]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
mm: memcg: remove needless !mm fixup to init_mm when charging
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 62static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c255a458 64#ifdef CONFIG_MEMCG_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
c255a458 69#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b 75#else
a0db00fc 76#define do_swap_account 0
c077719b
KH
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 90 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
91 MEM_CGROUP_STAT_NSTATS,
92};
93
af7c4b0e
JW
94static const char * const mem_cgroup_stat_names[] = {
95 "cache",
96 "rss",
97 "mapped_file",
98 "swap",
99};
100
e9f8974f
JW
101enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
106 MEM_CGROUP_EVENTS_NSTATS,
107};
af7c4b0e
JW
108
109static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114};
115
7a159cc9
JW
116/*
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
121 */
122enum mem_cgroup_events_target {
123 MEM_CGROUP_TARGET_THRESH,
124 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 125 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
126 MEM_CGROUP_NTARGETS,
127};
a0db00fc
KS
128#define THRESHOLDS_EVENTS_TARGET 128
129#define SOFTLIMIT_EVENTS_TARGET 1024
130#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 131
d52aa412 132struct mem_cgroup_stat_cpu {
7a159cc9 133 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 135 unsigned long nr_page_events;
7a159cc9 136 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
137};
138
527a5ec9
JW
139struct mem_cgroup_reclaim_iter {
140 /* css_id of the last scanned hierarchy member */
141 int position;
142 /* scan generation, increased every round-trip */
143 unsigned int generation;
144};
145
6d12e2d8
KH
146/*
147 * per-zone information in memory controller.
148 */
6d12e2d8 149struct mem_cgroup_per_zone {
6290df54 150 struct lruvec lruvec;
1eb49272 151 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 152
527a5ec9
JW
153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154
f64c3f54
BS
155 struct rb_node tree_node; /* RB tree node */
156 unsigned long long usage_in_excess;/* Set to the value by which */
157 /* the soft limit is exceeded*/
158 bool on_tree;
d79154bb 159 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 160 /* use container_of */
6d12e2d8 161};
6d12e2d8
KH
162
163struct mem_cgroup_per_node {
164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165};
166
167struct mem_cgroup_lru_info {
168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169};
170
f64c3f54
BS
171/*
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
174 */
175
176struct mem_cgroup_tree_per_zone {
177 struct rb_root rb_root;
178 spinlock_t lock;
179};
180
181struct mem_cgroup_tree_per_node {
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183};
184
185struct mem_cgroup_tree {
186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187};
188
189static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190
2e72b634
KS
191struct mem_cgroup_threshold {
192 struct eventfd_ctx *eventfd;
193 u64 threshold;
194};
195
9490ff27 196/* For threshold */
2e72b634 197struct mem_cgroup_threshold_ary {
748dad36 198 /* An array index points to threshold just below or equal to usage. */
5407a562 199 int current_threshold;
2e72b634
KS
200 /* Size of entries[] */
201 unsigned int size;
202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries[0];
204};
2c488db2
KS
205
206struct mem_cgroup_thresholds {
207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary *primary;
209 /*
210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries.
213 */
214 struct mem_cgroup_threshold_ary *spare;
215};
216
9490ff27
KH
217/* for OOM */
218struct mem_cgroup_eventfd_list {
219 struct list_head list;
220 struct eventfd_ctx *eventfd;
221};
2e72b634 222
c0ff4b85
R
223static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 225
8cdea7c0
BS
226/*
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
231 *
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
8cdea7c0
BS
236 */
237struct mem_cgroup {
238 struct cgroup_subsys_state css;
239 /*
240 * the counter to account for memory usage
241 */
242 struct res_counter res;
59927fb9
HD
243
244 union {
245 /*
246 * the counter to account for mem+swap usage.
247 */
248 struct res_counter memsw;
249
250 /*
251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw.
258 */
259 struct rcu_head rcu_freeing;
260 /*
3afe36b1
GC
261 * We also need some space for a worker in deferred freeing.
262 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
263 */
264 struct work_struct work_freeing;
265 };
266
78fb7466
PE
267 /*
268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists.
78fb7466 270 */
6d12e2d8 271 struct mem_cgroup_lru_info info;
889976db
YH
272 int last_scanned_node;
273#if MAX_NUMNODES > 1
274 nodemask_t scan_nodes;
453a9bf3
KH
275 atomic_t numainfo_events;
276 atomic_t numainfo_updating;
889976db 277#endif
18f59ea7
BS
278 /*
279 * Should the accounting and control be hierarchical, per subtree?
280 */
281 bool use_hierarchy;
79dfdacc
MH
282
283 bool oom_lock;
284 atomic_t under_oom;
285
8c7c6e34 286 atomic_t refcnt;
14797e23 287
1f4c025b 288 int swappiness;
3c11ecf4
KH
289 /* OOM-Killer disable */
290 int oom_kill_disable;
a7885eb8 291
22a668d7
KH
292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum;
294
2e72b634
KS
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
297
298 /* thresholds for memory usage. RCU-protected */
2c488db2 299 struct mem_cgroup_thresholds thresholds;
907860ed 300
2e72b634 301 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 302 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 303
9490ff27
KH
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
185efc0f 306
7dc74be0
DN
307 /*
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
310 */
311 unsigned long move_charge_at_immigrate;
619d094b
KH
312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */
315 atomic_t moving_account;
312734c0
KH
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock;
d52aa412 318 /*
c62b1a3b 319 * percpu counter.
d52aa412 320 */
3a7951b4 321 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
322 /*
323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat().
325 */
326 struct mem_cgroup_stat_cpu nocpu_base;
327 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
328
329#ifdef CONFIG_INET
330 struct tcp_memcontrol tcp_mem;
331#endif
8cdea7c0
BS
332};
333
7dc74be0
DN
334/* Stuffs for move charges at task migration. */
335/*
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
338 */
339enum move_type {
4ffef5fe 340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
342 NR_MOVE_TYPE,
343};
344
4ffef5fe
DN
345/* "mc" and its members are protected by cgroup_mutex */
346static struct move_charge_struct {
b1dd693e 347 spinlock_t lock; /* for from, to */
4ffef5fe
DN
348 struct mem_cgroup *from;
349 struct mem_cgroup *to;
350 unsigned long precharge;
854ffa8d 351 unsigned long moved_charge;
483c30b5 352 unsigned long moved_swap;
8033b97c
DN
353 struct task_struct *moving_task; /* a task moving charges */
354 wait_queue_head_t waitq; /* a waitq for other context */
355} mc = {
2bd9bb20 356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358};
4ffef5fe 359
90254a65
DN
360static bool move_anon(void)
361{
362 return test_bit(MOVE_CHARGE_TYPE_ANON,
363 &mc.to->move_charge_at_immigrate);
364}
365
87946a72
DN
366static bool move_file(void)
367{
368 return test_bit(MOVE_CHARGE_TYPE_FILE,
369 &mc.to->move_charge_at_immigrate);
370}
371
4e416953
BS
372/*
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
375 */
a0db00fc
KS
376#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 378
217bc319
KH
379enum charge_type {
380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 381 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 382 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 383 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
384 NR_CHARGE_TYPE,
385};
386
8c7c6e34 387/* for encoding cft->private value on file */
65c64ce8
GC
388#define _MEM (0)
389#define _MEMSWAP (1)
390#define _OOM_TYPE (2)
a0db00fc
KS
391#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
392#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 393#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
394/* Used for OOM nofiier */
395#define OOM_CONTROL (0)
8c7c6e34 396
75822b44
BS
397/*
398 * Reclaim flags for mem_cgroup_hierarchical_reclaim
399 */
400#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
401#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
402#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
403#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
404
c0ff4b85
R
405static void mem_cgroup_get(struct mem_cgroup *memcg);
406static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
407
408/* Writing them here to avoid exposing memcg's inner layout */
c255a458 409#ifdef CONFIG_MEMCG_KMEM
e1aab161 410#include <net/sock.h>
d1a4c0b3 411#include <net/ip.h>
e1aab161
GC
412
413static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
414void sock_update_memcg(struct sock *sk)
415{
376be5ff 416 if (mem_cgroup_sockets_enabled) {
e1aab161 417 struct mem_cgroup *memcg;
3f134619 418 struct cg_proto *cg_proto;
e1aab161
GC
419
420 BUG_ON(!sk->sk_prot->proto_cgroup);
421
f3f511e1
GC
422 /* Socket cloning can throw us here with sk_cgrp already
423 * filled. It won't however, necessarily happen from
424 * process context. So the test for root memcg given
425 * the current task's memcg won't help us in this case.
426 *
427 * Respecting the original socket's memcg is a better
428 * decision in this case.
429 */
430 if (sk->sk_cgrp) {
431 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
432 mem_cgroup_get(sk->sk_cgrp->memcg);
433 return;
434 }
435
e1aab161
GC
436 rcu_read_lock();
437 memcg = mem_cgroup_from_task(current);
3f134619
GC
438 cg_proto = sk->sk_prot->proto_cgroup(memcg);
439 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 440 mem_cgroup_get(memcg);
3f134619 441 sk->sk_cgrp = cg_proto;
e1aab161
GC
442 }
443 rcu_read_unlock();
444 }
445}
446EXPORT_SYMBOL(sock_update_memcg);
447
448void sock_release_memcg(struct sock *sk)
449{
376be5ff 450 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
451 struct mem_cgroup *memcg;
452 WARN_ON(!sk->sk_cgrp->memcg);
453 memcg = sk->sk_cgrp->memcg;
454 mem_cgroup_put(memcg);
455 }
456}
d1a4c0b3 457
319d3b9c 458#ifdef CONFIG_INET
d1a4c0b3
GC
459struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
460{
461 if (!memcg || mem_cgroup_is_root(memcg))
462 return NULL;
463
464 return &memcg->tcp_mem.cg_proto;
465}
466EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 467#endif /* CONFIG_INET */
c255a458 468#endif /* CONFIG_MEMCG_KMEM */
e1aab161 469
c255a458 470#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
3f134619
GC
471static void disarm_sock_keys(struct mem_cgroup *memcg)
472{
473 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
474 return;
475 static_key_slow_dec(&memcg_socket_limit_enabled);
476}
477#else
478static void disarm_sock_keys(struct mem_cgroup *memcg)
479{
480}
481#endif
482
c0ff4b85 483static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 484
f64c3f54 485static struct mem_cgroup_per_zone *
c0ff4b85 486mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 487{
c0ff4b85 488 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
489}
490
c0ff4b85 491struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 492{
c0ff4b85 493 return &memcg->css;
d324236b
WF
494}
495
f64c3f54 496static struct mem_cgroup_per_zone *
c0ff4b85 497page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 498{
97a6c37b
JW
499 int nid = page_to_nid(page);
500 int zid = page_zonenum(page);
f64c3f54 501
c0ff4b85 502 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
503}
504
505static struct mem_cgroup_tree_per_zone *
506soft_limit_tree_node_zone(int nid, int zid)
507{
508 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
509}
510
511static struct mem_cgroup_tree_per_zone *
512soft_limit_tree_from_page(struct page *page)
513{
514 int nid = page_to_nid(page);
515 int zid = page_zonenum(page);
516
517 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
518}
519
520static void
c0ff4b85 521__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 522 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
523 struct mem_cgroup_tree_per_zone *mctz,
524 unsigned long long new_usage_in_excess)
f64c3f54
BS
525{
526 struct rb_node **p = &mctz->rb_root.rb_node;
527 struct rb_node *parent = NULL;
528 struct mem_cgroup_per_zone *mz_node;
529
530 if (mz->on_tree)
531 return;
532
ef8745c1
KH
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
535 return;
f64c3f54
BS
536 while (*p) {
537 parent = *p;
538 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
539 tree_node);
540 if (mz->usage_in_excess < mz_node->usage_in_excess)
541 p = &(*p)->rb_left;
542 /*
543 * We can't avoid mem cgroups that are over their soft
544 * limit by the same amount
545 */
546 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
547 p = &(*p)->rb_right;
548 }
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
4e416953
BS
552}
553
554static void
c0ff4b85 555__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
556 struct mem_cgroup_per_zone *mz,
557 struct mem_cgroup_tree_per_zone *mctz)
558{
559 if (!mz->on_tree)
560 return;
561 rb_erase(&mz->tree_node, &mctz->rb_root);
562 mz->on_tree = false;
563}
564
f64c3f54 565static void
c0ff4b85 566mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
567 struct mem_cgroup_per_zone *mz,
568 struct mem_cgroup_tree_per_zone *mctz)
569{
570 spin_lock(&mctz->lock);
c0ff4b85 571 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
572 spin_unlock(&mctz->lock);
573}
574
f64c3f54 575
c0ff4b85 576static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 577{
ef8745c1 578 unsigned long long excess;
f64c3f54
BS
579 struct mem_cgroup_per_zone *mz;
580 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
581 int nid = page_to_nid(page);
582 int zid = page_zonenum(page);
f64c3f54
BS
583 mctz = soft_limit_tree_from_page(page);
584
585 /*
4e649152
KH
586 * Necessary to update all ancestors when hierarchy is used.
587 * because their event counter is not touched.
f64c3f54 588 */
c0ff4b85
R
589 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
590 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
591 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
592 /*
593 * We have to update the tree if mz is on RB-tree or
594 * mem is over its softlimit.
595 */
ef8745c1 596 if (excess || mz->on_tree) {
4e649152
KH
597 spin_lock(&mctz->lock);
598 /* if on-tree, remove it */
599 if (mz->on_tree)
c0ff4b85 600 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 601 /*
ef8745c1
KH
602 * Insert again. mz->usage_in_excess will be updated.
603 * If excess is 0, no tree ops.
4e649152 604 */
c0ff4b85 605 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
606 spin_unlock(&mctz->lock);
607 }
f64c3f54
BS
608 }
609}
610
c0ff4b85 611static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
612{
613 int node, zone;
614 struct mem_cgroup_per_zone *mz;
615 struct mem_cgroup_tree_per_zone *mctz;
616
3ed28fa1 617 for_each_node(node) {
f64c3f54 618 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 619 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 620 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 621 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
622 }
623 }
624}
625
4e416953
BS
626static struct mem_cgroup_per_zone *
627__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
628{
629 struct rb_node *rightmost = NULL;
26251eaf 630 struct mem_cgroup_per_zone *mz;
4e416953
BS
631
632retry:
26251eaf 633 mz = NULL;
4e416953
BS
634 rightmost = rb_last(&mctz->rb_root);
635 if (!rightmost)
636 goto done; /* Nothing to reclaim from */
637
638 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
639 /*
640 * Remove the node now but someone else can add it back,
641 * we will to add it back at the end of reclaim to its correct
642 * position in the tree.
643 */
d79154bb
HD
644 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
645 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
646 !css_tryget(&mz->memcg->css))
4e416953
BS
647 goto retry;
648done:
649 return mz;
650}
651
652static struct mem_cgroup_per_zone *
653mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
654{
655 struct mem_cgroup_per_zone *mz;
656
657 spin_lock(&mctz->lock);
658 mz = __mem_cgroup_largest_soft_limit_node(mctz);
659 spin_unlock(&mctz->lock);
660 return mz;
661}
662
711d3d2c
KH
663/*
664 * Implementation Note: reading percpu statistics for memcg.
665 *
666 * Both of vmstat[] and percpu_counter has threshold and do periodic
667 * synchronization to implement "quick" read. There are trade-off between
668 * reading cost and precision of value. Then, we may have a chance to implement
669 * a periodic synchronizion of counter in memcg's counter.
670 *
671 * But this _read() function is used for user interface now. The user accounts
672 * memory usage by memory cgroup and he _always_ requires exact value because
673 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
674 * have to visit all online cpus and make sum. So, for now, unnecessary
675 * synchronization is not implemented. (just implemented for cpu hotplug)
676 *
677 * If there are kernel internal actions which can make use of some not-exact
678 * value, and reading all cpu value can be performance bottleneck in some
679 * common workload, threashold and synchonization as vmstat[] should be
680 * implemented.
681 */
c0ff4b85 682static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 683 enum mem_cgroup_stat_index idx)
c62b1a3b 684{
7a159cc9 685 long val = 0;
c62b1a3b 686 int cpu;
c62b1a3b 687
711d3d2c
KH
688 get_online_cpus();
689 for_each_online_cpu(cpu)
c0ff4b85 690 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 691#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
692 spin_lock(&memcg->pcp_counter_lock);
693 val += memcg->nocpu_base.count[idx];
694 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
695#endif
696 put_online_cpus();
c62b1a3b
KH
697 return val;
698}
699
c0ff4b85 700static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
701 bool charge)
702{
703 int val = (charge) ? 1 : -1;
bff6bb83 704 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
705}
706
c0ff4b85 707static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
708 enum mem_cgroup_events_index idx)
709{
710 unsigned long val = 0;
711 int cpu;
712
713 for_each_online_cpu(cpu)
c0ff4b85 714 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 715#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
716 spin_lock(&memcg->pcp_counter_lock);
717 val += memcg->nocpu_base.events[idx];
718 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
719#endif
720 return val;
721}
722
c0ff4b85 723static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 724 bool anon, int nr_pages)
d52aa412 725{
c62b1a3b
KH
726 preempt_disable();
727
b2402857
KH
728 /*
729 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
730 * counted as CACHE even if it's on ANON LRU.
731 */
732 if (anon)
733 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 734 nr_pages);
d52aa412 735 else
b2402857 736 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 737 nr_pages);
55e462b0 738
e401f176
KH
739 /* pagein of a big page is an event. So, ignore page size */
740 if (nr_pages > 0)
c0ff4b85 741 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 742 else {
c0ff4b85 743 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
744 nr_pages = -nr_pages; /* for event */
745 }
e401f176 746
13114716 747 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 748
c62b1a3b 749 preempt_enable();
6d12e2d8
KH
750}
751
bb2a0de9 752unsigned long
4d7dcca2 753mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
754{
755 struct mem_cgroup_per_zone *mz;
756
757 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
758 return mz->lru_size[lru];
759}
760
761static unsigned long
c0ff4b85 762mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 763 unsigned int lru_mask)
889976db
YH
764{
765 struct mem_cgroup_per_zone *mz;
f156ab93 766 enum lru_list lru;
bb2a0de9
KH
767 unsigned long ret = 0;
768
c0ff4b85 769 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 770
f156ab93
HD
771 for_each_lru(lru) {
772 if (BIT(lru) & lru_mask)
773 ret += mz->lru_size[lru];
bb2a0de9
KH
774 }
775 return ret;
776}
777
778static unsigned long
c0ff4b85 779mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
780 int nid, unsigned int lru_mask)
781{
889976db
YH
782 u64 total = 0;
783 int zid;
784
bb2a0de9 785 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
786 total += mem_cgroup_zone_nr_lru_pages(memcg,
787 nid, zid, lru_mask);
bb2a0de9 788
889976db
YH
789 return total;
790}
bb2a0de9 791
c0ff4b85 792static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 793 unsigned int lru_mask)
6d12e2d8 794{
889976db 795 int nid;
6d12e2d8
KH
796 u64 total = 0;
797
bb2a0de9 798 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 799 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 800 return total;
d52aa412
KH
801}
802
f53d7ce3
JW
803static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
804 enum mem_cgroup_events_target target)
7a159cc9
JW
805{
806 unsigned long val, next;
807
13114716 808 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 809 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 810 /* from time_after() in jiffies.h */
f53d7ce3
JW
811 if ((long)next - (long)val < 0) {
812 switch (target) {
813 case MEM_CGROUP_TARGET_THRESH:
814 next = val + THRESHOLDS_EVENTS_TARGET;
815 break;
816 case MEM_CGROUP_TARGET_SOFTLIMIT:
817 next = val + SOFTLIMIT_EVENTS_TARGET;
818 break;
819 case MEM_CGROUP_TARGET_NUMAINFO:
820 next = val + NUMAINFO_EVENTS_TARGET;
821 break;
822 default:
823 break;
824 }
825 __this_cpu_write(memcg->stat->targets[target], next);
826 return true;
7a159cc9 827 }
f53d7ce3 828 return false;
d2265e6f
KH
829}
830
831/*
832 * Check events in order.
833 *
834 */
c0ff4b85 835static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 836{
4799401f 837 preempt_disable();
d2265e6f 838 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
839 if (unlikely(mem_cgroup_event_ratelimit(memcg,
840 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
841 bool do_softlimit;
842 bool do_numainfo __maybe_unused;
f53d7ce3
JW
843
844 do_softlimit = mem_cgroup_event_ratelimit(memcg,
845 MEM_CGROUP_TARGET_SOFTLIMIT);
846#if MAX_NUMNODES > 1
847 do_numainfo = mem_cgroup_event_ratelimit(memcg,
848 MEM_CGROUP_TARGET_NUMAINFO);
849#endif
850 preempt_enable();
851
c0ff4b85 852 mem_cgroup_threshold(memcg);
f53d7ce3 853 if (unlikely(do_softlimit))
c0ff4b85 854 mem_cgroup_update_tree(memcg, page);
453a9bf3 855#if MAX_NUMNODES > 1
f53d7ce3 856 if (unlikely(do_numainfo))
c0ff4b85 857 atomic_inc(&memcg->numainfo_events);
453a9bf3 858#endif
f53d7ce3
JW
859 } else
860 preempt_enable();
d2265e6f
KH
861}
862
d1a4c0b3 863struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
864{
865 return container_of(cgroup_subsys_state(cont,
866 mem_cgroup_subsys_id), struct mem_cgroup,
867 css);
868}
869
cf475ad2 870struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 871{
31a78f23
BS
872 /*
873 * mm_update_next_owner() may clear mm->owner to NULL
874 * if it races with swapoff, page migration, etc.
875 * So this can be called with p == NULL.
