]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/memcontrol.c
memcg: fix split_huge_page_refcounts()
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 62struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b
KH
75#else
76#define do_swap_account (0)
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
93 MEM_CGROUP_STAT_NSTATS,
94};
95
e9f8974f
JW
96enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
102 MEM_CGROUP_EVENTS_NSTATS,
103};
7a159cc9
JW
104/*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 113 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
114 MEM_CGROUP_NTARGETS,
115};
116#define THRESHOLDS_EVENTS_TARGET (128)
117#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 118#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 119
d52aa412 120struct mem_cgroup_stat_cpu {
7a159cc9 121 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 123 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
124};
125
527a5ec9
JW
126struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
128 int position;
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
131};
132
6d12e2d8
KH
133/*
134 * per-zone information in memory controller.
135 */
6d12e2d8 136struct mem_cgroup_per_zone {
6290df54 137 struct lruvec lruvec;
b69408e8 138 unsigned long count[NR_LRU_LISTS];
3e2f41f1 139
527a5ec9
JW
140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141
3e2f41f1 142 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
143 struct rb_node tree_node; /* RB tree node */
144 unsigned long long usage_in_excess;/* Set to the value by which */
145 /* the soft limit is exceeded*/
146 bool on_tree;
4e416953
BS
147 struct mem_cgroup *mem; /* Back pointer, we cannot */
148 /* use container_of */
6d12e2d8
KH
149};
150/* Macro for accessing counter */
151#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
152
153struct mem_cgroup_per_node {
154 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155};
156
157struct mem_cgroup_lru_info {
158 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159};
160
f64c3f54
BS
161/*
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
164 */
165
166struct mem_cgroup_tree_per_zone {
167 struct rb_root rb_root;
168 spinlock_t lock;
169};
170
171struct mem_cgroup_tree_per_node {
172 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173};
174
175struct mem_cgroup_tree {
176 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177};
178
179static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180
2e72b634
KS
181struct mem_cgroup_threshold {
182 struct eventfd_ctx *eventfd;
183 u64 threshold;
184};
185
9490ff27 186/* For threshold */
2e72b634
KS
187struct mem_cgroup_threshold_ary {
188 /* An array index points to threshold just below usage. */
5407a562 189 int current_threshold;
2e72b634
KS
190 /* Size of entries[] */
191 unsigned int size;
192 /* Array of thresholds */
193 struct mem_cgroup_threshold entries[0];
194};
2c488db2
KS
195
196struct mem_cgroup_thresholds {
197 /* Primary thresholds array */
198 struct mem_cgroup_threshold_ary *primary;
199 /*
200 * Spare threshold array.
201 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 * It must be able to store at least primary->size - 1 entries.
203 */
204 struct mem_cgroup_threshold_ary *spare;
205};
206
9490ff27
KH
207/* for OOM */
208struct mem_cgroup_eventfd_list {
209 struct list_head list;
210 struct eventfd_ctx *eventfd;
211};
2e72b634 212
c0ff4b85
R
213static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 215
8cdea7c0
BS
216/*
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
221 *
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
8cdea7c0
BS
226 */
227struct mem_cgroup {
228 struct cgroup_subsys_state css;
229 /*
230 * the counter to account for memory usage
231 */
232 struct res_counter res;
8c7c6e34
KH
233 /*
234 * the counter to account for mem+swap usage.
235 */
236 struct res_counter memsw;
78fb7466
PE
237 /*
238 * Per cgroup active and inactive list, similar to the
239 * per zone LRU lists.
78fb7466 240 */
6d12e2d8 241 struct mem_cgroup_lru_info info;
889976db
YH
242 int last_scanned_node;
243#if MAX_NUMNODES > 1
244 nodemask_t scan_nodes;
453a9bf3
KH
245 atomic_t numainfo_events;
246 atomic_t numainfo_updating;
889976db 247#endif
18f59ea7
BS
248 /*
249 * Should the accounting and control be hierarchical, per subtree?
250 */
251 bool use_hierarchy;
79dfdacc
MH
252
253 bool oom_lock;
254 atomic_t under_oom;
255
8c7c6e34 256 atomic_t refcnt;
14797e23 257
1f4c025b 258 int swappiness;
3c11ecf4
KH
259 /* OOM-Killer disable */
260 int oom_kill_disable;
a7885eb8 261
22a668d7
KH
262 /* set when res.limit == memsw.limit */
263 bool memsw_is_minimum;
264
2e72b634
KS
265 /* protect arrays of thresholds */
266 struct mutex thresholds_lock;
267
268 /* thresholds for memory usage. RCU-protected */
2c488db2 269 struct mem_cgroup_thresholds thresholds;
907860ed 270
2e72b634 271 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 272 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 273
9490ff27
KH
274 /* For oom notifier event fd */
275 struct list_head oom_notify;
185efc0f 276
7dc74be0
DN
277 /*
278 * Should we move charges of a task when a task is moved into this
279 * mem_cgroup ? And what type of charges should we move ?
280 */
281 unsigned long move_charge_at_immigrate;
d52aa412 282 /*
c62b1a3b 283 * percpu counter.
d52aa412 284 */
c62b1a3b 285 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
286 /*
287 * used when a cpu is offlined or other synchronizations
288 * See mem_cgroup_read_stat().
289 */
290 struct mem_cgroup_stat_cpu nocpu_base;
291 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
292
293#ifdef CONFIG_INET
294 struct tcp_memcontrol tcp_mem;
295#endif
8cdea7c0
BS
296};
297
7dc74be0
DN
298/* Stuffs for move charges at task migration. */
299/*
300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301 * left-shifted bitmap of these types.
302 */
303enum move_type {
4ffef5fe 304 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 305 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
306 NR_MOVE_TYPE,
307};
308
4ffef5fe
DN
309/* "mc" and its members are protected by cgroup_mutex */
310static struct move_charge_struct {
b1dd693e 311 spinlock_t lock; /* for from, to */
4ffef5fe
DN
312 struct mem_cgroup *from;
313 struct mem_cgroup *to;
314 unsigned long precharge;
854ffa8d 315 unsigned long moved_charge;
483c30b5 316 unsigned long moved_swap;
8033b97c
DN
317 struct task_struct *moving_task; /* a task moving charges */
318 wait_queue_head_t waitq; /* a waitq for other context */
319} mc = {
2bd9bb20 320 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
321 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
322};
4ffef5fe 323
90254a65
DN
324static bool move_anon(void)
325{
326 return test_bit(MOVE_CHARGE_TYPE_ANON,
327 &mc.to->move_charge_at_immigrate);
328}
329
87946a72
DN
330static bool move_file(void)
331{
332 return test_bit(MOVE_CHARGE_TYPE_FILE,
333 &mc.to->move_charge_at_immigrate);
334}
335
4e416953
BS
336/*
337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338 * limit reclaim to prevent infinite loops, if they ever occur.
339 */
340#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
341#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
342
217bc319
KH
343enum charge_type {
344 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 346 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 347 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 348 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 349 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
350 NR_CHARGE_TYPE,
351};
352
8c7c6e34 353/* for encoding cft->private value on file */
65c64ce8
GC
354#define _MEM (0)
355#define _MEMSWAP (1)
356#define _OOM_TYPE (2)
8c7c6e34
KH
357#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
358#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
359#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
360/* Used for OOM nofiier */
361#define OOM_CONTROL (0)
8c7c6e34 362
75822b44
BS
363/*
364 * Reclaim flags for mem_cgroup_hierarchical_reclaim
365 */
366#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
367#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
369#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
370
c0ff4b85
R
371static void mem_cgroup_get(struct mem_cgroup *memcg);
372static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
373
374/* Writing them here to avoid exposing memcg's inner layout */
375#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376#ifdef CONFIG_INET
377#include <net/sock.h>
d1a4c0b3 378#include <net/ip.h>
e1aab161
GC
379
380static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
381void sock_update_memcg(struct sock *sk)
382{
e1aab161
GC
383 if (static_branch(&memcg_socket_limit_enabled)) {
384 struct mem_cgroup *memcg;
385
386 BUG_ON(!sk->sk_prot->proto_cgroup);
387
f3f511e1
GC
388 /* Socket cloning can throw us here with sk_cgrp already
389 * filled. It won't however, necessarily happen from
390 * process context. So the test for root memcg given
391 * the current task's memcg won't help us in this case.
392 *
393 * Respecting the original socket's memcg is a better
394 * decision in this case.
395 */
396 if (sk->sk_cgrp) {
397 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
398 mem_cgroup_get(sk->sk_cgrp->memcg);
399 return;
400 }
401
e1aab161
GC
402 rcu_read_lock();
403 memcg = mem_cgroup_from_task(current);
404 if (!mem_cgroup_is_root(memcg)) {
405 mem_cgroup_get(memcg);
406 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
407 }
408 rcu_read_unlock();
409 }
410}
411EXPORT_SYMBOL(sock_update_memcg);
412
413void sock_release_memcg(struct sock *sk)
414{
415 if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
416 struct mem_cgroup *memcg;
417 WARN_ON(!sk->sk_cgrp->memcg);
418 memcg = sk->sk_cgrp->memcg;
419 mem_cgroup_put(memcg);
420 }
421}
d1a4c0b3
GC
422
423struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
424{
425 if (!memcg || mem_cgroup_is_root(memcg))
426 return NULL;
427
428 return &memcg->tcp_mem.cg_proto;
429}
430EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
431#endif /* CONFIG_INET */
432#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
433
c0ff4b85 434static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 435
f64c3f54 436static struct mem_cgroup_per_zone *
c0ff4b85 437mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 438{
c0ff4b85 439 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
440}
441
c0ff4b85 442struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 443{
c0ff4b85 444 return &memcg->css;
d324236b
WF
445}
446
f64c3f54 447static struct mem_cgroup_per_zone *
c0ff4b85 448page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 449{
97a6c37b
JW
450 int nid = page_to_nid(page);
451 int zid = page_zonenum(page);
f64c3f54 452
c0ff4b85 453 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
454}
455
456static struct mem_cgroup_tree_per_zone *
457soft_limit_tree_node_zone(int nid, int zid)
458{
459 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
460}
461
462static struct mem_cgroup_tree_per_zone *
463soft_limit_tree_from_page(struct page *page)
464{
465 int nid = page_to_nid(page);
466 int zid = page_zonenum(page);
467
468 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
469}
470
471static void
c0ff4b85 472__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 473 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
474 struct mem_cgroup_tree_per_zone *mctz,
475 unsigned long long new_usage_in_excess)
f64c3f54
BS
476{
477 struct rb_node **p = &mctz->rb_root.rb_node;
478 struct rb_node *parent = NULL;
479 struct mem_cgroup_per_zone *mz_node;
480
481 if (mz->on_tree)
482 return;
483
ef8745c1
KH
484 mz->usage_in_excess = new_usage_in_excess;
485 if (!mz->usage_in_excess)
486 return;
f64c3f54
BS
487 while (*p) {
488 parent = *p;
489 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490 tree_node);
491 if (mz->usage_in_excess < mz_node->usage_in_excess)
492 p = &(*p)->rb_left;
493 /*
494 * We can't avoid mem cgroups that are over their soft
495 * limit by the same amount
496 */
497 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498 p = &(*p)->rb_right;
499 }
500 rb_link_node(&mz->tree_node, parent, p);
501 rb_insert_color(&mz->tree_node, &mctz->rb_root);
502 mz->on_tree = true;
4e416953
BS
503}
504
505static void
c0ff4b85 506__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
507 struct mem_cgroup_per_zone *mz,
508 struct mem_cgroup_tree_per_zone *mctz)
509{
510 if (!mz->on_tree)
511 return;
512 rb_erase(&mz->tree_node, &mctz->rb_root);
513 mz->on_tree = false;
514}
515
f64c3f54 516static void
c0ff4b85 517mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
518 struct mem_cgroup_per_zone *mz,
519 struct mem_cgroup_tree_per_zone *mctz)
520{
521 spin_lock(&mctz->lock);
c0ff4b85 522 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
523 spin_unlock(&mctz->lock);
524}
525
f64c3f54 526
c0ff4b85 527static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 528{
ef8745c1 529 unsigned long long excess;
f64c3f54
BS
530 struct mem_cgroup_per_zone *mz;
531 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
532 int nid = page_to_nid(page);
533 int zid = page_zonenum(page);
f64c3f54
BS
534 mctz = soft_limit_tree_from_page(page);
535
536 /*
4e649152
KH
537 * Necessary to update all ancestors when hierarchy is used.
538 * because their event counter is not touched.
f64c3f54 539 */
c0ff4b85
R
540 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
543 /*
544 * We have to update the tree if mz is on RB-tree or
545 * mem is over its softlimit.
546 */
ef8745c1 547 if (excess || mz->on_tree) {
4e649152
KH
548 spin_lock(&mctz->lock);
549 /* if on-tree, remove it */
550 if (mz->on_tree)
c0ff4b85 551 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 552 /*
ef8745c1
KH
553 * Insert again. mz->usage_in_excess will be updated.
554 * If excess is 0, no tree ops.
4e649152 555 */
c0ff4b85 556 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
557 spin_unlock(&mctz->lock);
558 }
f64c3f54
BS
559 }
560}
561
c0ff4b85 562static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
563{
564 int node, zone;
565 struct mem_cgroup_per_zone *mz;
566 struct mem_cgroup_tree_per_zone *mctz;
567
3ed28fa1 568 for_each_node(node) {
f64c3f54 569 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 570 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 571 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 572 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
573 }
574 }
575}
576
4e416953
BS
577static struct mem_cgroup_per_zone *
578__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
579{
580 struct rb_node *rightmost = NULL;
26251eaf 581 struct mem_cgroup_per_zone *mz;
4e416953
BS
582
583retry:
26251eaf 584 mz = NULL;
4e416953
BS
585 rightmost = rb_last(&mctz->rb_root);
586 if (!rightmost)
587 goto done; /* Nothing to reclaim from */
588
589 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
590 /*
591 * Remove the node now but someone else can add it back,
592 * we will to add it back at the end of reclaim to its correct
593 * position in the tree.
594 */
595 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597 !css_tryget(&mz->mem->css))
598 goto retry;
599done:
600 return mz;
601}
602
603static struct mem_cgroup_per_zone *
604mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
605{
606 struct mem_cgroup_per_zone *mz;
607
608 spin_lock(&mctz->lock);
609 mz = __mem_cgroup_largest_soft_limit_node(mctz);
610 spin_unlock(&mctz->lock);
611 return mz;
612}
613
711d3d2c
KH
614/*
615 * Implementation Note: reading percpu statistics for memcg.
616 *
617 * Both of vmstat[] and percpu_counter has threshold and do periodic
618 * synchronization to implement "quick" read. There are trade-off between
619 * reading cost and precision of value. Then, we may have a chance to implement
620 * a periodic synchronizion of counter in memcg's counter.
621 *
622 * But this _read() function is used for user interface now. The user accounts
623 * memory usage by memory cgroup and he _always_ requires exact value because
624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625 * have to visit all online cpus and make sum. So, for now, unnecessary
626 * synchronization is not implemented. (just implemented for cpu hotplug)
627 *
628 * If there are kernel internal actions which can make use of some not-exact
629 * value, and reading all cpu value can be performance bottleneck in some
630 * common workload, threashold and synchonization as vmstat[] should be
631 * implemented.
632 */
c0ff4b85 633static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 634 enum mem_cgroup_stat_index idx)
c62b1a3b 635{
7a159cc9 636 long val = 0;
c62b1a3b 637 int cpu;
c62b1a3b 638
711d3d2c
KH
639 get_online_cpus();
640 for_each_online_cpu(cpu)
c0ff4b85 641 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 642#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
643 spin_lock(&memcg->pcp_counter_lock);
644 val += memcg->nocpu_base.count[idx];
645 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
646#endif
647 put_online_cpus();
c62b1a3b
KH
648 return val;
649}
650
c0ff4b85 651static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
652 bool charge)
653{
654 int val = (charge) ? 1 : -1;
c0ff4b85 655 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
656}
657
c0ff4b85 658static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
659 enum mem_cgroup_events_index idx)
660{
661 unsigned long val = 0;
662 int cpu;
663
664 for_each_online_cpu(cpu)
c0ff4b85 665 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 666#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
667 spin_lock(&memcg->pcp_counter_lock);
668 val += memcg->nocpu_base.events[idx];
669 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
670#endif
671 return val;
672}
673
c0ff4b85 674static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
e401f176 675 bool file, int nr_pages)
d52aa412 676{
c62b1a3b
KH
677 preempt_disable();
678
e401f176 679 if (file)
c0ff4b85
R
680 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681 nr_pages);
d52aa412 682 else
c0ff4b85
R
683 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684 nr_pages);
55e462b0 685
e401f176
KH
686 /* pagein of a big page is an event. So, ignore page size */
687 if (nr_pages > 0)
c0ff4b85 688 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 689 else {
c0ff4b85 690 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
691 nr_pages = -nr_pages; /* for event */
692 }
e401f176 693
c0ff4b85 694 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 695
c62b1a3b 696 preempt_enable();
6d12e2d8
KH
697}
698
bb2a0de9 699unsigned long
c0ff4b85 700mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 701 unsigned int lru_mask)
889976db
YH
702{
703 struct mem_cgroup_per_zone *mz;
bb2a0de9
KH
704 enum lru_list l;
705 unsigned long ret = 0;
706
c0ff4b85 707 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9
KH
708
709 for_each_lru(l) {
710 if (BIT(l) & lru_mask)
711 ret += MEM_CGROUP_ZSTAT(mz, l);
712 }
713 return ret;
714}
715
716static unsigned long
c0ff4b85 717mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
718 int nid, unsigned int lru_mask)
719{
889976db
YH
720 u64 total = 0;
721 int zid;
722
bb2a0de9 723 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
724 total += mem_cgroup_zone_nr_lru_pages(memcg,
725 nid, zid, lru_mask);
bb2a0de9 726
889976db
YH
727 return total;
728}
bb2a0de9 729
c0ff4b85 730static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 731 unsigned int lru_mask)
6d12e2d8 732{
889976db 733 int nid;
6d12e2d8
KH
734 u64 total = 0;
735
bb2a0de9 736 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 737 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 738 return total;
d52aa412
KH
739}
740
f53d7ce3
JW
741static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
742 enum mem_cgroup_events_target target)
7a159cc9
JW
743{
744 unsigned long val, next;
745
4799401f
SR
746 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
747 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 748 /* from time_after() in jiffies.h */
f53d7ce3
JW
749 if ((long)next - (long)val < 0) {
750 switch (target) {
751 case MEM_CGROUP_TARGET_THRESH:
752 next = val + THRESHOLDS_EVENTS_TARGET;
753 break;
754 case MEM_CGROUP_TARGET_SOFTLIMIT:
755 next = val + SOFTLIMIT_EVENTS_TARGET;
756 break;
757 case MEM_CGROUP_TARGET_NUMAINFO:
758 next = val + NUMAINFO_EVENTS_TARGET;
759 break;
760 default:
761 break;
762 }
763 __this_cpu_write(memcg->stat->targets[target], next);
764 return true;
7a159cc9 765 }
f53d7ce3 766 return false;
d2265e6f
KH
767}
768
769/*
770 * Check events in order.
771 *
772 */
c0ff4b85 773static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 774{
4799401f 775 preempt_disable();
d2265e6f 776 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
777 if (unlikely(mem_cgroup_event_ratelimit(memcg,
778 MEM_CGROUP_TARGET_THRESH))) {
779 bool do_softlimit, do_numainfo;
780
781 do_softlimit = mem_cgroup_event_ratelimit(memcg,
782 MEM_CGROUP_TARGET_SOFTLIMIT);
783#if MAX_NUMNODES > 1
784 do_numainfo = mem_cgroup_event_ratelimit(memcg,
785 MEM_CGROUP_TARGET_NUMAINFO);
786#endif
787 preempt_enable();
788
c0ff4b85 789 mem_cgroup_threshold(memcg);
f53d7ce3 790 if (unlikely(do_softlimit))
c0ff4b85 791 mem_cgroup_update_tree(memcg, page);
453a9bf3 792#if MAX_NUMNODES > 1
f53d7ce3 793 if (unlikely(do_numainfo))
c0ff4b85 794 atomic_inc(&memcg->numainfo_events);
453a9bf3 795#endif
f53d7ce3
JW
796 } else
797 preempt_enable();
d2265e6f
KH
798}
799
d1a4c0b3 800struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
801{
802 return container_of(cgroup_subsys_state(cont,
803 mem_cgroup_subsys_id), struct mem_cgroup,
804 css);
805}
806
cf475ad2 807struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 808{
31a78f23
BS
809 /*
810 * mm_update_next_owner() may clear mm->owner to NULL
811 * if it races with swapoff, page migration, etc.
812 * So this can be called with p == NULL.
813 */
814 if (unlikely(!p))
815 return NULL;
816
78fb7466
PE
817 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
818 struct mem_cgroup, css);
819}
820
a433658c 821struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 822{
c0ff4b85 823 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
824
825 if (!mm)
826 return NULL;
54595fe2
KH
827 /*
828 * Because we have no locks, mm->owner's may be being moved to other
829 * cgroup. We use css_tryget() here even if this looks
830 * pessimistic (rather than adding locks here).
831 */
832 rcu_read_lock();
833 do {
c0ff4b85
R
834 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
835 if (unlikely(!memcg))
54595fe2 836 break;
c0ff4b85 837 } while (!css_tryget(&memcg->css));
54595fe2 838 rcu_read_unlock();
c0ff4b85 839 return memcg;
54595fe2
KH
840}
841
5660048c
JW
842/**
843 * mem_cgroup_iter - iterate over memory cgroup hierarchy
844 * @root: hierarchy root
845 * @prev: previously returned memcg, NULL on first invocation
846 * @reclaim: cookie for shared reclaim walks, NULL for full walks
847 *
848 * Returns references to children of the hierarchy below @root, or
849 * @root itself, or %NULL after a full round-trip.
