]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
memcg: remove cgroup_event->cft
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
33327948 52#include <linux/vmalloc.h>
70ddf637 53#include <linux/vmpressure.h>
b69408e8 54#include <linux/mm_inline.h>
52d4b9ac 55#include <linux/page_cgroup.h>
cdec2e42 56#include <linux/cpu.h>
158e0a2d 57#include <linux/oom.h>
0056f4e6 58#include <linux/lockdep.h>
79bd9814 59#include <linux/file.h>
08e552c6 60#include "internal.h"
d1a4c0b3 61#include <net/sock.h>
4bd2c1ee 62#include <net/ip.h>
d1a4c0b3 63#include <net/tcp_memcontrol.h>
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
a181b0e8 69struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
70EXPORT_SYMBOL(mem_cgroup_subsys);
71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
83static int really_do_swap_account __initdata = 0;
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
5f578161
MH
152 unsigned long last_dead_count;
153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
234struct cgroup_event {
235 /*
236 * css which the event belongs to.
237 */
238 struct cgroup_subsys_state *css;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct cgroup_subsys_state *css,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct cgroup_subsys_state *css,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
357 struct tcp_memcontrol tcp_mem;
358#endif
2633d7a0
GC
359#if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366#endif
45cf7ebd
GC
367
368 int last_scanned_node;
369#if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373#endif
70ddf637 374
fba94807
TH
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
54f72fe0
JW
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
381};
382
45cf7ebd
GC
383static size_t memcg_size(void)
384{
385 return sizeof(struct mem_cgroup) +
386 nr_node_ids * sizeof(struct mem_cgroup_per_node);
387}
388
510fc4e1
GC
389/* internal only representation about the status of kmem accounting. */
390enum {
391 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 392 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 393 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
394};
395
a8964b9b
GC
396/* We account when limit is on, but only after call sites are patched */
397#define KMEM_ACCOUNTED_MASK \
398 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
399
400#ifdef CONFIG_MEMCG_KMEM
401static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
402{
403 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
404}
7de37682
GC
405
406static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
407{
408 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
409}
410
a8964b9b
GC
411static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
412{
413 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
414}
415
55007d84
GC
416static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
417{
418 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
419}
420
7de37682
GC
421static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
422{
10d5ebf4
LZ
423 /*
424 * Our caller must use css_get() first, because memcg_uncharge_kmem()
425 * will call css_put() if it sees the memcg is dead.
426 */
427 smp_wmb();
7de37682
GC
428 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
429 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
430}
431
432static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
433{
434 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
435 &memcg->kmem_account_flags);
436}
510fc4e1
GC
437#endif
438
7dc74be0
DN
439/* Stuffs for move charges at task migration. */
440/*
ee5e8472
GC
441 * Types of charges to be moved. "move_charge_at_immitgrate" and
442 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
443 */
444enum move_type {
4ffef5fe 445 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 446 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
447 NR_MOVE_TYPE,
448};
449
4ffef5fe
DN
450/* "mc" and its members are protected by cgroup_mutex */
451static struct move_charge_struct {
b1dd693e 452 spinlock_t lock; /* for from, to */
4ffef5fe
DN
453 struct mem_cgroup *from;
454 struct mem_cgroup *to;
ee5e8472 455 unsigned long immigrate_flags;
4ffef5fe 456 unsigned long precharge;
854ffa8d 457 unsigned long moved_charge;
483c30b5 458 unsigned long moved_swap;
8033b97c
DN
459 struct task_struct *moving_task; /* a task moving charges */
460 wait_queue_head_t waitq; /* a waitq for other context */
461} mc = {
2bd9bb20 462 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
463 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
464};
4ffef5fe 465
90254a65
DN
466static bool move_anon(void)
467{
ee5e8472 468 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
469}
470
87946a72
DN
471static bool move_file(void)
472{
ee5e8472 473 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
474}
475
4e416953
BS
476/*
477 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
478 * limit reclaim to prevent infinite loops, if they ever occur.
479 */
a0db00fc 480#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 481#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 482
217bc319
KH
483enum charge_type {
484 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 485 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 486 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 487 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
488 NR_CHARGE_TYPE,
489};
490
8c7c6e34 491/* for encoding cft->private value on file */
86ae53e1
GC
492enum res_type {
493 _MEM,
494 _MEMSWAP,
495 _OOM_TYPE,
510fc4e1 496 _KMEM,
86ae53e1
GC
497};
498
a0db00fc
KS
499#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
500#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 501#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
502/* Used for OOM nofiier */
503#define OOM_CONTROL (0)
8c7c6e34 504
75822b44
BS
505/*
506 * Reclaim flags for mem_cgroup_hierarchical_reclaim
507 */
508#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
509#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
510#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
511#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
512
0999821b
GC
513/*
514 * The memcg_create_mutex will be held whenever a new cgroup is created.
515 * As a consequence, any change that needs to protect against new child cgroups
516 * appearing has to hold it as well.
