]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/memcontrol.c
mm: memcontrol: make cgroup stats and events query API explicitly local
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
1ff9e6e1 42#include <linux/vm_event_item.h>
d52aa412 43#include <linux/smp.h>
8a9f3ccd 44#include <linux/page-flags.h>
66e1707b 45#include <linux/backing-dev.h>
8a9f3ccd
BS
46#include <linux/bit_spinlock.h>
47#include <linux/rcupdate.h>
e222432b 48#include <linux/limits.h>
b9e15baf 49#include <linux/export.h>
8c7c6e34 50#include <linux/mutex.h>
bb4cc1a8 51#include <linux/rbtree.h>
b6ac57d5 52#include <linux/slab.h>
66e1707b 53#include <linux/swap.h>
02491447 54#include <linux/swapops.h>
66e1707b 55#include <linux/spinlock.h>
2e72b634 56#include <linux/eventfd.h>
79bd9814 57#include <linux/poll.h>
2e72b634 58#include <linux/sort.h>
66e1707b 59#include <linux/fs.h>
d2ceb9b7 60#include <linux/seq_file.h>
70ddf637 61#include <linux/vmpressure.h>
b69408e8 62#include <linux/mm_inline.h>
5d1ea48b 63#include <linux/swap_cgroup.h>
cdec2e42 64#include <linux/cpu.h>
158e0a2d 65#include <linux/oom.h>
0056f4e6 66#include <linux/lockdep.h>
79bd9814 67#include <linux/file.h>
b23afb93 68#include <linux/tracehook.h>
08e552c6 69#include "internal.h"
d1a4c0b3 70#include <net/sock.h>
4bd2c1ee 71#include <net/ip.h>
f35c3a8e 72#include "slab.h"
8cdea7c0 73
7c0f6ba6 74#include <linux/uaccess.h>
8697d331 75
cc8e970c
KM
76#include <trace/events/vmscan.h>
77
073219e9
TH
78struct cgroup_subsys memory_cgrp_subsys __read_mostly;
79EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 80
7d828602
JW
81struct mem_cgroup *root_mem_cgroup __read_mostly;
82
a181b0e8 83#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 84
f7e1cb6e
JW
85/* Socket memory accounting disabled? */
86static bool cgroup_memory_nosocket;
87
04823c83
VD
88/* Kernel memory accounting disabled? */
89static bool cgroup_memory_nokmem;
90
21afa38e 91/* Whether the swap controller is active */
c255a458 92#ifdef CONFIG_MEMCG_SWAP
c077719b 93int do_swap_account __read_mostly;
c077719b 94#else
a0db00fc 95#define do_swap_account 0
c077719b
KH
96#endif
97
7941d214
JW
98/* Whether legacy memory+swap accounting is active */
99static bool do_memsw_account(void)
100{
101 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
102}
103
71cd3113 104static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
105 "inactive_anon",
106 "active_anon",
107 "inactive_file",
108 "active_file",
109 "unevictable",
110};
111
a0db00fc
KS
112#define THRESHOLDS_EVENTS_TARGET 128
113#define SOFTLIMIT_EVENTS_TARGET 1024
114#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 115
bb4cc1a8
AM
116/*
117 * Cgroups above their limits are maintained in a RB-Tree, independent of
118 * their hierarchy representation
119 */
120
ef8f2327 121struct mem_cgroup_tree_per_node {
bb4cc1a8 122 struct rb_root rb_root;
fa90b2fd 123 struct rb_node *rb_rightmost;
bb4cc1a8
AM
124 spinlock_t lock;
125};
126
bb4cc1a8
AM
127struct mem_cgroup_tree {
128 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
129};
130
131static struct mem_cgroup_tree soft_limit_tree __read_mostly;
132
9490ff27
KH
133/* for OOM */
134struct mem_cgroup_eventfd_list {
135 struct list_head list;
136 struct eventfd_ctx *eventfd;
137};
2e72b634 138
79bd9814
TH
139/*
140 * cgroup_event represents events which userspace want to receive.
141 */
3bc942f3 142struct mem_cgroup_event {
79bd9814 143 /*
59b6f873 144 * memcg which the event belongs to.
79bd9814 145 */
59b6f873 146 struct mem_cgroup *memcg;
79bd9814
TH
147 /*
148 * eventfd to signal userspace about the event.
149 */
150 struct eventfd_ctx *eventfd;
151 /*
152 * Each of these stored in a list by the cgroup.
153 */
154 struct list_head list;
fba94807
TH
155 /*
156 * register_event() callback will be used to add new userspace
157 * waiter for changes related to this event. Use eventfd_signal()
158 * on eventfd to send notification to userspace.
159 */
59b6f873 160 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 161 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
162 /*
163 * unregister_event() callback will be called when userspace closes
164 * the eventfd or on cgroup removing. This callback must be set,
165 * if you want provide notification functionality.
166 */
59b6f873 167 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 168 struct eventfd_ctx *eventfd);
79bd9814
TH
169 /*
170 * All fields below needed to unregister event when
171 * userspace closes eventfd.
172 */
173 poll_table pt;
174 wait_queue_head_t *wqh;
ac6424b9 175 wait_queue_entry_t wait;
79bd9814
TH
176 struct work_struct remove;
177};
178
c0ff4b85
R
179static void mem_cgroup_threshold(struct mem_cgroup *memcg);
180static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 181
7dc74be0
DN
182/* Stuffs for move charges at task migration. */
183/*
1dfab5ab 184 * Types of charges to be moved.
7dc74be0 185 */
1dfab5ab
JW
186#define MOVE_ANON 0x1U
187#define MOVE_FILE 0x2U
188#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 189
4ffef5fe
DN
190/* "mc" and its members are protected by cgroup_mutex */
191static struct move_charge_struct {
b1dd693e 192 spinlock_t lock; /* for from, to */
264a0ae1 193 struct mm_struct *mm;
4ffef5fe
DN
194 struct mem_cgroup *from;
195 struct mem_cgroup *to;
1dfab5ab 196 unsigned long flags;
4ffef5fe 197 unsigned long precharge;
854ffa8d 198 unsigned long moved_charge;
483c30b5 199 unsigned long moved_swap;
8033b97c
DN
200 struct task_struct *moving_task; /* a task moving charges */
201 wait_queue_head_t waitq; /* a waitq for other context */
202} mc = {
2bd9bb20 203 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
204 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
205};
4ffef5fe 206
4e416953
BS
207/*
208 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
209 * limit reclaim to prevent infinite loops, if they ever occur.
210 */
a0db00fc 211#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 212#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 213
217bc319
KH
214enum charge_type {
215 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 216 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 217 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 218 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
219 NR_CHARGE_TYPE,
220};
221
8c7c6e34 222/* for encoding cft->private value on file */
86ae53e1
GC
223enum res_type {
224 _MEM,
225 _MEMSWAP,
226 _OOM_TYPE,
510fc4e1 227 _KMEM,
d55f90bf 228 _TCP,
86ae53e1
GC
229};
230
a0db00fc
KS
231#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
232#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 233#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
234/* Used for OOM nofiier */
235#define OOM_CONTROL (0)
8c7c6e34 236
b05706f1
KT
237/*
238 * Iteration constructs for visiting all cgroups (under a tree). If
239 * loops are exited prematurely (break), mem_cgroup_iter_break() must
240 * be used for reference counting.
241 */
242#define for_each_mem_cgroup_tree(iter, root) \
243 for (iter = mem_cgroup_iter(root, NULL, NULL); \
244 iter != NULL; \
245 iter = mem_cgroup_iter(root, iter, NULL))
246
247#define for_each_mem_cgroup(iter) \
248 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
249 iter != NULL; \
250 iter = mem_cgroup_iter(NULL, iter, NULL))
251
7775face
TH
252static inline bool should_force_charge(void)
253{
254 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
255 (current->flags & PF_EXITING);
256}
257
70ddf637
AV
258/* Some nice accessors for the vmpressure. */
259struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
260{
261 if (!memcg)
262 memcg = root_mem_cgroup;
263 return &memcg->vmpressure;
264}
265
266struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
267{
268 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
269}
270
84c07d11 271#ifdef CONFIG_MEMCG_KMEM
55007d84 272/*
f7ce3190 273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
274 * The main reason for not using cgroup id for this:
275 * this works better in sparse environments, where we have a lot of memcgs,
276 * but only a few kmem-limited. Or also, if we have, for instance, 200
277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
278 * 200 entry array for that.
55007d84 279 *
dbcf73e2
VD
280 * The current size of the caches array is stored in memcg_nr_cache_ids. It
281 * will double each time we have to increase it.
55007d84 282 */
dbcf73e2
VD
283static DEFINE_IDA(memcg_cache_ida);
284int memcg_nr_cache_ids;
749c5415 285
05257a1a
VD
286/* Protects memcg_nr_cache_ids */
287static DECLARE_RWSEM(memcg_cache_ids_sem);
288
289void memcg_get_cache_ids(void)
290{
291 down_read(&memcg_cache_ids_sem);
292}
293
294void memcg_put_cache_ids(void)
295{
296 up_read(&memcg_cache_ids_sem);
297}
298
55007d84
GC
299/*
300 * MIN_SIZE is different than 1, because we would like to avoid going through
301 * the alloc/free process all the time. In a small machine, 4 kmem-limited
302 * cgroups is a reasonable guess. In the future, it could be a parameter or
303 * tunable, but that is strictly not necessary.
304 *
b8627835 305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
306 * this constant directly from cgroup, but it is understandable that this is
307 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 308 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
309 * increase ours as well if it increases.
310 */
311#define MEMCG_CACHES_MIN_SIZE 4
b8627835 312#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 313
d7f25f8a
GC
314/*
315 * A lot of the calls to the cache allocation functions are expected to be
316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317 * conditional to this static branch, we'll have to allow modules that does
318 * kmem_cache_alloc and the such to see this symbol as well
319 */
ef12947c 320DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 321EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 322
17cc4dfe
TH
323struct workqueue_struct *memcg_kmem_cache_wq;
324
0a4465d3
KT
325static int memcg_shrinker_map_size;
326static DEFINE_MUTEX(memcg_shrinker_map_mutex);
327
328static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
329{
330 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
331}
332
333static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
334 int size, int old_size)
335{
336 struct memcg_shrinker_map *new, *old;
337 int nid;
338
339 lockdep_assert_held(&memcg_shrinker_map_mutex);
340
341 for_each_node(nid) {
342 old = rcu_dereference_protected(
343 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
344 /* Not yet online memcg */
345 if (!old)
346 return 0;
347
348 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
349 if (!new)
350 return -ENOMEM;
351
352 /* Set all old bits, clear all new bits */
353 memset(new->map, (int)0xff, old_size);
354 memset((void *)new->map + old_size, 0, size - old_size);
355
356 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
357 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
358 }
359
360 return 0;
361}
362
363static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
364{
365 struct mem_cgroup_per_node *pn;
366 struct memcg_shrinker_map *map;
367 int nid;
368
369 if (mem_cgroup_is_root(memcg))
370 return;
371
372 for_each_node(nid) {
373 pn = mem_cgroup_nodeinfo(memcg, nid);
374 map = rcu_dereference_protected(pn->shrinker_map, true);
375 if (map)
376 kvfree(map);
377 rcu_assign_pointer(pn->shrinker_map, NULL);
378 }
379}
380
381static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
382{
383 struct memcg_shrinker_map *map;
384 int nid, size, ret = 0;
385
386 if (mem_cgroup_is_root(memcg))
387 return 0;
388
389 mutex_lock(&memcg_shrinker_map_mutex);
390 size = memcg_shrinker_map_size;
391 for_each_node(nid) {
392 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
393 if (!map) {
394 memcg_free_shrinker_maps(memcg);
395 ret = -ENOMEM;
396 break;
397 }
398 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
399 }
400 mutex_unlock(&memcg_shrinker_map_mutex);
401
402 return ret;
403}
404
405int memcg_expand_shrinker_maps(int new_id)
406{
407 int size, old_size, ret = 0;
408 struct mem_cgroup *memcg;
409
410 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
411 old_size = memcg_shrinker_map_size;
412 if (size <= old_size)
413 return 0;
414
415 mutex_lock(&memcg_shrinker_map_mutex);
416 if (!root_mem_cgroup)
417 goto unlock;
418
419 for_each_mem_cgroup(memcg) {
420 if (mem_cgroup_is_root(memcg))
421 continue;
422 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
423 if (ret)
424 goto unlock;
425 }
426unlock:
427 if (!ret)
428 memcg_shrinker_map_size = size;
429 mutex_unlock(&memcg_shrinker_map_mutex);
430 return ret;
431}
fae91d6d
KT
432
433void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
434{
435 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
436 struct memcg_shrinker_map *map;
437
438 rcu_read_lock();
439 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
440 /* Pairs with smp mb in shrink_slab() */
441 smp_mb__before_atomic();
fae91d6d
KT
442 set_bit(shrinker_id, map->map);
443 rcu_read_unlock();
444 }
445}
446
0a4465d3
KT
447#else /* CONFIG_MEMCG_KMEM */
448static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
449{
450 return 0;
451}
452static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
84c07d11 453#endif /* CONFIG_MEMCG_KMEM */
a8964b9b 454
ad7fa852
TH
455/**
456 * mem_cgroup_css_from_page - css of the memcg associated with a page
457 * @page: page of interest
458 *
459 * If memcg is bound to the default hierarchy, css of the memcg associated
460 * with @page is returned. The returned css remains associated with @page
461 * until it is released.
462 *
463 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
464 * is returned.
ad7fa852
TH
465 */
466struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
467{
468 struct mem_cgroup *memcg;
469
ad7fa852
TH
470 memcg = page->mem_cgroup;
471
9e10a130 472 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
473 memcg = root_mem_cgroup;
474
ad7fa852
TH
475 return &memcg->css;
476}
477
2fc04524
VD
478/**
479 * page_cgroup_ino - return inode number of the memcg a page is charged to
480 * @page: the page
481 *
482 * Look up the closest online ancestor of the memory cgroup @page is charged to
483 * and return its inode number or 0 if @page is not charged to any cgroup. It
484 * is safe to call this function without holding a reference to @page.
485 *
486 * Note, this function is inherently racy, because there is nothing to prevent
487 * the cgroup inode from getting torn down and potentially reallocated a moment
488 * after page_cgroup_ino() returns, so it only should be used by callers that
489 * do not care (such as procfs interfaces).
490 */
491ino_t page_cgroup_ino(struct page *page)
492{
493 struct mem_cgroup *memcg;
494 unsigned long ino = 0;
495
496 rcu_read_lock();
497 memcg = READ_ONCE(page->mem_cgroup);
498 while (memcg && !(memcg->css.flags & CSS_ONLINE))
499 memcg = parent_mem_cgroup(memcg);
500 if (memcg)
501 ino = cgroup_ino(memcg->css.cgroup);
502 rcu_read_unlock();
503 return ino;
504}
505
ef8f2327
MG
506static struct mem_cgroup_per_node *
507mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 508{
97a6c37b 509 int nid = page_to_nid(page);
f64c3f54 510
ef8f2327 511 return memcg->nodeinfo[nid];
f64c3f54
BS
512}
513
ef8f2327
MG
514static struct mem_cgroup_tree_per_node *
515soft_limit_tree_node(int nid)
bb4cc1a8 516{
ef8f2327 517 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
518}
519
ef8f2327 520static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
521soft_limit_tree_from_page(struct page *page)
522{
523 int nid = page_to_nid(page);
bb4cc1a8 524
ef8f2327 525 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
526}
527
ef8f2327
MG
528static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
529 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 530 unsigned long new_usage_in_excess)
bb4cc1a8
AM
531{
532 struct rb_node **p = &mctz->rb_root.rb_node;
533 struct rb_node *parent = NULL;
ef8f2327 534 struct mem_cgroup_per_node *mz_node;
fa90b2fd 535 bool rightmost = true;
bb4cc1a8
AM
536
537 if (mz->on_tree)
538 return;
539
540 mz->usage_in_excess = new_usage_in_excess;
541 if (!mz->usage_in_excess)
542 return;
543 while (*p) {
544 parent = *p;
ef8f2327 545 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 546 tree_node);
fa90b2fd 547 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 548 p = &(*p)->rb_left;
fa90b2fd
DB
549 rightmost = false;
550 }
551
bb4cc1a8
AM
552 /*
553 * We can't avoid mem cgroups that are over their soft
554 * limit by the same amount
555 */
556 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
557 p = &(*p)->rb_right;
558 }
fa90b2fd
DB
559
560 if (rightmost)
561 mctz->rb_rightmost = &mz->tree_node;
562
bb4cc1a8
AM
563 rb_link_node(&mz->tree_node, parent, p);
564 rb_insert_color(&mz->tree_node, &mctz->rb_root);
565 mz->on_tree = true;
566}
567
ef8f2327
MG
568static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
569 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
570{
571 if (!mz->on_tree)
572 return;
fa90b2fd
DB
573
574 if (&mz->tree_node == mctz->rb_rightmost)
575 mctz->rb_rightmost = rb_prev(&mz->tree_node);
576
bb4cc1a8
AM
577 rb_erase(&mz->tree_node, &mctz->rb_root);
578 mz->on_tree = false;
579}
580
ef8f2327
MG
581static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
582 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 583{
0a31bc97
JW
584 unsigned long flags;
585
586 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 587 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 588 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
589}
590
3e32cb2e
JW
591static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
592{
593 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 594 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
595 unsigned long excess = 0;
596
597 if (nr_pages > soft_limit)
598 excess = nr_pages - soft_limit;
599
600 return excess;
601}
bb4cc1a8
AM
602
603static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
604{
3e32cb2e 605 unsigned long excess;
ef8f2327
MG
606 struct mem_cgroup_per_node *mz;
607 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 608
e231875b 609 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
610 if (!mctz)
611 return;
bb4cc1a8
AM
612 /*
613 * Necessary to update all ancestors when hierarchy is used.
614 * because their event counter is not touched.
615 */
616 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 617 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 618 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
619 /*
620 * We have to update the tree if mz is on RB-tree or
621 * mem is over its softlimit.
622 */
623 if (excess || mz->on_tree) {
0a31bc97
JW
624 unsigned long flags;
625
626 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
627 /* if on-tree, remove it */
628 if (mz->on_tree)
cf2c8127 629 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
630 /*
631 * Insert again. mz->usage_in_excess will be updated.
632 * If excess is 0, no tree ops.
633 */
cf2c8127 634 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 635 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
636 }
637 }
638}
639
640static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
641{
ef8f2327
MG
642 struct mem_cgroup_tree_per_node *mctz;
643 struct mem_cgroup_per_node *mz;
644 int nid;
bb4cc1a8 645
e231875b 646 for_each_node(nid) {
ef8f2327
MG
647 mz = mem_cgroup_nodeinfo(memcg, nid);
648 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
649 if (mctz)
650 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
651 }
652}
653
ef8f2327
MG
654static struct mem_cgroup_per_node *
655__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 656{
ef8f2327 657 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
658
659retry:
660 mz = NULL;
fa90b2fd 661 if (!mctz->rb_rightmost)
bb4cc1a8
AM
662 goto done; /* Nothing to reclaim from */
663
fa90b2fd
DB
664 mz = rb_entry(mctz->rb_rightmost,
665 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
666 /*
667 * Remove the node now but someone else can add it back,
668 * we will to add it back at the end of reclaim to its correct
669 * position in the tree.
670 */
cf2c8127 671 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 672 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 673 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
674 goto retry;
675done:
676 return mz;
677}
678
ef8f2327
MG
679static struct mem_cgroup_per_node *
680mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 681{
ef8f2327 682 struct mem_cgroup_per_node *mz;
bb4cc1a8 683
0a31bc97 684 spin_lock_irq(&mctz->lock);
bb4cc1a8 685 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 686 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
687 return mz;
688}
689
205b20cc
JW
690static unsigned long memcg_events_local(struct mem_cgroup *memcg,
691 int event)
e9f8974f 692{
871789d4 693 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
694}
695
c0ff4b85 696static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 697 struct page *page,
f627c2f5 698 bool compound, int nr_pages)
d52aa412 699{
b2402857
KH
700 /*
701 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
702 * counted as CACHE even if it's on ANON LRU.
703 */
0a31bc97 704 if (PageAnon(page))
c9019e9b 705 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 706 else {
c9019e9b 707 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 708 if (PageSwapBacked(page))
c9019e9b 709 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 710 }
55e462b0 711
f627c2f5
KS
712 if (compound) {
713 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 714 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 715 }
b070e65c 716
e401f176
KH
717 /* pagein of a big page is an event. So, ignore page size */
718 if (nr_pages > 0)
c9019e9b 719 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 720 else {
c9019e9b 721 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
722 nr_pages = -nr_pages; /* for event */
723 }
e401f176 724
871789d4 725 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
726}
727
f53d7ce3
JW
728static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
729 enum mem_cgroup_events_target target)
7a159cc9
JW
730{
731 unsigned long val, next;
732
871789d4
CD
733 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
734 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 735 /* from time_after() in jiffies.h */
6a1a8b80 736 if ((long)(next - val) < 0) {
f53d7ce3
JW
737 switch (target) {
738 case MEM_CGROUP_TARGET_THRESH:
739 next = val + THRESHOLDS_EVENTS_TARGET;
740 break;
bb4cc1a8
AM
741 case MEM_CGROUP_TARGET_SOFTLIMIT:
742 next = val + SOFTLIMIT_EVENTS_TARGET;
743 break;
f53d7ce3
JW
744 case MEM_CGROUP_TARGET_NUMAINFO:
745 next = val + NUMAINFO_EVENTS_TARGET;
746 break;
747 default:
748 break;
749 }
871789d4 750 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 751 return true;
7a159cc9 752 }
f53d7ce3 753 return false;
d2265e6f
KH
754}
755
756/*
757 * Check events in order.
758 *
759 */
c0ff4b85 760static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
761{
762 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
763 if (unlikely(mem_cgroup_event_ratelimit(memcg,
764 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 765 bool do_softlimit;
82b3f2a7 766 bool do_numainfo __maybe_unused;
f53d7ce3 767
bb4cc1a8
AM
768 do_softlimit = mem_cgroup_event_ratelimit(memcg,
769 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
770#if MAX_NUMNODES > 1
771 do_numainfo = mem_cgroup_event_ratelimit(memcg,
772 MEM_CGROUP_TARGET_NUMAINFO);
773#endif
c0ff4b85 774 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
775 if (unlikely(do_softlimit))
776 mem_cgroup_update_tree(memcg, page);
453a9bf3 777#if MAX_NUMNODES > 1
f53d7ce3 778 if (unlikely(do_numainfo))
c0ff4b85 779 atomic_inc(&memcg->numainfo_events);
453a9bf3 780#endif
0a31bc97 781 }
d2265e6f
KH
782}
783
cf475ad2 784struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 785{
31a78f23
BS
786 /*
787 * mm_update_next_owner() may clear mm->owner to NULL
788 * if it races with swapoff, page migration, etc.
789 * So this can be called with p == NULL.
790 */
791 if (unlikely(!p))
792 return NULL;
793
073219e9 794 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 795}
33398cf2 796EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 797
d46eb14b
SB
798/**
799 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
800 * @mm: mm from which memcg should be extracted. It can be NULL.
801 *
802 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
803 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
804 * returned.
805 */
806struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 807{
d46eb14b
SB
808 struct mem_cgroup *memcg;
809
810 if (mem_cgroup_disabled())
811 return NULL;
0b7f569e 812
54595fe2
KH
813 rcu_read_lock();
814 do {
6f6acb00
MH
815 /*
816 * Page cache insertions can happen withou an
817 * actual mm context, e.g. during disk probing
818 * on boot, loopback IO, acct() writes etc.
819 */
820 if (unlikely(!mm))
df381975 821 memcg = root_mem_cgroup;
6f6acb00
MH
822 else {
823 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
824 if (unlikely(!memcg))
825 memcg = root_mem_cgroup;
826 }
ec903c0c 827 } while (!css_tryget_online(&memcg->css));
54595fe2 828 rcu_read_unlock();
c0ff4b85 829 return memcg;
54595fe2 830}
d46eb14b
SB
831EXPORT_SYMBOL(get_mem_cgroup_from_mm);
832
f745c6f5
SB
833/**
834 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
835 * @page: page from which memcg should be extracted.
836 *
837 * Obtain a reference on page->memcg and returns it if successful. Otherwise
838 * root_mem_cgroup is returned.
839 */
840struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
841{
842 struct mem_cgroup *memcg = page->mem_cgroup;
843
844 if (mem_cgroup_disabled())
845 return NULL;
846
847 rcu_read_lock();
848 if (!memcg || !css_tryget_online(&memcg->css))
849 memcg = root_mem_cgroup;
850 rcu_read_unlock();
851 return memcg;
852}
853EXPORT_SYMBOL(get_mem_cgroup_from_page);
854
d46eb14b
SB
855/**
856 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
857 */
858static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
859{
860 if (unlikely(current->active_memcg)) {
861 struct mem_cgroup *memcg = root_mem_cgroup;
862
863 rcu_read_lock();
864 if (css_tryget_online(&current->active_memcg->css))
865 memcg = current->active_memcg;
866 rcu_read_unlock();
867 return memcg;
868 }
869 return get_mem_cgroup_from_mm(current->mm);
870}
54595fe2 871
5660048c
JW
872/**
873 * mem_cgroup_iter - iterate over memory cgroup hierarchy
874 * @root: hierarchy root
875 * @prev: previously returned memcg, NULL on first invocation
876 * @reclaim: cookie for shared reclaim walks, NULL for full walks
877 *
878 * Returns references to children of the hierarchy below @root, or
879 * @root itself, or %NULL after a full round-trip.
880 *
881 * Caller must pass the return value in @prev on subsequent
882 * invocations for reference counting, or use mem_cgroup_iter_break()
883 * to cancel a hierarchy walk before the round-trip is complete.
884 *
b213b54f 885 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 886 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 887 * reclaimers operating on the same node and priority.
