 if (!vma->vm_file) /* anonymous vma */
5179 return NULL;
5180 if (!move_file())
5181 return NULL;
5182
5183 inode = vma->vm_file->f_path.dentry->d_inode;
5184 mapping = vma->vm_file->f_mapping;
5185 if (pte_none(ptent))
5186 pgoff = linear_page_index(vma, addr);
5187 else /* pte_file(ptent) is true */
5188 pgoff = pte_to_pgoff(ptent);
5189
5190 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5191 page = find_get_page(mapping, pgoff);
5192
5193#ifdef CONFIG_SWAP
5194 /* shmem/tmpfs may report page out on swap: account for that too. */
5195 if (radix_tree_exceptional_entry(page)) {
5196 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5197 if (do_swap_account)
aa3b1895
HD
5198 *entry = swap;
5199 page = find_get_page(&swapper_space, swap.val);
87946a72 5200 }
aa3b1895 5201#endif
87946a72
DN
5202 return page;
5203}
5204
8d32ff84 5205static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5206 unsigned long addr, pte_t ptent, union mc_target *target)
5207{
5208 struct page *page = NULL;
5209 struct page_cgroup *pc;
8d32ff84 5210 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5211 swp_entry_t ent = { .val = 0 };
5212
5213 if (pte_present(ptent))
5214 page = mc_handle_present_pte(vma, addr, ptent);
5215 else if (is_swap_pte(ptent))
5216 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5217 else if (pte_none(ptent) || pte_file(ptent))
5218 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5219
5220 if (!page && !ent.val)
8d32ff84 5221 return ret;
02491447
DN
5222 if (page) {
5223 pc = lookup_page_cgroup(page);
5224 /*
5225 * Do only loose check w/o page_cgroup lock.
5226 * mem_cgroup_move_account() checks the pc is valid or not under
5227 * the lock.
5228 */
5229 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5230 ret = MC_TARGET_PAGE;
5231 if (target)
5232 target->page = page;
5233 }
5234 if (!ret || !target)
5235 put_page(page);
5236 }
90254a65
DN
5237 /* There is a swap entry and a page doesn't exist or isn't charged */
5238 if (ent.val && !ret &&
9fb4b7cc 5239 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5240 ret = MC_TARGET_SWAP;
5241 if (target)
5242 target->ent = ent;
4ffef5fe 5243 }
4ffef5fe
DN
5244 return ret;
5245}
5246
12724850
NH
5247#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5248/*
5249 * We don't consider swapping or file mapped pages because THP does not
5250 * support them for now.
5251 * Caller should make sure that pmd_trans_huge(pmd) is true.
5252 */
5253static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5254 unsigned long addr, pmd_t pmd, union mc_target *target)
5255{
5256 struct page *page = NULL;
5257 struct page_cgroup *pc;
5258 enum mc_target_type ret = MC_TARGET_NONE;
5259
5260 page = pmd_page(pmd);
5261 VM_BUG_ON(!page || !PageHead(page));
5262 if (!move_anon())
5263 return ret;
5264 pc = lookup_page_cgroup(page);
5265 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5266 ret = MC_TARGET_PAGE;
5267 if (target) {
5268 get_page(page);
5269 target->page = page;
5270 }
5271 }
5272 return ret;
5273}
5274#else
5275static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5276 unsigned long addr, pmd_t pmd, union mc_target *target)
5277{
5278 return MC_TARGET_NONE;
5279}
5280#endif
5281
4ffef5fe
DN
5282static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5283 unsigned long addr, unsigned long end,
5284 struct mm_walk *walk)
5285{
5286 struct vm_area_struct *vma = walk->private;
5287 pte_t *pte;
5288 spinlock_t *ptl;
5289
12724850
NH
5290 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5291 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5292 mc.precharge += HPAGE_PMD_NR;
5293 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5294 return 0;
12724850 5295 }
03319327 5296
45f83cef
AA
5297 if (pmd_trans_unstable(pmd))
5298 return 0;