517 */
518static DEFINE_MUTEX(memcg_create_mutex);
519
b2145145
WL
520struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
521{
a7c6d554 522 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
523}
524
70ddf637
AV
525/* Some nice accessors for the vmpressure. */
526struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
527{
528 if (!memcg)
529 memcg = root_mem_cgroup;
530 return &memcg->vmpressure;
531}
532
533struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
534{
535 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
536}
537
538struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
539{
540 return &mem_cgroup_from_css(css)->vmpressure;
541}
542
7ffc0edc
MH
543static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
544{
545 return (memcg == root_mem_cgroup);
546}
547
e1aab161 548/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 549#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 550
e1aab161
GC
551void sock_update_memcg(struct sock *sk)
552{
376be5ff 553 if (mem_cgroup_sockets_enabled) {
e1aab161 554 struct mem_cgroup *memcg;
3f134619 555 struct cg_proto *cg_proto;
e1aab161
GC
556
557 BUG_ON(!sk->sk_prot->proto_cgroup);
558
f3f511e1
GC
559 /* Socket cloning can throw us here with sk_cgrp already
560 * filled. It won't however, necessarily happen from
561 * process context. So the test for root memcg given
562 * the current task's memcg won't help us in this case.
563 *
564 * Respecting the original socket's memcg is a better
565 * decision in this case.
566 */
567 if (sk->sk_cgrp) {
568 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 569 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
570 return;
571 }
572
e1aab161
GC
573 rcu_read_lock();
574 memcg = mem_cgroup_from_task(current);
3f134619 575 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
576 if (!mem_cgroup_is_root(memcg) &&
577 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 578 sk->sk_cgrp = cg_proto;
e1aab161
GC
579 }
580 rcu_read_unlock();
581 }
582}
583EXPORT_SYMBOL(sock_update_memcg);
584
585void sock_release_memcg(struct sock *sk)
586{
376be5ff 587 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
588 struct mem_cgroup *memcg;
589 WARN_ON(!sk->sk_cgrp->memcg);
590 memcg = sk->sk_cgrp->memcg;
5347e5ae 591 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
592 }
593}
d1a4c0b3
GC
594
595struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
596{
597 if (!memcg || mem_cgroup_is_root(memcg))
598 return NULL;
599
600 return &memcg->tcp_mem.cg_proto;
601}
602EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 603
3f134619
GC
604static void disarm_sock_keys(struct mem_cgroup *memcg)
605{
606 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
607 return;
608 static_key_slow_dec(&memcg_socket_limit_enabled);
609}
610#else
611static void disarm_sock_keys(struct mem_cgroup *memcg)
612{
613}
614#endif
615
a8964b9b 616#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
617/*
618 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
619 * There are two main reasons for not using the css_id for this:
620 * 1) this works better in sparse environments, where we have a lot of memcgs,
621 * but only a few kmem-limited. Or also, if we have, for instance, 200
622 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
623 * 200 entry array for that.
624 *
625 * 2) In order not to violate the cgroup API, we would like to do all memory
626 * allocation in ->create(). At that point, we haven't yet allocated the
627 * css_id. Having a separate index prevents us from messing with the cgroup
628 * core for this
629 *
630 * The current size of the caches array is stored in
631 * memcg_limited_groups_array_size. It will double each time we have to
632 * increase it.
633 */
634static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
635int memcg_limited_groups_array_size;
636
55007d84
GC
637/*
638 * MIN_SIZE is different than 1, because we would like to avoid going through
639 * the alloc/free process all the time. In a small machine, 4 kmem-limited
640 * cgroups is a reasonable guess. In the future, it could be a parameter or
641 * tunable, but that is strictly not necessary.
642 *
643 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
644 * this constant directly from cgroup, but it is understandable that this is
645 * better kept as an internal representation in cgroup.c. In any case, the
646 * css_id space is not getting any smaller, and we don't have to necessarily
647 * increase ours as well if it increases.
648 */
649#define MEMCG_CACHES_MIN_SIZE 4
650#define MEMCG_CACHES_MAX_SIZE 65535
651
d7f25f8a
GC
652/*
653 * A lot of the calls to the cache allocation functions are expected to be
654 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
655 * conditional to this static branch, we'll have to allow modules that does
656 * kmem_cache_alloc and the such to see this symbol as well
657 */
a8964b9b 658struct static_key memcg_kmem_enabled_key;
d7f25f8a 659EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
660
661static void disarm_kmem_keys(struct mem_cgroup *memcg)
662{
55007d84 663 if (memcg_kmem_is_active(memcg)) {
a8964b9b 664 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
665 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
666 }
bea207c8
GC
667 /*
668 * This check can't live in kmem destruction function,
669 * since the charges will outlive the cgroup
670 */
671 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
672}
673#else
674static void disarm_kmem_keys(struct mem_cgroup *memcg)
675{
676}
677#endif /* CONFIG_MEMCG_KMEM */
678
679static void disarm_static_keys(struct mem_cgroup *memcg)
680{
681 disarm_sock_keys(memcg);
682 disarm_kmem_keys(memcg);
683}
684
c0ff4b85 685static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 686
f64c3f54 687static struct mem_cgroup_per_zone *
c0ff4b85 688mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 689{
45cf7ebd 690 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 691 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
