]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
mm: show node_pages_scanned per node, not zone
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
ef8f2327 135struct mem_cgroup_tree_per_node {
bb4cc1a8
AM
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
bb4cc1a8
AM
140struct mem_cgroup_tree {
141 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
142};
143
144static struct mem_cgroup_tree soft_limit_tree __read_mostly;
145
9490ff27
KH
146/* for OOM */
147struct mem_cgroup_eventfd_list {
148 struct list_head list;
149 struct eventfd_ctx *eventfd;
150};
2e72b634 151
79bd9814
TH
152/*
153 * cgroup_event represents events which userspace want to receive.
154 */
3bc942f3 155struct mem_cgroup_event {
79bd9814 156 /*
59b6f873 157 * memcg which the event belongs to.
79bd9814 158 */
59b6f873 159 struct mem_cgroup *memcg;
79bd9814
TH
160 /*
161 * eventfd to signal userspace about the event.
162 */
163 struct eventfd_ctx *eventfd;
164 /*
165 * Each of these stored in a list by the cgroup.
166 */
167 struct list_head list;
fba94807
TH
168 /*
169 * register_event() callback will be used to add new userspace
170 * waiter for changes related to this event. Use eventfd_signal()
171 * on eventfd to send notification to userspace.
172 */
59b6f873 173 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 174 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
175 /*
176 * unregister_event() callback will be called when userspace closes
177 * the eventfd or on cgroup removing. This callback must be set,
178 * if you want provide notification functionality.
179 */
59b6f873 180 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 181 struct eventfd_ctx *eventfd);
79bd9814
TH
182 /*
183 * All fields below needed to unregister event when
184 * userspace closes eventfd.
185 */
186 poll_table pt;
187 wait_queue_head_t *wqh;
188 wait_queue_t wait;
189 struct work_struct remove;
190};
191
c0ff4b85
R
192static void mem_cgroup_threshold(struct mem_cgroup *memcg);
193static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 194
7dc74be0
DN
195/* Stuffs for move charges at task migration. */
196/*
1dfab5ab 197 * Types of charges to be moved.
7dc74be0 198 */
1dfab5ab
JW
199#define MOVE_ANON 0x1U
200#define MOVE_FILE 0x2U
201#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 202
4ffef5fe
DN
203/* "mc" and its members are protected by cgroup_mutex */
204static struct move_charge_struct {
b1dd693e 205 spinlock_t lock; /* for from, to */
264a0ae1 206 struct mm_struct *mm;
4ffef5fe
DN
207 struct mem_cgroup *from;
208 struct mem_cgroup *to;
1dfab5ab 209 unsigned long flags;
4ffef5fe 210 unsigned long precharge;
854ffa8d 211 unsigned long moved_charge;
483c30b5 212 unsigned long moved_swap;
8033b97c
DN
213 struct task_struct *moving_task; /* a task moving charges */
214 wait_queue_head_t waitq; /* a waitq for other context */
215} mc = {
2bd9bb20 216 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
217 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
218};
4ffef5fe 219
4e416953
BS
220/*
221 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
222 * limit reclaim to prevent infinite loops, if they ever occur.
223 */
a0db00fc 224#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 225#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 226
217bc319
KH
227enum charge_type {
228 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 229 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 230 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 231 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
232 NR_CHARGE_TYPE,
233};
234
8c7c6e34 235/* for encoding cft->private value on file */
86ae53e1
GC
236enum res_type {
237 _MEM,
238 _MEMSWAP,
239 _OOM_TYPE,
510fc4e1 240 _KMEM,
d55f90bf 241 _TCP,
86ae53e1
GC
242};
243
a0db00fc
KS
244#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
245#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 246#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
247/* Used for OOM nofiier */
248#define OOM_CONTROL (0)
8c7c6e34 249
70ddf637
AV
250/* Some nice accessors for the vmpressure. */
251struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252{
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256}
257
258struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259{
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261}
262
7ffc0edc
MH
263static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
264{
265 return (memcg == root_mem_cgroup);
266}
267
127424c8 268#ifndef CONFIG_SLOB
55007d84 269/*
f7ce3190 270 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
271 * The main reason for not using cgroup id for this:
272 * this works better in sparse environments, where we have a lot of memcgs,
273 * but only a few kmem-limited. Or also, if we have, for instance, 200
274 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
275 * 200 entry array for that.
55007d84 276 *
dbcf73e2
VD
277 * The current size of the caches array is stored in memcg_nr_cache_ids. It
278 * will double each time we have to increase it.
55007d84 279 */
dbcf73e2
VD
280static DEFINE_IDA(memcg_cache_ida);
281int memcg_nr_cache_ids;
749c5415 282
05257a1a
VD
283/* Protects memcg_nr_cache_ids */
284static DECLARE_RWSEM(memcg_cache_ids_sem);
285
286void memcg_get_cache_ids(void)
287{
288 down_read(&memcg_cache_ids_sem);
289}
290
291void memcg_put_cache_ids(void)
292{
293 up_read(&memcg_cache_ids_sem);
294}
295
55007d84
GC
296/*
297 * MIN_SIZE is different than 1, because we would like to avoid going through
298 * the alloc/free process all the time. In a small machine, 4 kmem-limited
299 * cgroups is a reasonable guess. In the future, it could be a parameter or
300 * tunable, but that is strictly not necessary.
301 *
b8627835 302 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
303 * this constant directly from cgroup, but it is understandable that this is
304 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 305 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
306 * increase ours as well if it increases.
307 */
308#define MEMCG_CACHES_MIN_SIZE 4
b8627835 309#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 310
d7f25f8a
GC
311/*
312 * A lot of the calls to the cache allocation functions are expected to be
313 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
314 * conditional to this static branch, we'll have to allow modules that does
315 * kmem_cache_alloc and the such to see this symbol as well
316 */
ef12947c 317DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 318EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 319
127424c8 320#endif /* !CONFIG_SLOB */
a8964b9b 321
ad7fa852
TH
322/**
323 * mem_cgroup_css_from_page - css of the memcg associated with a page
324 * @page: page of interest
325 *
326 * If memcg is bound to the default hierarchy, css of the memcg associated
327 * with @page is returned. The returned css remains associated with @page
328 * until it is released.
329 *
330 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
331 * is returned.
ad7fa852
TH
332 */
333struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
334{
335 struct mem_cgroup *memcg;
336
ad7fa852
TH
337 memcg = page->mem_cgroup;
338
9e10a130 339 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
340 memcg = root_mem_cgroup;
341
ad7fa852
TH
342 return &memcg->css;
343}
344
2fc04524
VD
345/**
346 * page_cgroup_ino - return inode number of the memcg a page is charged to
347 * @page: the page
348 *
349 * Look up the closest online ancestor of the memory cgroup @page is charged to
350 * and return its inode number or 0 if @page is not charged to any cgroup. It
351 * is safe to call this function without holding a reference to @page.
352 *
353 * Note, this function is inherently racy, because there is nothing to prevent
354 * the cgroup inode from getting torn down and potentially reallocated a moment
355 * after page_cgroup_ino() returns, so it only should be used by callers that
356 * do not care (such as procfs interfaces).
357 */
358ino_t page_cgroup_ino(struct page *page)
359{
360 struct mem_cgroup *memcg;
361 unsigned long ino = 0;
362
363 rcu_read_lock();
364 memcg = READ_ONCE(page->mem_cgroup);
365 while (memcg && !(memcg->css.flags & CSS_ONLINE))
366 memcg = parent_mem_cgroup(memcg);
367 if (memcg)
368 ino = cgroup_ino(memcg->css.cgroup);
369 rcu_read_unlock();
370 return ino;
371}
372
ef8f2327
MG
373static struct mem_cgroup_per_node *
374mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 375{
97a6c37b 376 int nid = page_to_nid(page);
f64c3f54 377
ef8f2327 378 return memcg->nodeinfo[nid];
f64c3f54
BS
379}
380
ef8f2327
MG
381static struct mem_cgroup_tree_per_node *
382soft_limit_tree_node(int nid)
bb4cc1a8 383{
ef8f2327 384 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
385}
386
ef8f2327 387static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
388soft_limit_tree_from_page(struct page *page)
389{
390 int nid = page_to_nid(page);
bb4cc1a8 391
ef8f2327 392 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
393}
394
ef8f2327
MG
395static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
396 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 397 unsigned long new_usage_in_excess)
bb4cc1a8
AM
398{
399 struct rb_node **p = &mctz->rb_root.rb_node;
400 struct rb_node *parent = NULL;
ef8f2327 401 struct mem_cgroup_per_node *mz_node;
bb4cc1a8
AM
402
403 if (mz->on_tree)
404 return;
405
406 mz->usage_in_excess = new_usage_in_excess;
407 if (!mz->usage_in_excess)
408 return;
409 while (*p) {
410 parent = *p;
ef8f2327 411 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8
AM
412 tree_node);
413 if (mz->usage_in_excess < mz_node->usage_in_excess)
414 p = &(*p)->rb_left;
415 /*
416 * We can't avoid mem cgroups that are over their soft
417 * limit by the same amount
418 */
419 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
420 p = &(*p)->rb_right;
421 }
422 rb_link_node(&mz->tree_node, parent, p);
423 rb_insert_color(&mz->tree_node, &mctz->rb_root);
424 mz->on_tree = true;
425}
426
ef8f2327
MG
427static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
428 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
429{
430 if (!mz->on_tree)
431 return;
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
ef8f2327
MG
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 438{
0a31bc97
JW
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 442 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 443 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
444}
445
3e32cb2e
JW
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
bb4cc1a8
AM
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
3e32cb2e 460 unsigned long excess;
ef8f2327
MG
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 463
e231875b 464 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
465 /*
466 * Necessary to update all ancestors when hierarchy is used.
467 * because their event counter is not touched.
468 */
469 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 470 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 471 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
472 /*
473 * We have to update the tree if mz is on RB-tree or
474 * mem is over its softlimit.
475 */
476 if (excess || mz->on_tree) {
0a31bc97
JW
477 unsigned long flags;
478
479 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
480 /* if on-tree, remove it */
481 if (mz->on_tree)
cf2c8127 482 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
483 /*
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
486 */
cf2c8127 487 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 488 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
489 }
490 }
491}
492
493static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
494{
ef8f2327
MG
495 struct mem_cgroup_tree_per_node *mctz;
496 struct mem_cgroup_per_node *mz;
497 int nid;
bb4cc1a8 498
e231875b 499 for_each_node(nid) {
ef8f2327
MG
500 mz = mem_cgroup_nodeinfo(memcg, nid);
501 mctz = soft_limit_tree_node(nid);
502 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
503 }
504}
505
ef8f2327
MG
506static struct mem_cgroup_per_node *
507__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
508{
509 struct rb_node *rightmost = NULL;
ef8f2327 510 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
511
512retry:
513 mz = NULL;
514 rightmost = rb_last(&mctz->rb_root);
515 if (!rightmost)
516 goto done; /* Nothing to reclaim from */
517
ef8f2327 518 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
519 /*
520 * Remove the node now but someone else can add it back,
521 * we will to add it back at the end of reclaim to its correct
522 * position in the tree.
523 */
cf2c8127 524 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 525 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 526 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
527 goto retry;
528done:
529 return mz;
530}
531
ef8f2327
MG
532static struct mem_cgroup_per_node *
533mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 534{
ef8f2327 535 struct mem_cgroup_per_node *mz;
bb4cc1a8 536
0a31bc97 537 spin_lock_irq(&mctz->lock);
bb4cc1a8 538 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 539 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
540 return mz;
541}
542
711d3d2c 543/*
484ebb3b
GT
544 * Return page count for single (non recursive) @memcg.
545 *
711d3d2c
KH
546 * Implementation Note: reading percpu statistics for memcg.
547 *
548 * Both of vmstat[] and percpu_counter has threshold and do periodic
549 * synchronization to implement "quick" read. There are trade-off between
550 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 551 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
552 *
553 * But this _read() function is used for user interface now. The user accounts
554 * memory usage by memory cgroup and he _always_ requires exact value because
555 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
556 * have to visit all online cpus and make sum. So, for now, unnecessary
557 * synchronization is not implemented. (just implemented for cpu hotplug)
558 *
559 * If there are kernel internal actions which can make use of some not-exact
560 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 561 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
562 * implemented.
563 */
484ebb3b
GT
564static unsigned long
565mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 566{
7a159cc9 567 long val = 0;
c62b1a3b 568 int cpu;
c62b1a3b 569
484ebb3b 570 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 571 for_each_possible_cpu(cpu)
c0ff4b85 572 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
573 /*
574 * Summing races with updates, so val may be negative. Avoid exposing
575 * transient negative values.
576 */
577 if (val < 0)
578 val = 0;
c62b1a3b
KH
579 return val;
580}
581
c0ff4b85 582static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
583 enum mem_cgroup_events_index idx)
584{
585 unsigned long val = 0;
586 int cpu;
587
733a572e 588 for_each_possible_cpu(cpu)
c0ff4b85 589 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
590 return val;
591}
592
c0ff4b85 593static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 594 struct page *page,
f627c2f5 595 bool compound, int nr_pages)
d52aa412 596{
b2402857
KH
597 /*
598 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
599 * counted as CACHE even if it's on ANON LRU.
600 */
0a31bc97 601 if (PageAnon(page))
b2402857 602 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 603 nr_pages);
d52aa412 604 else
b2402857 605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 606 nr_pages);
55e462b0 607
f627c2f5
KS
608 if (compound) {
609 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
611 nr_pages);
f627c2f5 612 }
b070e65c 613
e401f176
KH
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
c0ff4b85 616 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 617 else {
c0ff4b85 618 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
619 nr_pages = -nr_pages; /* for event */
620 }
e401f176 621
13114716 622 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
623}
624
0a6b76dd
VD
625unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
626 int nid, unsigned int lru_mask)
bb2a0de9 627{
e231875b 628 unsigned long nr = 0;
ef8f2327
MG
629 struct mem_cgroup_per_node *mz;
630 enum lru_list lru;
889976db 631
e231875b 632 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 633
ef8f2327
MG
634 for_each_lru(lru) {
635 if (!(BIT(lru) & lru_mask))
636 continue;
637 mz = mem_cgroup_nodeinfo(memcg, nid);
638 nr += mz->lru_size[lru];
e231875b
JZ
639 }
640 return nr;
889976db 641}
bb2a0de9 642
c0ff4b85 643static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 644 unsigned int lru_mask)
6d12e2d8 645{
e231875b 646 unsigned long nr = 0;
889976db 647 int nid;
6d12e2d8 648
31aaea4a 649 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
650 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
651 return nr;
d52aa412
KH
652}
653
f53d7ce3
JW
654static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
655 enum mem_cgroup_events_target target)
7a159cc9
JW
656{
657 unsigned long val, next;
658
13114716 659 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 660 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 661 /* from time_after() in jiffies.h */
f53d7ce3
JW
662 if ((long)next - (long)val < 0) {
663 switch (target) {
664 case MEM_CGROUP_TARGET_THRESH:
665 next = val + THRESHOLDS_EVENTS_TARGET;
666 break;
bb4cc1a8
AM
667 case MEM_CGROUP_TARGET_SOFTLIMIT:
668 next = val + SOFTLIMIT_EVENTS_TARGET;
669 break;
f53d7ce3
JW
670 case MEM_CGROUP_TARGET_NUMAINFO:
671 next = val + NUMAINFO_EVENTS_TARGET;
672 break;
673 default:
674 break;
675 }
676 __this_cpu_write(memcg->stat->targets[target], next);
677 return true;
7a159cc9 678 }
f53d7ce3 679 return false;
d2265e6f
KH
680}
681
682/*
683 * Check events in order.
684 *
685 */
c0ff4b85 686static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
687{
688 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
689 if (unlikely(mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 691 bool do_softlimit;
82b3f2a7 692 bool do_numainfo __maybe_unused;
f53d7ce3 693
bb4cc1a8
AM
694 do_softlimit = mem_cgroup_event_ratelimit(memcg,
695 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
696#if MAX_NUMNODES > 1
697 do_numainfo = mem_cgroup_event_ratelimit(memcg,
698 MEM_CGROUP_TARGET_NUMAINFO);
699#endif
c0ff4b85 700 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
701 if (unlikely(do_softlimit))
702 mem_cgroup_update_tree(memcg, page);
453a9bf3 703#if MAX_NUMNODES > 1
f53d7ce3 704 if (unlikely(do_numainfo))
c0ff4b85 705 atomic_inc(&memcg->numainfo_events);
453a9bf3 706#endif
0a31bc97 707 }
d2265e6f
KH
708}
709
cf475ad2 710struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 711{
31a78f23
BS
712 /*
713 * mm_update_next_owner() may clear mm->owner to NULL
714 * if it races with swapoff, page migration, etc.
715 * So this can be called with p == NULL.
716 */
717 if (unlikely(!p))
718 return NULL;
719
073219e9 720 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 721}
33398cf2 722EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 723
df381975 724static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 725{
c0ff4b85 726 struct mem_cgroup *memcg = NULL;
0b7f569e 727
54595fe2
KH
728 rcu_read_lock();
729 do {
6f6acb00
MH
730 /*
731 * Page cache insertions can happen withou an
732 * actual mm context, e.g. during disk probing
733 * on boot, loopback IO, acct() writes etc.
734 */
735 if (unlikely(!mm))
df381975 736 memcg = root_mem_cgroup;
6f6acb00
MH
737 else {
738 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
739 if (unlikely(!memcg))
740 memcg = root_mem_cgroup;
741 }
ec903c0c 742 } while (!css_tryget_online(&memcg->css));
54595fe2 743 rcu_read_unlock();
c0ff4b85 744 return memcg;
54595fe2
KH
745}
746
5660048c
JW
747/**
748 * mem_cgroup_iter - iterate over memory cgroup hierarchy
749 * @root: hierarchy root
750 * @prev: previously returned memcg, NULL on first invocation
751 * @reclaim: cookie for shared reclaim walks, NULL for full walks
752 *
753 * Returns references to children of the hierarchy below @root, or
754 * @root itself, or %NULL after a full round-trip.
755 *
756 * Caller must pass the return value in @prev on subsequent
757 * invocations for reference counting, or use mem_cgroup_iter_break()
758 * to cancel a hierarchy walk before the round-trip is complete.
759 *
760 * Reclaimers can specify a zone and a priority level in @reclaim to
761 * divide up the memcgs in the hierarchy among all concurrent
762 * reclaimers operating on the same zone and priority.
763 */
694fbc0f 764struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 765 struct mem_cgroup *prev,
694fbc0f 766 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 767{
33398cf2 768 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 769 struct cgroup_subsys_state *css = NULL;
9f3a0d09 770 struct mem_cgroup *memcg = NULL;
5ac8fb31 771 struct mem_cgroup *pos = NULL;
711d3d2c 772
694fbc0f
AM
773 if (mem_cgroup_disabled())
774 return NULL;
5660048c 775
9f3a0d09
JW
776 if (!root)
777 root = root_mem_cgroup;
7d74b06f 778
9f3a0d09 779 if (prev && !reclaim)
5ac8fb31 780 pos = prev;
14067bb3 781
9f3a0d09
JW
782 if (!root->use_hierarchy && root != root_mem_cgroup) {
783 if (prev)
5ac8fb31 784 goto out;
694fbc0f 785 return root;
9f3a0d09 786 }
14067bb3 787
542f85f9 788 rcu_read_lock();
5f578161 789
5ac8fb31 790 if (reclaim) {
ef8f2327 791 struct mem_cgroup_per_node *mz;
5ac8fb31 792
ef8f2327 793 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
794 iter = &mz->iter[reclaim->priority];
795
796 if (prev && reclaim->generation != iter->generation)
797 goto out_unlock;
798
6df38689 799 while (1) {
4db0c3c2 800 pos = READ_ONCE(iter->position);
6df38689
VD
801 if (!pos || css_tryget(&pos->css))
802 break;
5ac8fb31 803 /*
6df38689
VD
804 * css reference reached zero, so iter->position will
805 * be cleared by ->css_released. However, we should not
806 * rely on this happening soon, because ->css_released
807 * is called from a work queue, and by busy-waiting we
808 * might block it. So we clear iter->position right
809 * away.
5ac8fb31 810 */
6df38689
VD
811 (void)cmpxchg(&iter->position, pos, NULL);
812 }
5ac8fb31
JW
813 }
814
815 if (pos)
816 css = &pos->css;
817
818 for (;;) {
819 css = css_next_descendant_pre(css, &root->css);
820 if (!css) {
821 /*
822 * Reclaimers share the hierarchy walk, and a
823 * new one might jump in right at the end of
824 * the hierarchy - make sure they see at least
825 * one group and restart from the beginning.
826 */
827 if (!prev)
828 continue;
829 break;
527a5ec9 830 }
7d74b06f 831
5ac8fb31
JW
832 /*
833 * Verify the css and acquire a reference. The root
834 * is provided by the caller, so we know it's alive
835 * and kicking, and don't take an extra reference.
836 */
837 memcg = mem_cgroup_from_css(css);
14067bb3 838
5ac8fb31
JW
839 if (css == &root->css)
840 break;
14067bb3 841
0b8f73e1
JW
842 if (css_tryget(css))
843 break;
9f3a0d09 844
5ac8fb31 845 memcg = NULL;
9f3a0d09 846 }
5ac8fb31
JW
847
848 if (reclaim) {
5ac8fb31 849 /*
6df38689
VD
850 * The position could have already been updated by a competing
851 * thread, so check that the value hasn't changed since we read
852 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 853 */
6df38689
VD
854 (void)cmpxchg(&iter->position, pos, memcg);
855
5ac8fb31
JW
856 if (pos)
857 css_put(&pos->css);
858
859 if (!memcg)
860 iter->generation++;
861 else if (!prev)
862 reclaim->generation = iter->generation;
9f3a0d09 863 }
5ac8fb31 864
542f85f9
MH
865out_unlock:
866 rcu_read_unlock();
5ac8fb31 867out:
c40046f3
MH
868 if (prev && prev != root)
869 css_put(&prev->css);
870
9f3a0d09 871 return memcg;
14067bb3 872}
7d74b06f 873
5660048c
JW
874/**
875 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
876 * @root: hierarchy root
877 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
878 */
879void mem_cgroup_iter_break(struct mem_cgroup *root,
880 struct mem_cgroup *prev)
9f3a0d09
JW
881{
882 if (!root)
883 root = root_mem_cgroup;
884 if (prev && prev != root)
885 css_put(&prev->css);
886}
7d74b06f 887
6df38689
VD
888static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
889{
890 struct mem_cgroup *memcg = dead_memcg;
891 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
892 struct mem_cgroup_per_node *mz;
893 int nid;
6df38689
VD
894 int i;
895
896 while ((memcg = parent_mem_cgroup(memcg))) {
897 for_each_node(nid) {
ef8f2327
MG
898 mz = mem_cgroup_nodeinfo(memcg, nid);
899 for (i = 0; i <= DEF_PRIORITY; i++) {
900 iter = &mz->iter[i];
901 cmpxchg(&iter->position,
902 dead_memcg, NULL);
6df38689
VD
903 }
904 }
905 }
906}
907
9f3a0d09
JW
908/*
909 * Iteration constructs for visiting all cgroups (under a tree). If
910 * loops are exited prematurely (break), mem_cgroup_iter_break() must
911 * be used for reference counting.
