]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
mm, vmalloc: use clamp() to simplify code
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
f64c3f54 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
08e552c6 57#include "internal.h"
d1a4c0b3 58#include <net/sock.h>
4bd2c1ee 59#include <net/ip.h>
d1a4c0b3 60#include <net/tcp_memcontrol.h>
8cdea7c0 61
8697d331
BS
62#include <asm/uaccess.h>
63
cc8e970c
KM
64#include <trace/events/vmscan.h>
65
a181b0e8 66struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
67EXPORT_SYMBOL(mem_cgroup_subsys);
68
a181b0e8 69#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 70static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 71
c255a458 72#ifdef CONFIG_MEMCG_SWAP
338c8431 73/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 74int do_swap_account __read_mostly;
a42c390c
MH
75
76/* for remember boot option*/
c255a458 77#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
78static int really_do_swap_account __initdata = 1;
79#else
80static int really_do_swap_account __initdata = 0;
81#endif
82
c077719b 83#else
a0db00fc 84#define do_swap_account 0
c077719b
KH
85#endif
86
87
d52aa412
KH
88/*
89 * Statistics for memory cgroup.
90 */
91enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
b070e65c
DR
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
100 MEM_CGROUP_STAT_NSTATS,
101};
102
af7c4b0e
JW
103static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
b070e65c 106 "rss_huge",
af7c4b0e
JW
107 "mapped_file",
108 "swap",
109};
110
e9f8974f
JW
111enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
116 MEM_CGROUP_EVENTS_NSTATS,
117};
af7c4b0e
JW
118
119static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124};
125
58cf188e
SZ
126static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132};
133
7a159cc9
JW
134/*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 143 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
144 MEM_CGROUP_NTARGETS,
145};
a0db00fc
KS
146#define THRESHOLDS_EVENTS_TARGET 128
147#define SOFTLIMIT_EVENTS_TARGET 1024
148#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 149
d52aa412 150struct mem_cgroup_stat_cpu {
7a159cc9 151 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 153 unsigned long nr_page_events;
7a159cc9 154 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
155};
156
527a5ec9 157struct mem_cgroup_reclaim_iter {
5f578161
MH
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
542f85f9 162 struct mem_cgroup *last_visited;
5f578161
MH
163 unsigned long last_dead_count;
164
527a5ec9
JW
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167};
168
6d12e2d8
KH
169/*
170 * per-zone information in memory controller.
171 */
6d12e2d8 172struct mem_cgroup_per_zone {
6290df54 173 struct lruvec lruvec;
1eb49272 174 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 175
527a5ec9
JW
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
f64c3f54
BS
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
d79154bb 182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 183 /* use container_of */
6d12e2d8 184};
6d12e2d8
KH
185
186struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188};
189
190struct mem_cgroup_lru_info {
45cf7ebd 191 struct mem_cgroup_per_node *nodeinfo[0];
6d12e2d8
KH
192};
193
f64c3f54
BS
194/*
195 * Cgroups above their limits are maintained in a RB-Tree, independent of
196 * their hierarchy representation
197 */
198
199struct mem_cgroup_tree_per_zone {
200 struct rb_root rb_root;
201 spinlock_t lock;
202};
203
204struct mem_cgroup_tree_per_node {
205 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
206};
207
208struct mem_cgroup_tree {
209 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
210};
211
212static struct mem_cgroup_tree soft_limit_tree __read_mostly;
213
2e72b634
KS
214struct mem_cgroup_threshold {
215 struct eventfd_ctx *eventfd;
216 u64 threshold;
217};
218
9490ff27 219/* For threshold */
2e72b634 220struct mem_cgroup_threshold_ary {
748dad36 221 /* An array index points to threshold just below or equal to usage. */
5407a562 222 int current_threshold;
2e72b634
KS
223 /* Size of entries[] */
224 unsigned int size;
225 /* Array of thresholds */
226 struct mem_cgroup_threshold entries[0];
227};
2c488db2
KS
228
229struct mem_cgroup_thresholds {
230 /* Primary thresholds array */
231 struct mem_cgroup_threshold_ary *primary;
232 /*
233 * Spare threshold array.
234 * This is needed to make mem_cgroup_unregister_event() "never fail".
235 * It must be able to store at least primary->size - 1 entries.
236 */
237 struct mem_cgroup_threshold_ary *spare;
238};
239
9490ff27
KH
240/* for OOM */
241struct mem_cgroup_eventfd_list {
242 struct list_head list;
243 struct eventfd_ctx *eventfd;
244};
2e72b634 245
c0ff4b85
R
246static void mem_cgroup_threshold(struct mem_cgroup *memcg);
247static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 248
8cdea7c0
BS
249/*
250 * The memory controller data structure. The memory controller controls both
251 * page cache and RSS per cgroup. We would eventually like to provide
252 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
253 * to help the administrator determine what knobs to tune.
254 *
255 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
256 * we hit the water mark. May be even add a low water mark, such that
257 * no reclaim occurs from a cgroup at it's low water mark, this is
258 * a feature that will be implemented much later in the future.
8cdea7c0
BS
259 */
260struct mem_cgroup {
261 struct cgroup_subsys_state css;
262 /*
263 * the counter to account for memory usage
264 */
265 struct res_counter res;
59927fb9 266
70ddf637
AV
267 /* vmpressure notifications */
268 struct vmpressure vmpressure;
269
59927fb9
HD
270 union {
271 /*
272 * the counter to account for mem+swap usage.
273 */
274 struct res_counter memsw;
275
276 /*
277 * rcu_freeing is used only when freeing struct mem_cgroup,
278 * so put it into a union to avoid wasting more memory.
279 * It must be disjoint from the css field. It could be
280 * in a union with the res field, but res plays a much
281 * larger part in mem_cgroup life than memsw, and might
282 * be of interest, even at time of free, when debugging.
283 * So share rcu_head with the less interesting memsw.
284 */
285 struct rcu_head rcu_freeing;
286 /*
3afe36b1
GC
287 * We also need some space for a worker in deferred freeing.
288 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
289 */
290 struct work_struct work_freeing;
291 };
292
510fc4e1
GC
293 /*
294 * the counter to account for kernel memory usage.
295 */
296 struct res_counter kmem;
18f59ea7
BS
297 /*
298 * Should the accounting and control be hierarchical, per subtree?
299 */
300 bool use_hierarchy;
510fc4e1 301 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
302
303 bool oom_lock;
304 atomic_t under_oom;
305
8c7c6e34 306 atomic_t refcnt;
14797e23 307
1f4c025b 308 int swappiness;
3c11ecf4
KH
309 /* OOM-Killer disable */
310 int oom_kill_disable;
a7885eb8 311
22a668d7
KH
312 /* set when res.limit == memsw.limit */
313 bool memsw_is_minimum;
314
2e72b634
KS
315 /* protect arrays of thresholds */
316 struct mutex thresholds_lock;
317
318 /* thresholds for memory usage. RCU-protected */
2c488db2 319 struct mem_cgroup_thresholds thresholds;
907860ed 320
2e72b634 321 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 322 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 323
9490ff27
KH
324 /* For oom notifier event fd */
325 struct list_head oom_notify;
185efc0f 326
7dc74be0
DN
327 /*
328 * Should we move charges of a task when a task is moved into this
329 * mem_cgroup ? And what type of charges should we move ?
330 */
331 unsigned long move_charge_at_immigrate;
619d094b
KH
332 /*
333 * set > 0 if pages under this cgroup are moving to other cgroup.
334 */
335 atomic_t moving_account;
312734c0
KH
336 /* taken only while moving_account > 0 */
337 spinlock_t move_lock;
d52aa412 338 /*
c62b1a3b 339 * percpu counter.
d52aa412 340 */
3a7951b4 341 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
342 /*
343 * used when a cpu is offlined or other synchronizations
344 * See mem_cgroup_read_stat().
345 */
346 struct mem_cgroup_stat_cpu nocpu_base;
347 spinlock_t pcp_counter_lock;
d1a4c0b3 348
5f578161 349 atomic_t dead_count;
4bd2c1ee 350#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
351 struct tcp_memcontrol tcp_mem;
352#endif
2633d7a0
GC
353#if defined(CONFIG_MEMCG_KMEM)
354 /* analogous to slab_common's slab_caches list. per-memcg */
355 struct list_head memcg_slab_caches;
356 /* Not a spinlock, we can take a lot of time walking the list */
357 struct mutex slab_caches_mutex;
358 /* Index in the kmem_cache->memcg_params->memcg_caches array */
359 int kmemcg_id;
360#endif
45cf7ebd
GC
361
362 int last_scanned_node;
363#if MAX_NUMNODES > 1
364 nodemask_t scan_nodes;
365 atomic_t numainfo_events;
366 atomic_t numainfo_updating;
367#endif
70ddf637 368
45cf7ebd
GC
369 /*
370 * Per cgroup active and inactive list, similar to the
371 * per zone LRU lists.
372 *
373 * WARNING: This has to be the last element of the struct. Don't
374 * add new fields after this point.
375 */
376 struct mem_cgroup_lru_info info;
8cdea7c0
BS
377};
378
45cf7ebd
GC
379static size_t memcg_size(void)
380{
381 return sizeof(struct mem_cgroup) +
382 nr_node_ids * sizeof(struct mem_cgroup_per_node);
383}
384
510fc4e1
GC
385/* internal only representation about the status of kmem accounting. */
386enum {
387 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 388 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 389 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
390};
391
a8964b9b
GC
392/* We account when limit is on, but only after call sites are patched */
393#define KMEM_ACCOUNTED_MASK \
394 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
395
396#ifdef CONFIG_MEMCG_KMEM
397static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
398{
399 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
400}
7de37682
GC
401
402static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
403{
404 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
405}
406
a8964b9b
GC
407static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
408{
409 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
410}
411
55007d84
GC
412static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
413{
414 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
415}
416
7de37682
GC
417static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
418{
419 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
420 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
421}
422
423static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
424{
425 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
426 &memcg->kmem_account_flags);
427}
510fc4e1
GC
428#endif
429
7dc74be0
DN
430/* Stuffs for move charges at task migration. */
431/*
ee5e8472
GC
432 * Types of charges to be moved. "move_charge_at_immitgrate" and
433 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
434 */
435enum move_type {
4ffef5fe 436 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 437 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
438 NR_MOVE_TYPE,
439};
440
4ffef5fe
DN
441/* "mc" and its members are protected by cgroup_mutex */
442static struct move_charge_struct {
b1dd693e 443 spinlock_t lock; /* for from, to */
4ffef5fe
DN
444 struct mem_cgroup *from;
445 struct mem_cgroup *to;
ee5e8472 446 unsigned long immigrate_flags;
4ffef5fe 447 unsigned long precharge;
854ffa8d 448 unsigned long moved_charge;
483c30b5 449 unsigned long moved_swap;
8033b97c
DN
450 struct task_struct *moving_task; /* a task moving charges */
451 wait_queue_head_t waitq; /* a waitq for other context */
452} mc = {
2bd9bb20 453 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
454 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
455};
4ffef5fe 456
90254a65
DN
457static bool move_anon(void)
458{
ee5e8472 459 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
460}
461
87946a72
DN
462static bool move_file(void)
463{
ee5e8472 464 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
465}
466
4e416953
BS
467/*
468 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
469 * limit reclaim to prevent infinite loops, if they ever occur.
470 */
a0db00fc
KS
471#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
472#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 473
217bc319
KH
474enum charge_type {
475 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 476 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 477 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 478 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
479 NR_CHARGE_TYPE,
480};
481
8c7c6e34 482/* for encoding cft->private value on file */
86ae53e1
GC
483enum res_type {
484 _MEM,
485 _MEMSWAP,
486 _OOM_TYPE,
510fc4e1 487 _KMEM,
86ae53e1
GC
488};
489
a0db00fc
KS
490#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
491#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 492#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
493/* Used for OOM nofiier */
494#define OOM_CONTROL (0)
8c7c6e34 495
75822b44
BS
496/*
497 * Reclaim flags for mem_cgroup_hierarchical_reclaim
498 */
499#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
500#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
501#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
502#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
503
0999821b
GC
504/*
505 * The memcg_create_mutex will be held whenever a new cgroup is created.
506 * As a consequence, any change that needs to protect against new child cgroups
507 * appearing has to hold it as well.
508 */
509static DEFINE_MUTEX(memcg_create_mutex);
510
c0ff4b85
R
511static void mem_cgroup_get(struct mem_cgroup *memcg);
512static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 513
b2145145
WL
514static inline
515struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
516{
517 return container_of(s, struct mem_cgroup, css);
518}
519
70ddf637
AV
520/* Some nice accessors for the vmpressure. */
521struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
522{
523 if (!memcg)
524 memcg = root_mem_cgroup;
525 return &memcg->vmpressure;
526}
527
528struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
529{
530 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
531}
532
533struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
534{
535 return &mem_cgroup_from_css(css)->vmpressure;
536}
537
7ffc0edc
MH
538static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
539{
540 return (memcg == root_mem_cgroup);
541}
542
e1aab161 543/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 544#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 545
e1aab161
GC
546void sock_update_memcg(struct sock *sk)
547{
376be5ff 548 if (mem_cgroup_sockets_enabled) {
e1aab161 549 struct mem_cgroup *memcg;
3f134619 550 struct cg_proto *cg_proto;
e1aab161
GC
551
552 BUG_ON(!sk->sk_prot->proto_cgroup);
553
f3f511e1
GC
554 /* Socket cloning can throw us here with sk_cgrp already
555 * filled. It won't however, necessarily happen from
556 * process context. So the test for root memcg given
557 * the current task's memcg won't help us in this case.
558 *
559 * Respecting the original socket's memcg is a better
560 * decision in this case.
561 */
562 if (sk->sk_cgrp) {
563 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
564 mem_cgroup_get(sk->sk_cgrp->memcg);
565 return;
566 }
567
e1aab161
GC
568 rcu_read_lock();
569 memcg = mem_cgroup_from_task(current);
3f134619
GC
570 cg_proto = sk->sk_prot->proto_cgroup(memcg);
571 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 572 mem_cgroup_get(memcg);
3f134619 573 sk->sk_cgrp = cg_proto;
e1aab161
GC
574 }
575 rcu_read_unlock();
576 }
577}
578EXPORT_SYMBOL(sock_update_memcg);
579
580void sock_release_memcg(struct sock *sk)
581{
376be5ff 582 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
583 struct mem_cgroup *memcg;
584 WARN_ON(!sk->sk_cgrp->memcg);
585 memcg = sk->sk_cgrp->memcg;
586 mem_cgroup_put(memcg);
587 }
588}
d1a4c0b3
GC
589
590struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
591{
592 if (!memcg || mem_cgroup_is_root(memcg))
593 return NULL;
594
595 return &memcg->tcp_mem.cg_proto;
596}
597EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 598
3f134619
GC
599static void disarm_sock_keys(struct mem_cgroup *memcg)
600{
601 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
602 return;
603 static_key_slow_dec(&memcg_socket_limit_enabled);
604}
605#else
606static void disarm_sock_keys(struct mem_cgroup *memcg)
607{
608}
609#endif
610
a8964b9b 611#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
612/*
613 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
614 * There are two main reasons for not using the css_id for this:
615 * 1) this works better in sparse environments, where we have a lot of memcgs,
616 * but only a few kmem-limited. Or also, if we have, for instance, 200
617 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
618 * 200 entry array for that.
619 *
620 * 2) In order not to violate the cgroup API, we would like to do all memory
621 * allocation in ->create(). At that point, we haven't yet allocated the
622 * css_id. Having a separate index prevents us from messing with the cgroup
623 * core for this
624 *
625 * The current size of the caches array is stored in
626 * memcg_limited_groups_array_size. It will double each time we have to
627 * increase it.
628 */
629static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
630int memcg_limited_groups_array_size;
631
55007d84
GC
632/*
633 * MIN_SIZE is different than 1, because we would like to avoid going through
634 * the alloc/free process all the time. In a small machine, 4 kmem-limited
635 * cgroups is a reasonable guess. In the future, it could be a parameter or
636 * tunable, but that is strictly not necessary.
637 *
638 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
639 * this constant directly from cgroup, but it is understandable that this is
640 * better kept as an internal representation in cgroup.c. In any case, the
641 * css_id space is not getting any smaller, and we don't have to necessarily
642 * increase ours as well if it increases.
643 */
644#define MEMCG_CACHES_MIN_SIZE 4
645#define MEMCG_CACHES_MAX_SIZE 65535
646
d7f25f8a
GC
647/*
648 * A lot of the calls to the cache allocation functions are expected to be
649 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
650 * conditional to this static branch, we'll have to allow modules that does
651 * kmem_cache_alloc and the such to see this symbol as well
652 */
a8964b9b 653struct static_key memcg_kmem_enabled_key;
d7f25f8a 654EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
655
656static void disarm_kmem_keys(struct mem_cgroup *memcg)
657{
55007d84 658 if (memcg_kmem_is_active(memcg)) {
a8964b9b 659 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
660 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
661 }
bea207c8
GC
662 /*
663 * This check can't live in kmem destruction function,
664 * since the charges will outlive the cgroup
665 */
666 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
667}
668#else
669static void disarm_kmem_keys(struct mem_cgroup *memcg)
670{
671}
672#endif /* CONFIG_MEMCG_KMEM */
673
674static void disarm_static_keys(struct mem_cgroup *memcg)
675{
676 disarm_sock_keys(memcg);
677 disarm_kmem_keys(memcg);
678}
679
c0ff4b85 680static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 681
f64c3f54 682static struct mem_cgroup_per_zone *
c0ff4b85 683mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 684{
45cf7ebd 685 VM_BUG_ON((unsigned)nid >= nr_node_ids);
c0ff4b85 686 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
687}
688
c0ff4b85 689struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 690{
c0ff4b85 691 return &memcg->css;
d324236b
WF
692}
693
f64c3f54 694static struct mem_cgroup_per_zone *
c0ff4b85 695page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 696{
97a6c37b
JW
697 int nid = page_to_nid(page);
698 int zid = page_zonenum(page);
f64c3f54 699
c0ff4b85 700 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
701}
702
703static struct mem_cgroup_tree_per_zone *
704soft_limit_tree_node_zone(int nid, int zid)
705{
706 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
707}
708
709static struct mem_cgroup_tree_per_zone *
710soft_limit_tree_from_page(struct page *page)
711{
712 int nid = page_to_nid(page);
713 int zid = page_zonenum(page);
714
715 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
716}
717
718static void
c0ff4b85 719__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 720 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
721 struct mem_cgroup_tree_per_zone *mctz,
722 unsigned long long new_usage_in_excess)
f64c3f54
BS
723{
724 struct rb_node **p = &mctz->rb_root.rb_node;
725 struct rb_node *parent = NULL;
726 struct mem_cgroup_per_zone *mz_node;
727
728 if (mz->on_tree)
729 return;
730
ef8745c1
KH
731 mz->usage_in_excess = new_usage_in_excess;
732 if (!mz->usage_in_excess)
733 return;
f64c3f54
BS
734 while (*p) {
735 parent = *p;
736 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
737 tree_node);
738 if (mz->usage_in_excess < mz_node->usage_in_excess)
739 p = &(*p)->rb_left;
740 /*
741 * We can't avoid mem cgroups that are over their soft
742 * limit by the same amount
743 */
744 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
745 p = &(*p)->rb_right;
746 }
747 rb_link_node(&mz->tree_node, parent, p);
748 rb_insert_color(&mz->tree_node, &mctz->rb_root);
749 mz->on_tree = true;
4e416953
BS
750}
751
752static void
c0ff4b85 753__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
754 struct mem_cgroup_per_zone *mz,
755 struct mem_cgroup_tree_per_zone *mctz)
756{
757 if (!mz->on_tree)
758 return;
759 rb_erase(&mz->tree_node, &mctz->rb_root);
760 mz->on_tree = false;
761}
762
f64c3f54 763static void
c0ff4b85 764mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
765 struct mem_cgroup_per_zone *mz,
766 struct mem_cgroup_tree_per_zone *mctz)
767{
768 spin_lock(&mctz->lock);
c0ff4b85 769 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
770 spin_unlock(&mctz->lock);
771}
772
f64c3f54 773
c0ff4b85 774static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 775{
ef8745c1 776 unsigned long long excess;
f64c3f54
BS
777 struct mem_cgroup_per_zone *mz;
778 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
779 int nid = page_to_nid(page);
780 int zid = page_zonenum(page);
f64c3f54
BS
781 mctz = soft_limit_tree_from_page(page);
782
783 /*
4e649152
KH
784 * Necessary to update all ancestors when hierarchy is used.
785 * because their event counter is not touched.
f64c3f54 786 */
c0ff4b85
R
787 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
788 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
789 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
790 /*
791 * We have to update the tree if mz is on RB-tree or
792 * mem is over its softlimit.
793 */
ef8745c1 794 if (excess || mz->on_tree) {
4e649152
KH
795 spin_lock(&mctz->lock);
796 /* if on-tree, remove it */
797 if (mz->on_tree)
c0ff4b85 798 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 799 /*
ef8745c1
KH
800 * Insert again. mz->usage_in_excess will be updated.
801 * If excess is 0, no tree ops.
4e649152 802 */
c0ff4b85 803 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
804 spin_unlock(&mctz->lock);
805 }
f64c3f54
BS
806 }
807}
808
c0ff4b85 809static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
810{
811 int node, zone;
812 struct mem_cgroup_per_zone *mz;
813 struct mem_cgroup_tree_per_zone *mctz;
814
3ed28fa1 815 for_each_node(node) {
f64c3f54 816 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 817 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 818 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 819 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
820 }
821 }
822}
823
4e416953
BS
824static struct mem_cgroup_per_zone *
825__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
826{
827 struct rb_node *rightmost = NULL;
26251eaf 828 struct mem_cgroup_per_zone *mz;
4e416953
BS
829
830retry:
26251eaf 831 mz = NULL;
4e416953
BS
832 rightmost = rb_last(&mctz->rb_root);
833 if (!rightmost)
834 goto done; /* Nothing to reclaim from */
835
836 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
837 /*
838 * Remove the node now but someone else can add it back,
839 * we will to add it back at the end of reclaim to its correct
840 * position in the tree.
841 */
d79154bb
HD
842 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
843 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
844 !css_tryget(&mz->memcg->css))
4e416953
BS
845 goto retry;
846done:
847 return mz;
848}
849
850static struct mem_cgroup_per_zone *
851mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
852{
853 struct mem_cgroup_per_zone *mz;
854
855 spin_lock(&mctz->lock);
856 mz = __mem_cgroup_largest_soft_limit_node(mctz);
857 spin_unlock(&mctz->lock);
858 return mz;
859}
860
711d3d2c
KH
861/*
862 * Implementation Note: reading percpu statistics for memcg.
863 *
864 * Both of vmstat[] and percpu_counter has threshold and do periodic
865 * synchronization to implement "quick" read. There are trade-off between
866 * reading cost and precision of value. Then, we may have a chance to implement
867 * a periodic synchronizion of counter in memcg's counter.
868 *
869 * But this _read() function is used for user interface now. The user accounts
870 * memory usage by memory cgroup and he _always_ requires exact value because
871 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
872 * have to visit all online cpus and make sum. So, for now, unnecessary
873 * synchronization is not implemented. (just implemented for cpu hotplug)
874 *
875 * If there are kernel internal actions which can make use of some not-exact
876 * value, and reading all cpu value can be performance bottleneck in some
877 * common workload, threashold and synchonization as vmstat[] should be
878 * implemented.
879 */
c0ff4b85 880static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 881 enum mem_cgroup_stat_index idx)
c62b1a3b 882{
7a159cc9 883 long val = 0;
c62b1a3b 884 int cpu;
c62b1a3b 885
711d3d2c
KH
886 get_online_cpus();
887 for_each_online_cpu(cpu)
c0ff4b85 888 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 889#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
890 spin_lock(&memcg->pcp_counter_lock);
891 val += memcg->nocpu_base.count[idx];
892 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
893#endif
894 put_online_cpus();
c62b1a3b
KH
895 return val;
896}
897
c0ff4b85 898static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
899 bool charge)
900{
901 int val = (charge) ? 1 : -1;
bff6bb83 902 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
903}
904
c0ff4b85 905static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
906 enum mem_cgroup_events_index idx)
907{
908 unsigned long val = 0;
909 int cpu;
910
911 for_each_online_cpu(cpu)
c0ff4b85 912 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 913#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
914 spin_lock(&memcg->pcp_counter_lock);
915 val += memcg->nocpu_base.events[idx];
916 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
917#endif
918 return val;
919}
920
c0ff4b85 921static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 922 struct page *page,
b2402857 923 bool anon, int nr_pages)
d52aa412 924{
c62b1a3b
KH
925 preempt_disable();
926
b2402857
KH
927 /*
928 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
929 * counted as CACHE even if it's on ANON LRU.
930 */
931 if (anon)
932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 933 nr_pages);
d52aa412 934 else
b2402857 935 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 936 nr_pages);
55e462b0 937
b070e65c
DR
938 if (PageTransHuge(page))
939 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
940 nr_pages);
941
e401f176
KH
942 /* pagein of a big page is an event. So, ignore page size */
943 if (nr_pages > 0)
c0ff4b85 944 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 945 else {
c0ff4b85 946 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
947 nr_pages = -nr_pages; /* for event */
948 }
e401f176 949
13114716 950 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 951
c62b1a3b 952 preempt_enable();
6d12e2d8
KH
953}
954
bb2a0de9 955unsigned long
4d7dcca2 956mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
957{
958 struct mem_cgroup_per_zone *mz;
959
960 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
961 return mz->lru_size[lru];
962}
963
964static unsigned long
c0ff4b85 965mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 966 unsigned int lru_mask)
889976db
YH
967{
968 struct mem_cgroup_per_zone *mz;
f156ab93 969 enum lru_list lru;
bb2a0de9
KH
970 unsigned long ret = 0;
971
c0ff4b85 972 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 973
f156ab93
HD
974 for_each_lru(lru) {
975 if (BIT(lru) & lru_mask)
976 ret += mz->lru_size[lru];
bb2a0de9
KH
977 }
978 return ret;
979}
980
981static unsigned long
c0ff4b85 982mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
983 int nid, unsigned int lru_mask)
984{
889976db
YH
985 u64 total = 0;
986 int zid;
987
bb2a0de9 988 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
989 total += mem_cgroup_zone_nr_lru_pages(memcg,
990 nid, zid, lru_mask);
bb2a0de9 991
889976db
YH
992 return total;
993}
bb2a0de9 994
c0ff4b85 995static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 996 unsigned int lru_mask)
6d12e2d8 997{
889976db 998 int nid;
6d12e2d8
KH
999 u64 total = 0;
1000
31aaea4a 1001 for_each_node_state(nid, N_MEMORY)
c0ff4b85 1002 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 1003 return total;
d52aa412
KH
1004}
1005
f53d7ce3
JW
1006static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1007 enum mem_cgroup_events_target target)
7a159cc9
JW
1008{
1009 unsigned long val, next;
1010
13114716 1011 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1012 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1013 /* from time_after() in jiffies.h */
f53d7ce3
JW
1014 if ((long)next - (long)val < 0) {
1015 switch (target) {
1016 case MEM_CGROUP_TARGET_THRESH:
1017 next = val + THRESHOLDS_EVENTS_TARGET;
1018 break;
1019 case MEM_CGROUP_TARGET_SOFTLIMIT:
1020 next = val + SOFTLIMIT_EVENTS_TARGET;
1021 break;
1022 case MEM_CGROUP_TARGET_NUMAINFO:
1023 next = val + NUMAINFO_EVENTS_TARGET;
1024 break;
1025 default:
1026 break;
1027 }
1028 __this_cpu_write(memcg->stat->targets[target], next);
1029 return true;
7a159cc9 1030 }
f53d7ce3 1031 return false;
d2265e6f
KH
1032}
1033
1034/*
1035 * Check events in order.