692}
693
c0ff4b85 694struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 695{
c0ff4b85 696 return &memcg->css;
d324236b
WF
697}
698
f64c3f54 699static struct mem_cgroup_per_zone *
c0ff4b85 700page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 701{
97a6c37b
JW
702 int nid = page_to_nid(page);
703 int zid = page_zonenum(page);
f64c3f54 704
c0ff4b85 705 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
706}
707
bb4cc1a8
AM
708static struct mem_cgroup_tree_per_zone *
709soft_limit_tree_node_zone(int nid, int zid)
710{
711 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
712}
713
714static struct mem_cgroup_tree_per_zone *
715soft_limit_tree_from_page(struct page *page)
716{
717 int nid = page_to_nid(page);
718 int zid = page_zonenum(page);
719
720 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
721}
722
723static void
724__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
725 struct mem_cgroup_per_zone *mz,
726 struct mem_cgroup_tree_per_zone *mctz,
727 unsigned long long new_usage_in_excess)
728{
729 struct rb_node **p = &mctz->rb_root.rb_node;
730 struct rb_node *parent = NULL;
731 struct mem_cgroup_per_zone *mz_node;
732
733 if (mz->on_tree)
734 return;
735
736 mz->usage_in_excess = new_usage_in_excess;
737 if (!mz->usage_in_excess)
738 return;
739 while (*p) {
740 parent = *p;
741 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
742 tree_node);
743 if (mz->usage_in_excess < mz_node->usage_in_excess)
744 p = &(*p)->rb_left;
745 /*
746 * We can't avoid mem cgroups that are over their soft
747 * limit by the same amount
748 */
749 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
750 p = &(*p)->rb_right;
751 }
752 rb_link_node(&mz->tree_node, parent, p);
753 rb_insert_color(&mz->tree_node, &mctz->rb_root);
754 mz->on_tree = true;
755}
756
757static void
758__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
759 struct mem_cgroup_per_zone *mz,
760 struct mem_cgroup_tree_per_zone *mctz)
761{
762 if (!mz->on_tree)
763 return;
764 rb_erase(&mz->tree_node, &mctz->rb_root);
765 mz->on_tree = false;
766}
767
768static void
769mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
770 struct mem_cgroup_per_zone *mz,
771 struct mem_cgroup_tree_per_zone *mctz)
772{
773 spin_lock(&mctz->lock);
774 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
775 spin_unlock(&mctz->lock);
776}
777
778
779static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
780{
781 unsigned long long excess;
782 struct mem_cgroup_per_zone *mz;
783 struct mem_cgroup_tree_per_zone *mctz;
784 int nid = page_to_nid(page);
785 int zid = page_zonenum(page);
786 mctz = soft_limit_tree_from_page(page);
787
788 /*
789 * Necessary to update all ancestors when hierarchy is used.
790 * because their event counter is not touched.
791 */
792 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
793 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
794 excess = res_counter_soft_limit_excess(&memcg->res);
795 /*
796 * We have to update the tree if mz is on RB-tree or
797 * mem is over its softlimit.
798 */
799 if (excess || mz->on_tree) {
800 spin_lock(&mctz->lock);
801 /* if on-tree, remove it */
802 if (mz->on_tree)
803 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
804 /*
805 * Insert again. mz->usage_in_excess will be updated.
806 * If excess is 0, no tree ops.
807 */
808 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
809 spin_unlock(&mctz->lock);
810 }
811 }
812}
813
814static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
815{
816 int node, zone;
817 struct mem_cgroup_per_zone *mz;
818 struct mem_cgroup_tree_per_zone *mctz;
819
820 for_each_node(node) {
821 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
822 mz = mem_cgroup_zoneinfo(memcg, node, zone);
823 mctz = soft_limit_tree_node_zone(node, zone);
824 mem_cgroup_remove_exceeded(memcg, mz, mctz);
825 }
826 }
827}
828
829static struct mem_cgroup_per_zone *
830__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
831{
832 struct rb_node *rightmost = NULL;
833 struct mem_cgroup_per_zone *mz;
834
835retry:
836 mz = NULL;
837 rightmost = rb_last(&mctz->rb_root);
838 if (!rightmost)
839 goto done; /* Nothing to reclaim from */
840
841 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
842 /*
843 * Remove the node now but someone else can add it back,
844 * we will to add it back at the end of reclaim to its correct
845 * position in the tree.
846 */
847 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
848 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
849 !css_tryget(&mz->memcg->css))
850 goto retry;
851done:
852 return mz;
853}
854
855static struct mem_cgroup_per_zone *
856mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
857{
858 struct mem_cgroup_per_zone *mz;
859
860 spin_lock(&mctz->lock);
861 mz = __mem_cgroup_largest_soft_limit_node(mctz);
862 spin_unlock(&mctz->lock);
863 return mz;
864}
865
711d3d2c
KH
866/*
867 * Implementation Note: reading percpu statistics for memcg.
868 *
869 * Both of vmstat[] and percpu_counter has threshold and do periodic
870 * synchronization to implement "quick" read. There are trade-off between
871 * reading cost and precision of value. Then, we may have a chance to implement
872 * a periodic synchronizion of counter in memcg's counter.
873 *
874 * But this _read() function is used for user interface now. The user accounts
875 * memory usage by memory cgroup and he _always_ requires exact value because
876 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
877 * have to visit all online cpus and make sum. So, for now, unnecessary
878 * synchronization is not implemented. (just implemented for cpu hotplug)
879 *
880 * If there are kernel internal actions which can make use of some not-exact
881 * value, and reading all cpu value can be performance bottleneck in some
882 * common workload, threashold and synchonization as vmstat[] should be
883 * implemented.