912 */
913#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 914 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 915 iter != NULL; \
527a5ec9 916 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 917
9f3a0d09 918#define for_each_mem_cgroup(iter) \
527a5ec9 919 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 920 iter != NULL; \
527a5ec9 921 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 922
925b7673 923/**
dfe0e773 924 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 925 * @page: the page
fa9add64 926 * @zone: zone of the page
dfe0e773
JW
927 *
928 * This function is only safe when following the LRU page isolation
929 * and putback protocol: the LRU lock must be held, and the page must
930 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 931 */
599d0c95 932struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 933{
ef8f2327 934 struct mem_cgroup_per_node *mz;
925b7673 935 struct mem_cgroup *memcg;
bea8c150 936 struct lruvec *lruvec;
6d12e2d8 937
bea8c150 938 if (mem_cgroup_disabled()) {
599d0c95 939 lruvec = &pgdat->lruvec;
bea8c150
HD
940 goto out;
941 }
925b7673 942
1306a85a 943 memcg = page->mem_cgroup;
7512102c 944 /*
dfe0e773 945 * Swapcache readahead pages are added to the LRU - and
29833315 946 * possibly migrated - before they are charged.
7512102c 947 */
29833315
JW
948 if (!memcg)
949 memcg = root_mem_cgroup;
7512102c 950
ef8f2327 951 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
952 lruvec = &mz->lruvec;
953out:
954 /*
955 * Since a node can be onlined after the mem_cgroup was created,
956 * we have to be prepared to initialize lruvec->zone here;
957 * and if offlined then reonlined, we need to reinitialize it.
958 */
599d0c95
MG
959 if (unlikely(lruvec->pgdat != pgdat))
960 lruvec->pgdat = pgdat;
bea8c150 961 return lruvec;
08e552c6 962}
b69408e8 963
925b7673 964/**
fa9add64
HD
965 * mem_cgroup_update_lru_size - account for adding or removing an lru page
966 * @lruvec: mem_cgroup per zone lru vector
967 * @lru: index of lru list the page is sitting on
599d0c95 968 * @zid: Zone ID of the zone pages have been added to
fa9add64 969 * @nr_pages: positive when adding or negative when removing
925b7673 970 *
ca707239
HD
971 * This function must be called under lru_lock, just before a page is added
972 * to or just after a page is removed from an lru list (that ordering being
973 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 974 */
fa9add64 975void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
599d0c95 976 enum zone_type zid, int nr_pages)
3f58a829 977{
ef8f2327 978 struct mem_cgroup_per_node *mz;
fa9add64 979 unsigned long *lru_size;
ca707239
HD
980 long size;
981 bool empty;
3f58a829 982
599d0c95 983 __update_lru_size(lruvec, lru, zid, nr_pages);
9d5e6a9f 984
3f58a829
MK
985 if (mem_cgroup_disabled())
986 return;
987
ef8f2327 988 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
fa9add64 989 lru_size = mz->lru_size + lru;
ca707239
HD
990 empty = list_empty(lruvec->lists + lru);
991
992 if (nr_pages < 0)
993 *lru_size += nr_pages;
994
995 size = *lru_size;
996 if (WARN_ONCE(size < 0 || empty != !size,
997 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
998 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
999 VM_BUG_ON(1);
1000 *lru_size = 0;
1001 }
1002
1003 if (nr_pages > 0)
1004 *lru_size += nr_pages;
08e552c6 1005}
544122e5 1006
2314b42d 1007bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1008{
2314b42d 1009 struct mem_cgroup *task_memcg;
158e0a2d 1010 struct task_struct *p;
ffbdccf5 1011 bool ret;
4c4a2214 1012
158e0a2d 1013 p = find_lock_task_mm(task);
de077d22 1014 if (p) {
2314b42d 1015 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1016 task_unlock(p);
1017 } else {
1018 /*
1019 * All threads may have already detached their mm's, but the oom
1020 * killer still needs to detect if they have already been oom
1021 * killed to prevent needlessly killing additional tasks.
1022 */
ffbdccf5 1023 rcu_read_lock();
2314b42d
JW
1024 task_memcg = mem_cgroup_from_task(task);
1025 css_get(&task_memcg->css);
ffbdccf5 1026 rcu_read_unlock();
de077d22 1027 }
2314b42d
JW
1028 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1029 css_put(&task_memcg->css);
4c4a2214
DR
1030 return ret;
1031}
1032
19942822 1033/**
9d11ea9f 1034 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1035 * @memcg: the memory cgroup
19942822 1036 *
9d11ea9f 1037 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1038 * pages.
19942822 1039 */
c0ff4b85 1040static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1041{
3e32cb2e
JW
1042 unsigned long margin = 0;
1043 unsigned long count;
1044 unsigned long limit;
9d11ea9f 1045
3e32cb2e 1046 count = page_counter_read(&memcg->memory);
4db0c3c2 1047 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1048 if (count < limit)
1049 margin = limit - count;
1050
7941d214 1051 if (do_memsw_account()) {
3e32cb2e 1052 count = page_counter_read(&memcg->memsw);
4db0c3c2 1053 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1054 if (count <= limit)
1055 margin = min(margin, limit - count);
cbedbac3
LR
1056 else
1057 margin = 0;
3e32cb2e
JW
1058 }
1059
1060 return margin;
19942822
JW
1061}
1062
32047e2a 1063/*
bdcbb659 1064 * A routine for checking "mem" is under move_account() or not.
32047e2a 1065 *
bdcbb659
QH
1066 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1067 * moving cgroups. This is for waiting at high-memory pressure
1068 * caused by "move".
32047e2a 1069 */
c0ff4b85 1070static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1071{
2bd9bb20
KH
1072 struct mem_cgroup *from;
1073 struct mem_cgroup *to;
4b534334 1074 bool ret = false;
2bd9bb20
KH
1075 /*
1076 * Unlike task_move routines, we access mc.to, mc.from not under
1077 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1078 */
1079 spin_lock(&mc.lock);
1080 from = mc.from;
1081 to = mc.to;
1082 if (!from)
1083 goto unlock;
3e92041d 1084
2314b42d
JW
1085 ret = mem_cgroup_is_descendant(from, memcg) ||
1086 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1087unlock:
1088 spin_unlock(&mc.lock);
4b534334
KH
1089 return ret;
1090}
1091
c0ff4b85 1092static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1093{
1094 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1095 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1096 DEFINE_WAIT(wait);
1097 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1098 /* moving charge context might have finished. */
1099 if (mc.moving_task)
1100 schedule();
1101 finish_wait(&mc.waitq, &wait);
1102 return true;
1103 }
1104 }
1105 return false;
1106}
1107
58cf188e 1108#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1109/**
58cf188e 1110 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1111 * @memcg: The memory cgroup that went over limit
1112 * @p: Task that is going to be killed
1113 *
1114 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1115 * enabled
1116 */
1117void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1118{
58cf188e
SZ
1119 struct mem_cgroup *iter;
1120 unsigned int i;
e222432b 1121
e222432b
BS
1122 rcu_read_lock();
1123
2415b9f5
BV
1124 if (p) {
1125 pr_info("Task in ");
1126 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1127 pr_cont(" killed as a result of limit of ");
1128 } else {
1129 pr_info("Memory limit reached of cgroup ");
1130 }
1131
e61734c5 1132 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1133 pr_cont("\n");
e222432b 1134
e222432b
BS
1135 rcu_read_unlock();
1136
3e32cb2e
JW
1137 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1138 K((u64)page_counter_read(&memcg->memory)),
1139 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1140 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1141 K((u64)page_counter_read(&memcg->memsw)),
1142 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1143 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1144 K((u64)page_counter_read(&memcg->kmem)),
1145 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1146
1147 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1148 pr_info("Memory cgroup stats for ");
1149 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1150 pr_cont(":");
1151
1152 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1153 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1154 continue;
484ebb3b 1155 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1156 K(mem_cgroup_read_stat(iter, i)));
1157 }
1158
1159 for (i = 0; i < NR_LRU_LISTS; i++)
1160 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1161 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1162
1163 pr_cont("\n");
1164 }
e222432b
BS
1165}
1166
81d39c20
KH
1167/*
1168 * This function returns the number of memcg under hierarchy tree. Returns
1169 * 1(self count) if no children.
1170 */
c0ff4b85 1171static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1172{
1173 int num = 0;
7d74b06f
KH
1174 struct mem_cgroup *iter;
1175
c0ff4b85 1176 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1177 num++;
81d39c20
KH
1178 return num;
1179}
1180
a63d83f4
DR
1181/*
1182 * Return the memory (and swap, if configured) limit for a memcg.
1183 */
3e32cb2e 1184static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1185{
3e32cb2e 1186 unsigned long limit;
f3e8eb70 1187
3e32cb2e 1188 limit = memcg->memory.limit;
9a5a8f19 1189 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1190 unsigned long memsw_limit;
37e84351 1191 unsigned long swap_limit;
9a5a8f19 1192
3e32cb2e 1193 memsw_limit = memcg->memsw.limit;
37e84351
VD
1194 swap_limit = memcg->swap.limit;
1195 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1196 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1197 }
9a5a8f19 1198 return limit;
a63d83f4
DR
1199}
1200
b6e6edcf 1201static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1202 int order)
9cbb78bb 1203{
6e0fc46d
DR
1204 struct oom_control oc = {
1205 .zonelist = NULL,
1206 .nodemask = NULL,
2a966b77 1207 .memcg = memcg,
6e0fc46d
DR
1208 .gfp_mask = gfp_mask,
1209 .order = order,
6e0fc46d 1210 };
9cbb78bb
DR
1211 struct mem_cgroup *iter;
1212 unsigned long chosen_points = 0;
1213 unsigned long totalpages;
1214 unsigned int points = 0;
1215 struct task_struct *chosen = NULL;
1216
dc56401f
JW
1217 mutex_lock(&oom_lock);
1218
876aafbf 1219 /*
465adcf1
DR
1220 * If current has a pending SIGKILL or is exiting, then automatically
1221 * select it. The goal is to allow it to allocate so that it may
1222 * quickly exit and free its memory.
876aafbf 1223 */
1af8bb43 1224 if (task_will_free_mem(current)) {
16e95196 1225 mark_oom_victim(current);
1af8bb43 1226 wake_oom_reaper(current);
dc56401f 1227 goto unlock;
876aafbf
DR
1228 }
1229
2a966b77 1230 check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
3e32cb2e 1231 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1232 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1233 struct css_task_iter it;
9cbb78bb
DR
1234 struct task_struct *task;
1235
72ec7029
TH
1236 css_task_iter_start(&iter->css, &it);
1237 while ((task = css_task_iter_next(&it))) {
fbe84a09 1238 switch (oom_scan_process_thread(&oc, task)) {
9cbb78bb
DR
1239 case OOM_SCAN_SELECT:
1240 if (chosen)
1241 put_task_struct(chosen);
1242 chosen = task;
1243 chosen_points = ULONG_MAX;
1244 get_task_struct(chosen);
1245 /* fall through */
1246 case OOM_SCAN_CONTINUE:
1247 continue;
1248 case OOM_SCAN_ABORT:
72ec7029 1249 css_task_iter_end(&it);
9cbb78bb
DR
1250 mem_cgroup_iter_break(memcg, iter);
1251 if (chosen)
1252 put_task_struct(chosen);
1ebab2db
TH
1253 /* Set a dummy value to return "true". */
1254 chosen = (void *) 1;
dc56401f 1255 goto unlock;
9cbb78bb
DR
1256 case OOM_SCAN_OK:
1257 break;
1258 };
1259 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1260 if (!points || points < chosen_points)
1261 continue;
1262 /* Prefer thread group leaders for display purposes */
1263 if (points == chosen_points &&
1264 thread_group_leader(chosen))
1265 continue;
1266
1267 if (chosen)
1268 put_task_struct(chosen);
1269 chosen = task;
1270 chosen_points = points;
1271 get_task_struct(chosen);
9cbb78bb 1272 }
72ec7029 1273 css_task_iter_end(&it);
9cbb78bb
DR
1274 }
1275
dc56401f
JW
1276 if (chosen) {
1277 points = chosen_points * 1000 / totalpages;
2a966b77 1278 oom_kill_process(&oc, chosen, points, totalpages,
6e0fc46d 1279 "Memory cgroup out of memory");
dc56401f
JW
1280 }
1281unlock:
1282 mutex_unlock(&oom_lock);
b6e6edcf 1283 return chosen;
9cbb78bb
DR
1284}
1285
ae6e71d3
MC
1286#if MAX_NUMNODES > 1
1287
4d0c066d
KH
1288/**
1289 * test_mem_cgroup_node_reclaimable
dad7557e 1290 * @memcg: the target memcg
4d0c066d
KH
1291 * @nid: the node ID to be checked.
1292 * @noswap : specify true here if the user wants flle only information.
1293 *
1294 * This function returns whether the specified memcg contains any
1295 * reclaimable pages on a node. Returns true if there are any reclaimable
1296 * pages in the node.
1297 */
c0ff4b85 1298static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1299 int nid, bool noswap)
1300{
c0ff4b85 1301 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1302 return true;
1303 if (noswap || !total_swap_pages)
1304 return false;
c0ff4b85 1305 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1306 return true;
1307 return false;
1308
1309}
889976db
YH
1310
1311/*
1312 * Always updating the nodemask is not very good - even if we have an empty
1313 * list or the wrong list here, we can start from some node and traverse all
1314 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1315 *
1316 */
c0ff4b85 1317static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1318{
1319 int nid;
453a9bf3
KH
1320 /*
1321 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1322 * pagein/pageout changes since the last update.
1323 */
c0ff4b85 1324 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1325 return;
c0ff4b85 1326 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1327 return;
1328
889976db 1329 /* make a nodemask where this memcg uses memory from */
31aaea4a 1330 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1331
31aaea4a 1332 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1333
c0ff4b85
R
1334 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1335 node_clear(nid, memcg->scan_nodes);
889976db 1336 }
453a9bf3 1337
c0ff4b85
R
1338 atomic_set(&memcg->numainfo_events, 0);
1339 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1340}
1341
1342/*
1343 * Selecting a node where we start reclaim from. Because what we need is just
1344 * reducing usage counter, start from anywhere is O,K. Considering
1345 * memory reclaim from current node, there are pros. and cons.
1346 *
1347 * Freeing memory from current node means freeing memory from a node which
1348 * we'll use or we've used. So, it may make LRU bad. And if several threads
1349 * hit limits, it will see a contention on a node. But freeing from remote
1350 * node means more costs for memory reclaim because of memory latency.
1351 *
1352 * Now, we use round-robin. Better algorithm is welcomed.
1353 */
c0ff4b85 1354int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1355{
1356 int node;
1357
c0ff4b85
R
1358 mem_cgroup_may_update_nodemask(memcg);
1359 node = memcg->last_scanned_node;
889976db 1360
0edaf86c 1361 node = next_node_in(node, memcg->scan_nodes);
889976db 1362 /*
fda3d69b
MH
1363 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1364 * last time it really checked all the LRUs due to rate limiting.
1365 * Fallback to the current node in that case for simplicity.
889976db
YH
1366 */
1367 if (unlikely(node == MAX_NUMNODES))
1368 node = numa_node_id();
1369
c0ff4b85 1370 memcg->last_scanned_node = node;
889976db
YH
1371 return node;
1372}
889976db 1373#else
c0ff4b85 1374int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1375{
1376 return 0;
1377}
1378#endif
1379
0608f43d 1380static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1381 pg_data_t *pgdat,
0608f43d
AM
1382 gfp_t gfp_mask,
1383 unsigned long *total_scanned)
1384{
1385 struct mem_cgroup *victim = NULL;
1386 int total = 0;
1387 int loop = 0;
1388 unsigned long excess;
1389 unsigned long nr_scanned;
1390 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1391 .pgdat = pgdat,
0608f43d
AM
1392 .priority = 0,
1393 };
1394
3e32cb2e 1395 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1396
1397 while (1) {
1398 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1399 if (!victim) {
1400 loop++;
1401 if (loop >= 2) {
1402 /*
1403 * If we have not been able to reclaim
1404 * anything, it might because there are
1405 * no reclaimable pages under this hierarchy
1406 */
1407 if (!total)
1408 break;
1409 /*
1410 * We want to do more targeted reclaim.
1411 * excess >> 2 is not to excessive so as to
1412 * reclaim too much, nor too less that we keep
1413 * coming back to reclaim from this cgroup
1414 */
1415 if (total >= (excess >> 2) ||
1416 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1417 break;
1418 }
1419 continue;
1420 }
a9dd0a83 1421 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1422 pgdat, &nr_scanned);
0608f43d 1423 *total_scanned += nr_scanned;
3e32cb2e 1424 if (!soft_limit_excess(root_memcg))
0608f43d 1425 break;
6d61ef40 1426 }
0608f43d
AM
1427 mem_cgroup_iter_break(root_memcg, victim);
1428 return total;
6d61ef40
BS
1429}
1430
0056f4e6
JW
1431#ifdef CONFIG_LOCKDEP
1432static struct lockdep_map memcg_oom_lock_dep_map = {
1433 .name = "memcg_oom_lock",
1434};
1435#endif
1436
fb2a6fc5
JW
1437static DEFINE_SPINLOCK(memcg_oom_lock);
1438
867578cb
KH
1439/*
1440 * Check OOM-Killer is already running under our hierarchy.
1441 * If someone is running, return false.
1442 */
fb2a6fc5 1443static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1444{
79dfdacc 1445 struct mem_cgroup *iter, *failed = NULL;
a636b327 1446
fb2a6fc5
JW
1447 spin_lock(&memcg_oom_lock);
1448
9f3a0d09 1449 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1450 if (iter->oom_lock) {
79dfdacc
MH
1451 /*
1452 * this subtree of our hierarchy is already locked
1453 * so we cannot give a lock.
1454 */
79dfdacc 1455 failed = iter;
9f3a0d09
JW
1456 mem_cgroup_iter_break(memcg, iter);
1457 break;
23751be0
JW
1458 } else
1459 iter->oom_lock = true;
7d74b06f 1460 }
867578cb 1461
fb2a6fc5
JW
1462 if (failed) {
1463 /*
1464 * OK, we failed to lock the whole subtree so we have
1465 * to clean up what we set up to the failing subtree
1466 */
1467 for_each_mem_cgroup_tree(iter, memcg) {
1468 if (iter == failed) {
1469 mem_cgroup_iter_break(memcg, iter);
1470 break;
1471 }
1472 iter->oom_lock = false;
79dfdacc 1473 }
0056f4e6
JW
1474 } else
1475 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1476
1477 spin_unlock(&memcg_oom_lock);
1478
1479 return !failed;
a636b327 1480}
0b7f569e 1481
fb2a6fc5 1482static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1483{
7d74b06f
KH
1484 struct mem_cgroup *iter;
1485
fb2a6fc5 1486 spin_lock(&memcg_oom_lock);
0056f4e6 1487 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1488 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1489 iter->oom_lock = false;
fb2a6fc5 1490 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1491}
1492
c0ff4b85 1493static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1494{
1495 struct mem_cgroup *iter;
1496
c2b42d3c 1497 spin_lock(&memcg_oom_lock);
c0ff4b85 1498 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1499 iter->under_oom++;
1500 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1501}
1502
c0ff4b85 1503static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1504{
1505 struct mem_cgroup *iter;
1506
867578cb
KH
1507 /*
1508 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1509 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1510 */
c2b42d3c 1511 spin_lock(&memcg_oom_lock);
c0ff4b85 1512 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1513 if (iter->under_oom > 0)
1514 iter->under_oom--;
1515 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1516}
1517
867578cb
KH
1518static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1519
dc98df5a 1520struct oom_wait_info {
d79154bb 1521 struct mem_cgroup *memcg;
dc98df5a
KH
1522 wait_queue_t wait;
1523};
1524
1525static int memcg_oom_wake_function(wait_queue_t *wait,
1526 unsigned mode, int sync, void *arg)
1527{
d79154bb
HD
1528 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1529 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1530 struct oom_wait_info *oom_wait_info;
1531
1532 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1533 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1534
2314b42d
JW
1535 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1536 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1537 return 0;
dc98df5a
KH
1538 return autoremove_wake_function(wait, mode, sync, arg);
1539}
1540
c0ff4b85 1541static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1542{
c2b42d3c
TH
1543 /*
1544 * For the following lockless ->under_oom test, the only required
1545 * guarantee is that it must see the state asserted by an OOM when
1546 * this function is called as a result of userland actions
1547 * triggered by the notification of the OOM. This is trivially
1548 * achieved by invoking mem_cgroup_mark_under_oom() before
1549 * triggering notification.
1550 */
1551 if (memcg && memcg->under_oom)
f4b90b70 1552 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1553}
1554
3812c8c8 1555static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1556{
d0db7afa 1557 if (!current->memcg_may_oom)
3812c8c8 1558 return;
867578cb 1559 /*
49426420
JW
1560 * We are in the middle of the charge context here, so we
1561 * don't want to block when potentially sitting on a callstack
1562 * that holds all kinds of filesystem and mm locks.
1563 *
1564 * Also, the caller may handle a failed allocation gracefully
1565 * (like optional page cache readahead) and so an OOM killer
1566 * invocation might not even be necessary.
1567 *
1568 * That's why we don't do anything here except remember the
1569 * OOM context and then deal with it at the end of the page
1570 * fault when the stack is unwound, the locks are released,
1571 * and when we know whether the fault was overall successful.
867578cb 1572 */
49426420 1573 css_get(&memcg->css);
626ebc41
TH
1574 current->memcg_in_oom = memcg;
1575 current->memcg_oom_gfp_mask = mask;
1576 current->memcg_oom_order = order;
3812c8c8
JW
1577}
1578
1579/**
1580 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1581 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1582 *
49426420
JW
1583 * This has to be called at the end of a page fault if the memcg OOM
1584 * handler was enabled.
3812c8c8 1585 *
49426420 1586 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1587 * sleep on a waitqueue until the userspace task resolves the
1588 * situation. Sleeping directly in the charge context with all kinds
1589 * of locks held is not a good idea, instead we remember an OOM state
1590 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1591 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1592 *
1593 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1594 * completed, %false otherwise.
3812c8c8 1595 */
49426420 1596bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1597{
626ebc41 1598 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1599 struct oom_wait_info owait;
49426420 1600 bool locked;
3812c8c8
JW
1601
1602 /* OOM is global, do not handle */
3812c8c8 1603 if (!memcg)
49426420 1604 return false;
3812c8c8 1605
c32b3cbe 1606 if (!handle || oom_killer_disabled)
49426420 1607 goto cleanup;
3812c8c8
JW
1608
1609 owait.memcg = memcg;
1610 owait.wait.flags = 0;
1611 owait.wait.func = memcg_oom_wake_function;
1612 owait.wait.private = current;
1613 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1614
3812c8c8 1615 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1616 mem_cgroup_mark_under_oom(memcg);
1617
1618 locked = mem_cgroup_oom_trylock(memcg);
1619
1620 if (locked)
1621 mem_cgroup_oom_notify(memcg);
1622
1623 if (locked && !memcg->oom_kill_disable) {
1624 mem_cgroup_unmark_under_oom(memcg);
1625 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1626 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1627 current->memcg_oom_order);
49426420 1628 } else {
3812c8c8 1629 schedule();
49426420
JW
1630 mem_cgroup_unmark_under_oom(memcg);
1631 finish_wait(&memcg_oom_waitq, &owait.wait);
1632 }
1633
1634 if (locked) {
fb2a6fc5
JW
1635 mem_cgroup_oom_unlock(memcg);
1636 /*
1637 * There is no guarantee that an OOM-lock contender
1638 * sees the wakeups triggered by the OOM kill
1639 * uncharges. Wake any sleepers explicitely.
