]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/memcontrol.c
backlight: fix 88pm860x_bl macro collision
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 63int do_swap_account __read_mostly;
a42c390c
MH
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
c077719b
KH
72#else
73#define do_swap_account (0)
74#endif
75
d2265e6f
KH
76/*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83#define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84#define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
c077719b 85
d52aa412
KH
86/*
87 * Statistics for memory cgroup.
88 */
89enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
55e462b0
BR
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
0c3e73e8 98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c
KH
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
32047e2a 102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
103
104 MEM_CGROUP_STAT_NSTATS,
105};
106
107struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
d52aa412
KH
109};
110
6d12e2d8
KH
111/*
112 * per-zone information in memory controller.
113 */
6d12e2d8 114struct mem_cgroup_per_zone {
072c56c1
KH
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
b69408e8
CL
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
120
121 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
4e416953
BS
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
6d12e2d8
KH
128};
129/* Macro for accessing counter */
130#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134};
135
136struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138};
139
f64c3f54
BS
140/*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148};
149
150struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152};
153
154struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156};
157
158static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
2e72b634
KS
160struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163};
164
9490ff27 165/* For threshold */
2e72b634
KS
166struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
5407a562 168 int current_threshold;
2e72b634
KS
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173};
2c488db2
KS
174
175struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184};
185
9490ff27
KH
186/* for OOM */
187struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190};
2e72b634 191
2e72b634 192static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 193static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 194
8cdea7c0
BS
195/*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
8cdea7c0
BS
205 */
206struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
8c7c6e34
KH
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
78fb7466
PE
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
78fb7466 219 */
6d12e2d8 220 struct mem_cgroup_lru_info info;
072c56c1 221
2733c06a
KM
222 /*
223 protect against reclaim related member.
224 */
225 spinlock_t reclaim_param_lock;
226
6d61ef40 227 /*
af901ca1 228 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 229 * reclaimed from.
6d61ef40 230 */
04046e1a 231 int last_scanned_child;
18f59ea7
BS
232 /*
233 * Should the accounting and control be hierarchical, per subtree?
234 */
235 bool use_hierarchy;
867578cb 236 atomic_t oom_lock;
8c7c6e34 237 atomic_t refcnt;
14797e23 238
a7885eb8 239 unsigned int swappiness;
3c11ecf4
KH
240 /* OOM-Killer disable */
241 int oom_kill_disable;
a7885eb8 242
22a668d7
KH
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
245
2e72b634
KS
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
248
249 /* thresholds for memory usage. RCU-protected */
2c488db2 250 struct mem_cgroup_thresholds thresholds;
907860ed 251
2e72b634 252 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 253 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 254
9490ff27
KH
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
257
7dc74be0
DN
258 /*
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
261 */
262 unsigned long move_charge_at_immigrate;
d52aa412 263 /*
c62b1a3b 264 * percpu counter.
d52aa412 265 */
c62b1a3b 266 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
267 /*
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
270 */
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
8cdea7c0
BS
273};
274
7dc74be0
DN
275/* Stuffs for move charges at task migration. */
276/*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280enum move_type {
4ffef5fe 281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
283 NR_MOVE_TYPE,
284};
285
4ffef5fe
DN
286/* "mc" and its members are protected by cgroup_mutex */
287static struct move_charge_struct {
b1dd693e 288 spinlock_t lock; /* for from, to */
4ffef5fe
DN
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
854ffa8d 292 unsigned long moved_charge;
483c30b5 293 unsigned long moved_swap;
8033b97c
DN
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296} mc = {
2bd9bb20 297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299};
4ffef5fe 300
90254a65
DN
301static bool move_anon(void)
302{
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
305}
306
87946a72
DN
307static bool move_file(void)
308{
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
311}
312
4e416953
BS
313/*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
217bc319
KH
320enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
327 NR_CHARGE_TYPE,
328};
329
52d4b9ac
KH
330/* only for here (for easy reading.) */
331#define PCGF_CACHE (1UL << PCG_CACHE)
332#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 333#define PCGF_LOCK (1UL << PCG_LOCK)
4b3bde4c
BS
334/* Not used, but added here for completeness */
335#define PCGF_ACCT (1UL << PCG_ACCT)
217bc319 336
8c7c6e34
KH
337/* for encoding cft->private value on file */
338#define _MEM (0)
339#define _MEMSWAP (1)
9490ff27 340#define _OOM_TYPE (2)
8c7c6e34
KH
341#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
343#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
344/* Used for OOM nofiier */
345#define OOM_CONTROL (0)
8c7c6e34 346
75822b44
BS
347/*
348 * Reclaim flags for mem_cgroup_hierarchical_reclaim
349 */
350#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
351#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
353#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
354#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
355#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 356
8c7c6e34
KH
357static void mem_cgroup_get(struct mem_cgroup *mem);
358static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 359static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 360static void drain_all_stock_async(void);
8c7c6e34 361
f64c3f54
BS
362static struct mem_cgroup_per_zone *
363mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364{
365 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366}
367
d324236b
WF
368struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369{
370 return &mem->css;
371}
372
f64c3f54
BS
373static struct mem_cgroup_per_zone *
374page_cgroup_zoneinfo(struct page_cgroup *pc)
375{
376 struct mem_cgroup *mem = pc->mem_cgroup;
377 int nid = page_cgroup_nid(pc);
378 int zid = page_cgroup_zid(pc);
379
380 if (!mem)
381 return NULL;
382
383 return mem_cgroup_zoneinfo(mem, nid, zid);
384}
385
386static struct mem_cgroup_tree_per_zone *
387soft_limit_tree_node_zone(int nid, int zid)
388{
389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390}
391
392static struct mem_cgroup_tree_per_zone *
393soft_limit_tree_from_page(struct page *page)
394{
395 int nid = page_to_nid(page);
396 int zid = page_zonenum(page);
397
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399}
400
401static void
4e416953 402__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 403 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
404 struct mem_cgroup_tree_per_zone *mctz,
405 unsigned long long new_usage_in_excess)
f64c3f54
BS
406{
407 struct rb_node **p = &mctz->rb_root.rb_node;
408 struct rb_node *parent = NULL;
409 struct mem_cgroup_per_zone *mz_node;
410
411 if (mz->on_tree)
412 return;
413
ef8745c1
KH
414 mz->usage_in_excess = new_usage_in_excess;
415 if (!mz->usage_in_excess)
416 return;
f64c3f54
BS
417 while (*p) {
418 parent = *p;
419 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420 tree_node);
421 if (mz->usage_in_excess < mz_node->usage_in_excess)
422 p = &(*p)->rb_left;
423 /*
424 * We can't avoid mem cgroups that are over their soft
425 * limit by the same amount
426 */
427 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428 p = &(*p)->rb_right;
429 }
430 rb_link_node(&mz->tree_node, parent, p);
431 rb_insert_color(&mz->tree_node, &mctz->rb_root);
432 mz->on_tree = true;
4e416953
BS
433}
434
435static void
436__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 struct mem_cgroup_per_zone *mz,
438 struct mem_cgroup_tree_per_zone *mctz)
439{
440 if (!mz->on_tree)
441 return;
442 rb_erase(&mz->tree_node, &mctz->rb_root);
443 mz->on_tree = false;
444}
445
f64c3f54
BS
446static void
447mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448 struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz)
450{
451 spin_lock(&mctz->lock);
4e416953 452 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
453 spin_unlock(&mctz->lock);
454}
455
f64c3f54
BS
456
457static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458{
ef8745c1 459 unsigned long long excess;
f64c3f54
BS
460 struct mem_cgroup_per_zone *mz;
461 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
462 int nid = page_to_nid(page);
463 int zid = page_zonenum(page);
f64c3f54
BS
464 mctz = soft_limit_tree_from_page(page);
465
466 /*
4e649152
KH
467 * Necessary to update all ancestors when hierarchy is used.
468 * because their event counter is not touched.
f64c3f54 469 */
4e649152
KH
470 for (; mem; mem = parent_mem_cgroup(mem)) {
471 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 472 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
473 /*
474 * We have to update the tree if mz is on RB-tree or
475 * mem is over its softlimit.
476 */
ef8745c1 477 if (excess || mz->on_tree) {
4e649152
KH
478 spin_lock(&mctz->lock);
479 /* if on-tree, remove it */
480 if (mz->on_tree)
481 __mem_cgroup_remove_exceeded(mem, mz, mctz);
482 /*
ef8745c1
KH
483 * Insert again. mz->usage_in_excess will be updated.
484 * If excess is 0, no tree ops.
4e649152 485 */
ef8745c1 486 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
487 spin_unlock(&mctz->lock);
488 }
f64c3f54
BS
489 }
490}
491
492static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493{
494 int node, zone;
495 struct mem_cgroup_per_zone *mz;
496 struct mem_cgroup_tree_per_zone *mctz;
497
498 for_each_node_state(node, N_POSSIBLE) {
499 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500 mz = mem_cgroup_zoneinfo(mem, node, zone);
501 mctz = soft_limit_tree_node_zone(node, zone);
502 mem_cgroup_remove_exceeded(mem, mz, mctz);
503 }
504 }
505}
506
4e416953
BS
507static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
508{
509 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
510}
511
512static struct mem_cgroup_per_zone *
513__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514{
515 struct rb_node *rightmost = NULL;
26251eaf 516 struct mem_cgroup_per_zone *mz;
4e416953
BS
517
518retry:
26251eaf 519 mz = NULL;
4e416953
BS
520 rightmost = rb_last(&mctz->rb_root);
521 if (!rightmost)
522 goto done; /* Nothing to reclaim from */
523
524 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525 /*
526 * Remove the node now but someone else can add it back,
527 * we will to add it back at the end of reclaim to its correct
528 * position in the tree.
529 */
530 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532 !css_tryget(&mz->mem->css))
533 goto retry;
534done:
535 return mz;
536}
537
538static struct mem_cgroup_per_zone *
539mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540{
541 struct mem_cgroup_per_zone *mz;
542
543 spin_lock(&mctz->lock);
544 mz = __mem_cgroup_largest_soft_limit_node(mctz);
545 spin_unlock(&mctz->lock);
546 return mz;
547}
548
711d3d2c
KH
549/*
550 * Implementation Note: reading percpu statistics for memcg.
551 *
552 * Both of vmstat[] and percpu_counter has threshold and do periodic
553 * synchronization to implement "quick" read. There are trade-off between
554 * reading cost and precision of value. Then, we may have a chance to implement
555 * a periodic synchronizion of counter in memcg's counter.
556 *
557 * But this _read() function is used for user interface now. The user accounts
558 * memory usage by memory cgroup and he _always_ requires exact value because
559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560 * have to visit all online cpus and make sum. So, for now, unnecessary
561 * synchronization is not implemented. (just implemented for cpu hotplug)
562 *
563 * If there are kernel internal actions which can make use of some not-exact
564 * value, and reading all cpu value can be performance bottleneck in some
565 * common workload, threashold and synchonization as vmstat[] should be
566 * implemented.
567 */
c62b1a3b
KH
568static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569 enum mem_cgroup_stat_index idx)
570{
571 int cpu;
572 s64 val = 0;
573
711d3d2c
KH
574 get_online_cpus();
575 for_each_online_cpu(cpu)
c62b1a3b 576 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
577#ifdef CONFIG_HOTPLUG_CPU
578 spin_lock(&mem->pcp_counter_lock);
579 val += mem->nocpu_base.count[idx];
580 spin_unlock(&mem->pcp_counter_lock);
581#endif
582 put_online_cpus();
c62b1a3b
KH
583 return val;
584}
585
586static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
587{
588 s64 ret;
589
590 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592 return ret;
593}
594
0c3e73e8
BS
595static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596 bool charge)
597{
598 int val = (charge) ? 1 : -1;
c62b1a3b 599 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
600}
601
c05555b5 602static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
e401f176 603 bool file, int nr_pages)
d52aa412 604{
c62b1a3b
KH
605 preempt_disable();
606
e401f176
KH
607 if (file)
608 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
d52aa412 609 else
e401f176 610 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
55e462b0 611
e401f176
KH
612 /* pagein of a big page is an event. So, ignore page size */
613 if (nr_pages > 0)
c62b1a3b 614 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
55e462b0 615 else
c62b1a3b 616 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
e401f176
KH
617
618 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
2e72b634 619
c62b1a3b 620 preempt_enable();
6d12e2d8
KH
621}
622
14067bb3 623static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 624 enum lru_list idx)
6d12e2d8
KH
625{
626 int nid, zid;
627 struct mem_cgroup_per_zone *mz;
628 u64 total = 0;
629
630 for_each_online_node(nid)
631 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
632 mz = mem_cgroup_zoneinfo(mem, nid, zid);
633 total += MEM_CGROUP_ZSTAT(mz, idx);
634 }
635 return total;
d52aa412
KH
636}
637
d2265e6f
KH
638static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
639{
640 s64 val;
641
642 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
643
644 return !(val & ((1 << event_mask_shift) - 1));
645}
646
647/*
648 * Check events in order.
649 *
650 */
651static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
652{
653 /* threshold event is triggered in finer grain than soft limit */
654 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
655 mem_cgroup_threshold(mem);
656 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
657 mem_cgroup_update_tree(mem, page);
658 }
659}
660
d5b69e38 661static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
662{
663 return container_of(cgroup_subsys_state(cont,
664 mem_cgroup_subsys_id), struct mem_cgroup,
665 css);
666}
667
cf475ad2 668struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 669{
31a78f23
BS
670 /*
671 * mm_update_next_owner() may clear mm->owner to NULL
672 * if it races with swapoff, page migration, etc.
673 * So this can be called with p == NULL.
674 */
675 if (unlikely(!p))
676 return NULL;
677
78fb7466
PE
678 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
679 struct mem_cgroup, css);
680}
681
54595fe2
KH
682static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
683{
684 struct mem_cgroup *mem = NULL;
0b7f569e
KH
685
686 if (!mm)
687 return NULL;
54595fe2
KH
688 /*
689 * Because we have no locks, mm->owner's may be being moved to other
690 * cgroup. We use css_tryget() here even if this looks
691 * pessimistic (rather than adding locks here).
692 */
693 rcu_read_lock();
694 do {
695 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
696 if (unlikely(!mem))
697 break;
698 } while (!css_tryget(&mem->css));
699 rcu_read_unlock();
700 return mem;
701}
702
7d74b06f
KH
703/* The caller has to guarantee "mem" exists before calling this */
704static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 705{
711d3d2c
KH
706 struct cgroup_subsys_state *css;
707 int found;
708
709 if (!mem) /* ROOT cgroup has the smallest ID */
710 return root_mem_cgroup; /*css_put/get against root is ignored*/
711 if (!mem->use_hierarchy) {
712 if (css_tryget(&mem->css))
713 return mem;
714 return NULL;
715 }
716 rcu_read_lock();
717 /*
718 * searching a memory cgroup which has the smallest ID under given
719 * ROOT cgroup. (ID >= 1)
720 */
721 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
722 if (css && css_tryget(css))
723 mem = container_of(css, struct mem_cgroup, css);
724 else
725 mem = NULL;
726 rcu_read_unlock();
727 return mem;
7d74b06f
KH
728}
729
730static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
731 struct mem_cgroup *root,
732 bool cond)
733{
734 int nextid = css_id(&iter->css) + 1;
735 int found;
736 int hierarchy_used;
14067bb3 737 struct cgroup_subsys_state *css;
14067bb3 738
7d74b06f 739 hierarchy_used = iter->use_hierarchy;
14067bb3 740
7d74b06f 741 css_put(&iter->css);
711d3d2c
KH
742 /* If no ROOT, walk all, ignore hierarchy */
743 if (!cond || (root && !hierarchy_used))
7d74b06f 744 return NULL;
14067bb3 745
711d3d2c
KH
746 if (!root)
747 root = root_mem_cgroup;
748
7d74b06f
KH
749 do {
750 iter = NULL;
14067bb3 751 rcu_read_lock();
7d74b06f
KH
752
753 css = css_get_next(&mem_cgroup_subsys, nextid,
754 &root->css, &found);
14067bb3 755 if (css && css_tryget(css))
7d74b06f 756 iter = container_of(css, struct mem_cgroup, css);
14067bb3 757 rcu_read_unlock();
7d74b06f 758 /* If css is NULL, no more cgroups will be found */
14067bb3 759 nextid = found + 1;
7d74b06f 760 } while (css && !iter);
14067bb3 761
7d74b06f 762 return iter;
14067bb3 763}
7d74b06f
KH
764/*
765 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
766 * be careful that "break" loop is not allowed. We have reference count.
767 * Instead of that modify "cond" to be false and "continue" to exit the loop.
768 */
769#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
770 for (iter = mem_cgroup_start_loop(root);\
771 iter != NULL;\
772 iter = mem_cgroup_get_next(iter, root, cond))
773
774#define for_each_mem_cgroup_tree(iter, root) \
775 for_each_mem_cgroup_tree_cond(iter, root, true)
776
711d3d2c
KH
777#define for_each_mem_cgroup_all(iter) \
778 for_each_mem_cgroup_tree_cond(iter, NULL, true)
779
14067bb3 780
4b3bde4c
BS
781static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
782{
783 return (mem == root_mem_cgroup);
784}
785
08e552c6
KH
786/*
787 * Following LRU functions are allowed to be used without PCG_LOCK.
788 * Operations are called by routine of global LRU independently from memcg.
789 * What we have to take care of here is validness of pc->mem_cgroup.
790 *
791 * Changes to pc->mem_cgroup happens when
792 * 1. charge
793 * 2. moving account
794 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
795 * It is added to LRU before charge.
796 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
797 * When moving account, the page is not on LRU. It's isolated.
798 */
4f98a2fe 799
08e552c6
KH
800void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
801{
802 struct page_cgroup *pc;
08e552c6 803 struct mem_cgroup_per_zone *mz;
6d12e2d8 804
f8d66542 805 if (mem_cgroup_disabled())
08e552c6
KH
806 return;
807 pc = lookup_page_cgroup(page);
808 /* can happen while we handle swapcache. */
4b3bde4c 809 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 810 return;
4b3bde4c 811 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
812 /*
813 * We don't check PCG_USED bit. It's cleared when the "page" is finally
814 * removed from global LRU.
815 */
08e552c6 816 mz = page_cgroup_zoneinfo(pc);
ece35ca8
KH
817 /* huge page split is done under lru_lock. so, we have no races. */
818 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
819 if (mem_cgroup_is_root(pc->mem_cgroup))
820 return;
821 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 822 list_del_init(&pc->lru);
6d12e2d8
KH
823}
824
08e552c6 825void mem_cgroup_del_lru(struct page *page)
6d12e2d8 826{
08e552c6
KH
827 mem_cgroup_del_lru_list(page, page_lru(page));
828}
b69408e8 829
08e552c6
KH
830void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
831{
832 struct mem_cgroup_per_zone *mz;
833 struct page_cgroup *pc;
b69408e8 834
f8d66542 835 if (mem_cgroup_disabled())
08e552c6 836 return;
6d12e2d8 837
08e552c6 838 pc = lookup_page_cgroup(page);
bd112db8
DN
839 /*
840 * Used bit is set without atomic ops but after smp_wmb().
841 * For making pc->mem_cgroup visible, insert smp_rmb() here.
842 */
08e552c6 843 smp_rmb();
4b3bde4c
BS
844 /* unused or root page is not rotated. */
845 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
08e552c6
KH
846 return;
847 mz = page_cgroup_zoneinfo(pc);
848 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
849}
850
08e552c6 851void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 852{
08e552c6
KH
853 struct page_cgroup *pc;
854 struct mem_cgroup_per_zone *mz;
6d12e2d8 855
f8d66542 856 if (mem_cgroup_disabled())
08e552c6
KH
857 return;
858 pc = lookup_page_cgroup(page);
4b3bde4c 859 VM_BUG_ON(PageCgroupAcctLRU(pc));
bd112db8
DN
860 /*
861 * Used bit is set without atomic ops but after smp_wmb().