884 */
c0ff4b85 885static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 886 enum mem_cgroup_stat_index idx)
c62b1a3b 887{
7a159cc9 888 long val = 0;
c62b1a3b 889 int cpu;
c62b1a3b 890
711d3d2c
KH
891 get_online_cpus();
892 for_each_online_cpu(cpu)
c0ff4b85 893 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 894#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
895 spin_lock(&memcg->pcp_counter_lock);
896 val += memcg->nocpu_base.count[idx];
897 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
898#endif
899 put_online_cpus();
c62b1a3b
KH
900 return val;
901}
902
c0ff4b85 903static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
904 bool charge)
905{
906 int val = (charge) ? 1 : -1;
bff6bb83 907 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
908}
909
c0ff4b85 910static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
911 enum mem_cgroup_events_index idx)
912{
913 unsigned long val = 0;
914 int cpu;
915
9c567512 916 get_online_cpus();
e9f8974f 917 for_each_online_cpu(cpu)
c0ff4b85 918 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 919#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
920 spin_lock(&memcg->pcp_counter_lock);
921 val += memcg->nocpu_base.events[idx];
922 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 923#endif
9c567512 924 put_online_cpus();
e9f8974f
JW
925 return val;
926}
927
c0ff4b85 928static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 929 struct page *page,
b2402857 930 bool anon, int nr_pages)
d52aa412 931{
c62b1a3b
KH
932 preempt_disable();
933
b2402857
KH
934 /*
935 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
936 * counted as CACHE even if it's on ANON LRU.
937 */
938 if (anon)
939 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 940 nr_pages);
d52aa412 941 else
b2402857 942 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 943 nr_pages);
55e462b0 944
b070e65c
DR
945 if (PageTransHuge(page))
946 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
947 nr_pages);
948
e401f176
KH
949 /* pagein of a big page is an event. So, ignore page size */
950 if (nr_pages > 0)
c0ff4b85 951 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 952 else {
c0ff4b85 953 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
954 nr_pages = -nr_pages; /* for event */
955 }
e401f176 956
13114716 957 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 958
c62b1a3b 959 preempt_enable();
6d12e2d8
KH
960}
961
bb2a0de9 962unsigned long
4d7dcca2 963mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
964{
965 struct mem_cgroup_per_zone *mz;
966
967 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
968 return mz->lru_size[lru];
969}
970
971static unsigned long
c0ff4b85 972mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 973 unsigned int lru_mask)
889976db
YH
974{
975 struct mem_cgroup_per_zone *mz;
f156ab93 976 enum lru_list lru;
bb2a0de9
KH
977 unsigned long ret = 0;
978
c0ff4b85 979 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 980
f156ab93
HD
981 for_each_lru(lru) {
982 if (BIT(lru) & lru_mask)
983 ret += mz->lru_size[lru];
bb2a0de9
KH
984 }
985 return ret;
986}
987
988static unsigned long
c0ff4b85 989mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
990 int nid, unsigned int lru_mask)
991{
889976db
YH
992 u64 total = 0;
993 int zid;
994
bb2a0de9 995 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
996 total += mem_cgroup_zone_nr_lru_pages(memcg,
997 nid, zid, lru_mask);
bb2a0de9 998
889976db
YH
999 return total;
1000}
bb2a0de9 1001
c0ff4b85 1002static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 1003 unsigned int lru_mask)
6d12e2d8 1004{
889976db 1005 int nid;
6d12e2d8
KH
1006 u64 total = 0;
1007
31aaea4a 1008 for_each_node_state(nid, N_MEMORY)
c0ff4b85 1009 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 1010 return total;
d52aa412
KH
1011}
1012
f53d7ce3
JW
1013static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1014 enum mem_cgroup_events_target target)
7a159cc9
JW
1015{
1016 unsigned long val, next;
1017
13114716 1018 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1019 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1020 /* from time_after() in jiffies.h */
f53d7ce3
JW
1021 if ((long)next - (long)val < 0) {
1022 switch (target) {
1023 case MEM_CGROUP_TARGET_THRESH:
1024 next = val + THRESHOLDS_EVENTS_TARGET;
1025 break;
bb4cc1a8
AM
1026 case MEM_CGROUP_TARGET_SOFTLIMIT:
1027 next = val + SOFTLIMIT_EVENTS_TARGET;
1028 break;
f53d7ce3
JW
1029 case MEM_CGROUP_TARGET_NUMAINFO:
1030 next = val + NUMAINFO_EVENTS_TARGET;
1031 break;
1032 default:
1033 break;
1034 }
1035 __this_cpu_write(memcg->stat->targets[target], next);
1036 return true;
7a159cc9 1037 }
f53d7ce3 1038 return false;
d2265e6f
KH
1039}
1040
1041/*
1042 * Check events in order.
1043 *
1044 */
c0ff4b85 1045static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1046{
4799401f 1047 preempt_disable();
d2265e6f 1048 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1049 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1050 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1051 bool do_softlimit;
82b3f2a7 1052 bool do_numainfo __maybe_unused;
f53d7ce3 1053
bb4cc1a8
AM
1054 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1055 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1056#if MAX_NUMNODES > 1
1057 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1058 MEM_CGROUP_TARGET_NUMAINFO);
1059#endif
1060 preempt_enable();
1061
c0ff4b85 1062 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1063 if (unlikely(do_softlimit))
1064 mem_cgroup_update_tree(memcg, page);
453a9bf3 1065#if MAX_NUMNODES > 1
f53d7ce3 1066 if (unlikely(do_numainfo))
c0ff4b85 1067 atomic_inc(&memcg->numainfo_events);
453a9bf3 1068#endif
f53d7ce3
JW
1069 } else
1070 preempt_enable();
d2265e6f
KH
1071}
1072
cf475ad2 1073struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1074{
31a78f23
BS
1075 /*
1076 * mm_update_next_owner() may clear mm->owner to NULL
1077 * if it races with swapoff, page migration, etc.
1078 * So this can be called with p == NULL.