1640 */
1641 memcg_oom_recover(memcg);
1642 }
49426420 1643cleanup:
626ebc41 1644 current->memcg_in_oom = NULL;
3812c8c8 1645 css_put(&memcg->css);
867578cb 1646 return true;
0b7f569e
KH
1647}
1648
d7365e78 1649/**
81f8c3a4
JW
1650 * lock_page_memcg - lock a page->mem_cgroup binding
1651 * @page: the page
32047e2a 1652 *
81f8c3a4
JW
1653 * This function protects unlocked LRU pages from being moved to
1654 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1655 */
62cccb8c 1656void lock_page_memcg(struct page *page)
89c06bd5
KH
1657{
1658 struct mem_cgroup *memcg;
6de22619 1659 unsigned long flags;
89c06bd5 1660
6de22619
JW
1661 /*
1662 * The RCU lock is held throughout the transaction. The fast
1663 * path can get away without acquiring the memcg->move_lock
1664 * because page moving starts with an RCU grace period.
6de22619 1665 */
d7365e78
JW
1666 rcu_read_lock();
1667
1668 if (mem_cgroup_disabled())
62cccb8c 1669 return;
89c06bd5 1670again:
1306a85a 1671 memcg = page->mem_cgroup;
29833315 1672 if (unlikely(!memcg))
62cccb8c 1673 return;
d7365e78 1674
bdcbb659 1675 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1676 return;
89c06bd5 1677
6de22619 1678 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1679 if (memcg != page->mem_cgroup) {
6de22619 1680 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1681 goto again;
1682 }
6de22619
JW
1683
1684 /*
1685 * When charge migration first begins, we can have locked and
1686 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1687 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1688 */
1689 memcg->move_lock_task = current;
1690 memcg->move_lock_flags = flags;
d7365e78 1691
62cccb8c 1692 return;
89c06bd5 1693}
81f8c3a4 1694EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1695
d7365e78 1696/**
81f8c3a4 1697 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1698 * @page: the page
d7365e78 1699 */
62cccb8c 1700void unlock_page_memcg(struct page *page)
89c06bd5 1701{
62cccb8c
JW
1702 struct mem_cgroup *memcg = page->mem_cgroup;
1703
6de22619
JW
1704 if (memcg && memcg->move_lock_task == current) {
1705 unsigned long flags = memcg->move_lock_flags;
1706
1707 memcg->move_lock_task = NULL;
1708 memcg->move_lock_flags = 0;
1709
1710 spin_unlock_irqrestore(&memcg->move_lock, flags);
1711 }
89c06bd5 1712
d7365e78 1713 rcu_read_unlock();
89c06bd5 1714}
81f8c3a4 1715EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1716
cdec2e42
KH
1717/*
1718 * size of first charge trial. "32" comes from vmscan.c's magic value.
1719 * TODO: maybe necessary to use big numbers in big irons.
1720 */
7ec99d62 1721#define CHARGE_BATCH 32U
cdec2e42
KH
1722struct memcg_stock_pcp {
1723 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1724 unsigned int nr_pages;
cdec2e42 1725 struct work_struct work;
26fe6168 1726 unsigned long flags;
a0db00fc 1727#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1728};
1729static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1730static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1731
a0956d54
SS
1732/**
1733 * consume_stock: Try to consume stocked charge on this cpu.
1734 * @memcg: memcg to consume from.
1735 * @nr_pages: how many pages to charge.
1736 *
1737 * The charges will only happen if @memcg matches the current cpu's memcg
1738 * stock, and at least @nr_pages are available in that stock. Failure to
1739 * service an allocation will refill the stock.
1740 *
1741 * returns true if successful, false otherwise.
cdec2e42 1742 */
a0956d54 1743static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1744{
1745 struct memcg_stock_pcp *stock;
3e32cb2e 1746 bool ret = false;
cdec2e42 1747
a0956d54 1748 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1749 return ret;
a0956d54 1750
cdec2e42 1751 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1752 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1753 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1754 ret = true;
1755 }
cdec2e42
KH
1756 put_cpu_var(memcg_stock);
1757 return ret;
1758}
1759
1760/*
3e32cb2e 1761 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1762 */
1763static void drain_stock(struct memcg_stock_pcp *stock)
1764{
1765 struct mem_cgroup *old = stock->cached;
1766
11c9ea4e 1767 if (stock->nr_pages) {
3e32cb2e 1768 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1769 if (do_memsw_account())
3e32cb2e 1770 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1771 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1772 stock->nr_pages = 0;
cdec2e42
KH
1773 }
1774 stock->cached = NULL;
cdec2e42
KH
1775}
1776
1777/*
1778 * This must be called under preempt disabled or must be called by
1779 * a thread which is pinned to local cpu.
1780 */
1781static void drain_local_stock(struct work_struct *dummy)
1782{
7c8e0181 1783 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1784 drain_stock(stock);
26fe6168 1785 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1786}
1787
1788/*
3e32cb2e 1789 * Cache charges(val) to local per_cpu area.
320cc51d 1790 * This will be consumed by consume_stock() function, later.
cdec2e42 1791 */
c0ff4b85 1792static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1793{
1794 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1795
c0ff4b85 1796 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1797 drain_stock(stock);
c0ff4b85 1798 stock->cached = memcg;
cdec2e42 1799 }
11c9ea4e 1800 stock->nr_pages += nr_pages;
cdec2e42
KH
1801 put_cpu_var(memcg_stock);
1802}
1803
1804/*
c0ff4b85 1805 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1806 * of the hierarchy under it.
cdec2e42 1807 */
6d3d6aa2 1808static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1809{
26fe6168 1810 int cpu, curcpu;
d38144b7 1811
6d3d6aa2
JW
1812 /* If someone's already draining, avoid adding running more workers. */
1813 if (!mutex_trylock(&percpu_charge_mutex))
1814 return;
cdec2e42 1815 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1816 get_online_cpus();
5af12d0e 1817 curcpu = get_cpu();
cdec2e42
KH
1818 for_each_online_cpu(cpu) {
1819 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1820 struct mem_cgroup *memcg;
26fe6168 1821
c0ff4b85
R
1822 memcg = stock->cached;
1823 if (!memcg || !stock->nr_pages)
26fe6168 1824 continue;
2314b42d 1825 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1826 continue;
d1a05b69
MH
1827 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1828 if (cpu == curcpu)
1829 drain_local_stock(&stock->work);
1830 else
1831 schedule_work_on(cpu, &stock->work);
1832 }
cdec2e42 1833 }
5af12d0e 1834 put_cpu();
f894ffa8 1835 put_online_cpus();
9f50fad6 1836 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1837}
1838
0db0628d 1839static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1840 unsigned long action,
1841 void *hcpu)
1842{
1843 int cpu = (unsigned long)hcpu;
1844 struct memcg_stock_pcp *stock;
1845
619d094b 1846 if (action == CPU_ONLINE)
1489ebad 1847 return NOTIFY_OK;
1489ebad 1848
d833049b 1849 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1850 return NOTIFY_OK;
711d3d2c 1851
cdec2e42
KH
1852 stock = &per_cpu(memcg_stock, cpu);
1853 drain_stock(stock);
1854 return NOTIFY_OK;
1855}
1856
f7e1cb6e
JW
1857static void reclaim_high(struct mem_cgroup *memcg,
1858 unsigned int nr_pages,
1859 gfp_t gfp_mask)
1860{
1861 do {
1862 if (page_counter_read(&memcg->memory) <= memcg->high)
1863 continue;
1864 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1865 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1866 } while ((memcg = parent_mem_cgroup(memcg)));
1867}
1868
1869static void high_work_func(struct work_struct *work)
1870{
1871 struct mem_cgroup *memcg;
1872
1873 memcg = container_of(work, struct mem_cgroup, high_work);
1874 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1875}
1876
b23afb93
TH
1877/*
1878 * Scheduled by try_charge() to be executed from the userland return path
1879 * and reclaims memory over the high limit.
1880 */
1881void mem_cgroup_handle_over_high(void)
1882{
1883 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1884 struct mem_cgroup *memcg;
b23afb93
TH
1885
1886 if (likely(!nr_pages))
1887 return;
1888
f7e1cb6e
JW
1889 memcg = get_mem_cgroup_from_mm(current->mm);
1890 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1891 css_put(&memcg->css);
1892 current->memcg_nr_pages_over_high = 0;
1893}
1894
00501b53
JW
1895static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1896 unsigned int nr_pages)
8a9f3ccd 1897{
7ec99d62 1898 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1899 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1900 struct mem_cgroup *mem_over_limit;
3e32cb2e 1901 struct page_counter *counter;
6539cc05 1902 unsigned long nr_reclaimed;
b70a2a21
JW
1903 bool may_swap = true;
1904 bool drained = false;
a636b327 1905
ce00a967 1906 if (mem_cgroup_is_root(memcg))
10d53c74 1907 return 0;
6539cc05 1908retry:
b6b6cc72 1909 if (consume_stock(memcg, nr_pages))
10d53c74 1910 return 0;
8a9f3ccd 1911
7941d214 1912 if (!do_memsw_account() ||
6071ca52
JW
1913 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1914 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1915 goto done_restock;
7941d214 1916 if (do_memsw_account())
3e32cb2e
JW
1917 page_counter_uncharge(&memcg->memsw, batch);
1918 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1919 } else {
3e32cb2e 1920 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1921 may_swap = false;
3fbe7244 1922 }
7a81b88c 1923
6539cc05
JW
1924 if (batch > nr_pages) {
1925 batch = nr_pages;
1926 goto retry;
1927 }
6d61ef40 1928
06b078fc
JW
1929 /*
1930 * Unlike in global OOM situations, memcg is not in a physical
1931 * memory shortage. Allow dying and OOM-killed tasks to
1932 * bypass the last charges so that they can exit quickly and
1933 * free their memory.
1934 */
1935 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1936 fatal_signal_pending(current) ||
1937 current->flags & PF_EXITING))
10d53c74 1938 goto force;
06b078fc
JW
1939
1940 if (unlikely(task_in_memcg_oom(current)))
1941 goto nomem;
1942
d0164adc 1943 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1944 goto nomem;
4b534334 1945
241994ed
JW
1946 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1947
b70a2a21
JW
1948 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1949 gfp_mask, may_swap);
6539cc05 1950
61e02c74 1951 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1952 goto retry;
28c34c29 1953
b70a2a21 1954 if (!drained) {
6d3d6aa2 1955 drain_all_stock(mem_over_limit);
b70a2a21
JW
1956 drained = true;
1957 goto retry;
1958 }
1959
28c34c29
JW
1960 if (gfp_mask & __GFP_NORETRY)
1961 goto nomem;
6539cc05
JW
1962 /*
1963 * Even though the limit is exceeded at this point, reclaim
1964 * may have been able to free some pages. Retry the charge
1965 * before killing the task.
1966 *
1967 * Only for regular pages, though: huge pages are rather
1968 * unlikely to succeed so close to the limit, and we fall back
1969 * to regular pages anyway in case of failure.
1970 */
61e02c74 1971 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1972 goto retry;
1973 /*
1974 * At task move, charge accounts can be doubly counted. So, it's
1975 * better to wait until the end of task_move if something is going on.
1976 */
1977 if (mem_cgroup_wait_acct_move(mem_over_limit))
1978 goto retry;
1979
9b130619
JW
1980 if (nr_retries--)
1981 goto retry;
1982
06b078fc 1983 if (gfp_mask & __GFP_NOFAIL)
10d53c74 1984 goto force;
06b078fc 1985
6539cc05 1986 if (fatal_signal_pending(current))
10d53c74 1987 goto force;
6539cc05 1988
241994ed
JW
1989 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1990
3608de07
JM
1991 mem_cgroup_oom(mem_over_limit, gfp_mask,
1992 get_order(nr_pages * PAGE_SIZE));
7a81b88c 1993nomem:
6d1fdc48 1994 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 1995 return -ENOMEM;
10d53c74
TH
1996force:
1997 /*
1998 * The allocation either can't fail or will lead to more memory
1999 * being freed very soon. Allow memory usage go over the limit
2000 * temporarily by force charging it.
2001 */
2002 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2003 if (do_memsw_account())
10d53c74
TH
2004 page_counter_charge(&memcg->memsw, nr_pages);
2005 css_get_many(&memcg->css, nr_pages);
2006
2007 return 0;
6539cc05
JW
2008
2009done_restock:
e8ea14cc 2010 css_get_many(&memcg->css, batch);
6539cc05
JW
2011 if (batch > nr_pages)
2012 refill_stock(memcg, batch - nr_pages);
b23afb93 2013
241994ed 2014 /*
b23afb93
TH
2015 * If the hierarchy is above the normal consumption range, schedule
2016 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2017 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2018 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2019 * not recorded as it most likely matches current's and won't
2020 * change in the meantime. As high limit is checked again before
2021 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2022 */
2023 do {
b23afb93 2024 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2025 /* Don't bother a random interrupted task */
2026 if (in_interrupt()) {
2027 schedule_work(&memcg->high_work);
2028 break;
2029 }
9516a18a 2030 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2031 set_notify_resume(current);
2032 break;
2033 }
241994ed 2034 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2035
2036 return 0;
7a81b88c 2037}
8a9f3ccd 2038
00501b53 2039static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2040{
ce00a967
JW
2041 if (mem_cgroup_is_root(memcg))
2042 return;
2043
3e32cb2e 2044 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2045 if (do_memsw_account())
3e32cb2e 2046 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2047
e8ea14cc 2048 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2049}
2050
0a31bc97
JW
2051static void lock_page_lru(struct page *page, int *isolated)
2052{
2053 struct zone *zone = page_zone(page);
2054
a52633d8 2055 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2056 if (PageLRU(page)) {
2057 struct lruvec *lruvec;
2058
599d0c95 2059 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2060 ClearPageLRU(page);
2061 del_page_from_lru_list(page, lruvec, page_lru(page));
2062 *isolated = 1;
2063 } else
2064 *isolated = 0;
2065}
2066
2067static void unlock_page_lru(struct page *page, int isolated)
2068{
2069 struct zone *zone = page_zone(page);
2070
2071 if (isolated) {
2072 struct lruvec *lruvec;
2073
599d0c95 2074 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2075 VM_BUG_ON_PAGE(PageLRU(page), page);
2076 SetPageLRU(page);
2077 add_page_to_lru_list(page, lruvec, page_lru(page));
2078 }
a52633d8 2079 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2080}
2081
00501b53 2082static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2083 bool lrucare)
7a81b88c 2084{
0a31bc97 2085 int isolated;
9ce70c02 2086
1306a85a 2087 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2088
2089 /*
2090 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2091 * may already be on some other mem_cgroup's LRU. Take care of it.
2092 */
0a31bc97
JW
2093 if (lrucare)
2094 lock_page_lru(page, &isolated);
9ce70c02 2095
0a31bc97
JW
2096 /*
2097 * Nobody should be changing or seriously looking at
1306a85a 2098 * page->mem_cgroup at this point:
0a31bc97
JW
2099 *
2100 * - the page is uncharged
2101 *
2102 * - the page is off-LRU
2103 *
2104 * - an anonymous fault has exclusive page access, except for
2105 * a locked page table
2106 *
2107 * - a page cache insertion, a swapin fault, or a migration
2108 * have the page locked
2109 */
1306a85a 2110 page->mem_cgroup = memcg;
9ce70c02 2111
0a31bc97
JW
2112 if (lrucare)
2113 unlock_page_lru(page, isolated);
7a81b88c 2114}
66e1707b 2115
127424c8 2116#ifndef CONFIG_SLOB
f3bb3043 2117static int memcg_alloc_cache_id(void)
55007d84 2118{
f3bb3043
VD
2119 int id, size;
2120 int err;
2121
dbcf73e2 2122 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2123 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2124 if (id < 0)
2125 return id;
55007d84 2126
dbcf73e2 2127 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2128 return id;
2129
2130 /*
2131 * There's no space for the new id in memcg_caches arrays,
2132 * so we have to grow them.
2133 */
05257a1a 2134 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2135
2136 size = 2 * (id + 1);
55007d84
GC
2137 if (size < MEMCG_CACHES_MIN_SIZE)
2138 size = MEMCG_CACHES_MIN_SIZE;
2139 else if (size > MEMCG_CACHES_MAX_SIZE)
2140 size = MEMCG_CACHES_MAX_SIZE;
2141
f3bb3043 2142 err = memcg_update_all_caches(size);
60d3fd32
VD
2143 if (!err)
2144 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2145 if (!err)
2146 memcg_nr_cache_ids = size;
2147
2148 up_write(&memcg_cache_ids_sem);
2149
f3bb3043 2150 if (err) {
dbcf73e2 2151 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2152 return err;
2153 }
2154 return id;
2155}
2156
2157static void memcg_free_cache_id(int id)
2158{
dbcf73e2 2159 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2160}
2161
d5b3cf71 2162struct memcg_kmem_cache_create_work {
5722d094
VD
2163 struct mem_cgroup *memcg;
2164 struct kmem_cache *cachep;
2165 struct work_struct work;
2166};
2167
d5b3cf71 2168static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2169{
d5b3cf71
VD
2170 struct memcg_kmem_cache_create_work *cw =
2171 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2172 struct mem_cgroup *memcg = cw->memcg;
2173 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2174
d5b3cf71 2175 memcg_create_kmem_cache(memcg, cachep);
bd673145 2176
5722d094 2177 css_put(&memcg->css);
d7f25f8a
GC
2178 kfree(cw);
2179}
2180
2181/*
2182 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2183 */
d5b3cf71
VD
2184static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2185 struct kmem_cache *cachep)
d7f25f8a 2186{
d5b3cf71 2187 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2188
776ed0f0 2189 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2190 if (!cw)
d7f25f8a 2191 return;
8135be5a
VD
2192
2193 css_get(&memcg->css);
d7f25f8a
GC
2194
2195 cw->memcg = memcg;
2196 cw->cachep = cachep;
d5b3cf71 2197 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2198
d7f25f8a
GC
2199 schedule_work(&cw->work);
2200}
2201
d5b3cf71
VD
2202static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2203 struct kmem_cache *cachep)
0e9d92f2
GC
2204{
2205 /*
2206 * We need to stop accounting when we kmalloc, because if the
2207 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2208 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2209 *
2210 * However, it is better to enclose the whole function. Depending on
2211 * the debugging options enabled, INIT_WORK(), for instance, can
2212 * trigger an allocation. This too, will make us recurse. Because at
2213 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2214 * the safest choice is to do it like this, wrapping the whole function.
2215 */
6f185c29 2216 current->memcg_kmem_skip_account = 1;
d5b3cf71 2217 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2218 current->memcg_kmem_skip_account = 0;
0e9d92f2 2219}
c67a8a68 2220
45264778
VD
2221static inline bool memcg_kmem_bypass(void)
2222{
2223 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2224 return true;
2225 return false;
2226}
2227
2228/**
2229 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2230 * @cachep: the original global kmem cache
2231 *
d7f25f8a
GC
2232 * Return the kmem_cache we're supposed to use for a slab allocation.
2233 * We try to use the current memcg's version of the cache.
2234 *
45264778
VD
2235 * If the cache does not exist yet, if we are the first user of it, we
2236 * create it asynchronously in a workqueue and let the current allocation
2237 * go through with the original cache.
d7f25f8a 2238 *
45264778
VD
2239 * This function takes a reference to the cache it returns to assure it
2240 * won't get destroyed while we are working with it. Once the caller is
2241 * done with it, memcg_kmem_put_cache() must be called to release the
2242 * reference.
d7f25f8a 2243 */
45264778 2244struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2245{
2246 struct mem_cgroup *memcg;
959c8963 2247 struct kmem_cache *memcg_cachep;
2a4db7eb 2248 int kmemcg_id;
d7f25f8a 2249
f7ce3190 2250 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2251
45264778 2252 if (memcg_kmem_bypass())
230e9fc2
VD
2253 return cachep;
2254
9d100c5e 2255 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2256 return cachep;
2257
8135be5a 2258 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2259 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2260 if (kmemcg_id < 0)
ca0dde97 2261 goto out;
d7f25f8a 2262
2a4db7eb 2263 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2264 if (likely(memcg_cachep))
2265 return memcg_cachep;
ca0dde97
LZ
2266
2267 /*
2268 * If we are in a safe context (can wait, and not in interrupt
2269 * context), we could be be predictable and return right away.
2270 * This would guarantee that the allocation being performed
2271 * already belongs in the new cache.
2272 *
2273 * However, there are some clashes that can arrive from locking.
2274 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2275 * memcg_create_kmem_cache, this means no further allocation
2276 * could happen with the slab_mutex held. So it's better to
2277 * defer everything.
ca0dde97 2278 */
d5b3cf71 2279 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2280out:
8135be5a 2281 css_put(&memcg->css);
ca0dde97 2282 return cachep;
d7f25f8a 2283}
d7f25f8a 2284
45264778
VD
2285/**
2286 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2287 * @cachep: the cache returned by memcg_kmem_get_cache
2288 */
2289void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2290{
2291 if (!is_root_cache(cachep))
f7ce3190 2292 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2293}
2294
45264778
VD
2295/**
2296 * memcg_kmem_charge: charge a kmem page
2297 * @page: page to charge
2298 * @gfp: reclaim mode
2299 * @order: allocation order
2300 * @memcg: memory cgroup to charge
2301 *
2302 * Returns 0 on success, an error code on failure.
2303 */
2304int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2305 struct mem_cgroup *memcg)
7ae1e1d0 2306{
f3ccb2c4
VD
2307 unsigned int nr_pages = 1 << order;
2308 struct page_counter *counter;
7ae1e1d0
GC
2309 int ret;
2310
f3ccb2c4 2311 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2312 if (ret)
f3ccb2c4 2313 return ret;
52c29b04
JW
2314
2315 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2316 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2317 cancel_charge(memcg, nr_pages);
2318 return -ENOMEM;
7ae1e1d0
GC
2319 }
2320
f3ccb2c4 2321 page->mem_cgroup = memcg;
7ae1e1d0 2322
f3ccb2c4 2323 return 0;
7ae1e1d0
GC
2324}
2325
45264778
VD
2326/**
2327 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2328 * @page: page to charge
2329 * @gfp: reclaim mode
2330 * @order: allocation order
2331 *
2332 * Returns 0 on success, an error code on failure.