1036 *
1037 */
c0ff4b85 1038static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1039{
4799401f 1040 preempt_disable();
d2265e6f 1041 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1042 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1043 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
1044 bool do_softlimit;
1045 bool do_numainfo __maybe_unused;
f53d7ce3
JW
1046
1047 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1048 MEM_CGROUP_TARGET_SOFTLIMIT);
1049#if MAX_NUMNODES > 1
1050 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1051 MEM_CGROUP_TARGET_NUMAINFO);
1052#endif
1053 preempt_enable();
1054
c0ff4b85 1055 mem_cgroup_threshold(memcg);
f53d7ce3 1056 if (unlikely(do_softlimit))
c0ff4b85 1057 mem_cgroup_update_tree(memcg, page);
453a9bf3 1058#if MAX_NUMNODES > 1
f53d7ce3 1059 if (unlikely(do_numainfo))
c0ff4b85 1060 atomic_inc(&memcg->numainfo_events);
453a9bf3 1061#endif
f53d7ce3
JW
1062 } else
1063 preempt_enable();
d2265e6f
KH
1064}
1065
d1a4c0b3 1066struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 1067{
b2145145
WL
1068 return mem_cgroup_from_css(
1069 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
1070}
1071
cf475ad2 1072struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1073{
31a78f23
BS
1074 /*
1075 * mm_update_next_owner() may clear mm->owner to NULL
1076 * if it races with swapoff, page migration, etc.
1077 * So this can be called with p == NULL.
1078 */
1079 if (unlikely(!p))
1080 return NULL;
1081
b2145145 1082 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
1083}
1084
a433658c 1085struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1086{
c0ff4b85 1087 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1088
1089 if (!mm)
1090 return NULL;
54595fe2
KH
1091 /*
1092 * Because we have no locks, mm->owner's may be being moved to other
1093 * cgroup. We use css_tryget() here even if this looks
1094 * pessimistic (rather than adding locks here).
1095 */
1096 rcu_read_lock();
1097 do {
c0ff4b85
R
1098 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1099 if (unlikely(!memcg))
54595fe2 1100 break;
c0ff4b85 1101 } while (!css_tryget(&memcg->css));
54595fe2 1102 rcu_read_unlock();
c0ff4b85 1103 return memcg;
54595fe2
KH
1104}
1105
16248d8f
MH
1106/*
1107 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1108 * ref. count) or NULL if the whole root's subtree has been visited.
1109 *
1110 * helper function to be used by mem_cgroup_iter
1111 */
1112static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1113 struct mem_cgroup *last_visited)
1114{
1115 struct cgroup *prev_cgroup, *next_cgroup;
1116
1117 /*
1118 * Root is not visited by cgroup iterators so it needs an
1119 * explicit visit.
1120 */
1121 if (!last_visited)
1122 return root;
1123
1124 prev_cgroup = (last_visited == root) ? NULL
1125 : last_visited->css.cgroup;
1126skip_node:
1127 next_cgroup = cgroup_next_descendant_pre(
1128 prev_cgroup, root->css.cgroup);
1129
1130 /*
1131 * Even if we found a group we have to make sure it is
1132 * alive. css && !memcg means that the groups should be
1133 * skipped and we should continue the tree walk.
1134 * last_visited css is safe to use because it is
1135 * protected by css_get and the tree walk is rcu safe.
1136 */
1137 if (next_cgroup) {
1138 struct mem_cgroup *mem = mem_cgroup_from_cont(
1139 next_cgroup);
1140 if (css_tryget(&mem->css))
1141 return mem;
1142 else {
1143 prev_cgroup = next_cgroup;
1144 goto skip_node;
1145 }
1146 }
1147
1148 return NULL;
1149}
1150
5660048c
JW
1151/**
1152 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1153 * @root: hierarchy root
1154 * @prev: previously returned memcg, NULL on first invocation
1155 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1156 *
1157 * Returns references to children of the hierarchy below @root, or
1158 * @root itself, or %NULL after a full round-trip.
1159 *
1160 * Caller must pass the return value in @prev on subsequent
1161 * invocations for reference counting, or use mem_cgroup_iter_break()
1162 * to cancel a hierarchy walk before the round-trip is complete.
1163 *
1164 * Reclaimers can specify a zone and a priority level in @reclaim to
1165 * divide up the memcgs in the hierarchy among all concurrent
1166 * reclaimers operating on the same zone and priority.
1167 */
1168struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1169 struct mem_cgroup *prev,
1170 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1171{
9f3a0d09 1172 struct mem_cgroup *memcg = NULL;
542f85f9 1173 struct mem_cgroup *last_visited = NULL;
5f578161 1174 unsigned long uninitialized_var(dead_count);
711d3d2c 1175
5660048c
JW
1176 if (mem_cgroup_disabled())
1177 return NULL;
1178
9f3a0d09
JW
1179 if (!root)
1180 root = root_mem_cgroup;
7d74b06f 1181
9f3a0d09 1182 if (prev && !reclaim)
542f85f9 1183 last_visited = prev;
14067bb3 1184
9f3a0d09
JW
1185 if (!root->use_hierarchy && root != root_mem_cgroup) {
1186 if (prev)
c40046f3 1187 goto out_css_put;
9f3a0d09
JW
1188 return root;
1189 }
14067bb3 1190
542f85f9 1191 rcu_read_lock();
9f3a0d09 1192 while (!memcg) {
527a5ec9 1193 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
711d3d2c 1194
527a5ec9
JW
1195 if (reclaim) {
1196 int nid = zone_to_nid(reclaim->zone);
1197 int zid = zone_idx(reclaim->zone);
1198 struct mem_cgroup_per_zone *mz;
1199
1200 mz = mem_cgroup_zoneinfo(root, nid, zid);
1201 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1202 if (prev && reclaim->generation != iter->generation) {
5f578161 1203 iter->last_visited = NULL;
542f85f9
MH
1204 goto out_unlock;
1205 }
5f578161
MH
1206
1207 /*
1208 * If the dead_count mismatches, a destruction
1209 * has happened or is happening concurrently.
1210 * If the dead_count matches, a destruction
1211 * might still happen concurrently, but since
1212 * we checked under RCU, that destruction
1213 * won't free the object until we release the
1214 * RCU reader lock. Thus, the dead_count
1215 * check verifies the pointer is still valid,
1216 * css_tryget() verifies the cgroup pointed to
1217 * is alive.
1218 */
1219 dead_count = atomic_read(&root->dead_count);
89dc991f
JW
1220 if (dead_count == iter->last_dead_count) {
1221 smp_rmb();
1222 last_visited = iter->last_visited;
1223 if (last_visited &&
1224 !css_tryget(&last_visited->css))
5f578161 1225 last_visited = NULL;
5f578161 1226 }
527a5ec9 1227 }
7d74b06f 1228
16248d8f 1229 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1230
527a5ec9 1231 if (reclaim) {
542f85f9
MH
1232 if (last_visited)
1233 css_put(&last_visited->css);
1234
19f39402 1235 iter->last_visited = memcg;
5f578161
MH
1236 smp_wmb();
1237 iter->last_dead_count = dead_count;
542f85f9 1238
19f39402 1239 if (!memcg)
527a5ec9
JW
1240 iter->generation++;
1241 else if (!prev && memcg)
1242 reclaim->generation = iter->generation;
1243 }
9f3a0d09 1244
19f39402 1245 if (prev && !memcg)
542f85f9 1246 goto out_unlock;
9f3a0d09 1247 }
542f85f9
MH
1248out_unlock:
1249 rcu_read_unlock();
c40046f3
MH
1250out_css_put:
1251 if (prev && prev != root)
1252 css_put(&prev->css);
1253
9f3a0d09 1254 return memcg;
14067bb3 1255}
7d74b06f 1256
5660048c
JW
1257/**
1258 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1259 * @root: hierarchy root
1260 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1261 */
1262void mem_cgroup_iter_break(struct mem_cgroup *root,
1263 struct mem_cgroup *prev)
9f3a0d09
JW
1264{
1265 if (!root)
1266 root = root_mem_cgroup;
1267 if (prev && prev != root)
1268 css_put(&prev->css);
1269}
7d74b06f 1270
9f3a0d09
JW
1271/*
1272 * Iteration constructs for visiting all cgroups (under a tree). If
1273 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1274 * be used for reference counting.
1275 */
1276#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1277 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1278 iter != NULL; \
527a5ec9 1279 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1280
9f3a0d09 1281#define for_each_mem_cgroup(iter) \
527a5ec9 1282 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1283 iter != NULL; \
527a5ec9 1284 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1285
68ae564b 1286void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1287{
c0ff4b85 1288 struct mem_cgroup *memcg;
456f998e 1289
456f998e 1290 rcu_read_lock();
c0ff4b85
R
1291 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1292 if (unlikely(!memcg))
456f998e
YH
1293 goto out;
1294
1295 switch (idx) {
456f998e 1296 case PGFAULT:
0e574a93
JW
1297 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1298 break;
1299 case PGMAJFAULT:
1300 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1301 break;
1302 default:
1303 BUG();
1304 }
1305out:
1306 rcu_read_unlock();
1307}
68ae564b 1308EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1309
925b7673
JW
1310/**
1311 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1312 * @zone: zone of the wanted lruvec
fa9add64 1313 * @memcg: memcg of the wanted lruvec
925b7673
JW
1314 *
1315 * Returns the lru list vector holding pages for the given @zone and
1316 * @mem. This can be the global zone lruvec, if the memory controller
1317 * is disabled.
1318 */
1319struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1320 struct mem_cgroup *memcg)
1321{
1322 struct mem_cgroup_per_zone *mz;
bea8c150 1323 struct lruvec *lruvec;
925b7673 1324
bea8c150
HD
1325 if (mem_cgroup_disabled()) {
1326 lruvec = &zone->lruvec;
1327 goto out;
1328 }
925b7673
JW
1329
1330 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1331 lruvec = &mz->lruvec;
1332out:
1333 /*
1334 * Since a node can be onlined after the mem_cgroup was created,
1335 * we have to be prepared to initialize lruvec->zone here;
1336 * and if offlined then reonlined, we need to reinitialize it.
1337 */
1338 if (unlikely(lruvec->zone != zone))
1339 lruvec->zone = zone;
1340 return lruvec;
925b7673
JW
1341}
1342
08e552c6
KH
1343/*
1344 * Following LRU functions are allowed to be used without PCG_LOCK.
1345 * Operations are called by routine of global LRU independently from memcg.
1346 * What we have to take care of here is validness of pc->mem_cgroup.
1347 *
1348 * Changes to pc->mem_cgroup happens when
1349 * 1. charge
1350 * 2. moving account
1351 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1352 * It is added to LRU before charge.
1353 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1354 * When moving account, the page is not on LRU. It's isolated.
1355 */
4f98a2fe 1356
925b7673 1357/**
fa9add64 1358 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1359 * @page: the page
fa9add64 1360 * @zone: zone of the page
925b7673 1361 */
fa9add64 1362struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1363{
08e552c6 1364 struct mem_cgroup_per_zone *mz;
925b7673
JW
1365 struct mem_cgroup *memcg;
1366 struct page_cgroup *pc;
bea8c150 1367 struct lruvec *lruvec;
6d12e2d8 1368
bea8c150
HD
1369 if (mem_cgroup_disabled()) {
1370 lruvec = &zone->lruvec;
1371 goto out;
1372 }
925b7673 1373
08e552c6 1374 pc = lookup_page_cgroup(page);
38c5d72f 1375 memcg = pc->mem_cgroup;
7512102c
HD
1376
1377 /*
fa9add64 1378 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1379 * an uncharged page off lru does nothing to secure
1380 * its former mem_cgroup from sudden removal.
1381 *
1382 * Our caller holds lru_lock, and PageCgroupUsed is updated
1383 * under page_cgroup lock: between them, they make all uses
1384 * of pc->mem_cgroup safe.
1385 */
fa9add64 1386 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1387 pc->mem_cgroup = memcg = root_mem_cgroup;
1388
925b7673 1389 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1390 lruvec = &mz->lruvec;
1391out:
1392 /*
1393 * Since a node can be onlined after the mem_cgroup was created,
1394 * we have to be prepared to initialize lruvec->zone here;
1395 * and if offlined then reonlined, we need to reinitialize it.
1396 */
1397 if (unlikely(lruvec->zone != zone))
1398 lruvec->zone = zone;
1399 return lruvec;
08e552c6 1400}
b69408e8 1401
925b7673 1402/**
fa9add64
HD
1403 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1404 * @lruvec: mem_cgroup per zone lru vector
1405 * @lru: index of lru list the page is sitting on
1406 * @nr_pages: positive when adding or negative when removing
925b7673 1407 *
fa9add64
HD
1408 * This function must be called when a page is added to or removed from an
1409 * lru list.
3f58a829 1410 */
fa9add64
HD
1411void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1412 int nr_pages)
3f58a829
MK
1413{
1414 struct mem_cgroup_per_zone *mz;
fa9add64 1415 unsigned long *lru_size;
3f58a829
MK
1416
1417 if (mem_cgroup_disabled())
1418 return;
1419
fa9add64
HD
1420 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1421 lru_size = mz->lru_size + lru;
1422 *lru_size += nr_pages;
1423 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1424}
544122e5 1425
3e92041d 1426/*
c0ff4b85 1427 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1428 * hierarchy subtree
1429 */
c3ac9a8a
JW
1430bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1431 struct mem_cgroup *memcg)
3e92041d 1432{
91c63734
JW
1433 if (root_memcg == memcg)
1434 return true;
3a981f48 1435 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1436 return false;
c3ac9a8a
JW
1437 return css_is_ancestor(&memcg->css, &root_memcg->css);
1438}
1439
1440static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1441 struct mem_cgroup *memcg)
1442{
1443 bool ret;
1444
91c63734 1445 rcu_read_lock();
c3ac9a8a 1446 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1447 rcu_read_unlock();
1448 return ret;
3e92041d
MH
1449}
1450
ffbdccf5
DR
1451bool task_in_mem_cgroup(struct task_struct *task,
1452 const struct mem_cgroup *memcg)
4c4a2214 1453{
0b7f569e 1454 struct mem_cgroup *curr = NULL;
158e0a2d 1455 struct task_struct *p;
ffbdccf5 1456 bool ret;
4c4a2214 1457
158e0a2d 1458 p = find_lock_task_mm(task);
de077d22
DR
1459 if (p) {
1460 curr = try_get_mem_cgroup_from_mm(p->mm);
1461 task_unlock(p);
1462 } else {
1463 /*
1464 * All threads may have already detached their mm's, but the oom
1465 * killer still needs to detect if they have already been oom
1466 * killed to prevent needlessly killing additional tasks.
1467 */
ffbdccf5 1468 rcu_read_lock();
de077d22
DR
1469 curr = mem_cgroup_from_task(task);
1470 if (curr)
1471 css_get(&curr->css);
ffbdccf5 1472 rcu_read_unlock();
de077d22 1473 }
0b7f569e 1474 if (!curr)
ffbdccf5 1475 return false;
d31f56db 1476 /*
c0ff4b85 1477 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1478 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1479 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1480 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1481 */
c0ff4b85 1482 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1483 css_put(&curr->css);
4c4a2214
DR
1484 return ret;
1485}
1486
c56d5c7d 1487int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1488{
9b272977 1489 unsigned long inactive_ratio;
14797e23 1490 unsigned long inactive;
9b272977 1491 unsigned long active;
c772be93 1492 unsigned long gb;
14797e23 1493
4d7dcca2
HD
1494 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1495 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1496
c772be93
KM
1497 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1498 if (gb)
1499 inactive_ratio = int_sqrt(10 * gb);
1500 else
1501 inactive_ratio = 1;
1502
9b272977 1503 return inactive * inactive_ratio < active;
14797e23
KM
1504}
1505
6d61ef40
BS
1506#define mem_cgroup_from_res_counter(counter, member) \
1507 container_of(counter, struct mem_cgroup, member)
1508
19942822 1509/**
9d11ea9f 1510 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1511 * @memcg: the memory cgroup
19942822 1512 *
9d11ea9f 1513 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1514 * pages.
19942822 1515 */
c0ff4b85 1516static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1517{
9d11ea9f
JW
1518 unsigned long long margin;
1519
c0ff4b85 1520 margin = res_counter_margin(&memcg->res);
9d11ea9f 1521 if (do_swap_account)
c0ff4b85 1522 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1523 return margin >> PAGE_SHIFT;
19942822
JW
1524}
1525
1f4c025b 1526int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1527{
1528 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1529
1530 /* root ? */
1531 if (cgrp->parent == NULL)
1532 return vm_swappiness;
1533
bf1ff263 1534 return memcg->swappiness;
a7885eb8
KM
1535}
1536
619d094b
KH
1537/*
1538 * memcg->moving_account is used for checking possibility that some thread is
1539 * calling move_account(). When a thread on CPU-A starts moving pages under
1540 * a memcg, other threads should check memcg->moving_account under
1541 * rcu_read_lock(), like this:
1542 *
1543 * CPU-A CPU-B
1544 * rcu_read_lock()
1545 * memcg->moving_account+1 if (memcg->mocing_account)
1546 * take heavy locks.
1547 * synchronize_rcu() update something.
1548 * rcu_read_unlock()
1549 * start move here.
1550 */
4331f7d3
KH
1551
1552/* for quick checking without looking up memcg */
1553atomic_t memcg_moving __read_mostly;
1554
c0ff4b85 1555static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1556{
4331f7d3 1557 atomic_inc(&memcg_moving);
619d094b 1558 atomic_inc(&memcg->moving_account);
32047e2a
KH
1559 synchronize_rcu();
1560}
1561
c0ff4b85 1562static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1563{
619d094b
KH
1564 /*
1565 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1566 * We check NULL in callee rather than caller.
1567 */
4331f7d3
KH
1568 if (memcg) {
1569 atomic_dec(&memcg_moving);
619d094b 1570 atomic_dec(&memcg->moving_account);
4331f7d3 1571 }
32047e2a 1572}
619d094b 1573
32047e2a
KH
1574/*
1575 * 2 routines for checking "mem" is under move_account() or not.
1576 *
13fd1dd9
AM
1577 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1578 * is used for avoiding races in accounting. If true,
32047e2a
KH
1579 * pc->mem_cgroup may be overwritten.
1580 *
1581 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1582 * under hierarchy of moving cgroups. This is for
1583 * waiting at hith-memory prressure caused by "move".
1584 */
1585
13fd1dd9 1586static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1587{
1588 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1589 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1590}
4b534334 1591
c0ff4b85 1592static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1593{
2bd9bb20
KH
1594 struct mem_cgroup *from;
1595 struct mem_cgroup *to;
4b534334 1596 bool ret = false;
2bd9bb20
KH
1597 /*
1598 * Unlike task_move routines, we access mc.to, mc.from not under
1599 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1600 */
1601 spin_lock(&mc.lock);
1602 from = mc.from;
1603 to = mc.to;
1604 if (!from)
1605 goto unlock;
3e92041d 1606
c0ff4b85
R
1607 ret = mem_cgroup_same_or_subtree(memcg, from)
1608 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1609unlock:
1610 spin_unlock(&mc.lock);
4b534334
KH
1611 return ret;
1612}
1613
c0ff4b85 1614static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1615{
1616 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1617 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1618 DEFINE_WAIT(wait);
1619 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1620 /* moving charge context might have finished. */
1621 if (mc.moving_task)
1622 schedule();
1623 finish_wait(&mc.waitq, &wait);
1624 return true;
1625 }
1626 }
1627 return false;
1628}
1629
312734c0
KH
1630/*
1631 * Take this lock when
1632 * - a code tries to modify page's memcg while it's USED.
1633 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1634 * see mem_cgroup_stolen(), too.
312734c0
KH
1635 */
1636static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1637 unsigned long *flags)
1638{
1639 spin_lock_irqsave(&memcg->move_lock, *flags);
1640}
1641
1642static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1643 unsigned long *flags)
1644{
1645 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1646}
1647
58cf188e 1648#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1649/**
58cf188e 1650 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1651 * @memcg: The memory cgroup that went over limit
1652 * @p: Task that is going to be killed
1653 *
1654 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1655 * enabled
1656 */
1657void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1658{
1659 struct cgroup *task_cgrp;
1660 struct cgroup *mem_cgrp;
1661 /*
1662 * Need a buffer in BSS, can't rely on allocations. The code relies
1663 * on the assumption that OOM is serialized for memory controller.
1664 * If this assumption is broken, revisit this code.
1665 */
1666 static char memcg_name[PATH_MAX];
1667 int ret;
58cf188e
SZ
1668 struct mem_cgroup *iter;
1669 unsigned int i;
e222432b 1670
58cf188e 1671 if (!p)
e222432b
BS
1672 return;
1673
e222432b
BS
1674 rcu_read_lock();
1675
1676 mem_cgrp = memcg->css.cgroup;
1677 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1678
1679 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1680 if (ret < 0) {
1681 /*
1682 * Unfortunately, we are unable to convert to a useful name
1683 * But we'll still print out the usage information
1684 */
1685 rcu_read_unlock();
1686 goto done;
1687 }
1688 rcu_read_unlock();
1689
d045197f 1690 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1691
1692 rcu_read_lock();
1693 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1694 if (ret < 0) {
1695 rcu_read_unlock();
1696 goto done;
1697 }
1698 rcu_read_unlock();
1699
1700 /*
1701 * Continues from above, so we don't need an KERN_ level
1702 */
d045197f 1703 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1704done:
1705
d045197f 1706 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1707 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1708 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1709 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1710 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1711 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1712 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1713 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1714 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1715 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1716 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1717 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1718
1719 for_each_mem_cgroup_tree(iter, memcg) {
1720 pr_info("Memory cgroup stats");
1721
1722 rcu_read_lock();
1723 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1724 if (!ret)
1725 pr_cont(" for %s", memcg_name);
1726 rcu_read_unlock();
1727 pr_cont(":");
1728
1729 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1730 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1731 continue;
1732 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1733 K(mem_cgroup_read_stat(iter, i)));
1734 }
1735
1736 for (i = 0; i < NR_LRU_LISTS; i++)
1737 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1738 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1739
1740 pr_cont("\n");
1741 }
e222432b
BS
1742}
1743
81d39c20
KH
1744/*
1745 * This function returns the number of memcg under hierarchy tree. Returns
1746 * 1(self count) if no children.
1747 */
c0ff4b85 1748static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1749{
1750 int num = 0;
7d74b06f
KH
1751 struct mem_cgroup *iter;
1752
c0ff4b85 1753 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1754 num++;
81d39c20
KH
1755 return num;
1756}
1757
a63d83f4
DR
1758/*
1759 * Return the memory (and swap, if configured) limit for a memcg.
1760 */
9cbb78bb 1761static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1762{
1763 u64 limit;
a63d83f4 1764
f3e8eb70 1765 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1766
a63d83f4 1767 /*
9a5a8f19 1768 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1769 */
9a5a8f19
MH
1770 if (mem_cgroup_swappiness(memcg)) {
1771 u64 memsw;
1772
1773 limit += total_swap_pages << PAGE_SHIFT;
1774 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1775
1776 /*
1777 * If memsw is finite and limits the amount of swap space
1778 * available to this memcg, return that limit.
1779 */
1780 limit = min(limit, memsw);
1781 }
1782
1783 return limit;
a63d83f4
DR
1784}
1785
19965460
DR
1786static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1787 int order)
9cbb78bb
DR
1788{
1789 struct mem_cgroup *iter;
1790 unsigned long chosen_points = 0;
1791 unsigned long totalpages;
1792 unsigned int points = 0;
1793 struct task_struct *chosen = NULL;
1794
876aafbf 1795 /*
465adcf1
DR
1796 * If current has a pending SIGKILL or is exiting, then automatically
1797 * select it. The goal is to allow it to allocate so that it may
1798 * quickly exit and free its memory.
876aafbf 1799 */
465adcf1 1800 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1801 set_thread_flag(TIF_MEMDIE);
1802 return;
1803 }
1804
1805 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1806 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1807 for_each_mem_cgroup_tree(iter, memcg) {
1808 struct cgroup *cgroup = iter->css.cgroup;
1809 struct cgroup_iter it;
1810 struct task_struct *task;
1811
1812 cgroup_iter_start(cgroup, &it);
1813 while ((task = cgroup_iter_next(cgroup, &it))) {
1814 switch (oom_scan_process_thread(task, totalpages, NULL,
1815 false)) {
1816 case OOM_SCAN_SELECT:
1817 if (chosen)
1818 put_task_struct(chosen);
1819 chosen = task;
1820 chosen_points = ULONG_MAX;
1821 get_task_struct(chosen);
1822 /* fall through */
1823 case OOM_SCAN_CONTINUE:
1824 continue;
1825 case OOM_SCAN_ABORT:
1826 cgroup_iter_end(cgroup, &it);
1827 mem_cgroup_iter_break(memcg, iter);
1828 if (chosen)
1829 put_task_struct(chosen);
1830 return;
1831 case OOM_SCAN_OK:
1832 break;
1833 };
1834 points = oom_badness(task, memcg, NULL, totalpages);
1835 if (points > chosen_points) {
1836 if (chosen)
1837 put_task_struct(chosen);
1838 chosen = task;
1839 chosen_points = points;
1840 get_task_struct(chosen);
1841 }
1842 }
1843 cgroup_iter_end(cgroup, &it);
1844 }
1845
1846 if (!chosen)
1847 return;
1848 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1849 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1850 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1851}
1852
5660048c
JW
1853static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1854 gfp_t gfp_mask,
1855 unsigned long flags)
1856{
1857 unsigned long total = 0;
1858 bool noswap = false;
1859 int loop;
1860
1861 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1862 noswap = true;
1863 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1864 noswap = true;
1865
1866 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1867 if (loop)
1868 drain_all_stock_async(memcg);
1869 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1870 /*
1871 * Allow limit shrinkers, which are triggered directly
1872 * by userspace, to catch signals and stop reclaim
1873 * after minimal progress, regardless of the margin.
1874 */
1875 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1876 break;
1877 if (mem_cgroup_margin(memcg))
1878 break;
1879 /*
1880 * If nothing was reclaimed after two attempts, there
1881 * may be no reclaimable pages in this hierarchy.
1882 */
1883 if (loop && !total)
1884 break;
1885 }
1886 return total;
1887}
1888
4d0c066d
KH
1889/**
1890 * test_mem_cgroup_node_reclaimable
dad7557e 1891 * @memcg: the target memcg
4d0c066d
KH
1892 * @nid: the node ID to be checked.
1893 * @noswap : specify true here if the user wants flle only information.
1894 *
1895 * This function returns whether the specified memcg contains any
1896 * reclaimable pages on a node. Returns true if there are any reclaimable
1897 * pages in the node.
1898 */
c0ff4b85 1899static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1900 int nid, bool noswap)
1901{
c0ff4b85 1902 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1903 return true;
1904 if (noswap || !total_swap_pages)
1905 return false;
c0ff4b85 1906 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1907 return true;
1908 return false;
1909
1910}
889976db
YH
1911#if MAX_NUMNODES > 1
1912
1913/*
1914 * Always updating the nodemask is not very good - even if we have an empty
1915 * list or the wrong list here, we can start from some node and traverse all
1916 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1917 *
1918 */
c0ff4b85 1919static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1920{
1921 int nid;
453a9bf3
KH
1922 /*
1923 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1924 * pagein/pageout changes since the last update.