5660048c 888 */
694fbc0f 889struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 890 struct mem_cgroup *prev,
694fbc0f 891 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 892{
33398cf2 893 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 894 struct cgroup_subsys_state *css = NULL;
9f3a0d09 895 struct mem_cgroup *memcg = NULL;
5ac8fb31 896 struct mem_cgroup *pos = NULL;
711d3d2c 897
694fbc0f
AM
898 if (mem_cgroup_disabled())
899 return NULL;
5660048c 900
9f3a0d09
JW
901 if (!root)
902 root = root_mem_cgroup;
7d74b06f 903
9f3a0d09 904 if (prev && !reclaim)
5ac8fb31 905 pos = prev;
14067bb3 906
9f3a0d09
JW
907 if (!root->use_hierarchy && root != root_mem_cgroup) {
908 if (prev)
5ac8fb31 909 goto out;
694fbc0f 910 return root;
9f3a0d09 911 }
14067bb3 912
542f85f9 913 rcu_read_lock();
5f578161 914
5ac8fb31 915 if (reclaim) {
ef8f2327 916 struct mem_cgroup_per_node *mz;
5ac8fb31 917
ef8f2327 918 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
919 iter = &mz->iter[reclaim->priority];
920
921 if (prev && reclaim->generation != iter->generation)
922 goto out_unlock;
923
6df38689 924 while (1) {
4db0c3c2 925 pos = READ_ONCE(iter->position);
6df38689
VD
926 if (!pos || css_tryget(&pos->css))
927 break;
5ac8fb31 928 /*
6df38689
VD
929 * css reference reached zero, so iter->position will
930 * be cleared by ->css_released. However, we should not
931 * rely on this happening soon, because ->css_released
932 * is called from a work queue, and by busy-waiting we
933 * might block it. So we clear iter->position right
934 * away.
5ac8fb31 935 */
6df38689
VD
936 (void)cmpxchg(&iter->position, pos, NULL);
937 }
5ac8fb31
JW
938 }
939
940 if (pos)
941 css = &pos->css;
942
943 for (;;) {
944 css = css_next_descendant_pre(css, &root->css);
945 if (!css) {
946 /*
947 * Reclaimers share the hierarchy walk, and a
948 * new one might jump in right at the end of
949 * the hierarchy - make sure they see at least
950 * one group and restart from the beginning.
951 */
952 if (!prev)
953 continue;
954 break;
527a5ec9 955 }
7d74b06f 956
5ac8fb31
JW
957 /*
958 * Verify the css and acquire a reference. The root
959 * is provided by the caller, so we know it's alive
960 * and kicking, and don't take an extra reference.
961 */
962 memcg = mem_cgroup_from_css(css);
14067bb3 963
5ac8fb31
JW
964 if (css == &root->css)
965 break;
14067bb3 966
0b8f73e1
JW
967 if (css_tryget(css))
968 break;
9f3a0d09 969
5ac8fb31 970 memcg = NULL;
9f3a0d09 971 }
5ac8fb31
JW
972
973 if (reclaim) {
5ac8fb31 974 /*
6df38689
VD
975 * The position could have already been updated by a competing
976 * thread, so check that the value hasn't changed since we read
977 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 978 */
6df38689
VD
979 (void)cmpxchg(&iter->position, pos, memcg);
980
5ac8fb31
JW
981 if (pos)
982 css_put(&pos->css);
983
984 if (!memcg)
985 iter->generation++;
986 else if (!prev)
987 reclaim->generation = iter->generation;
9f3a0d09 988 }
5ac8fb31 989
542f85f9
MH
990out_unlock:
991 rcu_read_unlock();
5ac8fb31 992out:
c40046f3
MH
993 if (prev && prev != root)
994 css_put(&prev->css);
995
9f3a0d09 996 return memcg;
14067bb3 997}
7d74b06f 998
5660048c
JW
999/**
1000 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1001 * @root: hierarchy root
1002 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1003 */
1004void mem_cgroup_iter_break(struct mem_cgroup *root,
1005 struct mem_cgroup *prev)
9f3a0d09
JW
1006{
1007 if (!root)
1008 root = root_mem_cgroup;
1009 if (prev && prev != root)
1010 css_put(&prev->css);
1011}
7d74b06f 1012
6df38689
VD
1013static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1014{
1015 struct mem_cgroup *memcg = dead_memcg;
1016 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1017 struct mem_cgroup_per_node *mz;
1018 int nid;
6df38689
VD
1019 int i;
1020
9f15bde6 1021 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 1022 for_each_node(nid) {
ef8f2327
MG
1023 mz = mem_cgroup_nodeinfo(memcg, nid);
1024 for (i = 0; i <= DEF_PRIORITY; i++) {
1025 iter = &mz->iter[i];
1026 cmpxchg(&iter->position,
1027 dead_memcg, NULL);
6df38689
VD
1028 }
1029 }
1030 }
1031}
1032
7c5f64f8
VD
1033/**
1034 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1035 * @memcg: hierarchy root
1036 * @fn: function to call for each task
1037 * @arg: argument passed to @fn
1038 *
1039 * This function iterates over tasks attached to @memcg or to any of its
1040 * descendants and calls @fn for each task. If @fn returns a non-zero
1041 * value, the function breaks the iteration loop and returns the value.
1042 * Otherwise, it will iterate over all tasks and return 0.
1043 *
1044 * This function must not be called for the root memory cgroup.
1045 */
1046int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1047 int (*fn)(struct task_struct *, void *), void *arg)
1048{
1049 struct mem_cgroup *iter;
1050 int ret = 0;
1051
1052 BUG_ON(memcg == root_mem_cgroup);
1053
1054 for_each_mem_cgroup_tree(iter, memcg) {
1055 struct css_task_iter it;
1056 struct task_struct *task;
1057
bc2fb7ed 1058 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
1059 while (!ret && (task = css_task_iter_next(&it)))
1060 ret = fn(task, arg);
1061 css_task_iter_end(&it);
1062 if (ret) {
1063 mem_cgroup_iter_break(memcg, iter);
1064 break;
1065 }
1066 }
1067 return ret;
1068}
1069
925b7673 1070/**
dfe0e773 1071 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1072 * @page: the page
f144c390 1073 * @pgdat: pgdat of the page
dfe0e773
JW
1074 *
1075 * This function is only safe when following the LRU page isolation
1076 * and putback protocol: the LRU lock must be held, and the page must
1077 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1078 */
599d0c95 1079struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1080{
ef8f2327 1081 struct mem_cgroup_per_node *mz;
925b7673 1082 struct mem_cgroup *memcg;
bea8c150 1083 struct lruvec *lruvec;
6d12e2d8 1084
bea8c150 1085 if (mem_cgroup_disabled()) {
599d0c95 1086 lruvec = &pgdat->lruvec;
bea8c150
HD
1087 goto out;
1088 }
925b7673 1089
1306a85a 1090 memcg = page->mem_cgroup;
7512102c 1091 /*
dfe0e773 1092 * Swapcache readahead pages are added to the LRU - and
29833315 1093 * possibly migrated - before they are charged.
7512102c 1094 */
29833315
JW
1095 if (!memcg)
1096 memcg = root_mem_cgroup;
7512102c 1097
ef8f2327 1098 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1099 lruvec = &mz->lruvec;
1100out:
1101 /*
1102 * Since a node can be onlined after the mem_cgroup was created,
1103 * we have to be prepared to initialize lruvec->zone here;
1104 * and if offlined then reonlined, we need to reinitialize it.
1105 */
599d0c95
MG
1106 if (unlikely(lruvec->pgdat != pgdat))
1107 lruvec->pgdat = pgdat;
bea8c150 1108 return lruvec;
08e552c6 1109}
b69408e8 1110
925b7673 1111/**
fa9add64
HD
1112 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1113 * @lruvec: mem_cgroup per zone lru vector
1114 * @lru: index of lru list the page is sitting on
b4536f0c 1115 * @zid: zone id of the accounted pages
fa9add64 1116 * @nr_pages: positive when adding or negative when removing
925b7673 1117 *
ca707239
HD
1118 * This function must be called under lru_lock, just before a page is added
1119 * to or just after a page is removed from an lru list (that ordering being
1120 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1121 */
fa9add64 1122void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1123 int zid, int nr_pages)
3f58a829 1124{
ef8f2327 1125 struct mem_cgroup_per_node *mz;
fa9add64 1126 unsigned long *lru_size;
ca707239 1127 long size;
3f58a829
MK
1128
1129 if (mem_cgroup_disabled())
1130 return;
1131
ef8f2327 1132 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1133 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1134
1135 if (nr_pages < 0)
1136 *lru_size += nr_pages;
1137
1138 size = *lru_size;
b4536f0c
MH
1139 if (WARN_ONCE(size < 0,
1140 "%s(%p, %d, %d): lru_size %ld\n",
1141 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1142 VM_BUG_ON(1);
1143 *lru_size = 0;
1144 }
1145
1146 if (nr_pages > 0)
1147 *lru_size += nr_pages;
08e552c6 1148}
544122e5 1149
2314b42d 1150bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1151{
2314b42d 1152 struct mem_cgroup *task_memcg;
158e0a2d 1153 struct task_struct *p;
ffbdccf5 1154 bool ret;
4c4a2214 1155
158e0a2d 1156 p = find_lock_task_mm(task);
de077d22 1157 if (p) {
2314b42d 1158 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1159 task_unlock(p);
1160 } else {
1161 /*
1162 * All threads may have already detached their mm's, but the oom
1163 * killer still needs to detect if they have already been oom
1164 * killed to prevent needlessly killing additional tasks.
1165 */
ffbdccf5 1166 rcu_read_lock();
2314b42d
JW
1167 task_memcg = mem_cgroup_from_task(task);
1168 css_get(&task_memcg->css);
ffbdccf5 1169 rcu_read_unlock();
de077d22 1170 }
2314b42d
JW
1171 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1172 css_put(&task_memcg->css);
4c4a2214
DR
1173 return ret;
1174}
1175
19942822 1176/**
9d11ea9f 1177 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1178 * @memcg: the memory cgroup
19942822 1179 *
9d11ea9f 1180 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1181 * pages.
19942822 1182 */
c0ff4b85 1183static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1184{
3e32cb2e
JW
1185 unsigned long margin = 0;
1186 unsigned long count;
1187 unsigned long limit;
9d11ea9f 1188
3e32cb2e 1189 count = page_counter_read(&memcg->memory);
bbec2e15 1190 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1191 if (count < limit)
1192 margin = limit - count;
1193
7941d214 1194 if (do_memsw_account()) {
3e32cb2e 1195 count = page_counter_read(&memcg->memsw);
bbec2e15 1196 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1197 if (count <= limit)
1198 margin = min(margin, limit - count);
cbedbac3
LR
1199 else
1200 margin = 0;
3e32cb2e
JW
1201 }
1202
1203 return margin;
19942822
JW
1204}
1205
32047e2a 1206/*
bdcbb659 1207 * A routine for checking "mem" is under move_account() or not.
32047e2a 1208 *
bdcbb659
QH
1209 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1210 * moving cgroups. This is for waiting at high-memory pressure
1211 * caused by "move".
32047e2a 1212 */
c0ff4b85 1213static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1214{
2bd9bb20
KH
1215 struct mem_cgroup *from;
1216 struct mem_cgroup *to;
4b534334 1217 bool ret = false;
2bd9bb20
KH
1218 /*
1219 * Unlike task_move routines, we access mc.to, mc.from not under
1220 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1221 */
1222 spin_lock(&mc.lock);
1223 from = mc.from;
1224 to = mc.to;
1225 if (!from)
1226 goto unlock;
3e92041d 1227
2314b42d
JW
1228 ret = mem_cgroup_is_descendant(from, memcg) ||
1229 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1230unlock:
1231 spin_unlock(&mc.lock);
4b534334
KH
1232 return ret;
1233}
1234
c0ff4b85 1235static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1236{
1237 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1238 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1239 DEFINE_WAIT(wait);
1240 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1241 /* moving charge context might have finished. */
1242 if (mc.moving_task)
1243 schedule();
1244 finish_wait(&mc.waitq, &wait);
1245 return true;
1246 }
1247 }
1248 return false;
1249}
1250
8ad6e404 1251static const unsigned int memcg1_stats[] = {
71cd3113
JW
1252 MEMCG_CACHE,
1253 MEMCG_RSS,
1254 MEMCG_RSS_HUGE,
1255 NR_SHMEM,
1256 NR_FILE_MAPPED,
1257 NR_FILE_DIRTY,
1258 NR_WRITEBACK,
1259 MEMCG_SWAP,
1260};
1261
1262static const char *const memcg1_stat_names[] = {
1263 "cache",
1264 "rss",
1265 "rss_huge",
1266 "shmem",
1267 "mapped_file",
1268 "dirty",
1269 "writeback",
1270 "swap",
1271};
1272
58cf188e 1273#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1274/**
f0c867d9 1275 * mem_cgroup_print_oom_context: Print OOM information relevant to
1276 * memory controller.
e222432b
BS
1277 * @memcg: The memory cgroup that went over limit
1278 * @p: Task that is going to be killed
1279 *
1280 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1281 * enabled
1282 */
f0c867d9 1283void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1284{
e222432b
BS
1285 rcu_read_lock();
1286
f0c867d9 1287 if (memcg) {
1288 pr_cont(",oom_memcg=");
1289 pr_cont_cgroup_path(memcg->css.cgroup);
1290 } else
1291 pr_cont(",global_oom");
2415b9f5 1292 if (p) {
f0c867d9 1293 pr_cont(",task_memcg=");
2415b9f5 1294 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1295 }
e222432b 1296 rcu_read_unlock();
f0c867d9 1297}
1298
1299/**
1300 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1301 * memory controller.
1302 * @memcg: The memory cgroup that went over limit
1303 */
1304void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1305{
1306 struct mem_cgroup *iter;
1307 unsigned int i;
e222432b 1308
3e32cb2e
JW
1309 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1310 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1311 K((u64)memcg->memory.max), memcg->memory.failcnt);
3e32cb2e
JW
1312 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1313 K((u64)page_counter_read(&memcg->memsw)),
bbec2e15 1314 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
3e32cb2e
JW
1315 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1316 K((u64)page_counter_read(&memcg->kmem)),
bbec2e15 1317 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e
SZ
1318
1319 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1320 pr_info("Memory cgroup stats for ");
1321 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1322 pr_cont(":");
1323
71cd3113
JW
1324 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1325 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1326 continue;
71cd3113 1327 pr_cont(" %s:%luKB", memcg1_stat_names[i],
205b20cc
JW
1328 K(memcg_page_state_local(iter,
1329 memcg1_stats[i])));
58cf188e
SZ
1330 }
1331
1332 for (i = 0; i < NR_LRU_LISTS; i++)
1333 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
205b20cc
JW
1334 K(memcg_page_state_local(iter,
1335 NR_LRU_BASE + i)));
58cf188e
SZ
1336
1337 pr_cont("\n");
1338 }
e222432b
BS
1339}
1340
a63d83f4
DR
1341/*
1342 * Return the memory (and swap, if configured) limit for a memcg.
1343 */
bbec2e15 1344unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1345{
bbec2e15 1346 unsigned long max;
f3e8eb70 1347
bbec2e15 1348 max = memcg->memory.max;
9a5a8f19 1349 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1350 unsigned long memsw_max;
1351 unsigned long swap_max;
9a5a8f19 1352
bbec2e15
RG
1353 memsw_max = memcg->memsw.max;
1354 swap_max = memcg->swap.max;
1355 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1356 max = min(max + swap_max, memsw_max);
9a5a8f19 1357 }
bbec2e15 1358 return max;
a63d83f4
DR
1359}
1360
b6e6edcf 1361static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1362 int order)
9cbb78bb 1363{
6e0fc46d
DR
1364 struct oom_control oc = {
1365 .zonelist = NULL,
1366 .nodemask = NULL,
2a966b77 1367 .memcg = memcg,
6e0fc46d
DR
1368 .gfp_mask = gfp_mask,
1369 .order = order,
6e0fc46d 1370 };
7c5f64f8 1371 bool ret;
9cbb78bb 1372
7775face
TH
1373 if (mutex_lock_killable(&oom_lock))
1374 return true;
1375 /*
1376 * A few threads which were not waiting at mutex_lock_killable() can
1377 * fail to bail out. Therefore, check again after holding oom_lock.
1378 */
1379 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1380 mutex_unlock(&oom_lock);
7c5f64f8 1381 return ret;
9cbb78bb
DR
1382}
1383
ae6e71d3
MC
1384#if MAX_NUMNODES > 1
1385
4d0c066d
KH
1386/**
1387 * test_mem_cgroup_node_reclaimable
dad7557e 1388 * @memcg: the target memcg
4d0c066d
KH
1389 * @nid: the node ID to be checked.
1390 * @noswap : specify true here if the user wants flle only information.
1391 *
1392 * This function returns whether the specified memcg contains any
1393 * reclaimable pages on a node. Returns true if there are any reclaimable
1394 * pages in the node.
1395 */
c0ff4b85 1396static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1397 int nid, bool noswap)
1398{
2b487e59
JW
1399 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1400
205b20cc
JW
1401 if (lruvec_page_state_local(lruvec, NR_INACTIVE_FILE) ||
1402 lruvec_page_state_local(lruvec, NR_ACTIVE_FILE))
4d0c066d
KH
1403 return true;
1404 if (noswap || !total_swap_pages)
1405 return false;
205b20cc
JW
1406 if (lruvec_page_state_local(lruvec, NR_INACTIVE_ANON) ||
1407 lruvec_page_state_local(lruvec, NR_ACTIVE_ANON))
4d0c066d
KH
1408 return true;
1409 return false;
1410
1411}
889976db
YH
1412
1413/*
1414 * Always updating the nodemask is not very good - even if we have an empty
1415 * list or the wrong list here, we can start from some node and traverse all
1416 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1417 *
1418 */
c0ff4b85 1419static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1420{
1421 int nid;
453a9bf3
KH
1422 /*
1423 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1424 * pagein/pageout changes since the last update.
1425 */
c0ff4b85 1426 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1427 return;
c0ff4b85 1428 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1429 return;
1430
889976db 1431 /* make a nodemask where this memcg uses memory from */
31aaea4a 1432 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1433
31aaea4a 1434 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1435
c0ff4b85
R
1436 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1437 node_clear(nid, memcg->scan_nodes);
889976db 1438 }
453a9bf3 1439
c0ff4b85
R
1440 atomic_set(&memcg->numainfo_events, 0);
1441 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1442}
1443
1444/*
1445 * Selecting a node where we start reclaim from. Because what we need is just
1446 * reducing usage counter, start from anywhere is O,K. Considering
1447 * memory reclaim from current node, there are pros. and cons.
1448 *
1449 * Freeing memory from current node means freeing memory from a node which
1450 * we'll use or we've used. So, it may make LRU bad. And if several threads
1451 * hit limits, it will see a contention on a node. But freeing from remote
1452 * node means more costs for memory reclaim because of memory latency.
1453 *
1454 * Now, we use round-robin. Better algorithm is welcomed.
1455 */
c0ff4b85 1456int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1457{
1458 int node;
1459
c0ff4b85
R
1460 mem_cgroup_may_update_nodemask(memcg);
1461 node = memcg->last_scanned_node;
889976db 1462
0edaf86c 1463 node = next_node_in(node, memcg->scan_nodes);
889976db 1464 /*
fda3d69b
MH
1465 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1466 * last time it really checked all the LRUs due to rate limiting.
1467 * Fallback to the current node in that case for simplicity.
889976db
YH
1468 */
1469 if (unlikely(node == MAX_NUMNODES))
1470 node = numa_node_id();
1471
c0ff4b85 1472 memcg->last_scanned_node = node;
889976db
YH
1473 return node;
1474}
889976db 1475#else
c0ff4b85 1476int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1477{
1478 return 0;
1479}
1480#endif
1481
0608f43d 1482static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1483 pg_data_t *pgdat,
0608f43d
AM
1484 gfp_t gfp_mask,
1485 unsigned long *total_scanned)
1486{
1487 struct mem_cgroup *victim = NULL;
1488 int total = 0;
1489 int loop = 0;
1490 unsigned long excess;
1491 unsigned long nr_scanned;
1492 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1493 .pgdat = pgdat,
0608f43d
AM
1494 .priority = 0,
1495 };
1496
3e32cb2e 1497 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1498
1499 while (1) {
1500 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1501 if (!victim) {
1502 loop++;
1503 if (loop >= 2) {
1504 /*
1505 * If we have not been able to reclaim
1506 * anything, it might because there are
1507 * no reclaimable pages under this hierarchy
1508 */
1509 if (!total)
1510 break;
1511 /*
1512 * We want to do more targeted reclaim.
1513 * excess >> 2 is not to excessive so as to
1514 * reclaim too much, nor too less that we keep
1515 * coming back to reclaim from this cgroup
1516 */
1517 if (total >= (excess >> 2) ||
1518 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1519 break;
1520 }
1521 continue;
1522 }
a9dd0a83 1523 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1524 pgdat, &nr_scanned);
0608f43d 1525 *total_scanned += nr_scanned;
3e32cb2e 1526 if (!soft_limit_excess(root_memcg))
0608f43d 1527 break;
6d61ef40 1528 }
0608f43d
AM
1529 mem_cgroup_iter_break(root_memcg, victim);
1530 return total;
6d61ef40
BS
1531}
1532
0056f4e6
JW
1533#ifdef CONFIG_LOCKDEP
1534static struct lockdep_map memcg_oom_lock_dep_map = {
1535 .name = "memcg_oom_lock",
1536};
1537#endif
1538
fb2a6fc5
JW
1539static DEFINE_SPINLOCK(memcg_oom_lock);
1540
867578cb
KH
1541/*
1542 * Check OOM-Killer is already running under our hierarchy.
1543 * If someone is running, return false.
1544 */
fb2a6fc5 1545static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1546{
79dfdacc 1547 struct mem_cgroup *iter, *failed = NULL;
a636b327 1548
fb2a6fc5
JW
1549 spin_lock(&memcg_oom_lock);
1550
9f3a0d09 1551 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1552 if (iter->oom_lock) {
79dfdacc
MH
1553 /*
1554 * this subtree of our hierarchy is already locked
1555 * so we cannot give a lock.
1556 */
79dfdacc 1557 failed = iter;
9f3a0d09
JW
1558 mem_cgroup_iter_break(memcg, iter);
1559 break;
23751be0
JW
1560 } else
1561 iter->oom_lock = true;
7d74b06f 1562 }
867578cb 1563
fb2a6fc5
JW
1564 if (failed) {
1565 /*
1566 * OK, we failed to lock the whole subtree so we have
1567 * to clean up what we set up to the failing subtree
1568 */
1569 for_each_mem_cgroup_tree(iter, memcg) {
1570 if (iter == failed) {
1571 mem_cgroup_iter_break(memcg, iter);
1572 break;
1573 }
1574 iter->oom_lock = false;
79dfdacc 1575 }
0056f4e6
JW
1576 } else
1577 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1578
1579 spin_unlock(&memcg_oom_lock);
1580
1581 return !failed;
a636b327 1582}
0b7f569e 1583
fb2a6fc5 1584static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1585{
7d74b06f
KH
1586 struct mem_cgroup *iter;
1587
fb2a6fc5 1588 spin_lock(&memcg_oom_lock);
0056f4e6 1589 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1590 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1591 iter->oom_lock = false;
fb2a6fc5 1592 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1593}
1594
c0ff4b85 1595static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1596{
1597 struct mem_cgroup *iter;
1598
c2b42d3c 1599 spin_lock(&memcg_oom_lock);
c0ff4b85 1600 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1601 iter->under_oom++;
1602 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1603}
1604
c0ff4b85 1605static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1606{
1607 struct mem_cgroup *iter;
1608
867578cb
KH
1609 /*
1610 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1611 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1612 */
c2b42d3c 1613 spin_lock(&memcg_oom_lock);
c0ff4b85 1614 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1615 if (iter->under_oom > 0)
1616 iter->under_oom--;
1617 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1618}
1619
867578cb
KH
1620static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1621
dc98df5a 1622struct oom_wait_info {
d79154bb 1623 struct mem_cgroup *memcg;
ac6424b9 1624 wait_queue_entry_t wait;
dc98df5a
KH
1625};
1626
ac6424b9 1627static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1628 unsigned mode, int sync, void *arg)
1629{
d79154bb
HD
1630 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1631 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1632 struct oom_wait_info *oom_wait_info;
1633
1634 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1635 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1636
2314b42d
JW
1637 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1638 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1639 return 0;
dc98df5a
KH
1640 return autoremove_wake_function(wait, mode, sync, arg);
1641}
1642
c0ff4b85 1643static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1644{
c2b42d3c
TH
1645 /*
1646 * For the following lockless ->under_oom test, the only required
1647 * guarantee is that it must see the state asserted by an OOM when
1648 * this function is called as a result of userland actions
1649 * triggered by the notification of the OOM. This is trivially
1650 * achieved by invoking mem_cgroup_mark_under_oom() before
1651 * triggering notification.
1652 */
1653 if (memcg && memcg->under_oom)
f4b90b70 1654 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1655}
1656
29ef680a
MH
1657enum oom_status {
1658 OOM_SUCCESS,
1659 OOM_FAILED,
1660 OOM_ASYNC,
1661 OOM_SKIPPED
1662};
1663
1664static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1665{
7056d3a3
MH
1666 enum oom_status ret;
1667 bool locked;
1668
29ef680a
MH
1669 if (order > PAGE_ALLOC_COSTLY_ORDER)
1670 return OOM_SKIPPED;
1671
7a1adfdd
RG
1672 memcg_memory_event(memcg, MEMCG_OOM);
1673
867578cb 1674 /*
49426420
JW
1675 * We are in the middle of the charge context here, so we
1676 * don't want to block when potentially sitting on a callstack
1677 * that holds all kinds of filesystem and mm locks.
1678 *
29ef680a
MH
1679 * cgroup1 allows disabling the OOM killer and waiting for outside
1680 * handling until the charge can succeed; remember the context and put
1681 * the task to sleep at the end of the page fault when all locks are
1682 * released.
49426420 1683 *
29ef680a
MH
1684 * On the other hand, in-kernel OOM killer allows for an async victim
1685 * memory reclaim (oom_reaper) and that means that we are not solely
1686 * relying on the oom victim to make a forward progress and we can
1687 * invoke the oom killer here.
1688 *
1689 * Please note that mem_cgroup_out_of_memory might fail to find a
1690 * victim and then we have to bail out from the charge path.
867578cb 1691 */
29ef680a
MH
1692 if (memcg->oom_kill_disable) {
1693 if (!current->in_user_fault)
1694 return OOM_SKIPPED;
1695 css_get(&memcg->css);
1696 current->memcg_in_oom = memcg;
1697 current->memcg_oom_gfp_mask = mask;
1698 current->memcg_oom_order = order;
1699
1700 return OOM_ASYNC;
1701 }
1702
7056d3a3
MH
1703 mem_cgroup_mark_under_oom(memcg);
1704
1705 locked = mem_cgroup_oom_trylock(memcg);
1706
1707 if (locked)
1708 mem_cgroup_oom_notify(memcg);
1709
1710 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1711 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1712 ret = OOM_SUCCESS;
1713 else
1714 ret = OOM_FAILED;
1715
1716 if (locked)
1717 mem_cgroup_oom_unlock(memcg);
29ef680a 1718
7056d3a3 1719 return ret;
3812c8c8
JW
1720}
1721
1722/**
1723 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1724 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1725 *
49426420
JW
1726 * This has to be called at the end of a page fault if the memcg OOM
1727 * handler was enabled.