2333 */
2334int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2335{
f3ccb2c4 2336 struct mem_cgroup *memcg;
fcff7d7e 2337 int ret = 0;
7ae1e1d0 2338
45264778
VD
2339 if (memcg_kmem_bypass())
2340 return 0;
2341
f3ccb2c4 2342 memcg = get_mem_cgroup_from_mm(current->mm);
b6ecd2de 2343 if (!mem_cgroup_is_root(memcg))
45264778 2344 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2345 css_put(&memcg->css);
d05e83a6 2346 return ret;
7ae1e1d0 2347}
45264778
VD
2348/**
2349 * memcg_kmem_uncharge: uncharge a kmem page
2350 * @page: page to uncharge
2351 * @order: allocation order
2352 */
2353void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2354{
1306a85a 2355 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2356 unsigned int nr_pages = 1 << order;
7ae1e1d0 2357
7ae1e1d0
GC
2358 if (!memcg)
2359 return;
2360
309381fe 2361 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2362
52c29b04
JW
2363 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2364 page_counter_uncharge(&memcg->kmem, nr_pages);
2365
f3ccb2c4 2366 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2367 if (do_memsw_account())
f3ccb2c4 2368 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2369
1306a85a 2370 page->mem_cgroup = NULL;
f3ccb2c4 2371 css_put_many(&memcg->css, nr_pages);
60d3fd32 2372}
127424c8 2373#endif /* !CONFIG_SLOB */
7ae1e1d0 2374
ca3e0214
KH
2375#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2376
ca3e0214
KH
2377/*
2378 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2379 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2380 */
e94c8a9c 2381void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2382{
e94c8a9c 2383 int i;
ca3e0214 2384
3d37c4a9
KH
2385 if (mem_cgroup_disabled())
2386 return;
b070e65c 2387
29833315 2388 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2389 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2390
1306a85a 2391 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2392 HPAGE_PMD_NR);
ca3e0214 2393}
12d27107 2394#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2395
c255a458 2396#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2397static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2398 bool charge)
d13d1443 2399{
0a31bc97
JW
2400 int val = (charge) ? 1 : -1;
2401 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2402}
02491447
DN
2403
2404/**
2405 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2406 * @entry: swap entry to be moved
2407 * @from: mem_cgroup which the entry is moved from
2408 * @to: mem_cgroup which the entry is moved to
2409 *
2410 * It succeeds only when the swap_cgroup's record for this entry is the same
2411 * as the mem_cgroup's id of @from.
2412 *
2413 * Returns 0 on success, -EINVAL on failure.
2414 *
3e32cb2e 2415 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2416 * both res and memsw, and called css_get().
2417 */
2418static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2419 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2420{
2421 unsigned short old_id, new_id;
2422
34c00c31
LZ
2423 old_id = mem_cgroup_id(from);
2424 new_id = mem_cgroup_id(to);
02491447
DN
2425
2426 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2427 mem_cgroup_swap_statistics(from, false);
483c30b5 2428 mem_cgroup_swap_statistics(to, true);
02491447
DN
2429 return 0;
2430 }
2431 return -EINVAL;
2432}
2433#else
2434static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2435 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2436{
2437 return -EINVAL;
2438}
8c7c6e34 2439#endif
d13d1443 2440
3e32cb2e 2441static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2442
d38d2a75 2443static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2444 unsigned long limit)
628f4235 2445{
3e32cb2e
JW
2446 unsigned long curusage;
2447 unsigned long oldusage;
2448 bool enlarge = false;
81d39c20 2449 int retry_count;
3e32cb2e 2450 int ret;
81d39c20
KH
2451
2452 /*
2453 * For keeping hierarchical_reclaim simple, how long we should retry
2454 * is depends on callers. We set our retry-count to be function
2455 * of # of children which we should visit in this loop.
2456 */
3e32cb2e
JW
2457 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2458 mem_cgroup_count_children(memcg);
81d39c20 2459
3e32cb2e 2460 oldusage = page_counter_read(&memcg->memory);
628f4235 2461
3e32cb2e 2462 do {
628f4235
KH
2463 if (signal_pending(current)) {
2464 ret = -EINTR;
2465 break;
2466 }
3e32cb2e
JW
2467
2468 mutex_lock(&memcg_limit_mutex);
2469 if (limit > memcg->memsw.limit) {
2470 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2471 ret = -EINVAL;
628f4235
KH
2472 break;
2473 }
3e32cb2e
JW
2474 if (limit > memcg->memory.limit)
2475 enlarge = true;
2476 ret = page_counter_limit(&memcg->memory, limit);
2477 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2478
2479 if (!ret)
2480 break;
2481
b70a2a21
JW
2482 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2483
3e32cb2e 2484 curusage = page_counter_read(&memcg->memory);
81d39c20 2485 /* Usage is reduced ? */
f894ffa8 2486 if (curusage >= oldusage)
81d39c20
KH
2487 retry_count--;
2488 else
2489 oldusage = curusage;
3e32cb2e
JW
2490 } while (retry_count);
2491
3c11ecf4
KH
2492 if (!ret && enlarge)
2493 memcg_oom_recover(memcg);
14797e23 2494
8c7c6e34
KH
2495 return ret;
2496}
2497
338c8431 2498static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2499 unsigned long limit)
8c7c6e34 2500{
3e32cb2e
JW
2501 unsigned long curusage;
2502 unsigned long oldusage;
2503 bool enlarge = false;
81d39c20 2504 int retry_count;
3e32cb2e 2505 int ret;
8c7c6e34 2506
81d39c20 2507 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2508 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2509 mem_cgroup_count_children(memcg);
2510
2511 oldusage = page_counter_read(&memcg->memsw);
2512
2513 do {
8c7c6e34
KH
2514 if (signal_pending(current)) {
2515 ret = -EINTR;
2516 break;
2517 }
3e32cb2e
JW
2518
2519 mutex_lock(&memcg_limit_mutex);
2520 if (limit < memcg->memory.limit) {
2521 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2522 ret = -EINVAL;
8c7c6e34
KH
2523 break;
2524 }
3e32cb2e
JW
2525 if (limit > memcg->memsw.limit)
2526 enlarge = true;
2527 ret = page_counter_limit(&memcg->memsw, limit);
2528 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2529
2530 if (!ret)
2531 break;
2532
b70a2a21
JW
2533 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2534
3e32cb2e 2535 curusage = page_counter_read(&memcg->memsw);
81d39c20 2536 /* Usage is reduced ? */
8c7c6e34 2537 if (curusage >= oldusage)
628f4235 2538 retry_count--;
81d39c20
KH
2539 else
2540 oldusage = curusage;
3e32cb2e
JW
2541 } while (retry_count);
2542
3c11ecf4
KH
2543 if (!ret && enlarge)
2544 memcg_oom_recover(memcg);
3e32cb2e 2545
628f4235
KH
2546 return ret;
2547}
2548
ef8f2327 2549unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2550 gfp_t gfp_mask,
2551 unsigned long *total_scanned)
2552{
2553 unsigned long nr_reclaimed = 0;
ef8f2327 2554 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2555 unsigned long reclaimed;
2556 int loop = 0;
ef8f2327 2557 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2558 unsigned long excess;
0608f43d
AM
2559 unsigned long nr_scanned;
2560
2561 if (order > 0)
2562 return 0;
2563
ef8f2327 2564 mctz = soft_limit_tree_node(pgdat->node_id);
0608f43d
AM
2565 /*
2566 * This loop can run a while, specially if mem_cgroup's continuously
2567 * keep exceeding their soft limit and putting the system under
2568 * pressure
2569 */
2570 do {
2571 if (next_mz)
2572 mz = next_mz;
2573 else
2574 mz = mem_cgroup_largest_soft_limit_node(mctz);
2575 if (!mz)
2576 break;
2577
2578 nr_scanned = 0;
ef8f2327 2579 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2580 gfp_mask, &nr_scanned);
2581 nr_reclaimed += reclaimed;
2582 *total_scanned += nr_scanned;
0a31bc97 2583 spin_lock_irq(&mctz->lock);
bc2f2e7f 2584 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2585
2586 /*
2587 * If we failed to reclaim anything from this memory cgroup
2588 * it is time to move on to the next cgroup
2589 */
2590 next_mz = NULL;
bc2f2e7f
VD
2591 if (!reclaimed)
2592 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2593
3e32cb2e 2594 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2595 /*
2596 * One school of thought says that we should not add
2597 * back the node to the tree if reclaim returns 0.
2598 * But our reclaim could return 0, simply because due
2599 * to priority we are exposing a smaller subset of
2600 * memory to reclaim from. Consider this as a longer
2601 * term TODO.
2602 */
2603 /* If excess == 0, no tree ops */
cf2c8127 2604 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2605 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2606 css_put(&mz->memcg->css);
2607 loop++;
2608 /*
2609 * Could not reclaim anything and there are no more
2610 * mem cgroups to try or we seem to be looping without
2611 * reclaiming anything.
2612 */
2613 if (!nr_reclaimed &&
2614 (next_mz == NULL ||
2615 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2616 break;
2617 } while (!nr_reclaimed);
2618 if (next_mz)
2619 css_put(&next_mz->memcg->css);
2620 return nr_reclaimed;
2621}
2622
ea280e7b
TH
2623/*
2624 * Test whether @memcg has children, dead or alive. Note that this
2625 * function doesn't care whether @memcg has use_hierarchy enabled and
2626 * returns %true if there are child csses according to the cgroup
2627 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2628 */
b5f99b53
GC
2629static inline bool memcg_has_children(struct mem_cgroup *memcg)
2630{
ea280e7b
TH
2631 bool ret;
2632
ea280e7b
TH
2633 rcu_read_lock();
2634 ret = css_next_child(NULL, &memcg->css);
2635 rcu_read_unlock();
2636 return ret;
b5f99b53
GC
2637}
2638
c26251f9 2639/*
51038171 2640 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2641 *
2642 * Caller is responsible for holding css reference for memcg.
2643 */
2644static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2645{
2646 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2647
c1e862c1
KH
2648 /* we call try-to-free pages for make this cgroup empty */
2649 lru_add_drain_all();
f817ed48 2650 /* try to free all pages in this cgroup */
3e32cb2e 2651 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2652 int progress;
c1e862c1 2653
c26251f9
MH
2654 if (signal_pending(current))
2655 return -EINTR;
2656
b70a2a21
JW
2657 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2658 GFP_KERNEL, true);
c1e862c1 2659 if (!progress) {
f817ed48 2660 nr_retries--;
c1e862c1 2661 /* maybe some writeback is necessary */
8aa7e847 2662 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2663 }
f817ed48
KH
2664
2665 }
ab5196c2
MH
2666
2667 return 0;
cc847582
KH
2668}
2669
6770c64e
TH
2670static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2671 char *buf, size_t nbytes,
2672 loff_t off)
c1e862c1 2673{
6770c64e 2674 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2675
d8423011
MH
2676 if (mem_cgroup_is_root(memcg))
2677 return -EINVAL;
6770c64e 2678 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2679}
2680
182446d0
TH
2681static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2682 struct cftype *cft)
18f59ea7 2683{
182446d0 2684 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2685}
2686
182446d0
TH
2687static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2688 struct cftype *cft, u64 val)
18f59ea7
BS
2689{
2690 int retval = 0;
182446d0 2691 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2692 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2693
567fb435 2694 if (memcg->use_hierarchy == val)
0b8f73e1 2695 return 0;
567fb435 2696
18f59ea7 2697 /*
af901ca1 2698 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2699 * in the child subtrees. If it is unset, then the change can
2700 * occur, provided the current cgroup has no children.
2701 *
2702 * For the root cgroup, parent_mem is NULL, we allow value to be
2703 * set if there are no children.
2704 */
c0ff4b85 2705 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2706 (val == 1 || val == 0)) {
ea280e7b 2707 if (!memcg_has_children(memcg))
c0ff4b85 2708 memcg->use_hierarchy = val;
18f59ea7
BS
2709 else
2710 retval = -EBUSY;
2711 } else
2712 retval = -EINVAL;
567fb435 2713
18f59ea7
BS
2714 return retval;
2715}
2716
72b54e73 2717static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2718{
2719 struct mem_cgroup *iter;
72b54e73 2720 int i;
ce00a967 2721
72b54e73 2722 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2723
72b54e73
VD
2724 for_each_mem_cgroup_tree(iter, memcg) {
2725 for (i = 0; i < MEMCG_NR_STAT; i++)
2726 stat[i] += mem_cgroup_read_stat(iter, i);
2727 }
ce00a967
JW
2728}
2729
72b54e73 2730static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2731{
2732 struct mem_cgroup *iter;
72b54e73 2733 int i;
587d9f72 2734
72b54e73 2735 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2736
72b54e73
VD
2737 for_each_mem_cgroup_tree(iter, memcg) {
2738 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2739 events[i] += mem_cgroup_read_events(iter, i);
2740 }
587d9f72
JW
2741}
2742
6f646156 2743static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2744{
72b54e73 2745 unsigned long val = 0;
ce00a967 2746
3e32cb2e 2747 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2748 struct mem_cgroup *iter;
2749
2750 for_each_mem_cgroup_tree(iter, memcg) {
2751 val += mem_cgroup_read_stat(iter,
2752 MEM_CGROUP_STAT_CACHE);
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_RSS);
2755 if (swap)
2756 val += mem_cgroup_read_stat(iter,
2757 MEM_CGROUP_STAT_SWAP);
2758 }
3e32cb2e 2759 } else {
ce00a967 2760 if (!swap)
3e32cb2e 2761 val = page_counter_read(&memcg->memory);
ce00a967 2762 else
3e32cb2e 2763 val = page_counter_read(&memcg->memsw);
ce00a967 2764 }
c12176d3 2765 return val;
ce00a967
JW
2766}
2767
3e32cb2e
JW
2768enum {
2769 RES_USAGE,
2770 RES_LIMIT,
2771 RES_MAX_USAGE,
2772 RES_FAILCNT,
2773 RES_SOFT_LIMIT,
2774};
ce00a967 2775
791badbd 2776static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2777 struct cftype *cft)
8cdea7c0 2778{
182446d0 2779 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2780 struct page_counter *counter;
af36f906 2781
3e32cb2e 2782 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2783 case _MEM:
3e32cb2e
JW
2784 counter = &memcg->memory;
2785 break;
8c7c6e34 2786 case _MEMSWAP:
3e32cb2e
JW
2787 counter = &memcg->memsw;
2788 break;
510fc4e1 2789 case _KMEM:
3e32cb2e 2790 counter = &memcg->kmem;
510fc4e1 2791 break;
d55f90bf 2792 case _TCP:
0db15298 2793 counter = &memcg->tcpmem;
d55f90bf 2794 break;
8c7c6e34
KH
2795 default:
2796 BUG();
8c7c6e34 2797 }
3e32cb2e
JW
2798
2799 switch (MEMFILE_ATTR(cft->private)) {
2800 case RES_USAGE:
2801 if (counter == &memcg->memory)
c12176d3 2802 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2803 if (counter == &memcg->memsw)
c12176d3 2804 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2805 return (u64)page_counter_read(counter) * PAGE_SIZE;
2806 case RES_LIMIT:
2807 return (u64)counter->limit * PAGE_SIZE;
2808 case RES_MAX_USAGE:
2809 return (u64)counter->watermark * PAGE_SIZE;
2810 case RES_FAILCNT:
2811 return counter->failcnt;
2812 case RES_SOFT_LIMIT:
2813 return (u64)memcg->soft_limit * PAGE_SIZE;
2814 default:
2815 BUG();
2816 }
8cdea7c0 2817}
510fc4e1 2818
127424c8 2819#ifndef CONFIG_SLOB
567e9ab2 2820static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2821{
d6441637
VD
2822 int memcg_id;
2823
b313aeee
VD
2824 if (cgroup_memory_nokmem)
2825 return 0;
2826
2a4db7eb 2827 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2828 BUG_ON(memcg->kmem_state);
d6441637 2829
f3bb3043 2830 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2831 if (memcg_id < 0)
2832 return memcg_id;
d6441637 2833
ef12947c 2834 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2835 /*
567e9ab2 2836 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2837 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2838 * guarantee no one starts accounting before all call sites are
2839 * patched.
2840 */
900a38f0 2841 memcg->kmemcg_id = memcg_id;
567e9ab2 2842 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2843
2844 return 0;
d6441637
VD
2845}
2846
8e0a8912
JW
2847static void memcg_offline_kmem(struct mem_cgroup *memcg)
2848{
2849 struct cgroup_subsys_state *css;
2850 struct mem_cgroup *parent, *child;
2851 int kmemcg_id;
2852
2853 if (memcg->kmem_state != KMEM_ONLINE)
2854 return;
2855 /*
2856 * Clear the online state before clearing memcg_caches array
2857 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2858 * guarantees that no cache will be created for this cgroup
2859 * after we are done (see memcg_create_kmem_cache()).
2860 */
2861 memcg->kmem_state = KMEM_ALLOCATED;
2862
2863 memcg_deactivate_kmem_caches(memcg);
2864
2865 kmemcg_id = memcg->kmemcg_id;
2866 BUG_ON(kmemcg_id < 0);
2867
2868 parent = parent_mem_cgroup(memcg);
2869 if (!parent)
2870 parent = root_mem_cgroup;
2871
2872 /*
2873 * Change kmemcg_id of this cgroup and all its descendants to the
2874 * parent's id, and then move all entries from this cgroup's list_lrus
2875 * to ones of the parent. After we have finished, all list_lrus
2876 * corresponding to this cgroup are guaranteed to remain empty. The
2877 * ordering is imposed by list_lru_node->lock taken by
2878 * memcg_drain_all_list_lrus().
2879 */
3a06bb78 2880 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2881 css_for_each_descendant_pre(css, &memcg->css) {
2882 child = mem_cgroup_from_css(css);
2883 BUG_ON(child->kmemcg_id != kmemcg_id);
2884 child->kmemcg_id = parent->kmemcg_id;
2885 if (!memcg->use_hierarchy)
2886 break;
2887 }
3a06bb78
TH
2888 rcu_read_unlock();
2889
8e0a8912
JW
2890 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2891
2892 memcg_free_cache_id(kmemcg_id);
2893}
2894
2895static void memcg_free_kmem(struct mem_cgroup *memcg)
2896{
0b8f73e1
JW
2897 /* css_alloc() failed, offlining didn't happen */
2898 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2899 memcg_offline_kmem(memcg);
2900
8e0a8912
JW
2901 if (memcg->kmem_state == KMEM_ALLOCATED) {
2902 memcg_destroy_kmem_caches(memcg);
2903 static_branch_dec(&memcg_kmem_enabled_key);
2904 WARN_ON(page_counter_read(&memcg->kmem));
2905 }
8e0a8912 2906}
d6441637 2907#else
0b8f73e1 2908static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2909{
2910 return 0;
2911}
2912static void memcg_offline_kmem(struct mem_cgroup *memcg)
2913{
2914}
2915static void memcg_free_kmem(struct mem_cgroup *memcg)
2916{
2917}
2918#endif /* !CONFIG_SLOB */
2919
d6441637 2920static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2921 unsigned long limit)
d6441637 2922{
b313aeee 2923 int ret;
127424c8
JW
2924
2925 mutex_lock(&memcg_limit_mutex);
127424c8 2926 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2927 mutex_unlock(&memcg_limit_mutex);
2928 return ret;
d6441637 2929}
510fc4e1 2930
d55f90bf
VD
2931static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2932{
2933 int ret;
2934
2935 mutex_lock(&memcg_limit_mutex);
2936
0db15298 2937 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2938 if (ret)
2939 goto out;
2940
0db15298 2941 if (!memcg->tcpmem_active) {
d55f90bf
VD
2942 /*
2943 * The active flag needs to be written after the static_key
2944 * update. This is what guarantees that the socket activation
2945 * function is the last one to run. See sock_update_memcg() for
2946 * details, and note that we don't mark any socket as belonging
2947 * to this memcg until that flag is up.
2948 *
2949 * We need to do this, because static_keys will span multiple
2950 * sites, but we can't control their order. If we mark a socket
2951 * as accounted, but the accounting functions are not patched in
2952 * yet, we'll lose accounting.
2953 *
2954 * We never race with the readers in sock_update_memcg(),
2955 * because when this value change, the code to process it is not
2956 * patched in yet.
2957 */
2958 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2959 memcg->tcpmem_active = true;
d55f90bf
VD
2960 }
2961out:
2962 mutex_unlock(&memcg_limit_mutex);
2963 return ret;
2964}
d55f90bf 2965
628f4235
KH
2966/*
2967 * The user of this function is...
2968 * RES_LIMIT.
2969 */
451af504
TH
2970static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2971 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2972{
451af504 2973 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2974 unsigned long nr_pages;
628f4235
KH
2975 int ret;
2976
451af504 2977 buf = strstrip(buf);
650c5e56 2978 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2979 if (ret)
2980 return ret;
af36f906 2981
3e32cb2e 2982 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2983 case RES_LIMIT:
4b3bde4c
BS
2984 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2985 ret = -EINVAL;
2986 break;
2987 }
3e32cb2e
JW
2988 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2989 case _MEM:
2990 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2991 break;
3e32cb2e
JW
2992 case _MEMSWAP:
2993 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 2994 break;
3e32cb2e
JW
2995 case _KMEM:
2996 ret = memcg_update_kmem_limit(memcg, nr_pages);
2997 break;
d55f90bf
VD
2998 case _TCP:
2999 ret = memcg_update_tcp_limit(memcg, nr_pages);
3000 break;
3e32cb2e 3001 }
296c81d8 3002 break;
3e32cb2e
JW
3003 case RES_SOFT_LIMIT:
3004 memcg->soft_limit = nr_pages;
3005 ret = 0;
628f4235
KH
3006 break;
3007 }
451af504 3008 return ret ?: nbytes;
8cdea7c0
BS
3009}
3010
6770c64e
TH
3011static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3012 size_t nbytes, loff_t off)
c84872e1 3013{
6770c64e 3014 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3015 struct page_counter *counter;
c84872e1 3016
3e32cb2e
JW
3017 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3018 case _MEM:
3019 counter = &memcg->memory;
3020 break;
3021 case _MEMSWAP:
3022 counter = &memcg->memsw;
3023 break;
3024 case _KMEM:
3025 counter = &memcg->kmem;
3026 break;
d55f90bf 3027 case _TCP:
0db15298 3028 counter = &memcg->tcpmem;
d55f90bf 3029 break;
3e32cb2e
JW
3030 default:
3031 BUG();
3032 }
af36f906 3033
3e32cb2e 3034 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3035 case RES_MAX_USAGE:
3e32cb2e 3036 page_counter_reset_watermark(counter);
29f2a4da
PE
3037 break;
3038 case RES_FAILCNT:
3e32cb2e 3039 counter->failcnt = 0;
29f2a4da 3040 break;
3e32cb2e
JW
3041 default:
3042 BUG();
29f2a4da 3043 }
f64c3f54 3044
6770c64e 3045 return nbytes;
c84872e1
PE
3046}
3047
182446d0 3048static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3049 struct cftype *cft)
3050{
182446d0 3051 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3052}
3053
02491447 3054#ifdef CONFIG_MMU
182446d0 3055static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3056 struct cftype *cft, u64 val)
3057{
182446d0 3058 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3059
1dfab5ab 3060 if (val & ~MOVE_MASK)
7dc74be0 3061 return -EINVAL;
ee5e8472 3062
7dc74be0 3063 /*
ee5e8472
GC
3064 * No kind of locking is needed in here, because ->can_attach() will
3065 * check this value once in the beginning of the process, and then carry
3066 * on with stale data. This means that changes to this value will only
3067 * affect task migrations starting after the change.