1925 */
c0ff4b85 1926 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1927 return;
c0ff4b85 1928 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1929 return;
1930
889976db 1931 /* make a nodemask where this memcg uses memory from */
31aaea4a 1932 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1933
31aaea4a 1934 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1935
c0ff4b85
R
1936 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1937 node_clear(nid, memcg->scan_nodes);
889976db 1938 }
453a9bf3 1939
c0ff4b85
R
1940 atomic_set(&memcg->numainfo_events, 0);
1941 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1942}
1943
1944/*
1945 * Selecting a node where we start reclaim from. Because what we need is just
1946 * reducing usage counter, start from anywhere is O,K. Considering
1947 * memory reclaim from current node, there are pros. and cons.
1948 *
1949 * Freeing memory from current node means freeing memory from a node which
1950 * we'll use or we've used. So, it may make LRU bad. And if several threads
1951 * hit limits, it will see a contention on a node. But freeing from remote
1952 * node means more costs for memory reclaim because of memory latency.
1953 *
1954 * Now, we use round-robin. Better algorithm is welcomed.
1955 */
c0ff4b85 1956int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1957{
1958 int node;
1959
c0ff4b85
R
1960 mem_cgroup_may_update_nodemask(memcg);
1961 node = memcg->last_scanned_node;
889976db 1962
c0ff4b85 1963 node = next_node(node, memcg->scan_nodes);
889976db 1964 if (node == MAX_NUMNODES)
c0ff4b85 1965 node = first_node(memcg->scan_nodes);
889976db
YH
1966 /*
1967 * We call this when we hit limit, not when pages are added to LRU.
1968 * No LRU may hold pages because all pages are UNEVICTABLE or
1969 * memcg is too small and all pages are not on LRU. In that case,
1970 * we use curret node.
1971 */
1972 if (unlikely(node == MAX_NUMNODES))
1973 node = numa_node_id();
1974
c0ff4b85 1975 memcg->last_scanned_node = node;
889976db
YH
1976 return node;
1977}
1978
4d0c066d
KH
1979/*
1980 * Check all nodes whether it contains reclaimable pages or not.
1981 * For quick scan, we make use of scan_nodes. This will allow us to skip
1982 * unused nodes. But scan_nodes is lazily updated and may not cotain
1983 * enough new information. We need to do double check.
1984 */
6bbda35c 1985static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1986{
1987 int nid;
1988
1989 /*
1990 * quick check...making use of scan_node.
1991 * We can skip unused nodes.
1992 */
c0ff4b85
R
1993 if (!nodes_empty(memcg->scan_nodes)) {
1994 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1995 nid < MAX_NUMNODES;
c0ff4b85 1996 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1997
c0ff4b85 1998 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1999 return true;
2000 }
2001 }
2002 /*
2003 * Check rest of nodes.
2004 */
31aaea4a 2005 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 2006 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 2007 continue;
c0ff4b85 2008 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
2009 return true;
2010 }
2011 return false;
2012}
2013
889976db 2014#else
c0ff4b85 2015int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2016{
2017 return 0;
2018}
4d0c066d 2019
6bbda35c 2020static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 2021{
c0ff4b85 2022 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 2023}
889976db
YH
2024#endif
2025
5660048c
JW
2026static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2027 struct zone *zone,
2028 gfp_t gfp_mask,
2029 unsigned long *total_scanned)
6d61ef40 2030{
9f3a0d09 2031 struct mem_cgroup *victim = NULL;
5660048c 2032 int total = 0;
04046e1a 2033 int loop = 0;
9d11ea9f 2034 unsigned long excess;
185efc0f 2035 unsigned long nr_scanned;
527a5ec9
JW
2036 struct mem_cgroup_reclaim_cookie reclaim = {
2037 .zone = zone,
2038 .priority = 0,
2039 };
9d11ea9f 2040
c0ff4b85 2041 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 2042
4e416953 2043 while (1) {
527a5ec9 2044 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 2045 if (!victim) {
04046e1a 2046 loop++;
4e416953
BS
2047 if (loop >= 2) {
2048 /*
2049 * If we have not been able to reclaim
2050 * anything, it might because there are
2051 * no reclaimable pages under this hierarchy
2052 */
5660048c 2053 if (!total)
4e416953 2054 break;
4e416953 2055 /*
25985edc 2056 * We want to do more targeted reclaim.
4e416953
BS
2057 * excess >> 2 is not to excessive so as to
2058 * reclaim too much, nor too less that we keep
2059 * coming back to reclaim from this cgroup
2060 */
2061 if (total >= (excess >> 2) ||
9f3a0d09 2062 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 2063 break;
4e416953 2064 }
9f3a0d09 2065 continue;
4e416953 2066 }
5660048c 2067 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 2068 continue;
5660048c
JW
2069 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2070 zone, &nr_scanned);
2071 *total_scanned += nr_scanned;
2072 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 2073 break;
6d61ef40 2074 }
9f3a0d09 2075 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 2076 return total;
6d61ef40
BS
2077}
2078
867578cb
KH
2079/*
2080 * Check OOM-Killer is already running under our hierarchy.
2081 * If someone is running, return false.
1af8efe9 2082 * Has to be called with memcg_oom_lock
867578cb 2083 */
c0ff4b85 2084static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 2085{
79dfdacc 2086 struct mem_cgroup *iter, *failed = NULL;
a636b327 2087
9f3a0d09 2088 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2089 if (iter->oom_lock) {
79dfdacc
MH
2090 /*
2091 * this subtree of our hierarchy is already locked
2092 * so we cannot give a lock.
2093 */
79dfdacc 2094 failed = iter;
9f3a0d09
JW
2095 mem_cgroup_iter_break(memcg, iter);
2096 break;
23751be0
JW
2097 } else
2098 iter->oom_lock = true;
7d74b06f 2099 }
867578cb 2100
79dfdacc 2101 if (!failed)
23751be0 2102 return true;
79dfdacc
MH
2103
2104 /*
2105 * OK, we failed to lock the whole subtree so we have to clean up
2106 * what we set up to the failing subtree
2107 */
9f3a0d09 2108 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 2109 if (iter == failed) {
9f3a0d09
JW
2110 mem_cgroup_iter_break(memcg, iter);
2111 break;
79dfdacc
MH
2112 }
2113 iter->oom_lock = false;
2114 }
23751be0 2115 return false;
a636b327 2116}
0b7f569e 2117
79dfdacc 2118/*
1af8efe9 2119 * Has to be called with memcg_oom_lock
79dfdacc 2120 */
c0ff4b85 2121static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2122{
7d74b06f
KH
2123 struct mem_cgroup *iter;
2124
c0ff4b85 2125 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2126 iter->oom_lock = false;
2127 return 0;
2128}
2129
c0ff4b85 2130static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2131{
2132 struct mem_cgroup *iter;
2133
c0ff4b85 2134 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2135 atomic_inc(&iter->under_oom);
2136}
2137
c0ff4b85 2138static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2139{
2140 struct mem_cgroup *iter;
2141
867578cb
KH
2142 /*
2143 * When a new child is created while the hierarchy is under oom,
2144 * mem_cgroup_oom_lock() may not be called. We have to use
2145 * atomic_add_unless() here.
2146 */
c0ff4b85 2147 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2148 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2149}
2150
1af8efe9 2151static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
2152static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2153
dc98df5a 2154struct oom_wait_info {
d79154bb 2155 struct mem_cgroup *memcg;
dc98df5a
KH
2156 wait_queue_t wait;
2157};
2158
2159static int memcg_oom_wake_function(wait_queue_t *wait,
2160 unsigned mode, int sync, void *arg)
2161{
d79154bb
HD
2162 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2163 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2164 struct oom_wait_info *oom_wait_info;
2165
2166 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2167 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2168
dc98df5a 2169 /*
d79154bb 2170 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2171 * Then we can use css_is_ancestor without taking care of RCU.
2172 */
c0ff4b85
R
2173 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2174 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2175 return 0;
dc98df5a
KH
2176 return autoremove_wake_function(wait, mode, sync, arg);
2177}
2178
c0ff4b85 2179static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2180{
c0ff4b85
R
2181 /* for filtering, pass "memcg" as argument. */
2182 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2183}
2184
c0ff4b85 2185static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2186{
c0ff4b85
R
2187 if (memcg && atomic_read(&memcg->under_oom))
2188 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2189}
2190
867578cb
KH
2191/*
2192 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2193 */
6bbda35c
KS
2194static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2195 int order)
0b7f569e 2196{
dc98df5a 2197 struct oom_wait_info owait;
3c11ecf4 2198 bool locked, need_to_kill;
867578cb 2199
d79154bb 2200 owait.memcg = memcg;
dc98df5a
KH
2201 owait.wait.flags = 0;
2202 owait.wait.func = memcg_oom_wake_function;
2203 owait.wait.private = current;
2204 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 2205 need_to_kill = true;
c0ff4b85 2206 mem_cgroup_mark_under_oom(memcg);
79dfdacc 2207
c0ff4b85 2208 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 2209 spin_lock(&memcg_oom_lock);
c0ff4b85 2210 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
2211 /*
2212 * Even if signal_pending(), we can't quit charge() loop without
2213 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2214 * under OOM is always welcomed, use TASK_KILLABLE here.
2215 */
3c11ecf4 2216 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 2217 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
2218 need_to_kill = false;
2219 if (locked)
c0ff4b85 2220 mem_cgroup_oom_notify(memcg);
1af8efe9 2221 spin_unlock(&memcg_oom_lock);
867578cb 2222
3c11ecf4
KH
2223 if (need_to_kill) {
2224 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 2225 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 2226 } else {
867578cb 2227 schedule();
dc98df5a 2228 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 2229 }
1af8efe9 2230 spin_lock(&memcg_oom_lock);
79dfdacc 2231 if (locked)
c0ff4b85
R
2232 mem_cgroup_oom_unlock(memcg);
2233 memcg_wakeup_oom(memcg);
1af8efe9 2234 spin_unlock(&memcg_oom_lock);
867578cb 2235
c0ff4b85 2236 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 2237
867578cb
KH
2238 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2239 return false;
2240 /* Give chance to dying process */
715a5ee8 2241 schedule_timeout_uninterruptible(1);
867578cb 2242 return true;
0b7f569e
KH
2243}
2244
d69b042f
BS
2245/*
2246 * Currently used to update mapped file statistics, but the routine can be
2247 * generalized to update other statistics as well.
32047e2a
KH
2248 *
2249 * Notes: Race condition
2250 *
2251 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2252 * it tends to be costly. But considering some conditions, we doesn't need
2253 * to do so _always_.
2254 *
2255 * Considering "charge", lock_page_cgroup() is not required because all
2256 * file-stat operations happen after a page is attached to radix-tree. There
2257 * are no race with "charge".
2258 *
2259 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2260 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2261 * if there are race with "uncharge". Statistics itself is properly handled
2262 * by flags.
2263 *
2264 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2265 * small, we check mm->moving_account and detect there are possibility of race
2266 * If there is, we take a lock.
d69b042f 2267 */
26174efd 2268
89c06bd5
KH
2269void __mem_cgroup_begin_update_page_stat(struct page *page,
2270 bool *locked, unsigned long *flags)
2271{
2272 struct mem_cgroup *memcg;
2273 struct page_cgroup *pc;
2274
2275 pc = lookup_page_cgroup(page);
2276again:
2277 memcg = pc->mem_cgroup;
2278 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2279 return;
2280 /*
2281 * If this memory cgroup is not under account moving, we don't
da92c47d 2282 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2283 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2284 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2285 */
13fd1dd9 2286 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2287 return;
2288
2289 move_lock_mem_cgroup(memcg, flags);
2290 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2291 move_unlock_mem_cgroup(memcg, flags);
2292 goto again;
2293 }
2294 *locked = true;
2295}
2296
2297void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2298{
2299 struct page_cgroup *pc = lookup_page_cgroup(page);
2300
2301 /*
2302 * It's guaranteed that pc->mem_cgroup never changes while
2303 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2304 * should take move_lock_mem_cgroup().
89c06bd5
KH
2305 */
2306 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2307}
2308
2a7106f2
GT
2309void mem_cgroup_update_page_stat(struct page *page,
2310 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2311{
c0ff4b85 2312 struct mem_cgroup *memcg;
32047e2a 2313 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2314 unsigned long uninitialized_var(flags);
d69b042f 2315
cfa44946 2316 if (mem_cgroup_disabled())
d69b042f 2317 return;
89c06bd5 2318
c0ff4b85
R
2319 memcg = pc->mem_cgroup;
2320 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2321 return;
26174efd 2322
26174efd 2323 switch (idx) {
2a7106f2 2324 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2325 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2326 break;
2327 default:
2328 BUG();
8725d541 2329 }
d69b042f 2330
c0ff4b85 2331 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2332}
26174efd 2333
cdec2e42
KH
2334/*
2335 * size of first charge trial. "32" comes from vmscan.c's magic value.
2336 * TODO: maybe necessary to use big numbers in big irons.
2337 */
7ec99d62 2338#define CHARGE_BATCH 32U
cdec2e42
KH
2339struct memcg_stock_pcp {
2340 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2341 unsigned int nr_pages;
cdec2e42 2342 struct work_struct work;
26fe6168 2343 unsigned long flags;
a0db00fc 2344#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2345};
2346static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2347static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2348
a0956d54
SS
2349/**
2350 * consume_stock: Try to consume stocked charge on this cpu.
2351 * @memcg: memcg to consume from.
2352 * @nr_pages: how many pages to charge.
2353 *
2354 * The charges will only happen if @memcg matches the current cpu's memcg
2355 * stock, and at least @nr_pages are available in that stock. Failure to
2356 * service an allocation will refill the stock.
2357 *
2358 * returns true if successful, false otherwise.
cdec2e42 2359 */
a0956d54 2360static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2361{
2362 struct memcg_stock_pcp *stock;
2363 bool ret = true;
2364
a0956d54
SS
2365 if (nr_pages > CHARGE_BATCH)
2366 return false;
2367
cdec2e42 2368 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2369 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2370 stock->nr_pages -= nr_pages;
cdec2e42
KH
2371 else /* need to call res_counter_charge */
2372 ret = false;
2373 put_cpu_var(memcg_stock);
2374 return ret;
2375}
2376
2377/*
2378 * Returns stocks cached in percpu to res_counter and reset cached information.
2379 */
2380static void drain_stock(struct memcg_stock_pcp *stock)
2381{
2382 struct mem_cgroup *old = stock->cached;
2383
11c9ea4e
JW
2384 if (stock->nr_pages) {
2385 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2386
2387 res_counter_uncharge(&old->res, bytes);
cdec2e42 2388 if (do_swap_account)
11c9ea4e
JW
2389 res_counter_uncharge(&old->memsw, bytes);
2390 stock->nr_pages = 0;
cdec2e42
KH
2391 }
2392 stock->cached = NULL;
cdec2e42
KH
2393}
2394
2395/*
2396 * This must be called under preempt disabled or must be called by
2397 * a thread which is pinned to local cpu.
2398 */
2399static void drain_local_stock(struct work_struct *dummy)
2400{
2401 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2402 drain_stock(stock);
26fe6168 2403 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2404}
2405
e4777496
MH
2406static void __init memcg_stock_init(void)
2407{
2408 int cpu;
2409
2410 for_each_possible_cpu(cpu) {
2411 struct memcg_stock_pcp *stock =
2412 &per_cpu(memcg_stock, cpu);
2413 INIT_WORK(&stock->work, drain_local_stock);
2414 }
2415}
2416
cdec2e42
KH
2417/*
2418 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2419 * This will be consumed by consume_stock() function, later.
cdec2e42 2420 */
c0ff4b85 2421static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2422{
2423 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2424
c0ff4b85 2425 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2426 drain_stock(stock);
c0ff4b85 2427 stock->cached = memcg;
cdec2e42 2428 }
11c9ea4e 2429 stock->nr_pages += nr_pages;
cdec2e42
KH
2430 put_cpu_var(memcg_stock);
2431}
2432
2433/*
c0ff4b85 2434 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2435 * of the hierarchy under it. sync flag says whether we should block
2436 * until the work is done.
cdec2e42 2437 */
c0ff4b85 2438static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2439{
26fe6168 2440 int cpu, curcpu;
d38144b7 2441
cdec2e42 2442 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2443 get_online_cpus();
5af12d0e 2444 curcpu = get_cpu();
cdec2e42
KH
2445 for_each_online_cpu(cpu) {
2446 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2447 struct mem_cgroup *memcg;
26fe6168 2448
c0ff4b85
R
2449 memcg = stock->cached;
2450 if (!memcg || !stock->nr_pages)
26fe6168 2451 continue;
c0ff4b85 2452 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2453 continue;
d1a05b69
MH
2454 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2455 if (cpu == curcpu)
2456 drain_local_stock(&stock->work);
2457 else
2458 schedule_work_on(cpu, &stock->work);
2459 }
cdec2e42 2460 }
5af12d0e 2461 put_cpu();
d38144b7
MH
2462
2463 if (!sync)
2464 goto out;
2465
2466 for_each_online_cpu(cpu) {
2467 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2468 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2469 flush_work(&stock->work);
2470 }
2471out:
cdec2e42 2472 put_online_cpus();
d38144b7
MH
2473}
2474
2475/*
2476 * Tries to drain stocked charges in other cpus. This function is asynchronous
2477 * and just put a work per cpu for draining localy on each cpu. Caller can
2478 * expects some charges will be back to res_counter later but cannot wait for
2479 * it.
2480 */
c0ff4b85 2481static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2482{
9f50fad6
MH
2483 /*
2484 * If someone calls draining, avoid adding more kworker runs.
2485 */
2486 if (!mutex_trylock(&percpu_charge_mutex))
2487 return;
c0ff4b85 2488 drain_all_stock(root_memcg, false);
9f50fad6 2489 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2490}
2491
2492/* This is a synchronous drain interface. */
c0ff4b85 2493static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2494{
2495 /* called when force_empty is called */
9f50fad6 2496 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2497 drain_all_stock(root_memcg, true);
9f50fad6 2498 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2499}
2500
711d3d2c
KH
2501/*
2502 * This function drains percpu counter value from DEAD cpu and
2503 * move it to local cpu. Note that this function can be preempted.
2504 */
c0ff4b85 2505static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2506{
2507 int i;
2508
c0ff4b85 2509 spin_lock(&memcg->pcp_counter_lock);
6104621d 2510 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2511 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2512
c0ff4b85
R
2513 per_cpu(memcg->stat->count[i], cpu) = 0;
2514 memcg->nocpu_base.count[i] += x;
711d3d2c 2515 }
e9f8974f 2516 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2517 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2518
c0ff4b85
R
2519 per_cpu(memcg->stat->events[i], cpu) = 0;
2520 memcg->nocpu_base.events[i] += x;
e9f8974f 2521 }
c0ff4b85 2522 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2523}
2524
2525static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2526 unsigned long action,
2527 void *hcpu)
2528{
2529 int cpu = (unsigned long)hcpu;
2530 struct memcg_stock_pcp *stock;
711d3d2c 2531 struct mem_cgroup *iter;
cdec2e42 2532
619d094b 2533 if (action == CPU_ONLINE)
1489ebad 2534 return NOTIFY_OK;
1489ebad 2535
d833049b 2536 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2537 return NOTIFY_OK;
711d3d2c 2538
9f3a0d09 2539 for_each_mem_cgroup(iter)
711d3d2c
KH
2540 mem_cgroup_drain_pcp_counter(iter, cpu);
2541
cdec2e42
KH
2542 stock = &per_cpu(memcg_stock, cpu);
2543 drain_stock(stock);
2544 return NOTIFY_OK;
2545}
2546
4b534334
KH
2547
2548/* See __mem_cgroup_try_charge() for details */
2549enum {
2550 CHARGE_OK, /* success */
2551 CHARGE_RETRY, /* need to retry but retry is not bad */
2552 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2553 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2554 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2555};
2556
c0ff4b85 2557static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2558 unsigned int nr_pages, unsigned int min_pages,
2559 bool oom_check)
4b534334 2560{
7ec99d62 2561 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2562 struct mem_cgroup *mem_over_limit;
2563 struct res_counter *fail_res;
2564 unsigned long flags = 0;
2565 int ret;
2566
c0ff4b85 2567 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2568
2569 if (likely(!ret)) {
2570 if (!do_swap_account)
2571 return CHARGE_OK;
c0ff4b85 2572 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2573 if (likely(!ret))
2574 return CHARGE_OK;
2575
c0ff4b85 2576 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2577 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2578 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2579 } else
2580 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2581 /*
9221edb7
JW
2582 * Never reclaim on behalf of optional batching, retry with a
2583 * single page instead.
2584 */
4c9c5359 2585 if (nr_pages > min_pages)
4b534334
KH
2586 return CHARGE_RETRY;
2587
2588 if (!(gfp_mask & __GFP_WAIT))
2589 return CHARGE_WOULDBLOCK;
2590
4c9c5359
SS
2591 if (gfp_mask & __GFP_NORETRY)
2592 return CHARGE_NOMEM;
2593
5660048c 2594 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2595 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2596 return CHARGE_RETRY;
4b534334 2597 /*
19942822
JW
2598 * Even though the limit is exceeded at this point, reclaim
2599 * may have been able to free some pages. Retry the charge
2600 * before killing the task.
2601 *
2602 * Only for regular pages, though: huge pages are rather
2603 * unlikely to succeed so close to the limit, and we fall back
2604 * to regular pages anyway in case of failure.
4b534334 2605 */
4c9c5359 2606 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2607 return CHARGE_RETRY;
2608
2609 /*
2610 * At task move, charge accounts can be doubly counted. So, it's
2611 * better to wait until the end of task_move if something is going on.
2612 */
2613 if (mem_cgroup_wait_acct_move(mem_over_limit))
2614 return CHARGE_RETRY;
2615
2616 /* If we don't need to call oom-killer at el, return immediately */
2617 if (!oom_check)
2618 return CHARGE_NOMEM;
2619 /* check OOM */
e845e199 2620 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2621 return CHARGE_OOM_DIE;
2622
2623 return CHARGE_RETRY;
2624}
2625
f817ed48 2626/*
38c5d72f
KH
2627 * __mem_cgroup_try_charge() does
2628 * 1. detect memcg to be charged against from passed *mm and *ptr,
2629 * 2. update res_counter
2630 * 3. call memory reclaim if necessary.
2631 *
2632 * In some special case, if the task is fatal, fatal_signal_pending() or
2633 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2634 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2635 * as possible without any hazards. 2: all pages should have a valid
2636 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2637 * pointer, that is treated as a charge to root_mem_cgroup.
2638 *
2639 * So __mem_cgroup_try_charge() will return
2640 * 0 ... on success, filling *ptr with a valid memcg pointer.
2641 * -ENOMEM ... charge failure because of resource limits.
2642 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2643 *
2644 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2645 * the oom-killer can be invoked.
8a9f3ccd 2646 */
f817ed48 2647static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2648 gfp_t gfp_mask,
7ec99d62 2649 unsigned int nr_pages,
c0ff4b85 2650 struct mem_cgroup **ptr,
7ec99d62 2651 bool oom)
8a9f3ccd 2652{
7ec99d62 2653 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2654 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2655 struct mem_cgroup *memcg = NULL;
4b534334 2656 int ret;
a636b327 2657
867578cb
KH
2658 /*
2659 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2660 * in system level. So, allow to go ahead dying process in addition to
2661 * MEMDIE process.
2662 */
2663 if (unlikely(test_thread_flag(TIF_MEMDIE)
2664 || fatal_signal_pending(current)))
2665 goto bypass;
a636b327 2666
8a9f3ccd 2667 /*
3be91277
HD
2668 * We always charge the cgroup the mm_struct belongs to.
2669 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2670 * thread group leader migrates. It's possible that mm is not
24467cac 2671 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2672 */
c0ff4b85 2673 if (!*ptr && !mm)
38c5d72f 2674 *ptr = root_mem_cgroup;
f75ca962 2675again:
c0ff4b85
R
2676 if (*ptr) { /* css should be a valid one */
2677 memcg = *ptr;
c0ff4b85 2678 if (mem_cgroup_is_root(memcg))
f75ca962 2679 goto done;
a0956d54 2680 if (consume_stock(memcg, nr_pages))
f75ca962 2681 goto done;
c0ff4b85 2682 css_get(&memcg->css);
4b534334 2683 } else {
f75ca962 2684 struct task_struct *p;
54595fe2 2685
f75ca962
KH
2686 rcu_read_lock();
2687 p = rcu_dereference(mm->owner);
f75ca962 2688 /*
ebb76ce1 2689 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2690 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2691 * race with swapoff. Then, we have small risk of mis-accouning.
2692 * But such kind of mis-account by race always happens because
2693 * we don't have cgroup_mutex(). It's overkill and we allo that
2694 * small race, here.
2695 * (*) swapoff at el will charge against mm-struct not against
2696 * task-struct. So, mm->owner can be NULL.
f75ca962 2697 */
c0ff4b85 2698 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2699 if (!memcg)
2700 memcg = root_mem_cgroup;
2701 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2702 rcu_read_unlock();
2703 goto done;
2704 }
a0956d54 2705 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2706 /*
2707 * It seems dagerous to access memcg without css_get().
2708 * But considering how consume_stok works, it's not
2709 * necessary. If consume_stock success, some charges
2710 * from this memcg are cached on this cpu. So, we
2711 * don't need to call css_get()/css_tryget() before
2712 * calling consume_stock().
2713 */
2714 rcu_read_unlock();
2715 goto done;
2716 }
2717 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2718 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2719 rcu_read_unlock();
2720 goto again;
2721 }
2722 rcu_read_unlock();
2723 }
8a9f3ccd 2724
4b534334
KH
2725 do {
2726 bool oom_check;
7a81b88c 2727
4b534334 2728 /* If killed, bypass charge */
f75ca962 2729 if (fatal_signal_pending(current)) {
c0ff4b85 2730 css_put(&memcg->css);
4b534334 2731 goto bypass;
f75ca962 2732 }
6d61ef40 2733
4b534334
KH
2734 oom_check = false;
2735 if (oom && !nr_oom_retries) {
2736 oom_check = true;
2737 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2738 }
66e1707b 2739
4c9c5359
SS
2740 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2741 oom_check);
4b534334
KH
2742 switch (ret) {
2743 case CHARGE_OK:
2744 break;
2745 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2746 batch = nr_pages;
c0ff4b85
R
2747 css_put(&memcg->css);
2748 memcg = NULL;
f75ca962 2749 goto again;
4b534334 2750 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2751 css_put(&memcg->css);
4b534334
KH
2752 goto nomem;
2753 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2754 if (!oom) {
c0ff4b85 2755 css_put(&memcg->css);
867578cb 2756 goto nomem;
f75ca962 2757 }
4b534334
KH
2758 /* If oom, we never return -ENOMEM */
2759 nr_oom_retries--;
2760 break;
2761 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2762 css_put(&memcg->css);
867578cb 2763 goto bypass;
66e1707b 2764 }
4b534334
KH
2765 } while (ret != CHARGE_OK);
2766
7ec99d62 2767 if (batch > nr_pages)
c0ff4b85
R
2768 refill_stock(memcg, batch - nr_pages);
2769 css_put(&memcg->css);
0c3e73e8 2770done:
c0ff4b85 2771 *ptr = memcg;
7a81b88c
KH
2772 return 0;
2773nomem:
c0ff4b85 2774 *ptr = NULL;
7a81b88c 2775 return -ENOMEM;
867578cb 2776bypass:
38c5d72f
KH
2777 *ptr = root_mem_cgroup;
2778 return -EINTR;
7a81b88c 2779}
8a9f3ccd 2780
a3032a2c
DN
2781/*
2782 * Somemtimes we have to undo a charge we got by try_charge().
2783 * This function is for that and do uncharge, put css's refcnt.
2784 * gotten by try_charge().
2785 */
c0ff4b85 2786static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2787 unsigned int nr_pages)
a3032a2c 2788{
c0ff4b85 2789 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2790 unsigned long bytes = nr_pages * PAGE_SIZE;
2791
c0ff4b85 2792 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2793 if (do_swap_account)
c0ff4b85 2794 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2795 }
854ffa8d
DN
2796}
2797
d01dd17f
KH
2798/*
2799 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2800 * This is useful when moving usage to parent cgroup.
