]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/memcontrol.c
mm: workingset: per-cgroup cache thrash detection
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
9490ff27
KH
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
2e72b634 155
79bd9814
TH
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
3bc942f3 159struct mem_cgroup_event {
79bd9814 160 /*
59b6f873 161 * memcg which the event belongs to.
79bd9814 162 */
59b6f873 163 struct mem_cgroup *memcg;
79bd9814
TH
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
fba94807
TH
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
59b6f873 177 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 178 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
59b6f873 184 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 185 struct eventfd_ctx *eventfd);
79bd9814
TH
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
c0ff4b85
R
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 198
7dc74be0
DN
199/* Stuffs for move charges at task migration. */
200/*
1dfab5ab 201 * Types of charges to be moved.
7dc74be0 202 */
1dfab5ab
JW
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 206
4ffef5fe
DN
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
b1dd693e 209 spinlock_t lock; /* for from, to */
4ffef5fe
DN
210 struct mem_cgroup *from;
211 struct mem_cgroup *to;
1dfab5ab 212 unsigned long flags;
4ffef5fe 213 unsigned long precharge;
854ffa8d 214 unsigned long moved_charge;
483c30b5 215 unsigned long moved_swap;
8033b97c
DN
216 struct task_struct *moving_task; /* a task moving charges */
217 wait_queue_head_t waitq; /* a waitq for other context */
218} mc = {
2bd9bb20 219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221};
4ffef5fe 222
4e416953
BS
223/*
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
226 */
a0db00fc 227#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 228#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 229
217bc319
KH
230enum charge_type {
231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 232 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
235 NR_CHARGE_TYPE,
236};
237
8c7c6e34 238/* for encoding cft->private value on file */
86ae53e1
GC
239enum res_type {
240 _MEM,
241 _MEMSWAP,
242 _OOM_TYPE,
510fc4e1 243 _KMEM,
d55f90bf 244 _TCP,
86ae53e1
GC
245};
246
a0db00fc
KS
247#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 249#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
250/* Used for OOM nofiier */
251#define OOM_CONTROL (0)
8c7c6e34 252
70ddf637
AV
253/* Some nice accessors for the vmpressure. */
254struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255{
256 if (!memcg)
257 memcg = root_mem_cgroup;
258 return &memcg->vmpressure;
259}
260
261struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262{
263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264}
265
7ffc0edc
MH
266static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267{
268 return (memcg == root_mem_cgroup);
269}
270
127424c8 271#ifndef CONFIG_SLOB
55007d84 272/*
f7ce3190 273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
274 * The main reason for not using cgroup id for this:
275 * this works better in sparse environments, where we have a lot of memcgs,
276 * but only a few kmem-limited. Or also, if we have, for instance, 200
277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
278 * 200 entry array for that.
55007d84 279 *
dbcf73e2
VD
280 * The current size of the caches array is stored in memcg_nr_cache_ids. It
281 * will double each time we have to increase it.
55007d84 282 */
dbcf73e2
VD
283static DEFINE_IDA(memcg_cache_ida);
284int memcg_nr_cache_ids;
749c5415 285
05257a1a
VD
286/* Protects memcg_nr_cache_ids */
287static DECLARE_RWSEM(memcg_cache_ids_sem);
288
289void memcg_get_cache_ids(void)
290{
291 down_read(&memcg_cache_ids_sem);
292}
293
294void memcg_put_cache_ids(void)
295{
296 up_read(&memcg_cache_ids_sem);
297}
298
55007d84
GC
299/*
300 * MIN_SIZE is different than 1, because we would like to avoid going through
301 * the alloc/free process all the time. In a small machine, 4 kmem-limited
302 * cgroups is a reasonable guess. In the future, it could be a parameter or
303 * tunable, but that is strictly not necessary.
304 *
b8627835 305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
306 * this constant directly from cgroup, but it is understandable that this is
307 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 308 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
309 * increase ours as well if it increases.
310 */
311#define MEMCG_CACHES_MIN_SIZE 4
b8627835 312#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 313
d7f25f8a
GC
314/*
315 * A lot of the calls to the cache allocation functions are expected to be
316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317 * conditional to this static branch, we'll have to allow modules that does
318 * kmem_cache_alloc and the such to see this symbol as well
319 */
ef12947c 320DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 321EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 322
127424c8 323#endif /* !CONFIG_SLOB */
a8964b9b 324
f64c3f54 325static struct mem_cgroup_per_zone *
e231875b 326mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 327{
e231875b
JZ
328 int nid = zone_to_nid(zone);
329 int zid = zone_idx(zone);
330
54f72fe0 331 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
332}
333
ad7fa852
TH
334/**
335 * mem_cgroup_css_from_page - css of the memcg associated with a page
336 * @page: page of interest
337 *
338 * If memcg is bound to the default hierarchy, css of the memcg associated
339 * with @page is returned. The returned css remains associated with @page
340 * until it is released.
341 *
342 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
343 * is returned.
ad7fa852
TH
344 */
345struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
346{
347 struct mem_cgroup *memcg;
348
ad7fa852
TH
349 memcg = page->mem_cgroup;
350
9e10a130 351 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
352 memcg = root_mem_cgroup;
353
ad7fa852
TH
354 return &memcg->css;
355}
356
2fc04524
VD
357/**
358 * page_cgroup_ino - return inode number of the memcg a page is charged to
359 * @page: the page
360 *
361 * Look up the closest online ancestor of the memory cgroup @page is charged to
362 * and return its inode number or 0 if @page is not charged to any cgroup. It
363 * is safe to call this function without holding a reference to @page.
364 *
365 * Note, this function is inherently racy, because there is nothing to prevent
366 * the cgroup inode from getting torn down and potentially reallocated a moment
367 * after page_cgroup_ino() returns, so it only should be used by callers that
368 * do not care (such as procfs interfaces).
369 */
370ino_t page_cgroup_ino(struct page *page)
371{
372 struct mem_cgroup *memcg;
373 unsigned long ino = 0;
374
375 rcu_read_lock();
376 memcg = READ_ONCE(page->mem_cgroup);
377 while (memcg && !(memcg->css.flags & CSS_ONLINE))
378 memcg = parent_mem_cgroup(memcg);
379 if (memcg)
380 ino = cgroup_ino(memcg->css.cgroup);
381 rcu_read_unlock();
382 return ino;
383}
384
f64c3f54 385static struct mem_cgroup_per_zone *
e231875b 386mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 387{
97a6c37b
JW
388 int nid = page_to_nid(page);
389 int zid = page_zonenum(page);
f64c3f54 390
e231875b 391 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
392}
393
bb4cc1a8
AM
394static struct mem_cgroup_tree_per_zone *
395soft_limit_tree_node_zone(int nid, int zid)
396{
397 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
398}
399
400static struct mem_cgroup_tree_per_zone *
401soft_limit_tree_from_page(struct page *page)
402{
403 int nid = page_to_nid(page);
404 int zid = page_zonenum(page);
405
406 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
407}
408
cf2c8127
JW
409static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
410 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 411 unsigned long new_usage_in_excess)
bb4cc1a8
AM
412{
413 struct rb_node **p = &mctz->rb_root.rb_node;
414 struct rb_node *parent = NULL;
415 struct mem_cgroup_per_zone *mz_node;
416
417 if (mz->on_tree)
418 return;
419
420 mz->usage_in_excess = new_usage_in_excess;
421 if (!mz->usage_in_excess)
422 return;
423 while (*p) {
424 parent = *p;
425 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
426 tree_node);
427 if (mz->usage_in_excess < mz_node->usage_in_excess)
428 p = &(*p)->rb_left;
429 /*
430 * We can't avoid mem cgroups that are over their soft
431 * limit by the same amount
432 */
433 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
434 p = &(*p)->rb_right;
435 }
436 rb_link_node(&mz->tree_node, parent, p);
437 rb_insert_color(&mz->tree_node, &mctz->rb_root);
438 mz->on_tree = true;
439}
440
cf2c8127
JW
441static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
443{
444 if (!mz->on_tree)
445 return;
446 rb_erase(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = false;
448}
449
cf2c8127
JW
450static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
451 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 452{
0a31bc97
JW
453 unsigned long flags;
454
455 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 456 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 457 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
458}
459
3e32cb2e
JW
460static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
461{
462 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 463 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
464 unsigned long excess = 0;
465
466 if (nr_pages > soft_limit)
467 excess = nr_pages - soft_limit;
468
469 return excess;
470}
bb4cc1a8
AM
471
472static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
473{
3e32cb2e 474 unsigned long excess;
bb4cc1a8
AM
475 struct mem_cgroup_per_zone *mz;
476 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 477
e231875b 478 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
479 /*
480 * Necessary to update all ancestors when hierarchy is used.
481 * because their event counter is not touched.
482 */
483 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 484 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 485 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
486 /*
487 * We have to update the tree if mz is on RB-tree or
488 * mem is over its softlimit.
489 */
490 if (excess || mz->on_tree) {
0a31bc97
JW
491 unsigned long flags;
492
493 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
494 /* if on-tree, remove it */
495 if (mz->on_tree)
cf2c8127 496 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
497 /*
498 * Insert again. mz->usage_in_excess will be updated.
499 * If excess is 0, no tree ops.
500 */
cf2c8127 501 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 502 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
503 }
504 }
505}
506
507static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
508{
bb4cc1a8 509 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
510 struct mem_cgroup_per_zone *mz;
511 int nid, zid;
bb4cc1a8 512
e231875b
JZ
513 for_each_node(nid) {
514 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
515 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
516 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 517 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
518 }
519 }
520}
521
522static struct mem_cgroup_per_zone *
523__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524{
525 struct rb_node *rightmost = NULL;
526 struct mem_cgroup_per_zone *mz;
527
528retry:
529 mz = NULL;
530 rightmost = rb_last(&mctz->rb_root);
531 if (!rightmost)
532 goto done; /* Nothing to reclaim from */
533
534 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
535 /*
536 * Remove the node now but someone else can add it back,
537 * we will to add it back at the end of reclaim to its correct
538 * position in the tree.
539 */
cf2c8127 540 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 541 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 542 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
543 goto retry;
544done:
545 return mz;
546}
547
548static struct mem_cgroup_per_zone *
549mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
550{
551 struct mem_cgroup_per_zone *mz;
552
0a31bc97 553 spin_lock_irq(&mctz->lock);
bb4cc1a8 554 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 555 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
556 return mz;
557}
558
711d3d2c 559/*
484ebb3b
GT
560 * Return page count for single (non recursive) @memcg.
561 *
711d3d2c
KH
562 * Implementation Note: reading percpu statistics for memcg.
563 *
564 * Both of vmstat[] and percpu_counter has threshold and do periodic
565 * synchronization to implement "quick" read. There are trade-off between
566 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 567 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
568 *
569 * But this _read() function is used for user interface now. The user accounts
570 * memory usage by memory cgroup and he _always_ requires exact value because
571 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
572 * have to visit all online cpus and make sum. So, for now, unnecessary
573 * synchronization is not implemented. (just implemented for cpu hotplug)
574 *
575 * If there are kernel internal actions which can make use of some not-exact
576 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 577 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
578 * implemented.
579 */
484ebb3b
GT
580static unsigned long
581mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 582{
7a159cc9 583 long val = 0;
c62b1a3b 584 int cpu;
c62b1a3b 585
484ebb3b 586 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 587 for_each_possible_cpu(cpu)
c0ff4b85 588 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
589 /*
590 * Summing races with updates, so val may be negative. Avoid exposing
591 * transient negative values.
592 */
593 if (val < 0)
594 val = 0;
c62b1a3b
KH
595 return val;
596}
597
c0ff4b85 598static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
599 enum mem_cgroup_events_index idx)
600{
601 unsigned long val = 0;
602 int cpu;
603
733a572e 604 for_each_possible_cpu(cpu)
c0ff4b85 605 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
606 return val;
607}
608
c0ff4b85 609static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 610 struct page *page,
f627c2f5 611 bool compound, int nr_pages)
d52aa412 612{
b2402857
KH
613 /*
614 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
615 * counted as CACHE even if it's on ANON LRU.
616 */
0a31bc97 617 if (PageAnon(page))
b2402857 618 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 619 nr_pages);
d52aa412 620 else
b2402857 621 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 622 nr_pages);
55e462b0 623
f627c2f5
KS
624 if (compound) {
625 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
626 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
627 nr_pages);
f627c2f5 628 }
b070e65c 629
e401f176
KH
630 /* pagein of a big page is an event. So, ignore page size */
631 if (nr_pages > 0)
c0ff4b85 632 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 633 else {
c0ff4b85 634 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
635 nr_pages = -nr_pages; /* for event */
636 }
e401f176 637
13114716 638 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
639}
640
e231875b
JZ
641static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
642 int nid,
643 unsigned int lru_mask)
bb2a0de9 644{
e231875b 645 unsigned long nr = 0;
889976db
YH
646 int zid;
647
e231875b 648 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 649
e231875b
JZ
650 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
651 struct mem_cgroup_per_zone *mz;
652 enum lru_list lru;
653
654 for_each_lru(lru) {
655 if (!(BIT(lru) & lru_mask))
656 continue;
657 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
658 nr += mz->lru_size[lru];
659 }
660 }
661 return nr;
889976db 662}
bb2a0de9 663
c0ff4b85 664static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 665 unsigned int lru_mask)
6d12e2d8 666{
e231875b 667 unsigned long nr = 0;
889976db 668 int nid;
6d12e2d8 669
31aaea4a 670 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
671 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
672 return nr;
d52aa412
KH
673}
674
f53d7ce3
JW
675static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
676 enum mem_cgroup_events_target target)
7a159cc9
JW
677{
678 unsigned long val, next;
679
13114716 680 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 681 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 682 /* from time_after() in jiffies.h */
f53d7ce3
JW
683 if ((long)next - (long)val < 0) {
684 switch (target) {
685 case MEM_CGROUP_TARGET_THRESH:
686 next = val + THRESHOLDS_EVENTS_TARGET;
687 break;
bb4cc1a8
AM
688 case MEM_CGROUP_TARGET_SOFTLIMIT:
689 next = val + SOFTLIMIT_EVENTS_TARGET;
690 break;
f53d7ce3
JW
691 case MEM_CGROUP_TARGET_NUMAINFO:
692 next = val + NUMAINFO_EVENTS_TARGET;
693 break;
694 default:
695 break;
696 }
697 __this_cpu_write(memcg->stat->targets[target], next);
698 return true;
7a159cc9 699 }
f53d7ce3 700 return false;
d2265e6f
KH
701}
702
703/*
704 * Check events in order.
705 *
706 */
c0ff4b85 707static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
708{
709 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
710 if (unlikely(mem_cgroup_event_ratelimit(memcg,
711 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 712 bool do_softlimit;
82b3f2a7 713 bool do_numainfo __maybe_unused;
f53d7ce3 714
bb4cc1a8
AM
715 do_softlimit = mem_cgroup_event_ratelimit(memcg,
716 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
717#if MAX_NUMNODES > 1
718 do_numainfo = mem_cgroup_event_ratelimit(memcg,
719 MEM_CGROUP_TARGET_NUMAINFO);
720#endif
c0ff4b85 721 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
722 if (unlikely(do_softlimit))
723 mem_cgroup_update_tree(memcg, page);
453a9bf3 724#if MAX_NUMNODES > 1
f53d7ce3 725 if (unlikely(do_numainfo))
c0ff4b85 726 atomic_inc(&memcg->numainfo_events);
453a9bf3 727#endif
0a31bc97 728 }
d2265e6f
KH
729}
730
cf475ad2 731struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 732{
31a78f23
BS
733 /*
734 * mm_update_next_owner() may clear mm->owner to NULL
735 * if it races with swapoff, page migration, etc.
736 * So this can be called with p == NULL.
737 */
738 if (unlikely(!p))
739 return NULL;
740
073219e9 741 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 742}
33398cf2 743EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 744
df381975 745static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 746{
c0ff4b85 747 struct mem_cgroup *memcg = NULL;
0b7f569e 748
54595fe2
KH
749 rcu_read_lock();
750 do {
6f6acb00
MH
751 /*
752 * Page cache insertions can happen withou an
753 * actual mm context, e.g. during disk probing
754 * on boot, loopback IO, acct() writes etc.
755 */
756 if (unlikely(!mm))
df381975 757 memcg = root_mem_cgroup;
6f6acb00
MH
758 else {
759 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
760 if (unlikely(!memcg))
761 memcg = root_mem_cgroup;
762 }
ec903c0c 763 } while (!css_tryget_online(&memcg->css));
54595fe2 764 rcu_read_unlock();
c0ff4b85 765 return memcg;
54595fe2
KH
766}
767
5660048c
JW
768/**
769 * mem_cgroup_iter - iterate over memory cgroup hierarchy
770 * @root: hierarchy root
771 * @prev: previously returned memcg, NULL on first invocation
772 * @reclaim: cookie for shared reclaim walks, NULL for full walks
773 *
774 * Returns references to children of the hierarchy below @root, or
775 * @root itself, or %NULL after a full round-trip.
776 *
777 * Caller must pass the return value in @prev on subsequent
778 * invocations for reference counting, or use mem_cgroup_iter_break()
779 * to cancel a hierarchy walk before the round-trip is complete.
780 *
781 * Reclaimers can specify a zone and a priority level in @reclaim to
782 * divide up the memcgs in the hierarchy among all concurrent
783 * reclaimers operating on the same zone and priority.
784 */
694fbc0f 785struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 786 struct mem_cgroup *prev,
694fbc0f 787 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 788{
33398cf2 789 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 790 struct cgroup_subsys_state *css = NULL;
9f3a0d09 791 struct mem_cgroup *memcg = NULL;
5ac8fb31 792 struct mem_cgroup *pos = NULL;
711d3d2c 793
694fbc0f
AM
794 if (mem_cgroup_disabled())
795 return NULL;
5660048c 796
9f3a0d09
JW
797 if (!root)
798 root = root_mem_cgroup;
7d74b06f 799
9f3a0d09 800 if (prev && !reclaim)
5ac8fb31 801 pos = prev;
14067bb3 802
9f3a0d09
JW
803 if (!root->use_hierarchy && root != root_mem_cgroup) {
804 if (prev)
5ac8fb31 805 goto out;
694fbc0f 806 return root;
9f3a0d09 807 }
14067bb3 808
542f85f9 809 rcu_read_lock();
5f578161 810
5ac8fb31
JW
811 if (reclaim) {
812 struct mem_cgroup_per_zone *mz;
813
814 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
815 iter = &mz->iter[reclaim->priority];
816
817 if (prev && reclaim->generation != iter->generation)
818 goto out_unlock;
819
6df38689 820 while (1) {
4db0c3c2 821 pos = READ_ONCE(iter->position);
6df38689
VD
822 if (!pos || css_tryget(&pos->css))
823 break;
5ac8fb31 824 /*
6df38689
VD
825 * css reference reached zero, so iter->position will
826 * be cleared by ->css_released. However, we should not
827 * rely on this happening soon, because ->css_released
828 * is called from a work queue, and by busy-waiting we
829 * might block it. So we clear iter->position right
830 * away.
5ac8fb31 831 */
6df38689
VD
832 (void)cmpxchg(&iter->position, pos, NULL);
833 }
5ac8fb31
JW
834 }
835
836 if (pos)
837 css = &pos->css;
838
839 for (;;) {
840 css = css_next_descendant_pre(css, &root->css);
841 if (!css) {
842 /*
843 * Reclaimers share the hierarchy walk, and a
844 * new one might jump in right at the end of
845 * the hierarchy - make sure they see at least
846 * one group and restart from the beginning.
847 */
848 if (!prev)
849 continue;
850 break;
527a5ec9 851 }
7d74b06f 852
5ac8fb31
JW
853 /*
854 * Verify the css and acquire a reference. The root
855 * is provided by the caller, so we know it's alive
856 * and kicking, and don't take an extra reference.
857 */
858 memcg = mem_cgroup_from_css(css);
14067bb3 859
5ac8fb31
JW
860 if (css == &root->css)
861 break;
14067bb3 862
0b8f73e1
JW
863 if (css_tryget(css))
864 break;
9f3a0d09 865
5ac8fb31 866 memcg = NULL;
9f3a0d09 867 }
5ac8fb31
JW
868
869 if (reclaim) {
5ac8fb31 870 /*
6df38689
VD
871 * The position could have already been updated by a competing
872 * thread, so check that the value hasn't changed since we read
873 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 874 */
6df38689
VD
875 (void)cmpxchg(&iter->position, pos, memcg);
876
5ac8fb31
JW
877 if (pos)
878 css_put(&pos->css);
879
880 if (!memcg)
881 iter->generation++;
882 else if (!prev)
883 reclaim->generation = iter->generation;
9f3a0d09 884 }
5ac8fb31 885
542f85f9
MH
886out_unlock:
887 rcu_read_unlock();
5ac8fb31 888out:
c40046f3
MH
889 if (prev && prev != root)
890 css_put(&prev->css);
891
9f3a0d09 892 return memcg;
14067bb3 893}
7d74b06f 894
5660048c
JW
895/**
896 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
897 * @root: hierarchy root
898 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
899 */
900void mem_cgroup_iter_break(struct mem_cgroup *root,
901 struct mem_cgroup *prev)
9f3a0d09
JW
902{
903 if (!root)
904 root = root_mem_cgroup;
905 if (prev && prev != root)
906 css_put(&prev->css);
907}
7d74b06f 908
6df38689
VD
909static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
910{
911 struct mem_cgroup *memcg = dead_memcg;
912 struct mem_cgroup_reclaim_iter *iter;
913 struct mem_cgroup_per_zone *mz;
914 int nid, zid;
915 int i;
916
917 while ((memcg = parent_mem_cgroup(memcg))) {
918 for_each_node(nid) {
919 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
920 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
921 for (i = 0; i <= DEF_PRIORITY; i++) {
922 iter = &mz->iter[i];
923 cmpxchg(&iter->position,
924 dead_memcg, NULL);
925 }
926 }
927 }
928 }
929}
930
9f3a0d09
JW
931/*
932 * Iteration constructs for visiting all cgroups (under a tree). If
933 * loops are exited prematurely (break), mem_cgroup_iter_break() must
934 * be used for reference counting.
935 */
936#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 937 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 938 iter != NULL; \
527a5ec9 939 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 940
9f3a0d09 941#define for_each_mem_cgroup(iter) \
527a5ec9 942 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 943 iter != NULL; \
527a5ec9 944 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 945
925b7673
JW
946/**
947 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
948 * @zone: zone of the wanted lruvec
fa9add64 949 * @memcg: memcg of the wanted lruvec
925b7673
JW
950 *
951 * Returns the lru list vector holding pages for the given @zone and
952 * @mem. This can be the global zone lruvec, if the memory controller
953 * is disabled.