1079 */
1080 if (unlikely(!p))
1081 return NULL;
1082
8af01f56 1083 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
1084}
1085
a433658c 1086struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1087{
c0ff4b85 1088 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1089
1090 if (!mm)
1091 return NULL;
54595fe2
KH
1092 /*
1093 * Because we have no locks, mm->owner's may be being moved to other
1094 * cgroup. We use css_tryget() here even if this looks
1095 * pessimistic (rather than adding locks here).
1096 */
1097 rcu_read_lock();
1098 do {
c0ff4b85
R
1099 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1100 if (unlikely(!memcg))
54595fe2 1101 break;
c0ff4b85 1102 } while (!css_tryget(&memcg->css));
54595fe2 1103 rcu_read_unlock();
c0ff4b85 1104 return memcg;
54595fe2
KH
1105}
1106
16248d8f
MH
1107/*
1108 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1109 * ref. count) or NULL if the whole root's subtree has been visited.
1110 *
1111 * helper function to be used by mem_cgroup_iter
1112 */
1113static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1114 struct mem_cgroup *last_visited)
16248d8f 1115{
492eb21b 1116 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1117
bd8815a6 1118 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1119skip_node:
492eb21b 1120 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1121
1122 /*
1123 * Even if we found a group we have to make sure it is
1124 * alive. css && !memcg means that the groups should be
1125 * skipped and we should continue the tree walk.
1126 * last_visited css is safe to use because it is
1127 * protected by css_get and the tree walk is rcu safe.
1128 */
492eb21b
TH
1129 if (next_css) {
1130 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
1131
694fbc0f
AM
1132 if (css_tryget(&mem->css))
1133 return mem;
1134 else {
492eb21b 1135 prev_css = next_css;
16248d8f
MH
1136 goto skip_node;
1137 }
1138 }
1139
1140 return NULL;
1141}
1142
519ebea3
JW
1143static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1144{
1145 /*
1146 * When a group in the hierarchy below root is destroyed, the
1147 * hierarchy iterator can no longer be trusted since it might
1148 * have pointed to the destroyed group. Invalidate it.
1149 */
1150 atomic_inc(&root->dead_count);
1151}
1152
1153static struct mem_cgroup *
1154mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1155 struct mem_cgroup *root,
1156 int *sequence)
1157{
1158 struct mem_cgroup *position = NULL;
1159 /*
1160 * A cgroup destruction happens in two stages: offlining and
1161 * release. They are separated by a RCU grace period.
1162 *
1163 * If the iterator is valid, we may still race with an
1164 * offlining. The RCU lock ensures the object won't be
1165 * released, tryget will fail if we lost the race.
1166 */
1167 *sequence = atomic_read(&root->dead_count);
1168 if (iter->last_dead_count == *sequence) {
1169 smp_rmb();
1170 position = iter->last_visited;
1171 if (position && !css_tryget(&position->css))
1172 position = NULL;
1173 }
1174 return position;
1175}
1176
1177static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1178 struct mem_cgroup *last_visited,
1179 struct mem_cgroup *new_position,
1180 int sequence)
1181{
1182 if (last_visited)
1183 css_put(&last_visited->css);
1184 /*
1185 * We store the sequence count from the time @last_visited was
1186 * loaded successfully instead of rereading it here so that we
1187 * don't lose destruction events in between. We could have
1188 * raced with the destruction of @new_position after all.
1189 */
1190 iter->last_visited = new_position;
1191 smp_wmb();
1192 iter->last_dead_count = sequence;
1193}
1194
5660048c
JW
1195/**
1196 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1197 * @root: hierarchy root
1198 * @prev: previously returned memcg, NULL on first invocation
1199 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1200 *
1201 * Returns references to children of the hierarchy below @root, or
1202 * @root itself, or %NULL after a full round-trip.
1203 *
1204 * Caller must pass the return value in @prev on subsequent
1205 * invocations for reference counting, or use mem_cgroup_iter_break()
1206 * to cancel a hierarchy walk before the round-trip is complete.
1207 *
1208 * Reclaimers can specify a zone and a priority level in @reclaim to
1209 * divide up the memcgs in the hierarchy among all concurrent
1210 * reclaimers operating on the same zone and priority.