2801 */
2802static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2803 unsigned int nr_pages)
2804{
2805 unsigned long bytes = nr_pages * PAGE_SIZE;
2806
2807 if (mem_cgroup_is_root(memcg))
2808 return;
2809
2810 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2811 if (do_swap_account)
2812 res_counter_uncharge_until(&memcg->memsw,
2813 memcg->memsw.parent, bytes);
2814}
2815
a3b2d692
KH
2816/*
2817 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2818 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2819 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2820 * called against removed memcg.)
a3b2d692
KH
2821 */
2822static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2823{
2824 struct cgroup_subsys_state *css;
2825
2826 /* ID 0 is unused ID */
2827 if (!id)
2828 return NULL;
2829 css = css_lookup(&mem_cgroup_subsys, id);
2830 if (!css)
2831 return NULL;
b2145145 2832 return mem_cgroup_from_css(css);
a3b2d692
KH
2833}
2834
e42d9d5d 2835struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2836{
c0ff4b85 2837 struct mem_cgroup *memcg = NULL;
3c776e64 2838 struct page_cgroup *pc;
a3b2d692 2839 unsigned short id;
b5a84319
KH
2840 swp_entry_t ent;
2841
3c776e64
DN
2842 VM_BUG_ON(!PageLocked(page));
2843
3c776e64 2844 pc = lookup_page_cgroup(page);
c0bd3f63 2845 lock_page_cgroup(pc);
a3b2d692 2846 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2847 memcg = pc->mem_cgroup;
2848 if (memcg && !css_tryget(&memcg->css))
2849 memcg = NULL;
e42d9d5d 2850 } else if (PageSwapCache(page)) {
3c776e64 2851 ent.val = page_private(page);
9fb4b7cc 2852 id = lookup_swap_cgroup_id(ent);
a3b2d692 2853 rcu_read_lock();
c0ff4b85
R
2854 memcg = mem_cgroup_lookup(id);
2855 if (memcg && !css_tryget(&memcg->css))
2856 memcg = NULL;
a3b2d692 2857 rcu_read_unlock();
3c776e64 2858 }
c0bd3f63 2859 unlock_page_cgroup(pc);
c0ff4b85 2860 return memcg;
b5a84319
KH
2861}
2862
c0ff4b85 2863static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2864 struct page *page,
7ec99d62 2865 unsigned int nr_pages,
9ce70c02
HD
2866 enum charge_type ctype,
2867 bool lrucare)
7a81b88c 2868{
ce587e65 2869 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2870 struct zone *uninitialized_var(zone);
fa9add64 2871 struct lruvec *lruvec;
9ce70c02 2872 bool was_on_lru = false;
b2402857 2873 bool anon;
9ce70c02 2874
ca3e0214 2875 lock_page_cgroup(pc);
90deb788 2876 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2877 /*
2878 * we don't need page_cgroup_lock about tail pages, becase they are not
2879 * accessed by any other context at this point.
2880 */
9ce70c02
HD
2881
2882 /*
2883 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2884 * may already be on some other mem_cgroup's LRU. Take care of it.
2885 */
2886 if (lrucare) {
2887 zone = page_zone(page);
2888 spin_lock_irq(&zone->lru_lock);
2889 if (PageLRU(page)) {
fa9add64 2890 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2891 ClearPageLRU(page);
fa9add64 2892 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2893 was_on_lru = true;
2894 }
2895 }
2896
c0ff4b85 2897 pc->mem_cgroup = memcg;
261fb61a
KH
2898 /*
2899 * We access a page_cgroup asynchronously without lock_page_cgroup().
2900 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2901 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2902 * before USED bit, we need memory barrier here.
2903 * See mem_cgroup_add_lru_list(), etc.
2904 */
08e552c6 2905 smp_wmb();
b2402857 2906 SetPageCgroupUsed(pc);
3be91277 2907
9ce70c02
HD
2908 if (lrucare) {
2909 if (was_on_lru) {
fa9add64 2910 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2911 VM_BUG_ON(PageLRU(page));
2912 SetPageLRU(page);
fa9add64 2913 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2914 }
2915 spin_unlock_irq(&zone->lru_lock);
2916 }
2917
41326c17 2918 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2919 anon = true;
2920 else
2921 anon = false;
2922
b070e65c 2923 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2924 unlock_page_cgroup(pc);
9ce70c02 2925
430e4863
KH
2926 /*
2927 * "charge_statistics" updated event counter. Then, check it.
2928 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2929 * if they exceeds softlimit.
2930 */
c0ff4b85 2931 memcg_check_events(memcg, page);
7a81b88c 2932}
66e1707b 2933
7cf27982
GC
2934static DEFINE_MUTEX(set_limit_mutex);
2935
7ae1e1d0
GC
2936#ifdef CONFIG_MEMCG_KMEM
2937static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2938{
2939 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2940 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2941}
2942
1f458cbf
GC
2943/*
2944 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2945 * in the memcg_cache_params struct.
2946 */
2947static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2948{
2949 struct kmem_cache *cachep;
2950
2951 VM_BUG_ON(p->is_root_cache);
2952 cachep = p->root_cache;
2953 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2954}
2955
749c5415
GC
2956#ifdef CONFIG_SLABINFO
2957static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2958 struct seq_file *m)
2959{
2960 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2961 struct memcg_cache_params *params;
2962
2963 if (!memcg_can_account_kmem(memcg))
2964 return -EIO;
2965
2966 print_slabinfo_header(m);
2967
2968 mutex_lock(&memcg->slab_caches_mutex);
2969 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2970 cache_show(memcg_params_to_cache(params), m);
2971 mutex_unlock(&memcg->slab_caches_mutex);
2972
2973 return 0;
2974}
2975#endif
2976
7ae1e1d0
GC
2977static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2978{
2979 struct res_counter *fail_res;
2980 struct mem_cgroup *_memcg;
2981 int ret = 0;
2982 bool may_oom;
2983
2984 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2985 if (ret)
2986 return ret;
2987
2988 /*
2989 * Conditions under which we can wait for the oom_killer. Those are
2990 * the same conditions tested by the core page allocator
2991 */
2992 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2993
2994 _memcg = memcg;
2995 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2996 &_memcg, may_oom);
2997
2998 if (ret == -EINTR) {
2999 /*
3000 * __mem_cgroup_try_charge() chosed to bypass to root due to
3001 * OOM kill or fatal signal. Since our only options are to
3002 * either fail the allocation or charge it to this cgroup, do
3003 * it as a temporary condition. But we can't fail. From a
3004 * kmem/slab perspective, the cache has already been selected,
3005 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3006 * our minds.
3007 *
3008 * This condition will only trigger if the task entered
3009 * memcg_charge_kmem in a sane state, but was OOM-killed during
3010 * __mem_cgroup_try_charge() above. Tasks that were already
3011 * dying when the allocation triggers should have been already
3012 * directed to the root cgroup in memcontrol.h
3013 */
3014 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3015 if (do_swap_account)
3016 res_counter_charge_nofail(&memcg->memsw, size,
3017 &fail_res);
3018 ret = 0;
3019 } else if (ret)
3020 res_counter_uncharge(&memcg->kmem, size);
3021
3022 return ret;
3023}
3024
3025static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3026{
7ae1e1d0
GC
3027 res_counter_uncharge(&memcg->res, size);
3028 if (do_swap_account)
3029 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3030
3031 /* Not down to 0 */
3032 if (res_counter_uncharge(&memcg->kmem, size))
3033 return;
3034
3035 if (memcg_kmem_test_and_clear_dead(memcg))
3036 mem_cgroup_put(memcg);
7ae1e1d0
GC
3037}
3038
2633d7a0
GC
3039void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3040{
3041 if (!memcg)
3042 return;
3043
3044 mutex_lock(&memcg->slab_caches_mutex);
3045 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3046 mutex_unlock(&memcg->slab_caches_mutex);
3047}
3048
3049/*
3050 * helper for acessing a memcg's index. It will be used as an index in the
3051 * child cache array in kmem_cache, and also to derive its name. This function
3052 * will return -1 when this is not a kmem-limited memcg.
3053 */
3054int memcg_cache_id(struct mem_cgroup *memcg)
3055{
3056 return memcg ? memcg->kmemcg_id : -1;
3057}
3058
55007d84
GC
3059/*
3060 * This ends up being protected by the set_limit mutex, during normal
3061 * operation, because that is its main call site.
3062 *
3063 * But when we create a new cache, we can call this as well if its parent
3064 * is kmem-limited. That will have to hold set_limit_mutex as well.
3065 */
3066int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3067{
3068 int num, ret;
3069
3070 num = ida_simple_get(&kmem_limited_groups,
3071 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3072 if (num < 0)
3073 return num;
3074 /*
3075 * After this point, kmem_accounted (that we test atomically in
3076 * the beginning of this conditional), is no longer 0. This
3077 * guarantees only one process will set the following boolean
3078 * to true. We don't need test_and_set because we're protected
3079 * by the set_limit_mutex anyway.
3080 */
3081 memcg_kmem_set_activated(memcg);
3082
3083 ret = memcg_update_all_caches(num+1);
3084 if (ret) {
3085 ida_simple_remove(&kmem_limited_groups, num);
3086 memcg_kmem_clear_activated(memcg);
3087 return ret;
3088 }
3089
3090 memcg->kmemcg_id = num;
3091 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3092 mutex_init(&memcg->slab_caches_mutex);
3093 return 0;
3094}
3095
3096static size_t memcg_caches_array_size(int num_groups)
3097{
3098 ssize_t size;
3099 if (num_groups <= 0)
3100 return 0;
3101
3102 size = 2 * num_groups;
3103 if (size < MEMCG_CACHES_MIN_SIZE)
3104 size = MEMCG_CACHES_MIN_SIZE;
3105 else if (size > MEMCG_CACHES_MAX_SIZE)
3106 size = MEMCG_CACHES_MAX_SIZE;
3107
3108 return size;
3109}
3110
3111/*
3112 * We should update the current array size iff all caches updates succeed. This
3113 * can only be done from the slab side. The slab mutex needs to be held when
3114 * calling this.
3115 */
3116void memcg_update_array_size(int num)
3117{
3118 if (num > memcg_limited_groups_array_size)
3119 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3120}
3121
15cf17d2
KK
3122static void kmem_cache_destroy_work_func(struct work_struct *w);
3123
55007d84
GC
3124int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3125{
3126 struct memcg_cache_params *cur_params = s->memcg_params;
3127
3128 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3129
3130 if (num_groups > memcg_limited_groups_array_size) {
3131 int i;
3132 ssize_t size = memcg_caches_array_size(num_groups);
3133
3134 size *= sizeof(void *);
3135 size += sizeof(struct memcg_cache_params);
3136
3137 s->memcg_params = kzalloc(size, GFP_KERNEL);
3138 if (!s->memcg_params) {
3139 s->memcg_params = cur_params;
3140 return -ENOMEM;
3141 }
3142
3143 s->memcg_params->is_root_cache = true;
3144
3145 /*
3146 * There is the chance it will be bigger than
3147 * memcg_limited_groups_array_size, if we failed an allocation
3148 * in a cache, in which case all caches updated before it, will
3149 * have a bigger array.
3150 *
3151 * But if that is the case, the data after
3152 * memcg_limited_groups_array_size is certainly unused
3153 */
3154 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3155 if (!cur_params->memcg_caches[i])
3156 continue;
3157 s->memcg_params->memcg_caches[i] =
3158 cur_params->memcg_caches[i];
3159 }
3160
3161 /*
3162 * Ideally, we would wait until all caches succeed, and only
3163 * then free the old one. But this is not worth the extra
3164 * pointer per-cache we'd have to have for this.
3165 *
3166 * It is not a big deal if some caches are left with a size
3167 * bigger than the others. And all updates will reset this
3168 * anyway.
3169 */
3170 kfree(cur_params);
3171 }
3172 return 0;
3173}
3174
943a451a
GC
3175int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3176 struct kmem_cache *root_cache)
2633d7a0
GC
3177{
3178 size_t size = sizeof(struct memcg_cache_params);
3179
3180 if (!memcg_kmem_enabled())
3181 return 0;
3182
55007d84
GC
3183 if (!memcg)
3184 size += memcg_limited_groups_array_size * sizeof(void *);
3185
2633d7a0
GC
3186 s->memcg_params = kzalloc(size, GFP_KERNEL);
3187 if (!s->memcg_params)
3188 return -ENOMEM;
3189
15cf17d2
KK
3190 INIT_WORK(&s->memcg_params->destroy,
3191 kmem_cache_destroy_work_func);
943a451a 3192 if (memcg) {
2633d7a0 3193 s->memcg_params->memcg = memcg;
943a451a 3194 s->memcg_params->root_cache = root_cache;
4ba902b5
GC
3195 } else
3196 s->memcg_params->is_root_cache = true;
3197
2633d7a0
GC
3198 return 0;
3199}
3200
3201void memcg_release_cache(struct kmem_cache *s)
3202{
d7f25f8a
GC
3203 struct kmem_cache *root;
3204 struct mem_cgroup *memcg;
3205 int id;
3206
3207 /*
3208 * This happens, for instance, when a root cache goes away before we
3209 * add any memcg.
3210 */
3211 if (!s->memcg_params)
3212 return;
3213
3214 if (s->memcg_params->is_root_cache)
3215 goto out;
3216
3217 memcg = s->memcg_params->memcg;
3218 id = memcg_cache_id(memcg);
3219
3220 root = s->memcg_params->root_cache;
3221 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3222
3223 mutex_lock(&memcg->slab_caches_mutex);
3224 list_del(&s->memcg_params->list);
3225 mutex_unlock(&memcg->slab_caches_mutex);
3226
fd0ccaf2 3227 mem_cgroup_put(memcg);
d7f25f8a 3228out:
2633d7a0
GC
3229 kfree(s->memcg_params);
3230}
3231
0e9d92f2
GC
3232/*
3233 * During the creation a new cache, we need to disable our accounting mechanism
3234 * altogether. This is true even if we are not creating, but rather just
3235 * enqueing new caches to be created.
3236 *
3237 * This is because that process will trigger allocations; some visible, like
3238 * explicit kmallocs to auxiliary data structures, name strings and internal
3239 * cache structures; some well concealed, like INIT_WORK() that can allocate
3240 * objects during debug.
3241 *
3242 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3243 * to it. This may not be a bounded recursion: since the first cache creation
3244 * failed to complete (waiting on the allocation), we'll just try to create the
3245 * cache again, failing at the same point.
3246 *
3247 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3248 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3249 * inside the following two functions.
3250 */
3251static inline void memcg_stop_kmem_account(void)
3252{
3253 VM_BUG_ON(!current->mm);
3254 current->memcg_kmem_skip_account++;
3255}
3256
3257static inline void memcg_resume_kmem_account(void)
3258{
3259 VM_BUG_ON(!current->mm);
3260 current->memcg_kmem_skip_account--;
3261}
3262
1f458cbf
GC
3263static void kmem_cache_destroy_work_func(struct work_struct *w)
3264{
3265 struct kmem_cache *cachep;
3266 struct memcg_cache_params *p;
3267
3268 p = container_of(w, struct memcg_cache_params, destroy);
3269
3270 cachep = memcg_params_to_cache(p);
3271
22933152
GC
3272 /*
3273 * If we get down to 0 after shrink, we could delete right away.
3274 * However, memcg_release_pages() already puts us back in the workqueue
3275 * in that case. If we proceed deleting, we'll get a dangling
3276 * reference, and removing the object from the workqueue in that case
3277 * is unnecessary complication. We are not a fast path.
3278 *
3279 * Note that this case is fundamentally different from racing with
3280 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3281 * kmem_cache_shrink, not only we would be reinserting a dead cache
3282 * into the queue, but doing so from inside the worker racing to
3283 * destroy it.
3284 *
3285 * So if we aren't down to zero, we'll just schedule a worker and try
3286 * again
3287 */
3288 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3289 kmem_cache_shrink(cachep);
3290 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3291 return;
3292 } else
1f458cbf
GC
3293 kmem_cache_destroy(cachep);
3294}
3295
3296void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3297{
3298 if (!cachep->memcg_params->dead)
3299 return;
3300
22933152
GC
3301 /*
3302 * There are many ways in which we can get here.
3303 *
3304 * We can get to a memory-pressure situation while the delayed work is
3305 * still pending to run. The vmscan shrinkers can then release all
3306 * cache memory and get us to destruction. If this is the case, we'll
3307 * be executed twice, which is a bug (the second time will execute over
3308 * bogus data). In this case, cancelling the work should be fine.
3309 *
3310 * But we can also get here from the worker itself, if
3311 * kmem_cache_shrink is enough to shake all the remaining objects and
3312 * get the page count to 0. In this case, we'll deadlock if we try to
3313 * cancel the work (the worker runs with an internal lock held, which
3314 * is the same lock we would hold for cancel_work_sync().)
3315 *
3316 * Since we can't possibly know who got us here, just refrain from
3317 * running if there is already work pending
3318 */
3319 if (work_pending(&cachep->memcg_params->destroy))
3320 return;
1f458cbf
GC
3321 /*
3322 * We have to defer the actual destroying to a workqueue, because
3323 * we might currently be in a context that cannot sleep.
3324 */
3325 schedule_work(&cachep->memcg_params->destroy);
3326}
3327
d9c10ddd
MH
3328/*
3329 * This lock protects updaters, not readers. We want readers to be as fast as
3330 * they can, and they will either see NULL or a valid cache value. Our model
3331 * allow them to see NULL, in which case the root memcg will be selected.
3332 *
3333 * We need this lock because multiple allocations to the same cache from a non
3334 * will span more than one worker. Only one of them can create the cache.
3335 */
3336static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3337
d9c10ddd
MH
3338/*
3339 * Called with memcg_cache_mutex held
3340 */
d7f25f8a
GC
3341static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3342 struct kmem_cache *s)
3343{
d7f25f8a 3344 struct kmem_cache *new;
d9c10ddd 3345 static char *tmp_name = NULL;
d7f25f8a 3346
d9c10ddd
MH
3347 lockdep_assert_held(&memcg_cache_mutex);
3348
3349 /*
3350 * kmem_cache_create_memcg duplicates the given name and
3351 * cgroup_name for this name requires RCU context.
3352 * This static temporary buffer is used to prevent from
3353 * pointless shortliving allocation.
3354 */
3355 if (!tmp_name) {
3356 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3357 if (!tmp_name)
3358 return NULL;
3359 }
3360
3361 rcu_read_lock();
3362 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3363 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3364 rcu_read_unlock();
d7f25f8a 3365
d9c10ddd 3366 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3367 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3368
d79923fa
GC
3369 if (new)
3370 new->allocflags |= __GFP_KMEMCG;
3371
d7f25f8a
GC
3372 return new;
3373}
3374
d7f25f8a
GC
3375static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3376 struct kmem_cache *cachep)
3377{
3378 struct kmem_cache *new_cachep;
3379 int idx;
3380
3381 BUG_ON(!memcg_can_account_kmem(memcg));
3382
3383 idx = memcg_cache_id(memcg);
3384
3385 mutex_lock(&memcg_cache_mutex);
3386 new_cachep = cachep->memcg_params->memcg_caches[idx];
3387 if (new_cachep)
3388 goto out;
3389
3390 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3391 if (new_cachep == NULL) {
3392 new_cachep = cachep;
3393 goto out;
3394 }
3395
3396 mem_cgroup_get(memcg);
1f458cbf 3397 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3398
3399 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3400 /*
3401 * the readers won't lock, make sure everybody sees the updated value,
3402 * so they won't put stuff in the queue again for no reason
3403 */
3404 wmb();
3405out:
3406 mutex_unlock(&memcg_cache_mutex);
3407 return new_cachep;
3408}
3409
7cf27982
GC
3410void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3411{
3412 struct kmem_cache *c;
3413 int i;
3414
3415 if (!s->memcg_params)
3416 return;
3417 if (!s->memcg_params->is_root_cache)
3418 return;
3419
3420 /*
3421 * If the cache is being destroyed, we trust that there is no one else
3422 * requesting objects from it. Even if there are, the sanity checks in
3423 * kmem_cache_destroy should caught this ill-case.
3424 *
3425 * Still, we don't want anyone else freeing memcg_caches under our
3426 * noses, which can happen if a new memcg comes to life. As usual,
3427 * we'll take the set_limit_mutex to protect ourselves against this.
3428 */
3429 mutex_lock(&set_limit_mutex);
3430 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3431 c = s->memcg_params->memcg_caches[i];
3432 if (!c)
3433 continue;
3434
3435 /*
3436 * We will now manually delete the caches, so to avoid races
3437 * we need to cancel all pending destruction workers and
3438 * proceed with destruction ourselves.
3439 *
3440 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3441 * and that could spawn the workers again: it is likely that
3442 * the cache still have active pages until this very moment.
3443 * This would lead us back to mem_cgroup_destroy_cache.
3444 *
3445 * But that will not execute at all if the "dead" flag is not
3446 * set, so flip it down to guarantee we are in control.
3447 */
3448 c->memcg_params->dead = false;
22933152 3449 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3450 kmem_cache_destroy(c);
3451 }
3452 mutex_unlock(&set_limit_mutex);
3453}
3454
d7f25f8a
GC
3455struct create_work {
3456 struct mem_cgroup *memcg;
3457 struct kmem_cache *cachep;
3458 struct work_struct work;
3459};
3460
1f458cbf
GC
3461static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3462{
3463 struct kmem_cache *cachep;
3464 struct memcg_cache_params *params;
3465
3466 if (!memcg_kmem_is_active(memcg))
3467 return;
3468
3469 mutex_lock(&memcg->slab_caches_mutex);
3470 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3471 cachep = memcg_params_to_cache(params);
3472 cachep->memcg_params->dead = true;
1f458cbf
GC
3473 schedule_work(&cachep->memcg_params->destroy);
3474 }
3475 mutex_unlock(&memcg->slab_caches_mutex);
3476}
3477
d7f25f8a
GC
3478static void memcg_create_cache_work_func(struct work_struct *w)
3479{
3480 struct create_work *cw;
3481
3482 cw = container_of(w, struct create_work, work);
3483 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3484 /* Drop the reference gotten when we enqueued. */
3485 css_put(&cw->memcg->css);
3486 kfree(cw);
3487}
3488
3489/*
3490 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3491 */
0e9d92f2
GC
3492static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3493 struct kmem_cache *cachep)
d7f25f8a
GC
3494{
3495 struct create_work *cw;
3496
3497 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3498 if (cw == NULL) {
3499 css_put(&memcg->css);
d7f25f8a
GC
3500 return;
3501 }
3502
3503 cw->memcg = memcg;
3504 cw->cachep = cachep;
3505
3506 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3507 schedule_work(&cw->work);
3508}
3509
0e9d92f2
GC
3510static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3511 struct kmem_cache *cachep)
3512{
3513 /*
3514 * We need to stop accounting when we kmalloc, because if the
3515 * corresponding kmalloc cache is not yet created, the first allocation
3516 * in __memcg_create_cache_enqueue will recurse.
3517 *
3518 * However, it is better to enclose the whole function. Depending on
3519 * the debugging options enabled, INIT_WORK(), for instance, can
3520 * trigger an allocation. This too, will make us recurse. Because at
3521 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3522 * the safest choice is to do it like this, wrapping the whole function.
3523 */
3524 memcg_stop_kmem_account();
3525 __memcg_create_cache_enqueue(memcg, cachep);
3526 memcg_resume_kmem_account();
3527}
d7f25f8a
GC
3528/*
3529 * Return the kmem_cache we're supposed to use for a slab allocation.
3530 * We try to use the current memcg's version of the cache.
3531 *
3532 * If the cache does not exist yet, if we are the first user of it,
3533 * we either create it immediately, if possible, or create it asynchronously
3534 * in a workqueue.
3535 * In the latter case, we will let the current allocation go through with
3536 * the original cache.
3537 *
3538 * Can't be called in interrupt context or from kernel threads.
3539 * This function needs to be called with rcu_read_lock() held.
3540 */
3541struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3542 gfp_t gfp)
3543{
3544 struct mem_cgroup *memcg;
3545 int idx;
3546
3547 VM_BUG_ON(!cachep->memcg_params);
3548 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3549
0e9d92f2
GC
3550 if (!current->mm || current->memcg_kmem_skip_account)
3551 return cachep;
3552
d7f25f8a
GC
3553 rcu_read_lock();
3554 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3555
3556 if (!memcg_can_account_kmem(memcg))
ca0dde97 3557 goto out;
d7f25f8a
GC
3558
3559 idx = memcg_cache_id(memcg);
3560
3561 /*
3562 * barrier to mare sure we're always seeing the up to date value. The
3563 * code updating memcg_caches will issue a write barrier to match this.
3564 */
3565 read_barrier_depends();
ca0dde97
LZ
3566 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3567 cachep = cachep->memcg_params->memcg_caches[idx];
3568 goto out;
d7f25f8a
GC
3569 }
3570
ca0dde97
LZ
3571 /* The corresponding put will be done in the workqueue. */
3572 if (!css_tryget(&memcg->css))
3573 goto out;
3574 rcu_read_unlock();
3575
3576 /*
3577 * If we are in a safe context (can wait, and not in interrupt
3578 * context), we could be be predictable and return right away.
3579 * This would guarantee that the allocation being performed
3580 * already belongs in the new cache.
3581 *
3582 * However, there are some clashes that can arrive from locking.
3583 * For instance, because we acquire the slab_mutex while doing
3584 * kmem_cache_dup, this means no further allocation could happen
3585 * with the slab_mutex held.
3586 *
3587 * Also, because cache creation issue get_online_cpus(), this
3588 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3589 * that ends up reversed during cpu hotplug. (cpuset allocates
3590 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3591 * better to defer everything.
3592 */
3593 memcg_create_cache_enqueue(memcg, cachep);
3594 return cachep;
3595out:
3596 rcu_read_unlock();
3597 return cachep;
d7f25f8a
GC
3598}
3599EXPORT_SYMBOL(__memcg_kmem_get_cache);
3600
7ae1e1d0
GC
3601/*
3602 * We need to verify if the allocation against current->mm->owner's memcg is
3603 * possible for the given order. But the page is not allocated yet, so we'll
3604 * need a further commit step to do the final arrangements.
3605 *
3606 * It is possible for the task to switch cgroups in this mean time, so at
3607 * commit time, we can't rely on task conversion any longer. We'll then use
3608 * the handle argument to return to the caller which cgroup we should commit
3609 * against. We could also return the memcg directly and avoid the pointer
3610 * passing, but a boolean return value gives better semantics considering
3611 * the compiled-out case as well.
3612 *
3613 * Returning true means the allocation is possible.
3614 */
3615bool
3616__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3617{
3618 struct mem_cgroup *memcg;
3619 int ret;
3620
3621 *_memcg = NULL;
3622 memcg = try_get_mem_cgroup_from_mm(current->mm);
3623
3624 /*
3625 * very rare case described in mem_cgroup_from_task. Unfortunately there
3626 * isn't much we can do without complicating this too much, and it would
3627 * be gfp-dependent anyway. Just let it go
3628 */
3629 if (unlikely(!memcg))
3630 return true;
3631
3632 if (!memcg_can_account_kmem(memcg)) {
3633 css_put(&memcg->css);
3634 return true;
3635 }
3636
7ae1e1d0
GC
3637 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3638 if (!ret)
3639 *_memcg = memcg;
7ae1e1d0
GC
3640
3641 css_put(&memcg->css);
3642 return (ret == 0);
3643}
3644
3645void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3646 int order)
3647{
3648 struct page_cgroup *pc;
3649
3650 VM_BUG_ON(mem_cgroup_is_root(memcg));
3651
3652 /* The page allocation failed. Revert */
3653 if (!page) {
3654 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3655 return;
3656 }
3657
3658 pc = lookup_page_cgroup(page);
3659 lock_page_cgroup(pc);
3660 pc->mem_cgroup = memcg;
3661 SetPageCgroupUsed(pc);
3662 unlock_page_cgroup(pc);
3663}
3664
3665void __memcg_kmem_uncharge_pages(struct page *page, int order)
3666{
3667 struct mem_cgroup *memcg = NULL;
3668 struct page_cgroup *pc;
3669
3670
3671 pc = lookup_page_cgroup(page);
3672 /*
3673 * Fast unlocked return. Theoretically might have changed, have to
3674 * check again after locking.