7dc74be0 3068 */
c0ff4b85 3069 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3070 return 0;
3071}
02491447 3072#else
182446d0 3073static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3074 struct cftype *cft, u64 val)
3075{
3076 return -ENOSYS;
3077}
3078#endif
7dc74be0 3079
406eb0c9 3080#ifdef CONFIG_NUMA
2da8ca82 3081static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3082{
25485de6
GT
3083 struct numa_stat {
3084 const char *name;
3085 unsigned int lru_mask;
3086 };
3087
3088 static const struct numa_stat stats[] = {
3089 { "total", LRU_ALL },
3090 { "file", LRU_ALL_FILE },
3091 { "anon", LRU_ALL_ANON },
3092 { "unevictable", BIT(LRU_UNEVICTABLE) },
3093 };
3094 const struct numa_stat *stat;
406eb0c9 3095 int nid;
25485de6 3096 unsigned long nr;
2da8ca82 3097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3098
25485de6
GT
3099 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3100 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3101 seq_printf(m, "%s=%lu", stat->name, nr);
3102 for_each_node_state(nid, N_MEMORY) {
3103 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3104 stat->lru_mask);
3105 seq_printf(m, " N%d=%lu", nid, nr);
3106 }
3107 seq_putc(m, '\n');
406eb0c9 3108 }
406eb0c9 3109
071aee13
YH
3110 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3111 struct mem_cgroup *iter;
3112
3113 nr = 0;
3114 for_each_mem_cgroup_tree(iter, memcg)
3115 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3116 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3117 for_each_node_state(nid, N_MEMORY) {
3118 nr = 0;
3119 for_each_mem_cgroup_tree(iter, memcg)
3120 nr += mem_cgroup_node_nr_lru_pages(
3121 iter, nid, stat->lru_mask);
3122 seq_printf(m, " N%d=%lu", nid, nr);
3123 }
3124 seq_putc(m, '\n');
406eb0c9 3125 }
406eb0c9 3126
406eb0c9
YH
3127 return 0;
3128}
3129#endif /* CONFIG_NUMA */
3130
2da8ca82 3131static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3132{
2da8ca82 3133 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3134 unsigned long memory, memsw;
af7c4b0e
JW
3135 struct mem_cgroup *mi;
3136 unsigned int i;
406eb0c9 3137
0ca44b14
GT
3138 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3139 MEM_CGROUP_STAT_NSTATS);
3140 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3141 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3142 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3143
af7c4b0e 3144 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3145 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3146 continue;
484ebb3b 3147 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3148 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3149 }
7b854121 3150
af7c4b0e
JW
3151 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3152 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3153 mem_cgroup_read_events(memcg, i));
3154
3155 for (i = 0; i < NR_LRU_LISTS; i++)
3156 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3157 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3158
14067bb3 3159 /* Hierarchical information */
3e32cb2e
JW
3160 memory = memsw = PAGE_COUNTER_MAX;
3161 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3162 memory = min(memory, mi->memory.limit);
3163 memsw = min(memsw, mi->memsw.limit);
fee7b548 3164 }
3e32cb2e
JW
3165 seq_printf(m, "hierarchical_memory_limit %llu\n",
3166 (u64)memory * PAGE_SIZE);
7941d214 3167 if (do_memsw_account())
3e32cb2e
JW
3168 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3169 (u64)memsw * PAGE_SIZE);
7f016ee8 3170
af7c4b0e 3171 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3172 unsigned long long val = 0;
af7c4b0e 3173
7941d214 3174 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3175 continue;
af7c4b0e
JW
3176 for_each_mem_cgroup_tree(mi, memcg)
3177 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3178 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3179 }
3180
3181 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3182 unsigned long long val = 0;
3183
3184 for_each_mem_cgroup_tree(mi, memcg)
3185 val += mem_cgroup_read_events(mi, i);
3186 seq_printf(m, "total_%s %llu\n",
3187 mem_cgroup_events_names[i], val);
3188 }
3189
3190 for (i = 0; i < NR_LRU_LISTS; i++) {
3191 unsigned long long val = 0;
3192
3193 for_each_mem_cgroup_tree(mi, memcg)
3194 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3195 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3196 }
14067bb3 3197
7f016ee8 3198#ifdef CONFIG_DEBUG_VM
7f016ee8 3199 {
ef8f2327
MG
3200 pg_data_t *pgdat;
3201 struct mem_cgroup_per_node *mz;
89abfab1 3202 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3203 unsigned long recent_rotated[2] = {0, 0};
3204 unsigned long recent_scanned[2] = {0, 0};
3205
ef8f2327
MG
3206 for_each_online_pgdat(pgdat) {
3207 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3208 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3209
ef8f2327
MG
3210 recent_rotated[0] += rstat->recent_rotated[0];
3211 recent_rotated[1] += rstat->recent_rotated[1];
3212 recent_scanned[0] += rstat->recent_scanned[0];
3213 recent_scanned[1] += rstat->recent_scanned[1];
3214 }
78ccf5b5
JW
3215 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3216 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3217 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3218 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3219 }
3220#endif
3221
d2ceb9b7
KH
3222 return 0;
3223}
3224
182446d0
TH
3225static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3226 struct cftype *cft)
a7885eb8 3227{
182446d0 3228 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3229
1f4c025b 3230 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3231}
3232
182446d0
TH
3233static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3234 struct cftype *cft, u64 val)
a7885eb8 3235{
182446d0 3236 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3237
3dae7fec 3238 if (val > 100)
a7885eb8
KM
3239 return -EINVAL;
3240
14208b0e 3241 if (css->parent)
3dae7fec
JW
3242 memcg->swappiness = val;
3243 else
3244 vm_swappiness = val;
068b38c1 3245
a7885eb8
KM
3246 return 0;
3247}
3248
2e72b634
KS
3249static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3250{
3251 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3252 unsigned long usage;
2e72b634
KS
3253 int i;
3254
3255 rcu_read_lock();
3256 if (!swap)
2c488db2 3257 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3258 else
2c488db2 3259 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3260
3261 if (!t)
3262 goto unlock;
3263
ce00a967 3264 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3265
3266 /*
748dad36 3267 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3268 * If it's not true, a threshold was crossed after last
3269 * call of __mem_cgroup_threshold().
3270 */
5407a562 3271 i = t->current_threshold;
2e72b634
KS
3272
3273 /*
3274 * Iterate backward over array of thresholds starting from
3275 * current_threshold and check if a threshold is crossed.
3276 * If none of thresholds below usage is crossed, we read
3277 * only one element of the array here.
3278 */
3279 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3280 eventfd_signal(t->entries[i].eventfd, 1);
3281
3282 /* i = current_threshold + 1 */
3283 i++;
3284
3285 /*
3286 * Iterate forward over array of thresholds starting from
3287 * current_threshold+1 and check if a threshold is crossed.
3288 * If none of thresholds above usage is crossed, we read
3289 * only one element of the array here.
3290 */
3291 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3292 eventfd_signal(t->entries[i].eventfd, 1);
3293
3294 /* Update current_threshold */
5407a562 3295 t->current_threshold = i - 1;
2e72b634
KS
3296unlock:
3297 rcu_read_unlock();
3298}
3299
3300static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3301{
ad4ca5f4
KS
3302 while (memcg) {
3303 __mem_cgroup_threshold(memcg, false);
7941d214 3304 if (do_memsw_account())
ad4ca5f4
KS
3305 __mem_cgroup_threshold(memcg, true);
3306
3307 memcg = parent_mem_cgroup(memcg);
3308 }
2e72b634
KS
3309}
3310
3311static int compare_thresholds(const void *a, const void *b)
3312{
3313 const struct mem_cgroup_threshold *_a = a;
3314 const struct mem_cgroup_threshold *_b = b;
3315
2bff24a3
GT
3316 if (_a->threshold > _b->threshold)
3317 return 1;
3318
3319 if (_a->threshold < _b->threshold)
3320 return -1;
3321
3322 return 0;
2e72b634
KS
3323}
3324
c0ff4b85 3325static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3326{
3327 struct mem_cgroup_eventfd_list *ev;
3328
2bcf2e92
MH
3329 spin_lock(&memcg_oom_lock);
3330
c0ff4b85 3331 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3332 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3333
3334 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3335 return 0;
3336}
3337
c0ff4b85 3338static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3339{
7d74b06f
KH
3340 struct mem_cgroup *iter;
3341
c0ff4b85 3342 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3343 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3344}
3345
59b6f873 3346static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3347 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3348{
2c488db2
KS
3349 struct mem_cgroup_thresholds *thresholds;
3350 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3351 unsigned long threshold;
3352 unsigned long usage;
2c488db2 3353 int i, size, ret;
2e72b634 3354
650c5e56 3355 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3356 if (ret)
3357 return ret;
3358
3359 mutex_lock(&memcg->thresholds_lock);
2c488db2 3360
05b84301 3361 if (type == _MEM) {
2c488db2 3362 thresholds = &memcg->thresholds;
ce00a967 3363 usage = mem_cgroup_usage(memcg, false);
05b84301 3364 } else if (type == _MEMSWAP) {
2c488db2 3365 thresholds = &memcg->memsw_thresholds;
ce00a967 3366 usage = mem_cgroup_usage(memcg, true);
05b84301 3367 } else
2e72b634
KS
3368 BUG();
3369
2e72b634 3370 /* Check if a threshold crossed before adding a new one */
2c488db2 3371 if (thresholds->primary)
2e72b634
KS
3372 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3373
2c488db2 3374 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3375
3376 /* Allocate memory for new array of thresholds */
2c488db2 3377 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3378 GFP_KERNEL);
2c488db2 3379 if (!new) {
2e72b634
KS
3380 ret = -ENOMEM;
3381 goto unlock;
3382 }
2c488db2 3383 new->size = size;
2e72b634
KS
3384
3385 /* Copy thresholds (if any) to new array */
2c488db2
KS
3386 if (thresholds->primary) {
3387 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3388 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3389 }
3390
2e72b634 3391 /* Add new threshold */
2c488db2
KS
3392 new->entries[size - 1].eventfd = eventfd;
3393 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3394
3395 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3396 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3397 compare_thresholds, NULL);
3398
3399 /* Find current threshold */
2c488db2 3400 new->current_threshold = -1;
2e72b634 3401 for (i = 0; i < size; i++) {
748dad36 3402 if (new->entries[i].threshold <= usage) {
2e72b634 3403 /*
2c488db2
KS
3404 * new->current_threshold will not be used until
3405 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3406 * it here.
3407 */
2c488db2 3408 ++new->current_threshold;
748dad36
SZ
3409 } else
3410 break;
2e72b634
KS
3411 }
3412
2c488db2
KS
3413 /* Free old spare buffer and save old primary buffer as spare */
3414 kfree(thresholds->spare);
3415 thresholds->spare = thresholds->primary;
3416
3417 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3418
907860ed 3419 /* To be sure that nobody uses thresholds */
2e72b634
KS
3420 synchronize_rcu();
3421
2e72b634
KS
3422unlock:
3423 mutex_unlock(&memcg->thresholds_lock);
3424
3425 return ret;
3426}
3427
59b6f873 3428static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3429 struct eventfd_ctx *eventfd, const char *args)
3430{
59b6f873 3431 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3432}
3433
59b6f873 3434static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3435 struct eventfd_ctx *eventfd, const char *args)
3436{
59b6f873 3437 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3438}
3439
59b6f873 3440static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3441 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3442{
2c488db2
KS
3443 struct mem_cgroup_thresholds *thresholds;
3444 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3445 unsigned long usage;
2c488db2 3446 int i, j, size;
2e72b634
KS
3447
3448 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3449
3450 if (type == _MEM) {
2c488db2 3451 thresholds = &memcg->thresholds;
ce00a967 3452 usage = mem_cgroup_usage(memcg, false);
05b84301 3453 } else if (type == _MEMSWAP) {
2c488db2 3454 thresholds = &memcg->memsw_thresholds;
ce00a967 3455 usage = mem_cgroup_usage(memcg, true);
05b84301 3456 } else
2e72b634
KS
3457 BUG();
3458
371528ca
AV
3459 if (!thresholds->primary)
3460 goto unlock;
3461
2e72b634
KS
3462 /* Check if a threshold crossed before removing */
3463 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3464
3465 /* Calculate new number of threshold */
2c488db2
KS
3466 size = 0;
3467 for (i = 0; i < thresholds->primary->size; i++) {
3468 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3469 size++;
3470 }
3471
2c488db2 3472 new = thresholds->spare;
907860ed 3473
2e72b634
KS
3474 /* Set thresholds array to NULL if we don't have thresholds */
3475 if (!size) {
2c488db2
KS
3476 kfree(new);
3477 new = NULL;
907860ed 3478 goto swap_buffers;
2e72b634
KS
3479 }
3480
2c488db2 3481 new->size = size;
2e72b634
KS
3482
3483 /* Copy thresholds and find current threshold */
2c488db2
KS
3484 new->current_threshold = -1;
3485 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3486 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3487 continue;
3488
2c488db2 3489 new->entries[j] = thresholds->primary->entries[i];
748dad36 3490 if (new->entries[j].threshold <= usage) {
2e72b634 3491 /*
2c488db2 3492 * new->current_threshold will not be used
2e72b634
KS
3493 * until rcu_assign_pointer(), so it's safe to increment
3494 * it here.
3495 */
2c488db2 3496 ++new->current_threshold;
2e72b634
KS
3497 }
3498 j++;
3499 }
3500
907860ed 3501swap_buffers:
2c488db2
KS
3502 /* Swap primary and spare array */
3503 thresholds->spare = thresholds->primary;
8c757763 3504
2c488db2 3505 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3506
907860ed 3507 /* To be sure that nobody uses thresholds */
2e72b634 3508 synchronize_rcu();
6611d8d7
MC
3509
3510 /* If all events are unregistered, free the spare array */
3511 if (!new) {
3512 kfree(thresholds->spare);
3513 thresholds->spare = NULL;
3514 }
371528ca 3515unlock:
2e72b634 3516 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3517}
c1e862c1 3518
59b6f873 3519static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3520 struct eventfd_ctx *eventfd)
3521{
59b6f873 3522 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3523}
3524
59b6f873 3525static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3526 struct eventfd_ctx *eventfd)
3527{
59b6f873 3528 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3529}
3530
59b6f873 3531static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3532 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3533{
9490ff27 3534 struct mem_cgroup_eventfd_list *event;
9490ff27 3535
9490ff27
KH
3536 event = kmalloc(sizeof(*event), GFP_KERNEL);
3537 if (!event)
3538 return -ENOMEM;
3539
1af8efe9 3540 spin_lock(&memcg_oom_lock);
9490ff27
KH
3541
3542 event->eventfd = eventfd;
3543 list_add(&event->list, &memcg->oom_notify);
3544
3545 /* already in OOM ? */
c2b42d3c 3546 if (memcg->under_oom)
9490ff27 3547 eventfd_signal(eventfd, 1);
1af8efe9 3548 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3549
3550 return 0;
3551}
3552
59b6f873 3553static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3554 struct eventfd_ctx *eventfd)
9490ff27 3555{
9490ff27 3556 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3557
1af8efe9 3558 spin_lock(&memcg_oom_lock);
9490ff27 3559
c0ff4b85 3560 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3561 if (ev->eventfd == eventfd) {
3562 list_del(&ev->list);
3563 kfree(ev);
3564 }
3565 }
3566
1af8efe9 3567 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3568}
3569
2da8ca82 3570static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3571{
2da8ca82 3572 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3573
791badbd 3574 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3575 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3576 return 0;
3577}
3578
182446d0 3579static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3580 struct cftype *cft, u64 val)
3581{
182446d0 3582 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3583
3584 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3585 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3586 return -EINVAL;
3587
c0ff4b85 3588 memcg->oom_kill_disable = val;
4d845ebf 3589 if (!val)
c0ff4b85 3590 memcg_oom_recover(memcg);
3dae7fec 3591
3c11ecf4
KH
3592 return 0;
3593}
3594
52ebea74
TH
3595#ifdef CONFIG_CGROUP_WRITEBACK
3596
3597struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3598{
3599 return &memcg->cgwb_list;
3600}
3601
841710aa
TH
3602static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3603{
3604 return wb_domain_init(&memcg->cgwb_domain, gfp);
3605}
3606
3607static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3608{
3609 wb_domain_exit(&memcg->cgwb_domain);
3610}
3611
2529bb3a
TH
3612static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3613{
3614 wb_domain_size_changed(&memcg->cgwb_domain);
3615}
3616
841710aa
TH
3617struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3618{
3619 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3620
3621 if (!memcg->css.parent)
3622 return NULL;
3623
3624 return &memcg->cgwb_domain;
3625}
3626
c2aa723a
TH
3627/**
3628 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3629 * @wb: bdi_writeback in question
c5edf9cd
TH
3630 * @pfilepages: out parameter for number of file pages
3631 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3632 * @pdirty: out parameter for number of dirty pages
3633 * @pwriteback: out parameter for number of pages under writeback
3634 *
c5edf9cd
TH
3635 * Determine the numbers of file, headroom, dirty, and writeback pages in
3636 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3637 * is a bit more involved.
c2aa723a 3638 *
c5edf9cd
TH
3639 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3640 * headroom is calculated as the lowest headroom of itself and the
3641 * ancestors. Note that this doesn't consider the actual amount of
3642 * available memory in the system. The caller should further cap
3643 * *@pheadroom accordingly.
c2aa723a 3644 */
c5edf9cd
TH
3645void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3646 unsigned long *pheadroom, unsigned long *pdirty,
3647 unsigned long *pwriteback)
c2aa723a
TH
3648{
3649 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3650 struct mem_cgroup *parent;
c2aa723a
TH
3651
3652 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3653
3654 /* this should eventually include NR_UNSTABLE_NFS */
3655 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3656 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3657 (1 << LRU_ACTIVE_FILE));
3658 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3659
c2aa723a
TH
3660 while ((parent = parent_mem_cgroup(memcg))) {
3661 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3662 unsigned long used = page_counter_read(&memcg->memory);
3663
c5edf9cd 3664 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3665 memcg = parent;
3666 }
c2aa723a
TH
3667}
3668
841710aa
TH
3669#else /* CONFIG_CGROUP_WRITEBACK */
3670
3671static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3672{
3673 return 0;
3674}
3675
3676static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3677{
3678}
3679
2529bb3a
TH
3680static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3681{
3682}
3683
52ebea74
TH
3684#endif /* CONFIG_CGROUP_WRITEBACK */
3685
3bc942f3
TH
3686/*
3687 * DO NOT USE IN NEW FILES.
3688 *
3689 * "cgroup.event_control" implementation.
3690 *
3691 * This is way over-engineered. It tries to support fully configurable
3692 * events for each user. Such level of flexibility is completely
3693 * unnecessary especially in the light of the planned unified hierarchy.
3694 *
3695 * Please deprecate this and replace with something simpler if at all
3696 * possible.
3697 */
3698
79bd9814
TH
3699/*
3700 * Unregister event and free resources.
3701 *
3702 * Gets called from workqueue.
3703 */
3bc942f3 3704static void memcg_event_remove(struct work_struct *work)
79bd9814 3705{
3bc942f3
TH
3706 struct mem_cgroup_event *event =
3707 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3708 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3709
3710 remove_wait_queue(event->wqh, &event->wait);
3711
59b6f873 3712 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3713
3714 /* Notify userspace the event is going away. */
3715 eventfd_signal(event->eventfd, 1);
3716
3717 eventfd_ctx_put(event->eventfd);
3718 kfree(event);
59b6f873 3719 css_put(&memcg->css);
79bd9814
TH
3720}
3721
3722/*
3723 * Gets called on POLLHUP on eventfd when user closes it.
3724 *
3725 * Called with wqh->lock held and interrupts disabled.
3726 */
3bc942f3
TH
3727static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3728 int sync, void *key)
79bd9814 3729{
3bc942f3
TH
3730 struct mem_cgroup_event *event =
3731 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3732 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3733 unsigned long flags = (unsigned long)key;
3734
3735 if (flags & POLLHUP) {
3736 /*
3737 * If the event has been detached at cgroup removal, we
3738 * can simply return knowing the other side will cleanup
3739 * for us.
3740 *
3741 * We can't race against event freeing since the other
3742 * side will require wqh->lock via remove_wait_queue(),
3743 * which we hold.
3744 */
fba94807 3745 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3746 if (!list_empty(&event->list)) {
3747 list_del_init(&event->list);
3748 /*
3749 * We are in atomic context, but cgroup_event_remove()
3750 * may sleep, so we have to call it in workqueue.
3751 */
3752 schedule_work(&event->remove);
3753 }
fba94807 3754 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3755 }
3756
3757 return 0;
3758}
3759
3bc942f3 3760static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3761 wait_queue_head_t *wqh, poll_table *pt)
3762{
3bc942f3
TH
3763 struct mem_cgroup_event *event =
3764 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3765
3766 event->wqh = wqh;
3767 add_wait_queue(wqh, &event->wait);
3768}
3769
3770/*
3bc942f3
TH
3771 * DO NOT USE IN NEW FILES.
3772 *
79bd9814
TH
3773 * Parse input and register new cgroup event handler.
3774 *
3775 * Input must be in format '<event_fd> <control_fd> <args>'.
3776 * Interpretation of args is defined by control file implementation.
3777 */
451af504
TH
3778static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3779 char *buf, size_t nbytes, loff_t off)
79bd9814 3780{
451af504 3781 struct cgroup_subsys_state *css = of_css(of);
fba94807 3782 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3783 struct mem_cgroup_event *event;
79bd9814
TH
3784 struct cgroup_subsys_state *cfile_css;
3785 unsigned int efd, cfd;
3786 struct fd efile;
3787 struct fd cfile;
fba94807 3788 const char *name;
79bd9814
TH
3789 char *endp;
3790 int ret;
3791
451af504
TH
3792 buf = strstrip(buf);
3793
3794 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3795 if (*endp != ' ')
3796 return -EINVAL;
451af504 3797 buf = endp + 1;
79bd9814 3798
451af504 3799 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3800 if ((*endp != ' ') && (*endp != '\0'))
3801 return -EINVAL;
451af504 3802 buf = endp + 1;
79bd9814
TH
3803
3804 event = kzalloc(sizeof(*event), GFP_KERNEL);
3805 if (!event)
3806 return -ENOMEM;
3807
59b6f873 3808 event->memcg = memcg;
79bd9814 3809 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3810 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3811 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3812 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3813
3814 efile = fdget(efd);
3815 if (!efile.file) {
3816 ret = -EBADF;
3817 goto out_kfree;
3818 }
3819
3820 event->eventfd = eventfd_ctx_fileget(efile.file);
3821 if (IS_ERR(event->eventfd)) {
3822 ret = PTR_ERR(event->eventfd);
3823 goto out_put_efile;
3824 }
3825
3826 cfile = fdget(cfd);
3827 if (!cfile.file) {
3828 ret = -EBADF;
3829 goto out_put_eventfd;
3830 }
3831
3832 /* the process need read permission on control file */
3833 /* AV: shouldn't we check that it's been opened for read instead? */
3834 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3835 if (ret < 0)
3836 goto out_put_cfile;
3837
fba94807
TH
3838 /*
3839 * Determine the event callbacks and set them in @event. This used
3840 * to be done via struct cftype but cgroup core no longer knows
3841 * about these events. The following is crude but the whole thing
3842 * is for compatibility anyway.