1211 */
694fbc0f 1212struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1213 struct mem_cgroup *prev,
694fbc0f 1214 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1215{
9f3a0d09 1216 struct mem_cgroup *memcg = NULL;
542f85f9 1217 struct mem_cgroup *last_visited = NULL;
711d3d2c 1218
694fbc0f
AM
1219 if (mem_cgroup_disabled())
1220 return NULL;
5660048c 1221
9f3a0d09
JW
1222 if (!root)
1223 root = root_mem_cgroup;
7d74b06f 1224
9f3a0d09 1225 if (prev && !reclaim)
542f85f9 1226 last_visited = prev;
14067bb3 1227
9f3a0d09
JW
1228 if (!root->use_hierarchy && root != root_mem_cgroup) {
1229 if (prev)
c40046f3 1230 goto out_css_put;
694fbc0f 1231 return root;
9f3a0d09 1232 }
14067bb3 1233
542f85f9 1234 rcu_read_lock();
9f3a0d09 1235 while (!memcg) {
527a5ec9 1236 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1237 int uninitialized_var(seq);
711d3d2c 1238
527a5ec9
JW
1239 if (reclaim) {
1240 int nid = zone_to_nid(reclaim->zone);
1241 int zid = zone_idx(reclaim->zone);
1242 struct mem_cgroup_per_zone *mz;
1243
1244 mz = mem_cgroup_zoneinfo(root, nid, zid);
1245 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1246 if (prev && reclaim->generation != iter->generation) {
5f578161 1247 iter->last_visited = NULL;
542f85f9
MH
1248 goto out_unlock;
1249 }
5f578161 1250
519ebea3 1251 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1252 }
7d74b06f 1253
694fbc0f 1254 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1255
527a5ec9 1256 if (reclaim) {
519ebea3 1257 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1258
19f39402 1259 if (!memcg)
527a5ec9
JW
1260 iter->generation++;
1261 else if (!prev && memcg)
1262 reclaim->generation = iter->generation;
1263 }
9f3a0d09 1264
694fbc0f 1265 if (prev && !memcg)
542f85f9 1266 goto out_unlock;
9f3a0d09 1267 }
542f85f9
MH
1268out_unlock:
1269 rcu_read_unlock();
c40046f3
MH
1270out_css_put:
1271 if (prev && prev != root)
1272 css_put(&prev->css);
1273
9f3a0d09 1274 return memcg;
14067bb3 1275}
7d74b06f 1276
5660048c
JW
1277/**
1278 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1279 * @root: hierarchy root
1280 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1281 */
1282void mem_cgroup_iter_break(struct mem_cgroup *root,
1283 struct mem_cgroup *prev)
9f3a0d09
JW
1284{
1285 if (!root)
1286 root = root_mem_cgroup;
1287 if (prev && prev != root)
1288 css_put(&prev->css);
1289}
7d74b06f 1290
9f3a0d09
JW
1291/*
1292 * Iteration constructs for visiting all cgroups (under a tree). If
1293 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1294 * be used for reference counting.
1295 */
1296#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1297 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1298 iter != NULL; \
527a5ec9 1299 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1300
9f3a0d09 1301#define for_each_mem_cgroup(iter) \
527a5ec9 1302 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1303 iter != NULL; \
527a5ec9 1304 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1305
68ae564b 1306void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1307{
c0ff4b85 1308 struct mem_cgroup *memcg;
456f998e 1309
456f998e 1310 rcu_read_lock();
c0ff4b85
R
1311 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1312 if (unlikely(!memcg))
456f998e
YH
1313 goto out;
1314
1315 switch (idx) {
456f998e 1316 case PGFAULT:
0e574a93
JW
1317 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1318 break;
1319 case PGMAJFAULT:
1320 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1321 break;
1322 default:
1323 BUG();
1324 }
1325out:
1326 rcu_read_unlock();
1327}
68ae564b 1328EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1329
925b7673
JW
1330/**
1331 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1332 * @zone: zone of the wanted lruvec
fa9add64 1333 * @memcg: memcg of the wanted lruvec
925b7673
JW
1334 *
1335 * Returns the lru list vector holding pages for the given @zone and
1336 * @mem. This can be the global zone lruvec, if the memory controller
1337 * is disabled.
1338 */
1339struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1340 struct mem_cgroup *memcg)
1341{
1342 struct mem_cgroup_per_zone *mz;
bea8c150 1343 struct lruvec *lruvec;
925b7673 1344
bea8c150
HD
1345 if (mem_cgroup_disabled()) {
1346 lruvec = &zone->lruvec;
1347 goto out;
1348 }
925b7673
JW
1349
1350 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1351 lruvec = &mz->lruvec;
1352out:
1353 /*
1354 * Since a node can be onlined after the mem_cgroup was created,
1355 * we have to be prepared to initialize lruvec->zone here;
1356 * and if offlined then reonlined, we need to reinitialize it.
1357 */
1358 if (unlikely(lruvec->zone != zone))
1359 lruvec->zone = zone;
1360 return lruvec;
925b7673
JW
1361}
1362
08e552c6
KH
1363/*
1364 * Following LRU functions are allowed to be used without PCG_LOCK.
1365 * Operations are called by routine of global LRU independently from memcg.
1366 * What we have to take care of here is validness of pc->mem_cgroup.
1367 *
1368 * Changes to pc->mem_cgroup happens when
1369 * 1. charge
1370 * 2. moving account
1371 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1372 * It is added to LRU before charge.
1373 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1374 * When moving account, the page is not on LRU. It's isolated.
1375 */
4f98a2fe 1376
925b7673 1377/**
fa9add64 1378 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1379 * @page: the page
fa9add64 1380 * @zone: zone of the page
925b7673 1381 */
fa9add64 1382struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1383{
08e552c6 1384 struct mem_cgroup_per_zone *mz;
925b7673
JW
1385 struct mem_cgroup *memcg;
1386 struct page_cgroup *pc;
bea8c150 1387 struct lruvec *lruvec;
6d12e2d8 1388
bea8c150
HD
1389 if (mem_cgroup_disabled()) {
1390 lruvec = &zone->lruvec;
1391 goto out;
1392 }
925b7673 1393
08e552c6 1394 pc = lookup_page_cgroup(page);
38c5d72f 1395 memcg = pc->mem_cgroup;
7512102c
HD
1396
1397 /*
fa9add64 1398 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1399 * an uncharged page off lru does nothing to secure
1400 * its former mem_cgroup from sudden removal.
1401 *
1402 * Our caller holds lru_lock, and PageCgroupUsed is updated
1403 * under page_cgroup lock: between them, they make all uses
1404 * of pc->mem_cgroup safe.