3812c8c8 1728 *
49426420 1729 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1730 * sleep on a waitqueue until the userspace task resolves the
1731 * situation. Sleeping directly in the charge context with all kinds
1732 * of locks held is not a good idea, instead we remember an OOM state
1733 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1734 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1735 *
1736 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1737 * completed, %false otherwise.
3812c8c8 1738 */
49426420 1739bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1740{
626ebc41 1741 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1742 struct oom_wait_info owait;
49426420 1743 bool locked;
3812c8c8
JW
1744
1745 /* OOM is global, do not handle */
3812c8c8 1746 if (!memcg)
49426420 1747 return false;
3812c8c8 1748
7c5f64f8 1749 if (!handle)
49426420 1750 goto cleanup;
3812c8c8
JW
1751
1752 owait.memcg = memcg;
1753 owait.wait.flags = 0;
1754 owait.wait.func = memcg_oom_wake_function;
1755 owait.wait.private = current;
2055da97 1756 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1757
3812c8c8 1758 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1759 mem_cgroup_mark_under_oom(memcg);
1760
1761 locked = mem_cgroup_oom_trylock(memcg);
1762
1763 if (locked)
1764 mem_cgroup_oom_notify(memcg);
1765
1766 if (locked && !memcg->oom_kill_disable) {
1767 mem_cgroup_unmark_under_oom(memcg);
1768 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1769 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1770 current->memcg_oom_order);
49426420 1771 } else {
3812c8c8 1772 schedule();
49426420
JW
1773 mem_cgroup_unmark_under_oom(memcg);
1774 finish_wait(&memcg_oom_waitq, &owait.wait);
1775 }
1776
1777 if (locked) {
fb2a6fc5
JW
1778 mem_cgroup_oom_unlock(memcg);
1779 /*
1780 * There is no guarantee that an OOM-lock contender
1781 * sees the wakeups triggered by the OOM kill
1782 * uncharges. Wake any sleepers explicitely.
1783 */
1784 memcg_oom_recover(memcg);
1785 }
49426420 1786cleanup:
626ebc41 1787 current->memcg_in_oom = NULL;
3812c8c8 1788 css_put(&memcg->css);
867578cb 1789 return true;
0b7f569e
KH
1790}
1791
3d8b38eb
RG
1792/**
1793 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1794 * @victim: task to be killed by the OOM killer
1795 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1796 *
1797 * Returns a pointer to a memory cgroup, which has to be cleaned up
1798 * by killing all belonging OOM-killable tasks.
1799 *
1800 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1801 */
1802struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1803 struct mem_cgroup *oom_domain)
1804{
1805 struct mem_cgroup *oom_group = NULL;
1806 struct mem_cgroup *memcg;
1807
1808 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1809 return NULL;
1810
1811 if (!oom_domain)
1812 oom_domain = root_mem_cgroup;
1813
1814 rcu_read_lock();
1815
1816 memcg = mem_cgroup_from_task(victim);
1817 if (memcg == root_mem_cgroup)
1818 goto out;
1819
1820 /*
1821 * Traverse the memory cgroup hierarchy from the victim task's
1822 * cgroup up to the OOMing cgroup (or root) to find the
1823 * highest-level memory cgroup with oom.group set.
1824 */
1825 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1826 if (memcg->oom_group)
1827 oom_group = memcg;
1828
1829 if (memcg == oom_domain)
1830 break;
1831 }
1832
1833 if (oom_group)
1834 css_get(&oom_group->css);
1835out:
1836 rcu_read_unlock();
1837
1838 return oom_group;
1839}
1840
1841void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1842{
1843 pr_info("Tasks in ");
1844 pr_cont_cgroup_path(memcg->css.cgroup);
1845 pr_cont(" are going to be killed due to memory.oom.group set\n");
1846}
1847
d7365e78 1848/**
81f8c3a4
JW
1849 * lock_page_memcg - lock a page->mem_cgroup binding
1850 * @page: the page
32047e2a 1851 *
81f8c3a4 1852 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1853 * another cgroup.
1854 *
1855 * It ensures lifetime of the returned memcg. Caller is responsible
1856 * for the lifetime of the page; __unlock_page_memcg() is available
1857 * when @page might get freed inside the locked section.
d69b042f 1858 */
739f79fc 1859struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1860{
1861 struct mem_cgroup *memcg;
6de22619 1862 unsigned long flags;
89c06bd5 1863
6de22619
JW
1864 /*
1865 * The RCU lock is held throughout the transaction. The fast
1866 * path can get away without acquiring the memcg->move_lock
1867 * because page moving starts with an RCU grace period.
739f79fc
JW
1868 *
1869 * The RCU lock also protects the memcg from being freed when
1870 * the page state that is going to change is the only thing
1871 * preventing the page itself from being freed. E.g. writeback
1872 * doesn't hold a page reference and relies on PG_writeback to
1873 * keep off truncation, migration and so forth.
1874 */
d7365e78
JW
1875 rcu_read_lock();
1876
1877 if (mem_cgroup_disabled())
739f79fc 1878 return NULL;
89c06bd5 1879again:
1306a85a 1880 memcg = page->mem_cgroup;
29833315 1881 if (unlikely(!memcg))
739f79fc 1882 return NULL;
d7365e78 1883
bdcbb659 1884 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1885 return memcg;
89c06bd5 1886
6de22619 1887 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1888 if (memcg != page->mem_cgroup) {
6de22619 1889 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1890 goto again;
1891 }
6de22619
JW
1892
1893 /*
1894 * When charge migration first begins, we can have locked and
1895 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1896 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1897 */
1898 memcg->move_lock_task = current;
1899 memcg->move_lock_flags = flags;
d7365e78 1900
739f79fc 1901 return memcg;
89c06bd5 1902}
81f8c3a4 1903EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1904
d7365e78 1905/**
739f79fc
JW
1906 * __unlock_page_memcg - unlock and unpin a memcg
1907 * @memcg: the memcg
1908 *
1909 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1910 */
739f79fc 1911void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1912{
6de22619
JW
1913 if (memcg && memcg->move_lock_task == current) {
1914 unsigned long flags = memcg->move_lock_flags;
1915
1916 memcg->move_lock_task = NULL;
1917 memcg->move_lock_flags = 0;
1918
1919 spin_unlock_irqrestore(&memcg->move_lock, flags);
1920 }
89c06bd5 1921
d7365e78 1922 rcu_read_unlock();
89c06bd5 1923}
739f79fc
JW
1924
1925/**
1926 * unlock_page_memcg - unlock a page->mem_cgroup binding
1927 * @page: the page
1928 */
1929void unlock_page_memcg(struct page *page)
1930{
1931 __unlock_page_memcg(page->mem_cgroup);
1932}
81f8c3a4 1933EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1934
cdec2e42
KH
1935struct memcg_stock_pcp {
1936 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1937 unsigned int nr_pages;
cdec2e42 1938 struct work_struct work;
26fe6168 1939 unsigned long flags;
a0db00fc 1940#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1941};
1942static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1943static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1944
a0956d54
SS
1945/**
1946 * consume_stock: Try to consume stocked charge on this cpu.
1947 * @memcg: memcg to consume from.
1948 * @nr_pages: how many pages to charge.
1949 *
1950 * The charges will only happen if @memcg matches the current cpu's memcg
1951 * stock, and at least @nr_pages are available in that stock. Failure to
1952 * service an allocation will refill the stock.
1953 *
1954 * returns true if successful, false otherwise.
cdec2e42 1955 */
a0956d54 1956static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1957{
1958 struct memcg_stock_pcp *stock;
db2ba40c 1959 unsigned long flags;
3e32cb2e 1960 bool ret = false;
cdec2e42 1961
a983b5eb 1962 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 1963 return ret;
a0956d54 1964
db2ba40c
JW
1965 local_irq_save(flags);
1966
1967 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1968 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1969 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1970 ret = true;
1971 }
db2ba40c
JW
1972
1973 local_irq_restore(flags);
1974
cdec2e42
KH
1975 return ret;
1976}
1977
1978/*
3e32cb2e 1979 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1980 */
1981static void drain_stock(struct memcg_stock_pcp *stock)
1982{
1983 struct mem_cgroup *old = stock->cached;
1984
11c9ea4e 1985 if (stock->nr_pages) {
3e32cb2e 1986 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1987 if (do_memsw_account())
3e32cb2e 1988 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1989 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1990 stock->nr_pages = 0;
cdec2e42
KH
1991 }
1992 stock->cached = NULL;
cdec2e42
KH
1993}
1994
cdec2e42
KH
1995static void drain_local_stock(struct work_struct *dummy)
1996{
db2ba40c
JW
1997 struct memcg_stock_pcp *stock;
1998 unsigned long flags;
1999
72f0184c
MH
2000 /*
2001 * The only protection from memory hotplug vs. drain_stock races is
2002 * that we always operate on local CPU stock here with IRQ disabled
2003 */
db2ba40c
JW
2004 local_irq_save(flags);
2005
2006 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2007 drain_stock(stock);
26fe6168 2008 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2009
2010 local_irq_restore(flags);
cdec2e42
KH
2011}
2012
2013/*
3e32cb2e 2014 * Cache charges(val) to local per_cpu area.
320cc51d 2015 * This will be consumed by consume_stock() function, later.
cdec2e42 2016 */
c0ff4b85 2017static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2018{
db2ba40c
JW
2019 struct memcg_stock_pcp *stock;
2020 unsigned long flags;
2021
2022 local_irq_save(flags);
cdec2e42 2023
db2ba40c 2024 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2025 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2026 drain_stock(stock);
c0ff4b85 2027 stock->cached = memcg;
cdec2e42 2028 }
11c9ea4e 2029 stock->nr_pages += nr_pages;
db2ba40c 2030
a983b5eb 2031 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2032 drain_stock(stock);
2033
db2ba40c 2034 local_irq_restore(flags);
cdec2e42
KH
2035}
2036
2037/*
c0ff4b85 2038 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2039 * of the hierarchy under it.
cdec2e42 2040 */
6d3d6aa2 2041static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2042{
26fe6168 2043 int cpu, curcpu;
d38144b7 2044
6d3d6aa2
JW
2045 /* If someone's already draining, avoid adding running more workers. */
2046 if (!mutex_trylock(&percpu_charge_mutex))
2047 return;
72f0184c
MH
2048 /*
2049 * Notify other cpus that system-wide "drain" is running
2050 * We do not care about races with the cpu hotplug because cpu down
2051 * as well as workers from this path always operate on the local
2052 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2053 */
5af12d0e 2054 curcpu = get_cpu();
cdec2e42
KH
2055 for_each_online_cpu(cpu) {
2056 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2057 struct mem_cgroup *memcg;
26fe6168 2058
c0ff4b85 2059 memcg = stock->cached;
72f0184c 2060 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 2061 continue;
72f0184c
MH
2062 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2063 css_put(&memcg->css);
3e92041d 2064 continue;
72f0184c 2065 }
d1a05b69
MH
2066 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2067 if (cpu == curcpu)
2068 drain_local_stock(&stock->work);
2069 else
2070 schedule_work_on(cpu, &stock->work);
2071 }
72f0184c 2072 css_put(&memcg->css);
cdec2e42 2073 }
5af12d0e 2074 put_cpu();
9f50fad6 2075 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2076}
2077
308167fc 2078static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2079{
cdec2e42 2080 struct memcg_stock_pcp *stock;
a983b5eb 2081 struct mem_cgroup *memcg;
cdec2e42 2082
cdec2e42
KH
2083 stock = &per_cpu(memcg_stock, cpu);
2084 drain_stock(stock);
a983b5eb
JW
2085
2086 for_each_mem_cgroup(memcg) {
2087 int i;
2088
2089 for (i = 0; i < MEMCG_NR_STAT; i++) {
2090 int nid;
2091 long x;
2092
871789d4 2093 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
a983b5eb 2094 if (x)
871789d4 2095 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2096
2097 if (i >= NR_VM_NODE_STAT_ITEMS)
2098 continue;
2099
2100 for_each_node(nid) {
2101 struct mem_cgroup_per_node *pn;
2102
2103 pn = mem_cgroup_nodeinfo(memcg, nid);
2104 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2105 if (x)
2106 atomic_long_add(x, &pn->lruvec_stat[i]);
2107 }
2108 }
2109
e27be240 2110 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2111 long x;
2112
871789d4 2113 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
a983b5eb 2114 if (x)
871789d4 2115 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2116 }
2117 }
2118
308167fc 2119 return 0;
cdec2e42
KH
2120}
2121
f7e1cb6e
JW
2122static void reclaim_high(struct mem_cgroup *memcg,
2123 unsigned int nr_pages,
2124 gfp_t gfp_mask)
2125{
2126 do {
2127 if (page_counter_read(&memcg->memory) <= memcg->high)
2128 continue;
e27be240 2129 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2130 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2131 } while ((memcg = parent_mem_cgroup(memcg)));
2132}
2133
2134static void high_work_func(struct work_struct *work)
2135{
2136 struct mem_cgroup *memcg;
2137
2138 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2139 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2140}
2141
b23afb93
TH
2142/*
2143 * Scheduled by try_charge() to be executed from the userland return path
2144 * and reclaims memory over the high limit.
2145 */
2146void mem_cgroup_handle_over_high(void)
2147{
2148 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2149 struct mem_cgroup *memcg;
b23afb93
TH
2150
2151 if (likely(!nr_pages))
2152 return;
2153
f7e1cb6e
JW
2154 memcg = get_mem_cgroup_from_mm(current->mm);
2155 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
2156 css_put(&memcg->css);
2157 current->memcg_nr_pages_over_high = 0;
2158}
2159
00501b53
JW
2160static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2161 unsigned int nr_pages)
8a9f3ccd 2162{
a983b5eb 2163 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2164 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2165 struct mem_cgroup *mem_over_limit;
3e32cb2e 2166 struct page_counter *counter;
6539cc05 2167 unsigned long nr_reclaimed;
b70a2a21
JW
2168 bool may_swap = true;
2169 bool drained = false;
29ef680a
MH
2170 bool oomed = false;
2171 enum oom_status oom_status;
a636b327 2172
ce00a967 2173 if (mem_cgroup_is_root(memcg))
10d53c74 2174 return 0;
6539cc05 2175retry:
b6b6cc72 2176 if (consume_stock(memcg, nr_pages))
10d53c74 2177 return 0;
8a9f3ccd 2178
7941d214 2179 if (!do_memsw_account() ||
6071ca52
JW
2180 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2181 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2182 goto done_restock;
7941d214 2183 if (do_memsw_account())
3e32cb2e
JW
2184 page_counter_uncharge(&memcg->memsw, batch);
2185 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2186 } else {
3e32cb2e 2187 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2188 may_swap = false;
3fbe7244 2189 }
7a81b88c 2190
6539cc05
JW
2191 if (batch > nr_pages) {
2192 batch = nr_pages;
2193 goto retry;
2194 }
6d61ef40 2195
06b078fc
JW
2196 /*
2197 * Unlike in global OOM situations, memcg is not in a physical
2198 * memory shortage. Allow dying and OOM-killed tasks to
2199 * bypass the last charges so that they can exit quickly and
2200 * free their memory.
2201 */
7775face 2202 if (unlikely(should_force_charge()))
10d53c74 2203 goto force;
06b078fc 2204
89a28483
JW
2205 /*
2206 * Prevent unbounded recursion when reclaim operations need to
2207 * allocate memory. This might exceed the limits temporarily,
2208 * but we prefer facilitating memory reclaim and getting back
2209 * under the limit over triggering OOM kills in these cases.
2210 */
2211 if (unlikely(current->flags & PF_MEMALLOC))
2212 goto force;
2213
06b078fc
JW
2214 if (unlikely(task_in_memcg_oom(current)))
2215 goto nomem;
2216
d0164adc 2217 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2218 goto nomem;
4b534334 2219
e27be240 2220 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2221
b70a2a21
JW
2222 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2223 gfp_mask, may_swap);
6539cc05 2224
61e02c74 2225 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2226 goto retry;
28c34c29 2227
b70a2a21 2228 if (!drained) {
6d3d6aa2 2229 drain_all_stock(mem_over_limit);
b70a2a21
JW
2230 drained = true;
2231 goto retry;
2232 }
2233
28c34c29
JW
2234 if (gfp_mask & __GFP_NORETRY)
2235 goto nomem;
6539cc05
JW
2236 /*
2237 * Even though the limit is exceeded at this point, reclaim
2238 * may have been able to free some pages. Retry the charge
2239 * before killing the task.
2240 *
2241 * Only for regular pages, though: huge pages are rather
2242 * unlikely to succeed so close to the limit, and we fall back
2243 * to regular pages anyway in case of failure.
2244 */
61e02c74 2245 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2246 goto retry;
2247 /*
2248 * At task move, charge accounts can be doubly counted. So, it's
2249 * better to wait until the end of task_move if something is going on.
2250 */
2251 if (mem_cgroup_wait_acct_move(mem_over_limit))
2252 goto retry;
2253
9b130619
JW
2254 if (nr_retries--)
2255 goto retry;
2256
29ef680a
MH
2257 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2258 goto nomem;
2259
06b078fc 2260 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2261 goto force;
06b078fc 2262
6539cc05 2263 if (fatal_signal_pending(current))
10d53c74 2264 goto force;
6539cc05 2265
29ef680a
MH
2266 /*
2267 * keep retrying as long as the memcg oom killer is able to make
2268 * a forward progress or bypass the charge if the oom killer
2269 * couldn't make any progress.
2270 */
2271 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2272 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2273 switch (oom_status) {
2274 case OOM_SUCCESS:
2275 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2276 oomed = true;
2277 goto retry;
2278 case OOM_FAILED:
2279 goto force;
2280 default:
2281 goto nomem;
2282 }
7a81b88c 2283nomem:
6d1fdc48 2284 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2285 return -ENOMEM;
10d53c74
TH
2286force:
2287 /*
2288 * The allocation either can't fail or will lead to more memory
2289 * being freed very soon. Allow memory usage go over the limit
2290 * temporarily by force charging it.
2291 */
2292 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2293 if (do_memsw_account())
10d53c74
TH
2294 page_counter_charge(&memcg->memsw, nr_pages);
2295 css_get_many(&memcg->css, nr_pages);
2296
2297 return 0;
6539cc05
JW
2298
2299done_restock:
e8ea14cc 2300 css_get_many(&memcg->css, batch);
6539cc05
JW
2301 if (batch > nr_pages)
2302 refill_stock(memcg, batch - nr_pages);
b23afb93 2303
241994ed 2304 /*
b23afb93
TH
2305 * If the hierarchy is above the normal consumption range, schedule
2306 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2307 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2308 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2309 * not recorded as it most likely matches current's and won't
2310 * change in the meantime. As high limit is checked again before
2311 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2312 */
2313 do {
b23afb93 2314 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2315 /* Don't bother a random interrupted task */
2316 if (in_interrupt()) {
2317 schedule_work(&memcg->high_work);
2318 break;
2319 }
9516a18a 2320 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2321 set_notify_resume(current);
2322 break;
2323 }
241994ed 2324 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2325
2326 return 0;
7a81b88c 2327}
8a9f3ccd 2328
00501b53 2329static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2330{
ce00a967
JW
2331 if (mem_cgroup_is_root(memcg))
2332 return;
2333
3e32cb2e 2334 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2335 if (do_memsw_account())
3e32cb2e 2336 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2337
e8ea14cc 2338 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2339}
2340
0a31bc97
JW
2341static void lock_page_lru(struct page *page, int *isolated)
2342{
f4b7e272 2343 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2344
f4b7e272 2345 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2346 if (PageLRU(page)) {
2347 struct lruvec *lruvec;
2348
f4b7e272 2349 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2350 ClearPageLRU(page);
2351 del_page_from_lru_list(page, lruvec, page_lru(page));
2352 *isolated = 1;
2353 } else
2354 *isolated = 0;
2355}
2356
2357static void unlock_page_lru(struct page *page, int isolated)
2358{
f4b7e272 2359 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2360
2361 if (isolated) {
2362 struct lruvec *lruvec;
2363
f4b7e272 2364 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2365 VM_BUG_ON_PAGE(PageLRU(page), page);
2366 SetPageLRU(page);
2367 add_page_to_lru_list(page, lruvec, page_lru(page));
2368 }
f4b7e272 2369 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2370}
2371
00501b53 2372static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2373 bool lrucare)
7a81b88c 2374{
0a31bc97 2375 int isolated;
9ce70c02 2376
1306a85a 2377 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2378
2379 /*
2380 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2381 * may already be on some other mem_cgroup's LRU. Take care of it.
2382 */
0a31bc97
JW
2383 if (lrucare)
2384 lock_page_lru(page, &isolated);
9ce70c02 2385
0a31bc97
JW
2386 /*
2387 * Nobody should be changing or seriously looking at
1306a85a 2388 * page->mem_cgroup at this point:
0a31bc97
JW
2389 *
2390 * - the page is uncharged
2391 *
2392 * - the page is off-LRU
2393 *
2394 * - an anonymous fault has exclusive page access, except for
2395 * a locked page table
2396 *
2397 * - a page cache insertion, a swapin fault, or a migration
2398 * have the page locked
2399 */
1306a85a 2400 page->mem_cgroup = memcg;
9ce70c02 2401
0a31bc97
JW
2402 if (lrucare)
2403 unlock_page_lru(page, isolated);
7a81b88c 2404}
66e1707b 2405
84c07d11 2406#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2407static int memcg_alloc_cache_id(void)
55007d84 2408{
f3bb3043
VD
2409 int id, size;
2410 int err;
2411
dbcf73e2 2412 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2413 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2414 if (id < 0)
2415 return id;
55007d84 2416
dbcf73e2 2417 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2418 return id;
2419
2420 /*
2421 * There's no space for the new id in memcg_caches arrays,
2422 * so we have to grow them.
2423 */
05257a1a 2424 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2425
2426 size = 2 * (id + 1);
55007d84
GC
2427 if (size < MEMCG_CACHES_MIN_SIZE)
2428 size = MEMCG_CACHES_MIN_SIZE;
2429 else if (size > MEMCG_CACHES_MAX_SIZE)
2430 size = MEMCG_CACHES_MAX_SIZE;
2431
f3bb3043 2432 err = memcg_update_all_caches(size);
60d3fd32
VD
2433 if (!err)
2434 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2435 if (!err)
2436 memcg_nr_cache_ids = size;
2437
2438 up_write(&memcg_cache_ids_sem);
2439
f3bb3043 2440 if (err) {
dbcf73e2 2441 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2442 return err;
2443 }
2444 return id;
2445}
2446
2447static void memcg_free_cache_id(int id)
2448{
dbcf73e2 2449 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2450}
2451
d5b3cf71 2452struct memcg_kmem_cache_create_work {
5722d094
VD
2453 struct mem_cgroup *memcg;
2454 struct kmem_cache *cachep;
2455 struct work_struct work;
2456};
2457
d5b3cf71 2458static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2459{
d5b3cf71
VD
2460 struct memcg_kmem_cache_create_work *cw =
2461 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2462 struct mem_cgroup *memcg = cw->memcg;
2463 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2464
d5b3cf71 2465 memcg_create_kmem_cache(memcg, cachep);
bd673145 2466
5722d094 2467 css_put(&memcg->css);
d7f25f8a
GC
2468 kfree(cw);
2469}
2470
2471/*
2472 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2473 */
85cfb245 2474static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2475 struct kmem_cache *cachep)
d7f25f8a 2476{
d5b3cf71 2477 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2478
c892fd82 2479 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2480 if (!cw)
d7f25f8a 2481 return;
8135be5a
VD
2482
2483 css_get(&memcg->css);
d7f25f8a
GC
2484
2485 cw->memcg = memcg;
2486 cw->cachep = cachep;
d5b3cf71 2487 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2488
17cc4dfe 2489 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2490}
2491
45264778
VD
2492static inline bool memcg_kmem_bypass(void)
2493{
2494 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2495 return true;
2496 return false;
2497}
2498
2499/**
2500 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2501 * @cachep: the original global kmem cache
2502 *
d7f25f8a
GC
2503 * Return the kmem_cache we're supposed to use for a slab allocation.
2504 * We try to use the current memcg's version of the cache.
2505 *
45264778
VD
2506 * If the cache does not exist yet, if we are the first user of it, we
2507 * create it asynchronously in a workqueue and let the current allocation
2508 * go through with the original cache.
d7f25f8a 2509 *
45264778
VD
2510 * This function takes a reference to the cache it returns to assure it
2511 * won't get destroyed while we are working with it. Once the caller is
2512 * done with it, memcg_kmem_put_cache() must be called to release the
2513 * reference.
d7f25f8a 2514 */
45264778 2515struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2516{
2517 struct mem_cgroup *memcg;
959c8963 2518 struct kmem_cache *memcg_cachep;
2a4db7eb 2519 int kmemcg_id;
d7f25f8a 2520
f7ce3190 2521 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2522
45264778 2523 if (memcg_kmem_bypass())
230e9fc2
VD
2524 return cachep;
2525
d46eb14b 2526 memcg = get_mem_cgroup_from_current();
4db0c3c2 2527 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2528 if (kmemcg_id < 0)
ca0dde97 2529 goto out;
d7f25f8a 2530
2a4db7eb 2531 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2532 if (likely(memcg_cachep))
2533 return memcg_cachep;
ca0dde97
LZ
2534
2535 /*
2536 * If we are in a safe context (can wait, and not in interrupt
2537 * context), we could be be predictable and return right away.
2538 * This would guarantee that the allocation being performed
2539 * already belongs in the new cache.
2540 *
2541 * However, there are some clashes that can arrive from locking.
2542 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2543 * memcg_create_kmem_cache, this means no further allocation
2544 * could happen with the slab_mutex held. So it's better to
2545 * defer everything.
ca0dde97 2546 */
d5b3cf71 2547 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2548out:
8135be5a 2549 css_put(&memcg->css);
ca0dde97 2550 return cachep;
d7f25f8a 2551}
d7f25f8a 2552
45264778
VD
2553/**
2554 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2555 * @cachep: the cache returned by memcg_kmem_get_cache
2556 */
2557void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2558{
2559 if (!is_root_cache(cachep))
f7ce3190 2560 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2561}
2562
45264778 2563/**
60cd4bcd 2564 * __memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2565 * @page: page to charge
2566 * @gfp: reclaim mode
2567 * @order: allocation order
2568 * @memcg: memory cgroup to charge
2569 *
2570 * Returns 0 on success, an error code on failure.
