]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
Linux 3.12-rc1
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
b6ac57d5 42#include <linux/slab.h>
66e1707b 43#include <linux/swap.h>
02491447 44#include <linux/swapops.h>
66e1707b 45#include <linux/spinlock.h>
2e72b634
KS
46#include <linux/eventfd.h>
47#include <linux/sort.h>
66e1707b 48#include <linux/fs.h>
d2ceb9b7 49#include <linux/seq_file.h>
33327948 50#include <linux/vmalloc.h>
70ddf637 51#include <linux/vmpressure.h>
b69408e8 52#include <linux/mm_inline.h>
52d4b9ac 53#include <linux/page_cgroup.h>
cdec2e42 54#include <linux/cpu.h>
158e0a2d 55#include <linux/oom.h>
08e552c6 56#include "internal.h"
d1a4c0b3 57#include <net/sock.h>
4bd2c1ee 58#include <net/ip.h>
d1a4c0b3 59#include <net/tcp_memcontrol.h>
8cdea7c0 60
8697d331
BS
61#include <asm/uaccess.h>
62
cc8e970c
KM
63#include <trace/events/vmscan.h>
64
a181b0e8 65struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
66EXPORT_SYMBOL(mem_cgroup_subsys);
67
a181b0e8 68#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 69static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 70
c255a458 71#ifdef CONFIG_MEMCG_SWAP
338c8431 72/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 73int do_swap_account __read_mostly;
a42c390c
MH
74
75/* for remember boot option*/
c255a458 76#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
77static int really_do_swap_account __initdata = 1;
78#else
79static int really_do_swap_account __initdata = 0;
80#endif
81
c077719b 82#else
a0db00fc 83#define do_swap_account 0
c077719b
KH
84#endif
85
86
af7c4b0e
JW
87static const char * const mem_cgroup_stat_names[] = {
88 "cache",
89 "rss",
b070e65c 90 "rss_huge",
af7c4b0e 91 "mapped_file",
3ea67d06 92 "writeback",
af7c4b0e
JW
93 "swap",
94};
95
e9f8974f
JW
96enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
101 MEM_CGROUP_EVENTS_NSTATS,
102};
af7c4b0e
JW
103
104static const char * const mem_cgroup_events_names[] = {
105 "pgpgin",
106 "pgpgout",
107 "pgfault",
108 "pgmajfault",
109};
110
58cf188e
SZ
111static const char * const mem_cgroup_lru_names[] = {
112 "inactive_anon",
113 "active_anon",
114 "inactive_file",
115 "active_file",
116 "unevictable",
117};
118
7a159cc9
JW
119/*
120 * Per memcg event counter is incremented at every pagein/pageout. With THP,
121 * it will be incremated by the number of pages. This counter is used for
122 * for trigger some periodic events. This is straightforward and better
123 * than using jiffies etc. to handle periodic memcg event.
124 */
125enum mem_cgroup_events_target {
126 MEM_CGROUP_TARGET_THRESH,
7d910c05 127 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 128 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
129 MEM_CGROUP_NTARGETS,
130};
a0db00fc
KS
131#define THRESHOLDS_EVENTS_TARGET 128
132#define SOFTLIMIT_EVENTS_TARGET 1024
133#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 134
d52aa412 135struct mem_cgroup_stat_cpu {
7a159cc9 136 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 137 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 138 unsigned long nr_page_events;
7a159cc9 139 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
140};
141
527a5ec9 142struct mem_cgroup_reclaim_iter {
5f578161
MH
143 /*
144 * last scanned hierarchy member. Valid only if last_dead_count
145 * matches memcg->dead_count of the hierarchy root group.
146 */
542f85f9 147 struct mem_cgroup *last_visited;
5f578161
MH
148 unsigned long last_dead_count;
149
527a5ec9
JW
150 /* scan generation, increased every round-trip */
151 unsigned int generation;
152};
153
6d12e2d8
KH
154/*
155 * per-zone information in memory controller.
156 */
6d12e2d8 157struct mem_cgroup_per_zone {
6290df54 158 struct lruvec lruvec;
1eb49272 159 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 160
527a5ec9
JW
161 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
162
d79154bb 163 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 164 /* use container_of */
6d12e2d8 165};
6d12e2d8
KH
166
167struct mem_cgroup_per_node {
168 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
169};
170
2e72b634
KS
171struct mem_cgroup_threshold {
172 struct eventfd_ctx *eventfd;
173 u64 threshold;
174};
175
9490ff27 176/* For threshold */
2e72b634 177struct mem_cgroup_threshold_ary {
748dad36 178 /* An array index points to threshold just below or equal to usage. */
5407a562 179 int current_threshold;
2e72b634
KS
180 /* Size of entries[] */
181 unsigned int size;
182 /* Array of thresholds */
183 struct mem_cgroup_threshold entries[0];
184};
2c488db2
KS
185
186struct mem_cgroup_thresholds {
187 /* Primary thresholds array */
188 struct mem_cgroup_threshold_ary *primary;
189 /*
190 * Spare threshold array.
191 * This is needed to make mem_cgroup_unregister_event() "never fail".
192 * It must be able to store at least primary->size - 1 entries.
193 */
194 struct mem_cgroup_threshold_ary *spare;
195};
196
9490ff27
KH
197/* for OOM */
198struct mem_cgroup_eventfd_list {
199 struct list_head list;
200 struct eventfd_ctx *eventfd;
201};
2e72b634 202
c0ff4b85
R
203static void mem_cgroup_threshold(struct mem_cgroup *memcg);
204static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 205
8cdea7c0
BS
206/*
207 * The memory controller data structure. The memory controller controls both
208 * page cache and RSS per cgroup. We would eventually like to provide
209 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
210 * to help the administrator determine what knobs to tune.
211 *
212 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
213 * we hit the water mark. May be even add a low water mark, such that
214 * no reclaim occurs from a cgroup at it's low water mark, this is
215 * a feature that will be implemented much later in the future.
8cdea7c0
BS
216 */
217struct mem_cgroup {
218 struct cgroup_subsys_state css;
219 /*
220 * the counter to account for memory usage
221 */
222 struct res_counter res;
59927fb9 223
70ddf637
AV
224 /* vmpressure notifications */
225 struct vmpressure vmpressure;
226
465939a1
LZ
227 /*
228 * the counter to account for mem+swap usage.
229 */
230 struct res_counter memsw;
59927fb9 231
510fc4e1
GC
232 /*
233 * the counter to account for kernel memory usage.
234 */
235 struct res_counter kmem;
18f59ea7
BS
236 /*
237 * Should the accounting and control be hierarchical, per subtree?
238 */
239 bool use_hierarchy;
510fc4e1 240 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
241
242 bool oom_lock;
243 atomic_t under_oom;
3812c8c8 244 atomic_t oom_wakeups;
79dfdacc 245
1f4c025b 246 int swappiness;
3c11ecf4
KH
247 /* OOM-Killer disable */
248 int oom_kill_disable;
a7885eb8 249
22a668d7
KH
250 /* set when res.limit == memsw.limit */
251 bool memsw_is_minimum;
252
2e72b634
KS
253 /* protect arrays of thresholds */
254 struct mutex thresholds_lock;
255
256 /* thresholds for memory usage. RCU-protected */
2c488db2 257 struct mem_cgroup_thresholds thresholds;
907860ed 258
2e72b634 259 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 260 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 261
9490ff27
KH
262 /* For oom notifier event fd */
263 struct list_head oom_notify;
185efc0f 264
7dc74be0
DN
265 /*
266 * Should we move charges of a task when a task is moved into this
267 * mem_cgroup ? And what type of charges should we move ?
268 */
f894ffa8 269 unsigned long move_charge_at_immigrate;
619d094b
KH
270 /*
271 * set > 0 if pages under this cgroup are moving to other cgroup.
272 */
273 atomic_t moving_account;
312734c0
KH
274 /* taken only while moving_account > 0 */
275 spinlock_t move_lock;
d52aa412 276 /*
c62b1a3b 277 * percpu counter.
d52aa412 278 */
3a7951b4 279 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
280 /*
281 * used when a cpu is offlined or other synchronizations
282 * See mem_cgroup_read_stat().
283 */
284 struct mem_cgroup_stat_cpu nocpu_base;
285 spinlock_t pcp_counter_lock;
d1a4c0b3 286
5f578161 287 atomic_t dead_count;
4bd2c1ee 288#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
289 struct tcp_memcontrol tcp_mem;
290#endif
2633d7a0
GC
291#if defined(CONFIG_MEMCG_KMEM)
292 /* analogous to slab_common's slab_caches list. per-memcg */
293 struct list_head memcg_slab_caches;
294 /* Not a spinlock, we can take a lot of time walking the list */
295 struct mutex slab_caches_mutex;
296 /* Index in the kmem_cache->memcg_params->memcg_caches array */
297 int kmemcg_id;
298#endif
45cf7ebd
GC
299
300 int last_scanned_node;
301#if MAX_NUMNODES > 1
302 nodemask_t scan_nodes;
303 atomic_t numainfo_events;
304 atomic_t numainfo_updating;
305#endif
7d910c05
MH
306 /*
307 * Protects soft_contributed transitions.
308 * See mem_cgroup_update_soft_limit
309 */
310 spinlock_t soft_lock;
311
312 /*
313 * If true then this group has increased parents' children_in_excess
f894ffa8 314 * when it got over the soft limit.
7d910c05
MH
315 * When a group falls bellow the soft limit, parents' children_in_excess
316 * is decreased and soft_contributed changed to false.
317 */
318 bool soft_contributed;
319
320 /* Number of children that are in soft limit excess */
321 atomic_t children_in_excess;
70ddf637 322
54f72fe0
JW
323 struct mem_cgroup_per_node *nodeinfo[0];
324 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
325};
326
45cf7ebd
GC
327static size_t memcg_size(void)
328{
329 return sizeof(struct mem_cgroup) +
330 nr_node_ids * sizeof(struct mem_cgroup_per_node);
331}
332
510fc4e1
GC
333/* internal only representation about the status of kmem accounting. */
334enum {
335 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 336 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 337 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
338};
339
a8964b9b
GC
340/* We account when limit is on, but only after call sites are patched */
341#define KMEM_ACCOUNTED_MASK \
342 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
343
344#ifdef CONFIG_MEMCG_KMEM
345static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
346{
347 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
348}
7de37682
GC
349
350static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
351{
352 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
353}
354
a8964b9b
GC
355static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
356{
357 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
358}
359
55007d84
GC
360static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
361{
362 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
363}
364
7de37682
GC
365static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
366{
10d5ebf4
LZ
367 /*
368 * Our caller must use css_get() first, because memcg_uncharge_kmem()
369 * will call css_put() if it sees the memcg is dead.
370 */
371 smp_wmb();
7de37682
GC
372 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
373 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
374}
375
376static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
377{
378 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
379 &memcg->kmem_account_flags);
380}
510fc4e1
GC
381#endif
382
7dc74be0
DN
383/* Stuffs for move charges at task migration. */
384/*
ee5e8472
GC
385 * Types of charges to be moved. "move_charge_at_immitgrate" and
386 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
387 */
388enum move_type {
4ffef5fe 389 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 390 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
391 NR_MOVE_TYPE,
392};
393
4ffef5fe
DN
394/* "mc" and its members are protected by cgroup_mutex */
395static struct move_charge_struct {
b1dd693e 396 spinlock_t lock; /* for from, to */
4ffef5fe
DN
397 struct mem_cgroup *from;
398 struct mem_cgroup *to;
ee5e8472 399 unsigned long immigrate_flags;
4ffef5fe 400 unsigned long precharge;
854ffa8d 401 unsigned long moved_charge;
483c30b5 402 unsigned long moved_swap;
8033b97c
DN
403 struct task_struct *moving_task; /* a task moving charges */
404 wait_queue_head_t waitq; /* a waitq for other context */
405} mc = {
2bd9bb20 406 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
407 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
408};
4ffef5fe 409
90254a65
DN
410static bool move_anon(void)
411{
ee5e8472 412 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
413}
414
87946a72
DN
415static bool move_file(void)
416{
ee5e8472 417 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
418}
419
4e416953
BS
420/*
421 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
422 * limit reclaim to prevent infinite loops, if they ever occur.
423 */
a0db00fc 424#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
4e416953 425
217bc319
KH
426enum charge_type {
427 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 428 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 429 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 430 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
431 NR_CHARGE_TYPE,
432};
433
8c7c6e34 434/* for encoding cft->private value on file */
86ae53e1
GC
435enum res_type {
436 _MEM,
437 _MEMSWAP,
438 _OOM_TYPE,
510fc4e1 439 _KMEM,
86ae53e1
GC
440};
441
a0db00fc
KS
442#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
443#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 444#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
445/* Used for OOM nofiier */
446#define OOM_CONTROL (0)
8c7c6e34 447
75822b44
BS
448/*
449 * Reclaim flags for mem_cgroup_hierarchical_reclaim
450 */
451#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
452#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
453#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
454#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
455
0999821b
GC
456/*
457 * The memcg_create_mutex will be held whenever a new cgroup is created.
458 * As a consequence, any change that needs to protect against new child cgroups
459 * appearing has to hold it as well.
460 */
461static DEFINE_MUTEX(memcg_create_mutex);
462
b2145145
WL
463struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
464{
a7c6d554 465 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
466}
467
70ddf637
AV
468/* Some nice accessors for the vmpressure. */
469struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
470{
471 if (!memcg)
472 memcg = root_mem_cgroup;
473 return &memcg->vmpressure;
474}
475
476struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
477{
478 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
479}
480
481struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
482{
483 return &mem_cgroup_from_css(css)->vmpressure;
484}
485
7ffc0edc
MH
486static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
487{
488 return (memcg == root_mem_cgroup);
489}
490
e1aab161 491/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 492#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 493
e1aab161
GC
494void sock_update_memcg(struct sock *sk)
495{
376be5ff 496 if (mem_cgroup_sockets_enabled) {
e1aab161 497 struct mem_cgroup *memcg;
3f134619 498 struct cg_proto *cg_proto;
e1aab161
GC
499
500 BUG_ON(!sk->sk_prot->proto_cgroup);
501
f3f511e1
GC
502 /* Socket cloning can throw us here with sk_cgrp already
503 * filled. It won't however, necessarily happen from
504 * process context. So the test for root memcg given
505 * the current task's memcg won't help us in this case.
506 *
507 * Respecting the original socket's memcg is a better
508 * decision in this case.
509 */
510 if (sk->sk_cgrp) {
511 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 512 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
513 return;
514 }
515
e1aab161
GC
516 rcu_read_lock();
517 memcg = mem_cgroup_from_task(current);
3f134619 518 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
519 if (!mem_cgroup_is_root(memcg) &&
520 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 521 sk->sk_cgrp = cg_proto;
e1aab161
GC
522 }
523 rcu_read_unlock();
524 }
525}
526EXPORT_SYMBOL(sock_update_memcg);
527
528void sock_release_memcg(struct sock *sk)
529{
376be5ff 530 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
531 struct mem_cgroup *memcg;
532 WARN_ON(!sk->sk_cgrp->memcg);
533 memcg = sk->sk_cgrp->memcg;
5347e5ae 534 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
535 }
536}
d1a4c0b3
GC
537
538struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
539{
540 if (!memcg || mem_cgroup_is_root(memcg))
541 return NULL;
542
543 return &memcg->tcp_mem.cg_proto;
544}
545EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 546
3f134619
GC
547static void disarm_sock_keys(struct mem_cgroup *memcg)
548{
549 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
550 return;
551 static_key_slow_dec(&memcg_socket_limit_enabled);
552}
553#else
554static void disarm_sock_keys(struct mem_cgroup *memcg)
555{
556}
557#endif
558
a8964b9b 559#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
560/*
561 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
562 * There are two main reasons for not using the css_id for this:
563 * 1) this works better in sparse environments, where we have a lot of memcgs,
564 * but only a few kmem-limited. Or also, if we have, for instance, 200
565 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
566 * 200 entry array for that.
567 *
568 * 2) In order not to violate the cgroup API, we would like to do all memory
569 * allocation in ->create(). At that point, we haven't yet allocated the
570 * css_id. Having a separate index prevents us from messing with the cgroup
571 * core for this
572 *
573 * The current size of the caches array is stored in
574 * memcg_limited_groups_array_size. It will double each time we have to
575 * increase it.
576 */
577static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
578int memcg_limited_groups_array_size;
579
55007d84
GC
580/*
581 * MIN_SIZE is different than 1, because we would like to avoid going through
582 * the alloc/free process all the time. In a small machine, 4 kmem-limited
583 * cgroups is a reasonable guess. In the future, it could be a parameter or
584 * tunable, but that is strictly not necessary.
585 *
586 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
587 * this constant directly from cgroup, but it is understandable that this is
588 * better kept as an internal representation in cgroup.c. In any case, the
589 * css_id space is not getting any smaller, and we don't have to necessarily
590 * increase ours as well if it increases.
591 */
592#define MEMCG_CACHES_MIN_SIZE 4
593#define MEMCG_CACHES_MAX_SIZE 65535
594
d7f25f8a
GC
595/*
596 * A lot of the calls to the cache allocation functions are expected to be
597 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
598 * conditional to this static branch, we'll have to allow modules that does
599 * kmem_cache_alloc and the such to see this symbol as well
600 */
a8964b9b 601struct static_key memcg_kmem_enabled_key;
d7f25f8a 602EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
603
604static void disarm_kmem_keys(struct mem_cgroup *memcg)
605{
55007d84 606 if (memcg_kmem_is_active(memcg)) {
a8964b9b 607 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
608 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
609 }
bea207c8
GC
610 /*
611 * This check can't live in kmem destruction function,
612 * since the charges will outlive the cgroup
613 */
614 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
615}
616#else
617static void disarm_kmem_keys(struct mem_cgroup *memcg)
618{
619}
620#endif /* CONFIG_MEMCG_KMEM */
621
622static void disarm_static_keys(struct mem_cgroup *memcg)
623{
624 disarm_sock_keys(memcg);
625 disarm_kmem_keys(memcg);
626}
627
c0ff4b85 628static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 629
f64c3f54 630static struct mem_cgroup_per_zone *
c0ff4b85 631mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 632{
45cf7ebd 633 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 634 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
635}
636
c0ff4b85 637struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 638{
c0ff4b85 639 return &memcg->css;
d324236b
WF
640}
641
f64c3f54 642static struct mem_cgroup_per_zone *
c0ff4b85 643page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 644{
97a6c37b
JW
645 int nid = page_to_nid(page);
646 int zid = page_zonenum(page);
f64c3f54 647
c0ff4b85 648 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
649}
650
711d3d2c
KH
651/*
652 * Implementation Note: reading percpu statistics for memcg.
653 *
654 * Both of vmstat[] and percpu_counter has threshold and do periodic
655 * synchronization to implement "quick" read. There are trade-off between
656 * reading cost and precision of value. Then, we may have a chance to implement
657 * a periodic synchronizion of counter in memcg's counter.
658 *
659 * But this _read() function is used for user interface now. The user accounts
660 * memory usage by memory cgroup and he _always_ requires exact value because
661 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
662 * have to visit all online cpus and make sum. So, for now, unnecessary
663 * synchronization is not implemented. (just implemented for cpu hotplug)
664 *
665 * If there are kernel internal actions which can make use of some not-exact
666 * value, and reading all cpu value can be performance bottleneck in some
667 * common workload, threashold and synchonization as vmstat[] should be
668 * implemented.
669 */
c0ff4b85 670static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 671 enum mem_cgroup_stat_index idx)
c62b1a3b 672{
7a159cc9 673 long val = 0;
c62b1a3b 674 int cpu;
c62b1a3b 675
711d3d2c
KH
676 get_online_cpus();
677 for_each_online_cpu(cpu)
c0ff4b85 678 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 679#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
680 spin_lock(&memcg->pcp_counter_lock);
681 val += memcg->nocpu_base.count[idx];
682 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
683#endif
684 put_online_cpus();
c62b1a3b
KH
685 return val;
686}
687
c0ff4b85 688static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
689 bool charge)
690{
691 int val = (charge) ? 1 : -1;
bff6bb83 692 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
693}
694
c0ff4b85 695static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
696 enum mem_cgroup_events_index idx)
697{
698 unsigned long val = 0;
699 int cpu;
700
701 for_each_online_cpu(cpu)
c0ff4b85 702 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 703#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
704 spin_lock(&memcg->pcp_counter_lock);
705 val += memcg->nocpu_base.events[idx];
706 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
707#endif
708 return val;
709}
710
c0ff4b85 711static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 712 struct page *page,
b2402857 713 bool anon, int nr_pages)
d52aa412 714{
c62b1a3b
KH
715 preempt_disable();
716
b2402857
KH
717 /*
718 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
719 * counted as CACHE even if it's on ANON LRU.
720 */
721 if (anon)
722 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 723 nr_pages);
d52aa412 724 else
b2402857 725 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 726 nr_pages);
55e462b0 727
b070e65c
DR
728 if (PageTransHuge(page))
729 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
730 nr_pages);
731
e401f176
KH
732 /* pagein of a big page is an event. So, ignore page size */
733 if (nr_pages > 0)
c0ff4b85 734 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 735 else {
c0ff4b85 736 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
737 nr_pages = -nr_pages; /* for event */
738 }
e401f176 739
13114716 740 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 741
c62b1a3b 742 preempt_enable();
6d12e2d8
KH
743}
744
bb2a0de9 745unsigned long
4d7dcca2 746mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
747{
748 struct mem_cgroup_per_zone *mz;
749
750 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
751 return mz->lru_size[lru];
752}
753
754static unsigned long
c0ff4b85 755mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 756 unsigned int lru_mask)
889976db
YH
757{
758 struct mem_cgroup_per_zone *mz;
f156ab93 759 enum lru_list lru;
bb2a0de9
KH
760 unsigned long ret = 0;
761
c0ff4b85 762 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 763
f156ab93
HD
764 for_each_lru(lru) {
765 if (BIT(lru) & lru_mask)
766 ret += mz->lru_size[lru];
bb2a0de9
KH
767 }
768 return ret;
769}
770
771static unsigned long
c0ff4b85 772mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
773 int nid, unsigned int lru_mask)
774{
889976db
YH
775 u64 total = 0;
776 int zid;
777
bb2a0de9 778 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
779 total += mem_cgroup_zone_nr_lru_pages(memcg,
780 nid, zid, lru_mask);
bb2a0de9 781
889976db
YH
782 return total;
783}
bb2a0de9 784
c0ff4b85 785static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 786 unsigned int lru_mask)
6d12e2d8 787{
889976db 788 int nid;
6d12e2d8
KH
789 u64 total = 0;
790
31aaea4a 791 for_each_node_state(nid, N_MEMORY)
c0ff4b85 792 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 793 return total;
d52aa412
KH
794}
795
f53d7ce3
JW
796static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
797 enum mem_cgroup_events_target target)
7a159cc9
JW
798{
799 unsigned long val, next;
800
13114716 801 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 802 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 803 /* from time_after() in jiffies.h */
f53d7ce3
JW
804 if ((long)next - (long)val < 0) {
805 switch (target) {
806 case MEM_CGROUP_TARGET_THRESH:
807 next = val + THRESHOLDS_EVENTS_TARGET;
808 break;
7d910c05
MH
809 case MEM_CGROUP_TARGET_SOFTLIMIT:
810 next = val + SOFTLIMIT_EVENTS_TARGET;
811 break;
f53d7ce3
JW
812 case MEM_CGROUP_TARGET_NUMAINFO:
813 next = val + NUMAINFO_EVENTS_TARGET;
814 break;
815 default:
816 break;
817 }
818 __this_cpu_write(memcg->stat->targets[target], next);
819 return true;
7a159cc9 820 }
f53d7ce3 821 return false;
d2265e6f
KH
822}
823
7d910c05 824/*
f894ffa8 825 * Called from rate-limited memcg_check_events when enough
7d910c05 826 * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure
f894ffa8 827 * that all the parents up the hierarchy will be notified that this group
7d910c05
MH
828 * is in excess or that it is not in excess anymore. mmecg->soft_contributed
829 * makes the transition a single action whenever the state flips from one to
f894ffa8 830 * the other.
7d910c05
MH
831 */
832static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg)
833{
834 unsigned long long excess = res_counter_soft_limit_excess(&memcg->res);
835 struct mem_cgroup *parent = memcg;
836 int delta = 0;
837
838 spin_lock(&memcg->soft_lock);
839 if (excess) {
840 if (!memcg->soft_contributed) {
841 delta = 1;
842 memcg->soft_contributed = true;
843 }
844 } else {
845 if (memcg->soft_contributed) {
846 delta = -1;
847 memcg->soft_contributed = false;
848 }
849 }
850
851 /*
852 * Necessary to update all ancestors when hierarchy is used
853 * because their event counter is not touched.
1be171d6
MH
854 * We track children even outside the hierarchy for the root
855 * cgroup because tree walk starting at root should visit
856 * all cgroups and we want to prevent from pointless tree
857 * walk if no children is below the limit.
7d910c05
MH
858 */
859 while (delta && (parent = parent_mem_cgroup(parent)))
860 atomic_add(delta, &parent->children_in_excess);
1be171d6
MH
861 if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
862 atomic_add(delta, &root_mem_cgroup->children_in_excess);
7d910c05
MH
863 spin_unlock(&memcg->soft_lock);
864}
865
d2265e6f
KH
866/*
867 * Check events in order.
868 *
869 */
c0ff4b85 870static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 871{
4799401f 872 preempt_disable();
d2265e6f 873 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
874 if (unlikely(mem_cgroup_event_ratelimit(memcg,
875 MEM_CGROUP_TARGET_THRESH))) {
7d910c05 876 bool do_softlimit;
82b3f2a7 877 bool do_numainfo __maybe_unused;
f53d7ce3 878
7d910c05
MH
879 do_softlimit = mem_cgroup_event_ratelimit(memcg,
880 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
881#if MAX_NUMNODES > 1
882 do_numainfo = mem_cgroup_event_ratelimit(memcg,
883 MEM_CGROUP_TARGET_NUMAINFO);
884#endif
885 preempt_enable();
886
c0ff4b85 887 mem_cgroup_threshold(memcg);
7d910c05
MH
888 if (unlikely(do_softlimit))
889 mem_cgroup_update_soft_limit(memcg);
453a9bf3 890#if MAX_NUMNODES > 1
f53d7ce3 891 if (unlikely(do_numainfo))
c0ff4b85 892 atomic_inc(&memcg->numainfo_events);
453a9bf3 893#endif
f53d7ce3
JW
894 } else
895 preempt_enable();
d2265e6f
KH
896}
897
cf475ad2 898struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 899{
31a78f23
BS
900 /*
901 * mm_update_next_owner() may clear mm->owner to NULL
902 * if it races with swapoff, page migration, etc.
903 * So this can be called with p == NULL.
904 */
905 if (unlikely(!p))
906 return NULL;
907
8af01f56 908 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
909}
910
a433658c 911struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 912{
c0ff4b85 913 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
914
915 if (!mm)
916 return NULL;
54595fe2
KH
917 /*
918 * Because we have no locks, mm->owner's may be being moved to other
919 * cgroup. We use css_tryget() here even if this looks
920 * pessimistic (rather than adding locks here).
