]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
memcg: convert per-cpu stock from bytes to page granularity
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 63int do_swap_account __read_mostly;
a42c390c
MH
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
c077719b
KH
72#else
73#define do_swap_account (0)
74#endif
75
d2265e6f
KH
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
c077719b 85
d52aa412
KH
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
0c3e73e8 98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c
KH
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
32047e2a 102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
103
104 MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
d52aa412
KH
109};
110
6d12e2d8
KH
111/*
112 * per-zone information in memory controller.
113 */
6d12e2d8 114struct mem_cgroup_per_zone {
072c56c1
KH
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
b69408e8
CL
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
120
121 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
4e416953
BS
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
6d12e2d8
KH
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
f64c3f54
BS
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
2e72b634
KS
160struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163};
164
9490ff27 165/* For threshold */
2e72b634
KS
166struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
5407a562 168 int current_threshold;
2e72b634
KS
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173};
2c488db2
KS
174
175struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184};
185
9490ff27
KH
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190};
2e72b634 191
2e72b634 192static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 194
8cdea7c0
BS
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
8cdea7c0
BS
205 */
206struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
8c7c6e34
KH
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
78fb7466
PE
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
78fb7466 219 */
6d12e2d8 220 struct mem_cgroup_lru_info info;
6d61ef40 221 /*
af901ca1 222 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 223 * reclaimed from.
6d61ef40 224 */
04046e1a 225 int last_scanned_child;
18f59ea7
BS
226 /*
227 * Should the accounting and control be hierarchical, per subtree?
228 */
229 bool use_hierarchy;
867578cb 230 atomic_t oom_lock;
8c7c6e34 231 atomic_t refcnt;
14797e23 232
a7885eb8 233 unsigned int swappiness;
3c11ecf4
KH
234 /* OOM-Killer disable */
235 int oom_kill_disable;
a7885eb8 236
22a668d7
KH
237 /* set when res.limit == memsw.limit */
238 bool memsw_is_minimum;
239
2e72b634
KS
240 /* protect arrays of thresholds */
241 struct mutex thresholds_lock;
242
243 /* thresholds for memory usage. RCU-protected */
2c488db2 244 struct mem_cgroup_thresholds thresholds;
907860ed 245
2e72b634 246 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 247 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 248
9490ff27
KH
249 /* For oom notifier event fd */
250 struct list_head oom_notify;
251
7dc74be0
DN
252 /*
253 * Should we move charges of a task when a task is moved into this
254 * mem_cgroup ? And what type of charges should we move ?
255 */
256 unsigned long move_charge_at_immigrate;
d52aa412 257 /*
c62b1a3b 258 * percpu counter.
d52aa412 259 */
c62b1a3b 260 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
261 /*
262 * used when a cpu is offlined or other synchronizations
263 * See mem_cgroup_read_stat().
264 */
265 struct mem_cgroup_stat_cpu nocpu_base;
266 spinlock_t pcp_counter_lock;
8cdea7c0
BS
267};
268
7dc74be0
DN
269/* Stuffs for move charges at task migration. */
270/*
271 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
272 * left-shifted bitmap of these types.
273 */
274enum move_type {
4ffef5fe 275 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 276 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
277 NR_MOVE_TYPE,
278};
279
4ffef5fe
DN
280/* "mc" and its members are protected by cgroup_mutex */
281static struct move_charge_struct {
b1dd693e 282 spinlock_t lock; /* for from, to */
4ffef5fe
DN
283 struct mem_cgroup *from;
284 struct mem_cgroup *to;
285 unsigned long precharge;
854ffa8d 286 unsigned long moved_charge;
483c30b5 287 unsigned long moved_swap;
8033b97c
DN
288 struct task_struct *moving_task; /* a task moving charges */
289 wait_queue_head_t waitq; /* a waitq for other context */
290} mc = {
2bd9bb20 291 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
292 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
293};
4ffef5fe 294
90254a65
DN
295static bool move_anon(void)
296{
297 return test_bit(MOVE_CHARGE_TYPE_ANON,
298 &mc.to->move_charge_at_immigrate);
299}
300
87946a72
DN
301static bool move_file(void)
302{
303 return test_bit(MOVE_CHARGE_TYPE_FILE,
304 &mc.to->move_charge_at_immigrate);
305}
306
4e416953
BS
307/*
308 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
309 * limit reclaim to prevent infinite loops, if they ever occur.
310 */
311#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
312#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
313
217bc319
KH
314enum charge_type {
315 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
316 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 317 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 318 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 319 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 320 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
321 NR_CHARGE_TYPE,
322};
323
8c7c6e34
KH
324/* for encoding cft->private value on file */
325#define _MEM (0)
326#define _MEMSWAP (1)
9490ff27 327#define _OOM_TYPE (2)
8c7c6e34
KH
328#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
329#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
330#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
331/* Used for OOM nofiier */
332#define OOM_CONTROL (0)
8c7c6e34 333
75822b44
BS
334/*
335 * Reclaim flags for mem_cgroup_hierarchical_reclaim
336 */
337#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
338#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
339#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
340#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
341#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
342#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 343
8c7c6e34
KH
344static void mem_cgroup_get(struct mem_cgroup *mem);
345static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 346static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 347static void drain_all_stock_async(void);
8c7c6e34 348
f64c3f54
BS
349static struct mem_cgroup_per_zone *
350mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
351{
352 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
353}
354
d324236b
WF
355struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
356{
357 return &mem->css;
358}
359
f64c3f54 360static struct mem_cgroup_per_zone *
97a6c37b 361page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
f64c3f54 362{
97a6c37b
JW
363 int nid = page_to_nid(page);
364 int zid = page_zonenum(page);
f64c3f54 365
f64c3f54
BS
366 return mem_cgroup_zoneinfo(mem, nid, zid);
367}
368
369static struct mem_cgroup_tree_per_zone *
370soft_limit_tree_node_zone(int nid, int zid)
371{
372 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
373}
374
375static struct mem_cgroup_tree_per_zone *
376soft_limit_tree_from_page(struct page *page)
377{
378 int nid = page_to_nid(page);
379 int zid = page_zonenum(page);
380
381 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
382}
383
384static void
4e416953 385__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 386 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
387 struct mem_cgroup_tree_per_zone *mctz,
388 unsigned long long new_usage_in_excess)
f64c3f54
BS
389{
390 struct rb_node **p = &mctz->rb_root.rb_node;
391 struct rb_node *parent = NULL;
392 struct mem_cgroup_per_zone *mz_node;
393
394 if (mz->on_tree)
395 return;
396
ef8745c1
KH
397 mz->usage_in_excess = new_usage_in_excess;
398 if (!mz->usage_in_excess)
399 return;
f64c3f54
BS
400 while (*p) {
401 parent = *p;
402 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
403 tree_node);
404 if (mz->usage_in_excess < mz_node->usage_in_excess)
405 p = &(*p)->rb_left;
406 /*
407 * We can't avoid mem cgroups that are over their soft
408 * limit by the same amount
409 */
410 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
411 p = &(*p)->rb_right;
412 }
413 rb_link_node(&mz->tree_node, parent, p);
414 rb_insert_color(&mz->tree_node, &mctz->rb_root);
415 mz->on_tree = true;
4e416953
BS
416}
417
418static void
419__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
420 struct mem_cgroup_per_zone *mz,
421 struct mem_cgroup_tree_per_zone *mctz)
422{
423 if (!mz->on_tree)
424 return;
425 rb_erase(&mz->tree_node, &mctz->rb_root);
426 mz->on_tree = false;
427}
428
f64c3f54
BS
429static void
430mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
431 struct mem_cgroup_per_zone *mz,
432 struct mem_cgroup_tree_per_zone *mctz)
433{
434 spin_lock(&mctz->lock);
4e416953 435 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
436 spin_unlock(&mctz->lock);
437}
438
f64c3f54
BS
439
440static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
441{
ef8745c1 442 unsigned long long excess;
f64c3f54
BS
443 struct mem_cgroup_per_zone *mz;
444 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
445 int nid = page_to_nid(page);
446 int zid = page_zonenum(page);
f64c3f54
BS
447 mctz = soft_limit_tree_from_page(page);
448
449 /*
4e649152
KH
450 * Necessary to update all ancestors when hierarchy is used.
451 * because their event counter is not touched.
f64c3f54 452 */
4e649152
KH
453 for (; mem; mem = parent_mem_cgroup(mem)) {
454 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 455 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
456 /*
457 * We have to update the tree if mz is on RB-tree or
458 * mem is over its softlimit.
459 */
ef8745c1 460 if (excess || mz->on_tree) {
4e649152
KH
461 spin_lock(&mctz->lock);
462 /* if on-tree, remove it */
463 if (mz->on_tree)
464 __mem_cgroup_remove_exceeded(mem, mz, mctz);
465 /*
ef8745c1
KH
466 * Insert again. mz->usage_in_excess will be updated.
467 * If excess is 0, no tree ops.
4e649152 468 */
ef8745c1 469 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
470 spin_unlock(&mctz->lock);
471 }
f64c3f54
BS
472 }
473}
474
475static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
476{
477 int node, zone;
478 struct mem_cgroup_per_zone *mz;
479 struct mem_cgroup_tree_per_zone *mctz;
480
481 for_each_node_state(node, N_POSSIBLE) {
482 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
483 mz = mem_cgroup_zoneinfo(mem, node, zone);
484 mctz = soft_limit_tree_node_zone(node, zone);
485 mem_cgroup_remove_exceeded(mem, mz, mctz);
486 }
487 }
488}
489
4e416953
BS
490static struct mem_cgroup_per_zone *
491__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
492{
493 struct rb_node *rightmost = NULL;
26251eaf 494 struct mem_cgroup_per_zone *mz;
4e416953
BS
495
496retry:
26251eaf 497 mz = NULL;
4e416953
BS
498 rightmost = rb_last(&mctz->rb_root);
499 if (!rightmost)
500 goto done; /* Nothing to reclaim from */
501
502 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
503 /*
504 * Remove the node now but someone else can add it back,
505 * we will to add it back at the end of reclaim to its correct
506 * position in the tree.
507 */
508 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
509 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
510 !css_tryget(&mz->mem->css))
511 goto retry;
512done:
513 return mz;
514}
515
516static struct mem_cgroup_per_zone *
517mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
518{
519 struct mem_cgroup_per_zone *mz;
520
521 spin_lock(&mctz->lock);
522 mz = __mem_cgroup_largest_soft_limit_node(mctz);
523 spin_unlock(&mctz->lock);
524 return mz;
525}
526
711d3d2c
KH
527/*
528 * Implementation Note: reading percpu statistics for memcg.
529 *
530 * Both of vmstat[] and percpu_counter has threshold and do periodic
531 * synchronization to implement "quick" read. There are trade-off between
532 * reading cost and precision of value. Then, we may have a chance to implement
533 * a periodic synchronizion of counter in memcg's counter.
534 *
535 * But this _read() function is used for user interface now. The user accounts
536 * memory usage by memory cgroup and he _always_ requires exact value because
537 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
538 * have to visit all online cpus and make sum. So, for now, unnecessary
539 * synchronization is not implemented. (just implemented for cpu hotplug)
540 *
541 * If there are kernel internal actions which can make use of some not-exact
542 * value, and reading all cpu value can be performance bottleneck in some
543 * common workload, threashold and synchonization as vmstat[] should be
544 * implemented.
545 */
c62b1a3b
KH
546static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
547 enum mem_cgroup_stat_index idx)
548{
549 int cpu;
550 s64 val = 0;
551
711d3d2c
KH
552 get_online_cpus();
553 for_each_online_cpu(cpu)
c62b1a3b 554 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
555#ifdef CONFIG_HOTPLUG_CPU
556 spin_lock(&mem->pcp_counter_lock);
557 val += mem->nocpu_base.count[idx];
558 spin_unlock(&mem->pcp_counter_lock);
559#endif
560 put_online_cpus();
c62b1a3b
KH
561 return val;
562}
563
564static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
565{
566 s64 ret;
567
568 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
569 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
570 return ret;
571}
572
0c3e73e8
BS
573static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
574 bool charge)
575{
576 int val = (charge) ? 1 : -1;
c62b1a3b 577 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
578}
579
c05555b5 580static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
e401f176 581 bool file, int nr_pages)
d52aa412 582{
c62b1a3b
KH
583 preempt_disable();
584
e401f176
KH
585 if (file)
586 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
d52aa412 587 else
e401f176 588 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
55e462b0 589
e401f176
KH
590 /* pagein of a big page is an event. So, ignore page size */
591 if (nr_pages > 0)
c62b1a3b 592 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
3751d604 593 else {
c62b1a3b 594 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
3751d604
KH
595 nr_pages = -nr_pages; /* for event */
596 }
e401f176
KH
597
598 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
2e72b634 599
c62b1a3b 600 preempt_enable();
6d12e2d8
KH
601}
602
14067bb3 603static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 604 enum lru_list idx)
6d12e2d8
KH
605{
606 int nid, zid;
607 struct mem_cgroup_per_zone *mz;
608 u64 total = 0;
609
610 for_each_online_node(nid)
611 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
612 mz = mem_cgroup_zoneinfo(mem, nid, zid);
613 total += MEM_CGROUP_ZSTAT(mz, idx);
614 }
615 return total;
d52aa412
KH
616}
617
d2265e6f
KH
618static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
619{
620 s64 val;
621
622 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
623
624 return !(val & ((1 << event_mask_shift) - 1));
625}
626
627/*
628 * Check events in order.
629 *
630 */
631static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
632{
633 /* threshold event is triggered in finer grain than soft limit */
634 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
635 mem_cgroup_threshold(mem);
636 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
637 mem_cgroup_update_tree(mem, page);
638 }
639}
640
d5b69e38 641static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
642{
643 return container_of(cgroup_subsys_state(cont,
644 mem_cgroup_subsys_id), struct mem_cgroup,
645 css);
646}
647
cf475ad2 648struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 649{
31a78f23
BS
650 /*
651 * mm_update_next_owner() may clear mm->owner to NULL
652 * if it races with swapoff, page migration, etc.
653 * So this can be called with p == NULL.
654 */
655 if (unlikely(!p))
656 return NULL;
657
78fb7466
PE
658 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
659 struct mem_cgroup, css);
660}
661
54595fe2
KH
662static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
663{
664 struct mem_cgroup *mem = NULL;
0b7f569e
KH
665
666 if (!mm)
667 return NULL;
54595fe2
KH
668 /*
669 * Because we have no locks, mm->owner's may be being moved to other
670 * cgroup. We use css_tryget() here even if this looks
671 * pessimistic (rather than adding locks here).
672 */
673 rcu_read_lock();
674 do {
675 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
676 if (unlikely(!mem))
677 break;
678 } while (!css_tryget(&mem->css));
679 rcu_read_unlock();
680 return mem;
681}
682
7d74b06f
KH
683/* The caller has to guarantee "mem" exists before calling this */
684static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 685{
711d3d2c
KH
686 struct cgroup_subsys_state *css;
687 int found;
688
689 if (!mem) /* ROOT cgroup has the smallest ID */
690 return root_mem_cgroup; /*css_put/get against root is ignored*/
691 if (!mem->use_hierarchy) {
692 if (css_tryget(&mem->css))
693 return mem;
694 return NULL;
695 }
696 rcu_read_lock();
697 /*
698 * searching a memory cgroup which has the smallest ID under given
699 * ROOT cgroup. (ID >= 1)
700 */
701 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
702 if (css && css_tryget(css))
703 mem = container_of(css, struct mem_cgroup, css);
704 else
705 mem = NULL;
706 rcu_read_unlock();
707 return mem;
7d74b06f
KH
708}
709
710static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
711 struct mem_cgroup *root,
712 bool cond)
713{
714 int nextid = css_id(&iter->css) + 1;
715 int found;
716 int hierarchy_used;
14067bb3 717 struct cgroup_subsys_state *css;
14067bb3 718
7d74b06f 719 hierarchy_used = iter->use_hierarchy;
14067bb3 720
7d74b06f 721 css_put(&iter->css);
711d3d2c
KH
722 /* If no ROOT, walk all, ignore hierarchy */
723 if (!cond || (root && !hierarchy_used))
7d74b06f 724 return NULL;
14067bb3 725
711d3d2c
KH
726 if (!root)
727 root = root_mem_cgroup;
728
7d74b06f
KH
729 do {
730 iter = NULL;
14067bb3 731 rcu_read_lock();
7d74b06f
KH
732
733 css = css_get_next(&mem_cgroup_subsys, nextid,
734 &root->css, &found);
14067bb3 735 if (css && css_tryget(css))
7d74b06f 736 iter = container_of(css, struct mem_cgroup, css);
14067bb3 737 rcu_read_unlock();
7d74b06f 738 /* If css is NULL, no more cgroups will be found */
14067bb3 739 nextid = found + 1;
7d74b06f 740 } while (css && !iter);
14067bb3 741
7d74b06f 742 return iter;
14067bb3 743}
7d74b06f
KH
744/*
745 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
746 * be careful that "break" loop is not allowed. We have reference count.
747 * Instead of that modify "cond" to be false and "continue" to exit the loop.
748 */
749#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
750 for (iter = mem_cgroup_start_loop(root);\
751 iter != NULL;\
752 iter = mem_cgroup_get_next(iter, root, cond))
753
754#define for_each_mem_cgroup_tree(iter, root) \
755 for_each_mem_cgroup_tree_cond(iter, root, true)
756
711d3d2c
KH
757#define for_each_mem_cgroup_all(iter) \
758 for_each_mem_cgroup_tree_cond(iter, NULL, true)
759
14067bb3 760
4b3bde4c
BS
761static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
762{
763 return (mem == root_mem_cgroup);
764}
765
08e552c6
KH
766/*
767 * Following LRU functions are allowed to be used without PCG_LOCK.
768 * Operations are called by routine of global LRU independently from memcg.
769 * What we have to take care of here is validness of pc->mem_cgroup.
770 *
771 * Changes to pc->mem_cgroup happens when
772 * 1. charge
773 * 2. moving account
774 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
775 * It is added to LRU before charge.
776 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
777 * When moving account, the page is not on LRU. It's isolated.
778 */
4f98a2fe 779
08e552c6
KH
780void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
781{
782 struct page_cgroup *pc;
08e552c6 783 struct mem_cgroup_per_zone *mz;
6d12e2d8 784
f8d66542 785 if (mem_cgroup_disabled())
08e552c6
KH
786 return;
787 pc = lookup_page_cgroup(page);
788 /* can happen while we handle swapcache. */
4b3bde4c 789 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 790 return;
4b3bde4c 791 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
792 /*
793 * We don't check PCG_USED bit. It's cleared when the "page" is finally
794 * removed from global LRU.
795 */
97a6c37b 796 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
797 /* huge page split is done under lru_lock. so, we have no races. */
798 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
799 if (mem_cgroup_is_root(pc->mem_cgroup))
800 return;
801 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 802 list_del_init(&pc->lru);
6d12e2d8
KH
803}
804
08e552c6 805void mem_cgroup_del_lru(struct page *page)
6d12e2d8 806{
08e552c6
KH
807 mem_cgroup_del_lru_list(page, page_lru(page));
808}
b69408e8 809
3f58a829
MK
810/*
811 * Writeback is about to end against a page which has been marked for immediate
812 * reclaim. If it still appears to be reclaimable, move it to the tail of the
813 * inactive list.