3675 */
3676 if (!PageCgroupUsed(pc))
3677 return;
3678
3679 lock_page_cgroup(pc);
3680 if (PageCgroupUsed(pc)) {
3681 memcg = pc->mem_cgroup;
3682 ClearPageCgroupUsed(pc);
3683 }
3684 unlock_page_cgroup(pc);
3685
3686 /*
3687 * We trust that only if there is a memcg associated with the page, it
3688 * is a valid allocation
3689 */
3690 if (!memcg)
3691 return;
3692
3693 VM_BUG_ON(mem_cgroup_is_root(memcg));
3694 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3695}
1f458cbf
GC
3696#else
3697static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3698{
3699}
7ae1e1d0
GC
3700#endif /* CONFIG_MEMCG_KMEM */
3701
ca3e0214
KH
3702#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3703
a0db00fc 3704#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3705/*
3706 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3707 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3708 * charge/uncharge will be never happen and move_account() is done under
3709 * compound_lock(), so we don't have to take care of races.
ca3e0214 3710 */
e94c8a9c 3711void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3712{
3713 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3714 struct page_cgroup *pc;
b070e65c 3715 struct mem_cgroup *memcg;
e94c8a9c 3716 int i;
ca3e0214 3717
3d37c4a9
KH
3718 if (mem_cgroup_disabled())
3719 return;
b070e65c
DR
3720
3721 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3722 for (i = 1; i < HPAGE_PMD_NR; i++) {
3723 pc = head_pc + i;
b070e65c 3724 pc->mem_cgroup = memcg;
e94c8a9c 3725 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3726 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3727 }
b070e65c
DR
3728 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3729 HPAGE_PMD_NR);
ca3e0214 3730}
12d27107 3731#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3732
f817ed48 3733/**
de3638d9 3734 * mem_cgroup_move_account - move account of the page
5564e88b 3735 * @page: the page
7ec99d62 3736 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3737 * @pc: page_cgroup of the page.
3738 * @from: mem_cgroup which the page is moved from.
3739 * @to: mem_cgroup which the page is moved to. @from != @to.
3740 *
3741 * The caller must confirm following.
08e552c6 3742 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3743 * - compound_lock is held when nr_pages > 1
f817ed48 3744 *
2f3479b1
KH
3745 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3746 * from old cgroup.
f817ed48 3747 */
7ec99d62
JW
3748static int mem_cgroup_move_account(struct page *page,
3749 unsigned int nr_pages,
3750 struct page_cgroup *pc,
3751 struct mem_cgroup *from,
2f3479b1 3752 struct mem_cgroup *to)
f817ed48 3753{
de3638d9
JW
3754 unsigned long flags;
3755 int ret;
b2402857 3756 bool anon = PageAnon(page);
987eba66 3757
f817ed48 3758 VM_BUG_ON(from == to);
5564e88b 3759 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3760 /*
3761 * The page is isolated from LRU. So, collapse function
3762 * will not handle this page. But page splitting can happen.
3763 * Do this check under compound_page_lock(). The caller should
3764 * hold it.
3765 */
3766 ret = -EBUSY;
7ec99d62 3767 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3768 goto out;
3769
3770 lock_page_cgroup(pc);
3771
3772 ret = -EINVAL;
3773 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3774 goto unlock;
3775
312734c0 3776 move_lock_mem_cgroup(from, &flags);
f817ed48 3777
2ff76f11 3778 if (!anon && page_mapped(page)) {
c62b1a3b
KH
3779 /* Update mapped_file data for mem_cgroup */
3780 preempt_disable();
3781 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3782 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3783 preempt_enable();
d69b042f 3784 }
b070e65c 3785 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3786
854ffa8d 3787 /* caller should have done css_get */
08e552c6 3788 pc->mem_cgroup = to;
b070e65c 3789 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3790 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3791 ret = 0;
3792unlock:
57f9fd7d 3793 unlock_page_cgroup(pc);
d2265e6f
KH
3794 /*
3795 * check events
3796 */
5564e88b
JW
3797 memcg_check_events(to, page);
3798 memcg_check_events(from, page);
de3638d9 3799out:
f817ed48
KH
3800 return ret;
3801}
3802
2ef37d3f
MH
3803/**
3804 * mem_cgroup_move_parent - moves page to the parent group
3805 * @page: the page to move
3806 * @pc: page_cgroup of the page
3807 * @child: page's cgroup
3808 *
3809 * move charges to its parent or the root cgroup if the group has no
3810 * parent (aka use_hierarchy==0).
3811 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3812 * mem_cgroup_move_account fails) the failure is always temporary and
3813 * it signals a race with a page removal/uncharge or migration. In the
3814 * first case the page is on the way out and it will vanish from the LRU
3815 * on the next attempt and the call should be retried later.
3816 * Isolation from the LRU fails only if page has been isolated from
3817 * the LRU since we looked at it and that usually means either global
3818 * reclaim or migration going on. The page will either get back to the
3819 * LRU or vanish.
3820 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3821 * (!PageCgroupUsed) or moved to a different group. The page will
3822 * disappear in the next attempt.
f817ed48 3823 */
5564e88b
JW
3824static int mem_cgroup_move_parent(struct page *page,
3825 struct page_cgroup *pc,
6068bf01 3826 struct mem_cgroup *child)
f817ed48 3827{
f817ed48 3828 struct mem_cgroup *parent;
7ec99d62 3829 unsigned int nr_pages;
4be4489f 3830 unsigned long uninitialized_var(flags);
f817ed48
KH
3831 int ret;
3832
d8423011 3833 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3834
57f9fd7d
DN
3835 ret = -EBUSY;
3836 if (!get_page_unless_zero(page))
3837 goto out;
3838 if (isolate_lru_page(page))
3839 goto put;
52dbb905 3840
7ec99d62 3841 nr_pages = hpage_nr_pages(page);
08e552c6 3842
cc926f78
KH
3843 parent = parent_mem_cgroup(child);
3844 /*
3845 * If no parent, move charges to root cgroup.
3846 */
3847 if (!parent)
3848 parent = root_mem_cgroup;
f817ed48 3849
2ef37d3f
MH
3850 if (nr_pages > 1) {
3851 VM_BUG_ON(!PageTransHuge(page));
987eba66 3852 flags = compound_lock_irqsave(page);
2ef37d3f 3853 }
987eba66 3854
cc926f78 3855 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3856 pc, child, parent);
cc926f78
KH
3857 if (!ret)
3858 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3859
7ec99d62 3860 if (nr_pages > 1)
987eba66 3861 compound_unlock_irqrestore(page, flags);
08e552c6 3862 putback_lru_page(page);
57f9fd7d 3863put:
40d58138 3864 put_page(page);
57f9fd7d 3865out:
f817ed48
KH
3866 return ret;
3867}
3868
7a81b88c
KH
3869/*
3870 * Charge the memory controller for page usage.
3871 * Return
3872 * 0 if the charge was successful
3873 * < 0 if the cgroup is over its limit
3874 */
3875static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3876 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3877{
c0ff4b85 3878 struct mem_cgroup *memcg = NULL;
7ec99d62 3879 unsigned int nr_pages = 1;
8493ae43 3880 bool oom = true;
7a81b88c 3881 int ret;
ec168510 3882
37c2ac78 3883 if (PageTransHuge(page)) {
7ec99d62 3884 nr_pages <<= compound_order(page);
37c2ac78 3885 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3886 /*
3887 * Never OOM-kill a process for a huge page. The
3888 * fault handler will fall back to regular pages.
3889 */
3890 oom = false;
37c2ac78 3891 }
7a81b88c 3892
c0ff4b85 3893 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3894 if (ret == -ENOMEM)
7a81b88c 3895 return ret;
ce587e65 3896 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3897 return 0;
8a9f3ccd
BS
3898}
3899
7a81b88c
KH
3900int mem_cgroup_newpage_charge(struct page *page,
3901 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3902{
f8d66542 3903 if (mem_cgroup_disabled())
cede86ac 3904 return 0;
7a0524cf
JW
3905 VM_BUG_ON(page_mapped(page));
3906 VM_BUG_ON(page->mapping && !PageAnon(page));
3907 VM_BUG_ON(!mm);
217bc319 3908 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3909 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3910}
3911
54595fe2
KH
3912/*
3913 * While swap-in, try_charge -> commit or cancel, the page is locked.
3914 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3915 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3916 * "commit()" or removed by "cancel()"
3917 */
0435a2fd
JW
3918static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3919 struct page *page,
3920 gfp_t mask,
3921 struct mem_cgroup **memcgp)
8c7c6e34 3922{
c0ff4b85 3923 struct mem_cgroup *memcg;
90deb788 3924 struct page_cgroup *pc;
54595fe2 3925 int ret;
8c7c6e34 3926
90deb788
JW
3927 pc = lookup_page_cgroup(page);
3928 /*
3929 * Every swap fault against a single page tries to charge the
3930 * page, bail as early as possible. shmem_unuse() encounters
3931 * already charged pages, too. The USED bit is protected by
3932 * the page lock, which serializes swap cache removal, which
3933 * in turn serializes uncharging.
3934 */
3935 if (PageCgroupUsed(pc))
3936 return 0;
8c7c6e34
KH
3937 if (!do_swap_account)
3938 goto charge_cur_mm;
c0ff4b85
R
3939 memcg = try_get_mem_cgroup_from_page(page);
3940 if (!memcg)
54595fe2 3941 goto charge_cur_mm;
72835c86
JW
3942 *memcgp = memcg;
3943 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3944 css_put(&memcg->css);
38c5d72f
KH
3945 if (ret == -EINTR)
3946 ret = 0;
54595fe2 3947 return ret;
8c7c6e34 3948charge_cur_mm:
38c5d72f
KH
3949 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3950 if (ret == -EINTR)
3951 ret = 0;
3952 return ret;
8c7c6e34
KH
3953}
3954
0435a2fd
JW
3955int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3956 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3957{
3958 *memcgp = NULL;
3959 if (mem_cgroup_disabled())
3960 return 0;
bdf4f4d2
JW
3961 /*
3962 * A racing thread's fault, or swapoff, may have already
3963 * updated the pte, and even removed page from swap cache: in
3964 * those cases unuse_pte()'s pte_same() test will fail; but
3965 * there's also a KSM case which does need to charge the page.
3966 */
3967 if (!PageSwapCache(page)) {
3968 int ret;
3969
3970 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3971 if (ret == -EINTR)
3972 ret = 0;
3973 return ret;
3974 }
0435a2fd
JW
3975 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3976}
3977
827a03d2
JW
3978void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3979{
3980 if (mem_cgroup_disabled())
3981 return;
3982 if (!memcg)
3983 return;
3984 __mem_cgroup_cancel_charge(memcg, 1);
3985}
3986
83aae4c7 3987static void
72835c86 3988__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3989 enum charge_type ctype)
7a81b88c 3990{
f8d66542 3991 if (mem_cgroup_disabled())
7a81b88c 3992 return;
72835c86 3993 if (!memcg)
7a81b88c 3994 return;
5a6475a4 3995
ce587e65 3996 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3997 /*
3998 * Now swap is on-memory. This means this page may be
3999 * counted both as mem and swap....double count.
03f3c433
KH
4000 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4001 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4002 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4003 */
03f3c433 4004 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4005 swp_entry_t ent = {.val = page_private(page)};
86493009 4006 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4007 }
7a81b88c
KH
4008}
4009
72835c86
JW
4010void mem_cgroup_commit_charge_swapin(struct page *page,
4011 struct mem_cgroup *memcg)
83aae4c7 4012{
72835c86 4013 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4014 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4015}
4016
827a03d2
JW
4017int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4018 gfp_t gfp_mask)
7a81b88c 4019{
827a03d2
JW
4020 struct mem_cgroup *memcg = NULL;
4021 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4022 int ret;
4023
f8d66542 4024 if (mem_cgroup_disabled())
827a03d2
JW
4025 return 0;
4026 if (PageCompound(page))
4027 return 0;
4028
827a03d2
JW
4029 if (!PageSwapCache(page))
4030 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4031 else { /* page is swapcache/shmem */
0435a2fd
JW
4032 ret = __mem_cgroup_try_charge_swapin(mm, page,
4033 gfp_mask, &memcg);
827a03d2
JW
4034 if (!ret)
4035 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4036 }
4037 return ret;
7a81b88c
KH
4038}
4039
c0ff4b85 4040static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4041 unsigned int nr_pages,
4042 const enum charge_type ctype)
569b846d
KH
4043{
4044 struct memcg_batch_info *batch = NULL;
4045 bool uncharge_memsw = true;
7ec99d62 4046
569b846d
KH
4047 /* If swapout, usage of swap doesn't decrease */
4048 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4049 uncharge_memsw = false;
569b846d
KH
4050
4051 batch = &current->memcg_batch;
4052 /*
4053 * In usual, we do css_get() when we remember memcg pointer.
4054 * But in this case, we keep res->usage until end of a series of
4055 * uncharges. Then, it's ok to ignore memcg's refcnt.
4056 */
4057 if (!batch->memcg)
c0ff4b85 4058 batch->memcg = memcg;
3c11ecf4
KH
4059 /*
4060 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4061 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4062 * the same cgroup and we have chance to coalesce uncharges.
4063 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4064 * because we want to do uncharge as soon as possible.
4065 */
4066
4067 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4068 goto direct_uncharge;
4069
7ec99d62 4070 if (nr_pages > 1)
ec168510
AA
4071 goto direct_uncharge;
4072
569b846d
KH
4073 /*
4074 * In typical case, batch->memcg == mem. This means we can
4075 * merge a series of uncharges to an uncharge of res_counter.
4076 * If not, we uncharge res_counter ony by one.
4077 */
c0ff4b85 4078 if (batch->memcg != memcg)
569b846d
KH
4079 goto direct_uncharge;
4080 /* remember freed charge and uncharge it later */
7ffd4ca7 4081 batch->nr_pages++;
569b846d 4082 if (uncharge_memsw)
7ffd4ca7 4083 batch->memsw_nr_pages++;
569b846d
KH
4084 return;
4085direct_uncharge:
c0ff4b85 4086 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4087 if (uncharge_memsw)
c0ff4b85
R
4088 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4089 if (unlikely(batch->memcg != memcg))
4090 memcg_oom_recover(memcg);
569b846d 4091}
7a81b88c 4092
8a9f3ccd 4093/*
69029cd5 4094 * uncharge if !page_mapped(page)
8a9f3ccd 4095 */
8c7c6e34 4096static struct mem_cgroup *
0030f535
JW
4097__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4098 bool end_migration)
8a9f3ccd 4099{
c0ff4b85 4100 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4101 unsigned int nr_pages = 1;
4102 struct page_cgroup *pc;
b2402857 4103 bool anon;
8a9f3ccd 4104
f8d66542 4105 if (mem_cgroup_disabled())
8c7c6e34 4106 return NULL;
4077960e 4107
37c2ac78 4108 if (PageTransHuge(page)) {
7ec99d62 4109 nr_pages <<= compound_order(page);
37c2ac78
AA
4110 VM_BUG_ON(!PageTransHuge(page));
4111 }
8697d331 4112 /*
3c541e14 4113 * Check if our page_cgroup is valid
8697d331 4114 */
52d4b9ac 4115 pc = lookup_page_cgroup(page);
cfa44946 4116 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4117 return NULL;
b9c565d5 4118
52d4b9ac 4119 lock_page_cgroup(pc);
d13d1443 4120
c0ff4b85 4121 memcg = pc->mem_cgroup;
8c7c6e34 4122
d13d1443
KH
4123 if (!PageCgroupUsed(pc))
4124 goto unlock_out;
4125
b2402857
KH
4126 anon = PageAnon(page);
4127
d13d1443 4128 switch (ctype) {
41326c17 4129 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4130 /*
4131 * Generally PageAnon tells if it's the anon statistics to be
4132 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4133 * used before page reached the stage of being marked PageAnon.
4134 */
b2402857
KH
4135 anon = true;
4136 /* fallthrough */
8a9478ca 4137 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4138 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4139 if (page_mapped(page))
4140 goto unlock_out;
4141 /*
4142 * Pages under migration may not be uncharged. But
4143 * end_migration() /must/ be the one uncharging the
4144 * unused post-migration page and so it has to call
4145 * here with the migration bit still set. See the
4146 * res_counter handling below.
4147 */
4148 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4149 goto unlock_out;
4150 break;
4151 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4152 if (!PageAnon(page)) { /* Shared memory */
4153 if (page->mapping && !page_is_file_cache(page))
4154 goto unlock_out;
4155 } else if (page_mapped(page)) /* Anon */
4156 goto unlock_out;
4157 break;
4158 default:
4159 break;
52d4b9ac 4160 }
d13d1443 4161
b070e65c 4162 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4163
52d4b9ac 4164 ClearPageCgroupUsed(pc);
544122e5
KH
4165 /*
4166 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4167 * freed from LRU. This is safe because uncharged page is expected not
4168 * to be reused (freed soon). Exception is SwapCache, it's handled by
4169 * special functions.
4170 */
b9c565d5 4171
52d4b9ac 4172 unlock_page_cgroup(pc);
f75ca962 4173 /*
c0ff4b85 4174 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
4175 * will never be freed.
4176 */
c0ff4b85 4177 memcg_check_events(memcg, page);
f75ca962 4178 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
4179 mem_cgroup_swap_statistics(memcg, true);
4180 mem_cgroup_get(memcg);
f75ca962 4181 }
0030f535
JW
4182 /*
4183 * Migration does not charge the res_counter for the
4184 * replacement page, so leave it alone when phasing out the
4185 * page that is unused after the migration.
4186 */
4187 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4188 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4189
c0ff4b85 4190 return memcg;
d13d1443
KH
4191
4192unlock_out:
4193 unlock_page_cgroup(pc);
8c7c6e34 4194 return NULL;
3c541e14
BS
4195}
4196
69029cd5
KH
4197void mem_cgroup_uncharge_page(struct page *page)
4198{
52d4b9ac
KH
4199 /* early check. */
4200 if (page_mapped(page))
4201 return;
40f23a21 4202 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4203 /*
4204 * If the page is in swap cache, uncharge should be deferred
4205 * to the swap path, which also properly accounts swap usage
4206 * and handles memcg lifetime.
4207 *
4208 * Note that this check is not stable and reclaim may add the
4209 * page to swap cache at any time after this. However, if the
4210 * page is not in swap cache by the time page->mapcount hits
4211 * 0, there won't be any page table references to the swap
4212 * slot, and reclaim will free it and not actually write the
4213 * page to disk.
4214 */
0c59b89c
JW
4215 if (PageSwapCache(page))
4216 return;
0030f535 4217 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4218}
4219
4220void mem_cgroup_uncharge_cache_page(struct page *page)
4221{
4222 VM_BUG_ON(page_mapped(page));
b7abea96 4223 VM_BUG_ON(page->mapping);
0030f535 4224 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4225}
4226
569b846d
KH
4227/*
4228 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4229 * In that cases, pages are freed continuously and we can expect pages
4230 * are in the same memcg. All these calls itself limits the number of
4231 * pages freed at once, then uncharge_start/end() is called properly.
4232 * This may be called prural(2) times in a context,
4233 */
4234
4235void mem_cgroup_uncharge_start(void)
4236{
4237 current->memcg_batch.do_batch++;
4238 /* We can do nest. */
4239 if (current->memcg_batch.do_batch == 1) {
4240 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4241 current->memcg_batch.nr_pages = 0;
4242 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4243 }
4244}
4245
4246void mem_cgroup_uncharge_end(void)
4247{
4248 struct memcg_batch_info *batch = &current->memcg_batch;
4249
4250 if (!batch->do_batch)
4251 return;
4252
4253 batch->do_batch--;
4254 if (batch->do_batch) /* If stacked, do nothing. */
4255 return;
4256
4257 if (!batch->memcg)
4258 return;
4259 /*
4260 * This "batch->memcg" is valid without any css_get/put etc...
4261 * bacause we hide charges behind us.
4262 */
7ffd4ca7
JW
4263 if (batch->nr_pages)
4264 res_counter_uncharge(&batch->memcg->res,
4265 batch->nr_pages * PAGE_SIZE);
4266 if (batch->memsw_nr_pages)
4267 res_counter_uncharge(&batch->memcg->memsw,
4268 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4269 memcg_oom_recover(batch->memcg);
569b846d
KH
4270 /* forget this pointer (for sanity check) */
4271 batch->memcg = NULL;
4272}
4273
e767e056 4274#ifdef CONFIG_SWAP
8c7c6e34 4275/*
e767e056 4276 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4277 * memcg information is recorded to swap_cgroup of "ent"
4278 */
8a9478ca
KH
4279void
4280mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4281{
4282 struct mem_cgroup *memcg;
8a9478ca
KH
4283 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4284
4285 if (!swapout) /* this was a swap cache but the swap is unused ! */
4286 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4287
0030f535 4288 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4289
f75ca962
KH
4290 /*
4291 * record memcg information, if swapout && memcg != NULL,
4292 * mem_cgroup_get() was called in uncharge().
4293 */
4294 if (do_swap_account && swapout && memcg)
a3b2d692 4295 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4296}
e767e056 4297#endif
8c7c6e34 4298
c255a458 4299#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4300/*
4301 * called from swap_entry_free(). remove record in swap_cgroup and
4302 * uncharge "memsw" account.
4303 */
4304void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4305{
8c7c6e34 4306 struct mem_cgroup *memcg;
a3b2d692 4307 unsigned short id;
8c7c6e34
KH
4308
4309 if (!do_swap_account)
4310 return;
4311
a3b2d692
KH
4312 id = swap_cgroup_record(ent, 0);
4313 rcu_read_lock();
4314 memcg = mem_cgroup_lookup(id);
8c7c6e34 4315 if (memcg) {
a3b2d692
KH
4316 /*
4317 * We uncharge this because swap is freed.
4318 * This memcg can be obsolete one. We avoid calling css_tryget
4319 */
0c3e73e8 4320 if (!mem_cgroup_is_root(memcg))
4e649152 4321 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4322 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
4323 mem_cgroup_put(memcg);
4324 }
a3b2d692 4325 rcu_read_unlock();
d13d1443 4326}
02491447
DN
4327
4328/**
4329 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4330 * @entry: swap entry to be moved
4331 * @from: mem_cgroup which the entry is moved from
4332 * @to: mem_cgroup which the entry is moved to
4333 *
4334 * It succeeds only when the swap_cgroup's record for this entry is the same
4335 * as the mem_cgroup's id of @from.
4336 *
4337 * Returns 0 on success, -EINVAL on failure.
4338 *
4339 * The caller must have charged to @to, IOW, called res_counter_charge() about
4340 * both res and memsw, and called css_get().
4341 */
4342static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4343 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4344{
4345 unsigned short old_id, new_id;
4346
4347 old_id = css_id(&from->css);
4348 new_id = css_id(&to->css);
4349
4350 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4351 mem_cgroup_swap_statistics(from, false);
483c30b5 4352 mem_cgroup_swap_statistics(to, true);
02491447 4353 /*
483c30b5
DN
4354 * This function is only called from task migration context now.
4355 * It postpones res_counter and refcount handling till the end
4356 * of task migration(mem_cgroup_clear_mc()) for performance
4357 * improvement. But we cannot postpone mem_cgroup_get(to)
4358 * because if the process that has been moved to @to does
4359 * swap-in, the refcount of @to might be decreased to 0.
02491447 4360 */
02491447 4361 mem_cgroup_get(to);
02491447
DN
4362 return 0;
4363 }
4364 return -EINVAL;
4365}
4366#else
4367static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4368 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4369{
4370 return -EINVAL;
4371}
8c7c6e34 4372#endif
d13d1443 4373
ae41be37 4374/*
01b1ae63
KH
4375 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4376 * page belongs to.
ae41be37 4377 */
0030f535
JW
4378void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4379 struct mem_cgroup **memcgp)
ae41be37 4380{
c0ff4b85 4381 struct mem_cgroup *memcg = NULL;
b32967ff 4382 unsigned int nr_pages = 1;
7ec99d62 4383 struct page_cgroup *pc;
ac39cf8c 4384 enum charge_type ctype;
8869b8f6 4385
72835c86 4386 *memcgp = NULL;
56039efa 4387
f8d66542 4388 if (mem_cgroup_disabled())
0030f535 4389 return;
4077960e 4390
b32967ff
MG
4391 if (PageTransHuge(page))
4392 nr_pages <<= compound_order(page);
4393
52d4b9ac
KH
4394 pc = lookup_page_cgroup(page);
4395 lock_page_cgroup(pc);
4396 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4397 memcg = pc->mem_cgroup;
4398 css_get(&memcg->css);
ac39cf8c
AM
4399 /*
4400 * At migrating an anonymous page, its mapcount goes down
4401 * to 0 and uncharge() will be called. But, even if it's fully
4402 * unmapped, migration may fail and this page has to be
4403 * charged again. We set MIGRATION flag here and delay uncharge
4404 * until end_migration() is called
4405 *
4406 * Corner Case Thinking
4407 * A)
4408 * When the old page was mapped as Anon and it's unmap-and-freed
4409 * while migration was ongoing.
4410 * If unmap finds the old page, uncharge() of it will be delayed
4411 * until end_migration(). If unmap finds a new page, it's
4412 * uncharged when it make mapcount to be 1->0. If unmap code
4413 * finds swap_migration_entry, the new page will not be mapped
4414 * and end_migration() will find it(mapcount==0).
4415 *
4416 * B)
4417 * When the old page was mapped but migraion fails, the kernel
4418 * remaps it. A charge for it is kept by MIGRATION flag even
4419 * if mapcount goes down to 0. We can do remap successfully
4420 * without charging it again.
4421 *
4422 * C)
4423 * The "old" page is under lock_page() until the end of
4424 * migration, so, the old page itself will not be swapped-out.
4425 * If the new page is swapped out before end_migraton, our
4426 * hook to usual swap-out path will catch the event.
4427 */
4428 if (PageAnon(page))
4429 SetPageCgroupMigration(pc);
e8589cc1 4430 }
52d4b9ac 4431 unlock_page_cgroup(pc);
ac39cf8c
AM
4432 /*
4433 * If the page is not charged at this point,
4434 * we return here.
4435 */
c0ff4b85 4436 if (!memcg)
0030f535 4437 return;
01b1ae63 4438
72835c86 4439 *memcgp = memcg;
ac39cf8c
AM
4440 /*
4441 * We charge new page before it's used/mapped. So, even if unlock_page()
4442 * is called before end_migration, we can catch all events on this new
4443 * page. In the case new page is migrated but not remapped, new page's
4444 * mapcount will be finally 0 and we call uncharge in end_migration().
4445 */
ac39cf8c 4446 if (PageAnon(page))
41326c17 4447 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4448 else
62ba7442 4449 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4450 /*
4451 * The page is committed to the memcg, but it's not actually
4452 * charged to the res_counter since we plan on replacing the
4453 * old one and only one page is going to be left afterwards.