862 * For making pc->mem_cgroup visible, insert smp_rmb() here.
863 */
08e552c6
KH
864 smp_rmb();
865 if (!PageCgroupUsed(pc))
894bc310 866 return;
b69408e8 867
08e552c6 868 mz = page_cgroup_zoneinfo(pc);
ece35ca8
KH
869 /* huge page split is done under lru_lock. so, we have no races. */
870 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
871 SetPageCgroupAcctLRU(pc);
872 if (mem_cgroup_is_root(pc->mem_cgroup))
873 return;
08e552c6
KH
874 list_add(&pc->lru, &mz->lists[lru]);
875}
544122e5 876
08e552c6 877/*
544122e5
KH
878 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
879 * lru because the page may.be reused after it's fully uncharged (because of
880 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
881 * it again. This function is only used to charge SwapCache. It's done under
882 * lock_page and expected that zone->lru_lock is never held.
08e552c6 883 */
544122e5 884static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 885{
544122e5
KH
886 unsigned long flags;
887 struct zone *zone = page_zone(page);
888 struct page_cgroup *pc = lookup_page_cgroup(page);
889
890 spin_lock_irqsave(&zone->lru_lock, flags);
891 /*
892 * Forget old LRU when this page_cgroup is *not* used. This Used bit
893 * is guarded by lock_page() because the page is SwapCache.
894 */
895 if (!PageCgroupUsed(pc))
896 mem_cgroup_del_lru_list(page, page_lru(page));
897 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
898}
899
544122e5
KH
900static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
901{
902 unsigned long flags;
903 struct zone *zone = page_zone(page);
904 struct page_cgroup *pc = lookup_page_cgroup(page);
905
906 spin_lock_irqsave(&zone->lru_lock, flags);
907 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 908 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
909 mem_cgroup_add_lru_list(page, page_lru(page));
910 spin_unlock_irqrestore(&zone->lru_lock, flags);
911}
912
913
08e552c6
KH
914void mem_cgroup_move_lists(struct page *page,
915 enum lru_list from, enum lru_list to)
916{
f8d66542 917 if (mem_cgroup_disabled())
08e552c6
KH
918 return;
919 mem_cgroup_del_lru_list(page, from);
920 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
921}
922
4c4a2214
DR
923int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
924{
925 int ret;
0b7f569e 926 struct mem_cgroup *curr = NULL;
158e0a2d 927 struct task_struct *p;
4c4a2214 928
158e0a2d
KH
929 p = find_lock_task_mm(task);
930 if (!p)
931 return 0;
932 curr = try_get_mem_cgroup_from_mm(p->mm);
933 task_unlock(p);
0b7f569e
KH
934 if (!curr)
935 return 0;
d31f56db
DN
936 /*
937 * We should check use_hierarchy of "mem" not "curr". Because checking
938 * use_hierarchy of "curr" here make this function true if hierarchy is
939 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
940 * hierarchy(even if use_hierarchy is disabled in "mem").
941 */
942 if (mem->use_hierarchy)
0b7f569e
KH
943 ret = css_is_ancestor(&curr->css, &mem->css);
944 else
945 ret = (curr == mem);
946 css_put(&curr->css);
4c4a2214
DR
947 return ret;
948}
949
c772be93 950static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
951{
952 unsigned long active;
953 unsigned long inactive;
c772be93
KM
954 unsigned long gb;
955 unsigned long inactive_ratio;
14797e23 956
14067bb3
KH
957 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
958 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 959
c772be93
KM
960 gb = (inactive + active) >> (30 - PAGE_SHIFT);
961 if (gb)
962 inactive_ratio = int_sqrt(10 * gb);
963 else
964 inactive_ratio = 1;
965
966 if (present_pages) {
967 present_pages[0] = inactive;
968 present_pages[1] = active;
969 }
970
971 return inactive_ratio;
972}
973
974int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
975{
976 unsigned long active;
977 unsigned long inactive;
978 unsigned long present_pages[2];
979 unsigned long inactive_ratio;
980
981 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
982
983 inactive = present_pages[0];
984 active = present_pages[1];
985
986 if (inactive * inactive_ratio < active)
14797e23
KM
987 return 1;
988
989 return 0;
990}
991
56e49d21
RR
992int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
993{
994 unsigned long active;
995 unsigned long inactive;
996
997 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
998 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
999
1000 return (active > inactive);
1001}
1002
a3d8e054
KM
1003unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1004 struct zone *zone,
1005 enum lru_list lru)
1006{
13d7e3a2 1007 int nid = zone_to_nid(zone);
a3d8e054
KM
1008 int zid = zone_idx(zone);
1009 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1010
1011 return MEM_CGROUP_ZSTAT(mz, lru);
1012}
1013
3e2f41f1
KM
1014struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1015 struct zone *zone)
1016{
13d7e3a2 1017 int nid = zone_to_nid(zone);
3e2f41f1
KM
1018 int zid = zone_idx(zone);
1019 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1020
1021 return &mz->reclaim_stat;
1022}
1023
1024struct zone_reclaim_stat *
1025mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1026{
1027 struct page_cgroup *pc;
1028 struct mem_cgroup_per_zone *mz;
1029
1030 if (mem_cgroup_disabled())
1031 return NULL;
1032
1033 pc = lookup_page_cgroup(page);
bd112db8
DN
1034 /*
1035 * Used bit is set without atomic ops but after smp_wmb().
1036 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1037 */
1038 smp_rmb();
1039 if (!PageCgroupUsed(pc))
1040 return NULL;
1041
3e2f41f1
KM
1042 mz = page_cgroup_zoneinfo(pc);
1043 if (!mz)
1044 return NULL;
1045
1046 return &mz->reclaim_stat;
1047}
1048
66e1707b
BS
1049unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1050 struct list_head *dst,
1051 unsigned long *scanned, int order,
1052 int mode, struct zone *z,
1053 struct mem_cgroup *mem_cont,
4f98a2fe 1054 int active, int file)
66e1707b
BS
1055{
1056 unsigned long nr_taken = 0;
1057 struct page *page;
1058 unsigned long scan;
1059 LIST_HEAD(pc_list);
1060 struct list_head *src;
ff7283fa 1061 struct page_cgroup *pc, *tmp;
13d7e3a2 1062 int nid = zone_to_nid(z);
1ecaab2b
KH
1063 int zid = zone_idx(z);
1064 struct mem_cgroup_per_zone *mz;
b7c46d15 1065 int lru = LRU_FILE * file + active;
2ffebca6 1066 int ret;
66e1707b 1067
cf475ad2 1068 BUG_ON(!mem_cont);
1ecaab2b 1069 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1070 src = &mz->lists[lru];
66e1707b 1071
ff7283fa
KH
1072 scan = 0;
1073 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1074 if (scan >= nr_to_scan)
ff7283fa 1075 break;
08e552c6
KH
1076
1077 page = pc->page;
52d4b9ac
KH
1078 if (unlikely(!PageCgroupUsed(pc)))
1079 continue;
436c6541 1080 if (unlikely(!PageLRU(page)))
ff7283fa 1081 continue;
ff7283fa 1082
436c6541 1083 scan++;
2ffebca6
KH
1084 ret = __isolate_lru_page(page, mode, file);
1085 switch (ret) {
1086 case 0:
66e1707b 1087 list_move(&page->lru, dst);
2ffebca6 1088 mem_cgroup_del_lru(page);
2c888cfb 1089 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1090 break;
1091 case -EBUSY:
1092 /* we don't affect global LRU but rotate in our LRU */
1093 mem_cgroup_rotate_lru_list(page, page_lru(page));
1094 break;
1095 default:
1096 break;
66e1707b
BS
1097 }
1098 }
1099
66e1707b 1100 *scanned = scan;
cc8e970c
KM
1101
1102 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1103 0, 0, 0, mode);
1104
66e1707b
BS
1105 return nr_taken;
1106}
1107
6d61ef40
BS
1108#define mem_cgroup_from_res_counter(counter, member) \
1109 container_of(counter, struct mem_cgroup, member)
1110
b85a96c0
DN
1111static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1112{
1113 if (do_swap_account) {
1114 if (res_counter_check_under_limit(&mem->res) &&
1115 res_counter_check_under_limit(&mem->memsw))
1116 return true;
1117 } else
1118 if (res_counter_check_under_limit(&mem->res))
1119 return true;
1120 return false;
1121}
1122
a7885eb8
KM
1123static unsigned int get_swappiness(struct mem_cgroup *memcg)
1124{
1125 struct cgroup *cgrp = memcg->css.cgroup;
1126 unsigned int swappiness;
1127
1128 /* root ? */
1129 if (cgrp->parent == NULL)
1130 return vm_swappiness;
1131
1132 spin_lock(&memcg->reclaim_param_lock);
1133 swappiness = memcg->swappiness;
1134 spin_unlock(&memcg->reclaim_param_lock);
1135
1136 return swappiness;
1137}
1138
32047e2a
KH
1139static void mem_cgroup_start_move(struct mem_cgroup *mem)
1140{
1141 int cpu;
1489ebad
KH
1142
1143 get_online_cpus();
1144 spin_lock(&mem->pcp_counter_lock);
1145 for_each_online_cpu(cpu)
32047e2a 1146 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1147 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1148 spin_unlock(&mem->pcp_counter_lock);
1149 put_online_cpus();
32047e2a
KH
1150
1151 synchronize_rcu();
1152}
1153
1154static void mem_cgroup_end_move(struct mem_cgroup *mem)
1155{
1156 int cpu;
1157
1158 if (!mem)
1159 return;
1489ebad
KH
1160 get_online_cpus();
1161 spin_lock(&mem->pcp_counter_lock);
1162 for_each_online_cpu(cpu)
32047e2a 1163 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1164 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1165 spin_unlock(&mem->pcp_counter_lock);
1166 put_online_cpus();
32047e2a
KH
1167}
1168/*
1169 * 2 routines for checking "mem" is under move_account() or not.
1170 *
1171 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1172 * for avoiding race in accounting. If true,
1173 * pc->mem_cgroup may be overwritten.
1174 *
1175 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1176 * under hierarchy of moving cgroups. This is for
1177 * waiting at hith-memory prressure caused by "move".
1178 */
1179
1180static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1181{
1182 VM_BUG_ON(!rcu_read_lock_held());
1183 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1184}
4b534334
KH
1185
1186static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1187{
2bd9bb20
KH
1188 struct mem_cgroup *from;
1189 struct mem_cgroup *to;
4b534334 1190 bool ret = false;
2bd9bb20
KH
1191 /*
1192 * Unlike task_move routines, we access mc.to, mc.from not under
1193 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1194 */
1195 spin_lock(&mc.lock);
1196 from = mc.from;
1197 to = mc.to;
1198 if (!from)
1199 goto unlock;
1200 if (from == mem || to == mem
1201 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1202 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1203 ret = true;
1204unlock:
1205 spin_unlock(&mc.lock);
4b534334
KH
1206 return ret;
1207}
1208
1209static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1210{
1211 if (mc.moving_task && current != mc.moving_task) {
1212 if (mem_cgroup_under_move(mem)) {
1213 DEFINE_WAIT(wait);
1214 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1215 /* moving charge context might have finished. */
1216 if (mc.moving_task)
1217 schedule();
1218 finish_wait(&mc.waitq, &wait);
1219 return true;
1220 }
1221 }
1222 return false;
1223}
1224
e222432b 1225/**
6a6135b6 1226 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1227 * @memcg: The memory cgroup that went over limit
1228 * @p: Task that is going to be killed
1229 *
1230 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1231 * enabled
1232 */
1233void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1234{
1235 struct cgroup *task_cgrp;
1236 struct cgroup *mem_cgrp;
1237 /*
1238 * Need a buffer in BSS, can't rely on allocations. The code relies
1239 * on the assumption that OOM is serialized for memory controller.
1240 * If this assumption is broken, revisit this code.
1241 */
1242 static char memcg_name[PATH_MAX];
1243 int ret;
1244
d31f56db 1245 if (!memcg || !p)
e222432b
BS
1246 return;
1247
1248
1249 rcu_read_lock();
1250
1251 mem_cgrp = memcg->css.cgroup;
1252 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1253
1254 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1255 if (ret < 0) {
1256 /*
1257 * Unfortunately, we are unable to convert to a useful name
1258 * But we'll still print out the usage information
1259 */
1260 rcu_read_unlock();
1261 goto done;
1262 }
1263 rcu_read_unlock();
1264
1265 printk(KERN_INFO "Task in %s killed", memcg_name);
1266
1267 rcu_read_lock();
1268 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1269 if (ret < 0) {
1270 rcu_read_unlock();
1271 goto done;
1272 }
1273 rcu_read_unlock();
1274
1275 /*
1276 * Continues from above, so we don't need an KERN_ level
1277 */
1278 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1279done:
1280
1281 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1282 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1283 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1284 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1285 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1286 "failcnt %llu\n",
1287 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1288 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1289 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1290}
1291
81d39c20
KH
1292/*
1293 * This function returns the number of memcg under hierarchy tree. Returns
1294 * 1(self count) if no children.
1295 */
1296static int mem_cgroup_count_children(struct mem_cgroup *mem)
1297{
1298 int num = 0;
7d74b06f
KH
1299 struct mem_cgroup *iter;
1300
1301 for_each_mem_cgroup_tree(iter, mem)
1302 num++;
81d39c20
KH
1303 return num;
1304}
1305
a63d83f4
DR
1306/*
1307 * Return the memory (and swap, if configured) limit for a memcg.
1308 */
1309u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1310{
1311 u64 limit;
1312 u64 memsw;
1313
f3e8eb70
JW
1314 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1315 limit += total_swap_pages << PAGE_SHIFT;
1316
a63d83f4
DR
1317 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1318 /*
1319 * If memsw is finite and limits the amount of swap space available
1320 * to this memcg, return that limit.
1321 */
1322 return min(limit, memsw);
1323}
1324
6d61ef40 1325/*
04046e1a
KH
1326 * Visit the first child (need not be the first child as per the ordering
1327 * of the cgroup list, since we track last_scanned_child) of @mem and use
1328 * that to reclaim free pages from.
1329 */
1330static struct mem_cgroup *
1331mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1332{
1333 struct mem_cgroup *ret = NULL;
1334 struct cgroup_subsys_state *css;
1335 int nextid, found;
1336
1337 if (!root_mem->use_hierarchy) {
1338 css_get(&root_mem->css);
1339 ret = root_mem;
1340 }
1341
1342 while (!ret) {
1343 rcu_read_lock();
1344 nextid = root_mem->last_scanned_child + 1;
1345 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1346 &found);
1347 if (css && css_tryget(css))
1348 ret = container_of(css, struct mem_cgroup, css);
1349
1350 rcu_read_unlock();
1351 /* Updates scanning parameter */
1352 spin_lock(&root_mem->reclaim_param_lock);
1353 if (!css) {
1354 /* this means start scan from ID:1 */
1355 root_mem->last_scanned_child = 0;
1356 } else
1357 root_mem->last_scanned_child = found;
1358 spin_unlock(&root_mem->reclaim_param_lock);
1359 }
1360
1361 return ret;
1362}
1363
1364/*
1365 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1366 * we reclaimed from, so that we don't end up penalizing one child extensively
1367 * based on its position in the children list.
6d61ef40
BS
1368 *
1369 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1370 *
1371 * We give up and return to the caller when we visit root_mem twice.
1372 * (other groups can be removed while we're walking....)
81d39c20
KH
1373 *
1374 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1375 */
1376static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1377 struct zone *zone,
75822b44
BS
1378 gfp_t gfp_mask,
1379 unsigned long reclaim_options)
6d61ef40 1380{
04046e1a
KH
1381 struct mem_cgroup *victim;
1382 int ret, total = 0;
1383 int loop = 0;
75822b44
BS
1384 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1385 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953
BS
1386 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1387 unsigned long excess = mem_cgroup_get_excess(root_mem);
04046e1a 1388
22a668d7
KH
1389 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1390 if (root_mem->memsw_is_minimum)
1391 noswap = true;
1392
4e416953 1393 while (1) {
04046e1a 1394 victim = mem_cgroup_select_victim(root_mem);
4e416953 1395 if (victim == root_mem) {
04046e1a 1396 loop++;
cdec2e42
KH
1397 if (loop >= 1)
1398 drain_all_stock_async();
4e416953
BS
1399 if (loop >= 2) {
1400 /*
1401 * If we have not been able to reclaim
1402 * anything, it might because there are
1403 * no reclaimable pages under this hierarchy
1404 */
1405 if (!check_soft || !total) {
1406 css_put(&victim->css);
1407 break;
1408 }
1409 /*
1410 * We want to do more targetted reclaim.
1411 * excess >> 2 is not to excessive so as to
1412 * reclaim too much, nor too less that we keep
1413 * coming back to reclaim from this cgroup
1414 */
1415 if (total >= (excess >> 2) ||
1416 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1417 css_put(&victim->css);
1418 break;
1419 }
1420 }
1421 }
c62b1a3b 1422 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1423 /* this cgroup's local usage == 0 */
1424 css_put(&victim->css);
6d61ef40
BS
1425 continue;
1426 }
04046e1a 1427 /* we use swappiness of local cgroup */
4e416953
BS
1428 if (check_soft)
1429 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
14fec796 1430 noswap, get_swappiness(victim), zone);
4e416953
BS
1431 else
1432 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1433 noswap, get_swappiness(victim));
04046e1a 1434 css_put(&victim->css);
81d39c20
KH
1435 /*
1436 * At shrinking usage, we can't check we should stop here or
1437 * reclaim more. It's depends on callers. last_scanned_child
1438 * will work enough for keeping fairness under tree.
1439 */
1440 if (shrink)
1441 return ret;
04046e1a 1442 total += ret;
4e416953
BS
1443 if (check_soft) {
1444 if (res_counter_check_under_soft_limit(&root_mem->res))
1445 return total;
1446 } else if (mem_cgroup_check_under_limit(root_mem))
04046e1a 1447 return 1 + total;
6d61ef40 1448 }
04046e1a 1449 return total;
6d61ef40
BS
1450}
1451
867578cb
KH
1452/*
1453 * Check OOM-Killer is already running under our hierarchy.
1454 * If someone is running, return false.
1455 */
1456static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1457{
7d74b06f
KH
1458 int x, lock_count = 0;
1459 struct mem_cgroup *iter;
a636b327 1460
7d74b06f
KH
1461 for_each_mem_cgroup_tree(iter, mem) {
1462 x = atomic_inc_return(&iter->oom_lock);
1463 lock_count = max(x, lock_count);
1464 }
867578cb
KH
1465
1466 if (lock_count == 1)
1467 return true;
1468 return false;
a636b327 1469}
0b7f569e 1470
7d74b06f 1471static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1472{
7d74b06f
KH
1473 struct mem_cgroup *iter;
1474
867578cb
KH
1475 /*
1476 * When a new child is created while the hierarchy is under oom,
1477 * mem_cgroup_oom_lock() may not be called. We have to use
1478 * atomic_add_unless() here.