876 */
877 if (unlikely(!p))
878 return NULL;
879
78fb7466
PE
880 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
881 struct mem_cgroup, css);
882}
883
a433658c 884struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 885{
c0ff4b85 886 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
887
888 if (!mm)
889 return NULL;
54595fe2
KH
890 /*
891 * Because we have no locks, mm->owner's may be being moved to other
892 * cgroup. We use css_tryget() here even if this looks
893 * pessimistic (rather than adding locks here).
894 */
895 rcu_read_lock();
896 do {
c0ff4b85
R
897 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
898 if (unlikely(!memcg))
54595fe2 899 break;
c0ff4b85 900 } while (!css_tryget(&memcg->css));
54595fe2 901 rcu_read_unlock();
c0ff4b85 902 return memcg;
54595fe2
KH
903}
904
5660048c
JW
905/**
906 * mem_cgroup_iter - iterate over memory cgroup hierarchy
907 * @root: hierarchy root
908 * @prev: previously returned memcg, NULL on first invocation
909 * @reclaim: cookie for shared reclaim walks, NULL for full walks
910 *
911 * Returns references to children of the hierarchy below @root, or
912 * @root itself, or %NULL after a full round-trip.
913 *
914 * Caller must pass the return value in @prev on subsequent
915 * invocations for reference counting, or use mem_cgroup_iter_break()
916 * to cancel a hierarchy walk before the round-trip is complete.
917 *
918 * Reclaimers can specify a zone and a priority level in @reclaim to
919 * divide up the memcgs in the hierarchy among all concurrent
920 * reclaimers operating on the same zone and priority.
921 */
922struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
923 struct mem_cgroup *prev,
924 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 925{
9f3a0d09
JW
926 struct mem_cgroup *memcg = NULL;
927 int id = 0;
711d3d2c 928
5660048c
JW
929 if (mem_cgroup_disabled())
930 return NULL;
931
9f3a0d09
JW
932 if (!root)
933 root = root_mem_cgroup;
7d74b06f 934
9f3a0d09
JW
935 if (prev && !reclaim)
936 id = css_id(&prev->css);
14067bb3 937
9f3a0d09
JW
938 if (prev && prev != root)
939 css_put(&prev->css);
14067bb3 940
9f3a0d09
JW
941 if (!root->use_hierarchy && root != root_mem_cgroup) {
942 if (prev)
943 return NULL;
944 return root;
945 }
14067bb3 946
9f3a0d09 947 while (!memcg) {
527a5ec9 948 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 949 struct cgroup_subsys_state *css;
711d3d2c 950
527a5ec9
JW
951 if (reclaim) {
952 int nid = zone_to_nid(reclaim->zone);
953 int zid = zone_idx(reclaim->zone);
954 struct mem_cgroup_per_zone *mz;
955
956 mz = mem_cgroup_zoneinfo(root, nid, zid);
957 iter = &mz->reclaim_iter[reclaim->priority];
958 if (prev && reclaim->generation != iter->generation)
959 return NULL;
960 id = iter->position;
961 }
7d74b06f 962
9f3a0d09
JW
963 rcu_read_lock();
964 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
965 if (css) {
966 if (css == &root->css || css_tryget(css))
967 memcg = container_of(css,
968 struct mem_cgroup, css);
969 } else
970 id = 0;
14067bb3 971 rcu_read_unlock();
14067bb3 972
527a5ec9
JW
973 if (reclaim) {
974 iter->position = id;
975 if (!css)
976 iter->generation++;
977 else if (!prev && memcg)
978 reclaim->generation = iter->generation;
979 }
9f3a0d09
JW
980
981 if (prev && !css)
982 return NULL;
983 }
984 return memcg;
14067bb3 985}
7d74b06f 986
5660048c
JW
987/**
988 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
989 * @root: hierarchy root
990 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
991 */
992void mem_cgroup_iter_break(struct mem_cgroup *root,
993 struct mem_cgroup *prev)
9f3a0d09
JW
994{
995 if (!root)
996 root = root_mem_cgroup;
997 if (prev && prev != root)
998 css_put(&prev->css);
999}
7d74b06f 1000
9f3a0d09
JW
1001/*
1002 * Iteration constructs for visiting all cgroups (under a tree). If
1003 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1004 * be used for reference counting.
1005 */
1006#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1007 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1008 iter != NULL; \
527a5ec9 1009 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1010
9f3a0d09 1011#define for_each_mem_cgroup(iter) \
527a5ec9 1012 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1013 iter != NULL; \
527a5ec9 1014 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1015
c0ff4b85 1016static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 1017{
c0ff4b85 1018 return (memcg == root_mem_cgroup);
4b3bde4c
BS
1019}
1020
456f998e
YH
1021void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1022{
c0ff4b85 1023 struct mem_cgroup *memcg;
456f998e
YH
1024
1025 if (!mm)
1026 return;
1027
1028 rcu_read_lock();
c0ff4b85
R
1029 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1030 if (unlikely(!memcg))
456f998e
YH
1031 goto out;
1032
1033 switch (idx) {
456f998e 1034 case PGFAULT:
0e574a93
JW
1035 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1036 break;
1037 case PGMAJFAULT:
1038 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1039 break;
1040 default:
1041 BUG();
1042 }
1043out:
1044 rcu_read_unlock();
1045}
1046EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1047
925b7673
JW
1048/**
1049 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1050 * @zone: zone of the wanted lruvec
fa9add64 1051 * @memcg: memcg of the wanted lruvec
925b7673
JW
1052 *
1053 * Returns the lru list vector holding pages for the given @zone and
1054 * @mem. This can be the global zone lruvec, if the memory controller
1055 * is disabled.
1056 */
1057struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1058 struct mem_cgroup *memcg)
1059{
1060 struct mem_cgroup_per_zone *mz;
1061
1062 if (mem_cgroup_disabled())
1063 return &zone->lruvec;
1064
1065 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1066 return &mz->lruvec;
1067}
1068
08e552c6
KH
1069/*
1070 * Following LRU functions are allowed to be used without PCG_LOCK.
1071 * Operations are called by routine of global LRU independently from memcg.
1072 * What we have to take care of here is validness of pc->mem_cgroup.
1073 *
1074 * Changes to pc->mem_cgroup happens when
1075 * 1. charge
1076 * 2. moving account
1077 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1078 * It is added to LRU before charge.
1079 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1080 * When moving account, the page is not on LRU. It's isolated.
1081 */
4f98a2fe 1082
925b7673 1083/**
fa9add64 1084 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1085 * @page: the page
fa9add64 1086 * @zone: zone of the page
925b7673 1087 */
fa9add64 1088struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1089{
08e552c6 1090 struct mem_cgroup_per_zone *mz;
925b7673
JW
1091 struct mem_cgroup *memcg;
1092 struct page_cgroup *pc;
6d12e2d8 1093
f8d66542 1094 if (mem_cgroup_disabled())
925b7673
JW
1095 return &zone->lruvec;
1096
08e552c6 1097 pc = lookup_page_cgroup(page);
38c5d72f 1098 memcg = pc->mem_cgroup;
7512102c
HD
1099
1100 /*
fa9add64 1101 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1102 * an uncharged page off lru does nothing to secure
1103 * its former mem_cgroup from sudden removal.
1104 *
1105 * Our caller holds lru_lock, and PageCgroupUsed is updated
1106 * under page_cgroup lock: between them, they make all uses
1107 * of pc->mem_cgroup safe.
1108 */
fa9add64 1109 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1110 pc->mem_cgroup = memcg = root_mem_cgroup;
1111
925b7673 1112 mz = page_cgroup_zoneinfo(memcg, page);
925b7673 1113 return &mz->lruvec;
08e552c6 1114}
b69408e8 1115
925b7673 1116/**
fa9add64
HD
1117 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1118 * @lruvec: mem_cgroup per zone lru vector
1119 * @lru: index of lru list the page is sitting on
1120 * @nr_pages: positive when adding or negative when removing
925b7673 1121 *
fa9add64
HD
1122 * This function must be called when a page is added to or removed from an
1123 * lru list.
3f58a829 1124 */
fa9add64
HD
1125void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1126 int nr_pages)
3f58a829
MK
1127{
1128 struct mem_cgroup_per_zone *mz;
fa9add64 1129 unsigned long *lru_size;
3f58a829
MK
1130
1131 if (mem_cgroup_disabled())
1132 return;
1133
fa9add64
HD
1134 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1135 lru_size = mz->lru_size + lru;
1136 *lru_size += nr_pages;
1137 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1138}
544122e5 1139
3e92041d 1140/*
c0ff4b85 1141 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1142 * hierarchy subtree
1143 */
c3ac9a8a
JW
1144bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1145 struct mem_cgroup *memcg)
3e92041d 1146{
91c63734
JW
1147 if (root_memcg == memcg)
1148 return true;
3a981f48 1149 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1150 return false;
c3ac9a8a
JW
1151 return css_is_ancestor(&memcg->css, &root_memcg->css);
1152}
1153
1154static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1155 struct mem_cgroup *memcg)
1156{
1157 bool ret;
1158
91c63734 1159 rcu_read_lock();
c3ac9a8a 1160 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1161 rcu_read_unlock();
1162 return ret;
3e92041d
MH
1163}
1164
c0ff4b85 1165int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1166{
1167 int ret;
0b7f569e 1168 struct mem_cgroup *curr = NULL;
158e0a2d 1169 struct task_struct *p;
4c4a2214 1170
158e0a2d 1171 p = find_lock_task_mm(task);
de077d22
DR
1172 if (p) {
1173 curr = try_get_mem_cgroup_from_mm(p->mm);
1174 task_unlock(p);
1175 } else {
1176 /*
1177 * All threads may have already detached their mm's, but the oom
1178 * killer still needs to detect if they have already been oom
1179 * killed to prevent needlessly killing additional tasks.
1180 */
1181 task_lock(task);
1182 curr = mem_cgroup_from_task(task);
1183 if (curr)
1184 css_get(&curr->css);
1185 task_unlock(task);
1186 }
0b7f569e
KH
1187 if (!curr)
1188 return 0;
d31f56db 1189 /*
c0ff4b85 1190 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1191 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1192 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1193 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1194 */
c0ff4b85 1195 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1196 css_put(&curr->css);
4c4a2214
DR
1197 return ret;
1198}
1199
c56d5c7d 1200int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1201{
9b272977 1202 unsigned long inactive_ratio;
14797e23 1203 unsigned long inactive;
9b272977 1204 unsigned long active;
c772be93 1205 unsigned long gb;
14797e23 1206
4d7dcca2
HD
1207 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1208 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1209
c772be93
KM
1210 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1211 if (gb)
1212 inactive_ratio = int_sqrt(10 * gb);
1213 else
1214 inactive_ratio = 1;
1215
9b272977 1216 return inactive * inactive_ratio < active;
14797e23
KM
1217}
1218
c56d5c7d 1219int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1220{
1221 unsigned long active;
1222 unsigned long inactive;
1223
4d7dcca2
HD
1224 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1225 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1226
1227 return (active > inactive);
1228}
1229
6d61ef40
BS
1230#define mem_cgroup_from_res_counter(counter, member) \
1231 container_of(counter, struct mem_cgroup, member)
1232
19942822 1233/**
9d11ea9f 1234 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1235 * @memcg: the memory cgroup
19942822 1236 *
9d11ea9f 1237 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1238 * pages.
19942822 1239 */
c0ff4b85 1240static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1241{
9d11ea9f
JW
1242 unsigned long long margin;
1243
c0ff4b85 1244 margin = res_counter_margin(&memcg->res);
9d11ea9f 1245 if (do_swap_account)
c0ff4b85 1246 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1247 return margin >> PAGE_SHIFT;
19942822
JW
1248}
1249
1f4c025b 1250int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1251{
1252 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1253
1254 /* root ? */
1255 if (cgrp->parent == NULL)
1256 return vm_swappiness;
1257
bf1ff263 1258 return memcg->swappiness;
a7885eb8
KM
1259}
1260
619d094b
KH
1261/*
1262 * memcg->moving_account is used for checking possibility that some thread is
1263 * calling move_account(). When a thread on CPU-A starts moving pages under
1264 * a memcg, other threads should check memcg->moving_account under
1265 * rcu_read_lock(), like this:
1266 *
1267 * CPU-A CPU-B
1268 * rcu_read_lock()
1269 * memcg->moving_account+1 if (memcg->mocing_account)
1270 * take heavy locks.
1271 * synchronize_rcu() update something.
1272 * rcu_read_unlock()
1273 * start move here.
1274 */
4331f7d3
KH
1275
1276/* for quick checking without looking up memcg */
1277atomic_t memcg_moving __read_mostly;
1278
c0ff4b85 1279static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1280{
4331f7d3 1281 atomic_inc(&memcg_moving);
619d094b 1282 atomic_inc(&memcg->moving_account);
32047e2a
KH
1283 synchronize_rcu();
1284}
1285
c0ff4b85 1286static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1287{
619d094b
KH
1288 /*
1289 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1290 * We check NULL in callee rather than caller.
1291 */
4331f7d3
KH
1292 if (memcg) {
1293 atomic_dec(&memcg_moving);
619d094b 1294 atomic_dec(&memcg->moving_account);
4331f7d3 1295 }
32047e2a 1296}
619d094b 1297
32047e2a
KH
1298/*
1299 * 2 routines for checking "mem" is under move_account() or not.
1300 *
13fd1dd9
AM
1301 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1302 * is used for avoiding races in accounting. If true,
32047e2a
KH
1303 * pc->mem_cgroup may be overwritten.
1304 *
1305 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1306 * under hierarchy of moving cgroups. This is for
1307 * waiting at hith-memory prressure caused by "move".
1308 */
1309
13fd1dd9 1310static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1311{
1312 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1313 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1314}
4b534334 1315
c0ff4b85 1316static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1317{
2bd9bb20
KH
1318 struct mem_cgroup *from;
1319 struct mem_cgroup *to;
4b534334 1320 bool ret = false;
2bd9bb20
KH
1321 /*
1322 * Unlike task_move routines, we access mc.to, mc.from not under
1323 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1324 */
1325 spin_lock(&mc.lock);
1326 from = mc.from;
1327 to = mc.to;
1328 if (!from)
1329 goto unlock;
3e92041d 1330
c0ff4b85
R
1331 ret = mem_cgroup_same_or_subtree(memcg, from)
1332 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1333unlock:
1334 spin_unlock(&mc.lock);
4b534334
KH
1335 return ret;
1336}
1337
c0ff4b85 1338static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1339{
1340 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1341 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1342 DEFINE_WAIT(wait);
1343 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1344 /* moving charge context might have finished. */
1345 if (mc.moving_task)
1346 schedule();
1347 finish_wait(&mc.waitq, &wait);
1348 return true;
1349 }
1350 }
1351 return false;
1352}
1353
312734c0
KH
1354/*
1355 * Take this lock when
1356 * - a code tries to modify page's memcg while it's USED.
1357 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1358 * see mem_cgroup_stolen(), too.
312734c0
KH
1359 */
1360static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1361 unsigned long *flags)
1362{
1363 spin_lock_irqsave(&memcg->move_lock, *flags);
1364}
1365
1366static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1367 unsigned long *flags)
1368{
1369 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1370}
1371
e222432b 1372/**
6a6135b6 1373 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1374 * @memcg: The memory cgroup that went over limit
1375 * @p: Task that is going to be killed
1376 *
1377 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1378 * enabled
1379 */
1380void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1381{
1382 struct cgroup *task_cgrp;
1383 struct cgroup *mem_cgrp;
1384 /*
1385 * Need a buffer in BSS, can't rely on allocations. The code relies
1386 * on the assumption that OOM is serialized for memory controller.
1387 * If this assumption is broken, revisit this code.
1388 */
1389 static char memcg_name[PATH_MAX];
1390 int ret;
1391
d31f56db 1392 if (!memcg || !p)
e222432b
BS
1393 return;
1394
e222432b
BS
1395 rcu_read_lock();
1396
1397 mem_cgrp = memcg->css.cgroup;
1398 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1399
1400 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1401 if (ret < 0) {
1402 /*
1403 * Unfortunately, we are unable to convert to a useful name
1404 * But we'll still print out the usage information
1405 */
1406 rcu_read_unlock();
1407 goto done;
1408 }
1409 rcu_read_unlock();
1410
1411 printk(KERN_INFO "Task in %s killed", memcg_name);
1412
1413 rcu_read_lock();
1414 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1415 if (ret < 0) {
1416 rcu_read_unlock();
1417 goto done;
1418 }
1419 rcu_read_unlock();
1420
1421 /*
1422 * Continues from above, so we don't need an KERN_ level
1423 */
1424 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1425done:
1426
1427 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1428 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1429 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1430 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1431 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1432 "failcnt %llu\n",
1433 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1434 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1435 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1436}
1437
81d39c20
KH
1438/*
1439 * This function returns the number of memcg under hierarchy tree. Returns
1440 * 1(self count) if no children.
1441 */
c0ff4b85 1442static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1443{
1444 int num = 0;
7d74b06f
KH
1445 struct mem_cgroup *iter;
1446
c0ff4b85 1447 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1448 num++;
81d39c20
KH
1449 return num;
1450}
1451
a63d83f4
DR
1452/*
1453 * Return the memory (and swap, if configured) limit for a memcg.
1454 */
9cbb78bb 1455static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1456{
1457 u64 limit;
1458 u64 memsw;
1459
f3e8eb70
JW
1460 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1461 limit += total_swap_pages << PAGE_SHIFT;
1462
a63d83f4
DR
1463 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1464 /*
1465 * If memsw is finite and limits the amount of swap space available
1466 * to this memcg, return that limit.
1467 */
1468 return min(limit, memsw);
1469}
1470
876aafbf
DR
1471void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1472 int order)
9cbb78bb
DR
1473{
1474 struct mem_cgroup *iter;
1475 unsigned long chosen_points = 0;
1476 unsigned long totalpages;
1477 unsigned int points = 0;
1478 struct task_struct *chosen = NULL;
1479
876aafbf
DR
1480 /*
1481 * If current has a pending SIGKILL, then automatically select it. The
1482 * goal is to allow it to allocate so that it may quickly exit and free
1483 * its memory.
1484 */
1485 if (fatal_signal_pending(current)) {
1486 set_thread_flag(TIF_MEMDIE);
1487 return;
1488 }
1489
1490 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1491 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1492 for_each_mem_cgroup_tree(iter, memcg) {
1493 struct cgroup *cgroup = iter->css.cgroup;
1494 struct cgroup_iter it;
1495 struct task_struct *task;
1496
1497 cgroup_iter_start(cgroup, &it);
1498 while ((task = cgroup_iter_next(cgroup, &it))) {
1499 switch (oom_scan_process_thread(task, totalpages, NULL,
1500 false)) {
1501 case OOM_SCAN_SELECT:
1502 if (chosen)
1503 put_task_struct(chosen);
1504 chosen = task;
1505 chosen_points = ULONG_MAX;
1506 get_task_struct(chosen);
1507 /* fall through */
1508 case OOM_SCAN_CONTINUE:
1509 continue;
1510 case OOM_SCAN_ABORT:
1511 cgroup_iter_end(cgroup, &it);
1512 mem_cgroup_iter_break(memcg, iter);
1513 if (chosen)
1514 put_task_struct(chosen);
1515 return;
1516 case OOM_SCAN_OK:
1517 break;
1518 };
1519 points = oom_badness(task, memcg, NULL, totalpages);
1520 if (points > chosen_points) {
1521 if (chosen)
1522 put_task_struct(chosen);
1523 chosen = task;
1524 chosen_points = points;
1525 get_task_struct(chosen);
1526 }
1527 }
1528 cgroup_iter_end(cgroup, &it);
1529 }
1530
1531 if (!chosen)
1532 return;
1533 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1534 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1535 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1536}
1537
5660048c
JW
1538static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1539 gfp_t gfp_mask,
1540 unsigned long flags)
1541{
1542 unsigned long total = 0;
1543 bool noswap = false;
1544 int loop;
1545
1546 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1547 noswap = true;
1548 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1549 noswap = true;
1550
1551 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1552 if (loop)
1553 drain_all_stock_async(memcg);
1554 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1555 /*
1556 * Allow limit shrinkers, which are triggered directly
1557 * by userspace, to catch signals and stop reclaim
1558 * after minimal progress, regardless of the margin.
1559 */
1560 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1561 break;
1562 if (mem_cgroup_margin(memcg))
1563 break;
1564 /*
1565 * If nothing was reclaimed after two attempts, there
1566 * may be no reclaimable pages in this hierarchy.
1567 */
1568 if (loop && !total)
1569 break;
1570 }
1571 return total;
1572}
1573
4d0c066d
KH
1574/**
1575 * test_mem_cgroup_node_reclaimable
dad7557e 1576 * @memcg: the target memcg
4d0c066d
KH
1577 * @nid: the node ID to be checked.
1578 * @noswap : specify true here if the user wants flle only information.
1579 *
1580 * This function returns whether the specified memcg contains any
1581 * reclaimable pages on a node. Returns true if there are any reclaimable
1582 * pages in the node.
1583 */
c0ff4b85 1584static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1585 int nid, bool noswap)
1586{
c0ff4b85 1587 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1588 return true;
1589 if (noswap || !total_swap_pages)
1590 return false;
c0ff4b85 1591 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1592 return true;
1593 return false;
1594
1595}
889976db
YH
1596#if MAX_NUMNODES > 1
1597
1598/*
1599 * Always updating the nodemask is not very good - even if we have an empty
1600 * list or the wrong list here, we can start from some node and traverse all
1601 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1602 *
1603 */
c0ff4b85 1604static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1605{
1606 int nid;
453a9bf3
KH
1607 /*
1608 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1609 * pagein/pageout changes since the last update.