4ffef5fe
DN
5299 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5300 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5301 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5302 mc.precharge++; /* increment precharge temporarily */
5303 pte_unmap_unlock(pte - 1, ptl);
5304 cond_resched();
5305
7dc74be0
DN
5306 return 0;
5307}
5308
4ffef5fe
DN
5309static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5310{
5311 unsigned long precharge;
5312 struct vm_area_struct *vma;
5313
dfe076b0 5314 down_read(&mm->mmap_sem);
4ffef5fe
DN
5315 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5316 struct mm_walk mem_cgroup_count_precharge_walk = {
5317 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5318 .mm = mm,
5319 .private = vma,
5320 };
5321 if (is_vm_hugetlb_page(vma))
5322 continue;
4ffef5fe
DN
5323 walk_page_range(vma->vm_start, vma->vm_end,
5324 &mem_cgroup_count_precharge_walk);
5325 }
dfe076b0 5326 up_read(&mm->mmap_sem);
4ffef5fe
DN
5327
5328 precharge = mc.precharge;
5329 mc.precharge = 0;
5330
5331 return precharge;
5332}
5333
4ffef5fe
DN
5334static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5335{
dfe076b0
DN
5336 unsigned long precharge = mem_cgroup_count_precharge(mm);
5337
5338 VM_BUG_ON(mc.moving_task);
5339 mc.moving_task = current;
5340 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5341}
5342
dfe076b0
DN
5343/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5344static void __mem_cgroup_clear_mc(void)
4ffef5fe 5345{
2bd9bb20
KH
5346 struct mem_cgroup *from = mc.from;
5347 struct mem_cgroup *to = mc.to;
5348
4ffef5fe 5349 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5350 if (mc.precharge) {
5351 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5352 mc.precharge = 0;
5353 }
5354 /*
5355 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5356 * we must uncharge here.
5357 */
5358 if (mc.moved_charge) {
5359 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5360 mc.moved_charge = 0;
4ffef5fe 5361 }
483c30b5
DN
5362 /* we must fixup refcnts and charges */
5363 if (mc.moved_swap) {
483c30b5
DN
5364 /* uncharge swap account from the old cgroup */
5365 if (!mem_cgroup_is_root(mc.from))
5366 res_counter_uncharge(&mc.from->memsw,
5367 PAGE_SIZE * mc.moved_swap);
5368 __mem_cgroup_put(mc.from, mc.moved_swap);
5369
5370 if (!mem_cgroup_is_root(mc.to)) {
5371 /*
5372 * we charged both to->res and to->memsw, so we should
5373 * uncharge to->res.
5374 */
5375 res_counter_uncharge(&mc.to->res,
5376 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5377 }
5378 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5379 mc.moved_swap = 0;
5380 }
dfe076b0
DN
5381 memcg_oom_recover(from);
5382 memcg_oom_recover(to);
5383 wake_up_all(&mc.waitq);
5384}
5385
5386static void mem_cgroup_clear_mc(void)
5387{
5388 struct mem_cgroup *from = mc.from;
5389
5390 /*
5391 * we must clear moving_task before waking up waiters at the end of
5392 * task migration.
5393 */
5394 mc.moving_task = NULL;
5395 __mem_cgroup_clear_mc();
2bd9bb20 5396 spin_lock(&mc.lock);
4ffef5fe
DN
5397 mc.from = NULL;
5398 mc.to = NULL;
2bd9bb20 5399 spin_unlock(&mc.lock);
32047e2a 5400 mem_cgroup_end_move(from);
4ffef5fe
DN
5401}
5402
761b3ef5
LZ
5403static int mem_cgroup_can_attach(struct cgroup *cgroup,
5404 struct cgroup_taskset *tset)
7dc74be0 5405{
2f7ee569 5406 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5407 int ret = 0;
c0ff4b85 5408 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5409
c0ff4b85 5410 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5411 struct mm_struct *mm;
5412 struct mem_cgroup *from = mem_cgroup_from_task(p);
5413
c0ff4b85 5414 VM_BUG_ON(from == memcg);
7dc74be0
DN
5415
5416 mm = get_task_mm(p);
5417 if (!mm)
5418 return 0;
7dc74be0 5419 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5420 if (mm->owner == p) {
