]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/memcontrol.c
mm/mmap: replace SHM_HUGE_MASK with MAP_HUGE_MASK inside mmap_pgoff
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
af7c4b0e
JW
103static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
b070e65c 106 "rss_huge",
9a4caf1e 107 "shmem",
af7c4b0e 108 "mapped_file",
c4843a75 109 "dirty",
3ea67d06 110 "writeback",
af7c4b0e
JW
111 "swap",
112};
113
af7c4b0e
JW
114static const char * const mem_cgroup_events_names[] = {
115 "pgpgin",
116 "pgpgout",
117 "pgfault",
118 "pgmajfault",
119};
120
58cf188e
SZ
121static const char * const mem_cgroup_lru_names[] = {
122 "inactive_anon",
123 "active_anon",
124 "inactive_file",
125 "active_file",
126 "unevictable",
127};
128
a0db00fc
KS
129#define THRESHOLDS_EVENTS_TARGET 128
130#define SOFTLIMIT_EVENTS_TARGET 1024
131#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 132
bb4cc1a8
AM
133/*
134 * Cgroups above their limits are maintained in a RB-Tree, independent of
135 * their hierarchy representation
136 */
137
ef8f2327 138struct mem_cgroup_tree_per_node {
bb4cc1a8
AM
139 struct rb_root rb_root;
140 spinlock_t lock;
141};
142
bb4cc1a8
AM
143struct mem_cgroup_tree {
144 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
145};
146
147static struct mem_cgroup_tree soft_limit_tree __read_mostly;
148
9490ff27
KH
149/* for OOM */
150struct mem_cgroup_eventfd_list {
151 struct list_head list;
152 struct eventfd_ctx *eventfd;
153};
2e72b634 154
79bd9814
TH
155/*
156 * cgroup_event represents events which userspace want to receive.
157 */
3bc942f3 158struct mem_cgroup_event {
79bd9814 159 /*
59b6f873 160 * memcg which the event belongs to.
79bd9814 161 */
59b6f873 162 struct mem_cgroup *memcg;
79bd9814
TH
163 /*
164 * eventfd to signal userspace about the event.
165 */
166 struct eventfd_ctx *eventfd;
167 /*
168 * Each of these stored in a list by the cgroup.
169 */
170 struct list_head list;
fba94807
TH
171 /*
172 * register_event() callback will be used to add new userspace
173 * waiter for changes related to this event. Use eventfd_signal()
174 * on eventfd to send notification to userspace.
175 */
59b6f873 176 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 177 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
178 /*
179 * unregister_event() callback will be called when userspace closes
180 * the eventfd or on cgroup removing. This callback must be set,
181 * if you want provide notification functionality.
182 */
59b6f873 183 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 184 struct eventfd_ctx *eventfd);
79bd9814
TH
185 /*
186 * All fields below needed to unregister event when
187 * userspace closes eventfd.
188 */
189 poll_table pt;
190 wait_queue_head_t *wqh;
191 wait_queue_t wait;
192 struct work_struct remove;
193};
194
c0ff4b85
R
195static void mem_cgroup_threshold(struct mem_cgroup *memcg);
196static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 197
7dc74be0
DN
198/* Stuffs for move charges at task migration. */
199/*
1dfab5ab 200 * Types of charges to be moved.
7dc74be0 201 */
1dfab5ab
JW
202#define MOVE_ANON 0x1U
203#define MOVE_FILE 0x2U
204#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 205
4ffef5fe
DN
206/* "mc" and its members are protected by cgroup_mutex */
207static struct move_charge_struct {
b1dd693e 208 spinlock_t lock; /* for from, to */
264a0ae1 209 struct mm_struct *mm;
4ffef5fe
DN
210 struct mem_cgroup *from;
211 struct mem_cgroup *to;
1dfab5ab 212 unsigned long flags;
4ffef5fe 213 unsigned long precharge;
854ffa8d 214 unsigned long moved_charge;
483c30b5 215 unsigned long moved_swap;
8033b97c
DN
216 struct task_struct *moving_task; /* a task moving charges */
217 wait_queue_head_t waitq; /* a waitq for other context */
218} mc = {
2bd9bb20 219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221};
4ffef5fe 222
4e416953
BS
223/*
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
226 */
a0db00fc 227#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 228#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 229
217bc319
KH
230enum charge_type {
231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 232 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
235 NR_CHARGE_TYPE,
236};
237
8c7c6e34 238/* for encoding cft->private value on file */
86ae53e1
GC
239enum res_type {
240 _MEM,
241 _MEMSWAP,
242 _OOM_TYPE,
510fc4e1 243 _KMEM,
d55f90bf 244 _TCP,
86ae53e1
GC
245};
246
a0db00fc
KS
247#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 249#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
250/* Used for OOM nofiier */
251#define OOM_CONTROL (0)
8c7c6e34 252
70ddf637
AV
253/* Some nice accessors for the vmpressure. */
254struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255{
256 if (!memcg)
257 memcg = root_mem_cgroup;
258 return &memcg->vmpressure;
259}
260
261struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262{
263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264}
265
7ffc0edc
MH
266static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267{
268 return (memcg == root_mem_cgroup);
269}
270
127424c8 271#ifndef CONFIG_SLOB
55007d84 272/*
f7ce3190 273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
274 * The main reason for not using cgroup id for this:
275 * this works better in sparse environments, where we have a lot of memcgs,
276 * but only a few kmem-limited. Or also, if we have, for instance, 200
277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
278 * 200 entry array for that.
55007d84 279 *
dbcf73e2
VD
280 * The current size of the caches array is stored in memcg_nr_cache_ids. It
281 * will double each time we have to increase it.
55007d84 282 */
dbcf73e2
VD
283static DEFINE_IDA(memcg_cache_ida);
284int memcg_nr_cache_ids;
749c5415 285
05257a1a
VD
286/* Protects memcg_nr_cache_ids */
287static DECLARE_RWSEM(memcg_cache_ids_sem);
288
289void memcg_get_cache_ids(void)
290{
291 down_read(&memcg_cache_ids_sem);
292}
293
294void memcg_put_cache_ids(void)
295{
296 up_read(&memcg_cache_ids_sem);
297}
298
55007d84
GC
299/*
300 * MIN_SIZE is different than 1, because we would like to avoid going through
301 * the alloc/free process all the time. In a small machine, 4 kmem-limited
302 * cgroups is a reasonable guess. In the future, it could be a parameter or
303 * tunable, but that is strictly not necessary.
304 *
b8627835 305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
306 * this constant directly from cgroup, but it is understandable that this is
307 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 308 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
309 * increase ours as well if it increases.
310 */
311#define MEMCG_CACHES_MIN_SIZE 4
b8627835 312#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 313
d7f25f8a
GC
314/*
315 * A lot of the calls to the cache allocation functions are expected to be
316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317 * conditional to this static branch, we'll have to allow modules that does
318 * kmem_cache_alloc and the such to see this symbol as well
319 */
ef12947c 320DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 321EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 322
17cc4dfe
TH
323struct workqueue_struct *memcg_kmem_cache_wq;
324
127424c8 325#endif /* !CONFIG_SLOB */
a8964b9b 326
ad7fa852
TH
327/**
328 * mem_cgroup_css_from_page - css of the memcg associated with a page
329 * @page: page of interest
330 *
331 * If memcg is bound to the default hierarchy, css of the memcg associated
332 * with @page is returned. The returned css remains associated with @page
333 * until it is released.
334 *
335 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
336 * is returned.
ad7fa852
TH
337 */
338struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
339{
340 struct mem_cgroup *memcg;
341
ad7fa852
TH
342 memcg = page->mem_cgroup;
343
9e10a130 344 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
345 memcg = root_mem_cgroup;
346
ad7fa852
TH
347 return &memcg->css;
348}
349
2fc04524
VD
350/**
351 * page_cgroup_ino - return inode number of the memcg a page is charged to
352 * @page: the page
353 *
354 * Look up the closest online ancestor of the memory cgroup @page is charged to
355 * and return its inode number or 0 if @page is not charged to any cgroup. It
356 * is safe to call this function without holding a reference to @page.
357 *
358 * Note, this function is inherently racy, because there is nothing to prevent
359 * the cgroup inode from getting torn down and potentially reallocated a moment
360 * after page_cgroup_ino() returns, so it only should be used by callers that
361 * do not care (such as procfs interfaces).
362 */
363ino_t page_cgroup_ino(struct page *page)
364{
365 struct mem_cgroup *memcg;
366 unsigned long ino = 0;
367
368 rcu_read_lock();
369 memcg = READ_ONCE(page->mem_cgroup);
370 while (memcg && !(memcg->css.flags & CSS_ONLINE))
371 memcg = parent_mem_cgroup(memcg);
372 if (memcg)
373 ino = cgroup_ino(memcg->css.cgroup);
374 rcu_read_unlock();
375 return ino;
376}
377
ef8f2327
MG
378static struct mem_cgroup_per_node *
379mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 380{
97a6c37b 381 int nid = page_to_nid(page);
f64c3f54 382
ef8f2327 383 return memcg->nodeinfo[nid];
f64c3f54
BS
384}
385
ef8f2327
MG
386static struct mem_cgroup_tree_per_node *
387soft_limit_tree_node(int nid)
bb4cc1a8 388{
ef8f2327 389 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
390}
391
ef8f2327 392static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
393soft_limit_tree_from_page(struct page *page)
394{
395 int nid = page_to_nid(page);
bb4cc1a8 396
ef8f2327 397 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
398}
399
ef8f2327
MG
400static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
401 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 402 unsigned long new_usage_in_excess)
bb4cc1a8
AM
403{
404 struct rb_node **p = &mctz->rb_root.rb_node;
405 struct rb_node *parent = NULL;
ef8f2327 406 struct mem_cgroup_per_node *mz_node;
bb4cc1a8
AM
407
408 if (mz->on_tree)
409 return;
410
411 mz->usage_in_excess = new_usage_in_excess;
412 if (!mz->usage_in_excess)
413 return;
414 while (*p) {
415 parent = *p;
ef8f2327 416 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8
AM
417 tree_node);
418 if (mz->usage_in_excess < mz_node->usage_in_excess)
419 p = &(*p)->rb_left;
420 /*
421 * We can't avoid mem cgroups that are over their soft
422 * limit by the same amount
423 */
424 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
425 p = &(*p)->rb_right;
426 }
427 rb_link_node(&mz->tree_node, parent, p);
428 rb_insert_color(&mz->tree_node, &mctz->rb_root);
429 mz->on_tree = true;
430}
431
ef8f2327
MG
432static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
433 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
434{
435 if (!mz->on_tree)
436 return;
437 rb_erase(&mz->tree_node, &mctz->rb_root);
438 mz->on_tree = false;
439}
440
ef8f2327
MG
441static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
442 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 443{
0a31bc97
JW
444 unsigned long flags;
445
446 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 447 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 448 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
449}
450
3e32cb2e
JW
451static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
452{
453 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 454 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
455 unsigned long excess = 0;
456
457 if (nr_pages > soft_limit)
458 excess = nr_pages - soft_limit;
459
460 return excess;
461}
bb4cc1a8
AM
462
463static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
464{
3e32cb2e 465 unsigned long excess;
ef8f2327
MG
466 struct mem_cgroup_per_node *mz;
467 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 468
e231875b 469 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
470 if (!mctz)
471 return;
bb4cc1a8
AM
472 /*
473 * Necessary to update all ancestors when hierarchy is used.
474 * because their event counter is not touched.
475 */
476 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 477 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 478 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
479 /*
480 * We have to update the tree if mz is on RB-tree or
481 * mem is over its softlimit.
482 */
483 if (excess || mz->on_tree) {
0a31bc97
JW
484 unsigned long flags;
485
486 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
487 /* if on-tree, remove it */
488 if (mz->on_tree)
cf2c8127 489 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
490 /*
491 * Insert again. mz->usage_in_excess will be updated.
492 * If excess is 0, no tree ops.
493 */
cf2c8127 494 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 495 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
496 }
497 }
498}
499
500static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
501{
ef8f2327
MG
502 struct mem_cgroup_tree_per_node *mctz;
503 struct mem_cgroup_per_node *mz;
504 int nid;
bb4cc1a8 505
e231875b 506 for_each_node(nid) {
ef8f2327
MG
507 mz = mem_cgroup_nodeinfo(memcg, nid);
508 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
509 if (mctz)
510 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
511 }
512}
513
ef8f2327
MG
514static struct mem_cgroup_per_node *
515__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
516{
517 struct rb_node *rightmost = NULL;
ef8f2327 518 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
519
520retry:
521 mz = NULL;
522 rightmost = rb_last(&mctz->rb_root);
523 if (!rightmost)
524 goto done; /* Nothing to reclaim from */
525
ef8f2327 526 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
527 /*
528 * Remove the node now but someone else can add it back,
529 * we will to add it back at the end of reclaim to its correct
530 * position in the tree.
531 */
cf2c8127 532 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 533 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 534 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
535 goto retry;
536done:
537 return mz;
538}
539
ef8f2327
MG
540static struct mem_cgroup_per_node *
541mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 542{
ef8f2327 543 struct mem_cgroup_per_node *mz;
bb4cc1a8 544
0a31bc97 545 spin_lock_irq(&mctz->lock);
bb4cc1a8 546 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 547 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
548 return mz;
549}
550
711d3d2c 551/*
484ebb3b
GT
552 * Return page count for single (non recursive) @memcg.
553 *
711d3d2c
KH
554 * Implementation Note: reading percpu statistics for memcg.
555 *
556 * Both of vmstat[] and percpu_counter has threshold and do periodic
557 * synchronization to implement "quick" read. There are trade-off between
558 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 559 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
560 *
561 * But this _read() function is used for user interface now. The user accounts
562 * memory usage by memory cgroup and he _always_ requires exact value because
563 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
564 * have to visit all online cpus and make sum. So, for now, unnecessary
565 * synchronization is not implemented. (just implemented for cpu hotplug)
566 *
567 * If there are kernel internal actions which can make use of some not-exact
568 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 569 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
570 * implemented.
571 */
484ebb3b
GT
572static unsigned long
573mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 574{
7a159cc9 575 long val = 0;
c62b1a3b 576 int cpu;
c62b1a3b 577
484ebb3b 578 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 579 for_each_possible_cpu(cpu)
c0ff4b85 580 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
581 /*
582 * Summing races with updates, so val may be negative. Avoid exposing
583 * transient negative values.
584 */
585 if (val < 0)
586 val = 0;
c62b1a3b
KH
587 return val;
588}
589
c0ff4b85 590static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
591 enum mem_cgroup_events_index idx)
592{
593 unsigned long val = 0;
594 int cpu;
595
733a572e 596 for_each_possible_cpu(cpu)
c0ff4b85 597 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
598 return val;
599}
600
c0ff4b85 601static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 602 struct page *page,
f627c2f5 603 bool compound, int nr_pages)
d52aa412 604{
b2402857
KH
605 /*
606 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
607 * counted as CACHE even if it's on ANON LRU.
608 */
0a31bc97 609 if (PageAnon(page))
b2402857 610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 611 nr_pages);
9a4caf1e 612 else {
b2402857 613 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 614 nr_pages);
9a4caf1e
JW
615 if (PageSwapBacked(page))
616 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SHMEM],
617 nr_pages);
618 }
55e462b0 619
f627c2f5
KS
620 if (compound) {
621 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
622 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
623 nr_pages);
f627c2f5 624 }
b070e65c 625
e401f176
KH
626 /* pagein of a big page is an event. So, ignore page size */
627 if (nr_pages > 0)
c0ff4b85 628 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 629 else {
c0ff4b85 630 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
631 nr_pages = -nr_pages; /* for event */
632 }
e401f176 633
13114716 634 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
635}
636
0a6b76dd
VD
637unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
638 int nid, unsigned int lru_mask)
bb2a0de9 639{
b4536f0c 640 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 641 unsigned long nr = 0;
ef8f2327 642 enum lru_list lru;
889976db 643
e231875b 644 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 645
ef8f2327
MG
646 for_each_lru(lru) {
647 if (!(BIT(lru) & lru_mask))
648 continue;
b4536f0c 649 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
650 }
651 return nr;
889976db 652}
bb2a0de9 653
c0ff4b85 654static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 655 unsigned int lru_mask)
6d12e2d8 656{
e231875b 657 unsigned long nr = 0;
889976db 658 int nid;
6d12e2d8 659
31aaea4a 660 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
661 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
662 return nr;
d52aa412
KH
663}
664
f53d7ce3
JW
665static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
666 enum mem_cgroup_events_target target)
7a159cc9
JW
667{
668 unsigned long val, next;
669
13114716 670 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 671 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 672 /* from time_after() in jiffies.h */
f53d7ce3
JW
673 if ((long)next - (long)val < 0) {
674 switch (target) {
675 case MEM_CGROUP_TARGET_THRESH:
676 next = val + THRESHOLDS_EVENTS_TARGET;
677 break;
bb4cc1a8
AM
678 case MEM_CGROUP_TARGET_SOFTLIMIT:
679 next = val + SOFTLIMIT_EVENTS_TARGET;
680 break;
f53d7ce3
JW
681 case MEM_CGROUP_TARGET_NUMAINFO:
682 next = val + NUMAINFO_EVENTS_TARGET;
683 break;
684 default:
685 break;
686 }
687 __this_cpu_write(memcg->stat->targets[target], next);
688 return true;
7a159cc9 689 }
f53d7ce3 690 return false;
d2265e6f
KH
691}
692
693/*
694 * Check events in order.
695 *
696 */
c0ff4b85 697static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
698{
699 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
700 if (unlikely(mem_cgroup_event_ratelimit(memcg,
701 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 702 bool do_softlimit;
82b3f2a7 703 bool do_numainfo __maybe_unused;
f53d7ce3 704
bb4cc1a8
AM
705 do_softlimit = mem_cgroup_event_ratelimit(memcg,
706 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
707#if MAX_NUMNODES > 1
708 do_numainfo = mem_cgroup_event_ratelimit(memcg,
709 MEM_CGROUP_TARGET_NUMAINFO);
710#endif
c0ff4b85 711 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
712 if (unlikely(do_softlimit))
713 mem_cgroup_update_tree(memcg, page);
453a9bf3 714#if MAX_NUMNODES > 1
f53d7ce3 715 if (unlikely(do_numainfo))
c0ff4b85 716 atomic_inc(&memcg->numainfo_events);
453a9bf3 717#endif
0a31bc97 718 }
d2265e6f
KH
719}
720
cf475ad2 721struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 722{
31a78f23
BS
723 /*
724 * mm_update_next_owner() may clear mm->owner to NULL
725 * if it races with swapoff, page migration, etc.
726 * So this can be called with p == NULL.
727 */
728 if (unlikely(!p))
729 return NULL;
730
073219e9 731 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 732}
33398cf2 733EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 734
df381975 735static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 736{
c0ff4b85 737 struct mem_cgroup *memcg = NULL;
0b7f569e 738
54595fe2
KH
739 rcu_read_lock();
740 do {
6f6acb00
MH
741 /*
742 * Page cache insertions can happen withou an
743 * actual mm context, e.g. during disk probing
744 * on boot, loopback IO, acct() writes etc.
745 */
746 if (unlikely(!mm))
df381975 747 memcg = root_mem_cgroup;
6f6acb00
MH
748 else {
749 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
750 if (unlikely(!memcg))
751 memcg = root_mem_cgroup;
752 }
ec903c0c 753 } while (!css_tryget_online(&memcg->css));
54595fe2 754 rcu_read_unlock();
c0ff4b85 755 return memcg;
54595fe2
KH
756}
757
5660048c
JW
758/**
759 * mem_cgroup_iter - iterate over memory cgroup hierarchy
760 * @root: hierarchy root
761 * @prev: previously returned memcg, NULL on first invocation
762 * @reclaim: cookie for shared reclaim walks, NULL for full walks
763 *
764 * Returns references to children of the hierarchy below @root, or
765 * @root itself, or %NULL after a full round-trip.
766 *
767 * Caller must pass the return value in @prev on subsequent
768 * invocations for reference counting, or use mem_cgroup_iter_break()
769 * to cancel a hierarchy walk before the round-trip is complete.
770 *
771 * Reclaimers can specify a zone and a priority level in @reclaim to
772 * divide up the memcgs in the hierarchy among all concurrent
773 * reclaimers operating on the same zone and priority.
774 */
694fbc0f 775struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 776 struct mem_cgroup *prev,
694fbc0f 777 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 778{
33398cf2 779 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 780 struct cgroup_subsys_state *css = NULL;
9f3a0d09 781 struct mem_cgroup *memcg = NULL;
5ac8fb31 782 struct mem_cgroup *pos = NULL;
711d3d2c 783
694fbc0f
AM
784 if (mem_cgroup_disabled())
785 return NULL;
5660048c 786
9f3a0d09
JW
787 if (!root)
788 root = root_mem_cgroup;
7d74b06f 789
9f3a0d09 790 if (prev && !reclaim)
5ac8fb31 791 pos = prev;
14067bb3 792
9f3a0d09
JW
793 if (!root->use_hierarchy && root != root_mem_cgroup) {
794 if (prev)
5ac8fb31 795 goto out;
694fbc0f 796 return root;
9f3a0d09 797 }
14067bb3 798
542f85f9 799 rcu_read_lock();
5f578161 800
5ac8fb31 801 if (reclaim) {
ef8f2327 802 struct mem_cgroup_per_node *mz;
5ac8fb31 803
ef8f2327 804 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
805 iter = &mz->iter[reclaim->priority];
806
807 if (prev && reclaim->generation != iter->generation)
808 goto out_unlock;
809
6df38689 810 while (1) {
4db0c3c2 811 pos = READ_ONCE(iter->position);
6df38689
VD
812 if (!pos || css_tryget(&pos->css))
813 break;
5ac8fb31 814 /*
6df38689
VD
815 * css reference reached zero, so iter->position will
816 * be cleared by ->css_released. However, we should not
817 * rely on this happening soon, because ->css_released
818 * is called from a work queue, and by busy-waiting we
819 * might block it. So we clear iter->position right
820 * away.
5ac8fb31 821 */
6df38689
VD
822 (void)cmpxchg(&iter->position, pos, NULL);
823 }
5ac8fb31
JW
824 }
825
826 if (pos)
827 css = &pos->css;
828
829 for (;;) {
830 css = css_next_descendant_pre(css, &root->css);
831 if (!css) {
832 /*
833 * Reclaimers share the hierarchy walk, and a
834 * new one might jump in right at the end of
835 * the hierarchy - make sure they see at least
836 * one group and restart from the beginning.
837 */
838 if (!prev)
839 continue;
840 break;
527a5ec9 841 }
7d74b06f 842
5ac8fb31
JW
843 /*
844 * Verify the css and acquire a reference. The root
845 * is provided by the caller, so we know it's alive
846 * and kicking, and don't take an extra reference.