814 */
815void mem_cgroup_rotate_reclaimable_page(struct page *page)
816{
817 struct mem_cgroup_per_zone *mz;
818 struct page_cgroup *pc;
819 enum lru_list lru = page_lru(page);
820
821 if (mem_cgroup_disabled())
822 return;
823
824 pc = lookup_page_cgroup(page);
825 /* unused or root page is not rotated. */
826 if (!PageCgroupUsed(pc))
827 return;
828 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
829 smp_rmb();
830 if (mem_cgroup_is_root(pc->mem_cgroup))
831 return;
97a6c37b 832 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3f58a829
MK
833 list_move_tail(&pc->lru, &mz->lists[lru]);
834}
835
08e552c6
KH
836void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
837{
838 struct mem_cgroup_per_zone *mz;
839 struct page_cgroup *pc;
b69408e8 840
f8d66542 841 if (mem_cgroup_disabled())
08e552c6 842 return;
6d12e2d8 843
08e552c6 844 pc = lookup_page_cgroup(page);
4b3bde4c 845 /* unused or root page is not rotated. */
713735b4
JW
846 if (!PageCgroupUsed(pc))
847 return;
848 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
849 smp_rmb();
850 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6 851 return;
97a6c37b 852 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
08e552c6 853 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
854}
855
08e552c6 856void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 857{
08e552c6
KH
858 struct page_cgroup *pc;
859 struct mem_cgroup_per_zone *mz;
6d12e2d8 860
f8d66542 861 if (mem_cgroup_disabled())
08e552c6
KH
862 return;
863 pc = lookup_page_cgroup(page);
4b3bde4c 864 VM_BUG_ON(PageCgroupAcctLRU(pc));
08e552c6 865 if (!PageCgroupUsed(pc))
894bc310 866 return;
713735b4
JW
867 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
868 smp_rmb();
97a6c37b 869 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
870 /* huge page split is done under lru_lock. so, we have no races. */
871 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
872 SetPageCgroupAcctLRU(pc);
873 if (mem_cgroup_is_root(pc->mem_cgroup))
874 return;
08e552c6
KH
875 list_add(&pc->lru, &mz->lists[lru]);
876}
544122e5 877
08e552c6 878/*
544122e5
KH
879 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
880 * lru because the page may.be reused after it's fully uncharged (because of
881 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
882 * it again. This function is only used to charge SwapCache. It's done under
883 * lock_page and expected that zone->lru_lock is never held.
08e552c6 884 */
544122e5 885static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 886{
544122e5
KH
887 unsigned long flags;
888 struct zone *zone = page_zone(page);
889 struct page_cgroup *pc = lookup_page_cgroup(page);
890
891 spin_lock_irqsave(&zone->lru_lock, flags);
892 /*
893 * Forget old LRU when this page_cgroup is *not* used. This Used bit
894 * is guarded by lock_page() because the page is SwapCache.
895 */
896 if (!PageCgroupUsed(pc))
897 mem_cgroup_del_lru_list(page, page_lru(page));
898 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
899}
900
544122e5
KH
901static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
902{
903 unsigned long flags;
904 struct zone *zone = page_zone(page);
905 struct page_cgroup *pc = lookup_page_cgroup(page);
906
907 spin_lock_irqsave(&zone->lru_lock, flags);
908 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 909 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
910 mem_cgroup_add_lru_list(page, page_lru(page));
911 spin_unlock_irqrestore(&zone->lru_lock, flags);
912}
913
914
08e552c6
KH
915void mem_cgroup_move_lists(struct page *page,
916 enum lru_list from, enum lru_list to)
917{
f8d66542 918 if (mem_cgroup_disabled())
08e552c6
KH
919 return;
920 mem_cgroup_del_lru_list(page, from);
921 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
922}
923
4c4a2214
DR
924int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
925{
926 int ret;
0b7f569e 927 struct mem_cgroup *curr = NULL;
158e0a2d 928 struct task_struct *p;
4c4a2214 929
158e0a2d
KH
930 p = find_lock_task_mm(task);
931 if (!p)
932 return 0;
933 curr = try_get_mem_cgroup_from_mm(p->mm);
934 task_unlock(p);
0b7f569e
KH
935 if (!curr)
936 return 0;
d31f56db
DN
937 /*
938 * We should check use_hierarchy of "mem" not "curr". Because checking
939 * use_hierarchy of "curr" here make this function true if hierarchy is
940 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
941 * hierarchy(even if use_hierarchy is disabled in "mem").
942 */
943 if (mem->use_hierarchy)
0b7f569e
KH
944 ret = css_is_ancestor(&curr->css, &mem->css);
945 else
946 ret = (curr == mem);
947 css_put(&curr->css);
4c4a2214
DR
948 return ret;
949}
950
c772be93 951static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
952{
953 unsigned long active;
954 unsigned long inactive;
c772be93
KM
955 unsigned long gb;
956 unsigned long inactive_ratio;
14797e23 957
14067bb3
KH
958 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
959 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 960
c772be93
KM
961 gb = (inactive + active) >> (30 - PAGE_SHIFT);
962 if (gb)
963 inactive_ratio = int_sqrt(10 * gb);
964 else
965 inactive_ratio = 1;
966
967 if (present_pages) {
968 present_pages[0] = inactive;
969 present_pages[1] = active;
970 }
971
972 return inactive_ratio;
973}
974
975int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
976{
977 unsigned long active;
978 unsigned long inactive;
979 unsigned long present_pages[2];
980 unsigned long inactive_ratio;
981
982 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
983
984 inactive = present_pages[0];
985 active = present_pages[1];
986
987 if (inactive * inactive_ratio < active)
14797e23
KM
988 return 1;
989
990 return 0;
991}
992
56e49d21
RR
993int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
994{
995 unsigned long active;
996 unsigned long inactive;
997
998 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
999 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1000
1001 return (active > inactive);
1002}
1003
a3d8e054
KM
1004unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1005 struct zone *zone,
1006 enum lru_list lru)
1007{
13d7e3a2 1008 int nid = zone_to_nid(zone);
a3d8e054
KM
1009 int zid = zone_idx(zone);
1010 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1011
1012 return MEM_CGROUP_ZSTAT(mz, lru);
1013}
1014
3e2f41f1
KM
1015struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1016 struct zone *zone)
1017{
13d7e3a2 1018 int nid = zone_to_nid(zone);
3e2f41f1
KM
1019 int zid = zone_idx(zone);
1020 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1021
1022 return &mz->reclaim_stat;
1023}
1024
1025struct zone_reclaim_stat *
1026mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1027{
1028 struct page_cgroup *pc;
1029 struct mem_cgroup_per_zone *mz;
1030
1031 if (mem_cgroup_disabled())
1032 return NULL;
1033
1034 pc = lookup_page_cgroup(page);
bd112db8
DN
1035 if (!PageCgroupUsed(pc))
1036 return NULL;
713735b4
JW
1037 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1038 smp_rmb();
97a6c37b 1039 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1040 return &mz->reclaim_stat;
1041}
1042
66e1707b
BS
1043unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1044 struct list_head *dst,
1045 unsigned long *scanned, int order,
1046 int mode, struct zone *z,
1047 struct mem_cgroup *mem_cont,
4f98a2fe 1048 int active, int file)
66e1707b
BS
1049{
1050 unsigned long nr_taken = 0;
1051 struct page *page;
1052 unsigned long scan;
1053 LIST_HEAD(pc_list);
1054 struct list_head *src;
ff7283fa 1055 struct page_cgroup *pc, *tmp;
13d7e3a2 1056 int nid = zone_to_nid(z);
1ecaab2b
KH
1057 int zid = zone_idx(z);
1058 struct mem_cgroup_per_zone *mz;
b7c46d15 1059 int lru = LRU_FILE * file + active;
2ffebca6 1060 int ret;
66e1707b 1061
cf475ad2 1062 BUG_ON(!mem_cont);
1ecaab2b 1063 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1064 src = &mz->lists[lru];
66e1707b 1065
ff7283fa
KH
1066 scan = 0;
1067 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1068 if (scan >= nr_to_scan)
ff7283fa 1069 break;
08e552c6 1070
52d4b9ac
KH
1071 if (unlikely(!PageCgroupUsed(pc)))
1072 continue;
5564e88b 1073
6b3ae58e 1074 page = lookup_cgroup_page(pc);
5564e88b 1075
436c6541 1076 if (unlikely(!PageLRU(page)))
ff7283fa 1077 continue;
ff7283fa 1078
436c6541 1079 scan++;
2ffebca6
KH
1080 ret = __isolate_lru_page(page, mode, file);
1081 switch (ret) {
1082 case 0:
66e1707b 1083 list_move(&page->lru, dst);
2ffebca6 1084 mem_cgroup_del_lru(page);
2c888cfb 1085 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1086 break;
1087 case -EBUSY:
1088 /* we don't affect global LRU but rotate in our LRU */
1089 mem_cgroup_rotate_lru_list(page, page_lru(page));
1090 break;
1091 default:
1092 break;
66e1707b
BS
1093 }
1094 }
1095
66e1707b 1096 *scanned = scan;
cc8e970c
KM
1097
1098 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1099 0, 0, 0, mode);
1100
66e1707b
BS
1101 return nr_taken;
1102}
1103
6d61ef40
BS
1104#define mem_cgroup_from_res_counter(counter, member) \
1105 container_of(counter, struct mem_cgroup, member)
1106
19942822 1107/**
9d11ea9f
JW
1108 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1109 * @mem: the memory cgroup
19942822 1110 *
9d11ea9f
JW
1111 * Returns the maximum amount of memory @mem can be charged with, in
1112 * bytes.
19942822 1113 */
9d11ea9f 1114static unsigned long long mem_cgroup_margin(struct mem_cgroup *mem)
19942822 1115{
9d11ea9f
JW
1116 unsigned long long margin;
1117
1118 margin = res_counter_margin(&mem->res);
1119 if (do_swap_account)
1120 margin = min(margin, res_counter_margin(&mem->memsw));
1121 return margin;
19942822
JW
1122}
1123
a7885eb8
KM
1124static unsigned int get_swappiness(struct mem_cgroup *memcg)
1125{
1126 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1127
1128 /* root ? */
1129 if (cgrp->parent == NULL)
1130 return vm_swappiness;
1131
bf1ff263 1132 return memcg->swappiness;
a7885eb8
KM
1133}
1134
32047e2a
KH
1135static void mem_cgroup_start_move(struct mem_cgroup *mem)
1136{
1137 int cpu;
1489ebad
KH
1138
1139 get_online_cpus();
1140 spin_lock(&mem->pcp_counter_lock);
1141 for_each_online_cpu(cpu)
32047e2a 1142 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1143 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1144 spin_unlock(&mem->pcp_counter_lock);
1145 put_online_cpus();
32047e2a
KH
1146
1147 synchronize_rcu();
1148}
1149
1150static void mem_cgroup_end_move(struct mem_cgroup *mem)
1151{
1152 int cpu;
1153
1154 if (!mem)
1155 return;
1489ebad
KH
1156 get_online_cpus();
1157 spin_lock(&mem->pcp_counter_lock);
1158 for_each_online_cpu(cpu)
32047e2a 1159 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1160 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1161 spin_unlock(&mem->pcp_counter_lock);
1162 put_online_cpus();
32047e2a
KH
1163}
1164/*
1165 * 2 routines for checking "mem" is under move_account() or not.
1166 *
1167 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1168 * for avoiding race in accounting. If true,
1169 * pc->mem_cgroup may be overwritten.
1170 *
1171 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1172 * under hierarchy of moving cgroups. This is for
1173 * waiting at hith-memory prressure caused by "move".
1174 */
1175
1176static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1177{
1178 VM_BUG_ON(!rcu_read_lock_held());
1179 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1180}
4b534334
KH
1181
1182static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1183{
2bd9bb20
KH
1184 struct mem_cgroup *from;
1185 struct mem_cgroup *to;
4b534334 1186 bool ret = false;
2bd9bb20
KH
1187 /*
1188 * Unlike task_move routines, we access mc.to, mc.from not under
1189 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1190 */
1191 spin_lock(&mc.lock);
1192 from = mc.from;
1193 to = mc.to;
1194 if (!from)
1195 goto unlock;
1196 if (from == mem || to == mem
1197 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1198 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1199 ret = true;
1200unlock:
1201 spin_unlock(&mc.lock);
4b534334
KH
1202 return ret;
1203}
1204
1205static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1206{
1207 if (mc.moving_task && current != mc.moving_task) {
1208 if (mem_cgroup_under_move(mem)) {
1209 DEFINE_WAIT(wait);
1210 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1211 /* moving charge context might have finished. */
1212 if (mc.moving_task)
1213 schedule();
1214 finish_wait(&mc.waitq, &wait);
1215 return true;
1216 }
1217 }
1218 return false;
1219}
1220
e222432b 1221/**
6a6135b6 1222 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1223 * @memcg: The memory cgroup that went over limit
1224 * @p: Task that is going to be killed
1225 *
1226 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1227 * enabled
1228 */
1229void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1230{
1231 struct cgroup *task_cgrp;
1232 struct cgroup *mem_cgrp;
1233 /*
1234 * Need a buffer in BSS, can't rely on allocations. The code relies
1235 * on the assumption that OOM is serialized for memory controller.
1236 * If this assumption is broken, revisit this code.
1237 */
1238 static char memcg_name[PATH_MAX];
1239 int ret;
1240
d31f56db 1241 if (!memcg || !p)
e222432b
BS
1242 return;
1243
1244
1245 rcu_read_lock();
1246
1247 mem_cgrp = memcg->css.cgroup;
1248 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1249
1250 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1251 if (ret < 0) {
1252 /*
1253 * Unfortunately, we are unable to convert to a useful name
1254 * But we'll still print out the usage information
1255 */
1256 rcu_read_unlock();
1257 goto done;
1258 }
1259 rcu_read_unlock();
1260
1261 printk(KERN_INFO "Task in %s killed", memcg_name);
1262
1263 rcu_read_lock();
1264 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1265 if (ret < 0) {
1266 rcu_read_unlock();
1267 goto done;
1268 }
1269 rcu_read_unlock();
1270
1271 /*
1272 * Continues from above, so we don't need an KERN_ level
1273 */
1274 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1275done:
1276
1277 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1278 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1279 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1280 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1281 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1282 "failcnt %llu\n",
1283 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1284 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1285 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1286}
1287
81d39c20
KH
1288/*
1289 * This function returns the number of memcg under hierarchy tree. Returns
1290 * 1(self count) if no children.
1291 */
1292static int mem_cgroup_count_children(struct mem_cgroup *mem)
1293{
1294 int num = 0;
7d74b06f
KH
1295 struct mem_cgroup *iter;
1296
1297 for_each_mem_cgroup_tree(iter, mem)
1298 num++;
81d39c20
KH
1299 return num;
1300}
1301
a63d83f4
DR
1302/*
1303 * Return the memory (and swap, if configured) limit for a memcg.
1304 */
1305u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1306{
1307 u64 limit;
1308 u64 memsw;
1309
f3e8eb70
JW
1310 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1311 limit += total_swap_pages << PAGE_SHIFT;
1312
a63d83f4
DR
1313 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1314 /*
1315 * If memsw is finite and limits the amount of swap space available
1316 * to this memcg, return that limit.
1317 */
1318 return min(limit, memsw);
1319}
1320
6d61ef40 1321/*
04046e1a
KH
1322 * Visit the first child (need not be the first child as per the ordering
1323 * of the cgroup list, since we track last_scanned_child) of @mem and use
1324 * that to reclaim free pages from.
1325 */
1326static struct mem_cgroup *
1327mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1328{
1329 struct mem_cgroup *ret = NULL;
1330 struct cgroup_subsys_state *css;
1331 int nextid, found;
1332
1333 if (!root_mem->use_hierarchy) {
1334 css_get(&root_mem->css);
1335 ret = root_mem;
1336 }
1337
1338 while (!ret) {
1339 rcu_read_lock();
1340 nextid = root_mem->last_scanned_child + 1;
1341 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1342 &found);
1343 if (css && css_tryget(css))
1344 ret = container_of(css, struct mem_cgroup, css);
1345
1346 rcu_read_unlock();
1347 /* Updates scanning parameter */
04046e1a
KH
1348 if (!css) {
1349 /* this means start scan from ID:1 */
1350 root_mem->last_scanned_child = 0;
1351 } else
1352 root_mem->last_scanned_child = found;
04046e1a
KH
1353 }
1354
1355 return ret;
1356}
1357
1358/*
1359 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1360 * we reclaimed from, so that we don't end up penalizing one child extensively
1361 * based on its position in the children list.
6d61ef40
BS
1362 *
1363 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1364 *
1365 * We give up and return to the caller when we visit root_mem twice.
1366 * (other groups can be removed while we're walking....)
81d39c20
KH
1367 *
1368 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1369 */
1370static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1371 struct zone *zone,
75822b44
BS
1372 gfp_t gfp_mask,
1373 unsigned long reclaim_options)
6d61ef40 1374{
04046e1a
KH
1375 struct mem_cgroup *victim;
1376 int ret, total = 0;
1377 int loop = 0;
75822b44
BS
1378 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1379 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953 1380 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
9d11ea9f
JW
1381 unsigned long excess;
1382
1383 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
04046e1a 1384
22a668d7
KH
1385 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1386 if (root_mem->memsw_is_minimum)
1387 noswap = true;
1388
4e416953 1389 while (1) {
04046e1a 1390 victim = mem_cgroup_select_victim(root_mem);
4e416953 1391 if (victim == root_mem) {
04046e1a 1392 loop++;
cdec2e42
KH
1393 if (loop >= 1)
1394 drain_all_stock_async();
4e416953
BS
1395 if (loop >= 2) {
1396 /*
1397 * If we have not been able to reclaim
1398 * anything, it might because there are
1399 * no reclaimable pages under this hierarchy
1400 */
1401 if (!check_soft || !total) {
1402 css_put(&victim->css);
1403 break;
1404 }
1405 /*
1406 * We want to do more targetted reclaim.
1407 * excess >> 2 is not to excessive so as to
1408 * reclaim too much, nor too less that we keep
1409 * coming back to reclaim from this cgroup
1410 */
1411 if (total >= (excess >> 2) ||
1412 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1413 css_put(&victim->css);
1414 break;
1415 }
1416 }
1417 }
c62b1a3b 1418 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1419 /* this cgroup's local usage == 0 */
1420 css_put(&victim->css);
6d61ef40
BS
1421 continue;
1422 }
04046e1a 1423 /* we use swappiness of local cgroup */
4e416953
BS
1424 if (check_soft)
1425 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
14fec796 1426 noswap, get_swappiness(victim), zone);
4e416953
BS
1427 else
1428 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1429 noswap, get_swappiness(victim));
04046e1a 1430 css_put(&victim->css);
81d39c20
KH
1431 /*
1432 * At shrinking usage, we can't check we should stop here or
1433 * reclaim more. It's depends on callers. last_scanned_child
1434 * will work enough for keeping fairness under tree.
1435 */
1436 if (shrink)
1437 return ret;
04046e1a 1438 total += ret;
4e416953 1439 if (check_soft) {
9d11ea9f 1440 if (!res_counter_soft_limit_excess(&root_mem->res))
4e416953 1441 return total;
9d11ea9f 1442 } else if (mem_cgroup_margin(root_mem))
04046e1a 1443 return 1 + total;
6d61ef40 1444 }
04046e1a 1445 return total;
6d61ef40
BS
1446}
1447
867578cb
KH
1448/*
1449 * Check OOM-Killer is already running under our hierarchy.
1450 * If someone is running, return false.
1451 */
1452static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1453{
7d74b06f
KH
1454 int x, lock_count = 0;
1455 struct mem_cgroup *iter;
a636b327 1456
7d74b06f
KH
1457 for_each_mem_cgroup_tree(iter, mem) {
1458 x = atomic_inc_return(&iter->oom_lock);
1459 lock_count = max(x, lock_count);
1460 }
867578cb
KH
1461
1462 if (lock_count == 1)
1463 return true;
1464 return false;
a636b327 1465}
0b7f569e 1466
7d74b06f 1467static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1468{
7d74b06f
KH
1469 struct mem_cgroup *iter;
1470
867578cb
KH
1471 /*
1472 * When a new child is created while the hierarchy is under oom,
1473 * mem_cgroup_oom_lock() may not be called. We have to use
1474 * atomic_add_unless() here.
