]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/memcontrol.c
mm: vmscan: do not iterate all mem cgroups for global direct reclaim
[mirror_ubuntu-focal-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
71cd3113 103static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 114
bb4cc1a8
AM
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
ef8f2327 120struct mem_cgroup_tree_per_node {
bb4cc1a8 121 struct rb_root rb_root;
fa90b2fd 122 struct rb_node *rb_rightmost;
bb4cc1a8
AM
123 spinlock_t lock;
124};
125
bb4cc1a8
AM
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
9490ff27
KH
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
2e72b634 137
79bd9814
TH
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
3bc942f3 141struct mem_cgroup_event {
79bd9814 142 /*
59b6f873 143 * memcg which the event belongs to.
79bd9814 144 */
59b6f873 145 struct mem_cgroup *memcg;
79bd9814
TH
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
fba94807
TH
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
59b6f873 159 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 160 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
59b6f873 166 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 167 struct eventfd_ctx *eventfd);
79bd9814
TH
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
ac6424b9 174 wait_queue_entry_t wait;
79bd9814
TH
175 struct work_struct remove;
176};
177
c0ff4b85
R
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 180
7dc74be0
DN
181/* Stuffs for move charges at task migration. */
182/*
1dfab5ab 183 * Types of charges to be moved.
7dc74be0 184 */
1dfab5ab
JW
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 188
4ffef5fe
DN
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
b1dd693e 191 spinlock_t lock; /* for from, to */
264a0ae1 192 struct mm_struct *mm;
4ffef5fe
DN
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
1dfab5ab 195 unsigned long flags;
4ffef5fe 196 unsigned long precharge;
854ffa8d 197 unsigned long moved_charge;
483c30b5 198 unsigned long moved_swap;
8033b97c
DN
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
2bd9bb20 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
4ffef5fe 205
4e416953
BS
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
a0db00fc 210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 212
217bc319
KH
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 215 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
218 NR_CHARGE_TYPE,
219};
220
8c7c6e34 221/* for encoding cft->private value on file */
86ae53e1
GC
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
510fc4e1 226 _KMEM,
d55f90bf 227 _TCP,
86ae53e1
GC
228};
229
a0db00fc
KS
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 232#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
8c7c6e34 235
b05706f1
KT
236/*
237 * Iteration constructs for visiting all cgroups (under a tree). If
238 * loops are exited prematurely (break), mem_cgroup_iter_break() must
239 * be used for reference counting.
240 */
241#define for_each_mem_cgroup_tree(iter, root) \
242 for (iter = mem_cgroup_iter(root, NULL, NULL); \
243 iter != NULL; \
244 iter = mem_cgroup_iter(root, iter, NULL))
245
246#define for_each_mem_cgroup(iter) \
247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
248 iter != NULL; \
249 iter = mem_cgroup_iter(NULL, iter, NULL))
250
7775face
TH
251static inline bool should_force_charge(void)
252{
253 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
254 (current->flags & PF_EXITING);
255}
256
70ddf637
AV
257/* Some nice accessors for the vmpressure. */
258struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
259{
260 if (!memcg)
261 memcg = root_mem_cgroup;
262 return &memcg->vmpressure;
263}
264
265struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
266{
267 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
268}
269
84c07d11 270#ifdef CONFIG_MEMCG_KMEM
55007d84 271/*
f7ce3190 272 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
273 * The main reason for not using cgroup id for this:
274 * this works better in sparse environments, where we have a lot of memcgs,
275 * but only a few kmem-limited. Or also, if we have, for instance, 200
276 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
277 * 200 entry array for that.
55007d84 278 *
dbcf73e2
VD
279 * The current size of the caches array is stored in memcg_nr_cache_ids. It
280 * will double each time we have to increase it.
55007d84 281 */
dbcf73e2
VD
282static DEFINE_IDA(memcg_cache_ida);
283int memcg_nr_cache_ids;
749c5415 284
05257a1a
VD
285/* Protects memcg_nr_cache_ids */
286static DECLARE_RWSEM(memcg_cache_ids_sem);
287
288void memcg_get_cache_ids(void)
289{
290 down_read(&memcg_cache_ids_sem);
291}
292
293void memcg_put_cache_ids(void)
294{
295 up_read(&memcg_cache_ids_sem);
296}
297
55007d84
GC
298/*
299 * MIN_SIZE is different than 1, because we would like to avoid going through
300 * the alloc/free process all the time. In a small machine, 4 kmem-limited
301 * cgroups is a reasonable guess. In the future, it could be a parameter or
302 * tunable, but that is strictly not necessary.
303 *
b8627835 304 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
305 * this constant directly from cgroup, but it is understandable that this is
306 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 307 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
308 * increase ours as well if it increases.
309 */
310#define MEMCG_CACHES_MIN_SIZE 4
b8627835 311#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 312
d7f25f8a
GC
313/*
314 * A lot of the calls to the cache allocation functions are expected to be
315 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
316 * conditional to this static branch, we'll have to allow modules that does
317 * kmem_cache_alloc and the such to see this symbol as well
318 */
ef12947c 319DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 320EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 321
17cc4dfe
TH
322struct workqueue_struct *memcg_kmem_cache_wq;
323
0a4465d3
KT
324static int memcg_shrinker_map_size;
325static DEFINE_MUTEX(memcg_shrinker_map_mutex);
326
327static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
328{
329 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
330}
331
332static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
333 int size, int old_size)
334{
335 struct memcg_shrinker_map *new, *old;
336 int nid;
337
338 lockdep_assert_held(&memcg_shrinker_map_mutex);
339
340 for_each_node(nid) {
341 old = rcu_dereference_protected(
342 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
343 /* Not yet online memcg */
344 if (!old)
345 return 0;
346
347 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
348 if (!new)
349 return -ENOMEM;
350
351 /* Set all old bits, clear all new bits */
352 memset(new->map, (int)0xff, old_size);
353 memset((void *)new->map + old_size, 0, size - old_size);
354
355 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
356 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
357 }
358
359 return 0;
360}
361
362static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
363{
364 struct mem_cgroup_per_node *pn;
365 struct memcg_shrinker_map *map;
366 int nid;
367
368 if (mem_cgroup_is_root(memcg))
369 return;
370
371 for_each_node(nid) {
372 pn = mem_cgroup_nodeinfo(memcg, nid);
373 map = rcu_dereference_protected(pn->shrinker_map, true);
374 if (map)
375 kvfree(map);
376 rcu_assign_pointer(pn->shrinker_map, NULL);
377 }
378}
379
380static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
381{
382 struct memcg_shrinker_map *map;
383 int nid, size, ret = 0;
384
385 if (mem_cgroup_is_root(memcg))
386 return 0;
387
388 mutex_lock(&memcg_shrinker_map_mutex);
389 size = memcg_shrinker_map_size;
390 for_each_node(nid) {
391 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
392 if (!map) {
393 memcg_free_shrinker_maps(memcg);
394 ret = -ENOMEM;
395 break;
396 }
397 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
398 }
399 mutex_unlock(&memcg_shrinker_map_mutex);
400
401 return ret;
402}
403
404int memcg_expand_shrinker_maps(int new_id)
405{
406 int size, old_size, ret = 0;
407 struct mem_cgroup *memcg;
408
409 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
410 old_size = memcg_shrinker_map_size;
411 if (size <= old_size)
412 return 0;
413
414 mutex_lock(&memcg_shrinker_map_mutex);
415 if (!root_mem_cgroup)
416 goto unlock;
417
418 for_each_mem_cgroup(memcg) {
419 if (mem_cgroup_is_root(memcg))
420 continue;
421 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
422 if (ret)
423 goto unlock;
424 }
425unlock:
426 if (!ret)
427 memcg_shrinker_map_size = size;
428 mutex_unlock(&memcg_shrinker_map_mutex);
429 return ret;
430}
fae91d6d
KT
431
432void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
433{
434 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
435 struct memcg_shrinker_map *map;
436
437 rcu_read_lock();
438 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
439 /* Pairs with smp mb in shrink_slab() */
440 smp_mb__before_atomic();
fae91d6d
KT
441 set_bit(shrinker_id, map->map);
442 rcu_read_unlock();
443 }
444}
445
0a4465d3
KT
446#else /* CONFIG_MEMCG_KMEM */
447static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
448{
449 return 0;
450}
451static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
84c07d11 452#endif /* CONFIG_MEMCG_KMEM */
a8964b9b 453
ad7fa852
TH
454/**
455 * mem_cgroup_css_from_page - css of the memcg associated with a page
456 * @page: page of interest
457 *
458 * If memcg is bound to the default hierarchy, css of the memcg associated
459 * with @page is returned. The returned css remains associated with @page
460 * until it is released.
461 *
462 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
463 * is returned.
ad7fa852
TH
464 */
465struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
466{
467 struct mem_cgroup *memcg;
468
ad7fa852
TH
469 memcg = page->mem_cgroup;
470
9e10a130 471 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
472 memcg = root_mem_cgroup;
473
ad7fa852
TH
474 return &memcg->css;
475}
476
2fc04524
VD
477/**
478 * page_cgroup_ino - return inode number of the memcg a page is charged to
479 * @page: the page
480 *
481 * Look up the closest online ancestor of the memory cgroup @page is charged to
482 * and return its inode number or 0 if @page is not charged to any cgroup. It
483 * is safe to call this function without holding a reference to @page.
484 *
485 * Note, this function is inherently racy, because there is nothing to prevent
486 * the cgroup inode from getting torn down and potentially reallocated a moment
487 * after page_cgroup_ino() returns, so it only should be used by callers that
488 * do not care (such as procfs interfaces).
489 */
490ino_t page_cgroup_ino(struct page *page)
491{
492 struct mem_cgroup *memcg;
493 unsigned long ino = 0;
494
495 rcu_read_lock();
496 memcg = READ_ONCE(page->mem_cgroup);
497 while (memcg && !(memcg->css.flags & CSS_ONLINE))
498 memcg = parent_mem_cgroup(memcg);
499 if (memcg)
500 ino = cgroup_ino(memcg->css.cgroup);
501 rcu_read_unlock();
502 return ino;
503}
504
ef8f2327
MG
505static struct mem_cgroup_per_node *
506mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 507{
97a6c37b 508 int nid = page_to_nid(page);
f64c3f54 509
ef8f2327 510 return memcg->nodeinfo[nid];
f64c3f54
BS
511}
512
ef8f2327
MG
513static struct mem_cgroup_tree_per_node *
514soft_limit_tree_node(int nid)
bb4cc1a8 515{
ef8f2327 516 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
517}
518
ef8f2327 519static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
520soft_limit_tree_from_page(struct page *page)
521{
522 int nid = page_to_nid(page);
bb4cc1a8 523
ef8f2327 524 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
525}
526
ef8f2327
MG
527static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
528 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 529 unsigned long new_usage_in_excess)
bb4cc1a8
AM
530{
531 struct rb_node **p = &mctz->rb_root.rb_node;
532 struct rb_node *parent = NULL;
ef8f2327 533 struct mem_cgroup_per_node *mz_node;
fa90b2fd 534 bool rightmost = true;
bb4cc1a8
AM
535
536 if (mz->on_tree)
537 return;
538
539 mz->usage_in_excess = new_usage_in_excess;
540 if (!mz->usage_in_excess)
541 return;
542 while (*p) {
543 parent = *p;
ef8f2327 544 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 545 tree_node);
fa90b2fd 546 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 547 p = &(*p)->rb_left;
fa90b2fd
DB
548 rightmost = false;
549 }
550
bb4cc1a8
AM
551 /*
552 * We can't avoid mem cgroups that are over their soft
553 * limit by the same amount
554 */
555 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
556 p = &(*p)->rb_right;
557 }
fa90b2fd
DB
558
559 if (rightmost)
560 mctz->rb_rightmost = &mz->tree_node;
561
bb4cc1a8
AM
562 rb_link_node(&mz->tree_node, parent, p);
563 rb_insert_color(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = true;
565}
566
ef8f2327
MG
567static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
569{
570 if (!mz->on_tree)
571 return;
fa90b2fd
DB
572
573 if (&mz->tree_node == mctz->rb_rightmost)
574 mctz->rb_rightmost = rb_prev(&mz->tree_node);
575
bb4cc1a8
AM
576 rb_erase(&mz->tree_node, &mctz->rb_root);
577 mz->on_tree = false;
578}
579
ef8f2327
MG
580static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
581 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 582{
0a31bc97
JW
583 unsigned long flags;
584
585 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 586 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 587 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
588}
589
3e32cb2e
JW
590static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
591{
592 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 593 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
594 unsigned long excess = 0;
595
596 if (nr_pages > soft_limit)
597 excess = nr_pages - soft_limit;
598
599 return excess;
600}
bb4cc1a8
AM
601
602static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
603{
3e32cb2e 604 unsigned long excess;
ef8f2327
MG
605 struct mem_cgroup_per_node *mz;
606 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 607
e231875b 608 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
609 if (!mctz)
610 return;
bb4cc1a8
AM
611 /*
612 * Necessary to update all ancestors when hierarchy is used.
613 * because their event counter is not touched.
614 */
615 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 616 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 617 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
618 /*
619 * We have to update the tree if mz is on RB-tree or
620 * mem is over its softlimit.
621 */
622 if (excess || mz->on_tree) {
0a31bc97
JW
623 unsigned long flags;
624
625 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
626 /* if on-tree, remove it */
627 if (mz->on_tree)
cf2c8127 628 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
629 /*
630 * Insert again. mz->usage_in_excess will be updated.
631 * If excess is 0, no tree ops.
632 */
cf2c8127 633 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 634 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
635 }
636 }
637}
638
639static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
640{
ef8f2327
MG
641 struct mem_cgroup_tree_per_node *mctz;
642 struct mem_cgroup_per_node *mz;
643 int nid;
bb4cc1a8 644
e231875b 645 for_each_node(nid) {
ef8f2327
MG
646 mz = mem_cgroup_nodeinfo(memcg, nid);
647 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
648 if (mctz)
649 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
650 }
651}
652
ef8f2327
MG
653static struct mem_cgroup_per_node *
654__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 655{
ef8f2327 656 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
657
658retry:
659 mz = NULL;
fa90b2fd 660 if (!mctz->rb_rightmost)
bb4cc1a8
AM
661 goto done; /* Nothing to reclaim from */
662
fa90b2fd
DB
663 mz = rb_entry(mctz->rb_rightmost,
664 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
665 /*
666 * Remove the node now but someone else can add it back,
667 * we will to add it back at the end of reclaim to its correct
668 * position in the tree.
669 */
cf2c8127 670 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 671 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 672 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
673 goto retry;
674done:
675 return mz;
676}
677
ef8f2327
MG
678static struct mem_cgroup_per_node *
679mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 680{
ef8f2327 681 struct mem_cgroup_per_node *mz;
bb4cc1a8 682
0a31bc97 683 spin_lock_irq(&mctz->lock);
bb4cc1a8 684 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 685 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
686 return mz;
687}
688
ccda7f43 689static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
04fecbf5 690 int event)
e9f8974f 691{
a983b5eb 692 return atomic_long_read(&memcg->events[event]);
e9f8974f
JW
693}
694
c0ff4b85 695static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 696 struct page *page,
f627c2f5 697 bool compound, int nr_pages)
d52aa412 698{
b2402857
KH
699 /*
700 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
701 * counted as CACHE even if it's on ANON LRU.
702 */
0a31bc97 703 if (PageAnon(page))
c9019e9b 704 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 705 else {
c9019e9b 706 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 707 if (PageSwapBacked(page))
c9019e9b 708 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 709 }
55e462b0 710
f627c2f5
KS
711 if (compound) {
712 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 713 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 714 }
b070e65c 715
e401f176
KH
716 /* pagein of a big page is an event. So, ignore page size */
717 if (nr_pages > 0)
c9019e9b 718 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 719 else {
c9019e9b 720 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
721 nr_pages = -nr_pages; /* for event */
722 }
e401f176 723
a983b5eb 724 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
6d12e2d8
KH
725}
726
0a6b76dd
VD
727unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
728 int nid, unsigned int lru_mask)
bb2a0de9 729{
b4536f0c 730 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 731 unsigned long nr = 0;
ef8f2327 732 enum lru_list lru;
889976db 733
e231875b 734 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 735
ef8f2327
MG
736 for_each_lru(lru) {
737 if (!(BIT(lru) & lru_mask))
738 continue;
b4536f0c 739 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
740 }
741 return nr;
889976db 742}
bb2a0de9 743
c0ff4b85 744static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 745 unsigned int lru_mask)
6d12e2d8 746{
e231875b 747 unsigned long nr = 0;
889976db 748 int nid;
6d12e2d8 749
31aaea4a 750 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
751 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
752 return nr;
d52aa412
KH
753}
754
f53d7ce3
JW
755static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
756 enum mem_cgroup_events_target target)
7a159cc9
JW
757{
758 unsigned long val, next;
759
a983b5eb
JW
760 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
761 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
7a159cc9 762 /* from time_after() in jiffies.h */
6a1a8b80 763 if ((long)(next - val) < 0) {
f53d7ce3
JW
764 switch (target) {
765 case MEM_CGROUP_TARGET_THRESH:
766 next = val + THRESHOLDS_EVENTS_TARGET;
767 break;
bb4cc1a8
AM
768 case MEM_CGROUP_TARGET_SOFTLIMIT:
769 next = val + SOFTLIMIT_EVENTS_TARGET;
770 break;
f53d7ce3
JW
771 case MEM_CGROUP_TARGET_NUMAINFO:
772 next = val + NUMAINFO_EVENTS_TARGET;
773 break;
774 default:
775 break;
776 }
a983b5eb 777 __this_cpu_write(memcg->stat_cpu->targets[target], next);
f53d7ce3 778 return true;
7a159cc9 779 }
f53d7ce3 780 return false;
d2265e6f
KH
781}
782
783/*
784 * Check events in order.
785 *
786 */
c0ff4b85 787static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
788{
789 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
790 if (unlikely(mem_cgroup_event_ratelimit(memcg,
791 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 792 bool do_softlimit;
82b3f2a7 793 bool do_numainfo __maybe_unused;
f53d7ce3 794
bb4cc1a8
AM
795 do_softlimit = mem_cgroup_event_ratelimit(memcg,
796 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
797#if MAX_NUMNODES > 1
798 do_numainfo = mem_cgroup_event_ratelimit(memcg,
799 MEM_CGROUP_TARGET_NUMAINFO);
800#endif
c0ff4b85 801 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
802 if (unlikely(do_softlimit))
803 mem_cgroup_update_tree(memcg, page);
453a9bf3 804#if MAX_NUMNODES > 1
f53d7ce3 805 if (unlikely(do_numainfo))
c0ff4b85 806 atomic_inc(&memcg->numainfo_events);
453a9bf3 807#endif
0a31bc97 808 }
d2265e6f
KH
809}
810
cf475ad2 811struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 812{
31a78f23
BS
813 /*
814 * mm_update_next_owner() may clear mm->owner to NULL
815 * if it races with swapoff, page migration, etc.
816 * So this can be called with p == NULL.
817 */
818 if (unlikely(!p))
819 return NULL;
820
073219e9 821 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 822}
33398cf2 823EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 824
d46eb14b
SB
825/**
826 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
827 * @mm: mm from which memcg should be extracted. It can be NULL.
828 *
829 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
830 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
831 * returned.
832 */
833struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 834{
d46eb14b
SB
835 struct mem_cgroup *memcg;
836
837 if (mem_cgroup_disabled())
838 return NULL;
0b7f569e 839
54595fe2
KH
840 rcu_read_lock();
841 do {
6f6acb00
MH
842 /*
843 * Page cache insertions can happen withou an
844 * actual mm context, e.g. during disk probing
845 * on boot, loopback IO, acct() writes etc.
846 */
847 if (unlikely(!mm))
df381975 848 memcg = root_mem_cgroup;
6f6acb00
MH
849 else {
850 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
851 if (unlikely(!memcg))
852 memcg = root_mem_cgroup;
853 }
ec903c0c 854 } while (!css_tryget_online(&memcg->css));
54595fe2 855 rcu_read_unlock();
c0ff4b85 856 return memcg;
54595fe2 857}
d46eb14b
SB
858EXPORT_SYMBOL(get_mem_cgroup_from_mm);
859
f745c6f5
SB
860/**
861 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
862 * @page: page from which memcg should be extracted.
863 *
864 * Obtain a reference on page->memcg and returns it if successful. Otherwise
865 * root_mem_cgroup is returned.
866 */
867struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
868{
869 struct mem_cgroup *memcg = page->mem_cgroup;
870
871 if (mem_cgroup_disabled())
872 return NULL;
873
874 rcu_read_lock();
875 if (!memcg || !css_tryget_online(&memcg->css))
876 memcg = root_mem_cgroup;
877 rcu_read_unlock();
878 return memcg;
879}
880EXPORT_SYMBOL(get_mem_cgroup_from_page);
881
d46eb14b
SB
882/**
883 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
884 */
885static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
886{
887 if (unlikely(current->active_memcg)) {
888 struct mem_cgroup *memcg = root_mem_cgroup;
889
890 rcu_read_lock();
891 if (css_tryget_online(&current->active_memcg->css))
892 memcg = current->active_memcg;
893 rcu_read_unlock();
894 return memcg;
895 }
896 return get_mem_cgroup_from_mm(current->mm);
897}
54595fe2 898
5660048c
JW
899/**
900 * mem_cgroup_iter - iterate over memory cgroup hierarchy
901 * @root: hierarchy root
902 * @prev: previously returned memcg, NULL on first invocation
903 * @reclaim: cookie for shared reclaim walks, NULL for full walks
904 *
905 * Returns references to children of the hierarchy below @root, or
906 * @root itself, or %NULL after a full round-trip.
907 *
908 * Caller must pass the return value in @prev on subsequent
909 * invocations for reference counting, or use mem_cgroup_iter_break()
910 * to cancel a hierarchy walk before the round-trip is complete.
911 *
b213b54f 912 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 913 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 914 * reclaimers operating on the same node and priority.
5660048c 915 */
694fbc0f 916struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 917 struct mem_cgroup *prev,
694fbc0f 918 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 919{
33398cf2 920 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 921 struct cgroup_subsys_state *css = NULL;
9f3a0d09 922 struct mem_cgroup *memcg = NULL;
5ac8fb31 923 struct mem_cgroup *pos = NULL;
711d3d2c 924
694fbc0f
AM
925 if (mem_cgroup_disabled())
926 return NULL;
5660048c 927
9f3a0d09
JW
928 if (!root)
929 root = root_mem_cgroup;
7d74b06f 930
9f3a0d09 931 if (prev && !reclaim)
5ac8fb31 932 pos = prev;
14067bb3 933
9f3a0d09
JW
934 if (!root->use_hierarchy && root != root_mem_cgroup) {
935 if (prev)
5ac8fb31 936 goto out;
694fbc0f 937 return root;
9f3a0d09 938 }
14067bb3 939
542f85f9 940 rcu_read_lock();
5f578161 941
5ac8fb31 942 if (reclaim) {
ef8f2327 943 struct mem_cgroup_per_node *mz;
5ac8fb31 944
ef8f2327 945 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
946 iter = &mz->iter[reclaim->priority];
947
948 if (prev && reclaim->generation != iter->generation)
949 goto out_unlock;
950
6df38689 951 while (1) {
4db0c3c2 952 pos = READ_ONCE(iter->position);
6df38689
VD
953 if (!pos || css_tryget(&pos->css))
954 break;
5ac8fb31 955 /*
6df38689
VD
956 * css reference reached zero, so iter->position will
957 * be cleared by ->css_released. However, we should not
958 * rely on this happening soon, because ->css_released
959 * is called from a work queue, and by busy-waiting we
960 * might block it. So we clear iter->position right
961 * away.
5ac8fb31 962 */
6df38689
VD
963 (void)cmpxchg(&iter->position, pos, NULL);
964 }
5ac8fb31
JW
965 }
966
967 if (pos)
968 css = &pos->css;
969
970 for (;;) {
971 css = css_next_descendant_pre(css, &root->css);
972 if (!css) {
973 /*
974 * Reclaimers share the hierarchy walk, and a
975 * new one might jump in right at the end of
976 * the hierarchy - make sure they see at least
977 * one group and restart from the beginning.
978 */
979 if (!prev)
980 continue;
981 break;
527a5ec9 982 }
7d74b06f 983
5ac8fb31
JW
984 /*
985 * Verify the css and acquire a reference. The root
986 * is provided by the caller, so we know it's alive
987 * and kicking, and don't take an extra reference.