847 */
848 memcg = mem_cgroup_from_css(css);
14067bb3 849
5ac8fb31
JW
850 if (css == &root->css)
851 break;
14067bb3 852
0b8f73e1
JW
853 if (css_tryget(css))
854 break;
9f3a0d09 855
5ac8fb31 856 memcg = NULL;
9f3a0d09 857 }
5ac8fb31
JW
858
859 if (reclaim) {
5ac8fb31 860 /*
6df38689
VD
861 * The position could have already been updated by a competing
862 * thread, so check that the value hasn't changed since we read
863 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 864 */
6df38689
VD
865 (void)cmpxchg(&iter->position, pos, memcg);
866
5ac8fb31
JW
867 if (pos)
868 css_put(&pos->css);
869
870 if (!memcg)
871 iter->generation++;
872 else if (!prev)
873 reclaim->generation = iter->generation;
9f3a0d09 874 }
5ac8fb31 875
542f85f9
MH
876out_unlock:
877 rcu_read_unlock();
5ac8fb31 878out:
c40046f3
MH
879 if (prev && prev != root)
880 css_put(&prev->css);
881
9f3a0d09 882 return memcg;
14067bb3 883}
7d74b06f 884
5660048c
JW
885/**
886 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
887 * @root: hierarchy root
888 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
889 */
890void mem_cgroup_iter_break(struct mem_cgroup *root,
891 struct mem_cgroup *prev)
9f3a0d09
JW
892{
893 if (!root)
894 root = root_mem_cgroup;
895 if (prev && prev != root)
896 css_put(&prev->css);
897}
7d74b06f 898
6df38689
VD
899static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
900{
901 struct mem_cgroup *memcg = dead_memcg;
902 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
903 struct mem_cgroup_per_node *mz;
904 int nid;
6df38689
VD
905 int i;
906
907 while ((memcg = parent_mem_cgroup(memcg))) {
908 for_each_node(nid) {
ef8f2327
MG
909 mz = mem_cgroup_nodeinfo(memcg, nid);
910 for (i = 0; i <= DEF_PRIORITY; i++) {
911 iter = &mz->iter[i];
912 cmpxchg(&iter->position,
913 dead_memcg, NULL);
6df38689
VD
914 }
915 }
916 }
917}
918
9f3a0d09
JW
919/*
920 * Iteration constructs for visiting all cgroups (under a tree). If
921 * loops are exited prematurely (break), mem_cgroup_iter_break() must
922 * be used for reference counting.
923 */
924#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 925 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 926 iter != NULL; \
527a5ec9 927 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 928
9f3a0d09 929#define for_each_mem_cgroup(iter) \
527a5ec9 930 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 931 iter != NULL; \
527a5ec9 932 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 933
7c5f64f8
VD
934/**
935 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
936 * @memcg: hierarchy root
937 * @fn: function to call for each task
938 * @arg: argument passed to @fn
939 *
940 * This function iterates over tasks attached to @memcg or to any of its
941 * descendants and calls @fn for each task. If @fn returns a non-zero
942 * value, the function breaks the iteration loop and returns the value.
943 * Otherwise, it will iterate over all tasks and return 0.
944 *
945 * This function must not be called for the root memory cgroup.
946 */
947int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
948 int (*fn)(struct task_struct *, void *), void *arg)
949{
950 struct mem_cgroup *iter;
951 int ret = 0;
952
953 BUG_ON(memcg == root_mem_cgroup);
954
955 for_each_mem_cgroup_tree(iter, memcg) {
956 struct css_task_iter it;
957 struct task_struct *task;
958
959 css_task_iter_start(&iter->css, &it);
960 while (!ret && (task = css_task_iter_next(&it)))
961 ret = fn(task, arg);
962 css_task_iter_end(&it);
963 if (ret) {
964 mem_cgroup_iter_break(memcg, iter);
965 break;
966 }
967 }
968 return ret;
969}
970
925b7673 971/**
dfe0e773 972 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 973 * @page: the page
fa9add64 974 * @zone: zone of the page
dfe0e773
JW
975 *
976 * This function is only safe when following the LRU page isolation
977 * and putback protocol: the LRU lock must be held, and the page must
978 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 979 */
599d0c95 980struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 981{
ef8f2327 982 struct mem_cgroup_per_node *mz;
925b7673 983 struct mem_cgroup *memcg;
bea8c150 984 struct lruvec *lruvec;
6d12e2d8 985
bea8c150 986 if (mem_cgroup_disabled()) {
599d0c95 987 lruvec = &pgdat->lruvec;
bea8c150
HD
988 goto out;
989 }
925b7673 990
1306a85a 991 memcg = page->mem_cgroup;
7512102c 992 /*
dfe0e773 993 * Swapcache readahead pages are added to the LRU - and
29833315 994 * possibly migrated - before they are charged.
7512102c 995 */
29833315
JW
996 if (!memcg)
997 memcg = root_mem_cgroup;
7512102c 998
ef8f2327 999 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1000 lruvec = &mz->lruvec;
1001out:
1002 /*
1003 * Since a node can be onlined after the mem_cgroup was created,
1004 * we have to be prepared to initialize lruvec->zone here;
1005 * and if offlined then reonlined, we need to reinitialize it.
1006 */
599d0c95
MG
1007 if (unlikely(lruvec->pgdat != pgdat))
1008 lruvec->pgdat = pgdat;
bea8c150 1009 return lruvec;
08e552c6 1010}
b69408e8 1011
925b7673 1012/**
fa9add64
HD
1013 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1014 * @lruvec: mem_cgroup per zone lru vector
1015 * @lru: index of lru list the page is sitting on
b4536f0c 1016 * @zid: zone id of the accounted pages
fa9add64 1017 * @nr_pages: positive when adding or negative when removing
925b7673 1018 *
ca707239
HD
1019 * This function must be called under lru_lock, just before a page is added
1020 * to or just after a page is removed from an lru list (that ordering being
1021 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1022 */
fa9add64 1023void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1024 int zid, int nr_pages)
3f58a829 1025{
ef8f2327 1026 struct mem_cgroup_per_node *mz;
fa9add64 1027 unsigned long *lru_size;
ca707239 1028 long size;
3f58a829
MK
1029
1030 if (mem_cgroup_disabled())
1031 return;
1032
ef8f2327 1033 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1034 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1035
1036 if (nr_pages < 0)
1037 *lru_size += nr_pages;
1038
1039 size = *lru_size;
b4536f0c
MH
1040 if (WARN_ONCE(size < 0,
1041 "%s(%p, %d, %d): lru_size %ld\n",
1042 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1043 VM_BUG_ON(1);
1044 *lru_size = 0;
1045 }
1046
1047 if (nr_pages > 0)
1048 *lru_size += nr_pages;
08e552c6 1049}
544122e5 1050
2314b42d 1051bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1052{
2314b42d 1053 struct mem_cgroup *task_memcg;
158e0a2d 1054 struct task_struct *p;
ffbdccf5 1055 bool ret;
4c4a2214 1056
158e0a2d 1057 p = find_lock_task_mm(task);
de077d22 1058 if (p) {
2314b42d 1059 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1060 task_unlock(p);
1061 } else {
1062 /*
1063 * All threads may have already detached their mm's, but the oom
1064 * killer still needs to detect if they have already been oom
1065 * killed to prevent needlessly killing additional tasks.
1066 */
ffbdccf5 1067 rcu_read_lock();
2314b42d
JW
1068 task_memcg = mem_cgroup_from_task(task);
1069 css_get(&task_memcg->css);
ffbdccf5 1070 rcu_read_unlock();
de077d22 1071 }
2314b42d
JW
1072 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1073 css_put(&task_memcg->css);
4c4a2214
DR
1074 return ret;
1075}
1076
19942822 1077/**
9d11ea9f 1078 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1079 * @memcg: the memory cgroup
19942822 1080 *
9d11ea9f 1081 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1082 * pages.
19942822 1083 */
c0ff4b85 1084static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1085{
3e32cb2e
JW
1086 unsigned long margin = 0;
1087 unsigned long count;
1088 unsigned long limit;
9d11ea9f 1089
3e32cb2e 1090 count = page_counter_read(&memcg->memory);
4db0c3c2 1091 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1092 if (count < limit)
1093 margin = limit - count;
1094
7941d214 1095 if (do_memsw_account()) {
3e32cb2e 1096 count = page_counter_read(&memcg->memsw);
4db0c3c2 1097 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1098 if (count <= limit)
1099 margin = min(margin, limit - count);
cbedbac3
LR
1100 else
1101 margin = 0;
3e32cb2e
JW
1102 }
1103
1104 return margin;
19942822
JW
1105}
1106
32047e2a 1107/*
bdcbb659 1108 * A routine for checking "mem" is under move_account() or not.
32047e2a 1109 *
bdcbb659
QH
1110 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1111 * moving cgroups. This is for waiting at high-memory pressure
1112 * caused by "move".
32047e2a 1113 */
c0ff4b85 1114static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1115{
2bd9bb20
KH
1116 struct mem_cgroup *from;
1117 struct mem_cgroup *to;
4b534334 1118 bool ret = false;
2bd9bb20
KH
1119 /*
1120 * Unlike task_move routines, we access mc.to, mc.from not under
1121 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1122 */
1123 spin_lock(&mc.lock);
1124 from = mc.from;
1125 to = mc.to;
1126 if (!from)
1127 goto unlock;
3e92041d 1128
2314b42d
JW
1129 ret = mem_cgroup_is_descendant(from, memcg) ||
1130 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1131unlock:
1132 spin_unlock(&mc.lock);
4b534334
KH
1133 return ret;
1134}
1135
c0ff4b85 1136static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1137{
1138 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1139 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1140 DEFINE_WAIT(wait);
1141 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1142 /* moving charge context might have finished. */
1143 if (mc.moving_task)
1144 schedule();
1145 finish_wait(&mc.waitq, &wait);
1146 return true;
1147 }
1148 }
1149 return false;
1150}
1151
58cf188e 1152#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1153/**
58cf188e 1154 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1155 * @memcg: The memory cgroup that went over limit
1156 * @p: Task that is going to be killed
1157 *
1158 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1159 * enabled
1160 */
1161void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1162{
58cf188e
SZ
1163 struct mem_cgroup *iter;
1164 unsigned int i;
e222432b 1165
e222432b
BS
1166 rcu_read_lock();
1167
2415b9f5
BV
1168 if (p) {
1169 pr_info("Task in ");
1170 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1171 pr_cont(" killed as a result of limit of ");
1172 } else {
1173 pr_info("Memory limit reached of cgroup ");
1174 }
1175
e61734c5 1176 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1177 pr_cont("\n");
e222432b 1178
e222432b
BS
1179 rcu_read_unlock();
1180
3e32cb2e
JW
1181 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1182 K((u64)page_counter_read(&memcg->memory)),
1183 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1184 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1185 K((u64)page_counter_read(&memcg->memsw)),
1186 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1187 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1188 K((u64)page_counter_read(&memcg->kmem)),
1189 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1190
1191 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1192 pr_info("Memory cgroup stats for ");
1193 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1194 pr_cont(":");
1195
1196 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1197 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1198 continue;
484ebb3b 1199 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1200 K(mem_cgroup_read_stat(iter, i)));
1201 }
1202
1203 for (i = 0; i < NR_LRU_LISTS; i++)
1204 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1205 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1206
1207 pr_cont("\n");
1208 }
e222432b
BS
1209}
1210
81d39c20
KH
1211/*
1212 * This function returns the number of memcg under hierarchy tree. Returns
1213 * 1(self count) if no children.
1214 */
c0ff4b85 1215static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1216{
1217 int num = 0;
7d74b06f
KH
1218 struct mem_cgroup *iter;
1219
c0ff4b85 1220 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1221 num++;
81d39c20
KH
1222 return num;
1223}
1224
a63d83f4
DR
1225/*
1226 * Return the memory (and swap, if configured) limit for a memcg.
1227 */
7c5f64f8 1228unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1229{
3e32cb2e 1230 unsigned long limit;
f3e8eb70 1231
3e32cb2e 1232 limit = memcg->memory.limit;
9a5a8f19 1233 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1234 unsigned long memsw_limit;
37e84351 1235 unsigned long swap_limit;
9a5a8f19 1236
3e32cb2e 1237 memsw_limit = memcg->memsw.limit;
37e84351
VD
1238 swap_limit = memcg->swap.limit;
1239 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1240 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1241 }
9a5a8f19 1242 return limit;
a63d83f4
DR
1243}
1244
b6e6edcf 1245static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1246 int order)
9cbb78bb 1247{
6e0fc46d
DR
1248 struct oom_control oc = {
1249 .zonelist = NULL,
1250 .nodemask = NULL,
2a966b77 1251 .memcg = memcg,
6e0fc46d
DR
1252 .gfp_mask = gfp_mask,
1253 .order = order,
6e0fc46d 1254 };
7c5f64f8 1255 bool ret;
9cbb78bb 1256
dc56401f 1257 mutex_lock(&oom_lock);
7c5f64f8 1258 ret = out_of_memory(&oc);
dc56401f 1259 mutex_unlock(&oom_lock);
7c5f64f8 1260 return ret;
9cbb78bb
DR
1261}
1262
ae6e71d3
MC
1263#if MAX_NUMNODES > 1
1264
4d0c066d
KH
1265/**
1266 * test_mem_cgroup_node_reclaimable
dad7557e 1267 * @memcg: the target memcg
4d0c066d
KH
1268 * @nid: the node ID to be checked.
1269 * @noswap : specify true here if the user wants flle only information.
1270 *
1271 * This function returns whether the specified memcg contains any
1272 * reclaimable pages on a node. Returns true if there are any reclaimable
1273 * pages in the node.
1274 */
c0ff4b85 1275static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1276 int nid, bool noswap)
1277{
c0ff4b85 1278 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1279 return true;
1280 if (noswap || !total_swap_pages)
1281 return false;
c0ff4b85 1282 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1283 return true;
1284 return false;
1285
1286}
889976db
YH
1287
1288/*
1289 * Always updating the nodemask is not very good - even if we have an empty
1290 * list or the wrong list here, we can start from some node and traverse all
1291 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1292 *
1293 */
c0ff4b85 1294static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1295{
1296 int nid;
453a9bf3
KH
1297 /*
1298 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1299 * pagein/pageout changes since the last update.
1300 */
c0ff4b85 1301 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1302 return;
c0ff4b85 1303 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1304 return;
1305
889976db 1306 /* make a nodemask where this memcg uses memory from */
31aaea4a 1307 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1308
31aaea4a 1309 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1310
c0ff4b85
R
1311 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1312 node_clear(nid, memcg->scan_nodes);
889976db 1313 }
453a9bf3 1314
c0ff4b85
R
1315 atomic_set(&memcg->numainfo_events, 0);
1316 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1317}
1318
1319/*
1320 * Selecting a node where we start reclaim from. Because what we need is just
1321 * reducing usage counter, start from anywhere is O,K. Considering
1322 * memory reclaim from current node, there are pros. and cons.
1323 *
1324 * Freeing memory from current node means freeing memory from a node which
1325 * we'll use or we've used. So, it may make LRU bad. And if several threads
1326 * hit limits, it will see a contention on a node. But freeing from remote
1327 * node means more costs for memory reclaim because of memory latency.
1328 *
1329 * Now, we use round-robin. Better algorithm is welcomed.
1330 */
c0ff4b85 1331int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1332{
1333 int node;
1334
c0ff4b85
R
1335 mem_cgroup_may_update_nodemask(memcg);
1336 node = memcg->last_scanned_node;
889976db 1337
0edaf86c 1338 node = next_node_in(node, memcg->scan_nodes);
889976db 1339 /*
fda3d69b
MH
1340 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1341 * last time it really checked all the LRUs due to rate limiting.
1342 * Fallback to the current node in that case for simplicity.
889976db
YH
1343 */
1344 if (unlikely(node == MAX_NUMNODES))
1345 node = numa_node_id();
1346
c0ff4b85 1347 memcg->last_scanned_node = node;
889976db
YH
1348 return node;
1349}
889976db 1350#else
c0ff4b85 1351int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1352{
1353 return 0;
1354}
1355#endif
1356
0608f43d 1357static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1358 pg_data_t *pgdat,
0608f43d
AM
1359 gfp_t gfp_mask,
1360 unsigned long *total_scanned)
1361{
1362 struct mem_cgroup *victim = NULL;
1363 int total = 0;
1364 int loop = 0;
1365 unsigned long excess;
1366 unsigned long nr_scanned;
1367 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1368 .pgdat = pgdat,
0608f43d
AM
1369 .priority = 0,
1370 };
1371
3e32cb2e 1372 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1373
1374 while (1) {
1375 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1376 if (!victim) {
1377 loop++;
1378 if (loop >= 2) {
1379 /*
1380 * If we have not been able to reclaim
1381 * anything, it might because there are
1382 * no reclaimable pages under this hierarchy
1383 */
1384 if (!total)
1385 break;
1386 /*
1387 * We want to do more targeted reclaim.
1388 * excess >> 2 is not to excessive so as to
1389 * reclaim too much, nor too less that we keep
1390 * coming back to reclaim from this cgroup
1391 */
1392 if (total >= (excess >> 2) ||
1393 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1394 break;
1395 }
1396 continue;
1397 }
a9dd0a83 1398 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1399 pgdat, &nr_scanned);
0608f43d 1400 *total_scanned += nr_scanned;
3e32cb2e 1401 if (!soft_limit_excess(root_memcg))
0608f43d 1402 break;
6d61ef40 1403 }
0608f43d
AM
1404 mem_cgroup_iter_break(root_memcg, victim);
1405 return total;
6d61ef40
BS
1406}
1407
0056f4e6
JW
1408#ifdef CONFIG_LOCKDEP
1409static struct lockdep_map memcg_oom_lock_dep_map = {
1410 .name = "memcg_oom_lock",
1411};
1412#endif
1413
fb2a6fc5
JW
1414static DEFINE_SPINLOCK(memcg_oom_lock);
1415
867578cb
KH
1416/*
1417 * Check OOM-Killer is already running under our hierarchy.
1418 * If someone is running, return false.
1419 */
fb2a6fc5 1420static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1421{
79dfdacc 1422 struct mem_cgroup *iter, *failed = NULL;
a636b327 1423
fb2a6fc5
JW
1424 spin_lock(&memcg_oom_lock);
1425
9f3a0d09 1426 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1427 if (iter->oom_lock) {
79dfdacc
MH
1428 /*
1429 * this subtree of our hierarchy is already locked
1430 * so we cannot give a lock.
1431 */
79dfdacc 1432 failed = iter;
9f3a0d09
JW
1433 mem_cgroup_iter_break(memcg, iter);
1434 break;
23751be0
JW
1435 } else
1436 iter->oom_lock = true;
7d74b06f 1437 }
867578cb 1438
fb2a6fc5
JW
1439 if (failed) {
1440 /*
1441 * OK, we failed to lock the whole subtree so we have
1442 * to clean up what we set up to the failing subtree
1443 */
1444 for_each_mem_cgroup_tree(iter, memcg) {
1445 if (iter == failed) {
1446 mem_cgroup_iter_break(memcg, iter);
1447 break;
1448 }
1449 iter->oom_lock = false;
79dfdacc 1450 }
0056f4e6
JW
1451 } else
1452 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1453
1454 spin_unlock(&memcg_oom_lock);
1455
1456 return !failed;
a636b327 1457}
0b7f569e 1458
fb2a6fc5 1459static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1460{
7d74b06f
KH
1461 struct mem_cgroup *iter;
1462
fb2a6fc5 1463 spin_lock(&memcg_oom_lock);
0056f4e6 1464 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1465 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1466 iter->oom_lock = false;
fb2a6fc5 1467 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1468}
1469
c0ff4b85 1470static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1471{
1472 struct mem_cgroup *iter;
1473
c2b42d3c 1474 spin_lock(&memcg_oom_lock);
c0ff4b85 1475 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1476 iter->under_oom++;
1477 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1478}
1479
c0ff4b85 1480static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1481{
1482 struct mem_cgroup *iter;
1483
867578cb
KH
1484 /*
1485 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1486 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1487 */
c2b42d3c 1488 spin_lock(&memcg_oom_lock);
c0ff4b85 1489 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1490 if (iter->under_oom > 0)
1491 iter->under_oom--;
1492 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1493}
1494
867578cb
KH
1495static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1496
dc98df5a 1497struct oom_wait_info {
d79154bb 1498 struct mem_cgroup *memcg;
dc98df5a
KH
1499 wait_queue_t wait;
1500};
1501
1502static int memcg_oom_wake_function(wait_queue_t *wait,
1503 unsigned mode, int sync, void *arg)
1504{
d79154bb
HD
1505 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1506 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1507 struct oom_wait_info *oom_wait_info;
1508
1509 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1510 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1511
2314b42d
JW
1512 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1513 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1514 return 0;
dc98df5a
KH
1515 return autoremove_wake_function(wait, mode, sync, arg);
1516}
1517
c0ff4b85 1518static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1519{
c2b42d3c
TH
1520 /*
1521 * For the following lockless ->under_oom test, the only required
1522 * guarantee is that it must see the state asserted by an OOM when
1523 * this function is called as a result of userland actions
1524 * triggered by the notification of the OOM. This is trivially
1525 * achieved by invoking mem_cgroup_mark_under_oom() before
1526 * triggering notification.
1527 */
1528 if (memcg && memcg->under_oom)
f4b90b70 1529 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1530}
1531
3812c8c8 1532static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1533{
d0db7afa 1534 if (!current->memcg_may_oom)
3812c8c8 1535 return;
867578cb 1536 /*
49426420
JW
1537 * We are in the middle of the charge context here, so we
1538 * don't want to block when potentially sitting on a callstack
1539 * that holds all kinds of filesystem and mm locks.
1540 *
1541 * Also, the caller may handle a failed allocation gracefully
1542 * (like optional page cache readahead) and so an OOM killer
1543 * invocation might not even be necessary.
1544 *
1545 * That's why we don't do anything here except remember the
1546 * OOM context and then deal with it at the end of the page
1547 * fault when the stack is unwound, the locks are released,
1548 * and when we know whether the fault was overall successful.
867578cb 1549 */
49426420 1550 css_get(&memcg->css);
626ebc41
TH
1551 current->memcg_in_oom = memcg;
1552 current->memcg_oom_gfp_mask = mask;
1553 current->memcg_oom_order = order;
3812c8c8
JW
1554}
1555
1556/**
1557 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1558 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1559 *
49426420
JW
1560 * This has to be called at the end of a page fault if the memcg OOM
1561 * handler was enabled.
3812c8c8 1562 *
49426420 1563 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1564 * sleep on a waitqueue until the userspace task resolves the
1565 * situation. Sleeping directly in the charge context with all kinds
1566 * of locks held is not a good idea, instead we remember an OOM state
1567 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1568 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1569 *
1570 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1571 * completed, %false otherwise.
3812c8c8 1572 */
49426420 1573bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1574{
626ebc41 1575 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1576 struct oom_wait_info owait;
49426420 1577 bool locked;
3812c8c8
JW
1578
1579 /* OOM is global, do not handle */
3812c8c8 1580 if (!memcg)
49426420 1581 return false;
3812c8c8 1582
7c5f64f8 1583 if (!handle)
49426420 1584 goto cleanup;
3812c8c8
JW
1585
1586 owait.memcg = memcg;
1587 owait.wait.flags = 0;
1588 owait.wait.func = memcg_oom_wake_function;
1589 owait.wait.private = current;
1590 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1591
3812c8c8 1592 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1593 mem_cgroup_mark_under_oom(memcg);
1594
1595 locked = mem_cgroup_oom_trylock(memcg);
1596
1597 if (locked)
1598 mem_cgroup_oom_notify(memcg);
1599
1600 if (locked && !memcg->oom_kill_disable) {
1601 mem_cgroup_unmark_under_oom(memcg);
1602 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1603 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1604 current->memcg_oom_order);
49426420 1605 } else {
3812c8c8 1606 schedule();
49426420
JW
1607 mem_cgroup_unmark_under_oom(memcg);
1608 finish_wait(&memcg_oom_waitq, &owait.wait);
1609 }
1610
1611 if (locked) {
fb2a6fc5
JW
1612 mem_cgroup_oom_unlock(memcg);
1613 /*
1614 * There is no guarantee that an OOM-lock contender
1615 * sees the wakeups triggered by the OOM kill
1616 * uncharges. Wake any sleepers explicitely.