2571 */
60cd4bcd 2572int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
45264778 2573 struct mem_cgroup *memcg)
7ae1e1d0 2574{
f3ccb2c4
VD
2575 unsigned int nr_pages = 1 << order;
2576 struct page_counter *counter;
7ae1e1d0
GC
2577 int ret;
2578
f3ccb2c4 2579 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2580 if (ret)
f3ccb2c4 2581 return ret;
52c29b04
JW
2582
2583 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2584 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2585 cancel_charge(memcg, nr_pages);
2586 return -ENOMEM;
7ae1e1d0
GC
2587 }
2588
f3ccb2c4 2589 page->mem_cgroup = memcg;
7ae1e1d0 2590
f3ccb2c4 2591 return 0;
7ae1e1d0
GC
2592}
2593
45264778 2594/**
60cd4bcd 2595 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
45264778
VD
2596 * @page: page to charge
2597 * @gfp: reclaim mode
2598 * @order: allocation order
2599 *
2600 * Returns 0 on success, an error code on failure.
2601 */
60cd4bcd 2602int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2603{
f3ccb2c4 2604 struct mem_cgroup *memcg;
fcff7d7e 2605 int ret = 0;
7ae1e1d0 2606
60cd4bcd 2607 if (memcg_kmem_bypass())
45264778
VD
2608 return 0;
2609
d46eb14b 2610 memcg = get_mem_cgroup_from_current();
c4159a75 2611 if (!mem_cgroup_is_root(memcg)) {
60cd4bcd 2612 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2613 if (!ret)
2614 __SetPageKmemcg(page);
2615 }
7ae1e1d0 2616 css_put(&memcg->css);
d05e83a6 2617 return ret;
7ae1e1d0 2618}
45264778 2619/**
60cd4bcd 2620 * __memcg_kmem_uncharge: uncharge a kmem page
45264778
VD
2621 * @page: page to uncharge
2622 * @order: allocation order
2623 */
60cd4bcd 2624void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2625{
1306a85a 2626 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2627 unsigned int nr_pages = 1 << order;
7ae1e1d0 2628
7ae1e1d0
GC
2629 if (!memcg)
2630 return;
2631
309381fe 2632 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2633
52c29b04
JW
2634 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2635 page_counter_uncharge(&memcg->kmem, nr_pages);
2636
f3ccb2c4 2637 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2638 if (do_memsw_account())
f3ccb2c4 2639 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2640
1306a85a 2641 page->mem_cgroup = NULL;
c4159a75
VD
2642
2643 /* slab pages do not have PageKmemcg flag set */
2644 if (PageKmemcg(page))
2645 __ClearPageKmemcg(page);
2646
f3ccb2c4 2647 css_put_many(&memcg->css, nr_pages);
60d3fd32 2648}
84c07d11 2649#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2650
ca3e0214
KH
2651#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2652
ca3e0214
KH
2653/*
2654 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 2655 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 2656 */
e94c8a9c 2657void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2658{
e94c8a9c 2659 int i;
ca3e0214 2660
3d37c4a9
KH
2661 if (mem_cgroup_disabled())
2662 return;
b070e65c 2663
29833315 2664 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2665 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2666
c9019e9b 2667 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2668}
12d27107 2669#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2670
c255a458 2671#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2672/**
2673 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2674 * @entry: swap entry to be moved
2675 * @from: mem_cgroup which the entry is moved from
2676 * @to: mem_cgroup which the entry is moved to
2677 *
2678 * It succeeds only when the swap_cgroup's record for this entry is the same
2679 * as the mem_cgroup's id of @from.
2680 *
2681 * Returns 0 on success, -EINVAL on failure.
2682 *
3e32cb2e 2683 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2684 * both res and memsw, and called css_get().
2685 */
2686static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2687 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2688{
2689 unsigned short old_id, new_id;
2690
34c00c31
LZ
2691 old_id = mem_cgroup_id(from);
2692 new_id = mem_cgroup_id(to);
02491447
DN
2693
2694 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2695 mod_memcg_state(from, MEMCG_SWAP, -1);
2696 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2697 return 0;
2698 }
2699 return -EINVAL;
2700}
2701#else
2702static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2703 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2704{
2705 return -EINVAL;
2706}
8c7c6e34 2707#endif
d13d1443 2708
bbec2e15 2709static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2710
bbec2e15
RG
2711static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2712 unsigned long max, bool memsw)
628f4235 2713{
3e32cb2e 2714 bool enlarge = false;
bb4a7ea2 2715 bool drained = false;
3e32cb2e 2716 int ret;
c054a78c
YZ
2717 bool limits_invariant;
2718 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2719
3e32cb2e 2720 do {
628f4235
KH
2721 if (signal_pending(current)) {
2722 ret = -EINTR;
2723 break;
2724 }
3e32cb2e 2725
bbec2e15 2726 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2727 /*
2728 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2729 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2730 */
bbec2e15
RG
2731 limits_invariant = memsw ? max >= memcg->memory.max :
2732 max <= memcg->memsw.max;
c054a78c 2733 if (!limits_invariant) {
bbec2e15 2734 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2735 ret = -EINVAL;
8c7c6e34
KH
2736 break;
2737 }
bbec2e15 2738 if (max > counter->max)
3e32cb2e 2739 enlarge = true;
bbec2e15
RG
2740 ret = page_counter_set_max(counter, max);
2741 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2742
2743 if (!ret)
2744 break;
2745
bb4a7ea2
SB
2746 if (!drained) {
2747 drain_all_stock(memcg);
2748 drained = true;
2749 continue;
2750 }
2751
1ab5c056
AR
2752 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2753 GFP_KERNEL, !memsw)) {
2754 ret = -EBUSY;
2755 break;
2756 }
2757 } while (true);
3e32cb2e 2758
3c11ecf4
KH
2759 if (!ret && enlarge)
2760 memcg_oom_recover(memcg);
3e32cb2e 2761
628f4235
KH
2762 return ret;
2763}
2764
ef8f2327 2765unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2766 gfp_t gfp_mask,
2767 unsigned long *total_scanned)
2768{
2769 unsigned long nr_reclaimed = 0;
ef8f2327 2770 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2771 unsigned long reclaimed;
2772 int loop = 0;
ef8f2327 2773 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2774 unsigned long excess;
0608f43d
AM
2775 unsigned long nr_scanned;
2776
2777 if (order > 0)
2778 return 0;
2779
ef8f2327 2780 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2781
2782 /*
2783 * Do not even bother to check the largest node if the root
2784 * is empty. Do it lockless to prevent lock bouncing. Races
2785 * are acceptable as soft limit is best effort anyway.
2786 */
bfc7228b 2787 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2788 return 0;
2789
0608f43d
AM
2790 /*
2791 * This loop can run a while, specially if mem_cgroup's continuously
2792 * keep exceeding their soft limit and putting the system under
2793 * pressure
2794 */
2795 do {
2796 if (next_mz)
2797 mz = next_mz;
2798 else
2799 mz = mem_cgroup_largest_soft_limit_node(mctz);
2800 if (!mz)
2801 break;
2802
2803 nr_scanned = 0;
ef8f2327 2804 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2805 gfp_mask, &nr_scanned);
2806 nr_reclaimed += reclaimed;
2807 *total_scanned += nr_scanned;
0a31bc97 2808 spin_lock_irq(&mctz->lock);
bc2f2e7f 2809 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2810
2811 /*
2812 * If we failed to reclaim anything from this memory cgroup
2813 * it is time to move on to the next cgroup
2814 */
2815 next_mz = NULL;
bc2f2e7f
VD
2816 if (!reclaimed)
2817 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2818
3e32cb2e 2819 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2820 /*
2821 * One school of thought says that we should not add
2822 * back the node to the tree if reclaim returns 0.
2823 * But our reclaim could return 0, simply because due
2824 * to priority we are exposing a smaller subset of
2825 * memory to reclaim from. Consider this as a longer
2826 * term TODO.
2827 */
2828 /* If excess == 0, no tree ops */
cf2c8127 2829 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2830 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2831 css_put(&mz->memcg->css);
2832 loop++;
2833 /*
2834 * Could not reclaim anything and there are no more
2835 * mem cgroups to try or we seem to be looping without
2836 * reclaiming anything.
2837 */
2838 if (!nr_reclaimed &&
2839 (next_mz == NULL ||
2840 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2841 break;
2842 } while (!nr_reclaimed);
2843 if (next_mz)
2844 css_put(&next_mz->memcg->css);
2845 return nr_reclaimed;
2846}
2847
ea280e7b
TH
2848/*
2849 * Test whether @memcg has children, dead or alive. Note that this
2850 * function doesn't care whether @memcg has use_hierarchy enabled and
2851 * returns %true if there are child csses according to the cgroup
2852 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2853 */
b5f99b53
GC
2854static inline bool memcg_has_children(struct mem_cgroup *memcg)
2855{
ea280e7b
TH
2856 bool ret;
2857
ea280e7b
TH
2858 rcu_read_lock();
2859 ret = css_next_child(NULL, &memcg->css);
2860 rcu_read_unlock();
2861 return ret;
b5f99b53
GC
2862}
2863
c26251f9 2864/*
51038171 2865 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2866 *
2867 * Caller is responsible for holding css reference for memcg.
2868 */
2869static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2870{
2871 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2872
c1e862c1
KH
2873 /* we call try-to-free pages for make this cgroup empty */
2874 lru_add_drain_all();
d12c60f6
JS
2875
2876 drain_all_stock(memcg);
2877
f817ed48 2878 /* try to free all pages in this cgroup */
3e32cb2e 2879 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2880 int progress;
c1e862c1 2881
c26251f9
MH
2882 if (signal_pending(current))
2883 return -EINTR;
2884
b70a2a21
JW
2885 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2886 GFP_KERNEL, true);
c1e862c1 2887 if (!progress) {
f817ed48 2888 nr_retries--;
c1e862c1 2889 /* maybe some writeback is necessary */
8aa7e847 2890 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2891 }
f817ed48
KH
2892
2893 }
ab5196c2
MH
2894
2895 return 0;
cc847582
KH
2896}
2897
6770c64e
TH
2898static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2899 char *buf, size_t nbytes,
2900 loff_t off)
c1e862c1 2901{
6770c64e 2902 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2903
d8423011
MH
2904 if (mem_cgroup_is_root(memcg))
2905 return -EINVAL;
6770c64e 2906 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2907}
2908
182446d0
TH
2909static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2910 struct cftype *cft)
18f59ea7 2911{
182446d0 2912 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2913}
2914
182446d0
TH
2915static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2916 struct cftype *cft, u64 val)
18f59ea7
BS
2917{
2918 int retval = 0;
182446d0 2919 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2920 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2921
567fb435 2922 if (memcg->use_hierarchy == val)
0b8f73e1 2923 return 0;
567fb435 2924
18f59ea7 2925 /*
af901ca1 2926 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2927 * in the child subtrees. If it is unset, then the change can
2928 * occur, provided the current cgroup has no children.
2929 *
2930 * For the root cgroup, parent_mem is NULL, we allow value to be
2931 * set if there are no children.
2932 */
c0ff4b85 2933 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2934 (val == 1 || val == 0)) {
ea280e7b 2935 if (!memcg_has_children(memcg))
c0ff4b85 2936 memcg->use_hierarchy = val;
18f59ea7
BS
2937 else
2938 retval = -EBUSY;
2939 } else
2940 retval = -EINVAL;
567fb435 2941
18f59ea7
BS
2942 return retval;
2943}
2944
871789d4
CD
2945struct accumulated_vmstats {
2946 unsigned long vmstats[MEMCG_NR_STAT];
2947 unsigned long vmevents[NR_VM_EVENT_ITEMS];
8de7ecc6 2948 unsigned long lru_pages[NR_LRU_LISTS];
871789d4
CD
2949
2950 /* overrides for v1 */
2951 const unsigned int *vmstats_array;
2952 const unsigned int *vmevents_array;
2953
2954 int vmstats_size;
2955 int vmevents_size;
8de7ecc6 2956};
ce00a967 2957
871789d4
CD
2958static void accumulate_vmstats(struct mem_cgroup *memcg,
2959 struct accumulated_vmstats *acc)
587d9f72 2960{
8de7ecc6 2961 struct mem_cgroup *mi;
72b54e73 2962 int i;
587d9f72 2963
8de7ecc6 2964 for_each_mem_cgroup_tree(mi, memcg) {
871789d4 2965 for (i = 0; i < acc->vmstats_size; i++)
205b20cc 2966 acc->vmstats[i] += memcg_page_state_local(mi,
871789d4 2967 acc->vmstats_array ? acc->vmstats_array[i] : i);
587d9f72 2968
871789d4 2969 for (i = 0; i < acc->vmevents_size; i++)
205b20cc 2970 acc->vmevents[i] += memcg_events_local(mi,
871789d4
CD
2971 acc->vmevents_array
2972 ? acc->vmevents_array[i] : i);
8de7ecc6
SB
2973
2974 for (i = 0; i < NR_LRU_LISTS; i++)
205b20cc 2975 acc->lru_pages[i] += memcg_page_state_local(mi,
21d89d15 2976 NR_LRU_BASE + i);
72b54e73 2977 }
587d9f72
JW
2978}
2979
6f646156 2980static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2981{
72b54e73 2982 unsigned long val = 0;
ce00a967 2983
3e32cb2e 2984 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2985 struct mem_cgroup *iter;
2986
2987 for_each_mem_cgroup_tree(iter, memcg) {
205b20cc
JW
2988 val += memcg_page_state_local(iter, MEMCG_CACHE);
2989 val += memcg_page_state_local(iter, MEMCG_RSS);
72b54e73 2990 if (swap)
205b20cc 2991 val += memcg_page_state_local(iter, MEMCG_SWAP);
72b54e73 2992 }
3e32cb2e 2993 } else {
ce00a967 2994 if (!swap)
3e32cb2e 2995 val = page_counter_read(&memcg->memory);
ce00a967 2996 else
3e32cb2e 2997 val = page_counter_read(&memcg->memsw);
ce00a967 2998 }
c12176d3 2999 return val;
ce00a967
JW
3000}
3001
3e32cb2e
JW
3002enum {
3003 RES_USAGE,
3004 RES_LIMIT,
3005 RES_MAX_USAGE,
3006 RES_FAILCNT,
3007 RES_SOFT_LIMIT,
3008};
ce00a967 3009
791badbd 3010static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3011 struct cftype *cft)
8cdea7c0 3012{
182446d0 3013 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3014 struct page_counter *counter;
af36f906 3015
3e32cb2e 3016 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3017 case _MEM:
3e32cb2e
JW
3018 counter = &memcg->memory;
3019 break;
8c7c6e34 3020 case _MEMSWAP:
3e32cb2e
JW
3021 counter = &memcg->memsw;
3022 break;
510fc4e1 3023 case _KMEM:
3e32cb2e 3024 counter = &memcg->kmem;
510fc4e1 3025 break;
d55f90bf 3026 case _TCP:
0db15298 3027 counter = &memcg->tcpmem;
d55f90bf 3028 break;
8c7c6e34
KH
3029 default:
3030 BUG();
8c7c6e34 3031 }
3e32cb2e
JW
3032
3033 switch (MEMFILE_ATTR(cft->private)) {
3034 case RES_USAGE:
3035 if (counter == &memcg->memory)
c12176d3 3036 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3037 if (counter == &memcg->memsw)
c12176d3 3038 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3039 return (u64)page_counter_read(counter) * PAGE_SIZE;
3040 case RES_LIMIT:
bbec2e15 3041 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3042 case RES_MAX_USAGE:
3043 return (u64)counter->watermark * PAGE_SIZE;
3044 case RES_FAILCNT:
3045 return counter->failcnt;
3046 case RES_SOFT_LIMIT:
3047 return (u64)memcg->soft_limit * PAGE_SIZE;
3048 default:
3049 BUG();
3050 }
8cdea7c0 3051}
510fc4e1 3052
84c07d11 3053#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3054static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3055{
d6441637
VD
3056 int memcg_id;
3057
b313aeee
VD
3058 if (cgroup_memory_nokmem)
3059 return 0;
3060
2a4db7eb 3061 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3062 BUG_ON(memcg->kmem_state);
d6441637 3063
f3bb3043 3064 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3065 if (memcg_id < 0)
3066 return memcg_id;
d6441637 3067
ef12947c 3068 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3069 /*
567e9ab2 3070 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3071 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3072 * guarantee no one starts accounting before all call sites are
3073 * patched.
3074 */
900a38f0 3075 memcg->kmemcg_id = memcg_id;
567e9ab2 3076 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3077 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3078
3079 return 0;
d6441637
VD
3080}
3081
8e0a8912
JW
3082static void memcg_offline_kmem(struct mem_cgroup *memcg)
3083{
3084 struct cgroup_subsys_state *css;
3085 struct mem_cgroup *parent, *child;
3086 int kmemcg_id;
3087
3088 if (memcg->kmem_state != KMEM_ONLINE)
3089 return;
3090 /*
3091 * Clear the online state before clearing memcg_caches array
3092 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3093 * guarantees that no cache will be created for this cgroup
3094 * after we are done (see memcg_create_kmem_cache()).
3095 */
3096 memcg->kmem_state = KMEM_ALLOCATED;
3097
3098 memcg_deactivate_kmem_caches(memcg);
3099
3100 kmemcg_id = memcg->kmemcg_id;
3101 BUG_ON(kmemcg_id < 0);
3102
3103 parent = parent_mem_cgroup(memcg);
3104 if (!parent)
3105 parent = root_mem_cgroup;
3106
3107 /*
3108 * Change kmemcg_id of this cgroup and all its descendants to the
3109 * parent's id, and then move all entries from this cgroup's list_lrus
3110 * to ones of the parent. After we have finished, all list_lrus
3111 * corresponding to this cgroup are guaranteed to remain empty. The
3112 * ordering is imposed by list_lru_node->lock taken by
3113 * memcg_drain_all_list_lrus().
3114 */
3a06bb78 3115 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3116 css_for_each_descendant_pre(css, &memcg->css) {
3117 child = mem_cgroup_from_css(css);
3118 BUG_ON(child->kmemcg_id != kmemcg_id);
3119 child->kmemcg_id = parent->kmemcg_id;
3120 if (!memcg->use_hierarchy)
3121 break;
3122 }
3a06bb78
TH
3123 rcu_read_unlock();
3124
9bec5c35 3125 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3126
3127 memcg_free_cache_id(kmemcg_id);
3128}
3129
3130static void memcg_free_kmem(struct mem_cgroup *memcg)
3131{
0b8f73e1
JW
3132 /* css_alloc() failed, offlining didn't happen */
3133 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3134 memcg_offline_kmem(memcg);
3135
8e0a8912
JW
3136 if (memcg->kmem_state == KMEM_ALLOCATED) {
3137 memcg_destroy_kmem_caches(memcg);
3138 static_branch_dec(&memcg_kmem_enabled_key);
3139 WARN_ON(page_counter_read(&memcg->kmem));
3140 }
8e0a8912 3141}
d6441637 3142#else
0b8f73e1 3143static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3144{
3145 return 0;
3146}
3147static void memcg_offline_kmem(struct mem_cgroup *memcg)
3148{
3149}
3150static void memcg_free_kmem(struct mem_cgroup *memcg)
3151{
3152}
84c07d11 3153#endif /* CONFIG_MEMCG_KMEM */
127424c8 3154
bbec2e15
RG
3155static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3156 unsigned long max)
d6441637 3157{
b313aeee 3158 int ret;
127424c8 3159
bbec2e15
RG
3160 mutex_lock(&memcg_max_mutex);
3161 ret = page_counter_set_max(&memcg->kmem, max);
3162 mutex_unlock(&memcg_max_mutex);
127424c8 3163 return ret;
d6441637 3164}
510fc4e1 3165
bbec2e15 3166static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3167{
3168 int ret;
3169
bbec2e15 3170 mutex_lock(&memcg_max_mutex);
d55f90bf 3171
bbec2e15 3172 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3173 if (ret)
3174 goto out;
3175
0db15298 3176 if (!memcg->tcpmem_active) {
d55f90bf
VD
3177 /*
3178 * The active flag needs to be written after the static_key
3179 * update. This is what guarantees that the socket activation
2d758073
JW
3180 * function is the last one to run. See mem_cgroup_sk_alloc()
3181 * for details, and note that we don't mark any socket as
3182 * belonging to this memcg until that flag is up.
d55f90bf
VD
3183 *
3184 * We need to do this, because static_keys will span multiple
3185 * sites, but we can't control their order. If we mark a socket
3186 * as accounted, but the accounting functions are not patched in
3187 * yet, we'll lose accounting.
3188 *
2d758073 3189 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3190 * because when this value change, the code to process it is not
3191 * patched in yet.
3192 */
3193 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3194 memcg->tcpmem_active = true;
d55f90bf
VD
3195 }
3196out:
bbec2e15 3197 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3198 return ret;
3199}
d55f90bf 3200
628f4235
KH
3201/*
3202 * The user of this function is...
3203 * RES_LIMIT.
3204 */
451af504
TH
3205static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3206 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3207{
451af504 3208 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3209 unsigned long nr_pages;
628f4235
KH
3210 int ret;
3211
451af504 3212 buf = strstrip(buf);
650c5e56 3213 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3214 if (ret)
3215 return ret;
af36f906 3216
3e32cb2e 3217 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3218 case RES_LIMIT:
4b3bde4c
BS
3219 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3220 ret = -EINVAL;
3221 break;
3222 }
3e32cb2e
JW
3223 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3224 case _MEM:
bbec2e15 3225 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3226 break;
3e32cb2e 3227 case _MEMSWAP:
bbec2e15 3228 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3229 break;
3e32cb2e 3230 case _KMEM:
bbec2e15 3231 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3232 break;
d55f90bf 3233 case _TCP:
bbec2e15 3234 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3235 break;
3e32cb2e 3236 }
296c81d8 3237 break;
3e32cb2e
JW
3238 case RES_SOFT_LIMIT:
3239 memcg->soft_limit = nr_pages;
3240 ret = 0;
628f4235
KH
3241 break;
3242 }
451af504 3243 return ret ?: nbytes;
8cdea7c0
BS
3244}
3245
6770c64e
TH
3246static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3247 size_t nbytes, loff_t off)
c84872e1 3248{
6770c64e 3249 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3250 struct page_counter *counter;
c84872e1 3251
3e32cb2e
JW
3252 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3253 case _MEM:
3254 counter = &memcg->memory;
3255 break;
3256 case _MEMSWAP:
3257 counter = &memcg->memsw;
3258 break;
3259 case _KMEM:
3260 counter = &memcg->kmem;
3261 break;
d55f90bf 3262 case _TCP:
0db15298 3263 counter = &memcg->tcpmem;
d55f90bf 3264 break;
3e32cb2e
JW
3265 default:
3266 BUG();
3267 }
af36f906 3268
3e32cb2e 3269 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3270 case RES_MAX_USAGE:
3e32cb2e 3271 page_counter_reset_watermark(counter);
29f2a4da
PE
3272 break;
3273 case RES_FAILCNT:
3e32cb2e 3274 counter->failcnt = 0;
29f2a4da 3275 break;
3e32cb2e
JW
3276 default:
3277 BUG();
29f2a4da 3278 }
f64c3f54 3279
6770c64e 3280 return nbytes;
c84872e1
PE
3281}
3282
182446d0 3283static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3284 struct cftype *cft)
3285{
182446d0 3286 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3287}
3288
02491447 3289#ifdef CONFIG_MMU
182446d0 3290static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3291 struct cftype *cft, u64 val)
3292{
182446d0 3293 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3294
1dfab5ab 3295 if (val & ~MOVE_MASK)
7dc74be0 3296 return -EINVAL;
ee5e8472 3297
7dc74be0 3298 /*
ee5e8472
GC
3299 * No kind of locking is needed in here, because ->can_attach() will
3300 * check this value once in the beginning of the process, and then carry
3301 * on with stale data. This means that changes to this value will only
3302 * affect task migrations starting after the change.