1610 */
c0ff4b85 1611 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1612 return;
c0ff4b85 1613 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1614 return;
1615
889976db 1616 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1617 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1618
1619 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1620
c0ff4b85
R
1621 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1622 node_clear(nid, memcg->scan_nodes);
889976db 1623 }
453a9bf3 1624
c0ff4b85
R
1625 atomic_set(&memcg->numainfo_events, 0);
1626 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1627}
1628
1629/*
1630 * Selecting a node where we start reclaim from. Because what we need is just
1631 * reducing usage counter, start from anywhere is O,K. Considering
1632 * memory reclaim from current node, there are pros. and cons.
1633 *
1634 * Freeing memory from current node means freeing memory from a node which
1635 * we'll use or we've used. So, it may make LRU bad. And if several threads
1636 * hit limits, it will see a contention on a node. But freeing from remote
1637 * node means more costs for memory reclaim because of memory latency.
1638 *
1639 * Now, we use round-robin. Better algorithm is welcomed.
1640 */
c0ff4b85 1641int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1642{
1643 int node;
1644
c0ff4b85
R
1645 mem_cgroup_may_update_nodemask(memcg);
1646 node = memcg->last_scanned_node;
889976db 1647
c0ff4b85 1648 node = next_node(node, memcg->scan_nodes);
889976db 1649 if (node == MAX_NUMNODES)
c0ff4b85 1650 node = first_node(memcg->scan_nodes);
889976db
YH
1651 /*
1652 * We call this when we hit limit, not when pages are added to LRU.
1653 * No LRU may hold pages because all pages are UNEVICTABLE or
1654 * memcg is too small and all pages are not on LRU. In that case,
1655 * we use curret node.
1656 */
1657 if (unlikely(node == MAX_NUMNODES))
1658 node = numa_node_id();
1659
c0ff4b85 1660 memcg->last_scanned_node = node;
889976db
YH
1661 return node;
1662}
1663
4d0c066d
KH
1664/*
1665 * Check all nodes whether it contains reclaimable pages or not.
1666 * For quick scan, we make use of scan_nodes. This will allow us to skip
1667 * unused nodes. But scan_nodes is lazily updated and may not cotain
1668 * enough new information. We need to do double check.
1669 */
6bbda35c 1670static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1671{
1672 int nid;
1673
1674 /*
1675 * quick check...making use of scan_node.
1676 * We can skip unused nodes.
1677 */
c0ff4b85
R
1678 if (!nodes_empty(memcg->scan_nodes)) {
1679 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1680 nid < MAX_NUMNODES;
c0ff4b85 1681 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1682
c0ff4b85 1683 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1684 return true;
1685 }
1686 }
1687 /*
1688 * Check rest of nodes.
1689 */
1690 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1691 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1692 continue;
c0ff4b85 1693 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1694 return true;
1695 }
1696 return false;
1697}
1698
889976db 1699#else
c0ff4b85 1700int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1701{
1702 return 0;
1703}
4d0c066d 1704
6bbda35c 1705static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1706{
c0ff4b85 1707 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1708}
889976db
YH
1709#endif
1710
5660048c
JW
1711static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1712 struct zone *zone,
1713 gfp_t gfp_mask,
1714 unsigned long *total_scanned)
6d61ef40 1715{
9f3a0d09 1716 struct mem_cgroup *victim = NULL;
5660048c 1717 int total = 0;
04046e1a 1718 int loop = 0;
9d11ea9f 1719 unsigned long excess;
185efc0f 1720 unsigned long nr_scanned;
527a5ec9
JW
1721 struct mem_cgroup_reclaim_cookie reclaim = {
1722 .zone = zone,
1723 .priority = 0,
1724 };
9d11ea9f 1725
c0ff4b85 1726 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1727
4e416953 1728 while (1) {
527a5ec9 1729 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1730 if (!victim) {
04046e1a 1731 loop++;
4e416953
BS
1732 if (loop >= 2) {
1733 /*
1734 * If we have not been able to reclaim
1735 * anything, it might because there are
1736 * no reclaimable pages under this hierarchy
1737 */
5660048c 1738 if (!total)
4e416953 1739 break;
4e416953 1740 /*
25985edc 1741 * We want to do more targeted reclaim.
4e416953
BS
1742 * excess >> 2 is not to excessive so as to
1743 * reclaim too much, nor too less that we keep
1744 * coming back to reclaim from this cgroup
1745 */
1746 if (total >= (excess >> 2) ||
9f3a0d09 1747 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1748 break;
4e416953 1749 }
9f3a0d09 1750 continue;
4e416953 1751 }
5660048c 1752 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1753 continue;
5660048c
JW
1754 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1755 zone, &nr_scanned);
1756 *total_scanned += nr_scanned;
1757 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1758 break;
6d61ef40 1759 }
9f3a0d09 1760 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1761 return total;
6d61ef40
BS
1762}
1763
867578cb
KH
1764/*
1765 * Check OOM-Killer is already running under our hierarchy.
1766 * If someone is running, return false.
1af8efe9 1767 * Has to be called with memcg_oom_lock
867578cb 1768 */
c0ff4b85 1769static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1770{
79dfdacc 1771 struct mem_cgroup *iter, *failed = NULL;
a636b327 1772
9f3a0d09 1773 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1774 if (iter->oom_lock) {
79dfdacc
MH
1775 /*
1776 * this subtree of our hierarchy is already locked
1777 * so we cannot give a lock.
1778 */
79dfdacc 1779 failed = iter;
9f3a0d09
JW
1780 mem_cgroup_iter_break(memcg, iter);
1781 break;
23751be0
JW
1782 } else
1783 iter->oom_lock = true;
7d74b06f 1784 }
867578cb 1785
79dfdacc 1786 if (!failed)
23751be0 1787 return true;
79dfdacc
MH
1788
1789 /*
1790 * OK, we failed to lock the whole subtree so we have to clean up
1791 * what we set up to the failing subtree
1792 */
9f3a0d09 1793 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1794 if (iter == failed) {
9f3a0d09
JW
1795 mem_cgroup_iter_break(memcg, iter);
1796 break;
79dfdacc
MH
1797 }
1798 iter->oom_lock = false;
1799 }
23751be0 1800 return false;
a636b327 1801}
0b7f569e 1802
79dfdacc 1803/*
1af8efe9 1804 * Has to be called with memcg_oom_lock
79dfdacc 1805 */
c0ff4b85 1806static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1807{
7d74b06f
KH
1808 struct mem_cgroup *iter;
1809
c0ff4b85 1810 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1811 iter->oom_lock = false;
1812 return 0;
1813}
1814
c0ff4b85 1815static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1816{
1817 struct mem_cgroup *iter;
1818
c0ff4b85 1819 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1820 atomic_inc(&iter->under_oom);
1821}
1822
c0ff4b85 1823static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1824{
1825 struct mem_cgroup *iter;
1826
867578cb
KH
1827 /*
1828 * When a new child is created while the hierarchy is under oom,
1829 * mem_cgroup_oom_lock() may not be called. We have to use
1830 * atomic_add_unless() here.
1831 */
c0ff4b85 1832 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1833 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1834}
1835
1af8efe9 1836static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1837static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1838
dc98df5a 1839struct oom_wait_info {
d79154bb 1840 struct mem_cgroup *memcg;
dc98df5a
KH
1841 wait_queue_t wait;
1842};
1843
1844static int memcg_oom_wake_function(wait_queue_t *wait,
1845 unsigned mode, int sync, void *arg)
1846{
d79154bb
HD
1847 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1848 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1849 struct oom_wait_info *oom_wait_info;
1850
1851 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1852 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1853
dc98df5a 1854 /*
d79154bb 1855 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1856 * Then we can use css_is_ancestor without taking care of RCU.
1857 */
c0ff4b85
R
1858 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1859 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1860 return 0;
dc98df5a
KH
1861 return autoremove_wake_function(wait, mode, sync, arg);
1862}
1863
c0ff4b85 1864static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1865{
c0ff4b85
R
1866 /* for filtering, pass "memcg" as argument. */
1867 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1868}
1869
c0ff4b85 1870static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1871{
c0ff4b85
R
1872 if (memcg && atomic_read(&memcg->under_oom))
1873 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1874}
1875
867578cb
KH
1876/*
1877 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1878 */
6bbda35c
KS
1879static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1880 int order)
0b7f569e 1881{
dc98df5a 1882 struct oom_wait_info owait;
3c11ecf4 1883 bool locked, need_to_kill;
867578cb 1884
d79154bb 1885 owait.memcg = memcg;
dc98df5a
KH
1886 owait.wait.flags = 0;
1887 owait.wait.func = memcg_oom_wake_function;
1888 owait.wait.private = current;
1889 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1890 need_to_kill = true;
c0ff4b85 1891 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1892
c0ff4b85 1893 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1894 spin_lock(&memcg_oom_lock);
c0ff4b85 1895 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1896 /*
1897 * Even if signal_pending(), we can't quit charge() loop without
1898 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1899 * under OOM is always welcomed, use TASK_KILLABLE here.
1900 */
3c11ecf4 1901 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1902 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1903 need_to_kill = false;
1904 if (locked)
c0ff4b85 1905 mem_cgroup_oom_notify(memcg);
1af8efe9 1906 spin_unlock(&memcg_oom_lock);
867578cb 1907
3c11ecf4
KH
1908 if (need_to_kill) {
1909 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1910 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1911 } else {
867578cb 1912 schedule();
dc98df5a 1913 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1914 }
1af8efe9 1915 spin_lock(&memcg_oom_lock);
79dfdacc 1916 if (locked)
c0ff4b85
R
1917 mem_cgroup_oom_unlock(memcg);
1918 memcg_wakeup_oom(memcg);
1af8efe9 1919 spin_unlock(&memcg_oom_lock);
867578cb 1920
c0ff4b85 1921 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1922
867578cb
KH
1923 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1924 return false;
1925 /* Give chance to dying process */
715a5ee8 1926 schedule_timeout_uninterruptible(1);
867578cb 1927 return true;
0b7f569e
KH
1928}
1929
d69b042f
BS
1930/*
1931 * Currently used to update mapped file statistics, but the routine can be
1932 * generalized to update other statistics as well.
32047e2a
KH
1933 *
1934 * Notes: Race condition
1935 *
1936 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1937 * it tends to be costly. But considering some conditions, we doesn't need
1938 * to do so _always_.
1939 *
1940 * Considering "charge", lock_page_cgroup() is not required because all
1941 * file-stat operations happen after a page is attached to radix-tree. There
1942 * are no race with "charge".
1943 *
1944 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1945 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1946 * if there are race with "uncharge". Statistics itself is properly handled
1947 * by flags.
1948 *
1949 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1950 * small, we check mm->moving_account and detect there are possibility of race
1951 * If there is, we take a lock.
d69b042f 1952 */
26174efd 1953
89c06bd5
KH
1954void __mem_cgroup_begin_update_page_stat(struct page *page,
1955 bool *locked, unsigned long *flags)
1956{
1957 struct mem_cgroup *memcg;
1958 struct page_cgroup *pc;
1959
1960 pc = lookup_page_cgroup(page);
1961again:
1962 memcg = pc->mem_cgroup;
1963 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1964 return;
1965 /*
1966 * If this memory cgroup is not under account moving, we don't
da92c47d 1967 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 1968 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1969 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 1970 */
13fd1dd9 1971 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
1972 return;
1973
1974 move_lock_mem_cgroup(memcg, flags);
1975 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1976 move_unlock_mem_cgroup(memcg, flags);
1977 goto again;
1978 }
1979 *locked = true;
1980}
1981
1982void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1983{
1984 struct page_cgroup *pc = lookup_page_cgroup(page);
1985
1986 /*
1987 * It's guaranteed that pc->mem_cgroup never changes while
1988 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 1989 * should take move_lock_mem_cgroup().
89c06bd5
KH
1990 */
1991 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1992}
1993
2a7106f2
GT
1994void mem_cgroup_update_page_stat(struct page *page,
1995 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1996{
c0ff4b85 1997 struct mem_cgroup *memcg;
32047e2a 1998 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 1999 unsigned long uninitialized_var(flags);
d69b042f 2000
cfa44946 2001 if (mem_cgroup_disabled())
d69b042f 2002 return;
89c06bd5 2003
c0ff4b85
R
2004 memcg = pc->mem_cgroup;
2005 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2006 return;
26174efd 2007
26174efd 2008 switch (idx) {
2a7106f2 2009 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2010 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2011 break;
2012 default:
2013 BUG();
8725d541 2014 }
d69b042f 2015
c0ff4b85 2016 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2017}
26174efd 2018
cdec2e42
KH
2019/*
2020 * size of first charge trial. "32" comes from vmscan.c's magic value.
2021 * TODO: maybe necessary to use big numbers in big irons.
2022 */
7ec99d62 2023#define CHARGE_BATCH 32U
cdec2e42
KH
2024struct memcg_stock_pcp {
2025 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2026 unsigned int nr_pages;
cdec2e42 2027 struct work_struct work;
26fe6168 2028 unsigned long flags;
a0db00fc 2029#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2030};
2031static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2032static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2033
2034/*
11c9ea4e 2035 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2036 * from local stock and true is returned. If the stock is 0 or charges from a
2037 * cgroup which is not current target, returns false. This stock will be
2038 * refilled.
2039 */
c0ff4b85 2040static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2041{
2042 struct memcg_stock_pcp *stock;
2043 bool ret = true;
2044
2045 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2046 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2047 stock->nr_pages--;
cdec2e42
KH
2048 else /* need to call res_counter_charge */
2049 ret = false;
2050 put_cpu_var(memcg_stock);
2051 return ret;
2052}
2053
2054/*
2055 * Returns stocks cached in percpu to res_counter and reset cached information.
2056 */
2057static void drain_stock(struct memcg_stock_pcp *stock)
2058{
2059 struct mem_cgroup *old = stock->cached;
2060
11c9ea4e
JW
2061 if (stock->nr_pages) {
2062 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2063
2064 res_counter_uncharge(&old->res, bytes);
cdec2e42 2065 if (do_swap_account)
11c9ea4e
JW
2066 res_counter_uncharge(&old->memsw, bytes);
2067 stock->nr_pages = 0;
cdec2e42
KH
2068 }
2069 stock->cached = NULL;
cdec2e42
KH
2070}
2071
2072/*
2073 * This must be called under preempt disabled or must be called by
2074 * a thread which is pinned to local cpu.
2075 */
2076static void drain_local_stock(struct work_struct *dummy)
2077{
2078 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2079 drain_stock(stock);
26fe6168 2080 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2081}
2082
2083/*
2084 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2085 * This will be consumed by consume_stock() function, later.
cdec2e42 2086 */
c0ff4b85 2087static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2088{
2089 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2090
c0ff4b85 2091 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2092 drain_stock(stock);
c0ff4b85 2093 stock->cached = memcg;
cdec2e42 2094 }
11c9ea4e 2095 stock->nr_pages += nr_pages;
cdec2e42
KH
2096 put_cpu_var(memcg_stock);
2097}
2098
2099/*
c0ff4b85 2100 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2101 * of the hierarchy under it. sync flag says whether we should block
2102 * until the work is done.
cdec2e42 2103 */
c0ff4b85 2104static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2105{
26fe6168 2106 int cpu, curcpu;
d38144b7 2107
cdec2e42 2108 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2109 get_online_cpus();
5af12d0e 2110 curcpu = get_cpu();
cdec2e42
KH
2111 for_each_online_cpu(cpu) {
2112 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2113 struct mem_cgroup *memcg;
26fe6168 2114
c0ff4b85
R
2115 memcg = stock->cached;
2116 if (!memcg || !stock->nr_pages)
26fe6168 2117 continue;
c0ff4b85 2118 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2119 continue;
d1a05b69
MH
2120 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2121 if (cpu == curcpu)
2122 drain_local_stock(&stock->work);
2123 else
2124 schedule_work_on(cpu, &stock->work);
2125 }
cdec2e42 2126 }
5af12d0e 2127 put_cpu();
d38144b7
MH
2128
2129 if (!sync)
2130 goto out;
2131
2132 for_each_online_cpu(cpu) {
2133 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2134 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2135 flush_work(&stock->work);
2136 }
2137out:
cdec2e42 2138 put_online_cpus();
d38144b7
MH
2139}
2140
2141/*
2142 * Tries to drain stocked charges in other cpus. This function is asynchronous
2143 * and just put a work per cpu for draining localy on each cpu. Caller can
2144 * expects some charges will be back to res_counter later but cannot wait for
2145 * it.
2146 */
c0ff4b85 2147static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2148{
9f50fad6
MH
2149 /*
2150 * If someone calls draining, avoid adding more kworker runs.
2151 */
2152 if (!mutex_trylock(&percpu_charge_mutex))
2153 return;
c0ff4b85 2154 drain_all_stock(root_memcg, false);
9f50fad6 2155 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2156}
2157
2158/* This is a synchronous drain interface. */
c0ff4b85 2159static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2160{
2161 /* called when force_empty is called */
9f50fad6 2162 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2163 drain_all_stock(root_memcg, true);
9f50fad6 2164 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2165}
2166
711d3d2c
KH
2167/*
2168 * This function drains percpu counter value from DEAD cpu and
2169 * move it to local cpu. Note that this function can be preempted.
2170 */
c0ff4b85 2171static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2172{
2173 int i;
2174
c0ff4b85 2175 spin_lock(&memcg->pcp_counter_lock);
6104621d 2176 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2177 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2178
c0ff4b85
R
2179 per_cpu(memcg->stat->count[i], cpu) = 0;
2180 memcg->nocpu_base.count[i] += x;
711d3d2c 2181 }
e9f8974f 2182 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2183 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2184
c0ff4b85
R
2185 per_cpu(memcg->stat->events[i], cpu) = 0;
2186 memcg->nocpu_base.events[i] += x;
e9f8974f 2187 }
c0ff4b85 2188 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2189}
2190
2191static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2192 unsigned long action,
2193 void *hcpu)
2194{
2195 int cpu = (unsigned long)hcpu;
2196 struct memcg_stock_pcp *stock;
711d3d2c 2197 struct mem_cgroup *iter;
cdec2e42 2198
619d094b 2199 if (action == CPU_ONLINE)
1489ebad 2200 return NOTIFY_OK;
1489ebad 2201
d833049b 2202 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2203 return NOTIFY_OK;
711d3d2c 2204
9f3a0d09 2205 for_each_mem_cgroup(iter)
711d3d2c
KH
2206 mem_cgroup_drain_pcp_counter(iter, cpu);
2207
cdec2e42
KH
2208 stock = &per_cpu(memcg_stock, cpu);
2209 drain_stock(stock);
2210 return NOTIFY_OK;
2211}
2212
4b534334
KH
2213
2214/* See __mem_cgroup_try_charge() for details */
2215enum {
2216 CHARGE_OK, /* success */
2217 CHARGE_RETRY, /* need to retry but retry is not bad */
2218 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2219 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2220 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2221};
2222
c0ff4b85 2223static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2224 unsigned int nr_pages, bool oom_check)
4b534334 2225{
7ec99d62 2226 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2227 struct mem_cgroup *mem_over_limit;
2228 struct res_counter *fail_res;
2229 unsigned long flags = 0;
2230 int ret;
2231
c0ff4b85 2232 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2233
2234 if (likely(!ret)) {
2235 if (!do_swap_account)
2236 return CHARGE_OK;
c0ff4b85 2237 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2238 if (likely(!ret))
2239 return CHARGE_OK;
2240
c0ff4b85 2241 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2242 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2243 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2244 } else
2245 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2246 /*
7ec99d62
JW
2247 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2248 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2249 *
2250 * Never reclaim on behalf of optional batching, retry with a
2251 * single page instead.
2252 */
7ec99d62 2253 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2254 return CHARGE_RETRY;
2255
2256 if (!(gfp_mask & __GFP_WAIT))
2257 return CHARGE_WOULDBLOCK;
2258
5660048c 2259 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2260 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2261 return CHARGE_RETRY;
4b534334 2262 /*
19942822
JW
2263 * Even though the limit is exceeded at this point, reclaim
2264 * may have been able to free some pages. Retry the charge
2265 * before killing the task.
2266 *
2267 * Only for regular pages, though: huge pages are rather
2268 * unlikely to succeed so close to the limit, and we fall back
2269 * to regular pages anyway in case of failure.
4b534334 2270 */
7ec99d62 2271 if (nr_pages == 1 && ret)
4b534334
KH
2272 return CHARGE_RETRY;
2273
2274 /*
2275 * At task move, charge accounts can be doubly counted. So, it's
2276 * better to wait until the end of task_move if something is going on.
2277 */
2278 if (mem_cgroup_wait_acct_move(mem_over_limit))
2279 return CHARGE_RETRY;
2280
2281 /* If we don't need to call oom-killer at el, return immediately */
2282 if (!oom_check)
2283 return CHARGE_NOMEM;
2284 /* check OOM */
e845e199 2285 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2286 return CHARGE_OOM_DIE;
2287
2288 return CHARGE_RETRY;
2289}
2290
f817ed48 2291/*
38c5d72f
KH
2292 * __mem_cgroup_try_charge() does
2293 * 1. detect memcg to be charged against from passed *mm and *ptr,
2294 * 2. update res_counter
2295 * 3. call memory reclaim if necessary.
2296 *
2297 * In some special case, if the task is fatal, fatal_signal_pending() or
2298 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2299 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2300 * as possible without any hazards. 2: all pages should have a valid
2301 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2302 * pointer, that is treated as a charge to root_mem_cgroup.
2303 *
2304 * So __mem_cgroup_try_charge() will return
2305 * 0 ... on success, filling *ptr with a valid memcg pointer.
2306 * -ENOMEM ... charge failure because of resource limits.
2307 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2308 *
2309 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2310 * the oom-killer can be invoked.