1617 */
1618 memcg_oom_recover(memcg);
1619 }
49426420 1620cleanup:
626ebc41 1621 current->memcg_in_oom = NULL;
3812c8c8 1622 css_put(&memcg->css);
867578cb 1623 return true;
0b7f569e
KH
1624}
1625
d7365e78 1626/**
81f8c3a4
JW
1627 * lock_page_memcg - lock a page->mem_cgroup binding
1628 * @page: the page
32047e2a 1629 *
81f8c3a4
JW
1630 * This function protects unlocked LRU pages from being moved to
1631 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1632 */
62cccb8c 1633void lock_page_memcg(struct page *page)
89c06bd5
KH
1634{
1635 struct mem_cgroup *memcg;
6de22619 1636 unsigned long flags;
89c06bd5 1637
6de22619
JW
1638 /*
1639 * The RCU lock is held throughout the transaction. The fast
1640 * path can get away without acquiring the memcg->move_lock
1641 * because page moving starts with an RCU grace period.
6de22619 1642 */
d7365e78
JW
1643 rcu_read_lock();
1644
1645 if (mem_cgroup_disabled())
62cccb8c 1646 return;
89c06bd5 1647again:
1306a85a 1648 memcg = page->mem_cgroup;
29833315 1649 if (unlikely(!memcg))
62cccb8c 1650 return;
d7365e78 1651
bdcbb659 1652 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1653 return;
89c06bd5 1654
6de22619 1655 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1656 if (memcg != page->mem_cgroup) {
6de22619 1657 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1658 goto again;
1659 }
6de22619
JW
1660
1661 /*
1662 * When charge migration first begins, we can have locked and
1663 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1664 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1665 */
1666 memcg->move_lock_task = current;
1667 memcg->move_lock_flags = flags;
d7365e78 1668
62cccb8c 1669 return;
89c06bd5 1670}
81f8c3a4 1671EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1672
d7365e78 1673/**
81f8c3a4 1674 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1675 * @page: the page
d7365e78 1676 */
62cccb8c 1677void unlock_page_memcg(struct page *page)
89c06bd5 1678{
62cccb8c
JW
1679 struct mem_cgroup *memcg = page->mem_cgroup;
1680
6de22619
JW
1681 if (memcg && memcg->move_lock_task == current) {
1682 unsigned long flags = memcg->move_lock_flags;
1683
1684 memcg->move_lock_task = NULL;
1685 memcg->move_lock_flags = 0;
1686
1687 spin_unlock_irqrestore(&memcg->move_lock, flags);
1688 }
89c06bd5 1689
d7365e78 1690 rcu_read_unlock();
89c06bd5 1691}
81f8c3a4 1692EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1693
cdec2e42
KH
1694/*
1695 * size of first charge trial. "32" comes from vmscan.c's magic value.
1696 * TODO: maybe necessary to use big numbers in big irons.
1697 */
7ec99d62 1698#define CHARGE_BATCH 32U
cdec2e42
KH
1699struct memcg_stock_pcp {
1700 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1701 unsigned int nr_pages;
cdec2e42 1702 struct work_struct work;
26fe6168 1703 unsigned long flags;
a0db00fc 1704#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1705};
1706static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1707static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1708
a0956d54
SS
1709/**
1710 * consume_stock: Try to consume stocked charge on this cpu.
1711 * @memcg: memcg to consume from.
1712 * @nr_pages: how many pages to charge.
1713 *
1714 * The charges will only happen if @memcg matches the current cpu's memcg
1715 * stock, and at least @nr_pages are available in that stock. Failure to
1716 * service an allocation will refill the stock.
1717 *
1718 * returns true if successful, false otherwise.
cdec2e42 1719 */
a0956d54 1720static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1721{
1722 struct memcg_stock_pcp *stock;
db2ba40c 1723 unsigned long flags;
3e32cb2e 1724 bool ret = false;
cdec2e42 1725
a0956d54 1726 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1727 return ret;
a0956d54 1728
db2ba40c
JW
1729 local_irq_save(flags);
1730
1731 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1732 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1733 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1734 ret = true;
1735 }
db2ba40c
JW
1736
1737 local_irq_restore(flags);
1738
cdec2e42
KH
1739 return ret;
1740}
1741
1742/*
3e32cb2e 1743 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1744 */
1745static void drain_stock(struct memcg_stock_pcp *stock)
1746{
1747 struct mem_cgroup *old = stock->cached;
1748
11c9ea4e 1749 if (stock->nr_pages) {
3e32cb2e 1750 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1751 if (do_memsw_account())
3e32cb2e 1752 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1753 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1754 stock->nr_pages = 0;
cdec2e42
KH
1755 }
1756 stock->cached = NULL;
cdec2e42
KH
1757}
1758
cdec2e42
KH
1759static void drain_local_stock(struct work_struct *dummy)
1760{
db2ba40c
JW
1761 struct memcg_stock_pcp *stock;
1762 unsigned long flags;
1763
1764 local_irq_save(flags);
1765
1766 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1767 drain_stock(stock);
26fe6168 1768 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1769
1770 local_irq_restore(flags);
cdec2e42
KH
1771}
1772
1773/*
3e32cb2e 1774 * Cache charges(val) to local per_cpu area.
320cc51d 1775 * This will be consumed by consume_stock() function, later.
cdec2e42 1776 */
c0ff4b85 1777static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1778{
db2ba40c
JW
1779 struct memcg_stock_pcp *stock;
1780 unsigned long flags;
1781
1782 local_irq_save(flags);
cdec2e42 1783
db2ba40c 1784 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1785 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1786 drain_stock(stock);
c0ff4b85 1787 stock->cached = memcg;
cdec2e42 1788 }
11c9ea4e 1789 stock->nr_pages += nr_pages;
db2ba40c
JW
1790
1791 local_irq_restore(flags);
cdec2e42
KH
1792}
1793
1794/*
c0ff4b85 1795 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1796 * of the hierarchy under it.
cdec2e42 1797 */
6d3d6aa2 1798static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1799{
26fe6168 1800 int cpu, curcpu;
d38144b7 1801
6d3d6aa2
JW
1802 /* If someone's already draining, avoid adding running more workers. */
1803 if (!mutex_trylock(&percpu_charge_mutex))
1804 return;
cdec2e42 1805 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1806 get_online_cpus();
5af12d0e 1807 curcpu = get_cpu();
cdec2e42
KH
1808 for_each_online_cpu(cpu) {
1809 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1810 struct mem_cgroup *memcg;
26fe6168 1811
c0ff4b85
R
1812 memcg = stock->cached;
1813 if (!memcg || !stock->nr_pages)
26fe6168 1814 continue;
2314b42d 1815 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1816 continue;
d1a05b69
MH
1817 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1818 if (cpu == curcpu)
1819 drain_local_stock(&stock->work);
1820 else
1821 schedule_work_on(cpu, &stock->work);
1822 }
cdec2e42 1823 }
5af12d0e 1824 put_cpu();
f894ffa8 1825 put_online_cpus();
9f50fad6 1826 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1827}
1828
308167fc 1829static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 1830{
cdec2e42
KH
1831 struct memcg_stock_pcp *stock;
1832
cdec2e42
KH
1833 stock = &per_cpu(memcg_stock, cpu);
1834 drain_stock(stock);
308167fc 1835 return 0;
cdec2e42
KH
1836}
1837
f7e1cb6e
JW
1838static void reclaim_high(struct mem_cgroup *memcg,
1839 unsigned int nr_pages,
1840 gfp_t gfp_mask)
1841{
1842 do {
1843 if (page_counter_read(&memcg->memory) <= memcg->high)
1844 continue;
1845 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1846 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1847 } while ((memcg = parent_mem_cgroup(memcg)));
1848}
1849
1850static void high_work_func(struct work_struct *work)
1851{
1852 struct mem_cgroup *memcg;
1853
1854 memcg = container_of(work, struct mem_cgroup, high_work);
1855 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1856}
1857
b23afb93
TH
1858/*
1859 * Scheduled by try_charge() to be executed from the userland return path
1860 * and reclaims memory over the high limit.
1861 */
1862void mem_cgroup_handle_over_high(void)
1863{
1864 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1865 struct mem_cgroup *memcg;
b23afb93
TH
1866
1867 if (likely(!nr_pages))
1868 return;
1869
f7e1cb6e
JW
1870 memcg = get_mem_cgroup_from_mm(current->mm);
1871 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1872 css_put(&memcg->css);
1873 current->memcg_nr_pages_over_high = 0;
1874}
1875
00501b53
JW
1876static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1877 unsigned int nr_pages)
8a9f3ccd 1878{
7ec99d62 1879 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1880 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1881 struct mem_cgroup *mem_over_limit;
3e32cb2e 1882 struct page_counter *counter;
6539cc05 1883 unsigned long nr_reclaimed;
b70a2a21
JW
1884 bool may_swap = true;
1885 bool drained = false;
a636b327 1886
ce00a967 1887 if (mem_cgroup_is_root(memcg))
10d53c74 1888 return 0;
6539cc05 1889retry:
b6b6cc72 1890 if (consume_stock(memcg, nr_pages))
10d53c74 1891 return 0;
8a9f3ccd 1892
7941d214 1893 if (!do_memsw_account() ||
6071ca52
JW
1894 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1895 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1896 goto done_restock;
7941d214 1897 if (do_memsw_account())
3e32cb2e
JW
1898 page_counter_uncharge(&memcg->memsw, batch);
1899 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1900 } else {
3e32cb2e 1901 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1902 may_swap = false;
3fbe7244 1903 }
7a81b88c 1904
6539cc05
JW
1905 if (batch > nr_pages) {
1906 batch = nr_pages;
1907 goto retry;
1908 }
6d61ef40 1909
06b078fc
JW
1910 /*
1911 * Unlike in global OOM situations, memcg is not in a physical
1912 * memory shortage. Allow dying and OOM-killed tasks to
1913 * bypass the last charges so that they can exit quickly and
1914 * free their memory.
1915 */
1916 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1917 fatal_signal_pending(current) ||
1918 current->flags & PF_EXITING))
10d53c74 1919 goto force;
06b078fc 1920
89a28483
JW
1921 /*
1922 * Prevent unbounded recursion when reclaim operations need to
1923 * allocate memory. This might exceed the limits temporarily,
1924 * but we prefer facilitating memory reclaim and getting back
1925 * under the limit over triggering OOM kills in these cases.
1926 */
1927 if (unlikely(current->flags & PF_MEMALLOC))
1928 goto force;
1929
06b078fc
JW
1930 if (unlikely(task_in_memcg_oom(current)))
1931 goto nomem;
1932
d0164adc 1933 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1934 goto nomem;
4b534334 1935
241994ed
JW
1936 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1937
b70a2a21
JW
1938 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1939 gfp_mask, may_swap);
6539cc05 1940
61e02c74 1941 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1942 goto retry;
28c34c29 1943
b70a2a21 1944 if (!drained) {
6d3d6aa2 1945 drain_all_stock(mem_over_limit);
b70a2a21
JW
1946 drained = true;
1947 goto retry;
1948 }
1949
28c34c29
JW
1950 if (gfp_mask & __GFP_NORETRY)
1951 goto nomem;
6539cc05
JW
1952 /*
1953 * Even though the limit is exceeded at this point, reclaim
1954 * may have been able to free some pages. Retry the charge
1955 * before killing the task.
1956 *
1957 * Only for regular pages, though: huge pages are rather
1958 * unlikely to succeed so close to the limit, and we fall back
1959 * to regular pages anyway in case of failure.
1960 */
61e02c74 1961 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1962 goto retry;
1963 /*
1964 * At task move, charge accounts can be doubly counted. So, it's
1965 * better to wait until the end of task_move if something is going on.
1966 */
1967 if (mem_cgroup_wait_acct_move(mem_over_limit))
1968 goto retry;
1969
9b130619
JW
1970 if (nr_retries--)
1971 goto retry;
1972
06b078fc 1973 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1974 goto force;
06b078fc 1975
6539cc05 1976 if (fatal_signal_pending(current))
10d53c74 1977 goto force;
6539cc05 1978
241994ed
JW
1979 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1980
3608de07
JM
1981 mem_cgroup_oom(mem_over_limit, gfp_mask,
1982 get_order(nr_pages * PAGE_SIZE));
7a81b88c 1983nomem:
6d1fdc48 1984 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 1985 return -ENOMEM;
10d53c74
TH
1986force:
1987 /*
1988 * The allocation either can't fail or will lead to more memory
1989 * being freed very soon. Allow memory usage go over the limit
1990 * temporarily by force charging it.
1991 */
1992 page_counter_charge(&memcg->memory, nr_pages);
7941d214 1993 if (do_memsw_account())
10d53c74
TH
1994 page_counter_charge(&memcg->memsw, nr_pages);
1995 css_get_many(&memcg->css, nr_pages);
1996
1997 return 0;
6539cc05
JW
1998
1999done_restock:
e8ea14cc 2000 css_get_many(&memcg->css, batch);
6539cc05
JW
2001 if (batch > nr_pages)
2002 refill_stock(memcg, batch - nr_pages);
b23afb93 2003
241994ed 2004 /*
b23afb93
TH
2005 * If the hierarchy is above the normal consumption range, schedule
2006 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2007 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2008 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2009 * not recorded as it most likely matches current's and won't
2010 * change in the meantime. As high limit is checked again before
2011 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2012 */
2013 do {
b23afb93 2014 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2015 /* Don't bother a random interrupted task */
2016 if (in_interrupt()) {
2017 schedule_work(&memcg->high_work);
2018 break;
2019 }
9516a18a 2020 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2021 set_notify_resume(current);
2022 break;
2023 }
241994ed 2024 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2025
2026 return 0;
7a81b88c 2027}
8a9f3ccd 2028
00501b53 2029static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2030{
ce00a967
JW
2031 if (mem_cgroup_is_root(memcg))
2032 return;
2033
3e32cb2e 2034 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2035 if (do_memsw_account())
3e32cb2e 2036 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2037
e8ea14cc 2038 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2039}
2040
0a31bc97
JW
2041static void lock_page_lru(struct page *page, int *isolated)
2042{
2043 struct zone *zone = page_zone(page);
2044
a52633d8 2045 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2046 if (PageLRU(page)) {
2047 struct lruvec *lruvec;
2048
599d0c95 2049 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2050 ClearPageLRU(page);
2051 del_page_from_lru_list(page, lruvec, page_lru(page));
2052 *isolated = 1;
2053 } else
2054 *isolated = 0;
2055}
2056
2057static void unlock_page_lru(struct page *page, int isolated)
2058{
2059 struct zone *zone = page_zone(page);
2060
2061 if (isolated) {
2062 struct lruvec *lruvec;
2063
599d0c95 2064 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2065 VM_BUG_ON_PAGE(PageLRU(page), page);
2066 SetPageLRU(page);
2067 add_page_to_lru_list(page, lruvec, page_lru(page));
2068 }
a52633d8 2069 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2070}
2071
00501b53 2072static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2073 bool lrucare)
7a81b88c 2074{
0a31bc97 2075 int isolated;
9ce70c02 2076
1306a85a 2077 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2078
2079 /*
2080 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2081 * may already be on some other mem_cgroup's LRU. Take care of it.
2082 */
0a31bc97
JW
2083 if (lrucare)
2084 lock_page_lru(page, &isolated);
9ce70c02 2085
0a31bc97
JW
2086 /*
2087 * Nobody should be changing or seriously looking at
1306a85a 2088 * page->mem_cgroup at this point:
0a31bc97
JW
2089 *
2090 * - the page is uncharged
2091 *
2092 * - the page is off-LRU
2093 *
2094 * - an anonymous fault has exclusive page access, except for
2095 * a locked page table
2096 *
2097 * - a page cache insertion, a swapin fault, or a migration
2098 * have the page locked
2099 */
1306a85a 2100 page->mem_cgroup = memcg;
9ce70c02 2101
0a31bc97
JW
2102 if (lrucare)
2103 unlock_page_lru(page, isolated);
7a81b88c 2104}
66e1707b 2105
127424c8 2106#ifndef CONFIG_SLOB
f3bb3043 2107static int memcg_alloc_cache_id(void)
55007d84 2108{
f3bb3043
VD
2109 int id, size;
2110 int err;
2111
dbcf73e2 2112 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2113 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2114 if (id < 0)
2115 return id;
55007d84 2116
dbcf73e2 2117 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2118 return id;
2119
2120 /*
2121 * There's no space for the new id in memcg_caches arrays,
2122 * so we have to grow them.
2123 */
05257a1a 2124 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2125
2126 size = 2 * (id + 1);
55007d84
GC
2127 if (size < MEMCG_CACHES_MIN_SIZE)
2128 size = MEMCG_CACHES_MIN_SIZE;
2129 else if (size > MEMCG_CACHES_MAX_SIZE)
2130 size = MEMCG_CACHES_MAX_SIZE;
2131
f3bb3043 2132 err = memcg_update_all_caches(size);
60d3fd32
VD
2133 if (!err)
2134 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2135 if (!err)
2136 memcg_nr_cache_ids = size;
2137
2138 up_write(&memcg_cache_ids_sem);
2139
f3bb3043 2140 if (err) {
dbcf73e2 2141 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2142 return err;
2143 }
2144 return id;
2145}
2146
2147static void memcg_free_cache_id(int id)
2148{
dbcf73e2 2149 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2150}
2151
d5b3cf71 2152struct memcg_kmem_cache_create_work {
5722d094
VD
2153 struct mem_cgroup *memcg;
2154 struct kmem_cache *cachep;
2155 struct work_struct work;
2156};
2157
d5b3cf71 2158static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2159{
d5b3cf71
VD
2160 struct memcg_kmem_cache_create_work *cw =
2161 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2162 struct mem_cgroup *memcg = cw->memcg;
2163 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2164
d5b3cf71 2165 memcg_create_kmem_cache(memcg, cachep);
bd673145 2166
5722d094 2167 css_put(&memcg->css);
d7f25f8a
GC
2168 kfree(cw);
2169}
2170
2171/*
2172 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2173 */
d5b3cf71
VD
2174static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2175 struct kmem_cache *cachep)
d7f25f8a 2176{
d5b3cf71 2177 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2178
776ed0f0 2179 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2180 if (!cw)
d7f25f8a 2181 return;
8135be5a
VD
2182
2183 css_get(&memcg->css);
d7f25f8a
GC
2184
2185 cw->memcg = memcg;
2186 cw->cachep = cachep;
d5b3cf71 2187 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2188
17cc4dfe 2189 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2190}
2191
d5b3cf71
VD
2192static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2193 struct kmem_cache *cachep)
0e9d92f2
GC
2194{
2195 /*
2196 * We need to stop accounting when we kmalloc, because if the
2197 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2198 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2199 *
2200 * However, it is better to enclose the whole function. Depending on
2201 * the debugging options enabled, INIT_WORK(), for instance, can
2202 * trigger an allocation. This too, will make us recurse. Because at
2203 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2204 * the safest choice is to do it like this, wrapping the whole function.
2205 */
6f185c29 2206 current->memcg_kmem_skip_account = 1;
d5b3cf71 2207 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2208 current->memcg_kmem_skip_account = 0;
0e9d92f2 2209}
c67a8a68 2210
45264778
VD
2211static inline bool memcg_kmem_bypass(void)
2212{
2213 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2214 return true;
2215 return false;
2216}
2217
2218/**
2219 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2220 * @cachep: the original global kmem cache
2221 *
d7f25f8a
GC
2222 * Return the kmem_cache we're supposed to use for a slab allocation.
2223 * We try to use the current memcg's version of the cache.
2224 *
45264778
VD
2225 * If the cache does not exist yet, if we are the first user of it, we
2226 * create it asynchronously in a workqueue and let the current allocation
2227 * go through with the original cache.
d7f25f8a 2228 *
45264778
VD
2229 * This function takes a reference to the cache it returns to assure it
2230 * won't get destroyed while we are working with it. Once the caller is
2231 * done with it, memcg_kmem_put_cache() must be called to release the
2232 * reference.
d7f25f8a 2233 */
45264778 2234struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2235{
2236 struct mem_cgroup *memcg;
959c8963 2237 struct kmem_cache *memcg_cachep;
2a4db7eb 2238 int kmemcg_id;
d7f25f8a 2239
f7ce3190 2240 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2241
45264778 2242 if (memcg_kmem_bypass())
230e9fc2
VD
2243 return cachep;
2244
9d100c5e 2245 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2246 return cachep;
2247
8135be5a 2248 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2249 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2250 if (kmemcg_id < 0)
ca0dde97 2251 goto out;
d7f25f8a 2252
2a4db7eb 2253 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2254 if (likely(memcg_cachep))
2255 return memcg_cachep;
ca0dde97
LZ
2256
2257 /*
2258 * If we are in a safe context (can wait, and not in interrupt
2259 * context), we could be be predictable and return right away.
2260 * This would guarantee that the allocation being performed
2261 * already belongs in the new cache.
2262 *
2263 * However, there are some clashes that can arrive from locking.
2264 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2265 * memcg_create_kmem_cache, this means no further allocation
2266 * could happen with the slab_mutex held. So it's better to
2267 * defer everything.
ca0dde97 2268 */
d5b3cf71 2269 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2270out:
8135be5a 2271 css_put(&memcg->css);
ca0dde97 2272 return cachep;
d7f25f8a 2273}
d7f25f8a 2274
45264778
VD
2275/**
2276 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2277 * @cachep: the cache returned by memcg_kmem_get_cache
2278 */
2279void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2280{
2281 if (!is_root_cache(cachep))
f7ce3190 2282 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2283}
2284
45264778
VD
2285/**
2286 * memcg_kmem_charge: charge a kmem page
2287 * @page: page to charge
2288 * @gfp: reclaim mode
2289 * @order: allocation order
2290 * @memcg: memory cgroup to charge
2291 *
2292 * Returns 0 on success, an error code on failure.
2293 */
2294int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2295 struct mem_cgroup *memcg)
7ae1e1d0 2296{
f3ccb2c4
VD
2297 unsigned int nr_pages = 1 << order;
2298 struct page_counter *counter;
7ae1e1d0
GC
2299 int ret;
2300
f3ccb2c4 2301 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2302 if (ret)
f3ccb2c4 2303 return ret;
52c29b04
JW
2304
2305 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2306 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2307 cancel_charge(memcg, nr_pages);
2308 return -ENOMEM;
7ae1e1d0
GC
2309 }
2310
f3ccb2c4 2311 page->mem_cgroup = memcg;
7ae1e1d0 2312
f3ccb2c4 2313 return 0;
7ae1e1d0
GC
2314}
2315
45264778
VD
2316/**
2317 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2318 * @page: page to charge
2319 * @gfp: reclaim mode
2320 * @order: allocation order
2321 *
2322 * Returns 0 on success, an error code on failure.
2323 */
2324int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2325{
f3ccb2c4 2326 struct mem_cgroup *memcg;
fcff7d7e 2327 int ret = 0;
7ae1e1d0 2328
45264778
VD
2329 if (memcg_kmem_bypass())
2330 return 0;
2331
f3ccb2c4 2332 memcg = get_mem_cgroup_from_mm(current->mm);
c4159a75 2333 if (!mem_cgroup_is_root(memcg)) {
45264778 2334 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2335 if (!ret)
2336 __SetPageKmemcg(page);
2337 }
7ae1e1d0 2338 css_put(&memcg->css);
d05e83a6 2339 return ret;
7ae1e1d0 2340}
45264778
VD
2341/**
2342 * memcg_kmem_uncharge: uncharge a kmem page
2343 * @page: page to uncharge
2344 * @order: allocation order
2345 */
2346void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2347{
1306a85a 2348 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2349 unsigned int nr_pages = 1 << order;
7ae1e1d0 2350
7ae1e1d0
GC
2351 if (!memcg)
2352 return;
2353
309381fe 2354 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2355
52c29b04
JW
2356 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2357 page_counter_uncharge(&memcg->kmem, nr_pages);
2358
f3ccb2c4 2359 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2360 if (do_memsw_account())
f3ccb2c4 2361 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2362
1306a85a 2363 page->mem_cgroup = NULL;
c4159a75
VD
2364
2365 /* slab pages do not have PageKmemcg flag set */
2366 if (PageKmemcg(page))
2367 __ClearPageKmemcg(page);
2368
f3ccb2c4 2369 css_put_many(&memcg->css, nr_pages);
60d3fd32 2370}
127424c8 2371#endif /* !CONFIG_SLOB */
7ae1e1d0 2372
ca3e0214
KH
2373#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2374
ca3e0214
KH
2375/*
2376 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2377 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2378 */
e94c8a9c 2379void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2380{
e94c8a9c 2381 int i;
ca3e0214 2382
3d37c4a9
KH
2383 if (mem_cgroup_disabled())
2384 return;
b070e65c 2385
29833315 2386 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2387 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2388
1306a85a 2389 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2390 HPAGE_PMD_NR);
ca3e0214 2391}
12d27107 2392#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2393
c255a458 2394#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2395static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2396 bool charge)
d13d1443 2397{
0a31bc97
JW
2398 int val = (charge) ? 1 : -1;
2399 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2400}
02491447
DN
2401
2402/**
2403 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2404 * @entry: swap entry to be moved
2405 * @from: mem_cgroup which the entry is moved from
2406 * @to: mem_cgroup which the entry is moved to
2407 *
2408 * It succeeds only when the swap_cgroup's record for this entry is the same
2409 * as the mem_cgroup's id of @from.