954 */
955struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
956 struct mem_cgroup *memcg)
957{
958 struct mem_cgroup_per_zone *mz;
bea8c150 959 struct lruvec *lruvec;
925b7673 960
bea8c150
HD
961 if (mem_cgroup_disabled()) {
962 lruvec = &zone->lruvec;
963 goto out;
964 }
925b7673 965
e231875b 966 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
967 lruvec = &mz->lruvec;
968out:
969 /*
970 * Since a node can be onlined after the mem_cgroup was created,
971 * we have to be prepared to initialize lruvec->zone here;
972 * and if offlined then reonlined, we need to reinitialize it.
973 */
974 if (unlikely(lruvec->zone != zone))
975 lruvec->zone = zone;
976 return lruvec;
925b7673
JW
977}
978
925b7673 979/**
dfe0e773 980 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 981 * @page: the page
fa9add64 982 * @zone: zone of the page
dfe0e773
JW
983 *
984 * This function is only safe when following the LRU page isolation
985 * and putback protocol: the LRU lock must be held, and the page must
986 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 987 */
fa9add64 988struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 989{
08e552c6 990 struct mem_cgroup_per_zone *mz;
925b7673 991 struct mem_cgroup *memcg;
bea8c150 992 struct lruvec *lruvec;
6d12e2d8 993
bea8c150
HD
994 if (mem_cgroup_disabled()) {
995 lruvec = &zone->lruvec;
996 goto out;
997 }
925b7673 998
1306a85a 999 memcg = page->mem_cgroup;
7512102c 1000 /*
dfe0e773 1001 * Swapcache readahead pages are added to the LRU - and
29833315 1002 * possibly migrated - before they are charged.
7512102c 1003 */
29833315
JW
1004 if (!memcg)
1005 memcg = root_mem_cgroup;
7512102c 1006
e231875b 1007 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1008 lruvec = &mz->lruvec;
1009out:
1010 /*
1011 * Since a node can be onlined after the mem_cgroup was created,
1012 * we have to be prepared to initialize lruvec->zone here;
1013 * and if offlined then reonlined, we need to reinitialize it.
1014 */
1015 if (unlikely(lruvec->zone != zone))
1016 lruvec->zone = zone;
1017 return lruvec;
08e552c6 1018}
b69408e8 1019
925b7673 1020/**
fa9add64
HD
1021 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1022 * @lruvec: mem_cgroup per zone lru vector
1023 * @lru: index of lru list the page is sitting on
1024 * @nr_pages: positive when adding or negative when removing
925b7673 1025 *
fa9add64
HD
1026 * This function must be called when a page is added to or removed from an
1027 * lru list.
3f58a829 1028 */
fa9add64
HD
1029void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1030 int nr_pages)
3f58a829
MK
1031{
1032 struct mem_cgroup_per_zone *mz;
fa9add64 1033 unsigned long *lru_size;
3f58a829
MK
1034
1035 if (mem_cgroup_disabled())
1036 return;
1037
fa9add64
HD
1038 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1039 lru_size = mz->lru_size + lru;
1040 *lru_size += nr_pages;
1041 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1042}
544122e5 1043
2314b42d 1044bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1045{
2314b42d 1046 struct mem_cgroup *task_memcg;
158e0a2d 1047 struct task_struct *p;
ffbdccf5 1048 bool ret;
4c4a2214 1049
158e0a2d 1050 p = find_lock_task_mm(task);
de077d22 1051 if (p) {
2314b42d 1052 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1053 task_unlock(p);
1054 } else {
1055 /*
1056 * All threads may have already detached their mm's, but the oom
1057 * killer still needs to detect if they have already been oom
1058 * killed to prevent needlessly killing additional tasks.
1059 */
ffbdccf5 1060 rcu_read_lock();
2314b42d
JW
1061 task_memcg = mem_cgroup_from_task(task);
1062 css_get(&task_memcg->css);
ffbdccf5 1063 rcu_read_unlock();
de077d22 1064 }
2314b42d
JW
1065 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1066 css_put(&task_memcg->css);
4c4a2214
DR
1067 return ret;
1068}
1069
19942822 1070/**
9d11ea9f 1071 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1072 * @memcg: the memory cgroup
19942822 1073 *
9d11ea9f 1074 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1075 * pages.
19942822 1076 */
c0ff4b85 1077static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1078{
3e32cb2e
JW
1079 unsigned long margin = 0;
1080 unsigned long count;
1081 unsigned long limit;
9d11ea9f 1082
3e32cb2e 1083 count = page_counter_read(&memcg->memory);
4db0c3c2 1084 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1085 if (count < limit)
1086 margin = limit - count;
1087
7941d214 1088 if (do_memsw_account()) {
3e32cb2e 1089 count = page_counter_read(&memcg->memsw);
4db0c3c2 1090 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1091 if (count <= limit)
1092 margin = min(margin, limit - count);
1093 }
1094
1095 return margin;
19942822
JW
1096}
1097
32047e2a 1098/*
bdcbb659 1099 * A routine for checking "mem" is under move_account() or not.
32047e2a 1100 *
bdcbb659
QH
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
32047e2a 1104 */
c0ff4b85 1105static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1106{
2bd9bb20
KH
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
4b534334 1109 bool ret = false;
2bd9bb20
KH
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
3e92041d 1119
2314b42d
JW
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1122unlock:
1123 spin_unlock(&mc.lock);
4b534334
KH
1124 return ret;
1125}
1126
c0ff4b85 1127static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1128{
1129 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1130 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141}
1142
58cf188e 1143#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1144/**
58cf188e 1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153{
e61734c5 1154 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1155 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1156 struct mem_cgroup *iter;
1157 unsigned int i;
e222432b 1158
08088cb9 1159 mutex_lock(&oom_info_lock);
e222432b
BS
1160 rcu_read_lock();
1161
2415b9f5
BV
1162 if (p) {
1163 pr_info("Task in ");
1164 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1165 pr_cont(" killed as a result of limit of ");
1166 } else {
1167 pr_info("Memory limit reached of cgroup ");
1168 }
1169
e61734c5 1170 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1171 pr_cont("\n");
e222432b 1172
e222432b
BS
1173 rcu_read_unlock();
1174
3e32cb2e
JW
1175 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memory)),
1177 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1178 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->memsw)),
1180 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1181 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1182 K((u64)page_counter_read(&memcg->kmem)),
1183 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1184
1185 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1186 pr_info("Memory cgroup stats for ");
1187 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1188 pr_cont(":");
1189
1190 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1191 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1192 continue;
484ebb3b 1193 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1194 K(mem_cgroup_read_stat(iter, i)));
1195 }
1196
1197 for (i = 0; i < NR_LRU_LISTS; i++)
1198 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1199 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1200
1201 pr_cont("\n");
1202 }
08088cb9 1203 mutex_unlock(&oom_info_lock);
e222432b
BS
1204}
1205
81d39c20
KH
1206/*
1207 * This function returns the number of memcg under hierarchy tree. Returns
1208 * 1(self count) if no children.
1209 */
c0ff4b85 1210static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1211{
1212 int num = 0;
7d74b06f
KH
1213 struct mem_cgroup *iter;
1214
c0ff4b85 1215 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1216 num++;
81d39c20
KH
1217 return num;
1218}
1219
a63d83f4
DR
1220/*
1221 * Return the memory (and swap, if configured) limit for a memcg.
1222 */
3e32cb2e 1223static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1224{
3e32cb2e 1225 unsigned long limit;
f3e8eb70 1226
3e32cb2e 1227 limit = memcg->memory.limit;
9a5a8f19 1228 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1229 unsigned long memsw_limit;
37e84351 1230 unsigned long swap_limit;
9a5a8f19 1231
3e32cb2e 1232 memsw_limit = memcg->memsw.limit;
37e84351
VD
1233 swap_limit = memcg->swap.limit;
1234 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1235 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1236 }
9a5a8f19 1237 return limit;
a63d83f4
DR
1238}
1239
19965460
DR
1240static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1241 int order)
9cbb78bb 1242{
6e0fc46d
DR
1243 struct oom_control oc = {
1244 .zonelist = NULL,
1245 .nodemask = NULL,
1246 .gfp_mask = gfp_mask,
1247 .order = order,
6e0fc46d 1248 };
9cbb78bb
DR
1249 struct mem_cgroup *iter;
1250 unsigned long chosen_points = 0;
1251 unsigned long totalpages;
1252 unsigned int points = 0;
1253 struct task_struct *chosen = NULL;
1254
dc56401f
JW
1255 mutex_lock(&oom_lock);
1256
876aafbf 1257 /*
465adcf1
DR
1258 * If current has a pending SIGKILL or is exiting, then automatically
1259 * select it. The goal is to allow it to allocate so that it may
1260 * quickly exit and free its memory.
876aafbf 1261 */
d003f371 1262 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1263 mark_oom_victim(current);
dc56401f 1264 goto unlock;
876aafbf
DR
1265 }
1266
6e0fc46d 1267 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1268 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1269 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1270 struct css_task_iter it;
9cbb78bb
DR
1271 struct task_struct *task;
1272
72ec7029
TH
1273 css_task_iter_start(&iter->css, &it);
1274 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1275 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1276 case OOM_SCAN_SELECT:
1277 if (chosen)
1278 put_task_struct(chosen);
1279 chosen = task;
1280 chosen_points = ULONG_MAX;
1281 get_task_struct(chosen);
1282 /* fall through */
1283 case OOM_SCAN_CONTINUE:
1284 continue;
1285 case OOM_SCAN_ABORT:
72ec7029 1286 css_task_iter_end(&it);
9cbb78bb
DR
1287 mem_cgroup_iter_break(memcg, iter);
1288 if (chosen)
1289 put_task_struct(chosen);
dc56401f 1290 goto unlock;
9cbb78bb
DR
1291 case OOM_SCAN_OK:
1292 break;
1293 };
1294 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1295 if (!points || points < chosen_points)
1296 continue;
1297 /* Prefer thread group leaders for display purposes */
1298 if (points == chosen_points &&
1299 thread_group_leader(chosen))
1300 continue;
1301
1302 if (chosen)
1303 put_task_struct(chosen);
1304 chosen = task;
1305 chosen_points = points;
1306 get_task_struct(chosen);
9cbb78bb 1307 }
72ec7029 1308 css_task_iter_end(&it);
9cbb78bb
DR
1309 }
1310
dc56401f
JW
1311 if (chosen) {
1312 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1313 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1314 "Memory cgroup out of memory");
dc56401f
JW
1315 }
1316unlock:
1317 mutex_unlock(&oom_lock);
9cbb78bb
DR
1318}
1319
ae6e71d3
MC
1320#if MAX_NUMNODES > 1
1321
4d0c066d
KH
1322/**
1323 * test_mem_cgroup_node_reclaimable
dad7557e 1324 * @memcg: the target memcg
4d0c066d
KH
1325 * @nid: the node ID to be checked.
1326 * @noswap : specify true here if the user wants flle only information.
1327 *
1328 * This function returns whether the specified memcg contains any
1329 * reclaimable pages on a node. Returns true if there are any reclaimable
1330 * pages in the node.
1331 */
c0ff4b85 1332static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1333 int nid, bool noswap)
1334{
c0ff4b85 1335 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1336 return true;
1337 if (noswap || !total_swap_pages)
1338 return false;
c0ff4b85 1339 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1340 return true;
1341 return false;
1342
1343}
889976db
YH
1344
1345/*
1346 * Always updating the nodemask is not very good - even if we have an empty
1347 * list or the wrong list here, we can start from some node and traverse all
1348 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1349 *
1350 */
c0ff4b85 1351static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1352{
1353 int nid;
453a9bf3
KH
1354 /*
1355 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1356 * pagein/pageout changes since the last update.
1357 */
c0ff4b85 1358 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1359 return;
c0ff4b85 1360 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1361 return;
1362
889976db 1363 /* make a nodemask where this memcg uses memory from */
31aaea4a 1364 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1365
31aaea4a 1366 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1367
c0ff4b85
R
1368 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1369 node_clear(nid, memcg->scan_nodes);
889976db 1370 }
453a9bf3 1371
c0ff4b85
R
1372 atomic_set(&memcg->numainfo_events, 0);
1373 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1374}
1375
1376/*
1377 * Selecting a node where we start reclaim from. Because what we need is just
1378 * reducing usage counter, start from anywhere is O,K. Considering
1379 * memory reclaim from current node, there are pros. and cons.
1380 *
1381 * Freeing memory from current node means freeing memory from a node which
1382 * we'll use or we've used. So, it may make LRU bad. And if several threads
1383 * hit limits, it will see a contention on a node. But freeing from remote
1384 * node means more costs for memory reclaim because of memory latency.
1385 *
1386 * Now, we use round-robin. Better algorithm is welcomed.
1387 */
c0ff4b85 1388int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1389{
1390 int node;
1391
c0ff4b85
R
1392 mem_cgroup_may_update_nodemask(memcg);
1393 node = memcg->last_scanned_node;
889976db 1394
c0ff4b85 1395 node = next_node(node, memcg->scan_nodes);
889976db 1396 if (node == MAX_NUMNODES)
c0ff4b85 1397 node = first_node(memcg->scan_nodes);
889976db
YH
1398 /*
1399 * We call this when we hit limit, not when pages are added to LRU.
1400 * No LRU may hold pages because all pages are UNEVICTABLE or
1401 * memcg is too small and all pages are not on LRU. In that case,
1402 * we use curret node.
1403 */
1404 if (unlikely(node == MAX_NUMNODES))
1405 node = numa_node_id();
1406
c0ff4b85 1407 memcg->last_scanned_node = node;
889976db
YH
1408 return node;
1409}
889976db 1410#else
c0ff4b85 1411int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1412{
1413 return 0;
1414}
1415#endif
1416
0608f43d
AM
1417static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1418 struct zone *zone,
1419 gfp_t gfp_mask,
1420 unsigned long *total_scanned)
1421{
1422 struct mem_cgroup *victim = NULL;
1423 int total = 0;
1424 int loop = 0;
1425 unsigned long excess;
1426 unsigned long nr_scanned;
1427 struct mem_cgroup_reclaim_cookie reclaim = {
1428 .zone = zone,
1429 .priority = 0,
1430 };
1431
3e32cb2e 1432 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1433
1434 while (1) {
1435 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1436 if (!victim) {
1437 loop++;
1438 if (loop >= 2) {
1439 /*
1440 * If we have not been able to reclaim
1441 * anything, it might because there are
1442 * no reclaimable pages under this hierarchy
1443 */
1444 if (!total)
1445 break;
1446 /*
1447 * We want to do more targeted reclaim.
1448 * excess >> 2 is not to excessive so as to
1449 * reclaim too much, nor too less that we keep
1450 * coming back to reclaim from this cgroup
1451 */
1452 if (total >= (excess >> 2) ||
1453 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1454 break;
1455 }
1456 continue;
1457 }
0608f43d
AM
1458 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1459 zone, &nr_scanned);
1460 *total_scanned += nr_scanned;
3e32cb2e 1461 if (!soft_limit_excess(root_memcg))
0608f43d 1462 break;
6d61ef40 1463 }
0608f43d
AM
1464 mem_cgroup_iter_break(root_memcg, victim);
1465 return total;
6d61ef40
BS
1466}
1467
0056f4e6
JW
1468#ifdef CONFIG_LOCKDEP
1469static struct lockdep_map memcg_oom_lock_dep_map = {
1470 .name = "memcg_oom_lock",
1471};
1472#endif
1473
fb2a6fc5
JW
1474static DEFINE_SPINLOCK(memcg_oom_lock);
1475
867578cb
KH
1476/*
1477 * Check OOM-Killer is already running under our hierarchy.
1478 * If someone is running, return false.
1479 */
fb2a6fc5 1480static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1481{
79dfdacc 1482 struct mem_cgroup *iter, *failed = NULL;
a636b327 1483
fb2a6fc5
JW
1484 spin_lock(&memcg_oom_lock);
1485
9f3a0d09 1486 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1487 if (iter->oom_lock) {
79dfdacc
MH
1488 /*
1489 * this subtree of our hierarchy is already locked
1490 * so we cannot give a lock.
1491 */
79dfdacc 1492 failed = iter;
9f3a0d09
JW
1493 mem_cgroup_iter_break(memcg, iter);
1494 break;
23751be0
JW
1495 } else
1496 iter->oom_lock = true;
7d74b06f 1497 }
867578cb 1498
fb2a6fc5
JW
1499 if (failed) {
1500 /*
1501 * OK, we failed to lock the whole subtree so we have
1502 * to clean up what we set up to the failing subtree
1503 */
1504 for_each_mem_cgroup_tree(iter, memcg) {
1505 if (iter == failed) {
1506 mem_cgroup_iter_break(memcg, iter);
1507 break;
1508 }
1509 iter->oom_lock = false;
79dfdacc 1510 }
0056f4e6
JW
1511 } else
1512 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1513
1514 spin_unlock(&memcg_oom_lock);
1515
1516 return !failed;
a636b327 1517}
0b7f569e 1518
fb2a6fc5 1519static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1520{
7d74b06f
KH
1521 struct mem_cgroup *iter;
1522
fb2a6fc5 1523 spin_lock(&memcg_oom_lock);
0056f4e6 1524 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1525 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1526 iter->oom_lock = false;
fb2a6fc5 1527 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1528}
1529
c0ff4b85 1530static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1531{
1532 struct mem_cgroup *iter;
1533
c2b42d3c 1534 spin_lock(&memcg_oom_lock);
c0ff4b85 1535 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1536 iter->under_oom++;
1537 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1538}
1539
c0ff4b85 1540static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1541{
1542 struct mem_cgroup *iter;
1543
867578cb
KH
1544 /*
1545 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1546 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1547 */
c2b42d3c 1548 spin_lock(&memcg_oom_lock);
c0ff4b85 1549 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1550 if (iter->under_oom > 0)
1551 iter->under_oom--;
1552 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1553}
1554
867578cb
KH
1555static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1556
dc98df5a 1557struct oom_wait_info {
d79154bb 1558 struct mem_cgroup *memcg;
dc98df5a
KH
1559 wait_queue_t wait;
1560};
1561
1562static int memcg_oom_wake_function(wait_queue_t *wait,
1563 unsigned mode, int sync, void *arg)
1564{
d79154bb
HD
1565 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1566 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1567 struct oom_wait_info *oom_wait_info;
1568
1569 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1570 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1571
2314b42d
JW
1572 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1573 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1574 return 0;
dc98df5a
KH
1575 return autoremove_wake_function(wait, mode, sync, arg);
1576}
1577
c0ff4b85 1578static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1579{
c2b42d3c
TH
1580 /*
1581 * For the following lockless ->under_oom test, the only required
1582 * guarantee is that it must see the state asserted by an OOM when
1583 * this function is called as a result of userland actions
1584 * triggered by the notification of the OOM. This is trivially
1585 * achieved by invoking mem_cgroup_mark_under_oom() before
1586 * triggering notification.
1587 */
1588 if (memcg && memcg->under_oom)
f4b90b70 1589 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1590}
1591
3812c8c8 1592static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1593{
626ebc41 1594 if (!current->memcg_may_oom)
3812c8c8 1595 return;
867578cb 1596 /*
49426420
JW
1597 * We are in the middle of the charge context here, so we
1598 * don't want to block when potentially sitting on a callstack
1599 * that holds all kinds of filesystem and mm locks.
1600 *
1601 * Also, the caller may handle a failed allocation gracefully
1602 * (like optional page cache readahead) and so an OOM killer
1603 * invocation might not even be necessary.
1604 *
1605 * That's why we don't do anything here except remember the
1606 * OOM context and then deal with it at the end of the page
1607 * fault when the stack is unwound, the locks are released,
1608 * and when we know whether the fault was overall successful.
867578cb 1609 */
49426420 1610 css_get(&memcg->css);
626ebc41
TH
1611 current->memcg_in_oom = memcg;
1612 current->memcg_oom_gfp_mask = mask;
1613 current->memcg_oom_order = order;
3812c8c8
JW
1614}
1615
1616/**
1617 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1618 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1619 *
49426420
JW
1620 * This has to be called at the end of a page fault if the memcg OOM
1621 * handler was enabled.
3812c8c8 1622 *
49426420 1623 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1624 * sleep on a waitqueue until the userspace task resolves the
1625 * situation. Sleeping directly in the charge context with all kinds
1626 * of locks held is not a good idea, instead we remember an OOM state
1627 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1628 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1629 *
1630 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1631 * completed, %false otherwise.
3812c8c8 1632 */
49426420 1633bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1634{
626ebc41 1635 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1636 struct oom_wait_info owait;
49426420 1637 bool locked;
3812c8c8
JW
1638
1639 /* OOM is global, do not handle */
3812c8c8 1640 if (!memcg)
49426420 1641 return false;
3812c8c8 1642
c32b3cbe 1643 if (!handle || oom_killer_disabled)
49426420 1644 goto cleanup;
3812c8c8
JW
1645
1646 owait.memcg = memcg;
1647 owait.wait.flags = 0;
1648 owait.wait.func = memcg_oom_wake_function;
1649 owait.wait.private = current;
1650 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1651
3812c8c8 1652 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1653 mem_cgroup_mark_under_oom(memcg);
1654
1655 locked = mem_cgroup_oom_trylock(memcg);
1656
1657 if (locked)
1658 mem_cgroup_oom_notify(memcg);
1659
1660 if (locked && !memcg->oom_kill_disable) {
1661 mem_cgroup_unmark_under_oom(memcg);
1662 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1663 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1664 current->memcg_oom_order);
49426420 1665 } else {
3812c8c8 1666 schedule();
49426420
JW
1667 mem_cgroup_unmark_under_oom(memcg);
1668 finish_wait(&memcg_oom_waitq, &owait.wait);
1669 }
1670
1671 if (locked) {
fb2a6fc5
JW
1672 mem_cgroup_oom_unlock(memcg);
1673 /*
1674 * There is no guarantee that an OOM-lock contender
1675 * sees the wakeups triggered by the OOM kill
1676 * uncharges. Wake any sleepers explicitely.