8a9f3ccd 2311 */
f817ed48 2312static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2313 gfp_t gfp_mask,
7ec99d62 2314 unsigned int nr_pages,
c0ff4b85 2315 struct mem_cgroup **ptr,
7ec99d62 2316 bool oom)
8a9f3ccd 2317{
7ec99d62 2318 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2319 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2320 struct mem_cgroup *memcg = NULL;
4b534334 2321 int ret;
a636b327 2322
867578cb
KH
2323 /*
2324 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2325 * in system level. So, allow to go ahead dying process in addition to
2326 * MEMDIE process.
2327 */
2328 if (unlikely(test_thread_flag(TIF_MEMDIE)
2329 || fatal_signal_pending(current)))
2330 goto bypass;
a636b327 2331
8a9f3ccd 2332 /*
3be91277
HD
2333 * We always charge the cgroup the mm_struct belongs to.
2334 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2335 * thread group leader migrates. It's possible that mm is not
24467cac 2336 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2337 */
c0ff4b85 2338 if (!*ptr && !mm)
38c5d72f 2339 *ptr = root_mem_cgroup;
f75ca962 2340again:
c0ff4b85
R
2341 if (*ptr) { /* css should be a valid one */
2342 memcg = *ptr;
2343 VM_BUG_ON(css_is_removed(&memcg->css));
2344 if (mem_cgroup_is_root(memcg))
f75ca962 2345 goto done;
c0ff4b85 2346 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2347 goto done;
c0ff4b85 2348 css_get(&memcg->css);
4b534334 2349 } else {
f75ca962 2350 struct task_struct *p;
54595fe2 2351
f75ca962
KH
2352 rcu_read_lock();
2353 p = rcu_dereference(mm->owner);
f75ca962 2354 /*
ebb76ce1 2355 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2356 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2357 * race with swapoff. Then, we have small risk of mis-accouning.
2358 * But such kind of mis-account by race always happens because
2359 * we don't have cgroup_mutex(). It's overkill and we allo that
2360 * small race, here.
2361 * (*) swapoff at el will charge against mm-struct not against
2362 * task-struct. So, mm->owner can be NULL.
f75ca962 2363 */
c0ff4b85 2364 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2365 if (!memcg)
2366 memcg = root_mem_cgroup;
2367 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2368 rcu_read_unlock();
2369 goto done;
2370 }
c0ff4b85 2371 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2372 /*
2373 * It seems dagerous to access memcg without css_get().
2374 * But considering how consume_stok works, it's not
2375 * necessary. If consume_stock success, some charges
2376 * from this memcg are cached on this cpu. So, we
2377 * don't need to call css_get()/css_tryget() before
2378 * calling consume_stock().
2379 */
2380 rcu_read_unlock();
2381 goto done;
2382 }
2383 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2384 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2385 rcu_read_unlock();
2386 goto again;
2387 }
2388 rcu_read_unlock();
2389 }
8a9f3ccd 2390
4b534334
KH
2391 do {
2392 bool oom_check;
7a81b88c 2393
4b534334 2394 /* If killed, bypass charge */
f75ca962 2395 if (fatal_signal_pending(current)) {
c0ff4b85 2396 css_put(&memcg->css);
4b534334 2397 goto bypass;
f75ca962 2398 }
6d61ef40 2399
4b534334
KH
2400 oom_check = false;
2401 if (oom && !nr_oom_retries) {
2402 oom_check = true;
2403 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2404 }
66e1707b 2405
c0ff4b85 2406 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2407 switch (ret) {
2408 case CHARGE_OK:
2409 break;
2410 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2411 batch = nr_pages;
c0ff4b85
R
2412 css_put(&memcg->css);
2413 memcg = NULL;
f75ca962 2414 goto again;
4b534334 2415 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2416 css_put(&memcg->css);
4b534334
KH
2417 goto nomem;
2418 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2419 if (!oom) {
c0ff4b85 2420 css_put(&memcg->css);
867578cb 2421 goto nomem;
f75ca962 2422 }
4b534334
KH
2423 /* If oom, we never return -ENOMEM */
2424 nr_oom_retries--;
2425 break;
2426 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2427 css_put(&memcg->css);
867578cb 2428 goto bypass;
66e1707b 2429 }
4b534334
KH
2430 } while (ret != CHARGE_OK);
2431
7ec99d62 2432 if (batch > nr_pages)
c0ff4b85
R
2433 refill_stock(memcg, batch - nr_pages);
2434 css_put(&memcg->css);
0c3e73e8 2435done:
c0ff4b85 2436 *ptr = memcg;
7a81b88c
KH
2437 return 0;
2438nomem:
c0ff4b85 2439 *ptr = NULL;
7a81b88c 2440 return -ENOMEM;
867578cb 2441bypass:
38c5d72f
KH
2442 *ptr = root_mem_cgroup;
2443 return -EINTR;
7a81b88c 2444}
8a9f3ccd 2445
a3032a2c
DN
2446/*
2447 * Somemtimes we have to undo a charge we got by try_charge().
2448 * This function is for that and do uncharge, put css's refcnt.
2449 * gotten by try_charge().
2450 */
c0ff4b85 2451static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2452 unsigned int nr_pages)
a3032a2c 2453{
c0ff4b85 2454 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2455 unsigned long bytes = nr_pages * PAGE_SIZE;
2456
c0ff4b85 2457 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2458 if (do_swap_account)
c0ff4b85 2459 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2460 }
854ffa8d
DN
2461}
2462
d01dd17f
KH
2463/*
2464 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2465 * This is useful when moving usage to parent cgroup.
2466 */
2467static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2468 unsigned int nr_pages)
2469{
2470 unsigned long bytes = nr_pages * PAGE_SIZE;
2471
2472 if (mem_cgroup_is_root(memcg))
2473 return;
2474
2475 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2476 if (do_swap_account)
2477 res_counter_uncharge_until(&memcg->memsw,
2478 memcg->memsw.parent, bytes);
2479}
2480
a3b2d692
KH
2481/*
2482 * A helper function to get mem_cgroup from ID. must be called under
2483 * rcu_read_lock(). The caller must check css_is_removed() or some if
2484 * it's concern. (dropping refcnt from swap can be called against removed
2485 * memcg.)
2486 */
2487static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2488{
2489 struct cgroup_subsys_state *css;
2490
2491 /* ID 0 is unused ID */
2492 if (!id)
2493 return NULL;
2494 css = css_lookup(&mem_cgroup_subsys, id);
2495 if (!css)
2496 return NULL;
2497 return container_of(css, struct mem_cgroup, css);
2498}
2499
e42d9d5d 2500struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2501{
c0ff4b85 2502 struct mem_cgroup *memcg = NULL;
3c776e64 2503 struct page_cgroup *pc;
a3b2d692 2504 unsigned short id;
b5a84319
KH
2505 swp_entry_t ent;
2506
3c776e64
DN
2507 VM_BUG_ON(!PageLocked(page));
2508
3c776e64 2509 pc = lookup_page_cgroup(page);
c0bd3f63 2510 lock_page_cgroup(pc);
a3b2d692 2511 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2512 memcg = pc->mem_cgroup;
2513 if (memcg && !css_tryget(&memcg->css))
2514 memcg = NULL;
e42d9d5d 2515 } else if (PageSwapCache(page)) {
3c776e64 2516 ent.val = page_private(page);
9fb4b7cc 2517 id = lookup_swap_cgroup_id(ent);
a3b2d692 2518 rcu_read_lock();
c0ff4b85
R
2519 memcg = mem_cgroup_lookup(id);
2520 if (memcg && !css_tryget(&memcg->css))
2521 memcg = NULL;
a3b2d692 2522 rcu_read_unlock();
3c776e64 2523 }
c0bd3f63 2524 unlock_page_cgroup(pc);
c0ff4b85 2525 return memcg;
b5a84319
KH
2526}
2527
c0ff4b85 2528static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2529 struct page *page,
7ec99d62 2530 unsigned int nr_pages,
9ce70c02
HD
2531 enum charge_type ctype,
2532 bool lrucare)
7a81b88c 2533{
ce587e65 2534 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2535 struct zone *uninitialized_var(zone);
fa9add64 2536 struct lruvec *lruvec;
9ce70c02 2537 bool was_on_lru = false;
b2402857 2538 bool anon;
9ce70c02 2539
ca3e0214
KH
2540 lock_page_cgroup(pc);
2541 if (unlikely(PageCgroupUsed(pc))) {
2542 unlock_page_cgroup(pc);
c0ff4b85 2543 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2544 return;
2545 }
2546 /*
2547 * we don't need page_cgroup_lock about tail pages, becase they are not
2548 * accessed by any other context at this point.
2549 */
9ce70c02
HD
2550
2551 /*
2552 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2553 * may already be on some other mem_cgroup's LRU. Take care of it.
2554 */
2555 if (lrucare) {
2556 zone = page_zone(page);
2557 spin_lock_irq(&zone->lru_lock);
2558 if (PageLRU(page)) {
fa9add64 2559 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2560 ClearPageLRU(page);
fa9add64 2561 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2562 was_on_lru = true;
2563 }
2564 }
2565
c0ff4b85 2566 pc->mem_cgroup = memcg;
261fb61a
KH
2567 /*
2568 * We access a page_cgroup asynchronously without lock_page_cgroup().
2569 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2570 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2571 * before USED bit, we need memory barrier here.
2572 * See mem_cgroup_add_lru_list(), etc.
2573 */
08e552c6 2574 smp_wmb();
b2402857 2575 SetPageCgroupUsed(pc);
3be91277 2576
9ce70c02
HD
2577 if (lrucare) {
2578 if (was_on_lru) {
fa9add64 2579 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2580 VM_BUG_ON(PageLRU(page));
2581 SetPageLRU(page);
fa9add64 2582 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2583 }
2584 spin_unlock_irq(&zone->lru_lock);
2585 }
2586
41326c17 2587 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2588 anon = true;
2589 else
2590 anon = false;
2591
2592 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2593 unlock_page_cgroup(pc);
9ce70c02 2594
430e4863
KH
2595 /*
2596 * "charge_statistics" updated event counter. Then, check it.
2597 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2598 * if they exceeds softlimit.
2599 */
c0ff4b85 2600 memcg_check_events(memcg, page);
7a81b88c 2601}
66e1707b 2602
ca3e0214
KH
2603#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2604
a0db00fc 2605#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
2606/*
2607 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2608 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2609 * charge/uncharge will be never happen and move_account() is done under
2610 * compound_lock(), so we don't have to take care of races.
ca3e0214 2611 */
e94c8a9c 2612void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2613{
2614 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2615 struct page_cgroup *pc;
2616 int i;
ca3e0214 2617
3d37c4a9
KH
2618 if (mem_cgroup_disabled())
2619 return;
e94c8a9c
KH
2620 for (i = 1; i < HPAGE_PMD_NR; i++) {
2621 pc = head_pc + i;
2622 pc->mem_cgroup = head_pc->mem_cgroup;
2623 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2624 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2625 }
ca3e0214 2626}
12d27107 2627#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2628
f817ed48 2629/**
de3638d9 2630 * mem_cgroup_move_account - move account of the page
5564e88b 2631 * @page: the page
7ec99d62 2632 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2633 * @pc: page_cgroup of the page.
2634 * @from: mem_cgroup which the page is moved from.
2635 * @to: mem_cgroup which the page is moved to. @from != @to.
2636 *
2637 * The caller must confirm following.
08e552c6 2638 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2639 * - compound_lock is held when nr_pages > 1
f817ed48 2640 *
2f3479b1
KH
2641 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2642 * from old cgroup.
f817ed48 2643 */
7ec99d62
JW
2644static int mem_cgroup_move_account(struct page *page,
2645 unsigned int nr_pages,
2646 struct page_cgroup *pc,
2647 struct mem_cgroup *from,
2f3479b1 2648 struct mem_cgroup *to)
f817ed48 2649{
de3638d9
JW
2650 unsigned long flags;
2651 int ret;
b2402857 2652 bool anon = PageAnon(page);
987eba66 2653
f817ed48 2654 VM_BUG_ON(from == to);
5564e88b 2655 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2656 /*
2657 * The page is isolated from LRU. So, collapse function
2658 * will not handle this page. But page splitting can happen.
2659 * Do this check under compound_page_lock(). The caller should
2660 * hold it.
2661 */
2662 ret = -EBUSY;
7ec99d62 2663 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2664 goto out;
2665
2666 lock_page_cgroup(pc);
2667
2668 ret = -EINVAL;
2669 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2670 goto unlock;
2671
312734c0 2672 move_lock_mem_cgroup(from, &flags);
f817ed48 2673
2ff76f11 2674 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2675 /* Update mapped_file data for mem_cgroup */
2676 preempt_disable();
2677 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2678 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2679 preempt_enable();
d69b042f 2680 }
b2402857 2681 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 2682
854ffa8d 2683 /* caller should have done css_get */
08e552c6 2684 pc->mem_cgroup = to;
b2402857 2685 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2686 /*
2687 * We charges against "to" which may not have any tasks. Then, "to"
2688 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2689 * this function is just force_empty() and move charge, so it's
25985edc 2690 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2691 * status here.
88703267 2692 */
312734c0 2693 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2694 ret = 0;
2695unlock:
57f9fd7d 2696 unlock_page_cgroup(pc);
d2265e6f
KH
2697 /*
2698 * check events
2699 */
5564e88b
JW
2700 memcg_check_events(to, page);
2701 memcg_check_events(from, page);
de3638d9 2702out:
f817ed48
KH
2703 return ret;
2704}
2705
2706/*
2707 * move charges to its parent.
2708 */
2709
5564e88b
JW
2710static int mem_cgroup_move_parent(struct page *page,
2711 struct page_cgroup *pc,
6068bf01 2712 struct mem_cgroup *child)
f817ed48 2713{
f817ed48 2714 struct mem_cgroup *parent;
7ec99d62 2715 unsigned int nr_pages;
4be4489f 2716 unsigned long uninitialized_var(flags);
f817ed48
KH
2717 int ret;
2718
2719 /* Is ROOT ? */
cc926f78 2720 if (mem_cgroup_is_root(child))
f817ed48
KH
2721 return -EINVAL;
2722
57f9fd7d
DN
2723 ret = -EBUSY;
2724 if (!get_page_unless_zero(page))
2725 goto out;
2726 if (isolate_lru_page(page))
2727 goto put;
52dbb905 2728
7ec99d62 2729 nr_pages = hpage_nr_pages(page);
08e552c6 2730
cc926f78
KH
2731 parent = parent_mem_cgroup(child);
2732 /*
2733 * If no parent, move charges to root cgroup.
2734 */
2735 if (!parent)
2736 parent = root_mem_cgroup;
f817ed48 2737
7ec99d62 2738 if (nr_pages > 1)
987eba66
KH
2739 flags = compound_lock_irqsave(page);
2740
cc926f78 2741 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 2742 pc, child, parent);
cc926f78
KH
2743 if (!ret)
2744 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 2745
7ec99d62 2746 if (nr_pages > 1)
987eba66 2747 compound_unlock_irqrestore(page, flags);
08e552c6 2748 putback_lru_page(page);
57f9fd7d 2749put:
40d58138 2750 put_page(page);
57f9fd7d 2751out:
f817ed48
KH
2752 return ret;
2753}
2754
7a81b88c
KH
2755/*
2756 * Charge the memory controller for page usage.
2757 * Return
2758 * 0 if the charge was successful
2759 * < 0 if the cgroup is over its limit
2760 */
2761static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2762 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2763{
c0ff4b85 2764 struct mem_cgroup *memcg = NULL;
7ec99d62 2765 unsigned int nr_pages = 1;
8493ae43 2766 bool oom = true;
7a81b88c 2767 int ret;
ec168510 2768
37c2ac78 2769 if (PageTransHuge(page)) {
7ec99d62 2770 nr_pages <<= compound_order(page);
37c2ac78 2771 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2772 /*
2773 * Never OOM-kill a process for a huge page. The
2774 * fault handler will fall back to regular pages.
2775 */
2776 oom = false;
37c2ac78 2777 }
7a81b88c 2778
c0ff4b85 2779 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2780 if (ret == -ENOMEM)
7a81b88c 2781 return ret;
ce587e65 2782 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2783 return 0;
8a9f3ccd
BS
2784}
2785
7a81b88c
KH
2786int mem_cgroup_newpage_charge(struct page *page,
2787 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2788{
f8d66542 2789 if (mem_cgroup_disabled())
cede86ac 2790 return 0;
7a0524cf
JW
2791 VM_BUG_ON(page_mapped(page));
2792 VM_BUG_ON(page->mapping && !PageAnon(page));
2793 VM_BUG_ON(!mm);
217bc319 2794 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 2795 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
2796}
2797
54595fe2
KH
2798/*
2799 * While swap-in, try_charge -> commit or cancel, the page is locked.
2800 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2801 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2802 * "commit()" or removed by "cancel()"
2803 */
8c7c6e34
KH
2804int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2805 struct page *page,
72835c86 2806 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2807{
c0ff4b85 2808 struct mem_cgroup *memcg;
54595fe2 2809 int ret;
8c7c6e34 2810
72835c86 2811 *memcgp = NULL;
56039efa 2812
f8d66542 2813 if (mem_cgroup_disabled())
8c7c6e34
KH
2814 return 0;
2815
2816 if (!do_swap_account)
2817 goto charge_cur_mm;
8c7c6e34
KH
2818 /*
2819 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2820 * the pte, and even removed page from swap cache: in those cases
2821 * do_swap_page()'s pte_same() test will fail; but there's also a
2822 * KSM case which does need to charge the page.
8c7c6e34
KH
2823 */
2824 if (!PageSwapCache(page))
407f9c8b 2825 goto charge_cur_mm;
c0ff4b85
R
2826 memcg = try_get_mem_cgroup_from_page(page);
2827 if (!memcg)
54595fe2 2828 goto charge_cur_mm;
72835c86
JW
2829 *memcgp = memcg;
2830 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2831 css_put(&memcg->css);
38c5d72f
KH
2832 if (ret == -EINTR)
2833 ret = 0;
54595fe2 2834 return ret;
8c7c6e34 2835charge_cur_mm:
38c5d72f
KH
2836 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2837 if (ret == -EINTR)
2838 ret = 0;
2839 return ret;
8c7c6e34
KH
2840}
2841
827a03d2
JW
2842void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2843{
2844 if (mem_cgroup_disabled())
2845 return;
2846 if (!memcg)
2847 return;
2848 __mem_cgroup_cancel_charge(memcg, 1);
2849}
2850
83aae4c7 2851static void
72835c86 2852__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2853 enum charge_type ctype)
7a81b88c 2854{
f8d66542 2855 if (mem_cgroup_disabled())
7a81b88c 2856 return;
72835c86 2857 if (!memcg)
7a81b88c 2858 return;
72835c86 2859 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2860
ce587e65 2861 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2862 /*
2863 * Now swap is on-memory. This means this page may be
2864 * counted both as mem and swap....double count.
03f3c433
KH
2865 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2866 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2867 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2868 */
03f3c433 2869 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2870 swp_entry_t ent = {.val = page_private(page)};
86493009 2871 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2872 }
88703267
KH
2873 /*
2874 * At swapin, we may charge account against cgroup which has no tasks.
2875 * So, rmdir()->pre_destroy() can be called while we do this charge.
2876 * In that case, we need to call pre_destroy() again. check it here.
2877 */
72835c86 2878 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2879}
2880
72835c86
JW
2881void mem_cgroup_commit_charge_swapin(struct page *page,
2882 struct mem_cgroup *memcg)
83aae4c7 2883{
72835c86 2884 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 2885 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
2886}
2887
827a03d2
JW
2888int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2889 gfp_t gfp_mask)
7a81b88c 2890{
827a03d2
JW
2891 struct mem_cgroup *memcg = NULL;
2892 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2893 int ret;
2894
f8d66542 2895 if (mem_cgroup_disabled())
827a03d2
JW
2896 return 0;
2897 if (PageCompound(page))
2898 return 0;
2899
827a03d2
JW
2900 if (!PageSwapCache(page))
2901 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2902 else { /* page is swapcache/shmem */
2903 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2904 if (!ret)
2905 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2906 }
2907 return ret;
7a81b88c
KH
2908}
2909
c0ff4b85 2910static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2911 unsigned int nr_pages,
2912 const enum charge_type ctype)
569b846d
KH
2913{
2914 struct memcg_batch_info *batch = NULL;
2915 bool uncharge_memsw = true;
7ec99d62 2916
569b846d
KH
2917 /* If swapout, usage of swap doesn't decrease */
2918 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2919 uncharge_memsw = false;
569b846d
KH
2920
2921 batch = &current->memcg_batch;
2922 /*
2923 * In usual, we do css_get() when we remember memcg pointer.
2924 * But in this case, we keep res->usage until end of a series of
2925 * uncharges. Then, it's ok to ignore memcg's refcnt.
2926 */
2927 if (!batch->memcg)
c0ff4b85 2928 batch->memcg = memcg;
3c11ecf4
KH
2929 /*
2930 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2931 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2932 * the same cgroup and we have chance to coalesce uncharges.
2933 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2934 * because we want to do uncharge as soon as possible.
2935 */
2936
2937 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2938 goto direct_uncharge;
2939
7ec99d62 2940 if (nr_pages > 1)
ec168510
AA
2941 goto direct_uncharge;
2942
569b846d
KH
2943 /*
2944 * In typical case, batch->memcg == mem. This means we can
2945 * merge a series of uncharges to an uncharge of res_counter.
2946 * If not, we uncharge res_counter ony by one.