2410 *
2411 * Returns 0 on success, -EINVAL on failure.
2412 *
3e32cb2e 2413 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2414 * both res and memsw, and called css_get().
2415 */
2416static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2417 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2418{
2419 unsigned short old_id, new_id;
2420
34c00c31
LZ
2421 old_id = mem_cgroup_id(from);
2422 new_id = mem_cgroup_id(to);
02491447
DN
2423
2424 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2425 mem_cgroup_swap_statistics(from, false);
483c30b5 2426 mem_cgroup_swap_statistics(to, true);
02491447
DN
2427 return 0;
2428 }
2429 return -EINVAL;
2430}
2431#else
2432static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2433 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2434{
2435 return -EINVAL;
2436}
8c7c6e34 2437#endif
d13d1443 2438
3e32cb2e 2439static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2440
d38d2a75 2441static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2442 unsigned long limit)
628f4235 2443{
3e32cb2e
JW
2444 unsigned long curusage;
2445 unsigned long oldusage;
2446 bool enlarge = false;
81d39c20 2447 int retry_count;
3e32cb2e 2448 int ret;
81d39c20
KH
2449
2450 /*
2451 * For keeping hierarchical_reclaim simple, how long we should retry
2452 * is depends on callers. We set our retry-count to be function
2453 * of # of children which we should visit in this loop.
2454 */
3e32cb2e
JW
2455 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2456 mem_cgroup_count_children(memcg);
81d39c20 2457
3e32cb2e 2458 oldusage = page_counter_read(&memcg->memory);
628f4235 2459
3e32cb2e 2460 do {
628f4235
KH
2461 if (signal_pending(current)) {
2462 ret = -EINTR;
2463 break;
2464 }
3e32cb2e
JW
2465
2466 mutex_lock(&memcg_limit_mutex);
2467 if (limit > memcg->memsw.limit) {
2468 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2469 ret = -EINVAL;
628f4235
KH
2470 break;
2471 }
3e32cb2e
JW
2472 if (limit > memcg->memory.limit)
2473 enlarge = true;
2474 ret = page_counter_limit(&memcg->memory, limit);
2475 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2476
2477 if (!ret)
2478 break;
2479
b70a2a21
JW
2480 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2481
3e32cb2e 2482 curusage = page_counter_read(&memcg->memory);
81d39c20 2483 /* Usage is reduced ? */
f894ffa8 2484 if (curusage >= oldusage)
81d39c20
KH
2485 retry_count--;
2486 else
2487 oldusage = curusage;
3e32cb2e
JW
2488 } while (retry_count);
2489
3c11ecf4
KH
2490 if (!ret && enlarge)
2491 memcg_oom_recover(memcg);
14797e23 2492
8c7c6e34
KH
2493 return ret;
2494}
2495
338c8431 2496static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2497 unsigned long limit)
8c7c6e34 2498{
3e32cb2e
JW
2499 unsigned long curusage;
2500 unsigned long oldusage;
2501 bool enlarge = false;
81d39c20 2502 int retry_count;
3e32cb2e 2503 int ret;
8c7c6e34 2504
81d39c20 2505 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2506 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2507 mem_cgroup_count_children(memcg);
2508
2509 oldusage = page_counter_read(&memcg->memsw);
2510
2511 do {
8c7c6e34
KH
2512 if (signal_pending(current)) {
2513 ret = -EINTR;
2514 break;
2515 }
3e32cb2e
JW
2516
2517 mutex_lock(&memcg_limit_mutex);
2518 if (limit < memcg->memory.limit) {
2519 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2520 ret = -EINVAL;
8c7c6e34
KH
2521 break;
2522 }
3e32cb2e
JW
2523 if (limit > memcg->memsw.limit)
2524 enlarge = true;
2525 ret = page_counter_limit(&memcg->memsw, limit);
2526 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2527
2528 if (!ret)
2529 break;
2530
b70a2a21
JW
2531 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2532
3e32cb2e 2533 curusage = page_counter_read(&memcg->memsw);
81d39c20 2534 /* Usage is reduced ? */
8c7c6e34 2535 if (curusage >= oldusage)
628f4235 2536 retry_count--;
81d39c20
KH
2537 else
2538 oldusage = curusage;
3e32cb2e
JW
2539 } while (retry_count);
2540
3c11ecf4
KH
2541 if (!ret && enlarge)
2542 memcg_oom_recover(memcg);
3e32cb2e 2543
628f4235
KH
2544 return ret;
2545}
2546
ef8f2327 2547unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2548 gfp_t gfp_mask,
2549 unsigned long *total_scanned)
2550{
2551 unsigned long nr_reclaimed = 0;
ef8f2327 2552 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2553 unsigned long reclaimed;
2554 int loop = 0;
ef8f2327 2555 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2556 unsigned long excess;
0608f43d
AM
2557 unsigned long nr_scanned;
2558
2559 if (order > 0)
2560 return 0;
2561
ef8f2327 2562 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2563
2564 /*
2565 * Do not even bother to check the largest node if the root
2566 * is empty. Do it lockless to prevent lock bouncing. Races
2567 * are acceptable as soft limit is best effort anyway.
2568 */
bfc7228b 2569 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2570 return 0;
2571
0608f43d
AM
2572 /*
2573 * This loop can run a while, specially if mem_cgroup's continuously
2574 * keep exceeding their soft limit and putting the system under
2575 * pressure
2576 */
2577 do {
2578 if (next_mz)
2579 mz = next_mz;
2580 else
2581 mz = mem_cgroup_largest_soft_limit_node(mctz);
2582 if (!mz)
2583 break;
2584
2585 nr_scanned = 0;
ef8f2327 2586 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2587 gfp_mask, &nr_scanned);
2588 nr_reclaimed += reclaimed;
2589 *total_scanned += nr_scanned;
0a31bc97 2590 spin_lock_irq(&mctz->lock);
bc2f2e7f 2591 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2592
2593 /*
2594 * If we failed to reclaim anything from this memory cgroup
2595 * it is time to move on to the next cgroup
2596 */
2597 next_mz = NULL;
bc2f2e7f
VD
2598 if (!reclaimed)
2599 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2600
3e32cb2e 2601 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2602 /*
2603 * One school of thought says that we should not add
2604 * back the node to the tree if reclaim returns 0.
2605 * But our reclaim could return 0, simply because due
2606 * to priority we are exposing a smaller subset of
2607 * memory to reclaim from. Consider this as a longer
2608 * term TODO.
2609 */
2610 /* If excess == 0, no tree ops */
cf2c8127 2611 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2612 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2613 css_put(&mz->memcg->css);
2614 loop++;
2615 /*
2616 * Could not reclaim anything and there are no more
2617 * mem cgroups to try or we seem to be looping without
2618 * reclaiming anything.
2619 */
2620 if (!nr_reclaimed &&
2621 (next_mz == NULL ||
2622 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2623 break;
2624 } while (!nr_reclaimed);
2625 if (next_mz)
2626 css_put(&next_mz->memcg->css);
2627 return nr_reclaimed;
2628}
2629
ea280e7b
TH
2630/*
2631 * Test whether @memcg has children, dead or alive. Note that this
2632 * function doesn't care whether @memcg has use_hierarchy enabled and
2633 * returns %true if there are child csses according to the cgroup
2634 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2635 */
b5f99b53
GC
2636static inline bool memcg_has_children(struct mem_cgroup *memcg)
2637{
ea280e7b
TH
2638 bool ret;
2639
ea280e7b
TH
2640 rcu_read_lock();
2641 ret = css_next_child(NULL, &memcg->css);
2642 rcu_read_unlock();
2643 return ret;
b5f99b53
GC
2644}
2645
c26251f9 2646/*
51038171 2647 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2648 *
2649 * Caller is responsible for holding css reference for memcg.
2650 */
2651static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2652{
2653 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2654
c1e862c1
KH
2655 /* we call try-to-free pages for make this cgroup empty */
2656 lru_add_drain_all();
f817ed48 2657 /* try to free all pages in this cgroup */
3e32cb2e 2658 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2659 int progress;
c1e862c1 2660
c26251f9
MH
2661 if (signal_pending(current))
2662 return -EINTR;
2663
b70a2a21
JW
2664 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2665 GFP_KERNEL, true);
c1e862c1 2666 if (!progress) {
f817ed48 2667 nr_retries--;
c1e862c1 2668 /* maybe some writeback is necessary */
8aa7e847 2669 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2670 }
f817ed48
KH
2671
2672 }
ab5196c2
MH
2673
2674 return 0;
cc847582
KH
2675}
2676
6770c64e
TH
2677static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2678 char *buf, size_t nbytes,
2679 loff_t off)
c1e862c1 2680{
6770c64e 2681 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2682
d8423011
MH
2683 if (mem_cgroup_is_root(memcg))
2684 return -EINVAL;
6770c64e 2685 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2686}
2687
182446d0
TH
2688static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2689 struct cftype *cft)
18f59ea7 2690{
182446d0 2691 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2692}
2693
182446d0
TH
2694static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2695 struct cftype *cft, u64 val)
18f59ea7
BS
2696{
2697 int retval = 0;
182446d0 2698 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2699 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2700
567fb435 2701 if (memcg->use_hierarchy == val)
0b8f73e1 2702 return 0;
567fb435 2703
18f59ea7 2704 /*
af901ca1 2705 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2706 * in the child subtrees. If it is unset, then the change can
2707 * occur, provided the current cgroup has no children.
2708 *
2709 * For the root cgroup, parent_mem is NULL, we allow value to be
2710 * set if there are no children.
2711 */
c0ff4b85 2712 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2713 (val == 1 || val == 0)) {
ea280e7b 2714 if (!memcg_has_children(memcg))
c0ff4b85 2715 memcg->use_hierarchy = val;
18f59ea7
BS
2716 else
2717 retval = -EBUSY;
2718 } else
2719 retval = -EINVAL;
567fb435 2720
18f59ea7
BS
2721 return retval;
2722}
2723
72b54e73 2724static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2725{
2726 struct mem_cgroup *iter;
72b54e73 2727 int i;
ce00a967 2728
72b54e73 2729 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2730
72b54e73
VD
2731 for_each_mem_cgroup_tree(iter, memcg) {
2732 for (i = 0; i < MEMCG_NR_STAT; i++)
2733 stat[i] += mem_cgroup_read_stat(iter, i);
2734 }
ce00a967
JW
2735}
2736
72b54e73 2737static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2738{
2739 struct mem_cgroup *iter;
72b54e73 2740 int i;
587d9f72 2741
72b54e73 2742 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2743
72b54e73
VD
2744 for_each_mem_cgroup_tree(iter, memcg) {
2745 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2746 events[i] += mem_cgroup_read_events(iter, i);
2747 }
587d9f72
JW
2748}
2749
6f646156 2750static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2751{
72b54e73 2752 unsigned long val = 0;
ce00a967 2753
3e32cb2e 2754 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2755 struct mem_cgroup *iter;
2756
2757 for_each_mem_cgroup_tree(iter, memcg) {
2758 val += mem_cgroup_read_stat(iter,
2759 MEM_CGROUP_STAT_CACHE);
2760 val += mem_cgroup_read_stat(iter,
2761 MEM_CGROUP_STAT_RSS);
2762 if (swap)
2763 val += mem_cgroup_read_stat(iter,
2764 MEM_CGROUP_STAT_SWAP);
2765 }
3e32cb2e 2766 } else {
ce00a967 2767 if (!swap)
3e32cb2e 2768 val = page_counter_read(&memcg->memory);
ce00a967 2769 else
3e32cb2e 2770 val = page_counter_read(&memcg->memsw);
ce00a967 2771 }
c12176d3 2772 return val;
ce00a967
JW
2773}
2774
3e32cb2e
JW
2775enum {
2776 RES_USAGE,
2777 RES_LIMIT,
2778 RES_MAX_USAGE,
2779 RES_FAILCNT,
2780 RES_SOFT_LIMIT,
2781};
ce00a967 2782
791badbd 2783static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2784 struct cftype *cft)
8cdea7c0 2785{
182446d0 2786 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2787 struct page_counter *counter;
af36f906 2788
3e32cb2e 2789 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2790 case _MEM:
3e32cb2e
JW
2791 counter = &memcg->memory;
2792 break;
8c7c6e34 2793 case _MEMSWAP:
3e32cb2e
JW
2794 counter = &memcg->memsw;
2795 break;
510fc4e1 2796 case _KMEM:
3e32cb2e 2797 counter = &memcg->kmem;
510fc4e1 2798 break;
d55f90bf 2799 case _TCP:
0db15298 2800 counter = &memcg->tcpmem;
d55f90bf 2801 break;
8c7c6e34
KH
2802 default:
2803 BUG();
8c7c6e34 2804 }
3e32cb2e
JW
2805
2806 switch (MEMFILE_ATTR(cft->private)) {
2807 case RES_USAGE:
2808 if (counter == &memcg->memory)
c12176d3 2809 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2810 if (counter == &memcg->memsw)
c12176d3 2811 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2812 return (u64)page_counter_read(counter) * PAGE_SIZE;
2813 case RES_LIMIT:
2814 return (u64)counter->limit * PAGE_SIZE;
2815 case RES_MAX_USAGE:
2816 return (u64)counter->watermark * PAGE_SIZE;
2817 case RES_FAILCNT:
2818 return counter->failcnt;
2819 case RES_SOFT_LIMIT:
2820 return (u64)memcg->soft_limit * PAGE_SIZE;
2821 default:
2822 BUG();
2823 }
8cdea7c0 2824}
510fc4e1 2825
127424c8 2826#ifndef CONFIG_SLOB
567e9ab2 2827static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2828{
d6441637
VD
2829 int memcg_id;
2830
b313aeee
VD
2831 if (cgroup_memory_nokmem)
2832 return 0;
2833
2a4db7eb 2834 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2835 BUG_ON(memcg->kmem_state);
d6441637 2836
f3bb3043 2837 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2838 if (memcg_id < 0)
2839 return memcg_id;
d6441637 2840
ef12947c 2841 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2842 /*
567e9ab2 2843 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2844 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2845 * guarantee no one starts accounting before all call sites are
2846 * patched.
2847 */
900a38f0 2848 memcg->kmemcg_id = memcg_id;
567e9ab2 2849 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 2850 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
2851
2852 return 0;
d6441637
VD
2853}
2854
8e0a8912
JW
2855static void memcg_offline_kmem(struct mem_cgroup *memcg)
2856{
2857 struct cgroup_subsys_state *css;
2858 struct mem_cgroup *parent, *child;
2859 int kmemcg_id;
2860
2861 if (memcg->kmem_state != KMEM_ONLINE)
2862 return;
2863 /*
2864 * Clear the online state before clearing memcg_caches array
2865 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2866 * guarantees that no cache will be created for this cgroup
2867 * after we are done (see memcg_create_kmem_cache()).
2868 */
2869 memcg->kmem_state = KMEM_ALLOCATED;
2870
2871 memcg_deactivate_kmem_caches(memcg);
2872
2873 kmemcg_id = memcg->kmemcg_id;
2874 BUG_ON(kmemcg_id < 0);
2875
2876 parent = parent_mem_cgroup(memcg);
2877 if (!parent)
2878 parent = root_mem_cgroup;
2879
2880 /*
2881 * Change kmemcg_id of this cgroup and all its descendants to the
2882 * parent's id, and then move all entries from this cgroup's list_lrus
2883 * to ones of the parent. After we have finished, all list_lrus
2884 * corresponding to this cgroup are guaranteed to remain empty. The
2885 * ordering is imposed by list_lru_node->lock taken by
2886 * memcg_drain_all_list_lrus().
2887 */
3a06bb78 2888 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2889 css_for_each_descendant_pre(css, &memcg->css) {
2890 child = mem_cgroup_from_css(css);
2891 BUG_ON(child->kmemcg_id != kmemcg_id);
2892 child->kmemcg_id = parent->kmemcg_id;
2893 if (!memcg->use_hierarchy)
2894 break;
2895 }
3a06bb78
TH
2896 rcu_read_unlock();
2897
8e0a8912
JW
2898 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2899
2900 memcg_free_cache_id(kmemcg_id);
2901}
2902
2903static void memcg_free_kmem(struct mem_cgroup *memcg)
2904{
0b8f73e1
JW
2905 /* css_alloc() failed, offlining didn't happen */
2906 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2907 memcg_offline_kmem(memcg);
2908
8e0a8912
JW
2909 if (memcg->kmem_state == KMEM_ALLOCATED) {
2910 memcg_destroy_kmem_caches(memcg);
2911 static_branch_dec(&memcg_kmem_enabled_key);
2912 WARN_ON(page_counter_read(&memcg->kmem));
2913 }
8e0a8912 2914}
d6441637 2915#else
0b8f73e1 2916static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2917{
2918 return 0;
2919}
2920static void memcg_offline_kmem(struct mem_cgroup *memcg)
2921{
2922}
2923static void memcg_free_kmem(struct mem_cgroup *memcg)
2924{
2925}
2926#endif /* !CONFIG_SLOB */
2927
d6441637 2928static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2929 unsigned long limit)
d6441637 2930{
b313aeee 2931 int ret;
127424c8
JW
2932
2933 mutex_lock(&memcg_limit_mutex);
127424c8 2934 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2935 mutex_unlock(&memcg_limit_mutex);
2936 return ret;
d6441637 2937}
510fc4e1 2938
d55f90bf
VD
2939static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2940{
2941 int ret;
2942
2943 mutex_lock(&memcg_limit_mutex);
2944
0db15298 2945 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2946 if (ret)
2947 goto out;
2948
0db15298 2949 if (!memcg->tcpmem_active) {
d55f90bf
VD
2950 /*
2951 * The active flag needs to be written after the static_key
2952 * update. This is what guarantees that the socket activation
2d758073
JW
2953 * function is the last one to run. See mem_cgroup_sk_alloc()
2954 * for details, and note that we don't mark any socket as
2955 * belonging to this memcg until that flag is up.
d55f90bf
VD
2956 *
2957 * We need to do this, because static_keys will span multiple
2958 * sites, but we can't control their order. If we mark a socket
2959 * as accounted, but the accounting functions are not patched in
2960 * yet, we'll lose accounting.
2961 *
2d758073 2962 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
2963 * because when this value change, the code to process it is not
2964 * patched in yet.
2965 */
2966 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2967 memcg->tcpmem_active = true;
d55f90bf
VD
2968 }
2969out:
2970 mutex_unlock(&memcg_limit_mutex);
2971 return ret;
2972}
d55f90bf 2973
628f4235
KH
2974/*
2975 * The user of this function is...
2976 * RES_LIMIT.
2977 */
451af504
TH
2978static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2979 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2980{
451af504 2981 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2982 unsigned long nr_pages;
628f4235
KH
2983 int ret;
2984
451af504 2985 buf = strstrip(buf);
650c5e56 2986 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2987 if (ret)
2988 return ret;
af36f906 2989
3e32cb2e 2990 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2991 case RES_LIMIT:
4b3bde4c
BS
2992 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2993 ret = -EINVAL;
2994 break;
2995 }
3e32cb2e
JW
2996 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2997 case _MEM:
2998 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2999 break;
3e32cb2e
JW
3000 case _MEMSWAP:
3001 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3002 break;
3e32cb2e
JW
3003 case _KMEM:
3004 ret = memcg_update_kmem_limit(memcg, nr_pages);
3005 break;
d55f90bf
VD
3006 case _TCP:
3007 ret = memcg_update_tcp_limit(memcg, nr_pages);
3008 break;
3e32cb2e 3009 }
296c81d8 3010 break;
3e32cb2e
JW
3011 case RES_SOFT_LIMIT:
3012 memcg->soft_limit = nr_pages;
3013 ret = 0;
628f4235
KH
3014 break;
3015 }
451af504 3016 return ret ?: nbytes;
8cdea7c0
BS
3017}
3018
6770c64e
TH
3019static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3020 size_t nbytes, loff_t off)
c84872e1 3021{
6770c64e 3022 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3023 struct page_counter *counter;
c84872e1 3024
3e32cb2e
JW
3025 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3026 case _MEM:
3027 counter = &memcg->memory;
3028 break;
3029 case _MEMSWAP:
3030 counter = &memcg->memsw;
3031 break;
3032 case _KMEM:
3033 counter = &memcg->kmem;
3034 break;
d55f90bf 3035 case _TCP:
0db15298 3036 counter = &memcg->tcpmem;
d55f90bf 3037 break;
3e32cb2e
JW
3038 default:
3039 BUG();
3040 }
af36f906 3041
3e32cb2e 3042 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3043 case RES_MAX_USAGE:
3e32cb2e 3044 page_counter_reset_watermark(counter);
29f2a4da
PE
3045 break;
3046 case RES_FAILCNT:
3e32cb2e 3047 counter->failcnt = 0;
29f2a4da 3048 break;
3e32cb2e
JW
3049 default:
3050 BUG();
29f2a4da 3051 }
f64c3f54 3052
6770c64e 3053 return nbytes;
c84872e1
PE
3054}
3055
182446d0 3056static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3057 struct cftype *cft)
3058{
182446d0 3059 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3060}
3061
02491447 3062#ifdef CONFIG_MMU
182446d0 3063static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3064 struct cftype *cft, u64 val)
3065{
182446d0 3066 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3067
1dfab5ab 3068 if (val & ~MOVE_MASK)
7dc74be0 3069 return -EINVAL;
ee5e8472 3070
7dc74be0 3071 /*
ee5e8472
GC
3072 * No kind of locking is needed in here, because ->can_attach() will
3073 * check this value once in the beginning of the process, and then carry
3074 * on with stale data. This means that changes to this value will only
3075 * affect task migrations starting after the change.