988 */
989 memcg = mem_cgroup_from_css(css);
14067bb3 990
5ac8fb31
JW
991 if (css == &root->css)
992 break;
14067bb3 993
0b8f73e1
JW
994 if (css_tryget(css))
995 break;
9f3a0d09 996
5ac8fb31 997 memcg = NULL;
9f3a0d09 998 }
5ac8fb31
JW
999
1000 if (reclaim) {
5ac8fb31 1001 /*
6df38689
VD
1002 * The position could have already been updated by a competing
1003 * thread, so check that the value hasn't changed since we read
1004 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1005 */
6df38689
VD
1006 (void)cmpxchg(&iter->position, pos, memcg);
1007
5ac8fb31
JW
1008 if (pos)
1009 css_put(&pos->css);
1010
1011 if (!memcg)
1012 iter->generation++;
1013 else if (!prev)
1014 reclaim->generation = iter->generation;
9f3a0d09 1015 }
5ac8fb31 1016
542f85f9
MH
1017out_unlock:
1018 rcu_read_unlock();
5ac8fb31 1019out:
c40046f3
MH
1020 if (prev && prev != root)
1021 css_put(&prev->css);
1022
9f3a0d09 1023 return memcg;
14067bb3 1024}
7d74b06f 1025
5660048c
JW
1026/**
1027 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1028 * @root: hierarchy root
1029 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1030 */
1031void mem_cgroup_iter_break(struct mem_cgroup *root,
1032 struct mem_cgroup *prev)
9f3a0d09
JW
1033{
1034 if (!root)
1035 root = root_mem_cgroup;
1036 if (prev && prev != root)
1037 css_put(&prev->css);
1038}
7d74b06f 1039
6df38689
VD
1040static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1041{
1042 struct mem_cgroup *memcg = dead_memcg;
1043 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1044 struct mem_cgroup_per_node *mz;
1045 int nid;
6df38689
VD
1046 int i;
1047
9f15bde6 1048 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 1049 for_each_node(nid) {
ef8f2327
MG
1050 mz = mem_cgroup_nodeinfo(memcg, nid);
1051 for (i = 0; i <= DEF_PRIORITY; i++) {
1052 iter = &mz->iter[i];
1053 cmpxchg(&iter->position,
1054 dead_memcg, NULL);
6df38689
VD
1055 }
1056 }
1057 }
1058}
1059
7c5f64f8
VD
1060/**
1061 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1062 * @memcg: hierarchy root
1063 * @fn: function to call for each task
1064 * @arg: argument passed to @fn
1065 *
1066 * This function iterates over tasks attached to @memcg or to any of its
1067 * descendants and calls @fn for each task. If @fn returns a non-zero
1068 * value, the function breaks the iteration loop and returns the value.
1069 * Otherwise, it will iterate over all tasks and return 0.
1070 *
1071 * This function must not be called for the root memory cgroup.
1072 */
1073int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1074 int (*fn)(struct task_struct *, void *), void *arg)
1075{
1076 struct mem_cgroup *iter;
1077 int ret = 0;
1078
1079 BUG_ON(memcg == root_mem_cgroup);
1080
1081 for_each_mem_cgroup_tree(iter, memcg) {
1082 struct css_task_iter it;
1083 struct task_struct *task;
1084
bc2fb7ed 1085 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
1086 while (!ret && (task = css_task_iter_next(&it)))
1087 ret = fn(task, arg);
1088 css_task_iter_end(&it);
1089 if (ret) {
1090 mem_cgroup_iter_break(memcg, iter);
1091 break;
1092 }
1093 }
1094 return ret;
1095}
1096
925b7673 1097/**
dfe0e773 1098 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1099 * @page: the page
f144c390 1100 * @pgdat: pgdat of the page
dfe0e773
JW
1101 *
1102 * This function is only safe when following the LRU page isolation
1103 * and putback protocol: the LRU lock must be held, and the page must
1104 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1105 */
599d0c95 1106struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1107{
ef8f2327 1108 struct mem_cgroup_per_node *mz;
925b7673 1109 struct mem_cgroup *memcg;
bea8c150 1110 struct lruvec *lruvec;
6d12e2d8 1111
bea8c150 1112 if (mem_cgroup_disabled()) {
599d0c95 1113 lruvec = &pgdat->lruvec;
bea8c150
HD
1114 goto out;
1115 }
925b7673 1116
1306a85a 1117 memcg = page->mem_cgroup;
7512102c 1118 /*
dfe0e773 1119 * Swapcache readahead pages are added to the LRU - and
29833315 1120 * possibly migrated - before they are charged.
7512102c 1121 */
29833315
JW
1122 if (!memcg)
1123 memcg = root_mem_cgroup;
7512102c 1124
ef8f2327 1125 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1126 lruvec = &mz->lruvec;
1127out:
1128 /*
1129 * Since a node can be onlined after the mem_cgroup was created,
1130 * we have to be prepared to initialize lruvec->zone here;
1131 * and if offlined then reonlined, we need to reinitialize it.
1132 */
599d0c95
MG
1133 if (unlikely(lruvec->pgdat != pgdat))
1134 lruvec->pgdat = pgdat;
bea8c150 1135 return lruvec;
08e552c6 1136}
b69408e8 1137
925b7673 1138/**
fa9add64
HD
1139 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1140 * @lruvec: mem_cgroup per zone lru vector
1141 * @lru: index of lru list the page is sitting on
b4536f0c 1142 * @zid: zone id of the accounted pages
fa9add64 1143 * @nr_pages: positive when adding or negative when removing
925b7673 1144 *
ca707239
HD
1145 * This function must be called under lru_lock, just before a page is added
1146 * to or just after a page is removed from an lru list (that ordering being
1147 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1148 */
fa9add64 1149void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1150 int zid, int nr_pages)
3f58a829 1151{
ef8f2327 1152 struct mem_cgroup_per_node *mz;
fa9add64 1153 unsigned long *lru_size;
ca707239 1154 long size;
3f58a829
MK
1155
1156 if (mem_cgroup_disabled())
1157 return;
1158
ef8f2327 1159 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1160 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1161
1162 if (nr_pages < 0)
1163 *lru_size += nr_pages;
1164
1165 size = *lru_size;
b4536f0c
MH
1166 if (WARN_ONCE(size < 0,
1167 "%s(%p, %d, %d): lru_size %ld\n",
1168 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1169 VM_BUG_ON(1);
1170 *lru_size = 0;
1171 }
1172
1173 if (nr_pages > 0)
1174 *lru_size += nr_pages;
08e552c6 1175}
544122e5 1176
2314b42d 1177bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1178{
2314b42d 1179 struct mem_cgroup *task_memcg;
158e0a2d 1180 struct task_struct *p;
ffbdccf5 1181 bool ret;
4c4a2214 1182
158e0a2d 1183 p = find_lock_task_mm(task);
de077d22 1184 if (p) {
2314b42d 1185 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1186 task_unlock(p);
1187 } else {
1188 /*
1189 * All threads may have already detached their mm's, but the oom
1190 * killer still needs to detect if they have already been oom
1191 * killed to prevent needlessly killing additional tasks.
1192 */
ffbdccf5 1193 rcu_read_lock();
2314b42d
JW
1194 task_memcg = mem_cgroup_from_task(task);
1195 css_get(&task_memcg->css);
ffbdccf5 1196 rcu_read_unlock();
de077d22 1197 }
2314b42d
JW
1198 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1199 css_put(&task_memcg->css);
4c4a2214
DR
1200 return ret;
1201}
1202
19942822 1203/**
9d11ea9f 1204 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1205 * @memcg: the memory cgroup
19942822 1206 *
9d11ea9f 1207 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1208 * pages.
19942822 1209 */
c0ff4b85 1210static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1211{
3e32cb2e
JW
1212 unsigned long margin = 0;
1213 unsigned long count;
1214 unsigned long limit;
9d11ea9f 1215
3e32cb2e 1216 count = page_counter_read(&memcg->memory);
bbec2e15 1217 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1218 if (count < limit)
1219 margin = limit - count;
1220
7941d214 1221 if (do_memsw_account()) {
3e32cb2e 1222 count = page_counter_read(&memcg->memsw);
bbec2e15 1223 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1224 if (count <= limit)
1225 margin = min(margin, limit - count);
cbedbac3
LR
1226 else
1227 margin = 0;
3e32cb2e
JW
1228 }
1229
1230 return margin;
19942822
JW
1231}
1232
32047e2a 1233/*
bdcbb659 1234 * A routine for checking "mem" is under move_account() or not.
32047e2a 1235 *
bdcbb659
QH
1236 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1237 * moving cgroups. This is for waiting at high-memory pressure
1238 * caused by "move".
32047e2a 1239 */
c0ff4b85 1240static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1241{
2bd9bb20
KH
1242 struct mem_cgroup *from;
1243 struct mem_cgroup *to;
4b534334 1244 bool ret = false;
2bd9bb20
KH
1245 /*
1246 * Unlike task_move routines, we access mc.to, mc.from not under
1247 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1248 */
1249 spin_lock(&mc.lock);
1250 from = mc.from;
1251 to = mc.to;
1252 if (!from)
1253 goto unlock;
3e92041d 1254
2314b42d
JW
1255 ret = mem_cgroup_is_descendant(from, memcg) ||
1256 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1257unlock:
1258 spin_unlock(&mc.lock);
4b534334
KH
1259 return ret;
1260}
1261
c0ff4b85 1262static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1263{
1264 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1265 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1266 DEFINE_WAIT(wait);
1267 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1268 /* moving charge context might have finished. */
1269 if (mc.moving_task)
1270 schedule();
1271 finish_wait(&mc.waitq, &wait);
1272 return true;
1273 }
1274 }
1275 return false;
1276}
1277
8ad6e404 1278static const unsigned int memcg1_stats[] = {
71cd3113
JW
1279 MEMCG_CACHE,
1280 MEMCG_RSS,
1281 MEMCG_RSS_HUGE,
1282 NR_SHMEM,
1283 NR_FILE_MAPPED,
1284 NR_FILE_DIRTY,
1285 NR_WRITEBACK,
1286 MEMCG_SWAP,
1287};
1288
1289static const char *const memcg1_stat_names[] = {
1290 "cache",
1291 "rss",
1292 "rss_huge",
1293 "shmem",
1294 "mapped_file",
1295 "dirty",
1296 "writeback",
1297 "swap",
1298};
1299
58cf188e 1300#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1301/**
f0c867d9 1302 * mem_cgroup_print_oom_context: Print OOM information relevant to
1303 * memory controller.
e222432b
BS
1304 * @memcg: The memory cgroup that went over limit
1305 * @p: Task that is going to be killed
1306 *
1307 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1308 * enabled
1309 */
f0c867d9 1310void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1311{
e222432b
BS
1312 rcu_read_lock();
1313
f0c867d9 1314 if (memcg) {
1315 pr_cont(",oom_memcg=");
1316 pr_cont_cgroup_path(memcg->css.cgroup);
1317 } else
1318 pr_cont(",global_oom");
2415b9f5 1319 if (p) {
f0c867d9 1320 pr_cont(",task_memcg=");
2415b9f5 1321 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1322 }
e222432b 1323 rcu_read_unlock();
f0c867d9 1324}
1325
1326/**
1327 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1328 * memory controller.
1329 * @memcg: The memory cgroup that went over limit
1330 */
1331void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1332{
1333 struct mem_cgroup *iter;
1334 unsigned int i;
e222432b 1335
3e32cb2e
JW
1336 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1337 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1338 K((u64)memcg->memory.max), memcg->memory.failcnt);
3e32cb2e
JW
1339 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1340 K((u64)page_counter_read(&memcg->memsw)),
bbec2e15 1341 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
3e32cb2e
JW
1342 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1343 K((u64)page_counter_read(&memcg->kmem)),
bbec2e15 1344 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e
SZ
1345
1346 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1347 pr_info("Memory cgroup stats for ");
1348 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1349 pr_cont(":");
1350
71cd3113
JW
1351 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1352 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1353 continue;
71cd3113 1354 pr_cont(" %s:%luKB", memcg1_stat_names[i],
ccda7f43 1355 K(memcg_page_state(iter, memcg1_stats[i])));
58cf188e
SZ
1356 }
1357
1358 for (i = 0; i < NR_LRU_LISTS; i++)
1359 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1360 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1361
1362 pr_cont("\n");
1363 }
e222432b
BS
1364}
1365
a63d83f4
DR
1366/*
1367 * Return the memory (and swap, if configured) limit for a memcg.
1368 */
bbec2e15 1369unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1370{
bbec2e15 1371 unsigned long max;
f3e8eb70 1372
bbec2e15 1373 max = memcg->memory.max;
9a5a8f19 1374 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1375 unsigned long memsw_max;
1376 unsigned long swap_max;
9a5a8f19 1377
bbec2e15
RG
1378 memsw_max = memcg->memsw.max;
1379 swap_max = memcg->swap.max;
1380 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1381 max = min(max + swap_max, memsw_max);
9a5a8f19 1382 }
bbec2e15 1383 return max;
a63d83f4
DR
1384}
1385
b6e6edcf 1386static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1387 int order)
9cbb78bb 1388{
6e0fc46d
DR
1389 struct oom_control oc = {
1390 .zonelist = NULL,
1391 .nodemask = NULL,
2a966b77 1392 .memcg = memcg,
6e0fc46d
DR
1393 .gfp_mask = gfp_mask,
1394 .order = order,
6e0fc46d 1395 };
7c5f64f8 1396 bool ret;
9cbb78bb 1397
7775face
TH
1398 if (mutex_lock_killable(&oom_lock))
1399 return true;
1400 /*
1401 * A few threads which were not waiting at mutex_lock_killable() can
1402 * fail to bail out. Therefore, check again after holding oom_lock.
1403 */
1404 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1405 mutex_unlock(&oom_lock);
7c5f64f8 1406 return ret;
9cbb78bb
DR
1407}
1408
ae6e71d3
MC
1409#if MAX_NUMNODES > 1
1410
4d0c066d
KH
1411/**
1412 * test_mem_cgroup_node_reclaimable
dad7557e 1413 * @memcg: the target memcg
4d0c066d
KH
1414 * @nid: the node ID to be checked.
1415 * @noswap : specify true here if the user wants flle only information.
1416 *
1417 * This function returns whether the specified memcg contains any
1418 * reclaimable pages on a node. Returns true if there are any reclaimable
1419 * pages in the node.
1420 */
c0ff4b85 1421static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1422 int nid, bool noswap)
1423{
c0ff4b85 1424 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1425 return true;
1426 if (noswap || !total_swap_pages)
1427 return false;
c0ff4b85 1428 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1429 return true;
1430 return false;
1431
1432}
889976db
YH
1433
1434/*
1435 * Always updating the nodemask is not very good - even if we have an empty
1436 * list or the wrong list here, we can start from some node and traverse all
1437 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1438 *
1439 */
c0ff4b85 1440static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1441{
1442 int nid;
453a9bf3
KH
1443 /*
1444 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1445 * pagein/pageout changes since the last update.
1446 */
c0ff4b85 1447 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1448 return;
c0ff4b85 1449 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1450 return;
1451
889976db 1452 /* make a nodemask where this memcg uses memory from */
31aaea4a 1453 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1454
31aaea4a 1455 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1456
c0ff4b85
R
1457 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1458 node_clear(nid, memcg->scan_nodes);
889976db 1459 }
453a9bf3 1460
c0ff4b85
R
1461 atomic_set(&memcg->numainfo_events, 0);
1462 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1463}
1464
1465/*
1466 * Selecting a node where we start reclaim from. Because what we need is just
1467 * reducing usage counter, start from anywhere is O,K. Considering
1468 * memory reclaim from current node, there are pros. and cons.
1469 *
1470 * Freeing memory from current node means freeing memory from a node which
1471 * we'll use or we've used. So, it may make LRU bad. And if several threads
1472 * hit limits, it will see a contention on a node. But freeing from remote
1473 * node means more costs for memory reclaim because of memory latency.
1474 *
1475 * Now, we use round-robin. Better algorithm is welcomed.
1476 */
c0ff4b85 1477int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1478{
1479 int node;
1480
c0ff4b85
R
1481 mem_cgroup_may_update_nodemask(memcg);
1482 node = memcg->last_scanned_node;
889976db 1483
0edaf86c 1484 node = next_node_in(node, memcg->scan_nodes);
889976db 1485 /*
fda3d69b
MH
1486 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1487 * last time it really checked all the LRUs due to rate limiting.
1488 * Fallback to the current node in that case for simplicity.
889976db
YH
1489 */
1490 if (unlikely(node == MAX_NUMNODES))
1491 node = numa_node_id();
1492
c0ff4b85 1493 memcg->last_scanned_node = node;
889976db
YH
1494 return node;
1495}
889976db 1496#else
c0ff4b85 1497int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1498{
1499 return 0;
1500}
1501#endif
1502
0608f43d 1503static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1504 pg_data_t *pgdat,
0608f43d
AM
1505 gfp_t gfp_mask,
1506 unsigned long *total_scanned)
1507{
1508 struct mem_cgroup *victim = NULL;
1509 int total = 0;
1510 int loop = 0;
1511 unsigned long excess;
1512 unsigned long nr_scanned;
1513 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1514 .pgdat = pgdat,
0608f43d
AM
1515 .priority = 0,
1516 };
1517
3e32cb2e 1518 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1519
1520 while (1) {
1521 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1522 if (!victim) {
1523 loop++;
1524 if (loop >= 2) {
1525 /*
1526 * If we have not been able to reclaim
1527 * anything, it might because there are
1528 * no reclaimable pages under this hierarchy
1529 */
1530 if (!total)
1531 break;
1532 /*
1533 * We want to do more targeted reclaim.
1534 * excess >> 2 is not to excessive so as to
1535 * reclaim too much, nor too less that we keep
1536 * coming back to reclaim from this cgroup
1537 */
1538 if (total >= (excess >> 2) ||
1539 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1540 break;
1541 }
1542 continue;
1543 }
a9dd0a83 1544 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1545 pgdat, &nr_scanned);
0608f43d 1546 *total_scanned += nr_scanned;
3e32cb2e 1547 if (!soft_limit_excess(root_memcg))
0608f43d 1548 break;
6d61ef40 1549 }
0608f43d
AM
1550 mem_cgroup_iter_break(root_memcg, victim);
1551 return total;
6d61ef40
BS
1552}
1553
0056f4e6
JW
1554#ifdef CONFIG_LOCKDEP
1555static struct lockdep_map memcg_oom_lock_dep_map = {
1556 .name = "memcg_oom_lock",
1557};
1558#endif
1559
fb2a6fc5
JW
1560static DEFINE_SPINLOCK(memcg_oom_lock);
1561
867578cb
KH
1562/*
1563 * Check OOM-Killer is already running under our hierarchy.
1564 * If someone is running, return false.
1565 */
fb2a6fc5 1566static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1567{
79dfdacc 1568 struct mem_cgroup *iter, *failed = NULL;
a636b327 1569
fb2a6fc5
JW
1570 spin_lock(&memcg_oom_lock);
1571
9f3a0d09 1572 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1573 if (iter->oom_lock) {
79dfdacc
MH
1574 /*
1575 * this subtree of our hierarchy is already locked
1576 * so we cannot give a lock.
1577 */
79dfdacc 1578 failed = iter;
9f3a0d09
JW
1579 mem_cgroup_iter_break(memcg, iter);
1580 break;
23751be0
JW
1581 } else
1582 iter->oom_lock = true;
7d74b06f 1583 }
867578cb 1584
fb2a6fc5
JW
1585 if (failed) {
1586 /*
1587 * OK, we failed to lock the whole subtree so we have
1588 * to clean up what we set up to the failing subtree
1589 */
1590 for_each_mem_cgroup_tree(iter, memcg) {
1591 if (iter == failed) {
1592 mem_cgroup_iter_break(memcg, iter);
1593 break;
1594 }
1595 iter->oom_lock = false;
79dfdacc 1596 }
0056f4e6
JW
1597 } else
1598 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1599
1600 spin_unlock(&memcg_oom_lock);
1601
1602 return !failed;
a636b327 1603}
0b7f569e 1604
fb2a6fc5 1605static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1606{
7d74b06f
KH
1607 struct mem_cgroup *iter;
1608
fb2a6fc5 1609 spin_lock(&memcg_oom_lock);
0056f4e6 1610 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1611 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1612 iter->oom_lock = false;
fb2a6fc5 1613 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1614}
1615
c0ff4b85 1616static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1617{
1618 struct mem_cgroup *iter;
1619
c2b42d3c 1620 spin_lock(&memcg_oom_lock);
c0ff4b85 1621 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1622 iter->under_oom++;
1623 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1624}
1625
c0ff4b85 1626static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1627{
1628 struct mem_cgroup *iter;
1629
867578cb
KH
1630 /*
1631 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1632 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1633 */
c2b42d3c 1634 spin_lock(&memcg_oom_lock);
c0ff4b85 1635 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1636 if (iter->under_oom > 0)
1637 iter->under_oom--;
1638 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1639}
1640
867578cb
KH
1641static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1642
dc98df5a 1643struct oom_wait_info {
d79154bb 1644 struct mem_cgroup *memcg;
ac6424b9 1645 wait_queue_entry_t wait;
dc98df5a
KH
1646};
1647
ac6424b9 1648static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1649 unsigned mode, int sync, void *arg)
1650{
d79154bb
HD
1651 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1652 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1653 struct oom_wait_info *oom_wait_info;
1654
1655 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1656 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1657
2314b42d
JW
1658 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1659 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1660 return 0;
dc98df5a
KH
1661 return autoremove_wake_function(wait, mode, sync, arg);
1662}
1663
c0ff4b85 1664static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1665{
c2b42d3c
TH
1666 /*
1667 * For the following lockless ->under_oom test, the only required
1668 * guarantee is that it must see the state asserted by an OOM when
1669 * this function is called as a result of userland actions
1670 * triggered by the notification of the OOM. This is trivially
1671 * achieved by invoking mem_cgroup_mark_under_oom() before
1672 * triggering notification.
1673 */
1674 if (memcg && memcg->under_oom)
f4b90b70 1675 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1676}
1677
29ef680a
MH
1678enum oom_status {
1679 OOM_SUCCESS,
1680 OOM_FAILED,
1681 OOM_ASYNC,
1682 OOM_SKIPPED
1683};
1684
1685static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1686{
7056d3a3
MH
1687 enum oom_status ret;
1688 bool locked;
1689
29ef680a
MH
1690 if (order > PAGE_ALLOC_COSTLY_ORDER)
1691 return OOM_SKIPPED;
1692
7a1adfdd
RG
1693 memcg_memory_event(memcg, MEMCG_OOM);
1694
867578cb 1695 /*
49426420
JW
1696 * We are in the middle of the charge context here, so we
1697 * don't want to block when potentially sitting on a callstack
1698 * that holds all kinds of filesystem and mm locks.
1699 *
29ef680a
MH
1700 * cgroup1 allows disabling the OOM killer and waiting for outside
1701 * handling until the charge can succeed; remember the context and put
1702 * the task to sleep at the end of the page fault when all locks are
1703 * released.
49426420 1704 *
29ef680a
MH
1705 * On the other hand, in-kernel OOM killer allows for an async victim
1706 * memory reclaim (oom_reaper) and that means that we are not solely
1707 * relying on the oom victim to make a forward progress and we can
1708 * invoke the oom killer here.
1709 *
1710 * Please note that mem_cgroup_out_of_memory might fail to find a
1711 * victim and then we have to bail out from the charge path.
867578cb 1712 */
29ef680a
MH
1713 if (memcg->oom_kill_disable) {
1714 if (!current->in_user_fault)
1715 return OOM_SKIPPED;
1716 css_get(&memcg->css);
1717 current->memcg_in_oom = memcg;
1718 current->memcg_oom_gfp_mask = mask;
1719 current->memcg_oom_order = order;
1720
1721 return OOM_ASYNC;
1722 }
1723
7056d3a3
MH
1724 mem_cgroup_mark_under_oom(memcg);
1725
1726 locked = mem_cgroup_oom_trylock(memcg);
1727
1728 if (locked)
1729 mem_cgroup_oom_notify(memcg);
1730
1731 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1732 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1733 ret = OOM_SUCCESS;
1734 else
1735 ret = OOM_FAILED;
1736
1737 if (locked)
1738 mem_cgroup_oom_unlock(memcg);
29ef680a 1739
7056d3a3 1740 return ret;
3812c8c8
JW
1741}
1742
1743/**
1744 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1745 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1746 *
49426420
JW
1747 * This has to be called at the end of a page fault if the memcg OOM
1748 * handler was enabled.
3812c8c8 1749 *
49426420 1750 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1751 * sleep on a waitqueue until the userspace task resolves the
1752 * situation. Sleeping directly in the charge context with all kinds
1753 * of locks held is not a good idea, instead we remember an OOM state
1754 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1755 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1756 *
1757 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1758 * completed, %false otherwise.
3812c8c8 1759 */
49426420 1760bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1761{
626ebc41 1762 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1763 struct oom_wait_info owait;
49426420 1764 bool locked;
3812c8c8
JW
1765
1766 /* OOM is global, do not handle */
3812c8c8 1767 if (!memcg)
49426420 1768 return false;
3812c8c8 1769
7c5f64f8 1770 if (!handle)
49426420 1771 goto cleanup;
3812c8c8
JW
1772
1773 owait.memcg = memcg;
1774 owait.wait.flags = 0;
1775 owait.wait.func = memcg_oom_wake_function;
1776 owait.wait.private = current;
2055da97 1777 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1778
3812c8c8 1779 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1780 mem_cgroup_mark_under_oom(memcg);
1781
1782 locked = mem_cgroup_oom_trylock(memcg);
1783
1784 if (locked)
1785 mem_cgroup_oom_notify(memcg);
1786
1787 if (locked && !memcg->oom_kill_disable) {
1788 mem_cgroup_unmark_under_oom(memcg);
1789 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1790 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1791 current->memcg_oom_order);
49426420 1792 } else {
3812c8c8 1793 schedule();
49426420
JW
1794 mem_cgroup_unmark_under_oom(memcg);
1795 finish_wait(&memcg_oom_waitq, &owait.wait);
1796 }
1797
1798 if (locked) {
fb2a6fc5
JW
1799 mem_cgroup_oom_unlock(memcg);
1800 /*
1801 * There is no guarantee that an OOM-lock contender
1802 * sees the wakeups triggered by the OOM kill
1803 * uncharges. Wake any sleepers explicitely.
1804 */
1805 memcg_oom_recover(memcg);
1806 }
49426420 1807cleanup:
626ebc41 1808 current->memcg_in_oom = NULL;
3812c8c8 1809 css_put(&memcg->css);
867578cb 1810 return true;
0b7f569e
KH
1811}
1812
3d8b38eb
RG
1813/**
1814 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1815 * @victim: task to be killed by the OOM killer
1816 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1817 *
1818 * Returns a pointer to a memory cgroup, which has to be cleaned up
1819 * by killing all belonging OOM-killable tasks.