2947 */
c0ff4b85 2948 if (batch->memcg != memcg)
569b846d
KH
2949 goto direct_uncharge;
2950 /* remember freed charge and uncharge it later */
7ffd4ca7 2951 batch->nr_pages++;
569b846d 2952 if (uncharge_memsw)
7ffd4ca7 2953 batch->memsw_nr_pages++;
569b846d
KH
2954 return;
2955direct_uncharge:
c0ff4b85 2956 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2957 if (uncharge_memsw)
c0ff4b85
R
2958 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2959 if (unlikely(batch->memcg != memcg))
2960 memcg_oom_recover(memcg);
569b846d 2961}
7a81b88c 2962
8a9f3ccd 2963/*
69029cd5 2964 * uncharge if !page_mapped(page)
8a9f3ccd 2965 */
8c7c6e34 2966static struct mem_cgroup *
0030f535
JW
2967__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
2968 bool end_migration)
8a9f3ccd 2969{
c0ff4b85 2970 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2971 unsigned int nr_pages = 1;
2972 struct page_cgroup *pc;
b2402857 2973 bool anon;
8a9f3ccd 2974
f8d66542 2975 if (mem_cgroup_disabled())
8c7c6e34 2976 return NULL;
4077960e 2977
0c59b89c 2978 VM_BUG_ON(PageSwapCache(page));
d13d1443 2979
37c2ac78 2980 if (PageTransHuge(page)) {
7ec99d62 2981 nr_pages <<= compound_order(page);
37c2ac78
AA
2982 VM_BUG_ON(!PageTransHuge(page));
2983 }
8697d331 2984 /*
3c541e14 2985 * Check if our page_cgroup is valid
8697d331 2986 */
52d4b9ac 2987 pc = lookup_page_cgroup(page);
cfa44946 2988 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2989 return NULL;
b9c565d5 2990
52d4b9ac 2991 lock_page_cgroup(pc);
d13d1443 2992
c0ff4b85 2993 memcg = pc->mem_cgroup;
8c7c6e34 2994
d13d1443
KH
2995 if (!PageCgroupUsed(pc))
2996 goto unlock_out;
2997
b2402857
KH
2998 anon = PageAnon(page);
2999
d13d1443 3000 switch (ctype) {
41326c17 3001 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3002 /*
3003 * Generally PageAnon tells if it's the anon statistics to be
3004 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3005 * used before page reached the stage of being marked PageAnon.
3006 */
b2402857
KH
3007 anon = true;
3008 /* fallthrough */
8a9478ca 3009 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3010 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3011 if (page_mapped(page))
3012 goto unlock_out;
3013 /*
3014 * Pages under migration may not be uncharged. But
3015 * end_migration() /must/ be the one uncharging the
3016 * unused post-migration page and so it has to call
3017 * here with the migration bit still set. See the
3018 * res_counter handling below.
3019 */
3020 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3021 goto unlock_out;
3022 break;
3023 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3024 if (!PageAnon(page)) { /* Shared memory */
3025 if (page->mapping && !page_is_file_cache(page))
3026 goto unlock_out;
3027 } else if (page_mapped(page)) /* Anon */
3028 goto unlock_out;
3029 break;
3030 default:
3031 break;
52d4b9ac 3032 }
d13d1443 3033
b2402857 3034 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3035
52d4b9ac 3036 ClearPageCgroupUsed(pc);
544122e5
KH
3037 /*
3038 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3039 * freed from LRU. This is safe because uncharged page is expected not
3040 * to be reused (freed soon). Exception is SwapCache, it's handled by
3041 * special functions.
3042 */
b9c565d5 3043
52d4b9ac 3044 unlock_page_cgroup(pc);
f75ca962 3045 /*
c0ff4b85 3046 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3047 * will never be freed.
3048 */
c0ff4b85 3049 memcg_check_events(memcg, page);
f75ca962 3050 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3051 mem_cgroup_swap_statistics(memcg, true);
3052 mem_cgroup_get(memcg);
f75ca962 3053 }
0030f535
JW
3054 /*
3055 * Migration does not charge the res_counter for the
3056 * replacement page, so leave it alone when phasing out the
3057 * page that is unused after the migration.
3058 */
3059 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 3060 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3061
c0ff4b85 3062 return memcg;
d13d1443
KH
3063
3064unlock_out:
3065 unlock_page_cgroup(pc);
8c7c6e34 3066 return NULL;
3c541e14
BS
3067}
3068
69029cd5
KH
3069void mem_cgroup_uncharge_page(struct page *page)
3070{
52d4b9ac
KH
3071 /* early check. */
3072 if (page_mapped(page))
3073 return;
40f23a21 3074 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
3075 if (PageSwapCache(page))
3076 return;
0030f535 3077 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
3078}
3079
3080void mem_cgroup_uncharge_cache_page(struct page *page)
3081{
3082 VM_BUG_ON(page_mapped(page));
b7abea96 3083 VM_BUG_ON(page->mapping);
0030f535 3084 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
3085}
3086
569b846d
KH
3087/*
3088 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3089 * In that cases, pages are freed continuously and we can expect pages
3090 * are in the same memcg. All these calls itself limits the number of
3091 * pages freed at once, then uncharge_start/end() is called properly.
3092 * This may be called prural(2) times in a context,
3093 */
3094
3095void mem_cgroup_uncharge_start(void)
3096{
3097 current->memcg_batch.do_batch++;
3098 /* We can do nest. */
3099 if (current->memcg_batch.do_batch == 1) {
3100 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3101 current->memcg_batch.nr_pages = 0;
3102 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3103 }
3104}
3105
3106void mem_cgroup_uncharge_end(void)
3107{
3108 struct memcg_batch_info *batch = &current->memcg_batch;
3109
3110 if (!batch->do_batch)
3111 return;
3112
3113 batch->do_batch--;
3114 if (batch->do_batch) /* If stacked, do nothing. */
3115 return;
3116
3117 if (!batch->memcg)
3118 return;
3119 /*
3120 * This "batch->memcg" is valid without any css_get/put etc...
3121 * bacause we hide charges behind us.
3122 */
7ffd4ca7
JW
3123 if (batch->nr_pages)
3124 res_counter_uncharge(&batch->memcg->res,
3125 batch->nr_pages * PAGE_SIZE);
3126 if (batch->memsw_nr_pages)
3127 res_counter_uncharge(&batch->memcg->memsw,
3128 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3129 memcg_oom_recover(batch->memcg);
569b846d
KH
3130 /* forget this pointer (for sanity check) */
3131 batch->memcg = NULL;
3132}
3133
e767e056 3134#ifdef CONFIG_SWAP
8c7c6e34 3135/*
e767e056 3136 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3137 * memcg information is recorded to swap_cgroup of "ent"
3138 */
8a9478ca
KH
3139void
3140mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3141{
3142 struct mem_cgroup *memcg;
8a9478ca
KH
3143 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3144
3145 if (!swapout) /* this was a swap cache but the swap is unused ! */
3146 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3147
0030f535 3148 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 3149
f75ca962
KH
3150 /*
3151 * record memcg information, if swapout && memcg != NULL,
3152 * mem_cgroup_get() was called in uncharge().
3153 */
3154 if (do_swap_account && swapout && memcg)
a3b2d692 3155 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3156}
e767e056 3157#endif
8c7c6e34 3158
c255a458 3159#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
3160/*
3161 * called from swap_entry_free(). remove record in swap_cgroup and
3162 * uncharge "memsw" account.
3163 */
3164void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3165{
8c7c6e34 3166 struct mem_cgroup *memcg;
a3b2d692 3167 unsigned short id;
8c7c6e34
KH
3168
3169 if (!do_swap_account)
3170 return;
3171
a3b2d692
KH
3172 id = swap_cgroup_record(ent, 0);
3173 rcu_read_lock();
3174 memcg = mem_cgroup_lookup(id);
8c7c6e34 3175 if (memcg) {
a3b2d692
KH
3176 /*
3177 * We uncharge this because swap is freed.
3178 * This memcg can be obsolete one. We avoid calling css_tryget
3179 */
0c3e73e8 3180 if (!mem_cgroup_is_root(memcg))
4e649152 3181 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3182 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3183 mem_cgroup_put(memcg);
3184 }
a3b2d692 3185 rcu_read_unlock();
d13d1443 3186}
02491447
DN
3187
3188/**
3189 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3190 * @entry: swap entry to be moved
3191 * @from: mem_cgroup which the entry is moved from
3192 * @to: mem_cgroup which the entry is moved to
3193 *
3194 * It succeeds only when the swap_cgroup's record for this entry is the same
3195 * as the mem_cgroup's id of @from.
3196 *
3197 * Returns 0 on success, -EINVAL on failure.
3198 *
3199 * The caller must have charged to @to, IOW, called res_counter_charge() about
3200 * both res and memsw, and called css_get().
3201 */
3202static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3203 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3204{
3205 unsigned short old_id, new_id;
3206
3207 old_id = css_id(&from->css);
3208 new_id = css_id(&to->css);
3209
3210 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3211 mem_cgroup_swap_statistics(from, false);
483c30b5 3212 mem_cgroup_swap_statistics(to, true);
02491447 3213 /*
483c30b5
DN
3214 * This function is only called from task migration context now.
3215 * It postpones res_counter and refcount handling till the end
3216 * of task migration(mem_cgroup_clear_mc()) for performance
3217 * improvement. But we cannot postpone mem_cgroup_get(to)
3218 * because if the process that has been moved to @to does
3219 * swap-in, the refcount of @to might be decreased to 0.
02491447 3220 */
02491447 3221 mem_cgroup_get(to);
02491447
DN
3222 return 0;
3223 }
3224 return -EINVAL;
3225}
3226#else
3227static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3228 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3229{
3230 return -EINVAL;
3231}
8c7c6e34 3232#endif
d13d1443 3233
ae41be37 3234/*
01b1ae63
KH
3235 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3236 * page belongs to.
ae41be37 3237 */
0030f535
JW
3238void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3239 struct mem_cgroup **memcgp)
ae41be37 3240{
c0ff4b85 3241 struct mem_cgroup *memcg = NULL;
7ec99d62 3242 struct page_cgroup *pc;
ac39cf8c 3243 enum charge_type ctype;
8869b8f6 3244
72835c86 3245 *memcgp = NULL;
56039efa 3246
ec168510 3247 VM_BUG_ON(PageTransHuge(page));
f8d66542 3248 if (mem_cgroup_disabled())
0030f535 3249 return;
4077960e 3250
52d4b9ac
KH
3251 pc = lookup_page_cgroup(page);
3252 lock_page_cgroup(pc);
3253 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3254 memcg = pc->mem_cgroup;
3255 css_get(&memcg->css);
ac39cf8c
AM
3256 /*
3257 * At migrating an anonymous page, its mapcount goes down
3258 * to 0 and uncharge() will be called. But, even if it's fully
3259 * unmapped, migration may fail and this page has to be
3260 * charged again. We set MIGRATION flag here and delay uncharge
3261 * until end_migration() is called
3262 *
3263 * Corner Case Thinking
3264 * A)
3265 * When the old page was mapped as Anon and it's unmap-and-freed
3266 * while migration was ongoing.
3267 * If unmap finds the old page, uncharge() of it will be delayed
3268 * until end_migration(). If unmap finds a new page, it's
3269 * uncharged when it make mapcount to be 1->0. If unmap code
3270 * finds swap_migration_entry, the new page will not be mapped
3271 * and end_migration() will find it(mapcount==0).
3272 *
3273 * B)
3274 * When the old page was mapped but migraion fails, the kernel
3275 * remaps it. A charge for it is kept by MIGRATION flag even
3276 * if mapcount goes down to 0. We can do remap successfully
3277 * without charging it again.
3278 *
3279 * C)
3280 * The "old" page is under lock_page() until the end of
3281 * migration, so, the old page itself will not be swapped-out.
3282 * If the new page is swapped out before end_migraton, our
3283 * hook to usual swap-out path will catch the event.
3284 */
3285 if (PageAnon(page))
3286 SetPageCgroupMigration(pc);
e8589cc1 3287 }
52d4b9ac 3288 unlock_page_cgroup(pc);
ac39cf8c
AM
3289 /*
3290 * If the page is not charged at this point,
3291 * we return here.
3292 */
c0ff4b85 3293 if (!memcg)
0030f535 3294 return;
01b1ae63 3295
72835c86 3296 *memcgp = memcg;
ac39cf8c
AM
3297 /*
3298 * We charge new page before it's used/mapped. So, even if unlock_page()
3299 * is called before end_migration, we can catch all events on this new
3300 * page. In the case new page is migrated but not remapped, new page's
3301 * mapcount will be finally 0 and we call uncharge in end_migration().
3302 */
ac39cf8c 3303 if (PageAnon(page))
41326c17 3304 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 3305 else
62ba7442 3306 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
3307 /*
3308 * The page is committed to the memcg, but it's not actually
3309 * charged to the res_counter since we plan on replacing the
3310 * old one and only one page is going to be left afterwards.
3311 */
ce587e65 3312 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
ae41be37 3313}
8869b8f6 3314
69029cd5 3315/* remove redundant charge if migration failed*/
c0ff4b85 3316void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3317 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3318{
ac39cf8c 3319 struct page *used, *unused;
01b1ae63 3320 struct page_cgroup *pc;
b2402857 3321 bool anon;
01b1ae63 3322
c0ff4b85 3323 if (!memcg)
01b1ae63 3324 return;
ac39cf8c 3325 /* blocks rmdir() */
c0ff4b85 3326 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3327 if (!migration_ok) {
ac39cf8c
AM
3328 used = oldpage;
3329 unused = newpage;
01b1ae63 3330 } else {
ac39cf8c 3331 used = newpage;
01b1ae63
KH
3332 unused = oldpage;
3333 }
0030f535 3334 anon = PageAnon(used);
7d188958
JW
3335 __mem_cgroup_uncharge_common(unused,
3336 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3337 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3338 true);
0030f535 3339 css_put(&memcg->css);
69029cd5 3340 /*
ac39cf8c
AM
3341 * We disallowed uncharge of pages under migration because mapcount
3342 * of the page goes down to zero, temporarly.
3343 * Clear the flag and check the page should be charged.
01b1ae63 3344 */
ac39cf8c
AM
3345 pc = lookup_page_cgroup(oldpage);
3346 lock_page_cgroup(pc);
3347 ClearPageCgroupMigration(pc);
3348 unlock_page_cgroup(pc);
ac39cf8c 3349
01b1ae63 3350 /*
ac39cf8c
AM
3351 * If a page is a file cache, radix-tree replacement is very atomic
3352 * and we can skip this check. When it was an Anon page, its mapcount
3353 * goes down to 0. But because we added MIGRATION flage, it's not
3354 * uncharged yet. There are several case but page->mapcount check
3355 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3356 * check. (see prepare_charge() also)
69029cd5 3357 */
b2402857 3358 if (anon)
ac39cf8c 3359 mem_cgroup_uncharge_page(used);
88703267 3360 /*
ac39cf8c
AM
3361 * At migration, we may charge account against cgroup which has no
3362 * tasks.
88703267
KH
3363 * So, rmdir()->pre_destroy() can be called while we do this charge.
3364 * In that case, we need to call pre_destroy() again. check it here.
3365 */
c0ff4b85 3366 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3367}
78fb7466 3368
ab936cbc
KH
3369/*
3370 * At replace page cache, newpage is not under any memcg but it's on
3371 * LRU. So, this function doesn't touch res_counter but handles LRU
3372 * in correct way. Both pages are locked so we cannot race with uncharge.
3373 */
3374void mem_cgroup_replace_page_cache(struct page *oldpage,
3375 struct page *newpage)
3376{
bde05d1c 3377 struct mem_cgroup *memcg = NULL;
ab936cbc 3378 struct page_cgroup *pc;
ab936cbc 3379 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3380
3381 if (mem_cgroup_disabled())
3382 return;
3383
3384 pc = lookup_page_cgroup(oldpage);
3385 /* fix accounting on old pages */
3386 lock_page_cgroup(pc);
bde05d1c
HD
3387 if (PageCgroupUsed(pc)) {
3388 memcg = pc->mem_cgroup;
3389 mem_cgroup_charge_statistics(memcg, false, -1);
3390 ClearPageCgroupUsed(pc);
3391 }
ab936cbc
KH
3392 unlock_page_cgroup(pc);
3393
bde05d1c
HD
3394 /*
3395 * When called from shmem_replace_page(), in some cases the
3396 * oldpage has already been charged, and in some cases not.
3397 */
3398 if (!memcg)
3399 return;
ab936cbc
KH
3400 /*
3401 * Even if newpage->mapping was NULL before starting replacement,
3402 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3403 * LRU while we overwrite pc->mem_cgroup.
3404 */
ce587e65 3405 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3406}
3407
f212ad7c
DN
3408#ifdef CONFIG_DEBUG_VM
3409static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3410{
3411 struct page_cgroup *pc;
3412
3413 pc = lookup_page_cgroup(page);
cfa44946
JW
3414 /*
3415 * Can be NULL while feeding pages into the page allocator for
3416 * the first time, i.e. during boot or memory hotplug;
3417 * or when mem_cgroup_disabled().
3418 */
f212ad7c
DN
3419 if (likely(pc) && PageCgroupUsed(pc))
3420 return pc;
3421 return NULL;
3422}
3423
3424bool mem_cgroup_bad_page_check(struct page *page)
3425{
3426 if (mem_cgroup_disabled())
3427 return false;
3428
3429 return lookup_page_cgroup_used(page) != NULL;
3430}
3431
3432void mem_cgroup_print_bad_page(struct page *page)
3433{
3434 struct page_cgroup *pc;
3435
3436 pc = lookup_page_cgroup_used(page);
3437 if (pc) {
90b3feae 3438 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3439 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3440 }
3441}
3442#endif
3443
8c7c6e34
KH
3444static DEFINE_MUTEX(set_limit_mutex);
3445
d38d2a75 3446static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3447 unsigned long long val)
628f4235 3448{
81d39c20 3449 int retry_count;
3c11ecf4 3450 u64 memswlimit, memlimit;
628f4235 3451 int ret = 0;
81d39c20
KH
3452 int children = mem_cgroup_count_children(memcg);
3453 u64 curusage, oldusage;
3c11ecf4 3454 int enlarge;
81d39c20
KH
3455
3456 /*
3457 * For keeping hierarchical_reclaim simple, how long we should retry
3458 * is depends on callers. We set our retry-count to be function
3459 * of # of children which we should visit in this loop.
3460 */
3461 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3462
3463 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3464
3c11ecf4 3465 enlarge = 0;
8c7c6e34 3466 while (retry_count) {
628f4235
KH
3467 if (signal_pending(current)) {
3468 ret = -EINTR;
3469 break;
3470 }
8c7c6e34
KH
3471 /*
3472 * Rather than hide all in some function, I do this in
3473 * open coded manner. You see what this really does.
aaad153e 3474 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3475 */
3476 mutex_lock(&set_limit_mutex);
3477 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3478 if (memswlimit < val) {
3479 ret = -EINVAL;
3480 mutex_unlock(&set_limit_mutex);
628f4235
KH
3481 break;
3482 }
3c11ecf4
KH
3483
3484 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3485 if (memlimit < val)
3486 enlarge = 1;
3487
8c7c6e34 3488 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3489 if (!ret) {
3490 if (memswlimit == val)
3491 memcg->memsw_is_minimum = true;
3492 else
3493 memcg->memsw_is_minimum = false;
3494 }
8c7c6e34
KH
3495 mutex_unlock(&set_limit_mutex);
3496
3497 if (!ret)
3498 break;
3499
5660048c
JW
3500 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3501 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3502 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3503 /* Usage is reduced ? */
3504 if (curusage >= oldusage)
3505 retry_count--;
3506 else
3507 oldusage = curusage;
8c7c6e34 3508 }
3c11ecf4
KH
3509 if (!ret && enlarge)
3510 memcg_oom_recover(memcg);
14797e23 3511
8c7c6e34
KH
3512 return ret;
3513}
3514
338c8431
LZ
3515static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3516 unsigned long long val)
8c7c6e34 3517{
81d39c20 3518 int retry_count;
3c11ecf4 3519 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3520 int children = mem_cgroup_count_children(memcg);
3521 int ret = -EBUSY;
3c11ecf4 3522 int enlarge = 0;
8c7c6e34 3523
81d39c20
KH
3524 /* see mem_cgroup_resize_res_limit */
3525 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3526 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3527 while (retry_count) {
3528 if (signal_pending(current)) {
3529 ret = -EINTR;
3530 break;
3531 }
3532 /*
3533 * Rather than hide all in some function, I do this in
3534 * open coded manner. You see what this really does.
aaad153e 3535 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3536 */
3537 mutex_lock(&set_limit_mutex);
3538 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3539 if (memlimit > val) {
3540 ret = -EINVAL;
3541 mutex_unlock(&set_limit_mutex);
3542 break;
3543 }
3c11ecf4
KH
3544 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3545 if (memswlimit < val)
3546 enlarge = 1;
8c7c6e34 3547 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3548 if (!ret) {
3549 if (memlimit == val)
3550 memcg->memsw_is_minimum = true;
3551 else
3552 memcg->memsw_is_minimum = false;
3553 }
8c7c6e34
KH
3554 mutex_unlock(&set_limit_mutex);
3555
3556 if (!ret)
3557 break;
3558
5660048c
JW
3559 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3560 MEM_CGROUP_RECLAIM_NOSWAP |
3561 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3562 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3563 /* Usage is reduced ? */
8c7c6e34 3564 if (curusage >= oldusage)
628f4235 3565 retry_count--;
81d39c20
KH
3566 else
3567 oldusage = curusage;
628f4235 3568 }
3c11ecf4
KH
3569 if (!ret && enlarge)
3570 memcg_oom_recover(memcg);
628f4235
KH
3571 return ret;
3572}
3573
4e416953 3574unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3575 gfp_t gfp_mask,
3576 unsigned long *total_scanned)
4e416953
BS
3577{
3578 unsigned long nr_reclaimed = 0;
3579 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3580 unsigned long reclaimed;
3581 int loop = 0;
3582 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3583 unsigned long long excess;
0ae5e89c 3584 unsigned long nr_scanned;
4e416953
BS
3585
3586 if (order > 0)
3587 return 0;
3588
00918b6a 3589 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3590 /*
3591 * This loop can run a while, specially if mem_cgroup's continuously
3592 * keep exceeding their soft limit and putting the system under
3593 * pressure
3594 */
3595 do {
3596 if (next_mz)
3597 mz = next_mz;
3598 else
3599 mz = mem_cgroup_largest_soft_limit_node(mctz);
3600 if (!mz)
3601 break;
3602
0ae5e89c 3603 nr_scanned = 0;
d79154bb 3604 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3605 gfp_mask, &nr_scanned);
4e416953 3606 nr_reclaimed += reclaimed;
0ae5e89c 3607 *total_scanned += nr_scanned;
4e416953
BS
3608 spin_lock(&mctz->lock);
3609
3610 /*
3611 * If we failed to reclaim anything from this memory cgroup
3612 * it is time to move on to the next cgroup
3613 */
3614 next_mz = NULL;
3615 if (!reclaimed) {
3616 do {
3617 /*
3618 * Loop until we find yet another one.