921 */
922 rcu_read_lock();
923 do {
c0ff4b85
R
924 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
925 if (unlikely(!memcg))
54595fe2 926 break;
c0ff4b85 927 } while (!css_tryget(&memcg->css));
54595fe2 928 rcu_read_unlock();
c0ff4b85 929 return memcg;
54595fe2
KH
930}
931
de57780d
MH
932static enum mem_cgroup_filter_t
933mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
934 mem_cgroup_iter_filter cond)
935{
936 if (!cond)
937 return VISIT;
938 return cond(memcg, root);
939}
940
16248d8f
MH
941/*
942 * Returns a next (in a pre-order walk) alive memcg (with elevated css
943 * ref. count) or NULL if the whole root's subtree has been visited.
944 *
945 * helper function to be used by mem_cgroup_iter
946 */
947static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
de57780d 948 struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
16248d8f 949{
492eb21b 950 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 951
bd8815a6 952 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 953skip_node:
492eb21b 954 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
955
956 /*
957 * Even if we found a group we have to make sure it is
958 * alive. css && !memcg means that the groups should be
959 * skipped and we should continue the tree walk.
960 * last_visited css is safe to use because it is
961 * protected by css_get and the tree walk is rcu safe.
962 */
492eb21b
TH
963 if (next_css) {
964 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
965
de57780d
MH
966 switch (mem_cgroup_filter(mem, root, cond)) {
967 case SKIP:
492eb21b 968 prev_css = next_css;
16248d8f 969 goto skip_node;
de57780d
MH
970 case SKIP_TREE:
971 if (mem == root)
972 return NULL;
973 /*
974 * css_rightmost_descendant is not an optimal way to
975 * skip through a subtree (especially for imbalanced
976 * trees leaning to right) but that's what we have right
977 * now. More effective solution would be traversing
978 * right-up for first non-NULL without calling
979 * css_next_descendant_pre afterwards.
980 */
981 prev_css = css_rightmost_descendant(next_css);
982 goto skip_node;
983 case VISIT:
984 if (css_tryget(&mem->css))
985 return mem;
986 else {
987 prev_css = next_css;
988 goto skip_node;
989 }
990 break;
16248d8f
MH
991 }
992 }
993
994 return NULL;
995}
996
519ebea3
JW
997static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
998{
999 /*
1000 * When a group in the hierarchy below root is destroyed, the
1001 * hierarchy iterator can no longer be trusted since it might
1002 * have pointed to the destroyed group. Invalidate it.
1003 */
1004 atomic_inc(&root->dead_count);
1005}
1006
1007static struct mem_cgroup *
1008mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1009 struct mem_cgroup *root,
1010 int *sequence)
1011{
1012 struct mem_cgroup *position = NULL;
1013 /*
1014 * A cgroup destruction happens in two stages: offlining and
1015 * release. They are separated by a RCU grace period.
1016 *
1017 * If the iterator is valid, we may still race with an
1018 * offlining. The RCU lock ensures the object won't be
1019 * released, tryget will fail if we lost the race.
1020 */
1021 *sequence = atomic_read(&root->dead_count);
1022 if (iter->last_dead_count == *sequence) {
1023 smp_rmb();
1024 position = iter->last_visited;
1025 if (position && !css_tryget(&position->css))
1026 position = NULL;
1027 }
1028 return position;
1029}
1030
1031static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1032 struct mem_cgroup *last_visited,
1033 struct mem_cgroup *new_position,
1034 int sequence)
1035{
1036 if (last_visited)
1037 css_put(&last_visited->css);
1038 /*
1039 * We store the sequence count from the time @last_visited was
1040 * loaded successfully instead of rereading it here so that we
1041 * don't lose destruction events in between. We could have
1042 * raced with the destruction of @new_position after all.
1043 */
1044 iter->last_visited = new_position;
1045 smp_wmb();
1046 iter->last_dead_count = sequence;
1047}
1048
5660048c
JW
1049/**
1050 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1051 * @root: hierarchy root
1052 * @prev: previously returned memcg, NULL on first invocation
1053 * @reclaim: cookie for shared reclaim walks, NULL for full walks
de57780d 1054 * @cond: filter for visited nodes, NULL for no filter
5660048c
JW
1055 *
1056 * Returns references to children of the hierarchy below @root, or
1057 * @root itself, or %NULL after a full round-trip.
1058 *
1059 * Caller must pass the return value in @prev on subsequent
1060 * invocations for reference counting, or use mem_cgroup_iter_break()
1061 * to cancel a hierarchy walk before the round-trip is complete.
1062 *
1063 * Reclaimers can specify a zone and a priority level in @reclaim to
1064 * divide up the memcgs in the hierarchy among all concurrent
1065 * reclaimers operating on the same zone and priority.
1066 */
de57780d 1067struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
5660048c 1068 struct mem_cgroup *prev,
de57780d
MH
1069 struct mem_cgroup_reclaim_cookie *reclaim,
1070 mem_cgroup_iter_filter cond)
14067bb3 1071{
9f3a0d09 1072 struct mem_cgroup *memcg = NULL;
542f85f9 1073 struct mem_cgroup *last_visited = NULL;
711d3d2c 1074
de57780d
MH
1075 if (mem_cgroup_disabled()) {
1076 /* first call must return non-NULL, second return NULL */
1077 return (struct mem_cgroup *)(unsigned long)!prev;
1078 }
5660048c 1079
9f3a0d09
JW
1080 if (!root)
1081 root = root_mem_cgroup;
7d74b06f 1082
9f3a0d09 1083 if (prev && !reclaim)
542f85f9 1084 last_visited = prev;
14067bb3 1085
9f3a0d09
JW
1086 if (!root->use_hierarchy && root != root_mem_cgroup) {
1087 if (prev)
c40046f3 1088 goto out_css_put;
de57780d
MH
1089 if (mem_cgroup_filter(root, root, cond) == VISIT)
1090 return root;
1091 return NULL;
9f3a0d09 1092 }
14067bb3 1093
542f85f9 1094 rcu_read_lock();
9f3a0d09 1095 while (!memcg) {
527a5ec9 1096 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1097 int uninitialized_var(seq);
711d3d2c 1098
527a5ec9
JW
1099 if (reclaim) {
1100 int nid = zone_to_nid(reclaim->zone);
1101 int zid = zone_idx(reclaim->zone);
1102 struct mem_cgroup_per_zone *mz;
1103
1104 mz = mem_cgroup_zoneinfo(root, nid, zid);
1105 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1106 if (prev && reclaim->generation != iter->generation) {
5f578161 1107 iter->last_visited = NULL;
542f85f9
MH
1108 goto out_unlock;
1109 }
5f578161 1110
519ebea3 1111 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1112 }
7d74b06f 1113
de57780d 1114 memcg = __mem_cgroup_iter_next(root, last_visited, cond);
14067bb3 1115
527a5ec9 1116 if (reclaim) {
519ebea3 1117 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1118
19f39402 1119 if (!memcg)
527a5ec9
JW
1120 iter->generation++;
1121 else if (!prev && memcg)
1122 reclaim->generation = iter->generation;
1123 }
9f3a0d09 1124
de57780d
MH
1125 /*
1126 * We have finished the whole tree walk or no group has been
1127 * visited because filter told us to skip the root node.
1128 */
1129 if (!memcg && (prev || (cond && !last_visited)))
542f85f9 1130 goto out_unlock;
9f3a0d09 1131 }
542f85f9
MH
1132out_unlock:
1133 rcu_read_unlock();
c40046f3
MH
1134out_css_put:
1135 if (prev && prev != root)
1136 css_put(&prev->css);
1137
9f3a0d09 1138 return memcg;
14067bb3 1139}
7d74b06f 1140
5660048c
JW
1141/**
1142 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1143 * @root: hierarchy root
1144 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1145 */
1146void mem_cgroup_iter_break(struct mem_cgroup *root,
1147 struct mem_cgroup *prev)
9f3a0d09
JW
1148{
1149 if (!root)
1150 root = root_mem_cgroup;
1151 if (prev && prev != root)
1152 css_put(&prev->css);
1153}
7d74b06f 1154
9f3a0d09
JW
1155/*
1156 * Iteration constructs for visiting all cgroups (under a tree). If
1157 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1158 * be used for reference counting.
1159 */
1160#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1161 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1162 iter != NULL; \
527a5ec9 1163 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1164
9f3a0d09 1165#define for_each_mem_cgroup(iter) \
527a5ec9 1166 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1167 iter != NULL; \
527a5ec9 1168 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1169
68ae564b 1170void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1171{
c0ff4b85 1172 struct mem_cgroup *memcg;
456f998e 1173
456f998e 1174 rcu_read_lock();
c0ff4b85
R
1175 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1176 if (unlikely(!memcg))
456f998e
YH
1177 goto out;
1178
1179 switch (idx) {
456f998e 1180 case PGFAULT:
0e574a93
JW
1181 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1182 break;
1183 case PGMAJFAULT:
1184 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1185 break;
1186 default:
1187 BUG();
1188 }
1189out:
1190 rcu_read_unlock();
1191}
68ae564b 1192EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1193
925b7673
JW
1194/**
1195 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1196 * @zone: zone of the wanted lruvec
fa9add64 1197 * @memcg: memcg of the wanted lruvec
925b7673
JW
1198 *
1199 * Returns the lru list vector holding pages for the given @zone and
1200 * @mem. This can be the global zone lruvec, if the memory controller
1201 * is disabled.
1202 */
1203struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1204 struct mem_cgroup *memcg)
1205{
1206 struct mem_cgroup_per_zone *mz;
bea8c150 1207 struct lruvec *lruvec;
925b7673 1208
bea8c150
HD
1209 if (mem_cgroup_disabled()) {
1210 lruvec = &zone->lruvec;
1211 goto out;
1212 }
925b7673
JW
1213
1214 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1215 lruvec = &mz->lruvec;
1216out:
1217 /*
1218 * Since a node can be onlined after the mem_cgroup was created,
1219 * we have to be prepared to initialize lruvec->zone here;
1220 * and if offlined then reonlined, we need to reinitialize it.
1221 */
1222 if (unlikely(lruvec->zone != zone))
1223 lruvec->zone = zone;
1224 return lruvec;
925b7673
JW
1225}
1226
08e552c6
KH
1227/*
1228 * Following LRU functions are allowed to be used without PCG_LOCK.
1229 * Operations are called by routine of global LRU independently from memcg.
1230 * What we have to take care of here is validness of pc->mem_cgroup.
1231 *
1232 * Changes to pc->mem_cgroup happens when
1233 * 1. charge
1234 * 2. moving account
1235 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1236 * It is added to LRU before charge.
1237 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1238 * When moving account, the page is not on LRU. It's isolated.
1239 */
4f98a2fe 1240
925b7673 1241/**
fa9add64 1242 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1243 * @page: the page
fa9add64 1244 * @zone: zone of the page
925b7673 1245 */
fa9add64 1246struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1247{
08e552c6 1248 struct mem_cgroup_per_zone *mz;
925b7673
JW
1249 struct mem_cgroup *memcg;
1250 struct page_cgroup *pc;
bea8c150 1251 struct lruvec *lruvec;
6d12e2d8 1252
bea8c150
HD
1253 if (mem_cgroup_disabled()) {
1254 lruvec = &zone->lruvec;
1255 goto out;
1256 }
925b7673 1257
08e552c6 1258 pc = lookup_page_cgroup(page);
38c5d72f 1259 memcg = pc->mem_cgroup;
7512102c
HD
1260
1261 /*
fa9add64 1262 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1263 * an uncharged page off lru does nothing to secure
1264 * its former mem_cgroup from sudden removal.
1265 *
1266 * Our caller holds lru_lock, and PageCgroupUsed is updated
1267 * under page_cgroup lock: between them, they make all uses
1268 * of pc->mem_cgroup safe.
1269 */
fa9add64 1270 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1271 pc->mem_cgroup = memcg = root_mem_cgroup;
1272
925b7673 1273 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1274 lruvec = &mz->lruvec;
1275out:
1276 /*
1277 * Since a node can be onlined after the mem_cgroup was created,
1278 * we have to be prepared to initialize lruvec->zone here;
1279 * and if offlined then reonlined, we need to reinitialize it.
1280 */
1281 if (unlikely(lruvec->zone != zone))
1282 lruvec->zone = zone;
1283 return lruvec;
08e552c6 1284}
b69408e8 1285
925b7673 1286/**
fa9add64
HD
1287 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1288 * @lruvec: mem_cgroup per zone lru vector
1289 * @lru: index of lru list the page is sitting on
1290 * @nr_pages: positive when adding or negative when removing
925b7673 1291 *
fa9add64
HD
1292 * This function must be called when a page is added to or removed from an
1293 * lru list.
3f58a829 1294 */
fa9add64
HD
1295void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1296 int nr_pages)
3f58a829
MK
1297{
1298 struct mem_cgroup_per_zone *mz;
fa9add64 1299 unsigned long *lru_size;
3f58a829
MK
1300
1301 if (mem_cgroup_disabled())
1302 return;
1303
fa9add64
HD
1304 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1305 lru_size = mz->lru_size + lru;
1306 *lru_size += nr_pages;
1307 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1308}
544122e5 1309
3e92041d 1310/*
c0ff4b85 1311 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1312 * hierarchy subtree
1313 */
c3ac9a8a
JW
1314bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1315 struct mem_cgroup *memcg)
3e92041d 1316{
91c63734
JW
1317 if (root_memcg == memcg)
1318 return true;
3a981f48 1319 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1320 return false;
c3ac9a8a
JW
1321 return css_is_ancestor(&memcg->css, &root_memcg->css);
1322}
1323
1324static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1325 struct mem_cgroup *memcg)
1326{
1327 bool ret;
1328
91c63734 1329 rcu_read_lock();
c3ac9a8a 1330 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1331 rcu_read_unlock();
1332 return ret;
3e92041d
MH
1333}
1334
ffbdccf5
DR
1335bool task_in_mem_cgroup(struct task_struct *task,
1336 const struct mem_cgroup *memcg)
4c4a2214 1337{
0b7f569e 1338 struct mem_cgroup *curr = NULL;
158e0a2d 1339 struct task_struct *p;
ffbdccf5 1340 bool ret;
4c4a2214 1341
158e0a2d 1342 p = find_lock_task_mm(task);
de077d22
DR
1343 if (p) {
1344 curr = try_get_mem_cgroup_from_mm(p->mm);
1345 task_unlock(p);
1346 } else {
1347 /*
1348 * All threads may have already detached their mm's, but the oom
1349 * killer still needs to detect if they have already been oom
1350 * killed to prevent needlessly killing additional tasks.
1351 */
ffbdccf5 1352 rcu_read_lock();
de077d22
DR
1353 curr = mem_cgroup_from_task(task);
1354 if (curr)
1355 css_get(&curr->css);
ffbdccf5 1356 rcu_read_unlock();
de077d22 1357 }
0b7f569e 1358 if (!curr)
ffbdccf5 1359 return false;
d31f56db 1360 /*
c0ff4b85 1361 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1362 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1363 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1364 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1365 */
c0ff4b85 1366 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1367 css_put(&curr->css);
4c4a2214
DR
1368 return ret;
1369}
1370
c56d5c7d 1371int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1372{
9b272977 1373 unsigned long inactive_ratio;
14797e23 1374 unsigned long inactive;
9b272977 1375 unsigned long active;
c772be93 1376 unsigned long gb;
14797e23 1377
4d7dcca2
HD
1378 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1379 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1380
c772be93
KM
1381 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1382 if (gb)
1383 inactive_ratio = int_sqrt(10 * gb);
1384 else
1385 inactive_ratio = 1;
1386
9b272977 1387 return inactive * inactive_ratio < active;
14797e23
KM
1388}
1389
6d61ef40
BS
1390#define mem_cgroup_from_res_counter(counter, member) \
1391 container_of(counter, struct mem_cgroup, member)
1392
19942822 1393/**
9d11ea9f 1394 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1395 * @memcg: the memory cgroup
19942822 1396 *
9d11ea9f 1397 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1398 * pages.
19942822 1399 */
c0ff4b85 1400static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1401{
9d11ea9f
JW
1402 unsigned long long margin;
1403
c0ff4b85 1404 margin = res_counter_margin(&memcg->res);
9d11ea9f 1405 if (do_swap_account)
c0ff4b85 1406 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1407 return margin >> PAGE_SHIFT;
19942822
JW
1408}
1409
1f4c025b 1410int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1411{
a7885eb8 1412 /* root ? */
63876986 1413 if (!css_parent(&memcg->css))
a7885eb8
KM
1414 return vm_swappiness;
1415
bf1ff263 1416 return memcg->swappiness;
a7885eb8
KM
1417}
1418
619d094b
KH
1419/*
1420 * memcg->moving_account is used for checking possibility that some thread is
1421 * calling move_account(). When a thread on CPU-A starts moving pages under
1422 * a memcg, other threads should check memcg->moving_account under
1423 * rcu_read_lock(), like this:
1424 *
1425 * CPU-A CPU-B
1426 * rcu_read_lock()
1427 * memcg->moving_account+1 if (memcg->mocing_account)
1428 * take heavy locks.
1429 * synchronize_rcu() update something.
1430 * rcu_read_unlock()
1431 * start move here.
1432 */
4331f7d3
KH
1433
1434/* for quick checking without looking up memcg */
1435atomic_t memcg_moving __read_mostly;
1436
c0ff4b85 1437static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1438{
4331f7d3 1439 atomic_inc(&memcg_moving);
619d094b 1440 atomic_inc(&memcg->moving_account);
32047e2a
KH
1441 synchronize_rcu();
1442}
1443
c0ff4b85 1444static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1445{
619d094b
KH
1446 /*
1447 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1448 * We check NULL in callee rather than caller.
1449 */
4331f7d3
KH
1450 if (memcg) {
1451 atomic_dec(&memcg_moving);
619d094b 1452 atomic_dec(&memcg->moving_account);
4331f7d3 1453 }
32047e2a 1454}
619d094b 1455
32047e2a
KH
1456/*
1457 * 2 routines for checking "mem" is under move_account() or not.
1458 *
13fd1dd9
AM
1459 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1460 * is used for avoiding races in accounting. If true,
32047e2a
KH
1461 * pc->mem_cgroup may be overwritten.
1462 *
1463 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1464 * under hierarchy of moving cgroups. This is for
1465 * waiting at hith-memory prressure caused by "move".
1466 */
1467
13fd1dd9 1468static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1469{
1470 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1471 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1472}
4b534334 1473
c0ff4b85 1474static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1475{
2bd9bb20
KH
1476 struct mem_cgroup *from;
1477 struct mem_cgroup *to;
4b534334 1478 bool ret = false;
2bd9bb20
KH
1479 /*
1480 * Unlike task_move routines, we access mc.to, mc.from not under
1481 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1482 */
1483 spin_lock(&mc.lock);
1484 from = mc.from;
1485 to = mc.to;
1486 if (!from)
1487 goto unlock;
3e92041d 1488
c0ff4b85
R
1489 ret = mem_cgroup_same_or_subtree(memcg, from)
1490 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1491unlock:
1492 spin_unlock(&mc.lock);
4b534334
KH
1493 return ret;
1494}
1495
c0ff4b85 1496static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1497{
1498 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1499 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1500 DEFINE_WAIT(wait);
1501 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1502 /* moving charge context might have finished. */
1503 if (mc.moving_task)
1504 schedule();
1505 finish_wait(&mc.waitq, &wait);
1506 return true;
1507 }
1508 }
1509 return false;
1510}
1511
312734c0
KH
1512/*
1513 * Take this lock when
1514 * - a code tries to modify page's memcg while it's USED.
1515 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1516 * see mem_cgroup_stolen(), too.
312734c0
KH
1517 */
1518static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1519 unsigned long *flags)
1520{
1521 spin_lock_irqsave(&memcg->move_lock, *flags);
1522}
1523
1524static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1525 unsigned long *flags)
1526{
1527 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1528}
1529
58cf188e 1530#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1531/**
58cf188e 1532 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1533 * @memcg: The memory cgroup that went over limit
1534 * @p: Task that is going to be killed
1535 *
1536 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1537 * enabled
1538 */
1539void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1540{
1541 struct cgroup *task_cgrp;
1542 struct cgroup *mem_cgrp;
1543 /*
1544 * Need a buffer in BSS, can't rely on allocations. The code relies
1545 * on the assumption that OOM is serialized for memory controller.
1546 * If this assumption is broken, revisit this code.
1547 */
1548 static char memcg_name[PATH_MAX];
1549 int ret;
58cf188e
SZ
1550 struct mem_cgroup *iter;
1551 unsigned int i;
e222432b 1552
58cf188e 1553 if (!p)
e222432b
BS
1554 return;
1555
e222432b
BS
1556 rcu_read_lock();
1557
1558 mem_cgrp = memcg->css.cgroup;
1559 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1560
1561 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1562 if (ret < 0) {
1563 /*
1564 * Unfortunately, we are unable to convert to a useful name
1565 * But we'll still print out the usage information
1566 */
1567 rcu_read_unlock();
1568 goto done;
1569 }
1570 rcu_read_unlock();
1571
d045197f 1572 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1573
1574 rcu_read_lock();
1575 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1576 if (ret < 0) {
1577 rcu_read_unlock();
1578 goto done;
1579 }
1580 rcu_read_unlock();
1581
1582 /*
1583 * Continues from above, so we don't need an KERN_ level
1584 */
d045197f 1585 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1586done:
1587
d045197f 1588 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1589 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1590 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1591 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1592 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1593 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1594 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1595 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1596 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1597 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1598 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1599 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1600
1601 for_each_mem_cgroup_tree(iter, memcg) {
1602 pr_info("Memory cgroup stats");
1603
1604 rcu_read_lock();
1605 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1606 if (!ret)
1607 pr_cont(" for %s", memcg_name);
1608 rcu_read_unlock();
1609 pr_cont(":");
1610
1611 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1612 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1613 continue;
1614 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1615 K(mem_cgroup_read_stat(iter, i)));
1616 }
1617
1618 for (i = 0; i < NR_LRU_LISTS; i++)
1619 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1620 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1621
1622 pr_cont("\n");
1623 }
e222432b
BS
1624}
1625
81d39c20
KH
1626/*
1627 * This function returns the number of memcg under hierarchy tree. Returns
1628 * 1(self count) if no children.
1629 */
c0ff4b85 1630static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1631{
1632 int num = 0;
7d74b06f
KH
1633 struct mem_cgroup *iter;
1634
c0ff4b85 1635 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1636 num++;
81d39c20
KH
1637 return num;
1638}
1639
a63d83f4
DR
1640/*
1641 * Return the memory (and swap, if configured) limit for a memcg.
1642 */
9cbb78bb 1643static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1644{
1645 u64 limit;
a63d83f4 1646
f3e8eb70 1647 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1648
a63d83f4 1649 /*
9a5a8f19 1650 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1651 */
9a5a8f19
MH
1652 if (mem_cgroup_swappiness(memcg)) {
1653 u64 memsw;
1654
1655 limit += total_swap_pages << PAGE_SHIFT;
1656 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1657
1658 /*
1659 * If memsw is finite and limits the amount of swap space
1660 * available to this memcg, return that limit.
1661 */
1662 limit = min(limit, memsw);
1663 }
1664
1665 return limit;
a63d83f4
DR
1666}
1667
19965460
DR
1668static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1669 int order)
9cbb78bb
DR
1670{
1671 struct mem_cgroup *iter;
1672 unsigned long chosen_points = 0;
1673 unsigned long totalpages;
1674 unsigned int points = 0;
1675 struct task_struct *chosen = NULL;
1676
876aafbf 1677 /*
465adcf1
DR
1678 * If current has a pending SIGKILL or is exiting, then automatically
1679 * select it. The goal is to allow it to allocate so that it may
1680 * quickly exit and free its memory.
876aafbf 1681 */
465adcf1 1682 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1683 set_thread_flag(TIF_MEMDIE);
1684 return;
1685 }
1686
1687 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1688 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1689 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1690 struct css_task_iter it;
9cbb78bb
DR
1691 struct task_struct *task;
1692
72ec7029
TH
1693 css_task_iter_start(&iter->css, &it);
1694 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1695 switch (oom_scan_process_thread(task, totalpages, NULL,
1696 false)) {
1697 case OOM_SCAN_SELECT:
1698 if (chosen)
1699 put_task_struct(chosen);
1700 chosen = task;
1701 chosen_points = ULONG_MAX;
1702 get_task_struct(chosen);
1703 /* fall through */
1704 case OOM_SCAN_CONTINUE:
1705 continue;
1706 case OOM_SCAN_ABORT:
72ec7029 1707 css_task_iter_end(&it);
9cbb78bb
DR
1708 mem_cgroup_iter_break(memcg, iter);
1709 if (chosen)
1710 put_task_struct(chosen);
1711 return;
1712 case OOM_SCAN_OK:
1713 break;
1714 };
1715 points = oom_badness(task, memcg, NULL, totalpages);
1716 if (points > chosen_points) {
1717 if (chosen)
1718 put_task_struct(chosen);
1719 chosen = task;
1720 chosen_points = points;
1721 get_task_struct(chosen);
1722 }
1723 }
72ec7029 1724 css_task_iter_end(&it);
9cbb78bb
DR
1725 }
1726
1727 if (!chosen)
1728 return;
1729 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1730 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1731 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1732}
1733
5660048c
JW
1734static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1735 gfp_t gfp_mask,
1736 unsigned long flags)
1737{
1738 unsigned long total = 0;
1739 bool noswap = false;
1740 int loop;
1741
1742 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1743 noswap = true;
1744 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1745 noswap = true;
1746
1747 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1748 if (loop)
1749 drain_all_stock_async(memcg);
1750 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1751 /*
1752 * Allow limit shrinkers, which are triggered directly
1753 * by userspace, to catch signals and stop reclaim
1754 * after minimal progress, regardless of the margin.
1755 */
1756 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1757 break;
1758 if (mem_cgroup_margin(memcg))
1759 break;
1760 /*
1761 * If nothing was reclaimed after two attempts, there
1762 * may be no reclaimable pages in this hierarchy.
1763 */
1764 if (loop && !total)
1765 break;
1766 }
1767 return total;
1768}
1769
e883110a 1770#if MAX_NUMNODES > 1
4d0c066d
KH
1771/**
1772 * test_mem_cgroup_node_reclaimable
dad7557e 1773 * @memcg: the target memcg
4d0c066d
KH
1774 * @nid: the node ID to be checked.
1775 * @noswap : specify true here if the user wants flle only information.
1776 *
1777 * This function returns whether the specified memcg contains any
1778 * reclaimable pages on a node. Returns true if there are any reclaimable
1779 * pages in the node.
1780 */
c0ff4b85 1781static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1782 int nid, bool noswap)
1783{
c0ff4b85 1784 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1785 return true;
1786 if (noswap || !total_swap_pages)
1787 return false;
c0ff4b85 1788 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1789 return true;
1790 return false;
1791
1792}
889976db
YH
1793
1794/*
1795 * Always updating the nodemask is not very good - even if we have an empty
1796 * list or the wrong list here, we can start from some node and traverse all
1797 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1798 *
1799 */
c0ff4b85 1800static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1801{
1802 int nid;
453a9bf3
KH
1803 /*
1804 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1805 * pagein/pageout changes since the last update.
1806 */
c0ff4b85 1807 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1808 return;
c0ff4b85 1809 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1810 return;
1811
889976db 1812 /* make a nodemask where this memcg uses memory from */
31aaea4a 1813 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1814
31aaea4a 1815 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1816
c0ff4b85
R
1817 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1818 node_clear(nid, memcg->scan_nodes);
889976db 1819 }
453a9bf3 1820
c0ff4b85
R
1821 atomic_set(&memcg->numainfo_events, 0);
1822 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1823}
1824
1825/*
1826 * Selecting a node where we start reclaim from. Because what we need is just
1827 * reducing usage counter, start from anywhere is O,K. Considering
1828 * memory reclaim from current node, there are pros. and cons.