1479 */
7d74b06f
KH
1480 for_each_mem_cgroup_tree(iter, mem)
1481 atomic_add_unless(&iter->oom_lock, -1, 0);
0b7f569e
KH
1482 return 0;
1483}
1484
867578cb
KH
1485
1486static DEFINE_MUTEX(memcg_oom_mutex);
1487static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1488
dc98df5a
KH
1489struct oom_wait_info {
1490 struct mem_cgroup *mem;
1491 wait_queue_t wait;
1492};
1493
1494static int memcg_oom_wake_function(wait_queue_t *wait,
1495 unsigned mode, int sync, void *arg)
1496{
1497 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1498 struct oom_wait_info *oom_wait_info;
1499
1500 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1501
1502 if (oom_wait_info->mem == wake_mem)
1503 goto wakeup;
1504 /* if no hierarchy, no match */
1505 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1506 return 0;
1507 /*
1508 * Both of oom_wait_info->mem and wake_mem are stable under us.
1509 * Then we can use css_is_ancestor without taking care of RCU.
1510 */
1511 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1512 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1513 return 0;
1514
1515wakeup:
1516 return autoremove_wake_function(wait, mode, sync, arg);
1517}
1518
1519static void memcg_wakeup_oom(struct mem_cgroup *mem)
1520{
1521 /* for filtering, pass "mem" as argument. */
1522 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1523}
1524
3c11ecf4
KH
1525static void memcg_oom_recover(struct mem_cgroup *mem)
1526{
2bd9bb20 1527 if (mem && atomic_read(&mem->oom_lock))
3c11ecf4
KH
1528 memcg_wakeup_oom(mem);
1529}
1530
867578cb
KH
1531/*
1532 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1533 */
1534bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1535{
dc98df5a 1536 struct oom_wait_info owait;
3c11ecf4 1537 bool locked, need_to_kill;
867578cb 1538
dc98df5a
KH
1539 owait.mem = mem;
1540 owait.wait.flags = 0;
1541 owait.wait.func = memcg_oom_wake_function;
1542 owait.wait.private = current;
1543 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1544 need_to_kill = true;
867578cb
KH
1545 /* At first, try to OOM lock hierarchy under mem.*/
1546 mutex_lock(&memcg_oom_mutex);
1547 locked = mem_cgroup_oom_lock(mem);
1548 /*
1549 * Even if signal_pending(), we can't quit charge() loop without
1550 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1551 * under OOM is always welcomed, use TASK_KILLABLE here.
1552 */
3c11ecf4
KH
1553 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1554 if (!locked || mem->oom_kill_disable)
1555 need_to_kill = false;
1556 if (locked)
9490ff27 1557 mem_cgroup_oom_notify(mem);
867578cb
KH
1558 mutex_unlock(&memcg_oom_mutex);
1559
3c11ecf4
KH
1560 if (need_to_kill) {
1561 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1562 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1563 } else {
867578cb 1564 schedule();
dc98df5a 1565 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1566 }
1567 mutex_lock(&memcg_oom_mutex);
1568 mem_cgroup_oom_unlock(mem);
dc98df5a 1569 memcg_wakeup_oom(mem);
867578cb
KH
1570 mutex_unlock(&memcg_oom_mutex);
1571
1572 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1573 return false;
1574 /* Give chance to dying process */
1575 schedule_timeout(1);
1576 return true;
0b7f569e
KH
1577}
1578
d69b042f
BS
1579/*
1580 * Currently used to update mapped file statistics, but the routine can be
1581 * generalized to update other statistics as well.
32047e2a
KH
1582 *
1583 * Notes: Race condition
1584 *
1585 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1586 * it tends to be costly. But considering some conditions, we doesn't need
1587 * to do so _always_.
1588 *
1589 * Considering "charge", lock_page_cgroup() is not required because all
1590 * file-stat operations happen after a page is attached to radix-tree. There
1591 * are no race with "charge".
1592 *
1593 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1594 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1595 * if there are race with "uncharge". Statistics itself is properly handled
1596 * by flags.
1597 *
1598 * Considering "move", this is an only case we see a race. To make the race
1599 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1600 * possibility of race condition. If there is, we take a lock.
d69b042f 1601 */
26174efd 1602
2a7106f2
GT
1603void mem_cgroup_update_page_stat(struct page *page,
1604 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
1605{
1606 struct mem_cgroup *mem;
32047e2a
KH
1607 struct page_cgroup *pc = lookup_page_cgroup(page);
1608 bool need_unlock = false;
dbd4ea78 1609 unsigned long uninitialized_var(flags);
d69b042f 1610
d69b042f
BS
1611 if (unlikely(!pc))
1612 return;
1613
32047e2a 1614 rcu_read_lock();
d69b042f 1615 mem = pc->mem_cgroup;
32047e2a
KH
1616 if (unlikely(!mem || !PageCgroupUsed(pc)))
1617 goto out;
1618 /* pc->mem_cgroup is unstable ? */
ca3e0214 1619 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
32047e2a 1620 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1621 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
1622 need_unlock = true;
1623 mem = pc->mem_cgroup;
1624 if (!mem || !PageCgroupUsed(pc))
1625 goto out;
1626 }
26174efd 1627
26174efd 1628 switch (idx) {
2a7106f2 1629 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1630 if (val > 0)
1631 SetPageCgroupFileMapped(pc);
1632 else if (!page_mapped(page))
0c270f8f 1633 ClearPageCgroupFileMapped(pc);
2a7106f2 1634 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1635 break;
1636 default:
1637 BUG();
8725d541 1638 }
d69b042f 1639
2a7106f2
GT
1640 this_cpu_add(mem->stat->count[idx], val);
1641
32047e2a
KH
1642out:
1643 if (unlikely(need_unlock))
dbd4ea78 1644 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1645 rcu_read_unlock();
1646 return;
d69b042f 1647}
2a7106f2 1648EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1649
cdec2e42
KH
1650/*
1651 * size of first charge trial. "32" comes from vmscan.c's magic value.
1652 * TODO: maybe necessary to use big numbers in big irons.
1653 */
1654#define CHARGE_SIZE (32 * PAGE_SIZE)
1655struct memcg_stock_pcp {
1656 struct mem_cgroup *cached; /* this never be root cgroup */
1657 int charge;
1658 struct work_struct work;
1659};
1660static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1661static atomic_t memcg_drain_count;
1662
1663/*
1664 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1665 * from local stock and true is returned. If the stock is 0 or charges from a
1666 * cgroup which is not current target, returns false. This stock will be
1667 * refilled.
1668 */
1669static bool consume_stock(struct mem_cgroup *mem)
1670{
1671 struct memcg_stock_pcp *stock;
1672 bool ret = true;
1673
1674 stock = &get_cpu_var(memcg_stock);
1675 if (mem == stock->cached && stock->charge)
1676 stock->charge -= PAGE_SIZE;
1677 else /* need to call res_counter_charge */
1678 ret = false;
1679 put_cpu_var(memcg_stock);
1680 return ret;
1681}
1682
1683/*
1684 * Returns stocks cached in percpu to res_counter and reset cached information.
1685 */
1686static void drain_stock(struct memcg_stock_pcp *stock)
1687{
1688 struct mem_cgroup *old = stock->cached;
1689
1690 if (stock->charge) {
1691 res_counter_uncharge(&old->res, stock->charge);
1692 if (do_swap_account)
1693 res_counter_uncharge(&old->memsw, stock->charge);
1694 }
1695 stock->cached = NULL;
1696 stock->charge = 0;
1697}
1698
1699/*
1700 * This must be called under preempt disabled or must be called by
1701 * a thread which is pinned to local cpu.
1702 */
1703static void drain_local_stock(struct work_struct *dummy)
1704{
1705 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1706 drain_stock(stock);
1707}
1708
1709/*
1710 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1711 * This will be consumed by consume_stock() function, later.
cdec2e42
KH
1712 */
1713static void refill_stock(struct mem_cgroup *mem, int val)
1714{
1715 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1716
1717 if (stock->cached != mem) { /* reset if necessary */
1718 drain_stock(stock);
1719 stock->cached = mem;
1720 }
1721 stock->charge += val;
1722 put_cpu_var(memcg_stock);
1723}
1724
1725/*
1726 * Tries to drain stocked charges in other cpus. This function is asynchronous
1727 * and just put a work per cpu for draining localy on each cpu. Caller can
1728 * expects some charges will be back to res_counter later but cannot wait for
1729 * it.
1730 */
1731static void drain_all_stock_async(void)
1732{
1733 int cpu;
1734 /* This function is for scheduling "drain" in asynchronous way.
1735 * The result of "drain" is not directly handled by callers. Then,
1736 * if someone is calling drain, we don't have to call drain more.
1737 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1738 * there is a race. We just do loose check here.
1739 */
1740 if (atomic_read(&memcg_drain_count))
1741 return;
1742 /* Notify other cpus that system-wide "drain" is running */
1743 atomic_inc(&memcg_drain_count);
1744 get_online_cpus();
1745 for_each_online_cpu(cpu) {
1746 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1747 schedule_work_on(cpu, &stock->work);
1748 }
1749 put_online_cpus();
1750 atomic_dec(&memcg_drain_count);
1751 /* We don't wait for flush_work */
1752}
1753
1754/* This is a synchronous drain interface. */
1755static void drain_all_stock_sync(void)
1756{
1757 /* called when force_empty is called */
1758 atomic_inc(&memcg_drain_count);
1759 schedule_on_each_cpu(drain_local_stock);
1760 atomic_dec(&memcg_drain_count);
1761}
1762
711d3d2c
KH
1763/*
1764 * This function drains percpu counter value from DEAD cpu and
1765 * move it to local cpu. Note that this function can be preempted.
1766 */
1767static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1768{
1769 int i;
1770
1771 spin_lock(&mem->pcp_counter_lock);
1772 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1773 s64 x = per_cpu(mem->stat->count[i], cpu);
1774
1775 per_cpu(mem->stat->count[i], cpu) = 0;
1776 mem->nocpu_base.count[i] += x;
1777 }
1489ebad
KH
1778 /* need to clear ON_MOVE value, works as a kind of lock. */
1779 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1780 spin_unlock(&mem->pcp_counter_lock);
1781}
1782
1783static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1784{
1785 int idx = MEM_CGROUP_ON_MOVE;
1786
1787 spin_lock(&mem->pcp_counter_lock);
1788 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
1789 spin_unlock(&mem->pcp_counter_lock);
1790}
1791
1792static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1793 unsigned long action,
1794 void *hcpu)
1795{
1796 int cpu = (unsigned long)hcpu;
1797 struct memcg_stock_pcp *stock;
711d3d2c 1798 struct mem_cgroup *iter;
cdec2e42 1799
1489ebad
KH
1800 if ((action == CPU_ONLINE)) {
1801 for_each_mem_cgroup_all(iter)
1802 synchronize_mem_cgroup_on_move(iter, cpu);
1803 return NOTIFY_OK;
1804 }
1805
711d3d2c 1806 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 1807 return NOTIFY_OK;
711d3d2c
KH
1808
1809 for_each_mem_cgroup_all(iter)
1810 mem_cgroup_drain_pcp_counter(iter, cpu);
1811
cdec2e42
KH
1812 stock = &per_cpu(memcg_stock, cpu);
1813 drain_stock(stock);
1814 return NOTIFY_OK;
1815}
1816
4b534334
KH
1817
1818/* See __mem_cgroup_try_charge() for details */
1819enum {
1820 CHARGE_OK, /* success */
1821 CHARGE_RETRY, /* need to retry but retry is not bad */
1822 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1823 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1824 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1825};
1826
1827static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1828 int csize, bool oom_check)
1829{
1830 struct mem_cgroup *mem_over_limit;
1831 struct res_counter *fail_res;
1832 unsigned long flags = 0;
1833 int ret;
1834
1835 ret = res_counter_charge(&mem->res, csize, &fail_res);
1836
1837 if (likely(!ret)) {
1838 if (!do_swap_account)
1839 return CHARGE_OK;
1840 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1841 if (likely(!ret))
1842 return CHARGE_OK;
1843
1844 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1845 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1846 } else
1847 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1848
1849 if (csize > PAGE_SIZE) /* change csize and retry */
1850 return CHARGE_RETRY;
1851
1852 if (!(gfp_mask & __GFP_WAIT))
1853 return CHARGE_WOULDBLOCK;
1854
1855 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1856 gfp_mask, flags);
1857 /*
1858 * try_to_free_mem_cgroup_pages() might not give us a full
1859 * picture of reclaim. Some pages are reclaimed and might be
1860 * moved to swap cache or just unmapped from the cgroup.
1861 * Check the limit again to see if the reclaim reduced the
1862 * current usage of the cgroup before giving up
1863 */
1864 if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1865 return CHARGE_RETRY;
1866
1867 /*
1868 * At task move, charge accounts can be doubly counted. So, it's
1869 * better to wait until the end of task_move if something is going on.
1870 */
1871 if (mem_cgroup_wait_acct_move(mem_over_limit))
1872 return CHARGE_RETRY;
1873
1874 /* If we don't need to call oom-killer at el, return immediately */
1875 if (!oom_check)
1876 return CHARGE_NOMEM;
1877 /* check OOM */
1878 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1879 return CHARGE_OOM_DIE;
1880
1881 return CHARGE_RETRY;
1882}
1883
f817ed48
KH
1884/*
1885 * Unlike exported interface, "oom" parameter is added. if oom==true,
1886 * oom-killer can be invoked.
8a9f3ccd 1887 */
f817ed48 1888static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510
AA
1889 gfp_t gfp_mask,
1890 struct mem_cgroup **memcg, bool oom,
1891 int page_size)
8a9f3ccd 1892{
4b534334
KH
1893 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1894 struct mem_cgroup *mem = NULL;
1895 int ret;
ec168510 1896 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
a636b327 1897
867578cb
KH
1898 /*
1899 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1900 * in system level. So, allow to go ahead dying process in addition to
1901 * MEMDIE process.
1902 */
1903 if (unlikely(test_thread_flag(TIF_MEMDIE)
1904 || fatal_signal_pending(current)))
1905 goto bypass;
a636b327 1906
8a9f3ccd 1907 /*
3be91277
HD
1908 * We always charge the cgroup the mm_struct belongs to.
1909 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1910 * thread group leader migrates. It's possible that mm is not
1911 * set, if so charge the init_mm (happens for pagecache usage).
1912 */
f75ca962
KH
1913 if (!*memcg && !mm)
1914 goto bypass;
1915again:
1916 if (*memcg) { /* css should be a valid one */
4b534334 1917 mem = *memcg;
f75ca962
KH
1918 VM_BUG_ON(css_is_removed(&mem->css));
1919 if (mem_cgroup_is_root(mem))
1920 goto done;
ec168510 1921 if (page_size == PAGE_SIZE && consume_stock(mem))
f75ca962 1922 goto done;
4b534334
KH
1923 css_get(&mem->css);
1924 } else {
f75ca962 1925 struct task_struct *p;
54595fe2 1926
f75ca962
KH
1927 rcu_read_lock();
1928 p = rcu_dereference(mm->owner);
f75ca962 1929 /*
ebb76ce1
KH
1930 * Because we don't have task_lock(), "p" can exit.
1931 * In that case, "mem" can point to root or p can be NULL with
1932 * race with swapoff. Then, we have small risk of mis-accouning.
1933 * But such kind of mis-account by race always happens because
1934 * we don't have cgroup_mutex(). It's overkill and we allo that
1935 * small race, here.
1936 * (*) swapoff at el will charge against mm-struct not against
1937 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
1938 */
1939 mem = mem_cgroup_from_task(p);
ebb76ce1 1940 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
1941 rcu_read_unlock();
1942 goto done;
1943 }
ec168510 1944 if (page_size == PAGE_SIZE && consume_stock(mem)) {
f75ca962
KH
1945 /*
1946 * It seems dagerous to access memcg without css_get().
1947 * But considering how consume_stok works, it's not
1948 * necessary. If consume_stock success, some charges
1949 * from this memcg are cached on this cpu. So, we
1950 * don't need to call css_get()/css_tryget() before
1951 * calling consume_stock().
1952 */
1953 rcu_read_unlock();
1954 goto done;
1955 }
1956 /* after here, we may be blocked. we need to get refcnt */
1957 if (!css_tryget(&mem->css)) {
1958 rcu_read_unlock();
1959 goto again;
1960 }
1961 rcu_read_unlock();
1962 }
8a9f3ccd 1963
4b534334
KH
1964 do {
1965 bool oom_check;
7a81b88c 1966
4b534334 1967 /* If killed, bypass charge */
f75ca962
KH
1968 if (fatal_signal_pending(current)) {
1969 css_put(&mem->css);
4b534334 1970 goto bypass;
f75ca962 1971 }
6d61ef40 1972
4b534334
KH
1973 oom_check = false;
1974 if (oom && !nr_oom_retries) {
1975 oom_check = true;
1976 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 1977 }
66e1707b 1978
4b534334 1979 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
8033b97c 1980
4b534334
KH
1981 switch (ret) {
1982 case CHARGE_OK:
1983 break;
1984 case CHARGE_RETRY: /* not in OOM situation but retry */
ec168510 1985 csize = page_size;
f75ca962
KH
1986 css_put(&mem->css);
1987 mem = NULL;
1988 goto again;
4b534334 1989 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 1990 css_put(&mem->css);
4b534334
KH
1991 goto nomem;
1992 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
1993 if (!oom) {
1994 css_put(&mem->css);
867578cb 1995 goto nomem;
f75ca962 1996 }
4b534334
KH
1997 /* If oom, we never return -ENOMEM */
1998 nr_oom_retries--;
1999 break;
2000 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2001 css_put(&mem->css);
867578cb 2002 goto bypass;
66e1707b 2003 }
4b534334
KH
2004 } while (ret != CHARGE_OK);
2005
ec168510
AA
2006 if (csize > page_size)
2007 refill_stock(mem, csize - page_size);
f75ca962 2008 css_put(&mem->css);
0c3e73e8 2009done:
f75ca962 2010 *memcg = mem;
7a81b88c
KH
2011 return 0;
2012nomem:
f75ca962 2013 *memcg = NULL;
7a81b88c 2014 return -ENOMEM;
867578cb
KH
2015bypass:
2016 *memcg = NULL;
2017 return 0;
7a81b88c 2018}
8a9f3ccd 2019
a3032a2c
DN
2020/*
2021 * Somemtimes we have to undo a charge we got by try_charge().
2022 * This function is for that and do uncharge, put css's refcnt.
2023 * gotten by try_charge().
2024 */
854ffa8d
DN
2025static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2026 unsigned long count)
a3032a2c
DN
2027{
2028 if (!mem_cgroup_is_root(mem)) {
854ffa8d 2029 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
a3032a2c 2030 if (do_swap_account)
854ffa8d 2031 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
a3032a2c 2032 }
854ffa8d
DN
2033}
2034
ec168510
AA
2035static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2036 int page_size)
854ffa8d 2037{
ec168510 2038 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
a3032a2c
DN
2039}
2040
a3b2d692
KH
2041/*
2042 * A helper function to get mem_cgroup from ID. must be called under
2043 * rcu_read_lock(). The caller must check css_is_removed() or some if
2044 * it's concern. (dropping refcnt from swap can be called against removed
2045 * memcg.)