1475 */
7d74b06f
KH
1476 for_each_mem_cgroup_tree(iter, mem)
1477 atomic_add_unless(&iter->oom_lock, -1, 0);
0b7f569e
KH
1478 return 0;
1479}
1480
867578cb
KH
1481
1482static DEFINE_MUTEX(memcg_oom_mutex);
1483static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1484
dc98df5a
KH
1485struct oom_wait_info {
1486 struct mem_cgroup *mem;
1487 wait_queue_t wait;
1488};
1489
1490static int memcg_oom_wake_function(wait_queue_t *wait,
1491 unsigned mode, int sync, void *arg)
1492{
1493 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1494 struct oom_wait_info *oom_wait_info;
1495
1496 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1497
1498 if (oom_wait_info->mem == wake_mem)
1499 goto wakeup;
1500 /* if no hierarchy, no match */
1501 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1502 return 0;
1503 /*
1504 * Both of oom_wait_info->mem and wake_mem are stable under us.
1505 * Then we can use css_is_ancestor without taking care of RCU.
1506 */
1507 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1508 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1509 return 0;
1510
1511wakeup:
1512 return autoremove_wake_function(wait, mode, sync, arg);
1513}
1514
1515static void memcg_wakeup_oom(struct mem_cgroup *mem)
1516{
1517 /* for filtering, pass "mem" as argument. */
1518 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1519}
1520
3c11ecf4
KH
1521static void memcg_oom_recover(struct mem_cgroup *mem)
1522{
2bd9bb20 1523 if (mem && atomic_read(&mem->oom_lock))
3c11ecf4
KH
1524 memcg_wakeup_oom(mem);
1525}
1526
867578cb
KH
1527/*
1528 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1529 */
1530bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1531{
dc98df5a 1532 struct oom_wait_info owait;
3c11ecf4 1533 bool locked, need_to_kill;
867578cb 1534
dc98df5a
KH
1535 owait.mem = mem;
1536 owait.wait.flags = 0;
1537 owait.wait.func = memcg_oom_wake_function;
1538 owait.wait.private = current;
1539 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1540 need_to_kill = true;
867578cb
KH
1541 /* At first, try to OOM lock hierarchy under mem.*/
1542 mutex_lock(&memcg_oom_mutex);
1543 locked = mem_cgroup_oom_lock(mem);
1544 /*
1545 * Even if signal_pending(), we can't quit charge() loop without
1546 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1547 * under OOM is always welcomed, use TASK_KILLABLE here.
1548 */
3c11ecf4
KH
1549 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1550 if (!locked || mem->oom_kill_disable)
1551 need_to_kill = false;
1552 if (locked)
9490ff27 1553 mem_cgroup_oom_notify(mem);
867578cb
KH
1554 mutex_unlock(&memcg_oom_mutex);
1555
3c11ecf4
KH
1556 if (need_to_kill) {
1557 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1558 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1559 } else {
867578cb 1560 schedule();
dc98df5a 1561 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1562 }
1563 mutex_lock(&memcg_oom_mutex);
1564 mem_cgroup_oom_unlock(mem);
dc98df5a 1565 memcg_wakeup_oom(mem);
867578cb
KH
1566 mutex_unlock(&memcg_oom_mutex);
1567
1568 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1569 return false;
1570 /* Give chance to dying process */
1571 schedule_timeout(1);
1572 return true;
0b7f569e
KH
1573}
1574
d69b042f
BS
1575/*
1576 * Currently used to update mapped file statistics, but the routine can be
1577 * generalized to update other statistics as well.
32047e2a
KH
1578 *
1579 * Notes: Race condition
1580 *
1581 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1582 * it tends to be costly. But considering some conditions, we doesn't need
1583 * to do so _always_.
1584 *
1585 * Considering "charge", lock_page_cgroup() is not required because all
1586 * file-stat operations happen after a page is attached to radix-tree. There
1587 * are no race with "charge".
1588 *
1589 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1590 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1591 * if there are race with "uncharge". Statistics itself is properly handled
1592 * by flags.
1593 *
1594 * Considering "move", this is an only case we see a race. To make the race
1595 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1596 * possibility of race condition. If there is, we take a lock.
d69b042f 1597 */
26174efd 1598
2a7106f2
GT
1599void mem_cgroup_update_page_stat(struct page *page,
1600 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
1601{
1602 struct mem_cgroup *mem;
32047e2a
KH
1603 struct page_cgroup *pc = lookup_page_cgroup(page);
1604 bool need_unlock = false;
dbd4ea78 1605 unsigned long uninitialized_var(flags);
d69b042f 1606
d69b042f
BS
1607 if (unlikely(!pc))
1608 return;
1609
32047e2a 1610 rcu_read_lock();
d69b042f 1611 mem = pc->mem_cgroup;
32047e2a
KH
1612 if (unlikely(!mem || !PageCgroupUsed(pc)))
1613 goto out;
1614 /* pc->mem_cgroup is unstable ? */
ca3e0214 1615 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
32047e2a 1616 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1617 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
1618 need_unlock = true;
1619 mem = pc->mem_cgroup;
1620 if (!mem || !PageCgroupUsed(pc))
1621 goto out;
1622 }
26174efd 1623
26174efd 1624 switch (idx) {
2a7106f2 1625 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1626 if (val > 0)
1627 SetPageCgroupFileMapped(pc);
1628 else if (!page_mapped(page))
0c270f8f 1629 ClearPageCgroupFileMapped(pc);
2a7106f2 1630 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1631 break;
1632 default:
1633 BUG();
8725d541 1634 }
d69b042f 1635
2a7106f2
GT
1636 this_cpu_add(mem->stat->count[idx], val);
1637
32047e2a
KH
1638out:
1639 if (unlikely(need_unlock))
dbd4ea78 1640 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1641 rcu_read_unlock();
1642 return;
d69b042f 1643}
2a7106f2 1644EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1645
cdec2e42
KH
1646/*
1647 * size of first charge trial. "32" comes from vmscan.c's magic value.
1648 * TODO: maybe necessary to use big numbers in big irons.
1649 */
1650#define CHARGE_SIZE (32 * PAGE_SIZE)
1651struct memcg_stock_pcp {
1652 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1653 unsigned int nr_pages;
cdec2e42
KH
1654 struct work_struct work;
1655};
1656static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1657static atomic_t memcg_drain_count;
1658
1659/*
11c9ea4e 1660 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1661 * from local stock and true is returned. If the stock is 0 or charges from a
1662 * cgroup which is not current target, returns false. This stock will be
1663 * refilled.
1664 */
1665static bool consume_stock(struct mem_cgroup *mem)
1666{
1667 struct memcg_stock_pcp *stock;
1668 bool ret = true;
1669
1670 stock = &get_cpu_var(memcg_stock);
11c9ea4e
JW
1671 if (mem == stock->cached && stock->nr_pages)
1672 stock->nr_pages--;
cdec2e42
KH
1673 else /* need to call res_counter_charge */
1674 ret = false;
1675 put_cpu_var(memcg_stock);
1676 return ret;
1677}
1678
1679/*
1680 * Returns stocks cached in percpu to res_counter and reset cached information.
1681 */
1682static void drain_stock(struct memcg_stock_pcp *stock)
1683{
1684 struct mem_cgroup *old = stock->cached;
1685
11c9ea4e
JW
1686 if (stock->nr_pages) {
1687 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1688
1689 res_counter_uncharge(&old->res, bytes);
cdec2e42 1690 if (do_swap_account)
11c9ea4e
JW
1691 res_counter_uncharge(&old->memsw, bytes);
1692 stock->nr_pages = 0;
cdec2e42
KH
1693 }
1694 stock->cached = NULL;
cdec2e42
KH
1695}
1696
1697/*
1698 * This must be called under preempt disabled or must be called by
1699 * a thread which is pinned to local cpu.
1700 */
1701static void drain_local_stock(struct work_struct *dummy)
1702{
1703 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1704 drain_stock(stock);
1705}
1706
1707/*
1708 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1709 * This will be consumed by consume_stock() function, later.
cdec2e42 1710 */
11c9ea4e 1711static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
cdec2e42
KH
1712{
1713 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1714
1715 if (stock->cached != mem) { /* reset if necessary */
1716 drain_stock(stock);
1717 stock->cached = mem;
1718 }
11c9ea4e 1719 stock->nr_pages += nr_pages;
cdec2e42
KH
1720 put_cpu_var(memcg_stock);
1721}
1722
1723/*
1724 * Tries to drain stocked charges in other cpus. This function is asynchronous
1725 * and just put a work per cpu for draining localy on each cpu. Caller can
1726 * expects some charges will be back to res_counter later but cannot wait for
1727 * it.
1728 */
1729static void drain_all_stock_async(void)
1730{
1731 int cpu;
1732 /* This function is for scheduling "drain" in asynchronous way.
1733 * The result of "drain" is not directly handled by callers. Then,
1734 * if someone is calling drain, we don't have to call drain more.
1735 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1736 * there is a race. We just do loose check here.
1737 */
1738 if (atomic_read(&memcg_drain_count))
1739 return;
1740 /* Notify other cpus that system-wide "drain" is running */
1741 atomic_inc(&memcg_drain_count);
1742 get_online_cpus();
1743 for_each_online_cpu(cpu) {
1744 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1745 schedule_work_on(cpu, &stock->work);
1746 }
1747 put_online_cpus();
1748 atomic_dec(&memcg_drain_count);
1749 /* We don't wait for flush_work */
1750}
1751
1752/* This is a synchronous drain interface. */
1753static void drain_all_stock_sync(void)
1754{
1755 /* called when force_empty is called */
1756 atomic_inc(&memcg_drain_count);
1757 schedule_on_each_cpu(drain_local_stock);
1758 atomic_dec(&memcg_drain_count);
1759}
1760
711d3d2c
KH
1761/*
1762 * This function drains percpu counter value from DEAD cpu and
1763 * move it to local cpu. Note that this function can be preempted.
1764 */
1765static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1766{
1767 int i;
1768
1769 spin_lock(&mem->pcp_counter_lock);
1770 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1771 s64 x = per_cpu(mem->stat->count[i], cpu);
1772
1773 per_cpu(mem->stat->count[i], cpu) = 0;
1774 mem->nocpu_base.count[i] += x;
1775 }
1489ebad
KH
1776 /* need to clear ON_MOVE value, works as a kind of lock. */
1777 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1778 spin_unlock(&mem->pcp_counter_lock);
1779}
1780
1781static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1782{
1783 int idx = MEM_CGROUP_ON_MOVE;
1784
1785 spin_lock(&mem->pcp_counter_lock);
1786 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
1787 spin_unlock(&mem->pcp_counter_lock);
1788}
1789
1790static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1791 unsigned long action,
1792 void *hcpu)
1793{
1794 int cpu = (unsigned long)hcpu;
1795 struct memcg_stock_pcp *stock;
711d3d2c 1796 struct mem_cgroup *iter;
cdec2e42 1797
1489ebad
KH
1798 if ((action == CPU_ONLINE)) {
1799 for_each_mem_cgroup_all(iter)
1800 synchronize_mem_cgroup_on_move(iter, cpu);
1801 return NOTIFY_OK;
1802 }
1803
711d3d2c 1804 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 1805 return NOTIFY_OK;
711d3d2c
KH
1806
1807 for_each_mem_cgroup_all(iter)
1808 mem_cgroup_drain_pcp_counter(iter, cpu);
1809
cdec2e42
KH
1810 stock = &per_cpu(memcg_stock, cpu);
1811 drain_stock(stock);
1812 return NOTIFY_OK;
1813}
1814
4b534334
KH
1815
1816/* See __mem_cgroup_try_charge() for details */
1817enum {
1818 CHARGE_OK, /* success */
1819 CHARGE_RETRY, /* need to retry but retry is not bad */
1820 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1821 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1822 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1823};
1824
1825static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1826 int csize, bool oom_check)
1827{
1828 struct mem_cgroup *mem_over_limit;
1829 struct res_counter *fail_res;
1830 unsigned long flags = 0;
1831 int ret;
1832
1833 ret = res_counter_charge(&mem->res, csize, &fail_res);
1834
1835 if (likely(!ret)) {
1836 if (!do_swap_account)
1837 return CHARGE_OK;
1838 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1839 if (likely(!ret))
1840 return CHARGE_OK;
1841
01c88e2d 1842 res_counter_uncharge(&mem->res, csize);
4b534334
KH
1843 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1844 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1845 } else
1846 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7
JW
1847 /*
1848 * csize can be either a huge page (HPAGE_SIZE), a batch of
1849 * regular pages (CHARGE_SIZE), or a single regular page
1850 * (PAGE_SIZE).
1851 *
1852 * Never reclaim on behalf of optional batching, retry with a
1853 * single page instead.
1854 */
1855 if (csize == CHARGE_SIZE)
4b534334
KH
1856 return CHARGE_RETRY;
1857
1858 if (!(gfp_mask & __GFP_WAIT))
1859 return CHARGE_WOULDBLOCK;
1860
1861 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
19942822 1862 gfp_mask, flags);
9d11ea9f 1863 if (mem_cgroup_margin(mem_over_limit) >= csize)
19942822 1864 return CHARGE_RETRY;
4b534334 1865 /*
19942822
JW
1866 * Even though the limit is exceeded at this point, reclaim
1867 * may have been able to free some pages. Retry the charge
1868 * before killing the task.
1869 *
1870 * Only for regular pages, though: huge pages are rather
1871 * unlikely to succeed so close to the limit, and we fall back
1872 * to regular pages anyway in case of failure.
4b534334 1873 */
19942822 1874 if (csize == PAGE_SIZE && ret)
4b534334
KH
1875 return CHARGE_RETRY;
1876
1877 /*
1878 * At task move, charge accounts can be doubly counted. So, it's
1879 * better to wait until the end of task_move if something is going on.
1880 */
1881 if (mem_cgroup_wait_acct_move(mem_over_limit))
1882 return CHARGE_RETRY;
1883
1884 /* If we don't need to call oom-killer at el, return immediately */
1885 if (!oom_check)
1886 return CHARGE_NOMEM;
1887 /* check OOM */
1888 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1889 return CHARGE_OOM_DIE;
1890
1891 return CHARGE_RETRY;
1892}
1893
f817ed48
KH
1894/*
1895 * Unlike exported interface, "oom" parameter is added. if oom==true,
1896 * oom-killer can be invoked.
8a9f3ccd 1897 */
f817ed48 1898static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510
AA
1899 gfp_t gfp_mask,
1900 struct mem_cgroup **memcg, bool oom,
1901 int page_size)
8a9f3ccd 1902{
4b534334
KH
1903 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1904 struct mem_cgroup *mem = NULL;
1905 int ret;
ec168510 1906 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
a636b327 1907
867578cb
KH
1908 /*
1909 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1910 * in system level. So, allow to go ahead dying process in addition to
1911 * MEMDIE process.
1912 */
1913 if (unlikely(test_thread_flag(TIF_MEMDIE)
1914 || fatal_signal_pending(current)))
1915 goto bypass;
a636b327 1916
8a9f3ccd 1917 /*
3be91277
HD
1918 * We always charge the cgroup the mm_struct belongs to.
1919 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1920 * thread group leader migrates. It's possible that mm is not
1921 * set, if so charge the init_mm (happens for pagecache usage).
1922 */
f75ca962
KH
1923 if (!*memcg && !mm)
1924 goto bypass;
1925again:
1926 if (*memcg) { /* css should be a valid one */
4b534334 1927 mem = *memcg;
f75ca962
KH
1928 VM_BUG_ON(css_is_removed(&mem->css));
1929 if (mem_cgroup_is_root(mem))
1930 goto done;
ec168510 1931 if (page_size == PAGE_SIZE && consume_stock(mem))
f75ca962 1932 goto done;
4b534334
KH
1933 css_get(&mem->css);
1934 } else {
f75ca962 1935 struct task_struct *p;
54595fe2 1936
f75ca962
KH
1937 rcu_read_lock();
1938 p = rcu_dereference(mm->owner);
f75ca962 1939 /*
ebb76ce1
KH
1940 * Because we don't have task_lock(), "p" can exit.
1941 * In that case, "mem" can point to root or p can be NULL with
1942 * race with swapoff. Then, we have small risk of mis-accouning.
1943 * But such kind of mis-account by race always happens because
1944 * we don't have cgroup_mutex(). It's overkill and we allo that
1945 * small race, here.
1946 * (*) swapoff at el will charge against mm-struct not against
1947 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
1948 */
1949 mem = mem_cgroup_from_task(p);
ebb76ce1 1950 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
1951 rcu_read_unlock();
1952 goto done;
1953 }
ec168510 1954 if (page_size == PAGE_SIZE && consume_stock(mem)) {
f75ca962
KH
1955 /*
1956 * It seems dagerous to access memcg without css_get().
1957 * But considering how consume_stok works, it's not
1958 * necessary. If consume_stock success, some charges
1959 * from this memcg are cached on this cpu. So, we
1960 * don't need to call css_get()/css_tryget() before
1961 * calling consume_stock().
1962 */
1963 rcu_read_unlock();
1964 goto done;
1965 }
1966 /* after here, we may be blocked. we need to get refcnt */
1967 if (!css_tryget(&mem->css)) {
1968 rcu_read_unlock();
1969 goto again;
1970 }
1971 rcu_read_unlock();
1972 }
8a9f3ccd 1973
4b534334
KH
1974 do {
1975 bool oom_check;
7a81b88c 1976
4b534334 1977 /* If killed, bypass charge */
f75ca962
KH
1978 if (fatal_signal_pending(current)) {
1979 css_put(&mem->css);
4b534334 1980 goto bypass;
f75ca962 1981 }
6d61ef40 1982
4b534334
KH
1983 oom_check = false;
1984 if (oom && !nr_oom_retries) {
1985 oom_check = true;
1986 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 1987 }
66e1707b 1988
4b534334 1989 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
8033b97c 1990
4b534334
KH
1991 switch (ret) {
1992 case CHARGE_OK:
1993 break;
1994 case CHARGE_RETRY: /* not in OOM situation but retry */
ec168510 1995 csize = page_size;
f75ca962
KH
1996 css_put(&mem->css);
1997 mem = NULL;
1998 goto again;
4b534334 1999 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 2000 css_put(&mem->css);
4b534334
KH
2001 goto nomem;
2002 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
2003 if (!oom) {
2004 css_put(&mem->css);
867578cb 2005 goto nomem;
f75ca962 2006 }
4b534334
KH
2007 /* If oom, we never return -ENOMEM */
2008 nr_oom_retries--;
2009 break;
2010 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2011 css_put(&mem->css);
867578cb 2012 goto bypass;
66e1707b 2013 }
4b534334
KH
2014 } while (ret != CHARGE_OK);
2015
ec168510 2016 if (csize > page_size)
11c9ea4e 2017 refill_stock(mem, (csize - page_size) >> PAGE_SHIFT);
f75ca962 2018 css_put(&mem->css);
0c3e73e8 2019done:
f75ca962 2020 *memcg = mem;
7a81b88c
KH
2021 return 0;
2022nomem:
f75ca962 2023 *memcg = NULL;
7a81b88c 2024 return -ENOMEM;
867578cb
KH
2025bypass:
2026 *memcg = NULL;
2027 return 0;
7a81b88c 2028}
8a9f3ccd 2029
a3032a2c
DN
2030/*
2031 * Somemtimes we have to undo a charge we got by try_charge().
2032 * This function is for that and do uncharge, put css's refcnt.
2033 * gotten by try_charge().
2034 */
854ffa8d 2035static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
e7018b8d 2036 unsigned int nr_pages)
a3032a2c
DN
2037{
2038 if (!mem_cgroup_is_root(mem)) {
e7018b8d
JW
2039 unsigned long bytes = nr_pages * PAGE_SIZE;
2040
2041 res_counter_uncharge(&mem->res, bytes);
a3032a2c 2042 if (do_swap_account)
e7018b8d 2043 res_counter_uncharge(&mem->memsw, bytes);
a3032a2c 2044 }
854ffa8d
DN
2045}
2046
a3b2d692
KH
2047/*
2048 * A helper function to get mem_cgroup from ID. must be called under
2049 * rcu_read_lock(). The caller must check css_is_removed() or some if
2050 * it's concern. (dropping refcnt from swap can be called against removed
2051 * memcg.)