1820 *
1821 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1822 */
1823struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1824 struct mem_cgroup *oom_domain)
1825{
1826 struct mem_cgroup *oom_group = NULL;
1827 struct mem_cgroup *memcg;
1828
1829 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1830 return NULL;
1831
1832 if (!oom_domain)
1833 oom_domain = root_mem_cgroup;
1834
1835 rcu_read_lock();
1836
1837 memcg = mem_cgroup_from_task(victim);
1838 if (memcg == root_mem_cgroup)
1839 goto out;
1840
1841 /*
1842 * Traverse the memory cgroup hierarchy from the victim task's
1843 * cgroup up to the OOMing cgroup (or root) to find the
1844 * highest-level memory cgroup with oom.group set.
1845 */
1846 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1847 if (memcg->oom_group)
1848 oom_group = memcg;
1849
1850 if (memcg == oom_domain)
1851 break;
1852 }
1853
1854 if (oom_group)
1855 css_get(&oom_group->css);
1856out:
1857 rcu_read_unlock();
1858
1859 return oom_group;
1860}
1861
1862void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1863{
1864 pr_info("Tasks in ");
1865 pr_cont_cgroup_path(memcg->css.cgroup);
1866 pr_cont(" are going to be killed due to memory.oom.group set\n");
1867}
1868
d7365e78 1869/**
81f8c3a4
JW
1870 * lock_page_memcg - lock a page->mem_cgroup binding
1871 * @page: the page
32047e2a 1872 *
81f8c3a4 1873 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1874 * another cgroup.
1875 *
1876 * It ensures lifetime of the returned memcg. Caller is responsible
1877 * for the lifetime of the page; __unlock_page_memcg() is available
1878 * when @page might get freed inside the locked section.
d69b042f 1879 */
739f79fc 1880struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1881{
1882 struct mem_cgroup *memcg;
6de22619 1883 unsigned long flags;
89c06bd5 1884
6de22619
JW
1885 /*
1886 * The RCU lock is held throughout the transaction. The fast
1887 * path can get away without acquiring the memcg->move_lock
1888 * because page moving starts with an RCU grace period.
739f79fc
JW
1889 *
1890 * The RCU lock also protects the memcg from being freed when
1891 * the page state that is going to change is the only thing
1892 * preventing the page itself from being freed. E.g. writeback
1893 * doesn't hold a page reference and relies on PG_writeback to
1894 * keep off truncation, migration and so forth.
1895 */
d7365e78
JW
1896 rcu_read_lock();
1897
1898 if (mem_cgroup_disabled())
739f79fc 1899 return NULL;
89c06bd5 1900again:
1306a85a 1901 memcg = page->mem_cgroup;
29833315 1902 if (unlikely(!memcg))
739f79fc 1903 return NULL;
d7365e78 1904
bdcbb659 1905 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1906 return memcg;
89c06bd5 1907
6de22619 1908 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1909 if (memcg != page->mem_cgroup) {
6de22619 1910 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1911 goto again;
1912 }
6de22619
JW
1913
1914 /*
1915 * When charge migration first begins, we can have locked and
1916 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1917 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1918 */
1919 memcg->move_lock_task = current;
1920 memcg->move_lock_flags = flags;
d7365e78 1921
739f79fc 1922 return memcg;
89c06bd5 1923}
81f8c3a4 1924EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1925
d7365e78 1926/**
739f79fc
JW
1927 * __unlock_page_memcg - unlock and unpin a memcg
1928 * @memcg: the memcg
1929 *
1930 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1931 */
739f79fc 1932void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1933{
6de22619
JW
1934 if (memcg && memcg->move_lock_task == current) {
1935 unsigned long flags = memcg->move_lock_flags;
1936
1937 memcg->move_lock_task = NULL;
1938 memcg->move_lock_flags = 0;
1939
1940 spin_unlock_irqrestore(&memcg->move_lock, flags);
1941 }
89c06bd5 1942
d7365e78 1943 rcu_read_unlock();
89c06bd5 1944}
739f79fc
JW
1945
1946/**
1947 * unlock_page_memcg - unlock a page->mem_cgroup binding
1948 * @page: the page
1949 */
1950void unlock_page_memcg(struct page *page)
1951{
1952 __unlock_page_memcg(page->mem_cgroup);
1953}
81f8c3a4 1954EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1955
cdec2e42
KH
1956struct memcg_stock_pcp {
1957 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1958 unsigned int nr_pages;
cdec2e42 1959 struct work_struct work;
26fe6168 1960 unsigned long flags;
a0db00fc 1961#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1962};
1963static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1964static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1965
a0956d54
SS
1966/**
1967 * consume_stock: Try to consume stocked charge on this cpu.
1968 * @memcg: memcg to consume from.
1969 * @nr_pages: how many pages to charge.
1970 *
1971 * The charges will only happen if @memcg matches the current cpu's memcg
1972 * stock, and at least @nr_pages are available in that stock. Failure to
1973 * service an allocation will refill the stock.
1974 *
1975 * returns true if successful, false otherwise.
cdec2e42 1976 */
a0956d54 1977static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1978{
1979 struct memcg_stock_pcp *stock;
db2ba40c 1980 unsigned long flags;
3e32cb2e 1981 bool ret = false;
cdec2e42 1982
a983b5eb 1983 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 1984 return ret;
a0956d54 1985
db2ba40c
JW
1986 local_irq_save(flags);
1987
1988 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1989 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1990 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1991 ret = true;
1992 }
db2ba40c
JW
1993
1994 local_irq_restore(flags);
1995
cdec2e42
KH
1996 return ret;
1997}
1998
1999/*
3e32cb2e 2000 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2001 */
2002static void drain_stock(struct memcg_stock_pcp *stock)
2003{
2004 struct mem_cgroup *old = stock->cached;
2005
11c9ea4e 2006 if (stock->nr_pages) {
3e32cb2e 2007 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2008 if (do_memsw_account())
3e32cb2e 2009 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2010 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2011 stock->nr_pages = 0;
cdec2e42
KH
2012 }
2013 stock->cached = NULL;
cdec2e42
KH
2014}
2015
cdec2e42
KH
2016static void drain_local_stock(struct work_struct *dummy)
2017{
db2ba40c
JW
2018 struct memcg_stock_pcp *stock;
2019 unsigned long flags;
2020
72f0184c
MH
2021 /*
2022 * The only protection from memory hotplug vs. drain_stock races is
2023 * that we always operate on local CPU stock here with IRQ disabled
2024 */
db2ba40c
JW
2025 local_irq_save(flags);
2026
2027 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2028 drain_stock(stock);
26fe6168 2029 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2030
2031 local_irq_restore(flags);
cdec2e42
KH
2032}
2033
2034/*
3e32cb2e 2035 * Cache charges(val) to local per_cpu area.
320cc51d 2036 * This will be consumed by consume_stock() function, later.
cdec2e42 2037 */
c0ff4b85 2038static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2039{
db2ba40c
JW
2040 struct memcg_stock_pcp *stock;
2041 unsigned long flags;
2042
2043 local_irq_save(flags);
cdec2e42 2044
db2ba40c 2045 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2046 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2047 drain_stock(stock);
c0ff4b85 2048 stock->cached = memcg;
cdec2e42 2049 }
11c9ea4e 2050 stock->nr_pages += nr_pages;
db2ba40c 2051
a983b5eb 2052 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2053 drain_stock(stock);
2054
db2ba40c 2055 local_irq_restore(flags);
cdec2e42
KH
2056}
2057
2058/*
c0ff4b85 2059 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2060 * of the hierarchy under it.
cdec2e42 2061 */
6d3d6aa2 2062static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2063{
26fe6168 2064 int cpu, curcpu;
d38144b7 2065
6d3d6aa2
JW
2066 /* If someone's already draining, avoid adding running more workers. */
2067 if (!mutex_trylock(&percpu_charge_mutex))
2068 return;
72f0184c
MH
2069 /*
2070 * Notify other cpus that system-wide "drain" is running
2071 * We do not care about races with the cpu hotplug because cpu down
2072 * as well as workers from this path always operate on the local
2073 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2074 */
5af12d0e 2075 curcpu = get_cpu();
cdec2e42
KH
2076 for_each_online_cpu(cpu) {
2077 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2078 struct mem_cgroup *memcg;
26fe6168 2079
c0ff4b85 2080 memcg = stock->cached;
72f0184c 2081 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 2082 continue;
72f0184c
MH
2083 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2084 css_put(&memcg->css);
3e92041d 2085 continue;
72f0184c 2086 }
d1a05b69
MH
2087 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2088 if (cpu == curcpu)
2089 drain_local_stock(&stock->work);
2090 else
2091 schedule_work_on(cpu, &stock->work);
2092 }
72f0184c 2093 css_put(&memcg->css);
cdec2e42 2094 }
5af12d0e 2095 put_cpu();
9f50fad6 2096 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2097}
2098
308167fc 2099static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2100{
cdec2e42 2101 struct memcg_stock_pcp *stock;
a983b5eb 2102 struct mem_cgroup *memcg;
cdec2e42 2103
cdec2e42
KH
2104 stock = &per_cpu(memcg_stock, cpu);
2105 drain_stock(stock);
a983b5eb
JW
2106
2107 for_each_mem_cgroup(memcg) {
2108 int i;
2109
2110 for (i = 0; i < MEMCG_NR_STAT; i++) {
2111 int nid;
2112 long x;
2113
2114 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2115 if (x)
2116 atomic_long_add(x, &memcg->stat[i]);
2117
2118 if (i >= NR_VM_NODE_STAT_ITEMS)
2119 continue;
2120
2121 for_each_node(nid) {
2122 struct mem_cgroup_per_node *pn;
2123
2124 pn = mem_cgroup_nodeinfo(memcg, nid);
2125 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2126 if (x)
2127 atomic_long_add(x, &pn->lruvec_stat[i]);
2128 }
2129 }
2130
e27be240 2131 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2132 long x;
2133
2134 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2135 if (x)
2136 atomic_long_add(x, &memcg->events[i]);
2137 }
2138 }
2139
308167fc 2140 return 0;
cdec2e42
KH
2141}
2142
f7e1cb6e
JW
2143static void reclaim_high(struct mem_cgroup *memcg,
2144 unsigned int nr_pages,
2145 gfp_t gfp_mask)
2146{
2147 do {
2148 if (page_counter_read(&memcg->memory) <= memcg->high)
2149 continue;
e27be240 2150 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2151 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2152 } while ((memcg = parent_mem_cgroup(memcg)));
2153}
2154
2155static void high_work_func(struct work_struct *work)
2156{
2157 struct mem_cgroup *memcg;
2158
2159 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2160 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2161}
2162
b23afb93
TH
2163/*
2164 * Scheduled by try_charge() to be executed from the userland return path
2165 * and reclaims memory over the high limit.
2166 */
2167void mem_cgroup_handle_over_high(void)
2168{
2169 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2170 struct mem_cgroup *memcg;
b23afb93
TH
2171
2172 if (likely(!nr_pages))
2173 return;
2174
f7e1cb6e
JW
2175 memcg = get_mem_cgroup_from_mm(current->mm);
2176 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
2177 css_put(&memcg->css);
2178 current->memcg_nr_pages_over_high = 0;
2179}
2180
00501b53
JW
2181static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2182 unsigned int nr_pages)
8a9f3ccd 2183{
a983b5eb 2184 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2185 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2186 struct mem_cgroup *mem_over_limit;
3e32cb2e 2187 struct page_counter *counter;
6539cc05 2188 unsigned long nr_reclaimed;
b70a2a21
JW
2189 bool may_swap = true;
2190 bool drained = false;
29ef680a
MH
2191 bool oomed = false;
2192 enum oom_status oom_status;
a636b327 2193
ce00a967 2194 if (mem_cgroup_is_root(memcg))
10d53c74 2195 return 0;
6539cc05 2196retry:
b6b6cc72 2197 if (consume_stock(memcg, nr_pages))
10d53c74 2198 return 0;
8a9f3ccd 2199
7941d214 2200 if (!do_memsw_account() ||
6071ca52
JW
2201 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2202 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2203 goto done_restock;
7941d214 2204 if (do_memsw_account())
3e32cb2e
JW
2205 page_counter_uncharge(&memcg->memsw, batch);
2206 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2207 } else {
3e32cb2e 2208 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2209 may_swap = false;
3fbe7244 2210 }
7a81b88c 2211
6539cc05
JW
2212 if (batch > nr_pages) {
2213 batch = nr_pages;
2214 goto retry;
2215 }
6d61ef40 2216
06b078fc
JW
2217 /*
2218 * Unlike in global OOM situations, memcg is not in a physical
2219 * memory shortage. Allow dying and OOM-killed tasks to
2220 * bypass the last charges so that they can exit quickly and
2221 * free their memory.
2222 */
7775face 2223 if (unlikely(should_force_charge()))
10d53c74 2224 goto force;
06b078fc 2225
89a28483
JW
2226 /*
2227 * Prevent unbounded recursion when reclaim operations need to
2228 * allocate memory. This might exceed the limits temporarily,
2229 * but we prefer facilitating memory reclaim and getting back
2230 * under the limit over triggering OOM kills in these cases.
2231 */
2232 if (unlikely(current->flags & PF_MEMALLOC))
2233 goto force;
2234
06b078fc
JW
2235 if (unlikely(task_in_memcg_oom(current)))
2236 goto nomem;
2237
d0164adc 2238 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2239 goto nomem;
4b534334 2240
e27be240 2241 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2242
b70a2a21
JW
2243 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2244 gfp_mask, may_swap);
6539cc05 2245
61e02c74 2246 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2247 goto retry;
28c34c29 2248
b70a2a21 2249 if (!drained) {
6d3d6aa2 2250 drain_all_stock(mem_over_limit);
b70a2a21
JW
2251 drained = true;
2252 goto retry;
2253 }
2254
28c34c29
JW
2255 if (gfp_mask & __GFP_NORETRY)
2256 goto nomem;
6539cc05
JW
2257 /*
2258 * Even though the limit is exceeded at this point, reclaim
2259 * may have been able to free some pages. Retry the charge
2260 * before killing the task.
2261 *
2262 * Only for regular pages, though: huge pages are rather
2263 * unlikely to succeed so close to the limit, and we fall back
2264 * to regular pages anyway in case of failure.
2265 */
61e02c74 2266 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2267 goto retry;
2268 /*
2269 * At task move, charge accounts can be doubly counted. So, it's
2270 * better to wait until the end of task_move if something is going on.
2271 */
2272 if (mem_cgroup_wait_acct_move(mem_over_limit))
2273 goto retry;
2274
9b130619
JW
2275 if (nr_retries--)
2276 goto retry;
2277
29ef680a
MH
2278 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2279 goto nomem;
2280
06b078fc 2281 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2282 goto force;
06b078fc 2283
6539cc05 2284 if (fatal_signal_pending(current))
10d53c74 2285 goto force;
6539cc05 2286
29ef680a
MH
2287 /*
2288 * keep retrying as long as the memcg oom killer is able to make
2289 * a forward progress or bypass the charge if the oom killer
2290 * couldn't make any progress.
2291 */
2292 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2293 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2294 switch (oom_status) {
2295 case OOM_SUCCESS:
2296 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2297 oomed = true;
2298 goto retry;
2299 case OOM_FAILED:
2300 goto force;
2301 default:
2302 goto nomem;
2303 }
7a81b88c 2304nomem:
6d1fdc48 2305 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2306 return -ENOMEM;
10d53c74
TH
2307force:
2308 /*
2309 * The allocation either can't fail or will lead to more memory
2310 * being freed very soon. Allow memory usage go over the limit
2311 * temporarily by force charging it.
2312 */
2313 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2314 if (do_memsw_account())
10d53c74
TH
2315 page_counter_charge(&memcg->memsw, nr_pages);
2316 css_get_many(&memcg->css, nr_pages);
2317
2318 return 0;
6539cc05
JW
2319
2320done_restock:
e8ea14cc 2321 css_get_many(&memcg->css, batch);
6539cc05
JW
2322 if (batch > nr_pages)
2323 refill_stock(memcg, batch - nr_pages);
b23afb93 2324
241994ed 2325 /*
b23afb93
TH
2326 * If the hierarchy is above the normal consumption range, schedule
2327 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2328 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2329 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2330 * not recorded as it most likely matches current's and won't
2331 * change in the meantime. As high limit is checked again before
2332 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2333 */
2334 do {
b23afb93 2335 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2336 /* Don't bother a random interrupted task */
2337 if (in_interrupt()) {
2338 schedule_work(&memcg->high_work);
2339 break;
2340 }
9516a18a 2341 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2342 set_notify_resume(current);
2343 break;
2344 }
241994ed 2345 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2346
2347 return 0;
7a81b88c 2348}
8a9f3ccd 2349
00501b53 2350static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2351{
ce00a967
JW
2352 if (mem_cgroup_is_root(memcg))
2353 return;
2354
3e32cb2e 2355 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2356 if (do_memsw_account())
3e32cb2e 2357 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2358
e8ea14cc 2359 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2360}
2361
0a31bc97
JW
2362static void lock_page_lru(struct page *page, int *isolated)
2363{
2364 struct zone *zone = page_zone(page);
2365
a52633d8 2366 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2367 if (PageLRU(page)) {
2368 struct lruvec *lruvec;
2369
599d0c95 2370 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2371 ClearPageLRU(page);
2372 del_page_from_lru_list(page, lruvec, page_lru(page));
2373 *isolated = 1;
2374 } else
2375 *isolated = 0;
2376}
2377
2378static void unlock_page_lru(struct page *page, int isolated)
2379{
2380 struct zone *zone = page_zone(page);
2381
2382 if (isolated) {
2383 struct lruvec *lruvec;
2384
599d0c95 2385 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2386 VM_BUG_ON_PAGE(PageLRU(page), page);
2387 SetPageLRU(page);
2388 add_page_to_lru_list(page, lruvec, page_lru(page));
2389 }
a52633d8 2390 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2391}
2392
00501b53 2393static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2394 bool lrucare)
7a81b88c 2395{
0a31bc97 2396 int isolated;
9ce70c02 2397
1306a85a 2398 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2399
2400 /*
2401 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2402 * may already be on some other mem_cgroup's LRU. Take care of it.
2403 */
0a31bc97
JW
2404 if (lrucare)
2405 lock_page_lru(page, &isolated);
9ce70c02 2406
0a31bc97
JW
2407 /*
2408 * Nobody should be changing or seriously looking at
1306a85a 2409 * page->mem_cgroup at this point:
0a31bc97
JW
2410 *
2411 * - the page is uncharged
2412 *
2413 * - the page is off-LRU
2414 *
2415 * - an anonymous fault has exclusive page access, except for
2416 * a locked page table
2417 *
2418 * - a page cache insertion, a swapin fault, or a migration
2419 * have the page locked
2420 */
1306a85a 2421 page->mem_cgroup = memcg;
9ce70c02 2422
0a31bc97
JW
2423 if (lrucare)
2424 unlock_page_lru(page, isolated);
7a81b88c 2425}
66e1707b 2426
84c07d11 2427#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2428static int memcg_alloc_cache_id(void)
55007d84 2429{
f3bb3043
VD
2430 int id, size;
2431 int err;
2432
dbcf73e2 2433 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2434 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2435 if (id < 0)
2436 return id;
55007d84 2437
dbcf73e2 2438 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2439 return id;
2440
2441 /*
2442 * There's no space for the new id in memcg_caches arrays,
2443 * so we have to grow them.
2444 */
05257a1a 2445 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2446
2447 size = 2 * (id + 1);
55007d84
GC
2448 if (size < MEMCG_CACHES_MIN_SIZE)
2449 size = MEMCG_CACHES_MIN_SIZE;
2450 else if (size > MEMCG_CACHES_MAX_SIZE)
2451 size = MEMCG_CACHES_MAX_SIZE;
2452
f3bb3043 2453 err = memcg_update_all_caches(size);
60d3fd32
VD
2454 if (!err)
2455 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2456 if (!err)
2457 memcg_nr_cache_ids = size;
2458
2459 up_write(&memcg_cache_ids_sem);
2460
f3bb3043 2461 if (err) {
dbcf73e2 2462 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2463 return err;
2464 }
2465 return id;
2466}
2467
2468static void memcg_free_cache_id(int id)
2469{
dbcf73e2 2470 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2471}
2472
d5b3cf71 2473struct memcg_kmem_cache_create_work {
5722d094
VD
2474 struct mem_cgroup *memcg;
2475 struct kmem_cache *cachep;
2476 struct work_struct work;
2477};
2478
d5b3cf71 2479static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2480{
d5b3cf71
VD
2481 struct memcg_kmem_cache_create_work *cw =
2482 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2483 struct mem_cgroup *memcg = cw->memcg;
2484 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2485
d5b3cf71 2486 memcg_create_kmem_cache(memcg, cachep);
bd673145 2487
5722d094 2488 css_put(&memcg->css);
d7f25f8a
GC
2489 kfree(cw);
2490}
2491
2492/*
2493 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2494 */
85cfb245 2495static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2496 struct kmem_cache *cachep)
d7f25f8a 2497{
d5b3cf71 2498 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2499
c892fd82 2500 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2501 if (!cw)
d7f25f8a 2502 return;
8135be5a
VD
2503
2504 css_get(&memcg->css);
d7f25f8a
GC
2505
2506 cw->memcg = memcg;
2507 cw->cachep = cachep;
d5b3cf71 2508 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2509
17cc4dfe 2510 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2511}
2512
45264778
VD
2513static inline bool memcg_kmem_bypass(void)
2514{
2515 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2516 return true;
2517 return false;
2518}
2519
2520/**
2521 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2522 * @cachep: the original global kmem cache
2523 *
d7f25f8a
GC
2524 * Return the kmem_cache we're supposed to use for a slab allocation.
2525 * We try to use the current memcg's version of the cache.
2526 *
45264778
VD
2527 * If the cache does not exist yet, if we are the first user of it, we
2528 * create it asynchronously in a workqueue and let the current allocation
2529 * go through with the original cache.
d7f25f8a 2530 *
45264778
VD
2531 * This function takes a reference to the cache it returns to assure it
2532 * won't get destroyed while we are working with it. Once the caller is
2533 * done with it, memcg_kmem_put_cache() must be called to release the
2534 * reference.
d7f25f8a 2535 */
45264778 2536struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2537{
2538 struct mem_cgroup *memcg;
959c8963 2539 struct kmem_cache *memcg_cachep;
2a4db7eb 2540 int kmemcg_id;
d7f25f8a 2541
f7ce3190 2542 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2543
45264778 2544 if (memcg_kmem_bypass())
230e9fc2
VD
2545 return cachep;
2546
d46eb14b 2547 memcg = get_mem_cgroup_from_current();
4db0c3c2 2548 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2549 if (kmemcg_id < 0)
ca0dde97 2550 goto out;
d7f25f8a 2551
2a4db7eb 2552 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2553 if (likely(memcg_cachep))
2554 return memcg_cachep;
ca0dde97
LZ
2555
2556 /*
2557 * If we are in a safe context (can wait, and not in interrupt
2558 * context), we could be be predictable and return right away.
2559 * This would guarantee that the allocation being performed
2560 * already belongs in the new cache.
2561 *
2562 * However, there are some clashes that can arrive from locking.
2563 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2564 * memcg_create_kmem_cache, this means no further allocation
2565 * could happen with the slab_mutex held. So it's better to
2566 * defer everything.
ca0dde97 2567 */
d5b3cf71 2568 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2569out:
8135be5a 2570 css_put(&memcg->css);
ca0dde97 2571 return cachep;
d7f25f8a 2572}
d7f25f8a 2573
45264778
VD
2574/**
2575 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2576 * @cachep: the cache returned by memcg_kmem_get_cache
2577 */
2578void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2579{
2580 if (!is_root_cache(cachep))
f7ce3190 2581 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2582}
2583
45264778 2584/**
60cd4bcd 2585 * __memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2586 * @page: page to charge
2587 * @gfp: reclaim mode
2588 * @order: allocation order
2589 * @memcg: memory cgroup to charge
2590 *
2591 * Returns 0 on success, an error code on failure.
2592 */
60cd4bcd 2593int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
45264778 2594 struct mem_cgroup *memcg)
7ae1e1d0 2595{
f3ccb2c4
VD
2596 unsigned int nr_pages = 1 << order;
2597 struct page_counter *counter;
7ae1e1d0
GC
2598 int ret;
2599
f3ccb2c4 2600 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2601 if (ret)
f3ccb2c4 2602 return ret;
52c29b04
JW
2603
2604 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2605 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2606 cancel_charge(memcg, nr_pages);
2607 return -ENOMEM;
7ae1e1d0
GC
2608 }
2609
f3ccb2c4 2610 page->mem_cgroup = memcg;
7ae1e1d0 2611
f3ccb2c4 2612 return 0;
7ae1e1d0
GC
2613}
2614
45264778 2615/**
60cd4bcd 2616 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
45264778
VD
2617 * @page: page to charge
2618 * @gfp: reclaim mode
2619 * @order: allocation order
2620 *
2621 * Returns 0 on success, an error code on failure.