1829 *
1830 * Freeing memory from current node means freeing memory from a node which
1831 * we'll use or we've used. So, it may make LRU bad. And if several threads
1832 * hit limits, it will see a contention on a node. But freeing from remote
1833 * node means more costs for memory reclaim because of memory latency.
1834 *
1835 * Now, we use round-robin. Better algorithm is welcomed.
1836 */
c0ff4b85 1837int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1838{
1839 int node;
1840
c0ff4b85
R
1841 mem_cgroup_may_update_nodemask(memcg);
1842 node = memcg->last_scanned_node;
889976db 1843
c0ff4b85 1844 node = next_node(node, memcg->scan_nodes);
889976db 1845 if (node == MAX_NUMNODES)
c0ff4b85 1846 node = first_node(memcg->scan_nodes);
889976db
YH
1847 /*
1848 * We call this when we hit limit, not when pages are added to LRU.
1849 * No LRU may hold pages because all pages are UNEVICTABLE or
1850 * memcg is too small and all pages are not on LRU. In that case,
1851 * we use curret node.
1852 */
1853 if (unlikely(node == MAX_NUMNODES))
1854 node = numa_node_id();
1855
c0ff4b85 1856 memcg->last_scanned_node = node;
889976db
YH
1857 return node;
1858}
1859
1860#else
c0ff4b85 1861int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1862{
1863 return 0;
1864}
4d0c066d 1865
889976db
YH
1866#endif
1867
3b38722e 1868/*
a5b7c87f
MH
1869 * A group is eligible for the soft limit reclaim under the given root
1870 * hierarchy if
f894ffa8
AM
1871 * a) it is over its soft limit
1872 * b) any parent up the hierarchy is over its soft limit
7d910c05
MH
1873 *
1874 * If the given group doesn't have any children over the limit then it
1875 * doesn't make any sense to iterate its subtree.
3b38722e 1876 */
de57780d
MH
1877enum mem_cgroup_filter_t
1878mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
a5b7c87f 1879 struct mem_cgroup *root)
3b38722e 1880{
e839b6a1
MH
1881 struct mem_cgroup *parent;
1882
1883 if (!memcg)
1884 memcg = root_mem_cgroup;
1885 parent = memcg;
3b38722e
MH
1886
1887 if (res_counter_soft_limit_excess(&memcg->res))
de57780d 1888 return VISIT;
3b38722e
MH
1889
1890 /*
a5b7c87f
MH
1891 * If any parent up to the root in the hierarchy is over its soft limit
1892 * then we have to obey and reclaim from this group as well.
3b38722e 1893 */
f894ffa8 1894 while ((parent = parent_mem_cgroup(parent))) {
3b38722e 1895 if (res_counter_soft_limit_excess(&parent->res))
de57780d 1896 return VISIT;
a5b7c87f
MH
1897 if (parent == root)
1898 break;
6d61ef40 1899 }
3b38722e 1900
7d910c05
MH
1901 if (!atomic_read(&memcg->children_in_excess))
1902 return SKIP_TREE;
de57780d 1903 return SKIP;
6d61ef40
BS
1904}
1905
fb2a6fc5
JW
1906static DEFINE_SPINLOCK(memcg_oom_lock);
1907
867578cb
KH
1908/*
1909 * Check OOM-Killer is already running under our hierarchy.
1910 * If someone is running, return false.
1911 */
fb2a6fc5 1912static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1913{
79dfdacc 1914 struct mem_cgroup *iter, *failed = NULL;
a636b327 1915
fb2a6fc5
JW
1916 spin_lock(&memcg_oom_lock);
1917
9f3a0d09 1918 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1919 if (iter->oom_lock) {
79dfdacc
MH
1920 /*
1921 * this subtree of our hierarchy is already locked
1922 * so we cannot give a lock.
1923 */
79dfdacc 1924 failed = iter;
9f3a0d09
JW
1925 mem_cgroup_iter_break(memcg, iter);
1926 break;
23751be0
JW
1927 } else
1928 iter->oom_lock = true;
7d74b06f 1929 }
867578cb 1930
fb2a6fc5
JW
1931 if (failed) {
1932 /*
1933 * OK, we failed to lock the whole subtree so we have
1934 * to clean up what we set up to the failing subtree
1935 */
1936 for_each_mem_cgroup_tree(iter, memcg) {
1937 if (iter == failed) {
1938 mem_cgroup_iter_break(memcg, iter);
1939 break;
1940 }
1941 iter->oom_lock = false;
79dfdacc 1942 }
79dfdacc 1943 }
fb2a6fc5
JW
1944
1945 spin_unlock(&memcg_oom_lock);
1946
1947 return !failed;
a636b327 1948}
0b7f569e 1949
fb2a6fc5 1950static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1951{
7d74b06f
KH
1952 struct mem_cgroup *iter;
1953
fb2a6fc5 1954 spin_lock(&memcg_oom_lock);
c0ff4b85 1955 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1956 iter->oom_lock = false;
fb2a6fc5 1957 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1958}
1959
c0ff4b85 1960static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1961{
1962 struct mem_cgroup *iter;
1963
c0ff4b85 1964 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1965 atomic_inc(&iter->under_oom);
1966}
1967
c0ff4b85 1968static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1969{
1970 struct mem_cgroup *iter;
1971
867578cb
KH
1972 /*
1973 * When a new child is created while the hierarchy is under oom,
1974 * mem_cgroup_oom_lock() may not be called. We have to use
1975 * atomic_add_unless() here.
1976 */
c0ff4b85 1977 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1978 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1979}
1980
867578cb
KH
1981static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1982
dc98df5a 1983struct oom_wait_info {
d79154bb 1984 struct mem_cgroup *memcg;
dc98df5a
KH
1985 wait_queue_t wait;
1986};
1987
1988static int memcg_oom_wake_function(wait_queue_t *wait,
1989 unsigned mode, int sync, void *arg)
1990{
d79154bb
HD
1991 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1992 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1993 struct oom_wait_info *oom_wait_info;
1994
1995 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1996 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1997
dc98df5a 1998 /*
d79154bb 1999 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2000 * Then we can use css_is_ancestor without taking care of RCU.
2001 */
c0ff4b85
R
2002 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2003 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2004 return 0;
dc98df5a
KH
2005 return autoremove_wake_function(wait, mode, sync, arg);
2006}
2007
c0ff4b85 2008static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2009{
3812c8c8 2010 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2011 /* for filtering, pass "memcg" as argument. */
2012 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2013}
2014
c0ff4b85 2015static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2016{
c0ff4b85
R
2017 if (memcg && atomic_read(&memcg->under_oom))
2018 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2019}
2020
867578cb 2021/*
3812c8c8 2022 * try to call OOM killer
867578cb 2023 */
3812c8c8 2024static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2025{
fb2a6fc5 2026 bool locked;
3812c8c8 2027 int wakeups;
867578cb 2028
3812c8c8
JW
2029 if (!current->memcg_oom.may_oom)
2030 return;
2031
2032 current->memcg_oom.in_memcg_oom = 1;
79dfdacc 2033
867578cb 2034 /*
fb2a6fc5
JW
2035 * As with any blocking lock, a contender needs to start
2036 * listening for wakeups before attempting the trylock,
2037 * otherwise it can miss the wakeup from the unlock and sleep
2038 * indefinitely. This is just open-coded because our locking
2039 * is so particular to memcg hierarchies.
867578cb 2040 */
3812c8c8 2041 wakeups = atomic_read(&memcg->oom_wakeups);
fb2a6fc5
JW
2042 mem_cgroup_mark_under_oom(memcg);
2043
2044 locked = mem_cgroup_oom_trylock(memcg);
2045
3c11ecf4 2046 if (locked)
c0ff4b85 2047 mem_cgroup_oom_notify(memcg);
867578cb 2048
fb2a6fc5
JW
2049 if (locked && !memcg->oom_kill_disable) {
2050 mem_cgroup_unmark_under_oom(memcg);
e845e199 2051 mem_cgroup_out_of_memory(memcg, mask, order);
3812c8c8
JW
2052 mem_cgroup_oom_unlock(memcg);
2053 /*
2054 * There is no guarantee that an OOM-lock contender
2055 * sees the wakeups triggered by the OOM kill
2056 * uncharges. Wake any sleepers explicitely.
2057 */
2058 memcg_oom_recover(memcg);
3c11ecf4 2059 } else {
3812c8c8
JW
2060 /*
2061 * A system call can just return -ENOMEM, but if this
2062 * is a page fault and somebody else is handling the
2063 * OOM already, we need to sleep on the OOM waitqueue
2064 * for this memcg until the situation is resolved.
2065 * Which can take some time because it might be
2066 * handled by a userspace task.
2067 *
2068 * However, this is the charge context, which means
2069 * that we may sit on a large call stack and hold
2070 * various filesystem locks, the mmap_sem etc. and we
2071 * don't want the OOM handler to deadlock on them
2072 * while we sit here and wait. Store the current OOM
2073 * context in the task_struct, then return -ENOMEM.
2074 * At the end of the page fault handler, with the
2075 * stack unwound, pagefault_out_of_memory() will check
2076 * back with us by calling
2077 * mem_cgroup_oom_synchronize(), possibly putting the
2078 * task to sleep.
2079 */
2080 current->memcg_oom.oom_locked = locked;
2081 current->memcg_oom.wakeups = wakeups;
2082 css_get(&memcg->css);
2083 current->memcg_oom.wait_on_memcg = memcg;
867578cb 2084 }
3812c8c8
JW
2085}
2086
2087/**
2088 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2089 *
2090 * This has to be called at the end of a page fault if the the memcg
2091 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
2092 *
2093 * Memcg supports userspace OOM handling, so failed allocations must
2094 * sleep on a waitqueue until the userspace task resolves the
2095 * situation. Sleeping directly in the charge context with all kinds
2096 * of locks held is not a good idea, instead we remember an OOM state
2097 * in the task and mem_cgroup_oom_synchronize() has to be called at
2098 * the end of the page fault to put the task to sleep and clean up the
2099 * OOM state.
2100 *
2101 * Returns %true if an ongoing memcg OOM situation was detected and
2102 * finalized, %false otherwise.
2103 */
2104bool mem_cgroup_oom_synchronize(void)
2105{
2106 struct oom_wait_info owait;
2107 struct mem_cgroup *memcg;
2108
2109 /* OOM is global, do not handle */
2110 if (!current->memcg_oom.in_memcg_oom)
2111 return false;
2112
2113 /*
2114 * We invoked the OOM killer but there is a chance that a kill
2115 * did not free up any charges. Everybody else might already
2116 * be sleeping, so restart the fault and keep the rampage
2117 * going until some charges are released.
2118 */
2119 memcg = current->memcg_oom.wait_on_memcg;
2120 if (!memcg)
2121 goto out;
2122
2123 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2124 goto out_memcg;
2125
2126 owait.memcg = memcg;
2127 owait.wait.flags = 0;
2128 owait.wait.func = memcg_oom_wake_function;
2129 owait.wait.private = current;
2130 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2131
3812c8c8
JW
2132 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2133 /* Only sleep if we didn't miss any wakeups since OOM */
2134 if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
2135 schedule();
2136 finish_wait(&memcg_oom_waitq, &owait.wait);
2137out_memcg:
2138 mem_cgroup_unmark_under_oom(memcg);
2139 if (current->memcg_oom.oom_locked) {
fb2a6fc5
JW
2140 mem_cgroup_oom_unlock(memcg);
2141 /*
2142 * There is no guarantee that an OOM-lock contender
2143 * sees the wakeups triggered by the OOM kill
2144 * uncharges. Wake any sleepers explicitely.
2145 */
2146 memcg_oom_recover(memcg);
2147 }
3812c8c8
JW
2148 css_put(&memcg->css);
2149 current->memcg_oom.wait_on_memcg = NULL;
2150out:
2151 current->memcg_oom.in_memcg_oom = 0;
867578cb 2152 return true;
0b7f569e
KH
2153}
2154
d69b042f
BS
2155/*
2156 * Currently used to update mapped file statistics, but the routine can be
2157 * generalized to update other statistics as well.
32047e2a
KH
2158 *
2159 * Notes: Race condition
2160 *
2161 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2162 * it tends to be costly. But considering some conditions, we doesn't need
2163 * to do so _always_.
2164 *
2165 * Considering "charge", lock_page_cgroup() is not required because all
2166 * file-stat operations happen after a page is attached to radix-tree. There
2167 * are no race with "charge".
2168 *
2169 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2170 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2171 * if there are race with "uncharge". Statistics itself is properly handled
2172 * by flags.
2173 *
2174 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2175 * small, we check mm->moving_account and detect there are possibility of race
2176 * If there is, we take a lock.
d69b042f 2177 */
26174efd 2178
89c06bd5
KH
2179void __mem_cgroup_begin_update_page_stat(struct page *page,
2180 bool *locked, unsigned long *flags)
2181{
2182 struct mem_cgroup *memcg;
2183 struct page_cgroup *pc;
2184
2185 pc = lookup_page_cgroup(page);
2186again:
2187 memcg = pc->mem_cgroup;
2188 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2189 return;
2190 /*
2191 * If this memory cgroup is not under account moving, we don't
da92c47d 2192 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2193 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2194 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2195 */
13fd1dd9 2196 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2197 return;
2198
2199 move_lock_mem_cgroup(memcg, flags);
2200 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2201 move_unlock_mem_cgroup(memcg, flags);
2202 goto again;
2203 }
2204 *locked = true;
2205}
2206
2207void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2208{
2209 struct page_cgroup *pc = lookup_page_cgroup(page);
2210
2211 /*
2212 * It's guaranteed that pc->mem_cgroup never changes while
2213 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2214 * should take move_lock_mem_cgroup().
89c06bd5
KH
2215 */
2216 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2217}
2218
2a7106f2 2219void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2220 enum mem_cgroup_stat_index idx, int val)
d69b042f 2221{
c0ff4b85 2222 struct mem_cgroup *memcg;
32047e2a 2223 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2224 unsigned long uninitialized_var(flags);
d69b042f 2225
cfa44946 2226 if (mem_cgroup_disabled())
d69b042f 2227 return;
89c06bd5 2228
658b72c5 2229 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2230 memcg = pc->mem_cgroup;
2231 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2232 return;
26174efd 2233
c0ff4b85 2234 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2235}
26174efd 2236
cdec2e42
KH
2237/*
2238 * size of first charge trial. "32" comes from vmscan.c's magic value.
2239 * TODO: maybe necessary to use big numbers in big irons.
2240 */
7ec99d62 2241#define CHARGE_BATCH 32U
cdec2e42
KH
2242struct memcg_stock_pcp {
2243 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2244 unsigned int nr_pages;
cdec2e42 2245 struct work_struct work;
26fe6168 2246 unsigned long flags;
a0db00fc 2247#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2248};
2249static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2250static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2251
a0956d54
SS
2252/**
2253 * consume_stock: Try to consume stocked charge on this cpu.
2254 * @memcg: memcg to consume from.
2255 * @nr_pages: how many pages to charge.
2256 *
2257 * The charges will only happen if @memcg matches the current cpu's memcg
2258 * stock, and at least @nr_pages are available in that stock. Failure to
2259 * service an allocation will refill the stock.
2260 *
2261 * returns true if successful, false otherwise.
cdec2e42 2262 */
a0956d54 2263static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2264{
2265 struct memcg_stock_pcp *stock;
2266 bool ret = true;
2267
a0956d54
SS
2268 if (nr_pages > CHARGE_BATCH)
2269 return false;
2270
cdec2e42 2271 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2272 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2273 stock->nr_pages -= nr_pages;
cdec2e42
KH
2274 else /* need to call res_counter_charge */
2275 ret = false;
2276 put_cpu_var(memcg_stock);
2277 return ret;
2278}
2279
2280/*
2281 * Returns stocks cached in percpu to res_counter and reset cached information.
2282 */
2283static void drain_stock(struct memcg_stock_pcp *stock)
2284{
2285 struct mem_cgroup *old = stock->cached;
2286
11c9ea4e
JW
2287 if (stock->nr_pages) {
2288 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2289
2290 res_counter_uncharge(&old->res, bytes);
cdec2e42 2291 if (do_swap_account)
11c9ea4e
JW
2292 res_counter_uncharge(&old->memsw, bytes);
2293 stock->nr_pages = 0;
cdec2e42
KH
2294 }
2295 stock->cached = NULL;
cdec2e42
KH
2296}
2297
2298/*
2299 * This must be called under preempt disabled or must be called by
2300 * a thread which is pinned to local cpu.
2301 */
2302static void drain_local_stock(struct work_struct *dummy)
2303{
2304 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2305 drain_stock(stock);
26fe6168 2306 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2307}
2308
e4777496
MH
2309static void __init memcg_stock_init(void)
2310{
2311 int cpu;
2312
2313 for_each_possible_cpu(cpu) {
2314 struct memcg_stock_pcp *stock =
2315 &per_cpu(memcg_stock, cpu);
2316 INIT_WORK(&stock->work, drain_local_stock);
2317 }
2318}
2319
cdec2e42
KH
2320/*
2321 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2322 * This will be consumed by consume_stock() function, later.
cdec2e42 2323 */
c0ff4b85 2324static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2325{
2326 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2327
c0ff4b85 2328 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2329 drain_stock(stock);
c0ff4b85 2330 stock->cached = memcg;
cdec2e42 2331 }
11c9ea4e 2332 stock->nr_pages += nr_pages;
cdec2e42
KH
2333 put_cpu_var(memcg_stock);
2334}
2335
2336/*
c0ff4b85 2337 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2338 * of the hierarchy under it. sync flag says whether we should block
2339 * until the work is done.
cdec2e42 2340 */
c0ff4b85 2341static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2342{
26fe6168 2343 int cpu, curcpu;
d38144b7 2344
cdec2e42 2345 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2346 get_online_cpus();
5af12d0e 2347 curcpu = get_cpu();
cdec2e42
KH
2348 for_each_online_cpu(cpu) {
2349 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2350 struct mem_cgroup *memcg;
26fe6168 2351
c0ff4b85
R
2352 memcg = stock->cached;
2353 if (!memcg || !stock->nr_pages)
26fe6168 2354 continue;
c0ff4b85 2355 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2356 continue;
d1a05b69
MH
2357 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2358 if (cpu == curcpu)
2359 drain_local_stock(&stock->work);
2360 else
2361 schedule_work_on(cpu, &stock->work);
2362 }
cdec2e42 2363 }
5af12d0e 2364 put_cpu();
d38144b7
MH
2365
2366 if (!sync)
2367 goto out;
2368
2369 for_each_online_cpu(cpu) {
2370 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2371 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2372 flush_work(&stock->work);
2373 }
2374out:
f894ffa8 2375 put_online_cpus();
d38144b7
MH
2376}
2377
2378/*
2379 * Tries to drain stocked charges in other cpus. This function is asynchronous
2380 * and just put a work per cpu for draining localy on each cpu. Caller can
2381 * expects some charges will be back to res_counter later but cannot wait for
2382 * it.
2383 */
c0ff4b85 2384static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2385{
9f50fad6
MH
2386 /*
2387 * If someone calls draining, avoid adding more kworker runs.
2388 */
2389 if (!mutex_trylock(&percpu_charge_mutex))
2390 return;
c0ff4b85 2391 drain_all_stock(root_memcg, false);
9f50fad6 2392 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2393}
2394
2395/* This is a synchronous drain interface. */
c0ff4b85 2396static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2397{
2398 /* called when force_empty is called */
9f50fad6 2399 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2400 drain_all_stock(root_memcg, true);
9f50fad6 2401 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2402}
2403
711d3d2c
KH
2404/*
2405 * This function drains percpu counter value from DEAD cpu and
2406 * move it to local cpu. Note that this function can be preempted.
2407 */
c0ff4b85 2408static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2409{
2410 int i;
2411
c0ff4b85 2412 spin_lock(&memcg->pcp_counter_lock);
6104621d 2413 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2414 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2415
c0ff4b85
R
2416 per_cpu(memcg->stat->count[i], cpu) = 0;
2417 memcg->nocpu_base.count[i] += x;
711d3d2c 2418 }
e9f8974f 2419 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2420 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2421
c0ff4b85
R
2422 per_cpu(memcg->stat->events[i], cpu) = 0;
2423 memcg->nocpu_base.events[i] += x;
e9f8974f 2424 }
c0ff4b85 2425 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2426}
2427
0db0628d 2428static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2429 unsigned long action,
2430 void *hcpu)
2431{
2432 int cpu = (unsigned long)hcpu;
2433 struct memcg_stock_pcp *stock;
711d3d2c 2434 struct mem_cgroup *iter;
cdec2e42 2435
619d094b 2436 if (action == CPU_ONLINE)
1489ebad 2437 return NOTIFY_OK;
1489ebad 2438
d833049b 2439 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2440 return NOTIFY_OK;
711d3d2c 2441
9f3a0d09 2442 for_each_mem_cgroup(iter)
711d3d2c
KH
2443 mem_cgroup_drain_pcp_counter(iter, cpu);
2444
cdec2e42
KH
2445 stock = &per_cpu(memcg_stock, cpu);
2446 drain_stock(stock);
2447 return NOTIFY_OK;
2448}
2449
4b534334
KH
2450
2451/* See __mem_cgroup_try_charge() for details */
2452enum {
2453 CHARGE_OK, /* success */
2454 CHARGE_RETRY, /* need to retry but retry is not bad */
2455 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2456 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2457};
2458
c0ff4b85 2459static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2460 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2461 bool invoke_oom)
4b534334 2462{
7ec99d62 2463 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2464 struct mem_cgroup *mem_over_limit;
2465 struct res_counter *fail_res;
2466 unsigned long flags = 0;
2467 int ret;
2468
c0ff4b85 2469 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2470
2471 if (likely(!ret)) {
2472 if (!do_swap_account)
2473 return CHARGE_OK;
c0ff4b85 2474 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2475 if (likely(!ret))
2476 return CHARGE_OK;
2477
c0ff4b85 2478 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2479 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2480 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2481 } else
2482 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2483 /*
9221edb7
JW
2484 * Never reclaim on behalf of optional batching, retry with a
2485 * single page instead.
2486 */
4c9c5359 2487 if (nr_pages > min_pages)
4b534334
KH
2488 return CHARGE_RETRY;
2489
2490 if (!(gfp_mask & __GFP_WAIT))
2491 return CHARGE_WOULDBLOCK;
2492
4c9c5359
SS
2493 if (gfp_mask & __GFP_NORETRY)
2494 return CHARGE_NOMEM;
2495
5660048c 2496 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2497 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2498 return CHARGE_RETRY;
4b534334 2499 /*
19942822
JW
2500 * Even though the limit is exceeded at this point, reclaim
2501 * may have been able to free some pages. Retry the charge
2502 * before killing the task.
2503 *
2504 * Only for regular pages, though: huge pages are rather
2505 * unlikely to succeed so close to the limit, and we fall back
2506 * to regular pages anyway in case of failure.
4b534334 2507 */
4c9c5359 2508 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2509 return CHARGE_RETRY;
2510
2511 /*
2512 * At task move, charge accounts can be doubly counted. So, it's
2513 * better to wait until the end of task_move if something is going on.
2514 */
2515 if (mem_cgroup_wait_acct_move(mem_over_limit))
2516 return CHARGE_RETRY;
2517
3812c8c8
JW
2518 if (invoke_oom)
2519 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2520
3812c8c8 2521 return CHARGE_NOMEM;
4b534334
KH
2522}
2523
f817ed48 2524/*
38c5d72f
KH
2525 * __mem_cgroup_try_charge() does
2526 * 1. detect memcg to be charged against from passed *mm and *ptr,
2527 * 2. update res_counter
2528 * 3. call memory reclaim if necessary.
2529 *
2530 * In some special case, if the task is fatal, fatal_signal_pending() or
2531 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2532 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2533 * as possible without any hazards. 2: all pages should have a valid
2534 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2535 * pointer, that is treated as a charge to root_mem_cgroup.
2536 *
2537 * So __mem_cgroup_try_charge() will return
2538 * 0 ... on success, filling *ptr with a valid memcg pointer.
2539 * -ENOMEM ... charge failure because of resource limits.
2540 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2541 *
2542 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2543 * the oom-killer can be invoked.
8a9f3ccd 2544 */
f817ed48 2545static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2546 gfp_t gfp_mask,
7ec99d62 2547 unsigned int nr_pages,
c0ff4b85 2548 struct mem_cgroup **ptr,
7ec99d62 2549 bool oom)
8a9f3ccd 2550{
7ec99d62 2551 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2552 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2553 struct mem_cgroup *memcg = NULL;
4b534334 2554 int ret;
a636b327 2555
867578cb
KH
2556 /*
2557 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2558 * in system level. So, allow to go ahead dying process in addition to
2559 * MEMDIE process.
2560 */
2561 if (unlikely(test_thread_flag(TIF_MEMDIE)
2562 || fatal_signal_pending(current)))
2563 goto bypass;
a636b327 2564
8a9f3ccd 2565 /*
3be91277
HD
2566 * We always charge the cgroup the mm_struct belongs to.
2567 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2568 * thread group leader migrates. It's possible that mm is not
24467cac 2569 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2570 */
c0ff4b85 2571 if (!*ptr && !mm)
38c5d72f 2572 *ptr = root_mem_cgroup;
f75ca962 2573again:
c0ff4b85
R
2574 if (*ptr) { /* css should be a valid one */
2575 memcg = *ptr;
c0ff4b85 2576 if (mem_cgroup_is_root(memcg))
f75ca962 2577 goto done;
a0956d54 2578 if (consume_stock(memcg, nr_pages))
f75ca962 2579 goto done;
c0ff4b85 2580 css_get(&memcg->css);
4b534334 2581 } else {
f75ca962 2582 struct task_struct *p;
54595fe2 2583
f75ca962
KH
2584 rcu_read_lock();
2585 p = rcu_dereference(mm->owner);
f75ca962 2586 /*
ebb76ce1 2587 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2588 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2589 * race with swapoff. Then, we have small risk of mis-accouning.
2590 * But such kind of mis-account by race always happens because
2591 * we don't have cgroup_mutex(). It's overkill and we allo that
2592 * small race, here.
2593 * (*) swapoff at el will charge against mm-struct not against
2594 * task-struct. So, mm->owner can be NULL.
f75ca962 2595 */
c0ff4b85 2596 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2597 if (!memcg)
2598 memcg = root_mem_cgroup;
2599 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2600 rcu_read_unlock();
2601 goto done;
2602 }
a0956d54 2603 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2604 /*
2605 * It seems dagerous to access memcg without css_get().
2606 * But considering how consume_stok works, it's not
2607 * necessary. If consume_stock success, some charges
2608 * from this memcg are cached on this cpu. So, we
2609 * don't need to call css_get()/css_tryget() before
2610 * calling consume_stock().