2052 */
2053static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2054{
2055 struct cgroup_subsys_state *css;
2056
2057 /* ID 0 is unused ID */
2058 if (!id)
2059 return NULL;
2060 css = css_lookup(&mem_cgroup_subsys, id);
2061 if (!css)
2062 return NULL;
2063 return container_of(css, struct mem_cgroup, css);
2064}
2065
e42d9d5d 2066struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2067{
e42d9d5d 2068 struct mem_cgroup *mem = NULL;
3c776e64 2069 struct page_cgroup *pc;
a3b2d692 2070 unsigned short id;
b5a84319
KH
2071 swp_entry_t ent;
2072
3c776e64
DN
2073 VM_BUG_ON(!PageLocked(page));
2074
3c776e64 2075 pc = lookup_page_cgroup(page);
c0bd3f63 2076 lock_page_cgroup(pc);
a3b2d692 2077 if (PageCgroupUsed(pc)) {
3c776e64 2078 mem = pc->mem_cgroup;
a3b2d692
KH
2079 if (mem && !css_tryget(&mem->css))
2080 mem = NULL;
e42d9d5d 2081 } else if (PageSwapCache(page)) {
3c776e64 2082 ent.val = page_private(page);
a3b2d692
KH
2083 id = lookup_swap_cgroup(ent);
2084 rcu_read_lock();
2085 mem = mem_cgroup_lookup(id);
2086 if (mem && !css_tryget(&mem->css))
2087 mem = NULL;
2088 rcu_read_unlock();
3c776e64 2089 }
c0bd3f63 2090 unlock_page_cgroup(pc);
b5a84319
KH
2091 return mem;
2092}
2093
ca3e0214 2094static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
5564e88b 2095 struct page *page,
ca3e0214
KH
2096 struct page_cgroup *pc,
2097 enum charge_type ctype,
2098 int page_size)
7a81b88c 2099{
ca3e0214
KH
2100 int nr_pages = page_size >> PAGE_SHIFT;
2101
ca3e0214
KH
2102 lock_page_cgroup(pc);
2103 if (unlikely(PageCgroupUsed(pc))) {
2104 unlock_page_cgroup(pc);
e7018b8d 2105 __mem_cgroup_cancel_charge(mem, nr_pages);
ca3e0214
KH
2106 return;
2107 }
2108 /*
2109 * we don't need page_cgroup_lock about tail pages, becase they are not
2110 * accessed by any other context at this point.
2111 */
8a9f3ccd 2112 pc->mem_cgroup = mem;
261fb61a
KH
2113 /*
2114 * We access a page_cgroup asynchronously without lock_page_cgroup().
2115 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2116 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2117 * before USED bit, we need memory barrier here.
2118 * See mem_cgroup_add_lru_list(), etc.
2119 */
08e552c6 2120 smp_wmb();
4b3bde4c
BS
2121 switch (ctype) {
2122 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2123 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2124 SetPageCgroupCache(pc);
2125 SetPageCgroupUsed(pc);
2126 break;
2127 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2128 ClearPageCgroupCache(pc);
2129 SetPageCgroupUsed(pc);
2130 break;
2131 default:
2132 break;
2133 }
3be91277 2134
ca3e0214 2135 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
52d4b9ac 2136 unlock_page_cgroup(pc);
430e4863
KH
2137 /*
2138 * "charge_statistics" updated event counter. Then, check it.
2139 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2140 * if they exceeds softlimit.
2141 */
5564e88b 2142 memcg_check_events(mem, page);
7a81b88c 2143}
66e1707b 2144
ca3e0214
KH
2145#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2146
2147#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2148 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2149/*
2150 * Because tail pages are not marked as "used", set it. We're under
2151 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2152 */
2153void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2154{
2155 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2156 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2157 unsigned long flags;
2158
3d37c4a9
KH
2159 if (mem_cgroup_disabled())
2160 return;
ca3e0214 2161 /*
ece35ca8 2162 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2163 * page state accounting.
2164 */
2165 move_lock_page_cgroup(head_pc, &flags);
2166
2167 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2168 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2169 if (PageCgroupAcctLRU(head_pc)) {
2170 enum lru_list lru;
2171 struct mem_cgroup_per_zone *mz;
2172
2173 /*
2174 * LRU flags cannot be copied because we need to add tail
2175 *.page to LRU by generic call and our hook will be called.
2176 * We hold lru_lock, then, reduce counter directly.
2177 */
2178 lru = page_lru(head);
97a6c37b 2179 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
ece35ca8
KH
2180 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2181 }
ca3e0214
KH
2182 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2183 move_unlock_page_cgroup(head_pc, &flags);
2184}
2185#endif
2186
f817ed48 2187/**
de3638d9 2188 * mem_cgroup_move_account - move account of the page
5564e88b 2189 * @page: the page
f817ed48
KH
2190 * @pc: page_cgroup of the page.
2191 * @from: mem_cgroup which the page is moved from.
2192 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2193 * @uncharge: whether we should call uncharge and css_put against @from.
de3638d9 2194 * @charge_size: number of bytes to charge (regular or huge page)
f817ed48
KH
2195 *
2196 * The caller must confirm following.
08e552c6 2197 * - page is not on LRU (isolate_page() is useful.)
de3638d9 2198 * - compound_lock is held when charge_size > PAGE_SIZE
f817ed48 2199 *
854ffa8d
DN
2200 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2201 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2202 * true, this function does "uncharge" from old cgroup, but it doesn't if
2203 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2204 */
5564e88b 2205static int mem_cgroup_move_account(struct page *page, struct page_cgroup *pc,
de3638d9
JW
2206 struct mem_cgroup *from, struct mem_cgroup *to,
2207 bool uncharge, int charge_size)
f817ed48 2208{
987eba66 2209 int nr_pages = charge_size >> PAGE_SHIFT;
de3638d9
JW
2210 unsigned long flags;
2211 int ret;
987eba66 2212
f817ed48 2213 VM_BUG_ON(from == to);
5564e88b 2214 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2215 /*
2216 * The page is isolated from LRU. So, collapse function
2217 * will not handle this page. But page splitting can happen.
2218 * Do this check under compound_page_lock(). The caller should
2219 * hold it.
2220 */
2221 ret = -EBUSY;
5564e88b 2222 if (charge_size > PAGE_SIZE && !PageTransHuge(page))
de3638d9
JW
2223 goto out;
2224
2225 lock_page_cgroup(pc);
2226
2227 ret = -EINVAL;
2228 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2229 goto unlock;
2230
2231 move_lock_page_cgroup(pc, &flags);
f817ed48 2232
8725d541 2233 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2234 /* Update mapped_file data for mem_cgroup */
2235 preempt_disable();
2236 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2237 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2238 preempt_enable();
d69b042f 2239 }
987eba66 2240 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2241 if (uncharge)
2242 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2243 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2244
854ffa8d 2245 /* caller should have done css_get */
08e552c6 2246 pc->mem_cgroup = to;
987eba66 2247 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2248 /*
2249 * We charges against "to" which may not have any tasks. Then, "to"
2250 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
2251 * this function is just force_empty() and move charge, so it's
2252 * garanteed that "to" is never removed. So, we don't check rmdir
2253 * status here.
88703267 2254 */
de3638d9
JW
2255 move_unlock_page_cgroup(pc, &flags);
2256 ret = 0;
2257unlock:
57f9fd7d 2258 unlock_page_cgroup(pc);
d2265e6f
KH
2259 /*
2260 * check events
2261 */
5564e88b
JW
2262 memcg_check_events(to, page);
2263 memcg_check_events(from, page);
de3638d9 2264out:
f817ed48
KH
2265 return ret;
2266}
2267
2268/*
2269 * move charges to its parent.
2270 */
2271
5564e88b
JW
2272static int mem_cgroup_move_parent(struct page *page,
2273 struct page_cgroup *pc,
f817ed48
KH
2274 struct mem_cgroup *child,
2275 gfp_t gfp_mask)
2276{
2277 struct cgroup *cg = child->css.cgroup;
2278 struct cgroup *pcg = cg->parent;
2279 struct mem_cgroup *parent;
52dbb905 2280 int page_size = PAGE_SIZE;
987eba66 2281 unsigned long flags;
f817ed48
KH
2282 int ret;
2283
2284 /* Is ROOT ? */
2285 if (!pcg)
2286 return -EINVAL;
2287
57f9fd7d
DN
2288 ret = -EBUSY;
2289 if (!get_page_unless_zero(page))
2290 goto out;
2291 if (isolate_lru_page(page))
2292 goto put;
52dbb905
KH
2293
2294 if (PageTransHuge(page))
2295 page_size = HPAGE_SIZE;
08e552c6 2296
f817ed48 2297 parent = mem_cgroup_from_cont(pcg);
52dbb905
KH
2298 ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2299 &parent, false, page_size);
a636b327 2300 if (ret || !parent)
57f9fd7d 2301 goto put_back;
f817ed48 2302
52dbb905 2303 if (page_size > PAGE_SIZE)
987eba66
KH
2304 flags = compound_lock_irqsave(page);
2305
5564e88b 2306 ret = mem_cgroup_move_account(page, pc, child, parent, true, page_size);
854ffa8d 2307 if (ret)
e7018b8d 2308 __mem_cgroup_cancel_charge(parent, page_size >> PAGE_SHIFT);
8dba474f 2309
52dbb905 2310 if (page_size > PAGE_SIZE)
987eba66 2311 compound_unlock_irqrestore(page, flags);
8dba474f 2312put_back:
08e552c6 2313 putback_lru_page(page);
57f9fd7d 2314put:
40d58138 2315 put_page(page);
57f9fd7d 2316out:
f817ed48
KH
2317 return ret;
2318}
2319
7a81b88c
KH
2320/*
2321 * Charge the memory controller for page usage.
2322 * Return
2323 * 0 if the charge was successful
2324 * < 0 if the cgroup is over its limit
2325 */
2326static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2327 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2328{
73045c47 2329 struct mem_cgroup *mem = NULL;
8493ae43 2330 int page_size = PAGE_SIZE;
7a81b88c 2331 struct page_cgroup *pc;
8493ae43 2332 bool oom = true;
7a81b88c 2333 int ret;
ec168510 2334
37c2ac78 2335 if (PageTransHuge(page)) {
ec168510 2336 page_size <<= compound_order(page);
37c2ac78 2337 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2338 /*
2339 * Never OOM-kill a process for a huge page. The
2340 * fault handler will fall back to regular pages.
2341 */
2342 oom = false;
37c2ac78 2343 }
7a81b88c
KH
2344
2345 pc = lookup_page_cgroup(page);
af4a6621 2346 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
7a81b88c 2347
8493ae43 2348 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, oom, page_size);
a636b327 2349 if (ret || !mem)
7a81b88c
KH
2350 return ret;
2351
5564e88b 2352 __mem_cgroup_commit_charge(mem, page, pc, ctype, page_size);
8a9f3ccd 2353 return 0;
8a9f3ccd
BS
2354}
2355
7a81b88c
KH
2356int mem_cgroup_newpage_charge(struct page *page,
2357 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2358{
f8d66542 2359 if (mem_cgroup_disabled())
cede86ac 2360 return 0;
69029cd5
KH
2361 /*
2362 * If already mapped, we don't have to account.
2363 * If page cache, page->mapping has address_space.
2364 * But page->mapping may have out-of-use anon_vma pointer,
2365 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2366 * is NULL.
2367 */
2368 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2369 return 0;
2370 if (unlikely(!mm))
2371 mm = &init_mm;
217bc319 2372 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2373 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2374}
2375
83aae4c7
DN
2376static void
2377__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2378 enum charge_type ctype);
2379
e1a1cd59
BS
2380int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2381 gfp_t gfp_mask)
8697d331 2382{
b5a84319
KH
2383 int ret;
2384
f8d66542 2385 if (mem_cgroup_disabled())
cede86ac 2386 return 0;
52d4b9ac
KH
2387 if (PageCompound(page))
2388 return 0;
accf163e
KH
2389 /*
2390 * Corner case handling. This is called from add_to_page_cache()
2391 * in usual. But some FS (shmem) precharges this page before calling it
2392 * and call add_to_page_cache() with GFP_NOWAIT.
2393 *
2394 * For GFP_NOWAIT case, the page may be pre-charged before calling
2395 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2396 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2397 * And when the page is SwapCache, it should take swap information
2398 * into account. This is under lock_page() now.
accf163e
KH
2399 */
2400 if (!(gfp_mask & __GFP_WAIT)) {
2401 struct page_cgroup *pc;
2402
52d4b9ac
KH
2403 pc = lookup_page_cgroup(page);
2404 if (!pc)
2405 return 0;
2406 lock_page_cgroup(pc);
2407 if (PageCgroupUsed(pc)) {
2408 unlock_page_cgroup(pc);
accf163e
KH
2409 return 0;
2410 }
52d4b9ac 2411 unlock_page_cgroup(pc);
accf163e
KH
2412 }
2413
73045c47 2414 if (unlikely(!mm))
8697d331 2415 mm = &init_mm;
accf163e 2416
c05555b5
KH
2417 if (page_is_file_cache(page))
2418 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2419 MEM_CGROUP_CHARGE_TYPE_CACHE);
b5a84319 2420
83aae4c7
DN
2421 /* shmem */
2422 if (PageSwapCache(page)) {
56039efa 2423 struct mem_cgroup *mem;
73045c47 2424
83aae4c7
DN
2425 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2426 if (!ret)
2427 __mem_cgroup_commit_charge_swapin(page, mem,
2428 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2429 } else
2430 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2431 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2432
b5a84319 2433 return ret;
e8589cc1
KH
2434}
2435
54595fe2
KH
2436/*
2437 * While swap-in, try_charge -> commit or cancel, the page is locked.
2438 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2439 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2440 * "commit()" or removed by "cancel()"
2441 */
8c7c6e34
KH
2442int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2443 struct page *page,
2444 gfp_t mask, struct mem_cgroup **ptr)
2445{
2446 struct mem_cgroup *mem;
54595fe2 2447 int ret;
8c7c6e34 2448
56039efa
KH
2449 *ptr = NULL;
2450
f8d66542 2451 if (mem_cgroup_disabled())
8c7c6e34
KH
2452 return 0;
2453
2454 if (!do_swap_account)
2455 goto charge_cur_mm;
8c7c6e34
KH
2456 /*
2457 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2458 * the pte, and even removed page from swap cache: in those cases
2459 * do_swap_page()'s pte_same() test will fail; but there's also a
2460 * KSM case which does need to charge the page.
8c7c6e34
KH
2461 */
2462 if (!PageSwapCache(page))
407f9c8b 2463 goto charge_cur_mm;
e42d9d5d 2464 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2465 if (!mem)
2466 goto charge_cur_mm;
8c7c6e34 2467 *ptr = mem;
ec168510 2468 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
54595fe2
KH
2469 css_put(&mem->css);
2470 return ret;
8c7c6e34
KH
2471charge_cur_mm:
2472 if (unlikely(!mm))
2473 mm = &init_mm;
ec168510 2474 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
8c7c6e34
KH
2475}
2476
83aae4c7
DN
2477static void
2478__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2479 enum charge_type ctype)
7a81b88c
KH
2480{
2481 struct page_cgroup *pc;
2482
f8d66542 2483 if (mem_cgroup_disabled())
7a81b88c
KH
2484 return;
2485 if (!ptr)
2486 return;
88703267 2487 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 2488 pc = lookup_page_cgroup(page);
544122e5 2489 mem_cgroup_lru_del_before_commit_swapcache(page);
5564e88b 2490 __mem_cgroup_commit_charge(ptr, page, pc, ctype, PAGE_SIZE);
544122e5 2491 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
2492 /*
2493 * Now swap is on-memory. This means this page may be
2494 * counted both as mem and swap....double count.
03f3c433
KH
2495 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2496 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2497 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2498 */
03f3c433 2499 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2500 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2501 unsigned short id;
8c7c6e34 2502 struct mem_cgroup *memcg;
a3b2d692
KH
2503
2504 id = swap_cgroup_record(ent, 0);
2505 rcu_read_lock();
2506 memcg = mem_cgroup_lookup(id);
8c7c6e34 2507 if (memcg) {
a3b2d692
KH
2508 /*
2509 * This recorded memcg can be obsolete one. So, avoid
2510 * calling css_tryget
2511 */
0c3e73e8 2512 if (!mem_cgroup_is_root(memcg))
4e649152 2513 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2514 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2515 mem_cgroup_put(memcg);
2516 }
a3b2d692 2517 rcu_read_unlock();
8c7c6e34 2518 }
88703267
KH
2519 /*
2520 * At swapin, we may charge account against cgroup which has no tasks.
2521 * So, rmdir()->pre_destroy() can be called while we do this charge.
2522 * In that case, we need to call pre_destroy() again. check it here.
2523 */
2524 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2525}
2526
83aae4c7
DN
2527void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2528{
2529 __mem_cgroup_commit_charge_swapin(page, ptr,
2530 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2531}
2532
7a81b88c
KH
2533void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2534{
f8d66542 2535 if (mem_cgroup_disabled())
7a81b88c
KH
2536 return;
2537 if (!mem)
2538 return;
e7018b8d 2539 __mem_cgroup_cancel_charge(mem, 1);
7a81b88c
KH
2540}
2541
569b846d 2542static void
ec168510
AA
2543__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2544 int page_size)
569b846d
KH
2545{
2546 struct memcg_batch_info *batch = NULL;
2547 bool uncharge_memsw = true;
2548 /* If swapout, usage of swap doesn't decrease */
2549 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2550 uncharge_memsw = false;
569b846d
KH
2551
2552 batch = &current->memcg_batch;
2553 /*
2554 * In usual, we do css_get() when we remember memcg pointer.
2555 * But in this case, we keep res->usage until end of a series of
2556 * uncharges. Then, it's ok to ignore memcg's refcnt.
2557 */
2558 if (!batch->memcg)
2559 batch->memcg = mem;
3c11ecf4
KH
2560 /*
2561 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2562 * In those cases, all pages freed continously can be expected to be in
2563 * the same cgroup and we have chance to coalesce uncharges.
2564 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2565 * because we want to do uncharge as soon as possible.
2566 */
2567
2568 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2569 goto direct_uncharge;
2570
ec168510
AA
2571 if (page_size != PAGE_SIZE)
2572 goto direct_uncharge;
2573
569b846d
KH
2574 /*
2575 * In typical case, batch->memcg == mem. This means we can
2576 * merge a series of uncharges to an uncharge of res_counter.
2577 * If not, we uncharge res_counter ony by one.
2578 */
2579 if (batch->memcg != mem)
2580 goto direct_uncharge;
2581 /* remember freed charge and uncharge it later */
2582 batch->bytes += PAGE_SIZE;
2583 if (uncharge_memsw)
2584 batch->memsw_bytes += PAGE_SIZE;
2585 return;
2586direct_uncharge:
ec168510 2587 res_counter_uncharge(&mem->res, page_size);
569b846d 2588 if (uncharge_memsw)
ec168510 2589 res_counter_uncharge(&mem->memsw, page_size);
3c11ecf4
KH
2590 if (unlikely(batch->memcg != mem))
2591 memcg_oom_recover(mem);
569b846d
KH
2592 return;
2593}
7a81b88c 2594
8a9f3ccd 2595/*
69029cd5 2596 * uncharge if !page_mapped(page)
8a9f3ccd 2597 */
8c7c6e34 2598static struct mem_cgroup *
69029cd5 2599__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2600{
152c9ccb 2601 int count;
8289546e 2602 struct page_cgroup *pc;
8c7c6e34 2603 struct mem_cgroup *mem = NULL;
ec168510 2604 int page_size = PAGE_SIZE;
8a9f3ccd 2605
f8d66542 2606 if (mem_cgroup_disabled())
8c7c6e34 2607 return NULL;
4077960e 2608
d13d1443 2609 if (PageSwapCache(page))
8c7c6e34 2610 return NULL;
d13d1443 2611
37c2ac78 2612 if (PageTransHuge(page)) {
ec168510 2613 page_size <<= compound_order(page);
37c2ac78
AA
2614 VM_BUG_ON(!PageTransHuge(page));
2615 }
ec168510 2616
152c9ccb 2617 count = page_size >> PAGE_SHIFT;
8697d331 2618 /*
3c541e14 2619 * Check if our page_cgroup is valid
8697d331 2620 */
52d4b9ac
KH
2621 pc = lookup_page_cgroup(page);
2622 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2623 return NULL;
b9c565d5 2624
52d4b9ac 2625 lock_page_cgroup(pc);
d13d1443 2626
8c7c6e34
KH
2627 mem = pc->mem_cgroup;
2628
d13d1443
KH
2629 if (!PageCgroupUsed(pc))
2630 goto unlock_out;
2631
2632 switch (ctype) {
2633 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2634 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
2635 /* See mem_cgroup_prepare_migration() */
2636 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2637 goto unlock_out;
2638 break;
2639 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2640 if (!PageAnon(page)) { /* Shared memory */
2641 if (page->mapping && !page_is_file_cache(page))
2642 goto unlock_out;
2643 } else if (page_mapped(page)) /* Anon */
2644 goto unlock_out;
2645 break;
2646 default:
2647 break;
52d4b9ac 2648 }
d13d1443 2649
ca3e0214 2650 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
04046e1a 2651
52d4b9ac 2652 ClearPageCgroupUsed(pc);
544122e5
KH
2653 /*
2654 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2655 * freed from LRU. This is safe because uncharged page is expected not
2656 * to be reused (freed soon). Exception is SwapCache, it's handled by
2657 * special functions.