2622 */
60cd4bcd 2623int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2624{
f3ccb2c4 2625 struct mem_cgroup *memcg;
fcff7d7e 2626 int ret = 0;
7ae1e1d0 2627
60cd4bcd 2628 if (memcg_kmem_bypass())
45264778
VD
2629 return 0;
2630
d46eb14b 2631 memcg = get_mem_cgroup_from_current();
c4159a75 2632 if (!mem_cgroup_is_root(memcg)) {
60cd4bcd 2633 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2634 if (!ret)
2635 __SetPageKmemcg(page);
2636 }
7ae1e1d0 2637 css_put(&memcg->css);
d05e83a6 2638 return ret;
7ae1e1d0 2639}
45264778 2640/**
60cd4bcd 2641 * __memcg_kmem_uncharge: uncharge a kmem page
45264778
VD
2642 * @page: page to uncharge
2643 * @order: allocation order
2644 */
60cd4bcd 2645void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2646{
1306a85a 2647 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2648 unsigned int nr_pages = 1 << order;
7ae1e1d0 2649
7ae1e1d0
GC
2650 if (!memcg)
2651 return;
2652
309381fe 2653 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2654
52c29b04
JW
2655 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2656 page_counter_uncharge(&memcg->kmem, nr_pages);
2657
f3ccb2c4 2658 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2659 if (do_memsw_account())
f3ccb2c4 2660 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2661
1306a85a 2662 page->mem_cgroup = NULL;
c4159a75
VD
2663
2664 /* slab pages do not have PageKmemcg flag set */
2665 if (PageKmemcg(page))
2666 __ClearPageKmemcg(page);
2667
f3ccb2c4 2668 css_put_many(&memcg->css, nr_pages);
60d3fd32 2669}
84c07d11 2670#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2671
ca3e0214
KH
2672#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2673
ca3e0214
KH
2674/*
2675 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2676 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2677 */
e94c8a9c 2678void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2679{
e94c8a9c 2680 int i;
ca3e0214 2681
3d37c4a9
KH
2682 if (mem_cgroup_disabled())
2683 return;
b070e65c 2684
29833315 2685 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2686 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2687
c9019e9b 2688 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2689}
12d27107 2690#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2691
c255a458 2692#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2693/**
2694 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2695 * @entry: swap entry to be moved
2696 * @from: mem_cgroup which the entry is moved from
2697 * @to: mem_cgroup which the entry is moved to
2698 *
2699 * It succeeds only when the swap_cgroup's record for this entry is the same
2700 * as the mem_cgroup's id of @from.
2701 *
2702 * Returns 0 on success, -EINVAL on failure.
2703 *
3e32cb2e 2704 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2705 * both res and memsw, and called css_get().
2706 */
2707static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2708 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2709{
2710 unsigned short old_id, new_id;
2711
34c00c31
LZ
2712 old_id = mem_cgroup_id(from);
2713 new_id = mem_cgroup_id(to);
02491447
DN
2714
2715 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2716 mod_memcg_state(from, MEMCG_SWAP, -1);
2717 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2718 return 0;
2719 }
2720 return -EINVAL;
2721}
2722#else
2723static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2724 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2725{
2726 return -EINVAL;
2727}
8c7c6e34 2728#endif
d13d1443 2729
bbec2e15 2730static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2731
bbec2e15
RG
2732static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2733 unsigned long max, bool memsw)
628f4235 2734{
3e32cb2e 2735 bool enlarge = false;
bb4a7ea2 2736 bool drained = false;
3e32cb2e 2737 int ret;
c054a78c
YZ
2738 bool limits_invariant;
2739 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2740
3e32cb2e 2741 do {
628f4235
KH
2742 if (signal_pending(current)) {
2743 ret = -EINTR;
2744 break;
2745 }
3e32cb2e 2746
bbec2e15 2747 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2748 /*
2749 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2750 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2751 */
bbec2e15
RG
2752 limits_invariant = memsw ? max >= memcg->memory.max :
2753 max <= memcg->memsw.max;
c054a78c 2754 if (!limits_invariant) {
bbec2e15 2755 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2756 ret = -EINVAL;
8c7c6e34
KH
2757 break;
2758 }
bbec2e15 2759 if (max > counter->max)
3e32cb2e 2760 enlarge = true;
bbec2e15
RG
2761 ret = page_counter_set_max(counter, max);
2762 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2763
2764 if (!ret)
2765 break;
2766
bb4a7ea2
SB
2767 if (!drained) {
2768 drain_all_stock(memcg);
2769 drained = true;
2770 continue;
2771 }
2772
1ab5c056
AR
2773 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2774 GFP_KERNEL, !memsw)) {
2775 ret = -EBUSY;
2776 break;
2777 }
2778 } while (true);
3e32cb2e 2779
3c11ecf4
KH
2780 if (!ret && enlarge)
2781 memcg_oom_recover(memcg);
3e32cb2e 2782
628f4235
KH
2783 return ret;
2784}
2785
ef8f2327 2786unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2787 gfp_t gfp_mask,
2788 unsigned long *total_scanned)
2789{
2790 unsigned long nr_reclaimed = 0;
ef8f2327 2791 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2792 unsigned long reclaimed;
2793 int loop = 0;
ef8f2327 2794 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2795 unsigned long excess;
0608f43d
AM
2796 unsigned long nr_scanned;
2797
2798 if (order > 0)
2799 return 0;
2800
ef8f2327 2801 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2802
2803 /*
2804 * Do not even bother to check the largest node if the root
2805 * is empty. Do it lockless to prevent lock bouncing. Races
2806 * are acceptable as soft limit is best effort anyway.
2807 */
bfc7228b 2808 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2809 return 0;
2810
0608f43d
AM
2811 /*
2812 * This loop can run a while, specially if mem_cgroup's continuously
2813 * keep exceeding their soft limit and putting the system under
2814 * pressure
2815 */
2816 do {
2817 if (next_mz)
2818 mz = next_mz;
2819 else
2820 mz = mem_cgroup_largest_soft_limit_node(mctz);
2821 if (!mz)
2822 break;
2823
2824 nr_scanned = 0;
ef8f2327 2825 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2826 gfp_mask, &nr_scanned);
2827 nr_reclaimed += reclaimed;
2828 *total_scanned += nr_scanned;
0a31bc97 2829 spin_lock_irq(&mctz->lock);
bc2f2e7f 2830 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2831
2832 /*
2833 * If we failed to reclaim anything from this memory cgroup
2834 * it is time to move on to the next cgroup
2835 */
2836 next_mz = NULL;
bc2f2e7f
VD
2837 if (!reclaimed)
2838 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2839
3e32cb2e 2840 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2841 /*
2842 * One school of thought says that we should not add
2843 * back the node to the tree if reclaim returns 0.
2844 * But our reclaim could return 0, simply because due
2845 * to priority we are exposing a smaller subset of
2846 * memory to reclaim from. Consider this as a longer
2847 * term TODO.
2848 */
2849 /* If excess == 0, no tree ops */
cf2c8127 2850 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2851 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2852 css_put(&mz->memcg->css);
2853 loop++;
2854 /*
2855 * Could not reclaim anything and there are no more
2856 * mem cgroups to try or we seem to be looping without
2857 * reclaiming anything.
2858 */
2859 if (!nr_reclaimed &&
2860 (next_mz == NULL ||
2861 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2862 break;
2863 } while (!nr_reclaimed);
2864 if (next_mz)
2865 css_put(&next_mz->memcg->css);
2866 return nr_reclaimed;
2867}
2868
ea280e7b
TH
2869/*
2870 * Test whether @memcg has children, dead or alive. Note that this
2871 * function doesn't care whether @memcg has use_hierarchy enabled and
2872 * returns %true if there are child csses according to the cgroup
2873 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2874 */
b5f99b53
GC
2875static inline bool memcg_has_children(struct mem_cgroup *memcg)
2876{
ea280e7b
TH
2877 bool ret;
2878
ea280e7b
TH
2879 rcu_read_lock();
2880 ret = css_next_child(NULL, &memcg->css);
2881 rcu_read_unlock();
2882 return ret;
b5f99b53
GC
2883}
2884
c26251f9 2885/*
51038171 2886 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2887 *
2888 * Caller is responsible for holding css reference for memcg.
2889 */
2890static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2891{
2892 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2893
c1e862c1
KH
2894 /* we call try-to-free pages for make this cgroup empty */
2895 lru_add_drain_all();
d12c60f6
JS
2896
2897 drain_all_stock(memcg);
2898
f817ed48 2899 /* try to free all pages in this cgroup */
3e32cb2e 2900 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2901 int progress;
c1e862c1 2902
c26251f9
MH
2903 if (signal_pending(current))
2904 return -EINTR;
2905
b70a2a21
JW
2906 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2907 GFP_KERNEL, true);
c1e862c1 2908 if (!progress) {
f817ed48 2909 nr_retries--;
c1e862c1 2910 /* maybe some writeback is necessary */
8aa7e847 2911 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2912 }
f817ed48
KH
2913
2914 }
ab5196c2
MH
2915
2916 return 0;
cc847582
KH
2917}
2918
6770c64e
TH
2919static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2920 char *buf, size_t nbytes,
2921 loff_t off)
c1e862c1 2922{
6770c64e 2923 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2924
d8423011
MH
2925 if (mem_cgroup_is_root(memcg))
2926 return -EINVAL;
6770c64e 2927 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2928}
2929
182446d0
TH
2930static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2931 struct cftype *cft)
18f59ea7 2932{
182446d0 2933 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2934}
2935
182446d0
TH
2936static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2937 struct cftype *cft, u64 val)
18f59ea7
BS
2938{
2939 int retval = 0;
182446d0 2940 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2941 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2942
567fb435 2943 if (memcg->use_hierarchy == val)
0b8f73e1 2944 return 0;
567fb435 2945
18f59ea7 2946 /*
af901ca1 2947 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2948 * in the child subtrees. If it is unset, then the change can
2949 * occur, provided the current cgroup has no children.
2950 *
2951 * For the root cgroup, parent_mem is NULL, we allow value to be
2952 * set if there are no children.
2953 */
c0ff4b85 2954 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2955 (val == 1 || val == 0)) {
ea280e7b 2956 if (!memcg_has_children(memcg))
c0ff4b85 2957 memcg->use_hierarchy = val;
18f59ea7
BS
2958 else
2959 retval = -EBUSY;
2960 } else
2961 retval = -EINVAL;
567fb435 2962
18f59ea7
BS
2963 return retval;
2964}
2965
8de7ecc6
SB
2966struct accumulated_stats {
2967 unsigned long stat[MEMCG_NR_STAT];
2968 unsigned long events[NR_VM_EVENT_ITEMS];
2969 unsigned long lru_pages[NR_LRU_LISTS];
2970 const unsigned int *stats_array;
2971 const unsigned int *events_array;
2972 int stats_size;
2973 int events_size;
2974};
ce00a967 2975
8de7ecc6
SB
2976static void accumulate_memcg_tree(struct mem_cgroup *memcg,
2977 struct accumulated_stats *acc)
587d9f72 2978{
8de7ecc6 2979 struct mem_cgroup *mi;
72b54e73 2980 int i;
587d9f72 2981
8de7ecc6
SB
2982 for_each_mem_cgroup_tree(mi, memcg) {
2983 for (i = 0; i < acc->stats_size; i++)
2984 acc->stat[i] += memcg_page_state(mi,
2985 acc->stats_array ? acc->stats_array[i] : i);
587d9f72 2986
8de7ecc6
SB
2987 for (i = 0; i < acc->events_size; i++)
2988 acc->events[i] += memcg_sum_events(mi,
2989 acc->events_array ? acc->events_array[i] : i);
2990
2991 for (i = 0; i < NR_LRU_LISTS; i++)
2992 acc->lru_pages[i] +=
2993 mem_cgroup_nr_lru_pages(mi, BIT(i));
72b54e73 2994 }
587d9f72
JW
2995}
2996
6f646156 2997static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2998{
72b54e73 2999 unsigned long val = 0;
ce00a967 3000
3e32cb2e 3001 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
3002 struct mem_cgroup *iter;
3003
3004 for_each_mem_cgroup_tree(iter, memcg) {
ccda7f43
JW
3005 val += memcg_page_state(iter, MEMCG_CACHE);
3006 val += memcg_page_state(iter, MEMCG_RSS);
72b54e73 3007 if (swap)
ccda7f43 3008 val += memcg_page_state(iter, MEMCG_SWAP);
72b54e73 3009 }
3e32cb2e 3010 } else {
ce00a967 3011 if (!swap)
3e32cb2e 3012 val = page_counter_read(&memcg->memory);
ce00a967 3013 else
3e32cb2e 3014 val = page_counter_read(&memcg->memsw);
ce00a967 3015 }
c12176d3 3016 return val;
ce00a967
JW
3017}
3018
3e32cb2e
JW
3019enum {
3020 RES_USAGE,
3021 RES_LIMIT,
3022 RES_MAX_USAGE,
3023 RES_FAILCNT,
3024 RES_SOFT_LIMIT,
3025};
ce00a967 3026
791badbd 3027static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3028 struct cftype *cft)
8cdea7c0 3029{
182446d0 3030 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3031 struct page_counter *counter;
af36f906 3032
3e32cb2e 3033 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3034 case _MEM:
3e32cb2e
JW
3035 counter = &memcg->memory;
3036 break;
8c7c6e34 3037 case _MEMSWAP:
3e32cb2e
JW
3038 counter = &memcg->memsw;
3039 break;
510fc4e1 3040 case _KMEM:
3e32cb2e 3041 counter = &memcg->kmem;
510fc4e1 3042 break;
d55f90bf 3043 case _TCP:
0db15298 3044 counter = &memcg->tcpmem;
d55f90bf 3045 break;
8c7c6e34
KH
3046 default:
3047 BUG();
8c7c6e34 3048 }
3e32cb2e
JW
3049
3050 switch (MEMFILE_ATTR(cft->private)) {
3051 case RES_USAGE:
3052 if (counter == &memcg->memory)
c12176d3 3053 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3054 if (counter == &memcg->memsw)
c12176d3 3055 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3056 return (u64)page_counter_read(counter) * PAGE_SIZE;
3057 case RES_LIMIT:
bbec2e15 3058 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3059 case RES_MAX_USAGE:
3060 return (u64)counter->watermark * PAGE_SIZE;
3061 case RES_FAILCNT:
3062 return counter->failcnt;
3063 case RES_SOFT_LIMIT:
3064 return (u64)memcg->soft_limit * PAGE_SIZE;
3065 default:
3066 BUG();
3067 }
8cdea7c0 3068}
510fc4e1 3069
84c07d11 3070#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3071static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3072{
d6441637
VD
3073 int memcg_id;
3074
b313aeee
VD
3075 if (cgroup_memory_nokmem)
3076 return 0;
3077
2a4db7eb 3078 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3079 BUG_ON(memcg->kmem_state);
d6441637 3080
f3bb3043 3081 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3082 if (memcg_id < 0)
3083 return memcg_id;
d6441637 3084
ef12947c 3085 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3086 /*
567e9ab2 3087 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3088 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3089 * guarantee no one starts accounting before all call sites are
3090 * patched.
3091 */
900a38f0 3092 memcg->kmemcg_id = memcg_id;
567e9ab2 3093 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3094 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3095
3096 return 0;
d6441637
VD
3097}
3098
8e0a8912
JW
3099static void memcg_offline_kmem(struct mem_cgroup *memcg)
3100{
3101 struct cgroup_subsys_state *css;
3102 struct mem_cgroup *parent, *child;
3103 int kmemcg_id;
3104
3105 if (memcg->kmem_state != KMEM_ONLINE)
3106 return;
3107 /*
3108 * Clear the online state before clearing memcg_caches array
3109 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3110 * guarantees that no cache will be created for this cgroup
3111 * after we are done (see memcg_create_kmem_cache()).
3112 */
3113 memcg->kmem_state = KMEM_ALLOCATED;
3114
3115 memcg_deactivate_kmem_caches(memcg);
3116
3117 kmemcg_id = memcg->kmemcg_id;
3118 BUG_ON(kmemcg_id < 0);
3119
3120 parent = parent_mem_cgroup(memcg);
3121 if (!parent)
3122 parent = root_mem_cgroup;
3123
3124 /*
3125 * Change kmemcg_id of this cgroup and all its descendants to the
3126 * parent's id, and then move all entries from this cgroup's list_lrus
3127 * to ones of the parent. After we have finished, all list_lrus
3128 * corresponding to this cgroup are guaranteed to remain empty. The
3129 * ordering is imposed by list_lru_node->lock taken by
3130 * memcg_drain_all_list_lrus().
3131 */
3a06bb78 3132 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3133 css_for_each_descendant_pre(css, &memcg->css) {
3134 child = mem_cgroup_from_css(css);
3135 BUG_ON(child->kmemcg_id != kmemcg_id);
3136 child->kmemcg_id = parent->kmemcg_id;
3137 if (!memcg->use_hierarchy)
3138 break;
3139 }
3a06bb78
TH
3140 rcu_read_unlock();
3141
9bec5c35 3142 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3143
3144 memcg_free_cache_id(kmemcg_id);
3145}
3146
3147static void memcg_free_kmem(struct mem_cgroup *memcg)
3148{
0b8f73e1
JW
3149 /* css_alloc() failed, offlining didn't happen */
3150 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3151 memcg_offline_kmem(memcg);
3152
8e0a8912
JW
3153 if (memcg->kmem_state == KMEM_ALLOCATED) {
3154 memcg_destroy_kmem_caches(memcg);
3155 static_branch_dec(&memcg_kmem_enabled_key);
3156 WARN_ON(page_counter_read(&memcg->kmem));
3157 }
8e0a8912 3158}
d6441637 3159#else
0b8f73e1 3160static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3161{
3162 return 0;
3163}
3164static void memcg_offline_kmem(struct mem_cgroup *memcg)
3165{
3166}
3167static void memcg_free_kmem(struct mem_cgroup *memcg)
3168{
3169}
84c07d11 3170#endif /* CONFIG_MEMCG_KMEM */
127424c8 3171
bbec2e15
RG
3172static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3173 unsigned long max)
d6441637 3174{
b313aeee 3175 int ret;
127424c8 3176
bbec2e15
RG
3177 mutex_lock(&memcg_max_mutex);
3178 ret = page_counter_set_max(&memcg->kmem, max);
3179 mutex_unlock(&memcg_max_mutex);
127424c8 3180 return ret;
d6441637 3181}
510fc4e1 3182
bbec2e15 3183static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3184{
3185 int ret;
3186
bbec2e15 3187 mutex_lock(&memcg_max_mutex);
d55f90bf 3188
bbec2e15 3189 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3190 if (ret)
3191 goto out;
3192
0db15298 3193 if (!memcg->tcpmem_active) {
d55f90bf
VD
3194 /*
3195 * The active flag needs to be written after the static_key
3196 * update. This is what guarantees that the socket activation
2d758073
JW
3197 * function is the last one to run. See mem_cgroup_sk_alloc()
3198 * for details, and note that we don't mark any socket as
3199 * belonging to this memcg until that flag is up.
d55f90bf
VD
3200 *
3201 * We need to do this, because static_keys will span multiple
3202 * sites, but we can't control their order. If we mark a socket
3203 * as accounted, but the accounting functions are not patched in
3204 * yet, we'll lose accounting.
3205 *
2d758073 3206 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3207 * because when this value change, the code to process it is not
3208 * patched in yet.
3209 */
3210 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3211 memcg->tcpmem_active = true;
d55f90bf
VD
3212 }
3213out:
bbec2e15 3214 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3215 return ret;
3216}
d55f90bf 3217
628f4235
KH
3218/*
3219 * The user of this function is...
3220 * RES_LIMIT.
3221 */
451af504
TH
3222static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3223 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3224{
451af504 3225 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3226 unsigned long nr_pages;
628f4235
KH
3227 int ret;
3228
451af504 3229 buf = strstrip(buf);
650c5e56 3230 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3231 if (ret)
3232 return ret;
af36f906 3233
3e32cb2e 3234 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3235 case RES_LIMIT:
4b3bde4c
BS
3236 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3237 ret = -EINVAL;
3238 break;
3239 }
3e32cb2e
JW
3240 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3241 case _MEM:
bbec2e15 3242 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3243 break;
3e32cb2e 3244 case _MEMSWAP:
bbec2e15 3245 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3246 break;
3e32cb2e 3247 case _KMEM:
bbec2e15 3248 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3249 break;
d55f90bf 3250 case _TCP:
bbec2e15 3251 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3252 break;
3e32cb2e 3253 }
296c81d8 3254 break;
3e32cb2e
JW
3255 case RES_SOFT_LIMIT:
3256 memcg->soft_limit = nr_pages;
3257 ret = 0;
628f4235
KH
3258 break;
3259 }
451af504 3260 return ret ?: nbytes;
8cdea7c0
BS
3261}
3262
6770c64e
TH
3263static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3264 size_t nbytes, loff_t off)
c84872e1 3265{
6770c64e 3266 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3267 struct page_counter *counter;
c84872e1 3268
3e32cb2e
JW
3269 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3270 case _MEM:
3271 counter = &memcg->memory;
3272 break;
3273 case _MEMSWAP:
3274 counter = &memcg->memsw;
3275 break;
3276 case _KMEM:
3277 counter = &memcg->kmem;
3278 break;
d55f90bf 3279 case _TCP:
0db15298 3280 counter = &memcg->tcpmem;
d55f90bf 3281 break;
3e32cb2e
JW
3282 default:
3283 BUG();
3284 }
af36f906 3285
3e32cb2e 3286 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3287 case RES_MAX_USAGE:
3e32cb2e 3288 page_counter_reset_watermark(counter);
29f2a4da
PE
3289 break;
3290 case RES_FAILCNT:
3e32cb2e 3291 counter->failcnt = 0;
29f2a4da 3292 break;
3e32cb2e
JW
3293 default:
3294 BUG();
29f2a4da 3295 }
f64c3f54 3296
6770c64e 3297 return nbytes;
c84872e1
PE
3298}
3299
182446d0 3300static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3301 struct cftype *cft)
3302{
182446d0 3303 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3304}
3305
02491447 3306#ifdef CONFIG_MMU
182446d0 3307static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3308 struct cftype *cft, u64 val)
3309{
182446d0 3310 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3311
1dfab5ab 3312 if (val & ~MOVE_MASK)
7dc74be0 3313 return -EINVAL;
ee5e8472 3314
7dc74be0 3315 /*
ee5e8472
GC
3316 * No kind of locking is needed in here, because ->can_attach() will
3317 * check this value once in the beginning of the process, and then carry
3318 * on with stale data. This means that changes to this value will only
3319 * affect task migrations starting after the change.
7dc74be0 3320 */
c0ff4b85 3321 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3322 return 0;
3323}
02491447 3324#else
182446d0 3325static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3326 struct cftype *cft, u64 val)
3327{
3328 return -ENOSYS;
3329}
3330#endif
7dc74be0 3331
406eb0c9 3332#ifdef CONFIG_NUMA
2da8ca82 3333static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3334{
25485de6
GT
3335 struct numa_stat {
3336 const char *name;
3337 unsigned int lru_mask;
3338 };
3339
3340 static const struct numa_stat stats[] = {
3341 { "total", LRU_ALL },
3342 { "file", LRU_ALL_FILE },
3343 { "anon", LRU_ALL_ANON },
3344 { "unevictable", BIT(LRU_UNEVICTABLE) },
3345 };
3346 const struct numa_stat *stat;
406eb0c9 3347 int nid;
25485de6 3348 unsigned long nr;
aa9694bb 3349 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3350
25485de6
GT
3351 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3352 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3353 seq_printf(m, "%s=%lu", stat->name, nr);
3354 for_each_node_state(nid, N_MEMORY) {
3355 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3356 stat->lru_mask);
3357 seq_printf(m, " N%d=%lu", nid, nr);
3358 }
3359 seq_putc(m, '\n');
406eb0c9 3360 }
406eb0c9 3361
071aee13
YH
3362 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3363 struct mem_cgroup *iter;
3364
3365 nr = 0;
3366 for_each_mem_cgroup_tree(iter, memcg)
3367 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3368 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3369 for_each_node_state(nid, N_MEMORY) {
3370 nr = 0;
3371 for_each_mem_cgroup_tree(iter, memcg)
3372 nr += mem_cgroup_node_nr_lru_pages(
3373 iter, nid, stat->lru_mask);
3374 seq_printf(m, " N%d=%lu", nid, nr);
3375 }
3376 seq_putc(m, '\n');
406eb0c9 3377 }
406eb0c9 3378
406eb0c9
YH
3379 return 0;
3380}
3381#endif /* CONFIG_NUMA */
3382
df0e53d0 3383/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3384static const unsigned int memcg1_events[] = {
df0e53d0
JW
3385 PGPGIN,
3386 PGPGOUT,
3387 PGFAULT,
3388 PGMAJFAULT,
3389};
3390
3391static const char *const memcg1_event_names[] = {
3392 "pgpgin",
3393 "pgpgout",
3394 "pgfault",
3395 "pgmajfault",
3396};
3397
2da8ca82 3398static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3399{
aa9694bb 3400 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3401 unsigned long memory, memsw;
af7c4b0e
JW
3402 struct mem_cgroup *mi;
3403 unsigned int i;
8de7ecc6 3404 struct accumulated_stats acc;
406eb0c9 3405
71cd3113 3406 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3407 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3408
71cd3113
JW
3409 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3410 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3411 continue;
71cd3113 3412 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
ccda7f43 3413 memcg_page_state(memcg, memcg1_stats[i]) *
71cd3113 3414 PAGE_SIZE);
1dd3a273 3415 }
7b854121 3416
df0e53d0
JW
3417 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3418 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
ccda7f43 3419 memcg_sum_events(memcg, memcg1_events[i]));
af7c4b0e
JW
3420
3421 for (i = 0; i < NR_LRU_LISTS; i++)
3422 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3423 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3424
14067bb3 3425 /* Hierarchical information */
3e32cb2e
JW
3426 memory = memsw = PAGE_COUNTER_MAX;
3427 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3428 memory = min(memory, mi->memory.max);
3429 memsw = min(memsw, mi->memsw.max);
fee7b548 3430 }
3e32cb2e
JW
3431 seq_printf(m, "hierarchical_memory_limit %llu\n",
3432 (u64)memory * PAGE_SIZE);
7941d214 3433 if (do_memsw_account())
3e32cb2e
JW
3434 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3435 (u64)memsw * PAGE_SIZE);
7f016ee8 3436
8de7ecc6
SB
3437 memset(&acc, 0, sizeof(acc));
3438 acc.stats_size = ARRAY_SIZE(memcg1_stats);
3439 acc.stats_array = memcg1_stats;
3440 acc.events_size = ARRAY_SIZE(memcg1_events);
3441 acc.events_array = memcg1_events;
3442 accumulate_memcg_tree(memcg, &acc);
af7c4b0e 3443
8de7ecc6 3444 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3445 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3446 continue;
8de7ecc6
SB
3447 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3448 (u64)acc.stat[i] * PAGE_SIZE);
af7c4b0e
JW
3449 }
3450
8de7ecc6
SB
3451 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3452 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3453 (u64)acc.events[i]);
af7c4b0e 3454
8de7ecc6
SB
3455 for (i = 0; i < NR_LRU_LISTS; i++)
3456 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3457 (u64)acc.lru_pages[i] * PAGE_SIZE);
14067bb3 3458
7f016ee8 3459#ifdef CONFIG_DEBUG_VM
7f016ee8 3460 {
ef8f2327
MG
3461 pg_data_t *pgdat;
3462 struct mem_cgroup_per_node *mz;
89abfab1 3463 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3464 unsigned long recent_rotated[2] = {0, 0};
3465 unsigned long recent_scanned[2] = {0, 0};
3466
ef8f2327
MG
3467 for_each_online_pgdat(pgdat) {
3468 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3469 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3470
ef8f2327
MG
3471 recent_rotated[0] += rstat->recent_rotated[0];
3472 recent_rotated[1] += rstat->recent_rotated[1];
3473 recent_scanned[0] += rstat->recent_scanned[0];
3474 recent_scanned[1] += rstat->recent_scanned[1];
3475 }
78ccf5b5
JW
3476 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3477 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3478 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3479 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3480 }
3481#endif
3482
d2ceb9b7
KH
3483 return 0;
3484}
3485
182446d0
TH
3486static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3487 struct cftype *cft)
a7885eb8 3488{
182446d0 3489 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3490
1f4c025b 3491 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3492}
3493
182446d0
TH
3494static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3495 struct cftype *cft, u64 val)
a7885eb8 3496{
182446d0 3497 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3498
3dae7fec 3499 if (val > 100)
a7885eb8
KM
3500 return -EINVAL;
3501
14208b0e 3502 if (css->parent)
3dae7fec
JW
3503 memcg->swappiness = val;
3504 else
3505 vm_swappiness = val;
068b38c1 3506
a7885eb8
KM
3507 return 0;
3508}
3509
2e72b634
KS
3510static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3511{
3512 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3513 unsigned long usage;
2e72b634
KS
3514 int i;
3515
3516 rcu_read_lock();
3517 if (!swap)
2c488db2 3518 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3519 else
2c488db2 3520 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3521
3522 if (!t)
3523 goto unlock;
3524
ce00a967 3525 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3526
3527 /*
748dad36 3528 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3529 * If it's not true, a threshold was crossed after last
3530 * call of __mem_cgroup_threshold().