4454 */
b32967ff 4455 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4456}
8869b8f6 4457
69029cd5 4458/* remove redundant charge if migration failed*/
c0ff4b85 4459void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4460 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4461{
ac39cf8c 4462 struct page *used, *unused;
01b1ae63 4463 struct page_cgroup *pc;
b2402857 4464 bool anon;
01b1ae63 4465
c0ff4b85 4466 if (!memcg)
01b1ae63 4467 return;
b25ed609 4468
50de1dd9 4469 if (!migration_ok) {
ac39cf8c
AM
4470 used = oldpage;
4471 unused = newpage;
01b1ae63 4472 } else {
ac39cf8c 4473 used = newpage;
01b1ae63
KH
4474 unused = oldpage;
4475 }
0030f535 4476 anon = PageAnon(used);
7d188958
JW
4477 __mem_cgroup_uncharge_common(unused,
4478 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4479 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4480 true);
0030f535 4481 css_put(&memcg->css);
69029cd5 4482 /*
ac39cf8c
AM
4483 * We disallowed uncharge of pages under migration because mapcount
4484 * of the page goes down to zero, temporarly.
4485 * Clear the flag and check the page should be charged.
01b1ae63 4486 */
ac39cf8c
AM
4487 pc = lookup_page_cgroup(oldpage);
4488 lock_page_cgroup(pc);
4489 ClearPageCgroupMigration(pc);
4490 unlock_page_cgroup(pc);
ac39cf8c 4491
01b1ae63 4492 /*
ac39cf8c
AM
4493 * If a page is a file cache, radix-tree replacement is very atomic
4494 * and we can skip this check. When it was an Anon page, its mapcount
4495 * goes down to 0. But because we added MIGRATION flage, it's not
4496 * uncharged yet. There are several case but page->mapcount check
4497 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4498 * check. (see prepare_charge() also)
69029cd5 4499 */
b2402857 4500 if (anon)
ac39cf8c 4501 mem_cgroup_uncharge_page(used);
ae41be37 4502}
78fb7466 4503
ab936cbc
KH
4504/*
4505 * At replace page cache, newpage is not under any memcg but it's on
4506 * LRU. So, this function doesn't touch res_counter but handles LRU
4507 * in correct way. Both pages are locked so we cannot race with uncharge.
4508 */
4509void mem_cgroup_replace_page_cache(struct page *oldpage,
4510 struct page *newpage)
4511{
bde05d1c 4512 struct mem_cgroup *memcg = NULL;
ab936cbc 4513 struct page_cgroup *pc;
ab936cbc 4514 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4515
4516 if (mem_cgroup_disabled())
4517 return;
4518
4519 pc = lookup_page_cgroup(oldpage);
4520 /* fix accounting on old pages */
4521 lock_page_cgroup(pc);
bde05d1c
HD
4522 if (PageCgroupUsed(pc)) {
4523 memcg = pc->mem_cgroup;
b070e65c 4524 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4525 ClearPageCgroupUsed(pc);
4526 }
ab936cbc
KH
4527 unlock_page_cgroup(pc);
4528
bde05d1c
HD
4529 /*
4530 * When called from shmem_replace_page(), in some cases the
4531 * oldpage has already been charged, and in some cases not.
4532 */
4533 if (!memcg)
4534 return;
ab936cbc
KH
4535 /*
4536 * Even if newpage->mapping was NULL before starting replacement,
4537 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4538 * LRU while we overwrite pc->mem_cgroup.
4539 */
ce587e65 4540 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4541}
4542
f212ad7c
DN
4543#ifdef CONFIG_DEBUG_VM
4544static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4545{
4546 struct page_cgroup *pc;
4547
4548 pc = lookup_page_cgroup(page);
cfa44946
JW
4549 /*
4550 * Can be NULL while feeding pages into the page allocator for
4551 * the first time, i.e. during boot or memory hotplug;
4552 * or when mem_cgroup_disabled().
4553 */
f212ad7c
DN
4554 if (likely(pc) && PageCgroupUsed(pc))
4555 return pc;
4556 return NULL;
4557}
4558
4559bool mem_cgroup_bad_page_check(struct page *page)
4560{
4561 if (mem_cgroup_disabled())
4562 return false;
4563
4564 return lookup_page_cgroup_used(page) != NULL;
4565}
4566
4567void mem_cgroup_print_bad_page(struct page *page)
4568{
4569 struct page_cgroup *pc;
4570
4571 pc = lookup_page_cgroup_used(page);
4572 if (pc) {
d045197f
AM
4573 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4574 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4575 }
4576}
4577#endif
4578
d38d2a75 4579static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4580 unsigned long long val)
628f4235 4581{
81d39c20 4582 int retry_count;
3c11ecf4 4583 u64 memswlimit, memlimit;
628f4235 4584 int ret = 0;
81d39c20
KH
4585 int children = mem_cgroup_count_children(memcg);
4586 u64 curusage, oldusage;
3c11ecf4 4587 int enlarge;
81d39c20
KH
4588
4589 /*
4590 * For keeping hierarchical_reclaim simple, how long we should retry
4591 * is depends on callers. We set our retry-count to be function
4592 * of # of children which we should visit in this loop.
4593 */
4594 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4595
4596 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4597
3c11ecf4 4598 enlarge = 0;
8c7c6e34 4599 while (retry_count) {
628f4235
KH
4600 if (signal_pending(current)) {
4601 ret = -EINTR;
4602 break;
4603 }
8c7c6e34
KH
4604 /*
4605 * Rather than hide all in some function, I do this in
4606 * open coded manner. You see what this really does.
aaad153e 4607 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4608 */
4609 mutex_lock(&set_limit_mutex);
4610 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4611 if (memswlimit < val) {
4612 ret = -EINVAL;
4613 mutex_unlock(&set_limit_mutex);
628f4235
KH
4614 break;
4615 }
3c11ecf4
KH
4616
4617 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4618 if (memlimit < val)
4619 enlarge = 1;
4620
8c7c6e34 4621 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4622 if (!ret) {
4623 if (memswlimit == val)
4624 memcg->memsw_is_minimum = true;
4625 else
4626 memcg->memsw_is_minimum = false;
4627 }
8c7c6e34
KH
4628 mutex_unlock(&set_limit_mutex);
4629
4630 if (!ret)
4631 break;
4632
5660048c
JW
4633 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4634 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4635 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4636 /* Usage is reduced ? */
4637 if (curusage >= oldusage)
4638 retry_count--;
4639 else
4640 oldusage = curusage;
8c7c6e34 4641 }
3c11ecf4
KH
4642 if (!ret && enlarge)
4643 memcg_oom_recover(memcg);
14797e23 4644
8c7c6e34
KH
4645 return ret;
4646}
4647
338c8431
LZ
4648static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4649 unsigned long long val)
8c7c6e34 4650{
81d39c20 4651 int retry_count;
3c11ecf4 4652 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4653 int children = mem_cgroup_count_children(memcg);
4654 int ret = -EBUSY;
3c11ecf4 4655 int enlarge = 0;
8c7c6e34 4656
81d39c20
KH
4657 /* see mem_cgroup_resize_res_limit */
4658 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4659 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4660 while (retry_count) {
4661 if (signal_pending(current)) {
4662 ret = -EINTR;
4663 break;
4664 }
4665 /*
4666 * Rather than hide all in some function, I do this in
4667 * open coded manner. You see what this really does.
aaad153e 4668 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4669 */
4670 mutex_lock(&set_limit_mutex);
4671 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4672 if (memlimit > val) {
4673 ret = -EINVAL;
4674 mutex_unlock(&set_limit_mutex);
4675 break;
4676 }
3c11ecf4
KH
4677 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4678 if (memswlimit < val)
4679 enlarge = 1;
8c7c6e34 4680 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4681 if (!ret) {
4682 if (memlimit == val)
4683 memcg->memsw_is_minimum = true;
4684 else
4685 memcg->memsw_is_minimum = false;
4686 }
8c7c6e34
KH
4687 mutex_unlock(&set_limit_mutex);
4688
4689 if (!ret)
4690 break;
4691
5660048c
JW
4692 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4693 MEM_CGROUP_RECLAIM_NOSWAP |
4694 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4695 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4696 /* Usage is reduced ? */
8c7c6e34 4697 if (curusage >= oldusage)
628f4235 4698 retry_count--;
81d39c20
KH
4699 else
4700 oldusage = curusage;
628f4235 4701 }
3c11ecf4
KH
4702 if (!ret && enlarge)
4703 memcg_oom_recover(memcg);
628f4235
KH
4704 return ret;
4705}
4706
4e416953 4707unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
4708 gfp_t gfp_mask,
4709 unsigned long *total_scanned)
4e416953
BS
4710{
4711 unsigned long nr_reclaimed = 0;
4712 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4713 unsigned long reclaimed;
4714 int loop = 0;
4715 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 4716 unsigned long long excess;
0ae5e89c 4717 unsigned long nr_scanned;
4e416953
BS
4718
4719 if (order > 0)
4720 return 0;
4721
00918b6a 4722 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
4723 /*
4724 * This loop can run a while, specially if mem_cgroup's continuously
4725 * keep exceeding their soft limit and putting the system under
4726 * pressure
4727 */
4728 do {
4729 if (next_mz)
4730 mz = next_mz;
4731 else
4732 mz = mem_cgroup_largest_soft_limit_node(mctz);
4733 if (!mz)
4734 break;
4735
0ae5e89c 4736 nr_scanned = 0;
d79154bb 4737 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 4738 gfp_mask, &nr_scanned);
4e416953 4739 nr_reclaimed += reclaimed;
0ae5e89c 4740 *total_scanned += nr_scanned;
4e416953
BS
4741 spin_lock(&mctz->lock);
4742
4743 /*
4744 * If we failed to reclaim anything from this memory cgroup
4745 * it is time to move on to the next cgroup
4746 */
4747 next_mz = NULL;
4748 if (!reclaimed) {
4749 do {
4750 /*
4751 * Loop until we find yet another one.
4752 *
4753 * By the time we get the soft_limit lock
4754 * again, someone might have aded the
4755 * group back on the RB tree. Iterate to
4756 * make sure we get a different mem.
4757 * mem_cgroup_largest_soft_limit_node returns
4758 * NULL if no other cgroup is present on
4759 * the tree
4760 */
4761 next_mz =
4762 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 4763 if (next_mz == mz)
d79154bb 4764 css_put(&next_mz->memcg->css);
39cc98f1 4765 else /* next_mz == NULL or other memcg */
4e416953
BS
4766 break;
4767 } while (1);
4768 }
d79154bb
HD
4769 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4770 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
4771 /*
4772 * One school of thought says that we should not add
4773 * back the node to the tree if reclaim returns 0.
4774 * But our reclaim could return 0, simply because due
4775 * to priority we are exposing a smaller subset of
4776 * memory to reclaim from. Consider this as a longer
4777 * term TODO.
4778 */
ef8745c1 4779 /* If excess == 0, no tree ops */
d79154bb 4780 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 4781 spin_unlock(&mctz->lock);
d79154bb 4782 css_put(&mz->memcg->css);
4e416953
BS
4783 loop++;
4784 /*
4785 * Could not reclaim anything and there are no more
4786 * mem cgroups to try or we seem to be looping without
4787 * reclaiming anything.
4788 */
4789 if (!nr_reclaimed &&
4790 (next_mz == NULL ||
4791 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4792 break;
4793 } while (!nr_reclaimed);
4794 if (next_mz)
d79154bb 4795 css_put(&next_mz->memcg->css);
4e416953
BS
4796 return nr_reclaimed;
4797}
4798
2ef37d3f
MH
4799/**
4800 * mem_cgroup_force_empty_list - clears LRU of a group
4801 * @memcg: group to clear
4802 * @node: NUMA node
4803 * @zid: zone id
4804 * @lru: lru to to clear
4805 *
3c935d18 4806 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4807 * reclaim the pages page themselves - pages are moved to the parent (or root)
4808 * group.
cc847582 4809 */
2ef37d3f 4810static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4811 int node, int zid, enum lru_list lru)
cc847582 4812{
bea8c150 4813 struct lruvec *lruvec;
2ef37d3f 4814 unsigned long flags;
072c56c1 4815 struct list_head *list;
925b7673
JW
4816 struct page *busy;
4817 struct zone *zone;
072c56c1 4818
08e552c6 4819 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4820 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4821 list = &lruvec->lists[lru];
cc847582 4822
f817ed48 4823 busy = NULL;
2ef37d3f 4824 do {
925b7673 4825 struct page_cgroup *pc;
5564e88b
JW
4826 struct page *page;
4827
08e552c6 4828 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4829 if (list_empty(list)) {
08e552c6 4830 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4831 break;
f817ed48 4832 }
925b7673
JW
4833 page = list_entry(list->prev, struct page, lru);
4834 if (busy == page) {
4835 list_move(&page->lru, list);
648bcc77 4836 busy = NULL;
08e552c6 4837 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4838 continue;
4839 }
08e552c6 4840 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4841
925b7673 4842 pc = lookup_page_cgroup(page);
5564e88b 4843
3c935d18 4844 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4845 /* found lock contention or "pc" is obsolete. */
925b7673 4846 busy = page;
f817ed48
KH
4847 cond_resched();
4848 } else
4849 busy = NULL;
2ef37d3f 4850 } while (!list_empty(list));
cc847582
KH
4851}
4852
4853/*
c26251f9
MH
4854 * make mem_cgroup's charge to be 0 if there is no task by moving
4855 * all the charges and pages to the parent.
cc847582 4856 * This enables deleting this mem_cgroup.
c26251f9
MH
4857 *
4858 * Caller is responsible for holding css reference on the memcg.
cc847582 4859 */
ab5196c2 4860static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4861{
c26251f9 4862 int node, zid;
bea207c8 4863 u64 usage;
f817ed48 4864
fce66477 4865 do {
52d4b9ac
KH
4866 /* This is for making all *used* pages to be on LRU. */
4867 lru_add_drain_all();
c0ff4b85 4868 drain_all_stock_sync(memcg);
c0ff4b85 4869 mem_cgroup_start_move(memcg);
31aaea4a 4870 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4871 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4872 enum lru_list lru;
4873 for_each_lru(lru) {
2ef37d3f 4874 mem_cgroup_force_empty_list(memcg,
f156ab93 4875 node, zid, lru);
f817ed48 4876 }
1ecaab2b 4877 }
f817ed48 4878 }
c0ff4b85
R
4879 mem_cgroup_end_move(memcg);
4880 memcg_oom_recover(memcg);
52d4b9ac 4881 cond_resched();
f817ed48 4882
2ef37d3f 4883 /*
bea207c8
GC
4884 * Kernel memory may not necessarily be trackable to a specific
4885 * process. So they are not migrated, and therefore we can't
4886 * expect their value to drop to 0 here.
4887 * Having res filled up with kmem only is enough.
4888 *
2ef37d3f
MH
4889 * This is a safety check because mem_cgroup_force_empty_list
4890 * could have raced with mem_cgroup_replace_page_cache callers
4891 * so the lru seemed empty but the page could have been added
4892 * right after the check. RES_USAGE should be safe as we always
4893 * charge before adding to the LRU.
4894 */
bea207c8
GC
4895 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4896 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4897 } while (usage > 0);
c26251f9
MH
4898}
4899
b5f99b53
GC
4900/*
4901 * This mainly exists for tests during the setting of set of use_hierarchy.
4902 * Since this is the very setting we are changing, the current hierarchy value
4903 * is meaningless
4904 */
4905static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4906{
4907 struct cgroup *pos;
4908
4909 /* bounce at first found */
4910 cgroup_for_each_child(pos, memcg->css.cgroup)
4911 return true;
4912 return false;
4913}
4914
4915/*
0999821b
GC
4916 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4917 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4918 * from mem_cgroup_count_children(), in the sense that we don't really care how
4919 * many children we have; we only need to know if we have any. It also counts
4920 * any memcg without hierarchy as infertile.
4921 */
4922static inline bool memcg_has_children(struct mem_cgroup *memcg)
4923{
4924 return memcg->use_hierarchy && __memcg_has_children(memcg);
4925}
4926
c26251f9
MH
4927/*
4928 * Reclaims as many pages from the given memcg as possible and moves
4929 * the rest to the parent.
4930 *
4931 * Caller is responsible for holding css reference for memcg.
4932 */
4933static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4934{
4935 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4936 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4937
c1e862c1 4938 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4939 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4940 return -EBUSY;
4941
c1e862c1
KH
4942 /* we call try-to-free pages for make this cgroup empty */
4943 lru_add_drain_all();
f817ed48 4944 /* try to free all pages in this cgroup */
569530fb 4945 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4946 int progress;
c1e862c1 4947
c26251f9
MH
4948 if (signal_pending(current))
4949 return -EINTR;
4950
c0ff4b85 4951 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4952 false);
c1e862c1 4953 if (!progress) {
f817ed48 4954 nr_retries--;
c1e862c1 4955 /* maybe some writeback is necessary */
8aa7e847 4956 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4957 }
f817ed48
KH
4958
4959 }
08e552c6 4960 lru_add_drain();
ab5196c2
MH
4961 mem_cgroup_reparent_charges(memcg);
4962
4963 return 0;
cc847582
KH
4964}
4965
6bbda35c 4966static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 4967{
c26251f9
MH
4968 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4969 int ret;
4970
d8423011
MH
4971 if (mem_cgroup_is_root(memcg))
4972 return -EINVAL;
c26251f9
MH
4973 css_get(&memcg->css);
4974 ret = mem_cgroup_force_empty(memcg);
4975 css_put(&memcg->css);
4976
4977 return ret;
c1e862c1
KH
4978}
4979
4980
18f59ea7
BS
4981static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4982{
4983 return mem_cgroup_from_cont(cont)->use_hierarchy;
4984}
4985
4986static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4987 u64 val)
4988{
4989 int retval = 0;
c0ff4b85 4990 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 4991 struct cgroup *parent = cont->parent;
c0ff4b85 4992 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
4993
4994 if (parent)
c0ff4b85 4995 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7 4996
0999821b 4997 mutex_lock(&memcg_create_mutex);
567fb435
GC
4998
4999 if (memcg->use_hierarchy == val)
5000 goto out;
5001
18f59ea7 5002 /*
af901ca1 5003 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5004 * in the child subtrees. If it is unset, then the change can
5005 * occur, provided the current cgroup has no children.
5006 *
5007 * For the root cgroup, parent_mem is NULL, we allow value to be
5008 * set if there are no children.
5009 */
c0ff4b85 5010 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5011 (val == 1 || val == 0)) {
b5f99b53 5012 if (!__memcg_has_children(memcg))
c0ff4b85 5013 memcg->use_hierarchy = val;
18f59ea7
BS
5014 else
5015 retval = -EBUSY;
5016 } else
5017 retval = -EINVAL;
567fb435
GC
5018
5019out:
0999821b 5020 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5021
5022 return retval;
5023}
5024
0c3e73e8 5025
c0ff4b85 5026static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5027 enum mem_cgroup_stat_index idx)
0c3e73e8 5028{
7d74b06f 5029 struct mem_cgroup *iter;
7a159cc9 5030 long val = 0;
0c3e73e8 5031
7a159cc9 5032 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5033 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5034 val += mem_cgroup_read_stat(iter, idx);
5035
5036 if (val < 0) /* race ? */
5037 val = 0;
5038 return val;
0c3e73e8
BS
5039}
5040
c0ff4b85 5041static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5042{
7d74b06f 5043 u64 val;
104f3928 5044
c0ff4b85 5045 if (!mem_cgroup_is_root(memcg)) {
104f3928 5046 if (!swap)
65c64ce8 5047 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5048 else
65c64ce8 5049 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5050 }
5051
b070e65c
DR
5052 /*
5053 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5054 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5055 */
c0ff4b85
R
5056 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5057 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5058
7d74b06f 5059 if (swap)
bff6bb83 5060 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5061
5062 return val << PAGE_SHIFT;
5063}
5064
af36f906
TH
5065static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5066 struct file *file, char __user *buf,
5067 size_t nbytes, loff_t *ppos)
8cdea7c0 5068{
c0ff4b85 5069 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 5070 char str[64];
104f3928 5071 u64 val;
86ae53e1
GC
5072 int name, len;
5073 enum res_type type;
8c7c6e34
KH
5074
5075 type = MEMFILE_TYPE(cft->private);
5076 name = MEMFILE_ATTR(cft->private);
af36f906 5077
8c7c6e34
KH
5078 switch (type) {
5079 case _MEM:
104f3928 5080 if (name == RES_USAGE)
c0ff4b85 5081 val = mem_cgroup_usage(memcg, false);
104f3928 5082 else
c0ff4b85 5083 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5084 break;
5085 case _MEMSWAP:
104f3928 5086 if (name == RES_USAGE)
c0ff4b85 5087 val = mem_cgroup_usage(memcg, true);
104f3928 5088 else
c0ff4b85 5089 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5090 break;
510fc4e1
GC
5091 case _KMEM:
5092 val = res_counter_read_u64(&memcg->kmem, name);
5093 break;
8c7c6e34
KH
5094 default:
5095 BUG();
8c7c6e34 5096 }
af36f906
TH
5097
5098 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5099 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5100}
510fc4e1
GC
5101
5102static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5103{
5104 int ret = -EINVAL;
5105#ifdef CONFIG_MEMCG_KMEM
5106 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5107 /*
5108 * For simplicity, we won't allow this to be disabled. It also can't
5109 * be changed if the cgroup has children already, or if tasks had
5110 * already joined.
5111 *
5112 * If tasks join before we set the limit, a person looking at
5113 * kmem.usage_in_bytes will have no way to determine when it took
5114 * place, which makes the value quite meaningless.
5115 *
5116 * After it first became limited, changes in the value of the limit are
5117 * of course permitted.
510fc4e1 5118 */
0999821b 5119 mutex_lock(&memcg_create_mutex);
510fc4e1
GC
5120 mutex_lock(&set_limit_mutex);
5121 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
b5f99b53 5122 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
510fc4e1
GC
5123 ret = -EBUSY;
5124 goto out;
5125 }
5126 ret = res_counter_set_limit(&memcg->kmem, val);
5127 VM_BUG_ON(ret);
5128
55007d84
GC
5129 ret = memcg_update_cache_sizes(memcg);
5130 if (ret) {
5131 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5132 goto out;
5133 }
692e89ab
GC
5134 static_key_slow_inc(&memcg_kmem_enabled_key);
5135 /*
5136 * setting the active bit after the inc will guarantee no one
5137 * starts accounting before all call sites are patched
5138 */
5139 memcg_kmem_set_active(memcg);
5140
7de37682
GC
5141 /*
5142 * kmem charges can outlive the cgroup. In the case of slab
5143 * pages, for instance, a page contain objects from various
5144 * processes, so it is unfeasible to migrate them away. We
5145 * need to reference count the memcg because of that.
5146 */
5147 mem_cgroup_get(memcg);
510fc4e1
GC
5148 } else
5149 ret = res_counter_set_limit(&memcg->kmem, val);
5150out:
5151 mutex_unlock(&set_limit_mutex);
0999821b 5152 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5153#endif
5154 return ret;
5155}
5156
6d043990 5157#ifdef CONFIG_MEMCG_KMEM
55007d84 5158static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5159{
55007d84 5160 int ret = 0;
510fc4e1
GC
5161 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5162 if (!parent)
55007d84
GC
5163 goto out;
5164
510fc4e1 5165 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5166 /*
5167 * When that happen, we need to disable the static branch only on those
5168 * memcgs that enabled it. To achieve this, we would be forced to
5169 * complicate the code by keeping track of which memcgs were the ones
5170 * that actually enabled limits, and which ones got it from its
5171 * parents.
5172 *
5173 * It is a lot simpler just to do static_key_slow_inc() on every child
5174 * that is accounted.
5175 */
55007d84
GC
5176 if (!memcg_kmem_is_active(memcg))
5177 goto out;
5178
5179 /*
5180 * destroy(), called if we fail, will issue static_key_slow_inc() and
5181 * mem_cgroup_put() if kmem is enabled. We have to either call them
5182 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5183 * this more consistent, since it always leads to the same destroy path
5184 */
5185 mem_cgroup_get(memcg);
5186 static_key_slow_inc(&memcg_kmem_enabled_key);
5187
5188 mutex_lock(&set_limit_mutex);
5189 ret = memcg_update_cache_sizes(memcg);
5190 mutex_unlock(&set_limit_mutex);
55007d84
GC
5191out:
5192 return ret;
510fc4e1 5193}
6d043990 5194#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5195
628f4235
KH
5196/*
5197 * The user of this function is...
5198 * RES_LIMIT.
5199 */
856c13aa
PM
5200static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5201 const char *buffer)
8cdea7c0 5202{
628f4235 5203 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5204 enum res_type type;
5205 int name;
628f4235
KH
5206 unsigned long long val;
5207 int ret;
5208
8c7c6e34
KH
5209 type = MEMFILE_TYPE(cft->private);
5210 name = MEMFILE_ATTR(cft->private);
af36f906 5211
8c7c6e34 5212 switch (name) {
628f4235 5213 case RES_LIMIT:
4b3bde4c
BS
5214 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5215 ret = -EINVAL;
5216 break;
5217 }
628f4235
KH
5218 /* This function does all necessary parse...reuse it */
5219 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5220 if (ret)
5221 break;
5222 if (type == _MEM)
628f4235 5223 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5224 else if (type == _MEMSWAP)
8c7c6e34 5225 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1
GC
5226 else if (type == _KMEM)
5227 ret = memcg_update_kmem_limit(cont, val);
5228 else
5229 return -EINVAL;
628f4235 5230 break;
296c81d8
BS
5231 case RES_SOFT_LIMIT:
5232 ret = res_counter_memparse_write_strategy(buffer, &val);
5233 if (ret)
5234 break;
5235 /*
5236 * For memsw, soft limits are hard to implement in terms
5237 * of semantics, for now, we support soft limits for
5238 * control without swap
5239 */
5240 if (type == _MEM)
5241 ret = res_counter_set_soft_limit(&memcg->res, val);
5242 else
5243 ret = -EINVAL;
5244 break;
628f4235
KH
5245 default:
5246 ret = -EINVAL; /* should be BUG() ? */
5247 break;
5248 }
5249 return ret;
8cdea7c0
BS
5250}
5251
fee7b548
KH
5252static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5253 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5254{
5255 struct cgroup *cgroup;
5256 unsigned long long min_limit, min_memsw_limit, tmp;
5257
5258 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5259 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5260 cgroup = memcg->css.cgroup;
5261 if (!memcg->use_hierarchy)
5262 goto out;
5263
5264 while (cgroup->parent) {
5265 cgroup = cgroup->parent;
5266 memcg = mem_cgroup_from_cont(cgroup);
5267 if (!memcg->use_hierarchy)
5268 break;
5269 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5270 min_limit = min(min_limit, tmp);
5271 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5272 min_memsw_limit = min(min_memsw_limit, tmp);
5273 }
5274out:
5275 *mem_limit = min_limit;
5276 *memsw_limit = min_memsw_limit;
fee7b548
KH
5277}
5278
29f2a4da 5279static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 5280{
af36f906 5281 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5282 int name;
5283 enum res_type type;
c84872e1 5284
8c7c6e34
KH
5285 type = MEMFILE_TYPE(event);
5286 name = MEMFILE_ATTR(event);
af36f906 5287
8c7c6e34 5288 switch (name) {
29f2a4da 5289 case RES_MAX_USAGE:
8c7c6e34 5290 if (type == _MEM)
c0ff4b85 5291 res_counter_reset_max(&memcg->res);
510fc4e1 5292 else if (type == _MEMSWAP)
c0ff4b85 5293 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5294 else if (type == _KMEM)
5295 res_counter_reset_max(&memcg->kmem);
5296 else
5297 return -EINVAL;
29f2a4da
PE
5298 break;
5299 case RES_FAILCNT:
8c7c6e34 5300 if (type == _MEM)
c0ff4b85 5301 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5302 else if (type == _MEMSWAP)
c0ff4b85 5303 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5304 else if (type == _KMEM)
5305 res_counter_reset_failcnt(&memcg->kmem);
5306 else
5307 return -EINVAL;
29f2a4da
PE
5308 break;
5309 }
f64c3f54 5310
85cc59db 5311 return 0;
c84872e1
PE
5312}
5313
7dc74be0
DN
5314static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5315 struct cftype *cft)
5316{
5317 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5318}
5319
02491447 5320#ifdef CONFIG_MMU
7dc74be0
DN
5321static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5322 struct cftype *cft, u64 val)
5323{
c0ff4b85 5324 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
5325
5326 if (val >= (1 << NR_MOVE_TYPE))
5327 return -EINVAL;
ee5e8472 5328
7dc74be0 5329 /*
ee5e8472
GC
5330 * No kind of locking is needed in here, because ->can_attach() will
5331 * check this value once in the beginning of the process, and then carry
5332 * on with stale data. This means that changes to this value will only
5333 * affect task migrations starting after the change.