2658 */
b9c565d5 2659
52d4b9ac 2660 unlock_page_cgroup(pc);
f75ca962
KH
2661 /*
2662 * even after unlock, we have mem->res.usage here and this memcg
2663 * will never be freed.
2664 */
d2265e6f 2665 memcg_check_events(mem, page);
f75ca962
KH
2666 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2667 mem_cgroup_swap_statistics(mem, true);
2668 mem_cgroup_get(mem);
2669 }
2670 if (!mem_cgroup_is_root(mem))
ec168510 2671 __do_uncharge(mem, ctype, page_size);
6d12e2d8 2672
8c7c6e34 2673 return mem;
d13d1443
KH
2674
2675unlock_out:
2676 unlock_page_cgroup(pc);
8c7c6e34 2677 return NULL;
3c541e14
BS
2678}
2679
69029cd5
KH
2680void mem_cgroup_uncharge_page(struct page *page)
2681{
52d4b9ac
KH
2682 /* early check. */
2683 if (page_mapped(page))
2684 return;
2685 if (page->mapping && !PageAnon(page))
2686 return;
69029cd5
KH
2687 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2688}
2689
2690void mem_cgroup_uncharge_cache_page(struct page *page)
2691{
2692 VM_BUG_ON(page_mapped(page));
b7abea96 2693 VM_BUG_ON(page->mapping);
69029cd5
KH
2694 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2695}
2696
569b846d
KH
2697/*
2698 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2699 * In that cases, pages are freed continuously and we can expect pages
2700 * are in the same memcg. All these calls itself limits the number of
2701 * pages freed at once, then uncharge_start/end() is called properly.
2702 * This may be called prural(2) times in a context,
2703 */
2704
2705void mem_cgroup_uncharge_start(void)
2706{
2707 current->memcg_batch.do_batch++;
2708 /* We can do nest. */
2709 if (current->memcg_batch.do_batch == 1) {
2710 current->memcg_batch.memcg = NULL;
2711 current->memcg_batch.bytes = 0;
2712 current->memcg_batch.memsw_bytes = 0;
2713 }
2714}
2715
2716void mem_cgroup_uncharge_end(void)
2717{
2718 struct memcg_batch_info *batch = &current->memcg_batch;
2719
2720 if (!batch->do_batch)
2721 return;
2722
2723 batch->do_batch--;
2724 if (batch->do_batch) /* If stacked, do nothing. */
2725 return;
2726
2727 if (!batch->memcg)
2728 return;
2729 /*
2730 * This "batch->memcg" is valid without any css_get/put etc...
2731 * bacause we hide charges behind us.
2732 */
2733 if (batch->bytes)
2734 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2735 if (batch->memsw_bytes)
2736 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
3c11ecf4 2737 memcg_oom_recover(batch->memcg);
569b846d
KH
2738 /* forget this pointer (for sanity check) */
2739 batch->memcg = NULL;
2740}
2741
e767e056 2742#ifdef CONFIG_SWAP
8c7c6e34 2743/*
e767e056 2744 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2745 * memcg information is recorded to swap_cgroup of "ent"
2746 */
8a9478ca
KH
2747void
2748mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2749{
2750 struct mem_cgroup *memcg;
8a9478ca
KH
2751 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2752
2753 if (!swapout) /* this was a swap cache but the swap is unused ! */
2754 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2755
2756 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2757
f75ca962
KH
2758 /*
2759 * record memcg information, if swapout && memcg != NULL,
2760 * mem_cgroup_get() was called in uncharge().
2761 */
2762 if (do_swap_account && swapout && memcg)
a3b2d692 2763 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 2764}
e767e056 2765#endif
8c7c6e34
KH
2766
2767#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2768/*
2769 * called from swap_entry_free(). remove record in swap_cgroup and
2770 * uncharge "memsw" account.
2771 */
2772void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2773{
8c7c6e34 2774 struct mem_cgroup *memcg;
a3b2d692 2775 unsigned short id;
8c7c6e34
KH
2776
2777 if (!do_swap_account)
2778 return;
2779
a3b2d692
KH
2780 id = swap_cgroup_record(ent, 0);
2781 rcu_read_lock();
2782 memcg = mem_cgroup_lookup(id);
8c7c6e34 2783 if (memcg) {
a3b2d692
KH
2784 /*
2785 * We uncharge this because swap is freed.
2786 * This memcg can be obsolete one. We avoid calling css_tryget
2787 */
0c3e73e8 2788 if (!mem_cgroup_is_root(memcg))
4e649152 2789 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2790 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2791 mem_cgroup_put(memcg);
2792 }
a3b2d692 2793 rcu_read_unlock();
d13d1443 2794}
02491447
DN
2795
2796/**
2797 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2798 * @entry: swap entry to be moved
2799 * @from: mem_cgroup which the entry is moved from
2800 * @to: mem_cgroup which the entry is moved to
483c30b5 2801 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2802 *
2803 * It succeeds only when the swap_cgroup's record for this entry is the same
2804 * as the mem_cgroup's id of @from.
2805 *
2806 * Returns 0 on success, -EINVAL on failure.
2807 *
2808 * The caller must have charged to @to, IOW, called res_counter_charge() about
2809 * both res and memsw, and called css_get().
2810 */
2811static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2812 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2813{
2814 unsigned short old_id, new_id;
2815
2816 old_id = css_id(&from->css);
2817 new_id = css_id(&to->css);
2818
2819 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2820 mem_cgroup_swap_statistics(from, false);
483c30b5 2821 mem_cgroup_swap_statistics(to, true);
02491447 2822 /*
483c30b5
DN
2823 * This function is only called from task migration context now.
2824 * It postpones res_counter and refcount handling till the end
2825 * of task migration(mem_cgroup_clear_mc()) for performance
2826 * improvement. But we cannot postpone mem_cgroup_get(to)
2827 * because if the process that has been moved to @to does
2828 * swap-in, the refcount of @to might be decreased to 0.
02491447 2829 */
02491447 2830 mem_cgroup_get(to);
483c30b5
DN
2831 if (need_fixup) {
2832 if (!mem_cgroup_is_root(from))
2833 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2834 mem_cgroup_put(from);
2835 /*
2836 * we charged both to->res and to->memsw, so we should
2837 * uncharge to->res.
2838 */
2839 if (!mem_cgroup_is_root(to))
2840 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 2841 }
02491447
DN
2842 return 0;
2843 }
2844 return -EINVAL;
2845}
2846#else
2847static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2848 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2849{
2850 return -EINVAL;
2851}
8c7c6e34 2852#endif
d13d1443 2853
ae41be37 2854/*
01b1ae63
KH
2855 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2856 * page belongs to.
ae41be37 2857 */
ac39cf8c 2858int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 2859 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37
KH
2860{
2861 struct page_cgroup *pc;
e8589cc1 2862 struct mem_cgroup *mem = NULL;
ac39cf8c 2863 enum charge_type ctype;
e8589cc1 2864 int ret = 0;
8869b8f6 2865
56039efa
KH
2866 *ptr = NULL;
2867
ec168510 2868 VM_BUG_ON(PageTransHuge(page));
f8d66542 2869 if (mem_cgroup_disabled())
4077960e
BS
2870 return 0;
2871
52d4b9ac
KH
2872 pc = lookup_page_cgroup(page);
2873 lock_page_cgroup(pc);
2874 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2875 mem = pc->mem_cgroup;
2876 css_get(&mem->css);
ac39cf8c
AM
2877 /*
2878 * At migrating an anonymous page, its mapcount goes down
2879 * to 0 and uncharge() will be called. But, even if it's fully
2880 * unmapped, migration may fail and this page has to be
2881 * charged again. We set MIGRATION flag here and delay uncharge
2882 * until end_migration() is called
2883 *
2884 * Corner Case Thinking
2885 * A)
2886 * When the old page was mapped as Anon and it's unmap-and-freed
2887 * while migration was ongoing.
2888 * If unmap finds the old page, uncharge() of it will be delayed
2889 * until end_migration(). If unmap finds a new page, it's
2890 * uncharged when it make mapcount to be 1->0. If unmap code
2891 * finds swap_migration_entry, the new page will not be mapped
2892 * and end_migration() will find it(mapcount==0).
2893 *
2894 * B)
2895 * When the old page was mapped but migraion fails, the kernel
2896 * remaps it. A charge for it is kept by MIGRATION flag even
2897 * if mapcount goes down to 0. We can do remap successfully
2898 * without charging it again.
2899 *
2900 * C)
2901 * The "old" page is under lock_page() until the end of
2902 * migration, so, the old page itself will not be swapped-out.
2903 * If the new page is swapped out before end_migraton, our
2904 * hook to usual swap-out path will catch the event.
2905 */
2906 if (PageAnon(page))
2907 SetPageCgroupMigration(pc);
e8589cc1 2908 }
52d4b9ac 2909 unlock_page_cgroup(pc);
ac39cf8c
AM
2910 /*
2911 * If the page is not charged at this point,
2912 * we return here.
2913 */
2914 if (!mem)
2915 return 0;
01b1ae63 2916
93d5c9be 2917 *ptr = mem;
ef6a3c63 2918 ret = __mem_cgroup_try_charge(NULL, gfp_mask, ptr, false, PAGE_SIZE);
ac39cf8c
AM
2919 css_put(&mem->css);/* drop extra refcnt */
2920 if (ret || *ptr == NULL) {
2921 if (PageAnon(page)) {
2922 lock_page_cgroup(pc);
2923 ClearPageCgroupMigration(pc);
2924 unlock_page_cgroup(pc);
2925 /*
2926 * The old page may be fully unmapped while we kept it.
2927 */
2928 mem_cgroup_uncharge_page(page);
2929 }
2930 return -ENOMEM;
e8589cc1 2931 }
ac39cf8c
AM
2932 /*
2933 * We charge new page before it's used/mapped. So, even if unlock_page()
2934 * is called before end_migration, we can catch all events on this new
2935 * page. In the case new page is migrated but not remapped, new page's
2936 * mapcount will be finally 0 and we call uncharge in end_migration().
2937 */
2938 pc = lookup_page_cgroup(newpage);
2939 if (PageAnon(page))
2940 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2941 else if (page_is_file_cache(page))
2942 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2943 else
2944 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
5564e88b 2945 __mem_cgroup_commit_charge(mem, page, pc, ctype, PAGE_SIZE);
e8589cc1 2946 return ret;
ae41be37 2947}
8869b8f6 2948
69029cd5 2949/* remove redundant charge if migration failed*/
01b1ae63 2950void mem_cgroup_end_migration(struct mem_cgroup *mem,
50de1dd9 2951 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 2952{
ac39cf8c 2953 struct page *used, *unused;
01b1ae63 2954 struct page_cgroup *pc;
01b1ae63
KH
2955
2956 if (!mem)
2957 return;
ac39cf8c 2958 /* blocks rmdir() */
88703267 2959 cgroup_exclude_rmdir(&mem->css);
50de1dd9 2960 if (!migration_ok) {
ac39cf8c
AM
2961 used = oldpage;
2962 unused = newpage;
01b1ae63 2963 } else {
ac39cf8c 2964 used = newpage;
01b1ae63
KH
2965 unused = oldpage;
2966 }
69029cd5 2967 /*
ac39cf8c
AM
2968 * We disallowed uncharge of pages under migration because mapcount
2969 * of the page goes down to zero, temporarly.
2970 * Clear the flag and check the page should be charged.
01b1ae63 2971 */
ac39cf8c
AM
2972 pc = lookup_page_cgroup(oldpage);
2973 lock_page_cgroup(pc);
2974 ClearPageCgroupMigration(pc);
2975 unlock_page_cgroup(pc);
01b1ae63 2976
ac39cf8c
AM
2977 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2978
01b1ae63 2979 /*
ac39cf8c
AM
2980 * If a page is a file cache, radix-tree replacement is very atomic
2981 * and we can skip this check. When it was an Anon page, its mapcount
2982 * goes down to 0. But because we added MIGRATION flage, it's not
2983 * uncharged yet. There are several case but page->mapcount check
2984 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2985 * check. (see prepare_charge() also)
69029cd5 2986 */
ac39cf8c
AM
2987 if (PageAnon(used))
2988 mem_cgroup_uncharge_page(used);
88703267 2989 /*
ac39cf8c
AM
2990 * At migration, we may charge account against cgroup which has no
2991 * tasks.
88703267
KH
2992 * So, rmdir()->pre_destroy() can be called while we do this charge.
2993 * In that case, we need to call pre_destroy() again. check it here.
2994 */
2995 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 2996}
78fb7466 2997
c9b0ed51 2998/*
ae3abae6
DN
2999 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3000 * Calling hierarchical_reclaim is not enough because we should update
3001 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3002 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3003 * not from the memcg which this page would be charged to.
3004 * try_charge_swapin does all of these works properly.
c9b0ed51 3005 */
ae3abae6 3006int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
3007 struct mm_struct *mm,
3008 gfp_t gfp_mask)
c9b0ed51 3009{
56039efa 3010 struct mem_cgroup *mem;
ae3abae6 3011 int ret;
c9b0ed51 3012
f8d66542 3013 if (mem_cgroup_disabled())
cede86ac 3014 return 0;
c9b0ed51 3015
ae3abae6
DN
3016 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3017 if (!ret)
3018 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 3019
ae3abae6 3020 return ret;
c9b0ed51
KH
3021}
3022
f212ad7c
DN
3023#ifdef CONFIG_DEBUG_VM
3024static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3025{
3026 struct page_cgroup *pc;
3027
3028 pc = lookup_page_cgroup(page);
3029 if (likely(pc) && PageCgroupUsed(pc))
3030 return pc;
3031 return NULL;
3032}
3033
3034bool mem_cgroup_bad_page_check(struct page *page)
3035{
3036 if (mem_cgroup_disabled())
3037 return false;
3038
3039 return lookup_page_cgroup_used(page) != NULL;
3040}
3041
3042void mem_cgroup_print_bad_page(struct page *page)
3043{
3044 struct page_cgroup *pc;
3045
3046 pc = lookup_page_cgroup_used(page);
3047 if (pc) {
3048 int ret = -1;
3049 char *path;
3050
3051 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3052 pc, pc->flags, pc->mem_cgroup);
3053
3054 path = kmalloc(PATH_MAX, GFP_KERNEL);
3055 if (path) {
3056 rcu_read_lock();
3057 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3058 path, PATH_MAX);
3059 rcu_read_unlock();
3060 }
3061
3062 printk(KERN_CONT "(%s)\n",
3063 (ret < 0) ? "cannot get the path" : path);
3064 kfree(path);
3065 }
3066}
3067#endif
3068
8c7c6e34
KH
3069static DEFINE_MUTEX(set_limit_mutex);
3070
d38d2a75 3071static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3072 unsigned long long val)
628f4235 3073{
81d39c20 3074 int retry_count;
3c11ecf4 3075 u64 memswlimit, memlimit;
628f4235 3076 int ret = 0;
81d39c20
KH
3077 int children = mem_cgroup_count_children(memcg);
3078 u64 curusage, oldusage;
3c11ecf4 3079 int enlarge;
81d39c20
KH
3080
3081 /*
3082 * For keeping hierarchical_reclaim simple, how long we should retry
3083 * is depends on callers. We set our retry-count to be function
3084 * of # of children which we should visit in this loop.
3085 */
3086 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3087
3088 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3089
3c11ecf4 3090 enlarge = 0;
8c7c6e34 3091 while (retry_count) {
628f4235
KH
3092 if (signal_pending(current)) {
3093 ret = -EINTR;
3094 break;
3095 }
8c7c6e34
KH
3096 /*
3097 * Rather than hide all in some function, I do this in
3098 * open coded manner. You see what this really does.
3099 * We have to guarantee mem->res.limit < mem->memsw.limit.
3100 */
3101 mutex_lock(&set_limit_mutex);
3102 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3103 if (memswlimit < val) {
3104 ret = -EINVAL;
3105 mutex_unlock(&set_limit_mutex);
628f4235
KH
3106 break;
3107 }
3c11ecf4
KH
3108
3109 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3110 if (memlimit < val)
3111 enlarge = 1;
3112
8c7c6e34 3113 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3114 if (!ret) {
3115 if (memswlimit == val)
3116 memcg->memsw_is_minimum = true;
3117 else
3118 memcg->memsw_is_minimum = false;
3119 }
8c7c6e34
KH
3120 mutex_unlock(&set_limit_mutex);
3121
3122 if (!ret)
3123 break;
3124
aa20d489 3125 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 3126 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3127 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3128 /* Usage is reduced ? */
3129 if (curusage >= oldusage)
3130 retry_count--;
3131 else
3132 oldusage = curusage;
8c7c6e34 3133 }
3c11ecf4
KH
3134 if (!ret && enlarge)
3135 memcg_oom_recover(memcg);
14797e23 3136
8c7c6e34
KH
3137 return ret;
3138}
3139
338c8431
LZ
3140static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3141 unsigned long long val)
8c7c6e34 3142{
81d39c20 3143 int retry_count;
3c11ecf4 3144 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3145 int children = mem_cgroup_count_children(memcg);
3146 int ret = -EBUSY;
3c11ecf4 3147 int enlarge = 0;
8c7c6e34 3148
81d39c20
KH
3149 /* see mem_cgroup_resize_res_limit */
3150 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3151 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3152 while (retry_count) {
3153 if (signal_pending(current)) {
3154 ret = -EINTR;
3155 break;
3156 }
3157 /*
3158 * Rather than hide all in some function, I do this in
3159 * open coded manner. You see what this really does.
3160 * We have to guarantee mem->res.limit < mem->memsw.limit.
3161 */
3162 mutex_lock(&set_limit_mutex);
3163 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3164 if (memlimit > val) {
3165 ret = -EINVAL;
3166 mutex_unlock(&set_limit_mutex);
3167 break;
3168 }
3c11ecf4
KH
3169 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3170 if (memswlimit < val)
3171 enlarge = 1;
8c7c6e34 3172 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3173 if (!ret) {
3174 if (memlimit == val)
3175 memcg->memsw_is_minimum = true;
3176 else
3177 memcg->memsw_is_minimum = false;
3178 }
8c7c6e34
KH
3179 mutex_unlock(&set_limit_mutex);
3180
3181 if (!ret)
3182 break;
3183
4e416953 3184 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
3185 MEM_CGROUP_RECLAIM_NOSWAP |
3186 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3187 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3188 /* Usage is reduced ? */
8c7c6e34 3189 if (curusage >= oldusage)
628f4235 3190 retry_count--;
81d39c20
KH
3191 else
3192 oldusage = curusage;
628f4235 3193 }
3c11ecf4
KH
3194 if (!ret && enlarge)
3195 memcg_oom_recover(memcg);
628f4235
KH
3196 return ret;
3197}
3198
4e416953 3199unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
00918b6a 3200 gfp_t gfp_mask)
4e416953
BS
3201{
3202 unsigned long nr_reclaimed = 0;
3203 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3204 unsigned long reclaimed;
3205 int loop = 0;
3206 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3207 unsigned long long excess;
4e416953
BS
3208
3209 if (order > 0)
3210 return 0;
3211
00918b6a 3212 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3213 /*
3214 * This loop can run a while, specially if mem_cgroup's continuously
3215 * keep exceeding their soft limit and putting the system under
3216 * pressure
3217 */
3218 do {
3219 if (next_mz)
3220 mz = next_mz;
3221 else
3222 mz = mem_cgroup_largest_soft_limit_node(mctz);
3223 if (!mz)
3224 break;
3225
3226 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3227 gfp_mask,
3228 MEM_CGROUP_RECLAIM_SOFT);
3229 nr_reclaimed += reclaimed;
3230 spin_lock(&mctz->lock);
3231
3232 /*
3233 * If we failed to reclaim anything from this memory cgroup
3234 * it is time to move on to the next cgroup
3235 */
3236 next_mz = NULL;
3237 if (!reclaimed) {
3238 do {
3239 /*
3240 * Loop until we find yet another one.