5421 VM_BUG_ON(mc.from);
5422 VM_BUG_ON(mc.to);
5423 VM_BUG_ON(mc.precharge);
854ffa8d 5424 VM_BUG_ON(mc.moved_charge);
483c30b5 5425 VM_BUG_ON(mc.moved_swap);
32047e2a 5426 mem_cgroup_start_move(from);
2bd9bb20 5427 spin_lock(&mc.lock);
4ffef5fe 5428 mc.from = from;
c0ff4b85 5429 mc.to = memcg;
2bd9bb20 5430 spin_unlock(&mc.lock);
dfe076b0 5431 /* We set mc.moving_task later */
4ffef5fe
DN
5432
5433 ret = mem_cgroup_precharge_mc(mm);
5434 if (ret)
5435 mem_cgroup_clear_mc();
dfe076b0
DN
5436 }
5437 mmput(mm);
7dc74be0
DN
5438 }
5439 return ret;
5440}
5441
761b3ef5
LZ
5442static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5443 struct cgroup_taskset *tset)
7dc74be0 5444{
4ffef5fe 5445 mem_cgroup_clear_mc();
7dc74be0
DN
5446}
5447
4ffef5fe
DN
5448static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5449 unsigned long addr, unsigned long end,
5450 struct mm_walk *walk)
7dc74be0 5451{
4ffef5fe
DN
5452 int ret = 0;
5453 struct vm_area_struct *vma = walk->private;
5454 pte_t *pte;
5455 spinlock_t *ptl;
12724850
NH
5456 enum mc_target_type target_type;
5457 union mc_target target;
5458 struct page *page;
5459 struct page_cgroup *pc;
4ffef5fe 5460
12724850
NH
5461 /*
5462 * We don't take compound_lock() here but no race with splitting thp
5463 * happens because:
5464 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5465 * under splitting, which means there's no concurrent thp split,
5466 * - if another thread runs into split_huge_page() just after we
5467 * entered this if-block, the thread must wait for page table lock
5468 * to be unlocked in __split_huge_page_splitting(), where the main
5469 * part of thp split is not executed yet.
5470 */
5471 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5472 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5473 spin_unlock(&vma->vm_mm->page_table_lock);
5474 return 0;
5475 }
5476 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5477 if (target_type == MC_TARGET_PAGE) {
5478 page = target.page;
5479 if (!isolate_lru_page(page)) {
5480 pc = lookup_page_cgroup(page);
5481 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5482 pc, mc.from, mc.to,
5483 false)) {
5484 mc.precharge -= HPAGE_PMD_NR;
5485 mc.moved_charge += HPAGE_PMD_NR;
5486 }
5487 putback_lru_page(page);
5488 }
5489 put_page(page);
5490 }
5491 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5492 return 0;
12724850
NH
5493 }
5494
45f83cef
AA
5495 if (pmd_trans_unstable(pmd))
5496 return 0;
4ffef5fe
DN
5497retry:
5498 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5499 for (; addr != end; addr += PAGE_SIZE) {
5500 pte_t ptent = *(pte++);
02491447 5501 swp_entry_t ent;
4ffef5fe
DN
5502
5503 if (!mc.precharge)
5504 break;
5505
8d32ff84 5506 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5507 case MC_TARGET_PAGE:
5508 page = target.page;
5509 if (isolate_lru_page(page))
5510 goto put;
5511 pc = lookup_page_cgroup(page);
7ec99d62
JW
5512 if (!mem_cgroup_move_account(page, 1, pc,
5513 mc.from, mc.to, false)) {
4ffef5fe 5514 mc.precharge--;
854ffa8d
DN
5515 /* we uncharge from mc.from later. */
5516 mc.moved_charge++;
4ffef5fe
DN
5517 }
5518 putback_lru_page(page);
8d32ff84 5519put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5520 put_page(page);
5521 break;
02491447
DN
5522 case MC_TARGET_SWAP:
5523 ent = target.ent;
483c30b5
DN
5524 if (!mem_cgroup_move_swap_account(ent,
5525 mc.from, mc.to, false)) {
02491447 5526 mc.precharge--;
483c30b5
DN
5527 /* we fixup refcnts and charges later. */
5528 mc.moved_swap++;
5529 }
02491447 5530 break;
4ffef5fe
DN
5531 default:
5532 break;
5533 }
5534 }
5535 pte_unmap_unlock(pte - 1, ptl);
5536 cond_resched();
5537
5538 if (addr != end) {
5539 /*
5540 * We have consumed all precharges we got in can_attach().