850 *
851 * Caller must pass the return value in @prev on subsequent
852 * invocations for reference counting, or use mem_cgroup_iter_break()
853 * to cancel a hierarchy walk before the round-trip is complete.
854 *
855 * Reclaimers can specify a zone and a priority level in @reclaim to
856 * divide up the memcgs in the hierarchy among all concurrent
857 * reclaimers operating on the same zone and priority.
858 */
859struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
860 struct mem_cgroup *prev,
861 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 862{
9f3a0d09
JW
863 struct mem_cgroup *memcg = NULL;
864 int id = 0;
711d3d2c 865
5660048c
JW
866 if (mem_cgroup_disabled())
867 return NULL;
868
9f3a0d09
JW
869 if (!root)
870 root = root_mem_cgroup;
7d74b06f 871
9f3a0d09
JW
872 if (prev && !reclaim)
873 id = css_id(&prev->css);
14067bb3 874
9f3a0d09
JW
875 if (prev && prev != root)
876 css_put(&prev->css);
14067bb3 877
9f3a0d09
JW
878 if (!root->use_hierarchy && root != root_mem_cgroup) {
879 if (prev)
880 return NULL;
881 return root;
882 }
14067bb3 883
9f3a0d09 884 while (!memcg) {
527a5ec9 885 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 886 struct cgroup_subsys_state *css;
711d3d2c 887
527a5ec9
JW
888 if (reclaim) {
889 int nid = zone_to_nid(reclaim->zone);
890 int zid = zone_idx(reclaim->zone);
891 struct mem_cgroup_per_zone *mz;
892
893 mz = mem_cgroup_zoneinfo(root, nid, zid);
894 iter = &mz->reclaim_iter[reclaim->priority];
895 if (prev && reclaim->generation != iter->generation)
896 return NULL;
897 id = iter->position;
898 }
7d74b06f 899
9f3a0d09
JW
900 rcu_read_lock();
901 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
902 if (css) {
903 if (css == &root->css || css_tryget(css))
904 memcg = container_of(css,
905 struct mem_cgroup, css);
906 } else
907 id = 0;
14067bb3 908 rcu_read_unlock();
14067bb3 909
527a5ec9
JW
910 if (reclaim) {
911 iter->position = id;
912 if (!css)
913 iter->generation++;
914 else if (!prev && memcg)
915 reclaim->generation = iter->generation;
916 }
9f3a0d09
JW
917
918 if (prev && !css)
919 return NULL;
920 }
921 return memcg;
14067bb3 922}
7d74b06f 923
5660048c
JW
924/**
925 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
926 * @root: hierarchy root
927 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
928 */
929void mem_cgroup_iter_break(struct mem_cgroup *root,
930 struct mem_cgroup *prev)
9f3a0d09
JW
931{
932 if (!root)
933 root = root_mem_cgroup;
934 if (prev && prev != root)
935 css_put(&prev->css);
936}
7d74b06f 937
9f3a0d09
JW
938/*
939 * Iteration constructs for visiting all cgroups (under a tree). If
940 * loops are exited prematurely (break), mem_cgroup_iter_break() must
941 * be used for reference counting.
942 */
943#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 944 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 945 iter != NULL; \
527a5ec9 946 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 947
9f3a0d09 948#define for_each_mem_cgroup(iter) \
527a5ec9 949 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 950 iter != NULL; \
527a5ec9 951 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 952
c0ff4b85 953static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 954{
c0ff4b85 955 return (memcg == root_mem_cgroup);
4b3bde4c
BS
956}
957
456f998e
YH
958void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
959{
c0ff4b85 960 struct mem_cgroup *memcg;
456f998e
YH
961
962 if (!mm)
963 return;
964
965 rcu_read_lock();
c0ff4b85
R
966 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
967 if (unlikely(!memcg))
456f998e
YH
968 goto out;
969
970 switch (idx) {
456f998e 971 case PGFAULT:
0e574a93
JW
972 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
973 break;
974 case PGMAJFAULT:
975 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
976 break;
977 default:
978 BUG();
979 }
980out:
981 rcu_read_unlock();
982}
983EXPORT_SYMBOL(mem_cgroup_count_vm_event);
984
925b7673
JW
985/**
986 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
987 * @zone: zone of the wanted lruvec
988 * @mem: memcg of the wanted lruvec
989 *
990 * Returns the lru list vector holding pages for the given @zone and
991 * @mem. This can be the global zone lruvec, if the memory controller
992 * is disabled.
993 */
994struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
995 struct mem_cgroup *memcg)
996{
997 struct mem_cgroup_per_zone *mz;
998
999 if (mem_cgroup_disabled())
1000 return &zone->lruvec;
1001
1002 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1003 return &mz->lruvec;
1004}
1005
08e552c6
KH
1006/*
1007 * Following LRU functions are allowed to be used without PCG_LOCK.
1008 * Operations are called by routine of global LRU independently from memcg.
1009 * What we have to take care of here is validness of pc->mem_cgroup.
1010 *
1011 * Changes to pc->mem_cgroup happens when
1012 * 1. charge
1013 * 2. moving account
1014 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1015 * It is added to LRU before charge.
1016 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1017 * When moving account, the page is not on LRU. It's isolated.
1018 */
4f98a2fe 1019
925b7673
JW
1020/**
1021 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1022 * @zone: zone of the page
1023 * @page: the page
1024 * @lru: current lru
1025 *
1026 * This function accounts for @page being added to @lru, and returns
1027 * the lruvec for the given @zone and the memcg @page is charged to.
1028 *
1029 * The callsite is then responsible for physically linking the page to
1030 * the returned lruvec->lists[@lru].
1031 */
1032struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1033 enum lru_list lru)
08e552c6 1034{
08e552c6 1035 struct mem_cgroup_per_zone *mz;
925b7673
JW
1036 struct mem_cgroup *memcg;
1037 struct page_cgroup *pc;
6d12e2d8 1038
f8d66542 1039 if (mem_cgroup_disabled())
925b7673
JW
1040 return &zone->lruvec;
1041
08e552c6 1042 pc = lookup_page_cgroup(page);
38c5d72f 1043 memcg = pc->mem_cgroup;
925b7673
JW
1044 mz = page_cgroup_zoneinfo(memcg, page);
1045 /* compound_order() is stabilized through lru_lock */
1046 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1047 return &mz->lruvec;
08e552c6 1048}
b69408e8 1049
925b7673
JW
1050/**
1051 * mem_cgroup_lru_del_list - account for removing an lru page
1052 * @page: the page
1053 * @lru: target lru
1054 *
1055 * This function accounts for @page being removed from @lru.
1056 *
1057 * The callsite is then responsible for physically unlinking
1058 * @page->lru.
3f58a829 1059 */
925b7673 1060void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
3f58a829
MK
1061{
1062 struct mem_cgroup_per_zone *mz;
925b7673 1063 struct mem_cgroup *memcg;
3f58a829 1064 struct page_cgroup *pc;
3f58a829
MK
1065
1066 if (mem_cgroup_disabled())
1067 return;
1068
1069 pc = lookup_page_cgroup(page);
38c5d72f
KH
1070 memcg = pc->mem_cgroup;
1071 VM_BUG_ON(!memcg);
925b7673
JW
1072 mz = page_cgroup_zoneinfo(memcg, page);
1073 /* huge page split is done under lru_lock. so, we have no races. */
12d27107 1074 VM_BUG_ON(MEM_CGROUP_ZSTAT(mz, lru) < (1 << compound_order(page)));
925b7673 1075 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
3f58a829
MK
1076}
1077
925b7673 1078void mem_cgroup_lru_del(struct page *page)
08e552c6 1079{
925b7673 1080 mem_cgroup_lru_del_list(page, page_lru(page));
6d12e2d8
KH
1081}
1082
925b7673
JW
1083/**
1084 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1085 * @zone: zone of the page
1086 * @page: the page
1087 * @from: current lru
1088 * @to: target lru
1089 *
1090 * This function accounts for @page being moved between the lrus @from
1091 * and @to, and returns the lruvec for the given @zone and the memcg
1092 * @page is charged to.
1093 *
1094 * The callsite is then responsible for physically relinking
1095 * @page->lru to the returned lruvec->lists[@to].
1096 */
1097struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1098 struct page *page,
1099 enum lru_list from,
1100 enum lru_list to)
66e1707b 1101{
925b7673
JW
1102 /* XXX: Optimize this, especially for @from == @to */
1103 mem_cgroup_lru_del_list(page, from);
1104 return mem_cgroup_lru_add_list(zone, page, to);
08e552c6 1105}
544122e5 1106
3e92041d 1107/*
c0ff4b85 1108 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1109 * hierarchy subtree
1110 */
c0ff4b85
R
1111static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1112 struct mem_cgroup *memcg)
3e92041d 1113{
c0ff4b85
R
1114 if (root_memcg != memcg) {
1115 return (root_memcg->use_hierarchy &&
1116 css_is_ancestor(&memcg->css, &root_memcg->css));
3e92041d
MH
1117 }
1118
1119 return true;
1120}
1121
c0ff4b85 1122int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1123{
1124 int ret;
0b7f569e 1125 struct mem_cgroup *curr = NULL;
158e0a2d 1126 struct task_struct *p;
4c4a2214 1127
158e0a2d 1128 p = find_lock_task_mm(task);
de077d22
DR
1129 if (p) {
1130 curr = try_get_mem_cgroup_from_mm(p->mm);
1131 task_unlock(p);
1132 } else {
1133 /*
1134 * All threads may have already detached their mm's, but the oom
1135 * killer still needs to detect if they have already been oom
1136 * killed to prevent needlessly killing additional tasks.
1137 */
1138 task_lock(task);
1139 curr = mem_cgroup_from_task(task);
1140 if (curr)
1141 css_get(&curr->css);
1142 task_unlock(task);
1143 }
0b7f569e
KH
1144 if (!curr)
1145 return 0;
d31f56db 1146 /*
c0ff4b85 1147 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1148 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1149 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1150 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1151 */
c0ff4b85 1152 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1153 css_put(&curr->css);
4c4a2214
DR
1154 return ret;
1155}
1156
9b272977 1157int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1158{
9b272977
JW
1159 unsigned long inactive_ratio;
1160 int nid = zone_to_nid(zone);
1161 int zid = zone_idx(zone);
14797e23 1162 unsigned long inactive;
9b272977 1163 unsigned long active;
c772be93 1164 unsigned long gb;
14797e23 1165
9b272977
JW
1166 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1167 BIT(LRU_INACTIVE_ANON));
1168 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1169 BIT(LRU_ACTIVE_ANON));
14797e23 1170
c772be93
KM
1171 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1172 if (gb)
1173 inactive_ratio = int_sqrt(10 * gb);
1174 else
1175 inactive_ratio = 1;
1176
9b272977 1177 return inactive * inactive_ratio < active;
14797e23
KM
1178}
1179
9b272977 1180int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1181{
1182 unsigned long active;
1183 unsigned long inactive;
9b272977
JW
1184 int zid = zone_idx(zone);
1185 int nid = zone_to_nid(zone);
56e49d21 1186
9b272977
JW
1187 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1188 BIT(LRU_INACTIVE_FILE));
1189 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1190 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1191
1192 return (active > inactive);
1193}
1194
3e2f41f1
KM
1195struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1196 struct zone *zone)
1197{
13d7e3a2 1198 int nid = zone_to_nid(zone);
3e2f41f1
KM
1199 int zid = zone_idx(zone);
1200 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1201
1202 return &mz->reclaim_stat;
1203}
1204
1205struct zone_reclaim_stat *
1206mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1207{
1208 struct page_cgroup *pc;
1209 struct mem_cgroup_per_zone *mz;
1210
1211 if (mem_cgroup_disabled())
1212 return NULL;
1213
1214 pc = lookup_page_cgroup(page);
bd112db8
DN
1215 if (!PageCgroupUsed(pc))
1216 return NULL;
713735b4
JW
1217 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1218 smp_rmb();
97a6c37b 1219 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1220 return &mz->reclaim_stat;
1221}
1222
6d61ef40
BS
1223#define mem_cgroup_from_res_counter(counter, member) \
1224 container_of(counter, struct mem_cgroup, member)
1225
19942822 1226/**
9d11ea9f
JW
1227 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1228 * @mem: the memory cgroup
19942822 1229 *
9d11ea9f 1230 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1231 * pages.
19942822 1232 */
c0ff4b85 1233static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1234{
9d11ea9f
JW
1235 unsigned long long margin;
1236
c0ff4b85 1237 margin = res_counter_margin(&memcg->res);
9d11ea9f 1238 if (do_swap_account)
c0ff4b85 1239 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1240 return margin >> PAGE_SHIFT;
19942822
JW
1241}
1242
1f4c025b 1243int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1244{
1245 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1246
1247 /* root ? */
1248 if (cgrp->parent == NULL)
1249 return vm_swappiness;
1250
bf1ff263 1251 return memcg->swappiness;
a7885eb8
KM
1252}
1253
c0ff4b85 1254static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a
KH
1255{
1256 int cpu;
1489ebad
KH
1257
1258 get_online_cpus();
c0ff4b85 1259 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1260 for_each_online_cpu(cpu)
c0ff4b85
R
1261 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1262 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1263 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1264 put_online_cpus();
32047e2a
KH
1265
1266 synchronize_rcu();
1267}
1268
c0ff4b85 1269static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a
KH
1270{
1271 int cpu;
1272
c0ff4b85 1273 if (!memcg)
32047e2a 1274 return;
1489ebad 1275 get_online_cpus();
c0ff4b85 1276 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1277 for_each_online_cpu(cpu)
c0ff4b85
R
1278 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1279 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1280 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1281 put_online_cpus();
32047e2a
KH
1282}
1283/*
1284 * 2 routines for checking "mem" is under move_account() or not.
1285 *
1286 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1287 * for avoiding race in accounting. If true,
1288 * pc->mem_cgroup may be overwritten.
1289 *
1290 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1291 * under hierarchy of moving cgroups. This is for
1292 * waiting at hith-memory prressure caused by "move".
1293 */
1294
c0ff4b85 1295static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
32047e2a
KH
1296{
1297 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85 1298 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
32047e2a 1299}
4b534334 1300
c0ff4b85 1301static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1302{
2bd9bb20
KH
1303 struct mem_cgroup *from;
1304 struct mem_cgroup *to;
4b534334 1305 bool ret = false;
2bd9bb20
KH
1306 /*
1307 * Unlike task_move routines, we access mc.to, mc.from not under
1308 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1309 */
1310 spin_lock(&mc.lock);
1311 from = mc.from;
1312 to = mc.to;
1313 if (!from)
1314 goto unlock;
3e92041d 1315
c0ff4b85
R
1316 ret = mem_cgroup_same_or_subtree(memcg, from)
1317 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1318unlock:
1319 spin_unlock(&mc.lock);
4b534334
KH
1320 return ret;
1321}
1322
c0ff4b85 1323static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1324{
1325 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1326 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1327 DEFINE_WAIT(wait);
1328 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1329 /* moving charge context might have finished. */
1330 if (mc.moving_task)
1331 schedule();
1332 finish_wait(&mc.waitq, &wait);
1333 return true;
1334 }
1335 }
1336 return false;
1337}
1338
e222432b 1339/**
6a6135b6 1340 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1341 * @memcg: The memory cgroup that went over limit
1342 * @p: Task that is going to be killed
1343 *
1344 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1345 * enabled
1346 */
1347void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1348{
1349 struct cgroup *task_cgrp;
1350 struct cgroup *mem_cgrp;
1351 /*
1352 * Need a buffer in BSS, can't rely on allocations. The code relies
1353 * on the assumption that OOM is serialized for memory controller.
1354 * If this assumption is broken, revisit this code.
1355 */
1356 static char memcg_name[PATH_MAX];
1357 int ret;
1358
d31f56db 1359 if (!memcg || !p)
e222432b
BS
1360 return;
1361
1362
1363 rcu_read_lock();
1364
1365 mem_cgrp = memcg->css.cgroup;
1366 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1367
1368 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1369 if (ret < 0) {
1370 /*
1371 * Unfortunately, we are unable to convert to a useful name
1372 * But we'll still print out the usage information
1373 */
1374 rcu_read_unlock();
1375 goto done;
1376 }
1377 rcu_read_unlock();
1378
1379 printk(KERN_INFO "Task in %s killed", memcg_name);
1380
1381 rcu_read_lock();
1382 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1383 if (ret < 0) {
1384 rcu_read_unlock();
1385 goto done;
1386 }
1387 rcu_read_unlock();
1388
1389 /*
1390 * Continues from above, so we don't need an KERN_ level
1391 */
1392 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1393done:
1394
1395 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1396 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1397 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1398 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1399 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1400 "failcnt %llu\n",
1401 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1402 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1403 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1404}
1405
81d39c20
KH
1406/*
1407 * This function returns the number of memcg under hierarchy tree. Returns
1408 * 1(self count) if no children.
1409 */
c0ff4b85 1410static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1411{
1412 int num = 0;
7d74b06f
KH
1413 struct mem_cgroup *iter;
1414
c0ff4b85 1415 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1416 num++;
81d39c20
KH
1417 return num;
1418}
1419
a63d83f4
DR
1420/*
1421 * Return the memory (and swap, if configured) limit for a memcg.
1422 */
1423u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1424{
1425 u64 limit;
1426 u64 memsw;
1427
f3e8eb70
JW
1428 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1429 limit += total_swap_pages << PAGE_SHIFT;
1430
a63d83f4
DR
1431 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1432 /*
1433 * If memsw is finite and limits the amount of swap space available
1434 * to this memcg, return that limit.
1435 */
1436 return min(limit, memsw);
1437}
1438
5660048c
JW
1439static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1440 gfp_t gfp_mask,
1441 unsigned long flags)
1442{
1443 unsigned long total = 0;
1444 bool noswap = false;
1445 int loop;
1446
1447 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1448 noswap = true;
1449 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1450 noswap = true;
1451
1452 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1453 if (loop)
1454 drain_all_stock_async(memcg);
1455 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1456 /*
1457 * Allow limit shrinkers, which are triggered directly
1458 * by userspace, to catch signals and stop reclaim
1459 * after minimal progress, regardless of the margin.
1460 */
1461 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1462 break;
1463 if (mem_cgroup_margin(memcg))
1464 break;
1465 /*
1466 * If nothing was reclaimed after two attempts, there
1467 * may be no reclaimable pages in this hierarchy.
1468 */
1469 if (loop && !total)
1470 break;
1471 }
1472 return total;
1473}
1474
4d0c066d
KH
1475/**
1476 * test_mem_cgroup_node_reclaimable
1477 * @mem: the target memcg
1478 * @nid: the node ID to be checked.
1479 * @noswap : specify true here if the user wants flle only information.
1480 *
1481 * This function returns whether the specified memcg contains any
1482 * reclaimable pages on a node. Returns true if there are any reclaimable
1483 * pages in the node.
1484 */
c0ff4b85 1485static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1486 int nid, bool noswap)
1487{
c0ff4b85 1488 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1489 return true;
1490 if (noswap || !total_swap_pages)
1491 return false;
c0ff4b85 1492 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1493 return true;
1494 return false;
1495
1496}
889976db
YH
1497#if MAX_NUMNODES > 1
1498
1499/*
1500 * Always updating the nodemask is not very good - even if we have an empty
1501 * list or the wrong list here, we can start from some node and traverse all
1502 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1503 *
1504 */
c0ff4b85 1505static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1506{
1507 int nid;
453a9bf3
KH
1508 /*
1509 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1510 * pagein/pageout changes since the last update.
1511 */
c0ff4b85 1512 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1513 return;
c0ff4b85 1514 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1515 return;
1516
889976db 1517 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1518 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1519
1520 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1521
c0ff4b85
R
1522 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1523 node_clear(nid, memcg->scan_nodes);
889976db 1524 }
453a9bf3 1525
c0ff4b85
R
1526 atomic_set(&memcg->numainfo_events, 0);
1527 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1528}
1529
1530/*
1531 * Selecting a node where we start reclaim from. Because what we need is just
1532 * reducing usage counter, start from anywhere is O,K. Considering
1533 * memory reclaim from current node, there are pros. and cons.
1534 *
1535 * Freeing memory from current node means freeing memory from a node which
1536 * we'll use or we've used. So, it may make LRU bad. And if several threads
1537 * hit limits, it will see a contention on a node. But freeing from remote
1538 * node means more costs for memory reclaim because of memory latency.
1539 *
1540 * Now, we use round-robin. Better algorithm is welcomed.
1541 */
c0ff4b85 1542int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1543{
1544 int node;
1545
c0ff4b85
R
1546 mem_cgroup_may_update_nodemask(memcg);
1547 node = memcg->last_scanned_node;
889976db 1548
c0ff4b85 1549 node = next_node(node, memcg->scan_nodes);
889976db 1550 if (node == MAX_NUMNODES)
c0ff4b85 1551 node = first_node(memcg->scan_nodes);
889976db
YH
1552 /*
1553 * We call this when we hit limit, not when pages are added to LRU.
1554 * No LRU may hold pages because all pages are UNEVICTABLE or
1555 * memcg is too small and all pages are not on LRU. In that case,
1556 * we use curret node.
1557 */
1558 if (unlikely(node == MAX_NUMNODES))
1559 node = numa_node_id();
1560
c0ff4b85 1561 memcg->last_scanned_node = node;
889976db
YH
1562 return node;
1563}
1564
4d0c066d
KH
1565/*
1566 * Check all nodes whether it contains reclaimable pages or not.
1567 * For quick scan, we make use of scan_nodes. This will allow us to skip
1568 * unused nodes. But scan_nodes is lazily updated and may not cotain
1569 * enough new information. We need to do double check.