3531 */
5407a562 3532 i = t->current_threshold;
2e72b634
KS
3533
3534 /*
3535 * Iterate backward over array of thresholds starting from
3536 * current_threshold and check if a threshold is crossed.
3537 * If none of thresholds below usage is crossed, we read
3538 * only one element of the array here.
3539 */
3540 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3541 eventfd_signal(t->entries[i].eventfd, 1);
3542
3543 /* i = current_threshold + 1 */
3544 i++;
3545
3546 /*
3547 * Iterate forward over array of thresholds starting from
3548 * current_threshold+1 and check if a threshold is crossed.
3549 * If none of thresholds above usage is crossed, we read
3550 * only one element of the array here.
3551 */
3552 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3553 eventfd_signal(t->entries[i].eventfd, 1);
3554
3555 /* Update current_threshold */
5407a562 3556 t->current_threshold = i - 1;
2e72b634
KS
3557unlock:
3558 rcu_read_unlock();
3559}
3560
3561static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3562{
ad4ca5f4
KS
3563 while (memcg) {
3564 __mem_cgroup_threshold(memcg, false);
7941d214 3565 if (do_memsw_account())
ad4ca5f4
KS
3566 __mem_cgroup_threshold(memcg, true);
3567
3568 memcg = parent_mem_cgroup(memcg);
3569 }
2e72b634
KS
3570}
3571
3572static int compare_thresholds(const void *a, const void *b)
3573{
3574 const struct mem_cgroup_threshold *_a = a;
3575 const struct mem_cgroup_threshold *_b = b;
3576
2bff24a3
GT
3577 if (_a->threshold > _b->threshold)
3578 return 1;
3579
3580 if (_a->threshold < _b->threshold)
3581 return -1;
3582
3583 return 0;
2e72b634
KS
3584}
3585
c0ff4b85 3586static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3587{
3588 struct mem_cgroup_eventfd_list *ev;
3589
2bcf2e92
MH
3590 spin_lock(&memcg_oom_lock);
3591
c0ff4b85 3592 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3593 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3594
3595 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3596 return 0;
3597}
3598
c0ff4b85 3599static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3600{
7d74b06f
KH
3601 struct mem_cgroup *iter;
3602
c0ff4b85 3603 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3604 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3605}
3606
59b6f873 3607static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3608 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3609{
2c488db2
KS
3610 struct mem_cgroup_thresholds *thresholds;
3611 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3612 unsigned long threshold;
3613 unsigned long usage;
2c488db2 3614 int i, size, ret;
2e72b634 3615
650c5e56 3616 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3617 if (ret)
3618 return ret;
3619
3620 mutex_lock(&memcg->thresholds_lock);
2c488db2 3621
05b84301 3622 if (type == _MEM) {
2c488db2 3623 thresholds = &memcg->thresholds;
ce00a967 3624 usage = mem_cgroup_usage(memcg, false);
05b84301 3625 } else if (type == _MEMSWAP) {
2c488db2 3626 thresholds = &memcg->memsw_thresholds;
ce00a967 3627 usage = mem_cgroup_usage(memcg, true);
05b84301 3628 } else
2e72b634
KS
3629 BUG();
3630
2e72b634 3631 /* Check if a threshold crossed before adding a new one */
2c488db2 3632 if (thresholds->primary)
2e72b634
KS
3633 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3634
2c488db2 3635 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3636
3637 /* Allocate memory for new array of thresholds */
67b8046f 3638 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 3639 if (!new) {
2e72b634
KS
3640 ret = -ENOMEM;
3641 goto unlock;
3642 }
2c488db2 3643 new->size = size;
2e72b634
KS
3644
3645 /* Copy thresholds (if any) to new array */
2c488db2
KS
3646 if (thresholds->primary) {
3647 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3648 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3649 }
3650
2e72b634 3651 /* Add new threshold */
2c488db2
KS
3652 new->entries[size - 1].eventfd = eventfd;
3653 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3654
3655 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3656 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3657 compare_thresholds, NULL);
3658
3659 /* Find current threshold */
2c488db2 3660 new->current_threshold = -1;
2e72b634 3661 for (i = 0; i < size; i++) {
748dad36 3662 if (new->entries[i].threshold <= usage) {
2e72b634 3663 /*
2c488db2
KS
3664 * new->current_threshold will not be used until
3665 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3666 * it here.
3667 */
2c488db2 3668 ++new->current_threshold;
748dad36
SZ
3669 } else
3670 break;
2e72b634
KS
3671 }
3672
2c488db2
KS
3673 /* Free old spare buffer and save old primary buffer as spare */
3674 kfree(thresholds->spare);
3675 thresholds->spare = thresholds->primary;
3676
3677 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3678
907860ed 3679 /* To be sure that nobody uses thresholds */
2e72b634
KS
3680 synchronize_rcu();
3681
2e72b634
KS
3682unlock:
3683 mutex_unlock(&memcg->thresholds_lock);
3684
3685 return ret;
3686}
3687
59b6f873 3688static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3689 struct eventfd_ctx *eventfd, const char *args)
3690{
59b6f873 3691 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3692}
3693
59b6f873 3694static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3695 struct eventfd_ctx *eventfd, const char *args)
3696{
59b6f873 3697 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3698}
3699
59b6f873 3700static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3701 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3702{
2c488db2
KS
3703 struct mem_cgroup_thresholds *thresholds;
3704 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3705 unsigned long usage;
2c488db2 3706 int i, j, size;
2e72b634
KS
3707
3708 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3709
3710 if (type == _MEM) {
2c488db2 3711 thresholds = &memcg->thresholds;
ce00a967 3712 usage = mem_cgroup_usage(memcg, false);
05b84301 3713 } else if (type == _MEMSWAP) {
2c488db2 3714 thresholds = &memcg->memsw_thresholds;
ce00a967 3715 usage = mem_cgroup_usage(memcg, true);
05b84301 3716 } else
2e72b634
KS
3717 BUG();
3718
371528ca
AV
3719 if (!thresholds->primary)
3720 goto unlock;
3721
2e72b634
KS
3722 /* Check if a threshold crossed before removing */
3723 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3724
3725 /* Calculate new number of threshold */
2c488db2
KS
3726 size = 0;
3727 for (i = 0; i < thresholds->primary->size; i++) {
3728 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3729 size++;
3730 }
3731
2c488db2 3732 new = thresholds->spare;
907860ed 3733
2e72b634
KS
3734 /* Set thresholds array to NULL if we don't have thresholds */
3735 if (!size) {
2c488db2
KS
3736 kfree(new);
3737 new = NULL;
907860ed 3738 goto swap_buffers;
2e72b634
KS
3739 }
3740
2c488db2 3741 new->size = size;
2e72b634
KS
3742
3743 /* Copy thresholds and find current threshold */
2c488db2
KS
3744 new->current_threshold = -1;
3745 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3746 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3747 continue;
3748
2c488db2 3749 new->entries[j] = thresholds->primary->entries[i];
748dad36 3750 if (new->entries[j].threshold <= usage) {
2e72b634 3751 /*
2c488db2 3752 * new->current_threshold will not be used
2e72b634
KS
3753 * until rcu_assign_pointer(), so it's safe to increment
3754 * it here.
3755 */
2c488db2 3756 ++new->current_threshold;
2e72b634
KS
3757 }
3758 j++;
3759 }
3760
907860ed 3761swap_buffers:
2c488db2
KS
3762 /* Swap primary and spare array */
3763 thresholds->spare = thresholds->primary;
8c757763 3764
2c488db2 3765 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3766
907860ed 3767 /* To be sure that nobody uses thresholds */
2e72b634 3768 synchronize_rcu();
6611d8d7
MC
3769
3770 /* If all events are unregistered, free the spare array */
3771 if (!new) {
3772 kfree(thresholds->spare);
3773 thresholds->spare = NULL;
3774 }
371528ca 3775unlock:
2e72b634 3776 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3777}
c1e862c1 3778
59b6f873 3779static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3780 struct eventfd_ctx *eventfd)
3781{
59b6f873 3782 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3783}
3784
59b6f873 3785static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3786 struct eventfd_ctx *eventfd)
3787{
59b6f873 3788 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3789}
3790
59b6f873 3791static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3792 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3793{
9490ff27 3794 struct mem_cgroup_eventfd_list *event;
9490ff27 3795
9490ff27
KH
3796 event = kmalloc(sizeof(*event), GFP_KERNEL);
3797 if (!event)
3798 return -ENOMEM;
3799
1af8efe9 3800 spin_lock(&memcg_oom_lock);
9490ff27
KH
3801
3802 event->eventfd = eventfd;
3803 list_add(&event->list, &memcg->oom_notify);
3804
3805 /* already in OOM ? */
c2b42d3c 3806 if (memcg->under_oom)
9490ff27 3807 eventfd_signal(eventfd, 1);
1af8efe9 3808 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3809
3810 return 0;
3811}
3812
59b6f873 3813static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3814 struct eventfd_ctx *eventfd)
9490ff27 3815{
9490ff27 3816 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3817
1af8efe9 3818 spin_lock(&memcg_oom_lock);
9490ff27 3819
c0ff4b85 3820 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3821 if (ev->eventfd == eventfd) {
3822 list_del(&ev->list);
3823 kfree(ev);
3824 }
3825 }
3826
1af8efe9 3827 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3828}
3829
2da8ca82 3830static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3831{
aa9694bb 3832 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 3833
791badbd 3834 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3835 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
3836 seq_printf(sf, "oom_kill %lu\n",
3837 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
3838 return 0;
3839}
3840
182446d0 3841static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3842 struct cftype *cft, u64 val)
3843{
182446d0 3844 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3845
3846 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3847 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3848 return -EINVAL;
3849
c0ff4b85 3850 memcg->oom_kill_disable = val;
4d845ebf 3851 if (!val)
c0ff4b85 3852 memcg_oom_recover(memcg);
3dae7fec 3853
3c11ecf4
KH
3854 return 0;
3855}
3856
52ebea74
TH
3857#ifdef CONFIG_CGROUP_WRITEBACK
3858
841710aa
TH
3859static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3860{
3861 return wb_domain_init(&memcg->cgwb_domain, gfp);
3862}
3863
3864static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3865{
3866 wb_domain_exit(&memcg->cgwb_domain);
3867}
3868
2529bb3a
TH
3869static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3870{
3871 wb_domain_size_changed(&memcg->cgwb_domain);
3872}
3873
841710aa
TH
3874struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3875{
3876 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3877
3878 if (!memcg->css.parent)
3879 return NULL;
3880
3881 return &memcg->cgwb_domain;
3882}
3883
c2aa723a
TH
3884/**
3885 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3886 * @wb: bdi_writeback in question
c5edf9cd
TH
3887 * @pfilepages: out parameter for number of file pages
3888 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3889 * @pdirty: out parameter for number of dirty pages
3890 * @pwriteback: out parameter for number of pages under writeback
3891 *
c5edf9cd
TH
3892 * Determine the numbers of file, headroom, dirty, and writeback pages in
3893 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3894 * is a bit more involved.
c2aa723a 3895 *
c5edf9cd
TH
3896 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3897 * headroom is calculated as the lowest headroom of itself and the
3898 * ancestors. Note that this doesn't consider the actual amount of
3899 * available memory in the system. The caller should further cap
3900 * *@pheadroom accordingly.
c2aa723a 3901 */
c5edf9cd
TH
3902void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3903 unsigned long *pheadroom, unsigned long *pdirty,
3904 unsigned long *pwriteback)
c2aa723a
TH
3905{
3906 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3907 struct mem_cgroup *parent;
c2aa723a 3908
ccda7f43 3909 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3910
3911 /* this should eventually include NR_UNSTABLE_NFS */
ccda7f43 3912 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
c5edf9cd
TH
3913 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3914 (1 << LRU_ACTIVE_FILE));
3915 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3916
c2aa723a 3917 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 3918 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
3919 unsigned long used = page_counter_read(&memcg->memory);
3920
c5edf9cd 3921 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3922 memcg = parent;
3923 }
c2aa723a
TH
3924}
3925
841710aa
TH
3926#else /* CONFIG_CGROUP_WRITEBACK */
3927
3928static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3929{
3930 return 0;
3931}
3932
3933static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3934{
3935}
3936
2529bb3a
TH
3937static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3938{
3939}
3940
52ebea74
TH
3941#endif /* CONFIG_CGROUP_WRITEBACK */
3942
3bc942f3
TH
3943/*
3944 * DO NOT USE IN NEW FILES.
3945 *
3946 * "cgroup.event_control" implementation.
3947 *
3948 * This is way over-engineered. It tries to support fully configurable
3949 * events for each user. Such level of flexibility is completely
3950 * unnecessary especially in the light of the planned unified hierarchy.
3951 *
3952 * Please deprecate this and replace with something simpler if at all
3953 * possible.
3954 */
3955
79bd9814
TH
3956/*
3957 * Unregister event and free resources.
3958 *
3959 * Gets called from workqueue.
3960 */
3bc942f3 3961static void memcg_event_remove(struct work_struct *work)
79bd9814 3962{
3bc942f3
TH
3963 struct mem_cgroup_event *event =
3964 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3965 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3966
3967 remove_wait_queue(event->wqh, &event->wait);
3968
59b6f873 3969 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3970
3971 /* Notify userspace the event is going away. */
3972 eventfd_signal(event->eventfd, 1);
3973
3974 eventfd_ctx_put(event->eventfd);
3975 kfree(event);
59b6f873 3976 css_put(&memcg->css);
79bd9814
TH
3977}
3978
3979/*
a9a08845 3980 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
3981 *
3982 * Called with wqh->lock held and interrupts disabled.
3983 */
ac6424b9 3984static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 3985 int sync, void *key)
79bd9814 3986{
3bc942f3
TH
3987 struct mem_cgroup_event *event =
3988 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3989 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 3990 __poll_t flags = key_to_poll(key);
79bd9814 3991
a9a08845 3992 if (flags & EPOLLHUP) {
79bd9814
TH
3993 /*
3994 * If the event has been detached at cgroup removal, we
3995 * can simply return knowing the other side will cleanup
3996 * for us.
3997 *
3998 * We can't race against event freeing since the other
3999 * side will require wqh->lock via remove_wait_queue(),
4000 * which we hold.
4001 */
fba94807 4002 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4003 if (!list_empty(&event->list)) {
4004 list_del_init(&event->list);
4005 /*
4006 * We are in atomic context, but cgroup_event_remove()
4007 * may sleep, so we have to call it in workqueue.
4008 */
4009 schedule_work(&event->remove);
4010 }
fba94807 4011 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4012 }
4013
4014 return 0;
4015}
4016
3bc942f3 4017static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4018 wait_queue_head_t *wqh, poll_table *pt)
4019{
3bc942f3
TH
4020 struct mem_cgroup_event *event =
4021 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4022
4023 event->wqh = wqh;
4024 add_wait_queue(wqh, &event->wait);
4025}
4026
4027/*
3bc942f3
TH
4028 * DO NOT USE IN NEW FILES.
4029 *
79bd9814
TH
4030 * Parse input and register new cgroup event handler.
4031 *
4032 * Input must be in format '<event_fd> <control_fd> <args>'.
4033 * Interpretation of args is defined by control file implementation.
4034 */
451af504
TH
4035static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4036 char *buf, size_t nbytes, loff_t off)
79bd9814 4037{
451af504 4038 struct cgroup_subsys_state *css = of_css(of);
fba94807 4039 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4040 struct mem_cgroup_event *event;
79bd9814
TH
4041 struct cgroup_subsys_state *cfile_css;
4042 unsigned int efd, cfd;
4043 struct fd efile;
4044 struct fd cfile;
fba94807 4045 const char *name;
79bd9814
TH
4046 char *endp;
4047 int ret;
4048
451af504
TH
4049 buf = strstrip(buf);
4050
4051 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4052 if (*endp != ' ')
4053 return -EINVAL;
451af504 4054 buf = endp + 1;
79bd9814 4055
451af504 4056 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4057 if ((*endp != ' ') && (*endp != '\0'))
4058 return -EINVAL;
451af504 4059 buf = endp + 1;
79bd9814
TH
4060
4061 event = kzalloc(sizeof(*event), GFP_KERNEL);
4062 if (!event)
4063 return -ENOMEM;
4064
59b6f873 4065 event->memcg = memcg;
79bd9814 4066 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4067 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4068 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4069 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4070
4071 efile = fdget(efd);
4072 if (!efile.file) {
4073 ret = -EBADF;
4074 goto out_kfree;
4075 }
4076
4077 event->eventfd = eventfd_ctx_fileget(efile.file);
4078 if (IS_ERR(event->eventfd)) {
4079 ret = PTR_ERR(event->eventfd);
4080 goto out_put_efile;
4081 }
4082
4083 cfile = fdget(cfd);
4084 if (!cfile.file) {
4085 ret = -EBADF;
4086 goto out_put_eventfd;
4087 }
4088
4089 /* the process need read permission on control file */
4090 /* AV: shouldn't we check that it's been opened for read instead? */
4091 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4092 if (ret < 0)
4093 goto out_put_cfile;
4094
fba94807
TH
4095 /*
4096 * Determine the event callbacks and set them in @event. This used
4097 * to be done via struct cftype but cgroup core no longer knows
4098 * about these events. The following is crude but the whole thing
4099 * is for compatibility anyway.
3bc942f3
TH
4100 *
4101 * DO NOT ADD NEW FILES.
fba94807 4102 */
b583043e 4103 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4104
4105 if (!strcmp(name, "memory.usage_in_bytes")) {
4106 event->register_event = mem_cgroup_usage_register_event;
4107 event->unregister_event = mem_cgroup_usage_unregister_event;
4108 } else if (!strcmp(name, "memory.oom_control")) {
4109 event->register_event = mem_cgroup_oom_register_event;
4110 event->unregister_event = mem_cgroup_oom_unregister_event;
4111 } else if (!strcmp(name, "memory.pressure_level")) {
4112 event->register_event = vmpressure_register_event;
4113 event->unregister_event = vmpressure_unregister_event;
4114 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4115 event->register_event = memsw_cgroup_usage_register_event;
4116 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4117 } else {
4118 ret = -EINVAL;
4119 goto out_put_cfile;
4120 }
4121
79bd9814 4122 /*
b5557c4c
TH
4123 * Verify @cfile should belong to @css. Also, remaining events are
4124 * automatically removed on cgroup destruction but the removal is
4125 * asynchronous, so take an extra ref on @css.
79bd9814 4126 */
b583043e 4127 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4128 &memory_cgrp_subsys);
79bd9814 4129 ret = -EINVAL;
5a17f543 4130 if (IS_ERR(cfile_css))
79bd9814 4131 goto out_put_cfile;
5a17f543
TH
4132 if (cfile_css != css) {
4133 css_put(cfile_css);
79bd9814 4134 goto out_put_cfile;
5a17f543 4135 }
79bd9814 4136
451af504 4137 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4138 if (ret)
4139 goto out_put_css;
4140
9965ed17 4141 vfs_poll(efile.file, &event->pt);
79bd9814 4142
fba94807
TH
4143 spin_lock(&memcg->event_list_lock);
4144 list_add(&event->list, &memcg->event_list);
4145 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4146
4147 fdput(cfile);
4148 fdput(efile);
4149
451af504 4150 return nbytes;
79bd9814
TH
4151
4152out_put_css:
b5557c4c 4153 css_put(css);
79bd9814
TH
4154out_put_cfile:
4155 fdput(cfile);
4156out_put_eventfd:
4157 eventfd_ctx_put(event->eventfd);
4158out_put_efile:
4159 fdput(efile);
4160out_kfree:
4161 kfree(event);
4162
4163 return ret;
4164}
4165
241994ed 4166static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4167 {
0eea1030 4168 .name = "usage_in_bytes",
8c7c6e34 4169 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4170 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4171 },
c84872e1
PE
4172 {
4173 .name = "max_usage_in_bytes",
8c7c6e34 4174 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4175 .write = mem_cgroup_reset,
791badbd 4176 .read_u64 = mem_cgroup_read_u64,
c84872e1 4177 },
8cdea7c0 4178 {
0eea1030 4179 .name = "limit_in_bytes",
8c7c6e34 4180 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4181 .write = mem_cgroup_write,
791badbd 4182 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4183 },
296c81d8
BS
4184 {
4185 .name = "soft_limit_in_bytes",
4186 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4187 .write = mem_cgroup_write,
791badbd 4188 .read_u64 = mem_cgroup_read_u64,
296c81d8 4189 },
8cdea7c0
BS
4190 {
4191 .name = "failcnt",
8c7c6e34 4192 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4193 .write = mem_cgroup_reset,
791badbd 4194 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4195 },
d2ceb9b7
KH
4196 {
4197 .name = "stat",
2da8ca82 4198 .seq_show = memcg_stat_show,
d2ceb9b7 4199 },
c1e862c1
KH
4200 {
4201 .name = "force_empty",
6770c64e 4202 .write = mem_cgroup_force_empty_write,
c1e862c1 4203 },
18f59ea7
BS
4204 {
4205 .name = "use_hierarchy",
4206 .write_u64 = mem_cgroup_hierarchy_write,
4207 .read_u64 = mem_cgroup_hierarchy_read,
4208 },
79bd9814 4209 {
3bc942f3 4210 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4211 .write = memcg_write_event_control,
7dbdb199 4212 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4213 },
a7885eb8
KM
4214 {
4215 .name = "swappiness",
4216 .read_u64 = mem_cgroup_swappiness_read,
4217 .write_u64 = mem_cgroup_swappiness_write,
4218 },
7dc74be0
DN
4219 {
4220 .name = "move_charge_at_immigrate",
4221 .read_u64 = mem_cgroup_move_charge_read,
4222 .write_u64 = mem_cgroup_move_charge_write,
4223 },
9490ff27
KH
4224 {
4225 .name = "oom_control",
2da8ca82 4226 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4227 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4228 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4229 },
70ddf637
AV
4230 {
4231 .name = "pressure_level",
70ddf637 4232 },
406eb0c9
YH
4233#ifdef CONFIG_NUMA
4234 {
4235 .name = "numa_stat",
2da8ca82 4236 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4237 },
4238#endif
510fc4e1
GC
4239 {
4240 .name = "kmem.limit_in_bytes",
4241 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4242 .write = mem_cgroup_write,
791badbd 4243 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4244 },
4245 {
4246 .name = "kmem.usage_in_bytes",
4247 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4248 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4249 },
4250 {
4251 .name = "kmem.failcnt",
4252 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4253 .write = mem_cgroup_reset,
791badbd 4254 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4255 },
4256 {
4257 .name = "kmem.max_usage_in_bytes",
4258 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4259 .write = mem_cgroup_reset,
791badbd 4260 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4261 },
5b365771 4262#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4263 {
4264 .name = "kmem.slabinfo",
bc2791f8
TH
4265 .seq_start = memcg_slab_start,
4266 .seq_next = memcg_slab_next,
4267 .seq_stop = memcg_slab_stop,
b047501c 4268 .seq_show = memcg_slab_show,
749c5415
GC
4269 },
4270#endif
d55f90bf
VD
4271 {
4272 .name = "kmem.tcp.limit_in_bytes",
4273 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4274 .write = mem_cgroup_write,
4275 .read_u64 = mem_cgroup_read_u64,
4276 },
4277 {
4278 .name = "kmem.tcp.usage_in_bytes",
4279 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4280 .read_u64 = mem_cgroup_read_u64,
4281 },
4282 {
4283 .name = "kmem.tcp.failcnt",
4284 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4285 .write = mem_cgroup_reset,
4286 .read_u64 = mem_cgroup_read_u64,
4287 },
4288 {
4289 .name = "kmem.tcp.max_usage_in_bytes",
4290 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4291 .write = mem_cgroup_reset,
4292 .read_u64 = mem_cgroup_read_u64,
4293 },
6bc10349 4294 { }, /* terminate */
af36f906 4295};
8c7c6e34 4296
73f576c0
JW
4297/*
4298 * Private memory cgroup IDR
4299 *
4300 * Swap-out records and page cache shadow entries need to store memcg
4301 * references in constrained space, so we maintain an ID space that is
4302 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4303 * memory-controlled cgroups to 64k.