1677 */
1678 memcg_oom_recover(memcg);
1679 }
49426420 1680cleanup:
626ebc41 1681 current->memcg_in_oom = NULL;
3812c8c8 1682 css_put(&memcg->css);
867578cb 1683 return true;
0b7f569e
KH
1684}
1685
d7365e78 1686/**
81f8c3a4
JW
1687 * lock_page_memcg - lock a page->mem_cgroup binding
1688 * @page: the page
32047e2a 1689 *
81f8c3a4
JW
1690 * This function protects unlocked LRU pages from being moved to
1691 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1692 */
81f8c3a4 1693struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1694{
1695 struct mem_cgroup *memcg;
6de22619 1696 unsigned long flags;
89c06bd5 1697
6de22619
JW
1698 /*
1699 * The RCU lock is held throughout the transaction. The fast
1700 * path can get away without acquiring the memcg->move_lock
1701 * because page moving starts with an RCU grace period.
1702 *
1703 * The RCU lock also protects the memcg from being freed when
1704 * the page state that is going to change is the only thing
1705 * preventing the page from being uncharged.
1706 * E.g. end-writeback clearing PageWriteback(), which allows
1707 * migration to go ahead and uncharge the page before the
1708 * account transaction might be complete.
1709 */
d7365e78
JW
1710 rcu_read_lock();
1711
1712 if (mem_cgroup_disabled())
1713 return NULL;
89c06bd5 1714again:
1306a85a 1715 memcg = page->mem_cgroup;
29833315 1716 if (unlikely(!memcg))
d7365e78
JW
1717 return NULL;
1718
bdcbb659 1719 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1720 return memcg;
89c06bd5 1721
6de22619 1722 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1723 if (memcg != page->mem_cgroup) {
6de22619 1724 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1725 goto again;
1726 }
6de22619
JW
1727
1728 /*
1729 * When charge migration first begins, we can have locked and
1730 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1731 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1732 */
1733 memcg->move_lock_task = current;
1734 memcg->move_lock_flags = flags;
d7365e78
JW
1735
1736 return memcg;
89c06bd5 1737}
81f8c3a4 1738EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1739
d7365e78 1740/**
81f8c3a4
JW
1741 * unlock_page_memcg - unlock a page->mem_cgroup binding
1742 * @memcg: the memcg returned by lock_page_memcg()
d7365e78 1743 */
81f8c3a4 1744void unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1745{
6de22619
JW
1746 if (memcg && memcg->move_lock_task == current) {
1747 unsigned long flags = memcg->move_lock_flags;
1748
1749 memcg->move_lock_task = NULL;
1750 memcg->move_lock_flags = 0;
1751
1752 spin_unlock_irqrestore(&memcg->move_lock, flags);
1753 }
89c06bd5 1754
d7365e78 1755 rcu_read_unlock();
89c06bd5 1756}
81f8c3a4 1757EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1758
cdec2e42
KH
1759/*
1760 * size of first charge trial. "32" comes from vmscan.c's magic value.
1761 * TODO: maybe necessary to use big numbers in big irons.
1762 */
7ec99d62 1763#define CHARGE_BATCH 32U
cdec2e42
KH
1764struct memcg_stock_pcp {
1765 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1766 unsigned int nr_pages;
cdec2e42 1767 struct work_struct work;
26fe6168 1768 unsigned long flags;
a0db00fc 1769#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1770};
1771static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1772static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1773
a0956d54
SS
1774/**
1775 * consume_stock: Try to consume stocked charge on this cpu.
1776 * @memcg: memcg to consume from.
1777 * @nr_pages: how many pages to charge.
1778 *
1779 * The charges will only happen if @memcg matches the current cpu's memcg
1780 * stock, and at least @nr_pages are available in that stock. Failure to
1781 * service an allocation will refill the stock.
1782 *
1783 * returns true if successful, false otherwise.
cdec2e42 1784 */
a0956d54 1785static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1786{
1787 struct memcg_stock_pcp *stock;
3e32cb2e 1788 bool ret = false;
cdec2e42 1789
a0956d54 1790 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1791 return ret;
a0956d54 1792
cdec2e42 1793 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1794 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1795 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1796 ret = true;
1797 }
cdec2e42
KH
1798 put_cpu_var(memcg_stock);
1799 return ret;
1800}
1801
1802/*
3e32cb2e 1803 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1804 */
1805static void drain_stock(struct memcg_stock_pcp *stock)
1806{
1807 struct mem_cgroup *old = stock->cached;
1808
11c9ea4e 1809 if (stock->nr_pages) {
3e32cb2e 1810 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1811 if (do_memsw_account())
3e32cb2e 1812 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1813 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1814 stock->nr_pages = 0;
cdec2e42
KH
1815 }
1816 stock->cached = NULL;
cdec2e42
KH
1817}
1818
1819/*
1820 * This must be called under preempt disabled or must be called by
1821 * a thread which is pinned to local cpu.
1822 */
1823static void drain_local_stock(struct work_struct *dummy)
1824{
7c8e0181 1825 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1826 drain_stock(stock);
26fe6168 1827 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1828}
1829
1830/*
3e32cb2e 1831 * Cache charges(val) to local per_cpu area.
320cc51d 1832 * This will be consumed by consume_stock() function, later.
cdec2e42 1833 */
c0ff4b85 1834static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1835{
1836 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1837
c0ff4b85 1838 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1839 drain_stock(stock);
c0ff4b85 1840 stock->cached = memcg;
cdec2e42 1841 }
11c9ea4e 1842 stock->nr_pages += nr_pages;
cdec2e42
KH
1843 put_cpu_var(memcg_stock);
1844}
1845
1846/*
c0ff4b85 1847 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1848 * of the hierarchy under it.
cdec2e42 1849 */
6d3d6aa2 1850static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1851{
26fe6168 1852 int cpu, curcpu;
d38144b7 1853
6d3d6aa2
JW
1854 /* If someone's already draining, avoid adding running more workers. */
1855 if (!mutex_trylock(&percpu_charge_mutex))
1856 return;
cdec2e42 1857 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1858 get_online_cpus();
5af12d0e 1859 curcpu = get_cpu();
cdec2e42
KH
1860 for_each_online_cpu(cpu) {
1861 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1862 struct mem_cgroup *memcg;
26fe6168 1863
c0ff4b85
R
1864 memcg = stock->cached;
1865 if (!memcg || !stock->nr_pages)
26fe6168 1866 continue;
2314b42d 1867 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1868 continue;
d1a05b69
MH
1869 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1870 if (cpu == curcpu)
1871 drain_local_stock(&stock->work);
1872 else
1873 schedule_work_on(cpu, &stock->work);
1874 }
cdec2e42 1875 }
5af12d0e 1876 put_cpu();
f894ffa8 1877 put_online_cpus();
9f50fad6 1878 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1879}
1880
0db0628d 1881static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1882 unsigned long action,
1883 void *hcpu)
1884{
1885 int cpu = (unsigned long)hcpu;
1886 struct memcg_stock_pcp *stock;
1887
619d094b 1888 if (action == CPU_ONLINE)
1489ebad 1889 return NOTIFY_OK;
1489ebad 1890
d833049b 1891 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1892 return NOTIFY_OK;
711d3d2c 1893
cdec2e42
KH
1894 stock = &per_cpu(memcg_stock, cpu);
1895 drain_stock(stock);
1896 return NOTIFY_OK;
1897}
1898
f7e1cb6e
JW
1899static void reclaim_high(struct mem_cgroup *memcg,
1900 unsigned int nr_pages,
1901 gfp_t gfp_mask)
1902{
1903 do {
1904 if (page_counter_read(&memcg->memory) <= memcg->high)
1905 continue;
1906 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1907 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1908 } while ((memcg = parent_mem_cgroup(memcg)));
1909}
1910
1911static void high_work_func(struct work_struct *work)
1912{
1913 struct mem_cgroup *memcg;
1914
1915 memcg = container_of(work, struct mem_cgroup, high_work);
1916 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1917}
1918
b23afb93
TH
1919/*
1920 * Scheduled by try_charge() to be executed from the userland return path
1921 * and reclaims memory over the high limit.
1922 */
1923void mem_cgroup_handle_over_high(void)
1924{
1925 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1926 struct mem_cgroup *memcg;
b23afb93
TH
1927
1928 if (likely(!nr_pages))
1929 return;
1930
f7e1cb6e
JW
1931 memcg = get_mem_cgroup_from_mm(current->mm);
1932 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1933 css_put(&memcg->css);
1934 current->memcg_nr_pages_over_high = 0;
1935}
1936
00501b53
JW
1937static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1938 unsigned int nr_pages)
8a9f3ccd 1939{
7ec99d62 1940 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1941 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1942 struct mem_cgroup *mem_over_limit;
3e32cb2e 1943 struct page_counter *counter;
6539cc05 1944 unsigned long nr_reclaimed;
b70a2a21
JW
1945 bool may_swap = true;
1946 bool drained = false;
a636b327 1947
ce00a967 1948 if (mem_cgroup_is_root(memcg))
10d53c74 1949 return 0;
6539cc05 1950retry:
b6b6cc72 1951 if (consume_stock(memcg, nr_pages))
10d53c74 1952 return 0;
8a9f3ccd 1953
7941d214 1954 if (!do_memsw_account() ||
6071ca52
JW
1955 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1956 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1957 goto done_restock;
7941d214 1958 if (do_memsw_account())
3e32cb2e
JW
1959 page_counter_uncharge(&memcg->memsw, batch);
1960 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1961 } else {
3e32cb2e 1962 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1963 may_swap = false;
3fbe7244 1964 }
7a81b88c 1965
6539cc05
JW
1966 if (batch > nr_pages) {
1967 batch = nr_pages;
1968 goto retry;
1969 }
6d61ef40 1970
06b078fc
JW
1971 /*
1972 * Unlike in global OOM situations, memcg is not in a physical
1973 * memory shortage. Allow dying and OOM-killed tasks to
1974 * bypass the last charges so that they can exit quickly and
1975 * free their memory.
1976 */
1977 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1978 fatal_signal_pending(current) ||
1979 current->flags & PF_EXITING))
10d53c74 1980 goto force;
06b078fc
JW
1981
1982 if (unlikely(task_in_memcg_oom(current)))
1983 goto nomem;
1984
d0164adc 1985 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1986 goto nomem;
4b534334 1987
241994ed
JW
1988 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1989
b70a2a21
JW
1990 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1991 gfp_mask, may_swap);
6539cc05 1992
61e02c74 1993 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1994 goto retry;
28c34c29 1995
b70a2a21 1996 if (!drained) {
6d3d6aa2 1997 drain_all_stock(mem_over_limit);
b70a2a21
JW
1998 drained = true;
1999 goto retry;
2000 }
2001
28c34c29
JW
2002 if (gfp_mask & __GFP_NORETRY)
2003 goto nomem;
6539cc05
JW
2004 /*
2005 * Even though the limit is exceeded at this point, reclaim
2006 * may have been able to free some pages. Retry the charge
2007 * before killing the task.
2008 *
2009 * Only for regular pages, though: huge pages are rather
2010 * unlikely to succeed so close to the limit, and we fall back
2011 * to regular pages anyway in case of failure.
2012 */
61e02c74 2013 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2014 goto retry;
2015 /*
2016 * At task move, charge accounts can be doubly counted. So, it's
2017 * better to wait until the end of task_move if something is going on.
2018 */
2019 if (mem_cgroup_wait_acct_move(mem_over_limit))
2020 goto retry;
2021
9b130619
JW
2022 if (nr_retries--)
2023 goto retry;
2024
06b078fc 2025 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2026 goto force;
06b078fc 2027
6539cc05 2028 if (fatal_signal_pending(current))
10d53c74 2029 goto force;
6539cc05 2030
241994ed
JW
2031 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2032
3608de07
JM
2033 mem_cgroup_oom(mem_over_limit, gfp_mask,
2034 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2035nomem:
6d1fdc48 2036 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2037 return -ENOMEM;
10d53c74
TH
2038force:
2039 /*
2040 * The allocation either can't fail or will lead to more memory
2041 * being freed very soon. Allow memory usage go over the limit
2042 * temporarily by force charging it.
2043 */
2044 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2045 if (do_memsw_account())
10d53c74
TH
2046 page_counter_charge(&memcg->memsw, nr_pages);
2047 css_get_many(&memcg->css, nr_pages);
2048
2049 return 0;
6539cc05
JW
2050
2051done_restock:
e8ea14cc 2052 css_get_many(&memcg->css, batch);
6539cc05
JW
2053 if (batch > nr_pages)
2054 refill_stock(memcg, batch - nr_pages);
b23afb93 2055
241994ed 2056 /*
b23afb93
TH
2057 * If the hierarchy is above the normal consumption range, schedule
2058 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2059 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2060 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2061 * not recorded as it most likely matches current's and won't
2062 * change in the meantime. As high limit is checked again before
2063 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2064 */
2065 do {
b23afb93 2066 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2067 /* Don't bother a random interrupted task */
2068 if (in_interrupt()) {
2069 schedule_work(&memcg->high_work);
2070 break;
2071 }
9516a18a 2072 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2073 set_notify_resume(current);
2074 break;
2075 }
241994ed 2076 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2077
2078 return 0;
7a81b88c 2079}
8a9f3ccd 2080
00501b53 2081static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2082{
ce00a967
JW
2083 if (mem_cgroup_is_root(memcg))
2084 return;
2085
3e32cb2e 2086 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2087 if (do_memsw_account())
3e32cb2e 2088 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2089
e8ea14cc 2090 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2091}
2092
0a31bc97
JW
2093static void lock_page_lru(struct page *page, int *isolated)
2094{
2095 struct zone *zone = page_zone(page);
2096
2097 spin_lock_irq(&zone->lru_lock);
2098 if (PageLRU(page)) {
2099 struct lruvec *lruvec;
2100
2101 lruvec = mem_cgroup_page_lruvec(page, zone);
2102 ClearPageLRU(page);
2103 del_page_from_lru_list(page, lruvec, page_lru(page));
2104 *isolated = 1;
2105 } else
2106 *isolated = 0;
2107}
2108
2109static void unlock_page_lru(struct page *page, int isolated)
2110{
2111 struct zone *zone = page_zone(page);
2112
2113 if (isolated) {
2114 struct lruvec *lruvec;
2115
2116 lruvec = mem_cgroup_page_lruvec(page, zone);
2117 VM_BUG_ON_PAGE(PageLRU(page), page);
2118 SetPageLRU(page);
2119 add_page_to_lru_list(page, lruvec, page_lru(page));
2120 }
2121 spin_unlock_irq(&zone->lru_lock);
2122}
2123
00501b53 2124static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2125 bool lrucare)
7a81b88c 2126{
0a31bc97 2127 int isolated;
9ce70c02 2128
1306a85a 2129 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2130
2131 /*
2132 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2133 * may already be on some other mem_cgroup's LRU. Take care of it.
2134 */
0a31bc97
JW
2135 if (lrucare)
2136 lock_page_lru(page, &isolated);
9ce70c02 2137
0a31bc97
JW
2138 /*
2139 * Nobody should be changing or seriously looking at
1306a85a 2140 * page->mem_cgroup at this point:
0a31bc97
JW
2141 *
2142 * - the page is uncharged
2143 *
2144 * - the page is off-LRU
2145 *
2146 * - an anonymous fault has exclusive page access, except for
2147 * a locked page table
2148 *
2149 * - a page cache insertion, a swapin fault, or a migration
2150 * have the page locked
2151 */
1306a85a 2152 page->mem_cgroup = memcg;
9ce70c02 2153
0a31bc97
JW
2154 if (lrucare)
2155 unlock_page_lru(page, isolated);
7a81b88c 2156}
66e1707b 2157
127424c8 2158#ifndef CONFIG_SLOB
f3bb3043 2159static int memcg_alloc_cache_id(void)
55007d84 2160{
f3bb3043
VD
2161 int id, size;
2162 int err;
2163
dbcf73e2 2164 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2165 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2166 if (id < 0)
2167 return id;
55007d84 2168
dbcf73e2 2169 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2170 return id;
2171
2172 /*
2173 * There's no space for the new id in memcg_caches arrays,
2174 * so we have to grow them.
2175 */
05257a1a 2176 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2177
2178 size = 2 * (id + 1);
55007d84
GC
2179 if (size < MEMCG_CACHES_MIN_SIZE)
2180 size = MEMCG_CACHES_MIN_SIZE;
2181 else if (size > MEMCG_CACHES_MAX_SIZE)
2182 size = MEMCG_CACHES_MAX_SIZE;
2183
f3bb3043 2184 err = memcg_update_all_caches(size);
60d3fd32
VD
2185 if (!err)
2186 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2187 if (!err)
2188 memcg_nr_cache_ids = size;
2189
2190 up_write(&memcg_cache_ids_sem);
2191
f3bb3043 2192 if (err) {
dbcf73e2 2193 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2194 return err;
2195 }
2196 return id;
2197}
2198
2199static void memcg_free_cache_id(int id)
2200{
dbcf73e2 2201 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2202}
2203
d5b3cf71 2204struct memcg_kmem_cache_create_work {
5722d094
VD
2205 struct mem_cgroup *memcg;
2206 struct kmem_cache *cachep;
2207 struct work_struct work;
2208};
2209
d5b3cf71 2210static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2211{
d5b3cf71
VD
2212 struct memcg_kmem_cache_create_work *cw =
2213 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2214 struct mem_cgroup *memcg = cw->memcg;
2215 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2216
d5b3cf71 2217 memcg_create_kmem_cache(memcg, cachep);
bd673145 2218
5722d094 2219 css_put(&memcg->css);
d7f25f8a
GC
2220 kfree(cw);
2221}
2222
2223/*
2224 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2225 */
d5b3cf71
VD
2226static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2227 struct kmem_cache *cachep)
d7f25f8a 2228{
d5b3cf71 2229 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2230
776ed0f0 2231 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2232 if (!cw)
d7f25f8a 2233 return;
8135be5a
VD
2234
2235 css_get(&memcg->css);
d7f25f8a
GC
2236
2237 cw->memcg = memcg;
2238 cw->cachep = cachep;
d5b3cf71 2239 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2240
d7f25f8a
GC
2241 schedule_work(&cw->work);
2242}
2243
d5b3cf71
VD
2244static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2245 struct kmem_cache *cachep)
0e9d92f2
GC
2246{
2247 /*
2248 * We need to stop accounting when we kmalloc, because if the
2249 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2250 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2251 *
2252 * However, it is better to enclose the whole function. Depending on
2253 * the debugging options enabled, INIT_WORK(), for instance, can
2254 * trigger an allocation. This too, will make us recurse. Because at
2255 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2256 * the safest choice is to do it like this, wrapping the whole function.
2257 */
6f185c29 2258 current->memcg_kmem_skip_account = 1;
d5b3cf71 2259 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2260 current->memcg_kmem_skip_account = 0;
0e9d92f2 2261}
c67a8a68 2262
d7f25f8a
GC
2263/*
2264 * Return the kmem_cache we're supposed to use for a slab allocation.
2265 * We try to use the current memcg's version of the cache.
2266 *
2267 * If the cache does not exist yet, if we are the first user of it,
2268 * we either create it immediately, if possible, or create it asynchronously
2269 * in a workqueue.
2270 * In the latter case, we will let the current allocation go through with
2271 * the original cache.
2272 *
2273 * Can't be called in interrupt context or from kernel threads.
2274 * This function needs to be called with rcu_read_lock() held.
2275 */
230e9fc2 2276struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2277{
2278 struct mem_cgroup *memcg;
959c8963 2279 struct kmem_cache *memcg_cachep;
2a4db7eb 2280 int kmemcg_id;
d7f25f8a 2281
f7ce3190 2282 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2283
230e9fc2
VD
2284 if (cachep->flags & SLAB_ACCOUNT)
2285 gfp |= __GFP_ACCOUNT;
2286
2287 if (!(gfp & __GFP_ACCOUNT))
2288 return cachep;
2289
9d100c5e 2290 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2291 return cachep;
2292
8135be5a 2293 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2294 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2295 if (kmemcg_id < 0)
ca0dde97 2296 goto out;
d7f25f8a 2297
2a4db7eb 2298 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2299 if (likely(memcg_cachep))
2300 return memcg_cachep;
ca0dde97
LZ
2301
2302 /*
2303 * If we are in a safe context (can wait, and not in interrupt
2304 * context), we could be be predictable and return right away.
2305 * This would guarantee that the allocation being performed
2306 * already belongs in the new cache.
2307 *
2308 * However, there are some clashes that can arrive from locking.
2309 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2310 * memcg_create_kmem_cache, this means no further allocation
2311 * could happen with the slab_mutex held. So it's better to
2312 * defer everything.
ca0dde97 2313 */
d5b3cf71 2314 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2315out:
8135be5a 2316 css_put(&memcg->css);
ca0dde97 2317 return cachep;
d7f25f8a 2318}
d7f25f8a 2319
8135be5a
VD
2320void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2321{
2322 if (!is_root_cache(cachep))
f7ce3190 2323 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2324}
2325
f3ccb2c4
VD
2326int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2327 struct mem_cgroup *memcg)
7ae1e1d0 2328{
f3ccb2c4
VD
2329 unsigned int nr_pages = 1 << order;
2330 struct page_counter *counter;
7ae1e1d0
GC
2331 int ret;
2332
567e9ab2 2333 if (!memcg_kmem_online(memcg))
d05e83a6 2334 return 0;
6d42c232 2335
f3ccb2c4 2336 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2337 if (ret)
f3ccb2c4 2338 return ret;
52c29b04
JW
2339
2340 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2341 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2342 cancel_charge(memcg, nr_pages);
2343 return -ENOMEM;
7ae1e1d0
GC
2344 }
2345
f3ccb2c4 2346 page->mem_cgroup = memcg;
7ae1e1d0 2347
f3ccb2c4 2348 return 0;
7ae1e1d0
GC
2349}
2350
f3ccb2c4 2351int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2352{
f3ccb2c4
VD
2353 struct mem_cgroup *memcg;
2354 int ret;
7ae1e1d0 2355
f3ccb2c4
VD
2356 memcg = get_mem_cgroup_from_mm(current->mm);
2357 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2358 css_put(&memcg->css);
d05e83a6 2359 return ret;
7ae1e1d0
GC
2360}
2361
d05e83a6 2362void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2363{
1306a85a 2364 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2365 unsigned int nr_pages = 1 << order;
7ae1e1d0 2366
7ae1e1d0
GC
2367 if (!memcg)
2368 return;
2369
309381fe 2370 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2371
52c29b04
JW
2372 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2373 page_counter_uncharge(&memcg->kmem, nr_pages);
2374
f3ccb2c4 2375 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2376 if (do_memsw_account())
f3ccb2c4 2377 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2378
1306a85a 2379 page->mem_cgroup = NULL;
f3ccb2c4 2380 css_put_many(&memcg->css, nr_pages);
60d3fd32 2381}
127424c8 2382#endif /* !CONFIG_SLOB */
7ae1e1d0 2383
ca3e0214
KH
2384#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2385
ca3e0214
KH
2386/*
2387 * Because tail pages are not marked as "used", set it. We're under
3ac808fd 2388 * zone->lru_lock and migration entries setup in all page mappings.
ca3e0214 2389 */
e94c8a9c 2390void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2391{
e94c8a9c 2392 int i;
ca3e0214 2393
3d37c4a9
KH
2394 if (mem_cgroup_disabled())
2395 return;
b070e65c 2396
29833315 2397 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2398 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2399
1306a85a 2400 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2401 HPAGE_PMD_NR);
ca3e0214 2402}
12d27107 2403#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2404
c255a458 2405#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2406static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2407 bool charge)
d13d1443 2408{
0a31bc97
JW
2409 int val = (charge) ? 1 : -1;
2410 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2411}
02491447
DN
2412
2413/**
2414 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2415 * @entry: swap entry to be moved
2416 * @from: mem_cgroup which the entry is moved from
2417 * @to: mem_cgroup which the entry is moved to
2418 *
2419 * It succeeds only when the swap_cgroup's record for this entry is the same
2420 * as the mem_cgroup's id of @from.