1570 */
c0ff4b85 1571bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1572{
1573 int nid;
1574
1575 /*
1576 * quick check...making use of scan_node.
1577 * We can skip unused nodes.
1578 */
c0ff4b85
R
1579 if (!nodes_empty(memcg->scan_nodes)) {
1580 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1581 nid < MAX_NUMNODES;
c0ff4b85 1582 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1583
c0ff4b85 1584 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1585 return true;
1586 }
1587 }
1588 /*
1589 * Check rest of nodes.
1590 */
1591 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1592 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1593 continue;
c0ff4b85 1594 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1595 return true;
1596 }
1597 return false;
1598}
1599
889976db 1600#else
c0ff4b85 1601int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1602{
1603 return 0;
1604}
4d0c066d 1605
c0ff4b85 1606bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1607{
c0ff4b85 1608 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1609}
889976db
YH
1610#endif
1611
5660048c
JW
1612static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1613 struct zone *zone,
1614 gfp_t gfp_mask,
1615 unsigned long *total_scanned)
6d61ef40 1616{
9f3a0d09 1617 struct mem_cgroup *victim = NULL;
5660048c 1618 int total = 0;
04046e1a 1619 int loop = 0;
9d11ea9f 1620 unsigned long excess;
185efc0f 1621 unsigned long nr_scanned;
527a5ec9
JW
1622 struct mem_cgroup_reclaim_cookie reclaim = {
1623 .zone = zone,
1624 .priority = 0,
1625 };
9d11ea9f 1626
c0ff4b85 1627 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1628
4e416953 1629 while (1) {
527a5ec9 1630 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1631 if (!victim) {
04046e1a 1632 loop++;
4e416953
BS
1633 if (loop >= 2) {
1634 /*
1635 * If we have not been able to reclaim
1636 * anything, it might because there are
1637 * no reclaimable pages under this hierarchy
1638 */
5660048c 1639 if (!total)
4e416953 1640 break;
4e416953 1641 /*
25985edc 1642 * We want to do more targeted reclaim.
4e416953
BS
1643 * excess >> 2 is not to excessive so as to
1644 * reclaim too much, nor too less that we keep
1645 * coming back to reclaim from this cgroup
1646 */
1647 if (total >= (excess >> 2) ||
9f3a0d09 1648 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1649 break;
4e416953 1650 }
9f3a0d09 1651 continue;
4e416953 1652 }
5660048c 1653 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1654 continue;
5660048c
JW
1655 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1656 zone, &nr_scanned);
1657 *total_scanned += nr_scanned;
1658 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1659 break;
6d61ef40 1660 }
9f3a0d09 1661 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1662 return total;
6d61ef40
BS
1663}
1664
867578cb
KH
1665/*
1666 * Check OOM-Killer is already running under our hierarchy.
1667 * If someone is running, return false.
1af8efe9 1668 * Has to be called with memcg_oom_lock
867578cb 1669 */
c0ff4b85 1670static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1671{
79dfdacc 1672 struct mem_cgroup *iter, *failed = NULL;
a636b327 1673
9f3a0d09 1674 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1675 if (iter->oom_lock) {
79dfdacc
MH
1676 /*
1677 * this subtree of our hierarchy is already locked
1678 * so we cannot give a lock.
1679 */
79dfdacc 1680 failed = iter;
9f3a0d09
JW
1681 mem_cgroup_iter_break(memcg, iter);
1682 break;
23751be0
JW
1683 } else
1684 iter->oom_lock = true;
7d74b06f 1685 }
867578cb 1686
79dfdacc 1687 if (!failed)
23751be0 1688 return true;
79dfdacc
MH
1689
1690 /*
1691 * OK, we failed to lock the whole subtree so we have to clean up
1692 * what we set up to the failing subtree
1693 */
9f3a0d09 1694 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1695 if (iter == failed) {
9f3a0d09
JW
1696 mem_cgroup_iter_break(memcg, iter);
1697 break;
79dfdacc
MH
1698 }
1699 iter->oom_lock = false;
1700 }
23751be0 1701 return false;
a636b327 1702}
0b7f569e 1703
79dfdacc 1704/*
1af8efe9 1705 * Has to be called with memcg_oom_lock
79dfdacc 1706 */
c0ff4b85 1707static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1708{
7d74b06f
KH
1709 struct mem_cgroup *iter;
1710
c0ff4b85 1711 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1712 iter->oom_lock = false;
1713 return 0;
1714}
1715
c0ff4b85 1716static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1717{
1718 struct mem_cgroup *iter;
1719
c0ff4b85 1720 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1721 atomic_inc(&iter->under_oom);
1722}
1723
c0ff4b85 1724static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1725{
1726 struct mem_cgroup *iter;
1727
867578cb
KH
1728 /*
1729 * When a new child is created while the hierarchy is under oom,
1730 * mem_cgroup_oom_lock() may not be called. We have to use
1731 * atomic_add_unless() here.
1732 */
c0ff4b85 1733 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1734 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1735}
1736
1af8efe9 1737static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1738static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1739
dc98df5a
KH
1740struct oom_wait_info {
1741 struct mem_cgroup *mem;
1742 wait_queue_t wait;
1743};
1744
1745static int memcg_oom_wake_function(wait_queue_t *wait,
1746 unsigned mode, int sync, void *arg)
1747{
c0ff4b85
R
1748 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1749 *oom_wait_memcg;
dc98df5a
KH
1750 struct oom_wait_info *oom_wait_info;
1751
1752 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
c0ff4b85 1753 oom_wait_memcg = oom_wait_info->mem;
dc98df5a 1754
dc98df5a
KH
1755 /*
1756 * Both of oom_wait_info->mem and wake_mem are stable under us.
1757 * Then we can use css_is_ancestor without taking care of RCU.
1758 */
c0ff4b85
R
1759 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1760 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1761 return 0;
dc98df5a
KH
1762 return autoremove_wake_function(wait, mode, sync, arg);
1763}
1764
c0ff4b85 1765static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1766{
c0ff4b85
R
1767 /* for filtering, pass "memcg" as argument. */
1768 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1769}
1770
c0ff4b85 1771static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1772{
c0ff4b85
R
1773 if (memcg && atomic_read(&memcg->under_oom))
1774 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1775}
1776
867578cb
KH
1777/*
1778 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1779 */
c0ff4b85 1780bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
0b7f569e 1781{
dc98df5a 1782 struct oom_wait_info owait;
3c11ecf4 1783 bool locked, need_to_kill;
867578cb 1784
c0ff4b85 1785 owait.mem = memcg;
dc98df5a
KH
1786 owait.wait.flags = 0;
1787 owait.wait.func = memcg_oom_wake_function;
1788 owait.wait.private = current;
1789 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1790 need_to_kill = true;
c0ff4b85 1791 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1792
c0ff4b85 1793 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1794 spin_lock(&memcg_oom_lock);
c0ff4b85 1795 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1796 /*
1797 * Even if signal_pending(), we can't quit charge() loop without
1798 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1799 * under OOM is always welcomed, use TASK_KILLABLE here.
1800 */
3c11ecf4 1801 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1802 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1803 need_to_kill = false;
1804 if (locked)
c0ff4b85 1805 mem_cgroup_oom_notify(memcg);
1af8efe9 1806 spin_unlock(&memcg_oom_lock);
867578cb 1807
3c11ecf4
KH
1808 if (need_to_kill) {
1809 finish_wait(&memcg_oom_waitq, &owait.wait);
c0ff4b85 1810 mem_cgroup_out_of_memory(memcg, mask);
3c11ecf4 1811 } else {
867578cb 1812 schedule();
dc98df5a 1813 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1814 }
1af8efe9 1815 spin_lock(&memcg_oom_lock);
79dfdacc 1816 if (locked)
c0ff4b85
R
1817 mem_cgroup_oom_unlock(memcg);
1818 memcg_wakeup_oom(memcg);
1af8efe9 1819 spin_unlock(&memcg_oom_lock);
867578cb 1820
c0ff4b85 1821 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1822
867578cb
KH
1823 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1824 return false;
1825 /* Give chance to dying process */
715a5ee8 1826 schedule_timeout_uninterruptible(1);
867578cb 1827 return true;
0b7f569e
KH
1828}
1829
d69b042f
BS
1830/*
1831 * Currently used to update mapped file statistics, but the routine can be
1832 * generalized to update other statistics as well.
32047e2a
KH
1833 *
1834 * Notes: Race condition
1835 *
1836 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1837 * it tends to be costly. But considering some conditions, we doesn't need
1838 * to do so _always_.
1839 *
1840 * Considering "charge", lock_page_cgroup() is not required because all
1841 * file-stat operations happen after a page is attached to radix-tree. There
1842 * are no race with "charge".
1843 *
1844 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1845 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1846 * if there are race with "uncharge". Statistics itself is properly handled
1847 * by flags.
1848 *
1849 * Considering "move", this is an only case we see a race. To make the race
1850 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1851 * possibility of race condition. If there is, we take a lock.
d69b042f 1852 */
26174efd 1853
2a7106f2
GT
1854void mem_cgroup_update_page_stat(struct page *page,
1855 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1856{
c0ff4b85 1857 struct mem_cgroup *memcg;
32047e2a
KH
1858 struct page_cgroup *pc = lookup_page_cgroup(page);
1859 bool need_unlock = false;
dbd4ea78 1860 unsigned long uninitialized_var(flags);
d69b042f 1861
cfa44946 1862 if (mem_cgroup_disabled())
d69b042f
BS
1863 return;
1864
32047e2a 1865 rcu_read_lock();
c0ff4b85
R
1866 memcg = pc->mem_cgroup;
1867 if (unlikely(!memcg || !PageCgroupUsed(pc)))
32047e2a
KH
1868 goto out;
1869 /* pc->mem_cgroup is unstable ? */
c0ff4b85 1870 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
32047e2a 1871 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1872 move_lock_page_cgroup(pc, &flags);
32047e2a 1873 need_unlock = true;
c0ff4b85
R
1874 memcg = pc->mem_cgroup;
1875 if (!memcg || !PageCgroupUsed(pc))
32047e2a
KH
1876 goto out;
1877 }
26174efd 1878
26174efd 1879 switch (idx) {
2a7106f2 1880 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1881 if (val > 0)
1882 SetPageCgroupFileMapped(pc);
1883 else if (!page_mapped(page))
0c270f8f 1884 ClearPageCgroupFileMapped(pc);
2a7106f2 1885 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1886 break;
1887 default:
1888 BUG();
8725d541 1889 }
d69b042f 1890
c0ff4b85 1891 this_cpu_add(memcg->stat->count[idx], val);
2a7106f2 1892
32047e2a
KH
1893out:
1894 if (unlikely(need_unlock))
dbd4ea78 1895 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1896 rcu_read_unlock();
1897 return;
d69b042f 1898}
2a7106f2 1899EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1900
cdec2e42
KH
1901/*
1902 * size of first charge trial. "32" comes from vmscan.c's magic value.
1903 * TODO: maybe necessary to use big numbers in big irons.
1904 */
7ec99d62 1905#define CHARGE_BATCH 32U
cdec2e42
KH
1906struct memcg_stock_pcp {
1907 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1908 unsigned int nr_pages;
cdec2e42 1909 struct work_struct work;
26fe6168
KH
1910 unsigned long flags;
1911#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
1912};
1913static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1914static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1915
1916/*
11c9ea4e 1917 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1918 * from local stock and true is returned. If the stock is 0 or charges from a
1919 * cgroup which is not current target, returns false. This stock will be
1920 * refilled.
1921 */
c0ff4b85 1922static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
1923{
1924 struct memcg_stock_pcp *stock;
1925 bool ret = true;
1926
1927 stock = &get_cpu_var(memcg_stock);
c0ff4b85 1928 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 1929 stock->nr_pages--;
cdec2e42
KH
1930 else /* need to call res_counter_charge */
1931 ret = false;
1932 put_cpu_var(memcg_stock);
1933 return ret;
1934}
1935
1936/*
1937 * Returns stocks cached in percpu to res_counter and reset cached information.
1938 */
1939static void drain_stock(struct memcg_stock_pcp *stock)
1940{
1941 struct mem_cgroup *old = stock->cached;
1942
11c9ea4e
JW
1943 if (stock->nr_pages) {
1944 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1945
1946 res_counter_uncharge(&old->res, bytes);
cdec2e42 1947 if (do_swap_account)
11c9ea4e
JW
1948 res_counter_uncharge(&old->memsw, bytes);
1949 stock->nr_pages = 0;
cdec2e42
KH
1950 }
1951 stock->cached = NULL;
cdec2e42
KH
1952}
1953
1954/*
1955 * This must be called under preempt disabled or must be called by
1956 * a thread which is pinned to local cpu.
1957 */
1958static void drain_local_stock(struct work_struct *dummy)
1959{
1960 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1961 drain_stock(stock);
26fe6168 1962 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1963}
1964
1965/*
1966 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1967 * This will be consumed by consume_stock() function, later.
cdec2e42 1968 */
c0ff4b85 1969static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1970{
1971 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1972
c0ff4b85 1973 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1974 drain_stock(stock);
c0ff4b85 1975 stock->cached = memcg;
cdec2e42 1976 }
11c9ea4e 1977 stock->nr_pages += nr_pages;
cdec2e42
KH
1978 put_cpu_var(memcg_stock);
1979}
1980
1981/*
c0ff4b85 1982 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
1983 * of the hierarchy under it. sync flag says whether we should block
1984 * until the work is done.
cdec2e42 1985 */
c0ff4b85 1986static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 1987{
26fe6168 1988 int cpu, curcpu;
d38144b7 1989
cdec2e42 1990 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1991 get_online_cpus();
5af12d0e 1992 curcpu = get_cpu();
cdec2e42
KH
1993 for_each_online_cpu(cpu) {
1994 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1995 struct mem_cgroup *memcg;
26fe6168 1996
c0ff4b85
R
1997 memcg = stock->cached;
1998 if (!memcg || !stock->nr_pages)
26fe6168 1999 continue;
c0ff4b85 2000 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2001 continue;
d1a05b69
MH
2002 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2003 if (cpu == curcpu)
2004 drain_local_stock(&stock->work);
2005 else
2006 schedule_work_on(cpu, &stock->work);
2007 }
cdec2e42 2008 }
5af12d0e 2009 put_cpu();
d38144b7
MH
2010
2011 if (!sync)
2012 goto out;
2013
2014 for_each_online_cpu(cpu) {
2015 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2016 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2017 flush_work(&stock->work);
2018 }
2019out:
cdec2e42 2020 put_online_cpus();
d38144b7
MH
2021}
2022
2023/*
2024 * Tries to drain stocked charges in other cpus. This function is asynchronous
2025 * and just put a work per cpu for draining localy on each cpu. Caller can
2026 * expects some charges will be back to res_counter later but cannot wait for
2027 * it.
2028 */
c0ff4b85 2029static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2030{
9f50fad6
MH
2031 /*
2032 * If someone calls draining, avoid adding more kworker runs.
2033 */
2034 if (!mutex_trylock(&percpu_charge_mutex))
2035 return;
c0ff4b85 2036 drain_all_stock(root_memcg, false);
9f50fad6 2037 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2038}
2039
2040/* This is a synchronous drain interface. */
c0ff4b85 2041static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2042{
2043 /* called when force_empty is called */
9f50fad6 2044 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2045 drain_all_stock(root_memcg, true);
9f50fad6 2046 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2047}
2048
711d3d2c
KH
2049/*
2050 * This function drains percpu counter value from DEAD cpu and
2051 * move it to local cpu. Note that this function can be preempted.
2052 */
c0ff4b85 2053static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2054{
2055 int i;
2056
c0ff4b85 2057 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2058 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2059 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2060
c0ff4b85
R
2061 per_cpu(memcg->stat->count[i], cpu) = 0;
2062 memcg->nocpu_base.count[i] += x;
711d3d2c 2063 }
e9f8974f 2064 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2065 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2066
c0ff4b85
R
2067 per_cpu(memcg->stat->events[i], cpu) = 0;
2068 memcg->nocpu_base.events[i] += x;
e9f8974f 2069 }
1489ebad 2070 /* need to clear ON_MOVE value, works as a kind of lock. */
c0ff4b85
R
2071 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2072 spin_unlock(&memcg->pcp_counter_lock);
1489ebad
KH
2073}
2074
c0ff4b85 2075static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
1489ebad
KH
2076{
2077 int idx = MEM_CGROUP_ON_MOVE;
2078
c0ff4b85
R
2079 spin_lock(&memcg->pcp_counter_lock);
2080 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2081 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2082}
2083
2084static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2085 unsigned long action,
2086 void *hcpu)
2087{
2088 int cpu = (unsigned long)hcpu;
2089 struct memcg_stock_pcp *stock;
711d3d2c 2090 struct mem_cgroup *iter;
cdec2e42 2091
1489ebad 2092 if ((action == CPU_ONLINE)) {
9f3a0d09 2093 for_each_mem_cgroup(iter)
1489ebad
KH
2094 synchronize_mem_cgroup_on_move(iter, cpu);
2095 return NOTIFY_OK;
2096 }
2097
711d3d2c 2098 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2099 return NOTIFY_OK;
711d3d2c 2100
9f3a0d09 2101 for_each_mem_cgroup(iter)
711d3d2c
KH
2102 mem_cgroup_drain_pcp_counter(iter, cpu);
2103
cdec2e42
KH
2104 stock = &per_cpu(memcg_stock, cpu);
2105 drain_stock(stock);
2106 return NOTIFY_OK;
2107}
2108
4b534334
KH
2109
2110/* See __mem_cgroup_try_charge() for details */
2111enum {
2112 CHARGE_OK, /* success */
2113 CHARGE_RETRY, /* need to retry but retry is not bad */
2114 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2115 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2116 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2117};
2118
c0ff4b85 2119static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2120 unsigned int nr_pages, bool oom_check)
4b534334 2121{
7ec99d62 2122 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2123 struct mem_cgroup *mem_over_limit;
2124 struct res_counter *fail_res;
2125 unsigned long flags = 0;
2126 int ret;
2127
c0ff4b85 2128 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2129
2130 if (likely(!ret)) {
2131 if (!do_swap_account)
2132 return CHARGE_OK;
c0ff4b85 2133 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2134 if (likely(!ret))
2135 return CHARGE_OK;
2136
c0ff4b85 2137 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2138 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2139 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2140 } else
2141 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2142 /*
7ec99d62
JW
2143 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2144 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2145 *
2146 * Never reclaim on behalf of optional batching, retry with a
2147 * single page instead.
2148 */
7ec99d62 2149 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2150 return CHARGE_RETRY;
2151
2152 if (!(gfp_mask & __GFP_WAIT))
2153 return CHARGE_WOULDBLOCK;
2154
5660048c 2155 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2156 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2157 return CHARGE_RETRY;
4b534334 2158 /*
19942822
JW
2159 * Even though the limit is exceeded at this point, reclaim
2160 * may have been able to free some pages. Retry the charge
2161 * before killing the task.
2162 *
2163 * Only for regular pages, though: huge pages are rather
2164 * unlikely to succeed so close to the limit, and we fall back
2165 * to regular pages anyway in case of failure.
4b534334 2166 */
7ec99d62 2167 if (nr_pages == 1 && ret)
4b534334
KH
2168 return CHARGE_RETRY;
2169
2170 /*
2171 * At task move, charge accounts can be doubly counted. So, it's
2172 * better to wait until the end of task_move if something is going on.
2173 */
2174 if (mem_cgroup_wait_acct_move(mem_over_limit))
2175 return CHARGE_RETRY;
2176
2177 /* If we don't need to call oom-killer at el, return immediately */
2178 if (!oom_check)
2179 return CHARGE_NOMEM;
2180 /* check OOM */
2181 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2182 return CHARGE_OOM_DIE;
2183
2184 return CHARGE_RETRY;
2185}
2186
f817ed48 2187/*
38c5d72f
KH
2188 * __mem_cgroup_try_charge() does
2189 * 1. detect memcg to be charged against from passed *mm and *ptr,
2190 * 2. update res_counter
2191 * 3. call memory reclaim if necessary.
2192 *
2193 * In some special case, if the task is fatal, fatal_signal_pending() or
2194 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2195 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2196 * as possible without any hazards. 2: all pages should have a valid
2197 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2198 * pointer, that is treated as a charge to root_mem_cgroup.
2199 *
2200 * So __mem_cgroup_try_charge() will return
2201 * 0 ... on success, filling *ptr with a valid memcg pointer.
2202 * -ENOMEM ... charge failure because of resource limits.
2203 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2204 *
2205 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2206 * the oom-killer can be invoked.
8a9f3ccd 2207 */
f817ed48 2208static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2209 gfp_t gfp_mask,
7ec99d62 2210 unsigned int nr_pages,
c0ff4b85 2211 struct mem_cgroup **ptr,
7ec99d62 2212 bool oom)
8a9f3ccd 2213{
7ec99d62 2214 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2215 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2216 struct mem_cgroup *memcg = NULL;
4b534334 2217 int ret;
a636b327 2218
867578cb
KH
2219 /*
2220 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2221 * in system level. So, allow to go ahead dying process in addition to
2222 * MEMDIE process.
2223 */
2224 if (unlikely(test_thread_flag(TIF_MEMDIE)
2225 || fatal_signal_pending(current)))
2226 goto bypass;
a636b327 2227
8a9f3ccd 2228 /*
3be91277
HD
2229 * We always charge the cgroup the mm_struct belongs to.
2230 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2231 * thread group leader migrates. It's possible that mm is not
2232 * set, if so charge the init_mm (happens for pagecache usage).