2046 */
2047static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2048{
2049 struct cgroup_subsys_state *css;
2050
2051 /* ID 0 is unused ID */
2052 if (!id)
2053 return NULL;
2054 css = css_lookup(&mem_cgroup_subsys, id);
2055 if (!css)
2056 return NULL;
2057 return container_of(css, struct mem_cgroup, css);
2058}
2059
e42d9d5d 2060struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2061{
e42d9d5d 2062 struct mem_cgroup *mem = NULL;
3c776e64 2063 struct page_cgroup *pc;
a3b2d692 2064 unsigned short id;
b5a84319
KH
2065 swp_entry_t ent;
2066
3c776e64
DN
2067 VM_BUG_ON(!PageLocked(page));
2068
3c776e64 2069 pc = lookup_page_cgroup(page);
c0bd3f63 2070 lock_page_cgroup(pc);
a3b2d692 2071 if (PageCgroupUsed(pc)) {
3c776e64 2072 mem = pc->mem_cgroup;
a3b2d692
KH
2073 if (mem && !css_tryget(&mem->css))
2074 mem = NULL;
e42d9d5d 2075 } else if (PageSwapCache(page)) {
3c776e64 2076 ent.val = page_private(page);
a3b2d692
KH
2077 id = lookup_swap_cgroup(ent);
2078 rcu_read_lock();
2079 mem = mem_cgroup_lookup(id);
2080 if (mem && !css_tryget(&mem->css))
2081 mem = NULL;
2082 rcu_read_unlock();
3c776e64 2083 }
c0bd3f63 2084 unlock_page_cgroup(pc);
b5a84319
KH
2085 return mem;
2086}
2087
ca3e0214
KH
2088static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2089 struct page_cgroup *pc,
2090 enum charge_type ctype,
2091 int page_size)
7a81b88c 2092{
ca3e0214
KH
2093 int nr_pages = page_size >> PAGE_SHIFT;
2094
2095 /* try_charge() can return NULL to *memcg, taking care of it. */
2096 if (!mem)
2097 return;
2098
2099 lock_page_cgroup(pc);
2100 if (unlikely(PageCgroupUsed(pc))) {
2101 unlock_page_cgroup(pc);
2102 mem_cgroup_cancel_charge(mem, page_size);
2103 return;
2104 }
2105 /*
2106 * we don't need page_cgroup_lock about tail pages, becase they are not
2107 * accessed by any other context at this point.
2108 */
8a9f3ccd 2109 pc->mem_cgroup = mem;
261fb61a
KH
2110 /*
2111 * We access a page_cgroup asynchronously without lock_page_cgroup().
2112 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2113 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2114 * before USED bit, we need memory barrier here.
2115 * See mem_cgroup_add_lru_list(), etc.
2116 */
08e552c6 2117 smp_wmb();
4b3bde4c
BS
2118 switch (ctype) {
2119 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2120 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2121 SetPageCgroupCache(pc);
2122 SetPageCgroupUsed(pc);
2123 break;
2124 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2125 ClearPageCgroupCache(pc);
2126 SetPageCgroupUsed(pc);
2127 break;
2128 default:
2129 break;
2130 }
3be91277 2131
ca3e0214 2132 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
52d4b9ac 2133 unlock_page_cgroup(pc);
430e4863
KH
2134 /*
2135 * "charge_statistics" updated event counter. Then, check it.
2136 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2137 * if they exceeds softlimit.
2138 */
d2265e6f 2139 memcg_check_events(mem, pc->page);
7a81b88c 2140}
66e1707b 2141
ca3e0214
KH
2142#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2143
2144#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2145 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2146/*
2147 * Because tail pages are not marked as "used", set it. We're under
2148 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2149 */
2150void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2151{
2152 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2153 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2154 unsigned long flags;
2155
2156 /*
ece35ca8 2157 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2158 * page state accounting.
2159 */
2160 move_lock_page_cgroup(head_pc, &flags);
2161
2162 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2163 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2164 if (PageCgroupAcctLRU(head_pc)) {
2165 enum lru_list lru;
2166 struct mem_cgroup_per_zone *mz;
2167
2168 /*
2169 * LRU flags cannot be copied because we need to add tail
2170 *.page to LRU by generic call and our hook will be called.
2171 * We hold lru_lock, then, reduce counter directly.
2172 */
2173 lru = page_lru(head);
2174 mz = page_cgroup_zoneinfo(head_pc);
2175 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2176 }
ca3e0214
KH
2177 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2178 move_unlock_page_cgroup(head_pc, &flags);
2179}
2180#endif
2181
f817ed48 2182/**
57f9fd7d 2183 * __mem_cgroup_move_account - move account of the page
f817ed48
KH
2184 * @pc: page_cgroup of the page.
2185 * @from: mem_cgroup which the page is moved from.
2186 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2187 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2188 *
2189 * The caller must confirm following.
08e552c6 2190 * - page is not on LRU (isolate_page() is useful.)
57f9fd7d 2191 * - the pc is locked, used, and ->mem_cgroup points to @from.
f817ed48 2192 *
854ffa8d
DN
2193 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2194 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2195 * true, this function does "uncharge" from old cgroup, but it doesn't if
2196 * @uncharge is false, so a caller should do "uncharge".
f817ed48
KH
2197 */
2198
57f9fd7d 2199static void __mem_cgroup_move_account(struct page_cgroup *pc,
987eba66
KH
2200 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2201 int charge_size)
f817ed48 2202{
987eba66
KH
2203 int nr_pages = charge_size >> PAGE_SHIFT;
2204
f817ed48 2205 VM_BUG_ON(from == to);
08e552c6 2206 VM_BUG_ON(PageLRU(pc->page));
112bc2e1 2207 VM_BUG_ON(!page_is_cgroup_locked(pc));
57f9fd7d
DN
2208 VM_BUG_ON(!PageCgroupUsed(pc));
2209 VM_BUG_ON(pc->mem_cgroup != from);
f817ed48 2210
8725d541 2211 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2212 /* Update mapped_file data for mem_cgroup */
2213 preempt_disable();
2214 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2215 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2216 preempt_enable();
d69b042f 2217 }
987eba66 2218 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2219 if (uncharge)
2220 /* This is not "cancel", but cancel_charge does all we need. */
987eba66 2221 mem_cgroup_cancel_charge(from, charge_size);
d69b042f 2222
854ffa8d 2223 /* caller should have done css_get */
08e552c6 2224 pc->mem_cgroup = to;
987eba66 2225 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2226 /*
2227 * We charges against "to" which may not have any tasks. Then, "to"
2228 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
2229 * this function is just force_empty() and move charge, so it's
2230 * garanteed that "to" is never removed. So, we don't check rmdir
2231 * status here.
88703267 2232 */
57f9fd7d
DN
2233}
2234
2235/*
2236 * check whether the @pc is valid for moving account and call
2237 * __mem_cgroup_move_account()
2238 */
2239static int mem_cgroup_move_account(struct page_cgroup *pc,
987eba66
KH
2240 struct mem_cgroup *from, struct mem_cgroup *to,
2241 bool uncharge, int charge_size)
57f9fd7d
DN
2242{
2243 int ret = -EINVAL;
dbd4ea78
KH
2244 unsigned long flags;
2245
987eba66
KH
2246 if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2247 return -EBUSY;
2248
57f9fd7d
DN
2249 lock_page_cgroup(pc);
2250 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
dbd4ea78 2251 move_lock_page_cgroup(pc, &flags);
987eba66 2252 __mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
dbd4ea78 2253 move_unlock_page_cgroup(pc, &flags);
57f9fd7d
DN
2254 ret = 0;
2255 }
2256 unlock_page_cgroup(pc);
d2265e6f
KH
2257 /*
2258 * check events
2259 */
2260 memcg_check_events(to, pc->page);
2261 memcg_check_events(from, pc->page);
f817ed48
KH
2262 return ret;
2263}
2264
2265/*
2266 * move charges to its parent.
2267 */
2268
2269static int mem_cgroup_move_parent(struct page_cgroup *pc,
2270 struct mem_cgroup *child,
2271 gfp_t gfp_mask)
2272{
08e552c6 2273 struct page *page = pc->page;
f817ed48
KH
2274 struct cgroup *cg = child->css.cgroup;
2275 struct cgroup *pcg = cg->parent;
2276 struct mem_cgroup *parent;
987eba66
KH
2277 int charge = PAGE_SIZE;
2278 unsigned long flags;
f817ed48
KH
2279 int ret;
2280
2281 /* Is ROOT ? */
2282 if (!pcg)
2283 return -EINVAL;
2284
57f9fd7d
DN
2285 ret = -EBUSY;
2286 if (!get_page_unless_zero(page))
2287 goto out;
2288 if (isolate_lru_page(page))
2289 goto put;
987eba66
KH
2290 /* The page is isolated from LRU and we have no race with splitting */
2291 charge = PAGE_SIZE << compound_order(page);
08e552c6 2292
f817ed48 2293 parent = mem_cgroup_from_cont(pcg);
987eba66 2294 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false, charge);
a636b327 2295 if (ret || !parent)
57f9fd7d 2296 goto put_back;
f817ed48 2297
987eba66
KH
2298 if (charge > PAGE_SIZE)
2299 flags = compound_lock_irqsave(page);
2300
2301 ret = mem_cgroup_move_account(pc, child, parent, true, charge);
854ffa8d 2302 if (ret)
987eba66 2303 mem_cgroup_cancel_charge(parent, charge);
57f9fd7d 2304put_back:
987eba66
KH
2305 if (charge > PAGE_SIZE)
2306 compound_unlock_irqrestore(page, flags);
08e552c6 2307 putback_lru_page(page);
57f9fd7d 2308put:
40d58138 2309 put_page(page);
57f9fd7d 2310out:
f817ed48
KH
2311 return ret;
2312}
2313
7a81b88c
KH
2314/*
2315 * Charge the memory controller for page usage.
2316 * Return
2317 * 0 if the charge was successful
2318 * < 0 if the cgroup is over its limit
2319 */
2320static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2321 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2322{
73045c47 2323 struct mem_cgroup *mem = NULL;
7a81b88c
KH
2324 struct page_cgroup *pc;
2325 int ret;
ec168510
AA
2326 int page_size = PAGE_SIZE;
2327
37c2ac78 2328 if (PageTransHuge(page)) {
ec168510 2329 page_size <<= compound_order(page);
37c2ac78
AA
2330 VM_BUG_ON(!PageTransHuge(page));
2331 }
7a81b88c
KH
2332
2333 pc = lookup_page_cgroup(page);
2334 /* can happen at boot */
2335 if (unlikely(!pc))
2336 return 0;
2337 prefetchw(pc);
2338
ec168510 2339 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
a636b327 2340 if (ret || !mem)
7a81b88c
KH
2341 return ret;
2342
ec168510 2343 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
8a9f3ccd 2344 return 0;
8a9f3ccd
BS
2345}
2346
7a81b88c
KH
2347int mem_cgroup_newpage_charge(struct page *page,
2348 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2349{
f8d66542 2350 if (mem_cgroup_disabled())
cede86ac 2351 return 0;
69029cd5
KH
2352 /*
2353 * If already mapped, we don't have to account.
2354 * If page cache, page->mapping has address_space.
2355 * But page->mapping may have out-of-use anon_vma pointer,
2356 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2357 * is NULL.
2358 */
2359 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2360 return 0;
2361 if (unlikely(!mm))
2362 mm = &init_mm;
217bc319 2363 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2364 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2365}
2366
83aae4c7
DN
2367static void
2368__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2369 enum charge_type ctype);
2370
e1a1cd59
BS
2371int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2372 gfp_t gfp_mask)
8697d331 2373{
b5a84319
KH
2374 int ret;
2375
f8d66542 2376 if (mem_cgroup_disabled())
cede86ac 2377 return 0;
52d4b9ac
KH
2378 if (PageCompound(page))
2379 return 0;
accf163e
KH
2380 /*
2381 * Corner case handling. This is called from add_to_page_cache()
2382 * in usual. But some FS (shmem) precharges this page before calling it
2383 * and call add_to_page_cache() with GFP_NOWAIT.
2384 *
2385 * For GFP_NOWAIT case, the page may be pre-charged before calling
2386 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2387 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2388 * And when the page is SwapCache, it should take swap information
2389 * into account. This is under lock_page() now.
accf163e
KH
2390 */
2391 if (!(gfp_mask & __GFP_WAIT)) {
2392 struct page_cgroup *pc;
2393
52d4b9ac
KH
2394 pc = lookup_page_cgroup(page);
2395 if (!pc)
2396 return 0;
2397 lock_page_cgroup(pc);
2398 if (PageCgroupUsed(pc)) {
2399 unlock_page_cgroup(pc);
accf163e
KH
2400 return 0;
2401 }
52d4b9ac 2402 unlock_page_cgroup(pc);
accf163e
KH
2403 }
2404
73045c47 2405 if (unlikely(!mm))
8697d331 2406 mm = &init_mm;
accf163e 2407
c05555b5
KH
2408 if (page_is_file_cache(page))
2409 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2410 MEM_CGROUP_CHARGE_TYPE_CACHE);
b5a84319 2411
83aae4c7
DN
2412 /* shmem */
2413 if (PageSwapCache(page)) {
73045c47
DN
2414 struct mem_cgroup *mem = NULL;
2415
83aae4c7
DN
2416 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2417 if (!ret)
2418 __mem_cgroup_commit_charge_swapin(page, mem,
2419 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2420 } else
2421 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2422 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2423
b5a84319 2424 return ret;
e8589cc1
KH
2425}
2426
54595fe2
KH
2427/*
2428 * While swap-in, try_charge -> commit or cancel, the page is locked.
2429 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2430 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2431 * "commit()" or removed by "cancel()"
2432 */
8c7c6e34
KH
2433int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2434 struct page *page,
2435 gfp_t mask, struct mem_cgroup **ptr)
2436{
2437 struct mem_cgroup *mem;
54595fe2 2438 int ret;
8c7c6e34 2439
f8d66542 2440 if (mem_cgroup_disabled())
8c7c6e34
KH
2441 return 0;
2442
2443 if (!do_swap_account)
2444 goto charge_cur_mm;
8c7c6e34
KH
2445 /*
2446 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2447 * the pte, and even removed page from swap cache: in those cases
2448 * do_swap_page()'s pte_same() test will fail; but there's also a
2449 * KSM case which does need to charge the page.
8c7c6e34
KH
2450 */
2451 if (!PageSwapCache(page))
407f9c8b 2452 goto charge_cur_mm;
e42d9d5d 2453 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2454 if (!mem)
2455 goto charge_cur_mm;
8c7c6e34 2456 *ptr = mem;
ec168510 2457 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
54595fe2
KH
2458 css_put(&mem->css);
2459 return ret;
8c7c6e34
KH
2460charge_cur_mm:
2461 if (unlikely(!mm))
2462 mm = &init_mm;
ec168510 2463 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
8c7c6e34
KH
2464}
2465
83aae4c7
DN
2466static void
2467__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2468 enum charge_type ctype)
7a81b88c
KH
2469{
2470 struct page_cgroup *pc;
2471
f8d66542 2472 if (mem_cgroup_disabled())
7a81b88c
KH
2473 return;
2474 if (!ptr)
2475 return;
88703267 2476 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 2477 pc = lookup_page_cgroup(page);
544122e5 2478 mem_cgroup_lru_del_before_commit_swapcache(page);
ec168510 2479 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
544122e5 2480 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
2481 /*
2482 * Now swap is on-memory. This means this page may be
2483 * counted both as mem and swap....double count.
03f3c433
KH
2484 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2485 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2486 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2487 */
03f3c433 2488 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2489 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2490 unsigned short id;
8c7c6e34 2491 struct mem_cgroup *memcg;
a3b2d692
KH
2492
2493 id = swap_cgroup_record(ent, 0);
2494 rcu_read_lock();
2495 memcg = mem_cgroup_lookup(id);
8c7c6e34 2496 if (memcg) {
a3b2d692
KH
2497 /*
2498 * This recorded memcg can be obsolete one. So, avoid
2499 * calling css_tryget
2500 */
0c3e73e8 2501 if (!mem_cgroup_is_root(memcg))
4e649152 2502 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2503 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2504 mem_cgroup_put(memcg);
2505 }
a3b2d692 2506 rcu_read_unlock();
8c7c6e34 2507 }
88703267
KH
2508 /*
2509 * At swapin, we may charge account against cgroup which has no tasks.
2510 * So, rmdir()->pre_destroy() can be called while we do this charge.
2511 * In that case, we need to call pre_destroy() again. check it here.
2512 */
2513 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2514}
2515
83aae4c7
DN
2516void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2517{
2518 __mem_cgroup_commit_charge_swapin(page, ptr,
2519 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2520}
2521
7a81b88c
KH
2522void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2523{
f8d66542 2524 if (mem_cgroup_disabled())
7a81b88c
KH
2525 return;
2526 if (!mem)
2527 return;
ec168510 2528 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
7a81b88c
KH
2529}
2530
569b846d 2531static void
ec168510
AA
2532__do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2533 int page_size)
569b846d
KH
2534{
2535 struct memcg_batch_info *batch = NULL;
2536 bool uncharge_memsw = true;
2537 /* If swapout, usage of swap doesn't decrease */
2538 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2539 uncharge_memsw = false;
569b846d
KH
2540
2541 batch = &current->memcg_batch;
2542 /*
2543 * In usual, we do css_get() when we remember memcg pointer.
2544 * But in this case, we keep res->usage until end of a series of
2545 * uncharges. Then, it's ok to ignore memcg's refcnt.
2546 */
2547 if (!batch->memcg)
2548 batch->memcg = mem;
3c11ecf4
KH
2549 /*
2550 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2551 * In those cases, all pages freed continously can be expected to be in
2552 * the same cgroup and we have chance to coalesce uncharges.
2553 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2554 * because we want to do uncharge as soon as possible.
2555 */
2556
2557 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2558 goto direct_uncharge;
2559
ec168510
AA
2560 if (page_size != PAGE_SIZE)
2561 goto direct_uncharge;
2562
569b846d
KH
2563 /*
2564 * In typical case, batch->memcg == mem. This means we can
2565 * merge a series of uncharges to an uncharge of res_counter.
2566 * If not, we uncharge res_counter ony by one.
2567 */
2568 if (batch->memcg != mem)
2569 goto direct_uncharge;
2570 /* remember freed charge and uncharge it later */
2571 batch->bytes += PAGE_SIZE;
2572 if (uncharge_memsw)
2573 batch->memsw_bytes += PAGE_SIZE;
2574 return;
2575direct_uncharge:
ec168510 2576 res_counter_uncharge(&mem->res, page_size);
569b846d 2577 if (uncharge_memsw)
ec168510 2578 res_counter_uncharge(&mem->memsw, page_size);
3c11ecf4
KH
2579 if (unlikely(batch->memcg != mem))
2580 memcg_oom_recover(mem);
569b846d
KH
2581 return;
2582}
7a81b88c 2583
8a9f3ccd 2584/*
69029cd5 2585 * uncharge if !page_mapped(page)
8a9f3ccd 2586 */
8c7c6e34 2587static struct mem_cgroup *
69029cd5 2588__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2589{
152c9ccb 2590 int count;
8289546e 2591 struct page_cgroup *pc;
8c7c6e34 2592 struct mem_cgroup *mem = NULL;
ec168510 2593 int page_size = PAGE_SIZE;
8a9f3ccd 2594
f8d66542 2595 if (mem_cgroup_disabled())
8c7c6e34 2596 return NULL;
4077960e 2597
d13d1443 2598 if (PageSwapCache(page))
8c7c6e34 2599 return NULL;
d13d1443 2600
37c2ac78 2601 if (PageTransHuge(page)) {
ec168510 2602 page_size <<= compound_order(page);
37c2ac78
AA
2603 VM_BUG_ON(!PageTransHuge(page));
2604 }
ec168510 2605
152c9ccb 2606 count = page_size >> PAGE_SHIFT;
8697d331 2607 /*
3c541e14 2608 * Check if our page_cgroup is valid
8697d331 2609 */
52d4b9ac
KH
2610 pc = lookup_page_cgroup(page);
2611 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2612 return NULL;
b9c565d5 2613
52d4b9ac 2614 lock_page_cgroup(pc);
d13d1443 2615
8c7c6e34
KH
2616 mem = pc->mem_cgroup;
2617
d13d1443
KH
2618 if (!PageCgroupUsed(pc))
2619 goto unlock_out;
2620
2621 switch (ctype) {
2622 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2623 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
2624 /* See mem_cgroup_prepare_migration() */
2625 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2626 goto unlock_out;
2627 break;
2628 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2629 if (!PageAnon(page)) { /* Shared memory */
2630 if (page->mapping && !page_is_file_cache(page))
2631 goto unlock_out;
2632 } else if (page_mapped(page)) /* Anon */
2633 goto unlock_out;
2634 break;
2635 default:
2636 break;
52d4b9ac 2637 }
d13d1443 2638
ca3e0214 2639 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
04046e1a 2640
52d4b9ac 2641 ClearPageCgroupUsed(pc);
544122e5
KH
2642 /*
2643 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2644 * freed from LRU. This is safe because uncharged page is expected not
2645 * to be reused (freed soon). Exception is SwapCache, it's handled by
2646 * special functions.