2611 */
2612 rcu_read_unlock();
2613 goto done;
2614 }
2615 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2616 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2617 rcu_read_unlock();
2618 goto again;
2619 }
2620 rcu_read_unlock();
2621 }
8a9f3ccd 2622
4b534334 2623 do {
3812c8c8 2624 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2625
4b534334 2626 /* If killed, bypass charge */
f75ca962 2627 if (fatal_signal_pending(current)) {
c0ff4b85 2628 css_put(&memcg->css);
4b534334 2629 goto bypass;
f75ca962 2630 }
6d61ef40 2631
3812c8c8
JW
2632 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2633 nr_pages, invoke_oom);
4b534334
KH
2634 switch (ret) {
2635 case CHARGE_OK:
2636 break;
2637 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2638 batch = nr_pages;
c0ff4b85
R
2639 css_put(&memcg->css);
2640 memcg = NULL;
f75ca962 2641 goto again;
4b534334 2642 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2643 css_put(&memcg->css);
4b534334
KH
2644 goto nomem;
2645 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2646 if (!oom || invoke_oom) {
c0ff4b85 2647 css_put(&memcg->css);
867578cb 2648 goto nomem;
f75ca962 2649 }
4b534334
KH
2650 nr_oom_retries--;
2651 break;
66e1707b 2652 }
4b534334
KH
2653 } while (ret != CHARGE_OK);
2654
7ec99d62 2655 if (batch > nr_pages)
c0ff4b85
R
2656 refill_stock(memcg, batch - nr_pages);
2657 css_put(&memcg->css);
0c3e73e8 2658done:
c0ff4b85 2659 *ptr = memcg;
7a81b88c
KH
2660 return 0;
2661nomem:
c0ff4b85 2662 *ptr = NULL;
7a81b88c 2663 return -ENOMEM;
867578cb 2664bypass:
38c5d72f
KH
2665 *ptr = root_mem_cgroup;
2666 return -EINTR;
7a81b88c 2667}
8a9f3ccd 2668
a3032a2c
DN
2669/*
2670 * Somemtimes we have to undo a charge we got by try_charge().
2671 * This function is for that and do uncharge, put css's refcnt.
2672 * gotten by try_charge().
2673 */
c0ff4b85 2674static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2675 unsigned int nr_pages)
a3032a2c 2676{
c0ff4b85 2677 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2678 unsigned long bytes = nr_pages * PAGE_SIZE;
2679
c0ff4b85 2680 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2681 if (do_swap_account)
c0ff4b85 2682 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2683 }
854ffa8d
DN
2684}
2685
d01dd17f
KH
2686/*
2687 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2688 * This is useful when moving usage to parent cgroup.
2689 */
2690static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2691 unsigned int nr_pages)
2692{
2693 unsigned long bytes = nr_pages * PAGE_SIZE;
2694
2695 if (mem_cgroup_is_root(memcg))
2696 return;
2697
2698 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2699 if (do_swap_account)
2700 res_counter_uncharge_until(&memcg->memsw,
2701 memcg->memsw.parent, bytes);
2702}
2703
a3b2d692
KH
2704/*
2705 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2706 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2707 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2708 * called against removed memcg.)
a3b2d692
KH
2709 */
2710static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2711{
2712 struct cgroup_subsys_state *css;
2713
2714 /* ID 0 is unused ID */
2715 if (!id)
2716 return NULL;
2717 css = css_lookup(&mem_cgroup_subsys, id);
2718 if (!css)
2719 return NULL;
b2145145 2720 return mem_cgroup_from_css(css);
a3b2d692
KH
2721}
2722
e42d9d5d 2723struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2724{
c0ff4b85 2725 struct mem_cgroup *memcg = NULL;
3c776e64 2726 struct page_cgroup *pc;
a3b2d692 2727 unsigned short id;
b5a84319
KH
2728 swp_entry_t ent;
2729
3c776e64
DN
2730 VM_BUG_ON(!PageLocked(page));
2731
3c776e64 2732 pc = lookup_page_cgroup(page);
c0bd3f63 2733 lock_page_cgroup(pc);
a3b2d692 2734 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2735 memcg = pc->mem_cgroup;
2736 if (memcg && !css_tryget(&memcg->css))
2737 memcg = NULL;
e42d9d5d 2738 } else if (PageSwapCache(page)) {
3c776e64 2739 ent.val = page_private(page);
9fb4b7cc 2740 id = lookup_swap_cgroup_id(ent);
a3b2d692 2741 rcu_read_lock();
c0ff4b85
R
2742 memcg = mem_cgroup_lookup(id);
2743 if (memcg && !css_tryget(&memcg->css))
2744 memcg = NULL;
a3b2d692 2745 rcu_read_unlock();
3c776e64 2746 }
c0bd3f63 2747 unlock_page_cgroup(pc);
c0ff4b85 2748 return memcg;
b5a84319
KH
2749}
2750
c0ff4b85 2751static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2752 struct page *page,
7ec99d62 2753 unsigned int nr_pages,
9ce70c02
HD
2754 enum charge_type ctype,
2755 bool lrucare)
7a81b88c 2756{
ce587e65 2757 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2758 struct zone *uninitialized_var(zone);
fa9add64 2759 struct lruvec *lruvec;
9ce70c02 2760 bool was_on_lru = false;
b2402857 2761 bool anon;
9ce70c02 2762
ca3e0214 2763 lock_page_cgroup(pc);
90deb788 2764 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2765 /*
2766 * we don't need page_cgroup_lock about tail pages, becase they are not
2767 * accessed by any other context at this point.
2768 */
9ce70c02
HD
2769
2770 /*
2771 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2772 * may already be on some other mem_cgroup's LRU. Take care of it.
2773 */
2774 if (lrucare) {
2775 zone = page_zone(page);
2776 spin_lock_irq(&zone->lru_lock);
2777 if (PageLRU(page)) {
fa9add64 2778 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2779 ClearPageLRU(page);
fa9add64 2780 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2781 was_on_lru = true;
2782 }
2783 }
2784
c0ff4b85 2785 pc->mem_cgroup = memcg;
261fb61a
KH
2786 /*
2787 * We access a page_cgroup asynchronously without lock_page_cgroup().
2788 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2789 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2790 * before USED bit, we need memory barrier here.
2791 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2792 */
08e552c6 2793 smp_wmb();
b2402857 2794 SetPageCgroupUsed(pc);
3be91277 2795
9ce70c02
HD
2796 if (lrucare) {
2797 if (was_on_lru) {
fa9add64 2798 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2799 VM_BUG_ON(PageLRU(page));
2800 SetPageLRU(page);
fa9add64 2801 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2802 }
2803 spin_unlock_irq(&zone->lru_lock);
2804 }
2805
41326c17 2806 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2807 anon = true;
2808 else
2809 anon = false;
2810
b070e65c 2811 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2812 unlock_page_cgroup(pc);
9ce70c02 2813
430e4863 2814 /*
e883110a 2815 * "charge_statistics" updated event counter.
430e4863 2816 */
c0ff4b85 2817 memcg_check_events(memcg, page);
7a81b88c 2818}
66e1707b 2819
7cf27982
GC
2820static DEFINE_MUTEX(set_limit_mutex);
2821
7ae1e1d0
GC
2822#ifdef CONFIG_MEMCG_KMEM
2823static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2824{
2825 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2826 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2827}
2828
1f458cbf
GC
2829/*
2830 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2831 * in the memcg_cache_params struct.
2832 */
2833static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2834{
2835 struct kmem_cache *cachep;
2836
2837 VM_BUG_ON(p->is_root_cache);
2838 cachep = p->root_cache;
2839 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2840}
2841
749c5415 2842#ifdef CONFIG_SLABINFO
182446d0
TH
2843static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2844 struct cftype *cft, struct seq_file *m)
749c5415 2845{
182446d0 2846 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
749c5415
GC
2847 struct memcg_cache_params *params;
2848
2849 if (!memcg_can_account_kmem(memcg))
2850 return -EIO;
2851
2852 print_slabinfo_header(m);
2853
2854 mutex_lock(&memcg->slab_caches_mutex);
2855 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2856 cache_show(memcg_params_to_cache(params), m);
2857 mutex_unlock(&memcg->slab_caches_mutex);
2858
2859 return 0;
2860}
2861#endif
2862
7ae1e1d0
GC
2863static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2864{
2865 struct res_counter *fail_res;
2866 struct mem_cgroup *_memcg;
2867 int ret = 0;
2868 bool may_oom;
2869
2870 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2871 if (ret)
2872 return ret;
2873
2874 /*
2875 * Conditions under which we can wait for the oom_killer. Those are
2876 * the same conditions tested by the core page allocator
2877 */
2878 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2879
2880 _memcg = memcg;
2881 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2882 &_memcg, may_oom);
2883
2884 if (ret == -EINTR) {
2885 /*
2886 * __mem_cgroup_try_charge() chosed to bypass to root due to
2887 * OOM kill or fatal signal. Since our only options are to
2888 * either fail the allocation or charge it to this cgroup, do
2889 * it as a temporary condition. But we can't fail. From a
2890 * kmem/slab perspective, the cache has already been selected,
2891 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2892 * our minds.
2893 *
2894 * This condition will only trigger if the task entered
2895 * memcg_charge_kmem in a sane state, but was OOM-killed during
2896 * __mem_cgroup_try_charge() above. Tasks that were already
2897 * dying when the allocation triggers should have been already
2898 * directed to the root cgroup in memcontrol.h
2899 */
2900 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2901 if (do_swap_account)
2902 res_counter_charge_nofail(&memcg->memsw, size,
2903 &fail_res);
2904 ret = 0;
2905 } else if (ret)
2906 res_counter_uncharge(&memcg->kmem, size);
2907
2908 return ret;
2909}
2910
2911static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2912{
7ae1e1d0
GC
2913 res_counter_uncharge(&memcg->res, size);
2914 if (do_swap_account)
2915 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2916
2917 /* Not down to 0 */
2918 if (res_counter_uncharge(&memcg->kmem, size))
2919 return;
2920
10d5ebf4
LZ
2921 /*
2922 * Releases a reference taken in kmem_cgroup_css_offline in case
2923 * this last uncharge is racing with the offlining code or it is
2924 * outliving the memcg existence.
2925 *
2926 * The memory barrier imposed by test&clear is paired with the
2927 * explicit one in memcg_kmem_mark_dead().
2928 */
7de37682 2929 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 2930 css_put(&memcg->css);
7ae1e1d0
GC
2931}
2932
2633d7a0
GC
2933void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2934{
2935 if (!memcg)
2936 return;
2937
2938 mutex_lock(&memcg->slab_caches_mutex);
2939 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2940 mutex_unlock(&memcg->slab_caches_mutex);
2941}
2942
2943/*
2944 * helper for acessing a memcg's index. It will be used as an index in the
2945 * child cache array in kmem_cache, and also to derive its name. This function
2946 * will return -1 when this is not a kmem-limited memcg.
2947 */
2948int memcg_cache_id(struct mem_cgroup *memcg)
2949{
2950 return memcg ? memcg->kmemcg_id : -1;
2951}
2952
55007d84
GC
2953/*
2954 * This ends up being protected by the set_limit mutex, during normal
2955 * operation, because that is its main call site.
2956 *
2957 * But when we create a new cache, we can call this as well if its parent
2958 * is kmem-limited. That will have to hold set_limit_mutex as well.
2959 */
2960int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2961{
2962 int num, ret;
2963
2964 num = ida_simple_get(&kmem_limited_groups,
2965 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2966 if (num < 0)
2967 return num;
2968 /*
2969 * After this point, kmem_accounted (that we test atomically in
2970 * the beginning of this conditional), is no longer 0. This
2971 * guarantees only one process will set the following boolean
2972 * to true. We don't need test_and_set because we're protected
2973 * by the set_limit_mutex anyway.
2974 */
2975 memcg_kmem_set_activated(memcg);
2976
2977 ret = memcg_update_all_caches(num+1);
2978 if (ret) {
2979 ida_simple_remove(&kmem_limited_groups, num);
2980 memcg_kmem_clear_activated(memcg);
2981 return ret;
2982 }
2983
2984 memcg->kmemcg_id = num;
2985 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2986 mutex_init(&memcg->slab_caches_mutex);
2987 return 0;
2988}
2989
2990static size_t memcg_caches_array_size(int num_groups)
2991{
2992 ssize_t size;
2993 if (num_groups <= 0)
2994 return 0;
2995
2996 size = 2 * num_groups;
2997 if (size < MEMCG_CACHES_MIN_SIZE)
2998 size = MEMCG_CACHES_MIN_SIZE;
2999 else if (size > MEMCG_CACHES_MAX_SIZE)
3000 size = MEMCG_CACHES_MAX_SIZE;
3001
3002 return size;
3003}
3004
3005/*
3006 * We should update the current array size iff all caches updates succeed. This
3007 * can only be done from the slab side. The slab mutex needs to be held when
3008 * calling this.
3009 */
3010void memcg_update_array_size(int num)
3011{
3012 if (num > memcg_limited_groups_array_size)
3013 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3014}
3015
15cf17d2
KK
3016static void kmem_cache_destroy_work_func(struct work_struct *w);
3017
55007d84
GC
3018int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3019{
3020 struct memcg_cache_params *cur_params = s->memcg_params;
3021
3022 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3023
3024 if (num_groups > memcg_limited_groups_array_size) {
3025 int i;
3026 ssize_t size = memcg_caches_array_size(num_groups);
3027
3028 size *= sizeof(void *);
90c7a79c 3029 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84
GC
3030
3031 s->memcg_params = kzalloc(size, GFP_KERNEL);
3032 if (!s->memcg_params) {
3033 s->memcg_params = cur_params;
3034 return -ENOMEM;
3035 }
3036
3037 s->memcg_params->is_root_cache = true;
3038
3039 /*
3040 * There is the chance it will be bigger than
3041 * memcg_limited_groups_array_size, if we failed an allocation
3042 * in a cache, in which case all caches updated before it, will
3043 * have a bigger array.
3044 *
3045 * But if that is the case, the data after
3046 * memcg_limited_groups_array_size is certainly unused
3047 */
3048 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3049 if (!cur_params->memcg_caches[i])
3050 continue;
3051 s->memcg_params->memcg_caches[i] =
3052 cur_params->memcg_caches[i];
3053 }
3054
3055 /*
3056 * Ideally, we would wait until all caches succeed, and only
3057 * then free the old one. But this is not worth the extra
3058 * pointer per-cache we'd have to have for this.
3059 *
3060 * It is not a big deal if some caches are left with a size
3061 * bigger than the others. And all updates will reset this
3062 * anyway.
3063 */
3064 kfree(cur_params);
3065 }
3066 return 0;
3067}
3068
943a451a
GC
3069int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3070 struct kmem_cache *root_cache)
2633d7a0 3071{
90c7a79c 3072 size_t size;
2633d7a0
GC
3073
3074 if (!memcg_kmem_enabled())
3075 return 0;
3076
90c7a79c
AV
3077 if (!memcg) {
3078 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3079 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3080 } else
3081 size = sizeof(struct memcg_cache_params);
55007d84 3082
2633d7a0
GC
3083 s->memcg_params = kzalloc(size, GFP_KERNEL);
3084 if (!s->memcg_params)
3085 return -ENOMEM;
3086
943a451a 3087 if (memcg) {
2633d7a0 3088 s->memcg_params->memcg = memcg;
943a451a 3089 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3090 INIT_WORK(&s->memcg_params->destroy,
3091 kmem_cache_destroy_work_func);
4ba902b5
GC
3092 } else
3093 s->memcg_params->is_root_cache = true;
3094
2633d7a0
GC
3095 return 0;
3096}
3097
3098void memcg_release_cache(struct kmem_cache *s)
3099{
d7f25f8a
GC
3100 struct kmem_cache *root;
3101 struct mem_cgroup *memcg;
3102 int id;
3103
3104 /*
3105 * This happens, for instance, when a root cache goes away before we
3106 * add any memcg.
3107 */
3108 if (!s->memcg_params)
3109 return;
3110
3111 if (s->memcg_params->is_root_cache)
3112 goto out;
3113
3114 memcg = s->memcg_params->memcg;
3115 id = memcg_cache_id(memcg);
3116
3117 root = s->memcg_params->root_cache;
3118 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3119
3120 mutex_lock(&memcg->slab_caches_mutex);
3121 list_del(&s->memcg_params->list);
3122 mutex_unlock(&memcg->slab_caches_mutex);
3123
20f05310 3124 css_put(&memcg->css);
d7f25f8a 3125out:
2633d7a0
GC
3126 kfree(s->memcg_params);
3127}
3128
0e9d92f2
GC
3129/*
3130 * During the creation a new cache, we need to disable our accounting mechanism
3131 * altogether. This is true even if we are not creating, but rather just
3132 * enqueing new caches to be created.
3133 *
3134 * This is because that process will trigger allocations; some visible, like
3135 * explicit kmallocs to auxiliary data structures, name strings and internal
3136 * cache structures; some well concealed, like INIT_WORK() that can allocate
3137 * objects during debug.
3138 *
3139 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3140 * to it. This may not be a bounded recursion: since the first cache creation
3141 * failed to complete (waiting on the allocation), we'll just try to create the
3142 * cache again, failing at the same point.
3143 *
3144 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3145 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3146 * inside the following two functions.
3147 */
3148static inline void memcg_stop_kmem_account(void)
3149{
3150 VM_BUG_ON(!current->mm);
3151 current->memcg_kmem_skip_account++;
3152}
3153
3154static inline void memcg_resume_kmem_account(void)
3155{
3156 VM_BUG_ON(!current->mm);
3157 current->memcg_kmem_skip_account--;
3158}
3159
1f458cbf
GC
3160static void kmem_cache_destroy_work_func(struct work_struct *w)
3161{
3162 struct kmem_cache *cachep;
3163 struct memcg_cache_params *p;
3164
3165 p = container_of(w, struct memcg_cache_params, destroy);
3166
3167 cachep = memcg_params_to_cache(p);
3168
22933152
GC
3169 /*
3170 * If we get down to 0 after shrink, we could delete right away.
3171 * However, memcg_release_pages() already puts us back in the workqueue
3172 * in that case. If we proceed deleting, we'll get a dangling
3173 * reference, and removing the object from the workqueue in that case
3174 * is unnecessary complication. We are not a fast path.
3175 *
3176 * Note that this case is fundamentally different from racing with
3177 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3178 * kmem_cache_shrink, not only we would be reinserting a dead cache
3179 * into the queue, but doing so from inside the worker racing to
3180 * destroy it.
3181 *
3182 * So if we aren't down to zero, we'll just schedule a worker and try
3183 * again
3184 */
3185 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3186 kmem_cache_shrink(cachep);
3187 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3188 return;
3189 } else
1f458cbf
GC
3190 kmem_cache_destroy(cachep);
3191}
3192
3193void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3194{
3195 if (!cachep->memcg_params->dead)
3196 return;
3197
22933152
GC
3198 /*
3199 * There are many ways in which we can get here.
3200 *
3201 * We can get to a memory-pressure situation while the delayed work is
3202 * still pending to run. The vmscan shrinkers can then release all
3203 * cache memory and get us to destruction. If this is the case, we'll
3204 * be executed twice, which is a bug (the second time will execute over
3205 * bogus data). In this case, cancelling the work should be fine.
3206 *
3207 * But we can also get here from the worker itself, if
3208 * kmem_cache_shrink is enough to shake all the remaining objects and
3209 * get the page count to 0. In this case, we'll deadlock if we try to
3210 * cancel the work (the worker runs with an internal lock held, which
3211 * is the same lock we would hold for cancel_work_sync().)
3212 *
3213 * Since we can't possibly know who got us here, just refrain from
3214 * running if there is already work pending
3215 */
3216 if (work_pending(&cachep->memcg_params->destroy))
3217 return;
1f458cbf
GC
3218 /*
3219 * We have to defer the actual destroying to a workqueue, because
3220 * we might currently be in a context that cannot sleep.
3221 */
3222 schedule_work(&cachep->memcg_params->destroy);
3223}
3224
d9c10ddd
MH
3225/*
3226 * This lock protects updaters, not readers. We want readers to be as fast as
3227 * they can, and they will either see NULL or a valid cache value. Our model
3228 * allow them to see NULL, in which case the root memcg will be selected.
3229 *
3230 * We need this lock because multiple allocations to the same cache from a non
3231 * will span more than one worker. Only one of them can create the cache.
3232 */
3233static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3234
d9c10ddd
MH
3235/*
3236 * Called with memcg_cache_mutex held
3237 */
d7f25f8a
GC
3238static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3239 struct kmem_cache *s)
3240{
d7f25f8a 3241 struct kmem_cache *new;
d9c10ddd 3242 static char *tmp_name = NULL;
d7f25f8a 3243
d9c10ddd
MH
3244 lockdep_assert_held(&memcg_cache_mutex);
3245
3246 /*
3247 * kmem_cache_create_memcg duplicates the given name and
3248 * cgroup_name for this name requires RCU context.
3249 * This static temporary buffer is used to prevent from
3250 * pointless shortliving allocation.
3251 */
3252 if (!tmp_name) {
3253 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3254 if (!tmp_name)
3255 return NULL;
3256 }
3257
3258 rcu_read_lock();
3259 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3260 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3261 rcu_read_unlock();
d7f25f8a 3262
d9c10ddd 3263 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3264 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3265
d79923fa
GC
3266 if (new)
3267 new->allocflags |= __GFP_KMEMCG;
3268
d7f25f8a
GC
3269 return new;
3270}
3271
d7f25f8a
GC
3272static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3273 struct kmem_cache *cachep)
3274{
3275 struct kmem_cache *new_cachep;
3276 int idx;
3277
3278 BUG_ON(!memcg_can_account_kmem(memcg));
3279
3280 idx = memcg_cache_id(memcg);
3281
3282 mutex_lock(&memcg_cache_mutex);
3283 new_cachep = cachep->memcg_params->memcg_caches[idx];
20f05310
LZ
3284 if (new_cachep) {
3285 css_put(&memcg->css);
d7f25f8a 3286 goto out;
20f05310 3287 }
d7f25f8a
GC
3288
3289 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3290 if (new_cachep == NULL) {
3291 new_cachep = cachep;
20f05310 3292 css_put(&memcg->css);
d7f25f8a
GC
3293 goto out;
3294 }
3295
1f458cbf 3296 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3297
3298 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3299 /*
3300 * the readers won't lock, make sure everybody sees the updated value,
3301 * so they won't put stuff in the queue again for no reason
3302 */
3303 wmb();
3304out:
3305 mutex_unlock(&memcg_cache_mutex);
3306 return new_cachep;
3307}
3308
7cf27982
GC
3309void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3310{
3311 struct kmem_cache *c;
3312 int i;
3313
3314 if (!s->memcg_params)
3315 return;
3316 if (!s->memcg_params->is_root_cache)
3317 return;
3318
3319 /*
3320 * If the cache is being destroyed, we trust that there is no one else
3321 * requesting objects from it. Even if there are, the sanity checks in
3322 * kmem_cache_destroy should caught this ill-case.
3323 *
3324 * Still, we don't want anyone else freeing memcg_caches under our
3325 * noses, which can happen if a new memcg comes to life. As usual,
3326 * we'll take the set_limit_mutex to protect ourselves against this.
3327 */
3328 mutex_lock(&set_limit_mutex);
3329 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3330 c = s->memcg_params->memcg_caches[i];
3331 if (!c)
3332 continue;
3333
3334 /*
3335 * We will now manually delete the caches, so to avoid races
3336 * we need to cancel all pending destruction workers and
3337 * proceed with destruction ourselves.
3338 *
3339 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3340 * and that could spawn the workers again: it is likely that
3341 * the cache still have active pages until this very moment.
3342 * This would lead us back to mem_cgroup_destroy_cache.
3343 *
3344 * But that will not execute at all if the "dead" flag is not
3345 * set, so flip it down to guarantee we are in control.
3346 */
3347 c->memcg_params->dead = false;
22933152 3348 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3349 kmem_cache_destroy(c);
3350 }
3351 mutex_unlock(&set_limit_mutex);
3352}
3353
d7f25f8a
GC
3354struct create_work {
3355 struct mem_cgroup *memcg;
3356 struct kmem_cache *cachep;
3357 struct work_struct work;
3358};
3359
1f458cbf
GC
3360static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3361{
3362 struct kmem_cache *cachep;
3363 struct memcg_cache_params *params;
3364
3365 if (!memcg_kmem_is_active(memcg))
3366 return;
3367
3368 mutex_lock(&memcg->slab_caches_mutex);
3369 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3370 cachep = memcg_params_to_cache(params);
3371 cachep->memcg_params->dead = true;
1f458cbf
GC
3372 schedule_work(&cachep->memcg_params->destroy);
3373 }
3374 mutex_unlock(&memcg->slab_caches_mutex);
3375}
3376
d7f25f8a
GC
3377static void memcg_create_cache_work_func(struct work_struct *w)
3378{
3379 struct create_work *cw;
3380
3381 cw = container_of(w, struct create_work, work);
3382 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3383 kfree(cw);
3384}
3385
3386/*
3387 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3388 */
0e9d92f2
GC
3389static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3390 struct kmem_cache *cachep)
d7f25f8a
GC
3391{
3392 struct create_work *cw;
3393
3394 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3395 if (cw == NULL) {
3396 css_put(&memcg->css);
d7f25f8a
GC
3397 return;
3398 }
3399
3400 cw->memcg = memcg;
3401 cw->cachep = cachep;
3402
3403 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3404 schedule_work(&cw->work);
3405}
3406
0e9d92f2
GC
3407static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3408 struct kmem_cache *cachep)
3409{
3410 /*
3411 * We need to stop accounting when we kmalloc, because if the
3412 * corresponding kmalloc cache is not yet created, the first allocation
3413 * in __memcg_create_cache_enqueue will recurse.
3414 *
3415 * However, it is better to enclose the whole function. Depending on
3416 * the debugging options enabled, INIT_WORK(), for instance, can
3417 * trigger an allocation. This too, will make us recurse. Because at
3418 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3419 * the safest choice is to do it like this, wrapping the whole function.
3420 */
3421 memcg_stop_kmem_account();
3422 __memcg_create_cache_enqueue(memcg, cachep);
3423 memcg_resume_kmem_account();
3424}
d7f25f8a
GC
3425/*
3426 * Return the kmem_cache we're supposed to use for a slab allocation.
3427 * We try to use the current memcg's version of the cache.
3428 *
3429 * If the cache does not exist yet, if we are the first user of it,
3430 * we either create it immediately, if possible, or create it asynchronously
3431 * in a workqueue.
3432 * In the latter case, we will let the current allocation go through with
3433 * the original cache.
3434 *
3435 * Can't be called in interrupt context or from kernel threads.
3436 * This function needs to be called with rcu_read_lock() held.
3437 */
3438struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3439 gfp_t gfp)
3440{
3441 struct mem_cgroup *memcg;
3442 int idx;
3443
3444 VM_BUG_ON(!cachep->memcg_params);
3445 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3446
0e9d92f2
GC
3447 if (!current->mm || current->memcg_kmem_skip_account)
3448 return cachep;
3449
d7f25f8a
GC
3450 rcu_read_lock();
3451 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3452
3453 if (!memcg_can_account_kmem(memcg))
ca0dde97 3454 goto out;
d7f25f8a
GC
3455
3456 idx = memcg_cache_id(memcg);
3457
3458 /*
3459 * barrier to mare sure we're always seeing the up to date value. The
3460 * code updating memcg_caches will issue a write barrier to match this.