3241 *
3242 * By the time we get the soft_limit lock
3243 * again, someone might have aded the
3244 * group back on the RB tree. Iterate to
3245 * make sure we get a different mem.
3246 * mem_cgroup_largest_soft_limit_node returns
3247 * NULL if no other cgroup is present on
3248 * the tree
3249 */
3250 next_mz =
3251 __mem_cgroup_largest_soft_limit_node(mctz);
3252 if (next_mz == mz) {
3253 css_put(&next_mz->mem->css);
3254 next_mz = NULL;
3255 } else /* next_mz == NULL or other memcg */
3256 break;
3257 } while (1);
3258 }
4e416953 3259 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3260 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3261 /*
3262 * One school of thought says that we should not add
3263 * back the node to the tree if reclaim returns 0.
3264 * But our reclaim could return 0, simply because due
3265 * to priority we are exposing a smaller subset of
3266 * memory to reclaim from. Consider this as a longer
3267 * term TODO.
3268 */
ef8745c1
KH
3269 /* If excess == 0, no tree ops */
3270 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3271 spin_unlock(&mctz->lock);
3272 css_put(&mz->mem->css);
3273 loop++;
3274 /*
3275 * Could not reclaim anything and there are no more
3276 * mem cgroups to try or we seem to be looping without
3277 * reclaiming anything.
3278 */
3279 if (!nr_reclaimed &&
3280 (next_mz == NULL ||
3281 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3282 break;
3283 } while (!nr_reclaimed);
3284 if (next_mz)
3285 css_put(&next_mz->mem->css);
3286 return nr_reclaimed;
3287}
3288
cc847582
KH
3289/*
3290 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3291 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3292 */
f817ed48 3293static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3294 int node, int zid, enum lru_list lru)
cc847582 3295{
08e552c6
KH
3296 struct zone *zone;
3297 struct mem_cgroup_per_zone *mz;
f817ed48 3298 struct page_cgroup *pc, *busy;
08e552c6 3299 unsigned long flags, loop;
072c56c1 3300 struct list_head *list;
f817ed48 3301 int ret = 0;
072c56c1 3302
08e552c6
KH
3303 zone = &NODE_DATA(node)->node_zones[zid];
3304 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3305 list = &mz->lists[lru];
cc847582 3306
f817ed48
KH
3307 loop = MEM_CGROUP_ZSTAT(mz, lru);
3308 /* give some margin against EBUSY etc...*/
3309 loop += 256;
3310 busy = NULL;
3311 while (loop--) {
5564e88b
JW
3312 struct page *page;
3313
f817ed48 3314 ret = 0;
08e552c6 3315 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3316 if (list_empty(list)) {
08e552c6 3317 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3318 break;
f817ed48
KH
3319 }
3320 pc = list_entry(list->prev, struct page_cgroup, lru);
3321 if (busy == pc) {
3322 list_move(&pc->lru, list);
648bcc77 3323 busy = NULL;
08e552c6 3324 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3325 continue;
3326 }
08e552c6 3327 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3328
6b3ae58e 3329 page = lookup_cgroup_page(pc);
5564e88b
JW
3330
3331 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
f817ed48 3332 if (ret == -ENOMEM)
52d4b9ac 3333 break;
f817ed48
KH
3334
3335 if (ret == -EBUSY || ret == -EINVAL) {
3336 /* found lock contention or "pc" is obsolete. */
3337 busy = pc;
3338 cond_resched();
3339 } else
3340 busy = NULL;
cc847582 3341 }
08e552c6 3342
f817ed48
KH
3343 if (!ret && !list_empty(list))
3344 return -EBUSY;
3345 return ret;
cc847582
KH
3346}
3347
3348/*
3349 * make mem_cgroup's charge to be 0 if there is no task.
3350 * This enables deleting this mem_cgroup.
3351 */
c1e862c1 3352static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3353{
f817ed48
KH
3354 int ret;
3355 int node, zid, shrink;
3356 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3357 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3358
cc847582 3359 css_get(&mem->css);
f817ed48
KH
3360
3361 shrink = 0;
c1e862c1
KH
3362 /* should free all ? */
3363 if (free_all)
3364 goto try_to_free;
f817ed48 3365move_account:
fce66477 3366 do {
f817ed48 3367 ret = -EBUSY;
c1e862c1
KH
3368 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3369 goto out;
3370 ret = -EINTR;
3371 if (signal_pending(current))
cc847582 3372 goto out;
52d4b9ac
KH
3373 /* This is for making all *used* pages to be on LRU. */
3374 lru_add_drain_all();
cdec2e42 3375 drain_all_stock_sync();
f817ed48 3376 ret = 0;
32047e2a 3377 mem_cgroup_start_move(mem);
299b4eaa 3378 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3379 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3380 enum lru_list l;
f817ed48
KH
3381 for_each_lru(l) {
3382 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3383 node, zid, l);
f817ed48
KH
3384 if (ret)
3385 break;
3386 }
1ecaab2b 3387 }
f817ed48
KH
3388 if (ret)
3389 break;
3390 }
32047e2a 3391 mem_cgroup_end_move(mem);
3c11ecf4 3392 memcg_oom_recover(mem);
f817ed48
KH
3393 /* it seems parent cgroup doesn't have enough mem */
3394 if (ret == -ENOMEM)
3395 goto try_to_free;
52d4b9ac 3396 cond_resched();
fce66477
DN
3397 /* "ret" should also be checked to ensure all lists are empty. */
3398 } while (mem->res.usage > 0 || ret);
cc847582
KH
3399out:
3400 css_put(&mem->css);
3401 return ret;
f817ed48
KH
3402
3403try_to_free:
c1e862c1
KH
3404 /* returns EBUSY if there is a task or if we come here twice. */
3405 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3406 ret = -EBUSY;
3407 goto out;
3408 }
c1e862c1
KH
3409 /* we call try-to-free pages for make this cgroup empty */
3410 lru_add_drain_all();
f817ed48
KH
3411 /* try to free all pages in this cgroup */
3412 shrink = 1;
3413 while (nr_retries && mem->res.usage > 0) {
3414 int progress;
c1e862c1
KH
3415
3416 if (signal_pending(current)) {
3417 ret = -EINTR;
3418 goto out;
3419 }
a7885eb8
KM
3420 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3421 false, get_swappiness(mem));
c1e862c1 3422 if (!progress) {
f817ed48 3423 nr_retries--;
c1e862c1 3424 /* maybe some writeback is necessary */
8aa7e847 3425 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3426 }
f817ed48
KH
3427
3428 }
08e552c6 3429 lru_add_drain();
f817ed48 3430 /* try move_account...there may be some *locked* pages. */
fce66477 3431 goto move_account;
cc847582
KH
3432}
3433
c1e862c1
KH
3434int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3435{
3436 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3437}
3438
3439
18f59ea7
BS
3440static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3441{
3442 return mem_cgroup_from_cont(cont)->use_hierarchy;
3443}
3444
3445static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3446 u64 val)
3447{
3448 int retval = 0;
3449 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3450 struct cgroup *parent = cont->parent;
3451 struct mem_cgroup *parent_mem = NULL;
3452
3453 if (parent)
3454 parent_mem = mem_cgroup_from_cont(parent);
3455
3456 cgroup_lock();
3457 /*
af901ca1 3458 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3459 * in the child subtrees. If it is unset, then the change can
3460 * occur, provided the current cgroup has no children.
3461 *
3462 * For the root cgroup, parent_mem is NULL, we allow value to be
3463 * set if there are no children.
3464 */
3465 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3466 (val == 1 || val == 0)) {
3467 if (list_empty(&cont->children))
3468 mem->use_hierarchy = val;
3469 else
3470 retval = -EBUSY;
3471 } else
3472 retval = -EINVAL;
3473 cgroup_unlock();
3474
3475 return retval;
3476}
3477
0c3e73e8 3478
7d74b06f
KH
3479static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3480 enum mem_cgroup_stat_index idx)
0c3e73e8 3481{
7d74b06f
KH
3482 struct mem_cgroup *iter;
3483 s64 val = 0;
0c3e73e8 3484
7d74b06f
KH
3485 /* each per cpu's value can be minus.Then, use s64 */
3486 for_each_mem_cgroup_tree(iter, mem)
3487 val += mem_cgroup_read_stat(iter, idx);
3488
3489 if (val < 0) /* race ? */
3490 val = 0;
3491 return val;
0c3e73e8
BS
3492}
3493
104f3928
KS
3494static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3495{
7d74b06f 3496 u64 val;
104f3928
KS
3497
3498 if (!mem_cgroup_is_root(mem)) {
3499 if (!swap)
3500 return res_counter_read_u64(&mem->res, RES_USAGE);
3501 else
3502 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3503 }
3504
7d74b06f
KH
3505 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3506 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3507
7d74b06f
KH
3508 if (swap)
3509 val += mem_cgroup_get_recursive_idx_stat(mem,
3510 MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3511
3512 return val << PAGE_SHIFT;
3513}
3514
2c3daa72 3515static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3516{
8c7c6e34 3517 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3518 u64 val;
8c7c6e34
KH
3519 int type, name;
3520
3521 type = MEMFILE_TYPE(cft->private);
3522 name = MEMFILE_ATTR(cft->private);
3523 switch (type) {
3524 case _MEM:
104f3928
KS
3525 if (name == RES_USAGE)
3526 val = mem_cgroup_usage(mem, false);
3527 else
0c3e73e8 3528 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3529 break;
3530 case _MEMSWAP:
104f3928
KS
3531 if (name == RES_USAGE)
3532 val = mem_cgroup_usage(mem, true);
3533 else
0c3e73e8 3534 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3535 break;
3536 default:
3537 BUG();
3538 break;
3539 }
3540 return val;
8cdea7c0 3541}
628f4235
KH
3542/*
3543 * The user of this function is...
3544 * RES_LIMIT.
3545 */
856c13aa
PM
3546static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3547 const char *buffer)
8cdea7c0 3548{
628f4235 3549 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3550 int type, name;
628f4235
KH
3551 unsigned long long val;
3552 int ret;
3553
8c7c6e34
KH
3554 type = MEMFILE_TYPE(cft->private);
3555 name = MEMFILE_ATTR(cft->private);
3556 switch (name) {
628f4235 3557 case RES_LIMIT:
4b3bde4c
BS
3558 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3559 ret = -EINVAL;
3560 break;
3561 }
628f4235
KH
3562 /* This function does all necessary parse...reuse it */
3563 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3564 if (ret)
3565 break;
3566 if (type == _MEM)
628f4235 3567 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3568 else
3569 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3570 break;
296c81d8
BS
3571 case RES_SOFT_LIMIT:
3572 ret = res_counter_memparse_write_strategy(buffer, &val);
3573 if (ret)
3574 break;
3575 /*
3576 * For memsw, soft limits are hard to implement in terms
3577 * of semantics, for now, we support soft limits for
3578 * control without swap
3579 */
3580 if (type == _MEM)
3581 ret = res_counter_set_soft_limit(&memcg->res, val);
3582 else
3583 ret = -EINVAL;
3584 break;
628f4235
KH
3585 default:
3586 ret = -EINVAL; /* should be BUG() ? */
3587 break;
3588 }
3589 return ret;
8cdea7c0
BS
3590}
3591
fee7b548
KH
3592static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3593 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3594{
3595 struct cgroup *cgroup;
3596 unsigned long long min_limit, min_memsw_limit, tmp;
3597
3598 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3599 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3600 cgroup = memcg->css.cgroup;
3601 if (!memcg->use_hierarchy)
3602 goto out;
3603
3604 while (cgroup->parent) {
3605 cgroup = cgroup->parent;
3606 memcg = mem_cgroup_from_cont(cgroup);
3607 if (!memcg->use_hierarchy)
3608 break;
3609 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3610 min_limit = min(min_limit, tmp);
3611 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3612 min_memsw_limit = min(min_memsw_limit, tmp);
3613 }
3614out:
3615 *mem_limit = min_limit;
3616 *memsw_limit = min_memsw_limit;
3617 return;
3618}
3619
29f2a4da 3620static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3621{
3622 struct mem_cgroup *mem;
8c7c6e34 3623 int type, name;
c84872e1
PE
3624
3625 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3626 type = MEMFILE_TYPE(event);
3627 name = MEMFILE_ATTR(event);
3628 switch (name) {
29f2a4da 3629 case RES_MAX_USAGE:
8c7c6e34
KH
3630 if (type == _MEM)
3631 res_counter_reset_max(&mem->res);
3632 else
3633 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3634 break;
3635 case RES_FAILCNT:
8c7c6e34
KH
3636 if (type == _MEM)
3637 res_counter_reset_failcnt(&mem->res);
3638 else
3639 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3640 break;
3641 }
f64c3f54 3642
85cc59db 3643 return 0;
c84872e1
PE
3644}
3645
7dc74be0
DN
3646static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3647 struct cftype *cft)
3648{
3649 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3650}
3651
02491447 3652#ifdef CONFIG_MMU
7dc74be0
DN
3653static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3654 struct cftype *cft, u64 val)
3655{
3656 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3657
3658 if (val >= (1 << NR_MOVE_TYPE))
3659 return -EINVAL;
3660 /*
3661 * We check this value several times in both in can_attach() and
3662 * attach(), so we need cgroup lock to prevent this value from being
3663 * inconsistent.
3664 */
3665 cgroup_lock();
3666 mem->move_charge_at_immigrate = val;
3667 cgroup_unlock();
3668
3669 return 0;
3670}
02491447
DN
3671#else
3672static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3673 struct cftype *cft, u64 val)
3674{
3675 return -ENOSYS;
3676}
3677#endif
7dc74be0 3678
14067bb3
KH
3679
3680/* For read statistics */
3681enum {
3682 MCS_CACHE,
3683 MCS_RSS,
d8046582 3684 MCS_FILE_MAPPED,
14067bb3
KH
3685 MCS_PGPGIN,
3686 MCS_PGPGOUT,
1dd3a273 3687 MCS_SWAP,
14067bb3
KH
3688 MCS_INACTIVE_ANON,
3689 MCS_ACTIVE_ANON,
3690 MCS_INACTIVE_FILE,
3691 MCS_ACTIVE_FILE,
3692 MCS_UNEVICTABLE,
3693 NR_MCS_STAT,
3694};
3695
3696struct mcs_total_stat {
3697 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3698};
3699
14067bb3
KH
3700struct {
3701 char *local_name;
3702 char *total_name;
3703} memcg_stat_strings[NR_MCS_STAT] = {
3704 {"cache", "total_cache"},
3705 {"rss", "total_rss"},
d69b042f 3706 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3707 {"pgpgin", "total_pgpgin"},
3708 {"pgpgout", "total_pgpgout"},
1dd3a273 3709 {"swap", "total_swap"},
14067bb3
KH
3710 {"inactive_anon", "total_inactive_anon"},
3711 {"active_anon", "total_active_anon"},
3712 {"inactive_file", "total_inactive_file"},
3713 {"active_file", "total_active_file"},
3714 {"unevictable", "total_unevictable"}
3715};
3716
3717
7d74b06f
KH
3718static void
3719mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 3720{
14067bb3
KH
3721 s64 val;
3722
3723 /* per cpu stat */
c62b1a3b 3724 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3725 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3726 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3727 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3728 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3729 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c62b1a3b 3730 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
14067bb3 3731 s->stat[MCS_PGPGIN] += val;
c62b1a3b 3732 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
14067bb3 3733 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3734 if (do_swap_account) {
c62b1a3b 3735 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3736 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3737 }
14067bb3
KH
3738
3739 /* per zone stat */
3740 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3741 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3742 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3743 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3744 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3745 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3746 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3747 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3748 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3749 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
3750}
3751
3752static void
3753mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3754{
7d74b06f
KH
3755 struct mem_cgroup *iter;
3756
3757 for_each_mem_cgroup_tree(iter, mem)
3758 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
3759}
3760
c64745cf
PM
3761static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3762 struct cgroup_map_cb *cb)
d2ceb9b7 3763{
d2ceb9b7 3764 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3765 struct mcs_total_stat mystat;
d2ceb9b7
KH
3766 int i;
3767
14067bb3
KH
3768 memset(&mystat, 0, sizeof(mystat));
3769 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3770
1dd3a273
DN
3771 for (i = 0; i < NR_MCS_STAT; i++) {
3772 if (i == MCS_SWAP && !do_swap_account)
3773 continue;
14067bb3 3774 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3775 }
7b854121 3776
14067bb3 3777 /* Hierarchical information */
fee7b548
KH
3778 {
3779 unsigned long long limit, memsw_limit;
3780 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3781 cb->fill(cb, "hierarchical_memory_limit", limit);
3782 if (do_swap_account)
3783 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3784 }
7f016ee8 3785
14067bb3
KH
3786 memset(&mystat, 0, sizeof(mystat));
3787 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3788 for (i = 0; i < NR_MCS_STAT; i++) {
3789 if (i == MCS_SWAP && !do_swap_account)
3790 continue;
14067bb3 3791 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3792 }
14067bb3 3793
7f016ee8 3794#ifdef CONFIG_DEBUG_VM
c772be93 3795 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3796
3797 {
3798 int nid, zid;
3799 struct mem_cgroup_per_zone *mz;
3800 unsigned long recent_rotated[2] = {0, 0};
3801 unsigned long recent_scanned[2] = {0, 0};
3802
3803 for_each_online_node(nid)
3804 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3805 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3806
3807 recent_rotated[0] +=
3808 mz->reclaim_stat.recent_rotated[0];
3809 recent_rotated[1] +=
3810 mz->reclaim_stat.recent_rotated[1];
3811 recent_scanned[0] +=
3812 mz->reclaim_stat.recent_scanned[0];
3813 recent_scanned[1] +=
3814 mz->reclaim_stat.recent_scanned[1];
3815 }
3816 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3817 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3818 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3819 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3820 }
3821#endif
3822
d2ceb9b7
KH
3823 return 0;
3824}
3825
a7885eb8
KM
3826static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3827{
3828 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3829
3830 return get_swappiness(memcg);
3831}
3832
3833static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3834 u64 val)
3835{
3836 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3837 struct mem_cgroup *parent;
068b38c1 3838
a7885eb8
KM
3839 if (val > 100)
3840 return -EINVAL;
3841
3842 if (cgrp->parent == NULL)
3843 return -EINVAL;
3844
3845 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3846
3847 cgroup_lock();
3848
a7885eb8
KM
3849 /* If under hierarchy, only empty-root can set this value */
3850 if ((parent->use_hierarchy) ||
068b38c1
LZ
3851 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3852 cgroup_unlock();
a7885eb8 3853 return -EINVAL;
068b38c1 3854 }
a7885eb8 3855
a7885eb8 3856 memcg->swappiness = val;
a7885eb8 3857
068b38c1
LZ
3858 cgroup_unlock();
3859
a7885eb8
KM
3860 return 0;
3861}
3862
2e72b634
KS
3863static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3864{
3865 struct mem_cgroup_threshold_ary *t;
3866 u64 usage;
3867 int i;
3868
3869 rcu_read_lock();
3870 if (!swap)
2c488db2 3871 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3872 else
2c488db2 3873 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3874
3875 if (!t)
3876 goto unlock;
3877
3878 usage = mem_cgroup_usage(memcg, swap);
3879
3880 /*
3881 * current_threshold points to threshold just below usage.