2233 */
c0ff4b85 2234 if (!*ptr && !mm)
38c5d72f 2235 *ptr = root_mem_cgroup;
f75ca962 2236again:
c0ff4b85
R
2237 if (*ptr) { /* css should be a valid one */
2238 memcg = *ptr;
2239 VM_BUG_ON(css_is_removed(&memcg->css));
2240 if (mem_cgroup_is_root(memcg))
f75ca962 2241 goto done;
c0ff4b85 2242 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2243 goto done;
c0ff4b85 2244 css_get(&memcg->css);
4b534334 2245 } else {
f75ca962 2246 struct task_struct *p;
54595fe2 2247
f75ca962
KH
2248 rcu_read_lock();
2249 p = rcu_dereference(mm->owner);
f75ca962 2250 /*
ebb76ce1 2251 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2252 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2253 * race with swapoff. Then, we have small risk of mis-accouning.
2254 * But such kind of mis-account by race always happens because
2255 * we don't have cgroup_mutex(). It's overkill and we allo that
2256 * small race, here.
2257 * (*) swapoff at el will charge against mm-struct not against
2258 * task-struct. So, mm->owner can be NULL.
f75ca962 2259 */
c0ff4b85 2260 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2261 if (!memcg)
2262 memcg = root_mem_cgroup;
2263 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2264 rcu_read_unlock();
2265 goto done;
2266 }
c0ff4b85 2267 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2268 /*
2269 * It seems dagerous to access memcg without css_get().
2270 * But considering how consume_stok works, it's not
2271 * necessary. If consume_stock success, some charges
2272 * from this memcg are cached on this cpu. So, we
2273 * don't need to call css_get()/css_tryget() before
2274 * calling consume_stock().
2275 */
2276 rcu_read_unlock();
2277 goto done;
2278 }
2279 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2280 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2281 rcu_read_unlock();
2282 goto again;
2283 }
2284 rcu_read_unlock();
2285 }
8a9f3ccd 2286
4b534334
KH
2287 do {
2288 bool oom_check;
7a81b88c 2289
4b534334 2290 /* If killed, bypass charge */
f75ca962 2291 if (fatal_signal_pending(current)) {
c0ff4b85 2292 css_put(&memcg->css);
4b534334 2293 goto bypass;
f75ca962 2294 }
6d61ef40 2295
4b534334
KH
2296 oom_check = false;
2297 if (oom && !nr_oom_retries) {
2298 oom_check = true;
2299 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2300 }
66e1707b 2301
c0ff4b85 2302 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2303 switch (ret) {
2304 case CHARGE_OK:
2305 break;
2306 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2307 batch = nr_pages;
c0ff4b85
R
2308 css_put(&memcg->css);
2309 memcg = NULL;
f75ca962 2310 goto again;
4b534334 2311 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2312 css_put(&memcg->css);
4b534334
KH
2313 goto nomem;
2314 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2315 if (!oom) {
c0ff4b85 2316 css_put(&memcg->css);
867578cb 2317 goto nomem;
f75ca962 2318 }
4b534334
KH
2319 /* If oom, we never return -ENOMEM */
2320 nr_oom_retries--;
2321 break;
2322 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2323 css_put(&memcg->css);
867578cb 2324 goto bypass;
66e1707b 2325 }
4b534334
KH
2326 } while (ret != CHARGE_OK);
2327
7ec99d62 2328 if (batch > nr_pages)
c0ff4b85
R
2329 refill_stock(memcg, batch - nr_pages);
2330 css_put(&memcg->css);
0c3e73e8 2331done:
c0ff4b85 2332 *ptr = memcg;
7a81b88c
KH
2333 return 0;
2334nomem:
c0ff4b85 2335 *ptr = NULL;
7a81b88c 2336 return -ENOMEM;
867578cb 2337bypass:
38c5d72f
KH
2338 *ptr = root_mem_cgroup;
2339 return -EINTR;
7a81b88c 2340}
8a9f3ccd 2341
a3032a2c
DN
2342/*
2343 * Somemtimes we have to undo a charge we got by try_charge().
2344 * This function is for that and do uncharge, put css's refcnt.
2345 * gotten by try_charge().
2346 */
c0ff4b85 2347static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2348 unsigned int nr_pages)
a3032a2c 2349{
c0ff4b85 2350 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2351 unsigned long bytes = nr_pages * PAGE_SIZE;
2352
c0ff4b85 2353 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2354 if (do_swap_account)
c0ff4b85 2355 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2356 }
854ffa8d
DN
2357}
2358
a3b2d692
KH
2359/*
2360 * A helper function to get mem_cgroup from ID. must be called under
2361 * rcu_read_lock(). The caller must check css_is_removed() or some if
2362 * it's concern. (dropping refcnt from swap can be called against removed
2363 * memcg.)
2364 */
2365static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2366{
2367 struct cgroup_subsys_state *css;
2368
2369 /* ID 0 is unused ID */
2370 if (!id)
2371 return NULL;
2372 css = css_lookup(&mem_cgroup_subsys, id);
2373 if (!css)
2374 return NULL;
2375 return container_of(css, struct mem_cgroup, css);
2376}
2377
e42d9d5d 2378struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2379{
c0ff4b85 2380 struct mem_cgroup *memcg = NULL;
3c776e64 2381 struct page_cgroup *pc;
a3b2d692 2382 unsigned short id;
b5a84319
KH
2383 swp_entry_t ent;
2384
3c776e64
DN
2385 VM_BUG_ON(!PageLocked(page));
2386
3c776e64 2387 pc = lookup_page_cgroup(page);
c0bd3f63 2388 lock_page_cgroup(pc);
a3b2d692 2389 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2390 memcg = pc->mem_cgroup;
2391 if (memcg && !css_tryget(&memcg->css))
2392 memcg = NULL;
e42d9d5d 2393 } else if (PageSwapCache(page)) {
3c776e64 2394 ent.val = page_private(page);
9fb4b7cc 2395 id = lookup_swap_cgroup_id(ent);
a3b2d692 2396 rcu_read_lock();
c0ff4b85
R
2397 memcg = mem_cgroup_lookup(id);
2398 if (memcg && !css_tryget(&memcg->css))
2399 memcg = NULL;
a3b2d692 2400 rcu_read_unlock();
3c776e64 2401 }
c0bd3f63 2402 unlock_page_cgroup(pc);
c0ff4b85 2403 return memcg;
b5a84319
KH
2404}
2405
c0ff4b85 2406static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2407 struct page *page,
7ec99d62 2408 unsigned int nr_pages,
ca3e0214 2409 struct page_cgroup *pc,
7ec99d62 2410 enum charge_type ctype)
7a81b88c 2411{
ca3e0214
KH
2412 lock_page_cgroup(pc);
2413 if (unlikely(PageCgroupUsed(pc))) {
2414 unlock_page_cgroup(pc);
c0ff4b85 2415 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2416 return;
2417 }
2418 /*
2419 * we don't need page_cgroup_lock about tail pages, becase they are not
2420 * accessed by any other context at this point.
2421 */
c0ff4b85 2422 pc->mem_cgroup = memcg;
261fb61a
KH
2423 /*
2424 * We access a page_cgroup asynchronously without lock_page_cgroup().
2425 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2426 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2427 * before USED bit, we need memory barrier here.
2428 * See mem_cgroup_add_lru_list(), etc.
2429 */
08e552c6 2430 smp_wmb();
4b3bde4c
BS
2431 switch (ctype) {
2432 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2433 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2434 SetPageCgroupCache(pc);
2435 SetPageCgroupUsed(pc);
2436 break;
2437 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2438 ClearPageCgroupCache(pc);
2439 SetPageCgroupUsed(pc);
2440 break;
2441 default:
2442 break;
2443 }
3be91277 2444
c0ff4b85 2445 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
52d4b9ac 2446 unlock_page_cgroup(pc);
38c5d72f 2447 WARN_ON_ONCE(PageLRU(page));
430e4863
KH
2448 /*
2449 * "charge_statistics" updated event counter. Then, check it.
2450 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2451 * if they exceeds softlimit.
2452 */
c0ff4b85 2453 memcg_check_events(memcg, page);
7a81b88c 2454}
66e1707b 2455
ca3e0214
KH
2456#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2457
2458#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
38c5d72f 2459 (1 << PCG_MIGRATION))
ca3e0214
KH
2460/*
2461 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2462 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2463 * charge/uncharge will be never happen and move_account() is done under
2464 * compound_lock(), so we don't have to take care of races.
ca3e0214 2465 */
e94c8a9c 2466void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2467{
2468 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2469 struct page_cgroup *pc;
2470 int i;
ca3e0214 2471
3d37c4a9
KH
2472 if (mem_cgroup_disabled())
2473 return;
e94c8a9c
KH
2474 for (i = 1; i < HPAGE_PMD_NR; i++) {
2475 pc = head_pc + i;
2476 pc->mem_cgroup = head_pc->mem_cgroup;
2477 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2478 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2479 }
ca3e0214 2480}
12d27107 2481#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2482
f817ed48 2483/**
de3638d9 2484 * mem_cgroup_move_account - move account of the page
5564e88b 2485 * @page: the page
7ec99d62 2486 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2487 * @pc: page_cgroup of the page.
2488 * @from: mem_cgroup which the page is moved from.
2489 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2490 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2491 *
2492 * The caller must confirm following.
08e552c6 2493 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2494 * - compound_lock is held when nr_pages > 1
f817ed48 2495 *
854ffa8d 2496 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2497 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2498 * true, this function does "uncharge" from old cgroup, but it doesn't if
2499 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2500 */
7ec99d62
JW
2501static int mem_cgroup_move_account(struct page *page,
2502 unsigned int nr_pages,
2503 struct page_cgroup *pc,
2504 struct mem_cgroup *from,
2505 struct mem_cgroup *to,
2506 bool uncharge)
f817ed48 2507{
de3638d9
JW
2508 unsigned long flags;
2509 int ret;
987eba66 2510
f817ed48 2511 VM_BUG_ON(from == to);
5564e88b 2512 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2513 /*
2514 * The page is isolated from LRU. So, collapse function
2515 * will not handle this page. But page splitting can happen.
2516 * Do this check under compound_page_lock(). The caller should
2517 * hold it.
2518 */
2519 ret = -EBUSY;
7ec99d62 2520 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2521 goto out;
2522
2523 lock_page_cgroup(pc);
2524
2525 ret = -EINVAL;
2526 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2527 goto unlock;
2528
2529 move_lock_page_cgroup(pc, &flags);
f817ed48 2530
8725d541 2531 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2532 /* Update mapped_file data for mem_cgroup */
2533 preempt_disable();
2534 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2535 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2536 preempt_enable();
d69b042f 2537 }
987eba66 2538 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2539 if (uncharge)
2540 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2541 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2542
854ffa8d 2543 /* caller should have done css_get */
08e552c6 2544 pc->mem_cgroup = to;
987eba66 2545 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2546 /*
2547 * We charges against "to" which may not have any tasks. Then, "to"
2548 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2549 * this function is just force_empty() and move charge, so it's
25985edc 2550 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2551 * status here.
88703267 2552 */
de3638d9
JW
2553 move_unlock_page_cgroup(pc, &flags);
2554 ret = 0;
2555unlock:
57f9fd7d 2556 unlock_page_cgroup(pc);
d2265e6f
KH
2557 /*
2558 * check events
2559 */
5564e88b
JW
2560 memcg_check_events(to, page);
2561 memcg_check_events(from, page);
de3638d9 2562out:
f817ed48
KH
2563 return ret;
2564}
2565
2566/*
2567 * move charges to its parent.
2568 */
2569
5564e88b
JW
2570static int mem_cgroup_move_parent(struct page *page,
2571 struct page_cgroup *pc,
f817ed48
KH
2572 struct mem_cgroup *child,
2573 gfp_t gfp_mask)
2574{
2575 struct cgroup *cg = child->css.cgroup;
2576 struct cgroup *pcg = cg->parent;
2577 struct mem_cgroup *parent;
7ec99d62 2578 unsigned int nr_pages;
4be4489f 2579 unsigned long uninitialized_var(flags);
f817ed48
KH
2580 int ret;
2581
2582 /* Is ROOT ? */
2583 if (!pcg)
2584 return -EINVAL;
2585
57f9fd7d
DN
2586 ret = -EBUSY;
2587 if (!get_page_unless_zero(page))
2588 goto out;
2589 if (isolate_lru_page(page))
2590 goto put;
52dbb905 2591
7ec99d62 2592 nr_pages = hpage_nr_pages(page);
08e552c6 2593
f817ed48 2594 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2595 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
38c5d72f 2596 if (ret)
57f9fd7d 2597 goto put_back;
f817ed48 2598
7ec99d62 2599 if (nr_pages > 1)
987eba66
KH
2600 flags = compound_lock_irqsave(page);
2601
7ec99d62 2602 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2603 if (ret)
7ec99d62 2604 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2605
7ec99d62 2606 if (nr_pages > 1)
987eba66 2607 compound_unlock_irqrestore(page, flags);
8dba474f 2608put_back:
08e552c6 2609 putback_lru_page(page);
57f9fd7d 2610put:
40d58138 2611 put_page(page);
57f9fd7d 2612out:
f817ed48
KH
2613 return ret;
2614}
2615
7a81b88c
KH
2616/*
2617 * Charge the memory controller for page usage.
2618 * Return
2619 * 0 if the charge was successful
2620 * < 0 if the cgroup is over its limit
2621 */
2622static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2623 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2624{
c0ff4b85 2625 struct mem_cgroup *memcg = NULL;
7ec99d62 2626 unsigned int nr_pages = 1;
7a81b88c 2627 struct page_cgroup *pc;
8493ae43 2628 bool oom = true;
7a81b88c 2629 int ret;
ec168510 2630
37c2ac78 2631 if (PageTransHuge(page)) {
7ec99d62 2632 nr_pages <<= compound_order(page);
37c2ac78 2633 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2634 /*
2635 * Never OOM-kill a process for a huge page. The
2636 * fault handler will fall back to regular pages.
2637 */
2638 oom = false;
37c2ac78 2639 }
7a81b88c
KH
2640
2641 pc = lookup_page_cgroup(page);
c0ff4b85 2642 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2643 if (ret == -ENOMEM)
7a81b88c 2644 return ret;
c0ff4b85 2645 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
8a9f3ccd 2646 return 0;
8a9f3ccd
BS
2647}
2648
7a81b88c
KH
2649int mem_cgroup_newpage_charge(struct page *page,
2650 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2651{
f8d66542 2652 if (mem_cgroup_disabled())
cede86ac 2653 return 0;
7a0524cf
JW
2654 VM_BUG_ON(page_mapped(page));
2655 VM_BUG_ON(page->mapping && !PageAnon(page));
2656 VM_BUG_ON(!mm);
217bc319 2657 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2658 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2659}
2660
83aae4c7
DN
2661static void
2662__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2663 enum charge_type ctype);
2664
5a6475a4 2665static void
c0ff4b85 2666__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
5a6475a4
KH
2667 enum charge_type ctype)
2668{
2669 struct page_cgroup *pc = lookup_page_cgroup(page);
36b62ad5
KH
2670 struct zone *zone = page_zone(page);
2671 unsigned long flags;
2672 bool removed = false;
2673
5a6475a4
KH
2674 /*
2675 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2676 * is already on LRU. It means the page may on some other page_cgroup's
2677 * LRU. Take care of it.
2678 */
36b62ad5
KH
2679 spin_lock_irqsave(&zone->lru_lock, flags);
2680 if (PageLRU(page)) {
2681 del_page_from_lru_list(zone, page, page_lru(page));
2682 ClearPageLRU(page);
2683 removed = true;
2684 }
c0ff4b85 2685 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
36b62ad5
KH
2686 if (removed) {
2687 add_page_to_lru_list(zone, page, page_lru(page));
2688 SetPageLRU(page);
2689 }
2690 spin_unlock_irqrestore(&zone->lru_lock, flags);
5a6475a4
KH
2691 return;
2692}
2693
e1a1cd59
BS
2694int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2695 gfp_t gfp_mask)
8697d331 2696{
c0ff4b85 2697 struct mem_cgroup *memcg = NULL;
dc67d504 2698 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2699 int ret;
2700
f8d66542 2701 if (mem_cgroup_disabled())
cede86ac 2702 return 0;
52d4b9ac
KH
2703 if (PageCompound(page))
2704 return 0;
accf163e 2705
73045c47 2706 if (unlikely(!mm))
8697d331 2707 mm = &init_mm;
dc67d504
KH
2708 if (!page_is_file_cache(page))
2709 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2710
38c5d72f 2711 if (!PageSwapCache(page))
dc67d504 2712 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2713 else { /* page is swapcache/shmem */
c0ff4b85 2714 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2715 if (!ret)
dc67d504
KH
2716 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2717 }
b5a84319 2718 return ret;
e8589cc1
KH
2719}
2720
54595fe2
KH
2721/*
2722 * While swap-in, try_charge -> commit or cancel, the page is locked.
2723 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2724 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2725 * "commit()" or removed by "cancel()"
2726 */
8c7c6e34
KH
2727int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2728 struct page *page,
72835c86 2729 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2730{
c0ff4b85 2731 struct mem_cgroup *memcg;
54595fe2 2732 int ret;
8c7c6e34 2733
72835c86 2734 *memcgp = NULL;
56039efa 2735
f8d66542 2736 if (mem_cgroup_disabled())
8c7c6e34
KH
2737 return 0;
2738
2739 if (!do_swap_account)
2740 goto charge_cur_mm;
8c7c6e34
KH
2741 /*
2742 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2743 * the pte, and even removed page from swap cache: in those cases
2744 * do_swap_page()'s pte_same() test will fail; but there's also a
2745 * KSM case which does need to charge the page.
8c7c6e34
KH
2746 */
2747 if (!PageSwapCache(page))
407f9c8b 2748 goto charge_cur_mm;
c0ff4b85
R
2749 memcg = try_get_mem_cgroup_from_page(page);
2750 if (!memcg)
54595fe2 2751 goto charge_cur_mm;
72835c86
JW
2752 *memcgp = memcg;
2753 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2754 css_put(&memcg->css);
38c5d72f
KH
2755 if (ret == -EINTR)
2756 ret = 0;
54595fe2 2757 return ret;
8c7c6e34
KH
2758charge_cur_mm:
2759 if (unlikely(!mm))
2760 mm = &init_mm;
38c5d72f
KH
2761 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2762 if (ret == -EINTR)
2763 ret = 0;
2764 return ret;
8c7c6e34
KH
2765}
2766
83aae4c7 2767static void
72835c86 2768__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2769 enum charge_type ctype)
7a81b88c 2770{
f8d66542 2771 if (mem_cgroup_disabled())
7a81b88c 2772 return;
72835c86 2773 if (!memcg)
7a81b88c 2774 return;
72835c86 2775 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2776
72835c86 2777 __mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
8c7c6e34
KH
2778 /*
2779 * Now swap is on-memory. This means this page may be
2780 * counted both as mem and swap....double count.
03f3c433
KH
2781 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2782 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2783 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2784 */
03f3c433 2785 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2786 swp_entry_t ent = {.val = page_private(page)};
72835c86 2787 struct mem_cgroup *swap_memcg;
a3b2d692 2788 unsigned short id;
a3b2d692
KH
2789
2790 id = swap_cgroup_record(ent, 0);
2791 rcu_read_lock();
72835c86
JW
2792 swap_memcg = mem_cgroup_lookup(id);
2793 if (swap_memcg) {
a3b2d692
KH
2794 /*
2795 * This recorded memcg can be obsolete one. So, avoid
2796 * calling css_tryget
2797 */
72835c86
JW
2798 if (!mem_cgroup_is_root(swap_memcg))
2799 res_counter_uncharge(&swap_memcg->memsw,
2800 PAGE_SIZE);
2801 mem_cgroup_swap_statistics(swap_memcg, false);
2802 mem_cgroup_put(swap_memcg);
8c7c6e34 2803 }
a3b2d692 2804 rcu_read_unlock();
8c7c6e34 2805 }
88703267
KH
2806 /*
2807 * At swapin, we may charge account against cgroup which has no tasks.
2808 * So, rmdir()->pre_destroy() can be called while we do this charge.
2809 * In that case, we need to call pre_destroy() again. check it here.
2810 */
72835c86 2811 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2812}
2813
72835c86
JW
2814void mem_cgroup_commit_charge_swapin(struct page *page,
2815 struct mem_cgroup *memcg)
83aae4c7 2816{
72835c86
JW
2817 __mem_cgroup_commit_charge_swapin(page, memcg,
2818 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2819}
2820
c0ff4b85 2821void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2822{
f8d66542 2823 if (mem_cgroup_disabled())
7a81b88c 2824 return;
c0ff4b85 2825 if (!memcg)
7a81b88c 2826 return;
c0ff4b85 2827 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2828}
2829
c0ff4b85 2830static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2831 unsigned int nr_pages,
2832 const enum charge_type ctype)
569b846d
KH
2833{
2834 struct memcg_batch_info *batch = NULL;
2835 bool uncharge_memsw = true;
7ec99d62 2836
569b846d
KH
2837 /* If swapout, usage of swap doesn't decrease */
2838 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2839 uncharge_memsw = false;
569b846d
KH
2840
2841 batch = &current->memcg_batch;
2842 /*
2843 * In usual, we do css_get() when we remember memcg pointer.
2844 * But in this case, we keep res->usage until end of a series of
2845 * uncharges. Then, it's ok to ignore memcg's refcnt.
2846 */
2847 if (!batch->memcg)
c0ff4b85 2848 batch->memcg = memcg;
3c11ecf4
KH
2849 /*
2850 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2851 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2852 * the same cgroup and we have chance to coalesce uncharges.
2853 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2854 * because we want to do uncharge as soon as possible.