3461 */
3462 read_barrier_depends();
ca0dde97
LZ
3463 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3464 cachep = cachep->memcg_params->memcg_caches[idx];
3465 goto out;
d7f25f8a
GC
3466 }
3467
ca0dde97
LZ
3468 /* The corresponding put will be done in the workqueue. */
3469 if (!css_tryget(&memcg->css))
3470 goto out;
3471 rcu_read_unlock();
3472
3473 /*
3474 * If we are in a safe context (can wait, and not in interrupt
3475 * context), we could be be predictable and return right away.
3476 * This would guarantee that the allocation being performed
3477 * already belongs in the new cache.
3478 *
3479 * However, there are some clashes that can arrive from locking.
3480 * For instance, because we acquire the slab_mutex while doing
3481 * kmem_cache_dup, this means no further allocation could happen
3482 * with the slab_mutex held.
3483 *
3484 * Also, because cache creation issue get_online_cpus(), this
3485 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3486 * that ends up reversed during cpu hotplug. (cpuset allocates
3487 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3488 * better to defer everything.
3489 */
3490 memcg_create_cache_enqueue(memcg, cachep);
3491 return cachep;
3492out:
3493 rcu_read_unlock();
3494 return cachep;
d7f25f8a
GC
3495}
3496EXPORT_SYMBOL(__memcg_kmem_get_cache);
3497
7ae1e1d0
GC
3498/*
3499 * We need to verify if the allocation against current->mm->owner's memcg is
3500 * possible for the given order. But the page is not allocated yet, so we'll
3501 * need a further commit step to do the final arrangements.
3502 *
3503 * It is possible for the task to switch cgroups in this mean time, so at
3504 * commit time, we can't rely on task conversion any longer. We'll then use
3505 * the handle argument to return to the caller which cgroup we should commit
3506 * against. We could also return the memcg directly and avoid the pointer
3507 * passing, but a boolean return value gives better semantics considering
3508 * the compiled-out case as well.
3509 *
3510 * Returning true means the allocation is possible.
3511 */
3512bool
3513__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3514{
3515 struct mem_cgroup *memcg;
3516 int ret;
3517
3518 *_memcg = NULL;
6d42c232
GC
3519
3520 /*
3521 * Disabling accounting is only relevant for some specific memcg
3522 * internal allocations. Therefore we would initially not have such
3523 * check here, since direct calls to the page allocator that are marked
3524 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3525 * concerned with cache allocations, and by having this test at
3526 * memcg_kmem_get_cache, we are already able to relay the allocation to
3527 * the root cache and bypass the memcg cache altogether.
3528 *
3529 * There is one exception, though: the SLUB allocator does not create
3530 * large order caches, but rather service large kmallocs directly from
3531 * the page allocator. Therefore, the following sequence when backed by
3532 * the SLUB allocator:
3533 *
f894ffa8
AM
3534 * memcg_stop_kmem_account();
3535 * kmalloc(<large_number>)
3536 * memcg_resume_kmem_account();
6d42c232
GC
3537 *
3538 * would effectively ignore the fact that we should skip accounting,
3539 * since it will drive us directly to this function without passing
3540 * through the cache selector memcg_kmem_get_cache. Such large
3541 * allocations are extremely rare but can happen, for instance, for the
3542 * cache arrays. We bring this test here.
3543 */
3544 if (!current->mm || current->memcg_kmem_skip_account)
3545 return true;
3546
7ae1e1d0
GC
3547 memcg = try_get_mem_cgroup_from_mm(current->mm);
3548
3549 /*
3550 * very rare case described in mem_cgroup_from_task. Unfortunately there
3551 * isn't much we can do without complicating this too much, and it would
3552 * be gfp-dependent anyway. Just let it go
3553 */
3554 if (unlikely(!memcg))
3555 return true;
3556
3557 if (!memcg_can_account_kmem(memcg)) {
3558 css_put(&memcg->css);
3559 return true;
3560 }
3561
7ae1e1d0
GC
3562 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3563 if (!ret)
3564 *_memcg = memcg;
7ae1e1d0
GC
3565
3566 css_put(&memcg->css);
3567 return (ret == 0);
3568}
3569
3570void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3571 int order)
3572{
3573 struct page_cgroup *pc;
3574
3575 VM_BUG_ON(mem_cgroup_is_root(memcg));
3576
3577 /* The page allocation failed. Revert */
3578 if (!page) {
3579 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3580 return;
3581 }
3582
3583 pc = lookup_page_cgroup(page);
3584 lock_page_cgroup(pc);
3585 pc->mem_cgroup = memcg;
3586 SetPageCgroupUsed(pc);
3587 unlock_page_cgroup(pc);
3588}
3589
3590void __memcg_kmem_uncharge_pages(struct page *page, int order)
3591{
3592 struct mem_cgroup *memcg = NULL;
3593 struct page_cgroup *pc;
3594
3595
3596 pc = lookup_page_cgroup(page);
3597 /*
3598 * Fast unlocked return. Theoretically might have changed, have to
3599 * check again after locking.
3600 */
3601 if (!PageCgroupUsed(pc))
3602 return;
3603
3604 lock_page_cgroup(pc);
3605 if (PageCgroupUsed(pc)) {
3606 memcg = pc->mem_cgroup;
3607 ClearPageCgroupUsed(pc);
3608 }
3609 unlock_page_cgroup(pc);
3610
3611 /*
3612 * We trust that only if there is a memcg associated with the page, it
3613 * is a valid allocation
3614 */
3615 if (!memcg)
3616 return;
3617
3618 VM_BUG_ON(mem_cgroup_is_root(memcg));
3619 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3620}
1f458cbf
GC
3621#else
3622static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3623{
3624}
7ae1e1d0
GC
3625#endif /* CONFIG_MEMCG_KMEM */
3626
ca3e0214
KH
3627#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3628
a0db00fc 3629#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3630/*
3631 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3632 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3633 * charge/uncharge will be never happen and move_account() is done under
3634 * compound_lock(), so we don't have to take care of races.
ca3e0214 3635 */
e94c8a9c 3636void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3637{
3638 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3639 struct page_cgroup *pc;
b070e65c 3640 struct mem_cgroup *memcg;
e94c8a9c 3641 int i;
ca3e0214 3642
3d37c4a9
KH
3643 if (mem_cgroup_disabled())
3644 return;
b070e65c
DR
3645
3646 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3647 for (i = 1; i < HPAGE_PMD_NR; i++) {
3648 pc = head_pc + i;
b070e65c 3649 pc->mem_cgroup = memcg;
e94c8a9c 3650 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3651 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3652 }
b070e65c
DR
3653 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3654 HPAGE_PMD_NR);
ca3e0214 3655}
12d27107 3656#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3657
3ea67d06
SZ
3658static inline
3659void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3660 struct mem_cgroup *to,
3661 unsigned int nr_pages,
3662 enum mem_cgroup_stat_index idx)
3663{
3664 /* Update stat data for mem_cgroup */
3665 preempt_disable();
3666 WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
3667 __this_cpu_add(from->stat->count[idx], -nr_pages);
3668 __this_cpu_add(to->stat->count[idx], nr_pages);
3669 preempt_enable();
3670}
3671
f817ed48 3672/**
de3638d9 3673 * mem_cgroup_move_account - move account of the page
5564e88b 3674 * @page: the page
7ec99d62 3675 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3676 * @pc: page_cgroup of the page.
3677 * @from: mem_cgroup which the page is moved from.
3678 * @to: mem_cgroup which the page is moved to. @from != @to.
3679 *
3680 * The caller must confirm following.
08e552c6 3681 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3682 * - compound_lock is held when nr_pages > 1
f817ed48 3683 *
2f3479b1
KH
3684 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3685 * from old cgroup.
f817ed48 3686 */
7ec99d62
JW
3687static int mem_cgroup_move_account(struct page *page,
3688 unsigned int nr_pages,
3689 struct page_cgroup *pc,
3690 struct mem_cgroup *from,
2f3479b1 3691 struct mem_cgroup *to)
f817ed48 3692{
de3638d9
JW
3693 unsigned long flags;
3694 int ret;
b2402857 3695 bool anon = PageAnon(page);
987eba66 3696
f817ed48 3697 VM_BUG_ON(from == to);
5564e88b 3698 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3699 /*
3700 * The page is isolated from LRU. So, collapse function
3701 * will not handle this page. But page splitting can happen.
3702 * Do this check under compound_page_lock(). The caller should
3703 * hold it.
3704 */
3705 ret = -EBUSY;
7ec99d62 3706 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3707 goto out;
3708
3709 lock_page_cgroup(pc);
3710
3711 ret = -EINVAL;
3712 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3713 goto unlock;
3714
312734c0 3715 move_lock_mem_cgroup(from, &flags);
f817ed48 3716
3ea67d06
SZ
3717 if (!anon && page_mapped(page))
3718 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3719 MEM_CGROUP_STAT_FILE_MAPPED);
3720
3721 if (PageWriteback(page))
3722 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3723 MEM_CGROUP_STAT_WRITEBACK);
3724
b070e65c 3725 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3726
854ffa8d 3727 /* caller should have done css_get */
08e552c6 3728 pc->mem_cgroup = to;
b070e65c 3729 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3730 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3731 ret = 0;
3732unlock:
57f9fd7d 3733 unlock_page_cgroup(pc);
d2265e6f
KH
3734 /*
3735 * check events
3736 */
5564e88b
JW
3737 memcg_check_events(to, page);
3738 memcg_check_events(from, page);
de3638d9 3739out:
f817ed48
KH
3740 return ret;
3741}
3742
2ef37d3f
MH
3743/**
3744 * mem_cgroup_move_parent - moves page to the parent group
3745 * @page: the page to move
3746 * @pc: page_cgroup of the page
3747 * @child: page's cgroup
3748 *
3749 * move charges to its parent or the root cgroup if the group has no
3750 * parent (aka use_hierarchy==0).
3751 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3752 * mem_cgroup_move_account fails) the failure is always temporary and
3753 * it signals a race with a page removal/uncharge or migration. In the
3754 * first case the page is on the way out and it will vanish from the LRU
3755 * on the next attempt and the call should be retried later.
3756 * Isolation from the LRU fails only if page has been isolated from
3757 * the LRU since we looked at it and that usually means either global
3758 * reclaim or migration going on. The page will either get back to the
3759 * LRU or vanish.
3760 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3761 * (!PageCgroupUsed) or moved to a different group. The page will
3762 * disappear in the next attempt.
f817ed48 3763 */
5564e88b
JW
3764static int mem_cgroup_move_parent(struct page *page,
3765 struct page_cgroup *pc,
6068bf01 3766 struct mem_cgroup *child)
f817ed48 3767{
f817ed48 3768 struct mem_cgroup *parent;
7ec99d62 3769 unsigned int nr_pages;
4be4489f 3770 unsigned long uninitialized_var(flags);
f817ed48
KH
3771 int ret;
3772
d8423011 3773 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3774
57f9fd7d
DN
3775 ret = -EBUSY;
3776 if (!get_page_unless_zero(page))
3777 goto out;
3778 if (isolate_lru_page(page))
3779 goto put;
52dbb905 3780
7ec99d62 3781 nr_pages = hpage_nr_pages(page);
08e552c6 3782
cc926f78
KH
3783 parent = parent_mem_cgroup(child);
3784 /*
3785 * If no parent, move charges to root cgroup.
3786 */
3787 if (!parent)
3788 parent = root_mem_cgroup;
f817ed48 3789
2ef37d3f
MH
3790 if (nr_pages > 1) {
3791 VM_BUG_ON(!PageTransHuge(page));
987eba66 3792 flags = compound_lock_irqsave(page);
2ef37d3f 3793 }
987eba66 3794
cc926f78 3795 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3796 pc, child, parent);
cc926f78
KH
3797 if (!ret)
3798 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3799
7ec99d62 3800 if (nr_pages > 1)
987eba66 3801 compound_unlock_irqrestore(page, flags);
08e552c6 3802 putback_lru_page(page);
57f9fd7d 3803put:
40d58138 3804 put_page(page);
57f9fd7d 3805out:
f817ed48
KH
3806 return ret;
3807}
3808
7a81b88c
KH
3809/*
3810 * Charge the memory controller for page usage.
3811 * Return
3812 * 0 if the charge was successful
3813 * < 0 if the cgroup is over its limit
3814 */
3815static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3816 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3817{
c0ff4b85 3818 struct mem_cgroup *memcg = NULL;
7ec99d62 3819 unsigned int nr_pages = 1;
8493ae43 3820 bool oom = true;
7a81b88c 3821 int ret;
ec168510 3822
37c2ac78 3823 if (PageTransHuge(page)) {
7ec99d62 3824 nr_pages <<= compound_order(page);
37c2ac78 3825 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3826 /*
3827 * Never OOM-kill a process for a huge page. The
3828 * fault handler will fall back to regular pages.
3829 */
3830 oom = false;
37c2ac78 3831 }
7a81b88c 3832
c0ff4b85 3833 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3834 if (ret == -ENOMEM)
7a81b88c 3835 return ret;
ce587e65 3836 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3837 return 0;
8a9f3ccd
BS
3838}
3839
7a81b88c
KH
3840int mem_cgroup_newpage_charge(struct page *page,
3841 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3842{
f8d66542 3843 if (mem_cgroup_disabled())
cede86ac 3844 return 0;
7a0524cf
JW
3845 VM_BUG_ON(page_mapped(page));
3846 VM_BUG_ON(page->mapping && !PageAnon(page));
3847 VM_BUG_ON(!mm);
217bc319 3848 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3849 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3850}
3851
54595fe2
KH
3852/*
3853 * While swap-in, try_charge -> commit or cancel, the page is locked.
3854 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3855 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3856 * "commit()" or removed by "cancel()"
3857 */
0435a2fd
JW
3858static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3859 struct page *page,
3860 gfp_t mask,
3861 struct mem_cgroup **memcgp)
8c7c6e34 3862{
c0ff4b85 3863 struct mem_cgroup *memcg;
90deb788 3864 struct page_cgroup *pc;
54595fe2 3865 int ret;
8c7c6e34 3866
90deb788
JW
3867 pc = lookup_page_cgroup(page);
3868 /*
3869 * Every swap fault against a single page tries to charge the
3870 * page, bail as early as possible. shmem_unuse() encounters
3871 * already charged pages, too. The USED bit is protected by
3872 * the page lock, which serializes swap cache removal, which
3873 * in turn serializes uncharging.
3874 */
3875 if (PageCgroupUsed(pc))
3876 return 0;
8c7c6e34
KH
3877 if (!do_swap_account)
3878 goto charge_cur_mm;
c0ff4b85
R
3879 memcg = try_get_mem_cgroup_from_page(page);
3880 if (!memcg)
54595fe2 3881 goto charge_cur_mm;
72835c86
JW
3882 *memcgp = memcg;
3883 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3884 css_put(&memcg->css);
38c5d72f
KH
3885 if (ret == -EINTR)
3886 ret = 0;
54595fe2 3887 return ret;
8c7c6e34 3888charge_cur_mm:
38c5d72f
KH
3889 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3890 if (ret == -EINTR)
3891 ret = 0;
3892 return ret;
8c7c6e34
KH
3893}
3894
0435a2fd
JW
3895int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3896 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3897{
3898 *memcgp = NULL;
3899 if (mem_cgroup_disabled())
3900 return 0;
bdf4f4d2
JW
3901 /*
3902 * A racing thread's fault, or swapoff, may have already
3903 * updated the pte, and even removed page from swap cache: in
3904 * those cases unuse_pte()'s pte_same() test will fail; but
3905 * there's also a KSM case which does need to charge the page.
3906 */
3907 if (!PageSwapCache(page)) {
3908 int ret;
3909
3910 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3911 if (ret == -EINTR)
3912 ret = 0;
3913 return ret;
3914 }
0435a2fd
JW
3915 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3916}
3917
827a03d2
JW
3918void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3919{
3920 if (mem_cgroup_disabled())
3921 return;
3922 if (!memcg)
3923 return;
3924 __mem_cgroup_cancel_charge(memcg, 1);
3925}
3926
83aae4c7 3927static void
72835c86 3928__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3929 enum charge_type ctype)
7a81b88c 3930{
f8d66542 3931 if (mem_cgroup_disabled())
7a81b88c 3932 return;
72835c86 3933 if (!memcg)
7a81b88c 3934 return;
5a6475a4 3935
ce587e65 3936 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3937 /*
3938 * Now swap is on-memory. This means this page may be
3939 * counted both as mem and swap....double count.
03f3c433
KH
3940 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3941 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3942 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3943 */
03f3c433 3944 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3945 swp_entry_t ent = {.val = page_private(page)};
86493009 3946 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3947 }
7a81b88c
KH
3948}
3949
72835c86
JW
3950void mem_cgroup_commit_charge_swapin(struct page *page,
3951 struct mem_cgroup *memcg)
83aae4c7 3952{
72835c86 3953 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3954 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3955}
3956
827a03d2
JW
3957int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3958 gfp_t gfp_mask)
7a81b88c 3959{
827a03d2
JW
3960 struct mem_cgroup *memcg = NULL;
3961 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3962 int ret;
3963
f8d66542 3964 if (mem_cgroup_disabled())
827a03d2
JW
3965 return 0;
3966 if (PageCompound(page))
3967 return 0;
3968
827a03d2
JW
3969 if (!PageSwapCache(page))
3970 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3971 else { /* page is swapcache/shmem */
0435a2fd
JW
3972 ret = __mem_cgroup_try_charge_swapin(mm, page,
3973 gfp_mask, &memcg);
827a03d2
JW
3974 if (!ret)
3975 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3976 }
3977 return ret;
7a81b88c
KH
3978}
3979
c0ff4b85 3980static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3981 unsigned int nr_pages,
3982 const enum charge_type ctype)
569b846d
KH
3983{
3984 struct memcg_batch_info *batch = NULL;
3985 bool uncharge_memsw = true;
7ec99d62 3986
569b846d
KH
3987 /* If swapout, usage of swap doesn't decrease */
3988 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3989 uncharge_memsw = false;
569b846d
KH
3990
3991 batch = &current->memcg_batch;
3992 /*
3993 * In usual, we do css_get() when we remember memcg pointer.
3994 * But in this case, we keep res->usage until end of a series of
3995 * uncharges. Then, it's ok to ignore memcg's refcnt.
3996 */
3997 if (!batch->memcg)
c0ff4b85 3998 batch->memcg = memcg;
3c11ecf4
KH
3999 /*
4000 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4001 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4002 * the same cgroup and we have chance to coalesce uncharges.
4003 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4004 * because we want to do uncharge as soon as possible.
4005 */
4006
4007 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4008 goto direct_uncharge;
4009
7ec99d62 4010 if (nr_pages > 1)
ec168510
AA
4011 goto direct_uncharge;
4012
569b846d
KH
4013 /*
4014 * In typical case, batch->memcg == mem. This means we can
4015 * merge a series of uncharges to an uncharge of res_counter.
4016 * If not, we uncharge res_counter ony by one.
4017 */
c0ff4b85 4018 if (batch->memcg != memcg)
569b846d
KH
4019 goto direct_uncharge;
4020 /* remember freed charge and uncharge it later */
7ffd4ca7 4021 batch->nr_pages++;
569b846d 4022 if (uncharge_memsw)
7ffd4ca7 4023 batch->memsw_nr_pages++;
569b846d
KH
4024 return;
4025direct_uncharge:
c0ff4b85 4026 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4027 if (uncharge_memsw)
c0ff4b85
R
4028 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4029 if (unlikely(batch->memcg != memcg))
4030 memcg_oom_recover(memcg);
569b846d 4031}
7a81b88c 4032
8a9f3ccd 4033/*
69029cd5 4034 * uncharge if !page_mapped(page)
8a9f3ccd 4035 */
8c7c6e34 4036static struct mem_cgroup *
0030f535
JW
4037__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4038 bool end_migration)
8a9f3ccd 4039{
c0ff4b85 4040 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4041 unsigned int nr_pages = 1;
4042 struct page_cgroup *pc;
b2402857 4043 bool anon;
8a9f3ccd 4044
f8d66542 4045 if (mem_cgroup_disabled())
8c7c6e34 4046 return NULL;
4077960e 4047
37c2ac78 4048 if (PageTransHuge(page)) {
7ec99d62 4049 nr_pages <<= compound_order(page);
37c2ac78
AA
4050 VM_BUG_ON(!PageTransHuge(page));
4051 }
8697d331 4052 /*
3c541e14 4053 * Check if our page_cgroup is valid
8697d331 4054 */
52d4b9ac 4055 pc = lookup_page_cgroup(page);
cfa44946 4056 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4057 return NULL;
b9c565d5 4058
52d4b9ac 4059 lock_page_cgroup(pc);
d13d1443 4060
c0ff4b85 4061 memcg = pc->mem_cgroup;
8c7c6e34 4062
d13d1443
KH
4063 if (!PageCgroupUsed(pc))
4064 goto unlock_out;
4065
b2402857
KH
4066 anon = PageAnon(page);
4067
d13d1443 4068 switch (ctype) {
41326c17 4069 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4070 /*
4071 * Generally PageAnon tells if it's the anon statistics to be
4072 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4073 * used before page reached the stage of being marked PageAnon.
4074 */
b2402857
KH
4075 anon = true;
4076 /* fallthrough */
8a9478ca 4077 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4078 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4079 if (page_mapped(page))
4080 goto unlock_out;
4081 /*
4082 * Pages under migration may not be uncharged. But
4083 * end_migration() /must/ be the one uncharging the
4084 * unused post-migration page and so it has to call
4085 * here with the migration bit still set. See the
4086 * res_counter handling below.
4087 */
4088 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4089 goto unlock_out;
4090 break;
4091 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4092 if (!PageAnon(page)) { /* Shared memory */
4093 if (page->mapping && !page_is_file_cache(page))
4094 goto unlock_out;
4095 } else if (page_mapped(page)) /* Anon */
4096 goto unlock_out;
4097 break;
4098 default:
4099 break;
52d4b9ac 4100 }
d13d1443 4101
b070e65c 4102 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4103
52d4b9ac 4104 ClearPageCgroupUsed(pc);
544122e5
KH
4105 /*
4106 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4107 * freed from LRU. This is safe because uncharged page is expected not
4108 * to be reused (freed soon). Exception is SwapCache, it's handled by
4109 * special functions.
4110 */
b9c565d5 4111
52d4b9ac 4112 unlock_page_cgroup(pc);
f75ca962 4113 /*
c0ff4b85 4114 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4115 * will never be freed, so it's safe to call css_get().
f75ca962 4116 */
c0ff4b85 4117 memcg_check_events(memcg, page);
f75ca962 4118 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4119 mem_cgroup_swap_statistics(memcg, true);
4050377b 4120 css_get(&memcg->css);
f75ca962 4121 }
0030f535
JW
4122 /*
4123 * Migration does not charge the res_counter for the
4124 * replacement page, so leave it alone when phasing out the
4125 * page that is unused after the migration.
4126 */
4127 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4128 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4129
c0ff4b85 4130 return memcg;
d13d1443
KH
4131
4132unlock_out:
4133 unlock_page_cgroup(pc);
8c7c6e34 4134 return NULL;
3c541e14
BS
4135}
4136
69029cd5
KH
4137void mem_cgroup_uncharge_page(struct page *page)
4138{
52d4b9ac
KH
4139 /* early check. */
4140 if (page_mapped(page))
4141 return;
40f23a21 4142 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4143 /*
4144 * If the page is in swap cache, uncharge should be deferred
4145 * to the swap path, which also properly accounts swap usage
4146 * and handles memcg lifetime.
4147 *
4148 * Note that this check is not stable and reclaim may add the
4149 * page to swap cache at any time after this. However, if the
4150 * page is not in swap cache by the time page->mapcount hits
4151 * 0, there won't be any page table references to the swap
4152 * slot, and reclaim will free it and not actually write the
4153 * page to disk.
4154 */
0c59b89c
JW
4155 if (PageSwapCache(page))
4156 return;
0030f535 4157 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4158}
4159
4160void mem_cgroup_uncharge_cache_page(struct page *page)
4161{
4162 VM_BUG_ON(page_mapped(page));
b7abea96 4163 VM_BUG_ON(page->mapping);
0030f535 4164 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4165}
4166
569b846d
KH
4167/*
4168 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4169 * In that cases, pages are freed continuously and we can expect pages
4170 * are in the same memcg. All these calls itself limits the number of
4171 * pages freed at once, then uncharge_start/end() is called properly.
4172 * This may be called prural(2) times in a context,
4173 */
4174
4175void mem_cgroup_uncharge_start(void)
4176{
4177 current->memcg_batch.do_batch++;
4178 /* We can do nest. */
4179 if (current->memcg_batch.do_batch == 1) {
4180 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4181 current->memcg_batch.nr_pages = 0;
4182 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4183 }
4184}
4185
4186void mem_cgroup_uncharge_end(void)
4187{
4188 struct memcg_batch_info *batch = &current->memcg_batch;
4189
4190 if (!batch->do_batch)
4191 return;
4192
4193 batch->do_batch--;
4194 if (batch->do_batch) /* If stacked, do nothing. */
4195 return;
4196
4197 if (!batch->memcg)
4198 return;
4199 /*
4200 * This "batch->memcg" is valid without any css_get/put etc...
4201 * bacause we hide charges behind us.
4202 */
7ffd4ca7
JW
4203 if (batch->nr_pages)
4204 res_counter_uncharge(&batch->memcg->res,
4205 batch->nr_pages * PAGE_SIZE);
4206 if (batch->memsw_nr_pages)
4207 res_counter_uncharge(&batch->memcg->memsw,
4208 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4209 memcg_oom_recover(batch->memcg);
569b846d
KH
4210 /* forget this pointer (for sanity check) */
4211 batch->memcg = NULL;
4212}
4213
e767e056 4214#ifdef CONFIG_SWAP
8c7c6e34 4215/*
e767e056 4216 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4217 * memcg information is recorded to swap_cgroup of "ent"
4218 */
8a9478ca
KH
4219void
4220mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4221{
4222 struct mem_cgroup *memcg;
8a9478ca
KH
4223 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4224
4225 if (!swapout) /* this was a swap cache but the swap is unused ! */
4226 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4227
0030f535 4228 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4229
f75ca962
KH
4230 /*
4231 * record memcg information, if swapout && memcg != NULL,
4050377b 4232 * css_get() was called in uncharge().
f75ca962
KH
4233 */
4234 if (do_swap_account && swapout && memcg)
a3b2d692 4235 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4236}
e767e056 4237#endif
8c7c6e34 4238
c255a458 4239#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4240/*
4241 * called from swap_entry_free(). remove record in swap_cgroup and
4242 * uncharge "memsw" account.
4243 */
4244void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4245{
8c7c6e34 4246 struct mem_cgroup *memcg;
a3b2d692 4247 unsigned short id;
8c7c6e34
KH
4248
4249 if (!do_swap_account)
4250 return;
4251
a3b2d692
KH
4252 id = swap_cgroup_record(ent, 0);
4253 rcu_read_lock();
4254 memcg = mem_cgroup_lookup(id);
8c7c6e34 4255 if (memcg) {
a3b2d692
KH
4256 /*
4257 * We uncharge this because swap is freed.
4258 * This memcg can be obsolete one. We avoid calling css_tryget
4259 */
0c3e73e8 4260 if (!mem_cgroup_is_root(memcg))
4e649152 4261 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4262 mem_cgroup_swap_statistics(memcg, false);
4050377b 4263 css_put(&memcg->css);
8c7c6e34 4264 }
a3b2d692 4265 rcu_read_unlock();
d13d1443 4266}
02491447
DN
4267
4268/**
4269 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4270 * @entry: swap entry to be moved
4271 * @from: mem_cgroup which the entry is moved from
4272 * @to: mem_cgroup which the entry is moved to
4273 *
4274 * It succeeds only when the swap_cgroup's record for this entry is the same
4275 * as the mem_cgroup's id of @from.