1405 */
fa9add64 1406 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1407 pc->mem_cgroup = memcg = root_mem_cgroup;
1408
925b7673 1409 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1410 lruvec = &mz->lruvec;
1411out:
1412 /*
1413 * Since a node can be onlined after the mem_cgroup was created,
1414 * we have to be prepared to initialize lruvec->zone here;
1415 * and if offlined then reonlined, we need to reinitialize it.
1416 */
1417 if (unlikely(lruvec->zone != zone))
1418 lruvec->zone = zone;
1419 return lruvec;
08e552c6 1420}
b69408e8 1421
925b7673 1422/**
fa9add64
HD
1423 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1424 * @lruvec: mem_cgroup per zone lru vector
1425 * @lru: index of lru list the page is sitting on
1426 * @nr_pages: positive when adding or negative when removing
925b7673 1427 *
fa9add64
HD
1428 * This function must be called when a page is added to or removed from an
1429 * lru list.
3f58a829 1430 */
fa9add64
HD
1431void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1432 int nr_pages)
3f58a829
MK
1433{
1434 struct mem_cgroup_per_zone *mz;
fa9add64 1435 unsigned long *lru_size;
3f58a829
MK
1436
1437 if (mem_cgroup_disabled())
1438 return;
1439
fa9add64
HD
1440 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1441 lru_size = mz->lru_size + lru;
1442 *lru_size += nr_pages;
1443 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1444}
544122e5 1445
3e92041d 1446/*
c0ff4b85 1447 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1448 * hierarchy subtree
1449 */
c3ac9a8a
JW
1450bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1451 struct mem_cgroup *memcg)
3e92041d 1452{
91c63734
JW
1453 if (root_memcg == memcg)
1454 return true;
3a981f48 1455 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1456 return false;
c3ac9a8a
JW
1457 return css_is_ancestor(&memcg->css, &root_memcg->css);
1458}
1459
1460static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1461 struct mem_cgroup *memcg)
1462{
1463 bool ret;
1464
91c63734 1465 rcu_read_lock();
c3ac9a8a 1466 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1467 rcu_read_unlock();
1468 return ret;
3e92041d
MH
1469}
1470
ffbdccf5
DR
1471bool task_in_mem_cgroup(struct task_struct *task,
1472 const struct mem_cgroup *memcg)
4c4a2214 1473{
0b7f569e 1474 struct mem_cgroup *curr = NULL;
158e0a2d 1475 struct task_struct *p;
ffbdccf5 1476 bool ret;
4c4a2214 1477
158e0a2d 1478 p = find_lock_task_mm(task);
de077d22
DR
1479 if (p) {
1480 curr = try_get_mem_cgroup_from_mm(p->mm);
1481 task_unlock(p);
1482 } else {
1483 /*
1484 * All threads may have already detached their mm's, but the oom
1485 * killer still needs to detect if they have already been oom
1486 * killed to prevent needlessly killing additional tasks.
1487 */
ffbdccf5 1488 rcu_read_lock();
de077d22
DR
1489 curr = mem_cgroup_from_task(task);
1490 if (curr)
1491 css_get(&curr->css);
ffbdccf5 1492 rcu_read_unlock();
de077d22 1493 }
0b7f569e 1494 if (!curr)
ffbdccf5 1495 return false;
d31f56db 1496 /*
c0ff4b85 1497 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1498 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1499 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1500 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1501 */
c0ff4b85 1502 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1503 css_put(&curr->css);
4c4a2214
DR
1504 return ret;
1505}
1506
c56d5c7d 1507int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1508{
9b272977 1509 unsigned long inactive_ratio;
14797e23 1510 unsigned long inactive;
9b272977 1511 unsigned long active;
c772be93 1512 unsigned long gb;
14797e23 1513
4d7dcca2
HD
1514 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1515 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1516
c772be93
KM
1517 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1518 if (gb)
1519 inactive_ratio = int_sqrt(10 * gb);
1520 else
1521 inactive_ratio = 1;
1522
9b272977 1523 return inactive * inactive_ratio < active;
14797e23
KM
1524}
1525
6d61ef40
BS
1526#define mem_cgroup_from_res_counter(counter, member) \
1527 container_of(counter, struct mem_cgroup, member)
1528
19942822 1529/**
9d11ea9f 1530 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1531 * @memcg: the memory cgroup
19942822 1532 *
9d11ea9f 1533 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1534 * pages.
19942822 1535 */
c0ff4b85 1536static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1537{
9d11ea9f
JW
1538 unsigned long long margin;
1539
c0ff4b85 1540 margin = res_counter_margin(&memcg->res);
9d11ea9f 1541 if (do_swap_account)
c0ff4b85 1542 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1543 return margin >> PAGE_SHIFT;
19942822
JW
1544}
1545
1f4c025b 1546int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1547{
a7885eb8 1548 /* root ? */
63876986 1549 if (!css_parent(&memcg->css))
a7885eb8
KM
1550 return vm_swappiness;
1551
bf1ff263 1552 return memcg->swappiness;
a7885eb8
KM
1553}
1554
619d094b
KH
1555/*
1556 * memcg->moving_account is used for checking possibility that some thread is
1557 * calling move_account(). When a thread on CPU-A starts moving pages under
1558 * a memcg, other threads should check memcg->moving_account under
1559 * rcu_read_lock(), like this:
1560 *
1561 * CPU-A CPU-B
1562 * rcu_read_lock()
1563 * memcg->moving_account+1 if (memcg->mocing_account)
1564 * take heavy locks.
1565 * synchronize_rcu() update something.
1566 * rcu_read_unlock()
1567 * start move here.