7dc74be0 3076 */
c0ff4b85 3077 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3078 return 0;
3079}
02491447 3080#else
182446d0 3081static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3082 struct cftype *cft, u64 val)
3083{
3084 return -ENOSYS;
3085}
3086#endif
7dc74be0 3087
406eb0c9 3088#ifdef CONFIG_NUMA
2da8ca82 3089static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3090{
25485de6
GT
3091 struct numa_stat {
3092 const char *name;
3093 unsigned int lru_mask;
3094 };
3095
3096 static const struct numa_stat stats[] = {
3097 { "total", LRU_ALL },
3098 { "file", LRU_ALL_FILE },
3099 { "anon", LRU_ALL_ANON },
3100 { "unevictable", BIT(LRU_UNEVICTABLE) },
3101 };
3102 const struct numa_stat *stat;
406eb0c9 3103 int nid;
25485de6 3104 unsigned long nr;
2da8ca82 3105 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3106
25485de6
GT
3107 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3109 seq_printf(m, "%s=%lu", stat->name, nr);
3110 for_each_node_state(nid, N_MEMORY) {
3111 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3112 stat->lru_mask);
3113 seq_printf(m, " N%d=%lu", nid, nr);
3114 }
3115 seq_putc(m, '\n');
406eb0c9 3116 }
406eb0c9 3117
071aee13
YH
3118 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3119 struct mem_cgroup *iter;
3120
3121 nr = 0;
3122 for_each_mem_cgroup_tree(iter, memcg)
3123 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3124 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3125 for_each_node_state(nid, N_MEMORY) {
3126 nr = 0;
3127 for_each_mem_cgroup_tree(iter, memcg)
3128 nr += mem_cgroup_node_nr_lru_pages(
3129 iter, nid, stat->lru_mask);
3130 seq_printf(m, " N%d=%lu", nid, nr);
3131 }
3132 seq_putc(m, '\n');
406eb0c9 3133 }
406eb0c9 3134
406eb0c9
YH
3135 return 0;
3136}
3137#endif /* CONFIG_NUMA */
3138
2da8ca82 3139static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3140{
2da8ca82 3141 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3142 unsigned long memory, memsw;
af7c4b0e
JW
3143 struct mem_cgroup *mi;
3144 unsigned int i;
406eb0c9 3145
0ca44b14
GT
3146 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3147 MEM_CGROUP_STAT_NSTATS);
3148 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3149 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3150 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3151
af7c4b0e 3152 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3153 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3154 continue;
484ebb3b 3155 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3156 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3157 }
7b854121 3158
af7c4b0e
JW
3159 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3160 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3161 mem_cgroup_read_events(memcg, i));
3162
3163 for (i = 0; i < NR_LRU_LISTS; i++)
3164 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3165 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3166
14067bb3 3167 /* Hierarchical information */
3e32cb2e
JW
3168 memory = memsw = PAGE_COUNTER_MAX;
3169 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3170 memory = min(memory, mi->memory.limit);
3171 memsw = min(memsw, mi->memsw.limit);
fee7b548 3172 }
3e32cb2e
JW
3173 seq_printf(m, "hierarchical_memory_limit %llu\n",
3174 (u64)memory * PAGE_SIZE);
7941d214 3175 if (do_memsw_account())
3e32cb2e
JW
3176 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3177 (u64)memsw * PAGE_SIZE);
7f016ee8 3178
af7c4b0e 3179 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3180 unsigned long long val = 0;
af7c4b0e 3181
7941d214 3182 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3183 continue;
af7c4b0e
JW
3184 for_each_mem_cgroup_tree(mi, memcg)
3185 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3186 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3187 }
3188
3189 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3190 unsigned long long val = 0;
3191
3192 for_each_mem_cgroup_tree(mi, memcg)
3193 val += mem_cgroup_read_events(mi, i);
3194 seq_printf(m, "total_%s %llu\n",
3195 mem_cgroup_events_names[i], val);
3196 }
3197
3198 for (i = 0; i < NR_LRU_LISTS; i++) {
3199 unsigned long long val = 0;
3200
3201 for_each_mem_cgroup_tree(mi, memcg)
3202 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3203 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3204 }
14067bb3 3205
7f016ee8 3206#ifdef CONFIG_DEBUG_VM
7f016ee8 3207 {
ef8f2327
MG
3208 pg_data_t *pgdat;
3209 struct mem_cgroup_per_node *mz;
89abfab1 3210 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3211 unsigned long recent_rotated[2] = {0, 0};
3212 unsigned long recent_scanned[2] = {0, 0};
3213
ef8f2327
MG
3214 for_each_online_pgdat(pgdat) {
3215 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3216 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3217
ef8f2327
MG
3218 recent_rotated[0] += rstat->recent_rotated[0];
3219 recent_rotated[1] += rstat->recent_rotated[1];
3220 recent_scanned[0] += rstat->recent_scanned[0];
3221 recent_scanned[1] += rstat->recent_scanned[1];
3222 }
78ccf5b5
JW
3223 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3224 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3225 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3226 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3227 }
3228#endif
3229
d2ceb9b7
KH
3230 return 0;
3231}
3232
182446d0
TH
3233static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3234 struct cftype *cft)
a7885eb8 3235{
182446d0 3236 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3237
1f4c025b 3238 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3239}
3240
182446d0
TH
3241static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3242 struct cftype *cft, u64 val)
a7885eb8 3243{
182446d0 3244 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3245
3dae7fec 3246 if (val > 100)
a7885eb8
KM
3247 return -EINVAL;
3248
14208b0e 3249 if (css->parent)
3dae7fec
JW
3250 memcg->swappiness = val;
3251 else
3252 vm_swappiness = val;
068b38c1 3253
a7885eb8
KM
3254 return 0;
3255}
3256
2e72b634
KS
3257static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3258{
3259 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3260 unsigned long usage;
2e72b634
KS
3261 int i;
3262
3263 rcu_read_lock();
3264 if (!swap)
2c488db2 3265 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3266 else
2c488db2 3267 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3268
3269 if (!t)
3270 goto unlock;
3271
ce00a967 3272 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3273
3274 /*
748dad36 3275 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3276 * If it's not true, a threshold was crossed after last
3277 * call of __mem_cgroup_threshold().
3278 */
5407a562 3279 i = t->current_threshold;
2e72b634
KS
3280
3281 /*
3282 * Iterate backward over array of thresholds starting from
3283 * current_threshold and check if a threshold is crossed.
3284 * If none of thresholds below usage is crossed, we read
3285 * only one element of the array here.
3286 */
3287 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3288 eventfd_signal(t->entries[i].eventfd, 1);
3289
3290 /* i = current_threshold + 1 */
3291 i++;
3292
3293 /*
3294 * Iterate forward over array of thresholds starting from
3295 * current_threshold+1 and check if a threshold is crossed.
3296 * If none of thresholds above usage is crossed, we read
3297 * only one element of the array here.
3298 */
3299 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3300 eventfd_signal(t->entries[i].eventfd, 1);
3301
3302 /* Update current_threshold */
5407a562 3303 t->current_threshold = i - 1;
2e72b634
KS
3304unlock:
3305 rcu_read_unlock();
3306}
3307
3308static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3309{
ad4ca5f4
KS
3310 while (memcg) {
3311 __mem_cgroup_threshold(memcg, false);
7941d214 3312 if (do_memsw_account())
ad4ca5f4
KS
3313 __mem_cgroup_threshold(memcg, true);
3314
3315 memcg = parent_mem_cgroup(memcg);
3316 }
2e72b634
KS
3317}
3318
3319static int compare_thresholds(const void *a, const void *b)
3320{
3321 const struct mem_cgroup_threshold *_a = a;
3322 const struct mem_cgroup_threshold *_b = b;
3323
2bff24a3
GT
3324 if (_a->threshold > _b->threshold)
3325 return 1;
3326
3327 if (_a->threshold < _b->threshold)
3328 return -1;
3329
3330 return 0;
2e72b634
KS
3331}
3332
c0ff4b85 3333static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3334{
3335 struct mem_cgroup_eventfd_list *ev;
3336
2bcf2e92
MH
3337 spin_lock(&memcg_oom_lock);
3338
c0ff4b85 3339 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3340 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3341
3342 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3343 return 0;
3344}
3345
c0ff4b85 3346static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3347{
7d74b06f
KH
3348 struct mem_cgroup *iter;
3349
c0ff4b85 3350 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3351 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3352}
3353
59b6f873 3354static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3355 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3356{
2c488db2
KS
3357 struct mem_cgroup_thresholds *thresholds;
3358 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3359 unsigned long threshold;
3360 unsigned long usage;
2c488db2 3361 int i, size, ret;
2e72b634 3362
650c5e56 3363 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3364 if (ret)
3365 return ret;
3366
3367 mutex_lock(&memcg->thresholds_lock);
2c488db2 3368
05b84301 3369 if (type == _MEM) {
2c488db2 3370 thresholds = &memcg->thresholds;
ce00a967 3371 usage = mem_cgroup_usage(memcg, false);
05b84301 3372 } else if (type == _MEMSWAP) {
2c488db2 3373 thresholds = &memcg->memsw_thresholds;
ce00a967 3374 usage = mem_cgroup_usage(memcg, true);
05b84301 3375 } else
2e72b634
KS
3376 BUG();
3377
2e72b634 3378 /* Check if a threshold crossed before adding a new one */
2c488db2 3379 if (thresholds->primary)
2e72b634
KS
3380 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3381
2c488db2 3382 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3383
3384 /* Allocate memory for new array of thresholds */
2c488db2 3385 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3386 GFP_KERNEL);
2c488db2 3387 if (!new) {
2e72b634
KS
3388 ret = -ENOMEM;
3389 goto unlock;
3390 }
2c488db2 3391 new->size = size;
2e72b634
KS
3392
3393 /* Copy thresholds (if any) to new array */
2c488db2
KS
3394 if (thresholds->primary) {
3395 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3396 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3397 }
3398
2e72b634 3399 /* Add new threshold */
2c488db2
KS
3400 new->entries[size - 1].eventfd = eventfd;
3401 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3402
3403 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3404 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3405 compare_thresholds, NULL);
3406
3407 /* Find current threshold */
2c488db2 3408 new->current_threshold = -1;
2e72b634 3409 for (i = 0; i < size; i++) {
748dad36 3410 if (new->entries[i].threshold <= usage) {
2e72b634 3411 /*
2c488db2
KS
3412 * new->current_threshold will not be used until
3413 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3414 * it here.
3415 */
2c488db2 3416 ++new->current_threshold;
748dad36
SZ
3417 } else
3418 break;
2e72b634
KS
3419 }
3420
2c488db2
KS
3421 /* Free old spare buffer and save old primary buffer as spare */
3422 kfree(thresholds->spare);
3423 thresholds->spare = thresholds->primary;
3424
3425 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3426
907860ed 3427 /* To be sure that nobody uses thresholds */
2e72b634
KS
3428 synchronize_rcu();
3429
2e72b634
KS
3430unlock:
3431 mutex_unlock(&memcg->thresholds_lock);
3432
3433 return ret;
3434}
3435
59b6f873 3436static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3437 struct eventfd_ctx *eventfd, const char *args)
3438{
59b6f873 3439 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3440}
3441
59b6f873 3442static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3443 struct eventfd_ctx *eventfd, const char *args)
3444{
59b6f873 3445 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3446}
3447
59b6f873 3448static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3449 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3450{
2c488db2
KS
3451 struct mem_cgroup_thresholds *thresholds;
3452 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3453 unsigned long usage;
2c488db2 3454 int i, j, size;
2e72b634
KS
3455
3456 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3457
3458 if (type == _MEM) {
2c488db2 3459 thresholds = &memcg->thresholds;
ce00a967 3460 usage = mem_cgroup_usage(memcg, false);
05b84301 3461 } else if (type == _MEMSWAP) {
2c488db2 3462 thresholds = &memcg->memsw_thresholds;
ce00a967 3463 usage = mem_cgroup_usage(memcg, true);
05b84301 3464 } else
2e72b634
KS
3465 BUG();
3466
371528ca
AV
3467 if (!thresholds->primary)
3468 goto unlock;
3469
2e72b634
KS
3470 /* Check if a threshold crossed before removing */
3471 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3472
3473 /* Calculate new number of threshold */
2c488db2
KS
3474 size = 0;
3475 for (i = 0; i < thresholds->primary->size; i++) {
3476 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3477 size++;
3478 }
3479
2c488db2 3480 new = thresholds->spare;
907860ed 3481
2e72b634
KS
3482 /* Set thresholds array to NULL if we don't have thresholds */
3483 if (!size) {
2c488db2
KS
3484 kfree(new);
3485 new = NULL;
907860ed 3486 goto swap_buffers;
2e72b634
KS
3487 }
3488
2c488db2 3489 new->size = size;
2e72b634
KS
3490
3491 /* Copy thresholds and find current threshold */
2c488db2
KS
3492 new->current_threshold = -1;
3493 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3494 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3495 continue;
3496
2c488db2 3497 new->entries[j] = thresholds->primary->entries[i];
748dad36 3498 if (new->entries[j].threshold <= usage) {
2e72b634 3499 /*
2c488db2 3500 * new->current_threshold will not be used
2e72b634
KS
3501 * until rcu_assign_pointer(), so it's safe to increment
3502 * it here.
3503 */
2c488db2 3504 ++new->current_threshold;
2e72b634
KS
3505 }
3506 j++;
3507 }
3508
907860ed 3509swap_buffers:
2c488db2
KS
3510 /* Swap primary and spare array */
3511 thresholds->spare = thresholds->primary;
8c757763 3512
2c488db2 3513 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3514
907860ed 3515 /* To be sure that nobody uses thresholds */
2e72b634 3516 synchronize_rcu();
6611d8d7
MC
3517
3518 /* If all events are unregistered, free the spare array */
3519 if (!new) {
3520 kfree(thresholds->spare);
3521 thresholds->spare = NULL;
3522 }
371528ca 3523unlock:
2e72b634 3524 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3525}
c1e862c1 3526
59b6f873 3527static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3528 struct eventfd_ctx *eventfd)
3529{
59b6f873 3530 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3531}
3532
59b6f873 3533static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3534 struct eventfd_ctx *eventfd)
3535{
59b6f873 3536 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3537}
3538
59b6f873 3539static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3540 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3541{
9490ff27 3542 struct mem_cgroup_eventfd_list *event;
9490ff27 3543
9490ff27
KH
3544 event = kmalloc(sizeof(*event), GFP_KERNEL);
3545 if (!event)
3546 return -ENOMEM;
3547
1af8efe9 3548 spin_lock(&memcg_oom_lock);
9490ff27
KH
3549
3550 event->eventfd = eventfd;
3551 list_add(&event->list, &memcg->oom_notify);
3552
3553 /* already in OOM ? */
c2b42d3c 3554 if (memcg->under_oom)
9490ff27 3555 eventfd_signal(eventfd, 1);
1af8efe9 3556 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3557
3558 return 0;
3559}
3560
59b6f873 3561static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3562 struct eventfd_ctx *eventfd)
9490ff27 3563{
9490ff27 3564 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3565
1af8efe9 3566 spin_lock(&memcg_oom_lock);
9490ff27 3567
c0ff4b85 3568 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3569 if (ev->eventfd == eventfd) {
3570 list_del(&ev->list);
3571 kfree(ev);
3572 }
3573 }
3574
1af8efe9 3575 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3576}
3577
2da8ca82 3578static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3579{
2da8ca82 3580 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3581
791badbd 3582 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3583 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3584 return 0;
3585}
3586
182446d0 3587static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3588 struct cftype *cft, u64 val)
3589{
182446d0 3590 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3591
3592 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3593 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3594 return -EINVAL;
3595
c0ff4b85 3596 memcg->oom_kill_disable = val;
4d845ebf 3597 if (!val)
c0ff4b85 3598 memcg_oom_recover(memcg);
3dae7fec 3599
3c11ecf4
KH
3600 return 0;
3601}
3602
52ebea74
TH
3603#ifdef CONFIG_CGROUP_WRITEBACK
3604
3605struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3606{
3607 return &memcg->cgwb_list;
3608}
3609
841710aa
TH
3610static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3611{
3612 return wb_domain_init(&memcg->cgwb_domain, gfp);
3613}
3614
3615static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3616{
3617 wb_domain_exit(&memcg->cgwb_domain);
3618}
3619
2529bb3a
TH
3620static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3621{
3622 wb_domain_size_changed(&memcg->cgwb_domain);
3623}
3624
841710aa
TH
3625struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3626{
3627 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3628
3629 if (!memcg->css.parent)
3630 return NULL;
3631
3632 return &memcg->cgwb_domain;
3633}
3634
c2aa723a
TH
3635/**
3636 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3637 * @wb: bdi_writeback in question
c5edf9cd
TH
3638 * @pfilepages: out parameter for number of file pages
3639 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3640 * @pdirty: out parameter for number of dirty pages
3641 * @pwriteback: out parameter for number of pages under writeback
3642 *
c5edf9cd
TH
3643 * Determine the numbers of file, headroom, dirty, and writeback pages in
3644 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3645 * is a bit more involved.
c2aa723a 3646 *
c5edf9cd
TH
3647 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3648 * headroom is calculated as the lowest headroom of itself and the
3649 * ancestors. Note that this doesn't consider the actual amount of
3650 * available memory in the system. The caller should further cap
3651 * *@pheadroom accordingly.
c2aa723a 3652 */
c5edf9cd
TH
3653void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3654 unsigned long *pheadroom, unsigned long *pdirty,
3655 unsigned long *pwriteback)
c2aa723a
TH
3656{
3657 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3658 struct mem_cgroup *parent;
c2aa723a
TH
3659
3660 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3661
3662 /* this should eventually include NR_UNSTABLE_NFS */
3663 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3664 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3665 (1 << LRU_ACTIVE_FILE));
3666 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3667
c2aa723a
TH
3668 while ((parent = parent_mem_cgroup(memcg))) {
3669 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3670 unsigned long used = page_counter_read(&memcg->memory);
3671
c5edf9cd 3672 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3673 memcg = parent;
3674 }
c2aa723a
TH
3675}
3676
841710aa
TH
3677#else /* CONFIG_CGROUP_WRITEBACK */
3678
3679static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3680{
3681 return 0;
3682}
3683
3684static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3685{
3686}
3687
2529bb3a
TH
3688static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3689{
3690}
3691
52ebea74
TH
3692#endif /* CONFIG_CGROUP_WRITEBACK */
3693
3bc942f3
TH
3694/*
3695 * DO NOT USE IN NEW FILES.
3696 *
3697 * "cgroup.event_control" implementation.
3698 *
3699 * This is way over-engineered. It tries to support fully configurable
3700 * events for each user. Such level of flexibility is completely
3701 * unnecessary especially in the light of the planned unified hierarchy.
3702 *
3703 * Please deprecate this and replace with something simpler if at all
3704 * possible.
3705 */
3706
79bd9814
TH
3707/*
3708 * Unregister event and free resources.
3709 *
3710 * Gets called from workqueue.
3711 */
3bc942f3 3712static void memcg_event_remove(struct work_struct *work)
79bd9814 3713{
3bc942f3
TH
3714 struct mem_cgroup_event *event =
3715 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3716 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3717
3718 remove_wait_queue(event->wqh, &event->wait);
3719
59b6f873 3720 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3721
3722 /* Notify userspace the event is going away. */
3723 eventfd_signal(event->eventfd, 1);
3724
3725 eventfd_ctx_put(event->eventfd);
3726 kfree(event);
59b6f873 3727 css_put(&memcg->css);
79bd9814
TH
3728}
3729
3730/*
3731 * Gets called on POLLHUP on eventfd when user closes it.
3732 *
3733 * Called with wqh->lock held and interrupts disabled.
3734 */
3bc942f3
TH
3735static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3736 int sync, void *key)
79bd9814 3737{
3bc942f3
TH
3738 struct mem_cgroup_event *event =
3739 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3740 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3741 unsigned long flags = (unsigned long)key;
3742
3743 if (flags & POLLHUP) {
3744 /*
3745 * If the event has been detached at cgroup removal, we
3746 * can simply return knowing the other side will cleanup
3747 * for us.
3748 *
3749 * We can't race against event freeing since the other
3750 * side will require wqh->lock via remove_wait_queue(),
3751 * which we hold.
3752 */
fba94807 3753 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3754 if (!list_empty(&event->list)) {
3755 list_del_init(&event->list);
3756 /*
3757 * We are in atomic context, but cgroup_event_remove()
3758 * may sleep, so we have to call it in workqueue.
3759 */
3760 schedule_work(&event->remove);
3761 }
fba94807 3762 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3763 }
3764
3765 return 0;
3766}
3767
3bc942f3 3768static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3769 wait_queue_head_t *wqh, poll_table *pt)
3770{
3bc942f3
TH
3771 struct mem_cgroup_event *event =
3772 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3773
3774 event->wqh = wqh;
3775 add_wait_queue(wqh, &event->wait);
3776}
3777
3778/*
3bc942f3
TH
3779 * DO NOT USE IN NEW FILES.
3780 *
79bd9814
TH
3781 * Parse input and register new cgroup event handler.
3782 *
3783 * Input must be in format '<event_fd> <control_fd> <args>'.
3784 * Interpretation of args is defined by control file implementation.
3785 */
451af504
TH
3786static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3787 char *buf, size_t nbytes, loff_t off)
79bd9814 3788{
451af504 3789 struct cgroup_subsys_state *css = of_css(of);
fba94807 3790 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3791 struct mem_cgroup_event *event;
79bd9814
TH
3792 struct cgroup_subsys_state *cfile_css;
3793 unsigned int efd, cfd;
3794 struct fd efile;
3795 struct fd cfile;
fba94807 3796 const char *name;
79bd9814
TH
3797 char *endp;
3798 int ret;
3799
451af504
TH
3800 buf = strstrip(buf);
3801
3802 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3803 if (*endp != ' ')
3804 return -EINVAL;
451af504 3805 buf = endp + 1;
79bd9814 3806
451af504 3807 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3808 if ((*endp != ' ') && (*endp != '\0'))
3809 return -EINVAL;
451af504 3810 buf = endp + 1;
79bd9814
TH
3811
3812 event = kzalloc(sizeof(*event), GFP_KERNEL);
3813 if (!event)
3814 return -ENOMEM;
3815
59b6f873 3816 event->memcg = memcg;
79bd9814 3817 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3818 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3819 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3820 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3821
3822 efile = fdget(efd);
3823 if (!efile.file) {
3824 ret = -EBADF;
3825 goto out_kfree;
3826 }
3827
3828 event->eventfd = eventfd_ctx_fileget(efile.file);
3829 if (IS_ERR(event->eventfd)) {
3830 ret = PTR_ERR(event->eventfd);
3831 goto out_put_efile;
3832 }
3833
3834 cfile = fdget(cfd);
3835 if (!cfile.file) {
3836 ret = -EBADF;
3837 goto out_put_eventfd;
3838 }
3839
3840 /* the process need read permission on control file */
3841 /* AV: shouldn't we check that it's been opened for read instead? */
3842 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3843 if (ret < 0)
3844 goto out_put_cfile;
3845
fba94807
TH
3846 /*
3847 * Determine the event callbacks and set them in @event. This used
3848 * to be done via struct cftype but cgroup core no longer knows
3849 * about these events. The following is crude but the whole thing
3850 * is for compatibility anyway.
3bc942f3
TH
3851 *
3852 * DO NOT ADD NEW FILES.
fba94807 3853 */
b583043e 3854 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3855
3856 if (!strcmp(name, "memory.usage_in_bytes")) {
3857 event->register_event = mem_cgroup_usage_register_event;
3858 event->unregister_event = mem_cgroup_usage_unregister_event;
3859 } else if (!strcmp(name, "memory.oom_control")) {
3860 event->register_event = mem_cgroup_oom_register_event;
3861 event->unregister_event = mem_cgroup_oom_unregister_event;
3862 } else if (!strcmp(name, "memory.pressure_level")) {
3863 event->register_event = vmpressure_register_event;
3864 event->unregister_event = vmpressure_unregister_event;
3865 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3866 event->register_event = memsw_cgroup_usage_register_event;
3867 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3868 } else {
3869 ret = -EINVAL;
3870 goto out_put_cfile;
3871 }
3872
79bd9814 3873 /*
b5557c4c
TH
3874 * Verify @cfile should belong to @css. Also, remaining events are
3875 * automatically removed on cgroup destruction but the removal is
3876 * asynchronous, so take an extra ref on @css.