2855 */
2856
2857 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2858 goto direct_uncharge;
2859
7ec99d62 2860 if (nr_pages > 1)
ec168510
AA
2861 goto direct_uncharge;
2862
569b846d
KH
2863 /*
2864 * In typical case, batch->memcg == mem. This means we can
2865 * merge a series of uncharges to an uncharge of res_counter.
2866 * If not, we uncharge res_counter ony by one.
2867 */
c0ff4b85 2868 if (batch->memcg != memcg)
569b846d
KH
2869 goto direct_uncharge;
2870 /* remember freed charge and uncharge it later */
7ffd4ca7 2871 batch->nr_pages++;
569b846d 2872 if (uncharge_memsw)
7ffd4ca7 2873 batch->memsw_nr_pages++;
569b846d
KH
2874 return;
2875direct_uncharge:
c0ff4b85 2876 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2877 if (uncharge_memsw)
c0ff4b85
R
2878 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2879 if (unlikely(batch->memcg != memcg))
2880 memcg_oom_recover(memcg);
569b846d
KH
2881 return;
2882}
7a81b88c 2883
8a9f3ccd 2884/*
69029cd5 2885 * uncharge if !page_mapped(page)
8a9f3ccd 2886 */
8c7c6e34 2887static struct mem_cgroup *
69029cd5 2888__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2889{
c0ff4b85 2890 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2891 unsigned int nr_pages = 1;
2892 struct page_cgroup *pc;
8a9f3ccd 2893
f8d66542 2894 if (mem_cgroup_disabled())
8c7c6e34 2895 return NULL;
4077960e 2896
d13d1443 2897 if (PageSwapCache(page))
8c7c6e34 2898 return NULL;
d13d1443 2899
37c2ac78 2900 if (PageTransHuge(page)) {
7ec99d62 2901 nr_pages <<= compound_order(page);
37c2ac78
AA
2902 VM_BUG_ON(!PageTransHuge(page));
2903 }
8697d331 2904 /*
3c541e14 2905 * Check if our page_cgroup is valid
8697d331 2906 */
52d4b9ac 2907 pc = lookup_page_cgroup(page);
cfa44946 2908 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2909 return NULL;
b9c565d5 2910
52d4b9ac 2911 lock_page_cgroup(pc);
d13d1443 2912
c0ff4b85 2913 memcg = pc->mem_cgroup;
8c7c6e34 2914
d13d1443
KH
2915 if (!PageCgroupUsed(pc))
2916 goto unlock_out;
2917
2918 switch (ctype) {
2919 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2920 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 2921 /* See mem_cgroup_prepare_migration() */
2922 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2923 goto unlock_out;
2924 break;
2925 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2926 if (!PageAnon(page)) { /* Shared memory */
2927 if (page->mapping && !page_is_file_cache(page))
2928 goto unlock_out;
2929 } else if (page_mapped(page)) /* Anon */
2930 goto unlock_out;
2931 break;
2932 default:
2933 break;
52d4b9ac 2934 }
d13d1443 2935
c0ff4b85 2936 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
04046e1a 2937
52d4b9ac 2938 ClearPageCgroupUsed(pc);
544122e5
KH
2939 /*
2940 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2941 * freed from LRU. This is safe because uncharged page is expected not
2942 * to be reused (freed soon). Exception is SwapCache, it's handled by
2943 * special functions.
2944 */
b9c565d5 2945
52d4b9ac 2946 unlock_page_cgroup(pc);
f75ca962 2947 /*
c0ff4b85 2948 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
2949 * will never be freed.
2950 */
c0ff4b85 2951 memcg_check_events(memcg, page);
f75ca962 2952 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
2953 mem_cgroup_swap_statistics(memcg, true);
2954 mem_cgroup_get(memcg);
f75ca962 2955 }
c0ff4b85
R
2956 if (!mem_cgroup_is_root(memcg))
2957 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 2958
c0ff4b85 2959 return memcg;
d13d1443
KH
2960
2961unlock_out:
2962 unlock_page_cgroup(pc);
8c7c6e34 2963 return NULL;
3c541e14
BS
2964}
2965
69029cd5
KH
2966void mem_cgroup_uncharge_page(struct page *page)
2967{
52d4b9ac
KH
2968 /* early check. */
2969 if (page_mapped(page))
2970 return;
40f23a21 2971 VM_BUG_ON(page->mapping && !PageAnon(page));
69029cd5
KH
2972 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2973}
2974
2975void mem_cgroup_uncharge_cache_page(struct page *page)
2976{
2977 VM_BUG_ON(page_mapped(page));
b7abea96 2978 VM_BUG_ON(page->mapping);
69029cd5
KH
2979 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2980}
2981
569b846d
KH
2982/*
2983 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2984 * In that cases, pages are freed continuously and we can expect pages
2985 * are in the same memcg. All these calls itself limits the number of
2986 * pages freed at once, then uncharge_start/end() is called properly.
2987 * This may be called prural(2) times in a context,
2988 */
2989
2990void mem_cgroup_uncharge_start(void)
2991{
2992 current->memcg_batch.do_batch++;
2993 /* We can do nest. */
2994 if (current->memcg_batch.do_batch == 1) {
2995 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
2996 current->memcg_batch.nr_pages = 0;
2997 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
2998 }
2999}
3000
3001void mem_cgroup_uncharge_end(void)
3002{
3003 struct memcg_batch_info *batch = &current->memcg_batch;
3004
3005 if (!batch->do_batch)
3006 return;
3007
3008 batch->do_batch--;
3009 if (batch->do_batch) /* If stacked, do nothing. */
3010 return;
3011
3012 if (!batch->memcg)
3013 return;
3014 /*
3015 * This "batch->memcg" is valid without any css_get/put etc...
3016 * bacause we hide charges behind us.
3017 */
7ffd4ca7
JW
3018 if (batch->nr_pages)
3019 res_counter_uncharge(&batch->memcg->res,
3020 batch->nr_pages * PAGE_SIZE);
3021 if (batch->memsw_nr_pages)
3022 res_counter_uncharge(&batch->memcg->memsw,
3023 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3024 memcg_oom_recover(batch->memcg);
569b846d
KH
3025 /* forget this pointer (for sanity check) */
3026 batch->memcg = NULL;
3027}
3028
4e5f01c2
KH
3029/*
3030 * A function for resetting pc->mem_cgroup for newly allocated pages.
3031 * This function should be called if the newpage will be added to LRU
3032 * before start accounting.
3033 */
3034void mem_cgroup_reset_owner(struct page *newpage)
3035{
3036 struct page_cgroup *pc;
3037
3038 if (mem_cgroup_disabled())
3039 return;
3040
3041 pc = lookup_page_cgroup(newpage);
3042 VM_BUG_ON(PageCgroupUsed(pc));
3043 pc->mem_cgroup = root_mem_cgroup;
3044}
3045
e767e056 3046#ifdef CONFIG_SWAP
8c7c6e34 3047/*
e767e056 3048 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3049 * memcg information is recorded to swap_cgroup of "ent"
3050 */
8a9478ca
KH
3051void
3052mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3053{
3054 struct mem_cgroup *memcg;
8a9478ca
KH
3055 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3056
3057 if (!swapout) /* this was a swap cache but the swap is unused ! */
3058 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3059
3060 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3061
f75ca962
KH
3062 /*
3063 * record memcg information, if swapout && memcg != NULL,
3064 * mem_cgroup_get() was called in uncharge().
3065 */
3066 if (do_swap_account && swapout && memcg)
a3b2d692 3067 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3068}
e767e056 3069#endif
8c7c6e34
KH
3070
3071#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3072/*
3073 * called from swap_entry_free(). remove record in swap_cgroup and
3074 * uncharge "memsw" account.
3075 */
3076void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3077{
8c7c6e34 3078 struct mem_cgroup *memcg;
a3b2d692 3079 unsigned short id;
8c7c6e34
KH
3080
3081 if (!do_swap_account)
3082 return;
3083
a3b2d692
KH
3084 id = swap_cgroup_record(ent, 0);
3085 rcu_read_lock();
3086 memcg = mem_cgroup_lookup(id);
8c7c6e34 3087 if (memcg) {
a3b2d692
KH
3088 /*
3089 * We uncharge this because swap is freed.
3090 * This memcg can be obsolete one. We avoid calling css_tryget
3091 */
0c3e73e8 3092 if (!mem_cgroup_is_root(memcg))
4e649152 3093 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3094 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3095 mem_cgroup_put(memcg);
3096 }
a3b2d692 3097 rcu_read_unlock();
d13d1443 3098}
02491447
DN
3099
3100/**
3101 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3102 * @entry: swap entry to be moved
3103 * @from: mem_cgroup which the entry is moved from
3104 * @to: mem_cgroup which the entry is moved to
483c30b5 3105 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3106 *
3107 * It succeeds only when the swap_cgroup's record for this entry is the same
3108 * as the mem_cgroup's id of @from.
3109 *
3110 * Returns 0 on success, -EINVAL on failure.
3111 *
3112 * The caller must have charged to @to, IOW, called res_counter_charge() about
3113 * both res and memsw, and called css_get().
3114 */
3115static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3116 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3117{
3118 unsigned short old_id, new_id;
3119
3120 old_id = css_id(&from->css);
3121 new_id = css_id(&to->css);
3122
3123 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3124 mem_cgroup_swap_statistics(from, false);
483c30b5 3125 mem_cgroup_swap_statistics(to, true);
02491447 3126 /*
483c30b5
DN
3127 * This function is only called from task migration context now.
3128 * It postpones res_counter and refcount handling till the end
3129 * of task migration(mem_cgroup_clear_mc()) for performance
3130 * improvement. But we cannot postpone mem_cgroup_get(to)
3131 * because if the process that has been moved to @to does
3132 * swap-in, the refcount of @to might be decreased to 0.
02491447 3133 */
02491447 3134 mem_cgroup_get(to);
483c30b5
DN
3135 if (need_fixup) {
3136 if (!mem_cgroup_is_root(from))
3137 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3138 mem_cgroup_put(from);
3139 /*
3140 * we charged both to->res and to->memsw, so we should
3141 * uncharge to->res.
3142 */
3143 if (!mem_cgroup_is_root(to))
3144 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3145 }
02491447
DN
3146 return 0;
3147 }
3148 return -EINVAL;
3149}
3150#else
3151static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3152 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3153{
3154 return -EINVAL;
3155}
8c7c6e34 3156#endif
d13d1443 3157
ae41be37 3158/*
01b1ae63
KH
3159 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3160 * page belongs to.
ae41be37 3161 */
ac39cf8c 3162int mem_cgroup_prepare_migration(struct page *page,
72835c86 3163 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3164{
c0ff4b85 3165 struct mem_cgroup *memcg = NULL;
7ec99d62 3166 struct page_cgroup *pc;
ac39cf8c 3167 enum charge_type ctype;
e8589cc1 3168 int ret = 0;
8869b8f6 3169
72835c86 3170 *memcgp = NULL;
56039efa 3171
ec168510 3172 VM_BUG_ON(PageTransHuge(page));
f8d66542 3173 if (mem_cgroup_disabled())
4077960e
BS
3174 return 0;
3175
52d4b9ac
KH
3176 pc = lookup_page_cgroup(page);
3177 lock_page_cgroup(pc);
3178 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3179 memcg = pc->mem_cgroup;
3180 css_get(&memcg->css);
ac39cf8c 3181 /*
3182 * At migrating an anonymous page, its mapcount goes down
3183 * to 0 and uncharge() will be called. But, even if it's fully
3184 * unmapped, migration may fail and this page has to be
3185 * charged again. We set MIGRATION flag here and delay uncharge
3186 * until end_migration() is called
3187 *
3188 * Corner Case Thinking
3189 * A)
3190 * When the old page was mapped as Anon and it's unmap-and-freed
3191 * while migration was ongoing.
3192 * If unmap finds the old page, uncharge() of it will be delayed
3193 * until end_migration(). If unmap finds a new page, it's
3194 * uncharged when it make mapcount to be 1->0. If unmap code
3195 * finds swap_migration_entry, the new page will not be mapped
3196 * and end_migration() will find it(mapcount==0).
3197 *
3198 * B)
3199 * When the old page was mapped but migraion fails, the kernel
3200 * remaps it. A charge for it is kept by MIGRATION flag even
3201 * if mapcount goes down to 0. We can do remap successfully
3202 * without charging it again.
3203 *
3204 * C)
3205 * The "old" page is under lock_page() until the end of
3206 * migration, so, the old page itself will not be swapped-out.
3207 * If the new page is swapped out before end_migraton, our
3208 * hook to usual swap-out path will catch the event.
3209 */
3210 if (PageAnon(page))
3211 SetPageCgroupMigration(pc);
e8589cc1 3212 }
52d4b9ac 3213 unlock_page_cgroup(pc);
ac39cf8c 3214 /*
3215 * If the page is not charged at this point,
3216 * we return here.
3217 */
c0ff4b85 3218 if (!memcg)
ac39cf8c 3219 return 0;
01b1ae63 3220
72835c86
JW
3221 *memcgp = memcg;
3222 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3223 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3224 if (ret) {
ac39cf8c 3225 if (PageAnon(page)) {
3226 lock_page_cgroup(pc);
3227 ClearPageCgroupMigration(pc);
3228 unlock_page_cgroup(pc);
3229 /*
3230 * The old page may be fully unmapped while we kept it.
3231 */
3232 mem_cgroup_uncharge_page(page);
3233 }
38c5d72f 3234 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3235 return -ENOMEM;
e8589cc1 3236 }
ac39cf8c 3237 /*
3238 * We charge new page before it's used/mapped. So, even if unlock_page()
3239 * is called before end_migration, we can catch all events on this new
3240 * page. In the case new page is migrated but not remapped, new page's
3241 * mapcount will be finally 0 and we call uncharge in end_migration().
3242 */
3243 pc = lookup_page_cgroup(newpage);
3244 if (PageAnon(page))
3245 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3246 else if (page_is_file_cache(page))
3247 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3248 else
3249 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
c0ff4b85 3250 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
e8589cc1 3251 return ret;
ae41be37 3252}
8869b8f6 3253
69029cd5 3254/* remove redundant charge if migration failed*/
c0ff4b85 3255void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3256 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3257{
ac39cf8c 3258 struct page *used, *unused;
01b1ae63 3259 struct page_cgroup *pc;
01b1ae63 3260
c0ff4b85 3261 if (!memcg)
01b1ae63 3262 return;
ac39cf8c 3263 /* blocks rmdir() */
c0ff4b85 3264 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3265 if (!migration_ok) {
ac39cf8c 3266 used = oldpage;
3267 unused = newpage;
01b1ae63 3268 } else {
ac39cf8c 3269 used = newpage;
01b1ae63
KH
3270 unused = oldpage;
3271 }
69029cd5 3272 /*
ac39cf8c 3273 * We disallowed uncharge of pages under migration because mapcount
3274 * of the page goes down to zero, temporarly.
3275 * Clear the flag and check the page should be charged.
01b1ae63 3276 */
ac39cf8c 3277 pc = lookup_page_cgroup(oldpage);
3278 lock_page_cgroup(pc);
3279 ClearPageCgroupMigration(pc);
3280 unlock_page_cgroup(pc);
01b1ae63 3281
ac39cf8c 3282 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3283
01b1ae63 3284 /*
ac39cf8c 3285 * If a page is a file cache, radix-tree replacement is very atomic
3286 * and we can skip this check. When it was an Anon page, its mapcount
3287 * goes down to 0. But because we added MIGRATION flage, it's not
3288 * uncharged yet. There are several case but page->mapcount check
3289 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3290 * check. (see prepare_charge() also)
69029cd5 3291 */
ac39cf8c 3292 if (PageAnon(used))
3293 mem_cgroup_uncharge_page(used);
88703267 3294 /*
ac39cf8c 3295 * At migration, we may charge account against cgroup which has no
3296 * tasks.
88703267
KH
3297 * So, rmdir()->pre_destroy() can be called while we do this charge.
3298 * In that case, we need to call pre_destroy() again. check it here.
3299 */
c0ff4b85 3300 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3301}
78fb7466 3302
ab936cbc
KH
3303/*
3304 * At replace page cache, newpage is not under any memcg but it's on
3305 * LRU. So, this function doesn't touch res_counter but handles LRU
3306 * in correct way. Both pages are locked so we cannot race with uncharge.
3307 */
3308void mem_cgroup_replace_page_cache(struct page *oldpage,
3309 struct page *newpage)
3310{
3311 struct mem_cgroup *memcg;
3312 struct page_cgroup *pc;
ab936cbc 3313 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3314
3315 if (mem_cgroup_disabled())
3316 return;
3317
3318 pc = lookup_page_cgroup(oldpage);
3319 /* fix accounting on old pages */
3320 lock_page_cgroup(pc);
3321 memcg = pc->mem_cgroup;
3322 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3323 ClearPageCgroupUsed(pc);
3324 unlock_page_cgroup(pc);
3325
3326 if (PageSwapBacked(oldpage))
3327 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3328
ab936cbc
KH
3329 /*
3330 * Even if newpage->mapping was NULL before starting replacement,
3331 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3332 * LRU while we overwrite pc->mem_cgroup.
3333 */
36b62ad5 3334 __mem_cgroup_commit_charge_lrucare(newpage, memcg, type);
ab936cbc
KH
3335}
3336
f212ad7c
DN
3337#ifdef CONFIG_DEBUG_VM
3338static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3339{
3340 struct page_cgroup *pc;
3341
3342 pc = lookup_page_cgroup(page);
cfa44946
JW
3343 /*
3344 * Can be NULL while feeding pages into the page allocator for
3345 * the first time, i.e. during boot or memory hotplug;
3346 * or when mem_cgroup_disabled().
3347 */
f212ad7c
DN
3348 if (likely(pc) && PageCgroupUsed(pc))
3349 return pc;
3350 return NULL;
3351}
3352
3353bool mem_cgroup_bad_page_check(struct page *page)
3354{
3355 if (mem_cgroup_disabled())
3356 return false;
3357
3358 return lookup_page_cgroup_used(page) != NULL;
3359}
3360
3361void mem_cgroup_print_bad_page(struct page *page)
3362{
3363 struct page_cgroup *pc;
3364
3365 pc = lookup_page_cgroup_used(page);
3366 if (pc) {
3367 int ret = -1;
3368 char *path;
3369
3370 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3371 pc, pc->flags, pc->mem_cgroup);
3372
3373 path = kmalloc(PATH_MAX, GFP_KERNEL);
3374 if (path) {
3375 rcu_read_lock();
3376 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3377 path, PATH_MAX);
3378 rcu_read_unlock();
3379 }
3380
3381 printk(KERN_CONT "(%s)\n",
3382 (ret < 0) ? "cannot get the path" : path);
3383 kfree(path);
3384 }
3385}
3386#endif
3387
8c7c6e34
KH
3388static DEFINE_MUTEX(set_limit_mutex);
3389
d38d2a75 3390static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3391 unsigned long long val)
628f4235 3392{
81d39c20 3393 int retry_count;
3c11ecf4 3394 u64 memswlimit, memlimit;
628f4235 3395 int ret = 0;
81d39c20
KH
3396 int children = mem_cgroup_count_children(memcg);
3397 u64 curusage, oldusage;
3c11ecf4 3398 int enlarge;
81d39c20
KH
3399
3400 /*
3401 * For keeping hierarchical_reclaim simple, how long we should retry
3402 * is depends on callers. We set our retry-count to be function
3403 * of # of children which we should visit in this loop.
3404 */
3405 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3406
3407 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3408
3c11ecf4 3409 enlarge = 0;
8c7c6e34 3410 while (retry_count) {
628f4235
KH
3411 if (signal_pending(current)) {
3412 ret = -EINTR;
3413 break;
3414 }
8c7c6e34
KH
3415 /*
3416 * Rather than hide all in some function, I do this in
3417 * open coded manner. You see what this really does.
c0ff4b85 3418 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3419 */
3420 mutex_lock(&set_limit_mutex);
3421 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3422 if (memswlimit < val) {
3423 ret = -EINVAL;
3424 mutex_unlock(&set_limit_mutex);
628f4235
KH
3425 break;
3426 }
3c11ecf4
KH
3427
3428 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3429 if (memlimit < val)
3430 enlarge = 1;
3431
8c7c6e34 3432 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3433 if (!ret) {
3434 if (memswlimit == val)
3435 memcg->memsw_is_minimum = true;
3436 else
3437 memcg->memsw_is_minimum = false;
3438 }
8c7c6e34
KH
3439 mutex_unlock(&set_limit_mutex);
3440
3441 if (!ret)
3442 break;
3443
5660048c
JW
3444 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3445 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3446 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3447 /* Usage is reduced ? */
3448 if (curusage >= oldusage)
3449 retry_count--;
3450 else
3451 oldusage = curusage;
8c7c6e34 3452 }
3c11ecf4
KH
3453 if (!ret && enlarge)
3454 memcg_oom_recover(memcg);
14797e23 3455
8c7c6e34
KH
3456 return ret;
3457}
3458
338c8431
LZ
3459static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3460 unsigned long long val)
8c7c6e34 3461{
81d39c20 3462 int retry_count;
3c11ecf4 3463 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3464 int children = mem_cgroup_count_children(memcg);
3465 int ret = -EBUSY;
3c11ecf4 3466 int enlarge = 0;
8c7c6e34 3467
81d39c20
KH
3468 /* see mem_cgroup_resize_res_limit */
3469 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3470 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3471 while (retry_count) {
3472 if (signal_pending(current)) {
3473 ret = -EINTR;
3474 break;
3475 }
3476 /*
3477 * Rather than hide all in some function, I do this in
3478 * open coded manner. You see what this really does.
c0ff4b85 3479 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3480 */
3481 mutex_lock(&set_limit_mutex);
3482 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3483 if (memlimit > val) {
3484 ret = -EINVAL;
3485 mutex_unlock(&set_limit_mutex);
3486 break;
3487 }
3c11ecf4
KH
3488 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3489 if (memswlimit < val)
3490 enlarge = 1;
8c7c6e34 3491 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3492 if (!ret) {
3493 if (memlimit == val)
3494 memcg->memsw_is_minimum = true;
3495 else
3496 memcg->memsw_is_minimum = false;
3497 }
8c7c6e34
KH
3498 mutex_unlock(&set_limit_mutex);
3499
3500 if (!ret)
3501 break;
3502
5660048c
JW
3503 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3504 MEM_CGROUP_RECLAIM_NOSWAP |
3505 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3506 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3507 /* Usage is reduced ? */
8c7c6e34 3508 if (curusage >= oldusage)
628f4235 3509 retry_count--;
81d39c20
KH
3510 else
3511 oldusage = curusage;
628f4235 3512 }
3c11ecf4
KH
3513 if (!ret && enlarge)
3514 memcg_oom_recover(memcg);
628f4235
KH
3515 return ret;
3516}
3517
4e416953 3518unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3519 gfp_t gfp_mask,
3520 unsigned long *total_scanned)
4e416953
BS
3521{
3522 unsigned long nr_reclaimed = 0;
3523 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3524 unsigned long reclaimed;
3525 int loop = 0;
3526 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3527 unsigned long long excess;
0ae5e89c 3528 unsigned long nr_scanned;
4e416953
BS
3529
3530 if (order > 0)
3531 return 0;
3532
00918b6a 3533 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3534 /*
3535 * This loop can run a while, specially if mem_cgroup's continuously
3536 * keep exceeding their soft limit and putting the system under
3537 * pressure
3538 */
3539 do {
3540 if (next_mz)
3541 mz = next_mz;
3542 else
3543 mz = mem_cgroup_largest_soft_limit_node(mctz);
3544 if (!mz)
3545 break;
3546
0ae5e89c 3547 nr_scanned = 0;
5660048c
JW
3548 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3549 gfp_mask, &nr_scanned);
4e416953 3550 nr_reclaimed += reclaimed;
0ae5e89c 3551 *total_scanned += nr_scanned;
4e416953
BS
3552 spin_lock(&mctz->lock);
3553
3554 /*
3555 * If we failed to reclaim anything from this memory cgroup
3556 * it is time to move on to the next cgroup
3557 */
3558 next_mz = NULL;
3559 if (!reclaimed) {
3560 do {
3561 /*
3562 * Loop until we find yet another one.