7dc74be0 3303 */
c0ff4b85 3304 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3305 return 0;
3306}
02491447 3307#else
182446d0 3308static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3309 struct cftype *cft, u64 val)
3310{
3311 return -ENOSYS;
3312}
3313#endif
7dc74be0 3314
406eb0c9 3315#ifdef CONFIG_NUMA
113b7dfd
JW
3316
3317#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3318#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3319#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3320
3321static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3322 int nid, unsigned int lru_mask)
3323{
3324 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3325 unsigned long nr = 0;
3326 enum lru_list lru;
3327
3328 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3329
3330 for_each_lru(lru) {
3331 if (!(BIT(lru) & lru_mask))
3332 continue;
205b20cc 3333 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3334 }
3335 return nr;
3336}
3337
3338static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3339 unsigned int lru_mask)
3340{
3341 unsigned long nr = 0;
3342 enum lru_list lru;
3343
3344 for_each_lru(lru) {
3345 if (!(BIT(lru) & lru_mask))
3346 continue;
205b20cc 3347 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3348 }
3349 return nr;
3350}
3351
2da8ca82 3352static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3353{
25485de6
GT
3354 struct numa_stat {
3355 const char *name;
3356 unsigned int lru_mask;
3357 };
3358
3359 static const struct numa_stat stats[] = {
3360 { "total", LRU_ALL },
3361 { "file", LRU_ALL_FILE },
3362 { "anon", LRU_ALL_ANON },
3363 { "unevictable", BIT(LRU_UNEVICTABLE) },
3364 };
3365 const struct numa_stat *stat;
406eb0c9 3366 int nid;
25485de6 3367 unsigned long nr;
aa9694bb 3368 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3369
25485de6
GT
3370 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3371 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3372 seq_printf(m, "%s=%lu", stat->name, nr);
3373 for_each_node_state(nid, N_MEMORY) {
3374 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3375 stat->lru_mask);
3376 seq_printf(m, " N%d=%lu", nid, nr);
3377 }
3378 seq_putc(m, '\n');
406eb0c9 3379 }
406eb0c9 3380
071aee13
YH
3381 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3382 struct mem_cgroup *iter;
3383
3384 nr = 0;
3385 for_each_mem_cgroup_tree(iter, memcg)
3386 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3387 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3388 for_each_node_state(nid, N_MEMORY) {
3389 nr = 0;
3390 for_each_mem_cgroup_tree(iter, memcg)
3391 nr += mem_cgroup_node_nr_lru_pages(
3392 iter, nid, stat->lru_mask);
3393 seq_printf(m, " N%d=%lu", nid, nr);
3394 }
3395 seq_putc(m, '\n');
406eb0c9 3396 }
406eb0c9 3397
406eb0c9
YH
3398 return 0;
3399}
3400#endif /* CONFIG_NUMA */
3401
df0e53d0 3402/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3403static const unsigned int memcg1_events[] = {
df0e53d0
JW
3404 PGPGIN,
3405 PGPGOUT,
3406 PGFAULT,
3407 PGMAJFAULT,
3408};
3409
3410static const char *const memcg1_event_names[] = {
3411 "pgpgin",
3412 "pgpgout",
3413 "pgfault",
3414 "pgmajfault",
3415};
3416
2da8ca82 3417static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3418{
aa9694bb 3419 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3420 unsigned long memory, memsw;
af7c4b0e
JW
3421 struct mem_cgroup *mi;
3422 unsigned int i;
871789d4 3423 struct accumulated_vmstats acc;
406eb0c9 3424
71cd3113 3425 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3426 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3427
71cd3113
JW
3428 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3429 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3430 continue;
71cd3113 3431 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3432 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3433 PAGE_SIZE);
1dd3a273 3434 }
7b854121 3435
df0e53d0
JW
3436 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3437 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
205b20cc 3438 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3439
3440 for (i = 0; i < NR_LRU_LISTS; i++)
3441 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
205b20cc 3442 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3443 PAGE_SIZE);
af7c4b0e 3444
14067bb3 3445 /* Hierarchical information */
3e32cb2e
JW
3446 memory = memsw = PAGE_COUNTER_MAX;
3447 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3448 memory = min(memory, mi->memory.max);
3449 memsw = min(memsw, mi->memsw.max);
fee7b548 3450 }
3e32cb2e
JW
3451 seq_printf(m, "hierarchical_memory_limit %llu\n",
3452 (u64)memory * PAGE_SIZE);
7941d214 3453 if (do_memsw_account())
3e32cb2e
JW
3454 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3455 (u64)memsw * PAGE_SIZE);
7f016ee8 3456
8de7ecc6 3457 memset(&acc, 0, sizeof(acc));
871789d4
CD
3458 acc.vmstats_size = ARRAY_SIZE(memcg1_stats);
3459 acc.vmstats_array = memcg1_stats;
3460 acc.vmevents_size = ARRAY_SIZE(memcg1_events);
3461 acc.vmevents_array = memcg1_events;
3462 accumulate_vmstats(memcg, &acc);
af7c4b0e 3463
8de7ecc6 3464 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3465 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3466 continue;
8de7ecc6 3467 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
871789d4 3468 (u64)acc.vmstats[i] * PAGE_SIZE);
af7c4b0e
JW
3469 }
3470
8de7ecc6
SB
3471 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3472 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
871789d4 3473 (u64)acc.vmevents[i]);
af7c4b0e 3474
8de7ecc6
SB
3475 for (i = 0; i < NR_LRU_LISTS; i++)
3476 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3477 (u64)acc.lru_pages[i] * PAGE_SIZE);
14067bb3 3478
7f016ee8 3479#ifdef CONFIG_DEBUG_VM
7f016ee8 3480 {
ef8f2327
MG
3481 pg_data_t *pgdat;
3482 struct mem_cgroup_per_node *mz;
89abfab1 3483 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3484 unsigned long recent_rotated[2] = {0, 0};
3485 unsigned long recent_scanned[2] = {0, 0};
3486
ef8f2327
MG
3487 for_each_online_pgdat(pgdat) {
3488 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3489 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3490
ef8f2327
MG
3491 recent_rotated[0] += rstat->recent_rotated[0];
3492 recent_rotated[1] += rstat->recent_rotated[1];
3493 recent_scanned[0] += rstat->recent_scanned[0];
3494 recent_scanned[1] += rstat->recent_scanned[1];
3495 }
78ccf5b5
JW
3496 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3497 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3498 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3499 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3500 }
3501#endif
3502
d2ceb9b7
KH
3503 return 0;
3504}
3505
182446d0
TH
3506static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3507 struct cftype *cft)
a7885eb8 3508{
182446d0 3509 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3510
1f4c025b 3511 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3512}
3513
182446d0
TH
3514static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3515 struct cftype *cft, u64 val)
a7885eb8 3516{
182446d0 3517 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3518
3dae7fec 3519 if (val > 100)
a7885eb8
KM
3520 return -EINVAL;
3521
14208b0e 3522 if (css->parent)
3dae7fec
JW
3523 memcg->swappiness = val;
3524 else
3525 vm_swappiness = val;
068b38c1 3526
a7885eb8
KM
3527 return 0;
3528}
3529
2e72b634
KS
3530static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3531{
3532 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3533 unsigned long usage;
2e72b634
KS
3534 int i;
3535
3536 rcu_read_lock();
3537 if (!swap)
2c488db2 3538 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3539 else
2c488db2 3540 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3541
3542 if (!t)
3543 goto unlock;
3544
ce00a967 3545 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3546
3547 /*
748dad36 3548 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3549 * If it's not true, a threshold was crossed after last
3550 * call of __mem_cgroup_threshold().
3551 */
5407a562 3552 i = t->current_threshold;
2e72b634
KS
3553
3554 /*
3555 * Iterate backward over array of thresholds starting from
3556 * current_threshold and check if a threshold is crossed.
3557 * If none of thresholds below usage is crossed, we read
3558 * only one element of the array here.
3559 */
3560 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3561 eventfd_signal(t->entries[i].eventfd, 1);
3562
3563 /* i = current_threshold + 1 */
3564 i++;
3565
3566 /*
3567 * Iterate forward over array of thresholds starting from
3568 * current_threshold+1 and check if a threshold is crossed.
3569 * If none of thresholds above usage is crossed, we read
3570 * only one element of the array here.
3571 */
3572 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3573 eventfd_signal(t->entries[i].eventfd, 1);
3574
3575 /* Update current_threshold */
5407a562 3576 t->current_threshold = i - 1;
2e72b634
KS
3577unlock:
3578 rcu_read_unlock();
3579}
3580
3581static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3582{
ad4ca5f4
KS
3583 while (memcg) {
3584 __mem_cgroup_threshold(memcg, false);
7941d214 3585 if (do_memsw_account())
ad4ca5f4
KS
3586 __mem_cgroup_threshold(memcg, true);
3587
3588 memcg = parent_mem_cgroup(memcg);
3589 }
2e72b634
KS
3590}
3591
3592static int compare_thresholds(const void *a, const void *b)
3593{
3594 const struct mem_cgroup_threshold *_a = a;
3595 const struct mem_cgroup_threshold *_b = b;
3596
2bff24a3
GT
3597 if (_a->threshold > _b->threshold)
3598 return 1;
3599
3600 if (_a->threshold < _b->threshold)
3601 return -1;
3602
3603 return 0;
2e72b634
KS
3604}
3605
c0ff4b85 3606static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3607{
3608 struct mem_cgroup_eventfd_list *ev;
3609
2bcf2e92
MH
3610 spin_lock(&memcg_oom_lock);
3611
c0ff4b85 3612 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3613 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3614
3615 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3616 return 0;
3617}
3618
c0ff4b85 3619static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3620{
7d74b06f
KH
3621 struct mem_cgroup *iter;
3622
c0ff4b85 3623 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3624 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3625}
3626
59b6f873 3627static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3628 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3629{
2c488db2
KS
3630 struct mem_cgroup_thresholds *thresholds;
3631 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3632 unsigned long threshold;
3633 unsigned long usage;
2c488db2 3634 int i, size, ret;
2e72b634 3635
650c5e56 3636 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3637 if (ret)
3638 return ret;
3639
3640 mutex_lock(&memcg->thresholds_lock);
2c488db2 3641
05b84301 3642 if (type == _MEM) {
2c488db2 3643 thresholds = &memcg->thresholds;
ce00a967 3644 usage = mem_cgroup_usage(memcg, false);
05b84301 3645 } else if (type == _MEMSWAP) {
2c488db2 3646 thresholds = &memcg->memsw_thresholds;
ce00a967 3647 usage = mem_cgroup_usage(memcg, true);
05b84301 3648 } else
2e72b634
KS
3649 BUG();
3650
2e72b634 3651 /* Check if a threshold crossed before adding a new one */
2c488db2 3652 if (thresholds->primary)
2e72b634
KS
3653 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3654
2c488db2 3655 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3656
3657 /* Allocate memory for new array of thresholds */
67b8046f 3658 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 3659 if (!new) {
2e72b634
KS
3660 ret = -ENOMEM;
3661 goto unlock;
3662 }
2c488db2 3663 new->size = size;
2e72b634
KS
3664
3665 /* Copy thresholds (if any) to new array */
2c488db2
KS
3666 if (thresholds->primary) {
3667 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3668 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3669 }
3670
2e72b634 3671 /* Add new threshold */
2c488db2
KS
3672 new->entries[size - 1].eventfd = eventfd;
3673 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3674
3675 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3676 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3677 compare_thresholds, NULL);
3678
3679 /* Find current threshold */
2c488db2 3680 new->current_threshold = -1;
2e72b634 3681 for (i = 0; i < size; i++) {
748dad36 3682 if (new->entries[i].threshold <= usage) {
2e72b634 3683 /*
2c488db2
KS
3684 * new->current_threshold will not be used until
3685 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3686 * it here.
3687 */
2c488db2 3688 ++new->current_threshold;
748dad36
SZ
3689 } else
3690 break;
2e72b634
KS
3691 }
3692
2c488db2
KS
3693 /* Free old spare buffer and save old primary buffer as spare */
3694 kfree(thresholds->spare);
3695 thresholds->spare = thresholds->primary;
3696
3697 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3698
907860ed 3699 /* To be sure that nobody uses thresholds */
2e72b634
KS
3700 synchronize_rcu();
3701
2e72b634
KS
3702unlock:
3703 mutex_unlock(&memcg->thresholds_lock);
3704
3705 return ret;
3706}
3707
59b6f873 3708static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3709 struct eventfd_ctx *eventfd, const char *args)
3710{
59b6f873 3711 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3712}
3713
59b6f873 3714static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3715 struct eventfd_ctx *eventfd, const char *args)
3716{
59b6f873 3717 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3718}
3719
59b6f873 3720static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3721 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3722{
2c488db2
KS
3723 struct mem_cgroup_thresholds *thresholds;
3724 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3725 unsigned long usage;
2c488db2 3726 int i, j, size;
2e72b634
KS
3727
3728 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3729
3730 if (type == _MEM) {
2c488db2 3731 thresholds = &memcg->thresholds;
ce00a967 3732 usage = mem_cgroup_usage(memcg, false);
05b84301 3733 } else if (type == _MEMSWAP) {
2c488db2 3734 thresholds = &memcg->memsw_thresholds;
ce00a967 3735 usage = mem_cgroup_usage(memcg, true);
05b84301 3736 } else
2e72b634
KS
3737 BUG();
3738
371528ca
AV
3739 if (!thresholds->primary)
3740 goto unlock;
3741
2e72b634
KS
3742 /* Check if a threshold crossed before removing */
3743 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3744
3745 /* Calculate new number of threshold */
2c488db2
KS
3746 size = 0;
3747 for (i = 0; i < thresholds->primary->size; i++) {
3748 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3749 size++;
3750 }
3751
2c488db2 3752 new = thresholds->spare;
907860ed 3753
2e72b634
KS
3754 /* Set thresholds array to NULL if we don't have thresholds */
3755 if (!size) {
2c488db2
KS
3756 kfree(new);
3757 new = NULL;
907860ed 3758 goto swap_buffers;
2e72b634
KS
3759 }
3760
2c488db2 3761 new->size = size;
2e72b634
KS
3762
3763 /* Copy thresholds and find current threshold */
2c488db2
KS
3764 new->current_threshold = -1;
3765 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3766 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3767 continue;
3768
2c488db2 3769 new->entries[j] = thresholds->primary->entries[i];
748dad36 3770 if (new->entries[j].threshold <= usage) {
2e72b634 3771 /*
2c488db2 3772 * new->current_threshold will not be used
2e72b634
KS
3773 * until rcu_assign_pointer(), so it's safe to increment
3774 * it here.
3775 */
2c488db2 3776 ++new->current_threshold;
2e72b634
KS
3777 }
3778 j++;
3779 }
3780
907860ed 3781swap_buffers:
2c488db2
KS
3782 /* Swap primary and spare array */
3783 thresholds->spare = thresholds->primary;
8c757763 3784
2c488db2 3785 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3786
907860ed 3787 /* To be sure that nobody uses thresholds */
2e72b634 3788 synchronize_rcu();
6611d8d7
MC
3789
3790 /* If all events are unregistered, free the spare array */
3791 if (!new) {
3792 kfree(thresholds->spare);
3793 thresholds->spare = NULL;
3794 }
371528ca 3795unlock:
2e72b634 3796 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3797}
c1e862c1 3798
59b6f873 3799static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3800 struct eventfd_ctx *eventfd)
3801{
59b6f873 3802 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3803}
3804
59b6f873 3805static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3806 struct eventfd_ctx *eventfd)
3807{
59b6f873 3808 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3809}
3810
59b6f873 3811static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3812 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3813{
9490ff27 3814 struct mem_cgroup_eventfd_list *event;
9490ff27 3815
9490ff27
KH
3816 event = kmalloc(sizeof(*event), GFP_KERNEL);
3817 if (!event)
3818 return -ENOMEM;
3819
1af8efe9 3820 spin_lock(&memcg_oom_lock);
9490ff27
KH
3821
3822 event->eventfd = eventfd;
3823 list_add(&event->list, &memcg->oom_notify);
3824
3825 /* already in OOM ? */
c2b42d3c 3826 if (memcg->under_oom)
9490ff27 3827 eventfd_signal(eventfd, 1);
1af8efe9 3828 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3829
3830 return 0;
3831}
3832
59b6f873 3833static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3834 struct eventfd_ctx *eventfd)
9490ff27 3835{
9490ff27 3836 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3837
1af8efe9 3838 spin_lock(&memcg_oom_lock);
9490ff27 3839
c0ff4b85 3840 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3841 if (ev->eventfd == eventfd) {
3842 list_del(&ev->list);
3843 kfree(ev);
3844 }
3845 }
3846
1af8efe9 3847 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3848}
3849
2da8ca82 3850static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3851{
aa9694bb 3852 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 3853
791badbd 3854 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3855 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
3856 seq_printf(sf, "oom_kill %lu\n",
3857 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
3858 return 0;
3859}
3860
182446d0 3861static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3862 struct cftype *cft, u64 val)
3863{
182446d0 3864 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3865
3866 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3867 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3868 return -EINVAL;
3869
c0ff4b85 3870 memcg->oom_kill_disable = val;
4d845ebf 3871 if (!val)
c0ff4b85 3872 memcg_oom_recover(memcg);
3dae7fec 3873
3c11ecf4
KH
3874 return 0;
3875}
3876
52ebea74
TH
3877#ifdef CONFIG_CGROUP_WRITEBACK
3878
841710aa
TH
3879static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3880{
3881 return wb_domain_init(&memcg->cgwb_domain, gfp);
3882}
3883
3884static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3885{
3886 wb_domain_exit(&memcg->cgwb_domain);
3887}
3888
2529bb3a
TH
3889static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3890{
3891 wb_domain_size_changed(&memcg->cgwb_domain);
3892}
3893
841710aa
TH
3894struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3895{
3896 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3897
3898 if (!memcg->css.parent)
3899 return NULL;
3900
3901 return &memcg->cgwb_domain;
3902}
3903
0b3d6e6f
GT
3904/*
3905 * idx can be of type enum memcg_stat_item or node_stat_item.
3906 * Keep in sync with memcg_exact_page().
3907 */
3908static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
3909{
871789d4 3910 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
3911 int cpu;
3912
3913 for_each_online_cpu(cpu)
871789d4 3914 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
3915 if (x < 0)
3916 x = 0;
3917 return x;
3918}
3919
c2aa723a
TH
3920/**
3921 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3922 * @wb: bdi_writeback in question
c5edf9cd
TH
3923 * @pfilepages: out parameter for number of file pages
3924 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3925 * @pdirty: out parameter for number of dirty pages
3926 * @pwriteback: out parameter for number of pages under writeback
3927 *
c5edf9cd
TH
3928 * Determine the numbers of file, headroom, dirty, and writeback pages in
3929 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3930 * is a bit more involved.
c2aa723a 3931 *
c5edf9cd
TH
3932 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3933 * headroom is calculated as the lowest headroom of itself and the
3934 * ancestors. Note that this doesn't consider the actual amount of
3935 * available memory in the system. The caller should further cap
3936 * *@pheadroom accordingly.
c2aa723a 3937 */
c5edf9cd
TH
3938void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3939 unsigned long *pheadroom, unsigned long *pdirty,
3940 unsigned long *pwriteback)
c2aa723a
TH
3941{
3942 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3943 struct mem_cgroup *parent;
c2aa723a 3944
0b3d6e6f 3945 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3946
3947 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 3948 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
3949 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
3950 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 3951 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3952
c2aa723a 3953 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 3954 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
3955 unsigned long used = page_counter_read(&memcg->memory);
3956
c5edf9cd 3957 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3958 memcg = parent;
3959 }
c2aa723a
TH
3960}
3961
841710aa
TH
3962#else /* CONFIG_CGROUP_WRITEBACK */
3963
3964static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3965{
3966 return 0;
3967}
3968
3969static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3970{
3971}
3972
2529bb3a
TH
3973static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3974{
3975}
3976
52ebea74
TH
3977#endif /* CONFIG_CGROUP_WRITEBACK */
3978
3bc942f3
TH
3979/*
3980 * DO NOT USE IN NEW FILES.
3981 *
3982 * "cgroup.event_control" implementation.
3983 *
3984 * This is way over-engineered. It tries to support fully configurable
3985 * events for each user. Such level of flexibility is completely
3986 * unnecessary especially in the light of the planned unified hierarchy.
3987 *
3988 * Please deprecate this and replace with something simpler if at all
3989 * possible.
3990 */
3991
79bd9814
TH
3992/*
3993 * Unregister event and free resources.
3994 *
3995 * Gets called from workqueue.
3996 */
3bc942f3 3997static void memcg_event_remove(struct work_struct *work)
79bd9814 3998{
3bc942f3
TH
3999 struct mem_cgroup_event *event =
4000 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4001 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4002
4003 remove_wait_queue(event->wqh, &event->wait);
4004
59b6f873 4005 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4006
4007 /* Notify userspace the event is going away. */
4008 eventfd_signal(event->eventfd, 1);
4009
4010 eventfd_ctx_put(event->eventfd);
4011 kfree(event);
59b6f873 4012 css_put(&memcg->css);
79bd9814
TH
4013}
4014
4015/*
a9a08845 4016 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4017 *
4018 * Called with wqh->lock held and interrupts disabled.
4019 */
ac6424b9 4020static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4021 int sync, void *key)
79bd9814 4022{
3bc942f3
TH
4023 struct mem_cgroup_event *event =
4024 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4025 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4026 __poll_t flags = key_to_poll(key);
79bd9814 4027
a9a08845 4028 if (flags & EPOLLHUP) {
79bd9814
TH
4029 /*
4030 * If the event has been detached at cgroup removal, we
4031 * can simply return knowing the other side will cleanup
4032 * for us.
4033 *
4034 * We can't race against event freeing since the other
4035 * side will require wqh->lock via remove_wait_queue(),
4036 * which we hold.
4037 */
fba94807 4038 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4039 if (!list_empty(&event->list)) {
4040 list_del_init(&event->list);
4041 /*
4042 * We are in atomic context, but cgroup_event_remove()
4043 * may sleep, so we have to call it in workqueue.
4044 */
4045 schedule_work(&event->remove);
4046 }
fba94807 4047 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4048 }
4049
4050 return 0;
4051}
4052
3bc942f3 4053static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4054 wait_queue_head_t *wqh, poll_table *pt)
4055{
3bc942f3
TH
4056 struct mem_cgroup_event *event =
4057 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4058
4059 event->wqh = wqh;
4060 add_wait_queue(wqh, &event->wait);
4061}
4062
4063/*
3bc942f3
TH
4064 * DO NOT USE IN NEW FILES.
4065 *
79bd9814
TH
4066 * Parse input and register new cgroup event handler.
4067 *
4068 * Input must be in format '<event_fd> <control_fd> <args>'.
4069 * Interpretation of args is defined by control file implementation.
4070 */
451af504
TH
4071static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4072 char *buf, size_t nbytes, loff_t off)
79bd9814 4073{
451af504 4074 struct cgroup_subsys_state *css = of_css(of);
fba94807 4075 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4076 struct mem_cgroup_event *event;
79bd9814
TH
4077 struct cgroup_subsys_state *cfile_css;
4078 unsigned int efd, cfd;
4079 struct fd efile;
4080 struct fd cfile;
fba94807 4081 const char *name;
79bd9814
TH
4082 char *endp;
4083 int ret;
4084
451af504
TH
4085 buf = strstrip(buf);
4086
4087 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4088 if (*endp != ' ')
4089 return -EINVAL;
451af504 4090 buf = endp + 1;
79bd9814 4091
451af504 4092 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4093 if ((*endp != ' ') && (*endp != '\0'))
4094 return -EINVAL;
451af504 4095 buf = endp + 1;
79bd9814
TH
4096
4097 event = kzalloc(sizeof(*event), GFP_KERNEL);
4098 if (!event)
4099 return -ENOMEM;
4100
59b6f873 4101 event->memcg = memcg;
79bd9814 4102 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4103 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4104 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4105 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4106
4107 efile = fdget(efd);
4108 if (!efile.file) {
4109 ret = -EBADF;
4110 goto out_kfree;
4111 }
4112
4113 event->eventfd = eventfd_ctx_fileget(efile.file);
4114 if (IS_ERR(event->eventfd)) {
4115 ret = PTR_ERR(event->eventfd);
4116 goto out_put_efile;
4117 }
4118
4119 cfile = fdget(cfd);
4120 if (!cfile.file) {
4121 ret = -EBADF;
4122 goto out_put_eventfd;
4123 }
4124
4125 /* the process need read permission on control file */
4126 /* AV: shouldn't we check that it's been opened for read instead? */
4127 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4128 if (ret < 0)
4129 goto out_put_cfile;
4130
fba94807
TH
4131 /*
4132 * Determine the event callbacks and set them in @event. This used
4133 * to be done via struct cftype but cgroup core no longer knows
4134 * about these events. The following is crude but the whole thing
4135 * is for compatibility anyway.
3bc942f3
TH
4136 *
4137 * DO NOT ADD NEW FILES.
fba94807 4138 */
b583043e 4139 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4140
4141 if (!strcmp(name, "memory.usage_in_bytes")) {
4142 event->register_event = mem_cgroup_usage_register_event;
4143 event->unregister_event = mem_cgroup_usage_unregister_event;
4144 } else if (!strcmp(name, "memory.oom_control")) {
4145 event->register_event = mem_cgroup_oom_register_event;
4146 event->unregister_event = mem_cgroup_oom_unregister_event;
4147 } else if (!strcmp(name, "memory.pressure_level")) {
4148 event->register_event = vmpressure_register_event;
4149 event->unregister_event = vmpressure_unregister_event;
4150 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4151 event->register_event = memsw_cgroup_usage_register_event;
4152 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4153 } else {
4154 ret = -EINVAL;
4155 goto out_put_cfile;
4156 }
4157
79bd9814 4158 /*
b5557c4c
TH
4159 * Verify @cfile should belong to @css. Also, remaining events are
4160 * automatically removed on cgroup destruction but the removal is
4161 * asynchronous, so take an extra ref on @css.
79bd9814 4162 */
b583043e 4163 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4164 &memory_cgrp_subsys);
79bd9814 4165 ret = -EINVAL;
5a17f543 4166 if (IS_ERR(cfile_css))
79bd9814 4167 goto out_put_cfile;
5a17f543
TH
4168 if (cfile_css != css) {
4169 css_put(cfile_css);
79bd9814 4170 goto out_put_cfile;
5a17f543 4171 }
79bd9814 4172
451af504 4173 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4174 if (ret)
4175 goto out_put_css;
4176
9965ed17 4177 vfs_poll(efile.file, &event->pt);
79bd9814 4178
fba94807
TH
4179 spin_lock(&memcg->event_list_lock);
4180 list_add(&event->list, &memcg->event_list);
4181 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4182
4183 fdput(cfile);
4184 fdput(efile);
4185
451af504 4186 return nbytes;
79bd9814
TH
4187
4188out_put_css:
b5557c4c 4189 css_put(css);
79bd9814
TH
4190out_put_cfile:
4191 fdput(cfile);
4192out_put_eventfd:
4193 eventfd_ctx_put(event->eventfd);
4194out_put_efile:
4195 fdput(efile);
4196out_kfree:
4197 kfree(event);
4198
4199 return ret;
4200}
4201
241994ed 4202static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4203 {
0eea1030 4204 .name = "usage_in_bytes",
8c7c6e34 4205 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4206 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4207 },
c84872e1
PE
4208 {
4209 .name = "max_usage_in_bytes",
8c7c6e34 4210 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4211 .write = mem_cgroup_reset,
791badbd 4212 .read_u64 = mem_cgroup_read_u64,
c84872e1 4213 },
8cdea7c0 4214 {
0eea1030 4215 .name = "limit_in_bytes",
8c7c6e34 4216 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4217 .write = mem_cgroup_write,
791badbd 4218 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4219 },
296c81d8
BS
4220 {
4221 .name = "soft_limit_in_bytes",
4222 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4223 .write = mem_cgroup_write,
791badbd 4224 .read_u64 = mem_cgroup_read_u64,
296c81d8 4225 },
8cdea7c0
BS
4226 {
4227 .name = "failcnt",
8c7c6e34 4228 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4229 .write = mem_cgroup_reset,
791badbd 4230 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4231 },
d2ceb9b7
KH
4232 {
4233 .name = "stat",
2da8ca82 4234 .seq_show = memcg_stat_show,
d2ceb9b7 4235 },
c1e862c1
KH
4236 {
4237 .name = "force_empty",
6770c64e 4238 .write = mem_cgroup_force_empty_write,
c1e862c1 4239 },
18f59ea7
BS
4240 {
4241 .name = "use_hierarchy",
4242 .write_u64 = mem_cgroup_hierarchy_write,
4243 .read_u64 = mem_cgroup_hierarchy_read,
4244 },
79bd9814 4245 {
3bc942f3 4246 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4247 .write = memcg_write_event_control,
7dbdb199 4248 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4249 },
a7885eb8
KM
4250 {
4251 .name = "swappiness",
4252 .read_u64 = mem_cgroup_swappiness_read,
4253 .write_u64 = mem_cgroup_swappiness_write,
4254 },
7dc74be0
DN
4255 {
4256 .name = "move_charge_at_immigrate",
4257 .read_u64 = mem_cgroup_move_charge_read,
4258 .write_u64 = mem_cgroup_move_charge_write,
4259 },
9490ff27
KH
4260 {
4261 .name = "oom_control",
2da8ca82 4262 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4263 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4264 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4265 },
70ddf637
AV
4266 {
4267 .name = "pressure_level",
70ddf637 4268 },
406eb0c9
YH
4269#ifdef CONFIG_NUMA
4270 {
4271 .name = "numa_stat",
2da8ca82 4272 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4273 },
4274#endif
510fc4e1
GC
4275 {
4276 .name = "kmem.limit_in_bytes",
4277 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4278 .write = mem_cgroup_write,
791badbd 4279 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4280 },
4281 {
4282 .name = "kmem.usage_in_bytes",
4283 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4284 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4285 },
4286 {
4287 .name = "kmem.failcnt",
4288 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4289 .write = mem_cgroup_reset,
791badbd 4290 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4291 },
4292 {
4293 .name = "kmem.max_usage_in_bytes",
4294 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4295 .write = mem_cgroup_reset,
791badbd 4296 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4297 },
5b365771 4298#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4299 {
4300 .name = "kmem.slabinfo",
bc2791f8
TH
4301 .seq_start = memcg_slab_start,
4302 .seq_next = memcg_slab_next,
4303 .seq_stop = memcg_slab_stop,
b047501c 4304 .seq_show = memcg_slab_show,
749c5415
GC
4305 },
4306#endif
d55f90bf
VD
4307 {
4308 .name = "kmem.tcp.limit_in_bytes",
4309 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4310 .write = mem_cgroup_write,
4311 .read_u64 = mem_cgroup_read_u64,
4312 },
4313 {
4314 .name = "kmem.tcp.usage_in_bytes",
4315 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4316 .read_u64 = mem_cgroup_read_u64,
4317 },
4318 {
4319 .name = "kmem.tcp.failcnt",
4320 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4321 .write = mem_cgroup_reset,
4322 .read_u64 = mem_cgroup_read_u64,
4323 },
4324 {
4325 .name = "kmem.tcp.max_usage_in_bytes",
4326 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4327 .write = mem_cgroup_reset,
4328 .read_u64 = mem_cgroup_read_u64,
4329 },
6bc10349 4330 { }, /* terminate */
af36f906 4331};
8c7c6e34 4332
73f576c0
JW
4333/*
4334 * Private memory cgroup IDR
4335 *
4336 * Swap-out records and page cache shadow entries need to store memcg
4337 * references in constrained space, so we maintain an ID space that is
4338 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4339 * memory-controlled cgroups to 64k.