79bd9814 3877 */
b583043e 3878 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3879 &memory_cgrp_subsys);
79bd9814 3880 ret = -EINVAL;
5a17f543 3881 if (IS_ERR(cfile_css))
79bd9814 3882 goto out_put_cfile;
5a17f543
TH
3883 if (cfile_css != css) {
3884 css_put(cfile_css);
79bd9814 3885 goto out_put_cfile;
5a17f543 3886 }
79bd9814 3887
451af504 3888 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3889 if (ret)
3890 goto out_put_css;
3891
3892 efile.file->f_op->poll(efile.file, &event->pt);
3893
fba94807
TH
3894 spin_lock(&memcg->event_list_lock);
3895 list_add(&event->list, &memcg->event_list);
3896 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3897
3898 fdput(cfile);
3899 fdput(efile);
3900
451af504 3901 return nbytes;
79bd9814
TH
3902
3903out_put_css:
b5557c4c 3904 css_put(css);
79bd9814
TH
3905out_put_cfile:
3906 fdput(cfile);
3907out_put_eventfd:
3908 eventfd_ctx_put(event->eventfd);
3909out_put_efile:
3910 fdput(efile);
3911out_kfree:
3912 kfree(event);
3913
3914 return ret;
3915}
3916
241994ed 3917static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3918 {
0eea1030 3919 .name = "usage_in_bytes",
8c7c6e34 3920 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3921 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3922 },
c84872e1
PE
3923 {
3924 .name = "max_usage_in_bytes",
8c7c6e34 3925 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3926 .write = mem_cgroup_reset,
791badbd 3927 .read_u64 = mem_cgroup_read_u64,
c84872e1 3928 },
8cdea7c0 3929 {
0eea1030 3930 .name = "limit_in_bytes",
8c7c6e34 3931 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3932 .write = mem_cgroup_write,
791badbd 3933 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3934 },
296c81d8
BS
3935 {
3936 .name = "soft_limit_in_bytes",
3937 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3938 .write = mem_cgroup_write,
791badbd 3939 .read_u64 = mem_cgroup_read_u64,
296c81d8 3940 },
8cdea7c0
BS
3941 {
3942 .name = "failcnt",
8c7c6e34 3943 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3944 .write = mem_cgroup_reset,
791badbd 3945 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3946 },
d2ceb9b7
KH
3947 {
3948 .name = "stat",
2da8ca82 3949 .seq_show = memcg_stat_show,
d2ceb9b7 3950 },
c1e862c1
KH
3951 {
3952 .name = "force_empty",
6770c64e 3953 .write = mem_cgroup_force_empty_write,
c1e862c1 3954 },
18f59ea7
BS
3955 {
3956 .name = "use_hierarchy",
3957 .write_u64 = mem_cgroup_hierarchy_write,
3958 .read_u64 = mem_cgroup_hierarchy_read,
3959 },
79bd9814 3960 {
3bc942f3 3961 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3962 .write = memcg_write_event_control,
7dbdb199 3963 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3964 },
a7885eb8
KM
3965 {
3966 .name = "swappiness",
3967 .read_u64 = mem_cgroup_swappiness_read,
3968 .write_u64 = mem_cgroup_swappiness_write,
3969 },
7dc74be0
DN
3970 {
3971 .name = "move_charge_at_immigrate",
3972 .read_u64 = mem_cgroup_move_charge_read,
3973 .write_u64 = mem_cgroup_move_charge_write,
3974 },
9490ff27
KH
3975 {
3976 .name = "oom_control",
2da8ca82 3977 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3978 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3979 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3980 },
70ddf637
AV
3981 {
3982 .name = "pressure_level",
70ddf637 3983 },
406eb0c9
YH
3984#ifdef CONFIG_NUMA
3985 {
3986 .name = "numa_stat",
2da8ca82 3987 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3988 },
3989#endif
510fc4e1
GC
3990 {
3991 .name = "kmem.limit_in_bytes",
3992 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3993 .write = mem_cgroup_write,
791badbd 3994 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3995 },
3996 {
3997 .name = "kmem.usage_in_bytes",
3998 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 3999 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4000 },
4001 {
4002 .name = "kmem.failcnt",
4003 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4004 .write = mem_cgroup_reset,
791badbd 4005 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4006 },
4007 {
4008 .name = "kmem.max_usage_in_bytes",
4009 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4010 .write = mem_cgroup_reset,
791badbd 4011 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4012 },
749c5415
GC
4013#ifdef CONFIG_SLABINFO
4014 {
4015 .name = "kmem.slabinfo",
bc2791f8
TH
4016 .seq_start = memcg_slab_start,
4017 .seq_next = memcg_slab_next,
4018 .seq_stop = memcg_slab_stop,
b047501c 4019 .seq_show = memcg_slab_show,
749c5415
GC
4020 },
4021#endif
d55f90bf
VD
4022 {
4023 .name = "kmem.tcp.limit_in_bytes",
4024 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4025 .write = mem_cgroup_write,
4026 .read_u64 = mem_cgroup_read_u64,
4027 },
4028 {
4029 .name = "kmem.tcp.usage_in_bytes",
4030 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4031 .read_u64 = mem_cgroup_read_u64,
4032 },
4033 {
4034 .name = "kmem.tcp.failcnt",
4035 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4036 .write = mem_cgroup_reset,
4037 .read_u64 = mem_cgroup_read_u64,
4038 },
4039 {
4040 .name = "kmem.tcp.max_usage_in_bytes",
4041 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4042 .write = mem_cgroup_reset,
4043 .read_u64 = mem_cgroup_read_u64,
4044 },
6bc10349 4045 { }, /* terminate */
af36f906 4046};
8c7c6e34 4047
73f576c0
JW
4048/*
4049 * Private memory cgroup IDR
4050 *
4051 * Swap-out records and page cache shadow entries need to store memcg
4052 * references in constrained space, so we maintain an ID space that is
4053 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4054 * memory-controlled cgroups to 64k.
4055 *
4056 * However, there usually are many references to the oflline CSS after
4057 * the cgroup has been destroyed, such as page cache or reclaimable
4058 * slab objects, that don't need to hang on to the ID. We want to keep
4059 * those dead CSS from occupying IDs, or we might quickly exhaust the
4060 * relatively small ID space and prevent the creation of new cgroups
4061 * even when there are much fewer than 64k cgroups - possibly none.
4062 *
4063 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4064 * be freed and recycled when it's no longer needed, which is usually
4065 * when the CSS is offlined.
4066 *
4067 * The only exception to that are records of swapped out tmpfs/shmem
4068 * pages that need to be attributed to live ancestors on swapin. But
4069 * those references are manageable from userspace.
4070 */
4071
4072static DEFINE_IDR(mem_cgroup_idr);
4073
615d66c3 4074static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4075{
58fa2a55 4076 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4077 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4078}
4079
615d66c3 4080static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4081{
58fa2a55 4082 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4083 if (atomic_sub_and_test(n, &memcg->id.ref)) {
73f576c0
JW
4084 idr_remove(&mem_cgroup_idr, memcg->id.id);
4085 memcg->id.id = 0;
4086
4087 /* Memcg ID pins CSS */
4088 css_put(&memcg->css);
4089 }
4090}
4091
615d66c3
VD
4092static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4093{
4094 mem_cgroup_id_get_many(memcg, 1);
4095}
4096
4097static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4098{
4099 mem_cgroup_id_put_many(memcg, 1);
4100}
4101
73f576c0
JW
4102/**
4103 * mem_cgroup_from_id - look up a memcg from a memcg id
4104 * @id: the memcg id to look up
4105 *
4106 * Caller must hold rcu_read_lock().
4107 */
4108struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4109{
4110 WARN_ON_ONCE(!rcu_read_lock_held());
4111 return idr_find(&mem_cgroup_idr, id);
4112}
4113
ef8f2327 4114static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4115{
4116 struct mem_cgroup_per_node *pn;
ef8f2327 4117 int tmp = node;
1ecaab2b
KH
4118 /*
4119 * This routine is called against possible nodes.
4120 * But it's BUG to call kmalloc() against offline node.
4121 *
4122 * TODO: this routine can waste much memory for nodes which will
4123 * never be onlined. It's better to use memory hotplug callback
4124 * function.
4125 */
41e3355d
KH
4126 if (!node_state(node, N_NORMAL_MEMORY))
4127 tmp = -1;
17295c88 4128 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4129 if (!pn)
4130 return 1;
1ecaab2b 4131
ef8f2327
MG
4132 lruvec_init(&pn->lruvec);
4133 pn->usage_in_excess = 0;
4134 pn->on_tree = false;
4135 pn->memcg = memcg;
4136
54f72fe0 4137 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4138 return 0;
4139}
4140
ef8f2327 4141static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4142{
54f72fe0 4143 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4144}
4145
40e952f9 4146static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4147{
c8b2a36f 4148 int node;
59927fb9 4149
c8b2a36f 4150 for_each_node(node)
ef8f2327 4151 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4152 free_percpu(memcg->stat);
8ff69e2c 4153 kfree(memcg);
59927fb9 4154}
3afe36b1 4155
40e952f9
TE
4156static void mem_cgroup_free(struct mem_cgroup *memcg)
4157{
4158 memcg_wb_domain_exit(memcg);
4159 __mem_cgroup_free(memcg);
4160}
4161
0b8f73e1 4162static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4163{
d142e3e6 4164 struct mem_cgroup *memcg;
0b8f73e1 4165 size_t size;
6d12e2d8 4166 int node;
8cdea7c0 4167
0b8f73e1
JW
4168 size = sizeof(struct mem_cgroup);
4169 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4170
4171 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4172 if (!memcg)
0b8f73e1
JW
4173 return NULL;
4174
73f576c0
JW
4175 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4176 1, MEM_CGROUP_ID_MAX,
4177 GFP_KERNEL);
4178 if (memcg->id.id < 0)
4179 goto fail;
4180
0b8f73e1
JW
4181 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4182 if (!memcg->stat)
4183 goto fail;
78fb7466 4184
3ed28fa1 4185 for_each_node(node)
ef8f2327 4186 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4187 goto fail;
f64c3f54 4188
0b8f73e1
JW
4189 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4190 goto fail;
28dbc4b6 4191
f7e1cb6e 4192 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4193 memcg->last_scanned_node = MAX_NUMNODES;
4194 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4195 mutex_init(&memcg->thresholds_lock);
4196 spin_lock_init(&memcg->move_lock);
70ddf637 4197 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4198 INIT_LIST_HEAD(&memcg->event_list);
4199 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4200 memcg->socket_pressure = jiffies;
127424c8 4201#ifndef CONFIG_SLOB
900a38f0 4202 memcg->kmemcg_id = -1;
900a38f0 4203#endif
52ebea74
TH
4204#ifdef CONFIG_CGROUP_WRITEBACK
4205 INIT_LIST_HEAD(&memcg->cgwb_list);
4206#endif
73f576c0 4207 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4208 return memcg;
4209fail:
73f576c0
JW
4210 if (memcg->id.id > 0)
4211 idr_remove(&mem_cgroup_idr, memcg->id.id);
40e952f9 4212 __mem_cgroup_free(memcg);
0b8f73e1 4213 return NULL;
d142e3e6
GC
4214}
4215
0b8f73e1
JW
4216static struct cgroup_subsys_state * __ref
4217mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4218{
0b8f73e1
JW
4219 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4220 struct mem_cgroup *memcg;
4221 long error = -ENOMEM;
d142e3e6 4222
0b8f73e1
JW
4223 memcg = mem_cgroup_alloc();
4224 if (!memcg)
4225 return ERR_PTR(error);
d142e3e6 4226
0b8f73e1
JW
4227 memcg->high = PAGE_COUNTER_MAX;
4228 memcg->soft_limit = PAGE_COUNTER_MAX;
4229 if (parent) {
4230 memcg->swappiness = mem_cgroup_swappiness(parent);
4231 memcg->oom_kill_disable = parent->oom_kill_disable;
4232 }
4233 if (parent && parent->use_hierarchy) {
4234 memcg->use_hierarchy = true;
3e32cb2e 4235 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4236 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4237 page_counter_init(&memcg->memsw, &parent->memsw);
4238 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4239 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4240 } else {
3e32cb2e 4241 page_counter_init(&memcg->memory, NULL);
37e84351 4242 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4243 page_counter_init(&memcg->memsw, NULL);
4244 page_counter_init(&memcg->kmem, NULL);
0db15298 4245 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4246 /*
4247 * Deeper hierachy with use_hierarchy == false doesn't make
4248 * much sense so let cgroup subsystem know about this
4249 * unfortunate state in our controller.
4250 */
d142e3e6 4251 if (parent != root_mem_cgroup)
073219e9 4252 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4253 }
d6441637 4254
0b8f73e1
JW
4255 /* The following stuff does not apply to the root */
4256 if (!parent) {
4257 root_mem_cgroup = memcg;
4258 return &memcg->css;
4259 }
4260
b313aeee 4261 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4262 if (error)
4263 goto fail;
127424c8 4264
f7e1cb6e 4265 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4266 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4267
0b8f73e1
JW
4268 return &memcg->css;
4269fail:
4270 mem_cgroup_free(memcg);
ea3a9645 4271 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4272}
4273
73f576c0 4274static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4275{
58fa2a55
VD
4276 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4277
73f576c0 4278 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4279 atomic_set(&memcg->id.ref, 1);
73f576c0 4280 css_get(css);
2f7dd7a4 4281 return 0;
8cdea7c0
BS
4282}
4283
eb95419b 4284static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4285{
eb95419b 4286 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4287 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4288
4289 /*
4290 * Unregister events and notify userspace.
4291 * Notify userspace about cgroup removing only after rmdir of cgroup
4292 * directory to avoid race between userspace and kernelspace.
4293 */
fba94807
TH
4294 spin_lock(&memcg->event_list_lock);
4295 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4296 list_del_init(&event->list);
4297 schedule_work(&event->remove);
4298 }
fba94807 4299 spin_unlock(&memcg->event_list_lock);
ec64f515 4300
567e9ab2 4301 memcg_offline_kmem(memcg);
52ebea74 4302 wb_memcg_offline(memcg);
73f576c0
JW
4303
4304 mem_cgroup_id_put(memcg);
df878fb0
KH
4305}
4306
6df38689
VD
4307static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4308{
4309 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4310
4311 invalidate_reclaim_iterators(memcg);
4312}
4313
eb95419b 4314static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4315{
eb95419b 4316 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4317
f7e1cb6e 4318 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4319 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4320
0db15298 4321 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4322 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4323
0b8f73e1
JW
4324 vmpressure_cleanup(&memcg->vmpressure);
4325 cancel_work_sync(&memcg->high_work);
4326 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4327 memcg_free_kmem(memcg);
0b8f73e1 4328 mem_cgroup_free(memcg);
8cdea7c0
BS
4329}
4330
1ced953b
TH
4331/**
4332 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4333 * @css: the target css
4334 *
4335 * Reset the states of the mem_cgroup associated with @css. This is
4336 * invoked when the userland requests disabling on the default hierarchy
4337 * but the memcg is pinned through dependency. The memcg should stop
4338 * applying policies and should revert to the vanilla state as it may be
4339 * made visible again.
4340 *
4341 * The current implementation only resets the essential configurations.
4342 * This needs to be expanded to cover all the visible parts.
4343 */
4344static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4345{
4346 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4347
d334c9bc
VD
4348 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4349 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4350 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4351 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4352 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4353 memcg->low = 0;
4354 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4355 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4356 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4357}
4358
02491447 4359#ifdef CONFIG_MMU
7dc74be0 4360/* Handlers for move charge at task migration. */
854ffa8d 4361static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4362{
05b84301 4363 int ret;
9476db97 4364
d0164adc
MG
4365 /* Try a single bulk charge without reclaim first, kswapd may wake */
4366 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4367 if (!ret) {
854ffa8d 4368 mc.precharge += count;
854ffa8d
DN
4369 return ret;
4370 }
9476db97 4371
3674534b 4372 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4373 while (count--) {
3674534b 4374 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4375 if (ret)
38c5d72f 4376 return ret;
854ffa8d 4377 mc.precharge++;
9476db97 4378 cond_resched();
854ffa8d 4379 }
9476db97 4380 return 0;
4ffef5fe
DN
4381}
4382
4ffef5fe
DN
4383union mc_target {
4384 struct page *page;
02491447 4385 swp_entry_t ent;
4ffef5fe
DN
4386};
4387
4ffef5fe 4388enum mc_target_type {
8d32ff84 4389 MC_TARGET_NONE = 0,
4ffef5fe 4390 MC_TARGET_PAGE,
02491447 4391 MC_TARGET_SWAP,
4ffef5fe
DN
4392};
4393
90254a65
DN
4394static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4395 unsigned long addr, pte_t ptent)
4ffef5fe 4396{
90254a65 4397 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4398
90254a65
DN
4399 if (!page || !page_mapped(page))
4400 return NULL;
4401 if (PageAnon(page)) {
1dfab5ab 4402 if (!(mc.flags & MOVE_ANON))
90254a65 4403 return NULL;
1dfab5ab
JW
4404 } else {
4405 if (!(mc.flags & MOVE_FILE))
4406 return NULL;
4407 }
90254a65
DN
4408 if (!get_page_unless_zero(page))
4409 return NULL;
4410
4411 return page;
4412}
4413
4b91355e 4414#ifdef CONFIG_SWAP
90254a65 4415static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4416 pte_t ptent, swp_entry_t *entry)
90254a65 4417{
90254a65
DN
4418 struct page *page = NULL;
4419 swp_entry_t ent = pte_to_swp_entry(ptent);
4420
1dfab5ab 4421 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4422 return NULL;
4b91355e
KH
4423 /*
4424 * Because lookup_swap_cache() updates some statistics counter,
4425 * we call find_get_page() with swapper_space directly.
4426 */
f6ab1f7f 4427 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4428 if (do_memsw_account())
90254a65
DN
4429 entry->val = ent.val;
4430
4431 return page;
4432}
4b91355e
KH
4433#else
4434static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4435 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4436{
4437 return NULL;
4438}
4439#endif
90254a65 4440
87946a72
DN
4441static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4442 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4443{
4444 struct page *page = NULL;
87946a72
DN
4445 struct address_space *mapping;
4446 pgoff_t pgoff;
4447
4448 if (!vma->vm_file) /* anonymous vma */
4449 return NULL;
1dfab5ab 4450 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4451 return NULL;
4452
87946a72 4453 mapping = vma->vm_file->f_mapping;
0661a336 4454 pgoff = linear_page_index(vma, addr);
87946a72
DN
4455
4456 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4457#ifdef CONFIG_SWAP
4458 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4459 if (shmem_mapping(mapping)) {
4460 page = find_get_entry(mapping, pgoff);
4461 if (radix_tree_exceptional_entry(page)) {
4462 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4463 if (do_memsw_account())
139b6a6f 4464 *entry = swp;
f6ab1f7f
HY
4465 page = find_get_page(swap_address_space(swp),
4466 swp_offset(swp));
139b6a6f
JW
4467 }
4468 } else
4469 page = find_get_page(mapping, pgoff);
4470#else
4471 page = find_get_page(mapping, pgoff);
aa3b1895 4472#endif
87946a72
DN
4473 return page;
4474}
4475
b1b0deab
CG
4476/**
4477 * mem_cgroup_move_account - move account of the page
4478 * @page: the page
25843c2b 4479 * @compound: charge the page as compound or small page
b1b0deab
CG
4480 * @from: mem_cgroup which the page is moved from.
4481 * @to: mem_cgroup which the page is moved to. @from != @to.
4482 *
3ac808fd 4483 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4484 *
4485 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4486 * from old cgroup.
4487 */
4488static int mem_cgroup_move_account(struct page *page,
f627c2f5 4489 bool compound,
b1b0deab
CG
4490 struct mem_cgroup *from,
4491 struct mem_cgroup *to)
4492{
4493 unsigned long flags;
f627c2f5 4494 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4495 int ret;
c4843a75 4496 bool anon;
b1b0deab
CG
4497
4498 VM_BUG_ON(from == to);
4499 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4500 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4501
4502 /*
6a93ca8f 4503 * Prevent mem_cgroup_migrate() from looking at
45637bab 4504 * page->mem_cgroup of its source page while we change it.
b1b0deab 4505 */
f627c2f5 4506 ret = -EBUSY;
b1b0deab
CG
4507 if (!trylock_page(page))
4508 goto out;
4509
4510 ret = -EINVAL;
4511 if (page->mem_cgroup != from)
4512 goto out_unlock;
4513
c4843a75
GT
4514 anon = PageAnon(page);
4515
b1b0deab
CG
4516 spin_lock_irqsave(&from->move_lock, flags);
4517
c4843a75 4518 if (!anon && page_mapped(page)) {
b1b0deab
CG
4519 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4520 nr_pages);
4521 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4522 nr_pages);
4523 }
4524
c4843a75
GT
4525 /*
4526 * move_lock grabbed above and caller set from->moving_account, so
4527 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4528 * So mapping should be stable for dirty pages.
4529 */
4530 if (!anon && PageDirty(page)) {
4531 struct address_space *mapping = page_mapping(page);
4532
4533 if (mapping_cap_account_dirty(mapping)) {
4534 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4535 nr_pages);
4536 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4537 nr_pages);
4538 }
4539 }
4540
b1b0deab
CG
4541 if (PageWriteback(page)) {
4542 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4543 nr_pages);
4544 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4545 nr_pages);
4546 }
4547
4548 /*
4549 * It is safe to change page->mem_cgroup here because the page
4550 * is referenced, charged, and isolated - we can't race with
4551 * uncharging, charging, migration, or LRU putback.
4552 */
4553
4554 /* caller should have done css_get */
4555 page->mem_cgroup = to;
4556 spin_unlock_irqrestore(&from->move_lock, flags);
4557
4558 ret = 0;
4559
4560 local_irq_disable();
f627c2f5 4561 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4562 memcg_check_events(to, page);
f627c2f5 4563 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4564 memcg_check_events(from, page);
4565 local_irq_enable();
4566out_unlock:
4567 unlock_page(page);
4568out:
4569 return ret;
4570}
4571
7cf7806c
LR
4572/**
4573 * get_mctgt_type - get target type of moving charge
4574 * @vma: the vma the pte to be checked belongs
4575 * @addr: the address corresponding to the pte to be checked
4576 * @ptent: the pte to be checked
4577 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4578 *
4579 * Returns
4580 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4581 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4582 * move charge. if @target is not NULL, the page is stored in target->page
4583 * with extra refcnt got(Callers should handle it).
4584 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4585 * target for charge migration. if @target is not NULL, the entry is stored
4586 * in target->ent.
4587 *
4588 * Called with pte lock held.
4589 */
4590
8d32ff84 4591static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4592 unsigned long addr, pte_t ptent, union mc_target *target)
4593{
4594 struct page *page = NULL;
8d32ff84 4595 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4596 swp_entry_t ent = { .val = 0 };
4597
4598 if (pte_present(ptent))
4599 page = mc_handle_present_pte(vma, addr, ptent);
4600 else if (is_swap_pte(ptent))
48406ef8 4601 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4602 else if (pte_none(ptent))
87946a72 4603 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4604
4605 if (!page && !ent.val)
8d32ff84 4606 return ret;
02491447 4607 if (page) {
02491447 4608 /*
0a31bc97 4609 * Do only loose check w/o serialization.
1306a85a 4610 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4611 * not under LRU exclusion.
02491447 4612 */
1306a85a 4613 if (page->mem_cgroup == mc.from) {
02491447
DN
4614 ret = MC_TARGET_PAGE;
4615 if (target)
4616 target->page = page;
4617 }
4618 if (!ret || !target)
4619 put_page(page);
4620 }
90254a65
DN
4621 /* There is a swap entry and a page doesn't exist or isn't charged */
4622 if (ent.val && !ret &&
34c00c31 4623 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4624 ret = MC_TARGET_SWAP;
4625 if (target)
4626 target->ent = ent;
4ffef5fe 4627 }
4ffef5fe
DN
4628 return ret;
4629}
4630
12724850
NH
4631#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4632/*
4633 * We don't consider swapping or file mapped pages because THP does not
4634 * support them for now.