2647 */
b9c565d5 2648
52d4b9ac 2649 unlock_page_cgroup(pc);
f75ca962
KH
2650 /*
2651 * even after unlock, we have mem->res.usage here and this memcg
2652 * will never be freed.
2653 */
d2265e6f 2654 memcg_check_events(mem, page);
f75ca962
KH
2655 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2656 mem_cgroup_swap_statistics(mem, true);
2657 mem_cgroup_get(mem);
2658 }
2659 if (!mem_cgroup_is_root(mem))
ec168510 2660 __do_uncharge(mem, ctype, page_size);
6d12e2d8 2661
8c7c6e34 2662 return mem;
d13d1443
KH
2663
2664unlock_out:
2665 unlock_page_cgroup(pc);
8c7c6e34 2666 return NULL;
3c541e14
BS
2667}
2668
69029cd5
KH
2669void mem_cgroup_uncharge_page(struct page *page)
2670{
52d4b9ac
KH
2671 /* early check. */
2672 if (page_mapped(page))
2673 return;
2674 if (page->mapping && !PageAnon(page))
2675 return;
69029cd5
KH
2676 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2677}
2678
2679void mem_cgroup_uncharge_cache_page(struct page *page)
2680{
2681 VM_BUG_ON(page_mapped(page));
b7abea96 2682 VM_BUG_ON(page->mapping);
69029cd5
KH
2683 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2684}
2685
569b846d
KH
2686/*
2687 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2688 * In that cases, pages are freed continuously and we can expect pages
2689 * are in the same memcg. All these calls itself limits the number of
2690 * pages freed at once, then uncharge_start/end() is called properly.
2691 * This may be called prural(2) times in a context,
2692 */
2693
2694void mem_cgroup_uncharge_start(void)
2695{
2696 current->memcg_batch.do_batch++;
2697 /* We can do nest. */
2698 if (current->memcg_batch.do_batch == 1) {
2699 current->memcg_batch.memcg = NULL;
2700 current->memcg_batch.bytes = 0;
2701 current->memcg_batch.memsw_bytes = 0;
2702 }
2703}
2704
2705void mem_cgroup_uncharge_end(void)
2706{
2707 struct memcg_batch_info *batch = &current->memcg_batch;
2708
2709 if (!batch->do_batch)
2710 return;
2711
2712 batch->do_batch--;
2713 if (batch->do_batch) /* If stacked, do nothing. */
2714 return;
2715
2716 if (!batch->memcg)
2717 return;
2718 /*
2719 * This "batch->memcg" is valid without any css_get/put etc...
2720 * bacause we hide charges behind us.
2721 */
2722 if (batch->bytes)
2723 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2724 if (batch->memsw_bytes)
2725 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
3c11ecf4 2726 memcg_oom_recover(batch->memcg);
569b846d
KH
2727 /* forget this pointer (for sanity check) */
2728 batch->memcg = NULL;
2729}
2730
e767e056 2731#ifdef CONFIG_SWAP
8c7c6e34 2732/*
e767e056 2733 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2734 * memcg information is recorded to swap_cgroup of "ent"
2735 */
8a9478ca
KH
2736void
2737mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2738{
2739 struct mem_cgroup *memcg;
8a9478ca
KH
2740 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2741
2742 if (!swapout) /* this was a swap cache but the swap is unused ! */
2743 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2744
2745 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2746
f75ca962
KH
2747 /*
2748 * record memcg information, if swapout && memcg != NULL,
2749 * mem_cgroup_get() was called in uncharge().
2750 */
2751 if (do_swap_account && swapout && memcg)
a3b2d692 2752 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 2753}
e767e056 2754#endif
8c7c6e34
KH
2755
2756#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2757/*
2758 * called from swap_entry_free(). remove record in swap_cgroup and
2759 * uncharge "memsw" account.
2760 */
2761void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2762{
8c7c6e34 2763 struct mem_cgroup *memcg;
a3b2d692 2764 unsigned short id;
8c7c6e34
KH
2765
2766 if (!do_swap_account)
2767 return;
2768
a3b2d692
KH
2769 id = swap_cgroup_record(ent, 0);
2770 rcu_read_lock();
2771 memcg = mem_cgroup_lookup(id);
8c7c6e34 2772 if (memcg) {
a3b2d692
KH
2773 /*
2774 * We uncharge this because swap is freed.
2775 * This memcg can be obsolete one. We avoid calling css_tryget
2776 */
0c3e73e8 2777 if (!mem_cgroup_is_root(memcg))
4e649152 2778 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2779 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2780 mem_cgroup_put(memcg);
2781 }
a3b2d692 2782 rcu_read_unlock();
d13d1443 2783}
02491447
DN
2784
2785/**
2786 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2787 * @entry: swap entry to be moved
2788 * @from: mem_cgroup which the entry is moved from
2789 * @to: mem_cgroup which the entry is moved to
483c30b5 2790 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2791 *
2792 * It succeeds only when the swap_cgroup's record for this entry is the same
2793 * as the mem_cgroup's id of @from.
2794 *
2795 * Returns 0 on success, -EINVAL on failure.
2796 *
2797 * The caller must have charged to @to, IOW, called res_counter_charge() about
2798 * both res and memsw, and called css_get().
2799 */
2800static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2801 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2802{
2803 unsigned short old_id, new_id;
2804
2805 old_id = css_id(&from->css);
2806 new_id = css_id(&to->css);
2807
2808 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2809 mem_cgroup_swap_statistics(from, false);
483c30b5 2810 mem_cgroup_swap_statistics(to, true);
02491447 2811 /*
483c30b5
DN
2812 * This function is only called from task migration context now.
2813 * It postpones res_counter and refcount handling till the end
2814 * of task migration(mem_cgroup_clear_mc()) for performance
2815 * improvement. But we cannot postpone mem_cgroup_get(to)
2816 * because if the process that has been moved to @to does
2817 * swap-in, the refcount of @to might be decreased to 0.
02491447 2818 */
02491447 2819 mem_cgroup_get(to);
483c30b5
DN
2820 if (need_fixup) {
2821 if (!mem_cgroup_is_root(from))
2822 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2823 mem_cgroup_put(from);
2824 /*
2825 * we charged both to->res and to->memsw, so we should
2826 * uncharge to->res.
2827 */
2828 if (!mem_cgroup_is_root(to))
2829 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 2830 }
02491447
DN
2831 return 0;
2832 }
2833 return -EINVAL;
2834}
2835#else
2836static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2837 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2838{
2839 return -EINVAL;
2840}
8c7c6e34 2841#endif
d13d1443 2842
ae41be37 2843/*
01b1ae63
KH
2844 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2845 * page belongs to.
ae41be37 2846 */
ac39cf8c
AM
2847int mem_cgroup_prepare_migration(struct page *page,
2848 struct page *newpage, struct mem_cgroup **ptr)
ae41be37
KH
2849{
2850 struct page_cgroup *pc;
e8589cc1 2851 struct mem_cgroup *mem = NULL;
ac39cf8c 2852 enum charge_type ctype;
e8589cc1 2853 int ret = 0;
8869b8f6 2854
ec168510 2855 VM_BUG_ON(PageTransHuge(page));
f8d66542 2856 if (mem_cgroup_disabled())
4077960e
BS
2857 return 0;
2858
52d4b9ac
KH
2859 pc = lookup_page_cgroup(page);
2860 lock_page_cgroup(pc);
2861 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2862 mem = pc->mem_cgroup;
2863 css_get(&mem->css);
ac39cf8c
AM
2864 /*
2865 * At migrating an anonymous page, its mapcount goes down
2866 * to 0 and uncharge() will be called. But, even if it's fully
2867 * unmapped, migration may fail and this page has to be
2868 * charged again. We set MIGRATION flag here and delay uncharge
2869 * until end_migration() is called
2870 *
2871 * Corner Case Thinking
2872 * A)
2873 * When the old page was mapped as Anon and it's unmap-and-freed
2874 * while migration was ongoing.
2875 * If unmap finds the old page, uncharge() of it will be delayed
2876 * until end_migration(). If unmap finds a new page, it's
2877 * uncharged when it make mapcount to be 1->0. If unmap code
2878 * finds swap_migration_entry, the new page will not be mapped
2879 * and end_migration() will find it(mapcount==0).
2880 *
2881 * B)
2882 * When the old page was mapped but migraion fails, the kernel
2883 * remaps it. A charge for it is kept by MIGRATION flag even
2884 * if mapcount goes down to 0. We can do remap successfully
2885 * without charging it again.
2886 *
2887 * C)
2888 * The "old" page is under lock_page() until the end of
2889 * migration, so, the old page itself will not be swapped-out.
2890 * If the new page is swapped out before end_migraton, our
2891 * hook to usual swap-out path will catch the event.
2892 */
2893 if (PageAnon(page))
2894 SetPageCgroupMigration(pc);
e8589cc1 2895 }
52d4b9ac 2896 unlock_page_cgroup(pc);
ac39cf8c
AM
2897 /*
2898 * If the page is not charged at this point,
2899 * we return here.
2900 */
2901 if (!mem)
2902 return 0;
01b1ae63 2903
93d5c9be 2904 *ptr = mem;
ec168510 2905 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
ac39cf8c
AM
2906 css_put(&mem->css);/* drop extra refcnt */
2907 if (ret || *ptr == NULL) {
2908 if (PageAnon(page)) {
2909 lock_page_cgroup(pc);
2910 ClearPageCgroupMigration(pc);
2911 unlock_page_cgroup(pc);
2912 /*
2913 * The old page may be fully unmapped while we kept it.
2914 */
2915 mem_cgroup_uncharge_page(page);
2916 }
2917 return -ENOMEM;
e8589cc1 2918 }
ac39cf8c
AM
2919 /*
2920 * We charge new page before it's used/mapped. So, even if unlock_page()
2921 * is called before end_migration, we can catch all events on this new
2922 * page. In the case new page is migrated but not remapped, new page's
2923 * mapcount will be finally 0 and we call uncharge in end_migration().
2924 */
2925 pc = lookup_page_cgroup(newpage);
2926 if (PageAnon(page))
2927 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2928 else if (page_is_file_cache(page))
2929 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2930 else
2931 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ec168510 2932 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
e8589cc1 2933 return ret;
ae41be37 2934}
8869b8f6 2935
69029cd5 2936/* remove redundant charge if migration failed*/
01b1ae63 2937void mem_cgroup_end_migration(struct mem_cgroup *mem,
50de1dd9 2938 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 2939{
ac39cf8c 2940 struct page *used, *unused;
01b1ae63 2941 struct page_cgroup *pc;
01b1ae63
KH
2942
2943 if (!mem)
2944 return;
ac39cf8c 2945 /* blocks rmdir() */
88703267 2946 cgroup_exclude_rmdir(&mem->css);
50de1dd9 2947 if (!migration_ok) {
ac39cf8c
AM
2948 used = oldpage;
2949 unused = newpage;
01b1ae63 2950 } else {
ac39cf8c 2951 used = newpage;
01b1ae63
KH
2952 unused = oldpage;
2953 }
69029cd5 2954 /*
ac39cf8c
AM
2955 * We disallowed uncharge of pages under migration because mapcount
2956 * of the page goes down to zero, temporarly.
2957 * Clear the flag and check the page should be charged.
01b1ae63 2958 */
ac39cf8c
AM
2959 pc = lookup_page_cgroup(oldpage);
2960 lock_page_cgroup(pc);
2961 ClearPageCgroupMigration(pc);
2962 unlock_page_cgroup(pc);
01b1ae63 2963
ac39cf8c
AM
2964 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2965
01b1ae63 2966 /*
ac39cf8c
AM
2967 * If a page is a file cache, radix-tree replacement is very atomic
2968 * and we can skip this check. When it was an Anon page, its mapcount
2969 * goes down to 0. But because we added MIGRATION flage, it's not
2970 * uncharged yet. There are several case but page->mapcount check
2971 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2972 * check. (see prepare_charge() also)
69029cd5 2973 */
ac39cf8c
AM
2974 if (PageAnon(used))
2975 mem_cgroup_uncharge_page(used);
88703267 2976 /*
ac39cf8c
AM
2977 * At migration, we may charge account against cgroup which has no
2978 * tasks.
88703267
KH
2979 * So, rmdir()->pre_destroy() can be called while we do this charge.
2980 * In that case, we need to call pre_destroy() again. check it here.
2981 */
2982 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 2983}
78fb7466 2984
c9b0ed51 2985/*
ae3abae6
DN
2986 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2987 * Calling hierarchical_reclaim is not enough because we should update
2988 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2989 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2990 * not from the memcg which this page would be charged to.
2991 * try_charge_swapin does all of these works properly.
c9b0ed51 2992 */
ae3abae6 2993int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
2994 struct mm_struct *mm,
2995 gfp_t gfp_mask)
c9b0ed51 2996{
b5a84319 2997 struct mem_cgroup *mem = NULL;
ae3abae6 2998 int ret;
c9b0ed51 2999
f8d66542 3000 if (mem_cgroup_disabled())
cede86ac 3001 return 0;
c9b0ed51 3002
ae3abae6
DN
3003 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3004 if (!ret)
3005 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 3006
ae3abae6 3007 return ret;
c9b0ed51
KH
3008}
3009
8c7c6e34
KH
3010static DEFINE_MUTEX(set_limit_mutex);
3011
d38d2a75 3012static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3013 unsigned long long val)
628f4235 3014{
81d39c20 3015 int retry_count;
3c11ecf4 3016 u64 memswlimit, memlimit;
628f4235 3017 int ret = 0;
81d39c20
KH
3018 int children = mem_cgroup_count_children(memcg);
3019 u64 curusage, oldusage;
3c11ecf4 3020 int enlarge;
81d39c20
KH
3021
3022 /*
3023 * For keeping hierarchical_reclaim simple, how long we should retry
3024 * is depends on callers. We set our retry-count to be function
3025 * of # of children which we should visit in this loop.
3026 */
3027 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3028
3029 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3030
3c11ecf4 3031 enlarge = 0;
8c7c6e34 3032 while (retry_count) {
628f4235
KH
3033 if (signal_pending(current)) {
3034 ret = -EINTR;
3035 break;
3036 }
8c7c6e34
KH
3037 /*
3038 * Rather than hide all in some function, I do this in
3039 * open coded manner. You see what this really does.
3040 * We have to guarantee mem->res.limit < mem->memsw.limit.
3041 */
3042 mutex_lock(&set_limit_mutex);
3043 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3044 if (memswlimit < val) {
3045 ret = -EINVAL;
3046 mutex_unlock(&set_limit_mutex);
628f4235
KH
3047 break;
3048 }
3c11ecf4
KH
3049
3050 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3051 if (memlimit < val)
3052 enlarge = 1;
3053
8c7c6e34 3054 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3055 if (!ret) {
3056 if (memswlimit == val)
3057 memcg->memsw_is_minimum = true;
3058 else
3059 memcg->memsw_is_minimum = false;
3060 }
8c7c6e34
KH
3061 mutex_unlock(&set_limit_mutex);
3062
3063 if (!ret)
3064 break;
3065
aa20d489 3066 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 3067 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3068 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3069 /* Usage is reduced ? */
3070 if (curusage >= oldusage)
3071 retry_count--;
3072 else
3073 oldusage = curusage;
8c7c6e34 3074 }
3c11ecf4
KH
3075 if (!ret && enlarge)
3076 memcg_oom_recover(memcg);
14797e23 3077
8c7c6e34
KH
3078 return ret;
3079}
3080
338c8431
LZ
3081static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3082 unsigned long long val)
8c7c6e34 3083{
81d39c20 3084 int retry_count;
3c11ecf4 3085 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3086 int children = mem_cgroup_count_children(memcg);
3087 int ret = -EBUSY;
3c11ecf4 3088 int enlarge = 0;
8c7c6e34 3089
81d39c20
KH
3090 /* see mem_cgroup_resize_res_limit */
3091 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3092 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3093 while (retry_count) {
3094 if (signal_pending(current)) {
3095 ret = -EINTR;
3096 break;
3097 }
3098 /*
3099 * Rather than hide all in some function, I do this in
3100 * open coded manner. You see what this really does.
3101 * We have to guarantee mem->res.limit < mem->memsw.limit.
3102 */
3103 mutex_lock(&set_limit_mutex);
3104 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3105 if (memlimit > val) {
3106 ret = -EINVAL;
3107 mutex_unlock(&set_limit_mutex);
3108 break;
3109 }
3c11ecf4
KH
3110 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3111 if (memswlimit < val)
3112 enlarge = 1;
8c7c6e34 3113 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3114 if (!ret) {
3115 if (memlimit == val)
3116 memcg->memsw_is_minimum = true;
3117 else
3118 memcg->memsw_is_minimum = false;
3119 }
8c7c6e34
KH
3120 mutex_unlock(&set_limit_mutex);
3121
3122 if (!ret)
3123 break;
3124
4e416953 3125 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
3126 MEM_CGROUP_RECLAIM_NOSWAP |
3127 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3128 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3129 /* Usage is reduced ? */
8c7c6e34 3130 if (curusage >= oldusage)
628f4235 3131 retry_count--;
81d39c20
KH
3132 else
3133 oldusage = curusage;
628f4235 3134 }
3c11ecf4
KH
3135 if (!ret && enlarge)
3136 memcg_oom_recover(memcg);
628f4235
KH
3137 return ret;
3138}
3139
4e416953 3140unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
00918b6a 3141 gfp_t gfp_mask)
4e416953
BS
3142{
3143 unsigned long nr_reclaimed = 0;
3144 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3145 unsigned long reclaimed;
3146 int loop = 0;
3147 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3148 unsigned long long excess;
4e416953
BS
3149
3150 if (order > 0)
3151 return 0;
3152
00918b6a 3153 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3154 /*
3155 * This loop can run a while, specially if mem_cgroup's continuously
3156 * keep exceeding their soft limit and putting the system under
3157 * pressure
3158 */
3159 do {
3160 if (next_mz)
3161 mz = next_mz;
3162 else
3163 mz = mem_cgroup_largest_soft_limit_node(mctz);
3164 if (!mz)
3165 break;
3166
3167 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3168 gfp_mask,
3169 MEM_CGROUP_RECLAIM_SOFT);
3170 nr_reclaimed += reclaimed;
3171 spin_lock(&mctz->lock);
3172
3173 /*
3174 * If we failed to reclaim anything from this memory cgroup
3175 * it is time to move on to the next cgroup
3176 */
3177 next_mz = NULL;
3178 if (!reclaimed) {
3179 do {
3180 /*
3181 * Loop until we find yet another one.
3182 *
3183 * By the time we get the soft_limit lock
3184 * again, someone might have aded the
3185 * group back on the RB tree. Iterate to
3186 * make sure we get a different mem.