3563 *
3564 * By the time we get the soft_limit lock
3565 * again, someone might have aded the
3566 * group back on the RB tree. Iterate to
3567 * make sure we get a different mem.
3568 * mem_cgroup_largest_soft_limit_node returns
3569 * NULL if no other cgroup is present on
3570 * the tree
3571 */
3572 next_mz =
3573 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3574 if (next_mz == mz)
4e416953 3575 css_put(&next_mz->mem->css);
39cc98f1 3576 else /* next_mz == NULL or other memcg */
4e416953
BS
3577 break;
3578 } while (1);
3579 }
4e416953 3580 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3581 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3582 /*
3583 * One school of thought says that we should not add
3584 * back the node to the tree if reclaim returns 0.
3585 * But our reclaim could return 0, simply because due
3586 * to priority we are exposing a smaller subset of
3587 * memory to reclaim from. Consider this as a longer
3588 * term TODO.
3589 */
ef8745c1
KH
3590 /* If excess == 0, no tree ops */
3591 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3592 spin_unlock(&mctz->lock);
3593 css_put(&mz->mem->css);
3594 loop++;
3595 /*
3596 * Could not reclaim anything and there are no more
3597 * mem cgroups to try or we seem to be looping without
3598 * reclaiming anything.
3599 */
3600 if (!nr_reclaimed &&
3601 (next_mz == NULL ||
3602 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3603 break;
3604 } while (!nr_reclaimed);
3605 if (next_mz)
3606 css_put(&next_mz->mem->css);
3607 return nr_reclaimed;
3608}
3609
cc847582
KH
3610/*
3611 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3612 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3613 */
c0ff4b85 3614static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3615 int node, int zid, enum lru_list lru)
cc847582 3616{
08e552c6 3617 struct mem_cgroup_per_zone *mz;
08e552c6 3618 unsigned long flags, loop;
072c56c1 3619 struct list_head *list;
925b7673
JW
3620 struct page *busy;
3621 struct zone *zone;
f817ed48 3622 int ret = 0;
072c56c1 3623
08e552c6 3624 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3625 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3626 list = &mz->lruvec.lists[lru];
cc847582 3627
f817ed48
KH
3628 loop = MEM_CGROUP_ZSTAT(mz, lru);
3629 /* give some margin against EBUSY etc...*/
3630 loop += 256;
3631 busy = NULL;
3632 while (loop--) {
925b7673 3633 struct page_cgroup *pc;
5564e88b
JW
3634 struct page *page;
3635
f817ed48 3636 ret = 0;
08e552c6 3637 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3638 if (list_empty(list)) {
08e552c6 3639 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3640 break;
f817ed48 3641 }
925b7673
JW
3642 page = list_entry(list->prev, struct page, lru);
3643 if (busy == page) {
3644 list_move(&page->lru, list);
648bcc77 3645 busy = NULL;
08e552c6 3646 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3647 continue;
3648 }
08e552c6 3649 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3650
925b7673 3651 pc = lookup_page_cgroup(page);
5564e88b 3652
c0ff4b85 3653 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
38c5d72f 3654 if (ret == -ENOMEM || ret == -EINTR)
52d4b9ac 3655 break;
f817ed48
KH
3656
3657 if (ret == -EBUSY || ret == -EINVAL) {
3658 /* found lock contention or "pc" is obsolete. */
925b7673 3659 busy = page;
f817ed48
KH
3660 cond_resched();
3661 } else
3662 busy = NULL;
cc847582 3663 }
08e552c6 3664
f817ed48
KH
3665 if (!ret && !list_empty(list))
3666 return -EBUSY;
3667 return ret;
cc847582
KH
3668}
3669
3670/*
3671 * make mem_cgroup's charge to be 0 if there is no task.
3672 * This enables deleting this mem_cgroup.
3673 */
c0ff4b85 3674static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3675{
f817ed48
KH
3676 int ret;
3677 int node, zid, shrink;
3678 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3679 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3680
c0ff4b85 3681 css_get(&memcg->css);
f817ed48
KH
3682
3683 shrink = 0;
c1e862c1
KH
3684 /* should free all ? */
3685 if (free_all)
3686 goto try_to_free;
f817ed48 3687move_account:
fce66477 3688 do {
f817ed48 3689 ret = -EBUSY;
c1e862c1
KH
3690 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3691 goto out;
3692 ret = -EINTR;
3693 if (signal_pending(current))
cc847582 3694 goto out;
52d4b9ac
KH
3695 /* This is for making all *used* pages to be on LRU. */
3696 lru_add_drain_all();
c0ff4b85 3697 drain_all_stock_sync(memcg);
f817ed48 3698 ret = 0;
c0ff4b85 3699 mem_cgroup_start_move(memcg);
299b4eaa 3700 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3701 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3702 enum lru_list l;
f817ed48 3703 for_each_lru(l) {
c0ff4b85 3704 ret = mem_cgroup_force_empty_list(memcg,
08e552c6 3705 node, zid, l);
f817ed48
KH
3706 if (ret)
3707 break;
3708 }
1ecaab2b 3709 }
f817ed48
KH
3710 if (ret)
3711 break;
3712 }
c0ff4b85
R
3713 mem_cgroup_end_move(memcg);
3714 memcg_oom_recover(memcg);
f817ed48
KH
3715 /* it seems parent cgroup doesn't have enough mem */
3716 if (ret == -ENOMEM)
3717 goto try_to_free;
52d4b9ac 3718 cond_resched();
fce66477 3719 /* "ret" should also be checked to ensure all lists are empty. */
c0ff4b85 3720 } while (memcg->res.usage > 0 || ret);
cc847582 3721out:
c0ff4b85 3722 css_put(&memcg->css);
cc847582 3723 return ret;
f817ed48
KH
3724
3725try_to_free:
c1e862c1
KH
3726 /* returns EBUSY if there is a task or if we come here twice. */
3727 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3728 ret = -EBUSY;
3729 goto out;
3730 }
c1e862c1
KH
3731 /* we call try-to-free pages for make this cgroup empty */
3732 lru_add_drain_all();
f817ed48
KH
3733 /* try to free all pages in this cgroup */
3734 shrink = 1;
c0ff4b85 3735 while (nr_retries && memcg->res.usage > 0) {
f817ed48 3736 int progress;
c1e862c1
KH
3737
3738 if (signal_pending(current)) {
3739 ret = -EINTR;
3740 goto out;
3741 }
c0ff4b85 3742 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3743 false);
c1e862c1 3744 if (!progress) {
f817ed48 3745 nr_retries--;
c1e862c1 3746 /* maybe some writeback is necessary */
8aa7e847 3747 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3748 }
f817ed48
KH
3749
3750 }
08e552c6 3751 lru_add_drain();
f817ed48 3752 /* try move_account...there may be some *locked* pages. */
fce66477 3753 goto move_account;
cc847582
KH
3754}
3755
c1e862c1
KH
3756int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3757{
3758 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3759}
3760
3761
18f59ea7
BS
3762static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3763{
3764 return mem_cgroup_from_cont(cont)->use_hierarchy;
3765}
3766
3767static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3768 u64 val)
3769{
3770 int retval = 0;
c0ff4b85 3771 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3772 struct cgroup *parent = cont->parent;
c0ff4b85 3773 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3774
3775 if (parent)
c0ff4b85 3776 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3777
3778 cgroup_lock();
3779 /*
af901ca1 3780 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3781 * in the child subtrees. If it is unset, then the change can
3782 * occur, provided the current cgroup has no children.
3783 *
3784 * For the root cgroup, parent_mem is NULL, we allow value to be
3785 * set if there are no children.
3786 */
c0ff4b85 3787 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3788 (val == 1 || val == 0)) {
3789 if (list_empty(&cont->children))
c0ff4b85 3790 memcg->use_hierarchy = val;
18f59ea7
BS
3791 else
3792 retval = -EBUSY;
3793 } else
3794 retval = -EINVAL;
3795 cgroup_unlock();
3796
3797 return retval;
3798}
3799
0c3e73e8 3800
c0ff4b85 3801static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3802 enum mem_cgroup_stat_index idx)
0c3e73e8 3803{
7d74b06f 3804 struct mem_cgroup *iter;
7a159cc9 3805 long val = 0;
0c3e73e8 3806
7a159cc9 3807 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3808 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3809 val += mem_cgroup_read_stat(iter, idx);
3810
3811 if (val < 0) /* race ? */
3812 val = 0;
3813 return val;
0c3e73e8
BS
3814}
3815
c0ff4b85 3816static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3817{
7d74b06f 3818 u64 val;
104f3928 3819
c0ff4b85 3820 if (!mem_cgroup_is_root(memcg)) {
104f3928 3821 if (!swap)
65c64ce8 3822 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3823 else
65c64ce8 3824 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3825 }
3826
c0ff4b85
R
3827 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3828 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3829
7d74b06f 3830 if (swap)
c0ff4b85 3831 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3832
3833 return val << PAGE_SHIFT;
3834}
3835
2c3daa72 3836static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3837{
c0ff4b85 3838 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
104f3928 3839 u64 val;
8c7c6e34
KH
3840 int type, name;
3841
3842 type = MEMFILE_TYPE(cft->private);
3843 name = MEMFILE_ATTR(cft->private);
3844 switch (type) {
3845 case _MEM:
104f3928 3846 if (name == RES_USAGE)
c0ff4b85 3847 val = mem_cgroup_usage(memcg, false);
104f3928 3848 else
c0ff4b85 3849 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3850 break;
3851 case _MEMSWAP:
104f3928 3852 if (name == RES_USAGE)
c0ff4b85 3853 val = mem_cgroup_usage(memcg, true);
104f3928 3854 else
c0ff4b85 3855 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3856 break;
3857 default:
3858 BUG();
3859 break;
3860 }
3861 return val;
8cdea7c0 3862}
628f4235
KH
3863/*
3864 * The user of this function is...
3865 * RES_LIMIT.
3866 */
856c13aa
PM
3867static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3868 const char *buffer)
8cdea7c0 3869{
628f4235 3870 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3871 int type, name;
628f4235
KH
3872 unsigned long long val;
3873 int ret;
3874
8c7c6e34
KH
3875 type = MEMFILE_TYPE(cft->private);
3876 name = MEMFILE_ATTR(cft->private);
3877 switch (name) {
628f4235 3878 case RES_LIMIT:
4b3bde4c
BS
3879 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3880 ret = -EINVAL;
3881 break;
3882 }
628f4235
KH
3883 /* This function does all necessary parse...reuse it */
3884 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3885 if (ret)
3886 break;
3887 if (type == _MEM)
628f4235 3888 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3889 else
3890 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3891 break;
296c81d8
BS
3892 case RES_SOFT_LIMIT:
3893 ret = res_counter_memparse_write_strategy(buffer, &val);
3894 if (ret)
3895 break;
3896 /*
3897 * For memsw, soft limits are hard to implement in terms
3898 * of semantics, for now, we support soft limits for
3899 * control without swap
3900 */
3901 if (type == _MEM)
3902 ret = res_counter_set_soft_limit(&memcg->res, val);
3903 else
3904 ret = -EINVAL;
3905 break;
628f4235
KH
3906 default:
3907 ret = -EINVAL; /* should be BUG() ? */
3908 break;
3909 }
3910 return ret;
8cdea7c0
BS
3911}
3912
fee7b548
KH
3913static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3914 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3915{
3916 struct cgroup *cgroup;
3917 unsigned long long min_limit, min_memsw_limit, tmp;
3918
3919 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3920 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3921 cgroup = memcg->css.cgroup;
3922 if (!memcg->use_hierarchy)
3923 goto out;
3924
3925 while (cgroup->parent) {
3926 cgroup = cgroup->parent;
3927 memcg = mem_cgroup_from_cont(cgroup);
3928 if (!memcg->use_hierarchy)
3929 break;
3930 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3931 min_limit = min(min_limit, tmp);
3932 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3933 min_memsw_limit = min(min_memsw_limit, tmp);
3934 }
3935out:
3936 *mem_limit = min_limit;
3937 *memsw_limit = min_memsw_limit;
3938 return;
3939}
3940
29f2a4da 3941static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3942{
c0ff4b85 3943 struct mem_cgroup *memcg;
8c7c6e34 3944 int type, name;
c84872e1 3945
c0ff4b85 3946 memcg = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3947 type = MEMFILE_TYPE(event);
3948 name = MEMFILE_ATTR(event);
3949 switch (name) {
29f2a4da 3950 case RES_MAX_USAGE:
8c7c6e34 3951 if (type == _MEM)
c0ff4b85 3952 res_counter_reset_max(&memcg->res);
8c7c6e34 3953 else
c0ff4b85 3954 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
3955 break;
3956 case RES_FAILCNT:
8c7c6e34 3957 if (type == _MEM)
c0ff4b85 3958 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 3959 else
c0ff4b85 3960 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
3961 break;
3962 }
f64c3f54 3963
85cc59db 3964 return 0;
c84872e1
PE
3965}
3966
7dc74be0
DN
3967static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3968 struct cftype *cft)
3969{
3970 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3971}
3972
02491447 3973#ifdef CONFIG_MMU
7dc74be0
DN
3974static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3975 struct cftype *cft, u64 val)
3976{
c0ff4b85 3977 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
3978
3979 if (val >= (1 << NR_MOVE_TYPE))
3980 return -EINVAL;
3981 /*
3982 * We check this value several times in both in can_attach() and
3983 * attach(), so we need cgroup lock to prevent this value from being
3984 * inconsistent.
3985 */
3986 cgroup_lock();
c0ff4b85 3987 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3988 cgroup_unlock();
3989
3990 return 0;
3991}
02491447
DN
3992#else
3993static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3994 struct cftype *cft, u64 val)
3995{
3996 return -ENOSYS;
3997}
3998#endif
7dc74be0 3999
14067bb3
KH
4000
4001/* For read statistics */
4002enum {
4003 MCS_CACHE,
4004 MCS_RSS,
d8046582 4005 MCS_FILE_MAPPED,
14067bb3
KH
4006 MCS_PGPGIN,
4007 MCS_PGPGOUT,
1dd3a273 4008 MCS_SWAP,
456f998e
YH
4009 MCS_PGFAULT,
4010 MCS_PGMAJFAULT,
14067bb3
KH
4011 MCS_INACTIVE_ANON,
4012 MCS_ACTIVE_ANON,
4013 MCS_INACTIVE_FILE,
4014 MCS_ACTIVE_FILE,
4015 MCS_UNEVICTABLE,
4016 NR_MCS_STAT,
4017};
4018
4019struct mcs_total_stat {
4020 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4021};
4022
14067bb3
KH
4023struct {
4024 char *local_name;
4025 char *total_name;
4026} memcg_stat_strings[NR_MCS_STAT] = {
4027 {"cache", "total_cache"},
4028 {"rss", "total_rss"},
d69b042f 4029 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4030 {"pgpgin", "total_pgpgin"},
4031 {"pgpgout", "total_pgpgout"},
1dd3a273 4032 {"swap", "total_swap"},
456f998e
YH
4033 {"pgfault", "total_pgfault"},
4034 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4035 {"inactive_anon", "total_inactive_anon"},
4036 {"active_anon", "total_active_anon"},
4037 {"inactive_file", "total_inactive_file"},
4038 {"active_file", "total_active_file"},
4039 {"unevictable", "total_unevictable"}
4040};
4041
4042
7d74b06f 4043static void
c0ff4b85 4044mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4045{
14067bb3
KH
4046 s64 val;
4047
4048 /* per cpu stat */
c0ff4b85 4049 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4050 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4051 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4052 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4053 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4054 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4055 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4056 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4057 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4058 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4059 if (do_swap_account) {
c0ff4b85 4060 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4061 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4062 }
c0ff4b85 4063 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4064 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4065 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4066 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4067
4068 /* per zone stat */
c0ff4b85 4069 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4070 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4071 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4072 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4073 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4074 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4075 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4076 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4077 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4078 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4079}
4080
4081static void
c0ff4b85 4082mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4083{
7d74b06f
KH
4084 struct mem_cgroup *iter;
4085
c0ff4b85 4086 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4087 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4088}
4089
406eb0c9
YH
4090#ifdef CONFIG_NUMA
4091static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4092{
4093 int nid;
4094 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4095 unsigned long node_nr;
4096 struct cgroup *cont = m->private;
4097 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4098
bb2a0de9 4099 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
406eb0c9
YH
4100 seq_printf(m, "total=%lu", total_nr);
4101 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9 4102 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
406eb0c9
YH
4103 seq_printf(m, " N%d=%lu", nid, node_nr);
4104 }
4105 seq_putc(m, '\n');
4106
bb2a0de9 4107 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
406eb0c9
YH
4108 seq_printf(m, "file=%lu", file_nr);
4109 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4110 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4111 LRU_ALL_FILE);
406eb0c9
YH
4112 seq_printf(m, " N%d=%lu", nid, node_nr);
4113 }
4114 seq_putc(m, '\n');
4115
bb2a0de9 4116 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
406eb0c9
YH
4117 seq_printf(m, "anon=%lu", anon_nr);
4118 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4119 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4120 LRU_ALL_ANON);
406eb0c9
YH
4121 seq_printf(m, " N%d=%lu", nid, node_nr);
4122 }
4123 seq_putc(m, '\n');
4124
bb2a0de9 4125 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4126 seq_printf(m, "unevictable=%lu", unevictable_nr);
4127 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4128 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4129 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4130 seq_printf(m, " N%d=%lu", nid, node_nr);
4131 }
4132 seq_putc(m, '\n');
4133 return 0;
4134}
4135#endif /* CONFIG_NUMA */
4136
c64745cf
PM
4137static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4138 struct cgroup_map_cb *cb)
d2ceb9b7 4139{
d2ceb9b7 4140 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 4141 struct mcs_total_stat mystat;
d2ceb9b7
KH
4142 int i;
4143
14067bb3
KH
4144 memset(&mystat, 0, sizeof(mystat));
4145 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 4146
406eb0c9 4147
1dd3a273
DN
4148 for (i = 0; i < NR_MCS_STAT; i++) {
4149 if (i == MCS_SWAP && !do_swap_account)
4150 continue;
14067bb3 4151 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4152 }
7b854121 4153
14067bb3 4154 /* Hierarchical information */
fee7b548
KH
4155 {
4156 unsigned long long limit, memsw_limit;
4157 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4158 cb->fill(cb, "hierarchical_memory_limit", limit);
4159 if (do_swap_account)
4160 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4161 }
7f016ee8 4162
14067bb3
KH
4163 memset(&mystat, 0, sizeof(mystat));
4164 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
4165 for (i = 0; i < NR_MCS_STAT; i++) {
4166 if (i == MCS_SWAP && !do_swap_account)
4167 continue;
14067bb3 4168 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4169 }
14067bb3 4170
7f016ee8 4171#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4172 {
4173 int nid, zid;
4174 struct mem_cgroup_per_zone *mz;
4175 unsigned long recent_rotated[2] = {0, 0};
4176 unsigned long recent_scanned[2] = {0, 0};
4177
4178 for_each_online_node(nid)
4179 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4180 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4181
4182 recent_rotated[0] +=
4183 mz->reclaim_stat.recent_rotated[0];
4184 recent_rotated[1] +=
4185 mz->reclaim_stat.recent_rotated[1];
4186 recent_scanned[0] +=
4187 mz->reclaim_stat.recent_scanned[0];
4188 recent_scanned[1] +=
4189 mz->reclaim_stat.recent_scanned[1];
4190 }
4191 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4192 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4193 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4194 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4195 }
4196#endif
4197
d2ceb9b7
KH
4198 return 0;
4199}
4200
a7885eb8
KM
4201static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4202{
4203 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4204
1f4c025b 4205 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4206}
4207
4208static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4209 u64 val)
4210{
4211 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4212 struct mem_cgroup *parent;
068b38c1 4213
a7885eb8
KM
4214 if (val > 100)
4215 return -EINVAL;
4216
4217 if (cgrp->parent == NULL)
4218 return -EINVAL;
4219
4220 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4221
4222 cgroup_lock();
4223
a7885eb8
KM
4224 /* If under hierarchy, only empty-root can set this value */
4225 if ((parent->use_hierarchy) ||
068b38c1
LZ
4226 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4227 cgroup_unlock();
a7885eb8 4228 return -EINVAL;
068b38c1 4229 }
a7885eb8 4230
a7885eb8 4231 memcg->swappiness = val;
a7885eb8 4232
068b38c1
LZ
4233 cgroup_unlock();
4234
a7885eb8
KM
4235 return 0;
4236}
4237
2e72b634
KS
4238static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4239{
4240 struct mem_cgroup_threshold_ary *t;
4241 u64 usage;
4242 int i;
4243
4244 rcu_read_lock();
4245 if (!swap)
2c488db2 4246 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4247 else
2c488db2 4248 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4249
4250 if (!t)
4251 goto unlock;
4252
4253 usage = mem_cgroup_usage(memcg, swap);
4254
4255 /*
4256 * current_threshold points to threshold just below usage.