3bc942f3
TH
3843 *
3844 * DO NOT ADD NEW FILES.
fba94807 3845 */
b583043e 3846 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3847
3848 if (!strcmp(name, "memory.usage_in_bytes")) {
3849 event->register_event = mem_cgroup_usage_register_event;
3850 event->unregister_event = mem_cgroup_usage_unregister_event;
3851 } else if (!strcmp(name, "memory.oom_control")) {
3852 event->register_event = mem_cgroup_oom_register_event;
3853 event->unregister_event = mem_cgroup_oom_unregister_event;
3854 } else if (!strcmp(name, "memory.pressure_level")) {
3855 event->register_event = vmpressure_register_event;
3856 event->unregister_event = vmpressure_unregister_event;
3857 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3858 event->register_event = memsw_cgroup_usage_register_event;
3859 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3860 } else {
3861 ret = -EINVAL;
3862 goto out_put_cfile;
3863 }
3864
79bd9814 3865 /*
b5557c4c
TH
3866 * Verify @cfile should belong to @css. Also, remaining events are
3867 * automatically removed on cgroup destruction but the removal is
3868 * asynchronous, so take an extra ref on @css.
79bd9814 3869 */
b583043e 3870 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3871 &memory_cgrp_subsys);
79bd9814 3872 ret = -EINVAL;
5a17f543 3873 if (IS_ERR(cfile_css))
79bd9814 3874 goto out_put_cfile;
5a17f543
TH
3875 if (cfile_css != css) {
3876 css_put(cfile_css);
79bd9814 3877 goto out_put_cfile;
5a17f543 3878 }
79bd9814 3879
451af504 3880 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3881 if (ret)
3882 goto out_put_css;
3883
3884 efile.file->f_op->poll(efile.file, &event->pt);
3885
fba94807
TH
3886 spin_lock(&memcg->event_list_lock);
3887 list_add(&event->list, &memcg->event_list);
3888 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3889
3890 fdput(cfile);
3891 fdput(efile);
3892
451af504 3893 return nbytes;
79bd9814
TH
3894
3895out_put_css:
b5557c4c 3896 css_put(css);
79bd9814
TH
3897out_put_cfile:
3898 fdput(cfile);
3899out_put_eventfd:
3900 eventfd_ctx_put(event->eventfd);
3901out_put_efile:
3902 fdput(efile);
3903out_kfree:
3904 kfree(event);
3905
3906 return ret;
3907}
3908
241994ed 3909static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3910 {
0eea1030 3911 .name = "usage_in_bytes",
8c7c6e34 3912 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3913 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3914 },
c84872e1
PE
3915 {
3916 .name = "max_usage_in_bytes",
8c7c6e34 3917 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3918 .write = mem_cgroup_reset,
791badbd 3919 .read_u64 = mem_cgroup_read_u64,
c84872e1 3920 },
8cdea7c0 3921 {
0eea1030 3922 .name = "limit_in_bytes",
8c7c6e34 3923 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3924 .write = mem_cgroup_write,
791badbd 3925 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3926 },
296c81d8
BS
3927 {
3928 .name = "soft_limit_in_bytes",
3929 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3930 .write = mem_cgroup_write,
791badbd 3931 .read_u64 = mem_cgroup_read_u64,
296c81d8 3932 },
8cdea7c0
BS
3933 {
3934 .name = "failcnt",
8c7c6e34 3935 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3936 .write = mem_cgroup_reset,
791badbd 3937 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3938 },
d2ceb9b7
KH
3939 {
3940 .name = "stat",
2da8ca82 3941 .seq_show = memcg_stat_show,
d2ceb9b7 3942 },
c1e862c1
KH
3943 {
3944 .name = "force_empty",
6770c64e 3945 .write = mem_cgroup_force_empty_write,
c1e862c1 3946 },
18f59ea7
BS
3947 {
3948 .name = "use_hierarchy",
3949 .write_u64 = mem_cgroup_hierarchy_write,
3950 .read_u64 = mem_cgroup_hierarchy_read,
3951 },
79bd9814 3952 {
3bc942f3 3953 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3954 .write = memcg_write_event_control,
7dbdb199 3955 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3956 },
a7885eb8
KM
3957 {
3958 .name = "swappiness",
3959 .read_u64 = mem_cgroup_swappiness_read,
3960 .write_u64 = mem_cgroup_swappiness_write,
3961 },
7dc74be0
DN
3962 {
3963 .name = "move_charge_at_immigrate",
3964 .read_u64 = mem_cgroup_move_charge_read,
3965 .write_u64 = mem_cgroup_move_charge_write,
3966 },
9490ff27
KH
3967 {
3968 .name = "oom_control",
2da8ca82 3969 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3970 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3971 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3972 },
70ddf637
AV
3973 {
3974 .name = "pressure_level",
70ddf637 3975 },
406eb0c9
YH
3976#ifdef CONFIG_NUMA
3977 {
3978 .name = "numa_stat",
2da8ca82 3979 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3980 },
3981#endif
510fc4e1
GC
3982 {
3983 .name = "kmem.limit_in_bytes",
3984 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3985 .write = mem_cgroup_write,
791badbd 3986 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3987 },
3988 {
3989 .name = "kmem.usage_in_bytes",
3990 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 3991 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3992 },
3993 {
3994 .name = "kmem.failcnt",
3995 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 3996 .write = mem_cgroup_reset,
791badbd 3997 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3998 },
3999 {
4000 .name = "kmem.max_usage_in_bytes",
4001 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4002 .write = mem_cgroup_reset,
791badbd 4003 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4004 },
749c5415
GC
4005#ifdef CONFIG_SLABINFO
4006 {
4007 .name = "kmem.slabinfo",
b047501c
VD
4008 .seq_start = slab_start,
4009 .seq_next = slab_next,
4010 .seq_stop = slab_stop,
4011 .seq_show = memcg_slab_show,
749c5415
GC
4012 },
4013#endif
d55f90bf
VD
4014 {
4015 .name = "kmem.tcp.limit_in_bytes",
4016 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4017 .write = mem_cgroup_write,
4018 .read_u64 = mem_cgroup_read_u64,
4019 },
4020 {
4021 .name = "kmem.tcp.usage_in_bytes",
4022 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4023 .read_u64 = mem_cgroup_read_u64,
4024 },
4025 {
4026 .name = "kmem.tcp.failcnt",
4027 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4028 .write = mem_cgroup_reset,
4029 .read_u64 = mem_cgroup_read_u64,
4030 },
4031 {
4032 .name = "kmem.tcp.max_usage_in_bytes",
4033 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4034 .write = mem_cgroup_reset,
4035 .read_u64 = mem_cgroup_read_u64,
4036 },
6bc10349 4037 { }, /* terminate */
af36f906 4038};
8c7c6e34 4039
73f576c0
JW
4040/*
4041 * Private memory cgroup IDR
4042 *
4043 * Swap-out records and page cache shadow entries need to store memcg
4044 * references in constrained space, so we maintain an ID space that is
4045 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4046 * memory-controlled cgroups to 64k.
4047 *
4048 * However, there usually are many references to the oflline CSS after
4049 * the cgroup has been destroyed, such as page cache or reclaimable
4050 * slab objects, that don't need to hang on to the ID. We want to keep
4051 * those dead CSS from occupying IDs, or we might quickly exhaust the
4052 * relatively small ID space and prevent the creation of new cgroups
4053 * even when there are much fewer than 64k cgroups - possibly none.
4054 *
4055 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4056 * be freed and recycled when it's no longer needed, which is usually
4057 * when the CSS is offlined.
4058 *
4059 * The only exception to that are records of swapped out tmpfs/shmem
4060 * pages that need to be attributed to live ancestors on swapin. But
4061 * those references are manageable from userspace.
4062 */
4063
4064static DEFINE_IDR(mem_cgroup_idr);
4065
4066static void mem_cgroup_id_get(struct mem_cgroup *memcg)
4067{
4068 atomic_inc(&memcg->id.ref);
4069}
4070
4071static void mem_cgroup_id_put(struct mem_cgroup *memcg)
4072{
4073 if (atomic_dec_and_test(&memcg->id.ref)) {
4074 idr_remove(&mem_cgroup_idr, memcg->id.id);
4075 memcg->id.id = 0;
4076
4077 /* Memcg ID pins CSS */
4078 css_put(&memcg->css);
4079 }
4080}
4081
4082/**
4083 * mem_cgroup_from_id - look up a memcg from a memcg id
4084 * @id: the memcg id to look up
4085 *
4086 * Caller must hold rcu_read_lock().
4087 */
4088struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4089{
4090 WARN_ON_ONCE(!rcu_read_lock_held());
4091 return idr_find(&mem_cgroup_idr, id);
4092}
4093
ef8f2327 4094static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4095{
4096 struct mem_cgroup_per_node *pn;
ef8f2327 4097 int tmp = node;
1ecaab2b
KH
4098 /*
4099 * This routine is called against possible nodes.
4100 * But it's BUG to call kmalloc() against offline node.
4101 *
4102 * TODO: this routine can waste much memory for nodes which will
4103 * never be onlined. It's better to use memory hotplug callback
4104 * function.
4105 */
41e3355d
KH
4106 if (!node_state(node, N_NORMAL_MEMORY))
4107 tmp = -1;
17295c88 4108 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4109 if (!pn)
4110 return 1;
1ecaab2b 4111
ef8f2327
MG
4112 lruvec_init(&pn->lruvec);
4113 pn->usage_in_excess = 0;
4114 pn->on_tree = false;
4115 pn->memcg = memcg;
4116
54f72fe0 4117 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4118 return 0;
4119}
4120
ef8f2327 4121static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4122{
54f72fe0 4123 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4124}
4125
0b8f73e1 4126static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4127{
c8b2a36f 4128 int node;
59927fb9 4129
0b8f73e1 4130 memcg_wb_domain_exit(memcg);
c8b2a36f 4131 for_each_node(node)
ef8f2327 4132 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4133 free_percpu(memcg->stat);
8ff69e2c 4134 kfree(memcg);
59927fb9 4135}
3afe36b1 4136
0b8f73e1 4137static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4138{
d142e3e6 4139 struct mem_cgroup *memcg;
0b8f73e1 4140 size_t size;
6d12e2d8 4141 int node;
8cdea7c0 4142
0b8f73e1
JW
4143 size = sizeof(struct mem_cgroup);
4144 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4145
4146 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4147 if (!memcg)
0b8f73e1
JW
4148 return NULL;
4149
73f576c0
JW
4150 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4151 1, MEM_CGROUP_ID_MAX,
4152 GFP_KERNEL);
4153 if (memcg->id.id < 0)
4154 goto fail;
4155
0b8f73e1
JW
4156 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4157 if (!memcg->stat)
4158 goto fail;
78fb7466 4159
3ed28fa1 4160 for_each_node(node)
ef8f2327 4161 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4162 goto fail;
f64c3f54 4163
0b8f73e1
JW
4164 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4165 goto fail;
28dbc4b6 4166
f7e1cb6e 4167 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4168 memcg->last_scanned_node = MAX_NUMNODES;
4169 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4170 mutex_init(&memcg->thresholds_lock);
4171 spin_lock_init(&memcg->move_lock);
70ddf637 4172 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4173 INIT_LIST_HEAD(&memcg->event_list);
4174 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4175 memcg->socket_pressure = jiffies;
127424c8 4176#ifndef CONFIG_SLOB
900a38f0 4177 memcg->kmemcg_id = -1;
900a38f0 4178#endif
52ebea74
TH
4179#ifdef CONFIG_CGROUP_WRITEBACK
4180 INIT_LIST_HEAD(&memcg->cgwb_list);
4181#endif
73f576c0 4182 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4183 return memcg;
4184fail:
73f576c0
JW
4185 if (memcg->id.id > 0)
4186 idr_remove(&mem_cgroup_idr, memcg->id.id);
0b8f73e1
JW
4187 mem_cgroup_free(memcg);
4188 return NULL;
d142e3e6
GC
4189}
4190
0b8f73e1
JW
4191static struct cgroup_subsys_state * __ref
4192mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4193{
0b8f73e1
JW
4194 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4195 struct mem_cgroup *memcg;
4196 long error = -ENOMEM;
d142e3e6 4197
0b8f73e1
JW
4198 memcg = mem_cgroup_alloc();
4199 if (!memcg)
4200 return ERR_PTR(error);
d142e3e6 4201
0b8f73e1
JW
4202 memcg->high = PAGE_COUNTER_MAX;
4203 memcg->soft_limit = PAGE_COUNTER_MAX;
4204 if (parent) {
4205 memcg->swappiness = mem_cgroup_swappiness(parent);
4206 memcg->oom_kill_disable = parent->oom_kill_disable;
4207 }
4208 if (parent && parent->use_hierarchy) {
4209 memcg->use_hierarchy = true;
3e32cb2e 4210 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4211 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4212 page_counter_init(&memcg->memsw, &parent->memsw);
4213 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4214 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4215 } else {
3e32cb2e 4216 page_counter_init(&memcg->memory, NULL);
37e84351 4217 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4218 page_counter_init(&memcg->memsw, NULL);
4219 page_counter_init(&memcg->kmem, NULL);
0db15298 4220 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4221 /*
4222 * Deeper hierachy with use_hierarchy == false doesn't make
4223 * much sense so let cgroup subsystem know about this
4224 * unfortunate state in our controller.
4225 */
d142e3e6 4226 if (parent != root_mem_cgroup)
073219e9 4227 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4228 }
d6441637 4229
0b8f73e1
JW
4230 /* The following stuff does not apply to the root */
4231 if (!parent) {
4232 root_mem_cgroup = memcg;
4233 return &memcg->css;
4234 }
4235
b313aeee 4236 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4237 if (error)
4238 goto fail;
127424c8 4239
f7e1cb6e 4240 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4241 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4242
0b8f73e1
JW
4243 return &memcg->css;
4244fail:
4245 mem_cgroup_free(memcg);
ea3a9645 4246 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4247}
4248
73f576c0 4249static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4250{
73f576c0
JW
4251 /* Online state pins memcg ID, memcg ID pins CSS */
4252 mem_cgroup_id_get(mem_cgroup_from_css(css));
4253 css_get(css);
2f7dd7a4 4254 return 0;
8cdea7c0
BS
4255}
4256
eb95419b 4257static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4258{
eb95419b 4259 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4260 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4261
4262 /*
4263 * Unregister events and notify userspace.
4264 * Notify userspace about cgroup removing only after rmdir of cgroup
4265 * directory to avoid race between userspace and kernelspace.
4266 */
fba94807
TH
4267 spin_lock(&memcg->event_list_lock);
4268 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4269 list_del_init(&event->list);
4270 schedule_work(&event->remove);
4271 }
fba94807 4272 spin_unlock(&memcg->event_list_lock);
ec64f515 4273
567e9ab2 4274 memcg_offline_kmem(memcg);
52ebea74 4275 wb_memcg_offline(memcg);
73f576c0
JW
4276
4277 mem_cgroup_id_put(memcg);
df878fb0
KH
4278}
4279
6df38689
VD
4280static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4281{
4282 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4283
4284 invalidate_reclaim_iterators(memcg);
4285}
4286
eb95419b 4287static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4288{
eb95419b 4289 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4290
f7e1cb6e 4291 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4292 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4293
0db15298 4294 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4295 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4296
0b8f73e1
JW
4297 vmpressure_cleanup(&memcg->vmpressure);
4298 cancel_work_sync(&memcg->high_work);
4299 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4300 memcg_free_kmem(memcg);
0b8f73e1 4301 mem_cgroup_free(memcg);
8cdea7c0
BS
4302}
4303
1ced953b
TH
4304/**
4305 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4306 * @css: the target css
4307 *
4308 * Reset the states of the mem_cgroup associated with @css. This is
4309 * invoked when the userland requests disabling on the default hierarchy
4310 * but the memcg is pinned through dependency. The memcg should stop
4311 * applying policies and should revert to the vanilla state as it may be
4312 * made visible again.
4313 *
4314 * The current implementation only resets the essential configurations.
4315 * This needs to be expanded to cover all the visible parts.
4316 */
4317static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4318{
4319 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4320
d334c9bc
VD
4321 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4322 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4323 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4324 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4325 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4326 memcg->low = 0;
4327 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4328 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4329 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4330}
4331
02491447 4332#ifdef CONFIG_MMU
7dc74be0 4333/* Handlers for move charge at task migration. */
854ffa8d 4334static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4335{
05b84301 4336 int ret;
9476db97 4337
d0164adc
MG
4338 /* Try a single bulk charge without reclaim first, kswapd may wake */
4339 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4340 if (!ret) {
854ffa8d 4341 mc.precharge += count;
854ffa8d
DN
4342 return ret;
4343 }
9476db97
JW
4344
4345 /* Try charges one by one with reclaim */
854ffa8d 4346 while (count--) {
00501b53 4347 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4348 if (ret)
38c5d72f 4349 return ret;
854ffa8d 4350 mc.precharge++;
9476db97 4351 cond_resched();
854ffa8d 4352 }
9476db97 4353 return 0;
4ffef5fe
DN
4354}
4355
4ffef5fe
DN
4356union mc_target {
4357 struct page *page;
02491447 4358 swp_entry_t ent;
4ffef5fe
DN
4359};
4360
4ffef5fe 4361enum mc_target_type {
8d32ff84 4362 MC_TARGET_NONE = 0,
4ffef5fe 4363 MC_TARGET_PAGE,
02491447 4364 MC_TARGET_SWAP,
4ffef5fe
DN
4365};
4366
90254a65
DN
4367static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4368 unsigned long addr, pte_t ptent)
4ffef5fe 4369{
90254a65 4370 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4371
90254a65
DN
4372 if (!page || !page_mapped(page))
4373 return NULL;
4374 if (PageAnon(page)) {
1dfab5ab 4375 if (!(mc.flags & MOVE_ANON))
90254a65 4376 return NULL;
1dfab5ab
JW
4377 } else {
4378 if (!(mc.flags & MOVE_FILE))
4379 return NULL;
4380 }
90254a65
DN
4381 if (!get_page_unless_zero(page))
4382 return NULL;
4383
4384 return page;
4385}
4386
4b91355e 4387#ifdef CONFIG_SWAP
90254a65 4388static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4389 pte_t ptent, swp_entry_t *entry)
90254a65 4390{
90254a65
DN
4391 struct page *page = NULL;
4392 swp_entry_t ent = pte_to_swp_entry(ptent);
4393
1dfab5ab 4394 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4395 return NULL;
4b91355e
KH
4396 /*
4397 * Because lookup_swap_cache() updates some statistics counter,
4398 * we call find_get_page() with swapper_space directly.
4399 */
33806f06 4400 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4401 if (do_memsw_account())
90254a65
DN
4402 entry->val = ent.val;
4403
4404 return page;
4405}
4b91355e
KH
4406#else
4407static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4408 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4409{
4410 return NULL;
4411}
4412#endif
90254a65 4413
87946a72
DN
4414static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4415 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4416{
4417 struct page *page = NULL;
87946a72
DN
4418 struct address_space *mapping;
4419 pgoff_t pgoff;
4420
4421 if (!vma->vm_file) /* anonymous vma */
4422 return NULL;
1dfab5ab 4423 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4424 return NULL;
4425
87946a72 4426 mapping = vma->vm_file->f_mapping;
0661a336 4427 pgoff = linear_page_index(vma, addr);
87946a72
DN
4428
4429 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4430#ifdef CONFIG_SWAP
4431 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4432 if (shmem_mapping(mapping)) {
4433 page = find_get_entry(mapping, pgoff);
4434 if (radix_tree_exceptional_entry(page)) {
4435 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4436 if (do_memsw_account())
139b6a6f
JW
4437 *entry = swp;
4438 page = find_get_page(swap_address_space(swp), swp.val);
4439 }
4440 } else
4441 page = find_get_page(mapping, pgoff);
4442#else
4443 page = find_get_page(mapping, pgoff);
aa3b1895 4444#endif
87946a72
DN
4445 return page;
4446}
4447
b1b0deab
CG
4448/**
4449 * mem_cgroup_move_account - move account of the page
4450 * @page: the page
25843c2b 4451 * @compound: charge the page as compound or small page
b1b0deab
CG
4452 * @from: mem_cgroup which the page is moved from.
4453 * @to: mem_cgroup which the page is moved to. @from != @to.
4454 *
3ac808fd 4455 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4456 *
4457 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4458 * from old cgroup.
4459 */
4460static int mem_cgroup_move_account(struct page *page,
f627c2f5 4461 bool compound,
b1b0deab
CG
4462 struct mem_cgroup *from,
4463 struct mem_cgroup *to)
4464{
4465 unsigned long flags;
f627c2f5 4466 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4467 int ret;
c4843a75 4468 bool anon;
b1b0deab
CG
4469
4470 VM_BUG_ON(from == to);
4471 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4472 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4473
4474 /*
6a93ca8f 4475 * Prevent mem_cgroup_migrate() from looking at
45637bab 4476 * page->mem_cgroup of its source page while we change it.
b1b0deab 4477 */
f627c2f5 4478 ret = -EBUSY;
b1b0deab
CG
4479 if (!trylock_page(page))
4480 goto out;
4481
4482 ret = -EINVAL;
4483 if (page->mem_cgroup != from)
4484 goto out_unlock;
4485
c4843a75
GT
4486 anon = PageAnon(page);
4487
b1b0deab
CG
4488 spin_lock_irqsave(&from->move_lock, flags);
4489
c4843a75 4490 if (!anon && page_mapped(page)) {
b1b0deab
CG
4491 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4492 nr_pages);
4493 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4494 nr_pages);
4495 }
4496
c4843a75
GT
4497 /*
4498 * move_lock grabbed above and caller set from->moving_account, so
4499 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4500 * So mapping should be stable for dirty pages.
4501 */
4502 if (!anon && PageDirty(page)) {
4503 struct address_space *mapping = page_mapping(page);
4504
4505 if (mapping_cap_account_dirty(mapping)) {
4506 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4507 nr_pages);
4508 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4509 nr_pages);
4510 }
4511 }
4512
b1b0deab
CG
4513 if (PageWriteback(page)) {
4514 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4515 nr_pages);
4516 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4517 nr_pages);
4518 }
4519
4520 /*
4521 * It is safe to change page->mem_cgroup here because the page
4522 * is referenced, charged, and isolated - we can't race with
4523 * uncharging, charging, migration, or LRU putback.
4524 */
4525
4526 /* caller should have done css_get */
4527 page->mem_cgroup = to;
4528 spin_unlock_irqrestore(&from->move_lock, flags);
4529
4530 ret = 0;
4531
4532 local_irq_disable();
f627c2f5 4533 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4534 memcg_check_events(to, page);
f627c2f5 4535 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4536 memcg_check_events(from, page);
4537 local_irq_enable();
4538out_unlock:
4539 unlock_page(page);
4540out:
4541 return ret;
4542}
4543
7cf7806c
LR
4544/**
4545 * get_mctgt_type - get target type of moving charge
4546 * @vma: the vma the pte to be checked belongs
4547 * @addr: the address corresponding to the pte to be checked
4548 * @ptent: the pte to be checked
4549 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4550 *
4551 * Returns
4552 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4553 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4554 * move charge. if @target is not NULL, the page is stored in target->page
4555 * with extra refcnt got(Callers should handle it).
4556 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4557 * target for charge migration. if @target is not NULL, the entry is stored
4558 * in target->ent.
4559 *
4560 * Called with pte lock held.