7dc74be0 5334 */
c0ff4b85 5335 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5336 return 0;
5337}
02491447
DN
5338#else
5339static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5340 struct cftype *cft, u64 val)
5341{
5342 return -ENOSYS;
5343}
5344#endif
7dc74be0 5345
406eb0c9 5346#ifdef CONFIG_NUMA
ab215884 5347static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 5348 struct seq_file *m)
406eb0c9
YH
5349{
5350 int nid;
5351 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5352 unsigned long node_nr;
d79154bb 5353 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 5354
d79154bb 5355 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5356 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5357 for_each_node_state(nid, N_MEMORY) {
d79154bb 5358 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5359 seq_printf(m, " N%d=%lu", nid, node_nr);
5360 }
5361 seq_putc(m, '\n');
5362
d79154bb 5363 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5364 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5365 for_each_node_state(nid, N_MEMORY) {
d79154bb 5366 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5367 LRU_ALL_FILE);
406eb0c9
YH
5368 seq_printf(m, " N%d=%lu", nid, node_nr);
5369 }
5370 seq_putc(m, '\n');
5371
d79154bb 5372 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5373 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5374 for_each_node_state(nid, N_MEMORY) {
d79154bb 5375 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5376 LRU_ALL_ANON);
406eb0c9
YH
5377 seq_printf(m, " N%d=%lu", nid, node_nr);
5378 }
5379 seq_putc(m, '\n');
5380
d79154bb 5381 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5382 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5383 for_each_node_state(nid, N_MEMORY) {
d79154bb 5384 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5385 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5386 seq_printf(m, " N%d=%lu", nid, node_nr);
5387 }
5388 seq_putc(m, '\n');
5389 return 0;
5390}
5391#endif /* CONFIG_NUMA */
5392
af7c4b0e
JW
5393static inline void mem_cgroup_lru_names_not_uptodate(void)
5394{
5395 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5396}
5397
ab215884 5398static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 5399 struct seq_file *m)
d2ceb9b7 5400{
d79154bb 5401 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
5402 struct mem_cgroup *mi;
5403 unsigned int i;
406eb0c9 5404
af7c4b0e 5405 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5406 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5407 continue;
af7c4b0e
JW
5408 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5409 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5410 }
7b854121 5411
af7c4b0e
JW
5412 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5413 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5414 mem_cgroup_read_events(memcg, i));
5415
5416 for (i = 0; i < NR_LRU_LISTS; i++)
5417 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5418 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5419
14067bb3 5420 /* Hierarchical information */
fee7b548
KH
5421 {
5422 unsigned long long limit, memsw_limit;
d79154bb 5423 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5424 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5425 if (do_swap_account)
78ccf5b5
JW
5426 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5427 memsw_limit);
fee7b548 5428 }
7f016ee8 5429
af7c4b0e
JW
5430 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5431 long long val = 0;
5432
bff6bb83 5433 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5434 continue;
af7c4b0e
JW
5435 for_each_mem_cgroup_tree(mi, memcg)
5436 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5437 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5438 }
5439
5440 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5441 unsigned long long val = 0;
5442
5443 for_each_mem_cgroup_tree(mi, memcg)
5444 val += mem_cgroup_read_events(mi, i);
5445 seq_printf(m, "total_%s %llu\n",
5446 mem_cgroup_events_names[i], val);
5447 }
5448
5449 for (i = 0; i < NR_LRU_LISTS; i++) {
5450 unsigned long long val = 0;
5451
5452 for_each_mem_cgroup_tree(mi, memcg)
5453 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5454 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5455 }
14067bb3 5456
7f016ee8 5457#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5458 {
5459 int nid, zid;
5460 struct mem_cgroup_per_zone *mz;
89abfab1 5461 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5462 unsigned long recent_rotated[2] = {0, 0};
5463 unsigned long recent_scanned[2] = {0, 0};
5464
5465 for_each_online_node(nid)
5466 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5467 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5468 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5469
89abfab1
HD
5470 recent_rotated[0] += rstat->recent_rotated[0];
5471 recent_rotated[1] += rstat->recent_rotated[1];
5472 recent_scanned[0] += rstat->recent_scanned[0];
5473 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5474 }
78ccf5b5
JW
5475 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5476 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5477 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5478 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5479 }
5480#endif
5481
d2ceb9b7
KH
5482 return 0;
5483}
5484
a7885eb8
KM
5485static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5486{
5487 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5488
1f4c025b 5489 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5490}
5491
5492static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5493 u64 val)
5494{
5495 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5496 struct mem_cgroup *parent;
068b38c1 5497
a7885eb8
KM
5498 if (val > 100)
5499 return -EINVAL;
5500
5501 if (cgrp->parent == NULL)
5502 return -EINVAL;
5503
5504 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1 5505
0999821b 5506 mutex_lock(&memcg_create_mutex);
068b38c1 5507
a7885eb8 5508 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5509 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5510 mutex_unlock(&memcg_create_mutex);
a7885eb8 5511 return -EINVAL;
068b38c1 5512 }
a7885eb8 5513
a7885eb8 5514 memcg->swappiness = val;
a7885eb8 5515
0999821b 5516 mutex_unlock(&memcg_create_mutex);
068b38c1 5517
a7885eb8
KM
5518 return 0;
5519}
5520
2e72b634
KS
5521static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5522{
5523 struct mem_cgroup_threshold_ary *t;
5524 u64 usage;
5525 int i;
5526
5527 rcu_read_lock();
5528 if (!swap)
2c488db2 5529 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5530 else
2c488db2 5531 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5532
5533 if (!t)
5534 goto unlock;
5535
5536 usage = mem_cgroup_usage(memcg, swap);
5537
5538 /*
748dad36 5539 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5540 * If it's not true, a threshold was crossed after last
5541 * call of __mem_cgroup_threshold().
5542 */
5407a562 5543 i = t->current_threshold;
2e72b634
KS
5544
5545 /*
5546 * Iterate backward over array of thresholds starting from
5547 * current_threshold and check if a threshold is crossed.
5548 * If none of thresholds below usage is crossed, we read
5549 * only one element of the array here.
5550 */
5551 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5552 eventfd_signal(t->entries[i].eventfd, 1);
5553
5554 /* i = current_threshold + 1 */
5555 i++;
5556
5557 /*
5558 * Iterate forward over array of thresholds starting from
5559 * current_threshold+1 and check if a threshold is crossed.
5560 * If none of thresholds above usage is crossed, we read
5561 * only one element of the array here.
5562 */
5563 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5564 eventfd_signal(t->entries[i].eventfd, 1);
5565
5566 /* Update current_threshold */
5407a562 5567 t->current_threshold = i - 1;
2e72b634
KS
5568unlock:
5569 rcu_read_unlock();
5570}
5571
5572static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5573{
ad4ca5f4
KS
5574 while (memcg) {
5575 __mem_cgroup_threshold(memcg, false);
5576 if (do_swap_account)
5577 __mem_cgroup_threshold(memcg, true);
5578
5579 memcg = parent_mem_cgroup(memcg);
5580 }
2e72b634
KS
5581}
5582
5583static int compare_thresholds(const void *a, const void *b)
5584{
5585 const struct mem_cgroup_threshold *_a = a;
5586 const struct mem_cgroup_threshold *_b = b;
5587
5588 return _a->threshold - _b->threshold;
5589}
5590
c0ff4b85 5591static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5592{
5593 struct mem_cgroup_eventfd_list *ev;
5594
c0ff4b85 5595 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5596 eventfd_signal(ev->eventfd, 1);
5597 return 0;
5598}
5599
c0ff4b85 5600static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5601{
7d74b06f
KH
5602 struct mem_cgroup *iter;
5603
c0ff4b85 5604 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5605 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5606}
5607
5608static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5609 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
5610{
5611 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5612 struct mem_cgroup_thresholds *thresholds;
5613 struct mem_cgroup_threshold_ary *new;
86ae53e1 5614 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5615 u64 threshold, usage;
2c488db2 5616 int i, size, ret;
2e72b634
KS
5617
5618 ret = res_counter_memparse_write_strategy(args, &threshold);
5619 if (ret)
5620 return ret;
5621
5622 mutex_lock(&memcg->thresholds_lock);
2c488db2 5623
2e72b634 5624 if (type == _MEM)
2c488db2 5625 thresholds = &memcg->thresholds;
2e72b634 5626 else if (type == _MEMSWAP)
2c488db2 5627 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5628 else
5629 BUG();
5630
5631 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5632
5633 /* Check if a threshold crossed before adding a new one */
2c488db2 5634 if (thresholds->primary)
2e72b634
KS
5635 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5636
2c488db2 5637 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5638
5639 /* Allocate memory for new array of thresholds */
2c488db2 5640 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5641 GFP_KERNEL);
2c488db2 5642 if (!new) {
2e72b634
KS
5643 ret = -ENOMEM;
5644 goto unlock;
5645 }
2c488db2 5646 new->size = size;
2e72b634
KS
5647
5648 /* Copy thresholds (if any) to new array */
2c488db2
KS
5649 if (thresholds->primary) {
5650 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5651 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5652 }
5653
2e72b634 5654 /* Add new threshold */
2c488db2
KS
5655 new->entries[size - 1].eventfd = eventfd;
5656 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5657
5658 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5659 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5660 compare_thresholds, NULL);
5661
5662 /* Find current threshold */
2c488db2 5663 new->current_threshold = -1;
2e72b634 5664 for (i = 0; i < size; i++) {
748dad36 5665 if (new->entries[i].threshold <= usage) {
2e72b634 5666 /*
2c488db2
KS
5667 * new->current_threshold will not be used until
5668 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5669 * it here.
5670 */
2c488db2 5671 ++new->current_threshold;
748dad36
SZ
5672 } else
5673 break;
2e72b634
KS
5674 }
5675
2c488db2
KS
5676 /* Free old spare buffer and save old primary buffer as spare */
5677 kfree(thresholds->spare);
5678 thresholds->spare = thresholds->primary;
5679
5680 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5681
907860ed 5682 /* To be sure that nobody uses thresholds */
2e72b634
KS
5683 synchronize_rcu();
5684
2e72b634
KS
5685unlock:
5686 mutex_unlock(&memcg->thresholds_lock);
5687
5688 return ret;
5689}
5690
907860ed 5691static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 5692 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
5693{
5694 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5695 struct mem_cgroup_thresholds *thresholds;
5696 struct mem_cgroup_threshold_ary *new;
86ae53e1 5697 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5698 u64 usage;
2c488db2 5699 int i, j, size;
2e72b634
KS
5700
5701 mutex_lock(&memcg->thresholds_lock);
5702 if (type == _MEM)
2c488db2 5703 thresholds = &memcg->thresholds;
2e72b634 5704 else if (type == _MEMSWAP)
2c488db2 5705 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5706 else
5707 BUG();
5708
371528ca
AV
5709 if (!thresholds->primary)
5710 goto unlock;
5711
2e72b634
KS
5712 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5713
5714 /* Check if a threshold crossed before removing */
5715 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5716
5717 /* Calculate new number of threshold */
2c488db2
KS
5718 size = 0;
5719 for (i = 0; i < thresholds->primary->size; i++) {
5720 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5721 size++;
5722 }
5723
2c488db2 5724 new = thresholds->spare;
907860ed 5725
2e72b634
KS
5726 /* Set thresholds array to NULL if we don't have thresholds */
5727 if (!size) {
2c488db2
KS
5728 kfree(new);
5729 new = NULL;
907860ed 5730 goto swap_buffers;
2e72b634
KS
5731 }
5732
2c488db2 5733 new->size = size;
2e72b634
KS
5734
5735 /* Copy thresholds and find current threshold */
2c488db2
KS
5736 new->current_threshold = -1;
5737 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5738 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5739 continue;
5740
2c488db2 5741 new->entries[j] = thresholds->primary->entries[i];
748dad36 5742 if (new->entries[j].threshold <= usage) {
2e72b634 5743 /*
2c488db2 5744 * new->current_threshold will not be used
2e72b634
KS
5745 * until rcu_assign_pointer(), so it's safe to increment
5746 * it here.
5747 */
2c488db2 5748 ++new->current_threshold;
2e72b634
KS
5749 }
5750 j++;
5751 }
5752
907860ed 5753swap_buffers:
2c488db2
KS
5754 /* Swap primary and spare array */
5755 thresholds->spare = thresholds->primary;
8c757763
SZ
5756 /* If all events are unregistered, free the spare array */
5757 if (!new) {
5758 kfree(thresholds->spare);
5759 thresholds->spare = NULL;
5760 }
5761
2c488db2 5762 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5763
907860ed 5764 /* To be sure that nobody uses thresholds */
2e72b634 5765 synchronize_rcu();
371528ca 5766unlock:
2e72b634 5767 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5768}
c1e862c1 5769
9490ff27
KH
5770static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5771 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5772{
5773 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5774 struct mem_cgroup_eventfd_list *event;
86ae53e1 5775 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5776
5777 BUG_ON(type != _OOM_TYPE);
5778 event = kmalloc(sizeof(*event), GFP_KERNEL);
5779 if (!event)
5780 return -ENOMEM;
5781
1af8efe9 5782 spin_lock(&memcg_oom_lock);
9490ff27
KH
5783
5784 event->eventfd = eventfd;
5785 list_add(&event->list, &memcg->oom_notify);
5786
5787 /* already in OOM ? */
79dfdacc 5788 if (atomic_read(&memcg->under_oom))
9490ff27 5789 eventfd_signal(eventfd, 1);
1af8efe9 5790 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5791
5792 return 0;
5793}
5794
907860ed 5795static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
5796 struct cftype *cft, struct eventfd_ctx *eventfd)
5797{
c0ff4b85 5798 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27 5799 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5800 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5801
5802 BUG_ON(type != _OOM_TYPE);
5803
1af8efe9 5804 spin_lock(&memcg_oom_lock);
9490ff27 5805
c0ff4b85 5806 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5807 if (ev->eventfd == eventfd) {
5808 list_del(&ev->list);
5809 kfree(ev);
5810 }
5811 }
5812
1af8efe9 5813 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5814}
5815
3c11ecf4
KH
5816static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5817 struct cftype *cft, struct cgroup_map_cb *cb)
5818{
c0ff4b85 5819 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 5820
c0ff4b85 5821 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5822
c0ff4b85 5823 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5824 cb->fill(cb, "under_oom", 1);
5825 else
5826 cb->fill(cb, "under_oom", 0);
5827 return 0;
5828}
5829
3c11ecf4
KH
5830static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5831 struct cftype *cft, u64 val)
5832{
c0ff4b85 5833 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
5834 struct mem_cgroup *parent;
5835
5836 /* cannot set to root cgroup and only 0 and 1 are allowed */
5837 if (!cgrp->parent || !((val == 0) || (val == 1)))
5838 return -EINVAL;
5839
5840 parent = mem_cgroup_from_cont(cgrp->parent);
5841
0999821b 5842 mutex_lock(&memcg_create_mutex);
3c11ecf4 5843 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5844 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5845 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5846 return -EINVAL;
5847 }
c0ff4b85 5848 memcg->oom_kill_disable = val;
4d845ebf 5849 if (!val)
c0ff4b85 5850 memcg_oom_recover(memcg);
0999821b 5851 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5852 return 0;
5853}
5854
c255a458 5855#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5856static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5857{
55007d84
GC
5858 int ret;
5859
2633d7a0 5860 memcg->kmemcg_id = -1;
55007d84
GC
5861 ret = memcg_propagate_kmem(memcg);
5862 if (ret)
5863 return ret;
2633d7a0 5864
1d62e436 5865 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5866}
e5671dfa 5867
1d62e436 5868static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 5869{
1d62e436 5870 mem_cgroup_sockets_destroy(memcg);
7de37682
GC
5871
5872 memcg_kmem_mark_dead(memcg);
5873
5874 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5875 return;
5876
5877 /*
5878 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5879 * path here, being careful not to race with memcg_uncharge_kmem: it is
5880 * possible that the charges went down to 0 between mark_dead and the
5881 * res_counter read, so in that case, we don't need the put
5882 */
5883 if (memcg_kmem_test_and_clear_dead(memcg))
5884 mem_cgroup_put(memcg);
d1a4c0b3 5885}
e5671dfa 5886#else
cbe128e3 5887static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5888{
5889 return 0;
5890}
d1a4c0b3 5891
1d62e436 5892static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
5893{
5894}
e5671dfa
GC
5895#endif
5896
8cdea7c0
BS
5897static struct cftype mem_cgroup_files[] = {
5898 {
0eea1030 5899 .name = "usage_in_bytes",
8c7c6e34 5900 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5901 .read = mem_cgroup_read,
9490ff27
KH
5902 .register_event = mem_cgroup_usage_register_event,
5903 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5904 },
c84872e1
PE
5905 {
5906 .name = "max_usage_in_bytes",
8c7c6e34 5907 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5908 .trigger = mem_cgroup_reset,
af36f906 5909 .read = mem_cgroup_read,
c84872e1 5910 },
8cdea7c0 5911 {
0eea1030 5912 .name = "limit_in_bytes",
8c7c6e34 5913 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5914 .write_string = mem_cgroup_write,
af36f906 5915 .read = mem_cgroup_read,
8cdea7c0 5916 },
296c81d8
BS
5917 {
5918 .name = "soft_limit_in_bytes",
5919 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5920 .write_string = mem_cgroup_write,
af36f906 5921 .read = mem_cgroup_read,
296c81d8 5922 },
8cdea7c0
BS
5923 {
5924 .name = "failcnt",
8c7c6e34 5925 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5926 .trigger = mem_cgroup_reset,
af36f906 5927 .read = mem_cgroup_read,
8cdea7c0 5928 },
d2ceb9b7
KH
5929 {
5930 .name = "stat",
ab215884 5931 .read_seq_string = memcg_stat_show,
d2ceb9b7 5932 },
c1e862c1
KH
5933 {
5934 .name = "force_empty",
5935 .trigger = mem_cgroup_force_empty_write,
5936 },
18f59ea7
BS
5937 {
5938 .name = "use_hierarchy",
f00baae7 5939 .flags = CFTYPE_INSANE,
18f59ea7
BS
5940 .write_u64 = mem_cgroup_hierarchy_write,
5941 .read_u64 = mem_cgroup_hierarchy_read,
5942 },
a7885eb8
KM
5943 {
5944 .name = "swappiness",
5945 .read_u64 = mem_cgroup_swappiness_read,
5946 .write_u64 = mem_cgroup_swappiness_write,
5947 },
7dc74be0
DN
5948 {
5949 .name = "move_charge_at_immigrate",
5950 .read_u64 = mem_cgroup_move_charge_read,
5951 .write_u64 = mem_cgroup_move_charge_write,
5952 },
9490ff27
KH
5953 {
5954 .name = "oom_control",
3c11ecf4
KH
5955 .read_map = mem_cgroup_oom_control_read,
5956 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5957 .register_event = mem_cgroup_oom_register_event,
5958 .unregister_event = mem_cgroup_oom_unregister_event,
5959 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5960 },
70ddf637
AV
5961 {
5962 .name = "pressure_level",
5963 .register_event = vmpressure_register_event,
5964 .unregister_event = vmpressure_unregister_event,
5965 },
406eb0c9
YH
5966#ifdef CONFIG_NUMA
5967 {
5968 .name = "numa_stat",
ab215884 5969 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
5970 },
5971#endif
510fc4e1
GC
5972#ifdef CONFIG_MEMCG_KMEM
5973 {
5974 .name = "kmem.limit_in_bytes",
5975 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5976 .write_string = mem_cgroup_write,
5977 .read = mem_cgroup_read,
5978 },
5979 {
5980 .name = "kmem.usage_in_bytes",
5981 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5982 .read = mem_cgroup_read,
5983 },
5984 {
5985 .name = "kmem.failcnt",
5986 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5987 .trigger = mem_cgroup_reset,
5988 .read = mem_cgroup_read,
5989 },
5990 {
5991 .name = "kmem.max_usage_in_bytes",
5992 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5993 .trigger = mem_cgroup_reset,
5994 .read = mem_cgroup_read,
5995 },
749c5415
GC
5996#ifdef CONFIG_SLABINFO
5997 {
5998 .name = "kmem.slabinfo",
5999 .read_seq_string = mem_cgroup_slabinfo_read,
6000 },
6001#endif
8c7c6e34 6002#endif
6bc10349 6003 { }, /* terminate */
af36f906 6004};
8c7c6e34 6005
2d11085e
MH
6006#ifdef CONFIG_MEMCG_SWAP
6007static struct cftype memsw_cgroup_files[] = {
6008 {
6009 .name = "memsw.usage_in_bytes",
6010 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6011 .read = mem_cgroup_read,
6012 .register_event = mem_cgroup_usage_register_event,
6013 .unregister_event = mem_cgroup_usage_unregister_event,
6014 },
6015 {
6016 .name = "memsw.max_usage_in_bytes",
6017 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6018 .trigger = mem_cgroup_reset,
6019 .read = mem_cgroup_read,
6020 },
6021 {
6022 .name = "memsw.limit_in_bytes",
6023 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6024 .write_string = mem_cgroup_write,
6025 .read = mem_cgroup_read,
6026 },
6027 {
6028 .name = "memsw.failcnt",
6029 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6030 .trigger = mem_cgroup_reset,
6031 .read = mem_cgroup_read,
6032 },
6033 { }, /* terminate */
6034};
6035#endif
c0ff4b85 6036static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6037{
6038 struct mem_cgroup_per_node *pn;
1ecaab2b 6039 struct mem_cgroup_per_zone *mz;
41e3355d 6040 int zone, tmp = node;
1ecaab2b
KH
6041 /*
6042 * This routine is called against possible nodes.
6043 * But it's BUG to call kmalloc() against offline node.
6044 *
6045 * TODO: this routine can waste much memory for nodes which will
6046 * never be onlined. It's better to use memory hotplug callback
6047 * function.
6048 */
41e3355d
KH
6049 if (!node_state(node, N_NORMAL_MEMORY))
6050 tmp = -1;
17295c88 6051 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6052 if (!pn)
6053 return 1;
1ecaab2b 6054
1ecaab2b
KH
6055 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6056 mz = &pn->zoneinfo[zone];
bea8c150 6057 lruvec_init(&mz->lruvec);
f64c3f54 6058 mz->usage_in_excess = 0;
4e416953 6059 mz->on_tree = false;
d79154bb 6060 mz->memcg = memcg;
1ecaab2b 6061 }
0a619e58 6062 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
6063 return 0;
6064}
6065
c0ff4b85 6066static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6067{
c0ff4b85 6068 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
6069}
6070
33327948
KH
6071static struct mem_cgroup *mem_cgroup_alloc(void)
6072{
d79154bb 6073 struct mem_cgroup *memcg;
45cf7ebd 6074 size_t size = memcg_size();
33327948 6075
45cf7ebd 6076 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6077 if (size < PAGE_SIZE)
d79154bb 6078 memcg = kzalloc(size, GFP_KERNEL);
33327948 6079 else
d79154bb 6080 memcg = vzalloc(size);
33327948 6081
d79154bb 6082 if (!memcg)
e7bbcdf3
DC
6083 return NULL;
6084
d79154bb
HD
6085 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6086 if (!memcg->stat)
d2e61b8d 6087 goto out_free;
d79154bb
HD
6088 spin_lock_init(&memcg->pcp_counter_lock);
6089 return memcg;
d2e61b8d
DC
6090
6091out_free:
6092 if (size < PAGE_SIZE)
d79154bb 6093 kfree(memcg);
d2e61b8d 6094 else
d79154bb 6095 vfree(memcg);
d2e61b8d 6096 return NULL;
33327948
KH
6097}
6098
59927fb9 6099/*
c8b2a36f
GC
6100 * At destroying mem_cgroup, references from swap_cgroup can remain.
6101 * (scanning all at force_empty is too costly...)
6102 *
6103 * Instead of clearing all references at force_empty, we remember
6104 * the number of reference from swap_cgroup and free mem_cgroup when
6105 * it goes down to 0.
6106 *
6107 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6108 */
c8b2a36f
GC
6109
6110static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6111{
c8b2a36f 6112 int node;
45cf7ebd 6113 size_t size = memcg_size();
59927fb9 6114
c8b2a36f
GC
6115 mem_cgroup_remove_from_trees(memcg);
6116 free_css_id(&mem_cgroup_subsys, &memcg->css);
6117
6118 for_each_node(node)
6119 free_mem_cgroup_per_zone_info(memcg, node);
6120
6121 free_percpu(memcg->stat);
6122
3f134619
GC
6123 /*
6124 * We need to make sure that (at least for now), the jump label
6125 * destruction code runs outside of the cgroup lock. This is because
6126 * get_online_cpus(), which is called from the static_branch update,
6127 * can't be called inside the cgroup_lock. cpusets are the ones
6128 * enforcing this dependency, so if they ever change, we might as well.
6129 *
6130 * schedule_work() will guarantee this happens. Be careful if you need
6131 * to move this code around, and make sure it is outside
6132 * the cgroup_lock.
6133 */
a8964b9b 6134 disarm_static_keys(memcg);
3afe36b1
GC
6135 if (size < PAGE_SIZE)
6136 kfree(memcg);
6137 else
6138 vfree(memcg);
59927fb9 6139}
3afe36b1 6140
59927fb9 6141
8c7c6e34 6142/*
c8b2a36f
GC
6143 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6144 * but in process context. The work_freeing structure is overlaid
6145 * on the rcu_freeing structure, which itself is overlaid on memsw.