4635 * Caller should make sure that pmd_trans_huge(pmd) is true.
4636 */
4637static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4638 unsigned long addr, pmd_t pmd, union mc_target *target)
4639{
4640 struct page *page = NULL;
12724850
NH
4641 enum mc_target_type ret = MC_TARGET_NONE;
4642
4643 page = pmd_page(pmd);
309381fe 4644 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4645 if (!(mc.flags & MOVE_ANON))
12724850 4646 return ret;
1306a85a 4647 if (page->mem_cgroup == mc.from) {
12724850
NH
4648 ret = MC_TARGET_PAGE;
4649 if (target) {
4650 get_page(page);
4651 target->page = page;
4652 }
4653 }
4654 return ret;
4655}
4656#else
4657static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4658 unsigned long addr, pmd_t pmd, union mc_target *target)
4659{
4660 return MC_TARGET_NONE;
4661}
4662#endif
4663
4ffef5fe
DN
4664static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4665 unsigned long addr, unsigned long end,
4666 struct mm_walk *walk)
4667{
26bcd64a 4668 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4669 pte_t *pte;
4670 spinlock_t *ptl;
4671
b6ec57f4
KS
4672 ptl = pmd_trans_huge_lock(pmd, vma);
4673 if (ptl) {
12724850
NH
4674 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4675 mc.precharge += HPAGE_PMD_NR;
bf929152 4676 spin_unlock(ptl);
1a5a9906 4677 return 0;
12724850 4678 }
03319327 4679
45f83cef
AA
4680 if (pmd_trans_unstable(pmd))
4681 return 0;
4ffef5fe
DN
4682 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4683 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4684 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4685 mc.precharge++; /* increment precharge temporarily */
4686 pte_unmap_unlock(pte - 1, ptl);
4687 cond_resched();
4688
7dc74be0
DN
4689 return 0;
4690}
4691
4ffef5fe
DN
4692static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4693{
4694 unsigned long precharge;
4ffef5fe 4695
26bcd64a
NH
4696 struct mm_walk mem_cgroup_count_precharge_walk = {
4697 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4698 .mm = mm,
4699 };
dfe076b0 4700 down_read(&mm->mmap_sem);
0247f3f4
JM
4701 walk_page_range(0, mm->highest_vm_end,
4702 &mem_cgroup_count_precharge_walk);
dfe076b0 4703 up_read(&mm->mmap_sem);
4ffef5fe
DN
4704
4705 precharge = mc.precharge;
4706 mc.precharge = 0;
4707
4708 return precharge;
4709}
4710
4ffef5fe
DN
4711static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4712{
dfe076b0
DN
4713 unsigned long precharge = mem_cgroup_count_precharge(mm);
4714
4715 VM_BUG_ON(mc.moving_task);
4716 mc.moving_task = current;
4717 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4718}
4719
dfe076b0
DN
4720/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4721static void __mem_cgroup_clear_mc(void)
4ffef5fe 4722{
2bd9bb20
KH
4723 struct mem_cgroup *from = mc.from;
4724 struct mem_cgroup *to = mc.to;
4725
4ffef5fe 4726 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4727 if (mc.precharge) {
00501b53 4728 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4729 mc.precharge = 0;
4730 }
4731 /*
4732 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4733 * we must uncharge here.
4734 */
4735 if (mc.moved_charge) {
00501b53 4736 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4737 mc.moved_charge = 0;
4ffef5fe 4738 }
483c30b5
DN
4739 /* we must fixup refcnts and charges */
4740 if (mc.moved_swap) {
483c30b5 4741 /* uncharge swap account from the old cgroup */
ce00a967 4742 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4743 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4744
615d66c3
VD
4745 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4746
05b84301 4747 /*
3e32cb2e
JW
4748 * we charged both to->memory and to->memsw, so we
4749 * should uncharge to->memory.
05b84301 4750 */
ce00a967 4751 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4752 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4753
615d66c3
VD
4754 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4755 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 4756
483c30b5
DN
4757 mc.moved_swap = 0;
4758 }
dfe076b0
DN
4759 memcg_oom_recover(from);
4760 memcg_oom_recover(to);
4761 wake_up_all(&mc.waitq);
4762}
4763
4764static void mem_cgroup_clear_mc(void)
4765{
264a0ae1
TH
4766 struct mm_struct *mm = mc.mm;
4767
dfe076b0
DN
4768 /*
4769 * we must clear moving_task before waking up waiters at the end of
4770 * task migration.
4771 */
4772 mc.moving_task = NULL;
4773 __mem_cgroup_clear_mc();
2bd9bb20 4774 spin_lock(&mc.lock);
4ffef5fe
DN
4775 mc.from = NULL;
4776 mc.to = NULL;
264a0ae1 4777 mc.mm = NULL;
2bd9bb20 4778 spin_unlock(&mc.lock);
264a0ae1
TH
4779
4780 mmput(mm);
4ffef5fe
DN
4781}
4782
1f7dd3e5 4783static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4784{
1f7dd3e5 4785 struct cgroup_subsys_state *css;
eed67d75 4786 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4787 struct mem_cgroup *from;
4530eddb 4788 struct task_struct *leader, *p;
9f2115f9 4789 struct mm_struct *mm;
1dfab5ab 4790 unsigned long move_flags;
9f2115f9 4791 int ret = 0;
7dc74be0 4792
1f7dd3e5
TH
4793 /* charge immigration isn't supported on the default hierarchy */
4794 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4795 return 0;
4796
4530eddb
TH
4797 /*
4798 * Multi-process migrations only happen on the default hierarchy
4799 * where charge immigration is not used. Perform charge
4800 * immigration if @tset contains a leader and whine if there are
4801 * multiple.
4802 */
4803 p = NULL;
1f7dd3e5 4804 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4805 WARN_ON_ONCE(p);
4806 p = leader;
1f7dd3e5 4807 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4808 }
4809 if (!p)
4810 return 0;
4811
1f7dd3e5
TH
4812 /*
4813 * We are now commited to this value whatever it is. Changes in this
4814 * tunable will only affect upcoming migrations, not the current one.
4815 * So we need to save it, and keep it going.
4816 */
4817 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4818 if (!move_flags)
4819 return 0;
4820
9f2115f9
TH
4821 from = mem_cgroup_from_task(p);
4822
4823 VM_BUG_ON(from == memcg);
4824
4825 mm = get_task_mm(p);
4826 if (!mm)
4827 return 0;
4828 /* We move charges only when we move a owner of the mm */
4829 if (mm->owner == p) {
4830 VM_BUG_ON(mc.from);
4831 VM_BUG_ON(mc.to);
4832 VM_BUG_ON(mc.precharge);
4833 VM_BUG_ON(mc.moved_charge);
4834 VM_BUG_ON(mc.moved_swap);
4835
4836 spin_lock(&mc.lock);
264a0ae1 4837 mc.mm = mm;
9f2115f9
TH
4838 mc.from = from;
4839 mc.to = memcg;
4840 mc.flags = move_flags;
4841 spin_unlock(&mc.lock);
4842 /* We set mc.moving_task later */
4843
4844 ret = mem_cgroup_precharge_mc(mm);
4845 if (ret)
4846 mem_cgroup_clear_mc();
264a0ae1
TH
4847 } else {
4848 mmput(mm);
7dc74be0
DN
4849 }
4850 return ret;
4851}
4852
1f7dd3e5 4853static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4854{
4e2f245d
JW
4855 if (mc.to)
4856 mem_cgroup_clear_mc();
7dc74be0
DN
4857}
4858
4ffef5fe
DN
4859static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4860 unsigned long addr, unsigned long end,
4861 struct mm_walk *walk)
7dc74be0 4862{
4ffef5fe 4863 int ret = 0;
26bcd64a 4864 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4865 pte_t *pte;
4866 spinlock_t *ptl;
12724850
NH
4867 enum mc_target_type target_type;
4868 union mc_target target;
4869 struct page *page;
4ffef5fe 4870
b6ec57f4
KS
4871 ptl = pmd_trans_huge_lock(pmd, vma);
4872 if (ptl) {
62ade86a 4873 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4874 spin_unlock(ptl);
12724850
NH
4875 return 0;
4876 }
4877 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4878 if (target_type == MC_TARGET_PAGE) {
4879 page = target.page;
4880 if (!isolate_lru_page(page)) {
f627c2f5 4881 if (!mem_cgroup_move_account(page, true,
1306a85a 4882 mc.from, mc.to)) {
12724850
NH
4883 mc.precharge -= HPAGE_PMD_NR;
4884 mc.moved_charge += HPAGE_PMD_NR;
4885 }
4886 putback_lru_page(page);
4887 }
4888 put_page(page);
4889 }
bf929152 4890 spin_unlock(ptl);
1a5a9906 4891 return 0;
12724850
NH
4892 }
4893
45f83cef
AA
4894 if (pmd_trans_unstable(pmd))
4895 return 0;
4ffef5fe
DN
4896retry:
4897 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4898 for (; addr != end; addr += PAGE_SIZE) {
4899 pte_t ptent = *(pte++);
02491447 4900 swp_entry_t ent;
4ffef5fe
DN
4901
4902 if (!mc.precharge)
4903 break;
4904
8d32ff84 4905 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4906 case MC_TARGET_PAGE:
4907 page = target.page;
53f9263b
KS
4908 /*
4909 * We can have a part of the split pmd here. Moving it
4910 * can be done but it would be too convoluted so simply
4911 * ignore such a partial THP and keep it in original
4912 * memcg. There should be somebody mapping the head.
4913 */
4914 if (PageTransCompound(page))
4915 goto put;
4ffef5fe
DN
4916 if (isolate_lru_page(page))
4917 goto put;
f627c2f5
KS
4918 if (!mem_cgroup_move_account(page, false,
4919 mc.from, mc.to)) {
4ffef5fe 4920 mc.precharge--;
854ffa8d
DN
4921 /* we uncharge from mc.from later. */
4922 mc.moved_charge++;
4ffef5fe
DN
4923 }
4924 putback_lru_page(page);
8d32ff84 4925put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4926 put_page(page);
4927 break;
02491447
DN
4928 case MC_TARGET_SWAP:
4929 ent = target.ent;
e91cbb42 4930 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4931 mc.precharge--;
483c30b5
DN
4932 /* we fixup refcnts and charges later. */
4933 mc.moved_swap++;
4934 }
02491447 4935 break;
4ffef5fe
DN
4936 default:
4937 break;
4938 }
4939 }
4940 pte_unmap_unlock(pte - 1, ptl);
4941 cond_resched();
4942
4943 if (addr != end) {
4944 /*
4945 * We have consumed all precharges we got in can_attach().
4946 * We try charge one by one, but don't do any additional
4947 * charges to mc.to if we have failed in charge once in attach()
4948 * phase.
4949 */
854ffa8d 4950 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4951 if (!ret)
4952 goto retry;
4953 }
4954
4955 return ret;
4956}
4957
264a0ae1 4958static void mem_cgroup_move_charge(void)
4ffef5fe 4959{
26bcd64a
NH
4960 struct mm_walk mem_cgroup_move_charge_walk = {
4961 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4962 .mm = mc.mm,
26bcd64a 4963 };
4ffef5fe
DN
4964
4965 lru_add_drain_all();
312722cb 4966 /*
81f8c3a4
JW
4967 * Signal lock_page_memcg() to take the memcg's move_lock
4968 * while we're moving its pages to another memcg. Then wait
4969 * for already started RCU-only updates to finish.
312722cb
JW
4970 */
4971 atomic_inc(&mc.from->moving_account);
4972 synchronize_rcu();
dfe076b0 4973retry:
264a0ae1 4974 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4975 /*
4976 * Someone who are holding the mmap_sem might be waiting in
4977 * waitq. So we cancel all extra charges, wake up all waiters,
4978 * and retry. Because we cancel precharges, we might not be able
4979 * to move enough charges, but moving charge is a best-effort
4980 * feature anyway, so it wouldn't be a big problem.
4981 */
4982 __mem_cgroup_clear_mc();
4983 cond_resched();
4984 goto retry;
4985 }
26bcd64a
NH
4986 /*
4987 * When we have consumed all precharges and failed in doing
4988 * additional charge, the page walk just aborts.
4989 */
0247f3f4
JM
4990 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4991
264a0ae1 4992 up_read(&mc.mm->mmap_sem);
312722cb 4993 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4994}
4995
264a0ae1 4996static void mem_cgroup_move_task(void)
67e465a7 4997{
264a0ae1
TH
4998 if (mc.to) {
4999 mem_cgroup_move_charge();
a433658c 5000 mem_cgroup_clear_mc();
264a0ae1 5001 }
67e465a7 5002}
5cfb80a7 5003#else /* !CONFIG_MMU */
1f7dd3e5 5004static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5005{
5006 return 0;
5007}
1f7dd3e5 5008static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5009{
5010}
264a0ae1 5011static void mem_cgroup_move_task(void)
5cfb80a7
DN
5012{
5013}
5014#endif
67e465a7 5015
f00baae7
TH
5016/*
5017 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5018 * to verify whether we're attached to the default hierarchy on each mount
5019 * attempt.
f00baae7 5020 */
eb95419b 5021static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5022{
5023 /*
aa6ec29b 5024 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5025 * guarantees that @root doesn't have any children, so turning it
5026 * on for the root memcg is enough.
5027 */
9e10a130 5028 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5029 root_mem_cgroup->use_hierarchy = true;
5030 else
5031 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5032}
5033
241994ed
JW
5034static u64 memory_current_read(struct cgroup_subsys_state *css,
5035 struct cftype *cft)
5036{
f5fc3c5d
JW
5037 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5038
5039 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5040}
5041
5042static int memory_low_show(struct seq_file *m, void *v)
5043{
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5045 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5046
5047 if (low == PAGE_COUNTER_MAX)
d2973697 5048 seq_puts(m, "max\n");
241994ed
JW
5049 else
5050 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5051
5052 return 0;
5053}
5054
5055static ssize_t memory_low_write(struct kernfs_open_file *of,
5056 char *buf, size_t nbytes, loff_t off)
5057{
5058 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5059 unsigned long low;
5060 int err;
5061
5062 buf = strstrip(buf);
d2973697 5063 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5064 if (err)
5065 return err;
5066
5067 memcg->low = low;
5068
5069 return nbytes;
5070}
5071
5072static int memory_high_show(struct seq_file *m, void *v)
5073{
5074 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5075 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5076
5077 if (high == PAGE_COUNTER_MAX)
d2973697 5078 seq_puts(m, "max\n");
241994ed
JW
5079 else
5080 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5081
5082 return 0;
5083}
5084
5085static ssize_t memory_high_write(struct kernfs_open_file *of,
5086 char *buf, size_t nbytes, loff_t off)
5087{
5088 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5089 unsigned long nr_pages;
241994ed
JW
5090 unsigned long high;
5091 int err;
5092
5093 buf = strstrip(buf);
d2973697 5094 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5095 if (err)
5096 return err;
5097
5098 memcg->high = high;
5099
588083bb
JW
5100 nr_pages = page_counter_read(&memcg->memory);
5101 if (nr_pages > high)
5102 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5103 GFP_KERNEL, true);
5104
2529bb3a 5105 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5106 return nbytes;
5107}
5108
5109static int memory_max_show(struct seq_file *m, void *v)
5110{
5111 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5112 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5113
5114 if (max == PAGE_COUNTER_MAX)
d2973697 5115 seq_puts(m, "max\n");
241994ed
JW
5116 else
5117 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5118
5119 return 0;
5120}
5121
5122static ssize_t memory_max_write(struct kernfs_open_file *of,
5123 char *buf, size_t nbytes, loff_t off)
5124{
5125 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5126 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5127 bool drained = false;
241994ed
JW
5128 unsigned long max;
5129 int err;
5130
5131 buf = strstrip(buf);
d2973697 5132 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5133 if (err)
5134 return err;
5135
b6e6edcf
JW
5136 xchg(&memcg->memory.limit, max);
5137
5138 for (;;) {
5139 unsigned long nr_pages = page_counter_read(&memcg->memory);
5140
5141 if (nr_pages <= max)
5142 break;
5143
5144 if (signal_pending(current)) {
5145 err = -EINTR;
5146 break;
5147 }
5148
5149 if (!drained) {
5150 drain_all_stock(memcg);
5151 drained = true;
5152 continue;
5153 }
5154
5155 if (nr_reclaims) {
5156 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5157 GFP_KERNEL, true))
5158 nr_reclaims--;
5159 continue;
5160 }
5161
5162 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5163 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5164 break;
5165 }
241994ed 5166
2529bb3a 5167 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5168 return nbytes;
5169}
5170
5171static int memory_events_show(struct seq_file *m, void *v)
5172{
5173 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5174
5175 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5176 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5177 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5178 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5179
5180 return 0;
5181}
5182
587d9f72
JW
5183static int memory_stat_show(struct seq_file *m, void *v)
5184{
5185 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5186 unsigned long stat[MEMCG_NR_STAT];
5187 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5188 int i;
5189
5190 /*
5191 * Provide statistics on the state of the memory subsystem as
5192 * well as cumulative event counters that show past behavior.
5193 *
5194 * This list is ordered following a combination of these gradients:
5195 * 1) generic big picture -> specifics and details
5196 * 2) reflecting userspace activity -> reflecting kernel heuristics
5197 *
5198 * Current memory state:
5199 */
5200
72b54e73
VD
5201 tree_stat(memcg, stat);
5202 tree_events(memcg, events);
5203
587d9f72 5204 seq_printf(m, "anon %llu\n",
72b54e73 5205 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5206 seq_printf(m, "file %llu\n",
72b54e73 5207 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b 5208 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5209 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9
VD
5210 seq_printf(m, "slab %llu\n",
5211 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5212 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5213 seq_printf(m, "sock %llu\n",
72b54e73 5214 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5215
9a4caf1e
JW
5216 seq_printf(m, "shmem %llu\n",
5217 (u64)stat[MEM_CGROUP_STAT_SHMEM] * PAGE_SIZE);
587d9f72 5218 seq_printf(m, "file_mapped %llu\n",
72b54e73 5219 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5220 seq_printf(m, "file_dirty %llu\n",
72b54e73 5221 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5222 seq_printf(m, "file_writeback %llu\n",
72b54e73 5223 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5224
5225 for (i = 0; i < NR_LRU_LISTS; i++) {
5226 struct mem_cgroup *mi;
5227 unsigned long val = 0;
5228
5229 for_each_mem_cgroup_tree(mi, memcg)
5230 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5231 seq_printf(m, "%s %llu\n",
5232 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5233 }
5234
27ee57c9
VD
5235 seq_printf(m, "slab_reclaimable %llu\n",
5236 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5237 seq_printf(m, "slab_unreclaimable %llu\n",
5238 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5239
587d9f72
JW
5240 /* Accumulated memory events */
5241
5242 seq_printf(m, "pgfault %lu\n",
72b54e73 5243 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5244 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5245 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5246
5247 return 0;
5248}
5249
241994ed
JW
5250static struct cftype memory_files[] = {
5251 {
5252 .name = "current",
f5fc3c5d 5253 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5254 .read_u64 = memory_current_read,
5255 },
5256 {
5257 .name = "low",
5258 .flags = CFTYPE_NOT_ON_ROOT,
5259 .seq_show = memory_low_show,
5260 .write = memory_low_write,
5261 },
5262 {
5263 .name = "high",
5264 .flags = CFTYPE_NOT_ON_ROOT,
5265 .seq_show = memory_high_show,
5266 .write = memory_high_write,
5267 },
5268 {
5269 .name = "max",
5270 .flags = CFTYPE_NOT_ON_ROOT,
5271 .seq_show = memory_max_show,
5272 .write = memory_max_write,
5273 },
5274 {
5275 .name = "events",
5276 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5277 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5278 .seq_show = memory_events_show,
5279 },
587d9f72
JW
5280 {
5281 .name = "stat",
5282 .flags = CFTYPE_NOT_ON_ROOT,
5283 .seq_show = memory_stat_show,
5284 },
241994ed
JW
5285 { } /* terminate */
5286};
5287
073219e9 5288struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5289 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5290 .css_online = mem_cgroup_css_online,
92fb9748 5291 .css_offline = mem_cgroup_css_offline,
6df38689 5292 .css_released = mem_cgroup_css_released,
92fb9748 5293 .css_free = mem_cgroup_css_free,
1ced953b 5294 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5295 .can_attach = mem_cgroup_can_attach,
5296 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5297 .post_attach = mem_cgroup_move_task,
f00baae7 5298 .bind = mem_cgroup_bind,
241994ed
JW
5299 .dfl_cftypes = memory_files,
5300 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5301 .early_init = 0,
8cdea7c0 5302};
c077719b 5303
241994ed
JW
5304/**
5305 * mem_cgroup_low - check if memory consumption is below the normal range
5306 * @root: the highest ancestor to consider
5307 * @memcg: the memory cgroup to check
5308 *
5309 * Returns %true if memory consumption of @memcg, and that of all
5310 * configurable ancestors up to @root, is below the normal range.
5311 */
5312bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5313{
5314 if (mem_cgroup_disabled())
5315 return false;
5316
5317 /*
5318 * The toplevel group doesn't have a configurable range, so
5319 * it's never low when looked at directly, and it is not
5320 * considered an ancestor when assessing the hierarchy.
5321 */
5322
5323 if (memcg == root_mem_cgroup)
5324 return false;
5325
4e54dede 5326 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5327 return false;
5328
5329 while (memcg != root) {
5330 memcg = parent_mem_cgroup(memcg);
5331
5332 if (memcg == root_mem_cgroup)
5333 break;
5334
4e54dede 5335 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5336 return false;
5337 }
5338 return true;
5339}
5340
00501b53
JW
5341/**
5342 * mem_cgroup_try_charge - try charging a page
5343 * @page: page to charge
5344 * @mm: mm context of the victim
5345 * @gfp_mask: reclaim mode
5346 * @memcgp: charged memcg return
25843c2b 5347 * @compound: charge the page as compound or small page
00501b53
JW
5348 *
5349 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5350 * pages according to @gfp_mask if necessary.
5351 *
5352 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5353 * Otherwise, an error code is returned.
5354 *
5355 * After page->mapping has been set up, the caller must finalize the
5356 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5357 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5358 */
5359int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5360 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5361 bool compound)
00501b53
JW
5362{
5363 struct mem_cgroup *memcg = NULL;
f627c2f5 5364 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5365 int ret = 0;
5366
5367 if (mem_cgroup_disabled())
5368 goto out;
5369
5370 if (PageSwapCache(page)) {
00501b53
JW
5371 /*
5372 * Every swap fault against a single page tries to charge the
5373 * page, bail as early as possible. shmem_unuse() encounters
5374 * already charged pages, too. The USED bit is protected by
5375 * the page lock, which serializes swap cache removal, which
5376 * in turn serializes uncharging.
5377 */
e993d905 5378 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5379 if (page->mem_cgroup)
00501b53 5380 goto out;
e993d905 5381
37e84351 5382 if (do_swap_account) {
e993d905
VD
5383 swp_entry_t ent = { .val = page_private(page), };
5384 unsigned short id = lookup_swap_cgroup_id(ent);
5385
5386 rcu_read_lock();
5387 memcg = mem_cgroup_from_id(id);
5388 if (memcg && !css_tryget_online(&memcg->css))
5389 memcg = NULL;
5390 rcu_read_unlock();
5391 }
00501b53
JW
5392 }
5393
00501b53
JW
5394 if (!memcg)
5395 memcg = get_mem_cgroup_from_mm(mm);
5396
5397 ret = try_charge(memcg, gfp_mask, nr_pages);
5398
5399 css_put(&memcg->css);
00501b53
JW
5400out:
5401 *memcgp = memcg;
5402 return ret;
5403}
5404
5405/**
5406 * mem_cgroup_commit_charge - commit a page charge
5407 * @page: page to charge
5408 * @memcg: memcg to charge the page to
5409 * @lrucare: page might be on LRU already
25843c2b 5410 * @compound: charge the page as compound or small page
00501b53
JW
5411 *
5412 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5413 * after page->mapping has been set up. This must happen atomically
5414 * as part of the page instantiation, i.e. under the page table lock
5415 * for anonymous pages, under the page lock for page and swap cache.