2421 *
2422 * Returns 0 on success, -EINVAL on failure.
2423 *
3e32cb2e 2424 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2425 * both res and memsw, and called css_get().
2426 */
2427static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2428 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2429{
2430 unsigned short old_id, new_id;
2431
34c00c31
LZ
2432 old_id = mem_cgroup_id(from);
2433 new_id = mem_cgroup_id(to);
02491447
DN
2434
2435 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2436 mem_cgroup_swap_statistics(from, false);
483c30b5 2437 mem_cgroup_swap_statistics(to, true);
02491447
DN
2438 return 0;
2439 }
2440 return -EINVAL;
2441}
2442#else
2443static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2444 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2445{
2446 return -EINVAL;
2447}
8c7c6e34 2448#endif
d13d1443 2449
3e32cb2e 2450static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2451
d38d2a75 2452static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2453 unsigned long limit)
628f4235 2454{
3e32cb2e
JW
2455 unsigned long curusage;
2456 unsigned long oldusage;
2457 bool enlarge = false;
81d39c20 2458 int retry_count;
3e32cb2e 2459 int ret;
81d39c20
KH
2460
2461 /*
2462 * For keeping hierarchical_reclaim simple, how long we should retry
2463 * is depends on callers. We set our retry-count to be function
2464 * of # of children which we should visit in this loop.
2465 */
3e32cb2e
JW
2466 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2467 mem_cgroup_count_children(memcg);
81d39c20 2468
3e32cb2e 2469 oldusage = page_counter_read(&memcg->memory);
628f4235 2470
3e32cb2e 2471 do {
628f4235
KH
2472 if (signal_pending(current)) {
2473 ret = -EINTR;
2474 break;
2475 }
3e32cb2e
JW
2476
2477 mutex_lock(&memcg_limit_mutex);
2478 if (limit > memcg->memsw.limit) {
2479 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2480 ret = -EINVAL;
628f4235
KH
2481 break;
2482 }
3e32cb2e
JW
2483 if (limit > memcg->memory.limit)
2484 enlarge = true;
2485 ret = page_counter_limit(&memcg->memory, limit);
2486 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2487
2488 if (!ret)
2489 break;
2490
b70a2a21
JW
2491 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2492
3e32cb2e 2493 curusage = page_counter_read(&memcg->memory);
81d39c20 2494 /* Usage is reduced ? */
f894ffa8 2495 if (curusage >= oldusage)
81d39c20
KH
2496 retry_count--;
2497 else
2498 oldusage = curusage;
3e32cb2e
JW
2499 } while (retry_count);
2500
3c11ecf4
KH
2501 if (!ret && enlarge)
2502 memcg_oom_recover(memcg);
14797e23 2503
8c7c6e34
KH
2504 return ret;
2505}
2506
338c8431 2507static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2508 unsigned long limit)
8c7c6e34 2509{
3e32cb2e
JW
2510 unsigned long curusage;
2511 unsigned long oldusage;
2512 bool enlarge = false;
81d39c20 2513 int retry_count;
3e32cb2e 2514 int ret;
8c7c6e34 2515
81d39c20 2516 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2517 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2518 mem_cgroup_count_children(memcg);
2519
2520 oldusage = page_counter_read(&memcg->memsw);
2521
2522 do {
8c7c6e34
KH
2523 if (signal_pending(current)) {
2524 ret = -EINTR;
2525 break;
2526 }
3e32cb2e
JW
2527
2528 mutex_lock(&memcg_limit_mutex);
2529 if (limit < memcg->memory.limit) {
2530 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2531 ret = -EINVAL;
8c7c6e34
KH
2532 break;
2533 }
3e32cb2e
JW
2534 if (limit > memcg->memsw.limit)
2535 enlarge = true;
2536 ret = page_counter_limit(&memcg->memsw, limit);
2537 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2538
2539 if (!ret)
2540 break;
2541
b70a2a21
JW
2542 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2543
3e32cb2e 2544 curusage = page_counter_read(&memcg->memsw);
81d39c20 2545 /* Usage is reduced ? */
8c7c6e34 2546 if (curusage >= oldusage)
628f4235 2547 retry_count--;
81d39c20
KH
2548 else
2549 oldusage = curusage;
3e32cb2e
JW
2550 } while (retry_count);
2551
3c11ecf4
KH
2552 if (!ret && enlarge)
2553 memcg_oom_recover(memcg);
3e32cb2e 2554
628f4235
KH
2555 return ret;
2556}
2557
0608f43d
AM
2558unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2559 gfp_t gfp_mask,
2560 unsigned long *total_scanned)
2561{
2562 unsigned long nr_reclaimed = 0;
2563 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2564 unsigned long reclaimed;
2565 int loop = 0;
2566 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2567 unsigned long excess;
0608f43d
AM
2568 unsigned long nr_scanned;
2569
2570 if (order > 0)
2571 return 0;
2572
2573 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2574 /*
2575 * This loop can run a while, specially if mem_cgroup's continuously
2576 * keep exceeding their soft limit and putting the system under
2577 * pressure
2578 */
2579 do {
2580 if (next_mz)
2581 mz = next_mz;
2582 else
2583 mz = mem_cgroup_largest_soft_limit_node(mctz);
2584 if (!mz)
2585 break;
2586
2587 nr_scanned = 0;
2588 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2589 gfp_mask, &nr_scanned);
2590 nr_reclaimed += reclaimed;
2591 *total_scanned += nr_scanned;
0a31bc97 2592 spin_lock_irq(&mctz->lock);
bc2f2e7f 2593 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2594
2595 /*
2596 * If we failed to reclaim anything from this memory cgroup
2597 * it is time to move on to the next cgroup
2598 */
2599 next_mz = NULL;
bc2f2e7f
VD
2600 if (!reclaimed)
2601 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2602
3e32cb2e 2603 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2604 /*
2605 * One school of thought says that we should not add
2606 * back the node to the tree if reclaim returns 0.
2607 * But our reclaim could return 0, simply because due
2608 * to priority we are exposing a smaller subset of
2609 * memory to reclaim from. Consider this as a longer
2610 * term TODO.
2611 */
2612 /* If excess == 0, no tree ops */
cf2c8127 2613 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2614 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2615 css_put(&mz->memcg->css);
2616 loop++;
2617 /*
2618 * Could not reclaim anything and there are no more
2619 * mem cgroups to try or we seem to be looping without
2620 * reclaiming anything.
2621 */
2622 if (!nr_reclaimed &&
2623 (next_mz == NULL ||
2624 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2625 break;
2626 } while (!nr_reclaimed);
2627 if (next_mz)
2628 css_put(&next_mz->memcg->css);
2629 return nr_reclaimed;
2630}
2631
ea280e7b
TH
2632/*
2633 * Test whether @memcg has children, dead or alive. Note that this
2634 * function doesn't care whether @memcg has use_hierarchy enabled and
2635 * returns %true if there are child csses according to the cgroup
2636 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2637 */
b5f99b53
GC
2638static inline bool memcg_has_children(struct mem_cgroup *memcg)
2639{
ea280e7b
TH
2640 bool ret;
2641
ea280e7b
TH
2642 rcu_read_lock();
2643 ret = css_next_child(NULL, &memcg->css);
2644 rcu_read_unlock();
2645 return ret;
b5f99b53
GC
2646}
2647
c26251f9
MH
2648/*
2649 * Reclaims as many pages from the given memcg as possible and moves
2650 * the rest to the parent.
2651 *
2652 * Caller is responsible for holding css reference for memcg.
2653 */
2654static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2655{
2656 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2657
c1e862c1
KH
2658 /* we call try-to-free pages for make this cgroup empty */
2659 lru_add_drain_all();
f817ed48 2660 /* try to free all pages in this cgroup */
3e32cb2e 2661 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2662 int progress;
c1e862c1 2663
c26251f9
MH
2664 if (signal_pending(current))
2665 return -EINTR;
2666
b70a2a21
JW
2667 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2668 GFP_KERNEL, true);
c1e862c1 2669 if (!progress) {
f817ed48 2670 nr_retries--;
c1e862c1 2671 /* maybe some writeback is necessary */
8aa7e847 2672 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2673 }
f817ed48
KH
2674
2675 }
ab5196c2
MH
2676
2677 return 0;
cc847582
KH
2678}
2679
6770c64e
TH
2680static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2681 char *buf, size_t nbytes,
2682 loff_t off)
c1e862c1 2683{
6770c64e 2684 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2685
d8423011
MH
2686 if (mem_cgroup_is_root(memcg))
2687 return -EINVAL;
6770c64e 2688 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2689}
2690
182446d0
TH
2691static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2692 struct cftype *cft)
18f59ea7 2693{
182446d0 2694 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2695}
2696
182446d0
TH
2697static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2698 struct cftype *cft, u64 val)
18f59ea7
BS
2699{
2700 int retval = 0;
182446d0 2701 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2702 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2703
567fb435 2704 if (memcg->use_hierarchy == val)
0b8f73e1 2705 return 0;
567fb435 2706
18f59ea7 2707 /*
af901ca1 2708 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2709 * in the child subtrees. If it is unset, then the change can
2710 * occur, provided the current cgroup has no children.
2711 *
2712 * For the root cgroup, parent_mem is NULL, we allow value to be
2713 * set if there are no children.
2714 */
c0ff4b85 2715 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2716 (val == 1 || val == 0)) {
ea280e7b 2717 if (!memcg_has_children(memcg))
c0ff4b85 2718 memcg->use_hierarchy = val;
18f59ea7
BS
2719 else
2720 retval = -EBUSY;
2721 } else
2722 retval = -EINVAL;
567fb435 2723
18f59ea7
BS
2724 return retval;
2725}
2726
3e32cb2e
JW
2727static unsigned long tree_stat(struct mem_cgroup *memcg,
2728 enum mem_cgroup_stat_index idx)
ce00a967
JW
2729{
2730 struct mem_cgroup *iter;
484ebb3b 2731 unsigned long val = 0;
ce00a967 2732
ce00a967
JW
2733 for_each_mem_cgroup_tree(iter, memcg)
2734 val += mem_cgroup_read_stat(iter, idx);
2735
ce00a967
JW
2736 return val;
2737}
2738
587d9f72
JW
2739static unsigned long tree_events(struct mem_cgroup *memcg,
2740 enum mem_cgroup_events_index idx)
2741{
2742 struct mem_cgroup *iter;
2743 unsigned long val = 0;
2744
2745 for_each_mem_cgroup_tree(iter, memcg)
2746 val += mem_cgroup_read_events(iter, idx);
2747
2748 return val;
2749}
2750
6f646156 2751static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2752{
c12176d3 2753 unsigned long val;
ce00a967 2754
3e32cb2e
JW
2755 if (mem_cgroup_is_root(memcg)) {
2756 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2757 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2758 if (swap)
2759 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2760 } else {
ce00a967 2761 if (!swap)
3e32cb2e 2762 val = page_counter_read(&memcg->memory);
ce00a967 2763 else
3e32cb2e 2764 val = page_counter_read(&memcg->memsw);
ce00a967 2765 }
c12176d3 2766 return val;
ce00a967
JW
2767}
2768
3e32cb2e
JW
2769enum {
2770 RES_USAGE,
2771 RES_LIMIT,
2772 RES_MAX_USAGE,
2773 RES_FAILCNT,
2774 RES_SOFT_LIMIT,
2775};
ce00a967 2776
791badbd 2777static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2778 struct cftype *cft)
8cdea7c0 2779{
182446d0 2780 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2781 struct page_counter *counter;
af36f906 2782
3e32cb2e 2783 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2784 case _MEM:
3e32cb2e
JW
2785 counter = &memcg->memory;
2786 break;
8c7c6e34 2787 case _MEMSWAP:
3e32cb2e
JW
2788 counter = &memcg->memsw;
2789 break;
510fc4e1 2790 case _KMEM:
3e32cb2e 2791 counter = &memcg->kmem;
510fc4e1 2792 break;
d55f90bf 2793 case _TCP:
0db15298 2794 counter = &memcg->tcpmem;
d55f90bf 2795 break;
8c7c6e34
KH
2796 default:
2797 BUG();
8c7c6e34 2798 }
3e32cb2e
JW
2799
2800 switch (MEMFILE_ATTR(cft->private)) {
2801 case RES_USAGE:
2802 if (counter == &memcg->memory)
c12176d3 2803 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2804 if (counter == &memcg->memsw)
c12176d3 2805 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2806 return (u64)page_counter_read(counter) * PAGE_SIZE;
2807 case RES_LIMIT:
2808 return (u64)counter->limit * PAGE_SIZE;
2809 case RES_MAX_USAGE:
2810 return (u64)counter->watermark * PAGE_SIZE;
2811 case RES_FAILCNT:
2812 return counter->failcnt;
2813 case RES_SOFT_LIMIT:
2814 return (u64)memcg->soft_limit * PAGE_SIZE;
2815 default:
2816 BUG();
2817 }
8cdea7c0 2818}
510fc4e1 2819
127424c8 2820#ifndef CONFIG_SLOB
567e9ab2 2821static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2822{
d6441637
VD
2823 int memcg_id;
2824
2a4db7eb 2825 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2826 BUG_ON(memcg->kmem_state);
d6441637 2827
f3bb3043 2828 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2829 if (memcg_id < 0)
2830 return memcg_id;
d6441637 2831
ef12947c 2832 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2833 /*
567e9ab2 2834 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2835 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2836 * guarantee no one starts accounting before all call sites are
2837 * patched.
2838 */
900a38f0 2839 memcg->kmemcg_id = memcg_id;
567e9ab2 2840 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2841
2842 return 0;
d6441637
VD
2843}
2844
0b8f73e1
JW
2845static int memcg_propagate_kmem(struct mem_cgroup *parent,
2846 struct mem_cgroup *memcg)
510fc4e1 2847{
55007d84 2848 int ret = 0;
55007d84 2849
8c0145b6 2850 mutex_lock(&memcg_limit_mutex);
55007d84 2851 /*
567e9ab2
JW
2852 * If the parent cgroup is not kmem-online now, it cannot be
2853 * onlined after this point, because it has at least one child
2854 * already.
55007d84 2855 */
04823c83
VD
2856 if (memcg_kmem_online(parent) ||
2857 (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
567e9ab2 2858 ret = memcg_online_kmem(memcg);
8c0145b6 2859 mutex_unlock(&memcg_limit_mutex);
55007d84 2860 return ret;
510fc4e1 2861}
8e0a8912 2862
8e0a8912
JW
2863static void memcg_offline_kmem(struct mem_cgroup *memcg)
2864{
2865 struct cgroup_subsys_state *css;
2866 struct mem_cgroup *parent, *child;
2867 int kmemcg_id;
2868
2869 if (memcg->kmem_state != KMEM_ONLINE)
2870 return;
2871 /*
2872 * Clear the online state before clearing memcg_caches array
2873 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2874 * guarantees that no cache will be created for this cgroup
2875 * after we are done (see memcg_create_kmem_cache()).
2876 */
2877 memcg->kmem_state = KMEM_ALLOCATED;
2878
2879 memcg_deactivate_kmem_caches(memcg);
2880
2881 kmemcg_id = memcg->kmemcg_id;
2882 BUG_ON(kmemcg_id < 0);
2883
2884 parent = parent_mem_cgroup(memcg);
2885 if (!parent)
2886 parent = root_mem_cgroup;
2887
2888 /*
2889 * Change kmemcg_id of this cgroup and all its descendants to the
2890 * parent's id, and then move all entries from this cgroup's list_lrus
2891 * to ones of the parent. After we have finished, all list_lrus
2892 * corresponding to this cgroup are guaranteed to remain empty. The
2893 * ordering is imposed by list_lru_node->lock taken by
2894 * memcg_drain_all_list_lrus().
2895 */
2896 css_for_each_descendant_pre(css, &memcg->css) {
2897 child = mem_cgroup_from_css(css);
2898 BUG_ON(child->kmemcg_id != kmemcg_id);
2899 child->kmemcg_id = parent->kmemcg_id;
2900 if (!memcg->use_hierarchy)
2901 break;
2902 }
2903 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2904
2905 memcg_free_cache_id(kmemcg_id);
2906}
2907
2908static void memcg_free_kmem(struct mem_cgroup *memcg)
2909{
0b8f73e1
JW
2910 /* css_alloc() failed, offlining didn't happen */
2911 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2912 memcg_offline_kmem(memcg);
2913
8e0a8912
JW
2914 if (memcg->kmem_state == KMEM_ALLOCATED) {
2915 memcg_destroy_kmem_caches(memcg);
2916 static_branch_dec(&memcg_kmem_enabled_key);
2917 WARN_ON(page_counter_read(&memcg->kmem));
2918 }
8e0a8912 2919}
d6441637 2920#else
0b8f73e1
JW
2921static int memcg_propagate_kmem(struct mem_cgroup *parent, struct mem_cgroup *memcg)
2922{
2923 return 0;
2924}
2925static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2926{
2927 return 0;
2928}
2929static void memcg_offline_kmem(struct mem_cgroup *memcg)
2930{
2931}
2932static void memcg_free_kmem(struct mem_cgroup *memcg)
2933{
2934}
2935#endif /* !CONFIG_SLOB */
2936
d6441637 2937static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2938 unsigned long limit)
d6441637 2939{
0b8f73e1 2940 int ret = 0;
127424c8
JW
2941
2942 mutex_lock(&memcg_limit_mutex);
2943 /* Top-level cgroup doesn't propagate from root */
2944 if (!memcg_kmem_online(memcg)) {
0b8f73e1
JW
2945 if (cgroup_is_populated(memcg->css.cgroup) ||
2946 (memcg->use_hierarchy && memcg_has_children(memcg)))
2947 ret = -EBUSY;
2948 if (ret)
2949 goto out;
127424c8
JW
2950 ret = memcg_online_kmem(memcg);
2951 if (ret)
2952 goto out;
2953 }
2954 ret = page_counter_limit(&memcg->kmem, limit);
2955out:
2956 mutex_unlock(&memcg_limit_mutex);
2957 return ret;
d6441637 2958}
510fc4e1 2959
d55f90bf
VD
2960static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2961{
2962 int ret;
2963
2964 mutex_lock(&memcg_limit_mutex);
2965
0db15298 2966 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2967 if (ret)
2968 goto out;
2969
0db15298 2970 if (!memcg->tcpmem_active) {
d55f90bf
VD
2971 /*
2972 * The active flag needs to be written after the static_key
2973 * update. This is what guarantees that the socket activation
2974 * function is the last one to run. See sock_update_memcg() for
2975 * details, and note that we don't mark any socket as belonging
2976 * to this memcg until that flag is up.
2977 *
2978 * We need to do this, because static_keys will span multiple
2979 * sites, but we can't control their order. If we mark a socket
2980 * as accounted, but the accounting functions are not patched in
2981 * yet, we'll lose accounting.
2982 *
2983 * We never race with the readers in sock_update_memcg(),
2984 * because when this value change, the code to process it is not
2985 * patched in yet.
2986 */
2987 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2988 memcg->tcpmem_active = true;
d55f90bf
VD
2989 }
2990out:
2991 mutex_unlock(&memcg_limit_mutex);
2992 return ret;
2993}
d55f90bf 2994
628f4235
KH
2995/*
2996 * The user of this function is...
2997 * RES_LIMIT.
2998 */
451af504
TH
2999static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3000 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3001{
451af504 3002 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3003 unsigned long nr_pages;
628f4235
KH
3004 int ret;
3005
451af504 3006 buf = strstrip(buf);
650c5e56 3007 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3008 if (ret)
3009 return ret;
af36f906 3010
3e32cb2e 3011 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3012 case RES_LIMIT:
4b3bde4c
BS
3013 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3014 ret = -EINVAL;
3015 break;
3016 }
3e32cb2e
JW
3017 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3018 case _MEM:
3019 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3020 break;
3e32cb2e
JW
3021 case _MEMSWAP:
3022 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3023 break;
3e32cb2e
JW
3024 case _KMEM:
3025 ret = memcg_update_kmem_limit(memcg, nr_pages);
3026 break;
d55f90bf
VD
3027 case _TCP:
3028 ret = memcg_update_tcp_limit(memcg, nr_pages);
3029 break;
3e32cb2e 3030 }
296c81d8 3031 break;
3e32cb2e
JW
3032 case RES_SOFT_LIMIT:
3033 memcg->soft_limit = nr_pages;
3034 ret = 0;
628f4235
KH
3035 break;
3036 }
451af504 3037 return ret ?: nbytes;
8cdea7c0
BS
3038}
3039
6770c64e
TH
3040static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3041 size_t nbytes, loff_t off)
c84872e1 3042{
6770c64e 3043 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3044 struct page_counter *counter;
c84872e1 3045
3e32cb2e
JW
3046 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3047 case _MEM:
3048 counter = &memcg->memory;
3049 break;
3050 case _MEMSWAP:
3051 counter = &memcg->memsw;
3052 break;
3053 case _KMEM:
3054 counter = &memcg->kmem;
3055 break;
d55f90bf 3056 case _TCP:
0db15298 3057 counter = &memcg->tcpmem;
d55f90bf 3058 break;
3e32cb2e
JW
3059 default:
3060 BUG();
3061 }
af36f906 3062
3e32cb2e 3063 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3064 case RES_MAX_USAGE:
3e32cb2e 3065 page_counter_reset_watermark(counter);
29f2a4da
PE
3066 break;
3067 case RES_FAILCNT:
3e32cb2e 3068 counter->failcnt = 0;
29f2a4da 3069 break;
3e32cb2e
JW
3070 default:
3071 BUG();
29f2a4da 3072 }
f64c3f54 3073
6770c64e 3074 return nbytes;
c84872e1
PE
3075}
3076
182446d0 3077static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3078 struct cftype *cft)
3079{
182446d0 3080 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3081}
3082
02491447 3083#ifdef CONFIG_MMU
182446d0 3084static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3085 struct cftype *cft, u64 val)
3086{
182446d0 3087 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3088
1dfab5ab 3089 if (val & ~MOVE_MASK)
7dc74be0 3090 return -EINVAL;
ee5e8472 3091
7dc74be0 3092 /*
ee5e8472
GC
3093 * No kind of locking is needed in here, because ->can_attach() will
3094 * check this value once in the beginning of the process, and then carry
3095 * on with stale data. This means that changes to this value will only
3096 * affect task migrations starting after the change.