4276 *
4277 * Returns 0 on success, -EINVAL on failure.
4278 *
4279 * The caller must have charged to @to, IOW, called res_counter_charge() about
4280 * both res and memsw, and called css_get().
4281 */
4282static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4283 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4284{
4285 unsigned short old_id, new_id;
4286
4287 old_id = css_id(&from->css);
4288 new_id = css_id(&to->css);
4289
4290 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4291 mem_cgroup_swap_statistics(from, false);
483c30b5 4292 mem_cgroup_swap_statistics(to, true);
02491447 4293 /*
483c30b5
DN
4294 * This function is only called from task migration context now.
4295 * It postpones res_counter and refcount handling till the end
4296 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4297 * improvement. But we cannot postpone css_get(to) because if
4298 * the process that has been moved to @to does swap-in, the
4299 * refcount of @to might be decreased to 0.
4300 *
4301 * We are in attach() phase, so the cgroup is guaranteed to be
4302 * alive, so we can just call css_get().
02491447 4303 */
4050377b 4304 css_get(&to->css);
02491447
DN
4305 return 0;
4306 }
4307 return -EINVAL;
4308}
4309#else
4310static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4311 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4312{
4313 return -EINVAL;
4314}
8c7c6e34 4315#endif
d13d1443 4316
ae41be37 4317/*
01b1ae63
KH
4318 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4319 * page belongs to.
ae41be37 4320 */
0030f535
JW
4321void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4322 struct mem_cgroup **memcgp)
ae41be37 4323{
c0ff4b85 4324 struct mem_cgroup *memcg = NULL;
b32967ff 4325 unsigned int nr_pages = 1;
7ec99d62 4326 struct page_cgroup *pc;
ac39cf8c 4327 enum charge_type ctype;
8869b8f6 4328
72835c86 4329 *memcgp = NULL;
56039efa 4330
f8d66542 4331 if (mem_cgroup_disabled())
0030f535 4332 return;
4077960e 4333
b32967ff
MG
4334 if (PageTransHuge(page))
4335 nr_pages <<= compound_order(page);
4336
52d4b9ac
KH
4337 pc = lookup_page_cgroup(page);
4338 lock_page_cgroup(pc);
4339 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4340 memcg = pc->mem_cgroup;
4341 css_get(&memcg->css);
ac39cf8c
AM
4342 /*
4343 * At migrating an anonymous page, its mapcount goes down
4344 * to 0 and uncharge() will be called. But, even if it's fully
4345 * unmapped, migration may fail and this page has to be
4346 * charged again. We set MIGRATION flag here and delay uncharge
4347 * until end_migration() is called
4348 *
4349 * Corner Case Thinking
4350 * A)
4351 * When the old page was mapped as Anon and it's unmap-and-freed
4352 * while migration was ongoing.
4353 * If unmap finds the old page, uncharge() of it will be delayed
4354 * until end_migration(). If unmap finds a new page, it's
4355 * uncharged when it make mapcount to be 1->0. If unmap code
4356 * finds swap_migration_entry, the new page will not be mapped
4357 * and end_migration() will find it(mapcount==0).
4358 *
4359 * B)
4360 * When the old page was mapped but migraion fails, the kernel
4361 * remaps it. A charge for it is kept by MIGRATION flag even
4362 * if mapcount goes down to 0. We can do remap successfully
4363 * without charging it again.
4364 *
4365 * C)
4366 * The "old" page is under lock_page() until the end of
4367 * migration, so, the old page itself will not be swapped-out.
4368 * If the new page is swapped out before end_migraton, our
4369 * hook to usual swap-out path will catch the event.
4370 */
4371 if (PageAnon(page))
4372 SetPageCgroupMigration(pc);
e8589cc1 4373 }
52d4b9ac 4374 unlock_page_cgroup(pc);
ac39cf8c
AM
4375 /*
4376 * If the page is not charged at this point,
4377 * we return here.
4378 */
c0ff4b85 4379 if (!memcg)
0030f535 4380 return;
01b1ae63 4381
72835c86 4382 *memcgp = memcg;
ac39cf8c
AM
4383 /*
4384 * We charge new page before it's used/mapped. So, even if unlock_page()
4385 * is called before end_migration, we can catch all events on this new
4386 * page. In the case new page is migrated but not remapped, new page's
4387 * mapcount will be finally 0 and we call uncharge in end_migration().
4388 */
ac39cf8c 4389 if (PageAnon(page))
41326c17 4390 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4391 else
62ba7442 4392 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4393 /*
4394 * The page is committed to the memcg, but it's not actually
4395 * charged to the res_counter since we plan on replacing the
4396 * old one and only one page is going to be left afterwards.
4397 */
b32967ff 4398 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4399}
8869b8f6 4400
69029cd5 4401/* remove redundant charge if migration failed*/
c0ff4b85 4402void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4403 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4404{
ac39cf8c 4405 struct page *used, *unused;
01b1ae63 4406 struct page_cgroup *pc;
b2402857 4407 bool anon;
01b1ae63 4408
c0ff4b85 4409 if (!memcg)
01b1ae63 4410 return;
b25ed609 4411
50de1dd9 4412 if (!migration_ok) {
ac39cf8c
AM
4413 used = oldpage;
4414 unused = newpage;
01b1ae63 4415 } else {
ac39cf8c 4416 used = newpage;
01b1ae63
KH
4417 unused = oldpage;
4418 }
0030f535 4419 anon = PageAnon(used);
7d188958
JW
4420 __mem_cgroup_uncharge_common(unused,
4421 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4422 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4423 true);
0030f535 4424 css_put(&memcg->css);
69029cd5 4425 /*
ac39cf8c
AM
4426 * We disallowed uncharge of pages under migration because mapcount
4427 * of the page goes down to zero, temporarly.
4428 * Clear the flag and check the page should be charged.
01b1ae63 4429 */
ac39cf8c
AM
4430 pc = lookup_page_cgroup(oldpage);
4431 lock_page_cgroup(pc);
4432 ClearPageCgroupMigration(pc);
4433 unlock_page_cgroup(pc);
ac39cf8c 4434
01b1ae63 4435 /*
ac39cf8c
AM
4436 * If a page is a file cache, radix-tree replacement is very atomic
4437 * and we can skip this check. When it was an Anon page, its mapcount
4438 * goes down to 0. But because we added MIGRATION flage, it's not
4439 * uncharged yet. There are several case but page->mapcount check
4440 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4441 * check. (see prepare_charge() also)
69029cd5 4442 */
b2402857 4443 if (anon)
ac39cf8c 4444 mem_cgroup_uncharge_page(used);
ae41be37 4445}
78fb7466 4446
ab936cbc
KH
4447/*
4448 * At replace page cache, newpage is not under any memcg but it's on
4449 * LRU. So, this function doesn't touch res_counter but handles LRU
4450 * in correct way. Both pages are locked so we cannot race with uncharge.
4451 */
4452void mem_cgroup_replace_page_cache(struct page *oldpage,
4453 struct page *newpage)
4454{
bde05d1c 4455 struct mem_cgroup *memcg = NULL;
ab936cbc 4456 struct page_cgroup *pc;
ab936cbc 4457 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4458
4459 if (mem_cgroup_disabled())
4460 return;
4461
4462 pc = lookup_page_cgroup(oldpage);
4463 /* fix accounting on old pages */
4464 lock_page_cgroup(pc);
bde05d1c
HD
4465 if (PageCgroupUsed(pc)) {
4466 memcg = pc->mem_cgroup;
b070e65c 4467 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4468 ClearPageCgroupUsed(pc);
4469 }
ab936cbc
KH
4470 unlock_page_cgroup(pc);
4471
bde05d1c
HD
4472 /*
4473 * When called from shmem_replace_page(), in some cases the
4474 * oldpage has already been charged, and in some cases not.
4475 */
4476 if (!memcg)
4477 return;
ab936cbc
KH
4478 /*
4479 * Even if newpage->mapping was NULL before starting replacement,
4480 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4481 * LRU while we overwrite pc->mem_cgroup.
4482 */
ce587e65 4483 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4484}
4485
f212ad7c
DN
4486#ifdef CONFIG_DEBUG_VM
4487static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4488{
4489 struct page_cgroup *pc;
4490
4491 pc = lookup_page_cgroup(page);
cfa44946
JW
4492 /*
4493 * Can be NULL while feeding pages into the page allocator for
4494 * the first time, i.e. during boot or memory hotplug;
4495 * or when mem_cgroup_disabled().
4496 */
f212ad7c
DN
4497 if (likely(pc) && PageCgroupUsed(pc))
4498 return pc;
4499 return NULL;
4500}
4501
4502bool mem_cgroup_bad_page_check(struct page *page)
4503{
4504 if (mem_cgroup_disabled())
4505 return false;
4506
4507 return lookup_page_cgroup_used(page) != NULL;
4508}
4509
4510void mem_cgroup_print_bad_page(struct page *page)
4511{
4512 struct page_cgroup *pc;
4513
4514 pc = lookup_page_cgroup_used(page);
4515 if (pc) {
d045197f
AM
4516 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4517 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4518 }
4519}
4520#endif
4521
d38d2a75 4522static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4523 unsigned long long val)
628f4235 4524{
81d39c20 4525 int retry_count;
3c11ecf4 4526 u64 memswlimit, memlimit;
628f4235 4527 int ret = 0;
81d39c20
KH
4528 int children = mem_cgroup_count_children(memcg);
4529 u64 curusage, oldusage;
3c11ecf4 4530 int enlarge;
81d39c20
KH
4531
4532 /*
4533 * For keeping hierarchical_reclaim simple, how long we should retry
4534 * is depends on callers. We set our retry-count to be function
4535 * of # of children which we should visit in this loop.
4536 */
4537 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4538
4539 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4540
3c11ecf4 4541 enlarge = 0;
8c7c6e34 4542 while (retry_count) {
628f4235
KH
4543 if (signal_pending(current)) {
4544 ret = -EINTR;
4545 break;
4546 }
8c7c6e34
KH
4547 /*
4548 * Rather than hide all in some function, I do this in
4549 * open coded manner. You see what this really does.
aaad153e 4550 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4551 */
4552 mutex_lock(&set_limit_mutex);
4553 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4554 if (memswlimit < val) {
4555 ret = -EINVAL;
4556 mutex_unlock(&set_limit_mutex);
628f4235
KH
4557 break;
4558 }
3c11ecf4
KH
4559
4560 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4561 if (memlimit < val)
4562 enlarge = 1;
4563
8c7c6e34 4564 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4565 if (!ret) {
4566 if (memswlimit == val)
4567 memcg->memsw_is_minimum = true;
4568 else
4569 memcg->memsw_is_minimum = false;
4570 }
8c7c6e34
KH
4571 mutex_unlock(&set_limit_mutex);
4572
4573 if (!ret)
4574 break;
4575
5660048c
JW
4576 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4577 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4578 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4579 /* Usage is reduced ? */
f894ffa8 4580 if (curusage >= oldusage)
81d39c20
KH
4581 retry_count--;
4582 else
4583 oldusage = curusage;
8c7c6e34 4584 }
3c11ecf4
KH
4585 if (!ret && enlarge)
4586 memcg_oom_recover(memcg);
14797e23 4587
8c7c6e34
KH
4588 return ret;
4589}
4590
338c8431
LZ
4591static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4592 unsigned long long val)
8c7c6e34 4593{
81d39c20 4594 int retry_count;
3c11ecf4 4595 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4596 int children = mem_cgroup_count_children(memcg);
4597 int ret = -EBUSY;
3c11ecf4 4598 int enlarge = 0;
8c7c6e34 4599
81d39c20 4600 /* see mem_cgroup_resize_res_limit */
f894ffa8 4601 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4602 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4603 while (retry_count) {
4604 if (signal_pending(current)) {
4605 ret = -EINTR;
4606 break;
4607 }
4608 /*
4609 * Rather than hide all in some function, I do this in
4610 * open coded manner. You see what this really does.
aaad153e 4611 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4612 */
4613 mutex_lock(&set_limit_mutex);
4614 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4615 if (memlimit > val) {
4616 ret = -EINVAL;
4617 mutex_unlock(&set_limit_mutex);
4618 break;
4619 }
3c11ecf4
KH
4620 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4621 if (memswlimit < val)
4622 enlarge = 1;
8c7c6e34 4623 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4624 if (!ret) {
4625 if (memlimit == val)
4626 memcg->memsw_is_minimum = true;
4627 else
4628 memcg->memsw_is_minimum = false;
4629 }
8c7c6e34
KH
4630 mutex_unlock(&set_limit_mutex);
4631
4632 if (!ret)
4633 break;
4634
5660048c
JW
4635 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4636 MEM_CGROUP_RECLAIM_NOSWAP |
4637 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4638 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4639 /* Usage is reduced ? */
8c7c6e34 4640 if (curusage >= oldusage)
628f4235 4641 retry_count--;
81d39c20
KH
4642 else
4643 oldusage = curusage;
628f4235 4644 }
3c11ecf4
KH
4645 if (!ret && enlarge)
4646 memcg_oom_recover(memcg);
628f4235
KH
4647 return ret;
4648}
4649
2ef37d3f
MH
4650/**
4651 * mem_cgroup_force_empty_list - clears LRU of a group
4652 * @memcg: group to clear
4653 * @node: NUMA node
4654 * @zid: zone id
4655 * @lru: lru to to clear
4656 *
3c935d18 4657 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4658 * reclaim the pages page themselves - pages are moved to the parent (or root)
4659 * group.
cc847582 4660 */
2ef37d3f 4661static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4662 int node, int zid, enum lru_list lru)
cc847582 4663{
bea8c150 4664 struct lruvec *lruvec;
2ef37d3f 4665 unsigned long flags;
072c56c1 4666 struct list_head *list;
925b7673
JW
4667 struct page *busy;
4668 struct zone *zone;
072c56c1 4669
08e552c6 4670 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4671 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4672 list = &lruvec->lists[lru];
cc847582 4673
f817ed48 4674 busy = NULL;
2ef37d3f 4675 do {
925b7673 4676 struct page_cgroup *pc;
5564e88b
JW
4677 struct page *page;
4678
08e552c6 4679 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4680 if (list_empty(list)) {
08e552c6 4681 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4682 break;
f817ed48 4683 }
925b7673
JW
4684 page = list_entry(list->prev, struct page, lru);
4685 if (busy == page) {
4686 list_move(&page->lru, list);
648bcc77 4687 busy = NULL;
08e552c6 4688 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4689 continue;
4690 }
08e552c6 4691 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4692
925b7673 4693 pc = lookup_page_cgroup(page);
5564e88b 4694
3c935d18 4695 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4696 /* found lock contention or "pc" is obsolete. */
925b7673 4697 busy = page;
f817ed48
KH
4698 cond_resched();
4699 } else
4700 busy = NULL;
2ef37d3f 4701 } while (!list_empty(list));
cc847582
KH
4702}
4703
4704/*
c26251f9
MH
4705 * make mem_cgroup's charge to be 0 if there is no task by moving
4706 * all the charges and pages to the parent.
cc847582 4707 * This enables deleting this mem_cgroup.
c26251f9
MH
4708 *
4709 * Caller is responsible for holding css reference on the memcg.
cc847582 4710 */
ab5196c2 4711static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4712{
c26251f9 4713 int node, zid;
bea207c8 4714 u64 usage;
f817ed48 4715
fce66477 4716 do {
52d4b9ac
KH
4717 /* This is for making all *used* pages to be on LRU. */
4718 lru_add_drain_all();
c0ff4b85 4719 drain_all_stock_sync(memcg);
c0ff4b85 4720 mem_cgroup_start_move(memcg);
31aaea4a 4721 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4722 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4723 enum lru_list lru;
4724 for_each_lru(lru) {
2ef37d3f 4725 mem_cgroup_force_empty_list(memcg,
f156ab93 4726 node, zid, lru);
f817ed48 4727 }
1ecaab2b 4728 }
f817ed48 4729 }
c0ff4b85
R
4730 mem_cgroup_end_move(memcg);
4731 memcg_oom_recover(memcg);
52d4b9ac 4732 cond_resched();
f817ed48 4733
2ef37d3f 4734 /*
bea207c8
GC
4735 * Kernel memory may not necessarily be trackable to a specific
4736 * process. So they are not migrated, and therefore we can't
4737 * expect their value to drop to 0 here.
4738 * Having res filled up with kmem only is enough.
4739 *
2ef37d3f
MH
4740 * This is a safety check because mem_cgroup_force_empty_list
4741 * could have raced with mem_cgroup_replace_page_cache callers
4742 * so the lru seemed empty but the page could have been added
4743 * right after the check. RES_USAGE should be safe as we always
4744 * charge before adding to the LRU.
4745 */
bea207c8
GC
4746 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4747 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4748 } while (usage > 0);
c26251f9
MH
4749}
4750
b5f99b53
GC
4751/*
4752 * This mainly exists for tests during the setting of set of use_hierarchy.
4753 * Since this is the very setting we are changing, the current hierarchy value
4754 * is meaningless
4755 */
4756static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4757{
492eb21b 4758 struct cgroup_subsys_state *pos;
b5f99b53
GC
4759
4760 /* bounce at first found */
492eb21b 4761 css_for_each_child(pos, &memcg->css)
b5f99b53
GC
4762 return true;
4763 return false;
4764}
4765
4766/*
0999821b
GC
4767 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4768 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4769 * from mem_cgroup_count_children(), in the sense that we don't really care how
4770 * many children we have; we only need to know if we have any. It also counts
4771 * any memcg without hierarchy as infertile.
4772 */
4773static inline bool memcg_has_children(struct mem_cgroup *memcg)
4774{
4775 return memcg->use_hierarchy && __memcg_has_children(memcg);
4776}
4777
c26251f9
MH
4778/*
4779 * Reclaims as many pages from the given memcg as possible and moves
4780 * the rest to the parent.
4781 *
4782 * Caller is responsible for holding css reference for memcg.
4783 */
4784static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4785{
4786 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4787 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4788
c1e862c1 4789 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4790 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4791 return -EBUSY;
4792
c1e862c1
KH
4793 /* we call try-to-free pages for make this cgroup empty */
4794 lru_add_drain_all();
f817ed48 4795 /* try to free all pages in this cgroup */
569530fb 4796 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4797 int progress;
c1e862c1 4798
c26251f9
MH
4799 if (signal_pending(current))
4800 return -EINTR;
4801
c0ff4b85 4802 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4803 false);
c1e862c1 4804 if (!progress) {
f817ed48 4805 nr_retries--;
c1e862c1 4806 /* maybe some writeback is necessary */
8aa7e847 4807 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4808 }
f817ed48
KH
4809
4810 }
08e552c6 4811 lru_add_drain();
ab5196c2
MH
4812 mem_cgroup_reparent_charges(memcg);
4813
4814 return 0;
cc847582
KH
4815}
4816
182446d0
TH
4817static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4818 unsigned int event)
c1e862c1 4819{
182446d0 4820 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 4821
d8423011
MH
4822 if (mem_cgroup_is_root(memcg))
4823 return -EINVAL;
c33bd835 4824 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
4825}
4826
182446d0
TH
4827static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4828 struct cftype *cft)
18f59ea7 4829{
182446d0 4830 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4831}
4832
182446d0
TH
4833static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4834 struct cftype *cft, u64 val)
18f59ea7
BS
4835{
4836 int retval = 0;
182446d0 4837 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 4838 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 4839
0999821b 4840 mutex_lock(&memcg_create_mutex);
567fb435
GC
4841
4842 if (memcg->use_hierarchy == val)
4843 goto out;
4844
18f59ea7 4845 /*
af901ca1 4846 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4847 * in the child subtrees. If it is unset, then the change can
4848 * occur, provided the current cgroup has no children.
4849 *
4850 * For the root cgroup, parent_mem is NULL, we allow value to be
4851 * set if there are no children.
4852 */
c0ff4b85 4853 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4854 (val == 1 || val == 0)) {
b5f99b53 4855 if (!__memcg_has_children(memcg))
c0ff4b85 4856 memcg->use_hierarchy = val;
18f59ea7
BS
4857 else
4858 retval = -EBUSY;
4859 } else
4860 retval = -EINVAL;
567fb435
GC
4861
4862out:
0999821b 4863 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4864
4865 return retval;
4866}
4867
0c3e73e8 4868
c0ff4b85 4869static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4870 enum mem_cgroup_stat_index idx)
0c3e73e8 4871{
7d74b06f 4872 struct mem_cgroup *iter;
7a159cc9 4873 long val = 0;
0c3e73e8 4874
7a159cc9 4875 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4876 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4877 val += mem_cgroup_read_stat(iter, idx);
4878
4879 if (val < 0) /* race ? */
4880 val = 0;
4881 return val;
0c3e73e8
BS
4882}
4883
c0ff4b85 4884static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4885{
7d74b06f 4886 u64 val;
104f3928 4887
c0ff4b85 4888 if (!mem_cgroup_is_root(memcg)) {
104f3928 4889 if (!swap)
65c64ce8 4890 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4891 else
65c64ce8 4892 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4893 }
4894
b070e65c
DR
4895 /*
4896 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4897 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4898 */
c0ff4b85
R
4899 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4900 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4901
7d74b06f 4902 if (swap)
bff6bb83 4903 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4904
4905 return val << PAGE_SHIFT;
4906}
4907
182446d0
TH
4908static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
4909 struct cftype *cft, struct file *file,
4910 char __user *buf, size_t nbytes, loff_t *ppos)
8cdea7c0 4911{
182446d0 4912 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af36f906 4913 char str[64];
104f3928 4914 u64 val;
86ae53e1
GC
4915 int name, len;
4916 enum res_type type;
8c7c6e34
KH
4917
4918 type = MEMFILE_TYPE(cft->private);
4919 name = MEMFILE_ATTR(cft->private);
af36f906 4920
8c7c6e34
KH
4921 switch (type) {
4922 case _MEM:
104f3928 4923 if (name == RES_USAGE)
c0ff4b85 4924 val = mem_cgroup_usage(memcg, false);
104f3928 4925 else
c0ff4b85 4926 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
4927 break;
4928 case _MEMSWAP:
104f3928 4929 if (name == RES_USAGE)
c0ff4b85 4930 val = mem_cgroup_usage(memcg, true);
104f3928 4931 else
c0ff4b85 4932 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 4933 break;
510fc4e1
GC
4934 case _KMEM:
4935 val = res_counter_read_u64(&memcg->kmem, name);
4936 break;
8c7c6e34
KH
4937 default:
4938 BUG();
8c7c6e34 4939 }
af36f906
TH
4940
4941 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4942 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 4943}
510fc4e1 4944
182446d0 4945static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
4946{
4947 int ret = -EINVAL;
4948#ifdef CONFIG_MEMCG_KMEM
182446d0 4949 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
4950 /*
4951 * For simplicity, we won't allow this to be disabled. It also can't
4952 * be changed if the cgroup has children already, or if tasks had
4953 * already joined.
4954 *
4955 * If tasks join before we set the limit, a person looking at
4956 * kmem.usage_in_bytes will have no way to determine when it took
4957 * place, which makes the value quite meaningless.
4958 *
4959 * After it first became limited, changes in the value of the limit are
4960 * of course permitted.
510fc4e1 4961 */
0999821b 4962 mutex_lock(&memcg_create_mutex);
510fc4e1 4963 mutex_lock(&set_limit_mutex);
6de5a8bf 4964 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
182446d0 4965 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
4966 ret = -EBUSY;
4967 goto out;
4968 }
4969 ret = res_counter_set_limit(&memcg->kmem, val);
4970 VM_BUG_ON(ret);
4971
55007d84
GC
4972 ret = memcg_update_cache_sizes(memcg);
4973 if (ret) {
6de5a8bf 4974 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
55007d84
GC
4975 goto out;
4976 }
692e89ab
GC
4977 static_key_slow_inc(&memcg_kmem_enabled_key);
4978 /*
4979 * setting the active bit after the inc will guarantee no one
4980 * starts accounting before all call sites are patched
4981 */
4982 memcg_kmem_set_active(memcg);
510fc4e1
GC
4983 } else
4984 ret = res_counter_set_limit(&memcg->kmem, val);
4985out:
4986 mutex_unlock(&set_limit_mutex);
0999821b 4987 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
4988#endif
4989 return ret;
4990}
4991
6d043990 4992#ifdef CONFIG_MEMCG_KMEM
55007d84 4993static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 4994{
55007d84 4995 int ret = 0;
510fc4e1
GC
4996 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4997 if (!parent)
55007d84
GC
4998 goto out;
4999
510fc4e1 5000 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5001 /*
5002 * When that happen, we need to disable the static branch only on those
5003 * memcgs that enabled it. To achieve this, we would be forced to
5004 * complicate the code by keeping track of which memcgs were the ones
5005 * that actually enabled limits, and which ones got it from its
5006 * parents.
5007 *
5008 * It is a lot simpler just to do static_key_slow_inc() on every child
5009 * that is accounted.
5010 */
55007d84
GC
5011 if (!memcg_kmem_is_active(memcg))
5012 goto out;
5013
5014 /*
10d5ebf4
LZ
5015 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5016 * memcg is active already. If the later initialization fails then the
5017 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5018 */
55007d84
GC
5019 static_key_slow_inc(&memcg_kmem_enabled_key);
5020
5021 mutex_lock(&set_limit_mutex);
425c598d 5022 memcg_stop_kmem_account();
55007d84 5023 ret = memcg_update_cache_sizes(memcg);
425c598d 5024 memcg_resume_kmem_account();
55007d84 5025 mutex_unlock(&set_limit_mutex);
55007d84
GC
5026out:
5027 return ret;
510fc4e1 5028}
6d043990 5029#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5030
628f4235
KH
5031/*
5032 * The user of this function is...
5033 * RES_LIMIT.