4257 * If it's not true, a threshold was crossed after last
4258 * call of __mem_cgroup_threshold().
4259 */
5407a562 4260 i = t->current_threshold;
2e72b634
KS
4261
4262 /*
4263 * Iterate backward over array of thresholds starting from
4264 * current_threshold and check if a threshold is crossed.
4265 * If none of thresholds below usage is crossed, we read
4266 * only one element of the array here.
4267 */
4268 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4269 eventfd_signal(t->entries[i].eventfd, 1);
4270
4271 /* i = current_threshold + 1 */
4272 i++;
4273
4274 /*
4275 * Iterate forward over array of thresholds starting from
4276 * current_threshold+1 and check if a threshold is crossed.
4277 * If none of thresholds above usage is crossed, we read
4278 * only one element of the array here.
4279 */
4280 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4281 eventfd_signal(t->entries[i].eventfd, 1);
4282
4283 /* Update current_threshold */
5407a562 4284 t->current_threshold = i - 1;
2e72b634
KS
4285unlock:
4286 rcu_read_unlock();
4287}
4288
4289static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4290{
ad4ca5f4
KS
4291 while (memcg) {
4292 __mem_cgroup_threshold(memcg, false);
4293 if (do_swap_account)
4294 __mem_cgroup_threshold(memcg, true);
4295
4296 memcg = parent_mem_cgroup(memcg);
4297 }
2e72b634
KS
4298}
4299
4300static int compare_thresholds(const void *a, const void *b)
4301{
4302 const struct mem_cgroup_threshold *_a = a;
4303 const struct mem_cgroup_threshold *_b = b;
4304
4305 return _a->threshold - _b->threshold;
4306}
4307
c0ff4b85 4308static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4309{
4310 struct mem_cgroup_eventfd_list *ev;
4311
c0ff4b85 4312 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4313 eventfd_signal(ev->eventfd, 1);
4314 return 0;
4315}
4316
c0ff4b85 4317static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4318{
7d74b06f
KH
4319 struct mem_cgroup *iter;
4320
c0ff4b85 4321 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4322 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4323}
4324
4325static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4326 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4327{
4328 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4329 struct mem_cgroup_thresholds *thresholds;
4330 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4331 int type = MEMFILE_TYPE(cft->private);
4332 u64 threshold, usage;
2c488db2 4333 int i, size, ret;
2e72b634
KS
4334
4335 ret = res_counter_memparse_write_strategy(args, &threshold);
4336 if (ret)
4337 return ret;
4338
4339 mutex_lock(&memcg->thresholds_lock);
2c488db2 4340
2e72b634 4341 if (type == _MEM)
2c488db2 4342 thresholds = &memcg->thresholds;
2e72b634 4343 else if (type == _MEMSWAP)
2c488db2 4344 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4345 else
4346 BUG();
4347
4348 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4349
4350 /* Check if a threshold crossed before adding a new one */
2c488db2 4351 if (thresholds->primary)
2e72b634
KS
4352 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4353
2c488db2 4354 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4355
4356 /* Allocate memory for new array of thresholds */
2c488db2 4357 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4358 GFP_KERNEL);
2c488db2 4359 if (!new) {
2e72b634
KS
4360 ret = -ENOMEM;
4361 goto unlock;
4362 }
2c488db2 4363 new->size = size;
2e72b634
KS
4364
4365 /* Copy thresholds (if any) to new array */
2c488db2
KS
4366 if (thresholds->primary) {
4367 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4368 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4369 }
4370
2e72b634 4371 /* Add new threshold */
2c488db2
KS
4372 new->entries[size - 1].eventfd = eventfd;
4373 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4374
4375 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4376 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4377 compare_thresholds, NULL);
4378
4379 /* Find current threshold */
2c488db2 4380 new->current_threshold = -1;
2e72b634 4381 for (i = 0; i < size; i++) {
2c488db2 4382 if (new->entries[i].threshold < usage) {
2e72b634 4383 /*
2c488db2
KS
4384 * new->current_threshold will not be used until
4385 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4386 * it here.
4387 */
2c488db2 4388 ++new->current_threshold;
2e72b634
KS
4389 }
4390 }
4391
2c488db2
KS
4392 /* Free old spare buffer and save old primary buffer as spare */
4393 kfree(thresholds->spare);
4394 thresholds->spare = thresholds->primary;
4395
4396 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4397
907860ed 4398 /* To be sure that nobody uses thresholds */
2e72b634
KS
4399 synchronize_rcu();
4400
2e72b634
KS
4401unlock:
4402 mutex_unlock(&memcg->thresholds_lock);
4403
4404 return ret;
4405}
4406
907860ed 4407static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4408 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4409{
4410 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4411 struct mem_cgroup_thresholds *thresholds;
4412 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4413 int type = MEMFILE_TYPE(cft->private);
4414 u64 usage;
2c488db2 4415 int i, j, size;
2e72b634
KS
4416
4417 mutex_lock(&memcg->thresholds_lock);
4418 if (type == _MEM)
2c488db2 4419 thresholds = &memcg->thresholds;
2e72b634 4420 else if (type == _MEMSWAP)
2c488db2 4421 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4422 else
4423 BUG();
4424
4425 /*
4426 * Something went wrong if we trying to unregister a threshold
4427 * if we don't have thresholds
4428 */
4429 BUG_ON(!thresholds);
4430
4431 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4432
4433 /* Check if a threshold crossed before removing */
4434 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4435
4436 /* Calculate new number of threshold */
2c488db2
KS
4437 size = 0;
4438 for (i = 0; i < thresholds->primary->size; i++) {
4439 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4440 size++;
4441 }
4442
2c488db2 4443 new = thresholds->spare;
907860ed 4444
2e72b634
KS
4445 /* Set thresholds array to NULL if we don't have thresholds */
4446 if (!size) {
2c488db2
KS
4447 kfree(new);
4448 new = NULL;
907860ed 4449 goto swap_buffers;
2e72b634
KS
4450 }
4451
2c488db2 4452 new->size = size;
2e72b634
KS
4453
4454 /* Copy thresholds and find current threshold */
2c488db2
KS
4455 new->current_threshold = -1;
4456 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4457 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4458 continue;
4459
2c488db2
KS
4460 new->entries[j] = thresholds->primary->entries[i];
4461 if (new->entries[j].threshold < usage) {
2e72b634 4462 /*
2c488db2 4463 * new->current_threshold will not be used
2e72b634
KS
4464 * until rcu_assign_pointer(), so it's safe to increment
4465 * it here.
4466 */
2c488db2 4467 ++new->current_threshold;
2e72b634
KS
4468 }
4469 j++;
4470 }
4471
907860ed 4472swap_buffers:
2c488db2
KS
4473 /* Swap primary and spare array */
4474 thresholds->spare = thresholds->primary;
4475 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4476
907860ed 4477 /* To be sure that nobody uses thresholds */
2e72b634
KS
4478 synchronize_rcu();
4479
2e72b634 4480 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4481}
c1e862c1 4482
9490ff27
KH
4483static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4484 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4485{
4486 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4487 struct mem_cgroup_eventfd_list *event;
4488 int type = MEMFILE_TYPE(cft->private);
4489
4490 BUG_ON(type != _OOM_TYPE);
4491 event = kmalloc(sizeof(*event), GFP_KERNEL);
4492 if (!event)
4493 return -ENOMEM;
4494
1af8efe9 4495 spin_lock(&memcg_oom_lock);
9490ff27
KH
4496
4497 event->eventfd = eventfd;
4498 list_add(&event->list, &memcg->oom_notify);
4499
4500 /* already in OOM ? */
79dfdacc 4501 if (atomic_read(&memcg->under_oom))
9490ff27 4502 eventfd_signal(eventfd, 1);
1af8efe9 4503 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4504
4505 return 0;
4506}
4507
907860ed 4508static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4509 struct cftype *cft, struct eventfd_ctx *eventfd)
4510{
c0ff4b85 4511 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4512 struct mem_cgroup_eventfd_list *ev, *tmp;
4513 int type = MEMFILE_TYPE(cft->private);
4514
4515 BUG_ON(type != _OOM_TYPE);
4516
1af8efe9 4517 spin_lock(&memcg_oom_lock);
9490ff27 4518
c0ff4b85 4519 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4520 if (ev->eventfd == eventfd) {
4521 list_del(&ev->list);
4522 kfree(ev);
4523 }
4524 }
4525
1af8efe9 4526 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4527}
4528
3c11ecf4
KH
4529static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4530 struct cftype *cft, struct cgroup_map_cb *cb)
4531{
c0ff4b85 4532 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4533
c0ff4b85 4534 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4535
c0ff4b85 4536 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4537 cb->fill(cb, "under_oom", 1);
4538 else
4539 cb->fill(cb, "under_oom", 0);
4540 return 0;
4541}
4542
3c11ecf4
KH
4543static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4544 struct cftype *cft, u64 val)
4545{
c0ff4b85 4546 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4547 struct mem_cgroup *parent;
4548
4549 /* cannot set to root cgroup and only 0 and 1 are allowed */
4550 if (!cgrp->parent || !((val == 0) || (val == 1)))
4551 return -EINVAL;
4552
4553 parent = mem_cgroup_from_cont(cgrp->parent);
4554
4555 cgroup_lock();
4556 /* oom-kill-disable is a flag for subhierarchy. */
4557 if ((parent->use_hierarchy) ||
c0ff4b85 4558 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4559 cgroup_unlock();
4560 return -EINVAL;
4561 }
c0ff4b85 4562 memcg->oom_kill_disable = val;
4d845ebf 4563 if (!val)
c0ff4b85 4564 memcg_oom_recover(memcg);
3c11ecf4
KH
4565 cgroup_unlock();
4566 return 0;
4567}
4568
406eb0c9
YH
4569#ifdef CONFIG_NUMA
4570static const struct file_operations mem_control_numa_stat_file_operations = {
4571 .read = seq_read,
4572 .llseek = seq_lseek,
4573 .release = single_release,
4574};
4575
4576static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4577{
4578 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4579
4580 file->f_op = &mem_control_numa_stat_file_operations;
4581 return single_open(file, mem_control_numa_stat_show, cont);
4582}
4583#endif /* CONFIG_NUMA */
4584
e5671dfa 4585#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e5671dfa
GC
4586static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4587{
d1a4c0b3
GC
4588 /*
4589 * Part of this would be better living in a separate allocation
4590 * function, leaving us with just the cgroup tree population work.
4591 * We, however, depend on state such as network's proto_list that
4592 * is only initialized after cgroup creation. I found the less
4593 * cumbersome way to deal with it to defer it all to populate time
4594 */
65c64ce8 4595 return mem_cgroup_sockets_init(cont, ss);
e5671dfa
GC
4596};
4597
d1a4c0b3
GC
4598static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4599 struct cgroup *cont)
4600{
4601 mem_cgroup_sockets_destroy(cont, ss);
4602}
e5671dfa
GC
4603#else
4604static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4605{
4606 return 0;
4607}
d1a4c0b3
GC
4608
4609static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4610 struct cgroup *cont)
4611{
4612}
e5671dfa
GC
4613#endif
4614
8cdea7c0
BS
4615static struct cftype mem_cgroup_files[] = {
4616 {
0eea1030 4617 .name = "usage_in_bytes",
8c7c6e34 4618 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4619 .read_u64 = mem_cgroup_read,
9490ff27
KH
4620 .register_event = mem_cgroup_usage_register_event,
4621 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4622 },
c84872e1
PE
4623 {
4624 .name = "max_usage_in_bytes",
8c7c6e34 4625 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4626 .trigger = mem_cgroup_reset,
c84872e1
PE
4627 .read_u64 = mem_cgroup_read,
4628 },
8cdea7c0 4629 {
0eea1030 4630 .name = "limit_in_bytes",
8c7c6e34 4631 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4632 .write_string = mem_cgroup_write,
2c3daa72 4633 .read_u64 = mem_cgroup_read,
8cdea7c0 4634 },
296c81d8
BS
4635 {
4636 .name = "soft_limit_in_bytes",
4637 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4638 .write_string = mem_cgroup_write,
4639 .read_u64 = mem_cgroup_read,
4640 },
8cdea7c0
BS
4641 {
4642 .name = "failcnt",
8c7c6e34 4643 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4644 .trigger = mem_cgroup_reset,
2c3daa72 4645 .read_u64 = mem_cgroup_read,
8cdea7c0 4646 },
d2ceb9b7
KH
4647 {
4648 .name = "stat",
c64745cf 4649 .read_map = mem_control_stat_show,
d2ceb9b7 4650 },
c1e862c1
KH
4651 {
4652 .name = "force_empty",
4653 .trigger = mem_cgroup_force_empty_write,
4654 },
18f59ea7
BS
4655 {
4656 .name = "use_hierarchy",
4657 .write_u64 = mem_cgroup_hierarchy_write,
4658 .read_u64 = mem_cgroup_hierarchy_read,
4659 },
a7885eb8
KM
4660 {
4661 .name = "swappiness",
4662 .read_u64 = mem_cgroup_swappiness_read,
4663 .write_u64 = mem_cgroup_swappiness_write,
4664 },
7dc74be0
DN
4665 {
4666 .name = "move_charge_at_immigrate",
4667 .read_u64 = mem_cgroup_move_charge_read,
4668 .write_u64 = mem_cgroup_move_charge_write,
4669 },
9490ff27
KH
4670 {
4671 .name = "oom_control",
3c11ecf4
KH
4672 .read_map = mem_cgroup_oom_control_read,
4673 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4674 .register_event = mem_cgroup_oom_register_event,
4675 .unregister_event = mem_cgroup_oom_unregister_event,
4676 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4677 },
406eb0c9
YH
4678#ifdef CONFIG_NUMA
4679 {
4680 .name = "numa_stat",
4681 .open = mem_control_numa_stat_open,
89577127 4682 .mode = S_IRUGO,
406eb0c9
YH
4683 },
4684#endif
8cdea7c0
BS
4685};
4686
8c7c6e34
KH
4687#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4688static struct cftype memsw_cgroup_files[] = {
4689 {
4690 .name = "memsw.usage_in_bytes",
4691 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4692 .read_u64 = mem_cgroup_read,
9490ff27
KH
4693 .register_event = mem_cgroup_usage_register_event,
4694 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4695 },
4696 {
4697 .name = "memsw.max_usage_in_bytes",
4698 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4699 .trigger = mem_cgroup_reset,
4700 .read_u64 = mem_cgroup_read,
4701 },
4702 {
4703 .name = "memsw.limit_in_bytes",
4704 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4705 .write_string = mem_cgroup_write,
4706 .read_u64 = mem_cgroup_read,
4707 },
4708 {
4709 .name = "memsw.failcnt",
4710 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4711 .trigger = mem_cgroup_reset,
4712 .read_u64 = mem_cgroup_read,
4713 },
4714};
4715
4716static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4717{
4718 if (!do_swap_account)
4719 return 0;
4720 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4721 ARRAY_SIZE(memsw_cgroup_files));
4722};
4723#else
4724static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4725{
4726 return 0;
4727}
4728#endif
4729
c0ff4b85 4730static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4731{
4732 struct mem_cgroup_per_node *pn;
1ecaab2b 4733 struct mem_cgroup_per_zone *mz;
b69408e8 4734 enum lru_list l;
41e3355d 4735 int zone, tmp = node;
1ecaab2b
KH
4736 /*
4737 * This routine is called against possible nodes.
4738 * But it's BUG to call kmalloc() against offline node.
4739 *
4740 * TODO: this routine can waste much memory for nodes which will
4741 * never be onlined. It's better to use memory hotplug callback
4742 * function.
4743 */
41e3355d
KH
4744 if (!node_state(node, N_NORMAL_MEMORY))
4745 tmp = -1;
17295c88 4746 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4747 if (!pn)
4748 return 1;
1ecaab2b 4749
1ecaab2b
KH
4750 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4751 mz = &pn->zoneinfo[zone];
b69408e8 4752 for_each_lru(l)
6290df54 4753 INIT_LIST_HEAD(&mz->lruvec.lists[l]);
f64c3f54 4754 mz->usage_in_excess = 0;
4e416953 4755 mz->on_tree = false;
c0ff4b85 4756 mz->mem = memcg;
1ecaab2b 4757 }
0a619e58 4758 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4759 return 0;
4760}
4761
c0ff4b85 4762static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4763{
c0ff4b85 4764 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4765}
4766
33327948
KH
4767static struct mem_cgroup *mem_cgroup_alloc(void)
4768{
4769 struct mem_cgroup *mem;
c62b1a3b 4770 int size = sizeof(struct mem_cgroup);
33327948 4771
c62b1a3b 4772 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4773 if (size < PAGE_SIZE)
17295c88 4774 mem = kzalloc(size, GFP_KERNEL);
33327948 4775 else
17295c88 4776 mem = vzalloc(size);
33327948 4777
e7bbcdf3
DC
4778 if (!mem)
4779 return NULL;
4780
c62b1a3b 4781 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4782 if (!mem->stat)
4783 goto out_free;
711d3d2c 4784 spin_lock_init(&mem->pcp_counter_lock);
33327948 4785 return mem;
d2e61b8d
DC
4786
4787out_free:
4788 if (size < PAGE_SIZE)
4789 kfree(mem);
4790 else
4791 vfree(mem);
4792 return NULL;
33327948
KH
4793}
4794
8c7c6e34
KH
4795/*
4796 * At destroying mem_cgroup, references from swap_cgroup can remain.
4797 * (scanning all at force_empty is too costly...)
4798 *
4799 * Instead of clearing all references at force_empty, we remember
4800 * the number of reference from swap_cgroup and free mem_cgroup when
4801 * it goes down to 0.
4802 *
8c7c6e34
KH
4803 * Removal of cgroup itself succeeds regardless of refs from swap.
4804 */
4805
c0ff4b85 4806static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4807{
08e552c6
KH
4808 int node;
4809
c0ff4b85
R
4810 mem_cgroup_remove_from_trees(memcg);
4811 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4812
3ed28fa1 4813 for_each_node(node)
c0ff4b85 4814 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4815
c0ff4b85 4816 free_percpu(memcg->stat);
c62b1a3b 4817 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
c0ff4b85 4818 kfree(memcg);
33327948 4819 else
c0ff4b85 4820 vfree(memcg);
33327948
KH
4821}
4822
c0ff4b85 4823static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4824{
c0ff4b85 4825 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4826}
4827
c0ff4b85 4828static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4829{
c0ff4b85
R
4830 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4831 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4832 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4833 if (parent)
4834 mem_cgroup_put(parent);
4835 }
8c7c6e34
KH
4836}
4837
c0ff4b85 4838static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4839{
c0ff4b85 4840 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4841}
4842
7bcc1bb1
DN
4843/*
4844 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4845 */
e1aab161 4846struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4847{
c0ff4b85 4848 if (!memcg->res.parent)
7bcc1bb1 4849 return NULL;
c0ff4b85 4850 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4851}
e1aab161 4852EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4853
c077719b
KH
4854#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4855static void __init enable_swap_cgroup(void)
4856{
f8d66542 4857 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4858 do_swap_account = 1;
4859}
4860#else
4861static void __init enable_swap_cgroup(void)
4862{
4863}
4864#endif
4865
f64c3f54
BS
4866static int mem_cgroup_soft_limit_tree_init(void)
4867{
4868 struct mem_cgroup_tree_per_node *rtpn;
4869 struct mem_cgroup_tree_per_zone *rtpz;
4870 int tmp, node, zone;
4871
3ed28fa1 4872 for_each_node(node) {
f64c3f54
BS
4873 tmp = node;
4874 if (!node_state(node, N_NORMAL_MEMORY))
4875 tmp = -1;
4876 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4877 if (!rtpn)
c3cecc68 4878 goto err_cleanup;
f64c3f54
BS
4879
4880 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4881
4882 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4883 rtpz = &rtpn->rb_tree_per_zone[zone];
4884 rtpz->rb_root = RB_ROOT;
4885 spin_lock_init(&rtpz->lock);
4886 }
4887 }
4888 return 0;
c3cecc68
MH
4889
4890err_cleanup:
3ed28fa1 4891 for_each_node(node) {
c3cecc68
MH
4892 if (!soft_limit_tree.rb_tree_per_node[node])
4893 break;
4894 kfree(soft_limit_tree.rb_tree_per_node[node]);
4895 soft_limit_tree.rb_tree_per_node[node] = NULL;
4896 }
4897 return 1;
4898
f64c3f54
BS
4899}
4900
0eb253e2 4901static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4902mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4903{
c0ff4b85 4904 struct mem_cgroup *memcg, *parent;
04046e1a 4905 long error = -ENOMEM;
6d12e2d8 4906 int node;
8cdea7c0 4907
c0ff4b85
R
4908 memcg = mem_cgroup_alloc();
4909 if (!memcg)
04046e1a 4910 return ERR_PTR(error);
78fb7466 4911
3ed28fa1 4912 for_each_node(node)
c0ff4b85 4913 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4914 goto free_out;
f64c3f54 4915
c077719b 4916 /* root ? */
28dbc4b6 4917 if (cont->parent == NULL) {
cdec2e42 4918 int cpu;
c077719b 4919 enable_swap_cgroup();
28dbc4b6 4920 parent = NULL;
f64c3f54
BS
4921 if (mem_cgroup_soft_limit_tree_init())
4922 goto free_out;
a41c58a6 4923 root_mem_cgroup = memcg;
cdec2e42
KH
4924 for_each_possible_cpu(cpu) {
4925 struct memcg_stock_pcp *stock =
4926 &per_cpu(memcg_stock, cpu);
4927 INIT_WORK(&stock->work, drain_local_stock);
4928 }
711d3d2c 4929 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4930 } else {
28dbc4b6 4931 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4932 memcg->use_hierarchy = parent->use_hierarchy;
4933 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4934 }
28dbc4b6 4935
18f59ea7 4936 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4937 res_counter_init(&memcg->res, &parent->res);
4938 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4939 /*
4940 * We increment refcnt of the parent to ensure that we can
4941 * safely access it on res_counter_charge/uncharge.