4561 */
4562
8d32ff84 4563static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4564 unsigned long addr, pte_t ptent, union mc_target *target)
4565{
4566 struct page *page = NULL;
8d32ff84 4567 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4568 swp_entry_t ent = { .val = 0 };
4569
4570 if (pte_present(ptent))
4571 page = mc_handle_present_pte(vma, addr, ptent);
4572 else if (is_swap_pte(ptent))
48406ef8 4573 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4574 else if (pte_none(ptent))
87946a72 4575 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4576
4577 if (!page && !ent.val)
8d32ff84 4578 return ret;
02491447 4579 if (page) {
02491447 4580 /*
0a31bc97 4581 * Do only loose check w/o serialization.
1306a85a 4582 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4583 * not under LRU exclusion.
02491447 4584 */
1306a85a 4585 if (page->mem_cgroup == mc.from) {
02491447
DN
4586 ret = MC_TARGET_PAGE;
4587 if (target)
4588 target->page = page;
4589 }
4590 if (!ret || !target)
4591 put_page(page);
4592 }
90254a65
DN
4593 /* There is a swap entry and a page doesn't exist or isn't charged */
4594 if (ent.val && !ret &&
34c00c31 4595 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4596 ret = MC_TARGET_SWAP;
4597 if (target)
4598 target->ent = ent;
4ffef5fe 4599 }
4ffef5fe
DN
4600 return ret;
4601}
4602
12724850
NH
4603#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4604/*
4605 * We don't consider swapping or file mapped pages because THP does not
4606 * support them for now.
4607 * Caller should make sure that pmd_trans_huge(pmd) is true.
4608 */
4609static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4610 unsigned long addr, pmd_t pmd, union mc_target *target)
4611{
4612 struct page *page = NULL;
12724850
NH
4613 enum mc_target_type ret = MC_TARGET_NONE;
4614
4615 page = pmd_page(pmd);
309381fe 4616 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4617 if (!(mc.flags & MOVE_ANON))
12724850 4618 return ret;
1306a85a 4619 if (page->mem_cgroup == mc.from) {
12724850
NH
4620 ret = MC_TARGET_PAGE;
4621 if (target) {
4622 get_page(page);
4623 target->page = page;
4624 }
4625 }
4626 return ret;
4627}
4628#else
4629static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4630 unsigned long addr, pmd_t pmd, union mc_target *target)
4631{
4632 return MC_TARGET_NONE;
4633}
4634#endif
4635
4ffef5fe
DN
4636static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4637 unsigned long addr, unsigned long end,
4638 struct mm_walk *walk)
4639{
26bcd64a 4640 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4641 pte_t *pte;
4642 spinlock_t *ptl;
4643
b6ec57f4
KS
4644 ptl = pmd_trans_huge_lock(pmd, vma);
4645 if (ptl) {
12724850
NH
4646 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4647 mc.precharge += HPAGE_PMD_NR;
bf929152 4648 spin_unlock(ptl);
1a5a9906 4649 return 0;
12724850 4650 }
03319327 4651
45f83cef
AA
4652 if (pmd_trans_unstable(pmd))
4653 return 0;
4ffef5fe
DN
4654 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4655 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4656 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4657 mc.precharge++; /* increment precharge temporarily */
4658 pte_unmap_unlock(pte - 1, ptl);
4659 cond_resched();
4660
7dc74be0
DN
4661 return 0;
4662}
4663
4ffef5fe
DN
4664static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4665{
4666 unsigned long precharge;
4ffef5fe 4667
26bcd64a
NH
4668 struct mm_walk mem_cgroup_count_precharge_walk = {
4669 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4670 .mm = mm,
4671 };
dfe076b0 4672 down_read(&mm->mmap_sem);
26bcd64a 4673 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4674 up_read(&mm->mmap_sem);
4ffef5fe
DN
4675
4676 precharge = mc.precharge;
4677 mc.precharge = 0;
4678
4679 return precharge;
4680}
4681
4ffef5fe
DN
4682static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4683{
dfe076b0
DN
4684 unsigned long precharge = mem_cgroup_count_precharge(mm);
4685
4686 VM_BUG_ON(mc.moving_task);
4687 mc.moving_task = current;
4688 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4689}
4690
dfe076b0
DN
4691/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4692static void __mem_cgroup_clear_mc(void)
4ffef5fe 4693{
2bd9bb20
KH
4694 struct mem_cgroup *from = mc.from;
4695 struct mem_cgroup *to = mc.to;
4696
4ffef5fe 4697 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4698 if (mc.precharge) {
00501b53 4699 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4700 mc.precharge = 0;
4701 }
4702 /*
4703 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4704 * we must uncharge here.
4705 */
4706 if (mc.moved_charge) {
00501b53 4707 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4708 mc.moved_charge = 0;
4ffef5fe 4709 }
483c30b5
DN
4710 /* we must fixup refcnts and charges */
4711 if (mc.moved_swap) {
483c30b5 4712 /* uncharge swap account from the old cgroup */
ce00a967 4713 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4714 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4715
05b84301 4716 /*
3e32cb2e
JW
4717 * we charged both to->memory and to->memsw, so we
4718 * should uncharge to->memory.
05b84301 4719 */
ce00a967 4720 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4721 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4722
e8ea14cc 4723 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4724
4050377b 4725 /* we've already done css_get(mc.to) */
483c30b5
DN
4726 mc.moved_swap = 0;
4727 }
dfe076b0
DN
4728 memcg_oom_recover(from);
4729 memcg_oom_recover(to);
4730 wake_up_all(&mc.waitq);
4731}
4732
4733static void mem_cgroup_clear_mc(void)
4734{
264a0ae1
TH
4735 struct mm_struct *mm = mc.mm;
4736
dfe076b0
DN
4737 /*
4738 * we must clear moving_task before waking up waiters at the end of
4739 * task migration.
4740 */
4741 mc.moving_task = NULL;
4742 __mem_cgroup_clear_mc();
2bd9bb20 4743 spin_lock(&mc.lock);
4ffef5fe
DN
4744 mc.from = NULL;
4745 mc.to = NULL;
264a0ae1 4746 mc.mm = NULL;
2bd9bb20 4747 spin_unlock(&mc.lock);
264a0ae1
TH
4748
4749 mmput(mm);
4ffef5fe
DN
4750}
4751
1f7dd3e5 4752static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4753{
1f7dd3e5 4754 struct cgroup_subsys_state *css;
eed67d75 4755 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4756 struct mem_cgroup *from;
4530eddb 4757 struct task_struct *leader, *p;
9f2115f9 4758 struct mm_struct *mm;
1dfab5ab 4759 unsigned long move_flags;
9f2115f9 4760 int ret = 0;
7dc74be0 4761
1f7dd3e5
TH
4762 /* charge immigration isn't supported on the default hierarchy */
4763 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4764 return 0;
4765
4530eddb
TH
4766 /*
4767 * Multi-process migrations only happen on the default hierarchy
4768 * where charge immigration is not used. Perform charge
4769 * immigration if @tset contains a leader and whine if there are
4770 * multiple.
4771 */
4772 p = NULL;
1f7dd3e5 4773 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4774 WARN_ON_ONCE(p);
4775 p = leader;
1f7dd3e5 4776 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4777 }
4778 if (!p)
4779 return 0;
4780
1f7dd3e5
TH
4781 /*
4782 * We are now commited to this value whatever it is. Changes in this
4783 * tunable will only affect upcoming migrations, not the current one.
4784 * So we need to save it, and keep it going.
4785 */
4786 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4787 if (!move_flags)
4788 return 0;
4789
9f2115f9
TH
4790 from = mem_cgroup_from_task(p);
4791
4792 VM_BUG_ON(from == memcg);
4793
4794 mm = get_task_mm(p);
4795 if (!mm)
4796 return 0;
4797 /* We move charges only when we move a owner of the mm */
4798 if (mm->owner == p) {
4799 VM_BUG_ON(mc.from);
4800 VM_BUG_ON(mc.to);
4801 VM_BUG_ON(mc.precharge);
4802 VM_BUG_ON(mc.moved_charge);
4803 VM_BUG_ON(mc.moved_swap);
4804
4805 spin_lock(&mc.lock);
264a0ae1 4806 mc.mm = mm;
9f2115f9
TH
4807 mc.from = from;
4808 mc.to = memcg;
4809 mc.flags = move_flags;
4810 spin_unlock(&mc.lock);
4811 /* We set mc.moving_task later */
4812
4813 ret = mem_cgroup_precharge_mc(mm);
4814 if (ret)
4815 mem_cgroup_clear_mc();
264a0ae1
TH
4816 } else {
4817 mmput(mm);
7dc74be0
DN
4818 }
4819 return ret;
4820}
4821
1f7dd3e5 4822static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4823{
4e2f245d
JW
4824 if (mc.to)
4825 mem_cgroup_clear_mc();
7dc74be0
DN
4826}
4827
4ffef5fe
DN
4828static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4829 unsigned long addr, unsigned long end,
4830 struct mm_walk *walk)
7dc74be0 4831{
4ffef5fe 4832 int ret = 0;
26bcd64a 4833 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4834 pte_t *pte;
4835 spinlock_t *ptl;
12724850
NH
4836 enum mc_target_type target_type;
4837 union mc_target target;
4838 struct page *page;
4ffef5fe 4839
b6ec57f4
KS
4840 ptl = pmd_trans_huge_lock(pmd, vma);
4841 if (ptl) {
62ade86a 4842 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4843 spin_unlock(ptl);
12724850
NH
4844 return 0;
4845 }
4846 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4847 if (target_type == MC_TARGET_PAGE) {
4848 page = target.page;
4849 if (!isolate_lru_page(page)) {
f627c2f5 4850 if (!mem_cgroup_move_account(page, true,
1306a85a 4851 mc.from, mc.to)) {
12724850
NH
4852 mc.precharge -= HPAGE_PMD_NR;
4853 mc.moved_charge += HPAGE_PMD_NR;
4854 }
4855 putback_lru_page(page);
4856 }
4857 put_page(page);
4858 }
bf929152 4859 spin_unlock(ptl);
1a5a9906 4860 return 0;
12724850
NH
4861 }
4862
45f83cef
AA
4863 if (pmd_trans_unstable(pmd))
4864 return 0;
4ffef5fe
DN
4865retry:
4866 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4867 for (; addr != end; addr += PAGE_SIZE) {
4868 pte_t ptent = *(pte++);
02491447 4869 swp_entry_t ent;
4ffef5fe
DN
4870
4871 if (!mc.precharge)
4872 break;
4873
8d32ff84 4874 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4875 case MC_TARGET_PAGE:
4876 page = target.page;
53f9263b
KS
4877 /*
4878 * We can have a part of the split pmd here. Moving it
4879 * can be done but it would be too convoluted so simply
4880 * ignore such a partial THP and keep it in original
4881 * memcg. There should be somebody mapping the head.
4882 */
4883 if (PageTransCompound(page))
4884 goto put;
4ffef5fe
DN
4885 if (isolate_lru_page(page))
4886 goto put;
f627c2f5
KS
4887 if (!mem_cgroup_move_account(page, false,
4888 mc.from, mc.to)) {
4ffef5fe 4889 mc.precharge--;
854ffa8d
DN
4890 /* we uncharge from mc.from later. */
4891 mc.moved_charge++;
4ffef5fe
DN
4892 }
4893 putback_lru_page(page);
8d32ff84 4894put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4895 put_page(page);
4896 break;
02491447
DN
4897 case MC_TARGET_SWAP:
4898 ent = target.ent;
e91cbb42 4899 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4900 mc.precharge--;
483c30b5
DN
4901 /* we fixup refcnts and charges later. */
4902 mc.moved_swap++;
4903 }
02491447 4904 break;
4ffef5fe
DN
4905 default:
4906 break;
4907 }
4908 }
4909 pte_unmap_unlock(pte - 1, ptl);
4910 cond_resched();
4911
4912 if (addr != end) {
4913 /*
4914 * We have consumed all precharges we got in can_attach().
4915 * We try charge one by one, but don't do any additional
4916 * charges to mc.to if we have failed in charge once in attach()
4917 * phase.
4918 */
854ffa8d 4919 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4920 if (!ret)
4921 goto retry;
4922 }
4923
4924 return ret;
4925}
4926
264a0ae1 4927static void mem_cgroup_move_charge(void)
4ffef5fe 4928{
26bcd64a
NH
4929 struct mm_walk mem_cgroup_move_charge_walk = {
4930 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 4931 .mm = mc.mm,
26bcd64a 4932 };
4ffef5fe
DN
4933
4934 lru_add_drain_all();
312722cb 4935 /*
81f8c3a4
JW
4936 * Signal lock_page_memcg() to take the memcg's move_lock
4937 * while we're moving its pages to another memcg. Then wait
4938 * for already started RCU-only updates to finish.
312722cb
JW
4939 */
4940 atomic_inc(&mc.from->moving_account);
4941 synchronize_rcu();
dfe076b0 4942retry:
264a0ae1 4943 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
4944 /*
4945 * Someone who are holding the mmap_sem might be waiting in
4946 * waitq. So we cancel all extra charges, wake up all waiters,
4947 * and retry. Because we cancel precharges, we might not be able
4948 * to move enough charges, but moving charge is a best-effort
4949 * feature anyway, so it wouldn't be a big problem.
4950 */
4951 __mem_cgroup_clear_mc();
4952 cond_resched();
4953 goto retry;
4954 }
26bcd64a
NH
4955 /*
4956 * When we have consumed all precharges and failed in doing
4957 * additional charge, the page walk just aborts.
4958 */
4959 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
264a0ae1 4960 up_read(&mc.mm->mmap_sem);
312722cb 4961 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4962}
4963
264a0ae1 4964static void mem_cgroup_move_task(void)
67e465a7 4965{
264a0ae1
TH
4966 if (mc.to) {
4967 mem_cgroup_move_charge();
a433658c 4968 mem_cgroup_clear_mc();
264a0ae1 4969 }
67e465a7 4970}
5cfb80a7 4971#else /* !CONFIG_MMU */
1f7dd3e5 4972static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4973{
4974 return 0;
4975}
1f7dd3e5 4976static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4977{
4978}
264a0ae1 4979static void mem_cgroup_move_task(void)
5cfb80a7
DN
4980{
4981}
4982#endif
67e465a7 4983
f00baae7
TH
4984/*
4985 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4986 * to verify whether we're attached to the default hierarchy on each mount
4987 * attempt.
f00baae7 4988 */
eb95419b 4989static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
4990{
4991 /*
aa6ec29b 4992 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
4993 * guarantees that @root doesn't have any children, so turning it
4994 * on for the root memcg is enough.
4995 */
9e10a130 4996 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
4997 root_mem_cgroup->use_hierarchy = true;
4998 else
4999 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5000}
5001
241994ed
JW
5002static u64 memory_current_read(struct cgroup_subsys_state *css,
5003 struct cftype *cft)
5004{
f5fc3c5d
JW
5005 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5006
5007 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5008}
5009
5010static int memory_low_show(struct seq_file *m, void *v)
5011{
5012 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5013 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5014
5015 if (low == PAGE_COUNTER_MAX)
d2973697 5016 seq_puts(m, "max\n");
241994ed
JW
5017 else
5018 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5019
5020 return 0;
5021}
5022
5023static ssize_t memory_low_write(struct kernfs_open_file *of,
5024 char *buf, size_t nbytes, loff_t off)
5025{
5026 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5027 unsigned long low;
5028 int err;
5029
5030 buf = strstrip(buf);
d2973697 5031 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5032 if (err)
5033 return err;
5034
5035 memcg->low = low;
5036
5037 return nbytes;
5038}
5039
5040static int memory_high_show(struct seq_file *m, void *v)
5041{
5042 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5043 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5044
5045 if (high == PAGE_COUNTER_MAX)
d2973697 5046 seq_puts(m, "max\n");
241994ed
JW
5047 else
5048 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5049
5050 return 0;
5051}
5052
5053static ssize_t memory_high_write(struct kernfs_open_file *of,
5054 char *buf, size_t nbytes, loff_t off)
5055{
5056 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5057 unsigned long nr_pages;
241994ed
JW
5058 unsigned long high;
5059 int err;
5060
5061 buf = strstrip(buf);
d2973697 5062 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5063 if (err)
5064 return err;
5065
5066 memcg->high = high;
5067
588083bb
JW
5068 nr_pages = page_counter_read(&memcg->memory);
5069 if (nr_pages > high)
5070 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5071 GFP_KERNEL, true);
5072
2529bb3a 5073 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5074 return nbytes;
5075}
5076
5077static int memory_max_show(struct seq_file *m, void *v)
5078{
5079 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5080 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5081
5082 if (max == PAGE_COUNTER_MAX)
d2973697 5083 seq_puts(m, "max\n");
241994ed
JW
5084 else
5085 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5086
5087 return 0;
5088}
5089
5090static ssize_t memory_max_write(struct kernfs_open_file *of,
5091 char *buf, size_t nbytes, loff_t off)
5092{
5093 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5094 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5095 bool drained = false;
241994ed
JW
5096 unsigned long max;
5097 int err;
5098
5099 buf = strstrip(buf);
d2973697 5100 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5101 if (err)
5102 return err;
5103
b6e6edcf
JW
5104 xchg(&memcg->memory.limit, max);
5105
5106 for (;;) {
5107 unsigned long nr_pages = page_counter_read(&memcg->memory);
5108
5109 if (nr_pages <= max)
5110 break;
5111
5112 if (signal_pending(current)) {
5113 err = -EINTR;
5114 break;
5115 }
5116
5117 if (!drained) {
5118 drain_all_stock(memcg);
5119 drained = true;
5120 continue;
5121 }
5122
5123 if (nr_reclaims) {
5124 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5125 GFP_KERNEL, true))
5126 nr_reclaims--;
5127 continue;
5128 }
5129
5130 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5131 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5132 break;
5133 }
241994ed 5134
2529bb3a 5135 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5136 return nbytes;
5137}
5138
5139static int memory_events_show(struct seq_file *m, void *v)
5140{
5141 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5142
5143 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5144 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5145 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5146 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5147
5148 return 0;
5149}
5150
587d9f72
JW
5151static int memory_stat_show(struct seq_file *m, void *v)
5152{
5153 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5154 unsigned long stat[MEMCG_NR_STAT];
5155 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5156 int i;
5157
5158 /*
5159 * Provide statistics on the state of the memory subsystem as
5160 * well as cumulative event counters that show past behavior.
5161 *
5162 * This list is ordered following a combination of these gradients:
5163 * 1) generic big picture -> specifics and details
5164 * 2) reflecting userspace activity -> reflecting kernel heuristics
5165 *
5166 * Current memory state:
5167 */
5168
72b54e73
VD
5169 tree_stat(memcg, stat);
5170 tree_events(memcg, events);
5171
587d9f72 5172 seq_printf(m, "anon %llu\n",
72b54e73 5173 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5174 seq_printf(m, "file %llu\n",
72b54e73 5175 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b
VD
5176 seq_printf(m, "kernel_stack %llu\n",
5177 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
27ee57c9
VD
5178 seq_printf(m, "slab %llu\n",
5179 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5180 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5181 seq_printf(m, "sock %llu\n",
72b54e73 5182 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5183
5184 seq_printf(m, "file_mapped %llu\n",
72b54e73 5185 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5186 seq_printf(m, "file_dirty %llu\n",
72b54e73 5187 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5188 seq_printf(m, "file_writeback %llu\n",
72b54e73 5189 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5190
5191 for (i = 0; i < NR_LRU_LISTS; i++) {
5192 struct mem_cgroup *mi;
5193 unsigned long val = 0;
5194
5195 for_each_mem_cgroup_tree(mi, memcg)
5196 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5197 seq_printf(m, "%s %llu\n",
5198 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5199 }
5200
27ee57c9
VD
5201 seq_printf(m, "slab_reclaimable %llu\n",
5202 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5203 seq_printf(m, "slab_unreclaimable %llu\n",
5204 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5205
587d9f72
JW
5206 /* Accumulated memory events */
5207
5208 seq_printf(m, "pgfault %lu\n",
72b54e73 5209 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5210 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5211 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5212
5213 return 0;
5214}
5215
241994ed
JW
5216static struct cftype memory_files[] = {
5217 {
5218 .name = "current",
f5fc3c5d 5219 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5220 .read_u64 = memory_current_read,
5221 },
5222 {
5223 .name = "low",
5224 .flags = CFTYPE_NOT_ON_ROOT,
5225 .seq_show = memory_low_show,
5226 .write = memory_low_write,
5227 },
5228 {
5229 .name = "high",
5230 .flags = CFTYPE_NOT_ON_ROOT,
5231 .seq_show = memory_high_show,
5232 .write = memory_high_write,
5233 },
5234 {
5235 .name = "max",
5236 .flags = CFTYPE_NOT_ON_ROOT,
5237 .seq_show = memory_max_show,
5238 .write = memory_max_write,
5239 },
5240 {
5241 .name = "events",
5242 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5243 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5244 .seq_show = memory_events_show,
5245 },
587d9f72
JW
5246 {
5247 .name = "stat",
5248 .flags = CFTYPE_NOT_ON_ROOT,
5249 .seq_show = memory_stat_show,
5250 },
241994ed
JW
5251 { } /* terminate */
5252};
5253
073219e9 5254struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5255 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5256 .css_online = mem_cgroup_css_online,
92fb9748 5257 .css_offline = mem_cgroup_css_offline,
6df38689 5258 .css_released = mem_cgroup_css_released,
92fb9748 5259 .css_free = mem_cgroup_css_free,
1ced953b 5260 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5261 .can_attach = mem_cgroup_can_attach,
5262 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5263 .post_attach = mem_cgroup_move_task,
f00baae7 5264 .bind = mem_cgroup_bind,
241994ed
JW
5265 .dfl_cftypes = memory_files,
5266 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5267 .early_init = 0,
8cdea7c0 5268};
c077719b 5269
241994ed
JW
5270/**
5271 * mem_cgroup_low - check if memory consumption is below the normal range
5272 * @root: the highest ancestor to consider
5273 * @memcg: the memory cgroup to check
5274 *
5275 * Returns %true if memory consumption of @memcg, and that of all
5276 * configurable ancestors up to @root, is below the normal range.
5277 */
5278bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5279{
5280 if (mem_cgroup_disabled())
5281 return false;
5282
5283 /*
5284 * The toplevel group doesn't have a configurable range, so
5285 * it's never low when looked at directly, and it is not
5286 * considered an ancestor when assessing the hierarchy.
5287 */
5288
5289 if (memcg == root_mem_cgroup)
5290 return false;
5291
4e54dede 5292 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5293 return false;
5294
5295 while (memcg != root) {
5296 memcg = parent_mem_cgroup(memcg);
5297
5298 if (memcg == root_mem_cgroup)
5299 break;
5300
4e54dede 5301 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5302 return false;
5303 }
5304 return true;
5305}
5306
00501b53
JW
5307/**
5308 * mem_cgroup_try_charge - try charging a page
5309 * @page: page to charge
5310 * @mm: mm context of the victim
5311 * @gfp_mask: reclaim mode
5312 * @memcgp: charged memcg return
25843c2b 5313 * @compound: charge the page as compound or small page
00501b53
JW
5314 *
5315 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5316 * pages according to @gfp_mask if necessary.
5317 *
5318 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5319 * Otherwise, an error code is returned.