3619 *
3620 * By the time we get the soft_limit lock
3621 * again, someone might have aded the
3622 * group back on the RB tree. Iterate to
3623 * make sure we get a different mem.
3624 * mem_cgroup_largest_soft_limit_node returns
3625 * NULL if no other cgroup is present on
3626 * the tree
3627 */
3628 next_mz =
3629 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3630 if (next_mz == mz)
d79154bb 3631 css_put(&next_mz->memcg->css);
39cc98f1 3632 else /* next_mz == NULL or other memcg */
4e416953
BS
3633 break;
3634 } while (1);
3635 }
d79154bb
HD
3636 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3637 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3638 /*
3639 * One school of thought says that we should not add
3640 * back the node to the tree if reclaim returns 0.
3641 * But our reclaim could return 0, simply because due
3642 * to priority we are exposing a smaller subset of
3643 * memory to reclaim from. Consider this as a longer
3644 * term TODO.
3645 */
ef8745c1 3646 /* If excess == 0, no tree ops */
d79154bb 3647 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3648 spin_unlock(&mctz->lock);
d79154bb 3649 css_put(&mz->memcg->css);
4e416953
BS
3650 loop++;
3651 /*
3652 * Could not reclaim anything and there are no more
3653 * mem cgroups to try or we seem to be looping without
3654 * reclaiming anything.
3655 */
3656 if (!nr_reclaimed &&
3657 (next_mz == NULL ||
3658 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3659 break;
3660 } while (!nr_reclaimed);
3661 if (next_mz)
d79154bb 3662 css_put(&next_mz->memcg->css);
4e416953
BS
3663 return nr_reclaimed;
3664}
3665
cc847582 3666/*
3c935d18
KH
3667 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3668 * reclaim the pages page themselves - it just removes the page_cgroups.
3669 * Returns true if some page_cgroups were not freed, indicating that the caller
3670 * must retry this operation.
cc847582 3671 */
3c935d18 3672static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3673 int node, int zid, enum lru_list lru)
cc847582 3674{
08e552c6 3675 struct mem_cgroup_per_zone *mz;
08e552c6 3676 unsigned long flags, loop;
072c56c1 3677 struct list_head *list;
925b7673
JW
3678 struct page *busy;
3679 struct zone *zone;
072c56c1 3680
08e552c6 3681 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3682 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3683 list = &mz->lruvec.lists[lru];
cc847582 3684
1eb49272 3685 loop = mz->lru_size[lru];
f817ed48
KH
3686 /* give some margin against EBUSY etc...*/
3687 loop += 256;
3688 busy = NULL;
3689 while (loop--) {
925b7673 3690 struct page_cgroup *pc;
5564e88b
JW
3691 struct page *page;
3692
08e552c6 3693 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3694 if (list_empty(list)) {
08e552c6 3695 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3696 break;
f817ed48 3697 }
925b7673
JW
3698 page = list_entry(list->prev, struct page, lru);
3699 if (busy == page) {
3700 list_move(&page->lru, list);
648bcc77 3701 busy = NULL;
08e552c6 3702 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3703 continue;
3704 }
08e552c6 3705 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3706
925b7673 3707 pc = lookup_page_cgroup(page);
5564e88b 3708
3c935d18 3709 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3710 /* found lock contention or "pc" is obsolete. */
925b7673 3711 busy = page;
f817ed48
KH
3712 cond_resched();
3713 } else
3714 busy = NULL;
cc847582 3715 }
3c935d18 3716 return !list_empty(list);
cc847582
KH
3717}
3718
3719/*
3720 * make mem_cgroup's charge to be 0 if there is no task.
3721 * This enables deleting this mem_cgroup.
3722 */
c0ff4b85 3723static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3724{
f817ed48
KH
3725 int ret;
3726 int node, zid, shrink;
3727 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3728 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3729
c0ff4b85 3730 css_get(&memcg->css);
f817ed48
KH
3731
3732 shrink = 0;
c1e862c1
KH
3733 /* should free all ? */
3734 if (free_all)
3735 goto try_to_free;
f817ed48 3736move_account:
fce66477 3737 do {
f817ed48 3738 ret = -EBUSY;
c1e862c1
KH
3739 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3740 goto out;
52d4b9ac
KH
3741 /* This is for making all *used* pages to be on LRU. */
3742 lru_add_drain_all();
c0ff4b85 3743 drain_all_stock_sync(memcg);
f817ed48 3744 ret = 0;
c0ff4b85 3745 mem_cgroup_start_move(memcg);
299b4eaa 3746 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3747 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3748 enum lru_list lru;
3749 for_each_lru(lru) {
c0ff4b85 3750 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3751 node, zid, lru);
f817ed48
KH
3752 if (ret)
3753 break;
3754 }
1ecaab2b 3755 }
f817ed48
KH
3756 if (ret)
3757 break;
3758 }
c0ff4b85
R
3759 mem_cgroup_end_move(memcg);
3760 memcg_oom_recover(memcg);
52d4b9ac 3761 cond_resched();
fce66477 3762 /* "ret" should also be checked to ensure all lists are empty. */
569530fb 3763 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
cc847582 3764out:
c0ff4b85 3765 css_put(&memcg->css);
cc847582 3766 return ret;
f817ed48
KH
3767
3768try_to_free:
c1e862c1
KH
3769 /* returns EBUSY if there is a task or if we come here twice. */
3770 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3771 ret = -EBUSY;
3772 goto out;
3773 }
c1e862c1
KH
3774 /* we call try-to-free pages for make this cgroup empty */
3775 lru_add_drain_all();
f817ed48
KH
3776 /* try to free all pages in this cgroup */
3777 shrink = 1;
569530fb 3778 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3779 int progress;
c1e862c1
KH
3780
3781 if (signal_pending(current)) {
3782 ret = -EINTR;
3783 goto out;
3784 }
c0ff4b85 3785 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3786 false);
c1e862c1 3787 if (!progress) {
f817ed48 3788 nr_retries--;
c1e862c1 3789 /* maybe some writeback is necessary */
8aa7e847 3790 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3791 }
f817ed48
KH
3792
3793 }
08e552c6 3794 lru_add_drain();
f817ed48 3795 /* try move_account...there may be some *locked* pages. */
fce66477 3796 goto move_account;
cc847582
KH
3797}
3798
6bbda35c 3799static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1
KH
3800{
3801 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3802}
3803
3804
18f59ea7
BS
3805static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3806{
3807 return mem_cgroup_from_cont(cont)->use_hierarchy;
3808}
3809
3810static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3811 u64 val)
3812{
3813 int retval = 0;
c0ff4b85 3814 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3815 struct cgroup *parent = cont->parent;
c0ff4b85 3816 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3817
3818 if (parent)
c0ff4b85 3819 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3820
3821 cgroup_lock();
567fb435
GC
3822
3823 if (memcg->use_hierarchy == val)
3824 goto out;
3825
18f59ea7 3826 /*
af901ca1 3827 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3828 * in the child subtrees. If it is unset, then the change can
3829 * occur, provided the current cgroup has no children.
3830 *
3831 * For the root cgroup, parent_mem is NULL, we allow value to be
3832 * set if there are no children.
3833 */
c0ff4b85 3834 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3835 (val == 1 || val == 0)) {
3836 if (list_empty(&cont->children))
c0ff4b85 3837 memcg->use_hierarchy = val;
18f59ea7
BS
3838 else
3839 retval = -EBUSY;
3840 } else
3841 retval = -EINVAL;
567fb435
GC
3842
3843out:
18f59ea7
BS
3844 cgroup_unlock();
3845
3846 return retval;
3847}
3848
0c3e73e8 3849
c0ff4b85 3850static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3851 enum mem_cgroup_stat_index idx)
0c3e73e8 3852{
7d74b06f 3853 struct mem_cgroup *iter;
7a159cc9 3854 long val = 0;
0c3e73e8 3855
7a159cc9 3856 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3857 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3858 val += mem_cgroup_read_stat(iter, idx);
3859
3860 if (val < 0) /* race ? */
3861 val = 0;
3862 return val;
0c3e73e8
BS
3863}
3864
c0ff4b85 3865static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3866{
7d74b06f 3867 u64 val;
104f3928 3868
c0ff4b85 3869 if (!mem_cgroup_is_root(memcg)) {
104f3928 3870 if (!swap)
65c64ce8 3871 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3872 else
65c64ce8 3873 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3874 }
3875
c0ff4b85
R
3876 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3877 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3878
7d74b06f 3879 if (swap)
bff6bb83 3880 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
3881
3882 return val << PAGE_SHIFT;
3883}
3884
af36f906
TH
3885static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3886 struct file *file, char __user *buf,
3887 size_t nbytes, loff_t *ppos)
8cdea7c0 3888{
c0ff4b85 3889 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3890 char str[64];
104f3928 3891 u64 val;
af36f906 3892 int type, name, len;
8c7c6e34
KH
3893
3894 type = MEMFILE_TYPE(cft->private);
3895 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3896
3897 if (!do_swap_account && type == _MEMSWAP)
3898 return -EOPNOTSUPP;
3899
8c7c6e34
KH
3900 switch (type) {
3901 case _MEM:
104f3928 3902 if (name == RES_USAGE)
c0ff4b85 3903 val = mem_cgroup_usage(memcg, false);
104f3928 3904 else
c0ff4b85 3905 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3906 break;
3907 case _MEMSWAP:
104f3928 3908 if (name == RES_USAGE)
c0ff4b85 3909 val = mem_cgroup_usage(memcg, true);
104f3928 3910 else
c0ff4b85 3911 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3912 break;
3913 default:
3914 BUG();
8c7c6e34 3915 }
af36f906
TH
3916
3917 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3918 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3919}
628f4235
KH
3920/*
3921 * The user of this function is...
3922 * RES_LIMIT.
3923 */
856c13aa
PM
3924static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3925 const char *buffer)
8cdea7c0 3926{
628f4235 3927 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3928 int type, name;
628f4235
KH
3929 unsigned long long val;
3930 int ret;
3931
8c7c6e34
KH
3932 type = MEMFILE_TYPE(cft->private);
3933 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3934
3935 if (!do_swap_account && type == _MEMSWAP)
3936 return -EOPNOTSUPP;
3937
8c7c6e34 3938 switch (name) {
628f4235 3939 case RES_LIMIT:
4b3bde4c
BS
3940 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3941 ret = -EINVAL;
3942 break;
3943 }
628f4235
KH
3944 /* This function does all necessary parse...reuse it */
3945 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3946 if (ret)
3947 break;
3948 if (type == _MEM)
628f4235 3949 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3950 else
3951 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3952 break;
296c81d8
BS
3953 case RES_SOFT_LIMIT:
3954 ret = res_counter_memparse_write_strategy(buffer, &val);
3955 if (ret)
3956 break;
3957 /*
3958 * For memsw, soft limits are hard to implement in terms
3959 * of semantics, for now, we support soft limits for
3960 * control without swap
3961 */
3962 if (type == _MEM)
3963 ret = res_counter_set_soft_limit(&memcg->res, val);
3964 else
3965 ret = -EINVAL;
3966 break;
628f4235
KH
3967 default:
3968 ret = -EINVAL; /* should be BUG() ? */
3969 break;
3970 }
3971 return ret;
8cdea7c0
BS
3972}
3973
fee7b548
KH
3974static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3975 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3976{
3977 struct cgroup *cgroup;
3978 unsigned long long min_limit, min_memsw_limit, tmp;
3979
3980 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3981 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3982 cgroup = memcg->css.cgroup;
3983 if (!memcg->use_hierarchy)
3984 goto out;
3985
3986 while (cgroup->parent) {
3987 cgroup = cgroup->parent;
3988 memcg = mem_cgroup_from_cont(cgroup);
3989 if (!memcg->use_hierarchy)
3990 break;
3991 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3992 min_limit = min(min_limit, tmp);
3993 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3994 min_memsw_limit = min(min_memsw_limit, tmp);
3995 }
3996out:
3997 *mem_limit = min_limit;
3998 *memsw_limit = min_memsw_limit;
fee7b548
KH
3999}
4000
29f2a4da 4001static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4002{
af36f906 4003 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 4004 int type, name;
c84872e1 4005
8c7c6e34
KH
4006 type = MEMFILE_TYPE(event);
4007 name = MEMFILE_ATTR(event);
af36f906
TH
4008
4009 if (!do_swap_account && type == _MEMSWAP)
4010 return -EOPNOTSUPP;
4011
8c7c6e34 4012 switch (name) {
29f2a4da 4013 case RES_MAX_USAGE:
8c7c6e34 4014 if (type == _MEM)
c0ff4b85 4015 res_counter_reset_max(&memcg->res);
8c7c6e34 4016 else
c0ff4b85 4017 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4018 break;
4019 case RES_FAILCNT:
8c7c6e34 4020 if (type == _MEM)
c0ff4b85 4021 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4022 else
c0ff4b85 4023 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4024 break;
4025 }
f64c3f54 4026
85cc59db 4027 return 0;
c84872e1
PE
4028}
4029
7dc74be0
DN
4030static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4031 struct cftype *cft)
4032{
4033 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4034}
4035
02491447 4036#ifdef CONFIG_MMU
7dc74be0
DN
4037static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4038 struct cftype *cft, u64 val)
4039{
c0ff4b85 4040 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4041
4042 if (val >= (1 << NR_MOVE_TYPE))
4043 return -EINVAL;
4044 /*
4045 * We check this value several times in both in can_attach() and
4046 * attach(), so we need cgroup lock to prevent this value from being
4047 * inconsistent.
4048 */
4049 cgroup_lock();
c0ff4b85 4050 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4051 cgroup_unlock();
4052
4053 return 0;
4054}
02491447
DN
4055#else
4056static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4057 struct cftype *cft, u64 val)
4058{
4059 return -ENOSYS;
4060}
4061#endif
7dc74be0 4062
406eb0c9 4063#ifdef CONFIG_NUMA
ab215884 4064static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 4065 struct seq_file *m)
406eb0c9
YH
4066{
4067 int nid;
4068 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4069 unsigned long node_nr;
d79154bb 4070 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4071
d79154bb 4072 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4073 seq_printf(m, "total=%lu", total_nr);
4074 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4075 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4076 seq_printf(m, " N%d=%lu", nid, node_nr);
4077 }
4078 seq_putc(m, '\n');
4079
d79154bb 4080 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4081 seq_printf(m, "file=%lu", file_nr);
4082 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4083 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4084 LRU_ALL_FILE);
406eb0c9
YH
4085 seq_printf(m, " N%d=%lu", nid, node_nr);
4086 }
4087 seq_putc(m, '\n');
4088
d79154bb 4089 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4090 seq_printf(m, "anon=%lu", anon_nr);
4091 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4092 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4093 LRU_ALL_ANON);
406eb0c9
YH
4094 seq_printf(m, " N%d=%lu", nid, node_nr);
4095 }
4096 seq_putc(m, '\n');
4097
d79154bb 4098 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4099 seq_printf(m, "unevictable=%lu", unevictable_nr);
4100 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4101 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4102 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4103 seq_printf(m, " N%d=%lu", nid, node_nr);
4104 }
4105 seq_putc(m, '\n');
4106 return 0;
4107}
4108#endif /* CONFIG_NUMA */
4109
af7c4b0e
JW
4110static const char * const mem_cgroup_lru_names[] = {
4111 "inactive_anon",
4112 "active_anon",
4113 "inactive_file",
4114 "active_file",
4115 "unevictable",
4116};
4117
4118static inline void mem_cgroup_lru_names_not_uptodate(void)
4119{
4120 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4121}
4122
ab215884 4123static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 4124 struct seq_file *m)
d2ceb9b7 4125{
d79154bb 4126 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
4127 struct mem_cgroup *mi;
4128 unsigned int i;
406eb0c9 4129
af7c4b0e 4130 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4131 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4132 continue;
af7c4b0e
JW
4133 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4134 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4135 }
7b854121 4136
af7c4b0e
JW
4137 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4138 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4139 mem_cgroup_read_events(memcg, i));
4140
4141 for (i = 0; i < NR_LRU_LISTS; i++)
4142 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4143 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4144
14067bb3 4145 /* Hierarchical information */
fee7b548
KH
4146 {
4147 unsigned long long limit, memsw_limit;
d79154bb 4148 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4149 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4150 if (do_swap_account)
78ccf5b5
JW
4151 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4152 memsw_limit);
fee7b548 4153 }
7f016ee8 4154
af7c4b0e
JW
4155 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4156 long long val = 0;
4157
bff6bb83 4158 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4159 continue;
af7c4b0e
JW
4160 for_each_mem_cgroup_tree(mi, memcg)
4161 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4162 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4163 }
4164
4165 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4166 unsigned long long val = 0;
4167
4168 for_each_mem_cgroup_tree(mi, memcg)
4169 val += mem_cgroup_read_events(mi, i);
4170 seq_printf(m, "total_%s %llu\n",
4171 mem_cgroup_events_names[i], val);
4172 }
4173
4174 for (i = 0; i < NR_LRU_LISTS; i++) {
4175 unsigned long long val = 0;
4176
4177 for_each_mem_cgroup_tree(mi, memcg)
4178 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4179 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4180 }
14067bb3 4181
7f016ee8 4182#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4183 {
4184 int nid, zid;
4185 struct mem_cgroup_per_zone *mz;
89abfab1 4186 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4187 unsigned long recent_rotated[2] = {0, 0};
4188 unsigned long recent_scanned[2] = {0, 0};
4189
4190 for_each_online_node(nid)
4191 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4192 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4193 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4194
89abfab1
HD
4195 recent_rotated[0] += rstat->recent_rotated[0];
4196 recent_rotated[1] += rstat->recent_rotated[1];
4197 recent_scanned[0] += rstat->recent_scanned[0];
4198 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4199 }
78ccf5b5
JW
4200 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4201 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4202 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4203 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4204 }
4205#endif
4206
d2ceb9b7
KH
4207 return 0;
4208}
4209
a7885eb8
KM
4210static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4211{
4212 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4213
1f4c025b 4214 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4215}
4216
4217static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4218 u64 val)
4219{
4220 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4221 struct mem_cgroup *parent;
068b38c1 4222
a7885eb8
KM
4223 if (val > 100)
4224 return -EINVAL;
4225
4226 if (cgrp->parent == NULL)
4227 return -EINVAL;
4228
4229 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4230
4231 cgroup_lock();
4232
a7885eb8
KM
4233 /* If under hierarchy, only empty-root can set this value */
4234 if ((parent->use_hierarchy) ||
068b38c1
LZ
4235 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4236 cgroup_unlock();
a7885eb8 4237 return -EINVAL;
068b38c1 4238 }
a7885eb8 4239
a7885eb8 4240 memcg->swappiness = val;
a7885eb8 4241
068b38c1
LZ
4242 cgroup_unlock();
4243
a7885eb8
KM
4244 return 0;
4245}
4246
2e72b634
KS
4247static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4248{
4249 struct mem_cgroup_threshold_ary *t;
4250 u64 usage;
4251 int i;
4252
4253 rcu_read_lock();
4254 if (!swap)
2c488db2 4255 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4256 else
2c488db2 4257 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4258
4259 if (!t)
4260 goto unlock;
4261
4262 usage = mem_cgroup_usage(memcg, swap);
4263
4264 /*
748dad36 4265 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4266 * If it's not true, a threshold was crossed after last
4267 * call of __mem_cgroup_threshold().
4268 */
5407a562 4269 i = t->current_threshold;
2e72b634
KS
4270
4271 /*
4272 * Iterate backward over array of thresholds starting from
4273 * current_threshold and check if a threshold is crossed.
4274 * If none of thresholds below usage is crossed, we read
4275 * only one element of the array here.
4276 */
4277 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4278 eventfd_signal(t->entries[i].eventfd, 1);
4279
4280 /* i = current_threshold + 1 */
4281 i++;
4282
4283 /*
4284 * Iterate forward over array of thresholds starting from
4285 * current_threshold+1 and check if a threshold is crossed.
4286 * If none of thresholds above usage is crossed, we read
4287 * only one element of the array here.