4304 *
4305 * However, there usually are many references to the oflline CSS after
4306 * the cgroup has been destroyed, such as page cache or reclaimable
4307 * slab objects, that don't need to hang on to the ID. We want to keep
4308 * those dead CSS from occupying IDs, or we might quickly exhaust the
4309 * relatively small ID space and prevent the creation of new cgroups
4310 * even when there are much fewer than 64k cgroups - possibly none.
4311 *
4312 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4313 * be freed and recycled when it's no longer needed, which is usually
4314 * when the CSS is offlined.
4315 *
4316 * The only exception to that are records of swapped out tmpfs/shmem
4317 * pages that need to be attributed to live ancestors on swapin. But
4318 * those references are manageable from userspace.
4319 */
4320
4321static DEFINE_IDR(mem_cgroup_idr);
4322
7e97de0b
KT
4323static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4324{
4325 if (memcg->id.id > 0) {
4326 idr_remove(&mem_cgroup_idr, memcg->id.id);
4327 memcg->id.id = 0;
4328 }
4329}
4330
615d66c3 4331static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4332{
1c2d479a 4333 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4334}
4335
615d66c3 4336static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4337{
1c2d479a 4338 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4339 mem_cgroup_id_remove(memcg);
73f576c0
JW
4340
4341 /* Memcg ID pins CSS */
4342 css_put(&memcg->css);
4343 }
4344}
4345
615d66c3
VD
4346static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4347{
4348 mem_cgroup_id_get_many(memcg, 1);
4349}
4350
4351static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4352{
4353 mem_cgroup_id_put_many(memcg, 1);
4354}
4355
73f576c0
JW
4356/**
4357 * mem_cgroup_from_id - look up a memcg from a memcg id
4358 * @id: the memcg id to look up
4359 *
4360 * Caller must hold rcu_read_lock().
4361 */
4362struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4363{
4364 WARN_ON_ONCE(!rcu_read_lock_held());
4365 return idr_find(&mem_cgroup_idr, id);
4366}
4367
ef8f2327 4368static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4369{
4370 struct mem_cgroup_per_node *pn;
ef8f2327 4371 int tmp = node;
1ecaab2b
KH
4372 /*
4373 * This routine is called against possible nodes.
4374 * But it's BUG to call kmalloc() against offline node.
4375 *
4376 * TODO: this routine can waste much memory for nodes which will
4377 * never be onlined. It's better to use memory hotplug callback
4378 * function.
4379 */
41e3355d
KH
4380 if (!node_state(node, N_NORMAL_MEMORY))
4381 tmp = -1;
17295c88 4382 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4383 if (!pn)
4384 return 1;
1ecaab2b 4385
a983b5eb
JW
4386 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4387 if (!pn->lruvec_stat_cpu) {
00f3ca2c
JW
4388 kfree(pn);
4389 return 1;
4390 }
4391
ef8f2327
MG
4392 lruvec_init(&pn->lruvec);
4393 pn->usage_in_excess = 0;
4394 pn->on_tree = false;
4395 pn->memcg = memcg;
4396
54f72fe0 4397 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4398 return 0;
4399}
4400
ef8f2327 4401static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4402{
00f3ca2c
JW
4403 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4404
4eaf431f
MH
4405 if (!pn)
4406 return;
4407
a983b5eb 4408 free_percpu(pn->lruvec_stat_cpu);
00f3ca2c 4409 kfree(pn);
1ecaab2b
KH
4410}
4411
40e952f9 4412static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4413{
c8b2a36f 4414 int node;
59927fb9 4415
c8b2a36f 4416 for_each_node(node)
ef8f2327 4417 free_mem_cgroup_per_node_info(memcg, node);
a983b5eb 4418 free_percpu(memcg->stat_cpu);
8ff69e2c 4419 kfree(memcg);
59927fb9 4420}
3afe36b1 4421
40e952f9
TE
4422static void mem_cgroup_free(struct mem_cgroup *memcg)
4423{
4424 memcg_wb_domain_exit(memcg);
4425 __mem_cgroup_free(memcg);
4426}
4427
0b8f73e1 4428static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4429{
d142e3e6 4430 struct mem_cgroup *memcg;
0b8f73e1 4431 size_t size;
6d12e2d8 4432 int node;
8cdea7c0 4433
0b8f73e1
JW
4434 size = sizeof(struct mem_cgroup);
4435 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4436
4437 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4438 if (!memcg)
0b8f73e1
JW
4439 return NULL;
4440
73f576c0
JW
4441 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4442 1, MEM_CGROUP_ID_MAX,
4443 GFP_KERNEL);
4444 if (memcg->id.id < 0)
4445 goto fail;
4446
a983b5eb
JW
4447 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4448 if (!memcg->stat_cpu)
0b8f73e1 4449 goto fail;
78fb7466 4450
3ed28fa1 4451 for_each_node(node)
ef8f2327 4452 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4453 goto fail;
f64c3f54 4454
0b8f73e1
JW
4455 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4456 goto fail;
28dbc4b6 4457
f7e1cb6e 4458 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4459 memcg->last_scanned_node = MAX_NUMNODES;
4460 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4461 mutex_init(&memcg->thresholds_lock);
4462 spin_lock_init(&memcg->move_lock);
70ddf637 4463 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4464 INIT_LIST_HEAD(&memcg->event_list);
4465 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4466 memcg->socket_pressure = jiffies;
84c07d11 4467#ifdef CONFIG_MEMCG_KMEM
900a38f0 4468 memcg->kmemcg_id = -1;
900a38f0 4469#endif
52ebea74
TH
4470#ifdef CONFIG_CGROUP_WRITEBACK
4471 INIT_LIST_HEAD(&memcg->cgwb_list);
4472#endif
73f576c0 4473 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4474 return memcg;
4475fail:
7e97de0b 4476 mem_cgroup_id_remove(memcg);
40e952f9 4477 __mem_cgroup_free(memcg);
0b8f73e1 4478 return NULL;
d142e3e6
GC
4479}
4480
0b8f73e1
JW
4481static struct cgroup_subsys_state * __ref
4482mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4483{
0b8f73e1
JW
4484 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4485 struct mem_cgroup *memcg;
4486 long error = -ENOMEM;
d142e3e6 4487
0b8f73e1
JW
4488 memcg = mem_cgroup_alloc();
4489 if (!memcg)
4490 return ERR_PTR(error);
d142e3e6 4491
0b8f73e1
JW
4492 memcg->high = PAGE_COUNTER_MAX;
4493 memcg->soft_limit = PAGE_COUNTER_MAX;
4494 if (parent) {
4495 memcg->swappiness = mem_cgroup_swappiness(parent);
4496 memcg->oom_kill_disable = parent->oom_kill_disable;
4497 }
4498 if (parent && parent->use_hierarchy) {
4499 memcg->use_hierarchy = true;
3e32cb2e 4500 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4501 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4502 page_counter_init(&memcg->memsw, &parent->memsw);
4503 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4504 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4505 } else {
3e32cb2e 4506 page_counter_init(&memcg->memory, NULL);
37e84351 4507 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4508 page_counter_init(&memcg->memsw, NULL);
4509 page_counter_init(&memcg->kmem, NULL);
0db15298 4510 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4511 /*
4512 * Deeper hierachy with use_hierarchy == false doesn't make
4513 * much sense so let cgroup subsystem know about this
4514 * unfortunate state in our controller.
4515 */
d142e3e6 4516 if (parent != root_mem_cgroup)
073219e9 4517 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4518 }
d6441637 4519
0b8f73e1
JW
4520 /* The following stuff does not apply to the root */
4521 if (!parent) {
4522 root_mem_cgroup = memcg;
4523 return &memcg->css;
4524 }
4525
b313aeee 4526 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4527 if (error)
4528 goto fail;
127424c8 4529
f7e1cb6e 4530 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4531 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4532
0b8f73e1
JW
4533 return &memcg->css;
4534fail:
7e97de0b 4535 mem_cgroup_id_remove(memcg);
0b8f73e1 4536 mem_cgroup_free(memcg);
ea3a9645 4537 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4538}
4539
73f576c0 4540static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4541{
58fa2a55
VD
4542 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4543
0a4465d3
KT
4544 /*
4545 * A memcg must be visible for memcg_expand_shrinker_maps()
4546 * by the time the maps are allocated. So, we allocate maps
4547 * here, when for_each_mem_cgroup() can't skip it.
4548 */
4549 if (memcg_alloc_shrinker_maps(memcg)) {
4550 mem_cgroup_id_remove(memcg);
4551 return -ENOMEM;
4552 }
4553
73f576c0 4554 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 4555 refcount_set(&memcg->id.ref, 1);
73f576c0 4556 css_get(css);
2f7dd7a4 4557 return 0;
8cdea7c0
BS
4558}
4559
eb95419b 4560static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4561{
eb95419b 4562 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4563 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4564
4565 /*
4566 * Unregister events and notify userspace.
4567 * Notify userspace about cgroup removing only after rmdir of cgroup
4568 * directory to avoid race between userspace and kernelspace.
4569 */
fba94807
TH
4570 spin_lock(&memcg->event_list_lock);
4571 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4572 list_del_init(&event->list);
4573 schedule_work(&event->remove);
4574 }
fba94807 4575 spin_unlock(&memcg->event_list_lock);
ec64f515 4576
bf8d5d52 4577 page_counter_set_min(&memcg->memory, 0);
23067153 4578 page_counter_set_low(&memcg->memory, 0);
63677c74 4579
567e9ab2 4580 memcg_offline_kmem(memcg);
52ebea74 4581 wb_memcg_offline(memcg);
73f576c0 4582
591edfb1
RG
4583 drain_all_stock(memcg);
4584
73f576c0 4585 mem_cgroup_id_put(memcg);
df878fb0
KH
4586}
4587
6df38689
VD
4588static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4589{
4590 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4591
4592 invalidate_reclaim_iterators(memcg);
4593}
4594
eb95419b 4595static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4596{
eb95419b 4597 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4598
f7e1cb6e 4599 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4600 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4601
0db15298 4602 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4603 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4604
0b8f73e1
JW
4605 vmpressure_cleanup(&memcg->vmpressure);
4606 cancel_work_sync(&memcg->high_work);
4607 mem_cgroup_remove_from_trees(memcg);
0a4465d3 4608 memcg_free_shrinker_maps(memcg);
d886f4e4 4609 memcg_free_kmem(memcg);
0b8f73e1 4610 mem_cgroup_free(memcg);
8cdea7c0
BS
4611}
4612
1ced953b
TH
4613/**
4614 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4615 * @css: the target css
4616 *
4617 * Reset the states of the mem_cgroup associated with @css. This is
4618 * invoked when the userland requests disabling on the default hierarchy
4619 * but the memcg is pinned through dependency. The memcg should stop
4620 * applying policies and should revert to the vanilla state as it may be
4621 * made visible again.
4622 *
4623 * The current implementation only resets the essential configurations.
4624 * This needs to be expanded to cover all the visible parts.
4625 */
4626static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4627{
4628 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4629
bbec2e15
RG
4630 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4631 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4632 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4633 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4634 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4635 page_counter_set_min(&memcg->memory, 0);
23067153 4636 page_counter_set_low(&memcg->memory, 0);
241994ed 4637 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4638 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4639 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4640}
4641
02491447 4642#ifdef CONFIG_MMU
7dc74be0 4643/* Handlers for move charge at task migration. */
854ffa8d 4644static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4645{
05b84301 4646 int ret;
9476db97 4647
d0164adc
MG
4648 /* Try a single bulk charge without reclaim first, kswapd may wake */
4649 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4650 if (!ret) {
854ffa8d 4651 mc.precharge += count;
854ffa8d
DN
4652 return ret;
4653 }
9476db97 4654
3674534b 4655 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4656 while (count--) {
3674534b 4657 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4658 if (ret)
38c5d72f 4659 return ret;
854ffa8d 4660 mc.precharge++;
9476db97 4661 cond_resched();
854ffa8d 4662 }
9476db97 4663 return 0;
4ffef5fe
DN
4664}
4665
4ffef5fe
DN
4666union mc_target {
4667 struct page *page;
02491447 4668 swp_entry_t ent;
4ffef5fe
DN
4669};
4670
4ffef5fe 4671enum mc_target_type {
8d32ff84 4672 MC_TARGET_NONE = 0,
4ffef5fe 4673 MC_TARGET_PAGE,
02491447 4674 MC_TARGET_SWAP,
c733a828 4675 MC_TARGET_DEVICE,
4ffef5fe
DN
4676};
4677
90254a65
DN
4678static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4679 unsigned long addr, pte_t ptent)
4ffef5fe 4680{
c733a828 4681 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4682
90254a65
DN
4683 if (!page || !page_mapped(page))
4684 return NULL;
4685 if (PageAnon(page)) {
1dfab5ab 4686 if (!(mc.flags & MOVE_ANON))
90254a65 4687 return NULL;
1dfab5ab
JW
4688 } else {
4689 if (!(mc.flags & MOVE_FILE))
4690 return NULL;
4691 }
90254a65
DN
4692 if (!get_page_unless_zero(page))
4693 return NULL;
4694
4695 return page;
4696}
4697
c733a828 4698#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4699static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4700 pte_t ptent, swp_entry_t *entry)
90254a65 4701{
90254a65
DN
4702 struct page *page = NULL;
4703 swp_entry_t ent = pte_to_swp_entry(ptent);
4704
1dfab5ab 4705 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4706 return NULL;
c733a828
JG
4707
4708 /*
4709 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4710 * a device and because they are not accessible by CPU they are store
4711 * as special swap entry in the CPU page table.
4712 */
4713 if (is_device_private_entry(ent)) {
4714 page = device_private_entry_to_page(ent);
4715 /*
4716 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4717 * a refcount of 1 when free (unlike normal page)
4718 */
4719 if (!page_ref_add_unless(page, 1, 1))
4720 return NULL;
4721 return page;
4722 }
4723
4b91355e
KH
4724 /*
4725 * Because lookup_swap_cache() updates some statistics counter,
4726 * we call find_get_page() with swapper_space directly.
4727 */
f6ab1f7f 4728 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4729 if (do_memsw_account())
90254a65
DN
4730 entry->val = ent.val;
4731
4732 return page;
4733}
4b91355e
KH
4734#else
4735static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4736 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4737{
4738 return NULL;
4739}
4740#endif
90254a65 4741
87946a72
DN
4742static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4743 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4744{
4745 struct page *page = NULL;
87946a72
DN
4746 struct address_space *mapping;
4747 pgoff_t pgoff;
4748
4749 if (!vma->vm_file) /* anonymous vma */
4750 return NULL;
1dfab5ab 4751 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4752 return NULL;
4753
87946a72 4754 mapping = vma->vm_file->f_mapping;
0661a336 4755 pgoff = linear_page_index(vma, addr);
87946a72
DN
4756
4757 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4758#ifdef CONFIG_SWAP
4759 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4760 if (shmem_mapping(mapping)) {
4761 page = find_get_entry(mapping, pgoff);
3159f943 4762 if (xa_is_value(page)) {
139b6a6f 4763 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4764 if (do_memsw_account())
139b6a6f 4765 *entry = swp;
f6ab1f7f
HY
4766 page = find_get_page(swap_address_space(swp),
4767 swp_offset(swp));
139b6a6f
JW
4768 }
4769 } else
4770 page = find_get_page(mapping, pgoff);
4771#else
4772 page = find_get_page(mapping, pgoff);
aa3b1895 4773#endif
87946a72
DN
4774 return page;
4775}
4776
b1b0deab
CG
4777/**
4778 * mem_cgroup_move_account - move account of the page
4779 * @page: the page
25843c2b 4780 * @compound: charge the page as compound or small page
b1b0deab
CG
4781 * @from: mem_cgroup which the page is moved from.
4782 * @to: mem_cgroup which the page is moved to. @from != @to.
4783 *
3ac808fd 4784 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4785 *
4786 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4787 * from old cgroup.
4788 */
4789static int mem_cgroup_move_account(struct page *page,
f627c2f5 4790 bool compound,
b1b0deab
CG
4791 struct mem_cgroup *from,
4792 struct mem_cgroup *to)
4793{
4794 unsigned long flags;
f627c2f5 4795 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4796 int ret;
c4843a75 4797 bool anon;
b1b0deab
CG
4798
4799 VM_BUG_ON(from == to);
4800 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4801 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4802
4803 /*
6a93ca8f 4804 * Prevent mem_cgroup_migrate() from looking at
45637bab 4805 * page->mem_cgroup of its source page while we change it.
b1b0deab 4806 */
f627c2f5 4807 ret = -EBUSY;
b1b0deab
CG
4808 if (!trylock_page(page))
4809 goto out;
4810
4811 ret = -EINVAL;
4812 if (page->mem_cgroup != from)
4813 goto out_unlock;
4814
c4843a75
GT
4815 anon = PageAnon(page);
4816
b1b0deab
CG
4817 spin_lock_irqsave(&from->move_lock, flags);
4818
c4843a75 4819 if (!anon && page_mapped(page)) {
c9019e9b
JW
4820 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4821 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
4822 }
4823
c4843a75
GT
4824 /*
4825 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4826 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4827 * So mapping should be stable for dirty pages.
4828 */
4829 if (!anon && PageDirty(page)) {
4830 struct address_space *mapping = page_mapping(page);
4831
4832 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
4833 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4834 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
4835 }
4836 }
4837
b1b0deab 4838 if (PageWriteback(page)) {
c9019e9b
JW
4839 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4840 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
4841 }
4842
4843 /*
4844 * It is safe to change page->mem_cgroup here because the page
4845 * is referenced, charged, and isolated - we can't race with
4846 * uncharging, charging, migration, or LRU putback.
4847 */
4848
4849 /* caller should have done css_get */
4850 page->mem_cgroup = to;
4851 spin_unlock_irqrestore(&from->move_lock, flags);
4852
4853 ret = 0;
4854
4855 local_irq_disable();
f627c2f5 4856 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4857 memcg_check_events(to, page);
f627c2f5 4858 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4859 memcg_check_events(from, page);
4860 local_irq_enable();
4861out_unlock:
4862 unlock_page(page);
4863out:
4864 return ret;
4865}
4866
7cf7806c
LR
4867/**
4868 * get_mctgt_type - get target type of moving charge
4869 * @vma: the vma the pte to be checked belongs
4870 * @addr: the address corresponding to the pte to be checked
4871 * @ptent: the pte to be checked
4872 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4873 *
4874 * Returns
4875 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4876 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4877 * move charge. if @target is not NULL, the page is stored in target->page
4878 * with extra refcnt got(Callers should handle it).
4879 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4880 * target for charge migration. if @target is not NULL, the entry is stored
4881 * in target->ent.
df6ad698
JG
4882 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4883 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4884 * For now we such page is charge like a regular page would be as for all
4885 * intent and purposes it is just special memory taking the place of a
4886 * regular page.
c733a828
JG
4887 *
4888 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
4889 *
4890 * Called with pte lock held.
4891 */
4892
8d32ff84 4893static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4894 unsigned long addr, pte_t ptent, union mc_target *target)
4895{
4896 struct page *page = NULL;
8d32ff84 4897 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4898 swp_entry_t ent = { .val = 0 };
4899
4900 if (pte_present(ptent))
4901 page = mc_handle_present_pte(vma, addr, ptent);
4902 else if (is_swap_pte(ptent))
48406ef8 4903 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4904 else if (pte_none(ptent))
87946a72 4905 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4906
4907 if (!page && !ent.val)
8d32ff84 4908 return ret;
02491447 4909 if (page) {
02491447 4910 /*
0a31bc97 4911 * Do only loose check w/o serialization.
1306a85a 4912 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4913 * not under LRU exclusion.
02491447 4914 */
1306a85a 4915 if (page->mem_cgroup == mc.from) {
02491447 4916 ret = MC_TARGET_PAGE;
df6ad698
JG
4917 if (is_device_private_page(page) ||
4918 is_device_public_page(page))
c733a828 4919 ret = MC_TARGET_DEVICE;
02491447
DN
4920 if (target)
4921 target->page = page;
4922 }
4923 if (!ret || !target)
4924 put_page(page);
4925 }
3e14a57b
HY
4926 /*
4927 * There is a swap entry and a page doesn't exist or isn't charged.
4928 * But we cannot move a tail-page in a THP.
4929 */
4930 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 4931 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4932 ret = MC_TARGET_SWAP;
4933 if (target)
4934 target->ent = ent;
4ffef5fe 4935 }
4ffef5fe
DN
4936 return ret;
4937}
4938
12724850
NH
4939#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4940/*
d6810d73
HY
4941 * We don't consider PMD mapped swapping or file mapped pages because THP does
4942 * not support them for now.
12724850
NH
4943 * Caller should make sure that pmd_trans_huge(pmd) is true.
4944 */
4945static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4946 unsigned long addr, pmd_t pmd, union mc_target *target)
4947{
4948 struct page *page = NULL;
12724850
NH
4949 enum mc_target_type ret = MC_TARGET_NONE;
4950
84c3fc4e
ZY
4951 if (unlikely(is_swap_pmd(pmd))) {
4952 VM_BUG_ON(thp_migration_supported() &&
4953 !is_pmd_migration_entry(pmd));
4954 return ret;
4955 }
12724850 4956 page = pmd_page(pmd);
309381fe 4957 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4958 if (!(mc.flags & MOVE_ANON))
12724850 4959 return ret;
1306a85a 4960 if (page->mem_cgroup == mc.from) {
12724850
NH
4961 ret = MC_TARGET_PAGE;
4962 if (target) {
4963 get_page(page);
4964 target->page = page;
4965 }
4966 }
4967 return ret;
4968}
4969#else
4970static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4971 unsigned long addr, pmd_t pmd, union mc_target *target)
4972{
4973 return MC_TARGET_NONE;
4974}
4975#endif
4976
4ffef5fe
DN
4977static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4978 unsigned long addr, unsigned long end,
4979 struct mm_walk *walk)
4980{
26bcd64a 4981 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4982 pte_t *pte;
4983 spinlock_t *ptl;
4984
b6ec57f4
KS
4985 ptl = pmd_trans_huge_lock(pmd, vma);
4986 if (ptl) {
c733a828
JG
4987 /*
4988 * Note their can not be MC_TARGET_DEVICE for now as we do not
4989 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4990 * MEMORY_DEVICE_PRIVATE but this might change.
4991 */
12724850
NH
4992 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4993 mc.precharge += HPAGE_PMD_NR;
bf929152 4994 spin_unlock(ptl);
1a5a9906 4995 return 0;
12724850 4996 }
03319327 4997
45f83cef
AA
4998 if (pmd_trans_unstable(pmd))
4999 return 0;
4ffef5fe
DN
5000 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5001 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5002 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5003 mc.precharge++; /* increment precharge temporarily */
5004 pte_unmap_unlock(pte - 1, ptl);
5005 cond_resched();
5006
7dc74be0
DN
5007 return 0;
5008}
5009
4ffef5fe
DN
5010static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5011{
5012 unsigned long precharge;
4ffef5fe 5013
26bcd64a
NH
5014 struct mm_walk mem_cgroup_count_precharge_walk = {
5015 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5016 .mm = mm,
5017 };
dfe076b0 5018 down_read(&mm->mmap_sem);
0247f3f4
JM
5019 walk_page_range(0, mm->highest_vm_end,
5020 &mem_cgroup_count_precharge_walk);
dfe076b0 5021 up_read(&mm->mmap_sem);
4ffef5fe
DN
5022
5023 precharge = mc.precharge;
5024 mc.precharge = 0;
5025
5026 return precharge;
5027}
5028
4ffef5fe
DN
5029static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5030{
dfe076b0
DN
5031 unsigned long precharge = mem_cgroup_count_precharge(mm);
5032
5033 VM_BUG_ON(mc.moving_task);
5034 mc.moving_task = current;
5035 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5036}
5037
dfe076b0
DN
5038/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5039static void __mem_cgroup_clear_mc(void)
4ffef5fe 5040{
2bd9bb20
KH
5041 struct mem_cgroup *from = mc.from;
5042 struct mem_cgroup *to = mc.to;
5043
4ffef5fe 5044 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5045 if (mc.precharge) {
00501b53 5046 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5047 mc.precharge = 0;
5048 }
5049 /*
5050 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5051 * we must uncharge here.