5034 */
182446d0 5035static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5036 const char *buffer)
8cdea7c0 5037{
182446d0 5038 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5039 enum res_type type;
5040 int name;
628f4235
KH
5041 unsigned long long val;
5042 int ret;
5043
8c7c6e34
KH
5044 type = MEMFILE_TYPE(cft->private);
5045 name = MEMFILE_ATTR(cft->private);
af36f906 5046
8c7c6e34 5047 switch (name) {
628f4235 5048 case RES_LIMIT:
4b3bde4c
BS
5049 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5050 ret = -EINVAL;
5051 break;
5052 }
628f4235
KH
5053 /* This function does all necessary parse...reuse it */
5054 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5055 if (ret)
5056 break;
5057 if (type == _MEM)
628f4235 5058 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5059 else if (type == _MEMSWAP)
8c7c6e34 5060 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5061 else if (type == _KMEM)
182446d0 5062 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5063 else
5064 return -EINVAL;
628f4235 5065 break;
296c81d8
BS
5066 case RES_SOFT_LIMIT:
5067 ret = res_counter_memparse_write_strategy(buffer, &val);
5068 if (ret)
5069 break;
5070 /*
5071 * For memsw, soft limits are hard to implement in terms
5072 * of semantics, for now, we support soft limits for
5073 * control without swap
5074 */
5075 if (type == _MEM)
5076 ret = res_counter_set_soft_limit(&memcg->res, val);
5077 else
5078 ret = -EINVAL;
5079 break;
628f4235
KH
5080 default:
5081 ret = -EINVAL; /* should be BUG() ? */
5082 break;
5083 }
5084 return ret;
8cdea7c0
BS
5085}
5086
fee7b548
KH
5087static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5088 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5089{
fee7b548
KH
5090 unsigned long long min_limit, min_memsw_limit, tmp;
5091
5092 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5093 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5094 if (!memcg->use_hierarchy)
5095 goto out;
5096
63876986
TH
5097 while (css_parent(&memcg->css)) {
5098 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5099 if (!memcg->use_hierarchy)
5100 break;
5101 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5102 min_limit = min(min_limit, tmp);
5103 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5104 min_memsw_limit = min(min_memsw_limit, tmp);
5105 }
5106out:
5107 *mem_limit = min_limit;
5108 *memsw_limit = min_memsw_limit;
fee7b548
KH
5109}
5110
182446d0 5111static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5112{
182446d0 5113 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5114 int name;
5115 enum res_type type;
c84872e1 5116
8c7c6e34
KH
5117 type = MEMFILE_TYPE(event);
5118 name = MEMFILE_ATTR(event);
af36f906 5119
8c7c6e34 5120 switch (name) {
29f2a4da 5121 case RES_MAX_USAGE:
8c7c6e34 5122 if (type == _MEM)
c0ff4b85 5123 res_counter_reset_max(&memcg->res);
510fc4e1 5124 else if (type == _MEMSWAP)
c0ff4b85 5125 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5126 else if (type == _KMEM)
5127 res_counter_reset_max(&memcg->kmem);
5128 else
5129 return -EINVAL;
29f2a4da
PE
5130 break;
5131 case RES_FAILCNT:
8c7c6e34 5132 if (type == _MEM)
c0ff4b85 5133 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5134 else if (type == _MEMSWAP)
c0ff4b85 5135 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5136 else if (type == _KMEM)
5137 res_counter_reset_failcnt(&memcg->kmem);
5138 else
5139 return -EINVAL;
29f2a4da
PE
5140 break;
5141 }
f64c3f54 5142
85cc59db 5143 return 0;
c84872e1
PE
5144}
5145
182446d0 5146static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5147 struct cftype *cft)
5148{
182446d0 5149 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5150}
5151
02491447 5152#ifdef CONFIG_MMU
182446d0 5153static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5154 struct cftype *cft, u64 val)
5155{
182446d0 5156 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5157
5158 if (val >= (1 << NR_MOVE_TYPE))
5159 return -EINVAL;
ee5e8472 5160
7dc74be0 5161 /*
ee5e8472
GC
5162 * No kind of locking is needed in here, because ->can_attach() will
5163 * check this value once in the beginning of the process, and then carry
5164 * on with stale data. This means that changes to this value will only
5165 * affect task migrations starting after the change.
7dc74be0 5166 */
c0ff4b85 5167 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5168 return 0;
5169}
02491447 5170#else
182446d0 5171static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5172 struct cftype *cft, u64 val)
5173{
5174 return -ENOSYS;
5175}
5176#endif
7dc74be0 5177
406eb0c9 5178#ifdef CONFIG_NUMA
182446d0
TH
5179static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5180 struct cftype *cft, struct seq_file *m)
406eb0c9
YH
5181{
5182 int nid;
5183 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5184 unsigned long node_nr;
182446d0 5185 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
406eb0c9 5186
d79154bb 5187 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5188 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5189 for_each_node_state(nid, N_MEMORY) {
d79154bb 5190 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5191 seq_printf(m, " N%d=%lu", nid, node_nr);
5192 }
5193 seq_putc(m, '\n');
5194
d79154bb 5195 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5196 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5197 for_each_node_state(nid, N_MEMORY) {
d79154bb 5198 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5199 LRU_ALL_FILE);
406eb0c9
YH
5200 seq_printf(m, " N%d=%lu", nid, node_nr);
5201 }
5202 seq_putc(m, '\n');
5203
d79154bb 5204 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5205 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5206 for_each_node_state(nid, N_MEMORY) {
d79154bb 5207 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5208 LRU_ALL_ANON);
406eb0c9
YH
5209 seq_printf(m, " N%d=%lu", nid, node_nr);
5210 }
5211 seq_putc(m, '\n');
5212
d79154bb 5213 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5214 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5215 for_each_node_state(nid, N_MEMORY) {
d79154bb 5216 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5217 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5218 seq_printf(m, " N%d=%lu", nid, node_nr);
5219 }
5220 seq_putc(m, '\n');
5221 return 0;
5222}
5223#endif /* CONFIG_NUMA */
5224
af7c4b0e
JW
5225static inline void mem_cgroup_lru_names_not_uptodate(void)
5226{
5227 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5228}
5229
182446d0 5230static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
78ccf5b5 5231 struct seq_file *m)
d2ceb9b7 5232{
182446d0 5233 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af7c4b0e
JW
5234 struct mem_cgroup *mi;
5235 unsigned int i;
406eb0c9 5236
af7c4b0e 5237 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5238 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5239 continue;
af7c4b0e
JW
5240 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5241 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5242 }
7b854121 5243
af7c4b0e
JW
5244 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5245 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5246 mem_cgroup_read_events(memcg, i));
5247
5248 for (i = 0; i < NR_LRU_LISTS; i++)
5249 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5250 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5251
14067bb3 5252 /* Hierarchical information */
fee7b548
KH
5253 {
5254 unsigned long long limit, memsw_limit;
d79154bb 5255 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5256 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5257 if (do_swap_account)
78ccf5b5
JW
5258 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5259 memsw_limit);
fee7b548 5260 }
7f016ee8 5261
af7c4b0e
JW
5262 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5263 long long val = 0;
5264
bff6bb83 5265 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5266 continue;
af7c4b0e
JW
5267 for_each_mem_cgroup_tree(mi, memcg)
5268 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5269 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5270 }
5271
5272 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5273 unsigned long long val = 0;
5274
5275 for_each_mem_cgroup_tree(mi, memcg)
5276 val += mem_cgroup_read_events(mi, i);
5277 seq_printf(m, "total_%s %llu\n",
5278 mem_cgroup_events_names[i], val);
5279 }
5280
5281 for (i = 0; i < NR_LRU_LISTS; i++) {
5282 unsigned long long val = 0;
5283
5284 for_each_mem_cgroup_tree(mi, memcg)
5285 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5286 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5287 }
14067bb3 5288
7f016ee8 5289#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5290 {
5291 int nid, zid;
5292 struct mem_cgroup_per_zone *mz;
89abfab1 5293 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5294 unsigned long recent_rotated[2] = {0, 0};
5295 unsigned long recent_scanned[2] = {0, 0};
5296
5297 for_each_online_node(nid)
5298 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5299 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5300 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5301
89abfab1
HD
5302 recent_rotated[0] += rstat->recent_rotated[0];
5303 recent_rotated[1] += rstat->recent_rotated[1];
5304 recent_scanned[0] += rstat->recent_scanned[0];
5305 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5306 }
78ccf5b5
JW
5307 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5308 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5309 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5310 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5311 }
5312#endif
5313
d2ceb9b7
KH
5314 return 0;
5315}
5316
182446d0
TH
5317static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5318 struct cftype *cft)
a7885eb8 5319{
182446d0 5320 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5321
1f4c025b 5322 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5323}
5324
182446d0
TH
5325static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5326 struct cftype *cft, u64 val)
a7885eb8 5327{
182446d0 5328 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5329 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5330
63876986 5331 if (val > 100 || !parent)
a7885eb8
KM
5332 return -EINVAL;
5333
0999821b 5334 mutex_lock(&memcg_create_mutex);
068b38c1 5335
a7885eb8 5336 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5337 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5338 mutex_unlock(&memcg_create_mutex);
a7885eb8 5339 return -EINVAL;
068b38c1 5340 }
a7885eb8 5341
a7885eb8 5342 memcg->swappiness = val;
a7885eb8 5343
0999821b 5344 mutex_unlock(&memcg_create_mutex);
068b38c1 5345
a7885eb8
KM
5346 return 0;
5347}
5348
2e72b634
KS
5349static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5350{
5351 struct mem_cgroup_threshold_ary *t;
5352 u64 usage;
5353 int i;
5354
5355 rcu_read_lock();
5356 if (!swap)
2c488db2 5357 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5358 else
2c488db2 5359 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5360
5361 if (!t)
5362 goto unlock;
5363
5364 usage = mem_cgroup_usage(memcg, swap);
5365
5366 /*
748dad36 5367 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5368 * If it's not true, a threshold was crossed after last
5369 * call of __mem_cgroup_threshold().
5370 */
5407a562 5371 i = t->current_threshold;
2e72b634
KS
5372
5373 /*
5374 * Iterate backward over array of thresholds starting from
5375 * current_threshold and check if a threshold is crossed.
5376 * If none of thresholds below usage is crossed, we read
5377 * only one element of the array here.
5378 */
5379 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5380 eventfd_signal(t->entries[i].eventfd, 1);
5381
5382 /* i = current_threshold + 1 */
5383 i++;
5384
5385 /*
5386 * Iterate forward over array of thresholds starting from
5387 * current_threshold+1 and check if a threshold is crossed.
5388 * If none of thresholds above usage is crossed, we read
5389 * only one element of the array here.
5390 */
5391 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5392 eventfd_signal(t->entries[i].eventfd, 1);
5393
5394 /* Update current_threshold */
5407a562 5395 t->current_threshold = i - 1;
2e72b634
KS
5396unlock:
5397 rcu_read_unlock();
5398}
5399
5400static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5401{
ad4ca5f4
KS
5402 while (memcg) {
5403 __mem_cgroup_threshold(memcg, false);
5404 if (do_swap_account)
5405 __mem_cgroup_threshold(memcg, true);
5406
5407 memcg = parent_mem_cgroup(memcg);
5408 }
2e72b634
KS
5409}
5410
5411static int compare_thresholds(const void *a, const void *b)
5412{
5413 const struct mem_cgroup_threshold *_a = a;
5414 const struct mem_cgroup_threshold *_b = b;
5415
2bff24a3
GT
5416 if (_a->threshold > _b->threshold)
5417 return 1;
5418
5419 if (_a->threshold < _b->threshold)
5420 return -1;
5421
5422 return 0;
2e72b634
KS
5423}
5424
c0ff4b85 5425static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5426{
5427 struct mem_cgroup_eventfd_list *ev;
5428
c0ff4b85 5429 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5430 eventfd_signal(ev->eventfd, 1);
5431 return 0;
5432}
5433
c0ff4b85 5434static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5435{
7d74b06f
KH
5436 struct mem_cgroup *iter;
5437
c0ff4b85 5438 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5439 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5440}
5441
81eeaf04 5442static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
9490ff27 5443 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634 5444{
81eeaf04 5445 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5446 struct mem_cgroup_thresholds *thresholds;
5447 struct mem_cgroup_threshold_ary *new;
86ae53e1 5448 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5449 u64 threshold, usage;
2c488db2 5450 int i, size, ret;
2e72b634
KS
5451
5452 ret = res_counter_memparse_write_strategy(args, &threshold);
5453 if (ret)
5454 return ret;
5455
5456 mutex_lock(&memcg->thresholds_lock);
2c488db2 5457
2e72b634 5458 if (type == _MEM)
2c488db2 5459 thresholds = &memcg->thresholds;
2e72b634 5460 else if (type == _MEMSWAP)
2c488db2 5461 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5462 else
5463 BUG();
5464
5465 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5466
5467 /* Check if a threshold crossed before adding a new one */
2c488db2 5468 if (thresholds->primary)
2e72b634
KS
5469 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5470
2c488db2 5471 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5472
5473 /* Allocate memory for new array of thresholds */
2c488db2 5474 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5475 GFP_KERNEL);
2c488db2 5476 if (!new) {
2e72b634
KS
5477 ret = -ENOMEM;
5478 goto unlock;
5479 }
2c488db2 5480 new->size = size;
2e72b634
KS
5481
5482 /* Copy thresholds (if any) to new array */
2c488db2
KS
5483 if (thresholds->primary) {
5484 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5485 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5486 }
5487
2e72b634 5488 /* Add new threshold */
2c488db2
KS
5489 new->entries[size - 1].eventfd = eventfd;
5490 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5491
5492 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5493 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5494 compare_thresholds, NULL);
5495
5496 /* Find current threshold */
2c488db2 5497 new->current_threshold = -1;
2e72b634 5498 for (i = 0; i < size; i++) {
748dad36 5499 if (new->entries[i].threshold <= usage) {
2e72b634 5500 /*
2c488db2
KS
5501 * new->current_threshold will not be used until
5502 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5503 * it here.
5504 */
2c488db2 5505 ++new->current_threshold;
748dad36
SZ
5506 } else
5507 break;
2e72b634
KS
5508 }
5509
2c488db2
KS
5510 /* Free old spare buffer and save old primary buffer as spare */
5511 kfree(thresholds->spare);
5512 thresholds->spare = thresholds->primary;
5513
5514 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5515
907860ed 5516 /* To be sure that nobody uses thresholds */
2e72b634
KS
5517 synchronize_rcu();
5518
2e72b634
KS
5519unlock:
5520 mutex_unlock(&memcg->thresholds_lock);
5521
5522 return ret;
5523}
5524
81eeaf04 5525static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
9490ff27 5526 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634 5527{
81eeaf04 5528 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5529 struct mem_cgroup_thresholds *thresholds;
5530 struct mem_cgroup_threshold_ary *new;
86ae53e1 5531 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5532 u64 usage;
2c488db2 5533 int i, j, size;
2e72b634
KS
5534
5535 mutex_lock(&memcg->thresholds_lock);
5536 if (type == _MEM)
2c488db2 5537 thresholds = &memcg->thresholds;
2e72b634 5538 else if (type == _MEMSWAP)
2c488db2 5539 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5540 else
5541 BUG();
5542
371528ca
AV
5543 if (!thresholds->primary)
5544 goto unlock;
5545
2e72b634
KS
5546 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5547
5548 /* Check if a threshold crossed before removing */
5549 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5550
5551 /* Calculate new number of threshold */
2c488db2
KS
5552 size = 0;
5553 for (i = 0; i < thresholds->primary->size; i++) {
5554 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5555 size++;
5556 }
5557
2c488db2 5558 new = thresholds->spare;
907860ed 5559
2e72b634
KS
5560 /* Set thresholds array to NULL if we don't have thresholds */
5561 if (!size) {
2c488db2
KS
5562 kfree(new);
5563 new = NULL;
907860ed 5564 goto swap_buffers;
2e72b634
KS
5565 }
5566
2c488db2 5567 new->size = size;
2e72b634
KS
5568
5569 /* Copy thresholds and find current threshold */
2c488db2
KS
5570 new->current_threshold = -1;
5571 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5572 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5573 continue;
5574
2c488db2 5575 new->entries[j] = thresholds->primary->entries[i];
748dad36 5576 if (new->entries[j].threshold <= usage) {
2e72b634 5577 /*
2c488db2 5578 * new->current_threshold will not be used
2e72b634
KS
5579 * until rcu_assign_pointer(), so it's safe to increment
5580 * it here.
5581 */
2c488db2 5582 ++new->current_threshold;
2e72b634
KS
5583 }
5584 j++;
5585 }
5586
907860ed 5587swap_buffers:
2c488db2
KS
5588 /* Swap primary and spare array */
5589 thresholds->spare = thresholds->primary;
8c757763
SZ
5590 /* If all events are unregistered, free the spare array */
5591 if (!new) {
5592 kfree(thresholds->spare);
5593 thresholds->spare = NULL;
5594 }
5595
2c488db2 5596 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5597
907860ed 5598 /* To be sure that nobody uses thresholds */
2e72b634 5599 synchronize_rcu();
371528ca 5600unlock:
2e72b634 5601 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5602}
c1e862c1 5603
81eeaf04 5604static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
9490ff27
KH
5605 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5606{
81eeaf04 5607 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5608 struct mem_cgroup_eventfd_list *event;
86ae53e1 5609 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5610
5611 BUG_ON(type != _OOM_TYPE);
5612 event = kmalloc(sizeof(*event), GFP_KERNEL);
5613 if (!event)
5614 return -ENOMEM;
5615
1af8efe9 5616 spin_lock(&memcg_oom_lock);
9490ff27
KH
5617
5618 event->eventfd = eventfd;
5619 list_add(&event->list, &memcg->oom_notify);
5620
5621 /* already in OOM ? */
79dfdacc 5622 if (atomic_read(&memcg->under_oom))
9490ff27 5623 eventfd_signal(eventfd, 1);
1af8efe9 5624 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5625
5626 return 0;
5627}
5628
81eeaf04 5629static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
9490ff27
KH
5630 struct cftype *cft, struct eventfd_ctx *eventfd)
5631{
81eeaf04 5632 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5633 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5634 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5635
5636 BUG_ON(type != _OOM_TYPE);
5637
1af8efe9 5638 spin_lock(&memcg_oom_lock);
9490ff27 5639
c0ff4b85 5640 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5641 if (ev->eventfd == eventfd) {
5642 list_del(&ev->list);
5643 kfree(ev);
5644 }
5645 }
5646
1af8efe9 5647 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5648}
5649
182446d0 5650static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
3c11ecf4
KH
5651 struct cftype *cft, struct cgroup_map_cb *cb)
5652{
182446d0 5653 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4 5654
c0ff4b85 5655 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5656
c0ff4b85 5657 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5658 cb->fill(cb, "under_oom", 1);
5659 else
5660 cb->fill(cb, "under_oom", 0);
5661 return 0;
5662}
5663
182446d0 5664static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5665 struct cftype *cft, u64 val)
5666{
182446d0 5667 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5668 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5669
5670 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5671 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5672 return -EINVAL;
5673
0999821b 5674 mutex_lock(&memcg_create_mutex);
3c11ecf4 5675 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5676 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5677 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5678 return -EINVAL;
5679 }
c0ff4b85 5680 memcg->oom_kill_disable = val;
4d845ebf 5681 if (!val)
c0ff4b85 5682 memcg_oom_recover(memcg);
0999821b 5683 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5684 return 0;
5685}
5686
c255a458 5687#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5688static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5689{
55007d84
GC
5690 int ret;
5691
2633d7a0 5692 memcg->kmemcg_id = -1;
55007d84
GC
5693 ret = memcg_propagate_kmem(memcg);
5694 if (ret)
5695 return ret;
2633d7a0 5696
1d62e436 5697 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5698}
e5671dfa 5699
10d5ebf4 5700static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5701{
1d62e436 5702 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5703}
5704
5705static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5706{
5707 if (!memcg_kmem_is_active(memcg))
5708 return;
5709
5710 /*
5711 * kmem charges can outlive the cgroup. In the case of slab
5712 * pages, for instance, a page contain objects from various
5713 * processes. As we prevent from taking a reference for every
5714 * such allocation we have to be careful when doing uncharge
5715 * (see memcg_uncharge_kmem) and here during offlining.
5716 *
5717 * The idea is that that only the _last_ uncharge which sees
5718 * the dead memcg will drop the last reference. An additional
5719 * reference is taken here before the group is marked dead
5720 * which is then paired with css_put during uncharge resp. here.
5721 *
5722 * Although this might sound strange as this path is called from
5723 * css_offline() when the referencemight have dropped down to 0
5724 * and shouldn't be incremented anymore (css_tryget would fail)
5725 * we do not have other options because of the kmem allocations
5726 * lifetime.
5727 */
5728 css_get(&memcg->css);
7de37682
GC
5729
5730 memcg_kmem_mark_dead(memcg);
5731
5732 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5733 return;
5734
7de37682 5735 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5736 css_put(&memcg->css);
d1a4c0b3 5737}
e5671dfa 5738#else
cbe128e3 5739static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5740{
5741 return 0;
5742}
d1a4c0b3 5743
10d5ebf4
LZ
5744static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5745{
5746}
5747
5748static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5749{
5750}
e5671dfa
GC
5751#endif
5752
8cdea7c0
BS
5753static struct cftype mem_cgroup_files[] = {
5754 {
0eea1030 5755 .name = "usage_in_bytes",
8c7c6e34 5756 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5757 .read = mem_cgroup_read,
9490ff27
KH
5758 .register_event = mem_cgroup_usage_register_event,
5759 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5760 },
c84872e1
PE
5761 {
5762 .name = "max_usage_in_bytes",
8c7c6e34 5763 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5764 .trigger = mem_cgroup_reset,
af36f906 5765 .read = mem_cgroup_read,
c84872e1 5766 },
8cdea7c0 5767 {
0eea1030 5768 .name = "limit_in_bytes",
8c7c6e34 5769 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5770 .write_string = mem_cgroup_write,
af36f906 5771 .read = mem_cgroup_read,
8cdea7c0 5772 },
296c81d8
BS
5773 {
5774 .name = "soft_limit_in_bytes",
5775 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5776 .write_string = mem_cgroup_write,
af36f906 5777 .read = mem_cgroup_read,
296c81d8 5778 },
8cdea7c0
BS
5779 {
5780 .name = "failcnt",
8c7c6e34 5781 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5782 .trigger = mem_cgroup_reset,
af36f906 5783 .read = mem_cgroup_read,
8cdea7c0 5784 },
d2ceb9b7
KH
5785 {
5786 .name = "stat",
ab215884 5787 .read_seq_string = memcg_stat_show,
d2ceb9b7 5788 },
c1e862c1
KH
5789 {
5790 .name = "force_empty",
5791 .trigger = mem_cgroup_force_empty_write,
5792 },
18f59ea7
BS
5793 {
5794 .name = "use_hierarchy",
f00baae7 5795 .flags = CFTYPE_INSANE,
18f59ea7
BS
5796 .write_u64 = mem_cgroup_hierarchy_write,
5797 .read_u64 = mem_cgroup_hierarchy_read,
5798 },
a7885eb8
KM
5799 {
5800 .name = "swappiness",
5801 .read_u64 = mem_cgroup_swappiness_read,
5802 .write_u64 = mem_cgroup_swappiness_write,
5803 },
7dc74be0
DN
5804 {
5805 .name = "move_charge_at_immigrate",
5806 .read_u64 = mem_cgroup_move_charge_read,
5807 .write_u64 = mem_cgroup_move_charge_write,
5808 },
9490ff27
KH
5809 {
5810 .name = "oom_control",
3c11ecf4
KH
5811 .read_map = mem_cgroup_oom_control_read,
5812 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5813 .register_event = mem_cgroup_oom_register_event,
5814 .unregister_event = mem_cgroup_oom_unregister_event,
5815 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5816 },
70ddf637
AV
5817 {
5818 .name = "pressure_level",
5819 .register_event = vmpressure_register_event,
5820 .unregister_event = vmpressure_unregister_event,
5821 },
406eb0c9
YH
5822#ifdef CONFIG_NUMA
5823 {
5824 .name = "numa_stat",
ab215884 5825 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
5826 },
5827#endif
510fc4e1
GC
5828#ifdef CONFIG_MEMCG_KMEM
5829 {
5830 .name = "kmem.limit_in_bytes",
5831 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5832 .write_string = mem_cgroup_write,
5833 .read = mem_cgroup_read,
5834 },
5835 {
5836 .name = "kmem.usage_in_bytes",
5837 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5838 .read = mem_cgroup_read,
5839 },
5840 {
5841 .name = "kmem.failcnt",
5842 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5843 .trigger = mem_cgroup_reset,
5844 .read = mem_cgroup_read,
5845 },
5846 {
5847 .name = "kmem.max_usage_in_bytes",
5848 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5849 .trigger = mem_cgroup_reset,
5850 .read = mem_cgroup_read,
5851 },
749c5415
GC
5852#ifdef CONFIG_SLABINFO
5853 {
5854 .name = "kmem.slabinfo",
5855 .read_seq_string = mem_cgroup_slabinfo_read,
5856 },
5857#endif
8c7c6e34 5858#endif
6bc10349 5859 { }, /* terminate */
af36f906 5860};
8c7c6e34 5861
2d11085e
MH
5862#ifdef CONFIG_MEMCG_SWAP
5863static struct cftype memsw_cgroup_files[] = {
5864 {
5865 .name = "memsw.usage_in_bytes",
5866 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5867 .read = mem_cgroup_read,
5868 .register_event = mem_cgroup_usage_register_event,
5869 .unregister_event = mem_cgroup_usage_unregister_event,
5870 },
5871 {
5872 .name = "memsw.max_usage_in_bytes",
5873 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5874 .trigger = mem_cgroup_reset,
5875 .read = mem_cgroup_read,
5876 },
5877 {
5878 .name = "memsw.limit_in_bytes",
5879 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5880 .write_string = mem_cgroup_write,
5881 .read = mem_cgroup_read,
5882 },
5883 {
5884 .name = "memsw.failcnt",
5885 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5886 .trigger = mem_cgroup_reset,
5887 .read = mem_cgroup_read,
5888 },
5889 { }, /* terminate */
5890};
5891#endif
c0ff4b85 5892static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5893{
5894 struct mem_cgroup_per_node *pn;
1ecaab2b 5895 struct mem_cgroup_per_zone *mz;
41e3355d 5896 int zone, tmp = node;
1ecaab2b
KH
5897 /*
5898 * This routine is called against possible nodes.
5899 * But it's BUG to call kmalloc() against offline node.
5900 *
5901 * TODO: this routine can waste much memory for nodes which will
5902 * never be onlined. It's better to use memory hotplug callback
5903 * function.
5904 */
41e3355d
KH
5905 if (!node_state(node, N_NORMAL_MEMORY))
5906 tmp = -1;
17295c88 5907 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5908 if (!pn)
5909 return 1;
1ecaab2b 5910
1ecaab2b
KH
5911 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5912 mz = &pn->zoneinfo[zone];
bea8c150 5913 lruvec_init(&mz->lruvec);
d79154bb 5914 mz->memcg = memcg;
1ecaab2b 5915 }
54f72fe0 5916 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5917 return 0;
5918}
5919
c0ff4b85 5920static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5921{
54f72fe0 5922 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
5923}
5924
33327948
KH
5925static struct mem_cgroup *mem_cgroup_alloc(void)
5926{
d79154bb 5927 struct mem_cgroup *memcg;
45cf7ebd 5928 size_t size = memcg_size();
33327948 5929
45cf7ebd 5930 /* Can be very big if nr_node_ids is very big */
c8dad2bb 5931 if (size < PAGE_SIZE)
d79154bb 5932 memcg = kzalloc(size, GFP_KERNEL);
33327948 5933 else
d79154bb 5934 memcg = vzalloc(size);
33327948 5935
d79154bb 5936 if (!memcg)
e7bbcdf3
DC
5937 return NULL;
5938
d79154bb
HD
5939 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5940 if (!memcg->stat)
d2e61b8d 5941 goto out_free;
d79154bb
HD
5942 spin_lock_init(&memcg->pcp_counter_lock);
5943 return memcg;
d2e61b8d
DC
5944
5945out_free:
5946 if (size < PAGE_SIZE)
d79154bb 5947 kfree(memcg);
d2e61b8d 5948 else
d79154bb 5949 vfree(memcg);
d2e61b8d 5950 return NULL;
33327948
KH
5951}
5952
59927fb9 5953/*
c8b2a36f
GC
5954 * At destroying mem_cgroup, references from swap_cgroup can remain.
5955 * (scanning all at force_empty is too costly...)
5956 *
5957 * Instead of clearing all references at force_empty, we remember
5958 * the number of reference from swap_cgroup and free mem_cgroup when
5959 * it goes down to 0.