7dc74be0 3097 */
c0ff4b85 3098 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3099 return 0;
3100}
02491447 3101#else
182446d0 3102static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3103 struct cftype *cft, u64 val)
3104{
3105 return -ENOSYS;
3106}
3107#endif
7dc74be0 3108
406eb0c9 3109#ifdef CONFIG_NUMA
2da8ca82 3110static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3111{
25485de6
GT
3112 struct numa_stat {
3113 const char *name;
3114 unsigned int lru_mask;
3115 };
3116
3117 static const struct numa_stat stats[] = {
3118 { "total", LRU_ALL },
3119 { "file", LRU_ALL_FILE },
3120 { "anon", LRU_ALL_ANON },
3121 { "unevictable", BIT(LRU_UNEVICTABLE) },
3122 };
3123 const struct numa_stat *stat;
406eb0c9 3124 int nid;
25485de6 3125 unsigned long nr;
2da8ca82 3126 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3127
25485de6
GT
3128 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3129 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3130 seq_printf(m, "%s=%lu", stat->name, nr);
3131 for_each_node_state(nid, N_MEMORY) {
3132 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3133 stat->lru_mask);
3134 seq_printf(m, " N%d=%lu", nid, nr);
3135 }
3136 seq_putc(m, '\n');
406eb0c9 3137 }
406eb0c9 3138
071aee13
YH
3139 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3140 struct mem_cgroup *iter;
3141
3142 nr = 0;
3143 for_each_mem_cgroup_tree(iter, memcg)
3144 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3145 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3146 for_each_node_state(nid, N_MEMORY) {
3147 nr = 0;
3148 for_each_mem_cgroup_tree(iter, memcg)
3149 nr += mem_cgroup_node_nr_lru_pages(
3150 iter, nid, stat->lru_mask);
3151 seq_printf(m, " N%d=%lu", nid, nr);
3152 }
3153 seq_putc(m, '\n');
406eb0c9 3154 }
406eb0c9 3155
406eb0c9
YH
3156 return 0;
3157}
3158#endif /* CONFIG_NUMA */
3159
2da8ca82 3160static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3161{
2da8ca82 3162 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3163 unsigned long memory, memsw;
af7c4b0e
JW
3164 struct mem_cgroup *mi;
3165 unsigned int i;
406eb0c9 3166
0ca44b14
GT
3167 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3168 MEM_CGROUP_STAT_NSTATS);
3169 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3170 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3171 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3172
af7c4b0e 3173 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3174 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3175 continue;
484ebb3b 3176 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3177 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3178 }
7b854121 3179
af7c4b0e
JW
3180 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3181 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3182 mem_cgroup_read_events(memcg, i));
3183
3184 for (i = 0; i < NR_LRU_LISTS; i++)
3185 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3186 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3187
14067bb3 3188 /* Hierarchical information */
3e32cb2e
JW
3189 memory = memsw = PAGE_COUNTER_MAX;
3190 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3191 memory = min(memory, mi->memory.limit);
3192 memsw = min(memsw, mi->memsw.limit);
fee7b548 3193 }
3e32cb2e
JW
3194 seq_printf(m, "hierarchical_memory_limit %llu\n",
3195 (u64)memory * PAGE_SIZE);
7941d214 3196 if (do_memsw_account())
3e32cb2e
JW
3197 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3198 (u64)memsw * PAGE_SIZE);
7f016ee8 3199
af7c4b0e 3200 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3201 unsigned long long val = 0;
af7c4b0e 3202
7941d214 3203 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3204 continue;
af7c4b0e
JW
3205 for_each_mem_cgroup_tree(mi, memcg)
3206 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3207 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3208 }
3209
3210 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3211 unsigned long long val = 0;
3212
3213 for_each_mem_cgroup_tree(mi, memcg)
3214 val += mem_cgroup_read_events(mi, i);
3215 seq_printf(m, "total_%s %llu\n",
3216 mem_cgroup_events_names[i], val);
3217 }
3218
3219 for (i = 0; i < NR_LRU_LISTS; i++) {
3220 unsigned long long val = 0;
3221
3222 for_each_mem_cgroup_tree(mi, memcg)
3223 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3224 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3225 }
14067bb3 3226
7f016ee8 3227#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3228 {
3229 int nid, zid;
3230 struct mem_cgroup_per_zone *mz;
89abfab1 3231 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3232 unsigned long recent_rotated[2] = {0, 0};
3233 unsigned long recent_scanned[2] = {0, 0};
3234
3235 for_each_online_node(nid)
3236 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3237 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3238 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3239
89abfab1
HD
3240 recent_rotated[0] += rstat->recent_rotated[0];
3241 recent_rotated[1] += rstat->recent_rotated[1];
3242 recent_scanned[0] += rstat->recent_scanned[0];
3243 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3244 }
78ccf5b5
JW
3245 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3246 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3247 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3248 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3249 }
3250#endif
3251
d2ceb9b7
KH
3252 return 0;
3253}
3254
182446d0
TH
3255static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3256 struct cftype *cft)
a7885eb8 3257{
182446d0 3258 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3259
1f4c025b 3260 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3261}
3262
182446d0
TH
3263static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3264 struct cftype *cft, u64 val)
a7885eb8 3265{
182446d0 3266 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3267
3dae7fec 3268 if (val > 100)
a7885eb8
KM
3269 return -EINVAL;
3270
14208b0e 3271 if (css->parent)
3dae7fec
JW
3272 memcg->swappiness = val;
3273 else
3274 vm_swappiness = val;
068b38c1 3275
a7885eb8
KM
3276 return 0;
3277}
3278
2e72b634
KS
3279static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3280{
3281 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3282 unsigned long usage;
2e72b634
KS
3283 int i;
3284
3285 rcu_read_lock();
3286 if (!swap)
2c488db2 3287 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3288 else
2c488db2 3289 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3290
3291 if (!t)
3292 goto unlock;
3293
ce00a967 3294 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3295
3296 /*
748dad36 3297 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3298 * If it's not true, a threshold was crossed after last
3299 * call of __mem_cgroup_threshold().
3300 */
5407a562 3301 i = t->current_threshold;
2e72b634
KS
3302
3303 /*
3304 * Iterate backward over array of thresholds starting from
3305 * current_threshold and check if a threshold is crossed.
3306 * If none of thresholds below usage is crossed, we read
3307 * only one element of the array here.
3308 */
3309 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3310 eventfd_signal(t->entries[i].eventfd, 1);
3311
3312 /* i = current_threshold + 1 */
3313 i++;
3314
3315 /*
3316 * Iterate forward over array of thresholds starting from
3317 * current_threshold+1 and check if a threshold is crossed.
3318 * If none of thresholds above usage is crossed, we read
3319 * only one element of the array here.
3320 */
3321 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3322 eventfd_signal(t->entries[i].eventfd, 1);
3323
3324 /* Update current_threshold */
5407a562 3325 t->current_threshold = i - 1;
2e72b634
KS
3326unlock:
3327 rcu_read_unlock();
3328}
3329
3330static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3331{
ad4ca5f4
KS
3332 while (memcg) {
3333 __mem_cgroup_threshold(memcg, false);
7941d214 3334 if (do_memsw_account())
ad4ca5f4
KS
3335 __mem_cgroup_threshold(memcg, true);
3336
3337 memcg = parent_mem_cgroup(memcg);
3338 }
2e72b634
KS
3339}
3340
3341static int compare_thresholds(const void *a, const void *b)
3342{
3343 const struct mem_cgroup_threshold *_a = a;
3344 const struct mem_cgroup_threshold *_b = b;
3345
2bff24a3
GT
3346 if (_a->threshold > _b->threshold)
3347 return 1;
3348
3349 if (_a->threshold < _b->threshold)
3350 return -1;
3351
3352 return 0;
2e72b634
KS
3353}
3354
c0ff4b85 3355static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3356{
3357 struct mem_cgroup_eventfd_list *ev;
3358
2bcf2e92
MH
3359 spin_lock(&memcg_oom_lock);
3360
c0ff4b85 3361 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3362 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3363
3364 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3365 return 0;
3366}
3367
c0ff4b85 3368static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3369{
7d74b06f
KH
3370 struct mem_cgroup *iter;
3371
c0ff4b85 3372 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3373 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3374}
3375
59b6f873 3376static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3377 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3378{
2c488db2
KS
3379 struct mem_cgroup_thresholds *thresholds;
3380 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3381 unsigned long threshold;
3382 unsigned long usage;
2c488db2 3383 int i, size, ret;
2e72b634 3384
650c5e56 3385 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3386 if (ret)
3387 return ret;
3388
3389 mutex_lock(&memcg->thresholds_lock);
2c488db2 3390
05b84301 3391 if (type == _MEM) {
2c488db2 3392 thresholds = &memcg->thresholds;
ce00a967 3393 usage = mem_cgroup_usage(memcg, false);
05b84301 3394 } else if (type == _MEMSWAP) {
2c488db2 3395 thresholds = &memcg->memsw_thresholds;
ce00a967 3396 usage = mem_cgroup_usage(memcg, true);
05b84301 3397 } else
2e72b634
KS
3398 BUG();
3399
2e72b634 3400 /* Check if a threshold crossed before adding a new one */
2c488db2 3401 if (thresholds->primary)
2e72b634
KS
3402 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3403
2c488db2 3404 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3405
3406 /* Allocate memory for new array of thresholds */
2c488db2 3407 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3408 GFP_KERNEL);
2c488db2 3409 if (!new) {
2e72b634
KS
3410 ret = -ENOMEM;
3411 goto unlock;
3412 }
2c488db2 3413 new->size = size;
2e72b634
KS
3414
3415 /* Copy thresholds (if any) to new array */
2c488db2
KS
3416 if (thresholds->primary) {
3417 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3418 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3419 }
3420
2e72b634 3421 /* Add new threshold */
2c488db2
KS
3422 new->entries[size - 1].eventfd = eventfd;
3423 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3424
3425 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3426 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3427 compare_thresholds, NULL);
3428
3429 /* Find current threshold */
2c488db2 3430 new->current_threshold = -1;
2e72b634 3431 for (i = 0; i < size; i++) {
748dad36 3432 if (new->entries[i].threshold <= usage) {
2e72b634 3433 /*
2c488db2
KS
3434 * new->current_threshold will not be used until
3435 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3436 * it here.
3437 */
2c488db2 3438 ++new->current_threshold;
748dad36
SZ
3439 } else
3440 break;
2e72b634
KS
3441 }
3442
2c488db2
KS
3443 /* Free old spare buffer and save old primary buffer as spare */
3444 kfree(thresholds->spare);
3445 thresholds->spare = thresholds->primary;
3446
3447 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3448
907860ed 3449 /* To be sure that nobody uses thresholds */
2e72b634
KS
3450 synchronize_rcu();
3451
2e72b634
KS
3452unlock:
3453 mutex_unlock(&memcg->thresholds_lock);
3454
3455 return ret;
3456}
3457
59b6f873 3458static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3459 struct eventfd_ctx *eventfd, const char *args)
3460{
59b6f873 3461 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3462}
3463
59b6f873 3464static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3465 struct eventfd_ctx *eventfd, const char *args)
3466{
59b6f873 3467 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3468}
3469
59b6f873 3470static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3471 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3472{
2c488db2
KS
3473 struct mem_cgroup_thresholds *thresholds;
3474 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3475 unsigned long usage;
2c488db2 3476 int i, j, size;
2e72b634
KS
3477
3478 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3479
3480 if (type == _MEM) {
2c488db2 3481 thresholds = &memcg->thresholds;
ce00a967 3482 usage = mem_cgroup_usage(memcg, false);
05b84301 3483 } else if (type == _MEMSWAP) {
2c488db2 3484 thresholds = &memcg->memsw_thresholds;
ce00a967 3485 usage = mem_cgroup_usage(memcg, true);
05b84301 3486 } else
2e72b634
KS
3487 BUG();
3488
371528ca
AV
3489 if (!thresholds->primary)
3490 goto unlock;
3491
2e72b634
KS
3492 /* Check if a threshold crossed before removing */
3493 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3494
3495 /* Calculate new number of threshold */
2c488db2
KS
3496 size = 0;
3497 for (i = 0; i < thresholds->primary->size; i++) {
3498 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3499 size++;
3500 }
3501
2c488db2 3502 new = thresholds->spare;
907860ed 3503
2e72b634
KS
3504 /* Set thresholds array to NULL if we don't have thresholds */
3505 if (!size) {
2c488db2
KS
3506 kfree(new);
3507 new = NULL;
907860ed 3508 goto swap_buffers;
2e72b634
KS
3509 }
3510
2c488db2 3511 new->size = size;
2e72b634
KS
3512
3513 /* Copy thresholds and find current threshold */
2c488db2
KS
3514 new->current_threshold = -1;
3515 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3516 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3517 continue;
3518
2c488db2 3519 new->entries[j] = thresholds->primary->entries[i];
748dad36 3520 if (new->entries[j].threshold <= usage) {
2e72b634 3521 /*
2c488db2 3522 * new->current_threshold will not be used
2e72b634
KS
3523 * until rcu_assign_pointer(), so it's safe to increment
3524 * it here.
3525 */
2c488db2 3526 ++new->current_threshold;
2e72b634
KS
3527 }
3528 j++;
3529 }
3530
907860ed 3531swap_buffers:
2c488db2
KS
3532 /* Swap primary and spare array */
3533 thresholds->spare = thresholds->primary;
8c757763 3534
2c488db2 3535 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3536
907860ed 3537 /* To be sure that nobody uses thresholds */
2e72b634 3538 synchronize_rcu();
6611d8d7
MC
3539
3540 /* If all events are unregistered, free the spare array */
3541 if (!new) {
3542 kfree(thresholds->spare);
3543 thresholds->spare = NULL;
3544 }
371528ca 3545unlock:
2e72b634 3546 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3547}
c1e862c1 3548
59b6f873 3549static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3550 struct eventfd_ctx *eventfd)
3551{
59b6f873 3552 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3553}
3554
59b6f873 3555static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3556 struct eventfd_ctx *eventfd)
3557{
59b6f873 3558 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3559}
3560
59b6f873 3561static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3562 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3563{
9490ff27 3564 struct mem_cgroup_eventfd_list *event;
9490ff27 3565
9490ff27
KH
3566 event = kmalloc(sizeof(*event), GFP_KERNEL);
3567 if (!event)
3568 return -ENOMEM;
3569
1af8efe9 3570 spin_lock(&memcg_oom_lock);
9490ff27
KH
3571
3572 event->eventfd = eventfd;
3573 list_add(&event->list, &memcg->oom_notify);
3574
3575 /* already in OOM ? */
c2b42d3c 3576 if (memcg->under_oom)
9490ff27 3577 eventfd_signal(eventfd, 1);
1af8efe9 3578 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3579
3580 return 0;
3581}
3582
59b6f873 3583static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3584 struct eventfd_ctx *eventfd)
9490ff27 3585{
9490ff27 3586 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3587
1af8efe9 3588 spin_lock(&memcg_oom_lock);
9490ff27 3589
c0ff4b85 3590 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3591 if (ev->eventfd == eventfd) {
3592 list_del(&ev->list);
3593 kfree(ev);
3594 }
3595 }
3596
1af8efe9 3597 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3598}
3599
2da8ca82 3600static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3601{
2da8ca82 3602 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3603
791badbd 3604 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3605 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3606 return 0;
3607}
3608
182446d0 3609static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3610 struct cftype *cft, u64 val)
3611{
182446d0 3612 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3613
3614 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3615 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3616 return -EINVAL;
3617
c0ff4b85 3618 memcg->oom_kill_disable = val;
4d845ebf 3619 if (!val)
c0ff4b85 3620 memcg_oom_recover(memcg);
3dae7fec 3621
3c11ecf4
KH
3622 return 0;
3623}
3624
52ebea74
TH
3625#ifdef CONFIG_CGROUP_WRITEBACK
3626
3627struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3628{
3629 return &memcg->cgwb_list;
3630}
3631
841710aa
TH
3632static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3633{
3634 return wb_domain_init(&memcg->cgwb_domain, gfp);
3635}
3636
3637static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3638{
3639 wb_domain_exit(&memcg->cgwb_domain);
3640}
3641
2529bb3a
TH
3642static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3643{
3644 wb_domain_size_changed(&memcg->cgwb_domain);
3645}
3646
841710aa
TH
3647struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3648{
3649 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3650
3651 if (!memcg->css.parent)
3652 return NULL;
3653
3654 return &memcg->cgwb_domain;
3655}
3656
c2aa723a
TH
3657/**
3658 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3659 * @wb: bdi_writeback in question
c5edf9cd
TH
3660 * @pfilepages: out parameter for number of file pages
3661 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3662 * @pdirty: out parameter for number of dirty pages
3663 * @pwriteback: out parameter for number of pages under writeback
3664 *
c5edf9cd
TH
3665 * Determine the numbers of file, headroom, dirty, and writeback pages in
3666 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3667 * is a bit more involved.
c2aa723a 3668 *
c5edf9cd
TH
3669 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3670 * headroom is calculated as the lowest headroom of itself and the
3671 * ancestors. Note that this doesn't consider the actual amount of
3672 * available memory in the system. The caller should further cap
3673 * *@pheadroom accordingly.
c2aa723a 3674 */
c5edf9cd
TH
3675void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3676 unsigned long *pheadroom, unsigned long *pdirty,
3677 unsigned long *pwriteback)
c2aa723a
TH
3678{
3679 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3680 struct mem_cgroup *parent;
c2aa723a
TH
3681
3682 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3683
3684 /* this should eventually include NR_UNSTABLE_NFS */
3685 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3686 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3687 (1 << LRU_ACTIVE_FILE));
3688 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3689
c2aa723a
TH
3690 while ((parent = parent_mem_cgroup(memcg))) {
3691 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3692 unsigned long used = page_counter_read(&memcg->memory);
3693
c5edf9cd 3694 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3695 memcg = parent;
3696 }
c2aa723a
TH
3697}
3698
841710aa
TH
3699#else /* CONFIG_CGROUP_WRITEBACK */
3700
3701static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3702{
3703 return 0;
3704}
3705
3706static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3707{
3708}
3709
2529bb3a
TH
3710static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3711{
3712}
3713
52ebea74
TH
3714#endif /* CONFIG_CGROUP_WRITEBACK */
3715
3bc942f3
TH
3716/*
3717 * DO NOT USE IN NEW FILES.
3718 *
3719 * "cgroup.event_control" implementation.
3720 *
3721 * This is way over-engineered. It tries to support fully configurable
3722 * events for each user. Such level of flexibility is completely
3723 * unnecessary especially in the light of the planned unified hierarchy.
3724 *
3725 * Please deprecate this and replace with something simpler if at all
3726 * possible.
3727 */
3728
79bd9814
TH
3729/*
3730 * Unregister event and free resources.
3731 *
3732 * Gets called from workqueue.
3733 */
3bc942f3 3734static void memcg_event_remove(struct work_struct *work)
79bd9814 3735{
3bc942f3
TH
3736 struct mem_cgroup_event *event =
3737 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3738 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3739
3740 remove_wait_queue(event->wqh, &event->wait);
3741
59b6f873 3742 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3743
3744 /* Notify userspace the event is going away. */
3745 eventfd_signal(event->eventfd, 1);
3746
3747 eventfd_ctx_put(event->eventfd);
3748 kfree(event);
59b6f873 3749 css_put(&memcg->css);
79bd9814
TH
3750}
3751
3752/*
3753 * Gets called on POLLHUP on eventfd when user closes it.
3754 *
3755 * Called with wqh->lock held and interrupts disabled.
3756 */
3bc942f3
TH
3757static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3758 int sync, void *key)
79bd9814 3759{
3bc942f3
TH
3760 struct mem_cgroup_event *event =
3761 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3762 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3763 unsigned long flags = (unsigned long)key;
3764
3765 if (flags & POLLHUP) {
3766 /*
3767 * If the event has been detached at cgroup removal, we
3768 * can simply return knowing the other side will cleanup
3769 * for us.
3770 *
3771 * We can't race against event freeing since the other
3772 * side will require wqh->lock via remove_wait_queue(),
3773 * which we hold.
3774 */
fba94807 3775 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3776 if (!list_empty(&event->list)) {
3777 list_del_init(&event->list);
3778 /*
3779 * We are in atomic context, but cgroup_event_remove()
3780 * may sleep, so we have to call it in workqueue.
3781 */
3782 schedule_work(&event->remove);
3783 }
fba94807 3784 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3785 }
3786
3787 return 0;
3788}
3789
3bc942f3 3790static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3791 wait_queue_head_t *wqh, poll_table *pt)
3792{
3bc942f3
TH
3793 struct mem_cgroup_event *event =
3794 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3795
3796 event->wqh = wqh;
3797 add_wait_queue(wqh, &event->wait);
3798}
3799
3800/*
3bc942f3
TH
3801 * DO NOT USE IN NEW FILES.
3802 *
79bd9814
TH
3803 * Parse input and register new cgroup event handler.
3804 *
3805 * Input must be in format '<event_fd> <control_fd> <args>'.
3806 * Interpretation of args is defined by control file implementation.