4288 */
4289 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4290 eventfd_signal(t->entries[i].eventfd, 1);
4291
4292 /* Update current_threshold */
5407a562 4293 t->current_threshold = i - 1;
2e72b634
KS
4294unlock:
4295 rcu_read_unlock();
4296}
4297
4298static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4299{
ad4ca5f4
KS
4300 while (memcg) {
4301 __mem_cgroup_threshold(memcg, false);
4302 if (do_swap_account)
4303 __mem_cgroup_threshold(memcg, true);
4304
4305 memcg = parent_mem_cgroup(memcg);
4306 }
2e72b634
KS
4307}
4308
4309static int compare_thresholds(const void *a, const void *b)
4310{
4311 const struct mem_cgroup_threshold *_a = a;
4312 const struct mem_cgroup_threshold *_b = b;
4313
4314 return _a->threshold - _b->threshold;
4315}
4316
c0ff4b85 4317static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4318{
4319 struct mem_cgroup_eventfd_list *ev;
4320
c0ff4b85 4321 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4322 eventfd_signal(ev->eventfd, 1);
4323 return 0;
4324}
4325
c0ff4b85 4326static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4327{
7d74b06f
KH
4328 struct mem_cgroup *iter;
4329
c0ff4b85 4330 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4331 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4332}
4333
4334static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4335 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4336{
4337 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4338 struct mem_cgroup_thresholds *thresholds;
4339 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4340 int type = MEMFILE_TYPE(cft->private);
4341 u64 threshold, usage;
2c488db2 4342 int i, size, ret;
2e72b634
KS
4343
4344 ret = res_counter_memparse_write_strategy(args, &threshold);
4345 if (ret)
4346 return ret;
4347
4348 mutex_lock(&memcg->thresholds_lock);
2c488db2 4349
2e72b634 4350 if (type == _MEM)
2c488db2 4351 thresholds = &memcg->thresholds;
2e72b634 4352 else if (type == _MEMSWAP)
2c488db2 4353 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4354 else
4355 BUG();
4356
4357 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4358
4359 /* Check if a threshold crossed before adding a new one */
2c488db2 4360 if (thresholds->primary)
2e72b634
KS
4361 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4362
2c488db2 4363 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4364
4365 /* Allocate memory for new array of thresholds */
2c488db2 4366 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4367 GFP_KERNEL);
2c488db2 4368 if (!new) {
2e72b634
KS
4369 ret = -ENOMEM;
4370 goto unlock;
4371 }
2c488db2 4372 new->size = size;
2e72b634
KS
4373
4374 /* Copy thresholds (if any) to new array */
2c488db2
KS
4375 if (thresholds->primary) {
4376 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4377 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4378 }
4379
2e72b634 4380 /* Add new threshold */
2c488db2
KS
4381 new->entries[size - 1].eventfd = eventfd;
4382 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4383
4384 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4385 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4386 compare_thresholds, NULL);
4387
4388 /* Find current threshold */
2c488db2 4389 new->current_threshold = -1;
2e72b634 4390 for (i = 0; i < size; i++) {
748dad36 4391 if (new->entries[i].threshold <= usage) {
2e72b634 4392 /*
2c488db2
KS
4393 * new->current_threshold will not be used until
4394 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4395 * it here.
4396 */
2c488db2 4397 ++new->current_threshold;
748dad36
SZ
4398 } else
4399 break;
2e72b634
KS
4400 }
4401
2c488db2
KS
4402 /* Free old spare buffer and save old primary buffer as spare */
4403 kfree(thresholds->spare);
4404 thresholds->spare = thresholds->primary;
4405
4406 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4407
907860ed 4408 /* To be sure that nobody uses thresholds */
2e72b634
KS
4409 synchronize_rcu();
4410
2e72b634
KS
4411unlock:
4412 mutex_unlock(&memcg->thresholds_lock);
4413
4414 return ret;
4415}
4416
907860ed 4417static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4418 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4419{
4420 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4421 struct mem_cgroup_thresholds *thresholds;
4422 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4423 int type = MEMFILE_TYPE(cft->private);
4424 u64 usage;
2c488db2 4425 int i, j, size;
2e72b634
KS
4426
4427 mutex_lock(&memcg->thresholds_lock);
4428 if (type == _MEM)
2c488db2 4429 thresholds = &memcg->thresholds;
2e72b634 4430 else if (type == _MEMSWAP)
2c488db2 4431 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4432 else
4433 BUG();
4434
371528ca
AV
4435 if (!thresholds->primary)
4436 goto unlock;
4437
2e72b634
KS
4438 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4439
4440 /* Check if a threshold crossed before removing */
4441 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4442
4443 /* Calculate new number of threshold */
2c488db2
KS
4444 size = 0;
4445 for (i = 0; i < thresholds->primary->size; i++) {
4446 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4447 size++;
4448 }
4449
2c488db2 4450 new = thresholds->spare;
907860ed 4451
2e72b634
KS
4452 /* Set thresholds array to NULL if we don't have thresholds */
4453 if (!size) {
2c488db2
KS
4454 kfree(new);
4455 new = NULL;
907860ed 4456 goto swap_buffers;
2e72b634
KS
4457 }
4458
2c488db2 4459 new->size = size;
2e72b634
KS
4460
4461 /* Copy thresholds and find current threshold */
2c488db2
KS
4462 new->current_threshold = -1;
4463 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4464 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4465 continue;
4466
2c488db2 4467 new->entries[j] = thresholds->primary->entries[i];
748dad36 4468 if (new->entries[j].threshold <= usage) {
2e72b634 4469 /*
2c488db2 4470 * new->current_threshold will not be used
2e72b634
KS
4471 * until rcu_assign_pointer(), so it's safe to increment
4472 * it here.
4473 */
2c488db2 4474 ++new->current_threshold;
2e72b634
KS
4475 }
4476 j++;
4477 }
4478
907860ed 4479swap_buffers:
2c488db2
KS
4480 /* Swap primary and spare array */
4481 thresholds->spare = thresholds->primary;
8c757763
SZ
4482 /* If all events are unregistered, free the spare array */
4483 if (!new) {
4484 kfree(thresholds->spare);
4485 thresholds->spare = NULL;
4486 }
4487
2c488db2 4488 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4489
907860ed 4490 /* To be sure that nobody uses thresholds */
2e72b634 4491 synchronize_rcu();
371528ca 4492unlock:
2e72b634 4493 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4494}
c1e862c1 4495
9490ff27
KH
4496static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4497 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4498{
4499 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4500 struct mem_cgroup_eventfd_list *event;
4501 int type = MEMFILE_TYPE(cft->private);
4502
4503 BUG_ON(type != _OOM_TYPE);
4504 event = kmalloc(sizeof(*event), GFP_KERNEL);
4505 if (!event)
4506 return -ENOMEM;
4507
1af8efe9 4508 spin_lock(&memcg_oom_lock);
9490ff27
KH
4509
4510 event->eventfd = eventfd;
4511 list_add(&event->list, &memcg->oom_notify);
4512
4513 /* already in OOM ? */
79dfdacc 4514 if (atomic_read(&memcg->under_oom))
9490ff27 4515 eventfd_signal(eventfd, 1);
1af8efe9 4516 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4517
4518 return 0;
4519}
4520
907860ed 4521static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4522 struct cftype *cft, struct eventfd_ctx *eventfd)
4523{
c0ff4b85 4524 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4525 struct mem_cgroup_eventfd_list *ev, *tmp;
4526 int type = MEMFILE_TYPE(cft->private);
4527
4528 BUG_ON(type != _OOM_TYPE);
4529
1af8efe9 4530 spin_lock(&memcg_oom_lock);
9490ff27 4531
c0ff4b85 4532 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4533 if (ev->eventfd == eventfd) {
4534 list_del(&ev->list);
4535 kfree(ev);
4536 }
4537 }
4538
1af8efe9 4539 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4540}
4541
3c11ecf4
KH
4542static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4543 struct cftype *cft, struct cgroup_map_cb *cb)
4544{
c0ff4b85 4545 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4546
c0ff4b85 4547 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4548
c0ff4b85 4549 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4550 cb->fill(cb, "under_oom", 1);
4551 else
4552 cb->fill(cb, "under_oom", 0);
4553 return 0;
4554}
4555
3c11ecf4
KH
4556static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4557 struct cftype *cft, u64 val)
4558{
c0ff4b85 4559 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4560 struct mem_cgroup *parent;
4561
4562 /* cannot set to root cgroup and only 0 and 1 are allowed */
4563 if (!cgrp->parent || !((val == 0) || (val == 1)))
4564 return -EINVAL;
4565
4566 parent = mem_cgroup_from_cont(cgrp->parent);
4567
4568 cgroup_lock();
4569 /* oom-kill-disable is a flag for subhierarchy. */
4570 if ((parent->use_hierarchy) ||
c0ff4b85 4571 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4572 cgroup_unlock();
4573 return -EINVAL;
4574 }
c0ff4b85 4575 memcg->oom_kill_disable = val;
4d845ebf 4576 if (!val)
c0ff4b85 4577 memcg_oom_recover(memcg);
3c11ecf4
KH
4578 cgroup_unlock();
4579 return 0;
4580}
4581
c255a458 4582#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4583static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4584{
1d62e436 4585 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4586};
4587
1d62e436 4588static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4589{
1d62e436 4590 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4591}
e5671dfa 4592#else
cbe128e3 4593static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4594{
4595 return 0;
4596}
d1a4c0b3 4597
1d62e436 4598static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4599{
4600}
e5671dfa
GC
4601#endif
4602
8cdea7c0
BS
4603static struct cftype mem_cgroup_files[] = {
4604 {
0eea1030 4605 .name = "usage_in_bytes",
8c7c6e34 4606 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4607 .read = mem_cgroup_read,
9490ff27
KH
4608 .register_event = mem_cgroup_usage_register_event,
4609 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4610 },
c84872e1
PE
4611 {
4612 .name = "max_usage_in_bytes",
8c7c6e34 4613 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4614 .trigger = mem_cgroup_reset,
af36f906 4615 .read = mem_cgroup_read,
c84872e1 4616 },
8cdea7c0 4617 {
0eea1030 4618 .name = "limit_in_bytes",
8c7c6e34 4619 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4620 .write_string = mem_cgroup_write,
af36f906 4621 .read = mem_cgroup_read,
8cdea7c0 4622 },
296c81d8
BS
4623 {
4624 .name = "soft_limit_in_bytes",
4625 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4626 .write_string = mem_cgroup_write,
af36f906 4627 .read = mem_cgroup_read,
296c81d8 4628 },
8cdea7c0
BS
4629 {
4630 .name = "failcnt",
8c7c6e34 4631 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4632 .trigger = mem_cgroup_reset,
af36f906 4633 .read = mem_cgroup_read,
8cdea7c0 4634 },
d2ceb9b7
KH
4635 {
4636 .name = "stat",
ab215884 4637 .read_seq_string = memcg_stat_show,
d2ceb9b7 4638 },
c1e862c1
KH
4639 {
4640 .name = "force_empty",
4641 .trigger = mem_cgroup_force_empty_write,
4642 },
18f59ea7
BS
4643 {
4644 .name = "use_hierarchy",
4645 .write_u64 = mem_cgroup_hierarchy_write,
4646 .read_u64 = mem_cgroup_hierarchy_read,
4647 },
a7885eb8
KM
4648 {
4649 .name = "swappiness",
4650 .read_u64 = mem_cgroup_swappiness_read,
4651 .write_u64 = mem_cgroup_swappiness_write,
4652 },
7dc74be0
DN
4653 {
4654 .name = "move_charge_at_immigrate",
4655 .read_u64 = mem_cgroup_move_charge_read,
4656 .write_u64 = mem_cgroup_move_charge_write,
4657 },
9490ff27
KH
4658 {
4659 .name = "oom_control",
3c11ecf4
KH
4660 .read_map = mem_cgroup_oom_control_read,
4661 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4662 .register_event = mem_cgroup_oom_register_event,
4663 .unregister_event = mem_cgroup_oom_unregister_event,
4664 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4665 },
406eb0c9
YH
4666#ifdef CONFIG_NUMA
4667 {
4668 .name = "numa_stat",
ab215884 4669 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
4670 },
4671#endif
c255a458 4672#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4673 {
4674 .name = "memsw.usage_in_bytes",
4675 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4676 .read = mem_cgroup_read,
9490ff27
KH
4677 .register_event = mem_cgroup_usage_register_event,
4678 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4679 },
4680 {
4681 .name = "memsw.max_usage_in_bytes",
4682 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4683 .trigger = mem_cgroup_reset,
af36f906 4684 .read = mem_cgroup_read,
8c7c6e34
KH
4685 },
4686 {
4687 .name = "memsw.limit_in_bytes",
4688 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4689 .write_string = mem_cgroup_write,
af36f906 4690 .read = mem_cgroup_read,
8c7c6e34
KH
4691 },
4692 {
4693 .name = "memsw.failcnt",
4694 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4695 .trigger = mem_cgroup_reset,
af36f906 4696 .read = mem_cgroup_read,
8c7c6e34 4697 },
8c7c6e34 4698#endif
6bc10349 4699 { }, /* terminate */
af36f906 4700};
8c7c6e34 4701
c0ff4b85 4702static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4703{
4704 struct mem_cgroup_per_node *pn;
1ecaab2b 4705 struct mem_cgroup_per_zone *mz;
41e3355d 4706 int zone, tmp = node;
1ecaab2b
KH
4707 /*
4708 * This routine is called against possible nodes.
4709 * But it's BUG to call kmalloc() against offline node.
4710 *
4711 * TODO: this routine can waste much memory for nodes which will
4712 * never be onlined. It's better to use memory hotplug callback
4713 * function.
4714 */
41e3355d
KH
4715 if (!node_state(node, N_NORMAL_MEMORY))
4716 tmp = -1;
17295c88 4717 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4718 if (!pn)
4719 return 1;
1ecaab2b 4720
1ecaab2b
KH
4721 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4722 mz = &pn->zoneinfo[zone];
7f5e86c2 4723 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
f64c3f54 4724 mz->usage_in_excess = 0;
4e416953 4725 mz->on_tree = false;
d79154bb 4726 mz->memcg = memcg;
1ecaab2b 4727 }
0a619e58 4728 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4729 return 0;
4730}
4731
c0ff4b85 4732static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4733{
c0ff4b85 4734 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4735}
4736
33327948
KH
4737static struct mem_cgroup *mem_cgroup_alloc(void)
4738{
d79154bb 4739 struct mem_cgroup *memcg;
c62b1a3b 4740 int size = sizeof(struct mem_cgroup);
33327948 4741
c62b1a3b 4742 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4743 if (size < PAGE_SIZE)
d79154bb 4744 memcg = kzalloc(size, GFP_KERNEL);
33327948 4745 else
d79154bb 4746 memcg = vzalloc(size);
33327948 4747
d79154bb 4748 if (!memcg)
e7bbcdf3
DC
4749 return NULL;
4750
d79154bb
HD
4751 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4752 if (!memcg->stat)
d2e61b8d 4753 goto out_free;
d79154bb
HD
4754 spin_lock_init(&memcg->pcp_counter_lock);
4755 return memcg;
d2e61b8d
DC
4756
4757out_free:
4758 if (size < PAGE_SIZE)
d79154bb 4759 kfree(memcg);
d2e61b8d 4760 else
d79154bb 4761 vfree(memcg);
d2e61b8d 4762 return NULL;
33327948
KH
4763}
4764
59927fb9 4765/*
3afe36b1 4766 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
59927fb9
HD
4767 * but in process context. The work_freeing structure is overlaid
4768 * on the rcu_freeing structure, which itself is overlaid on memsw.
4769 */
3afe36b1 4770static void free_work(struct work_struct *work)
59927fb9
HD
4771{
4772 struct mem_cgroup *memcg;
3afe36b1 4773 int size = sizeof(struct mem_cgroup);
59927fb9
HD
4774
4775 memcg = container_of(work, struct mem_cgroup, work_freeing);
3f134619
GC
4776 /*
4777 * We need to make sure that (at least for now), the jump label
4778 * destruction code runs outside of the cgroup lock. This is because
4779 * get_online_cpus(), which is called from the static_branch update,
4780 * can't be called inside the cgroup_lock. cpusets are the ones
4781 * enforcing this dependency, so if they ever change, we might as well.
4782 *
4783 * schedule_work() will guarantee this happens. Be careful if you need
4784 * to move this code around, and make sure it is outside
4785 * the cgroup_lock.
4786 */
4787 disarm_sock_keys(memcg);
3afe36b1
GC
4788 if (size < PAGE_SIZE)
4789 kfree(memcg);
4790 else
4791 vfree(memcg);
59927fb9 4792}
3afe36b1
GC
4793
4794static void free_rcu(struct rcu_head *rcu_head)
59927fb9
HD
4795{
4796 struct mem_cgroup *memcg;
4797
4798 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
3afe36b1 4799 INIT_WORK(&memcg->work_freeing, free_work);
59927fb9
HD
4800 schedule_work(&memcg->work_freeing);
4801}
4802
8c7c6e34
KH
4803/*
4804 * At destroying mem_cgroup, references from swap_cgroup can remain.
4805 * (scanning all at force_empty is too costly...)
4806 *
4807 * Instead of clearing all references at force_empty, we remember
4808 * the number of reference from swap_cgroup and free mem_cgroup when
4809 * it goes down to 0.
4810 *
8c7c6e34
KH
4811 * Removal of cgroup itself succeeds regardless of refs from swap.
4812 */
4813
c0ff4b85 4814static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4815{
08e552c6
KH
4816 int node;
4817
c0ff4b85
R
4818 mem_cgroup_remove_from_trees(memcg);
4819 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4820
3ed28fa1 4821 for_each_node(node)
c0ff4b85 4822 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4823
c0ff4b85 4824 free_percpu(memcg->stat);
3afe36b1 4825 call_rcu(&memcg->rcu_freeing, free_rcu);
33327948
KH
4826}
4827
c0ff4b85 4828static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4829{
c0ff4b85 4830 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4831}
4832
c0ff4b85 4833static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4834{
c0ff4b85
R
4835 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4836 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4837 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4838 if (parent)
4839 mem_cgroup_put(parent);
4840 }
8c7c6e34
KH
4841}
4842
c0ff4b85 4843static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4844{
c0ff4b85 4845 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4846}
4847
7bcc1bb1
DN
4848/*
4849 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4850 */
e1aab161 4851struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4852{
c0ff4b85 4853 if (!memcg->res.parent)
7bcc1bb1 4854 return NULL;
c0ff4b85 4855 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4856}
e1aab161 4857EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4858
c255a458 4859#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
4860static void __init enable_swap_cgroup(void)
4861{
f8d66542 4862 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4863 do_swap_account = 1;
4864}
4865#else
4866static void __init enable_swap_cgroup(void)
4867{
4868}
4869#endif
4870
f64c3f54
BS
4871static int mem_cgroup_soft_limit_tree_init(void)
4872{
4873 struct mem_cgroup_tree_per_node *rtpn;
4874 struct mem_cgroup_tree_per_zone *rtpz;
4875 int tmp, node, zone;
4876
3ed28fa1 4877 for_each_node(node) {
f64c3f54
BS
4878 tmp = node;
4879 if (!node_state(node, N_NORMAL_MEMORY))
4880 tmp = -1;
4881 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4882 if (!rtpn)
c3cecc68 4883 goto err_cleanup;
f64c3f54
BS
4884
4885 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4886
4887 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4888 rtpz = &rtpn->rb_tree_per_zone[zone];
4889 rtpz->rb_root = RB_ROOT;
4890 spin_lock_init(&rtpz->lock);
4891 }
4892 }
4893 return 0;
c3cecc68
MH
4894
4895err_cleanup:
3ed28fa1 4896 for_each_node(node) {
c3cecc68
MH
4897 if (!soft_limit_tree.rb_tree_per_node[node])
4898 break;
4899 kfree(soft_limit_tree.rb_tree_per_node[node]);
4900 soft_limit_tree.rb_tree_per_node[node] = NULL;
4901 }
4902 return 1;
4903
f64c3f54
BS
4904}
4905
0eb253e2 4906static struct cgroup_subsys_state * __ref
761b3ef5 4907mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4908{
c0ff4b85 4909 struct mem_cgroup *memcg, *parent;
04046e1a 4910 long error = -ENOMEM;
6d12e2d8 4911 int node;
8cdea7c0 4912
c0ff4b85
R
4913 memcg = mem_cgroup_alloc();
4914 if (!memcg)
04046e1a 4915 return ERR_PTR(error);
78fb7466 4916
3ed28fa1 4917 for_each_node(node)
c0ff4b85 4918 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4919 goto free_out;
f64c3f54 4920
c077719b 4921 /* root ? */
28dbc4b6 4922 if (cont->parent == NULL) {
cdec2e42 4923 int cpu;
c077719b 4924 enable_swap_cgroup();
28dbc4b6 4925 parent = NULL;
f64c3f54
BS
4926 if (mem_cgroup_soft_limit_tree_init())
4927 goto free_out;
a41c58a6 4928 root_mem_cgroup = memcg;
cdec2e42
KH
4929 for_each_possible_cpu(cpu) {
4930 struct memcg_stock_pcp *stock =
4931 &per_cpu(memcg_stock, cpu);
4932 INIT_WORK(&stock->work, drain_local_stock);
4933 }
711d3d2c 4934 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4935 } else {
28dbc4b6 4936 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4937 memcg->use_hierarchy = parent->use_hierarchy;
4938 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4939 }
28dbc4b6 4940
18f59ea7 4941 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4942 res_counter_init(&memcg->res, &parent->res);
4943 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4944 /*
4945 * We increment refcnt of the parent to ensure that we can
4946 * safely access it on res_counter_charge/uncharge.
4947 * This refcnt will be decremented when freeing this
4948 * mem_cgroup(see mem_cgroup_put).