3187 * mem_cgroup_largest_soft_limit_node returns
3188 * NULL if no other cgroup is present on
3189 * the tree
3190 */
3191 next_mz =
3192 __mem_cgroup_largest_soft_limit_node(mctz);
3193 if (next_mz == mz) {
3194 css_put(&next_mz->mem->css);
3195 next_mz = NULL;
3196 } else /* next_mz == NULL or other memcg */
3197 break;
3198 } while (1);
3199 }
4e416953 3200 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3201 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3202 /*
3203 * One school of thought says that we should not add
3204 * back the node to the tree if reclaim returns 0.
3205 * But our reclaim could return 0, simply because due
3206 * to priority we are exposing a smaller subset of
3207 * memory to reclaim from. Consider this as a longer
3208 * term TODO.
3209 */
ef8745c1
KH
3210 /* If excess == 0, no tree ops */
3211 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3212 spin_unlock(&mctz->lock);
3213 css_put(&mz->mem->css);
3214 loop++;
3215 /*
3216 * Could not reclaim anything and there are no more
3217 * mem cgroups to try or we seem to be looping without
3218 * reclaiming anything.
3219 */
3220 if (!nr_reclaimed &&
3221 (next_mz == NULL ||
3222 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3223 break;
3224 } while (!nr_reclaimed);
3225 if (next_mz)
3226 css_put(&next_mz->mem->css);
3227 return nr_reclaimed;
3228}
3229
cc847582
KH
3230/*
3231 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3232 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3233 */
f817ed48 3234static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3235 int node, int zid, enum lru_list lru)
cc847582 3236{
08e552c6
KH
3237 struct zone *zone;
3238 struct mem_cgroup_per_zone *mz;
f817ed48 3239 struct page_cgroup *pc, *busy;
08e552c6 3240 unsigned long flags, loop;
072c56c1 3241 struct list_head *list;
f817ed48 3242 int ret = 0;
072c56c1 3243
08e552c6
KH
3244 zone = &NODE_DATA(node)->node_zones[zid];
3245 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3246 list = &mz->lists[lru];
cc847582 3247
f817ed48
KH
3248 loop = MEM_CGROUP_ZSTAT(mz, lru);
3249 /* give some margin against EBUSY etc...*/
3250 loop += 256;
3251 busy = NULL;
3252 while (loop--) {
3253 ret = 0;
08e552c6 3254 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3255 if (list_empty(list)) {
08e552c6 3256 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3257 break;
f817ed48
KH
3258 }
3259 pc = list_entry(list->prev, struct page_cgroup, lru);
3260 if (busy == pc) {
3261 list_move(&pc->lru, list);
648bcc77 3262 busy = NULL;
08e552c6 3263 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3264 continue;
3265 }
08e552c6 3266 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3267
2c26fdd7 3268 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 3269 if (ret == -ENOMEM)
52d4b9ac 3270 break;
f817ed48
KH
3271
3272 if (ret == -EBUSY || ret == -EINVAL) {
3273 /* found lock contention or "pc" is obsolete. */
3274 busy = pc;
3275 cond_resched();
3276 } else
3277 busy = NULL;
cc847582 3278 }
08e552c6 3279
f817ed48
KH
3280 if (!ret && !list_empty(list))
3281 return -EBUSY;
3282 return ret;
cc847582
KH
3283}
3284
3285/*
3286 * make mem_cgroup's charge to be 0 if there is no task.
3287 * This enables deleting this mem_cgroup.
3288 */
c1e862c1 3289static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3290{
f817ed48
KH
3291 int ret;
3292 int node, zid, shrink;
3293 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3294 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3295
cc847582 3296 css_get(&mem->css);
f817ed48
KH
3297
3298 shrink = 0;
c1e862c1
KH
3299 /* should free all ? */
3300 if (free_all)
3301 goto try_to_free;
f817ed48 3302move_account:
fce66477 3303 do {
f817ed48 3304 ret = -EBUSY;
c1e862c1
KH
3305 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3306 goto out;
3307 ret = -EINTR;
3308 if (signal_pending(current))
cc847582 3309 goto out;
52d4b9ac
KH
3310 /* This is for making all *used* pages to be on LRU. */
3311 lru_add_drain_all();
cdec2e42 3312 drain_all_stock_sync();
f817ed48 3313 ret = 0;
32047e2a 3314 mem_cgroup_start_move(mem);
299b4eaa 3315 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3316 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3317 enum lru_list l;
f817ed48
KH
3318 for_each_lru(l) {
3319 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3320 node, zid, l);
f817ed48
KH
3321 if (ret)
3322 break;
3323 }
1ecaab2b 3324 }
f817ed48
KH
3325 if (ret)
3326 break;
3327 }
32047e2a 3328 mem_cgroup_end_move(mem);
3c11ecf4 3329 memcg_oom_recover(mem);
f817ed48
KH
3330 /* it seems parent cgroup doesn't have enough mem */
3331 if (ret == -ENOMEM)
3332 goto try_to_free;
52d4b9ac 3333 cond_resched();
fce66477
DN
3334 /* "ret" should also be checked to ensure all lists are empty. */
3335 } while (mem->res.usage > 0 || ret);
cc847582
KH
3336out:
3337 css_put(&mem->css);
3338 return ret;
f817ed48
KH
3339
3340try_to_free:
c1e862c1
KH
3341 /* returns EBUSY if there is a task or if we come here twice. */
3342 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3343 ret = -EBUSY;
3344 goto out;
3345 }
c1e862c1
KH
3346 /* we call try-to-free pages for make this cgroup empty */
3347 lru_add_drain_all();
f817ed48
KH
3348 /* try to free all pages in this cgroup */
3349 shrink = 1;
3350 while (nr_retries && mem->res.usage > 0) {
3351 int progress;
c1e862c1
KH
3352
3353 if (signal_pending(current)) {
3354 ret = -EINTR;
3355 goto out;
3356 }
a7885eb8
KM
3357 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3358 false, get_swappiness(mem));
c1e862c1 3359 if (!progress) {
f817ed48 3360 nr_retries--;
c1e862c1 3361 /* maybe some writeback is necessary */
8aa7e847 3362 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3363 }
f817ed48
KH
3364
3365 }
08e552c6 3366 lru_add_drain();
f817ed48 3367 /* try move_account...there may be some *locked* pages. */
fce66477 3368 goto move_account;
cc847582
KH
3369}
3370
c1e862c1
KH
3371int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3372{
3373 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3374}
3375
3376
18f59ea7
BS
3377static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3378{
3379 return mem_cgroup_from_cont(cont)->use_hierarchy;
3380}
3381
3382static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3383 u64 val)
3384{
3385 int retval = 0;
3386 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3387 struct cgroup *parent = cont->parent;
3388 struct mem_cgroup *parent_mem = NULL;
3389
3390 if (parent)
3391 parent_mem = mem_cgroup_from_cont(parent);
3392
3393 cgroup_lock();
3394 /*
af901ca1 3395 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3396 * in the child subtrees. If it is unset, then the change can
3397 * occur, provided the current cgroup has no children.
3398 *
3399 * For the root cgroup, parent_mem is NULL, we allow value to be
3400 * set if there are no children.
3401 */
3402 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3403 (val == 1 || val == 0)) {
3404 if (list_empty(&cont->children))
3405 mem->use_hierarchy = val;
3406 else
3407 retval = -EBUSY;
3408 } else
3409 retval = -EINVAL;
3410 cgroup_unlock();
3411
3412 return retval;
3413}
3414
0c3e73e8 3415
7d74b06f
KH
3416static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3417 enum mem_cgroup_stat_index idx)
0c3e73e8 3418{
7d74b06f
KH
3419 struct mem_cgroup *iter;
3420 s64 val = 0;
0c3e73e8 3421
7d74b06f
KH
3422 /* each per cpu's value can be minus.Then, use s64 */
3423 for_each_mem_cgroup_tree(iter, mem)
3424 val += mem_cgroup_read_stat(iter, idx);
3425
3426 if (val < 0) /* race ? */
3427 val = 0;
3428 return val;
0c3e73e8
BS
3429}
3430
104f3928
KS
3431static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3432{
7d74b06f 3433 u64 val;
104f3928
KS
3434
3435 if (!mem_cgroup_is_root(mem)) {
3436 if (!swap)
3437 return res_counter_read_u64(&mem->res, RES_USAGE);
3438 else
3439 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3440 }
3441
7d74b06f
KH
3442 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3443 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3444
7d74b06f
KH
3445 if (swap)
3446 val += mem_cgroup_get_recursive_idx_stat(mem,
3447 MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3448
3449 return val << PAGE_SHIFT;
3450}
3451
2c3daa72 3452static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3453{
8c7c6e34 3454 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3455 u64 val;
8c7c6e34
KH
3456 int type, name;
3457
3458 type = MEMFILE_TYPE(cft->private);
3459 name = MEMFILE_ATTR(cft->private);
3460 switch (type) {
3461 case _MEM:
104f3928
KS
3462 if (name == RES_USAGE)
3463 val = mem_cgroup_usage(mem, false);
3464 else
0c3e73e8 3465 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3466 break;
3467 case _MEMSWAP:
104f3928
KS
3468 if (name == RES_USAGE)
3469 val = mem_cgroup_usage(mem, true);
3470 else
0c3e73e8 3471 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3472 break;
3473 default:
3474 BUG();
3475 break;
3476 }
3477 return val;
8cdea7c0 3478}
628f4235
KH
3479/*
3480 * The user of this function is...
3481 * RES_LIMIT.
3482 */
856c13aa
PM
3483static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3484 const char *buffer)
8cdea7c0 3485{
628f4235 3486 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3487 int type, name;
628f4235
KH
3488 unsigned long long val;
3489 int ret;
3490
8c7c6e34
KH
3491 type = MEMFILE_TYPE(cft->private);
3492 name = MEMFILE_ATTR(cft->private);
3493 switch (name) {
628f4235 3494 case RES_LIMIT:
4b3bde4c
BS
3495 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3496 ret = -EINVAL;
3497 break;
3498 }
628f4235
KH
3499 /* This function does all necessary parse...reuse it */
3500 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3501 if (ret)
3502 break;
3503 if (type == _MEM)
628f4235 3504 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3505 else
3506 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3507 break;
296c81d8
BS
3508 case RES_SOFT_LIMIT:
3509 ret = res_counter_memparse_write_strategy(buffer, &val);
3510 if (ret)
3511 break;
3512 /*
3513 * For memsw, soft limits are hard to implement in terms
3514 * of semantics, for now, we support soft limits for
3515 * control without swap
3516 */
3517 if (type == _MEM)
3518 ret = res_counter_set_soft_limit(&memcg->res, val);
3519 else
3520 ret = -EINVAL;
3521 break;
628f4235
KH
3522 default:
3523 ret = -EINVAL; /* should be BUG() ? */
3524 break;
3525 }
3526 return ret;
8cdea7c0
BS
3527}
3528
fee7b548
KH
3529static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3530 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3531{
3532 struct cgroup *cgroup;
3533 unsigned long long min_limit, min_memsw_limit, tmp;
3534
3535 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3536 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3537 cgroup = memcg->css.cgroup;
3538 if (!memcg->use_hierarchy)
3539 goto out;
3540
3541 while (cgroup->parent) {
3542 cgroup = cgroup->parent;
3543 memcg = mem_cgroup_from_cont(cgroup);
3544 if (!memcg->use_hierarchy)
3545 break;
3546 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3547 min_limit = min(min_limit, tmp);
3548 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3549 min_memsw_limit = min(min_memsw_limit, tmp);
3550 }
3551out:
3552 *mem_limit = min_limit;
3553 *memsw_limit = min_memsw_limit;
3554 return;
3555}
3556
29f2a4da 3557static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3558{
3559 struct mem_cgroup *mem;
8c7c6e34 3560 int type, name;
c84872e1
PE
3561
3562 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3563 type = MEMFILE_TYPE(event);
3564 name = MEMFILE_ATTR(event);
3565 switch (name) {
29f2a4da 3566 case RES_MAX_USAGE:
8c7c6e34
KH
3567 if (type == _MEM)
3568 res_counter_reset_max(&mem->res);
3569 else
3570 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3571 break;
3572 case RES_FAILCNT:
8c7c6e34
KH
3573 if (type == _MEM)
3574 res_counter_reset_failcnt(&mem->res);
3575 else
3576 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3577 break;
3578 }
f64c3f54 3579
85cc59db 3580 return 0;
c84872e1
PE
3581}
3582
7dc74be0
DN
3583static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3584 struct cftype *cft)
3585{
3586 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3587}
3588
02491447 3589#ifdef CONFIG_MMU
7dc74be0
DN
3590static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3591 struct cftype *cft, u64 val)
3592{
3593 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3594
3595 if (val >= (1 << NR_MOVE_TYPE))
3596 return -EINVAL;
3597 /*
3598 * We check this value several times in both in can_attach() and
3599 * attach(), so we need cgroup lock to prevent this value from being
3600 * inconsistent.
3601 */
3602 cgroup_lock();
3603 mem->move_charge_at_immigrate = val;
3604 cgroup_unlock();
3605
3606 return 0;
3607}
02491447
DN
3608#else
3609static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3610 struct cftype *cft, u64 val)
3611{
3612 return -ENOSYS;
3613}
3614#endif
7dc74be0 3615
14067bb3
KH
3616
3617/* For read statistics */
3618enum {
3619 MCS_CACHE,
3620 MCS_RSS,
d8046582 3621 MCS_FILE_MAPPED,
14067bb3
KH
3622 MCS_PGPGIN,
3623 MCS_PGPGOUT,
1dd3a273 3624 MCS_SWAP,
14067bb3
KH
3625 MCS_INACTIVE_ANON,
3626 MCS_ACTIVE_ANON,
3627 MCS_INACTIVE_FILE,
3628 MCS_ACTIVE_FILE,
3629 MCS_UNEVICTABLE,
3630 NR_MCS_STAT,
3631};
3632
3633struct mcs_total_stat {
3634 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3635};
3636
14067bb3
KH
3637struct {
3638 char *local_name;
3639 char *total_name;
3640} memcg_stat_strings[NR_MCS_STAT] = {
3641 {"cache", "total_cache"},
3642 {"rss", "total_rss"},
d69b042f 3643 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3644 {"pgpgin", "total_pgpgin"},
3645 {"pgpgout", "total_pgpgout"},
1dd3a273 3646 {"swap", "total_swap"},
14067bb3
KH
3647 {"inactive_anon", "total_inactive_anon"},
3648 {"active_anon", "total_active_anon"},
3649 {"inactive_file", "total_inactive_file"},
3650 {"active_file", "total_active_file"},
3651 {"unevictable", "total_unevictable"}
3652};
3653
3654
7d74b06f
KH
3655static void
3656mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 3657{
14067bb3
KH
3658 s64 val;
3659
3660 /* per cpu stat */
c62b1a3b 3661 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3662 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3663 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3664 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3665 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3666 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c62b1a3b 3667 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
14067bb3 3668 s->stat[MCS_PGPGIN] += val;
c62b1a3b 3669 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
14067bb3 3670 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3671 if (do_swap_account) {
c62b1a3b 3672 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3673 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3674 }
14067bb3
KH
3675
3676 /* per zone stat */
3677 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3678 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3679 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3680 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3681 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3682 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3683 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3684 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3685 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3686 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
3687}
3688
3689static void
3690mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3691{
7d74b06f
KH
3692 struct mem_cgroup *iter;
3693
3694 for_each_mem_cgroup_tree(iter, mem)
3695 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
3696}
3697
c64745cf
PM
3698static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3699 struct cgroup_map_cb *cb)
d2ceb9b7 3700{
d2ceb9b7 3701 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3702 struct mcs_total_stat mystat;
d2ceb9b7
KH
3703 int i;
3704
14067bb3
KH
3705 memset(&mystat, 0, sizeof(mystat));
3706 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3707
1dd3a273
DN
3708 for (i = 0; i < NR_MCS_STAT; i++) {
3709 if (i == MCS_SWAP && !do_swap_account)
3710 continue;
14067bb3 3711 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3712 }
7b854121 3713
14067bb3 3714 /* Hierarchical information */
fee7b548
KH
3715 {
3716 unsigned long long limit, memsw_limit;
3717 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3718 cb->fill(cb, "hierarchical_memory_limit", limit);
3719 if (do_swap_account)
3720 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3721 }
7f016ee8 3722
14067bb3
KH
3723 memset(&mystat, 0, sizeof(mystat));
3724 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3725 for (i = 0; i < NR_MCS_STAT; i++) {
3726 if (i == MCS_SWAP && !do_swap_account)
3727 continue;
14067bb3 3728 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3729 }
14067bb3 3730
7f016ee8 3731#ifdef CONFIG_DEBUG_VM
c772be93 3732 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3733
3734 {
3735 int nid, zid;
3736 struct mem_cgroup_per_zone *mz;
3737 unsigned long recent_rotated[2] = {0, 0};
3738 unsigned long recent_scanned[2] = {0, 0};
3739
3740 for_each_online_node(nid)
3741 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3742 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3743
3744 recent_rotated[0] +=
3745 mz->reclaim_stat.recent_rotated[0];
3746 recent_rotated[1] +=
3747 mz->reclaim_stat.recent_rotated[1];
3748 recent_scanned[0] +=
3749 mz->reclaim_stat.recent_scanned[0];
3750 recent_scanned[1] +=
3751 mz->reclaim_stat.recent_scanned[1];
3752 }
3753 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3754 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3755 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3756 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3757 }
3758#endif
3759
d2ceb9b7
KH
3760 return 0;
3761}
3762
a7885eb8
KM
3763static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3764{
3765 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3766
3767 return get_swappiness(memcg);
3768}
3769
3770static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3771 u64 val)
3772{
3773 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3774 struct mem_cgroup *parent;
068b38c1 3775
a7885eb8
KM
3776 if (val > 100)
3777 return -EINVAL;
3778
3779 if (cgrp->parent == NULL)
3780 return -EINVAL;
3781
3782 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3783
3784 cgroup_lock();
3785
a7885eb8
KM
3786 /* If under hierarchy, only empty-root can set this value */
3787 if ((parent->use_hierarchy) ||
068b38c1
LZ
3788 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3789 cgroup_unlock();
a7885eb8 3790 return -EINVAL;
068b38c1 3791 }
a7885eb8
KM
3792
3793 spin_lock(&memcg->reclaim_param_lock);
3794 memcg->swappiness = val;
3795 spin_unlock(&memcg->reclaim_param_lock);
3796
068b38c1
LZ
3797 cgroup_unlock();
3798
a7885eb8
KM
3799 return 0;
3800}
3801
2e72b634
KS
3802static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3803{
3804 struct mem_cgroup_threshold_ary *t;
3805 u64 usage;
3806 int i;
3807
3808 rcu_read_lock();
3809 if (!swap)
2c488db2 3810 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3811 else
2c488db2 3812 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3813
3814 if (!t)
3815 goto unlock;
3816
3817 usage = mem_cgroup_usage(memcg, swap);
3818
3819 /*
3820 * current_threshold points to threshold just below usage.
3821 * If it's not true, a threshold was crossed after last
3822 * call of __mem_cgroup_threshold().
3823 */
5407a562 3824 i = t->current_threshold;
2e72b634
KS
3825
3826 /*
3827 * Iterate backward over array of thresholds starting from
3828 * current_threshold and check if a threshold is crossed.
3829 * If none of thresholds below usage is crossed, we read
3830 * only one element of the array here.
3831 */
3832 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3833 eventfd_signal(t->entries[i].eventfd, 1);
3834
3835 /* i = current_threshold + 1 */
3836 i++;
3837
3838 /*
3839 * Iterate forward over array of thresholds starting from
3840 * current_threshold+1 and check if a threshold is crossed.
3841 * If none of thresholds above usage is crossed, we read
3842 * only one element of the array here.