4340 *
4341 * However, there usually are many references to the oflline CSS after
4342 * the cgroup has been destroyed, such as page cache or reclaimable
4343 * slab objects, that don't need to hang on to the ID. We want to keep
4344 * those dead CSS from occupying IDs, or we might quickly exhaust the
4345 * relatively small ID space and prevent the creation of new cgroups
4346 * even when there are much fewer than 64k cgroups - possibly none.
4347 *
4348 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4349 * be freed and recycled when it's no longer needed, which is usually
4350 * when the CSS is offlined.
4351 *
4352 * The only exception to that are records of swapped out tmpfs/shmem
4353 * pages that need to be attributed to live ancestors on swapin. But
4354 * those references are manageable from userspace.
4355 */
4356
4357static DEFINE_IDR(mem_cgroup_idr);
4358
7e97de0b
KT
4359static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4360{
4361 if (memcg->id.id > 0) {
4362 idr_remove(&mem_cgroup_idr, memcg->id.id);
4363 memcg->id.id = 0;
4364 }
4365}
4366
615d66c3 4367static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4368{
1c2d479a 4369 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4370}
4371
615d66c3 4372static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4373{
1c2d479a 4374 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4375 mem_cgroup_id_remove(memcg);
73f576c0
JW
4376
4377 /* Memcg ID pins CSS */
4378 css_put(&memcg->css);
4379 }
4380}
4381
615d66c3
VD
4382static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4383{
4384 mem_cgroup_id_get_many(memcg, 1);
4385}
4386
4387static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4388{
4389 mem_cgroup_id_put_many(memcg, 1);
4390}
4391
73f576c0
JW
4392/**
4393 * mem_cgroup_from_id - look up a memcg from a memcg id
4394 * @id: the memcg id to look up
4395 *
4396 * Caller must hold rcu_read_lock().
4397 */
4398struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4399{
4400 WARN_ON_ONCE(!rcu_read_lock_held());
4401 return idr_find(&mem_cgroup_idr, id);
4402}
4403
ef8f2327 4404static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4405{
4406 struct mem_cgroup_per_node *pn;
ef8f2327 4407 int tmp = node;
1ecaab2b
KH
4408 /*
4409 * This routine is called against possible nodes.
4410 * But it's BUG to call kmalloc() against offline node.
4411 *
4412 * TODO: this routine can waste much memory for nodes which will
4413 * never be onlined. It's better to use memory hotplug callback
4414 * function.
4415 */
41e3355d
KH
4416 if (!node_state(node, N_NORMAL_MEMORY))
4417 tmp = -1;
17295c88 4418 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4419 if (!pn)
4420 return 1;
1ecaab2b 4421
a983b5eb
JW
4422 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4423 if (!pn->lruvec_stat_cpu) {
00f3ca2c
JW
4424 kfree(pn);
4425 return 1;
4426 }
4427
ef8f2327
MG
4428 lruvec_init(&pn->lruvec);
4429 pn->usage_in_excess = 0;
4430 pn->on_tree = false;
4431 pn->memcg = memcg;
4432
54f72fe0 4433 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4434 return 0;
4435}
4436
ef8f2327 4437static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4438{
00f3ca2c
JW
4439 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4440
4eaf431f
MH
4441 if (!pn)
4442 return;
4443
a983b5eb 4444 free_percpu(pn->lruvec_stat_cpu);
00f3ca2c 4445 kfree(pn);
1ecaab2b
KH
4446}
4447
40e952f9 4448static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4449{
c8b2a36f 4450 int node;
59927fb9 4451
c8b2a36f 4452 for_each_node(node)
ef8f2327 4453 free_mem_cgroup_per_node_info(memcg, node);
871789d4 4454 free_percpu(memcg->vmstats_percpu);
8ff69e2c 4455 kfree(memcg);
59927fb9 4456}
3afe36b1 4457
40e952f9
TE
4458static void mem_cgroup_free(struct mem_cgroup *memcg)
4459{
4460 memcg_wb_domain_exit(memcg);
4461 __mem_cgroup_free(memcg);
4462}
4463
0b8f73e1 4464static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4465{
d142e3e6 4466 struct mem_cgroup *memcg;
b9726c26 4467 unsigned int size;
6d12e2d8 4468 int node;
8cdea7c0 4469
0b8f73e1
JW
4470 size = sizeof(struct mem_cgroup);
4471 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4472
4473 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4474 if (!memcg)
0b8f73e1
JW
4475 return NULL;
4476
73f576c0
JW
4477 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4478 1, MEM_CGROUP_ID_MAX,
4479 GFP_KERNEL);
4480 if (memcg->id.id < 0)
4481 goto fail;
4482
871789d4
CD
4483 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4484 if (!memcg->vmstats_percpu)
0b8f73e1 4485 goto fail;
78fb7466 4486
3ed28fa1 4487 for_each_node(node)
ef8f2327 4488 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4489 goto fail;
f64c3f54 4490
0b8f73e1
JW
4491 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4492 goto fail;
28dbc4b6 4493
f7e1cb6e 4494 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4495 memcg->last_scanned_node = MAX_NUMNODES;
4496 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4497 mutex_init(&memcg->thresholds_lock);
4498 spin_lock_init(&memcg->move_lock);
70ddf637 4499 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4500 INIT_LIST_HEAD(&memcg->event_list);
4501 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4502 memcg->socket_pressure = jiffies;
84c07d11 4503#ifdef CONFIG_MEMCG_KMEM
900a38f0 4504 memcg->kmemcg_id = -1;
900a38f0 4505#endif
52ebea74
TH
4506#ifdef CONFIG_CGROUP_WRITEBACK
4507 INIT_LIST_HEAD(&memcg->cgwb_list);
4508#endif
73f576c0 4509 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4510 return memcg;
4511fail:
7e97de0b 4512 mem_cgroup_id_remove(memcg);
40e952f9 4513 __mem_cgroup_free(memcg);
0b8f73e1 4514 return NULL;
d142e3e6
GC
4515}
4516
0b8f73e1
JW
4517static struct cgroup_subsys_state * __ref
4518mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4519{
0b8f73e1
JW
4520 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4521 struct mem_cgroup *memcg;
4522 long error = -ENOMEM;
d142e3e6 4523
0b8f73e1
JW
4524 memcg = mem_cgroup_alloc();
4525 if (!memcg)
4526 return ERR_PTR(error);
d142e3e6 4527
0b8f73e1
JW
4528 memcg->high = PAGE_COUNTER_MAX;
4529 memcg->soft_limit = PAGE_COUNTER_MAX;
4530 if (parent) {
4531 memcg->swappiness = mem_cgroup_swappiness(parent);
4532 memcg->oom_kill_disable = parent->oom_kill_disable;
4533 }
4534 if (parent && parent->use_hierarchy) {
4535 memcg->use_hierarchy = true;
3e32cb2e 4536 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4537 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4538 page_counter_init(&memcg->memsw, &parent->memsw);
4539 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4540 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4541 } else {
3e32cb2e 4542 page_counter_init(&memcg->memory, NULL);
37e84351 4543 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4544 page_counter_init(&memcg->memsw, NULL);
4545 page_counter_init(&memcg->kmem, NULL);
0db15298 4546 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4547 /*
4548 * Deeper hierachy with use_hierarchy == false doesn't make
4549 * much sense so let cgroup subsystem know about this
4550 * unfortunate state in our controller.
4551 */
d142e3e6 4552 if (parent != root_mem_cgroup)
073219e9 4553 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4554 }
d6441637 4555
0b8f73e1
JW
4556 /* The following stuff does not apply to the root */
4557 if (!parent) {
4558 root_mem_cgroup = memcg;
4559 return &memcg->css;
4560 }
4561
b313aeee 4562 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4563 if (error)
4564 goto fail;
127424c8 4565
f7e1cb6e 4566 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4567 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4568
0b8f73e1
JW
4569 return &memcg->css;
4570fail:
7e97de0b 4571 mem_cgroup_id_remove(memcg);
0b8f73e1 4572 mem_cgroup_free(memcg);
ea3a9645 4573 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4574}
4575
73f576c0 4576static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4577{
58fa2a55
VD
4578 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4579
0a4465d3
KT
4580 /*
4581 * A memcg must be visible for memcg_expand_shrinker_maps()
4582 * by the time the maps are allocated. So, we allocate maps
4583 * here, when for_each_mem_cgroup() can't skip it.
4584 */
4585 if (memcg_alloc_shrinker_maps(memcg)) {
4586 mem_cgroup_id_remove(memcg);
4587 return -ENOMEM;
4588 }
4589
73f576c0 4590 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 4591 refcount_set(&memcg->id.ref, 1);
73f576c0 4592 css_get(css);
2f7dd7a4 4593 return 0;
8cdea7c0
BS
4594}
4595
eb95419b 4596static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4597{
eb95419b 4598 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4599 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4600
4601 /*
4602 * Unregister events and notify userspace.
4603 * Notify userspace about cgroup removing only after rmdir of cgroup
4604 * directory to avoid race between userspace and kernelspace.
4605 */
fba94807
TH
4606 spin_lock(&memcg->event_list_lock);
4607 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4608 list_del_init(&event->list);
4609 schedule_work(&event->remove);
4610 }
fba94807 4611 spin_unlock(&memcg->event_list_lock);
ec64f515 4612
bf8d5d52 4613 page_counter_set_min(&memcg->memory, 0);
23067153 4614 page_counter_set_low(&memcg->memory, 0);
63677c74 4615
567e9ab2 4616 memcg_offline_kmem(memcg);
52ebea74 4617 wb_memcg_offline(memcg);
73f576c0 4618
591edfb1
RG
4619 drain_all_stock(memcg);
4620
73f576c0 4621 mem_cgroup_id_put(memcg);
df878fb0
KH
4622}
4623
6df38689
VD
4624static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4625{
4626 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4627
4628 invalidate_reclaim_iterators(memcg);
4629}
4630
eb95419b 4631static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4632{
eb95419b 4633 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4634
f7e1cb6e 4635 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4636 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4637
0db15298 4638 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4639 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4640
0b8f73e1
JW
4641 vmpressure_cleanup(&memcg->vmpressure);
4642 cancel_work_sync(&memcg->high_work);
4643 mem_cgroup_remove_from_trees(memcg);
0a4465d3 4644 memcg_free_shrinker_maps(memcg);
d886f4e4 4645 memcg_free_kmem(memcg);
0b8f73e1 4646 mem_cgroup_free(memcg);
8cdea7c0
BS
4647}
4648
1ced953b
TH
4649/**
4650 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4651 * @css: the target css
4652 *
4653 * Reset the states of the mem_cgroup associated with @css. This is
4654 * invoked when the userland requests disabling on the default hierarchy
4655 * but the memcg is pinned through dependency. The memcg should stop
4656 * applying policies and should revert to the vanilla state as it may be
4657 * made visible again.
4658 *
4659 * The current implementation only resets the essential configurations.
4660 * This needs to be expanded to cover all the visible parts.
4661 */
4662static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4663{
4664 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4665
bbec2e15
RG
4666 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4667 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4668 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4669 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4670 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4671 page_counter_set_min(&memcg->memory, 0);
23067153 4672 page_counter_set_low(&memcg->memory, 0);
241994ed 4673 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4674 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4675 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4676}
4677
02491447 4678#ifdef CONFIG_MMU
7dc74be0 4679/* Handlers for move charge at task migration. */
854ffa8d 4680static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4681{
05b84301 4682 int ret;
9476db97 4683
d0164adc
MG
4684 /* Try a single bulk charge without reclaim first, kswapd may wake */
4685 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4686 if (!ret) {
854ffa8d 4687 mc.precharge += count;
854ffa8d
DN
4688 return ret;
4689 }
9476db97 4690
3674534b 4691 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4692 while (count--) {
3674534b 4693 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4694 if (ret)
38c5d72f 4695 return ret;
854ffa8d 4696 mc.precharge++;
9476db97 4697 cond_resched();
854ffa8d 4698 }
9476db97 4699 return 0;
4ffef5fe
DN
4700}
4701
4ffef5fe
DN
4702union mc_target {
4703 struct page *page;
02491447 4704 swp_entry_t ent;
4ffef5fe
DN
4705};
4706
4ffef5fe 4707enum mc_target_type {
8d32ff84 4708 MC_TARGET_NONE = 0,
4ffef5fe 4709 MC_TARGET_PAGE,
02491447 4710 MC_TARGET_SWAP,
c733a828 4711 MC_TARGET_DEVICE,
4ffef5fe
DN
4712};
4713
90254a65
DN
4714static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4715 unsigned long addr, pte_t ptent)
4ffef5fe 4716{
c733a828 4717 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4718
90254a65
DN
4719 if (!page || !page_mapped(page))
4720 return NULL;
4721 if (PageAnon(page)) {
1dfab5ab 4722 if (!(mc.flags & MOVE_ANON))
90254a65 4723 return NULL;
1dfab5ab
JW
4724 } else {
4725 if (!(mc.flags & MOVE_FILE))
4726 return NULL;
4727 }
90254a65
DN
4728 if (!get_page_unless_zero(page))
4729 return NULL;
4730
4731 return page;
4732}
4733
c733a828 4734#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4735static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4736 pte_t ptent, swp_entry_t *entry)
90254a65 4737{
90254a65
DN
4738 struct page *page = NULL;
4739 swp_entry_t ent = pte_to_swp_entry(ptent);
4740
1dfab5ab 4741 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4742 return NULL;
c733a828
JG
4743
4744 /*
4745 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4746 * a device and because they are not accessible by CPU they are store
4747 * as special swap entry in the CPU page table.
4748 */
4749 if (is_device_private_entry(ent)) {
4750 page = device_private_entry_to_page(ent);
4751 /*
4752 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4753 * a refcount of 1 when free (unlike normal page)
4754 */
4755 if (!page_ref_add_unless(page, 1, 1))
4756 return NULL;
4757 return page;
4758 }
4759
4b91355e
KH
4760 /*
4761 * Because lookup_swap_cache() updates some statistics counter,
4762 * we call find_get_page() with swapper_space directly.
4763 */
f6ab1f7f 4764 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4765 if (do_memsw_account())
90254a65
DN
4766 entry->val = ent.val;
4767
4768 return page;
4769}
4b91355e
KH
4770#else
4771static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4772 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4773{
4774 return NULL;
4775}
4776#endif
90254a65 4777
87946a72
DN
4778static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4779 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4780{
4781 struct page *page = NULL;
87946a72
DN
4782 struct address_space *mapping;
4783 pgoff_t pgoff;
4784
4785 if (!vma->vm_file) /* anonymous vma */
4786 return NULL;
1dfab5ab 4787 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4788 return NULL;
4789
87946a72 4790 mapping = vma->vm_file->f_mapping;
0661a336 4791 pgoff = linear_page_index(vma, addr);
87946a72
DN
4792
4793 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4794#ifdef CONFIG_SWAP
4795 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4796 if (shmem_mapping(mapping)) {
4797 page = find_get_entry(mapping, pgoff);
3159f943 4798 if (xa_is_value(page)) {
139b6a6f 4799 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4800 if (do_memsw_account())
139b6a6f 4801 *entry = swp;
f6ab1f7f
HY
4802 page = find_get_page(swap_address_space(swp),
4803 swp_offset(swp));
139b6a6f
JW
4804 }
4805 } else
4806 page = find_get_page(mapping, pgoff);
4807#else
4808 page = find_get_page(mapping, pgoff);
aa3b1895 4809#endif
87946a72
DN
4810 return page;
4811}
4812
b1b0deab
CG
4813/**
4814 * mem_cgroup_move_account - move account of the page
4815 * @page: the page
25843c2b 4816 * @compound: charge the page as compound or small page
b1b0deab
CG
4817 * @from: mem_cgroup which the page is moved from.
4818 * @to: mem_cgroup which the page is moved to. @from != @to.
4819 *
3ac808fd 4820 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4821 *
4822 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4823 * from old cgroup.
4824 */
4825static int mem_cgroup_move_account(struct page *page,
f627c2f5 4826 bool compound,
b1b0deab
CG
4827 struct mem_cgroup *from,
4828 struct mem_cgroup *to)
4829{
4830 unsigned long flags;
f627c2f5 4831 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4832 int ret;
c4843a75 4833 bool anon;
b1b0deab
CG
4834
4835 VM_BUG_ON(from == to);
4836 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4837 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4838
4839 /*
6a93ca8f 4840 * Prevent mem_cgroup_migrate() from looking at
45637bab 4841 * page->mem_cgroup of its source page while we change it.
b1b0deab 4842 */
f627c2f5 4843 ret = -EBUSY;
b1b0deab
CG
4844 if (!trylock_page(page))
4845 goto out;
4846
4847 ret = -EINVAL;
4848 if (page->mem_cgroup != from)
4849 goto out_unlock;
4850
c4843a75
GT
4851 anon = PageAnon(page);
4852
b1b0deab
CG
4853 spin_lock_irqsave(&from->move_lock, flags);
4854
c4843a75 4855 if (!anon && page_mapped(page)) {
c9019e9b
JW
4856 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4857 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
4858 }
4859
c4843a75
GT
4860 /*
4861 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4862 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4863 * So mapping should be stable for dirty pages.
4864 */
4865 if (!anon && PageDirty(page)) {
4866 struct address_space *mapping = page_mapping(page);
4867
4868 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
4869 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4870 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
4871 }
4872 }
4873
b1b0deab 4874 if (PageWriteback(page)) {
c9019e9b
JW
4875 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4876 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
4877 }
4878
4879 /*
4880 * It is safe to change page->mem_cgroup here because the page
4881 * is referenced, charged, and isolated - we can't race with
4882 * uncharging, charging, migration, or LRU putback.
4883 */
4884
4885 /* caller should have done css_get */
4886 page->mem_cgroup = to;
4887 spin_unlock_irqrestore(&from->move_lock, flags);
4888
4889 ret = 0;
4890
4891 local_irq_disable();
f627c2f5 4892 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4893 memcg_check_events(to, page);
f627c2f5 4894 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4895 memcg_check_events(from, page);
4896 local_irq_enable();
4897out_unlock:
4898 unlock_page(page);
4899out:
4900 return ret;
4901}
4902
7cf7806c
LR
4903/**
4904 * get_mctgt_type - get target type of moving charge
4905 * @vma: the vma the pte to be checked belongs
4906 * @addr: the address corresponding to the pte to be checked
4907 * @ptent: the pte to be checked
4908 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4909 *
4910 * Returns
4911 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4912 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4913 * move charge. if @target is not NULL, the page is stored in target->page
4914 * with extra refcnt got(Callers should handle it).
4915 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4916 * target for charge migration. if @target is not NULL, the entry is stored
4917 * in target->ent.
df6ad698
JG
4918 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4919 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4920 * For now we such page is charge like a regular page would be as for all
4921 * intent and purposes it is just special memory taking the place of a
4922 * regular page.
c733a828
JG
4923 *
4924 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
4925 *
4926 * Called with pte lock held.
4927 */
4928
8d32ff84 4929static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4930 unsigned long addr, pte_t ptent, union mc_target *target)
4931{
4932 struct page *page = NULL;
8d32ff84 4933 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4934 swp_entry_t ent = { .val = 0 };
4935
4936 if (pte_present(ptent))
4937 page = mc_handle_present_pte(vma, addr, ptent);
4938 else if (is_swap_pte(ptent))
48406ef8 4939 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4940 else if (pte_none(ptent))
87946a72 4941 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4942
4943 if (!page && !ent.val)
8d32ff84 4944 return ret;
02491447 4945 if (page) {
02491447 4946 /*
0a31bc97 4947 * Do only loose check w/o serialization.
1306a85a 4948 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4949 * not under LRU exclusion.
02491447 4950 */
1306a85a 4951 if (page->mem_cgroup == mc.from) {
02491447 4952 ret = MC_TARGET_PAGE;
df6ad698
JG
4953 if (is_device_private_page(page) ||
4954 is_device_public_page(page))
c733a828 4955 ret = MC_TARGET_DEVICE;
02491447
DN
4956 if (target)
4957 target->page = page;
4958 }
4959 if (!ret || !target)
4960 put_page(page);
4961 }
3e14a57b
HY
4962 /*
4963 * There is a swap entry and a page doesn't exist or isn't charged.
4964 * But we cannot move a tail-page in a THP.
4965 */
4966 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 4967 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4968 ret = MC_TARGET_SWAP;
4969 if (target)
4970 target->ent = ent;
4ffef5fe 4971 }
4ffef5fe
DN
4972 return ret;
4973}
4974
12724850
NH
4975#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4976/*
d6810d73
HY
4977 * We don't consider PMD mapped swapping or file mapped pages because THP does
4978 * not support them for now.
12724850
NH
4979 * Caller should make sure that pmd_trans_huge(pmd) is true.
4980 */
4981static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4982 unsigned long addr, pmd_t pmd, union mc_target *target)
4983{
4984 struct page *page = NULL;
12724850
NH
4985 enum mc_target_type ret = MC_TARGET_NONE;
4986
84c3fc4e
ZY
4987 if (unlikely(is_swap_pmd(pmd))) {
4988 VM_BUG_ON(thp_migration_supported() &&
4989 !is_pmd_migration_entry(pmd));
4990 return ret;
4991 }
12724850 4992 page = pmd_page(pmd);
309381fe 4993 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4994 if (!(mc.flags & MOVE_ANON))
12724850 4995 return ret;
1306a85a 4996 if (page->mem_cgroup == mc.from) {
12724850
NH
4997 ret = MC_TARGET_PAGE;
4998 if (target) {
4999 get_page(page);
5000 target->page = page;
5001 }
5002 }
5003 return ret;
5004}
5005#else
5006static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5007 unsigned long addr, pmd_t pmd, union mc_target *target)
5008{
5009 return MC_TARGET_NONE;
5010}
5011#endif
5012
4ffef5fe
DN
5013static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5014 unsigned long addr, unsigned long end,
5015 struct mm_walk *walk)
5016{
26bcd64a 5017 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5018 pte_t *pte;
5019 spinlock_t *ptl;
5020
b6ec57f4
KS
5021 ptl = pmd_trans_huge_lock(pmd, vma);
5022 if (ptl) {
c733a828
JG
5023 /*
5024 * Note their can not be MC_TARGET_DEVICE for now as we do not
5025 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
5026 * MEMORY_DEVICE_PRIVATE but this might change.
5027 */
12724850
NH
5028 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5029 mc.precharge += HPAGE_PMD_NR;
bf929152 5030 spin_unlock(ptl);
1a5a9906 5031 return 0;
12724850 5032 }
03319327 5033
45f83cef
AA
5034 if (pmd_trans_unstable(pmd))
5035 return 0;
4ffef5fe
DN
5036 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5037 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5038 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5039 mc.precharge++; /* increment precharge temporarily */
5040 pte_unmap_unlock(pte - 1, ptl);
5041 cond_resched();
5042
7dc74be0
DN
5043 return 0;
5044}
5045
4ffef5fe
DN
5046static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5047{
5048 unsigned long precharge;
4ffef5fe 5049
26bcd64a
NH
5050 struct mm_walk mem_cgroup_count_precharge_walk = {
5051 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5052 .mm = mm,
5053 };
dfe076b0 5054 down_read(&mm->mmap_sem);
0247f3f4
JM
5055 walk_page_range(0, mm->highest_vm_end,
5056 &mem_cgroup_count_precharge_walk);
dfe076b0 5057 up_read(&mm->mmap_sem);
4ffef5fe
DN
5058
5059 precharge = mc.precharge;
5060 mc.precharge = 0;
5061
5062 return precharge;
5063}
5064
4ffef5fe
DN
5065static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5066{
dfe076b0
DN
5067 unsigned long precharge = mem_cgroup_count_precharge(mm);
5068
5069 VM_BUG_ON(mc.moving_task);
5070 mc.moving_task = current;
5071 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5072}
5073
dfe076b0
DN
5074/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5075static void __mem_cgroup_clear_mc(void)
4ffef5fe 5076{
2bd9bb20
KH
5077 struct mem_cgroup *from = mc.from;
5078 struct mem_cgroup *to = mc.to;
5079
4ffef5fe 5080 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5081 if (mc.precharge) {
00501b53 5082 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5083 mc.precharge = 0;
5084 }
5085 /*
5086 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5087 * we must uncharge here.
5088 */
5089 if (mc.moved_charge) {
00501b53 5090 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5091 mc.moved_charge = 0;
4ffef5fe 5092 }
483c30b5
DN
5093 /* we must fixup refcnts and charges */
5094 if (mc.moved_swap) {
483c30b5 5095 /* uncharge swap account from the old cgroup */
ce00a967 5096 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5097 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5098
615d66c3
VD
5099 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5100
05b84301 5101 /*
3e32cb2e
JW
5102 * we charged both to->memory and to->memsw, so we
5103 * should uncharge to->memory.