5541 * We try charge one by one, but don't do any additional
5542 * charges to mc.to if we have failed in charge once in attach()
5543 * phase.
5544 */
854ffa8d 5545 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5546 if (!ret)
5547 goto retry;
5548 }
5549
5550 return ret;
5551}
5552
5553static void mem_cgroup_move_charge(struct mm_struct *mm)
5554{
5555 struct vm_area_struct *vma;
5556
5557 lru_add_drain_all();
dfe076b0
DN
5558retry:
5559 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5560 /*
5561 * Someone who are holding the mmap_sem might be waiting in
5562 * waitq. So we cancel all extra charges, wake up all waiters,
5563 * and retry. Because we cancel precharges, we might not be able
5564 * to move enough charges, but moving charge is a best-effort
5565 * feature anyway, so it wouldn't be a big problem.
5566 */
5567 __mem_cgroup_clear_mc();
5568 cond_resched();
5569 goto retry;
5570 }
4ffef5fe
DN
5571 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5572 int ret;
5573 struct mm_walk mem_cgroup_move_charge_walk = {
5574 .pmd_entry = mem_cgroup_move_charge_pte_range,
5575 .mm = mm,
5576 .private = vma,
5577 };
5578 if (is_vm_hugetlb_page(vma))
5579 continue;
4ffef5fe
DN
5580 ret = walk_page_range(vma->vm_start, vma->vm_end,
5581 &mem_cgroup_move_charge_walk);
5582 if (ret)
5583 /*
5584 * means we have consumed all precharges and failed in
5585 * doing additional charge. Just abandon here.
5586 */
5587 break;
5588 }
dfe076b0 5589 up_read(&mm->mmap_sem);
7dc74be0
DN
5590}
5591
761b3ef5
LZ
5592static void mem_cgroup_move_task(struct cgroup *cont,
5593 struct cgroup_taskset *tset)
67e465a7 5594{
2f7ee569 5595 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5596 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5597
dfe076b0 5598 if (mm) {
a433658c
KM
5599 if (mc.to)
5600 mem_cgroup_move_charge(mm);
dfe076b0
DN
5601 mmput(mm);
5602 }
a433658c
KM
5603 if (mc.to)
5604 mem_cgroup_clear_mc();
67e465a7 5605}
5cfb80a7 5606#else /* !CONFIG_MMU */
761b3ef5
LZ
5607static int mem_cgroup_can_attach(struct cgroup *cgroup,
5608 struct cgroup_taskset *tset)
5cfb80a7
DN
5609{
5610 return 0;
5611}
761b3ef5
LZ
5612static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5613 struct cgroup_taskset *tset)
5cfb80a7
DN
5614{
5615}
761b3ef5
LZ
5616static void mem_cgroup_move_task(struct cgroup *cont,
5617 struct cgroup_taskset *tset)
5cfb80a7
DN
5618{
5619}
5620#endif
67e465a7 5621
8cdea7c0
BS
5622struct cgroup_subsys mem_cgroup_subsys = {
5623 .name = "memory",
5624 .subsys_id = mem_cgroup_subsys_id,
5625 .create = mem_cgroup_create,
df878fb0 5626 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0 5627 .destroy = mem_cgroup_destroy,
7dc74be0
DN
5628 .can_attach = mem_cgroup_can_attach,
5629 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5630 .attach = mem_cgroup_move_task,
6bc10349 5631 .base_cftypes = mem_cgroup_files,
6d12e2d8 5632 .early_init = 0,
04046e1a 5633 .use_id = 1,
48ddbe19 5634 .__DEPRECATED_clear_css_refs = true,
8cdea7c0 5635};
c077719b
KH
5636
5637#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5638static int __init enable_swap_account(char *s)
5639{
5640 /* consider enabled if no parameter or 1 is given */
a2c8990a 5641 if (!strcmp(s, "1"))
a42c390c 5642 really_do_swap_account = 1;
a2c8990a 5643 else if (!strcmp(s, "0"))
a42c390c
MH
5644 really_do_swap_account = 0;
5645 return 1;
5646}
a2c8990a 5647__setup("swapaccount=", enable_swap_account);
c077719b 5648
c077719b 5649#endif