3882 * If it's not true, a threshold was crossed after last
3883 * call of __mem_cgroup_threshold().
3884 */
5407a562 3885 i = t->current_threshold;
2e72b634
KS
3886
3887 /*
3888 * Iterate backward over array of thresholds starting from
3889 * current_threshold and check if a threshold is crossed.
3890 * If none of thresholds below usage is crossed, we read
3891 * only one element of the array here.
3892 */
3893 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3894 eventfd_signal(t->entries[i].eventfd, 1);
3895
3896 /* i = current_threshold + 1 */
3897 i++;
3898
3899 /*
3900 * Iterate forward over array of thresholds starting from
3901 * current_threshold+1 and check if a threshold is crossed.
3902 * If none of thresholds above usage is crossed, we read
3903 * only one element of the array here.
3904 */
3905 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3906 eventfd_signal(t->entries[i].eventfd, 1);
3907
3908 /* Update current_threshold */
5407a562 3909 t->current_threshold = i - 1;
2e72b634
KS
3910unlock:
3911 rcu_read_unlock();
3912}
3913
3914static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3915{
ad4ca5f4
KS
3916 while (memcg) {
3917 __mem_cgroup_threshold(memcg, false);
3918 if (do_swap_account)
3919 __mem_cgroup_threshold(memcg, true);
3920
3921 memcg = parent_mem_cgroup(memcg);
3922 }
2e72b634
KS
3923}
3924
3925static int compare_thresholds(const void *a, const void *b)
3926{
3927 const struct mem_cgroup_threshold *_a = a;
3928 const struct mem_cgroup_threshold *_b = b;
3929
3930 return _a->threshold - _b->threshold;
3931}
3932
7d74b06f 3933static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
3934{
3935 struct mem_cgroup_eventfd_list *ev;
3936
3937 list_for_each_entry(ev, &mem->oom_notify, list)
3938 eventfd_signal(ev->eventfd, 1);
3939 return 0;
3940}
3941
3942static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3943{
7d74b06f
KH
3944 struct mem_cgroup *iter;
3945
3946 for_each_mem_cgroup_tree(iter, mem)
3947 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3948}
3949
3950static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3951 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
3952{
3953 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3954 struct mem_cgroup_thresholds *thresholds;
3955 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3956 int type = MEMFILE_TYPE(cft->private);
3957 u64 threshold, usage;
2c488db2 3958 int i, size, ret;
2e72b634
KS
3959
3960 ret = res_counter_memparse_write_strategy(args, &threshold);
3961 if (ret)
3962 return ret;
3963
3964 mutex_lock(&memcg->thresholds_lock);
2c488db2 3965
2e72b634 3966 if (type == _MEM)
2c488db2 3967 thresholds = &memcg->thresholds;
2e72b634 3968 else if (type == _MEMSWAP)
2c488db2 3969 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3970 else
3971 BUG();
3972
3973 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3974
3975 /* Check if a threshold crossed before adding a new one */
2c488db2 3976 if (thresholds->primary)
2e72b634
KS
3977 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3978
2c488db2 3979 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3980
3981 /* Allocate memory for new array of thresholds */
2c488db2 3982 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3983 GFP_KERNEL);
2c488db2 3984 if (!new) {
2e72b634
KS
3985 ret = -ENOMEM;
3986 goto unlock;
3987 }
2c488db2 3988 new->size = size;
2e72b634
KS
3989
3990 /* Copy thresholds (if any) to new array */
2c488db2
KS
3991 if (thresholds->primary) {
3992 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3993 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3994 }
3995
2e72b634 3996 /* Add new threshold */
2c488db2
KS
3997 new->entries[size - 1].eventfd = eventfd;
3998 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3999
4000 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4001 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4002 compare_thresholds, NULL);
4003
4004 /* Find current threshold */
2c488db2 4005 new->current_threshold = -1;
2e72b634 4006 for (i = 0; i < size; i++) {
2c488db2 4007 if (new->entries[i].threshold < usage) {
2e72b634 4008 /*
2c488db2
KS
4009 * new->current_threshold will not be used until
4010 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4011 * it here.
4012 */
2c488db2 4013 ++new->current_threshold;
2e72b634
KS
4014 }
4015 }
4016
2c488db2
KS
4017 /* Free old spare buffer and save old primary buffer as spare */
4018 kfree(thresholds->spare);
4019 thresholds->spare = thresholds->primary;
4020
4021 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4022
907860ed 4023 /* To be sure that nobody uses thresholds */
2e72b634
KS
4024 synchronize_rcu();
4025
2e72b634
KS
4026unlock:
4027 mutex_unlock(&memcg->thresholds_lock);
4028
4029 return ret;
4030}
4031
907860ed 4032static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4033 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4034{
4035 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4036 struct mem_cgroup_thresholds *thresholds;
4037 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4038 int type = MEMFILE_TYPE(cft->private);
4039 u64 usage;
2c488db2 4040 int i, j, size;
2e72b634
KS
4041
4042 mutex_lock(&memcg->thresholds_lock);
4043 if (type == _MEM)
2c488db2 4044 thresholds = &memcg->thresholds;
2e72b634 4045 else if (type == _MEMSWAP)
2c488db2 4046 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4047 else
4048 BUG();
4049
4050 /*
4051 * Something went wrong if we trying to unregister a threshold
4052 * if we don't have thresholds
4053 */
4054 BUG_ON(!thresholds);
4055
4056 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4057
4058 /* Check if a threshold crossed before removing */
4059 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4060
4061 /* Calculate new number of threshold */
2c488db2
KS
4062 size = 0;
4063 for (i = 0; i < thresholds->primary->size; i++) {
4064 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4065 size++;
4066 }
4067
2c488db2 4068 new = thresholds->spare;
907860ed 4069
2e72b634
KS
4070 /* Set thresholds array to NULL if we don't have thresholds */
4071 if (!size) {
2c488db2
KS
4072 kfree(new);
4073 new = NULL;
907860ed 4074 goto swap_buffers;
2e72b634
KS
4075 }
4076
2c488db2 4077 new->size = size;
2e72b634
KS
4078
4079 /* Copy thresholds and find current threshold */
2c488db2
KS
4080 new->current_threshold = -1;
4081 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4082 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4083 continue;
4084
2c488db2
KS
4085 new->entries[j] = thresholds->primary->entries[i];
4086 if (new->entries[j].threshold < usage) {
2e72b634 4087 /*
2c488db2 4088 * new->current_threshold will not be used
2e72b634
KS
4089 * until rcu_assign_pointer(), so it's safe to increment
4090 * it here.
4091 */
2c488db2 4092 ++new->current_threshold;
2e72b634
KS
4093 }
4094 j++;
4095 }
4096
907860ed 4097swap_buffers:
2c488db2
KS
4098 /* Swap primary and spare array */
4099 thresholds->spare = thresholds->primary;
4100 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4101
907860ed 4102 /* To be sure that nobody uses thresholds */
2e72b634
KS
4103 synchronize_rcu();
4104
2e72b634 4105 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4106}
c1e862c1 4107
9490ff27
KH
4108static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4109 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4110{
4111 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4112 struct mem_cgroup_eventfd_list *event;
4113 int type = MEMFILE_TYPE(cft->private);
4114
4115 BUG_ON(type != _OOM_TYPE);
4116 event = kmalloc(sizeof(*event), GFP_KERNEL);
4117 if (!event)
4118 return -ENOMEM;
4119
4120 mutex_lock(&memcg_oom_mutex);
4121
4122 event->eventfd = eventfd;
4123 list_add(&event->list, &memcg->oom_notify);
4124
4125 /* already in OOM ? */
4126 if (atomic_read(&memcg->oom_lock))
4127 eventfd_signal(eventfd, 1);
4128 mutex_unlock(&memcg_oom_mutex);
4129
4130 return 0;
4131}
4132
907860ed 4133static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4134 struct cftype *cft, struct eventfd_ctx *eventfd)
4135{
4136 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4137 struct mem_cgroup_eventfd_list *ev, *tmp;
4138 int type = MEMFILE_TYPE(cft->private);
4139
4140 BUG_ON(type != _OOM_TYPE);
4141
4142 mutex_lock(&memcg_oom_mutex);
4143
4144 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4145 if (ev->eventfd == eventfd) {
4146 list_del(&ev->list);
4147 kfree(ev);
4148 }
4149 }
4150
4151 mutex_unlock(&memcg_oom_mutex);
9490ff27
KH
4152}
4153
3c11ecf4
KH
4154static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4155 struct cftype *cft, struct cgroup_map_cb *cb)
4156{
4157 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4158
4159 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4160
4161 if (atomic_read(&mem->oom_lock))
4162 cb->fill(cb, "under_oom", 1);
4163 else
4164 cb->fill(cb, "under_oom", 0);
4165 return 0;
4166}
4167
3c11ecf4
KH
4168static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4169 struct cftype *cft, u64 val)
4170{
4171 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4172 struct mem_cgroup *parent;
4173
4174 /* cannot set to root cgroup and only 0 and 1 are allowed */
4175 if (!cgrp->parent || !((val == 0) || (val == 1)))
4176 return -EINVAL;
4177
4178 parent = mem_cgroup_from_cont(cgrp->parent);
4179
4180 cgroup_lock();
4181 /* oom-kill-disable is a flag for subhierarchy. */
4182 if ((parent->use_hierarchy) ||
4183 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4184 cgroup_unlock();
4185 return -EINVAL;
4186 }
4187 mem->oom_kill_disable = val;
4d845ebf
KH
4188 if (!val)
4189 memcg_oom_recover(mem);
3c11ecf4
KH
4190 cgroup_unlock();
4191 return 0;
4192}
4193
8cdea7c0
BS
4194static struct cftype mem_cgroup_files[] = {
4195 {
0eea1030 4196 .name = "usage_in_bytes",
8c7c6e34 4197 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4198 .read_u64 = mem_cgroup_read,
9490ff27
KH
4199 .register_event = mem_cgroup_usage_register_event,
4200 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4201 },
c84872e1
PE
4202 {
4203 .name = "max_usage_in_bytes",
8c7c6e34 4204 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4205 .trigger = mem_cgroup_reset,
c84872e1
PE
4206 .read_u64 = mem_cgroup_read,
4207 },
8cdea7c0 4208 {
0eea1030 4209 .name = "limit_in_bytes",
8c7c6e34 4210 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4211 .write_string = mem_cgroup_write,
2c3daa72 4212 .read_u64 = mem_cgroup_read,
8cdea7c0 4213 },
296c81d8
BS
4214 {
4215 .name = "soft_limit_in_bytes",
4216 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4217 .write_string = mem_cgroup_write,
4218 .read_u64 = mem_cgroup_read,
4219 },
8cdea7c0
BS
4220 {
4221 .name = "failcnt",
8c7c6e34 4222 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4223 .trigger = mem_cgroup_reset,
2c3daa72 4224 .read_u64 = mem_cgroup_read,
8cdea7c0 4225 },
d2ceb9b7
KH
4226 {
4227 .name = "stat",
c64745cf 4228 .read_map = mem_control_stat_show,
d2ceb9b7 4229 },
c1e862c1
KH
4230 {
4231 .name = "force_empty",
4232 .trigger = mem_cgroup_force_empty_write,
4233 },
18f59ea7
BS
4234 {
4235 .name = "use_hierarchy",
4236 .write_u64 = mem_cgroup_hierarchy_write,
4237 .read_u64 = mem_cgroup_hierarchy_read,
4238 },
a7885eb8
KM
4239 {
4240 .name = "swappiness",
4241 .read_u64 = mem_cgroup_swappiness_read,
4242 .write_u64 = mem_cgroup_swappiness_write,
4243 },
7dc74be0
DN
4244 {
4245 .name = "move_charge_at_immigrate",
4246 .read_u64 = mem_cgroup_move_charge_read,
4247 .write_u64 = mem_cgroup_move_charge_write,
4248 },
9490ff27
KH
4249 {
4250 .name = "oom_control",
3c11ecf4
KH
4251 .read_map = mem_cgroup_oom_control_read,
4252 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4253 .register_event = mem_cgroup_oom_register_event,
4254 .unregister_event = mem_cgroup_oom_unregister_event,
4255 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4256 },
8cdea7c0
BS
4257};
4258
8c7c6e34
KH
4259#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4260static struct cftype memsw_cgroup_files[] = {
4261 {
4262 .name = "memsw.usage_in_bytes",
4263 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4264 .read_u64 = mem_cgroup_read,
9490ff27
KH
4265 .register_event = mem_cgroup_usage_register_event,
4266 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4267 },
4268 {
4269 .name = "memsw.max_usage_in_bytes",
4270 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4271 .trigger = mem_cgroup_reset,
4272 .read_u64 = mem_cgroup_read,
4273 },
4274 {
4275 .name = "memsw.limit_in_bytes",
4276 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4277 .write_string = mem_cgroup_write,
4278 .read_u64 = mem_cgroup_read,
4279 },
4280 {
4281 .name = "memsw.failcnt",
4282 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4283 .trigger = mem_cgroup_reset,
4284 .read_u64 = mem_cgroup_read,
4285 },
4286};
4287
4288static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4289{
4290 if (!do_swap_account)
4291 return 0;
4292 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4293 ARRAY_SIZE(memsw_cgroup_files));
4294};
4295#else
4296static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4297{
4298 return 0;
4299}
4300#endif
4301
6d12e2d8
KH
4302static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4303{
4304 struct mem_cgroup_per_node *pn;
1ecaab2b 4305 struct mem_cgroup_per_zone *mz;
b69408e8 4306 enum lru_list l;
41e3355d 4307 int zone, tmp = node;
1ecaab2b
KH
4308 /*
4309 * This routine is called against possible nodes.
4310 * But it's BUG to call kmalloc() against offline node.
4311 *
4312 * TODO: this routine can waste much memory for nodes which will
4313 * never be onlined. It's better to use memory hotplug callback
4314 * function.
4315 */
41e3355d
KH
4316 if (!node_state(node, N_NORMAL_MEMORY))
4317 tmp = -1;
17295c88 4318 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4319 if (!pn)
4320 return 1;
1ecaab2b 4321
6d12e2d8 4322 mem->info.nodeinfo[node] = pn;
1ecaab2b
KH
4323 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4324 mz = &pn->zoneinfo[zone];
b69408e8
CL
4325 for_each_lru(l)
4326 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4327 mz->usage_in_excess = 0;
4e416953
BS
4328 mz->on_tree = false;
4329 mz->mem = mem;
1ecaab2b 4330 }
6d12e2d8
KH
4331 return 0;
4332}
4333
1ecaab2b
KH
4334static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4335{
4336 kfree(mem->info.nodeinfo[node]);
4337}
4338
33327948
KH
4339static struct mem_cgroup *mem_cgroup_alloc(void)
4340{
4341 struct mem_cgroup *mem;
c62b1a3b 4342 int size = sizeof(struct mem_cgroup);
33327948 4343
c62b1a3b 4344 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4345 if (size < PAGE_SIZE)
17295c88 4346 mem = kzalloc(size, GFP_KERNEL);
33327948 4347 else
17295c88 4348 mem = vzalloc(size);
33327948 4349
e7bbcdf3
DC
4350 if (!mem)
4351 return NULL;
4352
c62b1a3b 4353 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4354 if (!mem->stat)
4355 goto out_free;
711d3d2c 4356 spin_lock_init(&mem->pcp_counter_lock);
33327948 4357 return mem;
d2e61b8d
DC
4358
4359out_free:
4360 if (size < PAGE_SIZE)
4361 kfree(mem);
4362 else
4363 vfree(mem);
4364 return NULL;
33327948
KH
4365}
4366
8c7c6e34
KH
4367/*
4368 * At destroying mem_cgroup, references from swap_cgroup can remain.
4369 * (scanning all at force_empty is too costly...)
4370 *
4371 * Instead of clearing all references at force_empty, we remember
4372 * the number of reference from swap_cgroup and free mem_cgroup when
4373 * it goes down to 0.
4374 *
8c7c6e34
KH
4375 * Removal of cgroup itself succeeds regardless of refs from swap.
4376 */
4377
a7ba0eef 4378static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4379{
08e552c6
KH
4380 int node;
4381
f64c3f54 4382 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4383 free_css_id(&mem_cgroup_subsys, &mem->css);
4384
08e552c6
KH
4385 for_each_node_state(node, N_POSSIBLE)
4386 free_mem_cgroup_per_zone_info(mem, node);
4387
c62b1a3b
KH
4388 free_percpu(mem->stat);
4389 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4390 kfree(mem);
4391 else
4392 vfree(mem);
4393}
4394
8c7c6e34
KH
4395static void mem_cgroup_get(struct mem_cgroup *mem)
4396{
4397 atomic_inc(&mem->refcnt);
4398}
4399
483c30b5 4400static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4401{
483c30b5 4402 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4403 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4404 __mem_cgroup_free(mem);
7bcc1bb1
DN
4405 if (parent)
4406 mem_cgroup_put(parent);
4407 }
8c7c6e34
KH
4408}
4409
483c30b5
DN
4410static void mem_cgroup_put(struct mem_cgroup *mem)
4411{
4412 __mem_cgroup_put(mem, 1);
4413}
4414
7bcc1bb1
DN
4415/*
4416 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4417 */
4418static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4419{
4420 if (!mem->res.parent)
4421 return NULL;
4422 return mem_cgroup_from_res_counter(mem->res.parent, res);
4423}
33327948 4424
c077719b
KH
4425#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4426static void __init enable_swap_cgroup(void)
4427{
f8d66542 4428 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4429 do_swap_account = 1;
4430}
4431#else
4432static void __init enable_swap_cgroup(void)
4433{
4434}
4435#endif
4436
f64c3f54
BS
4437static int mem_cgroup_soft_limit_tree_init(void)
4438{
4439 struct mem_cgroup_tree_per_node *rtpn;
4440 struct mem_cgroup_tree_per_zone *rtpz;
4441 int tmp, node, zone;
4442
4443 for_each_node_state(node, N_POSSIBLE) {
4444 tmp = node;
4445 if (!node_state(node, N_NORMAL_MEMORY))
4446 tmp = -1;
4447 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4448 if (!rtpn)
4449 return 1;
4450
4451 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4452
4453 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4454 rtpz = &rtpn->rb_tree_per_zone[zone];
4455 rtpz->rb_root = RB_ROOT;
4456 spin_lock_init(&rtpz->lock);
4457 }
4458 }
4459 return 0;
4460}
4461
0eb253e2 4462static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4463mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4464{
28dbc4b6 4465 struct mem_cgroup *mem, *parent;
04046e1a 4466 long error = -ENOMEM;
6d12e2d8 4467 int node;
8cdea7c0 4468
c8dad2bb
JB
4469 mem = mem_cgroup_alloc();
4470 if (!mem)
04046e1a 4471 return ERR_PTR(error);
78fb7466 4472
6d12e2d8
KH
4473 for_each_node_state(node, N_POSSIBLE)
4474 if (alloc_mem_cgroup_per_zone_info(mem, node))
4475 goto free_out;
f64c3f54 4476
c077719b 4477 /* root ? */
28dbc4b6 4478 if (cont->parent == NULL) {
cdec2e42 4479 int cpu;
c077719b 4480 enable_swap_cgroup();
28dbc4b6 4481 parent = NULL;
4b3bde4c 4482 root_mem_cgroup = mem;
f64c3f54
BS
4483 if (mem_cgroup_soft_limit_tree_init())
4484 goto free_out;
cdec2e42
KH
4485 for_each_possible_cpu(cpu) {
4486 struct memcg_stock_pcp *stock =
4487 &per_cpu(memcg_stock, cpu);
4488 INIT_WORK(&stock->work, drain_local_stock);
4489 }
711d3d2c 4490 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4491 } else {
28dbc4b6 4492 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4493 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4494 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4495 }
28dbc4b6 4496
18f59ea7
BS
4497 if (parent && parent->use_hierarchy) {
4498 res_counter_init(&mem->res, &parent->res);
4499 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4500 /*
4501 * We increment refcnt of the parent to ensure that we can
4502 * safely access it on res_counter_charge/uncharge.