5960 *
5961 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 5962 */
c8b2a36f
GC
5963
5964static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5965{
c8b2a36f 5966 int node;
45cf7ebd 5967 size_t size = memcg_size();
59927fb9 5968
c8b2a36f
GC
5969 free_css_id(&mem_cgroup_subsys, &memcg->css);
5970
5971 for_each_node(node)
5972 free_mem_cgroup_per_zone_info(memcg, node);
5973
5974 free_percpu(memcg->stat);
5975
3f134619
GC
5976 /*
5977 * We need to make sure that (at least for now), the jump label
5978 * destruction code runs outside of the cgroup lock. This is because
5979 * get_online_cpus(), which is called from the static_branch update,
5980 * can't be called inside the cgroup_lock. cpusets are the ones
5981 * enforcing this dependency, so if they ever change, we might as well.
5982 *
5983 * schedule_work() will guarantee this happens. Be careful if you need
5984 * to move this code around, and make sure it is outside
5985 * the cgroup_lock.
5986 */
a8964b9b 5987 disarm_static_keys(memcg);
3afe36b1
GC
5988 if (size < PAGE_SIZE)
5989 kfree(memcg);
5990 else
5991 vfree(memcg);
59927fb9 5992}
3afe36b1 5993
7bcc1bb1
DN
5994/*
5995 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5996 */
e1aab161 5997struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 5998{
c0ff4b85 5999 if (!memcg->res.parent)
7bcc1bb1 6000 return NULL;
c0ff4b85 6001 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6002}
e1aab161 6003EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6004
0eb253e2 6005static struct cgroup_subsys_state * __ref
eb95419b 6006mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6007{
d142e3e6 6008 struct mem_cgroup *memcg;
04046e1a 6009 long error = -ENOMEM;
6d12e2d8 6010 int node;
8cdea7c0 6011
c0ff4b85
R
6012 memcg = mem_cgroup_alloc();
6013 if (!memcg)
04046e1a 6014 return ERR_PTR(error);
78fb7466 6015
3ed28fa1 6016 for_each_node(node)
c0ff4b85 6017 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6018 goto free_out;
f64c3f54 6019
c077719b 6020 /* root ? */
eb95419b 6021 if (parent_css == NULL) {
a41c58a6 6022 root_mem_cgroup = memcg;
d142e3e6
GC
6023 res_counter_init(&memcg->res, NULL);
6024 res_counter_init(&memcg->memsw, NULL);
6025 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6026 }
28dbc4b6 6027
d142e3e6
GC
6028 memcg->last_scanned_node = MAX_NUMNODES;
6029 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6030 memcg->move_charge_at_immigrate = 0;
6031 mutex_init(&memcg->thresholds_lock);
6032 spin_lock_init(&memcg->move_lock);
70ddf637 6033 vmpressure_init(&memcg->vmpressure);
7d910c05 6034 spin_lock_init(&memcg->soft_lock);
d142e3e6
GC
6035
6036 return &memcg->css;
6037
6038free_out:
6039 __mem_cgroup_free(memcg);
6040 return ERR_PTR(error);
6041}
6042
6043static int
eb95419b 6044mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6045{
eb95419b
TH
6046 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6047 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
6048 int error = 0;
6049
63876986 6050 if (!parent)
d142e3e6
GC
6051 return 0;
6052
0999821b 6053 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6054
6055 memcg->use_hierarchy = parent->use_hierarchy;
6056 memcg->oom_kill_disable = parent->oom_kill_disable;
6057 memcg->swappiness = mem_cgroup_swappiness(parent);
6058
6059 if (parent->use_hierarchy) {
c0ff4b85
R
6060 res_counter_init(&memcg->res, &parent->res);
6061 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6062 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6063
7bcc1bb1 6064 /*
8d76a979
LZ
6065 * No need to take a reference to the parent because cgroup
6066 * core guarantees its existence.
7bcc1bb1 6067 */
18f59ea7 6068 } else {
c0ff4b85
R
6069 res_counter_init(&memcg->res, NULL);
6070 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6071 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6072 /*
6073 * Deeper hierachy with use_hierarchy == false doesn't make
6074 * much sense so let cgroup subsystem know about this
6075 * unfortunate state in our controller.
6076 */
d142e3e6 6077 if (parent != root_mem_cgroup)
8c7f6edb 6078 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6079 }
cbe128e3
GC
6080
6081 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6082 mutex_unlock(&memcg_create_mutex);
d142e3e6 6083 return error;
8cdea7c0
BS
6084}
6085
5f578161
MH
6086/*
6087 * Announce all parents that a group from their hierarchy is gone.
6088 */
6089static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6090{
6091 struct mem_cgroup *parent = memcg;
6092
6093 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6094 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6095
6096 /*
6097 * if the root memcg is not hierarchical we have to check it
6098 * explicitely.
6099 */
6100 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6101 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6102}
6103
eb95419b 6104static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6105{
eb95419b 6106 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ec64f515 6107
10d5ebf4
LZ
6108 kmem_cgroup_css_offline(memcg);
6109
5f578161 6110 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6111 mem_cgroup_reparent_charges(memcg);
7d910c05
MH
6112 if (memcg->soft_contributed) {
6113 while ((memcg = parent_mem_cgroup(memcg)))
6114 atomic_dec(&memcg->children_in_excess);
1be171d6
MH
6115
6116 if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
6117 atomic_dec(&root_mem_cgroup->children_in_excess);
7d910c05 6118 }
1f458cbf 6119 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6120 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6121}
6122
eb95419b 6123static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6124{
eb95419b 6125 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 6126
10d5ebf4 6127 memcg_destroy_kmem(memcg);
465939a1 6128 __mem_cgroup_free(memcg);
8cdea7c0
BS
6129}
6130
02491447 6131#ifdef CONFIG_MMU
7dc74be0 6132/* Handlers for move charge at task migration. */
854ffa8d
DN
6133#define PRECHARGE_COUNT_AT_ONCE 256
6134static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6135{
854ffa8d
DN
6136 int ret = 0;
6137 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6138 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6139
c0ff4b85 6140 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6141 mc.precharge += count;
6142 /* we don't need css_get for root */
6143 return ret;
6144 }
6145 /* try to charge at once */
6146 if (count > 1) {
6147 struct res_counter *dummy;
6148 /*
c0ff4b85 6149 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6150 * by cgroup_lock_live_cgroup() that it is not removed and we
6151 * are still under the same cgroup_mutex. So we can postpone
6152 * css_get().
6153 */
c0ff4b85 6154 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6155 goto one_by_one;
c0ff4b85 6156 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6157 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6158 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6159 goto one_by_one;
6160 }
6161 mc.precharge += count;
854ffa8d
DN
6162 return ret;
6163 }
6164one_by_one:
6165 /* fall back to one by one charge */
6166 while (count--) {
6167 if (signal_pending(current)) {
6168 ret = -EINTR;
6169 break;
6170 }
6171 if (!batch_count--) {
6172 batch_count = PRECHARGE_COUNT_AT_ONCE;
6173 cond_resched();
6174 }
c0ff4b85
R
6175 ret = __mem_cgroup_try_charge(NULL,
6176 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6177 if (ret)
854ffa8d 6178 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6179 return ret;
854ffa8d
DN
6180 mc.precharge++;
6181 }
4ffef5fe
DN
6182 return ret;
6183}
6184
6185/**
8d32ff84 6186 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6187 * @vma: the vma the pte to be checked belongs
6188 * @addr: the address corresponding to the pte to be checked
6189 * @ptent: the pte to be checked
02491447 6190 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6191 *
6192 * Returns
6193 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6194 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6195 * move charge. if @target is not NULL, the page is stored in target->page
6196 * with extra refcnt got(Callers should handle it).
02491447
DN
6197 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6198 * target for charge migration. if @target is not NULL, the entry is stored
6199 * in target->ent.
4ffef5fe
DN
6200 *
6201 * Called with pte lock held.
6202 */
4ffef5fe
DN
6203union mc_target {
6204 struct page *page;
02491447 6205 swp_entry_t ent;
4ffef5fe
DN
6206};
6207
4ffef5fe 6208enum mc_target_type {
8d32ff84 6209 MC_TARGET_NONE = 0,
4ffef5fe 6210 MC_TARGET_PAGE,
02491447 6211 MC_TARGET_SWAP,
4ffef5fe
DN
6212};
6213
90254a65
DN
6214static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6215 unsigned long addr, pte_t ptent)
4ffef5fe 6216{
90254a65 6217 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6218
90254a65
DN
6219 if (!page || !page_mapped(page))
6220 return NULL;
6221 if (PageAnon(page)) {
6222 /* we don't move shared anon */
4b91355e 6223 if (!move_anon())
90254a65 6224 return NULL;
87946a72
DN
6225 } else if (!move_file())
6226 /* we ignore mapcount for file pages */
90254a65
DN
6227 return NULL;
6228 if (!get_page_unless_zero(page))
6229 return NULL;
6230
6231 return page;
6232}
6233
4b91355e 6234#ifdef CONFIG_SWAP
90254a65
DN
6235static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6236 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6237{
90254a65
DN
6238 struct page *page = NULL;
6239 swp_entry_t ent = pte_to_swp_entry(ptent);
6240
6241 if (!move_anon() || non_swap_entry(ent))
6242 return NULL;
4b91355e
KH
6243 /*
6244 * Because lookup_swap_cache() updates some statistics counter,
6245 * we call find_get_page() with swapper_space directly.
6246 */
33806f06 6247 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6248 if (do_swap_account)
6249 entry->val = ent.val;
6250
6251 return page;
6252}
4b91355e
KH
6253#else
6254static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6255 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6256{
6257 return NULL;
6258}
6259#endif
90254a65 6260
87946a72
DN
6261static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6262 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6263{
6264 struct page *page = NULL;
87946a72
DN
6265 struct address_space *mapping;
6266 pgoff_t pgoff;
6267
6268 if (!vma->vm_file) /* anonymous vma */
6269 return NULL;
6270 if (!move_file())
6271 return NULL;
6272
87946a72
DN
6273 mapping = vma->vm_file->f_mapping;
6274 if (pte_none(ptent))
6275 pgoff = linear_page_index(vma, addr);
6276 else /* pte_file(ptent) is true */
6277 pgoff = pte_to_pgoff(ptent);
6278
6279 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6280 page = find_get_page(mapping, pgoff);
6281
6282#ifdef CONFIG_SWAP
6283 /* shmem/tmpfs may report page out on swap: account for that too. */
6284 if (radix_tree_exceptional_entry(page)) {
6285 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6286 if (do_swap_account)
aa3b1895 6287 *entry = swap;
33806f06 6288 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6289 }
aa3b1895 6290#endif
87946a72
DN
6291 return page;
6292}
6293
8d32ff84 6294static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6295 unsigned long addr, pte_t ptent, union mc_target *target)
6296{
6297 struct page *page = NULL;
6298 struct page_cgroup *pc;
8d32ff84 6299 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6300 swp_entry_t ent = { .val = 0 };
6301
6302 if (pte_present(ptent))
6303 page = mc_handle_present_pte(vma, addr, ptent);
6304 else if (is_swap_pte(ptent))
6305 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6306 else if (pte_none(ptent) || pte_file(ptent))
6307 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6308
6309 if (!page && !ent.val)
8d32ff84 6310 return ret;
02491447
DN
6311 if (page) {
6312 pc = lookup_page_cgroup(page);
6313 /*
6314 * Do only loose check w/o page_cgroup lock.
6315 * mem_cgroup_move_account() checks the pc is valid or not under
6316 * the lock.
6317 */
6318 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6319 ret = MC_TARGET_PAGE;
6320 if (target)
6321 target->page = page;
6322 }
6323 if (!ret || !target)
6324 put_page(page);
6325 }
90254a65
DN
6326 /* There is a swap entry and a page doesn't exist or isn't charged */
6327 if (ent.val && !ret &&
9fb4b7cc 6328 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6329 ret = MC_TARGET_SWAP;
6330 if (target)
6331 target->ent = ent;
4ffef5fe 6332 }
4ffef5fe
DN
6333 return ret;
6334}
6335
12724850
NH
6336#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6337/*
6338 * We don't consider swapping or file mapped pages because THP does not
6339 * support them for now.
6340 * Caller should make sure that pmd_trans_huge(pmd) is true.
6341 */
6342static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6343 unsigned long addr, pmd_t pmd, union mc_target *target)
6344{
6345 struct page *page = NULL;
6346 struct page_cgroup *pc;
6347 enum mc_target_type ret = MC_TARGET_NONE;
6348
6349 page = pmd_page(pmd);
6350 VM_BUG_ON(!page || !PageHead(page));
6351 if (!move_anon())
6352 return ret;
6353 pc = lookup_page_cgroup(page);
6354 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6355 ret = MC_TARGET_PAGE;
6356 if (target) {
6357 get_page(page);
6358 target->page = page;
6359 }
6360 }
6361 return ret;
6362}
6363#else
6364static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6365 unsigned long addr, pmd_t pmd, union mc_target *target)
6366{
6367 return MC_TARGET_NONE;
6368}
6369#endif
6370
4ffef5fe
DN
6371static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6372 unsigned long addr, unsigned long end,
6373 struct mm_walk *walk)
6374{
6375 struct vm_area_struct *vma = walk->private;
6376 pte_t *pte;
6377 spinlock_t *ptl;
6378
12724850
NH
6379 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6380 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6381 mc.precharge += HPAGE_PMD_NR;
6382 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6383 return 0;
12724850 6384 }
03319327 6385
45f83cef
AA
6386 if (pmd_trans_unstable(pmd))
6387 return 0;
4ffef5fe
DN
6388 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6389 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6390 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6391 mc.precharge++; /* increment precharge temporarily */
6392 pte_unmap_unlock(pte - 1, ptl);
6393 cond_resched();
6394
7dc74be0
DN
6395 return 0;
6396}
6397
4ffef5fe
DN
6398static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6399{
6400 unsigned long precharge;
6401 struct vm_area_struct *vma;
6402
dfe076b0 6403 down_read(&mm->mmap_sem);
4ffef5fe
DN
6404 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6405 struct mm_walk mem_cgroup_count_precharge_walk = {
6406 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6407 .mm = mm,
6408 .private = vma,
6409 };
6410 if (is_vm_hugetlb_page(vma))
6411 continue;
4ffef5fe
DN
6412 walk_page_range(vma->vm_start, vma->vm_end,
6413 &mem_cgroup_count_precharge_walk);
6414 }
dfe076b0 6415 up_read(&mm->mmap_sem);
4ffef5fe
DN
6416
6417 precharge = mc.precharge;
6418 mc.precharge = 0;
6419
6420 return precharge;
6421}
6422
4ffef5fe
DN
6423static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6424{
dfe076b0
DN
6425 unsigned long precharge = mem_cgroup_count_precharge(mm);
6426
6427 VM_BUG_ON(mc.moving_task);
6428 mc.moving_task = current;
6429 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6430}
6431
dfe076b0
DN
6432/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6433static void __mem_cgroup_clear_mc(void)
4ffef5fe 6434{
2bd9bb20
KH
6435 struct mem_cgroup *from = mc.from;
6436 struct mem_cgroup *to = mc.to;
4050377b 6437 int i;
2bd9bb20 6438
4ffef5fe 6439 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6440 if (mc.precharge) {
6441 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6442 mc.precharge = 0;
6443 }
6444 /*
6445 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6446 * we must uncharge here.
6447 */
6448 if (mc.moved_charge) {
6449 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6450 mc.moved_charge = 0;
4ffef5fe 6451 }
483c30b5
DN
6452 /* we must fixup refcnts and charges */
6453 if (mc.moved_swap) {
483c30b5
DN
6454 /* uncharge swap account from the old cgroup */
6455 if (!mem_cgroup_is_root(mc.from))
6456 res_counter_uncharge(&mc.from->memsw,
6457 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6458
6459 for (i = 0; i < mc.moved_swap; i++)
6460 css_put(&mc.from->css);
483c30b5
DN
6461
6462 if (!mem_cgroup_is_root(mc.to)) {
6463 /*
6464 * we charged both to->res and to->memsw, so we should
6465 * uncharge to->res.
6466 */
6467 res_counter_uncharge(&mc.to->res,
6468 PAGE_SIZE * mc.moved_swap);
483c30b5 6469 }
4050377b 6470 /* we've already done css_get(mc.to) */
483c30b5
DN
6471 mc.moved_swap = 0;
6472 }
dfe076b0
DN
6473 memcg_oom_recover(from);
6474 memcg_oom_recover(to);
6475 wake_up_all(&mc.waitq);
6476}
6477
6478static void mem_cgroup_clear_mc(void)
6479{
6480 struct mem_cgroup *from = mc.from;
6481
6482 /*
6483 * we must clear moving_task before waking up waiters at the end of
6484 * task migration.
6485 */
6486 mc.moving_task = NULL;
6487 __mem_cgroup_clear_mc();
2bd9bb20 6488 spin_lock(&mc.lock);
4ffef5fe
DN
6489 mc.from = NULL;
6490 mc.to = NULL;
2bd9bb20 6491 spin_unlock(&mc.lock);
32047e2a 6492 mem_cgroup_end_move(from);
4ffef5fe
DN
6493}
6494
eb95419b 6495static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6496 struct cgroup_taskset *tset)
7dc74be0 6497{
2f7ee569 6498 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6499 int ret = 0;
eb95419b 6500 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6501 unsigned long move_charge_at_immigrate;
7dc74be0 6502
ee5e8472
GC
6503 /*
6504 * We are now commited to this value whatever it is. Changes in this
6505 * tunable will only affect upcoming migrations, not the current one.
6506 * So we need to save it, and keep it going.
6507 */
6508 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6509 if (move_charge_at_immigrate) {
7dc74be0
DN
6510 struct mm_struct *mm;
6511 struct mem_cgroup *from = mem_cgroup_from_task(p);
6512
c0ff4b85 6513 VM_BUG_ON(from == memcg);
7dc74be0
DN
6514
6515 mm = get_task_mm(p);
6516 if (!mm)
6517 return 0;
7dc74be0 6518 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6519 if (mm->owner == p) {
6520 VM_BUG_ON(mc.from);
6521 VM_BUG_ON(mc.to);
6522 VM_BUG_ON(mc.precharge);
854ffa8d 6523 VM_BUG_ON(mc.moved_charge);
483c30b5 6524 VM_BUG_ON(mc.moved_swap);
32047e2a 6525 mem_cgroup_start_move(from);
2bd9bb20 6526 spin_lock(&mc.lock);
4ffef5fe 6527 mc.from = from;
c0ff4b85 6528 mc.to = memcg;
ee5e8472 6529 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6530 spin_unlock(&mc.lock);
dfe076b0 6531 /* We set mc.moving_task later */
4ffef5fe
DN
6532
6533 ret = mem_cgroup_precharge_mc(mm);
6534 if (ret)
6535 mem_cgroup_clear_mc();
dfe076b0
DN
6536 }
6537 mmput(mm);
7dc74be0
DN
6538 }
6539 return ret;
6540}
6541
eb95419b 6542static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6543 struct cgroup_taskset *tset)
7dc74be0 6544{
4ffef5fe 6545 mem_cgroup_clear_mc();
7dc74be0
DN
6546}
6547
4ffef5fe
DN
6548static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6549 unsigned long addr, unsigned long end,
6550 struct mm_walk *walk)
7dc74be0 6551{
4ffef5fe
DN
6552 int ret = 0;
6553 struct vm_area_struct *vma = walk->private;
6554 pte_t *pte;
6555 spinlock_t *ptl;
12724850
NH
6556 enum mc_target_type target_type;
6557 union mc_target target;
6558 struct page *page;
6559 struct page_cgroup *pc;
4ffef5fe 6560
12724850
NH
6561 /*
6562 * We don't take compound_lock() here but no race with splitting thp
6563 * happens because:
6564 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6565 * under splitting, which means there's no concurrent thp split,
6566 * - if another thread runs into split_huge_page() just after we
6567 * entered this if-block, the thread must wait for page table lock
6568 * to be unlocked in __split_huge_page_splitting(), where the main
6569 * part of thp split is not executed yet.
6570 */
6571 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6572 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6573 spin_unlock(&vma->vm_mm->page_table_lock);
6574 return 0;
6575 }
6576 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6577 if (target_type == MC_TARGET_PAGE) {
6578 page = target.page;
6579 if (!isolate_lru_page(page)) {
6580 pc = lookup_page_cgroup(page);
6581 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6582 pc, mc.from, mc.to)) {
12724850
NH
6583 mc.precharge -= HPAGE_PMD_NR;
6584 mc.moved_charge += HPAGE_PMD_NR;
6585 }
6586 putback_lru_page(page);
6587 }
6588 put_page(page);
6589 }
6590 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6591 return 0;
12724850
NH
6592 }
6593
45f83cef
AA
6594 if (pmd_trans_unstable(pmd))
6595 return 0;
4ffef5fe
DN
6596retry:
6597 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6598 for (; addr != end; addr += PAGE_SIZE) {
6599 pte_t ptent = *(pte++);
02491447 6600 swp_entry_t ent;
4ffef5fe
DN
6601
6602 if (!mc.precharge)
6603 break;
6604
8d32ff84 6605 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6606 case MC_TARGET_PAGE:
6607 page = target.page;
6608 if (isolate_lru_page(page))
6609 goto put;
6610 pc = lookup_page_cgroup(page);
7ec99d62 6611 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6612 mc.from, mc.to)) {
4ffef5fe 6613 mc.precharge--;
854ffa8d
DN
6614 /* we uncharge from mc.from later. */
6615 mc.moved_charge++;
4ffef5fe
DN
6616 }
6617 putback_lru_page(page);
8d32ff84 6618put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6619 put_page(page);
6620 break;
02491447
DN
6621 case MC_TARGET_SWAP:
6622 ent = target.ent;
e91cbb42 6623 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6624 mc.precharge--;
483c30b5
DN
6625 /* we fixup refcnts and charges later. */
6626 mc.moved_swap++;
6627 }
02491447 6628 break;
4ffef5fe
DN
6629 default:
6630 break;
6631 }
6632 }
6633 pte_unmap_unlock(pte - 1, ptl);
6634 cond_resched();
6635
6636 if (addr != end) {
6637 /*
6638 * We have consumed all precharges we got in can_attach().
6639 * We try charge one by one, but don't do any additional
6640 * charges to mc.to if we have failed in charge once in attach()
6641 * phase.
6642 */
854ffa8d 6643 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6644 if (!ret)
6645 goto retry;
6646 }
6647
6648 return ret;
6649}
6650
6651static void mem_cgroup_move_charge(struct mm_struct *mm)
6652{
6653 struct vm_area_struct *vma;
6654
6655 lru_add_drain_all();
dfe076b0
DN
6656retry:
6657 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6658 /*
6659 * Someone who are holding the mmap_sem might be waiting in
6660 * waitq. So we cancel all extra charges, wake up all waiters,
6661 * and retry. Because we cancel precharges, we might not be able
6662 * to move enough charges, but moving charge is a best-effort
6663 * feature anyway, so it wouldn't be a big problem.
6664 */
6665 __mem_cgroup_clear_mc();
6666 cond_resched();
6667 goto retry;
6668 }
4ffef5fe
DN
6669 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6670 int ret;
6671 struct mm_walk mem_cgroup_move_charge_walk = {
6672 .pmd_entry = mem_cgroup_move_charge_pte_range,
6673 .mm = mm,
6674 .private = vma,
6675 };
6676 if (is_vm_hugetlb_page(vma))
6677 continue;
4ffef5fe
DN
6678 ret = walk_page_range(vma->vm_start, vma->vm_end,
6679 &mem_cgroup_move_charge_walk);
6680 if (ret)
6681 /*
6682 * means we have consumed all precharges and failed in
6683 * doing additional charge. Just abandon here.
6684 */
6685 break;
6686 }
dfe076b0 6687 up_read(&mm->mmap_sem);
7dc74be0
DN
6688}
6689
eb95419b 6690static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6691 struct cgroup_taskset *tset)
67e465a7 6692{
2f7ee569 6693 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6694 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6695
dfe076b0 6696 if (mm) {
a433658c
KM
6697 if (mc.to)
6698 mem_cgroup_move_charge(mm);
dfe076b0
DN
6699 mmput(mm);
6700 }
a433658c
KM
6701 if (mc.to)
6702 mem_cgroup_clear_mc();
67e465a7 6703}
5cfb80a7 6704#else /* !CONFIG_MMU */
eb95419b 6705static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6706 struct cgroup_taskset *tset)
5cfb80a7
DN
6707{
6708 return 0;
6709}
eb95419b 6710static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6711 struct cgroup_taskset *tset)
5cfb80a7
DN
6712{
6713}
eb95419b 6714static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6715 struct cgroup_taskset *tset)
5cfb80a7
DN
6716{
6717}
6718#endif
67e465a7 6719
f00baae7
TH
6720/*
6721 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6722 * to verify sane_behavior flag on each mount attempt.
6723 */
eb95419b 6724static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6725{
6726 /*
6727 * use_hierarchy is forced with sane_behavior. cgroup core
6728 * guarantees that @root doesn't have any children, so turning it
6729 * on for the root memcg is enough.
6730 */
eb95419b
TH
6731 if (cgroup_sane_behavior(root_css->cgroup))
6732 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6733}
6734
8cdea7c0
BS
6735struct cgroup_subsys mem_cgroup_subsys = {
6736 .name = "memory",
6737 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6738 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6739 .css_online = mem_cgroup_css_online,
92fb9748
TH
6740 .css_offline = mem_cgroup_css_offline,
6741 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6742 .can_attach = mem_cgroup_can_attach,
6743 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6744 .attach = mem_cgroup_move_task,
f00baae7 6745 .bind = mem_cgroup_bind,
6bc10349 6746 .base_cftypes = mem_cgroup_files,
6d12e2d8 6747 .early_init = 0,
04046e1a 6748 .use_id = 1,
8cdea7c0 6749};
c077719b 6750
c255a458 6751#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6752static int __init enable_swap_account(char *s)
6753{
a2c8990a 6754 if (!strcmp(s, "1"))
a42c390c 6755 really_do_swap_account = 1;
a2c8990a 6756 else if (!strcmp(s, "0"))
a42c390c
MH
6757 really_do_swap_account = 0;
6758 return 1;
6759}
a2c8990a 6760__setup("swapaccount=", enable_swap_account);
c077719b 6761
2d11085e
MH
6762static void __init memsw_file_init(void)
6763{
6acc8b02
MH
6764 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6765}
6766
6767static void __init enable_swap_cgroup(void)
6768{
6769 if (!mem_cgroup_disabled() && really_do_swap_account) {
6770 do_swap_account = 1;
6771 memsw_file_init();
6772 }
2d11085e 6773}
6acc8b02 6774
2d11085e 6775#else
6acc8b02 6776static void __init enable_swap_cgroup(void)
2d11085e
MH
6777{
6778}
c077719b 6779#endif
2d11085e
MH
6780
6781/*
1081312f
MH
6782 * subsys_initcall() for memory controller.
6783 *
6784 * Some parts like hotcpu_notifier() have to be initialized from this context
6785 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6786 * everything that doesn't depend on a specific mem_cgroup structure should
6787 * be initialized from here.
2d11085e
MH
6788 */
6789static int __init mem_cgroup_init(void)
6790{
6791 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6792 enable_swap_cgroup();
e4777496 6793 memcg_stock_init();
2d11085e
MH
6794 return 0;
6795}
6796subsys_initcall(mem_cgroup_init);