3843 */
3844 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3845 eventfd_signal(t->entries[i].eventfd, 1);
3846
3847 /* Update current_threshold */
5407a562 3848 t->current_threshold = i - 1;
2e72b634
KS
3849unlock:
3850 rcu_read_unlock();
3851}
3852
3853static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3854{
ad4ca5f4
KS
3855 while (memcg) {
3856 __mem_cgroup_threshold(memcg, false);
3857 if (do_swap_account)
3858 __mem_cgroup_threshold(memcg, true);
3859
3860 memcg = parent_mem_cgroup(memcg);
3861 }
2e72b634
KS
3862}
3863
3864static int compare_thresholds(const void *a, const void *b)
3865{
3866 const struct mem_cgroup_threshold *_a = a;
3867 const struct mem_cgroup_threshold *_b = b;
3868
3869 return _a->threshold - _b->threshold;
3870}
3871
7d74b06f 3872static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
3873{
3874 struct mem_cgroup_eventfd_list *ev;
3875
3876 list_for_each_entry(ev, &mem->oom_notify, list)
3877 eventfd_signal(ev->eventfd, 1);
3878 return 0;
3879}
3880
3881static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3882{
7d74b06f
KH
3883 struct mem_cgroup *iter;
3884
3885 for_each_mem_cgroup_tree(iter, mem)
3886 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3887}
3888
3889static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3890 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
3891{
3892 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3893 struct mem_cgroup_thresholds *thresholds;
3894 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3895 int type = MEMFILE_TYPE(cft->private);
3896 u64 threshold, usage;
2c488db2 3897 int i, size, ret;
2e72b634
KS
3898
3899 ret = res_counter_memparse_write_strategy(args, &threshold);
3900 if (ret)
3901 return ret;
3902
3903 mutex_lock(&memcg->thresholds_lock);
2c488db2 3904
2e72b634 3905 if (type == _MEM)
2c488db2 3906 thresholds = &memcg->thresholds;
2e72b634 3907 else if (type == _MEMSWAP)
2c488db2 3908 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3909 else
3910 BUG();
3911
3912 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3913
3914 /* Check if a threshold crossed before adding a new one */
2c488db2 3915 if (thresholds->primary)
2e72b634
KS
3916 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3917
2c488db2 3918 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3919
3920 /* Allocate memory for new array of thresholds */
2c488db2 3921 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3922 GFP_KERNEL);
2c488db2 3923 if (!new) {
2e72b634
KS
3924 ret = -ENOMEM;
3925 goto unlock;
3926 }
2c488db2 3927 new->size = size;
2e72b634
KS
3928
3929 /* Copy thresholds (if any) to new array */
2c488db2
KS
3930 if (thresholds->primary) {
3931 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3932 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3933 }
3934
2e72b634 3935 /* Add new threshold */
2c488db2
KS
3936 new->entries[size - 1].eventfd = eventfd;
3937 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3938
3939 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3940 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3941 compare_thresholds, NULL);
3942
3943 /* Find current threshold */
2c488db2 3944 new->current_threshold = -1;
2e72b634 3945 for (i = 0; i < size; i++) {
2c488db2 3946 if (new->entries[i].threshold < usage) {
2e72b634 3947 /*
2c488db2
KS
3948 * new->current_threshold will not be used until
3949 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3950 * it here.
3951 */
2c488db2 3952 ++new->current_threshold;
2e72b634
KS
3953 }
3954 }
3955
2c488db2
KS
3956 /* Free old spare buffer and save old primary buffer as spare */
3957 kfree(thresholds->spare);
3958 thresholds->spare = thresholds->primary;
3959
3960 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3961
907860ed 3962 /* To be sure that nobody uses thresholds */
2e72b634
KS
3963 synchronize_rcu();
3964
2e72b634
KS
3965unlock:
3966 mutex_unlock(&memcg->thresholds_lock);
3967
3968 return ret;
3969}
3970
907860ed 3971static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 3972 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
3973{
3974 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
3975 struct mem_cgroup_thresholds *thresholds;
3976 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
3977 int type = MEMFILE_TYPE(cft->private);
3978 u64 usage;
2c488db2 3979 int i, j, size;
2e72b634
KS
3980
3981 mutex_lock(&memcg->thresholds_lock);
3982 if (type == _MEM)
2c488db2 3983 thresholds = &memcg->thresholds;
2e72b634 3984 else if (type == _MEMSWAP)
2c488db2 3985 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
3986 else
3987 BUG();
3988
3989 /*
3990 * Something went wrong if we trying to unregister a threshold
3991 * if we don't have thresholds
3992 */
3993 BUG_ON(!thresholds);
3994
3995 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3996
3997 /* Check if a threshold crossed before removing */
3998 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3999
4000 /* Calculate new number of threshold */
2c488db2
KS
4001 size = 0;
4002 for (i = 0; i < thresholds->primary->size; i++) {
4003 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4004 size++;
4005 }
4006
2c488db2 4007 new = thresholds->spare;
907860ed 4008
2e72b634
KS
4009 /* Set thresholds array to NULL if we don't have thresholds */
4010 if (!size) {
2c488db2
KS
4011 kfree(new);
4012 new = NULL;
907860ed 4013 goto swap_buffers;
2e72b634
KS
4014 }
4015
2c488db2 4016 new->size = size;
2e72b634
KS
4017
4018 /* Copy thresholds and find current threshold */
2c488db2
KS
4019 new->current_threshold = -1;
4020 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4021 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4022 continue;
4023
2c488db2
KS
4024 new->entries[j] = thresholds->primary->entries[i];
4025 if (new->entries[j].threshold < usage) {
2e72b634 4026 /*
2c488db2 4027 * new->current_threshold will not be used
2e72b634
KS
4028 * until rcu_assign_pointer(), so it's safe to increment
4029 * it here.
4030 */
2c488db2 4031 ++new->current_threshold;
2e72b634
KS
4032 }
4033 j++;
4034 }
4035
907860ed 4036swap_buffers:
2c488db2
KS
4037 /* Swap primary and spare array */
4038 thresholds->spare = thresholds->primary;
4039 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4040
907860ed 4041 /* To be sure that nobody uses thresholds */
2e72b634
KS
4042 synchronize_rcu();
4043
2e72b634 4044 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4045}
c1e862c1 4046
9490ff27
KH
4047static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4048 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4049{
4050 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4051 struct mem_cgroup_eventfd_list *event;
4052 int type = MEMFILE_TYPE(cft->private);
4053
4054 BUG_ON(type != _OOM_TYPE);
4055 event = kmalloc(sizeof(*event), GFP_KERNEL);
4056 if (!event)
4057 return -ENOMEM;
4058
4059 mutex_lock(&memcg_oom_mutex);
4060
4061 event->eventfd = eventfd;
4062 list_add(&event->list, &memcg->oom_notify);
4063
4064 /* already in OOM ? */
4065 if (atomic_read(&memcg->oom_lock))
4066 eventfd_signal(eventfd, 1);
4067 mutex_unlock(&memcg_oom_mutex);
4068
4069 return 0;
4070}
4071
907860ed 4072static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4073 struct cftype *cft, struct eventfd_ctx *eventfd)
4074{
4075 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4076 struct mem_cgroup_eventfd_list *ev, *tmp;
4077 int type = MEMFILE_TYPE(cft->private);
4078
4079 BUG_ON(type != _OOM_TYPE);
4080
4081 mutex_lock(&memcg_oom_mutex);
4082
4083 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4084 if (ev->eventfd == eventfd) {
4085 list_del(&ev->list);
4086 kfree(ev);
4087 }
4088 }
4089
4090 mutex_unlock(&memcg_oom_mutex);
9490ff27
KH
4091}
4092
3c11ecf4
KH
4093static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4094 struct cftype *cft, struct cgroup_map_cb *cb)
4095{
4096 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4097
4098 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4099
4100 if (atomic_read(&mem->oom_lock))
4101 cb->fill(cb, "under_oom", 1);
4102 else
4103 cb->fill(cb, "under_oom", 0);
4104 return 0;
4105}
4106
3c11ecf4
KH
4107static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4108 struct cftype *cft, u64 val)
4109{
4110 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4111 struct mem_cgroup *parent;
4112
4113 /* cannot set to root cgroup and only 0 and 1 are allowed */
4114 if (!cgrp->parent || !((val == 0) || (val == 1)))
4115 return -EINVAL;
4116
4117 parent = mem_cgroup_from_cont(cgrp->parent);
4118
4119 cgroup_lock();
4120 /* oom-kill-disable is a flag for subhierarchy. */
4121 if ((parent->use_hierarchy) ||
4122 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4123 cgroup_unlock();
4124 return -EINVAL;
4125 }
4126 mem->oom_kill_disable = val;
4d845ebf
KH
4127 if (!val)
4128 memcg_oom_recover(mem);
3c11ecf4
KH
4129 cgroup_unlock();
4130 return 0;
4131}
4132
8cdea7c0
BS
4133static struct cftype mem_cgroup_files[] = {
4134 {
0eea1030 4135 .name = "usage_in_bytes",
8c7c6e34 4136 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4137 .read_u64 = mem_cgroup_read,
9490ff27
KH
4138 .register_event = mem_cgroup_usage_register_event,
4139 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4140 },
c84872e1
PE
4141 {
4142 .name = "max_usage_in_bytes",
8c7c6e34 4143 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4144 .trigger = mem_cgroup_reset,
c84872e1
PE
4145 .read_u64 = mem_cgroup_read,
4146 },
8cdea7c0 4147 {
0eea1030 4148 .name = "limit_in_bytes",
8c7c6e34 4149 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4150 .write_string = mem_cgroup_write,
2c3daa72 4151 .read_u64 = mem_cgroup_read,
8cdea7c0 4152 },
296c81d8
BS
4153 {
4154 .name = "soft_limit_in_bytes",
4155 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4156 .write_string = mem_cgroup_write,
4157 .read_u64 = mem_cgroup_read,
4158 },
8cdea7c0
BS
4159 {
4160 .name = "failcnt",
8c7c6e34 4161 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4162 .trigger = mem_cgroup_reset,
2c3daa72 4163 .read_u64 = mem_cgroup_read,
8cdea7c0 4164 },
d2ceb9b7
KH
4165 {
4166 .name = "stat",
c64745cf 4167 .read_map = mem_control_stat_show,
d2ceb9b7 4168 },
c1e862c1
KH
4169 {
4170 .name = "force_empty",
4171 .trigger = mem_cgroup_force_empty_write,
4172 },
18f59ea7
BS
4173 {
4174 .name = "use_hierarchy",
4175 .write_u64 = mem_cgroup_hierarchy_write,
4176 .read_u64 = mem_cgroup_hierarchy_read,
4177 },
a7885eb8
KM
4178 {
4179 .name = "swappiness",
4180 .read_u64 = mem_cgroup_swappiness_read,
4181 .write_u64 = mem_cgroup_swappiness_write,
4182 },
7dc74be0
DN
4183 {
4184 .name = "move_charge_at_immigrate",
4185 .read_u64 = mem_cgroup_move_charge_read,
4186 .write_u64 = mem_cgroup_move_charge_write,
4187 },
9490ff27
KH
4188 {
4189 .name = "oom_control",
3c11ecf4
KH
4190 .read_map = mem_cgroup_oom_control_read,
4191 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4192 .register_event = mem_cgroup_oom_register_event,
4193 .unregister_event = mem_cgroup_oom_unregister_event,
4194 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4195 },
8cdea7c0
BS
4196};
4197
8c7c6e34
KH
4198#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4199static struct cftype memsw_cgroup_files[] = {
4200 {
4201 .name = "memsw.usage_in_bytes",
4202 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4203 .read_u64 = mem_cgroup_read,
9490ff27
KH
4204 .register_event = mem_cgroup_usage_register_event,
4205 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4206 },
4207 {
4208 .name = "memsw.max_usage_in_bytes",
4209 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4210 .trigger = mem_cgroup_reset,
4211 .read_u64 = mem_cgroup_read,
4212 },
4213 {
4214 .name = "memsw.limit_in_bytes",
4215 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4216 .write_string = mem_cgroup_write,
4217 .read_u64 = mem_cgroup_read,
4218 },
4219 {
4220 .name = "memsw.failcnt",
4221 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4222 .trigger = mem_cgroup_reset,
4223 .read_u64 = mem_cgroup_read,
4224 },
4225};
4226
4227static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4228{
4229 if (!do_swap_account)
4230 return 0;
4231 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4232 ARRAY_SIZE(memsw_cgroup_files));
4233};
4234#else
4235static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4236{
4237 return 0;
4238}
4239#endif
4240
6d12e2d8
KH
4241static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4242{
4243 struct mem_cgroup_per_node *pn;
1ecaab2b 4244 struct mem_cgroup_per_zone *mz;
b69408e8 4245 enum lru_list l;
41e3355d 4246 int zone, tmp = node;
1ecaab2b
KH
4247 /*
4248 * This routine is called against possible nodes.
4249 * But it's BUG to call kmalloc() against offline node.
4250 *
4251 * TODO: this routine can waste much memory for nodes which will
4252 * never be onlined. It's better to use memory hotplug callback
4253 * function.
4254 */
41e3355d
KH
4255 if (!node_state(node, N_NORMAL_MEMORY))
4256 tmp = -1;
17295c88 4257 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4258 if (!pn)
4259 return 1;
1ecaab2b 4260
6d12e2d8 4261 mem->info.nodeinfo[node] = pn;
1ecaab2b
KH
4262 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4263 mz = &pn->zoneinfo[zone];
b69408e8
CL
4264 for_each_lru(l)
4265 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4266 mz->usage_in_excess = 0;
4e416953
BS
4267 mz->on_tree = false;
4268 mz->mem = mem;
1ecaab2b 4269 }
6d12e2d8
KH
4270 return 0;
4271}
4272
1ecaab2b
KH
4273static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4274{
4275 kfree(mem->info.nodeinfo[node]);
4276}
4277
33327948
KH
4278static struct mem_cgroup *mem_cgroup_alloc(void)
4279{
4280 struct mem_cgroup *mem;
c62b1a3b 4281 int size = sizeof(struct mem_cgroup);
33327948 4282
c62b1a3b 4283 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4284 if (size < PAGE_SIZE)
17295c88 4285 mem = kzalloc(size, GFP_KERNEL);
33327948 4286 else
17295c88 4287 mem = vzalloc(size);
33327948 4288
e7bbcdf3
DC
4289 if (!mem)
4290 return NULL;
4291
c62b1a3b 4292 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4293 if (!mem->stat)
4294 goto out_free;
711d3d2c 4295 spin_lock_init(&mem->pcp_counter_lock);
33327948 4296 return mem;
d2e61b8d
DC
4297
4298out_free:
4299 if (size < PAGE_SIZE)
4300 kfree(mem);
4301 else
4302 vfree(mem);
4303 return NULL;
33327948
KH
4304}
4305
8c7c6e34
KH
4306/*
4307 * At destroying mem_cgroup, references from swap_cgroup can remain.
4308 * (scanning all at force_empty is too costly...)
4309 *
4310 * Instead of clearing all references at force_empty, we remember
4311 * the number of reference from swap_cgroup and free mem_cgroup when
4312 * it goes down to 0.
4313 *
8c7c6e34
KH
4314 * Removal of cgroup itself succeeds regardless of refs from swap.
4315 */
4316
a7ba0eef 4317static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4318{
08e552c6
KH
4319 int node;
4320
f64c3f54 4321 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4322 free_css_id(&mem_cgroup_subsys, &mem->css);
4323
08e552c6
KH
4324 for_each_node_state(node, N_POSSIBLE)
4325 free_mem_cgroup_per_zone_info(mem, node);
4326
c62b1a3b
KH
4327 free_percpu(mem->stat);
4328 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4329 kfree(mem);
4330 else
4331 vfree(mem);
4332}
4333
8c7c6e34
KH
4334static void mem_cgroup_get(struct mem_cgroup *mem)
4335{
4336 atomic_inc(&mem->refcnt);
4337}
4338
483c30b5 4339static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4340{
483c30b5 4341 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4342 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4343 __mem_cgroup_free(mem);
7bcc1bb1
DN
4344 if (parent)
4345 mem_cgroup_put(parent);
4346 }
8c7c6e34
KH
4347}
4348
483c30b5
DN
4349static void mem_cgroup_put(struct mem_cgroup *mem)
4350{
4351 __mem_cgroup_put(mem, 1);
4352}
4353
7bcc1bb1
DN
4354/*
4355 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4356 */
4357static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4358{
4359 if (!mem->res.parent)
4360 return NULL;
4361 return mem_cgroup_from_res_counter(mem->res.parent, res);
4362}
33327948 4363
c077719b
KH
4364#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4365static void __init enable_swap_cgroup(void)
4366{
f8d66542 4367 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4368 do_swap_account = 1;
4369}
4370#else
4371static void __init enable_swap_cgroup(void)
4372{
4373}
4374#endif
4375
f64c3f54
BS
4376static int mem_cgroup_soft_limit_tree_init(void)
4377{
4378 struct mem_cgroup_tree_per_node *rtpn;
4379 struct mem_cgroup_tree_per_zone *rtpz;
4380 int tmp, node, zone;
4381
4382 for_each_node_state(node, N_POSSIBLE) {
4383 tmp = node;
4384 if (!node_state(node, N_NORMAL_MEMORY))
4385 tmp = -1;
4386 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4387 if (!rtpn)
4388 return 1;
4389
4390 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4391
4392 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4393 rtpz = &rtpn->rb_tree_per_zone[zone];
4394 rtpz->rb_root = RB_ROOT;
4395 spin_lock_init(&rtpz->lock);
4396 }
4397 }
4398 return 0;
4399}
4400
0eb253e2 4401static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4402mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4403{
28dbc4b6 4404 struct mem_cgroup *mem, *parent;
04046e1a 4405 long error = -ENOMEM;
6d12e2d8 4406 int node;
8cdea7c0 4407
c8dad2bb
JB
4408 mem = mem_cgroup_alloc();
4409 if (!mem)
04046e1a 4410 return ERR_PTR(error);
78fb7466 4411
6d12e2d8
KH
4412 for_each_node_state(node, N_POSSIBLE)
4413 if (alloc_mem_cgroup_per_zone_info(mem, node))
4414 goto free_out;
f64c3f54 4415
c077719b 4416 /* root ? */
28dbc4b6 4417 if (cont->parent == NULL) {
cdec2e42 4418 int cpu;
c077719b 4419 enable_swap_cgroup();
28dbc4b6 4420 parent = NULL;
4b3bde4c 4421 root_mem_cgroup = mem;
f64c3f54
BS
4422 if (mem_cgroup_soft_limit_tree_init())
4423 goto free_out;
cdec2e42
KH
4424 for_each_possible_cpu(cpu) {
4425 struct memcg_stock_pcp *stock =
4426 &per_cpu(memcg_stock, cpu);
4427 INIT_WORK(&stock->work, drain_local_stock);
4428 }
711d3d2c 4429 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4430 } else {
28dbc4b6 4431 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4432 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4433 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4434 }
28dbc4b6 4435
18f59ea7
BS
4436 if (parent && parent->use_hierarchy) {
4437 res_counter_init(&mem->res, &parent->res);
4438 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4439 /*
4440 * We increment refcnt of the parent to ensure that we can
4441 * safely access it on res_counter_charge/uncharge.
4442 * This refcnt will be decremented when freeing this
4443 * mem_cgroup(see mem_cgroup_put).