4503 * This refcnt will be decremented when freeing this
4504 * mem_cgroup(see mem_cgroup_put).
4505 */
4506 mem_cgroup_get(parent);
18f59ea7
BS
4507 } else {
4508 res_counter_init(&mem->res, NULL);
4509 res_counter_init(&mem->memsw, NULL);
4510 }
04046e1a 4511 mem->last_scanned_child = 0;
9490ff27 4512 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4513
a7885eb8
KM
4514 if (parent)
4515 mem->swappiness = get_swappiness(parent);
a7ba0eef 4516 atomic_set(&mem->refcnt, 1);
7dc74be0 4517 mem->move_charge_at_immigrate = 0;
2e72b634 4518 mutex_init(&mem->thresholds_lock);
8cdea7c0 4519 return &mem->css;
6d12e2d8 4520free_out:
a7ba0eef 4521 __mem_cgroup_free(mem);
4b3bde4c 4522 root_mem_cgroup = NULL;
04046e1a 4523 return ERR_PTR(error);
8cdea7c0
BS
4524}
4525
ec64f515 4526static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4527 struct cgroup *cont)
4528{
4529 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4530
4531 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4532}
4533
8cdea7c0
BS
4534static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4535 struct cgroup *cont)
4536{
c268e994 4537 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4538
c268e994 4539 mem_cgroup_put(mem);
8cdea7c0
BS
4540}
4541
4542static int mem_cgroup_populate(struct cgroup_subsys *ss,
4543 struct cgroup *cont)
4544{
8c7c6e34
KH
4545 int ret;
4546
4547 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4548 ARRAY_SIZE(mem_cgroup_files));
4549
4550 if (!ret)
4551 ret = register_memsw_files(cont, ss);
4552 return ret;
8cdea7c0
BS
4553}
4554
02491447 4555#ifdef CONFIG_MMU
7dc74be0 4556/* Handlers for move charge at task migration. */
854ffa8d
DN
4557#define PRECHARGE_COUNT_AT_ONCE 256
4558static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4559{
854ffa8d
DN
4560 int ret = 0;
4561 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4562 struct mem_cgroup *mem = mc.to;
4563
854ffa8d
DN
4564 if (mem_cgroup_is_root(mem)) {
4565 mc.precharge += count;
4566 /* we don't need css_get for root */
4567 return ret;
4568 }
4569 /* try to charge at once */
4570 if (count > 1) {
4571 struct res_counter *dummy;
4572 /*
4573 * "mem" cannot be under rmdir() because we've already checked
4574 * by cgroup_lock_live_cgroup() that it is not removed and we
4575 * are still under the same cgroup_mutex. So we can postpone
4576 * css_get().
4577 */
4578 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4579 goto one_by_one;
4580 if (do_swap_account && res_counter_charge(&mem->memsw,
4581 PAGE_SIZE * count, &dummy)) {
4582 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4583 goto one_by_one;
4584 }
4585 mc.precharge += count;
854ffa8d
DN
4586 return ret;
4587 }
4588one_by_one:
4589 /* fall back to one by one charge */
4590 while (count--) {
4591 if (signal_pending(current)) {
4592 ret = -EINTR;
4593 break;
4594 }
4595 if (!batch_count--) {
4596 batch_count = PRECHARGE_COUNT_AT_ONCE;
4597 cond_resched();
4598 }
ec168510
AA
4599 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4600 PAGE_SIZE);
854ffa8d
DN
4601 if (ret || !mem)
4602 /* mem_cgroup_clear_mc() will do uncharge later */
4603 return -ENOMEM;
4604 mc.precharge++;
4605 }
4ffef5fe
DN
4606 return ret;
4607}
4608
4609/**
4610 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4611 * @vma: the vma the pte to be checked belongs
4612 * @addr: the address corresponding to the pte to be checked
4613 * @ptent: the pte to be checked
02491447 4614 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4615 *
4616 * Returns
4617 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4618 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4619 * move charge. if @target is not NULL, the page is stored in target->page
4620 * with extra refcnt got(Callers should handle it).
02491447
DN
4621 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4622 * target for charge migration. if @target is not NULL, the entry is stored
4623 * in target->ent.
4ffef5fe
DN
4624 *
4625 * Called with pte lock held.
4626 */
4ffef5fe
DN
4627union mc_target {
4628 struct page *page;
02491447 4629 swp_entry_t ent;
4ffef5fe
DN
4630};
4631
4ffef5fe
DN
4632enum mc_target_type {
4633 MC_TARGET_NONE, /* not used */
4634 MC_TARGET_PAGE,
02491447 4635 MC_TARGET_SWAP,
4ffef5fe
DN
4636};
4637
90254a65
DN
4638static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4639 unsigned long addr, pte_t ptent)
4ffef5fe 4640{
90254a65 4641 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4642
90254a65
DN
4643 if (!page || !page_mapped(page))
4644 return NULL;
4645 if (PageAnon(page)) {
4646 /* we don't move shared anon */
4647 if (!move_anon() || page_mapcount(page) > 2)
4648 return NULL;
87946a72
DN
4649 } else if (!move_file())
4650 /* we ignore mapcount for file pages */
90254a65
DN
4651 return NULL;
4652 if (!get_page_unless_zero(page))
4653 return NULL;
4654
4655 return page;
4656}
4657
4658static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4659 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4660{
4661 int usage_count;
4662 struct page *page = NULL;
4663 swp_entry_t ent = pte_to_swp_entry(ptent);
4664
4665 if (!move_anon() || non_swap_entry(ent))
4666 return NULL;
4667 usage_count = mem_cgroup_count_swap_user(ent, &page);
4668 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
4669 if (page)
4670 put_page(page);
90254a65 4671 return NULL;
02491447 4672 }
90254a65
DN
4673 if (do_swap_account)
4674 entry->val = ent.val;
4675
4676 return page;
4677}
4678
87946a72
DN
4679static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4680 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4681{
4682 struct page *page = NULL;
4683 struct inode *inode;
4684 struct address_space *mapping;
4685 pgoff_t pgoff;
4686
4687 if (!vma->vm_file) /* anonymous vma */
4688 return NULL;
4689 if (!move_file())
4690 return NULL;
4691
4692 inode = vma->vm_file->f_path.dentry->d_inode;
4693 mapping = vma->vm_file->f_mapping;
4694 if (pte_none(ptent))
4695 pgoff = linear_page_index(vma, addr);
4696 else /* pte_file(ptent) is true */
4697 pgoff = pte_to_pgoff(ptent);
4698
4699 /* page is moved even if it's not RSS of this task(page-faulted). */
4700 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4701 page = find_get_page(mapping, pgoff);
4702 } else { /* shmem/tmpfs file. we should take account of swap too. */
4703 swp_entry_t ent;
4704 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4705 if (do_swap_account)
4706 entry->val = ent.val;
4707 }
4708
4709 return page;
4710}
4711
90254a65
DN
4712static int is_target_pte_for_mc(struct vm_area_struct *vma,
4713 unsigned long addr, pte_t ptent, union mc_target *target)
4714{
4715 struct page *page = NULL;
4716 struct page_cgroup *pc;
4717 int ret = 0;
4718 swp_entry_t ent = { .val = 0 };
4719
4720 if (pte_present(ptent))
4721 page = mc_handle_present_pte(vma, addr, ptent);
4722 else if (is_swap_pte(ptent))
4723 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
4724 else if (pte_none(ptent) || pte_file(ptent))
4725 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4726
4727 if (!page && !ent.val)
4728 return 0;
02491447
DN
4729 if (page) {
4730 pc = lookup_page_cgroup(page);
4731 /*
4732 * Do only loose check w/o page_cgroup lock.
4733 * mem_cgroup_move_account() checks the pc is valid or not under
4734 * the lock.
4735 */
4736 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4737 ret = MC_TARGET_PAGE;
4738 if (target)
4739 target->page = page;
4740 }
4741 if (!ret || !target)
4742 put_page(page);
4743 }
90254a65
DN
4744 /* There is a swap entry and a page doesn't exist or isn't charged */
4745 if (ent.val && !ret &&
7f0f1546
KH
4746 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4747 ret = MC_TARGET_SWAP;
4748 if (target)
4749 target->ent = ent;
4ffef5fe 4750 }
4ffef5fe
DN
4751 return ret;
4752}
4753
4754static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4755 unsigned long addr, unsigned long end,
4756 struct mm_walk *walk)
4757{
4758 struct vm_area_struct *vma = walk->private;
4759 pte_t *pte;
4760 spinlock_t *ptl;
4761
03319327
DH
4762 split_huge_page_pmd(walk->mm, pmd);
4763
4ffef5fe
DN
4764 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4765 for (; addr != end; pte++, addr += PAGE_SIZE)
4766 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4767 mc.precharge++; /* increment precharge temporarily */
4768 pte_unmap_unlock(pte - 1, ptl);
4769 cond_resched();
4770
7dc74be0
DN
4771 return 0;
4772}
4773
4ffef5fe
DN
4774static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4775{
4776 unsigned long precharge;
4777 struct vm_area_struct *vma;
4778
dfe076b0 4779 down_read(&mm->mmap_sem);
4ffef5fe
DN
4780 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4781 struct mm_walk mem_cgroup_count_precharge_walk = {
4782 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4783 .mm = mm,
4784 .private = vma,
4785 };
4786 if (is_vm_hugetlb_page(vma))
4787 continue;
4ffef5fe
DN
4788 walk_page_range(vma->vm_start, vma->vm_end,
4789 &mem_cgroup_count_precharge_walk);
4790 }
dfe076b0 4791 up_read(&mm->mmap_sem);
4ffef5fe
DN
4792
4793 precharge = mc.precharge;
4794 mc.precharge = 0;
4795
4796 return precharge;
4797}
4798
4ffef5fe
DN
4799static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4800{
dfe076b0
DN
4801 unsigned long precharge = mem_cgroup_count_precharge(mm);
4802
4803 VM_BUG_ON(mc.moving_task);
4804 mc.moving_task = current;
4805 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4806}
4807
dfe076b0
DN
4808/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4809static void __mem_cgroup_clear_mc(void)
4ffef5fe 4810{
2bd9bb20
KH
4811 struct mem_cgroup *from = mc.from;
4812 struct mem_cgroup *to = mc.to;
4813
4ffef5fe 4814 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4815 if (mc.precharge) {
4816 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4817 mc.precharge = 0;
4818 }
4819 /*
4820 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4821 * we must uncharge here.
4822 */
4823 if (mc.moved_charge) {
4824 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4825 mc.moved_charge = 0;
4ffef5fe 4826 }
483c30b5
DN
4827 /* we must fixup refcnts and charges */
4828 if (mc.moved_swap) {
483c30b5
DN
4829 /* uncharge swap account from the old cgroup */
4830 if (!mem_cgroup_is_root(mc.from))
4831 res_counter_uncharge(&mc.from->memsw,
4832 PAGE_SIZE * mc.moved_swap);
4833 __mem_cgroup_put(mc.from, mc.moved_swap);
4834
4835 if (!mem_cgroup_is_root(mc.to)) {
4836 /*
4837 * we charged both to->res and to->memsw, so we should
4838 * uncharge to->res.
4839 */
4840 res_counter_uncharge(&mc.to->res,
4841 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
4842 }
4843 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
4844 mc.moved_swap = 0;
4845 }
dfe076b0
DN
4846 memcg_oom_recover(from);
4847 memcg_oom_recover(to);
4848 wake_up_all(&mc.waitq);
4849}
4850
4851static void mem_cgroup_clear_mc(void)
4852{
4853 struct mem_cgroup *from = mc.from;
4854
4855 /*
4856 * we must clear moving_task before waking up waiters at the end of
4857 * task migration.
4858 */
4859 mc.moving_task = NULL;
4860 __mem_cgroup_clear_mc();
2bd9bb20 4861 spin_lock(&mc.lock);
4ffef5fe
DN
4862 mc.from = NULL;
4863 mc.to = NULL;
2bd9bb20 4864 spin_unlock(&mc.lock);
32047e2a 4865 mem_cgroup_end_move(from);
4ffef5fe
DN
4866}
4867
7dc74be0
DN
4868static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4869 struct cgroup *cgroup,
4870 struct task_struct *p,
4871 bool threadgroup)
4872{
4873 int ret = 0;
4874 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4875
4876 if (mem->move_charge_at_immigrate) {
4877 struct mm_struct *mm;
4878 struct mem_cgroup *from = mem_cgroup_from_task(p);
4879
4880 VM_BUG_ON(from == mem);
4881
4882 mm = get_task_mm(p);
4883 if (!mm)
4884 return 0;
7dc74be0 4885 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
4886 if (mm->owner == p) {
4887 VM_BUG_ON(mc.from);
4888 VM_BUG_ON(mc.to);
4889 VM_BUG_ON(mc.precharge);
854ffa8d 4890 VM_BUG_ON(mc.moved_charge);
483c30b5 4891 VM_BUG_ON(mc.moved_swap);
32047e2a 4892 mem_cgroup_start_move(from);
2bd9bb20 4893 spin_lock(&mc.lock);
4ffef5fe
DN
4894 mc.from = from;
4895 mc.to = mem;
2bd9bb20 4896 spin_unlock(&mc.lock);
dfe076b0 4897 /* We set mc.moving_task later */
4ffef5fe
DN
4898
4899 ret = mem_cgroup_precharge_mc(mm);
4900 if (ret)
4901 mem_cgroup_clear_mc();
dfe076b0
DN
4902 }
4903 mmput(mm);
7dc74be0
DN
4904 }
4905 return ret;
4906}
4907
4908static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4909 struct cgroup *cgroup,
4910 struct task_struct *p,
4911 bool threadgroup)
4912{
4ffef5fe 4913 mem_cgroup_clear_mc();
7dc74be0
DN
4914}
4915
4ffef5fe
DN
4916static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4917 unsigned long addr, unsigned long end,
4918 struct mm_walk *walk)
7dc74be0 4919{
4ffef5fe
DN
4920 int ret = 0;
4921 struct vm_area_struct *vma = walk->private;
4922 pte_t *pte;
4923 spinlock_t *ptl;
4924
03319327 4925 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
4926retry:
4927 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4928 for (; addr != end; addr += PAGE_SIZE) {
4929 pte_t ptent = *(pte++);
4930 union mc_target target;
4931 int type;
4932 struct page *page;
4933 struct page_cgroup *pc;
02491447 4934 swp_entry_t ent;
4ffef5fe
DN
4935
4936 if (!mc.precharge)
4937 break;
4938
4939 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4940 switch (type) {
4941 case MC_TARGET_PAGE:
4942 page = target.page;
4943 if (isolate_lru_page(page))
4944 goto put;
4945 pc = lookup_page_cgroup(page);
5564e88b 4946 if (!mem_cgroup_move_account(page, pc,
987eba66 4947 mc.from, mc.to, false, PAGE_SIZE)) {
4ffef5fe 4948 mc.precharge--;
854ffa8d
DN
4949 /* we uncharge from mc.from later. */
4950 mc.moved_charge++;
4ffef5fe
DN
4951 }
4952 putback_lru_page(page);
4953put: /* is_target_pte_for_mc() gets the page */
4954 put_page(page);
4955 break;
02491447
DN
4956 case MC_TARGET_SWAP:
4957 ent = target.ent;
483c30b5
DN
4958 if (!mem_cgroup_move_swap_account(ent,
4959 mc.from, mc.to, false)) {
02491447 4960 mc.precharge--;
483c30b5
DN
4961 /* we fixup refcnts and charges later. */
4962 mc.moved_swap++;
4963 }
02491447 4964 break;
4ffef5fe
DN
4965 default:
4966 break;
4967 }
4968 }
4969 pte_unmap_unlock(pte - 1, ptl);
4970 cond_resched();
4971
4972 if (addr != end) {
4973 /*
4974 * We have consumed all precharges we got in can_attach().
4975 * We try charge one by one, but don't do any additional
4976 * charges to mc.to if we have failed in charge once in attach()
4977 * phase.
4978 */
854ffa8d 4979 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4980 if (!ret)
4981 goto retry;
4982 }
4983
4984 return ret;
4985}
4986
4987static void mem_cgroup_move_charge(struct mm_struct *mm)
4988{
4989 struct vm_area_struct *vma;
4990
4991 lru_add_drain_all();
dfe076b0
DN
4992retry:
4993 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4994 /*
4995 * Someone who are holding the mmap_sem might be waiting in
4996 * waitq. So we cancel all extra charges, wake up all waiters,
4997 * and retry. Because we cancel precharges, we might not be able
4998 * to move enough charges, but moving charge is a best-effort
4999 * feature anyway, so it wouldn't be a big problem.
5000 */
5001 __mem_cgroup_clear_mc();
5002 cond_resched();
5003 goto retry;
5004 }
4ffef5fe
DN
5005 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5006 int ret;
5007 struct mm_walk mem_cgroup_move_charge_walk = {
5008 .pmd_entry = mem_cgroup_move_charge_pte_range,
5009 .mm = mm,
5010 .private = vma,
5011 };
5012 if (is_vm_hugetlb_page(vma))
5013 continue;
4ffef5fe
DN
5014 ret = walk_page_range(vma->vm_start, vma->vm_end,
5015 &mem_cgroup_move_charge_walk);
5016 if (ret)
5017 /*
5018 * means we have consumed all precharges and failed in
5019 * doing additional charge. Just abandon here.
5020 */
5021 break;
5022 }
dfe076b0 5023 up_read(&mm->mmap_sem);
7dc74be0
DN
5024}
5025
67e465a7
BS
5026static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5027 struct cgroup *cont,
5028 struct cgroup *old_cont,
be367d09
BB
5029 struct task_struct *p,
5030 bool threadgroup)
67e465a7 5031{
dfe076b0
DN
5032 struct mm_struct *mm;
5033
5034 if (!mc.to)
4ffef5fe
DN
5035 /* no need to move charge */
5036 return;
5037
dfe076b0
DN
5038 mm = get_task_mm(p);
5039 if (mm) {
5040 mem_cgroup_move_charge(mm);
5041 mmput(mm);
5042 }
4ffef5fe 5043 mem_cgroup_clear_mc();
67e465a7 5044}
5cfb80a7
DN
5045#else /* !CONFIG_MMU */
5046static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5047 struct cgroup *cgroup,
5048 struct task_struct *p,
5049 bool threadgroup)
5050{
5051 return 0;
5052}
5053static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5054 struct cgroup *cgroup,
5055 struct task_struct *p,
5056 bool threadgroup)
5057{
5058}
5059static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5060 struct cgroup *cont,
5061 struct cgroup *old_cont,
5062 struct task_struct *p,
5063 bool threadgroup)
5064{
5065}
5066#endif
67e465a7 5067
8cdea7c0
BS
5068struct cgroup_subsys mem_cgroup_subsys = {
5069 .name = "memory",
5070 .subsys_id = mem_cgroup_subsys_id,
5071 .create = mem_cgroup_create,
df878fb0 5072 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5073 .destroy = mem_cgroup_destroy,
5074 .populate = mem_cgroup_populate,
7dc74be0
DN
5075 .can_attach = mem_cgroup_can_attach,
5076 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5077 .attach = mem_cgroup_move_task,
6d12e2d8 5078 .early_init = 0,
04046e1a 5079 .use_id = 1,
8cdea7c0 5080};
c077719b
KH
5081
5082#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5083static int __init enable_swap_account(char *s)
5084{
5085 /* consider enabled if no parameter or 1 is given */
fceda1bf 5086 if (!(*s) || !strcmp(s, "=1"))
a42c390c 5087 really_do_swap_account = 1;
fceda1bf 5088 else if (!strcmp(s, "=0"))
a42c390c
MH
5089 really_do_swap_account = 0;
5090 return 1;
5091}
5092__setup("swapaccount", enable_swap_account);
c077719b
KH
5093
5094static int __init disable_swap_account(char *s)
5095{
552b372b 5096 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
fceda1bf 5097 enable_swap_account("=0");
c077719b
KH
5098 return 1;
5099}
5100__setup("noswapaccount", disable_swap_account);
5101#endif