5052 */
5053 if (mc.moved_charge) {
00501b53 5054 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5055 mc.moved_charge = 0;
4ffef5fe 5056 }
483c30b5
DN
5057 /* we must fixup refcnts and charges */
5058 if (mc.moved_swap) {
483c30b5 5059 /* uncharge swap account from the old cgroup */
ce00a967 5060 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5061 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5062
615d66c3
VD
5063 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5064
05b84301 5065 /*
3e32cb2e
JW
5066 * we charged both to->memory and to->memsw, so we
5067 * should uncharge to->memory.
05b84301 5068 */
ce00a967 5069 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5070 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5071
615d66c3
VD
5072 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5073 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5074
483c30b5
DN
5075 mc.moved_swap = 0;
5076 }
dfe076b0
DN
5077 memcg_oom_recover(from);
5078 memcg_oom_recover(to);
5079 wake_up_all(&mc.waitq);
5080}
5081
5082static void mem_cgroup_clear_mc(void)
5083{
264a0ae1
TH
5084 struct mm_struct *mm = mc.mm;
5085
dfe076b0
DN
5086 /*
5087 * we must clear moving_task before waking up waiters at the end of
5088 * task migration.
5089 */
5090 mc.moving_task = NULL;
5091 __mem_cgroup_clear_mc();
2bd9bb20 5092 spin_lock(&mc.lock);
4ffef5fe
DN
5093 mc.from = NULL;
5094 mc.to = NULL;
264a0ae1 5095 mc.mm = NULL;
2bd9bb20 5096 spin_unlock(&mc.lock);
264a0ae1
TH
5097
5098 mmput(mm);
4ffef5fe
DN
5099}
5100
1f7dd3e5 5101static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5102{
1f7dd3e5 5103 struct cgroup_subsys_state *css;
eed67d75 5104 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5105 struct mem_cgroup *from;
4530eddb 5106 struct task_struct *leader, *p;
9f2115f9 5107 struct mm_struct *mm;
1dfab5ab 5108 unsigned long move_flags;
9f2115f9 5109 int ret = 0;
7dc74be0 5110
1f7dd3e5
TH
5111 /* charge immigration isn't supported on the default hierarchy */
5112 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5113 return 0;
5114
4530eddb
TH
5115 /*
5116 * Multi-process migrations only happen on the default hierarchy
5117 * where charge immigration is not used. Perform charge
5118 * immigration if @tset contains a leader and whine if there are
5119 * multiple.
5120 */
5121 p = NULL;
1f7dd3e5 5122 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5123 WARN_ON_ONCE(p);
5124 p = leader;
1f7dd3e5 5125 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5126 }
5127 if (!p)
5128 return 0;
5129
1f7dd3e5
TH
5130 /*
5131 * We are now commited to this value whatever it is. Changes in this
5132 * tunable will only affect upcoming migrations, not the current one.
5133 * So we need to save it, and keep it going.
5134 */
5135 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5136 if (!move_flags)
5137 return 0;
5138
9f2115f9
TH
5139 from = mem_cgroup_from_task(p);
5140
5141 VM_BUG_ON(from == memcg);
5142
5143 mm = get_task_mm(p);
5144 if (!mm)
5145 return 0;
5146 /* We move charges only when we move a owner of the mm */
5147 if (mm->owner == p) {
5148 VM_BUG_ON(mc.from);
5149 VM_BUG_ON(mc.to);
5150 VM_BUG_ON(mc.precharge);
5151 VM_BUG_ON(mc.moved_charge);
5152 VM_BUG_ON(mc.moved_swap);
5153
5154 spin_lock(&mc.lock);
264a0ae1 5155 mc.mm = mm;
9f2115f9
TH
5156 mc.from = from;
5157 mc.to = memcg;
5158 mc.flags = move_flags;
5159 spin_unlock(&mc.lock);
5160 /* We set mc.moving_task later */
5161
5162 ret = mem_cgroup_precharge_mc(mm);
5163 if (ret)
5164 mem_cgroup_clear_mc();
264a0ae1
TH
5165 } else {
5166 mmput(mm);
7dc74be0
DN
5167 }
5168 return ret;
5169}
5170
1f7dd3e5 5171static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5172{
4e2f245d
JW
5173 if (mc.to)
5174 mem_cgroup_clear_mc();
7dc74be0
DN
5175}
5176
4ffef5fe
DN
5177static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5178 unsigned long addr, unsigned long end,
5179 struct mm_walk *walk)
7dc74be0 5180{
4ffef5fe 5181 int ret = 0;
26bcd64a 5182 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5183 pte_t *pte;
5184 spinlock_t *ptl;
12724850
NH
5185 enum mc_target_type target_type;
5186 union mc_target target;
5187 struct page *page;
4ffef5fe 5188
b6ec57f4
KS
5189 ptl = pmd_trans_huge_lock(pmd, vma);
5190 if (ptl) {
62ade86a 5191 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5192 spin_unlock(ptl);
12724850
NH
5193 return 0;
5194 }
5195 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5196 if (target_type == MC_TARGET_PAGE) {
5197 page = target.page;
5198 if (!isolate_lru_page(page)) {
f627c2f5 5199 if (!mem_cgroup_move_account(page, true,
1306a85a 5200 mc.from, mc.to)) {
12724850
NH
5201 mc.precharge -= HPAGE_PMD_NR;
5202 mc.moved_charge += HPAGE_PMD_NR;
5203 }
5204 putback_lru_page(page);
5205 }
5206 put_page(page);
c733a828
JG
5207 } else if (target_type == MC_TARGET_DEVICE) {
5208 page = target.page;
5209 if (!mem_cgroup_move_account(page, true,
5210 mc.from, mc.to)) {
5211 mc.precharge -= HPAGE_PMD_NR;
5212 mc.moved_charge += HPAGE_PMD_NR;
5213 }
5214 put_page(page);
12724850 5215 }
bf929152 5216 spin_unlock(ptl);
1a5a9906 5217 return 0;
12724850
NH
5218 }
5219
45f83cef
AA
5220 if (pmd_trans_unstable(pmd))
5221 return 0;
4ffef5fe
DN
5222retry:
5223 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5224 for (; addr != end; addr += PAGE_SIZE) {
5225 pte_t ptent = *(pte++);
c733a828 5226 bool device = false;
02491447 5227 swp_entry_t ent;
4ffef5fe
DN
5228
5229 if (!mc.precharge)
5230 break;
5231
8d32ff84 5232 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5233 case MC_TARGET_DEVICE:
5234 device = true;
5235 /* fall through */
4ffef5fe
DN
5236 case MC_TARGET_PAGE:
5237 page = target.page;
53f9263b
KS
5238 /*
5239 * We can have a part of the split pmd here. Moving it
5240 * can be done but it would be too convoluted so simply
5241 * ignore such a partial THP and keep it in original
5242 * memcg. There should be somebody mapping the head.
5243 */
5244 if (PageTransCompound(page))
5245 goto put;
c733a828 5246 if (!device && isolate_lru_page(page))
4ffef5fe 5247 goto put;
f627c2f5
KS
5248 if (!mem_cgroup_move_account(page, false,
5249 mc.from, mc.to)) {
4ffef5fe 5250 mc.precharge--;
854ffa8d
DN
5251 /* we uncharge from mc.from later. */
5252 mc.moved_charge++;
4ffef5fe 5253 }
c733a828
JG
5254 if (!device)
5255 putback_lru_page(page);
8d32ff84 5256put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5257 put_page(page);
5258 break;
02491447
DN
5259 case MC_TARGET_SWAP:
5260 ent = target.ent;
e91cbb42 5261 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5262 mc.precharge--;
483c30b5
DN
5263 /* we fixup refcnts and charges later. */
5264 mc.moved_swap++;
5265 }
02491447 5266 break;
4ffef5fe
DN
5267 default:
5268 break;
5269 }
5270 }
5271 pte_unmap_unlock(pte - 1, ptl);
5272 cond_resched();
5273
5274 if (addr != end) {
5275 /*
5276 * We have consumed all precharges we got in can_attach().
5277 * We try charge one by one, but don't do any additional
5278 * charges to mc.to if we have failed in charge once in attach()
5279 * phase.
5280 */
854ffa8d 5281 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5282 if (!ret)
5283 goto retry;
5284 }
5285
5286 return ret;
5287}
5288
264a0ae1 5289static void mem_cgroup_move_charge(void)
4ffef5fe 5290{
26bcd64a
NH
5291 struct mm_walk mem_cgroup_move_charge_walk = {
5292 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5293 .mm = mc.mm,
26bcd64a 5294 };
4ffef5fe
DN
5295
5296 lru_add_drain_all();
312722cb 5297 /*
81f8c3a4
JW
5298 * Signal lock_page_memcg() to take the memcg's move_lock
5299 * while we're moving its pages to another memcg. Then wait
5300 * for already started RCU-only updates to finish.
312722cb
JW
5301 */
5302 atomic_inc(&mc.from->moving_account);
5303 synchronize_rcu();
dfe076b0 5304retry:
264a0ae1 5305 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5306 /*
5307 * Someone who are holding the mmap_sem might be waiting in
5308 * waitq. So we cancel all extra charges, wake up all waiters,
5309 * and retry. Because we cancel precharges, we might not be able
5310 * to move enough charges, but moving charge is a best-effort
5311 * feature anyway, so it wouldn't be a big problem.
5312 */
5313 __mem_cgroup_clear_mc();
5314 cond_resched();
5315 goto retry;
5316 }
26bcd64a
NH
5317 /*
5318 * When we have consumed all precharges and failed in doing
5319 * additional charge, the page walk just aborts.
5320 */
0247f3f4
JM
5321 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5322
264a0ae1 5323 up_read(&mc.mm->mmap_sem);
312722cb 5324 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5325}
5326
264a0ae1 5327static void mem_cgroup_move_task(void)
67e465a7 5328{
264a0ae1
TH
5329 if (mc.to) {
5330 mem_cgroup_move_charge();
a433658c 5331 mem_cgroup_clear_mc();
264a0ae1 5332 }
67e465a7 5333}
5cfb80a7 5334#else /* !CONFIG_MMU */
1f7dd3e5 5335static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5336{
5337 return 0;
5338}
1f7dd3e5 5339static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5340{
5341}
264a0ae1 5342static void mem_cgroup_move_task(void)
5cfb80a7
DN
5343{
5344}
5345#endif
67e465a7 5346
f00baae7
TH
5347/*
5348 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5349 * to verify whether we're attached to the default hierarchy on each mount
5350 * attempt.
f00baae7 5351 */
eb95419b 5352static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5353{
5354 /*
aa6ec29b 5355 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5356 * guarantees that @root doesn't have any children, so turning it
5357 * on for the root memcg is enough.
5358 */
9e10a130 5359 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5360 root_mem_cgroup->use_hierarchy = true;
5361 else
5362 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5363}
5364
677dc973
CD
5365static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5366{
5367 if (value == PAGE_COUNTER_MAX)
5368 seq_puts(m, "max\n");
5369 else
5370 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5371
5372 return 0;
5373}
5374
241994ed
JW
5375static u64 memory_current_read(struct cgroup_subsys_state *css,
5376 struct cftype *cft)
5377{
f5fc3c5d
JW
5378 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5379
5380 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5381}
5382
bf8d5d52
RG
5383static int memory_min_show(struct seq_file *m, void *v)
5384{
677dc973
CD
5385 return seq_puts_memcg_tunable(m,
5386 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
5387}
5388
5389static ssize_t memory_min_write(struct kernfs_open_file *of,
5390 char *buf, size_t nbytes, loff_t off)
5391{
5392 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5393 unsigned long min;
5394 int err;
5395
5396 buf = strstrip(buf);
5397 err = page_counter_memparse(buf, "max", &min);
5398 if (err)
5399 return err;
5400
5401 page_counter_set_min(&memcg->memory, min);
5402
5403 return nbytes;
5404}
5405
241994ed
JW
5406static int memory_low_show(struct seq_file *m, void *v)
5407{
677dc973
CD
5408 return seq_puts_memcg_tunable(m,
5409 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
5410}
5411
5412static ssize_t memory_low_write(struct kernfs_open_file *of,
5413 char *buf, size_t nbytes, loff_t off)
5414{
5415 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5416 unsigned long low;
5417 int err;
5418
5419 buf = strstrip(buf);
d2973697 5420 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5421 if (err)
5422 return err;
5423
23067153 5424 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5425
5426 return nbytes;
5427}
5428
5429static int memory_high_show(struct seq_file *m, void *v)
5430{
677dc973 5431 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
5432}
5433
5434static ssize_t memory_high_write(struct kernfs_open_file *of,
5435 char *buf, size_t nbytes, loff_t off)
5436{
5437 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5438 unsigned long nr_pages;
241994ed
JW
5439 unsigned long high;
5440 int err;
5441
5442 buf = strstrip(buf);
d2973697 5443 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5444 if (err)
5445 return err;
5446
5447 memcg->high = high;
5448
588083bb
JW
5449 nr_pages = page_counter_read(&memcg->memory);
5450 if (nr_pages > high)
5451 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5452 GFP_KERNEL, true);
5453
2529bb3a 5454 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5455 return nbytes;
5456}
5457
5458static int memory_max_show(struct seq_file *m, void *v)
5459{
677dc973
CD
5460 return seq_puts_memcg_tunable(m,
5461 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
5462}
5463
5464static ssize_t memory_max_write(struct kernfs_open_file *of,
5465 char *buf, size_t nbytes, loff_t off)
5466{
5467 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5468 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5469 bool drained = false;
241994ed
JW
5470 unsigned long max;
5471 int err;
5472
5473 buf = strstrip(buf);
d2973697 5474 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5475 if (err)
5476 return err;
5477
bbec2e15 5478 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5479
5480 for (;;) {
5481 unsigned long nr_pages = page_counter_read(&memcg->memory);
5482
5483 if (nr_pages <= max)
5484 break;
5485
5486 if (signal_pending(current)) {
5487 err = -EINTR;
5488 break;
5489 }
5490
5491 if (!drained) {
5492 drain_all_stock(memcg);
5493 drained = true;
5494 continue;
5495 }
5496
5497 if (nr_reclaims) {
5498 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5499 GFP_KERNEL, true))
5500 nr_reclaims--;
5501 continue;
5502 }
5503
e27be240 5504 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5505 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5506 break;
5507 }
241994ed 5508
2529bb3a 5509 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5510 return nbytes;
5511}
5512
5513static int memory_events_show(struct seq_file *m, void *v)
5514{
aa9694bb 5515 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 5516
e27be240
JW
5517 seq_printf(m, "low %lu\n",
5518 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5519 seq_printf(m, "high %lu\n",
5520 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5521 seq_printf(m, "max %lu\n",
5522 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5523 seq_printf(m, "oom %lu\n",
5524 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
fe6bdfc8
RG
5525 seq_printf(m, "oom_kill %lu\n",
5526 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
241994ed
JW
5527
5528 return 0;
5529}
5530
587d9f72
JW
5531static int memory_stat_show(struct seq_file *m, void *v)
5532{
aa9694bb 5533 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
8de7ecc6 5534 struct accumulated_stats acc;
587d9f72
JW
5535 int i;
5536
5537 /*
5538 * Provide statistics on the state of the memory subsystem as
5539 * well as cumulative event counters that show past behavior.
5540 *
5541 * This list is ordered following a combination of these gradients:
5542 * 1) generic big picture -> specifics and details
5543 * 2) reflecting userspace activity -> reflecting kernel heuristics
5544 *
5545 * Current memory state:
5546 */
5547
8de7ecc6
SB
5548 memset(&acc, 0, sizeof(acc));
5549 acc.stats_size = MEMCG_NR_STAT;
5550 acc.events_size = NR_VM_EVENT_ITEMS;
5551 accumulate_memcg_tree(memcg, &acc);
72b54e73 5552
587d9f72 5553 seq_printf(m, "anon %llu\n",
8de7ecc6 5554 (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5555 seq_printf(m, "file %llu\n",
8de7ecc6 5556 (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5557 seq_printf(m, "kernel_stack %llu\n",
8de7ecc6 5558 (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5559 seq_printf(m, "slab %llu\n",
8de7ecc6
SB
5560 (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
5561 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5562 seq_printf(m, "sock %llu\n",
8de7ecc6 5563 (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5564
9a4caf1e 5565 seq_printf(m, "shmem %llu\n",
8de7ecc6 5566 (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
587d9f72 5567 seq_printf(m, "file_mapped %llu\n",
8de7ecc6 5568 (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5569 seq_printf(m, "file_dirty %llu\n",
8de7ecc6 5570 (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5571 seq_printf(m, "file_writeback %llu\n",
8de7ecc6 5572 (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
587d9f72 5573
8de7ecc6
SB
5574 for (i = 0; i < NR_LRU_LISTS; i++)
5575 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5576 (u64)acc.lru_pages[i] * PAGE_SIZE);
587d9f72 5577
27ee57c9 5578 seq_printf(m, "slab_reclaimable %llu\n",
8de7ecc6 5579 (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5580 seq_printf(m, "slab_unreclaimable %llu\n",
8de7ecc6 5581 (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5582
587d9f72
JW
5583 /* Accumulated memory events */
5584
8de7ecc6
SB
5585 seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
5586 seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
587d9f72 5587
e9b257ed
JW
5588 seq_printf(m, "workingset_refault %lu\n",
5589 acc.stat[WORKINGSET_REFAULT]);
5590 seq_printf(m, "workingset_activate %lu\n",
5591 acc.stat[WORKINGSET_ACTIVATE]);
5592 seq_printf(m, "workingset_nodereclaim %lu\n",
5593 acc.stat[WORKINGSET_NODERECLAIM]);
5594
8de7ecc6
SB
5595 seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
5596 seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
5597 acc.events[PGSCAN_DIRECT]);
5598 seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
5599 acc.events[PGSTEAL_DIRECT]);
5600 seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
5601 seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
5602 seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
5603 seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
2262185c 5604
587d9f72
JW
5605 return 0;
5606}
5607
3d8b38eb
RG
5608static int memory_oom_group_show(struct seq_file *m, void *v)
5609{
aa9694bb 5610 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
5611
5612 seq_printf(m, "%d\n", memcg->oom_group);
5613
5614 return 0;
5615}
5616
5617static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5618 char *buf, size_t nbytes, loff_t off)
5619{
5620 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5621 int ret, oom_group;
5622
5623 buf = strstrip(buf);
5624 if (!buf)
5625 return -EINVAL;
5626
5627 ret = kstrtoint(buf, 0, &oom_group);
5628 if (ret)
5629 return ret;
5630
5631 if (oom_group != 0 && oom_group != 1)
5632 return -EINVAL;
5633
5634 memcg->oom_group = oom_group;
5635
5636 return nbytes;
5637}
5638
241994ed
JW
5639static struct cftype memory_files[] = {
5640 {
5641 .name = "current",
f5fc3c5d 5642 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5643 .read_u64 = memory_current_read,
5644 },
bf8d5d52
RG
5645 {
5646 .name = "min",
5647 .flags = CFTYPE_NOT_ON_ROOT,
5648 .seq_show = memory_min_show,
5649 .write = memory_min_write,
5650 },
241994ed
JW
5651 {
5652 .name = "low",
5653 .flags = CFTYPE_NOT_ON_ROOT,
5654 .seq_show = memory_low_show,
5655 .write = memory_low_write,
5656 },
5657 {
5658 .name = "high",
5659 .flags = CFTYPE_NOT_ON_ROOT,
5660 .seq_show = memory_high_show,
5661 .write = memory_high_write,
5662 },
5663 {
5664 .name = "max",
5665 .flags = CFTYPE_NOT_ON_ROOT,
5666 .seq_show = memory_max_show,
5667 .write = memory_max_write,
5668 },
5669 {
5670 .name = "events",
5671 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5672 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5673 .seq_show = memory_events_show,
5674 },
587d9f72
JW
5675 {
5676 .name = "stat",
5677 .flags = CFTYPE_NOT_ON_ROOT,
5678 .seq_show = memory_stat_show,
5679 },
3d8b38eb
RG
5680 {
5681 .name = "oom.group",
5682 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5683 .seq_show = memory_oom_group_show,
5684 .write = memory_oom_group_write,
5685 },
241994ed
JW
5686 { } /* terminate */
5687};
5688
073219e9 5689struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5690 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5691 .css_online = mem_cgroup_css_online,
92fb9748 5692 .css_offline = mem_cgroup_css_offline,
6df38689 5693 .css_released = mem_cgroup_css_released,
92fb9748 5694 .css_free = mem_cgroup_css_free,
1ced953b 5695 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5696 .can_attach = mem_cgroup_can_attach,
5697 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5698 .post_attach = mem_cgroup_move_task,
f00baae7 5699 .bind = mem_cgroup_bind,
241994ed
JW
5700 .dfl_cftypes = memory_files,
5701 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5702 .early_init = 0,
8cdea7c0 5703};
c077719b 5704
241994ed 5705/**
bf8d5d52 5706 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 5707 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5708 * @memcg: the memory cgroup to check
5709 *
23067153
RG
5710 * WARNING: This function is not stateless! It can only be used as part
5711 * of a top-down tree iteration, not for isolated queries.
34c81057 5712 *
bf8d5d52
RG
5713 * Returns one of the following:
5714 * MEMCG_PROT_NONE: cgroup memory is not protected
5715 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5716 * an unprotected supply of reclaimable memory from other cgroups.
5717 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 5718 *
bf8d5d52 5719 * @root is exclusive; it is never protected when looked at directly
34c81057 5720 *
bf8d5d52
RG
5721 * To provide a proper hierarchical behavior, effective memory.min/low values
5722 * are used. Below is the description of how effective memory.low is calculated.
5723 * Effective memory.min values is calculated in the same way.
34c81057 5724 *
23067153
RG
5725 * Effective memory.low is always equal or less than the original memory.low.
5726 * If there is no memory.low overcommittment (which is always true for
5727 * top-level memory cgroups), these two values are equal.
5728 * Otherwise, it's a part of parent's effective memory.low,
5729 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5730 * memory.low usages, where memory.low usage is the size of actually
5731 * protected memory.
34c81057 5732 *
23067153
RG
5733 * low_usage
5734 * elow = min( memory.low, parent->elow * ------------------ ),
5735 * siblings_low_usage
34c81057 5736 *
23067153
RG
5737 * | memory.current, if memory.current < memory.low
5738 * low_usage = |
5739 | 0, otherwise.
34c81057 5740 *
23067153
RG
5741 *
5742 * Such definition of the effective memory.low provides the expected
5743 * hierarchical behavior: parent's memory.low value is limiting
5744 * children, unprotected memory is reclaimed first and cgroups,
5745 * which are not using their guarantee do not affect actual memory
5746 * distribution.
5747 *
5748 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5749 *
5750 * A A/memory.low = 2G, A/memory.current = 6G
5751 * //\\
5752 * BC DE B/memory.low = 3G B/memory.current = 2G
5753 * C/memory.low = 1G C/memory.current = 2G
5754 * D/memory.low = 0 D/memory.current = 2G
5755 * E/memory.low = 10G E/memory.current = 0
5756 *
5757 * and the memory pressure is applied, the following memory distribution
5758 * is expected (approximately):
5759 *
5760 * A/memory.current = 2G
5761 *
5762 * B/memory.current = 1.3G
5763 * C/memory.current = 0.6G
5764 * D/memory.current = 0
5765 * E/memory.current = 0
5766 *
5767 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
5768 * (see propagate_protected_usage()), as well as recursive calculation of
5769 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
5770 * path for each memory cgroup top-down from the reclaim,
5771 * it's possible to optimize this part, and save calculated elow
5772 * for next usage. This part is intentionally racy, but it's ok,
5773 * as memory.low is a best-effort mechanism.
241994ed 5774 */
bf8d5d52
RG
5775enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5776 struct mem_cgroup *memcg)
241994ed 5777{
23067153 5778 struct mem_cgroup *parent;
bf8d5d52
RG
5779 unsigned long emin, parent_emin;
5780 unsigned long elow, parent_elow;
5781 unsigned long usage;
23067153 5782
241994ed 5783 if (mem_cgroup_disabled())
bf8d5d52 5784 return MEMCG_PROT_NONE;
241994ed 5785
34c81057
SC
5786 if (!root)
5787 root = root_mem_cgroup;
5788 if (memcg == root)
bf8d5d52 5789 return MEMCG_PROT_NONE;
241994ed 5790
23067153 5791 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
5792 if (!usage)
5793 return MEMCG_PROT_NONE;
5794
5795 emin = memcg->memory.min;
5796 elow = memcg->memory.low;
34c81057 5797
bf8d5d52 5798 parent = parent_mem_cgroup(memcg);
df2a4196
RG
5799 /* No parent means a non-hierarchical mode on v1 memcg */
5800 if (!parent)
5801 return MEMCG_PROT_NONE;
5802
23067153
RG
5803 if (parent == root)
5804 goto exit;
5805
bf8d5d52
RG
5806 parent_emin = READ_ONCE(parent->memory.emin);
5807 emin = min(emin, parent_emin);
5808 if (emin && parent_emin) {
5809 unsigned long min_usage, siblings_min_usage;
5810
5811 min_usage = min(usage, memcg->memory.min);
5812 siblings_min_usage = atomic_long_read(
5813 &parent->memory.children_min_usage);
5814
5815 if (min_usage && siblings_min_usage)
5816 emin = min(emin, parent_emin * min_usage /
5817 siblings_min_usage);
5818 }
5819
23067153
RG
5820 parent_elow = READ_ONCE(parent->memory.elow);
5821 elow = min(elow, parent_elow);
bf8d5d52
RG
5822 if (elow && parent_elow) {
5823 unsigned long low_usage, siblings_low_usage;
23067153 5824
bf8d5d52
RG
5825 low_usage = min(usage, memcg->memory.low);
5826 siblings_low_usage = atomic_long_read(
5827 &parent->memory.children_low_usage);
23067153 5828
bf8d5d52
RG
5829 if (low_usage && siblings_low_usage)
5830 elow = min(elow, parent_elow * low_usage /
5831 siblings_low_usage);
5832 }
23067153 5833
23067153 5834exit:
bf8d5d52 5835 memcg->memory.emin = emin;
23067153 5836 memcg->memory.elow = elow;
bf8d5d52
RG
5837
5838 if (usage <= emin)
5839 return MEMCG_PROT_MIN;
5840 else if (usage <= elow)
5841 return MEMCG_PROT_LOW;
5842 else
5843 return MEMCG_PROT_NONE;
241994ed
JW
5844}
5845
00501b53
JW
5846/**
5847 * mem_cgroup_try_charge - try charging a page
5848 * @page: page to charge
5849 * @mm: mm context of the victim
5850 * @gfp_mask: reclaim mode
5851 * @memcgp: charged memcg return
25843c2b 5852 * @compound: charge the page as compound or small page
00501b53
JW
5853 *
5854 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5855 * pages according to @gfp_mask if necessary.