3807 */
451af504
TH
3808static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3809 char *buf, size_t nbytes, loff_t off)
79bd9814 3810{
451af504 3811 struct cgroup_subsys_state *css = of_css(of);
fba94807 3812 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3813 struct mem_cgroup_event *event;
79bd9814
TH
3814 struct cgroup_subsys_state *cfile_css;
3815 unsigned int efd, cfd;
3816 struct fd efile;
3817 struct fd cfile;
fba94807 3818 const char *name;
79bd9814
TH
3819 char *endp;
3820 int ret;
3821
451af504
TH
3822 buf = strstrip(buf);
3823
3824 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3825 if (*endp != ' ')
3826 return -EINVAL;
451af504 3827 buf = endp + 1;
79bd9814 3828
451af504 3829 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3830 if ((*endp != ' ') && (*endp != '\0'))
3831 return -EINVAL;
451af504 3832 buf = endp + 1;
79bd9814
TH
3833
3834 event = kzalloc(sizeof(*event), GFP_KERNEL);
3835 if (!event)
3836 return -ENOMEM;
3837
59b6f873 3838 event->memcg = memcg;
79bd9814 3839 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3840 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3841 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3842 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3843
3844 efile = fdget(efd);
3845 if (!efile.file) {
3846 ret = -EBADF;
3847 goto out_kfree;
3848 }
3849
3850 event->eventfd = eventfd_ctx_fileget(efile.file);
3851 if (IS_ERR(event->eventfd)) {
3852 ret = PTR_ERR(event->eventfd);
3853 goto out_put_efile;
3854 }
3855
3856 cfile = fdget(cfd);
3857 if (!cfile.file) {
3858 ret = -EBADF;
3859 goto out_put_eventfd;
3860 }
3861
3862 /* the process need read permission on control file */
3863 /* AV: shouldn't we check that it's been opened for read instead? */
3864 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3865 if (ret < 0)
3866 goto out_put_cfile;
3867
fba94807
TH
3868 /*
3869 * Determine the event callbacks and set them in @event. This used
3870 * to be done via struct cftype but cgroup core no longer knows
3871 * about these events. The following is crude but the whole thing
3872 * is for compatibility anyway.
3bc942f3
TH
3873 *
3874 * DO NOT ADD NEW FILES.
fba94807 3875 */
b583043e 3876 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3877
3878 if (!strcmp(name, "memory.usage_in_bytes")) {
3879 event->register_event = mem_cgroup_usage_register_event;
3880 event->unregister_event = mem_cgroup_usage_unregister_event;
3881 } else if (!strcmp(name, "memory.oom_control")) {
3882 event->register_event = mem_cgroup_oom_register_event;
3883 event->unregister_event = mem_cgroup_oom_unregister_event;
3884 } else if (!strcmp(name, "memory.pressure_level")) {
3885 event->register_event = vmpressure_register_event;
3886 event->unregister_event = vmpressure_unregister_event;
3887 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3888 event->register_event = memsw_cgroup_usage_register_event;
3889 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3890 } else {
3891 ret = -EINVAL;
3892 goto out_put_cfile;
3893 }
3894
79bd9814 3895 /*
b5557c4c
TH
3896 * Verify @cfile should belong to @css. Also, remaining events are
3897 * automatically removed on cgroup destruction but the removal is
3898 * asynchronous, so take an extra ref on @css.
79bd9814 3899 */
b583043e 3900 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3901 &memory_cgrp_subsys);
79bd9814 3902 ret = -EINVAL;
5a17f543 3903 if (IS_ERR(cfile_css))
79bd9814 3904 goto out_put_cfile;
5a17f543
TH
3905 if (cfile_css != css) {
3906 css_put(cfile_css);
79bd9814 3907 goto out_put_cfile;
5a17f543 3908 }
79bd9814 3909
451af504 3910 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3911 if (ret)
3912 goto out_put_css;
3913
3914 efile.file->f_op->poll(efile.file, &event->pt);
3915
fba94807
TH
3916 spin_lock(&memcg->event_list_lock);
3917 list_add(&event->list, &memcg->event_list);
3918 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3919
3920 fdput(cfile);
3921 fdput(efile);
3922
451af504 3923 return nbytes;
79bd9814
TH
3924
3925out_put_css:
b5557c4c 3926 css_put(css);
79bd9814
TH
3927out_put_cfile:
3928 fdput(cfile);
3929out_put_eventfd:
3930 eventfd_ctx_put(event->eventfd);
3931out_put_efile:
3932 fdput(efile);
3933out_kfree:
3934 kfree(event);
3935
3936 return ret;
3937}
3938
241994ed 3939static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3940 {
0eea1030 3941 .name = "usage_in_bytes",
8c7c6e34 3942 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3943 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3944 },
c84872e1
PE
3945 {
3946 .name = "max_usage_in_bytes",
8c7c6e34 3947 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3948 .write = mem_cgroup_reset,
791badbd 3949 .read_u64 = mem_cgroup_read_u64,
c84872e1 3950 },
8cdea7c0 3951 {
0eea1030 3952 .name = "limit_in_bytes",
8c7c6e34 3953 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3954 .write = mem_cgroup_write,
791badbd 3955 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3956 },
296c81d8
BS
3957 {
3958 .name = "soft_limit_in_bytes",
3959 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3960 .write = mem_cgroup_write,
791badbd 3961 .read_u64 = mem_cgroup_read_u64,
296c81d8 3962 },
8cdea7c0
BS
3963 {
3964 .name = "failcnt",
8c7c6e34 3965 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3966 .write = mem_cgroup_reset,
791badbd 3967 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3968 },
d2ceb9b7
KH
3969 {
3970 .name = "stat",
2da8ca82 3971 .seq_show = memcg_stat_show,
d2ceb9b7 3972 },
c1e862c1
KH
3973 {
3974 .name = "force_empty",
6770c64e 3975 .write = mem_cgroup_force_empty_write,
c1e862c1 3976 },
18f59ea7
BS
3977 {
3978 .name = "use_hierarchy",
3979 .write_u64 = mem_cgroup_hierarchy_write,
3980 .read_u64 = mem_cgroup_hierarchy_read,
3981 },
79bd9814 3982 {
3bc942f3 3983 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3984 .write = memcg_write_event_control,
7dbdb199 3985 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3986 },
a7885eb8
KM
3987 {
3988 .name = "swappiness",
3989 .read_u64 = mem_cgroup_swappiness_read,
3990 .write_u64 = mem_cgroup_swappiness_write,
3991 },
7dc74be0
DN
3992 {
3993 .name = "move_charge_at_immigrate",
3994 .read_u64 = mem_cgroup_move_charge_read,
3995 .write_u64 = mem_cgroup_move_charge_write,
3996 },
9490ff27
KH
3997 {
3998 .name = "oom_control",
2da8ca82 3999 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4000 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4001 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4002 },
70ddf637
AV
4003 {
4004 .name = "pressure_level",
70ddf637 4005 },
406eb0c9
YH
4006#ifdef CONFIG_NUMA
4007 {
4008 .name = "numa_stat",
2da8ca82 4009 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4010 },
4011#endif
510fc4e1
GC
4012 {
4013 .name = "kmem.limit_in_bytes",
4014 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4015 .write = mem_cgroup_write,
791badbd 4016 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4017 },
4018 {
4019 .name = "kmem.usage_in_bytes",
4020 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4021 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4022 },
4023 {
4024 .name = "kmem.failcnt",
4025 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4026 .write = mem_cgroup_reset,
791badbd 4027 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4028 },
4029 {
4030 .name = "kmem.max_usage_in_bytes",
4031 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4032 .write = mem_cgroup_reset,
791badbd 4033 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4034 },
749c5415
GC
4035#ifdef CONFIG_SLABINFO
4036 {
4037 .name = "kmem.slabinfo",
b047501c
VD
4038 .seq_start = slab_start,
4039 .seq_next = slab_next,
4040 .seq_stop = slab_stop,
4041 .seq_show = memcg_slab_show,
749c5415
GC
4042 },
4043#endif
d55f90bf
VD
4044 {
4045 .name = "kmem.tcp.limit_in_bytes",
4046 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4047 .write = mem_cgroup_write,
4048 .read_u64 = mem_cgroup_read_u64,
4049 },
4050 {
4051 .name = "kmem.tcp.usage_in_bytes",
4052 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4053 .read_u64 = mem_cgroup_read_u64,
4054 },
4055 {
4056 .name = "kmem.tcp.failcnt",
4057 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4058 .write = mem_cgroup_reset,
4059 .read_u64 = mem_cgroup_read_u64,
4060 },
4061 {
4062 .name = "kmem.tcp.max_usage_in_bytes",
4063 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4064 .write = mem_cgroup_reset,
4065 .read_u64 = mem_cgroup_read_u64,
4066 },
6bc10349 4067 { }, /* terminate */
af36f906 4068};
8c7c6e34 4069
c0ff4b85 4070static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4071{
4072 struct mem_cgroup_per_node *pn;
1ecaab2b 4073 struct mem_cgroup_per_zone *mz;
41e3355d 4074 int zone, tmp = node;
1ecaab2b
KH
4075 /*
4076 * This routine is called against possible nodes.
4077 * But it's BUG to call kmalloc() against offline node.
4078 *
4079 * TODO: this routine can waste much memory for nodes which will
4080 * never be onlined. It's better to use memory hotplug callback
4081 * function.
4082 */
41e3355d
KH
4083 if (!node_state(node, N_NORMAL_MEMORY))
4084 tmp = -1;
17295c88 4085 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4086 if (!pn)
4087 return 1;
1ecaab2b 4088
1ecaab2b
KH
4089 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4090 mz = &pn->zoneinfo[zone];
bea8c150 4091 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4092 mz->usage_in_excess = 0;
4093 mz->on_tree = false;
d79154bb 4094 mz->memcg = memcg;
1ecaab2b 4095 }
54f72fe0 4096 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4097 return 0;
4098}
4099
c0ff4b85 4100static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4101{
54f72fe0 4102 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4103}
4104
0b8f73e1 4105static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4106{
c8b2a36f 4107 int node;
59927fb9 4108
0b8f73e1 4109 memcg_wb_domain_exit(memcg);
c8b2a36f
GC
4110 for_each_node(node)
4111 free_mem_cgroup_per_zone_info(memcg, node);
c8b2a36f 4112 free_percpu(memcg->stat);
8ff69e2c 4113 kfree(memcg);
59927fb9 4114}
3afe36b1 4115
0b8f73e1 4116static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4117{
d142e3e6 4118 struct mem_cgroup *memcg;
0b8f73e1 4119 size_t size;
6d12e2d8 4120 int node;
8cdea7c0 4121
0b8f73e1
JW
4122 size = sizeof(struct mem_cgroup);
4123 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4124
4125 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4126 if (!memcg)
0b8f73e1
JW
4127 return NULL;
4128
4129 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4130 if (!memcg->stat)
4131 goto fail;
78fb7466 4132
3ed28fa1 4133 for_each_node(node)
c0ff4b85 4134 if (alloc_mem_cgroup_per_zone_info(memcg, node))
0b8f73e1 4135 goto fail;
f64c3f54 4136
0b8f73e1
JW
4137 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4138 goto fail;
28dbc4b6 4139
f7e1cb6e 4140 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4141 memcg->last_scanned_node = MAX_NUMNODES;
4142 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4143 mutex_init(&memcg->thresholds_lock);
4144 spin_lock_init(&memcg->move_lock);
70ddf637 4145 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4146 INIT_LIST_HEAD(&memcg->event_list);
4147 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4148 memcg->socket_pressure = jiffies;
127424c8 4149#ifndef CONFIG_SLOB
900a38f0 4150 memcg->kmemcg_id = -1;
900a38f0 4151#endif
52ebea74
TH
4152#ifdef CONFIG_CGROUP_WRITEBACK
4153 INIT_LIST_HEAD(&memcg->cgwb_list);
4154#endif
0b8f73e1
JW
4155 return memcg;
4156fail:
4157 mem_cgroup_free(memcg);
4158 return NULL;
d142e3e6
GC
4159}
4160
0b8f73e1
JW
4161static struct cgroup_subsys_state * __ref
4162mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4163{
0b8f73e1
JW
4164 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4165 struct mem_cgroup *memcg;
4166 long error = -ENOMEM;
d142e3e6 4167
0b8f73e1
JW
4168 memcg = mem_cgroup_alloc();
4169 if (!memcg)
4170 return ERR_PTR(error);
d142e3e6 4171
0b8f73e1
JW
4172 memcg->high = PAGE_COUNTER_MAX;
4173 memcg->soft_limit = PAGE_COUNTER_MAX;
4174 if (parent) {
4175 memcg->swappiness = mem_cgroup_swappiness(parent);
4176 memcg->oom_kill_disable = parent->oom_kill_disable;
4177 }
4178 if (parent && parent->use_hierarchy) {
4179 memcg->use_hierarchy = true;
3e32cb2e 4180 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4181 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4182 page_counter_init(&memcg->memsw, &parent->memsw);
4183 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4184 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4185 } else {
3e32cb2e 4186 page_counter_init(&memcg->memory, NULL);
37e84351 4187 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4188 page_counter_init(&memcg->memsw, NULL);
4189 page_counter_init(&memcg->kmem, NULL);
0db15298 4190 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4191 /*
4192 * Deeper hierachy with use_hierarchy == false doesn't make
4193 * much sense so let cgroup subsystem know about this
4194 * unfortunate state in our controller.
4195 */
d142e3e6 4196 if (parent != root_mem_cgroup)
073219e9 4197 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4198 }
d6441637 4199
0b8f73e1
JW
4200 /* The following stuff does not apply to the root */
4201 if (!parent) {
4202 root_mem_cgroup = memcg;
4203 return &memcg->css;
4204 }
4205
4206 error = memcg_propagate_kmem(parent, memcg);
4207 if (error)
4208 goto fail;
127424c8 4209
f7e1cb6e 4210 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4211 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4212
0b8f73e1
JW
4213 return &memcg->css;
4214fail:
4215 mem_cgroup_free(memcg);
4216 return NULL;
4217}
4218
4219static int
4220mem_cgroup_css_online(struct cgroup_subsys_state *css)
4221{
4222 if (css->id > MEM_CGROUP_ID_MAX)
4223 return -ENOSPC;
2f7dd7a4
JW
4224
4225 return 0;
8cdea7c0
BS
4226}
4227
eb95419b 4228static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4229{
eb95419b 4230 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4231 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4232
4233 /*
4234 * Unregister events and notify userspace.
4235 * Notify userspace about cgroup removing only after rmdir of cgroup
4236 * directory to avoid race between userspace and kernelspace.
4237 */
fba94807
TH
4238 spin_lock(&memcg->event_list_lock);
4239 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4240 list_del_init(&event->list);
4241 schedule_work(&event->remove);
4242 }
fba94807 4243 spin_unlock(&memcg->event_list_lock);
ec64f515 4244
567e9ab2 4245 memcg_offline_kmem(memcg);
52ebea74 4246 wb_memcg_offline(memcg);
df878fb0
KH
4247}
4248
6df38689
VD
4249static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4250{
4251 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4252
4253 invalidate_reclaim_iterators(memcg);
4254}
4255
eb95419b 4256static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4257{
eb95419b 4258 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4259
f7e1cb6e 4260 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4261 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4262
0db15298 4263 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4264 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4265
0b8f73e1
JW
4266 vmpressure_cleanup(&memcg->vmpressure);
4267 cancel_work_sync(&memcg->high_work);
4268 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4269 memcg_free_kmem(memcg);
0b8f73e1 4270 mem_cgroup_free(memcg);
8cdea7c0
BS
4271}
4272
1ced953b
TH
4273/**
4274 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4275 * @css: the target css
4276 *
4277 * Reset the states of the mem_cgroup associated with @css. This is
4278 * invoked when the userland requests disabling on the default hierarchy
4279 * but the memcg is pinned through dependency. The memcg should stop
4280 * applying policies and should revert to the vanilla state as it may be
4281 * made visible again.
4282 *
4283 * The current implementation only resets the essential configurations.
4284 * This needs to be expanded to cover all the visible parts.
4285 */
4286static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4287{
4288 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4289
3e32cb2e
JW
4290 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4291 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4292 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4293 memcg->low = 0;
4294 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4295 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4296 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4297}
4298
02491447 4299#ifdef CONFIG_MMU
7dc74be0 4300/* Handlers for move charge at task migration. */
854ffa8d 4301static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4302{
05b84301 4303 int ret;
9476db97 4304
d0164adc
MG
4305 /* Try a single bulk charge without reclaim first, kswapd may wake */
4306 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4307 if (!ret) {
854ffa8d 4308 mc.precharge += count;
854ffa8d
DN
4309 return ret;
4310 }
9476db97
JW
4311
4312 /* Try charges one by one with reclaim */
854ffa8d 4313 while (count--) {
00501b53 4314 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4315 if (ret)
38c5d72f 4316 return ret;
854ffa8d 4317 mc.precharge++;
9476db97 4318 cond_resched();
854ffa8d 4319 }
9476db97 4320 return 0;
4ffef5fe
DN
4321}
4322
4323/**
8d32ff84 4324 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4325 * @vma: the vma the pte to be checked belongs
4326 * @addr: the address corresponding to the pte to be checked
4327 * @ptent: the pte to be checked
02491447 4328 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4329 *
4330 * Returns
4331 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4332 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4333 * move charge. if @target is not NULL, the page is stored in target->page
4334 * with extra refcnt got(Callers should handle it).
02491447
DN
4335 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4336 * target for charge migration. if @target is not NULL, the entry is stored
4337 * in target->ent.
4ffef5fe
DN
4338 *
4339 * Called with pte lock held.
4340 */
4ffef5fe
DN
4341union mc_target {
4342 struct page *page;
02491447 4343 swp_entry_t ent;
4ffef5fe
DN
4344};
4345
4ffef5fe 4346enum mc_target_type {
8d32ff84 4347 MC_TARGET_NONE = 0,
4ffef5fe 4348 MC_TARGET_PAGE,
02491447 4349 MC_TARGET_SWAP,
4ffef5fe
DN
4350};
4351
90254a65
DN
4352static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4353 unsigned long addr, pte_t ptent)
4ffef5fe 4354{
90254a65 4355 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4356
90254a65
DN
4357 if (!page || !page_mapped(page))
4358 return NULL;
4359 if (PageAnon(page)) {
1dfab5ab 4360 if (!(mc.flags & MOVE_ANON))
90254a65 4361 return NULL;
1dfab5ab
JW
4362 } else {
4363 if (!(mc.flags & MOVE_FILE))
4364 return NULL;
4365 }
90254a65
DN
4366 if (!get_page_unless_zero(page))
4367 return NULL;
4368
4369 return page;
4370}
4371
4b91355e 4372#ifdef CONFIG_SWAP
90254a65
DN
4373static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4374 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4375{
90254a65
DN
4376 struct page *page = NULL;
4377 swp_entry_t ent = pte_to_swp_entry(ptent);
4378
1dfab5ab 4379 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4380 return NULL;
4b91355e
KH
4381 /*
4382 * Because lookup_swap_cache() updates some statistics counter,
4383 * we call find_get_page() with swapper_space directly.
4384 */
33806f06 4385 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4386 if (do_memsw_account())
90254a65
DN
4387 entry->val = ent.val;
4388
4389 return page;
4390}
4b91355e
KH
4391#else
4392static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4393 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4394{
4395 return NULL;
4396}
4397#endif
90254a65 4398
87946a72
DN
4399static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4400 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4401{
4402 struct page *page = NULL;
87946a72
DN
4403 struct address_space *mapping;
4404 pgoff_t pgoff;
4405
4406 if (!vma->vm_file) /* anonymous vma */
4407 return NULL;
1dfab5ab 4408 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4409 return NULL;
4410
87946a72 4411 mapping = vma->vm_file->f_mapping;
0661a336 4412 pgoff = linear_page_index(vma, addr);
87946a72
DN
4413
4414 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4415#ifdef CONFIG_SWAP
4416 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4417 if (shmem_mapping(mapping)) {
4418 page = find_get_entry(mapping, pgoff);
4419 if (radix_tree_exceptional_entry(page)) {
4420 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4421 if (do_memsw_account())
139b6a6f
JW
4422 *entry = swp;
4423 page = find_get_page(swap_address_space(swp), swp.val);
4424 }
4425 } else
4426 page = find_get_page(mapping, pgoff);
4427#else
4428 page = find_get_page(mapping, pgoff);
aa3b1895 4429#endif
87946a72
DN
4430 return page;
4431}
4432
b1b0deab
CG
4433/**
4434 * mem_cgroup_move_account - move account of the page
4435 * @page: the page
4436 * @nr_pages: number of regular pages (>1 for huge pages)
4437 * @from: mem_cgroup which the page is moved from.
4438 * @to: mem_cgroup which the page is moved to. @from != @to.
4439 *
3ac808fd 4440 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4441 *
4442 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4443 * from old cgroup.
4444 */
4445static int mem_cgroup_move_account(struct page *page,
f627c2f5 4446 bool compound,
b1b0deab
CG
4447 struct mem_cgroup *from,
4448 struct mem_cgroup *to)
4449{
4450 unsigned long flags;
f627c2f5 4451 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4452 int ret;
c4843a75 4453 bool anon;
b1b0deab
CG
4454
4455 VM_BUG_ON(from == to);
4456 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4457 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4458
4459 /*
45637bab
HD
4460 * Prevent mem_cgroup_replace_page() from looking at
4461 * page->mem_cgroup of its source page while we change it.
b1b0deab 4462 */
f627c2f5 4463 ret = -EBUSY;
b1b0deab
CG
4464 if (!trylock_page(page))
4465 goto out;
4466
4467 ret = -EINVAL;
4468 if (page->mem_cgroup != from)
4469 goto out_unlock;
4470
c4843a75
GT
4471 anon = PageAnon(page);
4472
b1b0deab
CG
4473 spin_lock_irqsave(&from->move_lock, flags);
4474
c4843a75 4475 if (!anon && page_mapped(page)) {
b1b0deab
CG
4476 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4477 nr_pages);
4478 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4479 nr_pages);
4480 }
4481
c4843a75
GT
4482 /*
4483 * move_lock grabbed above and caller set from->moving_account, so
4484 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4485 * So mapping should be stable for dirty pages.
4486 */
4487 if (!anon && PageDirty(page)) {
4488 struct address_space *mapping = page_mapping(page);
4489
4490 if (mapping_cap_account_dirty(mapping)) {
4491 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4492 nr_pages);
4493 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4494 nr_pages);
4495 }
4496 }
4497
b1b0deab
CG
4498 if (PageWriteback(page)) {
4499 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4500 nr_pages);
4501 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4502 nr_pages);
4503 }
4504
4505 /*
4506 * It is safe to change page->mem_cgroup here because the page
4507 * is referenced, charged, and isolated - we can't race with
4508 * uncharging, charging, migration, or LRU putback.