5416 *
5417 * In addition, the page must not be on the LRU during the commit, to
5418 * prevent racing with task migration. If it might be, use @lrucare.
5419 *
5420 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5421 */
5422void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5423 bool lrucare, bool compound)
00501b53 5424{
f627c2f5 5425 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5426
5427 VM_BUG_ON_PAGE(!page->mapping, page);
5428 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5429
5430 if (mem_cgroup_disabled())
5431 return;
5432 /*
5433 * Swap faults will attempt to charge the same page multiple
5434 * times. But reuse_swap_page() might have removed the page
5435 * from swapcache already, so we can't check PageSwapCache().
5436 */
5437 if (!memcg)
5438 return;
5439
6abb5a86
JW
5440 commit_charge(page, memcg, lrucare);
5441
6abb5a86 5442 local_irq_disable();
f627c2f5 5443 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5444 memcg_check_events(memcg, page);
5445 local_irq_enable();
00501b53 5446
7941d214 5447 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5448 swp_entry_t entry = { .val = page_private(page) };
5449 /*
5450 * The swap entry might not get freed for a long time,
5451 * let's not wait for it. The page already received a
5452 * memory+swap charge, drop the swap entry duplicate.
5453 */
5454 mem_cgroup_uncharge_swap(entry);
5455 }
5456}
5457
5458/**
5459 * mem_cgroup_cancel_charge - cancel a page charge
5460 * @page: page to charge
5461 * @memcg: memcg to charge the page to
25843c2b 5462 * @compound: charge the page as compound or small page
00501b53
JW
5463 *
5464 * Cancel a charge transaction started by mem_cgroup_try_charge().
5465 */
f627c2f5
KS
5466void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5467 bool compound)
00501b53 5468{
f627c2f5 5469 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5470
5471 if (mem_cgroup_disabled())
5472 return;
5473 /*
5474 * Swap faults will attempt to charge the same page multiple
5475 * times. But reuse_swap_page() might have removed the page
5476 * from swapcache already, so we can't check PageSwapCache().
5477 */
5478 if (!memcg)
5479 return;
5480
00501b53
JW
5481 cancel_charge(memcg, nr_pages);
5482}
5483
747db954 5484static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954 5485 unsigned long nr_anon, unsigned long nr_file,
9a4caf1e
JW
5486 unsigned long nr_kmem, unsigned long nr_huge,
5487 unsigned long nr_shmem, struct page *dummy_page)
747db954 5488{
5e8d35f8 5489 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
747db954
JW
5490 unsigned long flags;
5491
ce00a967 5492 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5493 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5494 if (do_memsw_account())
18eca2e6 5495 page_counter_uncharge(&memcg->memsw, nr_pages);
5e8d35f8
VD
5496 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5497 page_counter_uncharge(&memcg->kmem, nr_kmem);
ce00a967
JW
5498 memcg_oom_recover(memcg);
5499 }
747db954
JW
5500
5501 local_irq_save(flags);
5502 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5503 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5504 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
9a4caf1e 5505 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_SHMEM], nr_shmem);
747db954 5506 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5507 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5508 memcg_check_events(memcg, dummy_page);
5509 local_irq_restore(flags);
e8ea14cc
JW
5510
5511 if (!mem_cgroup_is_root(memcg))
18eca2e6 5512 css_put_many(&memcg->css, nr_pages);
747db954
JW
5513}
5514
5515static void uncharge_list(struct list_head *page_list)
5516{
5517 struct mem_cgroup *memcg = NULL;
9a4caf1e 5518 unsigned long nr_shmem = 0;
747db954
JW
5519 unsigned long nr_anon = 0;
5520 unsigned long nr_file = 0;
5521 unsigned long nr_huge = 0;
5e8d35f8 5522 unsigned long nr_kmem = 0;
747db954 5523 unsigned long pgpgout = 0;
747db954
JW
5524 struct list_head *next;
5525 struct page *page;
5526
8b592656
JW
5527 /*
5528 * Note that the list can be a single page->lru; hence the
5529 * do-while loop instead of a simple list_for_each_entry().
5530 */
747db954
JW
5531 next = page_list->next;
5532 do {
747db954
JW
5533 page = list_entry(next, struct page, lru);
5534 next = page->lru.next;
5535
5536 VM_BUG_ON_PAGE(PageLRU(page), page);
5537 VM_BUG_ON_PAGE(page_count(page), page);
5538
1306a85a 5539 if (!page->mem_cgroup)
747db954
JW
5540 continue;
5541
5542 /*
5543 * Nobody should be changing or seriously looking at
1306a85a 5544 * page->mem_cgroup at this point, we have fully
29833315 5545 * exclusive access to the page.
747db954
JW
5546 */
5547
1306a85a 5548 if (memcg != page->mem_cgroup) {
747db954 5549 if (memcg) {
18eca2e6 5550 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
9a4caf1e
JW
5551 nr_kmem, nr_huge, nr_shmem, page);
5552 pgpgout = nr_anon = nr_file = nr_kmem = 0;
5553 nr_huge = nr_shmem = 0;
747db954 5554 }
1306a85a 5555 memcg = page->mem_cgroup;
747db954
JW
5556 }
5557
5e8d35f8
VD
5558 if (!PageKmemcg(page)) {
5559 unsigned int nr_pages = 1;
747db954 5560
5e8d35f8
VD
5561 if (PageTransHuge(page)) {
5562 nr_pages <<= compound_order(page);
5e8d35f8
VD
5563 nr_huge += nr_pages;
5564 }
5565 if (PageAnon(page))
5566 nr_anon += nr_pages;
9a4caf1e 5567 else {
5e8d35f8 5568 nr_file += nr_pages;
9a4caf1e
JW
5569 if (PageSwapBacked(page))
5570 nr_shmem += nr_pages;
5571 }
5e8d35f8 5572 pgpgout++;
c4159a75 5573 } else {
5e8d35f8 5574 nr_kmem += 1 << compound_order(page);
c4159a75
VD
5575 __ClearPageKmemcg(page);
5576 }
747db954 5577
1306a85a 5578 page->mem_cgroup = NULL;
747db954
JW
5579 } while (next != page_list);
5580
5581 if (memcg)
18eca2e6 5582 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
9a4caf1e 5583 nr_kmem, nr_huge, nr_shmem, page);
747db954
JW
5584}
5585
0a31bc97
JW
5586/**
5587 * mem_cgroup_uncharge - uncharge a page
5588 * @page: page to uncharge
5589 *
5590 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5591 * mem_cgroup_commit_charge().
5592 */
5593void mem_cgroup_uncharge(struct page *page)
5594{
0a31bc97
JW
5595 if (mem_cgroup_disabled())
5596 return;
5597
747db954 5598 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5599 if (!page->mem_cgroup)
0a31bc97
JW
5600 return;
5601
747db954
JW
5602 INIT_LIST_HEAD(&page->lru);
5603 uncharge_list(&page->lru);
5604}
0a31bc97 5605
747db954
JW
5606/**
5607 * mem_cgroup_uncharge_list - uncharge a list of page
5608 * @page_list: list of pages to uncharge
5609 *
5610 * Uncharge a list of pages previously charged with
5611 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5612 */
5613void mem_cgroup_uncharge_list(struct list_head *page_list)
5614{
5615 if (mem_cgroup_disabled())
5616 return;
0a31bc97 5617
747db954
JW
5618 if (!list_empty(page_list))
5619 uncharge_list(page_list);
0a31bc97
JW
5620}
5621
5622/**
6a93ca8f
JW
5623 * mem_cgroup_migrate - charge a page's replacement
5624 * @oldpage: currently circulating page
5625 * @newpage: replacement page
0a31bc97 5626 *
6a93ca8f
JW
5627 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5628 * be uncharged upon free.
0a31bc97
JW
5629 *
5630 * Both pages must be locked, @newpage->mapping must be set up.
5631 */
6a93ca8f 5632void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5633{
29833315 5634 struct mem_cgroup *memcg;
44b7a8d3
JW
5635 unsigned int nr_pages;
5636 bool compound;
d93c4130 5637 unsigned long flags;
0a31bc97
JW
5638
5639 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5640 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5641 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5642 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5643 newpage);
0a31bc97
JW
5644
5645 if (mem_cgroup_disabled())
5646 return;
5647
5648 /* Page cache replacement: new page already charged? */
1306a85a 5649 if (newpage->mem_cgroup)
0a31bc97
JW
5650 return;
5651
45637bab 5652 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5653 memcg = oldpage->mem_cgroup;
29833315 5654 if (!memcg)
0a31bc97
JW
5655 return;
5656
44b7a8d3
JW
5657 /* Force-charge the new page. The old one will be freed soon */
5658 compound = PageTransHuge(newpage);
5659 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5660
5661 page_counter_charge(&memcg->memory, nr_pages);
5662 if (do_memsw_account())
5663 page_counter_charge(&memcg->memsw, nr_pages);
5664 css_get_many(&memcg->css, nr_pages);
0a31bc97 5665
9cf7666a 5666 commit_charge(newpage, memcg, false);
44b7a8d3 5667
d93c4130 5668 local_irq_save(flags);
44b7a8d3
JW
5669 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5670 memcg_check_events(memcg, newpage);
d93c4130 5671 local_irq_restore(flags);
0a31bc97
JW
5672}
5673
ef12947c 5674DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5675EXPORT_SYMBOL(memcg_sockets_enabled_key);
5676
2d758073 5677void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
5678{
5679 struct mem_cgroup *memcg;
5680
2d758073
JW
5681 if (!mem_cgroup_sockets_enabled)
5682 return;
5683
5684 /*
5685 * Socket cloning can throw us here with sk_memcg already
11092087
JW
5686 * filled. It won't however, necessarily happen from
5687 * process context. So the test for root memcg given
5688 * the current task's memcg won't help us in this case.
5689 *
5690 * Respecting the original socket's memcg is a better
5691 * decision in this case.
5692 */
5693 if (sk->sk_memcg) {
5694 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5695 css_get(&sk->sk_memcg->css);
5696 return;
5697 }
5698
5699 rcu_read_lock();
5700 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5701 if (memcg == root_mem_cgroup)
5702 goto out;
0db15298 5703 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5704 goto out;
f7e1cb6e 5705 if (css_tryget_online(&memcg->css))
11092087 5706 sk->sk_memcg = memcg;
f7e1cb6e 5707out:
11092087
JW
5708 rcu_read_unlock();
5709}
11092087 5710
2d758073 5711void mem_cgroup_sk_free(struct sock *sk)
11092087 5712{
2d758073
JW
5713 if (sk->sk_memcg)
5714 css_put(&sk->sk_memcg->css);
11092087
JW
5715}
5716
5717/**
5718 * mem_cgroup_charge_skmem - charge socket memory
5719 * @memcg: memcg to charge
5720 * @nr_pages: number of pages to charge
5721 *
5722 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5723 * @memcg's configured limit, %false if the charge had to be forced.
5724 */
5725bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5726{
f7e1cb6e 5727 gfp_t gfp_mask = GFP_KERNEL;
11092087 5728
f7e1cb6e 5729 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5730 struct page_counter *fail;
f7e1cb6e 5731
0db15298
JW
5732 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5733 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5734 return true;
5735 }
0db15298
JW
5736 page_counter_charge(&memcg->tcpmem, nr_pages);
5737 memcg->tcpmem_pressure = 1;
f7e1cb6e 5738 return false;
11092087 5739 }
d886f4e4 5740
f7e1cb6e
JW
5741 /* Don't block in the packet receive path */
5742 if (in_softirq())
5743 gfp_mask = GFP_NOWAIT;
5744
b2807f07
JW
5745 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5746
f7e1cb6e
JW
5747 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5748 return true;
5749
5750 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5751 return false;
5752}
5753
5754/**
5755 * mem_cgroup_uncharge_skmem - uncharge socket memory
5756 * @memcg - memcg to uncharge
5757 * @nr_pages - number of pages to uncharge
5758 */
5759void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5760{
f7e1cb6e 5761 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5762 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5763 return;
5764 }
d886f4e4 5765
b2807f07
JW
5766 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5767
f7e1cb6e
JW
5768 page_counter_uncharge(&memcg->memory, nr_pages);
5769 css_put_many(&memcg->css, nr_pages);
11092087
JW
5770}
5771
f7e1cb6e
JW
5772static int __init cgroup_memory(char *s)
5773{
5774 char *token;
5775
5776 while ((token = strsep(&s, ",")) != NULL) {
5777 if (!*token)
5778 continue;
5779 if (!strcmp(token, "nosocket"))
5780 cgroup_memory_nosocket = true;
04823c83
VD
5781 if (!strcmp(token, "nokmem"))
5782 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5783 }
5784 return 0;
5785}
5786__setup("cgroup.memory=", cgroup_memory);
11092087 5787
2d11085e 5788/*
1081312f
MH
5789 * subsys_initcall() for memory controller.
5790 *
308167fc
SAS
5791 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5792 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5793 * basically everything that doesn't depend on a specific mem_cgroup structure
5794 * should be initialized from here.
2d11085e
MH
5795 */
5796static int __init mem_cgroup_init(void)
5797{
95a045f6
JW
5798 int cpu, node;
5799
13583c3d
VD
5800#ifndef CONFIG_SLOB
5801 /*
5802 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
5803 * so use a workqueue with limited concurrency to avoid stalling
5804 * all worker threads in case lots of cgroups are created and
5805 * destroyed simultaneously.
13583c3d 5806 */
17cc4dfe
TH
5807 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5808 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
5809#endif
5810
308167fc
SAS
5811 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5812 memcg_hotplug_cpu_dead);
95a045f6
JW
5813
5814 for_each_possible_cpu(cpu)
5815 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5816 drain_local_stock);
5817
5818 for_each_node(node) {
5819 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5820
5821 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5822 node_online(node) ? node : NUMA_NO_NODE);
5823
ef8f2327
MG
5824 rtpn->rb_root = RB_ROOT;
5825 spin_lock_init(&rtpn->lock);
95a045f6
JW
5826 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5827 }
5828
2d11085e
MH
5829 return 0;
5830}
5831subsys_initcall(mem_cgroup_init);
21afa38e
JW
5832
5833#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
5834static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5835{
5836 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5837 /*
5838 * The root cgroup cannot be destroyed, so it's refcount must
5839 * always be >= 1.
5840 */
5841 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5842 VM_BUG_ON(1);
5843 break;
5844 }
5845 memcg = parent_mem_cgroup(memcg);
5846 if (!memcg)
5847 memcg = root_mem_cgroup;
5848 }
5849 return memcg;
5850}
5851
21afa38e
JW
5852/**
5853 * mem_cgroup_swapout - transfer a memsw charge to swap
5854 * @page: page whose memsw charge to transfer
5855 * @entry: swap entry to move the charge to
5856 *
5857 * Transfer the memsw charge of @page to @entry.
5858 */
5859void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5860{
1f47b61f 5861 struct mem_cgroup *memcg, *swap_memcg;
21afa38e
JW
5862 unsigned short oldid;
5863
5864 VM_BUG_ON_PAGE(PageLRU(page), page);
5865 VM_BUG_ON_PAGE(page_count(page), page);
5866
7941d214 5867 if (!do_memsw_account())
21afa38e
JW
5868 return;
5869
5870 memcg = page->mem_cgroup;
5871
5872 /* Readahead page, never charged */
5873 if (!memcg)
5874 return;
5875
1f47b61f
VD
5876 /*
5877 * In case the memcg owning these pages has been offlined and doesn't
5878 * have an ID allocated to it anymore, charge the closest online
5879 * ancestor for the swap instead and transfer the memory+swap charge.
5880 */
5881 swap_memcg = mem_cgroup_id_get_online(memcg);
5882 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
21afa38e 5883 VM_BUG_ON_PAGE(oldid, page);
1f47b61f 5884 mem_cgroup_swap_statistics(swap_memcg, true);
21afa38e
JW
5885
5886 page->mem_cgroup = NULL;
5887
5888 if (!mem_cgroup_is_root(memcg))
5889 page_counter_uncharge(&memcg->memory, 1);
5890
1f47b61f
VD
5891 if (memcg != swap_memcg) {
5892 if (!mem_cgroup_is_root(swap_memcg))
5893 page_counter_charge(&swap_memcg->memsw, 1);
5894 page_counter_uncharge(&memcg->memsw, 1);
5895 }
5896
ce9ce665
SAS
5897 /*
5898 * Interrupts should be disabled here because the caller holds the
5899 * mapping->tree_lock lock which is taken with interrupts-off. It is
5900 * important here to have the interrupts disabled because it is the
5901 * only synchronisation we have for udpating the per-CPU variables.
5902 */
5903 VM_BUG_ON(!irqs_disabled());
f627c2f5 5904 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e 5905 memcg_check_events(memcg, page);
73f576c0
JW
5906
5907 if (!mem_cgroup_is_root(memcg))
5908 css_put(&memcg->css);
21afa38e
JW
5909}
5910
37e84351
VD
5911/*
5912 * mem_cgroup_try_charge_swap - try charging a swap entry
5913 * @page: page being added to swap
5914 * @entry: swap entry to charge
5915 *
5916 * Try to charge @entry to the memcg that @page belongs to.
5917 *
5918 * Returns 0 on success, -ENOMEM on failure.
5919 */
5920int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5921{
5922 struct mem_cgroup *memcg;
5923 struct page_counter *counter;
5924 unsigned short oldid;
5925
5926 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5927 return 0;
5928
5929 memcg = page->mem_cgroup;
5930
5931 /* Readahead page, never charged */
5932 if (!memcg)
5933 return 0;
5934
1f47b61f
VD
5935 memcg = mem_cgroup_id_get_online(memcg);
5936
37e84351 5937 if (!mem_cgroup_is_root(memcg) &&
1f47b61f
VD
5938 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5939 mem_cgroup_id_put(memcg);
37e84351 5940 return -ENOMEM;
1f47b61f 5941 }
37e84351
VD
5942
5943 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5944 VM_BUG_ON_PAGE(oldid, page);
5945 mem_cgroup_swap_statistics(memcg, true);
5946
37e84351
VD
5947 return 0;
5948}
5949
21afa38e
JW
5950/**
5951 * mem_cgroup_uncharge_swap - uncharge a swap entry
5952 * @entry: swap entry to uncharge
5953 *
37e84351 5954 * Drop the swap charge associated with @entry.
21afa38e
JW
5955 */
5956void mem_cgroup_uncharge_swap(swp_entry_t entry)
5957{
5958 struct mem_cgroup *memcg;
5959 unsigned short id;
5960
37e84351 5961 if (!do_swap_account)
21afa38e
JW
5962 return;
5963
5964 id = swap_cgroup_record(entry, 0);
5965 rcu_read_lock();
adbe427b 5966 memcg = mem_cgroup_from_id(id);
21afa38e 5967 if (memcg) {
37e84351
VD
5968 if (!mem_cgroup_is_root(memcg)) {
5969 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5970 page_counter_uncharge(&memcg->swap, 1);
5971 else
5972 page_counter_uncharge(&memcg->memsw, 1);
5973 }
21afa38e 5974 mem_cgroup_swap_statistics(memcg, false);
73f576c0 5975 mem_cgroup_id_put(memcg);
21afa38e
JW
5976 }
5977 rcu_read_unlock();
5978}
5979
d8b38438
VD
5980long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5981{
5982 long nr_swap_pages = get_nr_swap_pages();
5983
5984 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5985 return nr_swap_pages;
5986 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5987 nr_swap_pages = min_t(long, nr_swap_pages,
5988 READ_ONCE(memcg->swap.limit) -
5989 page_counter_read(&memcg->swap));
5990 return nr_swap_pages;
5991}
5992
5ccc5aba
VD
5993bool mem_cgroup_swap_full(struct page *page)
5994{
5995 struct mem_cgroup *memcg;
5996
5997 VM_BUG_ON_PAGE(!PageLocked(page), page);
5998
5999 if (vm_swap_full())
6000 return true;
6001 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6002 return false;
6003
6004 memcg = page->mem_cgroup;
6005 if (!memcg)
6006 return false;
6007
6008 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6009 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6010 return true;
6011
6012 return false;
6013}
6014
21afa38e
JW
6015/* for remember boot option*/
6016#ifdef CONFIG_MEMCG_SWAP_ENABLED
6017static int really_do_swap_account __initdata = 1;
6018#else
6019static int really_do_swap_account __initdata;
6020#endif
6021
6022static int __init enable_swap_account(char *s)
6023{
6024 if (!strcmp(s, "1"))
6025 really_do_swap_account = 1;
6026 else if (!strcmp(s, "0"))
6027 really_do_swap_account = 0;
6028 return 1;
6029}
6030__setup("swapaccount=", enable_swap_account);
6031
37e84351
VD
6032static u64 swap_current_read(struct cgroup_subsys_state *css,
6033 struct cftype *cft)
6034{
6035 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6036
6037 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6038}
6039
6040static int swap_max_show(struct seq_file *m, void *v)
6041{
6042 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6043 unsigned long max = READ_ONCE(memcg->swap.limit);
6044
6045 if (max == PAGE_COUNTER_MAX)
6046 seq_puts(m, "max\n");
6047 else
6048 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6049
6050 return 0;
6051}
6052
6053static ssize_t swap_max_write(struct kernfs_open_file *of,
6054 char *buf, size_t nbytes, loff_t off)
6055{
6056 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6057 unsigned long max;
6058 int err;
6059
6060 buf = strstrip(buf);
6061 err = page_counter_memparse(buf, "max", &max);
6062 if (err)
6063 return err;
6064
6065 mutex_lock(&memcg_limit_mutex);
6066 err = page_counter_limit(&memcg->swap, max);
6067 mutex_unlock(&memcg_limit_mutex);
6068 if (err)
6069 return err;
6070
6071 return nbytes;
6072}
6073
6074static struct cftype swap_files[] = {
6075 {
6076 .name = "swap.current",
6077 .flags = CFTYPE_NOT_ON_ROOT,
6078 .read_u64 = swap_current_read,
6079 },
6080 {
6081 .name = "swap.max",
6082 .flags = CFTYPE_NOT_ON_ROOT,
6083 .seq_show = swap_max_show,
6084 .write = swap_max_write,
6085 },
6086 { } /* terminate */
6087};
6088
21afa38e
JW
6089static struct cftype memsw_cgroup_files[] = {
6090 {
6091 .name = "memsw.usage_in_bytes",
6092 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6093 .read_u64 = mem_cgroup_read_u64,
6094 },
6095 {
6096 .name = "memsw.max_usage_in_bytes",
6097 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6098 .write = mem_cgroup_reset,
6099 .read_u64 = mem_cgroup_read_u64,
6100 },
6101 {
6102 .name = "memsw.limit_in_bytes",
6103 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6104 .write = mem_cgroup_write,
6105 .read_u64 = mem_cgroup_read_u64,
6106 },
6107 {
6108 .name = "memsw.failcnt",
6109 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6110 .write = mem_cgroup_reset,
6111 .read_u64 = mem_cgroup_read_u64,
6112 },
6113 { }, /* terminate */
6114};
6115
6116static int __init mem_cgroup_swap_init(void)
6117{
6118 if (!mem_cgroup_disabled() && really_do_swap_account) {
6119 do_swap_account = 1;
37e84351
VD
6120 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6121 swap_files));
21afa38e
JW
6122 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6123 memsw_cgroup_files));
6124 }
6125 return 0;
6126}
6127subsys_initcall(mem_cgroup_swap_init);
6128
6129#endif /* CONFIG_MEMCG_SWAP */