05b84301 5104 */
ce00a967 5105 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5106 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5107
615d66c3
VD
5108 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5109 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5110
483c30b5
DN
5111 mc.moved_swap = 0;
5112 }
dfe076b0
DN
5113 memcg_oom_recover(from);
5114 memcg_oom_recover(to);
5115 wake_up_all(&mc.waitq);
5116}
5117
5118static void mem_cgroup_clear_mc(void)
5119{
264a0ae1
TH
5120 struct mm_struct *mm = mc.mm;
5121
dfe076b0
DN
5122 /*
5123 * we must clear moving_task before waking up waiters at the end of
5124 * task migration.
5125 */
5126 mc.moving_task = NULL;
5127 __mem_cgroup_clear_mc();
2bd9bb20 5128 spin_lock(&mc.lock);
4ffef5fe
DN
5129 mc.from = NULL;
5130 mc.to = NULL;
264a0ae1 5131 mc.mm = NULL;
2bd9bb20 5132 spin_unlock(&mc.lock);
264a0ae1
TH
5133
5134 mmput(mm);
4ffef5fe
DN
5135}
5136
1f7dd3e5 5137static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5138{
1f7dd3e5 5139 struct cgroup_subsys_state *css;
eed67d75 5140 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5141 struct mem_cgroup *from;
4530eddb 5142 struct task_struct *leader, *p;
9f2115f9 5143 struct mm_struct *mm;
1dfab5ab 5144 unsigned long move_flags;
9f2115f9 5145 int ret = 0;
7dc74be0 5146
1f7dd3e5
TH
5147 /* charge immigration isn't supported on the default hierarchy */
5148 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5149 return 0;
5150
4530eddb
TH
5151 /*
5152 * Multi-process migrations only happen on the default hierarchy
5153 * where charge immigration is not used. Perform charge
5154 * immigration if @tset contains a leader and whine if there are
5155 * multiple.
5156 */
5157 p = NULL;
1f7dd3e5 5158 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5159 WARN_ON_ONCE(p);
5160 p = leader;
1f7dd3e5 5161 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5162 }
5163 if (!p)
5164 return 0;
5165
1f7dd3e5
TH
5166 /*
5167 * We are now commited to this value whatever it is. Changes in this
5168 * tunable will only affect upcoming migrations, not the current one.
5169 * So we need to save it, and keep it going.
5170 */
5171 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5172 if (!move_flags)
5173 return 0;
5174
9f2115f9
TH
5175 from = mem_cgroup_from_task(p);
5176
5177 VM_BUG_ON(from == memcg);
5178
5179 mm = get_task_mm(p);
5180 if (!mm)
5181 return 0;
5182 /* We move charges only when we move a owner of the mm */
5183 if (mm->owner == p) {
5184 VM_BUG_ON(mc.from);
5185 VM_BUG_ON(mc.to);
5186 VM_BUG_ON(mc.precharge);
5187 VM_BUG_ON(mc.moved_charge);
5188 VM_BUG_ON(mc.moved_swap);
5189
5190 spin_lock(&mc.lock);
264a0ae1 5191 mc.mm = mm;
9f2115f9
TH
5192 mc.from = from;
5193 mc.to = memcg;
5194 mc.flags = move_flags;
5195 spin_unlock(&mc.lock);
5196 /* We set mc.moving_task later */
5197
5198 ret = mem_cgroup_precharge_mc(mm);
5199 if (ret)
5200 mem_cgroup_clear_mc();
264a0ae1
TH
5201 } else {
5202 mmput(mm);
7dc74be0
DN
5203 }
5204 return ret;
5205}
5206
1f7dd3e5 5207static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5208{
4e2f245d
JW
5209 if (mc.to)
5210 mem_cgroup_clear_mc();
7dc74be0
DN
5211}
5212
4ffef5fe
DN
5213static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5214 unsigned long addr, unsigned long end,
5215 struct mm_walk *walk)
7dc74be0 5216{
4ffef5fe 5217 int ret = 0;
26bcd64a 5218 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5219 pte_t *pte;
5220 spinlock_t *ptl;
12724850
NH
5221 enum mc_target_type target_type;
5222 union mc_target target;
5223 struct page *page;
4ffef5fe 5224
b6ec57f4
KS
5225 ptl = pmd_trans_huge_lock(pmd, vma);
5226 if (ptl) {
62ade86a 5227 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5228 spin_unlock(ptl);
12724850
NH
5229 return 0;
5230 }
5231 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5232 if (target_type == MC_TARGET_PAGE) {
5233 page = target.page;
5234 if (!isolate_lru_page(page)) {
f627c2f5 5235 if (!mem_cgroup_move_account(page, true,
1306a85a 5236 mc.from, mc.to)) {
12724850
NH
5237 mc.precharge -= HPAGE_PMD_NR;
5238 mc.moved_charge += HPAGE_PMD_NR;
5239 }
5240 putback_lru_page(page);
5241 }
5242 put_page(page);
c733a828
JG
5243 } else if (target_type == MC_TARGET_DEVICE) {
5244 page = target.page;
5245 if (!mem_cgroup_move_account(page, true,
5246 mc.from, mc.to)) {
5247 mc.precharge -= HPAGE_PMD_NR;
5248 mc.moved_charge += HPAGE_PMD_NR;
5249 }
5250 put_page(page);
12724850 5251 }
bf929152 5252 spin_unlock(ptl);
1a5a9906 5253 return 0;
12724850
NH
5254 }
5255
45f83cef
AA
5256 if (pmd_trans_unstable(pmd))
5257 return 0;
4ffef5fe
DN
5258retry:
5259 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5260 for (; addr != end; addr += PAGE_SIZE) {
5261 pte_t ptent = *(pte++);
c733a828 5262 bool device = false;
02491447 5263 swp_entry_t ent;
4ffef5fe
DN
5264
5265 if (!mc.precharge)
5266 break;
5267
8d32ff84 5268 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5269 case MC_TARGET_DEVICE:
5270 device = true;
5271 /* fall through */
4ffef5fe
DN
5272 case MC_TARGET_PAGE:
5273 page = target.page;
53f9263b
KS
5274 /*
5275 * We can have a part of the split pmd here. Moving it
5276 * can be done but it would be too convoluted so simply
5277 * ignore such a partial THP and keep it in original
5278 * memcg. There should be somebody mapping the head.
5279 */
5280 if (PageTransCompound(page))
5281 goto put;
c733a828 5282 if (!device && isolate_lru_page(page))
4ffef5fe 5283 goto put;
f627c2f5
KS
5284 if (!mem_cgroup_move_account(page, false,
5285 mc.from, mc.to)) {
4ffef5fe 5286 mc.precharge--;
854ffa8d
DN
5287 /* we uncharge from mc.from later. */
5288 mc.moved_charge++;
4ffef5fe 5289 }
c733a828
JG
5290 if (!device)
5291 putback_lru_page(page);
8d32ff84 5292put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5293 put_page(page);
5294 break;
02491447
DN
5295 case MC_TARGET_SWAP:
5296 ent = target.ent;
e91cbb42 5297 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5298 mc.precharge--;
483c30b5
DN
5299 /* we fixup refcnts and charges later. */
5300 mc.moved_swap++;
5301 }
02491447 5302 break;
4ffef5fe
DN
5303 default:
5304 break;
5305 }
5306 }
5307 pte_unmap_unlock(pte - 1, ptl);
5308 cond_resched();
5309
5310 if (addr != end) {
5311 /*
5312 * We have consumed all precharges we got in can_attach().
5313 * We try charge one by one, but don't do any additional
5314 * charges to mc.to if we have failed in charge once in attach()
5315 * phase.
5316 */
854ffa8d 5317 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5318 if (!ret)
5319 goto retry;
5320 }
5321
5322 return ret;
5323}
5324
264a0ae1 5325static void mem_cgroup_move_charge(void)
4ffef5fe 5326{
26bcd64a
NH
5327 struct mm_walk mem_cgroup_move_charge_walk = {
5328 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5329 .mm = mc.mm,
26bcd64a 5330 };
4ffef5fe
DN
5331
5332 lru_add_drain_all();
312722cb 5333 /*
81f8c3a4
JW
5334 * Signal lock_page_memcg() to take the memcg's move_lock
5335 * while we're moving its pages to another memcg. Then wait
5336 * for already started RCU-only updates to finish.
312722cb
JW
5337 */
5338 atomic_inc(&mc.from->moving_account);
5339 synchronize_rcu();
dfe076b0 5340retry:
264a0ae1 5341 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5342 /*
5343 * Someone who are holding the mmap_sem might be waiting in
5344 * waitq. So we cancel all extra charges, wake up all waiters,
5345 * and retry. Because we cancel precharges, we might not be able
5346 * to move enough charges, but moving charge is a best-effort
5347 * feature anyway, so it wouldn't be a big problem.
5348 */
5349 __mem_cgroup_clear_mc();
5350 cond_resched();
5351 goto retry;
5352 }
26bcd64a
NH
5353 /*
5354 * When we have consumed all precharges and failed in doing
5355 * additional charge, the page walk just aborts.
5356 */
0247f3f4
JM
5357 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5358
264a0ae1 5359 up_read(&mc.mm->mmap_sem);
312722cb 5360 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5361}
5362
264a0ae1 5363static void mem_cgroup_move_task(void)
67e465a7 5364{
264a0ae1
TH
5365 if (mc.to) {
5366 mem_cgroup_move_charge();
a433658c 5367 mem_cgroup_clear_mc();
264a0ae1 5368 }
67e465a7 5369}
5cfb80a7 5370#else /* !CONFIG_MMU */
1f7dd3e5 5371static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5372{
5373 return 0;
5374}
1f7dd3e5 5375static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5376{
5377}
264a0ae1 5378static void mem_cgroup_move_task(void)
5cfb80a7
DN
5379{
5380}
5381#endif
67e465a7 5382
f00baae7
TH
5383/*
5384 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5385 * to verify whether we're attached to the default hierarchy on each mount
5386 * attempt.
f00baae7 5387 */
eb95419b 5388static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5389{
5390 /*
aa6ec29b 5391 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5392 * guarantees that @root doesn't have any children, so turning it
5393 * on for the root memcg is enough.
5394 */
9e10a130 5395 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5396 root_mem_cgroup->use_hierarchy = true;
5397 else
5398 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5399}
5400
677dc973
CD
5401static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5402{
5403 if (value == PAGE_COUNTER_MAX)
5404 seq_puts(m, "max\n");
5405 else
5406 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5407
5408 return 0;
5409}
5410
241994ed
JW
5411static u64 memory_current_read(struct cgroup_subsys_state *css,
5412 struct cftype *cft)
5413{
f5fc3c5d
JW
5414 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5415
5416 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5417}
5418
bf8d5d52
RG
5419static int memory_min_show(struct seq_file *m, void *v)
5420{
677dc973
CD
5421 return seq_puts_memcg_tunable(m,
5422 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
5423}
5424
5425static ssize_t memory_min_write(struct kernfs_open_file *of,
5426 char *buf, size_t nbytes, loff_t off)
5427{
5428 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5429 unsigned long min;
5430 int err;
5431
5432 buf = strstrip(buf);
5433 err = page_counter_memparse(buf, "max", &min);
5434 if (err)
5435 return err;
5436
5437 page_counter_set_min(&memcg->memory, min);
5438
5439 return nbytes;
5440}
5441
241994ed
JW
5442static int memory_low_show(struct seq_file *m, void *v)
5443{
677dc973
CD
5444 return seq_puts_memcg_tunable(m,
5445 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
5446}
5447
5448static ssize_t memory_low_write(struct kernfs_open_file *of,
5449 char *buf, size_t nbytes, loff_t off)
5450{
5451 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5452 unsigned long low;
5453 int err;
5454
5455 buf = strstrip(buf);
d2973697 5456 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5457 if (err)
5458 return err;
5459
23067153 5460 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5461
5462 return nbytes;
5463}
5464
5465static int memory_high_show(struct seq_file *m, void *v)
5466{
677dc973 5467 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
5468}
5469
5470static ssize_t memory_high_write(struct kernfs_open_file *of,
5471 char *buf, size_t nbytes, loff_t off)
5472{
5473 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5474 unsigned long nr_pages;
241994ed
JW
5475 unsigned long high;
5476 int err;
5477
5478 buf = strstrip(buf);
d2973697 5479 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5480 if (err)
5481 return err;
5482
5483 memcg->high = high;
5484
588083bb
JW
5485 nr_pages = page_counter_read(&memcg->memory);
5486 if (nr_pages > high)
5487 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5488 GFP_KERNEL, true);
5489
2529bb3a 5490 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5491 return nbytes;
5492}
5493
5494static int memory_max_show(struct seq_file *m, void *v)
5495{
677dc973
CD
5496 return seq_puts_memcg_tunable(m,
5497 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
5498}
5499
5500static ssize_t memory_max_write(struct kernfs_open_file *of,
5501 char *buf, size_t nbytes, loff_t off)
5502{
5503 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5504 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5505 bool drained = false;
241994ed
JW
5506 unsigned long max;
5507 int err;
5508
5509 buf = strstrip(buf);
d2973697 5510 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5511 if (err)
5512 return err;
5513
bbec2e15 5514 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5515
5516 for (;;) {
5517 unsigned long nr_pages = page_counter_read(&memcg->memory);
5518
5519 if (nr_pages <= max)
5520 break;
5521
5522 if (signal_pending(current)) {
5523 err = -EINTR;
5524 break;
5525 }
5526
5527 if (!drained) {
5528 drain_all_stock(memcg);
5529 drained = true;
5530 continue;
5531 }
5532
5533 if (nr_reclaims) {
5534 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5535 GFP_KERNEL, true))
5536 nr_reclaims--;
5537 continue;
5538 }
5539
e27be240 5540 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5541 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5542 break;
5543 }
241994ed 5544
2529bb3a 5545 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5546 return nbytes;
5547}
5548
5549static int memory_events_show(struct seq_file *m, void *v)
5550{
aa9694bb 5551 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 5552
e27be240
JW
5553 seq_printf(m, "low %lu\n",
5554 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5555 seq_printf(m, "high %lu\n",
5556 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5557 seq_printf(m, "max %lu\n",
5558 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5559 seq_printf(m, "oom %lu\n",
5560 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
fe6bdfc8
RG
5561 seq_printf(m, "oom_kill %lu\n",
5562 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
241994ed
JW
5563
5564 return 0;
5565}
5566
587d9f72
JW
5567static int memory_stat_show(struct seq_file *m, void *v)
5568{
aa9694bb 5569 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
871789d4 5570 struct accumulated_vmstats acc;
587d9f72
JW
5571 int i;
5572
5573 /*
5574 * Provide statistics on the state of the memory subsystem as
5575 * well as cumulative event counters that show past behavior.
5576 *
5577 * This list is ordered following a combination of these gradients:
5578 * 1) generic big picture -> specifics and details
5579 * 2) reflecting userspace activity -> reflecting kernel heuristics
5580 *
5581 * Current memory state:
5582 */
5583
8de7ecc6 5584 memset(&acc, 0, sizeof(acc));
871789d4
CD
5585 acc.vmstats_size = MEMCG_NR_STAT;
5586 acc.vmevents_size = NR_VM_EVENT_ITEMS;
5587 accumulate_vmstats(memcg, &acc);
72b54e73 5588
587d9f72 5589 seq_printf(m, "anon %llu\n",
871789d4 5590 (u64)acc.vmstats[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5591 seq_printf(m, "file %llu\n",
871789d4 5592 (u64)acc.vmstats[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5593 seq_printf(m, "kernel_stack %llu\n",
871789d4 5594 (u64)acc.vmstats[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5595 seq_printf(m, "slab %llu\n",
871789d4
CD
5596 (u64)(acc.vmstats[NR_SLAB_RECLAIMABLE] +
5597 acc.vmstats[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5598 seq_printf(m, "sock %llu\n",
871789d4 5599 (u64)acc.vmstats[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5600
9a4caf1e 5601 seq_printf(m, "shmem %llu\n",
871789d4 5602 (u64)acc.vmstats[NR_SHMEM] * PAGE_SIZE);
587d9f72 5603 seq_printf(m, "file_mapped %llu\n",
871789d4 5604 (u64)acc.vmstats[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5605 seq_printf(m, "file_dirty %llu\n",
871789d4 5606 (u64)acc.vmstats[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5607 seq_printf(m, "file_writeback %llu\n",
871789d4 5608 (u64)acc.vmstats[NR_WRITEBACK] * PAGE_SIZE);
587d9f72 5609
1ff9e6e1
CD
5610 /*
5611 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
5612 * with the NR_ANON_THP vm counter, but right now it's a pain in the
5613 * arse because it requires migrating the work out of rmap to a place
5614 * where the page->mem_cgroup is set up and stable.
5615 */
5616 seq_printf(m, "anon_thp %llu\n",
871789d4 5617 (u64)acc.vmstats[MEMCG_RSS_HUGE] * PAGE_SIZE);
1ff9e6e1 5618
8de7ecc6
SB
5619 for (i = 0; i < NR_LRU_LISTS; i++)
5620 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5621 (u64)acc.lru_pages[i] * PAGE_SIZE);
587d9f72 5622
27ee57c9 5623 seq_printf(m, "slab_reclaimable %llu\n",
871789d4 5624 (u64)acc.vmstats[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5625 seq_printf(m, "slab_unreclaimable %llu\n",
871789d4 5626 (u64)acc.vmstats[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5627
587d9f72
JW
5628 /* Accumulated memory events */
5629
871789d4
CD
5630 seq_printf(m, "pgfault %lu\n", acc.vmevents[PGFAULT]);
5631 seq_printf(m, "pgmajfault %lu\n", acc.vmevents[PGMAJFAULT]);
587d9f72 5632
e9b257ed 5633 seq_printf(m, "workingset_refault %lu\n",
871789d4 5634 acc.vmstats[WORKINGSET_REFAULT]);
e9b257ed 5635 seq_printf(m, "workingset_activate %lu\n",
871789d4 5636 acc.vmstats[WORKINGSET_ACTIVATE]);
e9b257ed 5637 seq_printf(m, "workingset_nodereclaim %lu\n",
871789d4
CD
5638 acc.vmstats[WORKINGSET_NODERECLAIM]);
5639
5640 seq_printf(m, "pgrefill %lu\n", acc.vmevents[PGREFILL]);
5641 seq_printf(m, "pgscan %lu\n", acc.vmevents[PGSCAN_KSWAPD] +
5642 acc.vmevents[PGSCAN_DIRECT]);
5643 seq_printf(m, "pgsteal %lu\n", acc.vmevents[PGSTEAL_KSWAPD] +
5644 acc.vmevents[PGSTEAL_DIRECT]);
5645 seq_printf(m, "pgactivate %lu\n", acc.vmevents[PGACTIVATE]);
5646 seq_printf(m, "pgdeactivate %lu\n", acc.vmevents[PGDEACTIVATE]);
5647 seq_printf(m, "pglazyfree %lu\n", acc.vmevents[PGLAZYFREE]);
5648 seq_printf(m, "pglazyfreed %lu\n", acc.vmevents[PGLAZYFREED]);
2262185c 5649
1ff9e6e1 5650#ifdef CONFIG_TRANSPARENT_HUGEPAGE
871789d4 5651 seq_printf(m, "thp_fault_alloc %lu\n", acc.vmevents[THP_FAULT_ALLOC]);
1ff9e6e1 5652 seq_printf(m, "thp_collapse_alloc %lu\n",
871789d4 5653 acc.vmevents[THP_COLLAPSE_ALLOC]);
1ff9e6e1
CD
5654#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
5655
587d9f72
JW
5656 return 0;
5657}
5658
3d8b38eb
RG
5659static int memory_oom_group_show(struct seq_file *m, void *v)
5660{
aa9694bb 5661 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
5662
5663 seq_printf(m, "%d\n", memcg->oom_group);
5664
5665 return 0;
5666}
5667
5668static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5669 char *buf, size_t nbytes, loff_t off)
5670{
5671 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5672 int ret, oom_group;
5673
5674 buf = strstrip(buf);
5675 if (!buf)
5676 return -EINVAL;
5677
5678 ret = kstrtoint(buf, 0, &oom_group);
5679 if (ret)
5680 return ret;
5681
5682 if (oom_group != 0 && oom_group != 1)
5683 return -EINVAL;
5684
5685 memcg->oom_group = oom_group;
5686
5687 return nbytes;
5688}
5689
241994ed
JW
5690static struct cftype memory_files[] = {
5691 {
5692 .name = "current",
f5fc3c5d 5693 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5694 .read_u64 = memory_current_read,
5695 },
bf8d5d52
RG
5696 {
5697 .name = "min",
5698 .flags = CFTYPE_NOT_ON_ROOT,
5699 .seq_show = memory_min_show,
5700 .write = memory_min_write,
5701 },
241994ed
JW
5702 {
5703 .name = "low",
5704 .flags = CFTYPE_NOT_ON_ROOT,
5705 .seq_show = memory_low_show,
5706 .write = memory_low_write,
5707 },
5708 {
5709 .name = "high",
5710 .flags = CFTYPE_NOT_ON_ROOT,
5711 .seq_show = memory_high_show,
5712 .write = memory_high_write,
5713 },
5714 {
5715 .name = "max",
5716 .flags = CFTYPE_NOT_ON_ROOT,
5717 .seq_show = memory_max_show,
5718 .write = memory_max_write,
5719 },
5720 {
5721 .name = "events",
5722 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5723 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5724 .seq_show = memory_events_show,
5725 },
587d9f72
JW
5726 {
5727 .name = "stat",
5728 .flags = CFTYPE_NOT_ON_ROOT,
5729 .seq_show = memory_stat_show,
5730 },
3d8b38eb
RG
5731 {
5732 .name = "oom.group",
5733 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5734 .seq_show = memory_oom_group_show,
5735 .write = memory_oom_group_write,
5736 },
241994ed
JW
5737 { } /* terminate */
5738};
5739
073219e9 5740struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5741 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5742 .css_online = mem_cgroup_css_online,
92fb9748 5743 .css_offline = mem_cgroup_css_offline,
6df38689 5744 .css_released = mem_cgroup_css_released,
92fb9748 5745 .css_free = mem_cgroup_css_free,
1ced953b 5746 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5747 .can_attach = mem_cgroup_can_attach,
5748 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5749 .post_attach = mem_cgroup_move_task,
f00baae7 5750 .bind = mem_cgroup_bind,
241994ed
JW
5751 .dfl_cftypes = memory_files,
5752 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5753 .early_init = 0,
8cdea7c0 5754};
c077719b 5755
241994ed 5756/**
bf8d5d52 5757 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 5758 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5759 * @memcg: the memory cgroup to check
5760 *
23067153
RG
5761 * WARNING: This function is not stateless! It can only be used as part
5762 * of a top-down tree iteration, not for isolated queries.
34c81057 5763 *
bf8d5d52
RG
5764 * Returns one of the following:
5765 * MEMCG_PROT_NONE: cgroup memory is not protected
5766 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5767 * an unprotected supply of reclaimable memory from other cgroups.
5768 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 5769 *
bf8d5d52 5770 * @root is exclusive; it is never protected when looked at directly
34c81057 5771 *
bf8d5d52
RG
5772 * To provide a proper hierarchical behavior, effective memory.min/low values
5773 * are used. Below is the description of how effective memory.low is calculated.
5774 * Effective memory.min values is calculated in the same way.
34c81057 5775 *
23067153
RG
5776 * Effective memory.low is always equal or less than the original memory.low.
5777 * If there is no memory.low overcommittment (which is always true for
5778 * top-level memory cgroups), these two values are equal.
5779 * Otherwise, it's a part of parent's effective memory.low,
5780 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5781 * memory.low usages, where memory.low usage is the size of actually
5782 * protected memory.
34c81057 5783 *
23067153
RG
5784 * low_usage
5785 * elow = min( memory.low, parent->elow * ------------------ ),
5786 * siblings_low_usage
34c81057 5787 *
23067153
RG
5788 * | memory.current, if memory.current < memory.low
5789 * low_usage = |
82ede7ee 5790 * | 0, otherwise.
34c81057 5791 *
23067153
RG
5792 *
5793 * Such definition of the effective memory.low provides the expected
5794 * hierarchical behavior: parent's memory.low value is limiting
5795 * children, unprotected memory is reclaimed first and cgroups,
5796 * which are not using their guarantee do not affect actual memory
5797 * distribution.
5798 *
5799 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5800 *
5801 * A A/memory.low = 2G, A/memory.current = 6G
5802 * //\\
5803 * BC DE B/memory.low = 3G B/memory.current = 2G
5804 * C/memory.low = 1G C/memory.current = 2G
5805 * D/memory.low = 0 D/memory.current = 2G
5806 * E/memory.low = 10G E/memory.current = 0
5807 *
5808 * and the memory pressure is applied, the following memory distribution
5809 * is expected (approximately):
5810 *
5811 * A/memory.current = 2G
5812 *
5813 * B/memory.current = 1.3G
5814 * C/memory.current = 0.6G
5815 * D/memory.current = 0
5816 * E/memory.current = 0
5817 *
5818 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
5819 * (see propagate_protected_usage()), as well as recursive calculation of
5820 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
5821 * path for each memory cgroup top-down from the reclaim,
5822 * it's possible to optimize this part, and save calculated elow
5823 * for next usage. This part is intentionally racy, but it's ok,
5824 * as memory.low is a best-effort mechanism.