4509 */
4510
4511 /* caller should have done css_get */
4512 page->mem_cgroup = to;
4513 spin_unlock_irqrestore(&from->move_lock, flags);
4514
4515 ret = 0;
4516
4517 local_irq_disable();
f627c2f5 4518 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4519 memcg_check_events(to, page);
f627c2f5 4520 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4521 memcg_check_events(from, page);
4522 local_irq_enable();
4523out_unlock:
4524 unlock_page(page);
4525out:
4526 return ret;
4527}
4528
8d32ff84 4529static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4530 unsigned long addr, pte_t ptent, union mc_target *target)
4531{
4532 struct page *page = NULL;
8d32ff84 4533 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4534 swp_entry_t ent = { .val = 0 };
4535
4536 if (pte_present(ptent))
4537 page = mc_handle_present_pte(vma, addr, ptent);
4538 else if (is_swap_pte(ptent))
4539 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4540 else if (pte_none(ptent))
87946a72 4541 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4542
4543 if (!page && !ent.val)
8d32ff84 4544 return ret;
02491447 4545 if (page) {
02491447 4546 /*
0a31bc97 4547 * Do only loose check w/o serialization.
1306a85a 4548 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4549 * not under LRU exclusion.
02491447 4550 */
1306a85a 4551 if (page->mem_cgroup == mc.from) {
02491447
DN
4552 ret = MC_TARGET_PAGE;
4553 if (target)
4554 target->page = page;
4555 }
4556 if (!ret || !target)
4557 put_page(page);
4558 }
90254a65
DN
4559 /* There is a swap entry and a page doesn't exist or isn't charged */
4560 if (ent.val && !ret &&
34c00c31 4561 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4562 ret = MC_TARGET_SWAP;
4563 if (target)
4564 target->ent = ent;
4ffef5fe 4565 }
4ffef5fe
DN
4566 return ret;
4567}
4568
12724850
NH
4569#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4570/*
4571 * We don't consider swapping or file mapped pages because THP does not
4572 * support them for now.
4573 * Caller should make sure that pmd_trans_huge(pmd) is true.
4574 */
4575static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4576 unsigned long addr, pmd_t pmd, union mc_target *target)
4577{
4578 struct page *page = NULL;
12724850
NH
4579 enum mc_target_type ret = MC_TARGET_NONE;
4580
4581 page = pmd_page(pmd);
309381fe 4582 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4583 if (!(mc.flags & MOVE_ANON))
12724850 4584 return ret;
1306a85a 4585 if (page->mem_cgroup == mc.from) {
12724850
NH
4586 ret = MC_TARGET_PAGE;
4587 if (target) {
4588 get_page(page);
4589 target->page = page;
4590 }
4591 }
4592 return ret;
4593}
4594#else
4595static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4596 unsigned long addr, pmd_t pmd, union mc_target *target)
4597{
4598 return MC_TARGET_NONE;
4599}
4600#endif
4601
4ffef5fe
DN
4602static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4603 unsigned long addr, unsigned long end,
4604 struct mm_walk *walk)
4605{
26bcd64a 4606 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4607 pte_t *pte;
4608 spinlock_t *ptl;
4609
b6ec57f4
KS
4610 ptl = pmd_trans_huge_lock(pmd, vma);
4611 if (ptl) {
12724850
NH
4612 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4613 mc.precharge += HPAGE_PMD_NR;
bf929152 4614 spin_unlock(ptl);
1a5a9906 4615 return 0;
12724850 4616 }
03319327 4617
45f83cef
AA
4618 if (pmd_trans_unstable(pmd))
4619 return 0;
4ffef5fe
DN
4620 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4621 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4622 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4623 mc.precharge++; /* increment precharge temporarily */
4624 pte_unmap_unlock(pte - 1, ptl);
4625 cond_resched();
4626
7dc74be0
DN
4627 return 0;
4628}
4629
4ffef5fe
DN
4630static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4631{
4632 unsigned long precharge;
4ffef5fe 4633
26bcd64a
NH
4634 struct mm_walk mem_cgroup_count_precharge_walk = {
4635 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4636 .mm = mm,
4637 };
dfe076b0 4638 down_read(&mm->mmap_sem);
26bcd64a 4639 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4640 up_read(&mm->mmap_sem);
4ffef5fe
DN
4641
4642 precharge = mc.precharge;
4643 mc.precharge = 0;
4644
4645 return precharge;
4646}
4647
4ffef5fe
DN
4648static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4649{
dfe076b0
DN
4650 unsigned long precharge = mem_cgroup_count_precharge(mm);
4651
4652 VM_BUG_ON(mc.moving_task);
4653 mc.moving_task = current;
4654 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4655}
4656
dfe076b0
DN
4657/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4658static void __mem_cgroup_clear_mc(void)
4ffef5fe 4659{
2bd9bb20
KH
4660 struct mem_cgroup *from = mc.from;
4661 struct mem_cgroup *to = mc.to;
4662
4ffef5fe 4663 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4664 if (mc.precharge) {
00501b53 4665 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4666 mc.precharge = 0;
4667 }
4668 /*
4669 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4670 * we must uncharge here.
4671 */
4672 if (mc.moved_charge) {
00501b53 4673 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4674 mc.moved_charge = 0;
4ffef5fe 4675 }
483c30b5
DN
4676 /* we must fixup refcnts and charges */
4677 if (mc.moved_swap) {
483c30b5 4678 /* uncharge swap account from the old cgroup */
ce00a967 4679 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4680 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4681
05b84301 4682 /*
3e32cb2e
JW
4683 * we charged both to->memory and to->memsw, so we
4684 * should uncharge to->memory.
05b84301 4685 */
ce00a967 4686 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4687 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4688
e8ea14cc 4689 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4690
4050377b 4691 /* we've already done css_get(mc.to) */
483c30b5
DN
4692 mc.moved_swap = 0;
4693 }
dfe076b0
DN
4694 memcg_oom_recover(from);
4695 memcg_oom_recover(to);
4696 wake_up_all(&mc.waitq);
4697}
4698
4699static void mem_cgroup_clear_mc(void)
4700{
dfe076b0
DN
4701 /*
4702 * we must clear moving_task before waking up waiters at the end of
4703 * task migration.
4704 */
4705 mc.moving_task = NULL;
4706 __mem_cgroup_clear_mc();
2bd9bb20 4707 spin_lock(&mc.lock);
4ffef5fe
DN
4708 mc.from = NULL;
4709 mc.to = NULL;
2bd9bb20 4710 spin_unlock(&mc.lock);
4ffef5fe
DN
4711}
4712
1f7dd3e5 4713static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4714{
1f7dd3e5 4715 struct cgroup_subsys_state *css;
eed67d75 4716 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4717 struct mem_cgroup *from;
4530eddb 4718 struct task_struct *leader, *p;
9f2115f9 4719 struct mm_struct *mm;
1dfab5ab 4720 unsigned long move_flags;
9f2115f9 4721 int ret = 0;
7dc74be0 4722
1f7dd3e5
TH
4723 /* charge immigration isn't supported on the default hierarchy */
4724 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4725 return 0;
4726
4530eddb
TH
4727 /*
4728 * Multi-process migrations only happen on the default hierarchy
4729 * where charge immigration is not used. Perform charge
4730 * immigration if @tset contains a leader and whine if there are
4731 * multiple.
4732 */
4733 p = NULL;
1f7dd3e5 4734 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4735 WARN_ON_ONCE(p);
4736 p = leader;
1f7dd3e5 4737 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4738 }
4739 if (!p)
4740 return 0;
4741
1f7dd3e5
TH
4742 /*
4743 * We are now commited to this value whatever it is. Changes in this
4744 * tunable will only affect upcoming migrations, not the current one.
4745 * So we need to save it, and keep it going.
4746 */
4747 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4748 if (!move_flags)
4749 return 0;
4750
9f2115f9
TH
4751 from = mem_cgroup_from_task(p);
4752
4753 VM_BUG_ON(from == memcg);
4754
4755 mm = get_task_mm(p);
4756 if (!mm)
4757 return 0;
4758 /* We move charges only when we move a owner of the mm */
4759 if (mm->owner == p) {
4760 VM_BUG_ON(mc.from);
4761 VM_BUG_ON(mc.to);
4762 VM_BUG_ON(mc.precharge);
4763 VM_BUG_ON(mc.moved_charge);
4764 VM_BUG_ON(mc.moved_swap);
4765
4766 spin_lock(&mc.lock);
4767 mc.from = from;
4768 mc.to = memcg;
4769 mc.flags = move_flags;
4770 spin_unlock(&mc.lock);
4771 /* We set mc.moving_task later */
4772
4773 ret = mem_cgroup_precharge_mc(mm);
4774 if (ret)
4775 mem_cgroup_clear_mc();
7dc74be0 4776 }
9f2115f9 4777 mmput(mm);
7dc74be0
DN
4778 return ret;
4779}
4780
1f7dd3e5 4781static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4782{
4e2f245d
JW
4783 if (mc.to)
4784 mem_cgroup_clear_mc();
7dc74be0
DN
4785}
4786
4ffef5fe
DN
4787static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4788 unsigned long addr, unsigned long end,
4789 struct mm_walk *walk)
7dc74be0 4790{
4ffef5fe 4791 int ret = 0;
26bcd64a 4792 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4793 pte_t *pte;
4794 spinlock_t *ptl;
12724850
NH
4795 enum mc_target_type target_type;
4796 union mc_target target;
4797 struct page *page;
4ffef5fe 4798
b6ec57f4
KS
4799 ptl = pmd_trans_huge_lock(pmd, vma);
4800 if (ptl) {
62ade86a 4801 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4802 spin_unlock(ptl);
12724850
NH
4803 return 0;
4804 }
4805 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4806 if (target_type == MC_TARGET_PAGE) {
4807 page = target.page;
4808 if (!isolate_lru_page(page)) {
f627c2f5 4809 if (!mem_cgroup_move_account(page, true,
1306a85a 4810 mc.from, mc.to)) {
12724850
NH
4811 mc.precharge -= HPAGE_PMD_NR;
4812 mc.moved_charge += HPAGE_PMD_NR;
4813 }
4814 putback_lru_page(page);
4815 }
4816 put_page(page);
4817 }
bf929152 4818 spin_unlock(ptl);
1a5a9906 4819 return 0;
12724850
NH
4820 }
4821
45f83cef
AA
4822 if (pmd_trans_unstable(pmd))
4823 return 0;
4ffef5fe
DN
4824retry:
4825 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4826 for (; addr != end; addr += PAGE_SIZE) {
4827 pte_t ptent = *(pte++);
02491447 4828 swp_entry_t ent;
4ffef5fe
DN
4829
4830 if (!mc.precharge)
4831 break;
4832
8d32ff84 4833 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4834 case MC_TARGET_PAGE:
4835 page = target.page;
53f9263b
KS
4836 /*
4837 * We can have a part of the split pmd here. Moving it
4838 * can be done but it would be too convoluted so simply
4839 * ignore such a partial THP and keep it in original
4840 * memcg. There should be somebody mapping the head.
4841 */
4842 if (PageTransCompound(page))
4843 goto put;
4ffef5fe
DN
4844 if (isolate_lru_page(page))
4845 goto put;
f627c2f5
KS
4846 if (!mem_cgroup_move_account(page, false,
4847 mc.from, mc.to)) {
4ffef5fe 4848 mc.precharge--;
854ffa8d
DN
4849 /* we uncharge from mc.from later. */
4850 mc.moved_charge++;
4ffef5fe
DN
4851 }
4852 putback_lru_page(page);
8d32ff84 4853put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4854 put_page(page);
4855 break;
02491447
DN
4856 case MC_TARGET_SWAP:
4857 ent = target.ent;
e91cbb42 4858 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4859 mc.precharge--;
483c30b5
DN
4860 /* we fixup refcnts and charges later. */
4861 mc.moved_swap++;
4862 }
02491447 4863 break;
4ffef5fe
DN
4864 default:
4865 break;
4866 }
4867 }
4868 pte_unmap_unlock(pte - 1, ptl);
4869 cond_resched();
4870
4871 if (addr != end) {
4872 /*
4873 * We have consumed all precharges we got in can_attach().
4874 * We try charge one by one, but don't do any additional
4875 * charges to mc.to if we have failed in charge once in attach()
4876 * phase.
4877 */
854ffa8d 4878 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4879 if (!ret)
4880 goto retry;
4881 }
4882
4883 return ret;
4884}
4885
4886static void mem_cgroup_move_charge(struct mm_struct *mm)
4887{
26bcd64a
NH
4888 struct mm_walk mem_cgroup_move_charge_walk = {
4889 .pmd_entry = mem_cgroup_move_charge_pte_range,
4890 .mm = mm,
4891 };
4ffef5fe
DN
4892
4893 lru_add_drain_all();
312722cb 4894 /*
81f8c3a4
JW
4895 * Signal lock_page_memcg() to take the memcg's move_lock
4896 * while we're moving its pages to another memcg. Then wait
4897 * for already started RCU-only updates to finish.
312722cb
JW
4898 */
4899 atomic_inc(&mc.from->moving_account);
4900 synchronize_rcu();
dfe076b0
DN
4901retry:
4902 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4903 /*
4904 * Someone who are holding the mmap_sem might be waiting in
4905 * waitq. So we cancel all extra charges, wake up all waiters,
4906 * and retry. Because we cancel precharges, we might not be able
4907 * to move enough charges, but moving charge is a best-effort
4908 * feature anyway, so it wouldn't be a big problem.
4909 */
4910 __mem_cgroup_clear_mc();
4911 cond_resched();
4912 goto retry;
4913 }
26bcd64a
NH
4914 /*
4915 * When we have consumed all precharges and failed in doing
4916 * additional charge, the page walk just aborts.
4917 */
4918 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 4919 up_read(&mm->mmap_sem);
312722cb 4920 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4921}
4922
1f7dd3e5 4923static void mem_cgroup_move_task(struct cgroup_taskset *tset)
67e465a7 4924{
1f7dd3e5
TH
4925 struct cgroup_subsys_state *css;
4926 struct task_struct *p = cgroup_taskset_first(tset, &css);
a433658c 4927 struct mm_struct *mm = get_task_mm(p);
dfe076b0 4928
dfe076b0 4929 if (mm) {
a433658c
KM
4930 if (mc.to)
4931 mem_cgroup_move_charge(mm);
dfe076b0
DN
4932 mmput(mm);
4933 }
a433658c
KM
4934 if (mc.to)
4935 mem_cgroup_clear_mc();
67e465a7 4936}
5cfb80a7 4937#else /* !CONFIG_MMU */
1f7dd3e5 4938static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4939{
4940 return 0;
4941}
1f7dd3e5 4942static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4943{
4944}
1f7dd3e5 4945static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5cfb80a7
DN
4946{
4947}
4948#endif
67e465a7 4949
f00baae7
TH
4950/*
4951 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4952 * to verify whether we're attached to the default hierarchy on each mount
4953 * attempt.
f00baae7 4954 */
eb95419b 4955static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
4956{
4957 /*
aa6ec29b 4958 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
4959 * guarantees that @root doesn't have any children, so turning it
4960 * on for the root memcg is enough.
4961 */
9e10a130 4962 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
4963 root_mem_cgroup->use_hierarchy = true;
4964 else
4965 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
4966}
4967
241994ed
JW
4968static u64 memory_current_read(struct cgroup_subsys_state *css,
4969 struct cftype *cft)
4970{
f5fc3c5d
JW
4971 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4972
4973 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
4974}
4975
4976static int memory_low_show(struct seq_file *m, void *v)
4977{
4978 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4979 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
4980
4981 if (low == PAGE_COUNTER_MAX)
d2973697 4982 seq_puts(m, "max\n");
241994ed
JW
4983 else
4984 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4985
4986 return 0;
4987}
4988
4989static ssize_t memory_low_write(struct kernfs_open_file *of,
4990 char *buf, size_t nbytes, loff_t off)
4991{
4992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4993 unsigned long low;
4994 int err;
4995
4996 buf = strstrip(buf);
d2973697 4997 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
4998 if (err)
4999 return err;
5000
5001 memcg->low = low;
5002
5003 return nbytes;
5004}
5005
5006static int memory_high_show(struct seq_file *m, void *v)
5007{
5008 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5009 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5010
5011 if (high == PAGE_COUNTER_MAX)
d2973697 5012 seq_puts(m, "max\n");
241994ed
JW
5013 else
5014 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5015
5016 return 0;
5017}
5018
5019static ssize_t memory_high_write(struct kernfs_open_file *of,
5020 char *buf, size_t nbytes, loff_t off)
5021{
5022 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5023 unsigned long high;
5024 int err;
5025
5026 buf = strstrip(buf);
d2973697 5027 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5028 if (err)
5029 return err;
5030
5031 memcg->high = high;
5032
2529bb3a 5033 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5034 return nbytes;
5035}
5036
5037static int memory_max_show(struct seq_file *m, void *v)
5038{
5039 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5040 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5041
5042 if (max == PAGE_COUNTER_MAX)
d2973697 5043 seq_puts(m, "max\n");
241994ed
JW
5044 else
5045 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5046
5047 return 0;
5048}
5049
5050static ssize_t memory_max_write(struct kernfs_open_file *of,
5051 char *buf, size_t nbytes, loff_t off)
5052{
5053 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5054 unsigned long max;
5055 int err;
5056
5057 buf = strstrip(buf);
d2973697 5058 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5059 if (err)
5060 return err;
5061
5062 err = mem_cgroup_resize_limit(memcg, max);
5063 if (err)
5064 return err;
5065
2529bb3a 5066 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5067 return nbytes;
5068}
5069
5070static int memory_events_show(struct seq_file *m, void *v)
5071{
5072 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5073
5074 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5075 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5076 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5077 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5078
5079 return 0;
5080}
5081
587d9f72
JW
5082static int memory_stat_show(struct seq_file *m, void *v)
5083{
5084 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5085 int i;
5086
5087 /*
5088 * Provide statistics on the state of the memory subsystem as
5089 * well as cumulative event counters that show past behavior.
5090 *
5091 * This list is ordered following a combination of these gradients:
5092 * 1) generic big picture -> specifics and details
5093 * 2) reflecting userspace activity -> reflecting kernel heuristics
5094 *
5095 * Current memory state:
5096 */
5097
5098 seq_printf(m, "anon %llu\n",
5099 (u64)tree_stat(memcg, MEM_CGROUP_STAT_RSS) * PAGE_SIZE);
5100 seq_printf(m, "file %llu\n",
5101 (u64)tree_stat(memcg, MEM_CGROUP_STAT_CACHE) * PAGE_SIZE);
b2807f07
JW
5102 seq_printf(m, "sock %llu\n",
5103 (u64)tree_stat(memcg, MEMCG_SOCK) * PAGE_SIZE);
587d9f72
JW
5104
5105 seq_printf(m, "file_mapped %llu\n",
5106 (u64)tree_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED) *
5107 PAGE_SIZE);
5108 seq_printf(m, "file_dirty %llu\n",
5109 (u64)tree_stat(memcg, MEM_CGROUP_STAT_DIRTY) *
5110 PAGE_SIZE);
5111 seq_printf(m, "file_writeback %llu\n",
5112 (u64)tree_stat(memcg, MEM_CGROUP_STAT_WRITEBACK) *
5113 PAGE_SIZE);
5114
5115 for (i = 0; i < NR_LRU_LISTS; i++) {
5116 struct mem_cgroup *mi;
5117 unsigned long val = 0;
5118
5119 for_each_mem_cgroup_tree(mi, memcg)
5120 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5121 seq_printf(m, "%s %llu\n",
5122 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5123 }
5124
5125 /* Accumulated memory events */
5126
5127 seq_printf(m, "pgfault %lu\n",
5128 tree_events(memcg, MEM_CGROUP_EVENTS_PGFAULT));
5129 seq_printf(m, "pgmajfault %lu\n",
5130 tree_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT));
5131
5132 return 0;
5133}
5134
241994ed
JW
5135static struct cftype memory_files[] = {
5136 {
5137 .name = "current",
f5fc3c5d 5138 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5139 .read_u64 = memory_current_read,
5140 },
5141 {
5142 .name = "low",
5143 .flags = CFTYPE_NOT_ON_ROOT,
5144 .seq_show = memory_low_show,
5145 .write = memory_low_write,
5146 },
5147 {
5148 .name = "high",
5149 .flags = CFTYPE_NOT_ON_ROOT,
5150 .seq_show = memory_high_show,
5151 .write = memory_high_write,
5152 },
5153 {
5154 .name = "max",
5155 .flags = CFTYPE_NOT_ON_ROOT,
5156 .seq_show = memory_max_show,
5157 .write = memory_max_write,
5158 },
5159 {
5160 .name = "events",
5161 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5162 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5163 .seq_show = memory_events_show,
5164 },
587d9f72
JW
5165 {
5166 .name = "stat",
5167 .flags = CFTYPE_NOT_ON_ROOT,
5168 .seq_show = memory_stat_show,
5169 },
241994ed
JW
5170 { } /* terminate */
5171};
5172
073219e9 5173struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5174 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5175 .css_online = mem_cgroup_css_online,
92fb9748 5176 .css_offline = mem_cgroup_css_offline,
6df38689 5177 .css_released = mem_cgroup_css_released,
92fb9748 5178 .css_free = mem_cgroup_css_free,
1ced953b 5179 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5180 .can_attach = mem_cgroup_can_attach,
5181 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5182 .attach = mem_cgroup_move_task,
f00baae7 5183 .bind = mem_cgroup_bind,
241994ed
JW
5184 .dfl_cftypes = memory_files,
5185 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5186 .early_init = 0,
8cdea7c0 5187};
c077719b 5188
241994ed
JW
5189/**
5190 * mem_cgroup_low - check if memory consumption is below the normal range
5191 * @root: the highest ancestor to consider
5192 * @memcg: the memory cgroup to check
5193 *
5194 * Returns %true if memory consumption of @memcg, and that of all
5195 * configurable ancestors up to @root, is below the normal range.
5196 */
5197bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5198{
5199 if (mem_cgroup_disabled())
5200 return false;
5201
5202 /*
5203 * The toplevel group doesn't have a configurable range, so
5204 * it's never low when looked at directly, and it is not
5205 * considered an ancestor when assessing the hierarchy.
5206 */
5207
5208 if (memcg == root_mem_cgroup)
5209 return false;
5210
4e54dede 5211 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5212 return false;
5213
5214 while (memcg != root) {
5215 memcg = parent_mem_cgroup(memcg);
5216
5217 if (memcg == root_mem_cgroup)
5218 break;
5219
4e54dede 5220 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5221 return false;
5222 }
5223 return true;
5224}
5225
00501b53
JW
5226/**
5227 * mem_cgroup_try_charge - try charging a page
5228 * @page: page to charge
5229 * @mm: mm context of the victim
5230 * @gfp_mask: reclaim mode
5231 * @memcgp: charged memcg return
5232 *
5233 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5234 * pages according to @gfp_mask if necessary.