5320 *
5321 * After page->mapping has been set up, the caller must finalize the
5322 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5323 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5324 */
5325int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5326 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5327 bool compound)
00501b53
JW
5328{
5329 struct mem_cgroup *memcg = NULL;
f627c2f5 5330 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5331 int ret = 0;
5332
5333 if (mem_cgroup_disabled())
5334 goto out;
5335
5336 if (PageSwapCache(page)) {
00501b53
JW
5337 /*
5338 * Every swap fault against a single page tries to charge the
5339 * page, bail as early as possible. shmem_unuse() encounters
5340 * already charged pages, too. The USED bit is protected by
5341 * the page lock, which serializes swap cache removal, which
5342 * in turn serializes uncharging.
5343 */
e993d905 5344 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5345 if (page->mem_cgroup)
00501b53 5346 goto out;
e993d905 5347
37e84351 5348 if (do_swap_account) {
e993d905
VD
5349 swp_entry_t ent = { .val = page_private(page), };
5350 unsigned short id = lookup_swap_cgroup_id(ent);
5351
5352 rcu_read_lock();
5353 memcg = mem_cgroup_from_id(id);
5354 if (memcg && !css_tryget_online(&memcg->css))
5355 memcg = NULL;
5356 rcu_read_unlock();
5357 }
00501b53
JW
5358 }
5359
00501b53
JW
5360 if (!memcg)
5361 memcg = get_mem_cgroup_from_mm(mm);
5362
5363 ret = try_charge(memcg, gfp_mask, nr_pages);
5364
5365 css_put(&memcg->css);
00501b53
JW
5366out:
5367 *memcgp = memcg;
5368 return ret;
5369}
5370
5371/**
5372 * mem_cgroup_commit_charge - commit a page charge
5373 * @page: page to charge
5374 * @memcg: memcg to charge the page to
5375 * @lrucare: page might be on LRU already
25843c2b 5376 * @compound: charge the page as compound or small page
00501b53
JW
5377 *
5378 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5379 * after page->mapping has been set up. This must happen atomically
5380 * as part of the page instantiation, i.e. under the page table lock
5381 * for anonymous pages, under the page lock for page and swap cache.
5382 *
5383 * In addition, the page must not be on the LRU during the commit, to
5384 * prevent racing with task migration. If it might be, use @lrucare.
5385 *
5386 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5387 */
5388void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5389 bool lrucare, bool compound)
00501b53 5390{
f627c2f5 5391 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5392
5393 VM_BUG_ON_PAGE(!page->mapping, page);
5394 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5395
5396 if (mem_cgroup_disabled())
5397 return;
5398 /*
5399 * Swap faults will attempt to charge the same page multiple
5400 * times. But reuse_swap_page() might have removed the page
5401 * from swapcache already, so we can't check PageSwapCache().
5402 */
5403 if (!memcg)
5404 return;
5405
6abb5a86
JW
5406 commit_charge(page, memcg, lrucare);
5407
6abb5a86 5408 local_irq_disable();
f627c2f5 5409 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5410 memcg_check_events(memcg, page);
5411 local_irq_enable();
00501b53 5412
7941d214 5413 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5414 swp_entry_t entry = { .val = page_private(page) };
5415 /*
5416 * The swap entry might not get freed for a long time,
5417 * let's not wait for it. The page already received a
5418 * memory+swap charge, drop the swap entry duplicate.
5419 */
5420 mem_cgroup_uncharge_swap(entry);
5421 }
5422}
5423
5424/**
5425 * mem_cgroup_cancel_charge - cancel a page charge
5426 * @page: page to charge
5427 * @memcg: memcg to charge the page to
25843c2b 5428 * @compound: charge the page as compound or small page
00501b53
JW
5429 *
5430 * Cancel a charge transaction started by mem_cgroup_try_charge().
5431 */
f627c2f5
KS
5432void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5433 bool compound)
00501b53 5434{
f627c2f5 5435 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5436
5437 if (mem_cgroup_disabled())
5438 return;
5439 /*
5440 * Swap faults will attempt to charge the same page multiple
5441 * times. But reuse_swap_page() might have removed the page
5442 * from swapcache already, so we can't check PageSwapCache().
5443 */
5444 if (!memcg)
5445 return;
5446
00501b53
JW
5447 cancel_charge(memcg, nr_pages);
5448}
5449
747db954 5450static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954 5451 unsigned long nr_anon, unsigned long nr_file,
5e8d35f8
VD
5452 unsigned long nr_huge, unsigned long nr_kmem,
5453 struct page *dummy_page)
747db954 5454{
5e8d35f8 5455 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
747db954
JW
5456 unsigned long flags;
5457
ce00a967 5458 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5459 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5460 if (do_memsw_account())
18eca2e6 5461 page_counter_uncharge(&memcg->memsw, nr_pages);
5e8d35f8
VD
5462 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5463 page_counter_uncharge(&memcg->kmem, nr_kmem);
ce00a967
JW
5464 memcg_oom_recover(memcg);
5465 }
747db954
JW
5466
5467 local_irq_save(flags);
5468 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5469 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5470 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5471 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5472 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5473 memcg_check_events(memcg, dummy_page);
5474 local_irq_restore(flags);
e8ea14cc
JW
5475
5476 if (!mem_cgroup_is_root(memcg))
18eca2e6 5477 css_put_many(&memcg->css, nr_pages);
747db954
JW
5478}
5479
5480static void uncharge_list(struct list_head *page_list)
5481{
5482 struct mem_cgroup *memcg = NULL;
747db954
JW
5483 unsigned long nr_anon = 0;
5484 unsigned long nr_file = 0;
5485 unsigned long nr_huge = 0;
5e8d35f8 5486 unsigned long nr_kmem = 0;
747db954 5487 unsigned long pgpgout = 0;
747db954
JW
5488 struct list_head *next;
5489 struct page *page;
5490
8b592656
JW
5491 /*
5492 * Note that the list can be a single page->lru; hence the
5493 * do-while loop instead of a simple list_for_each_entry().
5494 */
747db954
JW
5495 next = page_list->next;
5496 do {
747db954
JW
5497 page = list_entry(next, struct page, lru);
5498 next = page->lru.next;
5499
5500 VM_BUG_ON_PAGE(PageLRU(page), page);
5501 VM_BUG_ON_PAGE(page_count(page), page);
5502
1306a85a 5503 if (!page->mem_cgroup)
747db954
JW
5504 continue;
5505
5506 /*
5507 * Nobody should be changing or seriously looking at
1306a85a 5508 * page->mem_cgroup at this point, we have fully
29833315 5509 * exclusive access to the page.
747db954
JW
5510 */
5511
1306a85a 5512 if (memcg != page->mem_cgroup) {
747db954 5513 if (memcg) {
18eca2e6 5514 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8
VD
5515 nr_huge, nr_kmem, page);
5516 pgpgout = nr_anon = nr_file =
5517 nr_huge = nr_kmem = 0;
747db954 5518 }
1306a85a 5519 memcg = page->mem_cgroup;
747db954
JW
5520 }
5521
5e8d35f8
VD
5522 if (!PageKmemcg(page)) {
5523 unsigned int nr_pages = 1;
747db954 5524
5e8d35f8
VD
5525 if (PageTransHuge(page)) {
5526 nr_pages <<= compound_order(page);
5e8d35f8
VD
5527 nr_huge += nr_pages;
5528 }
5529 if (PageAnon(page))
5530 nr_anon += nr_pages;
5531 else
5532 nr_file += nr_pages;
5533 pgpgout++;
5534 } else
5535 nr_kmem += 1 << compound_order(page);
747db954 5536
1306a85a 5537 page->mem_cgroup = NULL;
747db954
JW
5538 } while (next != page_list);
5539
5540 if (memcg)
18eca2e6 5541 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5e8d35f8 5542 nr_huge, nr_kmem, page);
747db954
JW
5543}
5544
0a31bc97
JW
5545/**
5546 * mem_cgroup_uncharge - uncharge a page
5547 * @page: page to uncharge
5548 *
5549 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5550 * mem_cgroup_commit_charge().
5551 */
5552void mem_cgroup_uncharge(struct page *page)
5553{
0a31bc97
JW
5554 if (mem_cgroup_disabled())
5555 return;
5556
747db954 5557 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5558 if (!page->mem_cgroup)
0a31bc97
JW
5559 return;
5560
747db954
JW
5561 INIT_LIST_HEAD(&page->lru);
5562 uncharge_list(&page->lru);
5563}
0a31bc97 5564
747db954
JW
5565/**
5566 * mem_cgroup_uncharge_list - uncharge a list of page
5567 * @page_list: list of pages to uncharge
5568 *
5569 * Uncharge a list of pages previously charged with
5570 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5571 */
5572void mem_cgroup_uncharge_list(struct list_head *page_list)
5573{
5574 if (mem_cgroup_disabled())
5575 return;
0a31bc97 5576
747db954
JW
5577 if (!list_empty(page_list))
5578 uncharge_list(page_list);
0a31bc97
JW
5579}
5580
5581/**
6a93ca8f
JW
5582 * mem_cgroup_migrate - charge a page's replacement
5583 * @oldpage: currently circulating page
5584 * @newpage: replacement page
0a31bc97 5585 *
6a93ca8f
JW
5586 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5587 * be uncharged upon free.
0a31bc97
JW
5588 *
5589 * Both pages must be locked, @newpage->mapping must be set up.
5590 */
6a93ca8f 5591void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5592{
29833315 5593 struct mem_cgroup *memcg;
44b7a8d3
JW
5594 unsigned int nr_pages;
5595 bool compound;
d93c4130 5596 unsigned long flags;
0a31bc97
JW
5597
5598 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5599 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5600 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5601 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5602 newpage);
0a31bc97
JW
5603
5604 if (mem_cgroup_disabled())
5605 return;
5606
5607 /* Page cache replacement: new page already charged? */
1306a85a 5608 if (newpage->mem_cgroup)
0a31bc97
JW
5609 return;
5610
45637bab 5611 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5612 memcg = oldpage->mem_cgroup;
29833315 5613 if (!memcg)
0a31bc97
JW
5614 return;
5615
44b7a8d3
JW
5616 /* Force-charge the new page. The old one will be freed soon */
5617 compound = PageTransHuge(newpage);
5618 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5619
5620 page_counter_charge(&memcg->memory, nr_pages);
5621 if (do_memsw_account())
5622 page_counter_charge(&memcg->memsw, nr_pages);
5623 css_get_many(&memcg->css, nr_pages);
0a31bc97 5624
9cf7666a 5625 commit_charge(newpage, memcg, false);
44b7a8d3 5626
d93c4130 5627 local_irq_save(flags);
44b7a8d3
JW
5628 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5629 memcg_check_events(memcg, newpage);
d93c4130 5630 local_irq_restore(flags);
0a31bc97
JW
5631}
5632
ef12947c 5633DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5634EXPORT_SYMBOL(memcg_sockets_enabled_key);
5635
5636void sock_update_memcg(struct sock *sk)
5637{
5638 struct mem_cgroup *memcg;
5639
5640 /* Socket cloning can throw us here with sk_cgrp already
5641 * filled. It won't however, necessarily happen from
5642 * process context. So the test for root memcg given
5643 * the current task's memcg won't help us in this case.
5644 *
5645 * Respecting the original socket's memcg is a better
5646 * decision in this case.
5647 */
5648 if (sk->sk_memcg) {
5649 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5650 css_get(&sk->sk_memcg->css);
5651 return;
5652 }
5653
5654 rcu_read_lock();
5655 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5656 if (memcg == root_mem_cgroup)
5657 goto out;
0db15298 5658 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5659 goto out;
f7e1cb6e 5660 if (css_tryget_online(&memcg->css))
11092087 5661 sk->sk_memcg = memcg;
f7e1cb6e 5662out:
11092087
JW
5663 rcu_read_unlock();
5664}
5665EXPORT_SYMBOL(sock_update_memcg);
5666
5667void sock_release_memcg(struct sock *sk)
5668{
5669 WARN_ON(!sk->sk_memcg);
5670 css_put(&sk->sk_memcg->css);
5671}
5672
5673/**
5674 * mem_cgroup_charge_skmem - charge socket memory
5675 * @memcg: memcg to charge
5676 * @nr_pages: number of pages to charge
5677 *
5678 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5679 * @memcg's configured limit, %false if the charge had to be forced.
5680 */
5681bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5682{
f7e1cb6e 5683 gfp_t gfp_mask = GFP_KERNEL;
11092087 5684
f7e1cb6e 5685 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5686 struct page_counter *fail;
f7e1cb6e 5687
0db15298
JW
5688 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5689 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5690 return true;
5691 }
0db15298
JW
5692 page_counter_charge(&memcg->tcpmem, nr_pages);
5693 memcg->tcpmem_pressure = 1;
f7e1cb6e 5694 return false;
11092087 5695 }
d886f4e4 5696
f7e1cb6e
JW
5697 /* Don't block in the packet receive path */
5698 if (in_softirq())
5699 gfp_mask = GFP_NOWAIT;
5700
b2807f07
JW
5701 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5702
f7e1cb6e
JW
5703 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5704 return true;
5705
5706 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5707 return false;
5708}
5709
5710/**
5711 * mem_cgroup_uncharge_skmem - uncharge socket memory
5712 * @memcg - memcg to uncharge
5713 * @nr_pages - number of pages to uncharge
5714 */
5715void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5716{
f7e1cb6e 5717 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5718 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5719 return;
5720 }
d886f4e4 5721
b2807f07
JW
5722 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5723
f7e1cb6e
JW
5724 page_counter_uncharge(&memcg->memory, nr_pages);
5725 css_put_many(&memcg->css, nr_pages);
11092087
JW
5726}
5727
f7e1cb6e
JW
5728static int __init cgroup_memory(char *s)
5729{
5730 char *token;
5731
5732 while ((token = strsep(&s, ",")) != NULL) {
5733 if (!*token)
5734 continue;
5735 if (!strcmp(token, "nosocket"))
5736 cgroup_memory_nosocket = true;
04823c83
VD
5737 if (!strcmp(token, "nokmem"))
5738 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5739 }
5740 return 0;
5741}
5742__setup("cgroup.memory=", cgroup_memory);
11092087 5743
2d11085e 5744/*
1081312f
MH
5745 * subsys_initcall() for memory controller.
5746 *
5747 * Some parts like hotcpu_notifier() have to be initialized from this context
5748 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5749 * everything that doesn't depend on a specific mem_cgroup structure should
5750 * be initialized from here.
2d11085e
MH
5751 */
5752static int __init mem_cgroup_init(void)
5753{
95a045f6
JW
5754 int cpu, node;
5755
2d11085e 5756 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5757
5758 for_each_possible_cpu(cpu)
5759 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5760 drain_local_stock);
5761
5762 for_each_node(node) {
5763 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5764
5765 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5766 node_online(node) ? node : NUMA_NO_NODE);
5767
ef8f2327
MG
5768 rtpn->rb_root = RB_ROOT;
5769 spin_lock_init(&rtpn->lock);
95a045f6
JW
5770 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5771 }
5772
2d11085e
MH
5773 return 0;
5774}
5775subsys_initcall(mem_cgroup_init);
21afa38e
JW
5776
5777#ifdef CONFIG_MEMCG_SWAP
5778/**
5779 * mem_cgroup_swapout - transfer a memsw charge to swap
5780 * @page: page whose memsw charge to transfer
5781 * @entry: swap entry to move the charge to
5782 *
5783 * Transfer the memsw charge of @page to @entry.
5784 */
5785void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5786{
5787 struct mem_cgroup *memcg;
5788 unsigned short oldid;
5789
5790 VM_BUG_ON_PAGE(PageLRU(page), page);
5791 VM_BUG_ON_PAGE(page_count(page), page);
5792
7941d214 5793 if (!do_memsw_account())
21afa38e
JW
5794 return;
5795
5796 memcg = page->mem_cgroup;
5797
5798 /* Readahead page, never charged */
5799 if (!memcg)
5800 return;
5801
73f576c0 5802 mem_cgroup_id_get(memcg);
21afa38e
JW
5803 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5804 VM_BUG_ON_PAGE(oldid, page);
5805 mem_cgroup_swap_statistics(memcg, true);
5806
5807 page->mem_cgroup = NULL;
5808
5809 if (!mem_cgroup_is_root(memcg))
5810 page_counter_uncharge(&memcg->memory, 1);
5811
ce9ce665
SAS
5812 /*
5813 * Interrupts should be disabled here because the caller holds the
5814 * mapping->tree_lock lock which is taken with interrupts-off. It is
5815 * important here to have the interrupts disabled because it is the
5816 * only synchronisation we have for udpating the per-CPU variables.
5817 */
5818 VM_BUG_ON(!irqs_disabled());
f627c2f5 5819 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e 5820 memcg_check_events(memcg, page);
73f576c0
JW
5821
5822 if (!mem_cgroup_is_root(memcg))
5823 css_put(&memcg->css);
21afa38e
JW
5824}
5825
37e84351
VD
5826/*
5827 * mem_cgroup_try_charge_swap - try charging a swap entry
5828 * @page: page being added to swap
5829 * @entry: swap entry to charge
5830 *
5831 * Try to charge @entry to the memcg that @page belongs to.
5832 *
5833 * Returns 0 on success, -ENOMEM on failure.
5834 */
5835int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5836{
5837 struct mem_cgroup *memcg;
5838 struct page_counter *counter;
5839 unsigned short oldid;
5840
5841 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5842 return 0;
5843
5844 memcg = page->mem_cgroup;
5845
5846 /* Readahead page, never charged */
5847 if (!memcg)
5848 return 0;
5849
5850 if (!mem_cgroup_is_root(memcg) &&
5851 !page_counter_try_charge(&memcg->swap, 1, &counter))
5852 return -ENOMEM;
5853
73f576c0 5854 mem_cgroup_id_get(memcg);
37e84351
VD
5855 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5856 VM_BUG_ON_PAGE(oldid, page);
5857 mem_cgroup_swap_statistics(memcg, true);
5858
37e84351
VD
5859 return 0;
5860}
5861
21afa38e
JW
5862/**
5863 * mem_cgroup_uncharge_swap - uncharge a swap entry
5864 * @entry: swap entry to uncharge
5865 *
37e84351 5866 * Drop the swap charge associated with @entry.
21afa38e
JW
5867 */
5868void mem_cgroup_uncharge_swap(swp_entry_t entry)
5869{
5870 struct mem_cgroup *memcg;
5871 unsigned short id;
5872
37e84351 5873 if (!do_swap_account)
21afa38e
JW
5874 return;
5875
5876 id = swap_cgroup_record(entry, 0);
5877 rcu_read_lock();
adbe427b 5878 memcg = mem_cgroup_from_id(id);
21afa38e 5879 if (memcg) {
37e84351
VD
5880 if (!mem_cgroup_is_root(memcg)) {
5881 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5882 page_counter_uncharge(&memcg->swap, 1);
5883 else
5884 page_counter_uncharge(&memcg->memsw, 1);
5885 }
21afa38e 5886 mem_cgroup_swap_statistics(memcg, false);
73f576c0 5887 mem_cgroup_id_put(memcg);
21afa38e
JW
5888 }
5889 rcu_read_unlock();
5890}
5891
d8b38438
VD
5892long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5893{
5894 long nr_swap_pages = get_nr_swap_pages();
5895
5896 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5897 return nr_swap_pages;
5898 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5899 nr_swap_pages = min_t(long, nr_swap_pages,
5900 READ_ONCE(memcg->swap.limit) -
5901 page_counter_read(&memcg->swap));
5902 return nr_swap_pages;
5903}
5904
5ccc5aba
VD
5905bool mem_cgroup_swap_full(struct page *page)
5906{
5907 struct mem_cgroup *memcg;
5908
5909 VM_BUG_ON_PAGE(!PageLocked(page), page);
5910
5911 if (vm_swap_full())
5912 return true;
5913 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5914 return false;
5915
5916 memcg = page->mem_cgroup;
5917 if (!memcg)
5918 return false;
5919
5920 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5921 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5922 return true;
5923
5924 return false;
5925}
5926
21afa38e
JW
5927/* for remember boot option*/
5928#ifdef CONFIG_MEMCG_SWAP_ENABLED
5929static int really_do_swap_account __initdata = 1;
5930#else
5931static int really_do_swap_account __initdata;
5932#endif
5933
5934static int __init enable_swap_account(char *s)
5935{
5936 if (!strcmp(s, "1"))
5937 really_do_swap_account = 1;
5938 else if (!strcmp(s, "0"))
5939 really_do_swap_account = 0;
5940 return 1;
5941}
5942__setup("swapaccount=", enable_swap_account);
5943
37e84351
VD
5944static u64 swap_current_read(struct cgroup_subsys_state *css,
5945 struct cftype *cft)
5946{
5947 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5948
5949 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5950}
5951
5952static int swap_max_show(struct seq_file *m, void *v)
5953{
5954 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5955 unsigned long max = READ_ONCE(memcg->swap.limit);
5956
5957 if (max == PAGE_COUNTER_MAX)
5958 seq_puts(m, "max\n");
5959 else
5960 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5961
5962 return 0;
5963}
5964
5965static ssize_t swap_max_write(struct kernfs_open_file *of,
5966 char *buf, size_t nbytes, loff_t off)
5967{
5968 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5969 unsigned long max;
5970 int err;
5971
5972 buf = strstrip(buf);
5973 err = page_counter_memparse(buf, "max", &max);
5974 if (err)
5975 return err;
5976
5977 mutex_lock(&memcg_limit_mutex);
5978 err = page_counter_limit(&memcg->swap, max);
5979 mutex_unlock(&memcg_limit_mutex);
5980 if (err)
5981 return err;
5982
5983 return nbytes;
5984}
5985
5986static struct cftype swap_files[] = {
5987 {
5988 .name = "swap.current",
5989 .flags = CFTYPE_NOT_ON_ROOT,
5990 .read_u64 = swap_current_read,
5991 },
5992 {
5993 .name = "swap.max",
5994 .flags = CFTYPE_NOT_ON_ROOT,
5995 .seq_show = swap_max_show,
5996 .write = swap_max_write,
5997 },
5998 { } /* terminate */
5999};
6000
21afa38e
JW
6001static struct cftype memsw_cgroup_files[] = {
6002 {
6003 .name = "memsw.usage_in_bytes",
6004 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6005 .read_u64 = mem_cgroup_read_u64,
6006 },
6007 {
6008 .name = "memsw.max_usage_in_bytes",
6009 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6010 .write = mem_cgroup_reset,
6011 .read_u64 = mem_cgroup_read_u64,
6012 },
6013 {
6014 .name = "memsw.limit_in_bytes",
6015 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6016 .write = mem_cgroup_write,
6017 .read_u64 = mem_cgroup_read_u64,
6018 },
6019 {
6020 .name = "memsw.failcnt",
6021 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6022 .write = mem_cgroup_reset,
6023 .read_u64 = mem_cgroup_read_u64,
6024 },
6025 { }, /* terminate */
6026};
6027
6028static int __init mem_cgroup_swap_init(void)
6029{
6030 if (!mem_cgroup_disabled() && really_do_swap_account) {
6031 do_swap_account = 1;
37e84351
VD
6032 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6033 swap_files));
21afa38e
JW
6034 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6035 memsw_cgroup_files));
6036 }
6037 return 0;
6038}
6039subsys_initcall(mem_cgroup_swap_init);
6040
6041#endif /* CONFIG_MEMCG_SWAP */