241994ed 5825 */
bf8d5d52
RG
5826enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5827 struct mem_cgroup *memcg)
241994ed 5828{
23067153 5829 struct mem_cgroup *parent;
bf8d5d52
RG
5830 unsigned long emin, parent_emin;
5831 unsigned long elow, parent_elow;
5832 unsigned long usage;
23067153 5833
241994ed 5834 if (mem_cgroup_disabled())
bf8d5d52 5835 return MEMCG_PROT_NONE;
241994ed 5836
34c81057
SC
5837 if (!root)
5838 root = root_mem_cgroup;
5839 if (memcg == root)
bf8d5d52 5840 return MEMCG_PROT_NONE;
241994ed 5841
23067153 5842 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
5843 if (!usage)
5844 return MEMCG_PROT_NONE;
5845
5846 emin = memcg->memory.min;
5847 elow = memcg->memory.low;
34c81057 5848
bf8d5d52 5849 parent = parent_mem_cgroup(memcg);
df2a4196
RG
5850 /* No parent means a non-hierarchical mode on v1 memcg */
5851 if (!parent)
5852 return MEMCG_PROT_NONE;
5853
23067153
RG
5854 if (parent == root)
5855 goto exit;
5856
bf8d5d52
RG
5857 parent_emin = READ_ONCE(parent->memory.emin);
5858 emin = min(emin, parent_emin);
5859 if (emin && parent_emin) {
5860 unsigned long min_usage, siblings_min_usage;
5861
5862 min_usage = min(usage, memcg->memory.min);
5863 siblings_min_usage = atomic_long_read(
5864 &parent->memory.children_min_usage);
5865
5866 if (min_usage && siblings_min_usage)
5867 emin = min(emin, parent_emin * min_usage /
5868 siblings_min_usage);
5869 }
5870
23067153
RG
5871 parent_elow = READ_ONCE(parent->memory.elow);
5872 elow = min(elow, parent_elow);
bf8d5d52
RG
5873 if (elow && parent_elow) {
5874 unsigned long low_usage, siblings_low_usage;
23067153 5875
bf8d5d52
RG
5876 low_usage = min(usage, memcg->memory.low);
5877 siblings_low_usage = atomic_long_read(
5878 &parent->memory.children_low_usage);
23067153 5879
bf8d5d52
RG
5880 if (low_usage && siblings_low_usage)
5881 elow = min(elow, parent_elow * low_usage /
5882 siblings_low_usage);
5883 }
23067153 5884
23067153 5885exit:
bf8d5d52 5886 memcg->memory.emin = emin;
23067153 5887 memcg->memory.elow = elow;
bf8d5d52
RG
5888
5889 if (usage <= emin)
5890 return MEMCG_PROT_MIN;
5891 else if (usage <= elow)
5892 return MEMCG_PROT_LOW;
5893 else
5894 return MEMCG_PROT_NONE;
241994ed
JW
5895}
5896
00501b53
JW
5897/**
5898 * mem_cgroup_try_charge - try charging a page
5899 * @page: page to charge
5900 * @mm: mm context of the victim
5901 * @gfp_mask: reclaim mode
5902 * @memcgp: charged memcg return
25843c2b 5903 * @compound: charge the page as compound or small page
00501b53
JW
5904 *
5905 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5906 * pages according to @gfp_mask if necessary.
5907 *
5908 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5909 * Otherwise, an error code is returned.
5910 *
5911 * After page->mapping has been set up, the caller must finalize the
5912 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5913 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5914 */
5915int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5916 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5917 bool compound)
00501b53
JW
5918{
5919 struct mem_cgroup *memcg = NULL;
f627c2f5 5920 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5921 int ret = 0;
5922
5923 if (mem_cgroup_disabled())
5924 goto out;
5925
5926 if (PageSwapCache(page)) {
00501b53
JW
5927 /*
5928 * Every swap fault against a single page tries to charge the
5929 * page, bail as early as possible. shmem_unuse() encounters
5930 * already charged pages, too. The USED bit is protected by
5931 * the page lock, which serializes swap cache removal, which
5932 * in turn serializes uncharging.
5933 */
e993d905 5934 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 5935 if (compound_head(page)->mem_cgroup)
00501b53 5936 goto out;
e993d905 5937
37e84351 5938 if (do_swap_account) {
e993d905
VD
5939 swp_entry_t ent = { .val = page_private(page), };
5940 unsigned short id = lookup_swap_cgroup_id(ent);
5941
5942 rcu_read_lock();
5943 memcg = mem_cgroup_from_id(id);
5944 if (memcg && !css_tryget_online(&memcg->css))
5945 memcg = NULL;
5946 rcu_read_unlock();
5947 }
00501b53
JW
5948 }
5949
00501b53
JW
5950 if (!memcg)
5951 memcg = get_mem_cgroup_from_mm(mm);
5952
5953 ret = try_charge(memcg, gfp_mask, nr_pages);
5954
5955 css_put(&memcg->css);
00501b53
JW
5956out:
5957 *memcgp = memcg;
5958 return ret;
5959}
5960
2cf85583
TH
5961int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5962 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5963 bool compound)
5964{
5965 struct mem_cgroup *memcg;
5966 int ret;
5967
5968 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5969 memcg = *memcgp;
5970 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5971 return ret;
5972}
5973
00501b53
JW
5974/**
5975 * mem_cgroup_commit_charge - commit a page charge
5976 * @page: page to charge
5977 * @memcg: memcg to charge the page to
5978 * @lrucare: page might be on LRU already
25843c2b 5979 * @compound: charge the page as compound or small page
00501b53
JW
5980 *
5981 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5982 * after page->mapping has been set up. This must happen atomically
5983 * as part of the page instantiation, i.e. under the page table lock
5984 * for anonymous pages, under the page lock for page and swap cache.
5985 *
5986 * In addition, the page must not be on the LRU during the commit, to
5987 * prevent racing with task migration. If it might be, use @lrucare.
5988 *
5989 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5990 */
5991void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5992 bool lrucare, bool compound)
00501b53 5993{
f627c2f5 5994 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5995
5996 VM_BUG_ON_PAGE(!page->mapping, page);
5997 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5998
5999 if (mem_cgroup_disabled())
6000 return;
6001 /*
6002 * Swap faults will attempt to charge the same page multiple
6003 * times. But reuse_swap_page() might have removed the page
6004 * from swapcache already, so we can't check PageSwapCache().
6005 */
6006 if (!memcg)
6007 return;
6008
6abb5a86
JW
6009 commit_charge(page, memcg, lrucare);
6010
6abb5a86 6011 local_irq_disable();
f627c2f5 6012 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6013 memcg_check_events(memcg, page);
6014 local_irq_enable();
00501b53 6015
7941d214 6016 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6017 swp_entry_t entry = { .val = page_private(page) };
6018 /*
6019 * The swap entry might not get freed for a long time,
6020 * let's not wait for it. The page already received a
6021 * memory+swap charge, drop the swap entry duplicate.
6022 */
38d8b4e6 6023 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6024 }
6025}
6026
6027/**
6028 * mem_cgroup_cancel_charge - cancel a page charge
6029 * @page: page to charge
6030 * @memcg: memcg to charge the page to
25843c2b 6031 * @compound: charge the page as compound or small page
00501b53
JW
6032 *
6033 * Cancel a charge transaction started by mem_cgroup_try_charge().
6034 */
f627c2f5
KS
6035void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6036 bool compound)
00501b53 6037{
f627c2f5 6038 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6039
6040 if (mem_cgroup_disabled())
6041 return;
6042 /*
6043 * Swap faults will attempt to charge the same page multiple
6044 * times. But reuse_swap_page() might have removed the page
6045 * from swapcache already, so we can't check PageSwapCache().
6046 */
6047 if (!memcg)
6048 return;
6049
00501b53
JW
6050 cancel_charge(memcg, nr_pages);
6051}
6052
a9d5adee
JG
6053struct uncharge_gather {
6054 struct mem_cgroup *memcg;
6055 unsigned long pgpgout;
6056 unsigned long nr_anon;
6057 unsigned long nr_file;
6058 unsigned long nr_kmem;
6059 unsigned long nr_huge;
6060 unsigned long nr_shmem;
6061 struct page *dummy_page;
6062};
6063
6064static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6065{
a9d5adee
JG
6066 memset(ug, 0, sizeof(*ug));
6067}
6068
6069static void uncharge_batch(const struct uncharge_gather *ug)
6070{
6071 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6072 unsigned long flags;
6073
a9d5adee
JG
6074 if (!mem_cgroup_is_root(ug->memcg)) {
6075 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6076 if (do_memsw_account())
a9d5adee
JG
6077 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6078 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6079 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6080 memcg_oom_recover(ug->memcg);
ce00a967 6081 }
747db954
JW
6082
6083 local_irq_save(flags);
c9019e9b
JW
6084 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6085 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6086 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6087 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6088 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6089 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6090 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6091 local_irq_restore(flags);
e8ea14cc 6092
a9d5adee
JG
6093 if (!mem_cgroup_is_root(ug->memcg))
6094 css_put_many(&ug->memcg->css, nr_pages);
6095}
6096
6097static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6098{
6099 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6100 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6101 !PageHWPoison(page) , page);
a9d5adee
JG
6102
6103 if (!page->mem_cgroup)
6104 return;
6105
6106 /*
6107 * Nobody should be changing or seriously looking at
6108 * page->mem_cgroup at this point, we have fully
6109 * exclusive access to the page.
6110 */
6111
6112 if (ug->memcg != page->mem_cgroup) {
6113 if (ug->memcg) {
6114 uncharge_batch(ug);
6115 uncharge_gather_clear(ug);
6116 }
6117 ug->memcg = page->mem_cgroup;
6118 }
6119
6120 if (!PageKmemcg(page)) {
6121 unsigned int nr_pages = 1;
6122
6123 if (PageTransHuge(page)) {
6124 nr_pages <<= compound_order(page);
6125 ug->nr_huge += nr_pages;
6126 }
6127 if (PageAnon(page))
6128 ug->nr_anon += nr_pages;
6129 else {
6130 ug->nr_file += nr_pages;
6131 if (PageSwapBacked(page))
6132 ug->nr_shmem += nr_pages;
6133 }
6134 ug->pgpgout++;
6135 } else {
6136 ug->nr_kmem += 1 << compound_order(page);
6137 __ClearPageKmemcg(page);
6138 }
6139
6140 ug->dummy_page = page;
6141 page->mem_cgroup = NULL;
747db954
JW
6142}
6143
6144static void uncharge_list(struct list_head *page_list)
6145{
a9d5adee 6146 struct uncharge_gather ug;
747db954 6147 struct list_head *next;
a9d5adee
JG
6148
6149 uncharge_gather_clear(&ug);
747db954 6150
8b592656
JW
6151 /*
6152 * Note that the list can be a single page->lru; hence the
6153 * do-while loop instead of a simple list_for_each_entry().
6154 */
747db954
JW
6155 next = page_list->next;
6156 do {
a9d5adee
JG
6157 struct page *page;
6158
747db954
JW
6159 page = list_entry(next, struct page, lru);
6160 next = page->lru.next;
6161
a9d5adee 6162 uncharge_page(page, &ug);
747db954
JW
6163 } while (next != page_list);
6164
a9d5adee
JG
6165 if (ug.memcg)
6166 uncharge_batch(&ug);
747db954
JW
6167}
6168
0a31bc97
JW
6169/**
6170 * mem_cgroup_uncharge - uncharge a page
6171 * @page: page to uncharge
6172 *
6173 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6174 * mem_cgroup_commit_charge().
6175 */
6176void mem_cgroup_uncharge(struct page *page)
6177{
a9d5adee
JG
6178 struct uncharge_gather ug;
6179
0a31bc97
JW
6180 if (mem_cgroup_disabled())
6181 return;
6182
747db954 6183 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6184 if (!page->mem_cgroup)
0a31bc97
JW
6185 return;
6186
a9d5adee
JG
6187 uncharge_gather_clear(&ug);
6188 uncharge_page(page, &ug);
6189 uncharge_batch(&ug);
747db954 6190}
0a31bc97 6191
747db954
JW
6192/**
6193 * mem_cgroup_uncharge_list - uncharge a list of page
6194 * @page_list: list of pages to uncharge
6195 *
6196 * Uncharge a list of pages previously charged with
6197 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6198 */
6199void mem_cgroup_uncharge_list(struct list_head *page_list)
6200{
6201 if (mem_cgroup_disabled())
6202 return;
0a31bc97 6203
747db954
JW
6204 if (!list_empty(page_list))
6205 uncharge_list(page_list);
0a31bc97
JW
6206}
6207
6208/**
6a93ca8f
JW
6209 * mem_cgroup_migrate - charge a page's replacement
6210 * @oldpage: currently circulating page
6211 * @newpage: replacement page
0a31bc97 6212 *
6a93ca8f
JW
6213 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6214 * be uncharged upon free.
0a31bc97
JW
6215 *
6216 * Both pages must be locked, @newpage->mapping must be set up.
6217 */
6a93ca8f 6218void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6219{
29833315 6220 struct mem_cgroup *memcg;
44b7a8d3
JW
6221 unsigned int nr_pages;
6222 bool compound;
d93c4130 6223 unsigned long flags;
0a31bc97
JW
6224
6225 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6226 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6227 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6228 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6229 newpage);
0a31bc97
JW
6230
6231 if (mem_cgroup_disabled())
6232 return;
6233
6234 /* Page cache replacement: new page already charged? */
1306a85a 6235 if (newpage->mem_cgroup)
0a31bc97
JW
6236 return;
6237
45637bab 6238 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6239 memcg = oldpage->mem_cgroup;
29833315 6240 if (!memcg)
0a31bc97
JW
6241 return;
6242
44b7a8d3
JW
6243 /* Force-charge the new page. The old one will be freed soon */
6244 compound = PageTransHuge(newpage);
6245 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6246
6247 page_counter_charge(&memcg->memory, nr_pages);
6248 if (do_memsw_account())
6249 page_counter_charge(&memcg->memsw, nr_pages);
6250 css_get_many(&memcg->css, nr_pages);
0a31bc97 6251
9cf7666a 6252 commit_charge(newpage, memcg, false);
44b7a8d3 6253
d93c4130 6254 local_irq_save(flags);
44b7a8d3
JW
6255 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6256 memcg_check_events(memcg, newpage);
d93c4130 6257 local_irq_restore(flags);
0a31bc97
JW
6258}
6259
ef12947c 6260DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6261EXPORT_SYMBOL(memcg_sockets_enabled_key);
6262
2d758073 6263void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6264{
6265 struct mem_cgroup *memcg;
6266
2d758073
JW
6267 if (!mem_cgroup_sockets_enabled)
6268 return;
6269
edbe69ef
RG
6270 /*
6271 * Socket cloning can throw us here with sk_memcg already
6272 * filled. It won't however, necessarily happen from
6273 * process context. So the test for root memcg given
6274 * the current task's memcg won't help us in this case.
6275 *
6276 * Respecting the original socket's memcg is a better
6277 * decision in this case.
6278 */
6279 if (sk->sk_memcg) {
6280 css_get(&sk->sk_memcg->css);
6281 return;
6282 }
6283
11092087
JW
6284 rcu_read_lock();
6285 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6286 if (memcg == root_mem_cgroup)
6287 goto out;
0db15298 6288 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6289 goto out;
f7e1cb6e 6290 if (css_tryget_online(&memcg->css))
11092087 6291 sk->sk_memcg = memcg;
f7e1cb6e 6292out:
11092087
JW
6293 rcu_read_unlock();
6294}
11092087 6295
2d758073 6296void mem_cgroup_sk_free(struct sock *sk)
11092087 6297{
2d758073
JW
6298 if (sk->sk_memcg)
6299 css_put(&sk->sk_memcg->css);
11092087
JW
6300}
6301
6302/**
6303 * mem_cgroup_charge_skmem - charge socket memory
6304 * @memcg: memcg to charge
6305 * @nr_pages: number of pages to charge
6306 *
6307 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6308 * @memcg's configured limit, %false if the charge had to be forced.
6309 */
6310bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6311{
f7e1cb6e 6312 gfp_t gfp_mask = GFP_KERNEL;
11092087 6313
f7e1cb6e 6314 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6315 struct page_counter *fail;
f7e1cb6e 6316
0db15298
JW
6317 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6318 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6319 return true;
6320 }
0db15298
JW
6321 page_counter_charge(&memcg->tcpmem, nr_pages);
6322 memcg->tcpmem_pressure = 1;
f7e1cb6e 6323 return false;
11092087 6324 }
d886f4e4 6325
f7e1cb6e
JW
6326 /* Don't block in the packet receive path */
6327 if (in_softirq())
6328 gfp_mask = GFP_NOWAIT;
6329
c9019e9b 6330 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6331
f7e1cb6e
JW
6332 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6333 return true;
6334
6335 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6336 return false;
6337}
6338
6339/**
6340 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6341 * @memcg: memcg to uncharge
6342 * @nr_pages: number of pages to uncharge
11092087
JW
6343 */
6344void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6345{
f7e1cb6e 6346 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6347 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6348 return;
6349 }
d886f4e4 6350
c9019e9b 6351 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6352
475d0487 6353 refill_stock(memcg, nr_pages);
11092087
JW
6354}
6355
f7e1cb6e
JW
6356static int __init cgroup_memory(char *s)
6357{
6358 char *token;
6359
6360 while ((token = strsep(&s, ",")) != NULL) {
6361 if (!*token)
6362 continue;
6363 if (!strcmp(token, "nosocket"))
6364 cgroup_memory_nosocket = true;
04823c83
VD
6365 if (!strcmp(token, "nokmem"))
6366 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6367 }
6368 return 0;
6369}
6370__setup("cgroup.memory=", cgroup_memory);
11092087 6371
2d11085e 6372/*
1081312f
MH
6373 * subsys_initcall() for memory controller.
6374 *
308167fc
SAS
6375 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6376 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6377 * basically everything that doesn't depend on a specific mem_cgroup structure
6378 * should be initialized from here.
2d11085e
MH
6379 */
6380static int __init mem_cgroup_init(void)
6381{
95a045f6
JW
6382 int cpu, node;
6383
84c07d11 6384#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6385 /*
6386 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6387 * so use a workqueue with limited concurrency to avoid stalling
6388 * all worker threads in case lots of cgroups are created and
6389 * destroyed simultaneously.
13583c3d 6390 */
17cc4dfe
TH
6391 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6392 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6393#endif
6394
308167fc
SAS
6395 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6396 memcg_hotplug_cpu_dead);
95a045f6
JW
6397
6398 for_each_possible_cpu(cpu)
6399 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6400 drain_local_stock);
6401
6402 for_each_node(node) {
6403 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6404
6405 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6406 node_online(node) ? node : NUMA_NO_NODE);
6407
ef8f2327 6408 rtpn->rb_root = RB_ROOT;
fa90b2fd 6409 rtpn->rb_rightmost = NULL;
ef8f2327 6410 spin_lock_init(&rtpn->lock);
95a045f6
JW
6411 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6412 }
6413
2d11085e
MH
6414 return 0;
6415}
6416subsys_initcall(mem_cgroup_init);
21afa38e
JW
6417
6418#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6419static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6420{
1c2d479a 6421 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6422 /*
6423 * The root cgroup cannot be destroyed, so it's refcount must
6424 * always be >= 1.
6425 */
6426 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6427 VM_BUG_ON(1);
6428 break;
6429 }
6430 memcg = parent_mem_cgroup(memcg);
6431 if (!memcg)
6432 memcg = root_mem_cgroup;
6433 }
6434 return memcg;
6435}
6436
21afa38e
JW
6437/**
6438 * mem_cgroup_swapout - transfer a memsw charge to swap
6439 * @page: page whose memsw charge to transfer
6440 * @entry: swap entry to move the charge to
6441 *
6442 * Transfer the memsw charge of @page to @entry.
6443 */
6444void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6445{
1f47b61f 6446 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6447 unsigned int nr_entries;
21afa38e
JW
6448 unsigned short oldid;
6449
6450 VM_BUG_ON_PAGE(PageLRU(page), page);
6451 VM_BUG_ON_PAGE(page_count(page), page);
6452
7941d214 6453 if (!do_memsw_account())
21afa38e
JW
6454 return;
6455
6456 memcg = page->mem_cgroup;
6457
6458 /* Readahead page, never charged */
6459 if (!memcg)
6460 return;
6461
1f47b61f
VD
6462 /*
6463 * In case the memcg owning these pages has been offlined and doesn't
6464 * have an ID allocated to it anymore, charge the closest online
6465 * ancestor for the swap instead and transfer the memory+swap charge.
6466 */
6467 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6468 nr_entries = hpage_nr_pages(page);
6469 /* Get references for the tail pages, too */
6470 if (nr_entries > 1)
6471 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6472 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6473 nr_entries);
21afa38e 6474 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6475 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6476
6477 page->mem_cgroup = NULL;
6478
6479 if (!mem_cgroup_is_root(memcg))
d6810d73 6480 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6481
1f47b61f
VD
6482 if (memcg != swap_memcg) {
6483 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6484 page_counter_charge(&swap_memcg->memsw, nr_entries);
6485 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6486 }
6487
ce9ce665
SAS
6488 /*
6489 * Interrupts should be disabled here because the caller holds the
b93b0163 6490 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6491 * important here to have the interrupts disabled because it is the
b93b0163 6492 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6493 */
6494 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6495 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6496 -nr_entries);
21afa38e 6497 memcg_check_events(memcg, page);
73f576c0
JW
6498
6499 if (!mem_cgroup_is_root(memcg))
d08afa14 6500 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6501}
6502
38d8b4e6
HY
6503/**
6504 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6505 * @page: page being added to swap
6506 * @entry: swap entry to charge
6507 *
38d8b4e6 6508 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6509 *
6510 * Returns 0 on success, -ENOMEM on failure.
6511 */
6512int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6513{
38d8b4e6 6514 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6515 struct page_counter *counter;
38d8b4e6 6516 struct mem_cgroup *memcg;
37e84351
VD
6517 unsigned short oldid;
6518
6519 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6520 return 0;
6521
6522 memcg = page->mem_cgroup;
6523
6524 /* Readahead page, never charged */
6525 if (!memcg)
6526 return 0;
6527
f3a53a3a
TH
6528 if (!entry.val) {
6529 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6530 return 0;
f3a53a3a 6531 }
bb98f2c5 6532
1f47b61f
VD
6533 memcg = mem_cgroup_id_get_online(memcg);
6534
37e84351 6535 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6536 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6537 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6538 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6539 mem_cgroup_id_put(memcg);
37e84351 6540 return -ENOMEM;
1f47b61f 6541 }
37e84351 6542
38d8b4e6
HY
6543 /* Get references for the tail pages, too */
6544 if (nr_pages > 1)
6545 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6546 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6547 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6548 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6549
37e84351
VD
6550 return 0;
6551}
6552
21afa38e 6553/**
38d8b4e6 6554 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6555 * @entry: swap entry to uncharge
38d8b4e6 6556 * @nr_pages: the amount of swap space to uncharge
21afa38e 6557 */
38d8b4e6 6558void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6559{
6560 struct mem_cgroup *memcg;
6561 unsigned short id;
6562
37e84351 6563 if (!do_swap_account)
21afa38e
JW
6564 return;
6565
38d8b4e6 6566 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6567 rcu_read_lock();
adbe427b 6568 memcg = mem_cgroup_from_id(id);
21afa38e 6569 if (memcg) {
37e84351
VD
6570 if (!mem_cgroup_is_root(memcg)) {
6571 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6572 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6573 else
38d8b4e6 6574 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6575 }
c9019e9b 6576 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6577 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6578 }
6579 rcu_read_unlock();
6580}
6581
d8b38438
VD
6582long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6583{
6584 long nr_swap_pages = get_nr_swap_pages();
6585
6586 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6587 return nr_swap_pages;
6588 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6589 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6590 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6591 page_counter_read(&memcg->swap));
6592 return nr_swap_pages;
6593}
6594
5ccc5aba
VD
6595bool mem_cgroup_swap_full(struct page *page)
6596{
6597 struct mem_cgroup *memcg;
6598
6599 VM_BUG_ON_PAGE(!PageLocked(page), page);
6600
6601 if (vm_swap_full())
6602 return true;
6603 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6604 return false;
6605
6606 memcg = page->mem_cgroup;
6607 if (!memcg)
6608 return false;
6609
6610 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6611 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6612 return true;
6613
6614 return false;
6615}
6616
21afa38e
JW
6617/* for remember boot option*/
6618#ifdef CONFIG_MEMCG_SWAP_ENABLED
6619static int really_do_swap_account __initdata = 1;
6620#else
6621static int really_do_swap_account __initdata;
6622#endif
6623
6624static int __init enable_swap_account(char *s)
6625{
6626 if (!strcmp(s, "1"))
6627 really_do_swap_account = 1;
6628 else if (!strcmp(s, "0"))
6629 really_do_swap_account = 0;
6630 return 1;
6631}
6632__setup("swapaccount=", enable_swap_account);
6633
37e84351
VD
6634static u64 swap_current_read(struct cgroup_subsys_state *css,
6635 struct cftype *cft)
6636{
6637 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6638
6639 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6640}
6641
6642static int swap_max_show(struct seq_file *m, void *v)
6643{
677dc973
CD
6644 return seq_puts_memcg_tunable(m,
6645 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
6646}
6647
6648static ssize_t swap_max_write(struct kernfs_open_file *of,
6649 char *buf, size_t nbytes, loff_t off)
6650{
6651 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6652 unsigned long max;
6653 int err;
6654
6655 buf = strstrip(buf);
6656 err = page_counter_memparse(buf, "max", &max);
6657 if (err)
6658 return err;
6659
be09102b 6660 xchg(&memcg->swap.max, max);
37e84351
VD
6661
6662 return nbytes;
6663}
6664
f3a53a3a
TH
6665static int swap_events_show(struct seq_file *m, void *v)
6666{
aa9694bb 6667 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
6668
6669 seq_printf(m, "max %lu\n",
6670 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6671 seq_printf(m, "fail %lu\n",
6672 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6673
6674 return 0;
6675}
6676
37e84351
VD
6677static struct cftype swap_files[] = {
6678 {
6679 .name = "swap.current",
6680 .flags = CFTYPE_NOT_ON_ROOT,
6681 .read_u64 = swap_current_read,
6682 },
6683 {
6684 .name = "swap.max",
6685 .flags = CFTYPE_NOT_ON_ROOT,
6686 .seq_show = swap_max_show,
6687 .write = swap_max_write,
6688 },
f3a53a3a
TH
6689 {
6690 .name = "swap.events",
6691 .flags = CFTYPE_NOT_ON_ROOT,
6692 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6693 .seq_show = swap_events_show,
6694 },
37e84351
VD
6695 { } /* terminate */
6696};
6697
21afa38e
JW
6698static struct cftype memsw_cgroup_files[] = {
6699 {
6700 .name = "memsw.usage_in_bytes",
6701 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6702 .read_u64 = mem_cgroup_read_u64,
6703 },
6704 {
6705 .name = "memsw.max_usage_in_bytes",
6706 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6707 .write = mem_cgroup_reset,
6708 .read_u64 = mem_cgroup_read_u64,
6709 },
6710 {
6711 .name = "memsw.limit_in_bytes",
6712 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6713 .write = mem_cgroup_write,
6714 .read_u64 = mem_cgroup_read_u64,
6715 },
6716 {
6717 .name = "memsw.failcnt",
6718 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6719 .write = mem_cgroup_reset,
6720 .read_u64 = mem_cgroup_read_u64,
6721 },
6722 { }, /* terminate */
6723};
6724
6725static int __init mem_cgroup_swap_init(void)
6726{
6727 if (!mem_cgroup_disabled() && really_do_swap_account) {
6728 do_swap_account = 1;
37e84351
VD
6729 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6730 swap_files));
21afa38e
JW
6731 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6732 memsw_cgroup_files));
6733 }
6734 return 0;
6735}
6736subsys_initcall(mem_cgroup_swap_init);
6737
6738#endif /* CONFIG_MEMCG_SWAP */