4949 */
4950 mem_cgroup_get(parent);
18f59ea7 4951 } else {
c0ff4b85
R
4952 res_counter_init(&memcg->res, NULL);
4953 res_counter_init(&memcg->memsw, NULL);
18f59ea7 4954 }
c0ff4b85
R
4955 memcg->last_scanned_node = MAX_NUMNODES;
4956 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4957
a7885eb8 4958 if (parent)
c0ff4b85
R
4959 memcg->swappiness = mem_cgroup_swappiness(parent);
4960 atomic_set(&memcg->refcnt, 1);
4961 memcg->move_charge_at_immigrate = 0;
4962 mutex_init(&memcg->thresholds_lock);
312734c0 4963 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
4964
4965 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4966 if (error) {
4967 /*
4968 * We call put now because our (and parent's) refcnts
4969 * are already in place. mem_cgroup_put() will internally
4970 * call __mem_cgroup_free, so return directly
4971 */
4972 mem_cgroup_put(memcg);
4973 return ERR_PTR(error);
4974 }
c0ff4b85 4975 return &memcg->css;
6d12e2d8 4976free_out:
c0ff4b85 4977 __mem_cgroup_free(memcg);
04046e1a 4978 return ERR_PTR(error);
8cdea7c0
BS
4979}
4980
761b3ef5 4981static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 4982{
c0ff4b85 4983 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 4984
c0ff4b85 4985 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
4986}
4987
761b3ef5 4988static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 4989{
c0ff4b85 4990 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 4991
1d62e436 4992 kmem_cgroup_destroy(memcg);
d1a4c0b3 4993
c0ff4b85 4994 mem_cgroup_put(memcg);
8cdea7c0
BS
4995}
4996
02491447 4997#ifdef CONFIG_MMU
7dc74be0 4998/* Handlers for move charge at task migration. */
854ffa8d
DN
4999#define PRECHARGE_COUNT_AT_ONCE 256
5000static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5001{
854ffa8d
DN
5002 int ret = 0;
5003 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5004 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5005
c0ff4b85 5006 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5007 mc.precharge += count;
5008 /* we don't need css_get for root */
5009 return ret;
5010 }
5011 /* try to charge at once */
5012 if (count > 1) {
5013 struct res_counter *dummy;
5014 /*
c0ff4b85 5015 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5016 * by cgroup_lock_live_cgroup() that it is not removed and we
5017 * are still under the same cgroup_mutex. So we can postpone
5018 * css_get().
5019 */
c0ff4b85 5020 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5021 goto one_by_one;
c0ff4b85 5022 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5023 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5024 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5025 goto one_by_one;
5026 }
5027 mc.precharge += count;
854ffa8d
DN
5028 return ret;
5029 }
5030one_by_one:
5031 /* fall back to one by one charge */
5032 while (count--) {
5033 if (signal_pending(current)) {
5034 ret = -EINTR;
5035 break;
5036 }
5037 if (!batch_count--) {
5038 batch_count = PRECHARGE_COUNT_AT_ONCE;
5039 cond_resched();
5040 }
c0ff4b85
R
5041 ret = __mem_cgroup_try_charge(NULL,
5042 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5043 if (ret)
854ffa8d 5044 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5045 return ret;
854ffa8d
DN
5046 mc.precharge++;
5047 }
4ffef5fe
DN
5048 return ret;
5049}
5050
5051/**
8d32ff84 5052 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5053 * @vma: the vma the pte to be checked belongs
5054 * @addr: the address corresponding to the pte to be checked
5055 * @ptent: the pte to be checked
02491447 5056 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5057 *
5058 * Returns
5059 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5060 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5061 * move charge. if @target is not NULL, the page is stored in target->page
5062 * with extra refcnt got(Callers should handle it).
02491447
DN
5063 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5064 * target for charge migration. if @target is not NULL, the entry is stored
5065 * in target->ent.
4ffef5fe
DN
5066 *
5067 * Called with pte lock held.
5068 */
4ffef5fe
DN
5069union mc_target {
5070 struct page *page;
02491447 5071 swp_entry_t ent;
4ffef5fe
DN
5072};
5073
4ffef5fe 5074enum mc_target_type {
8d32ff84 5075 MC_TARGET_NONE = 0,
4ffef5fe 5076 MC_TARGET_PAGE,
02491447 5077 MC_TARGET_SWAP,
4ffef5fe
DN
5078};
5079
90254a65
DN
5080static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5081 unsigned long addr, pte_t ptent)
4ffef5fe 5082{
90254a65 5083 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5084
90254a65
DN
5085 if (!page || !page_mapped(page))
5086 return NULL;
5087 if (PageAnon(page)) {
5088 /* we don't move shared anon */
4b91355e 5089 if (!move_anon())
90254a65 5090 return NULL;
87946a72
DN
5091 } else if (!move_file())
5092 /* we ignore mapcount for file pages */
90254a65
DN
5093 return NULL;
5094 if (!get_page_unless_zero(page))
5095 return NULL;
5096
5097 return page;
5098}
5099
4b91355e 5100#ifdef CONFIG_SWAP
90254a65
DN
5101static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5102 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5103{
90254a65
DN
5104 struct page *page = NULL;
5105 swp_entry_t ent = pte_to_swp_entry(ptent);
5106
5107 if (!move_anon() || non_swap_entry(ent))
5108 return NULL;
4b91355e
KH
5109 /*
5110 * Because lookup_swap_cache() updates some statistics counter,
5111 * we call find_get_page() with swapper_space directly.
5112 */
5113 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5114 if (do_swap_account)
5115 entry->val = ent.val;
5116
5117 return page;
5118}
4b91355e
KH
5119#else
5120static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5121 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5122{
5123 return NULL;
5124}
5125#endif
90254a65 5126
87946a72
DN
5127static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5128 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5129{
5130 struct page *page = NULL;
87946a72
DN
5131 struct address_space *mapping;
5132 pgoff_t pgoff;
5133
5134 if (!vma->vm_file) /* anonymous vma */
5135 return NULL;
5136 if (!move_file())
5137 return NULL;
5138
87946a72
DN
5139 mapping = vma->vm_file->f_mapping;
5140 if (pte_none(ptent))
5141 pgoff = linear_page_index(vma, addr);
5142 else /* pte_file(ptent) is true */
5143 pgoff = pte_to_pgoff(ptent);
5144
5145 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5146 page = find_get_page(mapping, pgoff);
5147
5148#ifdef CONFIG_SWAP
5149 /* shmem/tmpfs may report page out on swap: account for that too. */
5150 if (radix_tree_exceptional_entry(page)) {
5151 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5152 if (do_swap_account)
aa3b1895
HD
5153 *entry = swap;
5154 page = find_get_page(&swapper_space, swap.val);
87946a72 5155 }
aa3b1895 5156#endif
87946a72
DN
5157 return page;
5158}
5159
8d32ff84 5160static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5161 unsigned long addr, pte_t ptent, union mc_target *target)
5162{
5163 struct page *page = NULL;
5164 struct page_cgroup *pc;
8d32ff84 5165 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5166 swp_entry_t ent = { .val = 0 };
5167
5168 if (pte_present(ptent))
5169 page = mc_handle_present_pte(vma, addr, ptent);
5170 else if (is_swap_pte(ptent))
5171 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5172 else if (pte_none(ptent) || pte_file(ptent))
5173 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5174
5175 if (!page && !ent.val)
8d32ff84 5176 return ret;
02491447
DN
5177 if (page) {
5178 pc = lookup_page_cgroup(page);
5179 /*
5180 * Do only loose check w/o page_cgroup lock.
5181 * mem_cgroup_move_account() checks the pc is valid or not under
5182 * the lock.
5183 */
5184 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5185 ret = MC_TARGET_PAGE;
5186 if (target)
5187 target->page = page;
5188 }
5189 if (!ret || !target)
5190 put_page(page);
5191 }
90254a65
DN
5192 /* There is a swap entry and a page doesn't exist or isn't charged */
5193 if (ent.val && !ret &&
9fb4b7cc 5194 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5195 ret = MC_TARGET_SWAP;
5196 if (target)
5197 target->ent = ent;
4ffef5fe 5198 }
4ffef5fe
DN
5199 return ret;
5200}
5201
12724850
NH
5202#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5203/*
5204 * We don't consider swapping or file mapped pages because THP does not
5205 * support them for now.
5206 * Caller should make sure that pmd_trans_huge(pmd) is true.
5207 */
5208static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5209 unsigned long addr, pmd_t pmd, union mc_target *target)
5210{
5211 struct page *page = NULL;
5212 struct page_cgroup *pc;
5213 enum mc_target_type ret = MC_TARGET_NONE;
5214
5215 page = pmd_page(pmd);
5216 VM_BUG_ON(!page || !PageHead(page));
5217 if (!move_anon())
5218 return ret;
5219 pc = lookup_page_cgroup(page);
5220 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5221 ret = MC_TARGET_PAGE;
5222 if (target) {
5223 get_page(page);
5224 target->page = page;
5225 }
5226 }
5227 return ret;
5228}
5229#else
5230static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5231 unsigned long addr, pmd_t pmd, union mc_target *target)
5232{
5233 return MC_TARGET_NONE;
5234}
5235#endif
5236
4ffef5fe
DN
5237static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5238 unsigned long addr, unsigned long end,
5239 struct mm_walk *walk)
5240{
5241 struct vm_area_struct *vma = walk->private;
5242 pte_t *pte;
5243 spinlock_t *ptl;
5244
12724850
NH
5245 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5246 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5247 mc.precharge += HPAGE_PMD_NR;
5248 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5249 return 0;
12724850 5250 }
03319327 5251
45f83cef
AA
5252 if (pmd_trans_unstable(pmd))
5253 return 0;
4ffef5fe
DN
5254 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5255 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5256 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5257 mc.precharge++; /* increment precharge temporarily */
5258 pte_unmap_unlock(pte - 1, ptl);
5259 cond_resched();
5260
7dc74be0
DN
5261 return 0;
5262}
5263
4ffef5fe
DN
5264static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5265{
5266 unsigned long precharge;
5267 struct vm_area_struct *vma;
5268
dfe076b0 5269 down_read(&mm->mmap_sem);
4ffef5fe
DN
5270 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5271 struct mm_walk mem_cgroup_count_precharge_walk = {
5272 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5273 .mm = mm,
5274 .private = vma,
5275 };
5276 if (is_vm_hugetlb_page(vma))
5277 continue;
4ffef5fe
DN
5278 walk_page_range(vma->vm_start, vma->vm_end,
5279 &mem_cgroup_count_precharge_walk);
5280 }
dfe076b0 5281 up_read(&mm->mmap_sem);
4ffef5fe
DN
5282
5283 precharge = mc.precharge;
5284 mc.precharge = 0;
5285
5286 return precharge;
5287}
5288
4ffef5fe
DN
5289static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5290{
dfe076b0
DN
5291 unsigned long precharge = mem_cgroup_count_precharge(mm);
5292
5293 VM_BUG_ON(mc.moving_task);
5294 mc.moving_task = current;
5295 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5296}
5297
dfe076b0
DN
5298/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5299static void __mem_cgroup_clear_mc(void)
4ffef5fe 5300{
2bd9bb20
KH
5301 struct mem_cgroup *from = mc.from;
5302 struct mem_cgroup *to = mc.to;
5303
4ffef5fe 5304 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5305 if (mc.precharge) {
5306 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5307 mc.precharge = 0;
5308 }
5309 /*
5310 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5311 * we must uncharge here.
5312 */
5313 if (mc.moved_charge) {
5314 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5315 mc.moved_charge = 0;
4ffef5fe 5316 }
483c30b5
DN
5317 /* we must fixup refcnts and charges */
5318 if (mc.moved_swap) {
483c30b5
DN
5319 /* uncharge swap account from the old cgroup */
5320 if (!mem_cgroup_is_root(mc.from))
5321 res_counter_uncharge(&mc.from->memsw,
5322 PAGE_SIZE * mc.moved_swap);
5323 __mem_cgroup_put(mc.from, mc.moved_swap);
5324
5325 if (!mem_cgroup_is_root(mc.to)) {
5326 /*
5327 * we charged both to->res and to->memsw, so we should
5328 * uncharge to->res.
5329 */
5330 res_counter_uncharge(&mc.to->res,
5331 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5332 }
5333 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5334 mc.moved_swap = 0;
5335 }
dfe076b0
DN
5336 memcg_oom_recover(from);
5337 memcg_oom_recover(to);
5338 wake_up_all(&mc.waitq);
5339}
5340
5341static void mem_cgroup_clear_mc(void)
5342{
5343 struct mem_cgroup *from = mc.from;
5344
5345 /*
5346 * we must clear moving_task before waking up waiters at the end of
5347 * task migration.
5348 */
5349 mc.moving_task = NULL;
5350 __mem_cgroup_clear_mc();
2bd9bb20 5351 spin_lock(&mc.lock);
4ffef5fe
DN
5352 mc.from = NULL;
5353 mc.to = NULL;
2bd9bb20 5354 spin_unlock(&mc.lock);
32047e2a 5355 mem_cgroup_end_move(from);
4ffef5fe
DN
5356}
5357
761b3ef5
LZ
5358static int mem_cgroup_can_attach(struct cgroup *cgroup,
5359 struct cgroup_taskset *tset)
7dc74be0 5360{
2f7ee569 5361 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5362 int ret = 0;
c0ff4b85 5363 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5364
c0ff4b85 5365 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5366 struct mm_struct *mm;
5367 struct mem_cgroup *from = mem_cgroup_from_task(p);
5368
c0ff4b85 5369 VM_BUG_ON(from == memcg);
7dc74be0
DN
5370
5371 mm = get_task_mm(p);
5372 if (!mm)
5373 return 0;
7dc74be0 5374 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5375 if (mm->owner == p) {
5376 VM_BUG_ON(mc.from);
5377 VM_BUG_ON(mc.to);
5378 VM_BUG_ON(mc.precharge);
854ffa8d 5379 VM_BUG_ON(mc.moved_charge);
483c30b5 5380 VM_BUG_ON(mc.moved_swap);
32047e2a 5381 mem_cgroup_start_move(from);
2bd9bb20 5382 spin_lock(&mc.lock);
4ffef5fe 5383 mc.from = from;
c0ff4b85 5384 mc.to = memcg;
2bd9bb20 5385 spin_unlock(&mc.lock);
dfe076b0 5386 /* We set mc.moving_task later */
4ffef5fe
DN
5387
5388 ret = mem_cgroup_precharge_mc(mm);
5389 if (ret)
5390 mem_cgroup_clear_mc();
dfe076b0
DN
5391 }
5392 mmput(mm);
7dc74be0
DN
5393 }
5394 return ret;
5395}
5396
761b3ef5
LZ
5397static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5398 struct cgroup_taskset *tset)
7dc74be0 5399{
4ffef5fe 5400 mem_cgroup_clear_mc();
7dc74be0
DN
5401}
5402
4ffef5fe
DN
5403static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5404 unsigned long addr, unsigned long end,
5405 struct mm_walk *walk)
7dc74be0 5406{
4ffef5fe
DN
5407 int ret = 0;
5408 struct vm_area_struct *vma = walk->private;
5409 pte_t *pte;
5410 spinlock_t *ptl;
12724850
NH
5411 enum mc_target_type target_type;
5412 union mc_target target;
5413 struct page *page;
5414 struct page_cgroup *pc;
4ffef5fe 5415
12724850
NH
5416 /*
5417 * We don't take compound_lock() here but no race with splitting thp
5418 * happens because:
5419 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5420 * under splitting, which means there's no concurrent thp split,
5421 * - if another thread runs into split_huge_page() just after we
5422 * entered this if-block, the thread must wait for page table lock
5423 * to be unlocked in __split_huge_page_splitting(), where the main
5424 * part of thp split is not executed yet.
5425 */
5426 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5427 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5428 spin_unlock(&vma->vm_mm->page_table_lock);
5429 return 0;
5430 }
5431 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5432 if (target_type == MC_TARGET_PAGE) {
5433 page = target.page;
5434 if (!isolate_lru_page(page)) {
5435 pc = lookup_page_cgroup(page);
5436 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5437 pc, mc.from, mc.to)) {
12724850
NH
5438 mc.precharge -= HPAGE_PMD_NR;
5439 mc.moved_charge += HPAGE_PMD_NR;
5440 }
5441 putback_lru_page(page);
5442 }
5443 put_page(page);
5444 }
5445 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5446 return 0;
12724850
NH
5447 }
5448
45f83cef
AA
5449 if (pmd_trans_unstable(pmd))
5450 return 0;
4ffef5fe
DN
5451retry:
5452 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5453 for (; addr != end; addr += PAGE_SIZE) {
5454 pte_t ptent = *(pte++);
02491447 5455 swp_entry_t ent;
4ffef5fe
DN
5456
5457 if (!mc.precharge)
5458 break;
5459
8d32ff84 5460 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5461 case MC_TARGET_PAGE:
5462 page = target.page;
5463 if (isolate_lru_page(page))
5464 goto put;
5465 pc = lookup_page_cgroup(page);
7ec99d62 5466 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5467 mc.from, mc.to)) {
4ffef5fe 5468 mc.precharge--;
854ffa8d
DN
5469 /* we uncharge from mc.from later. */
5470 mc.moved_charge++;
4ffef5fe
DN
5471 }
5472 putback_lru_page(page);
8d32ff84 5473put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5474 put_page(page);
5475 break;
02491447
DN
5476 case MC_TARGET_SWAP:
5477 ent = target.ent;
e91cbb42 5478 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5479 mc.precharge--;
483c30b5
DN
5480 /* we fixup refcnts and charges later. */
5481 mc.moved_swap++;
5482 }
02491447 5483 break;
4ffef5fe
DN
5484 default:
5485 break;
5486 }
5487 }
5488 pte_unmap_unlock(pte - 1, ptl);
5489 cond_resched();
5490
5491 if (addr != end) {
5492 /*
5493 * We have consumed all precharges we got in can_attach().
5494 * We try charge one by one, but don't do any additional
5495 * charges to mc.to if we have failed in charge once in attach()
5496 * phase.
5497 */
854ffa8d 5498 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5499 if (!ret)
5500 goto retry;
5501 }
5502
5503 return ret;
5504}
5505
5506static void mem_cgroup_move_charge(struct mm_struct *mm)
5507{
5508 struct vm_area_struct *vma;
5509
5510 lru_add_drain_all();
dfe076b0
DN
5511retry:
5512 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5513 /*
5514 * Someone who are holding the mmap_sem might be waiting in
5515 * waitq. So we cancel all extra charges, wake up all waiters,
5516 * and retry. Because we cancel precharges, we might not be able
5517 * to move enough charges, but moving charge is a best-effort
5518 * feature anyway, so it wouldn't be a big problem.
5519 */
5520 __mem_cgroup_clear_mc();
5521 cond_resched();
5522 goto retry;
5523 }
4ffef5fe
DN
5524 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5525 int ret;
5526 struct mm_walk mem_cgroup_move_charge_walk = {
5527 .pmd_entry = mem_cgroup_move_charge_pte_range,
5528 .mm = mm,
5529 .private = vma,
5530 };
5531 if (is_vm_hugetlb_page(vma))
5532 continue;
4ffef5fe
DN
5533 ret = walk_page_range(vma->vm_start, vma->vm_end,
5534 &mem_cgroup_move_charge_walk);
5535 if (ret)
5536 /*
5537 * means we have consumed all precharges and failed in
5538 * doing additional charge. Just abandon here.
5539 */
5540 break;
5541 }
dfe076b0 5542 up_read(&mm->mmap_sem);
7dc74be0
DN
5543}
5544
761b3ef5
LZ
5545static void mem_cgroup_move_task(struct cgroup *cont,
5546 struct cgroup_taskset *tset)
67e465a7 5547{
2f7ee569 5548 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5549 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5550
dfe076b0 5551 if (mm) {
a433658c
KM
5552 if (mc.to)
5553 mem_cgroup_move_charge(mm);
dfe076b0
DN
5554 mmput(mm);
5555 }
a433658c
KM
5556 if (mc.to)
5557 mem_cgroup_clear_mc();
67e465a7 5558}
5cfb80a7 5559#else /* !CONFIG_MMU */
761b3ef5
LZ
5560static int mem_cgroup_can_attach(struct cgroup *cgroup,
5561 struct cgroup_taskset *tset)
5cfb80a7
DN
5562{
5563 return 0;
5564}
761b3ef5
LZ
5565static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5566 struct cgroup_taskset *tset)
5cfb80a7
DN
5567{
5568}
761b3ef5
LZ
5569static void mem_cgroup_move_task(struct cgroup *cont,
5570 struct cgroup_taskset *tset)
5cfb80a7
DN
5571{
5572}
5573#endif
67e465a7 5574
8cdea7c0
BS
5575struct cgroup_subsys mem_cgroup_subsys = {
5576 .name = "memory",
5577 .subsys_id = mem_cgroup_subsys_id,
5578 .create = mem_cgroup_create,
df878fb0 5579 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0 5580 .destroy = mem_cgroup_destroy,
7dc74be0
DN
5581 .can_attach = mem_cgroup_can_attach,
5582 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5583 .attach = mem_cgroup_move_task,
6bc10349 5584 .base_cftypes = mem_cgroup_files,
6d12e2d8 5585 .early_init = 0,
04046e1a 5586 .use_id = 1,
48ddbe19 5587 .__DEPRECATED_clear_css_refs = true,
8cdea7c0 5588};
c077719b 5589
c255a458 5590#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5591static int __init enable_swap_account(char *s)
5592{
5593 /* consider enabled if no parameter or 1 is given */
a2c8990a 5594 if (!strcmp(s, "1"))
a42c390c 5595 really_do_swap_account = 1;
a2c8990a 5596 else if (!strcmp(s, "0"))
a42c390c
MH
5597 really_do_swap_account = 0;
5598 return 1;
5599}
a2c8990a 5600__setup("swapaccount=", enable_swap_account);
c077719b 5601
c077719b 5602#endif