5856 *
5857 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5858 * Otherwise, an error code is returned.
5859 *
5860 * After page->mapping has been set up, the caller must finalize the
5861 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5862 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5863 */
5864int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5865 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5866 bool compound)
00501b53
JW
5867{
5868 struct mem_cgroup *memcg = NULL;
f627c2f5 5869 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5870 int ret = 0;
5871
5872 if (mem_cgroup_disabled())
5873 goto out;
5874
5875 if (PageSwapCache(page)) {
00501b53
JW
5876 /*
5877 * Every swap fault against a single page tries to charge the
5878 * page, bail as early as possible. shmem_unuse() encounters
5879 * already charged pages, too. The USED bit is protected by
5880 * the page lock, which serializes swap cache removal, which
5881 * in turn serializes uncharging.
5882 */
e993d905 5883 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 5884 if (compound_head(page)->mem_cgroup)
00501b53 5885 goto out;
e993d905 5886
37e84351 5887 if (do_swap_account) {
e993d905
VD
5888 swp_entry_t ent = { .val = page_private(page), };
5889 unsigned short id = lookup_swap_cgroup_id(ent);
5890
5891 rcu_read_lock();
5892 memcg = mem_cgroup_from_id(id);
5893 if (memcg && !css_tryget_online(&memcg->css))
5894 memcg = NULL;
5895 rcu_read_unlock();
5896 }
00501b53
JW
5897 }
5898
00501b53
JW
5899 if (!memcg)
5900 memcg = get_mem_cgroup_from_mm(mm);
5901
5902 ret = try_charge(memcg, gfp_mask, nr_pages);
5903
5904 css_put(&memcg->css);
00501b53
JW
5905out:
5906 *memcgp = memcg;
5907 return ret;
5908}
5909
2cf85583
TH
5910int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5911 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5912 bool compound)
5913{
5914 struct mem_cgroup *memcg;
5915 int ret;
5916
5917 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5918 memcg = *memcgp;
5919 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5920 return ret;
5921}
5922
00501b53
JW
5923/**
5924 * mem_cgroup_commit_charge - commit a page charge
5925 * @page: page to charge
5926 * @memcg: memcg to charge the page to
5927 * @lrucare: page might be on LRU already
25843c2b 5928 * @compound: charge the page as compound or small page
00501b53
JW
5929 *
5930 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5931 * after page->mapping has been set up. This must happen atomically
5932 * as part of the page instantiation, i.e. under the page table lock
5933 * for anonymous pages, under the page lock for page and swap cache.
5934 *
5935 * In addition, the page must not be on the LRU during the commit, to
5936 * prevent racing with task migration. If it might be, use @lrucare.
5937 *
5938 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5939 */
5940void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5941 bool lrucare, bool compound)
00501b53 5942{
f627c2f5 5943 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5944
5945 VM_BUG_ON_PAGE(!page->mapping, page);
5946 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5947
5948 if (mem_cgroup_disabled())
5949 return;
5950 /*
5951 * Swap faults will attempt to charge the same page multiple
5952 * times. But reuse_swap_page() might have removed the page
5953 * from swapcache already, so we can't check PageSwapCache().
5954 */
5955 if (!memcg)
5956 return;
5957
6abb5a86
JW
5958 commit_charge(page, memcg, lrucare);
5959
6abb5a86 5960 local_irq_disable();
f627c2f5 5961 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5962 memcg_check_events(memcg, page);
5963 local_irq_enable();
00501b53 5964
7941d214 5965 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5966 swp_entry_t entry = { .val = page_private(page) };
5967 /*
5968 * The swap entry might not get freed for a long time,
5969 * let's not wait for it. The page already received a
5970 * memory+swap charge, drop the swap entry duplicate.
5971 */
38d8b4e6 5972 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
5973 }
5974}
5975
5976/**
5977 * mem_cgroup_cancel_charge - cancel a page charge
5978 * @page: page to charge
5979 * @memcg: memcg to charge the page to
25843c2b 5980 * @compound: charge the page as compound or small page
00501b53
JW
5981 *
5982 * Cancel a charge transaction started by mem_cgroup_try_charge().
5983 */
f627c2f5
KS
5984void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5985 bool compound)
00501b53 5986{
f627c2f5 5987 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5988
5989 if (mem_cgroup_disabled())
5990 return;
5991 /*
5992 * Swap faults will attempt to charge the same page multiple
5993 * times. But reuse_swap_page() might have removed the page
5994 * from swapcache already, so we can't check PageSwapCache().
5995 */
5996 if (!memcg)
5997 return;
5998
00501b53
JW
5999 cancel_charge(memcg, nr_pages);
6000}
6001
a9d5adee
JG
6002struct uncharge_gather {
6003 struct mem_cgroup *memcg;
6004 unsigned long pgpgout;
6005 unsigned long nr_anon;
6006 unsigned long nr_file;
6007 unsigned long nr_kmem;
6008 unsigned long nr_huge;
6009 unsigned long nr_shmem;
6010 struct page *dummy_page;
6011};
6012
6013static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6014{
a9d5adee
JG
6015 memset(ug, 0, sizeof(*ug));
6016}
6017
6018static void uncharge_batch(const struct uncharge_gather *ug)
6019{
6020 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6021 unsigned long flags;
6022
a9d5adee
JG
6023 if (!mem_cgroup_is_root(ug->memcg)) {
6024 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6025 if (do_memsw_account())
a9d5adee
JG
6026 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6027 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6028 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6029 memcg_oom_recover(ug->memcg);
ce00a967 6030 }
747db954
JW
6031
6032 local_irq_save(flags);
c9019e9b
JW
6033 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6034 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6035 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6036 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6037 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
a983b5eb 6038 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
a9d5adee 6039 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6040 local_irq_restore(flags);
e8ea14cc 6041
a9d5adee
JG
6042 if (!mem_cgroup_is_root(ug->memcg))
6043 css_put_many(&ug->memcg->css, nr_pages);
6044}
6045
6046static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6047{
6048 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6049 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6050 !PageHWPoison(page) , page);
a9d5adee
JG
6051
6052 if (!page->mem_cgroup)
6053 return;
6054
6055 /*
6056 * Nobody should be changing or seriously looking at
6057 * page->mem_cgroup at this point, we have fully
6058 * exclusive access to the page.
6059 */
6060
6061 if (ug->memcg != page->mem_cgroup) {
6062 if (ug->memcg) {
6063 uncharge_batch(ug);
6064 uncharge_gather_clear(ug);
6065 }
6066 ug->memcg = page->mem_cgroup;
6067 }
6068
6069 if (!PageKmemcg(page)) {
6070 unsigned int nr_pages = 1;
6071
6072 if (PageTransHuge(page)) {
6073 nr_pages <<= compound_order(page);
6074 ug->nr_huge += nr_pages;
6075 }
6076 if (PageAnon(page))
6077 ug->nr_anon += nr_pages;
6078 else {
6079 ug->nr_file += nr_pages;
6080 if (PageSwapBacked(page))
6081 ug->nr_shmem += nr_pages;
6082 }
6083 ug->pgpgout++;
6084 } else {
6085 ug->nr_kmem += 1 << compound_order(page);
6086 __ClearPageKmemcg(page);
6087 }
6088
6089 ug->dummy_page = page;
6090 page->mem_cgroup = NULL;
747db954
JW
6091}
6092
6093static void uncharge_list(struct list_head *page_list)
6094{
a9d5adee 6095 struct uncharge_gather ug;
747db954 6096 struct list_head *next;
a9d5adee
JG
6097
6098 uncharge_gather_clear(&ug);
747db954 6099
8b592656
JW
6100 /*
6101 * Note that the list can be a single page->lru; hence the
6102 * do-while loop instead of a simple list_for_each_entry().
6103 */
747db954
JW
6104 next = page_list->next;
6105 do {
a9d5adee
JG
6106 struct page *page;
6107
747db954
JW
6108 page = list_entry(next, struct page, lru);
6109 next = page->lru.next;
6110
a9d5adee 6111 uncharge_page(page, &ug);
747db954
JW
6112 } while (next != page_list);
6113
a9d5adee
JG
6114 if (ug.memcg)
6115 uncharge_batch(&ug);
747db954
JW
6116}
6117
0a31bc97
JW
6118/**
6119 * mem_cgroup_uncharge - uncharge a page
6120 * @page: page to uncharge
6121 *
6122 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6123 * mem_cgroup_commit_charge().
6124 */
6125void mem_cgroup_uncharge(struct page *page)
6126{
a9d5adee
JG
6127 struct uncharge_gather ug;
6128
0a31bc97
JW
6129 if (mem_cgroup_disabled())
6130 return;
6131
747db954 6132 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6133 if (!page->mem_cgroup)
0a31bc97
JW
6134 return;
6135
a9d5adee
JG
6136 uncharge_gather_clear(&ug);
6137 uncharge_page(page, &ug);
6138 uncharge_batch(&ug);
747db954 6139}
0a31bc97 6140
747db954
JW
6141/**
6142 * mem_cgroup_uncharge_list - uncharge a list of page
6143 * @page_list: list of pages to uncharge
6144 *
6145 * Uncharge a list of pages previously charged with
6146 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6147 */
6148void mem_cgroup_uncharge_list(struct list_head *page_list)
6149{
6150 if (mem_cgroup_disabled())
6151 return;
0a31bc97 6152
747db954
JW
6153 if (!list_empty(page_list))
6154 uncharge_list(page_list);
0a31bc97
JW
6155}
6156
6157/**
6a93ca8f
JW
6158 * mem_cgroup_migrate - charge a page's replacement
6159 * @oldpage: currently circulating page
6160 * @newpage: replacement page
0a31bc97 6161 *
6a93ca8f
JW
6162 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6163 * be uncharged upon free.
0a31bc97
JW
6164 *
6165 * Both pages must be locked, @newpage->mapping must be set up.
6166 */
6a93ca8f 6167void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6168{
29833315 6169 struct mem_cgroup *memcg;
44b7a8d3
JW
6170 unsigned int nr_pages;
6171 bool compound;
d93c4130 6172 unsigned long flags;
0a31bc97
JW
6173
6174 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6175 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6176 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6177 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6178 newpage);
0a31bc97
JW
6179
6180 if (mem_cgroup_disabled())
6181 return;
6182
6183 /* Page cache replacement: new page already charged? */
1306a85a 6184 if (newpage->mem_cgroup)
0a31bc97
JW
6185 return;
6186
45637bab 6187 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6188 memcg = oldpage->mem_cgroup;
29833315 6189 if (!memcg)
0a31bc97
JW
6190 return;
6191
44b7a8d3
JW
6192 /* Force-charge the new page. The old one will be freed soon */
6193 compound = PageTransHuge(newpage);
6194 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6195
6196 page_counter_charge(&memcg->memory, nr_pages);
6197 if (do_memsw_account())
6198 page_counter_charge(&memcg->memsw, nr_pages);
6199 css_get_many(&memcg->css, nr_pages);
0a31bc97 6200
9cf7666a 6201 commit_charge(newpage, memcg, false);
44b7a8d3 6202
d93c4130 6203 local_irq_save(flags);
44b7a8d3
JW
6204 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6205 memcg_check_events(memcg, newpage);
d93c4130 6206 local_irq_restore(flags);
0a31bc97
JW
6207}
6208
ef12947c 6209DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6210EXPORT_SYMBOL(memcg_sockets_enabled_key);
6211
2d758073 6212void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6213{
6214 struct mem_cgroup *memcg;
6215
2d758073
JW
6216 if (!mem_cgroup_sockets_enabled)
6217 return;
6218
edbe69ef
RG
6219 /*
6220 * Socket cloning can throw us here with sk_memcg already
6221 * filled. It won't however, necessarily happen from
6222 * process context. So the test for root memcg given
6223 * the current task's memcg won't help us in this case.
6224 *
6225 * Respecting the original socket's memcg is a better
6226 * decision in this case.
6227 */
6228 if (sk->sk_memcg) {
6229 css_get(&sk->sk_memcg->css);
6230 return;
6231 }
6232
11092087
JW
6233 rcu_read_lock();
6234 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6235 if (memcg == root_mem_cgroup)
6236 goto out;
0db15298 6237 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6238 goto out;
f7e1cb6e 6239 if (css_tryget_online(&memcg->css))
11092087 6240 sk->sk_memcg = memcg;
f7e1cb6e 6241out:
11092087
JW
6242 rcu_read_unlock();
6243}
11092087 6244
2d758073 6245void mem_cgroup_sk_free(struct sock *sk)
11092087 6246{
2d758073
JW
6247 if (sk->sk_memcg)
6248 css_put(&sk->sk_memcg->css);
11092087
JW
6249}
6250
6251/**
6252 * mem_cgroup_charge_skmem - charge socket memory
6253 * @memcg: memcg to charge
6254 * @nr_pages: number of pages to charge
6255 *
6256 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6257 * @memcg's configured limit, %false if the charge had to be forced.
6258 */
6259bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6260{
f7e1cb6e 6261 gfp_t gfp_mask = GFP_KERNEL;
11092087 6262
f7e1cb6e 6263 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6264 struct page_counter *fail;
f7e1cb6e 6265
0db15298
JW
6266 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6267 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6268 return true;
6269 }
0db15298
JW
6270 page_counter_charge(&memcg->tcpmem, nr_pages);
6271 memcg->tcpmem_pressure = 1;
f7e1cb6e 6272 return false;
11092087 6273 }
d886f4e4 6274
f7e1cb6e
JW
6275 /* Don't block in the packet receive path */
6276 if (in_softirq())
6277 gfp_mask = GFP_NOWAIT;
6278
c9019e9b 6279 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6280
f7e1cb6e
JW
6281 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6282 return true;
6283
6284 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6285 return false;
6286}
6287
6288/**
6289 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6290 * @memcg: memcg to uncharge
6291 * @nr_pages: number of pages to uncharge
11092087
JW
6292 */
6293void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6294{
f7e1cb6e 6295 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6296 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6297 return;
6298 }
d886f4e4 6299
c9019e9b 6300 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6301
475d0487 6302 refill_stock(memcg, nr_pages);
11092087
JW
6303}
6304
f7e1cb6e
JW
6305static int __init cgroup_memory(char *s)
6306{
6307 char *token;
6308
6309 while ((token = strsep(&s, ",")) != NULL) {
6310 if (!*token)
6311 continue;
6312 if (!strcmp(token, "nosocket"))
6313 cgroup_memory_nosocket = true;
04823c83
VD
6314 if (!strcmp(token, "nokmem"))
6315 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6316 }
6317 return 0;
6318}
6319__setup("cgroup.memory=", cgroup_memory);
11092087 6320
2d11085e 6321/*
1081312f
MH
6322 * subsys_initcall() for memory controller.
6323 *
308167fc
SAS
6324 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6325 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6326 * basically everything that doesn't depend on a specific mem_cgroup structure
6327 * should be initialized from here.
2d11085e
MH
6328 */
6329static int __init mem_cgroup_init(void)
6330{
95a045f6
JW
6331 int cpu, node;
6332
84c07d11 6333#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6334 /*
6335 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6336 * so use a workqueue with limited concurrency to avoid stalling
6337 * all worker threads in case lots of cgroups are created and
6338 * destroyed simultaneously.
13583c3d 6339 */
17cc4dfe
TH
6340 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6341 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6342#endif
6343
308167fc
SAS
6344 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6345 memcg_hotplug_cpu_dead);
95a045f6
JW
6346
6347 for_each_possible_cpu(cpu)
6348 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6349 drain_local_stock);
6350
6351 for_each_node(node) {
6352 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6353
6354 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6355 node_online(node) ? node : NUMA_NO_NODE);
6356
ef8f2327 6357 rtpn->rb_root = RB_ROOT;
fa90b2fd 6358 rtpn->rb_rightmost = NULL;
ef8f2327 6359 spin_lock_init(&rtpn->lock);
95a045f6
JW
6360 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6361 }
6362
2d11085e
MH
6363 return 0;
6364}
6365subsys_initcall(mem_cgroup_init);
21afa38e
JW
6366
6367#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6368static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6369{
1c2d479a 6370 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6371 /*
6372 * The root cgroup cannot be destroyed, so it's refcount must
6373 * always be >= 1.
6374 */
6375 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6376 VM_BUG_ON(1);
6377 break;
6378 }
6379 memcg = parent_mem_cgroup(memcg);
6380 if (!memcg)
6381 memcg = root_mem_cgroup;
6382 }
6383 return memcg;
6384}
6385
21afa38e
JW
6386/**
6387 * mem_cgroup_swapout - transfer a memsw charge to swap
6388 * @page: page whose memsw charge to transfer
6389 * @entry: swap entry to move the charge to
6390 *
6391 * Transfer the memsw charge of @page to @entry.
6392 */
6393void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6394{
1f47b61f 6395 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6396 unsigned int nr_entries;
21afa38e
JW
6397 unsigned short oldid;
6398
6399 VM_BUG_ON_PAGE(PageLRU(page), page);
6400 VM_BUG_ON_PAGE(page_count(page), page);
6401
7941d214 6402 if (!do_memsw_account())
21afa38e
JW
6403 return;
6404
6405 memcg = page->mem_cgroup;
6406
6407 /* Readahead page, never charged */
6408 if (!memcg)
6409 return;
6410
1f47b61f
VD
6411 /*
6412 * In case the memcg owning these pages has been offlined and doesn't
6413 * have an ID allocated to it anymore, charge the closest online
6414 * ancestor for the swap instead and transfer the memory+swap charge.
6415 */
6416 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6417 nr_entries = hpage_nr_pages(page);
6418 /* Get references for the tail pages, too */
6419 if (nr_entries > 1)
6420 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6421 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6422 nr_entries);
21afa38e 6423 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6424 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6425
6426 page->mem_cgroup = NULL;
6427
6428 if (!mem_cgroup_is_root(memcg))
d6810d73 6429 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6430
1f47b61f
VD
6431 if (memcg != swap_memcg) {
6432 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6433 page_counter_charge(&swap_memcg->memsw, nr_entries);
6434 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6435 }
6436
ce9ce665
SAS
6437 /*
6438 * Interrupts should be disabled here because the caller holds the
b93b0163 6439 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6440 * important here to have the interrupts disabled because it is the
b93b0163 6441 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6442 */
6443 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6444 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6445 -nr_entries);
21afa38e 6446 memcg_check_events(memcg, page);
73f576c0
JW
6447
6448 if (!mem_cgroup_is_root(memcg))
d08afa14 6449 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6450}
6451
38d8b4e6
HY
6452/**
6453 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6454 * @page: page being added to swap
6455 * @entry: swap entry to charge
6456 *
38d8b4e6 6457 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6458 *
6459 * Returns 0 on success, -ENOMEM on failure.
6460 */
6461int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6462{
38d8b4e6 6463 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6464 struct page_counter *counter;
38d8b4e6 6465 struct mem_cgroup *memcg;
37e84351
VD
6466 unsigned short oldid;
6467
6468 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6469 return 0;
6470
6471 memcg = page->mem_cgroup;
6472
6473 /* Readahead page, never charged */
6474 if (!memcg)
6475 return 0;
6476
f3a53a3a
TH
6477 if (!entry.val) {
6478 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6479 return 0;
f3a53a3a 6480 }
bb98f2c5 6481
1f47b61f
VD
6482 memcg = mem_cgroup_id_get_online(memcg);
6483
37e84351 6484 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6485 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6486 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6487 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6488 mem_cgroup_id_put(memcg);
37e84351 6489 return -ENOMEM;
1f47b61f 6490 }
37e84351 6491
38d8b4e6
HY
6492 /* Get references for the tail pages, too */
6493 if (nr_pages > 1)
6494 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6495 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6496 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6497 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6498
37e84351
VD
6499 return 0;
6500}
6501
21afa38e 6502/**
38d8b4e6 6503 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6504 * @entry: swap entry to uncharge
38d8b4e6 6505 * @nr_pages: the amount of swap space to uncharge
21afa38e 6506 */
38d8b4e6 6507void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6508{
6509 struct mem_cgroup *memcg;
6510 unsigned short id;
6511
37e84351 6512 if (!do_swap_account)
21afa38e
JW
6513 return;
6514
38d8b4e6 6515 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6516 rcu_read_lock();
adbe427b 6517 memcg = mem_cgroup_from_id(id);
21afa38e 6518 if (memcg) {
37e84351
VD
6519 if (!mem_cgroup_is_root(memcg)) {
6520 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6521 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6522 else
38d8b4e6 6523 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6524 }
c9019e9b 6525 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6526 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6527 }
6528 rcu_read_unlock();
6529}
6530
d8b38438
VD
6531long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6532{
6533 long nr_swap_pages = get_nr_swap_pages();
6534
6535 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6536 return nr_swap_pages;
6537 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6538 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6539 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6540 page_counter_read(&memcg->swap));
6541 return nr_swap_pages;
6542}
6543
5ccc5aba
VD
6544bool mem_cgroup_swap_full(struct page *page)
6545{
6546 struct mem_cgroup *memcg;
6547
6548 VM_BUG_ON_PAGE(!PageLocked(page), page);
6549
6550 if (vm_swap_full())
6551 return true;
6552 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6553 return false;
6554
6555 memcg = page->mem_cgroup;
6556 if (!memcg)
6557 return false;
6558
6559 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6560 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6561 return true;
6562
6563 return false;
6564}
6565
21afa38e
JW
6566/* for remember boot option*/
6567#ifdef CONFIG_MEMCG_SWAP_ENABLED
6568static int really_do_swap_account __initdata = 1;
6569#else
6570static int really_do_swap_account __initdata;
6571#endif
6572
6573static int __init enable_swap_account(char *s)
6574{
6575 if (!strcmp(s, "1"))
6576 really_do_swap_account = 1;
6577 else if (!strcmp(s, "0"))
6578 really_do_swap_account = 0;
6579 return 1;
6580}
6581__setup("swapaccount=", enable_swap_account);
6582
37e84351
VD
6583static u64 swap_current_read(struct cgroup_subsys_state *css,
6584 struct cftype *cft)
6585{
6586 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6587
6588 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6589}
6590
6591static int swap_max_show(struct seq_file *m, void *v)
6592{
677dc973
CD
6593 return seq_puts_memcg_tunable(m,
6594 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
6595}
6596
6597static ssize_t swap_max_write(struct kernfs_open_file *of,
6598 char *buf, size_t nbytes, loff_t off)
6599{
6600 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6601 unsigned long max;
6602 int err;
6603
6604 buf = strstrip(buf);
6605 err = page_counter_memparse(buf, "max", &max);
6606 if (err)
6607 return err;
6608
be09102b 6609 xchg(&memcg->swap.max, max);
37e84351
VD
6610
6611 return nbytes;
6612}
6613
f3a53a3a
TH
6614static int swap_events_show(struct seq_file *m, void *v)
6615{
aa9694bb 6616 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
6617
6618 seq_printf(m, "max %lu\n",
6619 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6620 seq_printf(m, "fail %lu\n",
6621 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6622
6623 return 0;
6624}
6625
37e84351
VD
6626static struct cftype swap_files[] = {
6627 {
6628 .name = "swap.current",
6629 .flags = CFTYPE_NOT_ON_ROOT,
6630 .read_u64 = swap_current_read,
6631 },
6632 {
6633 .name = "swap.max",
6634 .flags = CFTYPE_NOT_ON_ROOT,
6635 .seq_show = swap_max_show,
6636 .write = swap_max_write,
6637 },
f3a53a3a
TH
6638 {
6639 .name = "swap.events",
6640 .flags = CFTYPE_NOT_ON_ROOT,
6641 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6642 .seq_show = swap_events_show,
6643 },
37e84351
VD
6644 { } /* terminate */
6645};
6646
21afa38e
JW
6647static struct cftype memsw_cgroup_files[] = {
6648 {
6649 .name = "memsw.usage_in_bytes",
6650 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6651 .read_u64 = mem_cgroup_read_u64,
6652 },
6653 {
6654 .name = "memsw.max_usage_in_bytes",
6655 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6656 .write = mem_cgroup_reset,
6657 .read_u64 = mem_cgroup_read_u64,
6658 },
6659 {
6660 .name = "memsw.limit_in_bytes",
6661 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6662 .write = mem_cgroup_write,
6663 .read_u64 = mem_cgroup_read_u64,
6664 },
6665 {
6666 .name = "memsw.failcnt",
6667 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6668 .write = mem_cgroup_reset,
6669 .read_u64 = mem_cgroup_read_u64,
6670 },
6671 { }, /* terminate */
6672};
6673
6674static int __init mem_cgroup_swap_init(void)
6675{
6676 if (!mem_cgroup_disabled() && really_do_swap_account) {
6677 do_swap_account = 1;
37e84351
VD
6678 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6679 swap_files));
21afa38e
JW
6680 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6681 memsw_cgroup_files));
6682 }
6683 return 0;
6684}
6685subsys_initcall(mem_cgroup_swap_init);
6686
6687#endif /* CONFIG_MEMCG_SWAP */