4942 * This refcnt will be decremented when freeing this
4943 * mem_cgroup(see mem_cgroup_put).
4944 */
4945 mem_cgroup_get(parent);
18f59ea7 4946 } else {
c0ff4b85
R
4947 res_counter_init(&memcg->res, NULL);
4948 res_counter_init(&memcg->memsw, NULL);
18f59ea7 4949 }
c0ff4b85
R
4950 memcg->last_scanned_node = MAX_NUMNODES;
4951 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4952
a7885eb8 4953 if (parent)
c0ff4b85
R
4954 memcg->swappiness = mem_cgroup_swappiness(parent);
4955 atomic_set(&memcg->refcnt, 1);
4956 memcg->move_charge_at_immigrate = 0;
4957 mutex_init(&memcg->thresholds_lock);
4958 return &memcg->css;
6d12e2d8 4959free_out:
c0ff4b85 4960 __mem_cgroup_free(memcg);
04046e1a 4961 return ERR_PTR(error);
8cdea7c0
BS
4962}
4963
ec64f515 4964static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4965 struct cgroup *cont)
4966{
c0ff4b85 4967 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 4968
c0ff4b85 4969 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
4970}
4971
8cdea7c0
BS
4972static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4973 struct cgroup *cont)
4974{
c0ff4b85 4975 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 4976
d1a4c0b3
GC
4977 kmem_cgroup_destroy(ss, cont);
4978
c0ff4b85 4979 mem_cgroup_put(memcg);
8cdea7c0
BS
4980}
4981
4982static int mem_cgroup_populate(struct cgroup_subsys *ss,
4983 struct cgroup *cont)
4984{
8c7c6e34
KH
4985 int ret;
4986
4987 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4988 ARRAY_SIZE(mem_cgroup_files));
4989
4990 if (!ret)
4991 ret = register_memsw_files(cont, ss);
e5671dfa
GC
4992
4993 if (!ret)
4994 ret = register_kmem_files(cont, ss);
4995
8c7c6e34 4996 return ret;
8cdea7c0
BS
4997}
4998
02491447 4999#ifdef CONFIG_MMU
7dc74be0 5000/* Handlers for move charge at task migration. */
854ffa8d
DN
5001#define PRECHARGE_COUNT_AT_ONCE 256
5002static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5003{
854ffa8d
DN
5004 int ret = 0;
5005 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5006 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5007
c0ff4b85 5008 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5009 mc.precharge += count;
5010 /* we don't need css_get for root */
5011 return ret;
5012 }
5013 /* try to charge at once */
5014 if (count > 1) {
5015 struct res_counter *dummy;
5016 /*
c0ff4b85 5017 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5018 * by cgroup_lock_live_cgroup() that it is not removed and we
5019 * are still under the same cgroup_mutex. So we can postpone
5020 * css_get().
5021 */
c0ff4b85 5022 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5023 goto one_by_one;
c0ff4b85 5024 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5025 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5026 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5027 goto one_by_one;
5028 }
5029 mc.precharge += count;
854ffa8d
DN
5030 return ret;
5031 }
5032one_by_one:
5033 /* fall back to one by one charge */
5034 while (count--) {
5035 if (signal_pending(current)) {
5036 ret = -EINTR;
5037 break;
5038 }
5039 if (!batch_count--) {
5040 batch_count = PRECHARGE_COUNT_AT_ONCE;
5041 cond_resched();
5042 }
c0ff4b85
R
5043 ret = __mem_cgroup_try_charge(NULL,
5044 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5045 if (ret)
854ffa8d 5046 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5047 return ret;
854ffa8d
DN
5048 mc.precharge++;
5049 }
4ffef5fe
DN
5050 return ret;
5051}
5052
5053/**
5054 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5055 * @vma: the vma the pte to be checked belongs
5056 * @addr: the address corresponding to the pte to be checked
5057 * @ptent: the pte to be checked
02491447 5058 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5059 *
5060 * Returns
5061 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5062 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5063 * move charge. if @target is not NULL, the page is stored in target->page
5064 * with extra refcnt got(Callers should handle it).
02491447
DN
5065 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5066 * target for charge migration. if @target is not NULL, the entry is stored
5067 * in target->ent.
4ffef5fe
DN
5068 *
5069 * Called with pte lock held.
5070 */
4ffef5fe
DN
5071union mc_target {
5072 struct page *page;
02491447 5073 swp_entry_t ent;
4ffef5fe
DN
5074};
5075
4ffef5fe
DN
5076enum mc_target_type {
5077 MC_TARGET_NONE, /* not used */
5078 MC_TARGET_PAGE,
02491447 5079 MC_TARGET_SWAP,
4ffef5fe
DN
5080};
5081
90254a65
DN
5082static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5083 unsigned long addr, pte_t ptent)
4ffef5fe 5084{
90254a65 5085 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5086
90254a65
DN
5087 if (!page || !page_mapped(page))
5088 return NULL;
5089 if (PageAnon(page)) {
5090 /* we don't move shared anon */
5091 if (!move_anon() || page_mapcount(page) > 2)
5092 return NULL;
87946a72
DN
5093 } else if (!move_file())
5094 /* we ignore mapcount for file pages */
90254a65
DN
5095 return NULL;
5096 if (!get_page_unless_zero(page))
5097 return NULL;
5098
5099 return page;
5100}
5101
5102static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5103 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5104{
5105 int usage_count;
5106 struct page *page = NULL;
5107 swp_entry_t ent = pte_to_swp_entry(ptent);
5108
5109 if (!move_anon() || non_swap_entry(ent))
5110 return NULL;
5111 usage_count = mem_cgroup_count_swap_user(ent, &page);
5112 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5113 if (page)
5114 put_page(page);
90254a65 5115 return NULL;
02491447 5116 }
90254a65
DN
5117 if (do_swap_account)
5118 entry->val = ent.val;
5119
5120 return page;
5121}
5122
87946a72
DN
5123static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5124 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5125{
5126 struct page *page = NULL;
5127 struct inode *inode;
5128 struct address_space *mapping;
5129 pgoff_t pgoff;
5130
5131 if (!vma->vm_file) /* anonymous vma */
5132 return NULL;
5133 if (!move_file())
5134 return NULL;
5135
5136 inode = vma->vm_file->f_path.dentry->d_inode;
5137 mapping = vma->vm_file->f_mapping;
5138 if (pte_none(ptent))
5139 pgoff = linear_page_index(vma, addr);
5140 else /* pte_file(ptent) is true */
5141 pgoff = pte_to_pgoff(ptent);
5142
5143 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5144 page = find_get_page(mapping, pgoff);
5145
5146#ifdef CONFIG_SWAP
5147 /* shmem/tmpfs may report page out on swap: account for that too. */
5148 if (radix_tree_exceptional_entry(page)) {
5149 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5150 if (do_swap_account)
aa3b1895
HD
5151 *entry = swap;
5152 page = find_get_page(&swapper_space, swap.val);
87946a72 5153 }
aa3b1895 5154#endif
87946a72
DN
5155 return page;
5156}
5157
90254a65
DN
5158static int is_target_pte_for_mc(struct vm_area_struct *vma,
5159 unsigned long addr, pte_t ptent, union mc_target *target)
5160{
5161 struct page *page = NULL;
5162 struct page_cgroup *pc;
5163 int ret = 0;
5164 swp_entry_t ent = { .val = 0 };
5165
5166 if (pte_present(ptent))
5167 page = mc_handle_present_pte(vma, addr, ptent);
5168 else if (is_swap_pte(ptent))
5169 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5170 else if (pte_none(ptent) || pte_file(ptent))
5171 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5172
5173 if (!page && !ent.val)
5174 return 0;
02491447
DN
5175 if (page) {
5176 pc = lookup_page_cgroup(page);
5177 /*
5178 * Do only loose check w/o page_cgroup lock.
5179 * mem_cgroup_move_account() checks the pc is valid or not under
5180 * the lock.
5181 */
5182 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5183 ret = MC_TARGET_PAGE;
5184 if (target)
5185 target->page = page;
5186 }
5187 if (!ret || !target)
5188 put_page(page);
5189 }
90254a65
DN
5190 /* There is a swap entry and a page doesn't exist or isn't charged */
5191 if (ent.val && !ret &&
9fb4b7cc 5192 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5193 ret = MC_TARGET_SWAP;
5194 if (target)
5195 target->ent = ent;
4ffef5fe 5196 }
4ffef5fe
DN
5197 return ret;
5198}
5199
5200static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5201 unsigned long addr, unsigned long end,
5202 struct mm_walk *walk)
5203{
5204 struct vm_area_struct *vma = walk->private;
5205 pte_t *pte;
5206 spinlock_t *ptl;
5207
03319327
DH
5208 split_huge_page_pmd(walk->mm, pmd);
5209
4ffef5fe
DN
5210 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5211 for (; addr != end; pte++, addr += PAGE_SIZE)
5212 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5213 mc.precharge++; /* increment precharge temporarily */
5214 pte_unmap_unlock(pte - 1, ptl);
5215 cond_resched();
5216
7dc74be0
DN
5217 return 0;
5218}
5219
4ffef5fe
DN
5220static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5221{
5222 unsigned long precharge;
5223 struct vm_area_struct *vma;
5224
dfe076b0 5225 down_read(&mm->mmap_sem);
4ffef5fe
DN
5226 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5227 struct mm_walk mem_cgroup_count_precharge_walk = {
5228 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5229 .mm = mm,
5230 .private = vma,
5231 };
5232 if (is_vm_hugetlb_page(vma))
5233 continue;
4ffef5fe
DN
5234 walk_page_range(vma->vm_start, vma->vm_end,
5235 &mem_cgroup_count_precharge_walk);
5236 }
dfe076b0 5237 up_read(&mm->mmap_sem);
4ffef5fe
DN
5238
5239 precharge = mc.precharge;
5240 mc.precharge = 0;
5241
5242 return precharge;
5243}
5244
4ffef5fe
DN
5245static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5246{
dfe076b0
DN
5247 unsigned long precharge = mem_cgroup_count_precharge(mm);
5248
5249 VM_BUG_ON(mc.moving_task);
5250 mc.moving_task = current;
5251 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5252}
5253
dfe076b0
DN
5254/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5255static void __mem_cgroup_clear_mc(void)
4ffef5fe 5256{
2bd9bb20
KH
5257 struct mem_cgroup *from = mc.from;
5258 struct mem_cgroup *to = mc.to;
5259
4ffef5fe 5260 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5261 if (mc.precharge) {
5262 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5263 mc.precharge = 0;
5264 }
5265 /*
5266 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5267 * we must uncharge here.
5268 */
5269 if (mc.moved_charge) {
5270 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5271 mc.moved_charge = 0;
4ffef5fe 5272 }
483c30b5
DN
5273 /* we must fixup refcnts and charges */
5274 if (mc.moved_swap) {
483c30b5
DN
5275 /* uncharge swap account from the old cgroup */
5276 if (!mem_cgroup_is_root(mc.from))
5277 res_counter_uncharge(&mc.from->memsw,
5278 PAGE_SIZE * mc.moved_swap);
5279 __mem_cgroup_put(mc.from, mc.moved_swap);
5280
5281 if (!mem_cgroup_is_root(mc.to)) {
5282 /*
5283 * we charged both to->res and to->memsw, so we should
5284 * uncharge to->res.
5285 */
5286 res_counter_uncharge(&mc.to->res,
5287 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5288 }
5289 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5290 mc.moved_swap = 0;
5291 }
dfe076b0
DN
5292 memcg_oom_recover(from);
5293 memcg_oom_recover(to);
5294 wake_up_all(&mc.waitq);
5295}
5296
5297static void mem_cgroup_clear_mc(void)
5298{
5299 struct mem_cgroup *from = mc.from;
5300
5301 /*
5302 * we must clear moving_task before waking up waiters at the end of
5303 * task migration.
5304 */
5305 mc.moving_task = NULL;
5306 __mem_cgroup_clear_mc();
2bd9bb20 5307 spin_lock(&mc.lock);
4ffef5fe
DN
5308 mc.from = NULL;
5309 mc.to = NULL;
2bd9bb20 5310 spin_unlock(&mc.lock);
32047e2a 5311 mem_cgroup_end_move(from);
4ffef5fe
DN
5312}
5313
7dc74be0
DN
5314static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5315 struct cgroup *cgroup,
2f7ee569 5316 struct cgroup_taskset *tset)
7dc74be0 5317{
2f7ee569 5318 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5319 int ret = 0;
c0ff4b85 5320 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5321
c0ff4b85 5322 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5323 struct mm_struct *mm;
5324 struct mem_cgroup *from = mem_cgroup_from_task(p);
5325
c0ff4b85 5326 VM_BUG_ON(from == memcg);
7dc74be0
DN
5327
5328 mm = get_task_mm(p);
5329 if (!mm)
5330 return 0;
7dc74be0 5331 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5332 if (mm->owner == p) {
5333 VM_BUG_ON(mc.from);
5334 VM_BUG_ON(mc.to);
5335 VM_BUG_ON(mc.precharge);
854ffa8d 5336 VM_BUG_ON(mc.moved_charge);
483c30b5 5337 VM_BUG_ON(mc.moved_swap);
32047e2a 5338 mem_cgroup_start_move(from);
2bd9bb20 5339 spin_lock(&mc.lock);
4ffef5fe 5340 mc.from = from;
c0ff4b85 5341 mc.to = memcg;
2bd9bb20 5342 spin_unlock(&mc.lock);
dfe076b0 5343 /* We set mc.moving_task later */
4ffef5fe
DN
5344
5345 ret = mem_cgroup_precharge_mc(mm);
5346 if (ret)
5347 mem_cgroup_clear_mc();
dfe076b0
DN
5348 }
5349 mmput(mm);
7dc74be0
DN
5350 }
5351 return ret;
5352}
5353
5354static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5355 struct cgroup *cgroup,
2f7ee569 5356 struct cgroup_taskset *tset)
7dc74be0 5357{
4ffef5fe 5358 mem_cgroup_clear_mc();
7dc74be0
DN
5359}
5360
4ffef5fe
DN
5361static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5362 unsigned long addr, unsigned long end,
5363 struct mm_walk *walk)
7dc74be0 5364{
4ffef5fe
DN
5365 int ret = 0;
5366 struct vm_area_struct *vma = walk->private;
5367 pte_t *pte;
5368 spinlock_t *ptl;
5369
03319327 5370 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
5371retry:
5372 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5373 for (; addr != end; addr += PAGE_SIZE) {
5374 pte_t ptent = *(pte++);
5375 union mc_target target;
5376 int type;
5377 struct page *page;
5378 struct page_cgroup *pc;
02491447 5379 swp_entry_t ent;
4ffef5fe
DN
5380
5381 if (!mc.precharge)
5382 break;
5383
5384 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5385 switch (type) {
5386 case MC_TARGET_PAGE:
5387 page = target.page;
5388 if (isolate_lru_page(page))
5389 goto put;
5390 pc = lookup_page_cgroup(page);
7ec99d62
JW
5391 if (!mem_cgroup_move_account(page, 1, pc,
5392 mc.from, mc.to, false)) {
4ffef5fe 5393 mc.precharge--;
854ffa8d
DN
5394 /* we uncharge from mc.from later. */
5395 mc.moved_charge++;
4ffef5fe
DN
5396 }
5397 putback_lru_page(page);
5398put: /* is_target_pte_for_mc() gets the page */
5399 put_page(page);
5400 break;
02491447
DN
5401 case MC_TARGET_SWAP:
5402 ent = target.ent;
483c30b5
DN
5403 if (!mem_cgroup_move_swap_account(ent,
5404 mc.from, mc.to, false)) {
02491447 5405 mc.precharge--;
483c30b5
DN
5406 /* we fixup refcnts and charges later. */
5407 mc.moved_swap++;
5408 }
02491447 5409 break;
4ffef5fe
DN
5410 default:
5411 break;
5412 }
5413 }
5414 pte_unmap_unlock(pte - 1, ptl);
5415 cond_resched();
5416
5417 if (addr != end) {
5418 /*
5419 * We have consumed all precharges we got in can_attach().
5420 * We try charge one by one, but don't do any additional
5421 * charges to mc.to if we have failed in charge once in attach()
5422 * phase.
5423 */
854ffa8d 5424 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5425 if (!ret)
5426 goto retry;
5427 }
5428
5429 return ret;
5430}
5431
5432static void mem_cgroup_move_charge(struct mm_struct *mm)
5433{
5434 struct vm_area_struct *vma;
5435
5436 lru_add_drain_all();
dfe076b0
DN
5437retry:
5438 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5439 /*
5440 * Someone who are holding the mmap_sem might be waiting in
5441 * waitq. So we cancel all extra charges, wake up all waiters,
5442 * and retry. Because we cancel precharges, we might not be able
5443 * to move enough charges, but moving charge is a best-effort
5444 * feature anyway, so it wouldn't be a big problem.
5445 */
5446 __mem_cgroup_clear_mc();
5447 cond_resched();
5448 goto retry;
5449 }
4ffef5fe
DN
5450 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5451 int ret;
5452 struct mm_walk mem_cgroup_move_charge_walk = {
5453 .pmd_entry = mem_cgroup_move_charge_pte_range,
5454 .mm = mm,
5455 .private = vma,
5456 };
5457 if (is_vm_hugetlb_page(vma))
5458 continue;
4ffef5fe
DN
5459 ret = walk_page_range(vma->vm_start, vma->vm_end,
5460 &mem_cgroup_move_charge_walk);
5461 if (ret)
5462 /*
5463 * means we have consumed all precharges and failed in
5464 * doing additional charge. Just abandon here.
5465 */
5466 break;
5467 }
dfe076b0 5468 up_read(&mm->mmap_sem);
7dc74be0
DN
5469}
5470
67e465a7
BS
5471static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5472 struct cgroup *cont,
2f7ee569 5473 struct cgroup_taskset *tset)
67e465a7 5474{
2f7ee569 5475 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5476 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5477
dfe076b0 5478 if (mm) {
a433658c
KM
5479 if (mc.to)
5480 mem_cgroup_move_charge(mm);
5481 put_swap_token(mm);
dfe076b0
DN
5482 mmput(mm);
5483 }
a433658c
KM
5484 if (mc.to)
5485 mem_cgroup_clear_mc();
67e465a7 5486}
5cfb80a7
DN
5487#else /* !CONFIG_MMU */
5488static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5489 struct cgroup *cgroup,
2f7ee569 5490 struct cgroup_taskset *tset)
5cfb80a7
DN
5491{
5492 return 0;
5493}
5494static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5495 struct cgroup *cgroup,
2f7ee569 5496 struct cgroup_taskset *tset)
5cfb80a7
DN
5497{
5498}
5499static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5500 struct cgroup *cont,
2f7ee569 5501 struct cgroup_taskset *tset)
5cfb80a7
DN
5502{
5503}
5504#endif
67e465a7 5505
8cdea7c0
BS
5506struct cgroup_subsys mem_cgroup_subsys = {
5507 .name = "memory",
5508 .subsys_id = mem_cgroup_subsys_id,
5509 .create = mem_cgroup_create,
df878fb0 5510 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5511 .destroy = mem_cgroup_destroy,
5512 .populate = mem_cgroup_populate,
7dc74be0
DN
5513 .can_attach = mem_cgroup_can_attach,
5514 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5515 .attach = mem_cgroup_move_task,
6d12e2d8 5516 .early_init = 0,
04046e1a 5517 .use_id = 1,
8cdea7c0 5518};
c077719b
KH
5519
5520#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5521static int __init enable_swap_account(char *s)
5522{
5523 /* consider enabled if no parameter or 1 is given */
a2c8990a 5524 if (!strcmp(s, "1"))
a42c390c 5525 really_do_swap_account = 1;
a2c8990a 5526 else if (!strcmp(s, "0"))
a42c390c
MH
5527 really_do_swap_account = 0;
5528 return 1;
5529}
a2c8990a 5530__setup("swapaccount=", enable_swap_account);
c077719b 5531
c077719b 5532#endif