5235 *
5236 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5237 * Otherwise, an error code is returned.
5238 *
5239 * After page->mapping has been set up, the caller must finalize the
5240 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5241 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5242 */
5243int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5244 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5245 bool compound)
00501b53
JW
5246{
5247 struct mem_cgroup *memcg = NULL;
f627c2f5 5248 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5249 int ret = 0;
5250
5251 if (mem_cgroup_disabled())
5252 goto out;
5253
5254 if (PageSwapCache(page)) {
00501b53
JW
5255 /*
5256 * Every swap fault against a single page tries to charge the
5257 * page, bail as early as possible. shmem_unuse() encounters
5258 * already charged pages, too. The USED bit is protected by
5259 * the page lock, which serializes swap cache removal, which
5260 * in turn serializes uncharging.
5261 */
e993d905 5262 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5263 if (page->mem_cgroup)
00501b53 5264 goto out;
e993d905 5265
37e84351 5266 if (do_swap_account) {
e993d905
VD
5267 swp_entry_t ent = { .val = page_private(page), };
5268 unsigned short id = lookup_swap_cgroup_id(ent);
5269
5270 rcu_read_lock();
5271 memcg = mem_cgroup_from_id(id);
5272 if (memcg && !css_tryget_online(&memcg->css))
5273 memcg = NULL;
5274 rcu_read_unlock();
5275 }
00501b53
JW
5276 }
5277
00501b53
JW
5278 if (!memcg)
5279 memcg = get_mem_cgroup_from_mm(mm);
5280
5281 ret = try_charge(memcg, gfp_mask, nr_pages);
5282
5283 css_put(&memcg->css);
00501b53
JW
5284out:
5285 *memcgp = memcg;
5286 return ret;
5287}
5288
5289/**
5290 * mem_cgroup_commit_charge - commit a page charge
5291 * @page: page to charge
5292 * @memcg: memcg to charge the page to
5293 * @lrucare: page might be on LRU already
5294 *
5295 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5296 * after page->mapping has been set up. This must happen atomically
5297 * as part of the page instantiation, i.e. under the page table lock
5298 * for anonymous pages, under the page lock for page and swap cache.
5299 *
5300 * In addition, the page must not be on the LRU during the commit, to
5301 * prevent racing with task migration. If it might be, use @lrucare.
5302 *
5303 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5304 */
5305void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5306 bool lrucare, bool compound)
00501b53 5307{
f627c2f5 5308 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5309
5310 VM_BUG_ON_PAGE(!page->mapping, page);
5311 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5312
5313 if (mem_cgroup_disabled())
5314 return;
5315 /*
5316 * Swap faults will attempt to charge the same page multiple
5317 * times. But reuse_swap_page() might have removed the page
5318 * from swapcache already, so we can't check PageSwapCache().
5319 */
5320 if (!memcg)
5321 return;
5322
6abb5a86
JW
5323 commit_charge(page, memcg, lrucare);
5324
6abb5a86 5325 local_irq_disable();
f627c2f5 5326 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5327 memcg_check_events(memcg, page);
5328 local_irq_enable();
00501b53 5329
7941d214 5330 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5331 swp_entry_t entry = { .val = page_private(page) };
5332 /*
5333 * The swap entry might not get freed for a long time,
5334 * let's not wait for it. The page already received a
5335 * memory+swap charge, drop the swap entry duplicate.
5336 */
5337 mem_cgroup_uncharge_swap(entry);
5338 }
5339}
5340
5341/**
5342 * mem_cgroup_cancel_charge - cancel a page charge
5343 * @page: page to charge
5344 * @memcg: memcg to charge the page to
5345 *
5346 * Cancel a charge transaction started by mem_cgroup_try_charge().
5347 */
f627c2f5
KS
5348void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5349 bool compound)
00501b53 5350{
f627c2f5 5351 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5352
5353 if (mem_cgroup_disabled())
5354 return;
5355 /*
5356 * Swap faults will attempt to charge the same page multiple
5357 * times. But reuse_swap_page() might have removed the page
5358 * from swapcache already, so we can't check PageSwapCache().
5359 */
5360 if (!memcg)
5361 return;
5362
00501b53
JW
5363 cancel_charge(memcg, nr_pages);
5364}
5365
747db954 5366static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5367 unsigned long nr_anon, unsigned long nr_file,
5368 unsigned long nr_huge, struct page *dummy_page)
5369{
18eca2e6 5370 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5371 unsigned long flags;
5372
ce00a967 5373 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5374 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5375 if (do_memsw_account())
18eca2e6 5376 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5377 memcg_oom_recover(memcg);
5378 }
747db954
JW
5379
5380 local_irq_save(flags);
5381 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5382 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5383 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5384 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5385 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5386 memcg_check_events(memcg, dummy_page);
5387 local_irq_restore(flags);
e8ea14cc
JW
5388
5389 if (!mem_cgroup_is_root(memcg))
18eca2e6 5390 css_put_many(&memcg->css, nr_pages);
747db954
JW
5391}
5392
5393static void uncharge_list(struct list_head *page_list)
5394{
5395 struct mem_cgroup *memcg = NULL;
747db954
JW
5396 unsigned long nr_anon = 0;
5397 unsigned long nr_file = 0;
5398 unsigned long nr_huge = 0;
5399 unsigned long pgpgout = 0;
747db954
JW
5400 struct list_head *next;
5401 struct page *page;
5402
5403 next = page_list->next;
5404 do {
5405 unsigned int nr_pages = 1;
747db954
JW
5406
5407 page = list_entry(next, struct page, lru);
5408 next = page->lru.next;
5409
5410 VM_BUG_ON_PAGE(PageLRU(page), page);
5411 VM_BUG_ON_PAGE(page_count(page), page);
5412
1306a85a 5413 if (!page->mem_cgroup)
747db954
JW
5414 continue;
5415
5416 /*
5417 * Nobody should be changing or seriously looking at
1306a85a 5418 * page->mem_cgroup at this point, we have fully
29833315 5419 * exclusive access to the page.
747db954
JW
5420 */
5421
1306a85a 5422 if (memcg != page->mem_cgroup) {
747db954 5423 if (memcg) {
18eca2e6
JW
5424 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5425 nr_huge, page);
5426 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5427 }
1306a85a 5428 memcg = page->mem_cgroup;
747db954
JW
5429 }
5430
5431 if (PageTransHuge(page)) {
5432 nr_pages <<= compound_order(page);
5433 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5434 nr_huge += nr_pages;
5435 }
5436
5437 if (PageAnon(page))
5438 nr_anon += nr_pages;
5439 else
5440 nr_file += nr_pages;
5441
1306a85a 5442 page->mem_cgroup = NULL;
747db954
JW
5443
5444 pgpgout++;
5445 } while (next != page_list);
5446
5447 if (memcg)
18eca2e6
JW
5448 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5449 nr_huge, page);
747db954
JW
5450}
5451
0a31bc97
JW
5452/**
5453 * mem_cgroup_uncharge - uncharge a page
5454 * @page: page to uncharge
5455 *
5456 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5457 * mem_cgroup_commit_charge().
5458 */
5459void mem_cgroup_uncharge(struct page *page)
5460{
0a31bc97
JW
5461 if (mem_cgroup_disabled())
5462 return;
5463
747db954 5464 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5465 if (!page->mem_cgroup)
0a31bc97
JW
5466 return;
5467
747db954
JW
5468 INIT_LIST_HEAD(&page->lru);
5469 uncharge_list(&page->lru);
5470}
0a31bc97 5471
747db954
JW
5472/**
5473 * mem_cgroup_uncharge_list - uncharge a list of page
5474 * @page_list: list of pages to uncharge
5475 *
5476 * Uncharge a list of pages previously charged with
5477 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5478 */
5479void mem_cgroup_uncharge_list(struct list_head *page_list)
5480{
5481 if (mem_cgroup_disabled())
5482 return;
0a31bc97 5483
747db954
JW
5484 if (!list_empty(page_list))
5485 uncharge_list(page_list);
0a31bc97
JW
5486}
5487
5488/**
45637bab 5489 * mem_cgroup_replace_page - migrate a charge to another page
0a31bc97
JW
5490 * @oldpage: currently charged page
5491 * @newpage: page to transfer the charge to
0a31bc97
JW
5492 *
5493 * Migrate the charge from @oldpage to @newpage.
5494 *
5495 * Both pages must be locked, @newpage->mapping must be set up.
25be6a65 5496 * Either or both pages might be on the LRU already.
0a31bc97 5497 */
45637bab 5498void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
0a31bc97 5499{
29833315 5500 struct mem_cgroup *memcg;
44b7a8d3
JW
5501 unsigned int nr_pages;
5502 bool compound;
0a31bc97
JW
5503
5504 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5505 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5506 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5507 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5508 newpage);
0a31bc97
JW
5509
5510 if (mem_cgroup_disabled())
5511 return;
5512
5513 /* Page cache replacement: new page already charged? */
1306a85a 5514 if (newpage->mem_cgroup)
0a31bc97
JW
5515 return;
5516
45637bab 5517 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5518 memcg = oldpage->mem_cgroup;
29833315 5519 if (!memcg)
0a31bc97
JW
5520 return;
5521
44b7a8d3
JW
5522 /* Force-charge the new page. The old one will be freed soon */
5523 compound = PageTransHuge(newpage);
5524 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5525
5526 page_counter_charge(&memcg->memory, nr_pages);
5527 if (do_memsw_account())
5528 page_counter_charge(&memcg->memsw, nr_pages);
5529 css_get_many(&memcg->css, nr_pages);
0a31bc97 5530
45637bab 5531 commit_charge(newpage, memcg, true);
44b7a8d3
JW
5532
5533 local_irq_disable();
5534 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5535 memcg_check_events(memcg, newpage);
5536 local_irq_enable();
0a31bc97
JW
5537}
5538
ef12947c 5539DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5540EXPORT_SYMBOL(memcg_sockets_enabled_key);
5541
5542void sock_update_memcg(struct sock *sk)
5543{
5544 struct mem_cgroup *memcg;
5545
5546 /* Socket cloning can throw us here with sk_cgrp already
5547 * filled. It won't however, necessarily happen from
5548 * process context. So the test for root memcg given
5549 * the current task's memcg won't help us in this case.
5550 *
5551 * Respecting the original socket's memcg is a better
5552 * decision in this case.
5553 */
5554 if (sk->sk_memcg) {
5555 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5556 css_get(&sk->sk_memcg->css);
5557 return;
5558 }
5559
5560 rcu_read_lock();
5561 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5562 if (memcg == root_mem_cgroup)
5563 goto out;
0db15298 5564 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5565 goto out;
f7e1cb6e 5566 if (css_tryget_online(&memcg->css))
11092087 5567 sk->sk_memcg = memcg;
f7e1cb6e 5568out:
11092087
JW
5569 rcu_read_unlock();
5570}
5571EXPORT_SYMBOL(sock_update_memcg);
5572
5573void sock_release_memcg(struct sock *sk)
5574{
5575 WARN_ON(!sk->sk_memcg);
5576 css_put(&sk->sk_memcg->css);
5577}
5578
5579/**
5580 * mem_cgroup_charge_skmem - charge socket memory
5581 * @memcg: memcg to charge
5582 * @nr_pages: number of pages to charge
5583 *
5584 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5585 * @memcg's configured limit, %false if the charge had to be forced.
5586 */
5587bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5588{
f7e1cb6e 5589 gfp_t gfp_mask = GFP_KERNEL;
11092087 5590
f7e1cb6e 5591 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5592 struct page_counter *fail;
f7e1cb6e 5593
0db15298
JW
5594 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5595 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5596 return true;
5597 }
0db15298
JW
5598 page_counter_charge(&memcg->tcpmem, nr_pages);
5599 memcg->tcpmem_pressure = 1;
f7e1cb6e 5600 return false;
11092087 5601 }
d886f4e4 5602
f7e1cb6e
JW
5603 /* Don't block in the packet receive path */
5604 if (in_softirq())
5605 gfp_mask = GFP_NOWAIT;
5606
b2807f07
JW
5607 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5608
f7e1cb6e
JW
5609 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5610 return true;
5611
5612 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5613 return false;
5614}
5615
5616/**
5617 * mem_cgroup_uncharge_skmem - uncharge socket memory
5618 * @memcg - memcg to uncharge
5619 * @nr_pages - number of pages to uncharge
5620 */
5621void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5622{
f7e1cb6e 5623 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5624 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5625 return;
5626 }
d886f4e4 5627
b2807f07
JW
5628 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5629
f7e1cb6e
JW
5630 page_counter_uncharge(&memcg->memory, nr_pages);
5631 css_put_many(&memcg->css, nr_pages);
11092087
JW
5632}
5633
f7e1cb6e
JW
5634static int __init cgroup_memory(char *s)
5635{
5636 char *token;
5637
5638 while ((token = strsep(&s, ",")) != NULL) {
5639 if (!*token)
5640 continue;
5641 if (!strcmp(token, "nosocket"))
5642 cgroup_memory_nosocket = true;
04823c83
VD
5643 if (!strcmp(token, "nokmem"))
5644 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5645 }
5646 return 0;
5647}
5648__setup("cgroup.memory=", cgroup_memory);
11092087 5649
2d11085e 5650/*
1081312f
MH
5651 * subsys_initcall() for memory controller.
5652 *
5653 * Some parts like hotcpu_notifier() have to be initialized from this context
5654 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5655 * everything that doesn't depend on a specific mem_cgroup structure should
5656 * be initialized from here.
2d11085e
MH
5657 */
5658static int __init mem_cgroup_init(void)
5659{
95a045f6
JW
5660 int cpu, node;
5661
2d11085e 5662 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5663
5664 for_each_possible_cpu(cpu)
5665 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5666 drain_local_stock);
5667
5668 for_each_node(node) {
5669 struct mem_cgroup_tree_per_node *rtpn;
5670 int zone;
5671
5672 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5673 node_online(node) ? node : NUMA_NO_NODE);
5674
5675 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5676 struct mem_cgroup_tree_per_zone *rtpz;
5677
5678 rtpz = &rtpn->rb_tree_per_zone[zone];
5679 rtpz->rb_root = RB_ROOT;
5680 spin_lock_init(&rtpz->lock);
5681 }
5682 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5683 }
5684
2d11085e
MH
5685 return 0;
5686}
5687subsys_initcall(mem_cgroup_init);
21afa38e
JW
5688
5689#ifdef CONFIG_MEMCG_SWAP
5690/**
5691 * mem_cgroup_swapout - transfer a memsw charge to swap
5692 * @page: page whose memsw charge to transfer
5693 * @entry: swap entry to move the charge to
5694 *
5695 * Transfer the memsw charge of @page to @entry.
5696 */
5697void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5698{
5699 struct mem_cgroup *memcg;
5700 unsigned short oldid;
5701
5702 VM_BUG_ON_PAGE(PageLRU(page), page);
5703 VM_BUG_ON_PAGE(page_count(page), page);
5704
7941d214 5705 if (!do_memsw_account())
21afa38e
JW
5706 return;
5707
5708 memcg = page->mem_cgroup;
5709
5710 /* Readahead page, never charged */
5711 if (!memcg)
5712 return;
5713
5714 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5715 VM_BUG_ON_PAGE(oldid, page);
5716 mem_cgroup_swap_statistics(memcg, true);
5717
5718 page->mem_cgroup = NULL;
5719
5720 if (!mem_cgroup_is_root(memcg))
5721 page_counter_uncharge(&memcg->memory, 1);
5722
ce9ce665
SAS
5723 /*
5724 * Interrupts should be disabled here because the caller holds the
5725 * mapping->tree_lock lock which is taken with interrupts-off. It is
5726 * important here to have the interrupts disabled because it is the
5727 * only synchronisation we have for udpating the per-CPU variables.
5728 */
5729 VM_BUG_ON(!irqs_disabled());
f627c2f5 5730 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e
JW
5731 memcg_check_events(memcg, page);
5732}
5733
37e84351
VD
5734/*
5735 * mem_cgroup_try_charge_swap - try charging a swap entry
5736 * @page: page being added to swap
5737 * @entry: swap entry to charge
5738 *
5739 * Try to charge @entry to the memcg that @page belongs to.
5740 *
5741 * Returns 0 on success, -ENOMEM on failure.
5742 */
5743int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5744{
5745 struct mem_cgroup *memcg;
5746 struct page_counter *counter;
5747 unsigned short oldid;
5748
5749 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5750 return 0;
5751
5752 memcg = page->mem_cgroup;
5753
5754 /* Readahead page, never charged */
5755 if (!memcg)
5756 return 0;
5757
5758 if (!mem_cgroup_is_root(memcg) &&
5759 !page_counter_try_charge(&memcg->swap, 1, &counter))
5760 return -ENOMEM;
5761
5762 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5763 VM_BUG_ON_PAGE(oldid, page);
5764 mem_cgroup_swap_statistics(memcg, true);
5765
5766 css_get(&memcg->css);
5767 return 0;
5768}
5769
21afa38e
JW
5770/**
5771 * mem_cgroup_uncharge_swap - uncharge a swap entry
5772 * @entry: swap entry to uncharge
5773 *
37e84351 5774 * Drop the swap charge associated with @entry.
21afa38e
JW
5775 */
5776void mem_cgroup_uncharge_swap(swp_entry_t entry)
5777{
5778 struct mem_cgroup *memcg;
5779 unsigned short id;
5780
37e84351 5781 if (!do_swap_account)
21afa38e
JW
5782 return;
5783
5784 id = swap_cgroup_record(entry, 0);
5785 rcu_read_lock();
adbe427b 5786 memcg = mem_cgroup_from_id(id);
21afa38e 5787 if (memcg) {
37e84351
VD
5788 if (!mem_cgroup_is_root(memcg)) {
5789 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5790 page_counter_uncharge(&memcg->swap, 1);
5791 else
5792 page_counter_uncharge(&memcg->memsw, 1);
5793 }
21afa38e
JW
5794 mem_cgroup_swap_statistics(memcg, false);
5795 css_put(&memcg->css);
5796 }
5797 rcu_read_unlock();
5798}
5799
d8b38438
VD
5800long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5801{
5802 long nr_swap_pages = get_nr_swap_pages();
5803
5804 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5805 return nr_swap_pages;
5806 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5807 nr_swap_pages = min_t(long, nr_swap_pages,
5808 READ_ONCE(memcg->swap.limit) -
5809 page_counter_read(&memcg->swap));
5810 return nr_swap_pages;
5811}
5812
5ccc5aba
VD
5813bool mem_cgroup_swap_full(struct page *page)
5814{
5815 struct mem_cgroup *memcg;
5816
5817 VM_BUG_ON_PAGE(!PageLocked(page), page);
5818
5819 if (vm_swap_full())
5820 return true;
5821 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5822 return false;
5823
5824 memcg = page->mem_cgroup;
5825 if (!memcg)
5826 return false;
5827
5828 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5829 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5830 return true;
5831
5832 return false;
5833}
5834
21afa38e
JW
5835/* for remember boot option*/
5836#ifdef CONFIG_MEMCG_SWAP_ENABLED
5837static int really_do_swap_account __initdata = 1;
5838#else
5839static int really_do_swap_account __initdata;
5840#endif
5841
5842static int __init enable_swap_account(char *s)
5843{
5844 if (!strcmp(s, "1"))
5845 really_do_swap_account = 1;
5846 else if (!strcmp(s, "0"))
5847 really_do_swap_account = 0;
5848 return 1;
5849}
5850__setup("swapaccount=", enable_swap_account);
5851
37e84351
VD
5852static u64 swap_current_read(struct cgroup_subsys_state *css,
5853 struct cftype *cft)
5854{
5855 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5856
5857 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5858}
5859
5860static int swap_max_show(struct seq_file *m, void *v)
5861{
5862 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5863 unsigned long max = READ_ONCE(memcg->swap.limit);
5864
5865 if (max == PAGE_COUNTER_MAX)
5866 seq_puts(m, "max\n");
5867 else
5868 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5869
5870 return 0;
5871}
5872
5873static ssize_t swap_max_write(struct kernfs_open_file *of,
5874 char *buf, size_t nbytes, loff_t off)
5875{
5876 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5877 unsigned long max;
5878 int err;
5879
5880 buf = strstrip(buf);
5881 err = page_counter_memparse(buf, "max", &max);
5882 if (err)
5883 return err;
5884
5885 mutex_lock(&memcg_limit_mutex);
5886 err = page_counter_limit(&memcg->swap, max);
5887 mutex_unlock(&memcg_limit_mutex);
5888 if (err)
5889 return err;
5890
5891 return nbytes;
5892}
5893
5894static struct cftype swap_files[] = {
5895 {
5896 .name = "swap.current",
5897 .flags = CFTYPE_NOT_ON_ROOT,
5898 .read_u64 = swap_current_read,
5899 },
5900 {
5901 .name = "swap.max",
5902 .flags = CFTYPE_NOT_ON_ROOT,
5903 .seq_show = swap_max_show,
5904 .write = swap_max_write,
5905 },
5906 { } /* terminate */
5907};
5908
21afa38e
JW
5909static struct cftype memsw_cgroup_files[] = {
5910 {
5911 .name = "memsw.usage_in_bytes",
5912 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5913 .read_u64 = mem_cgroup_read_u64,
5914 },
5915 {
5916 .name = "memsw.max_usage_in_bytes",
5917 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5918 .write = mem_cgroup_reset,
5919 .read_u64 = mem_cgroup_read_u64,
5920 },
5921 {
5922 .name = "memsw.limit_in_bytes",
5923 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5924 .write = mem_cgroup_write,
5925 .read_u64 = mem_cgroup_read_u64,
5926 },
5927 {
5928 .name = "memsw.failcnt",
5929 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5930 .write = mem_cgroup_reset,
5931 .read_u64 = mem_cgroup_read_u64,
5932 },
5933 { }, /* terminate */
5934};
5935
5936static int __init mem_cgroup_swap_init(void)
5937{
5938 if (!mem_cgroup_disabled() && really_do_swap_account) {
5939 do_swap_account = 1;
37e84351
VD
5940 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5941 swap_files));
21afa38e
JW
5942 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5943 memsw_cgroup_files));
5944 }
5945 return 0;
5946}
5947subsys_initcall(mem_cgroup_swap_init);
5948
5949#endif /* CONFIG_MEMCG_SWAP */