8c7c6e34 6146 */
c8b2a36f 6147static void free_work(struct work_struct *work)
33327948 6148{
c8b2a36f 6149 struct mem_cgroup *memcg;
08e552c6 6150
c8b2a36f
GC
6151 memcg = container_of(work, struct mem_cgroup, work_freeing);
6152 __mem_cgroup_free(memcg);
6153}
04046e1a 6154
c8b2a36f
GC
6155static void free_rcu(struct rcu_head *rcu_head)
6156{
6157 struct mem_cgroup *memcg;
08e552c6 6158
c8b2a36f
GC
6159 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6160 INIT_WORK(&memcg->work_freeing, free_work);
6161 schedule_work(&memcg->work_freeing);
33327948
KH
6162}
6163
c0ff4b85 6164static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 6165{
c0ff4b85 6166 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
6167}
6168
c0ff4b85 6169static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 6170{
c0ff4b85
R
6171 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6172 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
c8b2a36f 6173 call_rcu(&memcg->rcu_freeing, free_rcu);
7bcc1bb1
DN
6174 if (parent)
6175 mem_cgroup_put(parent);
6176 }
8c7c6e34
KH
6177}
6178
c0ff4b85 6179static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 6180{
c0ff4b85 6181 __mem_cgroup_put(memcg, 1);
483c30b5
DN
6182}
6183
7bcc1bb1
DN
6184/*
6185 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6186 */
e1aab161 6187struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6188{
c0ff4b85 6189 if (!memcg->res.parent)
7bcc1bb1 6190 return NULL;
c0ff4b85 6191 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6192}
e1aab161 6193EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6194
8787a1df 6195static void __init mem_cgroup_soft_limit_tree_init(void)
f64c3f54
BS
6196{
6197 struct mem_cgroup_tree_per_node *rtpn;
6198 struct mem_cgroup_tree_per_zone *rtpz;
6199 int tmp, node, zone;
6200
3ed28fa1 6201 for_each_node(node) {
f64c3f54
BS
6202 tmp = node;
6203 if (!node_state(node, N_NORMAL_MEMORY))
6204 tmp = -1;
6205 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
8787a1df 6206 BUG_ON(!rtpn);
f64c3f54
BS
6207
6208 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6209
6210 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6211 rtpz = &rtpn->rb_tree_per_zone[zone];
6212 rtpz->rb_root = RB_ROOT;
6213 spin_lock_init(&rtpz->lock);
6214 }
6215 }
f64c3f54
BS
6216}
6217
0eb253e2 6218static struct cgroup_subsys_state * __ref
92fb9748 6219mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 6220{
d142e3e6 6221 struct mem_cgroup *memcg;
04046e1a 6222 long error = -ENOMEM;
6d12e2d8 6223 int node;
8cdea7c0 6224
c0ff4b85
R
6225 memcg = mem_cgroup_alloc();
6226 if (!memcg)
04046e1a 6227 return ERR_PTR(error);
78fb7466 6228
3ed28fa1 6229 for_each_node(node)
c0ff4b85 6230 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6231 goto free_out;
f64c3f54 6232
c077719b 6233 /* root ? */
28dbc4b6 6234 if (cont->parent == NULL) {
a41c58a6 6235 root_mem_cgroup = memcg;
d142e3e6
GC
6236 res_counter_init(&memcg->res, NULL);
6237 res_counter_init(&memcg->memsw, NULL);
6238 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6239 }
28dbc4b6 6240
d142e3e6
GC
6241 memcg->last_scanned_node = MAX_NUMNODES;
6242 INIT_LIST_HEAD(&memcg->oom_notify);
6243 atomic_set(&memcg->refcnt, 1);
6244 memcg->move_charge_at_immigrate = 0;
6245 mutex_init(&memcg->thresholds_lock);
6246 spin_lock_init(&memcg->move_lock);
70ddf637 6247 vmpressure_init(&memcg->vmpressure);
d142e3e6
GC
6248
6249 return &memcg->css;
6250
6251free_out:
6252 __mem_cgroup_free(memcg);
6253 return ERR_PTR(error);
6254}
6255
6256static int
6257mem_cgroup_css_online(struct cgroup *cont)
6258{
6259 struct mem_cgroup *memcg, *parent;
6260 int error = 0;
6261
6262 if (!cont->parent)
6263 return 0;
6264
0999821b 6265 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6266 memcg = mem_cgroup_from_cont(cont);
6267 parent = mem_cgroup_from_cont(cont->parent);
6268
6269 memcg->use_hierarchy = parent->use_hierarchy;
6270 memcg->oom_kill_disable = parent->oom_kill_disable;
6271 memcg->swappiness = mem_cgroup_swappiness(parent);
6272
6273 if (parent->use_hierarchy) {
c0ff4b85
R
6274 res_counter_init(&memcg->res, &parent->res);
6275 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6276 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6277
7bcc1bb1
DN
6278 /*
6279 * We increment refcnt of the parent to ensure that we can
6280 * safely access it on res_counter_charge/uncharge.
6281 * This refcnt will be decremented when freeing this
6282 * mem_cgroup(see mem_cgroup_put).
6283 */
6284 mem_cgroup_get(parent);
18f59ea7 6285 } else {
c0ff4b85
R
6286 res_counter_init(&memcg->res, NULL);
6287 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6288 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6289 /*
6290 * Deeper hierachy with use_hierarchy == false doesn't make
6291 * much sense so let cgroup subsystem know about this
6292 * unfortunate state in our controller.
6293 */
d142e3e6 6294 if (parent != root_mem_cgroup)
8c7f6edb 6295 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6296 }
cbe128e3
GC
6297
6298 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6299 mutex_unlock(&memcg_create_mutex);
cbe128e3
GC
6300 if (error) {
6301 /*
6302 * We call put now because our (and parent's) refcnts
6303 * are already in place. mem_cgroup_put() will internally
6304 * call __mem_cgroup_free, so return directly
6305 */
6306 mem_cgroup_put(memcg);
e4715f01
GC
6307 if (parent->use_hierarchy)
6308 mem_cgroup_put(parent);
cbe128e3 6309 }
d142e3e6 6310 return error;
8cdea7c0
BS
6311}
6312
5f578161
MH
6313/*
6314 * Announce all parents that a group from their hierarchy is gone.
6315 */
6316static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6317{
6318 struct mem_cgroup *parent = memcg;
6319
6320 while ((parent = parent_mem_cgroup(parent)))
6321 atomic_inc(&parent->dead_count);
6322
6323 /*
6324 * if the root memcg is not hierarchical we have to check it
6325 * explicitely.
6326 */
6327 if (!root_mem_cgroup->use_hierarchy)
6328 atomic_inc(&root_mem_cgroup->dead_count);
6329}
6330
92fb9748 6331static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 6332{
c0ff4b85 6333 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 6334
5f578161 6335 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6336 mem_cgroup_reparent_charges(memcg);
1f458cbf 6337 mem_cgroup_destroy_all_caches(memcg);
df878fb0
KH
6338}
6339
92fb9748 6340static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 6341{
c0ff4b85 6342 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 6343
1d62e436 6344 kmem_cgroup_destroy(memcg);
d1a4c0b3 6345
c0ff4b85 6346 mem_cgroup_put(memcg);
8cdea7c0
BS
6347}
6348
02491447 6349#ifdef CONFIG_MMU
7dc74be0 6350/* Handlers for move charge at task migration. */
854ffa8d
DN
6351#define PRECHARGE_COUNT_AT_ONCE 256
6352static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6353{
854ffa8d
DN
6354 int ret = 0;
6355 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6356 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6357
c0ff4b85 6358 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6359 mc.precharge += count;
6360 /* we don't need css_get for root */
6361 return ret;
6362 }
6363 /* try to charge at once */
6364 if (count > 1) {
6365 struct res_counter *dummy;
6366 /*
c0ff4b85 6367 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6368 * by cgroup_lock_live_cgroup() that it is not removed and we
6369 * are still under the same cgroup_mutex. So we can postpone
6370 * css_get().
6371 */
c0ff4b85 6372 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6373 goto one_by_one;
c0ff4b85 6374 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6375 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6376 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6377 goto one_by_one;
6378 }
6379 mc.precharge += count;
854ffa8d
DN
6380 return ret;
6381 }
6382one_by_one:
6383 /* fall back to one by one charge */
6384 while (count--) {
6385 if (signal_pending(current)) {
6386 ret = -EINTR;
6387 break;
6388 }
6389 if (!batch_count--) {
6390 batch_count = PRECHARGE_COUNT_AT_ONCE;
6391 cond_resched();
6392 }
c0ff4b85
R
6393 ret = __mem_cgroup_try_charge(NULL,
6394 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6395 if (ret)
854ffa8d 6396 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6397 return ret;
854ffa8d
DN
6398 mc.precharge++;
6399 }
4ffef5fe
DN
6400 return ret;
6401}
6402
6403/**
8d32ff84 6404 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6405 * @vma: the vma the pte to be checked belongs
6406 * @addr: the address corresponding to the pte to be checked
6407 * @ptent: the pte to be checked
02491447 6408 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6409 *
6410 * Returns
6411 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6412 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6413 * move charge. if @target is not NULL, the page is stored in target->page
6414 * with extra refcnt got(Callers should handle it).
02491447
DN
6415 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6416 * target for charge migration. if @target is not NULL, the entry is stored
6417 * in target->ent.
4ffef5fe
DN
6418 *
6419 * Called with pte lock held.
6420 */
4ffef5fe
DN
6421union mc_target {
6422 struct page *page;
02491447 6423 swp_entry_t ent;
4ffef5fe
DN
6424};
6425
4ffef5fe 6426enum mc_target_type {
8d32ff84 6427 MC_TARGET_NONE = 0,
4ffef5fe 6428 MC_TARGET_PAGE,
02491447 6429 MC_TARGET_SWAP,
4ffef5fe
DN
6430};
6431
90254a65
DN
6432static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6433 unsigned long addr, pte_t ptent)
4ffef5fe 6434{
90254a65 6435 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6436
90254a65
DN
6437 if (!page || !page_mapped(page))
6438 return NULL;
6439 if (PageAnon(page)) {
6440 /* we don't move shared anon */
4b91355e 6441 if (!move_anon())
90254a65 6442 return NULL;
87946a72
DN
6443 } else if (!move_file())
6444 /* we ignore mapcount for file pages */
90254a65
DN
6445 return NULL;
6446 if (!get_page_unless_zero(page))
6447 return NULL;
6448
6449 return page;
6450}
6451
4b91355e 6452#ifdef CONFIG_SWAP
90254a65
DN
6453static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6454 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6455{
90254a65
DN
6456 struct page *page = NULL;
6457 swp_entry_t ent = pte_to_swp_entry(ptent);
6458
6459 if (!move_anon() || non_swap_entry(ent))
6460 return NULL;
4b91355e
KH
6461 /*
6462 * Because lookup_swap_cache() updates some statistics counter,
6463 * we call find_get_page() with swapper_space directly.
6464 */
33806f06 6465 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6466 if (do_swap_account)
6467 entry->val = ent.val;
6468
6469 return page;
6470}
4b91355e
KH
6471#else
6472static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6473 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6474{
6475 return NULL;
6476}
6477#endif
90254a65 6478
87946a72
DN
6479static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6480 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6481{
6482 struct page *page = NULL;
87946a72
DN
6483 struct address_space *mapping;
6484 pgoff_t pgoff;
6485
6486 if (!vma->vm_file) /* anonymous vma */
6487 return NULL;
6488 if (!move_file())
6489 return NULL;
6490
87946a72
DN
6491 mapping = vma->vm_file->f_mapping;
6492 if (pte_none(ptent))
6493 pgoff = linear_page_index(vma, addr);
6494 else /* pte_file(ptent) is true */
6495 pgoff = pte_to_pgoff(ptent);
6496
6497 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6498 page = find_get_page(mapping, pgoff);
6499
6500#ifdef CONFIG_SWAP
6501 /* shmem/tmpfs may report page out on swap: account for that too. */
6502 if (radix_tree_exceptional_entry(page)) {
6503 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6504 if (do_swap_account)
aa3b1895 6505 *entry = swap;
33806f06 6506 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6507 }
aa3b1895 6508#endif
87946a72
DN
6509 return page;
6510}
6511
8d32ff84 6512static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6513 unsigned long addr, pte_t ptent, union mc_target *target)
6514{
6515 struct page *page = NULL;
6516 struct page_cgroup *pc;
8d32ff84 6517 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6518 swp_entry_t ent = { .val = 0 };
6519
6520 if (pte_present(ptent))
6521 page = mc_handle_present_pte(vma, addr, ptent);
6522 else if (is_swap_pte(ptent))
6523 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6524 else if (pte_none(ptent) || pte_file(ptent))
6525 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6526
6527 if (!page && !ent.val)
8d32ff84 6528 return ret;
02491447
DN
6529 if (page) {
6530 pc = lookup_page_cgroup(page);
6531 /*
6532 * Do only loose check w/o page_cgroup lock.
6533 * mem_cgroup_move_account() checks the pc is valid or not under
6534 * the lock.
6535 */
6536 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6537 ret = MC_TARGET_PAGE;
6538 if (target)
6539 target->page = page;
6540 }
6541 if (!ret || !target)
6542 put_page(page);
6543 }
90254a65
DN
6544 /* There is a swap entry and a page doesn't exist or isn't charged */
6545 if (ent.val && !ret &&
9fb4b7cc 6546 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6547 ret = MC_TARGET_SWAP;
6548 if (target)
6549 target->ent = ent;
4ffef5fe 6550 }
4ffef5fe
DN
6551 return ret;
6552}
6553
12724850
NH
6554#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6555/*
6556 * We don't consider swapping or file mapped pages because THP does not
6557 * support them for now.
6558 * Caller should make sure that pmd_trans_huge(pmd) is true.
6559 */
6560static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6561 unsigned long addr, pmd_t pmd, union mc_target *target)
6562{
6563 struct page *page = NULL;
6564 struct page_cgroup *pc;
6565 enum mc_target_type ret = MC_TARGET_NONE;
6566
6567 page = pmd_page(pmd);
6568 VM_BUG_ON(!page || !PageHead(page));
6569 if (!move_anon())
6570 return ret;
6571 pc = lookup_page_cgroup(page);
6572 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6573 ret = MC_TARGET_PAGE;
6574 if (target) {
6575 get_page(page);
6576 target->page = page;
6577 }
6578 }
6579 return ret;
6580}
6581#else
6582static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6583 unsigned long addr, pmd_t pmd, union mc_target *target)
6584{
6585 return MC_TARGET_NONE;
6586}
6587#endif
6588
4ffef5fe
DN
6589static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6590 unsigned long addr, unsigned long end,
6591 struct mm_walk *walk)
6592{
6593 struct vm_area_struct *vma = walk->private;
6594 pte_t *pte;
6595 spinlock_t *ptl;
6596
12724850
NH
6597 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6598 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6599 mc.precharge += HPAGE_PMD_NR;
6600 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6601 return 0;
12724850 6602 }
03319327 6603
45f83cef
AA
6604 if (pmd_trans_unstable(pmd))
6605 return 0;
4ffef5fe
DN
6606 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6607 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6608 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6609 mc.precharge++; /* increment precharge temporarily */
6610 pte_unmap_unlock(pte - 1, ptl);
6611 cond_resched();
6612
7dc74be0
DN
6613 return 0;
6614}
6615
4ffef5fe
DN
6616static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6617{
6618 unsigned long precharge;
6619 struct vm_area_struct *vma;
6620
dfe076b0 6621 down_read(&mm->mmap_sem);
4ffef5fe
DN
6622 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6623 struct mm_walk mem_cgroup_count_precharge_walk = {
6624 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6625 .mm = mm,
6626 .private = vma,
6627 };
6628 if (is_vm_hugetlb_page(vma))
6629 continue;
4ffef5fe
DN
6630 walk_page_range(vma->vm_start, vma->vm_end,
6631 &mem_cgroup_count_precharge_walk);
6632 }
dfe076b0 6633 up_read(&mm->mmap_sem);
4ffef5fe
DN
6634
6635 precharge = mc.precharge;
6636 mc.precharge = 0;
6637
6638 return precharge;
6639}
6640
4ffef5fe
DN
6641static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6642{
dfe076b0
DN
6643 unsigned long precharge = mem_cgroup_count_precharge(mm);
6644
6645 VM_BUG_ON(mc.moving_task);
6646 mc.moving_task = current;
6647 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6648}
6649
dfe076b0
DN
6650/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6651static void __mem_cgroup_clear_mc(void)
4ffef5fe 6652{
2bd9bb20
KH
6653 struct mem_cgroup *from = mc.from;
6654 struct mem_cgroup *to = mc.to;
6655
4ffef5fe 6656 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6657 if (mc.precharge) {
6658 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6659 mc.precharge = 0;
6660 }
6661 /*
6662 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6663 * we must uncharge here.
6664 */
6665 if (mc.moved_charge) {
6666 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6667 mc.moved_charge = 0;
4ffef5fe 6668 }
483c30b5
DN
6669 /* we must fixup refcnts and charges */
6670 if (mc.moved_swap) {
483c30b5
DN
6671 /* uncharge swap account from the old cgroup */
6672 if (!mem_cgroup_is_root(mc.from))
6673 res_counter_uncharge(&mc.from->memsw,
6674 PAGE_SIZE * mc.moved_swap);
6675 __mem_cgroup_put(mc.from, mc.moved_swap);
6676
6677 if (!mem_cgroup_is_root(mc.to)) {
6678 /*
6679 * we charged both to->res and to->memsw, so we should
6680 * uncharge to->res.
6681 */
6682 res_counter_uncharge(&mc.to->res,
6683 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
6684 }
6685 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
6686 mc.moved_swap = 0;
6687 }
dfe076b0
DN
6688 memcg_oom_recover(from);
6689 memcg_oom_recover(to);
6690 wake_up_all(&mc.waitq);
6691}
6692
6693static void mem_cgroup_clear_mc(void)
6694{
6695 struct mem_cgroup *from = mc.from;
6696
6697 /*
6698 * we must clear moving_task before waking up waiters at the end of
6699 * task migration.
6700 */
6701 mc.moving_task = NULL;
6702 __mem_cgroup_clear_mc();
2bd9bb20 6703 spin_lock(&mc.lock);
4ffef5fe
DN
6704 mc.from = NULL;
6705 mc.to = NULL;
2bd9bb20 6706 spin_unlock(&mc.lock);
32047e2a 6707 mem_cgroup_end_move(from);
4ffef5fe
DN
6708}
6709
761b3ef5
LZ
6710static int mem_cgroup_can_attach(struct cgroup *cgroup,
6711 struct cgroup_taskset *tset)
7dc74be0 6712{
2f7ee569 6713 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6714 int ret = 0;
c0ff4b85 6715 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
ee5e8472 6716 unsigned long move_charge_at_immigrate;
7dc74be0 6717
ee5e8472
GC
6718 /*
6719 * We are now commited to this value whatever it is. Changes in this
6720 * tunable will only affect upcoming migrations, not the current one.
6721 * So we need to save it, and keep it going.
6722 */
6723 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6724 if (move_charge_at_immigrate) {
7dc74be0
DN
6725 struct mm_struct *mm;
6726 struct mem_cgroup *from = mem_cgroup_from_task(p);
6727
c0ff4b85 6728 VM_BUG_ON(from == memcg);
7dc74be0
DN
6729
6730 mm = get_task_mm(p);
6731 if (!mm)
6732 return 0;
7dc74be0 6733 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6734 if (mm->owner == p) {
6735 VM_BUG_ON(mc.from);
6736 VM_BUG_ON(mc.to);
6737 VM_BUG_ON(mc.precharge);
854ffa8d 6738 VM_BUG_ON(mc.moved_charge);
483c30b5 6739 VM_BUG_ON(mc.moved_swap);
32047e2a 6740 mem_cgroup_start_move(from);
2bd9bb20 6741 spin_lock(&mc.lock);
4ffef5fe 6742 mc.from = from;
c0ff4b85 6743 mc.to = memcg;
ee5e8472 6744 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6745 spin_unlock(&mc.lock);
dfe076b0 6746 /* We set mc.moving_task later */
4ffef5fe
DN
6747
6748 ret = mem_cgroup_precharge_mc(mm);
6749 if (ret)
6750 mem_cgroup_clear_mc();
dfe076b0
DN
6751 }
6752 mmput(mm);
7dc74be0
DN
6753 }
6754 return ret;
6755}
6756
761b3ef5
LZ
6757static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6758 struct cgroup_taskset *tset)
7dc74be0 6759{
4ffef5fe 6760 mem_cgroup_clear_mc();
7dc74be0
DN
6761}
6762
4ffef5fe
DN
6763static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6764 unsigned long addr, unsigned long end,
6765 struct mm_walk *walk)
7dc74be0 6766{
4ffef5fe
DN
6767 int ret = 0;
6768 struct vm_area_struct *vma = walk->private;
6769 pte_t *pte;
6770 spinlock_t *ptl;
12724850
NH
6771 enum mc_target_type target_type;
6772 union mc_target target;
6773 struct page *page;
6774 struct page_cgroup *pc;
4ffef5fe 6775
12724850
NH
6776 /*
6777 * We don't take compound_lock() here but no race with splitting thp
6778 * happens because:
6779 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6780 * under splitting, which means there's no concurrent thp split,
6781 * - if another thread runs into split_huge_page() just after we
6782 * entered this if-block, the thread must wait for page table lock
6783 * to be unlocked in __split_huge_page_splitting(), where the main
6784 * part of thp split is not executed yet.
6785 */
6786 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6787 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6788 spin_unlock(&vma->vm_mm->page_table_lock);
6789 return 0;
6790 }
6791 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6792 if (target_type == MC_TARGET_PAGE) {
6793 page = target.page;
6794 if (!isolate_lru_page(page)) {
6795 pc = lookup_page_cgroup(page);
6796 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6797 pc, mc.from, mc.to)) {
12724850
NH
6798 mc.precharge -= HPAGE_PMD_NR;
6799 mc.moved_charge += HPAGE_PMD_NR;
6800 }
6801 putback_lru_page(page);
6802 }
6803 put_page(page);
6804 }
6805 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6806 return 0;
12724850
NH
6807 }
6808
45f83cef
AA
6809 if (pmd_trans_unstable(pmd))
6810 return 0;
4ffef5fe
DN
6811retry:
6812 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6813 for (; addr != end; addr += PAGE_SIZE) {
6814 pte_t ptent = *(pte++);
02491447 6815 swp_entry_t ent;
4ffef5fe
DN
6816
6817 if (!mc.precharge)
6818 break;
6819
8d32ff84 6820 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6821 case MC_TARGET_PAGE:
6822 page = target.page;
6823 if (isolate_lru_page(page))
6824 goto put;
6825 pc = lookup_page_cgroup(page);
7ec99d62 6826 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6827 mc.from, mc.to)) {
4ffef5fe 6828 mc.precharge--;
854ffa8d
DN
6829 /* we uncharge from mc.from later. */
6830 mc.moved_charge++;
4ffef5fe
DN
6831 }
6832 putback_lru_page(page);
8d32ff84 6833put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6834 put_page(page);
6835 break;
02491447
DN
6836 case MC_TARGET_SWAP:
6837 ent = target.ent;
e91cbb42 6838 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6839 mc.precharge--;
483c30b5
DN
6840 /* we fixup refcnts and charges later. */
6841 mc.moved_swap++;
6842 }
02491447 6843 break;
4ffef5fe
DN
6844 default:
6845 break;
6846 }
6847 }
6848 pte_unmap_unlock(pte - 1, ptl);
6849 cond_resched();
6850
6851 if (addr != end) {
6852 /*
6853 * We have consumed all precharges we got in can_attach().
6854 * We try charge one by one, but don't do any additional
6855 * charges to mc.to if we have failed in charge once in attach()
6856 * phase.
6857 */
854ffa8d 6858 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6859 if (!ret)
6860 goto retry;
6861 }
6862
6863 return ret;
6864}
6865
6866static void mem_cgroup_move_charge(struct mm_struct *mm)
6867{
6868 struct vm_area_struct *vma;
6869
6870 lru_add_drain_all();
dfe076b0
DN
6871retry:
6872 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6873 /*
6874 * Someone who are holding the mmap_sem might be waiting in
6875 * waitq. So we cancel all extra charges, wake up all waiters,
6876 * and retry. Because we cancel precharges, we might not be able
6877 * to move enough charges, but moving charge is a best-effort
6878 * feature anyway, so it wouldn't be a big problem.
6879 */
6880 __mem_cgroup_clear_mc();
6881 cond_resched();
6882 goto retry;
6883 }
4ffef5fe
DN
6884 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6885 int ret;
6886 struct mm_walk mem_cgroup_move_charge_walk = {
6887 .pmd_entry = mem_cgroup_move_charge_pte_range,
6888 .mm = mm,
6889 .private = vma,
6890 };
6891 if (is_vm_hugetlb_page(vma))
6892 continue;
4ffef5fe
DN
6893 ret = walk_page_range(vma->vm_start, vma->vm_end,
6894 &mem_cgroup_move_charge_walk);
6895 if (ret)
6896 /*
6897 * means we have consumed all precharges and failed in
6898 * doing additional charge. Just abandon here.
6899 */
6900 break;
6901 }
dfe076b0 6902 up_read(&mm->mmap_sem);
7dc74be0
DN
6903}
6904
761b3ef5
LZ
6905static void mem_cgroup_move_task(struct cgroup *cont,
6906 struct cgroup_taskset *tset)
67e465a7 6907{
2f7ee569 6908 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6909 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6910
dfe076b0 6911 if (mm) {
a433658c
KM
6912 if (mc.to)
6913 mem_cgroup_move_charge(mm);
dfe076b0
DN
6914 mmput(mm);
6915 }
a433658c
KM
6916 if (mc.to)
6917 mem_cgroup_clear_mc();
67e465a7 6918}
5cfb80a7 6919#else /* !CONFIG_MMU */
761b3ef5
LZ
6920static int mem_cgroup_can_attach(struct cgroup *cgroup,
6921 struct cgroup_taskset *tset)
5cfb80a7
DN
6922{
6923 return 0;
6924}
761b3ef5
LZ
6925static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6926 struct cgroup_taskset *tset)
5cfb80a7
DN
6927{
6928}
761b3ef5
LZ
6929static void mem_cgroup_move_task(struct cgroup *cont,
6930 struct cgroup_taskset *tset)
5cfb80a7
DN
6931{
6932}
6933#endif
67e465a7 6934
f00baae7
TH
6935/*
6936 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6937 * to verify sane_behavior flag on each mount attempt.
6938 */
6939static void mem_cgroup_bind(struct cgroup *root)
6940{
6941 /*
6942 * use_hierarchy is forced with sane_behavior. cgroup core
6943 * guarantees that @root doesn't have any children, so turning it
6944 * on for the root memcg is enough.
6945 */
6946 if (cgroup_sane_behavior(root))
6947 mem_cgroup_from_cont(root)->use_hierarchy = true;
6948}
6949
8cdea7c0
BS
6950struct cgroup_subsys mem_cgroup_subsys = {
6951 .name = "memory",
6952 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6953 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6954 .css_online = mem_cgroup_css_online,
92fb9748
TH
6955 .css_offline = mem_cgroup_css_offline,
6956 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6957 .can_attach = mem_cgroup_can_attach,
6958 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6959 .attach = mem_cgroup_move_task,
f00baae7 6960 .bind = mem_cgroup_bind,
6bc10349 6961 .base_cftypes = mem_cgroup_files,
6d12e2d8 6962 .early_init = 0,
04046e1a 6963 .use_id = 1,
8cdea7c0 6964};
c077719b 6965
c255a458 6966#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6967static int __init enable_swap_account(char *s)
6968{
6969 /* consider enabled if no parameter or 1 is given */
a2c8990a 6970 if (!strcmp(s, "1"))
a42c390c 6971 really_do_swap_account = 1;
a2c8990a 6972 else if (!strcmp(s, "0"))
a42c390c
MH
6973 really_do_swap_account = 0;
6974 return 1;
6975}
a2c8990a 6976__setup("swapaccount=", enable_swap_account);
c077719b 6977
2d11085e
MH
6978static void __init memsw_file_init(void)
6979{
6acc8b02
MH
6980 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6981}
6982
6983static void __init enable_swap_cgroup(void)
6984{
6985 if (!mem_cgroup_disabled() && really_do_swap_account) {
6986 do_swap_account = 1;
6987 memsw_file_init();
6988 }
2d11085e 6989}
6acc8b02 6990
2d11085e 6991#else
6acc8b02 6992static void __init enable_swap_cgroup(void)
2d11085e
MH
6993{
6994}
c077719b 6995#endif
2d11085e
MH
6996
6997/*
1081312f
MH
6998 * subsys_initcall() for memory controller.
6999 *
7000 * Some parts like hotcpu_notifier() have to be initialized from this context
7001 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7002 * everything that doesn't depend on a specific mem_cgroup structure should
7003 * be initialized from here.
2d11085e
MH
7004 */
7005static int __init mem_cgroup_init(void)
7006{
7007 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7008 enable_swap_cgroup();
8787a1df 7009 mem_cgroup_soft_limit_tree_init();
e4777496 7010 memcg_stock_init();
2d11085e
MH
7011 return 0;
7012}
7013subsys_initcall(mem_cgroup_init);