4444 */
4445 mem_cgroup_get(parent);
18f59ea7
BS
4446 } else {
4447 res_counter_init(&mem->res, NULL);
4448 res_counter_init(&mem->memsw, NULL);
4449 }
04046e1a 4450 mem->last_scanned_child = 0;
2733c06a 4451 spin_lock_init(&mem->reclaim_param_lock);
9490ff27 4452 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4453
a7885eb8
KM
4454 if (parent)
4455 mem->swappiness = get_swappiness(parent);
a7ba0eef 4456 atomic_set(&mem->refcnt, 1);
7dc74be0 4457 mem->move_charge_at_immigrate = 0;
2e72b634 4458 mutex_init(&mem->thresholds_lock);
8cdea7c0 4459 return &mem->css;
6d12e2d8 4460free_out:
a7ba0eef 4461 __mem_cgroup_free(mem);
4b3bde4c 4462 root_mem_cgroup = NULL;
04046e1a 4463 return ERR_PTR(error);
8cdea7c0
BS
4464}
4465
ec64f515 4466static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4467 struct cgroup *cont)
4468{
4469 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4470
4471 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4472}
4473
8cdea7c0
BS
4474static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4475 struct cgroup *cont)
4476{
c268e994 4477 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4478
c268e994 4479 mem_cgroup_put(mem);
8cdea7c0
BS
4480}
4481
4482static int mem_cgroup_populate(struct cgroup_subsys *ss,
4483 struct cgroup *cont)
4484{
8c7c6e34
KH
4485 int ret;
4486
4487 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4488 ARRAY_SIZE(mem_cgroup_files));
4489
4490 if (!ret)
4491 ret = register_memsw_files(cont, ss);
4492 return ret;
8cdea7c0
BS
4493}
4494
02491447 4495#ifdef CONFIG_MMU
7dc74be0 4496/* Handlers for move charge at task migration. */
854ffa8d
DN
4497#define PRECHARGE_COUNT_AT_ONCE 256
4498static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4499{
854ffa8d
DN
4500 int ret = 0;
4501 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4502 struct mem_cgroup *mem = mc.to;
4503
854ffa8d
DN
4504 if (mem_cgroup_is_root(mem)) {
4505 mc.precharge += count;
4506 /* we don't need css_get for root */
4507 return ret;
4508 }
4509 /* try to charge at once */
4510 if (count > 1) {
4511 struct res_counter *dummy;
4512 /*
4513 * "mem" cannot be under rmdir() because we've already checked
4514 * by cgroup_lock_live_cgroup() that it is not removed and we
4515 * are still under the same cgroup_mutex. So we can postpone
4516 * css_get().
4517 */
4518 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4519 goto one_by_one;
4520 if (do_swap_account && res_counter_charge(&mem->memsw,
4521 PAGE_SIZE * count, &dummy)) {
4522 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4523 goto one_by_one;
4524 }
4525 mc.precharge += count;
854ffa8d
DN
4526 return ret;
4527 }
4528one_by_one:
4529 /* fall back to one by one charge */
4530 while (count--) {
4531 if (signal_pending(current)) {
4532 ret = -EINTR;
4533 break;
4534 }
4535 if (!batch_count--) {
4536 batch_count = PRECHARGE_COUNT_AT_ONCE;
4537 cond_resched();
4538 }
ec168510
AA
4539 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4540 PAGE_SIZE);
854ffa8d
DN
4541 if (ret || !mem)
4542 /* mem_cgroup_clear_mc() will do uncharge later */
4543 return -ENOMEM;
4544 mc.precharge++;
4545 }
4ffef5fe
DN
4546 return ret;
4547}
4548
4549/**
4550 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4551 * @vma: the vma the pte to be checked belongs
4552 * @addr: the address corresponding to the pte to be checked
4553 * @ptent: the pte to be checked
02491447 4554 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4555 *
4556 * Returns
4557 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4558 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4559 * move charge. if @target is not NULL, the page is stored in target->page
4560 * with extra refcnt got(Callers should handle it).
02491447
DN
4561 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4562 * target for charge migration. if @target is not NULL, the entry is stored
4563 * in target->ent.
4ffef5fe
DN
4564 *
4565 * Called with pte lock held.
4566 */
4ffef5fe
DN
4567union mc_target {
4568 struct page *page;
02491447 4569 swp_entry_t ent;
4ffef5fe
DN
4570};
4571
4ffef5fe
DN
4572enum mc_target_type {
4573 MC_TARGET_NONE, /* not used */
4574 MC_TARGET_PAGE,
02491447 4575 MC_TARGET_SWAP,
4ffef5fe
DN
4576};
4577
90254a65
DN
4578static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4579 unsigned long addr, pte_t ptent)
4ffef5fe 4580{
90254a65 4581 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4582
90254a65
DN
4583 if (!page || !page_mapped(page))
4584 return NULL;
4585 if (PageAnon(page)) {
4586 /* we don't move shared anon */
4587 if (!move_anon() || page_mapcount(page) > 2)
4588 return NULL;
87946a72
DN
4589 } else if (!move_file())
4590 /* we ignore mapcount for file pages */
90254a65
DN
4591 return NULL;
4592 if (!get_page_unless_zero(page))
4593 return NULL;
4594
4595 return page;
4596}
4597
4598static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4599 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4600{
4601 int usage_count;
4602 struct page *page = NULL;
4603 swp_entry_t ent = pte_to_swp_entry(ptent);
4604
4605 if (!move_anon() || non_swap_entry(ent))
4606 return NULL;
4607 usage_count = mem_cgroup_count_swap_user(ent, &page);
4608 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
4609 if (page)
4610 put_page(page);
90254a65 4611 return NULL;
02491447 4612 }
90254a65
DN
4613 if (do_swap_account)
4614 entry->val = ent.val;
4615
4616 return page;
4617}
4618
87946a72
DN
4619static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4620 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4621{
4622 struct page *page = NULL;
4623 struct inode *inode;
4624 struct address_space *mapping;
4625 pgoff_t pgoff;
4626
4627 if (!vma->vm_file) /* anonymous vma */
4628 return NULL;
4629 if (!move_file())
4630 return NULL;
4631
4632 inode = vma->vm_file->f_path.dentry->d_inode;
4633 mapping = vma->vm_file->f_mapping;
4634 if (pte_none(ptent))
4635 pgoff = linear_page_index(vma, addr);
4636 else /* pte_file(ptent) is true */
4637 pgoff = pte_to_pgoff(ptent);
4638
4639 /* page is moved even if it's not RSS of this task(page-faulted). */
4640 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4641 page = find_get_page(mapping, pgoff);
4642 } else { /* shmem/tmpfs file. we should take account of swap too. */
4643 swp_entry_t ent;
4644 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4645 if (do_swap_account)
4646 entry->val = ent.val;
4647 }
4648
4649 return page;
4650}
4651
90254a65
DN
4652static int is_target_pte_for_mc(struct vm_area_struct *vma,
4653 unsigned long addr, pte_t ptent, union mc_target *target)
4654{
4655 struct page *page = NULL;
4656 struct page_cgroup *pc;
4657 int ret = 0;
4658 swp_entry_t ent = { .val = 0 };
4659
4660 if (pte_present(ptent))
4661 page = mc_handle_present_pte(vma, addr, ptent);
4662 else if (is_swap_pte(ptent))
4663 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
4664 else if (pte_none(ptent) || pte_file(ptent))
4665 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4666
4667 if (!page && !ent.val)
4668 return 0;
02491447
DN
4669 if (page) {
4670 pc = lookup_page_cgroup(page);
4671 /*
4672 * Do only loose check w/o page_cgroup lock.
4673 * mem_cgroup_move_account() checks the pc is valid or not under
4674 * the lock.
4675 */
4676 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4677 ret = MC_TARGET_PAGE;
4678 if (target)
4679 target->page = page;
4680 }
4681 if (!ret || !target)
4682 put_page(page);
4683 }
90254a65
DN
4684 /* There is a swap entry and a page doesn't exist or isn't charged */
4685 if (ent.val && !ret &&
7f0f1546
KH
4686 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4687 ret = MC_TARGET_SWAP;
4688 if (target)
4689 target->ent = ent;
4ffef5fe 4690 }
4ffef5fe
DN
4691 return ret;
4692}
4693
4694static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4695 unsigned long addr, unsigned long end,
4696 struct mm_walk *walk)
4697{
4698 struct vm_area_struct *vma = walk->private;
4699 pte_t *pte;
4700 spinlock_t *ptl;
4701
ec168510 4702 VM_BUG_ON(pmd_trans_huge(*pmd));
4ffef5fe
DN
4703 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4704 for (; addr != end; pte++, addr += PAGE_SIZE)
4705 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4706 mc.precharge++; /* increment precharge temporarily */
4707 pte_unmap_unlock(pte - 1, ptl);
4708 cond_resched();
4709
7dc74be0
DN
4710 return 0;
4711}
4712
4ffef5fe
DN
4713static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4714{
4715 unsigned long precharge;
4716 struct vm_area_struct *vma;
4717
dfe076b0 4718 down_read(&mm->mmap_sem);
4ffef5fe
DN
4719 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4720 struct mm_walk mem_cgroup_count_precharge_walk = {
4721 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4722 .mm = mm,
4723 .private = vma,
4724 };
4725 if (is_vm_hugetlb_page(vma))
4726 continue;
4ffef5fe
DN
4727 walk_page_range(vma->vm_start, vma->vm_end,
4728 &mem_cgroup_count_precharge_walk);
4729 }
dfe076b0 4730 up_read(&mm->mmap_sem);
4ffef5fe
DN
4731
4732 precharge = mc.precharge;
4733 mc.precharge = 0;
4734
4735 return precharge;
4736}
4737
4ffef5fe
DN
4738static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4739{
dfe076b0
DN
4740 unsigned long precharge = mem_cgroup_count_precharge(mm);
4741
4742 VM_BUG_ON(mc.moving_task);
4743 mc.moving_task = current;
4744 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4745}
4746
dfe076b0
DN
4747/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4748static void __mem_cgroup_clear_mc(void)
4ffef5fe 4749{
2bd9bb20
KH
4750 struct mem_cgroup *from = mc.from;
4751 struct mem_cgroup *to = mc.to;
4752
4ffef5fe 4753 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4754 if (mc.precharge) {
4755 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4756 mc.precharge = 0;
4757 }
4758 /*
4759 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4760 * we must uncharge here.
4761 */
4762 if (mc.moved_charge) {
4763 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4764 mc.moved_charge = 0;
4ffef5fe 4765 }
483c30b5
DN
4766 /* we must fixup refcnts and charges */
4767 if (mc.moved_swap) {
483c30b5
DN
4768 /* uncharge swap account from the old cgroup */
4769 if (!mem_cgroup_is_root(mc.from))
4770 res_counter_uncharge(&mc.from->memsw,
4771 PAGE_SIZE * mc.moved_swap);
4772 __mem_cgroup_put(mc.from, mc.moved_swap);
4773
4774 if (!mem_cgroup_is_root(mc.to)) {
4775 /*
4776 * we charged both to->res and to->memsw, so we should
4777 * uncharge to->res.
4778 */
4779 res_counter_uncharge(&mc.to->res,
4780 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
4781 }
4782 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
4783 mc.moved_swap = 0;
4784 }
dfe076b0
DN
4785 memcg_oom_recover(from);
4786 memcg_oom_recover(to);
4787 wake_up_all(&mc.waitq);
4788}
4789
4790static void mem_cgroup_clear_mc(void)
4791{
4792 struct mem_cgroup *from = mc.from;
4793
4794 /*
4795 * we must clear moving_task before waking up waiters at the end of
4796 * task migration.
4797 */
4798 mc.moving_task = NULL;
4799 __mem_cgroup_clear_mc();
2bd9bb20 4800 spin_lock(&mc.lock);
4ffef5fe
DN
4801 mc.from = NULL;
4802 mc.to = NULL;
2bd9bb20 4803 spin_unlock(&mc.lock);
32047e2a 4804 mem_cgroup_end_move(from);
4ffef5fe
DN
4805}
4806
7dc74be0
DN
4807static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4808 struct cgroup *cgroup,
4809 struct task_struct *p,
4810 bool threadgroup)
4811{
4812 int ret = 0;
4813 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4814
4815 if (mem->move_charge_at_immigrate) {
4816 struct mm_struct *mm;
4817 struct mem_cgroup *from = mem_cgroup_from_task(p);
4818
4819 VM_BUG_ON(from == mem);
4820
4821 mm = get_task_mm(p);
4822 if (!mm)
4823 return 0;
7dc74be0 4824 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
4825 if (mm->owner == p) {
4826 VM_BUG_ON(mc.from);
4827 VM_BUG_ON(mc.to);
4828 VM_BUG_ON(mc.precharge);
854ffa8d 4829 VM_BUG_ON(mc.moved_charge);
483c30b5 4830 VM_BUG_ON(mc.moved_swap);
32047e2a 4831 mem_cgroup_start_move(from);
2bd9bb20 4832 spin_lock(&mc.lock);
4ffef5fe
DN
4833 mc.from = from;
4834 mc.to = mem;
2bd9bb20 4835 spin_unlock(&mc.lock);
dfe076b0 4836 /* We set mc.moving_task later */
4ffef5fe
DN
4837
4838 ret = mem_cgroup_precharge_mc(mm);
4839 if (ret)
4840 mem_cgroup_clear_mc();
dfe076b0
DN
4841 }
4842 mmput(mm);
7dc74be0
DN
4843 }
4844 return ret;
4845}
4846
4847static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4848 struct cgroup *cgroup,
4849 struct task_struct *p,
4850 bool threadgroup)
4851{
4ffef5fe 4852 mem_cgroup_clear_mc();
7dc74be0
DN
4853}
4854
4ffef5fe
DN
4855static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4856 unsigned long addr, unsigned long end,
4857 struct mm_walk *walk)
7dc74be0 4858{
4ffef5fe
DN
4859 int ret = 0;
4860 struct vm_area_struct *vma = walk->private;
4861 pte_t *pte;
4862 spinlock_t *ptl;
4863
4864retry:
ec168510 4865 VM_BUG_ON(pmd_trans_huge(*pmd));
4ffef5fe
DN
4866 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4867 for (; addr != end; addr += PAGE_SIZE) {
4868 pte_t ptent = *(pte++);
4869 union mc_target target;
4870 int type;
4871 struct page *page;
4872 struct page_cgroup *pc;
02491447 4873 swp_entry_t ent;
4ffef5fe
DN
4874
4875 if (!mc.precharge)
4876 break;
4877
4878 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4879 switch (type) {
4880 case MC_TARGET_PAGE:
4881 page = target.page;
4882 if (isolate_lru_page(page))
4883 goto put;
4884 pc = lookup_page_cgroup(page);
854ffa8d 4885 if (!mem_cgroup_move_account(pc,
987eba66 4886 mc.from, mc.to, false, PAGE_SIZE)) {
4ffef5fe 4887 mc.precharge--;
854ffa8d
DN
4888 /* we uncharge from mc.from later. */
4889 mc.moved_charge++;
4ffef5fe
DN
4890 }
4891 putback_lru_page(page);
4892put: /* is_target_pte_for_mc() gets the page */
4893 put_page(page);
4894 break;
02491447
DN
4895 case MC_TARGET_SWAP:
4896 ent = target.ent;
483c30b5
DN
4897 if (!mem_cgroup_move_swap_account(ent,
4898 mc.from, mc.to, false)) {
02491447 4899 mc.precharge--;
483c30b5
DN
4900 /* we fixup refcnts and charges later. */
4901 mc.moved_swap++;
4902 }
02491447 4903 break;
4ffef5fe
DN
4904 default:
4905 break;
4906 }
4907 }
4908 pte_unmap_unlock(pte - 1, ptl);
4909 cond_resched();
4910
4911 if (addr != end) {
4912 /*
4913 * We have consumed all precharges we got in can_attach().
4914 * We try charge one by one, but don't do any additional
4915 * charges to mc.to if we have failed in charge once in attach()
4916 * phase.
4917 */
854ffa8d 4918 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4919 if (!ret)
4920 goto retry;
4921 }
4922
4923 return ret;
4924}
4925
4926static void mem_cgroup_move_charge(struct mm_struct *mm)
4927{
4928 struct vm_area_struct *vma;
4929
4930 lru_add_drain_all();
dfe076b0
DN
4931retry:
4932 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4933 /*
4934 * Someone who are holding the mmap_sem might be waiting in
4935 * waitq. So we cancel all extra charges, wake up all waiters,
4936 * and retry. Because we cancel precharges, we might not be able
4937 * to move enough charges, but moving charge is a best-effort
4938 * feature anyway, so it wouldn't be a big problem.
4939 */
4940 __mem_cgroup_clear_mc();
4941 cond_resched();
4942 goto retry;
4943 }
4ffef5fe
DN
4944 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4945 int ret;
4946 struct mm_walk mem_cgroup_move_charge_walk = {
4947 .pmd_entry = mem_cgroup_move_charge_pte_range,
4948 .mm = mm,
4949 .private = vma,
4950 };
4951 if (is_vm_hugetlb_page(vma))
4952 continue;
4ffef5fe
DN
4953 ret = walk_page_range(vma->vm_start, vma->vm_end,
4954 &mem_cgroup_move_charge_walk);
4955 if (ret)
4956 /*
4957 * means we have consumed all precharges and failed in
4958 * doing additional charge. Just abandon here.
4959 */
4960 break;
4961 }
dfe076b0 4962 up_read(&mm->mmap_sem);
7dc74be0
DN
4963}
4964
67e465a7
BS
4965static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4966 struct cgroup *cont,
4967 struct cgroup *old_cont,
be367d09
BB
4968 struct task_struct *p,
4969 bool threadgroup)
67e465a7 4970{
dfe076b0
DN
4971 struct mm_struct *mm;
4972
4973 if (!mc.to)
4ffef5fe
DN
4974 /* no need to move charge */
4975 return;
4976
dfe076b0
DN
4977 mm = get_task_mm(p);
4978 if (mm) {
4979 mem_cgroup_move_charge(mm);
4980 mmput(mm);
4981 }
4ffef5fe 4982 mem_cgroup_clear_mc();
67e465a7 4983}
5cfb80a7
DN
4984#else /* !CONFIG_MMU */
4985static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4986 struct cgroup *cgroup,
4987 struct task_struct *p,
4988 bool threadgroup)
4989{
4990 return 0;
4991}
4992static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4993 struct cgroup *cgroup,
4994 struct task_struct *p,
4995 bool threadgroup)
4996{
4997}
4998static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4999 struct cgroup *cont,
5000 struct cgroup *old_cont,
5001 struct task_struct *p,
5002 bool threadgroup)
5003{
5004}
5005#endif
67e465a7 5006
8cdea7c0
BS
5007struct cgroup_subsys mem_cgroup_subsys = {
5008 .name = "memory",
5009 .subsys_id = mem_cgroup_subsys_id,
5010 .create = mem_cgroup_create,
df878fb0 5011 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5012 .destroy = mem_cgroup_destroy,
5013 .populate = mem_cgroup_populate,
7dc74be0
DN
5014 .can_attach = mem_cgroup_can_attach,
5015 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5016 .attach = mem_cgroup_move_task,
6d12e2d8 5017 .early_init = 0,
04046e1a 5018 .use_id = 1,
8cdea7c0 5019};
c077719b
KH
5020
5021#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5022static int __init enable_swap_account(char *s)
5023{
5024 /* consider enabled if no parameter or 1 is given */
5025 if (!s || !strcmp(s, "1"))
5026 really_do_swap_account = 1;
5027 else if (!strcmp(s, "0"))
5028 really_do_swap_account = 0;
5029 return 1;
5030}
5031__setup("swapaccount", enable_swap_account);
c077719b
KH
5032
5033static int __init disable_swap_account(char *s)
5034{
a42c390c 5035 enable_swap_account("0");
c077719b
KH
5036 return 1;
5037}
5038__setup("noswapaccount", disable_swap_account);
5039#endif