1568 */
4331f7d3
KH
1569
1570/* for quick checking without looking up memcg */
1571atomic_t memcg_moving __read_mostly;
1572
c0ff4b85 1573static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1574{
4331f7d3 1575 atomic_inc(&memcg_moving);
619d094b 1576 atomic_inc(&memcg->moving_account);
32047e2a
KH
1577 synchronize_rcu();
1578}
1579
c0ff4b85 1580static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1581{
619d094b
KH
1582 /*
1583 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1584 * We check NULL in callee rather than caller.
1585 */
4331f7d3
KH
1586 if (memcg) {
1587 atomic_dec(&memcg_moving);
619d094b 1588 atomic_dec(&memcg->moving_account);
4331f7d3 1589 }
32047e2a 1590}
619d094b 1591
32047e2a
KH
1592/*
1593 * 2 routines for checking "mem" is under move_account() or not.
1594 *
13fd1dd9
AM
1595 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1596 * is used for avoiding races in accounting. If true,
32047e2a
KH
1597 * pc->mem_cgroup may be overwritten.
1598 *
1599 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1600 * under hierarchy of moving cgroups. This is for
1601 * waiting at hith-memory prressure caused by "move".
1602 */
1603
13fd1dd9 1604static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1605{
1606 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1607 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1608}
4b534334 1609
c0ff4b85 1610static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1611{
2bd9bb20
KH
1612 struct mem_cgroup *from;
1613 struct mem_cgroup *to;
4b534334 1614 bool ret = false;
2bd9bb20
KH
1615 /*
1616 * Unlike task_move routines, we access mc.to, mc.from not under
1617 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1618 */
1619 spin_lock(&mc.lock);
1620 from = mc.from;
1621 to = mc.to;
1622 if (!from)
1623 goto unlock;
3e92041d 1624
c0ff4b85
R
1625 ret = mem_cgroup_same_or_subtree(memcg, from)
1626 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1627unlock:
1628 spin_unlock(&mc.lock);
4b534334
KH
1629 return ret;
1630}
1631
c0ff4b85 1632static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1633{
1634 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1635 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1636 DEFINE_WAIT(wait);
1637 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1638 /* moving charge context might have finished. */
1639 if (mc.moving_task)
1640 schedule();
1641 finish_wait(&mc.waitq, &wait);
1642 return true;
1643 }
1644 }
1645 return false;
1646}
1647
312734c0
KH
1648/*
1649 * Take this lock when
1650 * - a code tries to modify page's memcg while it's USED.
1651 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1652 * see mem_cgroup_stolen(), too.
312734c0
KH
1653 */
1654static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1655 unsigned long *flags)
1656{
1657 spin_lock_irqsave(&memcg->move_lock, *flags);
1658}
1659
1660static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1661 unsigned long *flags)
1662{
1663 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1664}
1665
58cf188e 1666#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1667/**
58cf188e 1668 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1669 * @memcg: The memory cgroup that went over limit
1670 * @p: Task that is going to be killed
1671 *
1672 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1673 * enabled
1674 */
1675void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1676{
1677 struct cgroup *task_cgrp;
1678 struct cgroup *mem_cgrp;
1679 /*
1680 * Need a buffer in BSS, can't rely on allocations. The code relies
1681 * on the assumption that OOM is serialized for memory controller.
1682 * If this assumption is broken, revisit this code.
1683 */
1684 static char memcg_name[PATH_MAX];
1685 int ret;
58cf188e
SZ
1686 struct mem_cgroup *iter;
1687 unsigned int i;
e222432b 1688
58cf188e 1689 if (!p)
e222432b
BS
1690 return;
1691
e222432b
BS
1692 rcu_read_lock();
1693
1694 mem_cgrp = memcg->css.cgroup;
1695 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1696
1697 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1698 if (ret < 0) {
1699 /*
1700 * Unfortunately, we are unable to convert to a useful name
1701 * But we'll still print out the usage information
1702 */
1703 rcu_read_unlock();
1704 goto done;
1705 }
1706 rcu_read_unlock();
1707
d045197f 1708 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1709
1710 rcu_read_lock();
1711 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1712 if (ret < 0) {
1713 rcu_read_unlock();
1714 goto done;
1715 }
1716 rcu_read_unlock();
1717
1718 /*
1719 * Continues from above, so we don't need an KERN_ level
1720 */
d045197f 1721 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1722done:
1723
d045197f 1724 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1725 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1726 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1727 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1728 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1729 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1730 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1731 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1732 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1733 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1734 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1735 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1736
1737 for_each_mem_cgroup_tree(iter, memcg) {
1738 pr_info("Memory cgroup stats");
1739
1740 rcu_read_lock();
1741 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1742 if (!ret)
1743 pr_cont(" for %s", memcg_name);
1744 rcu_read_unlock();
1745 pr_cont(":");
1746
1747 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1748 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1749 continue;
1750 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1751 K(mem_cgroup_read_stat(iter, i)));
1752 }
1753
1754 for (i = 0; i < NR_LRU_LISTS; i++)
1755 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1756 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1757
1758 pr_cont("\n");
1759 }
e222432b
BS
1760}
1761
81d39c20
KH
1762/*
1763 * This function returns the number of memcg under hierarchy tree. Returns
1764 * 1(self count) if no children.
1765 */
c0ff4b85 1766static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1767{
1768 int num = 0;
7d74b06f
KH
1769 struct mem_cgroup *iter;
1770
c0ff4b85 1771 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1772 num++;
81d39c20
KH
1773 return num;
1774}
1775
a63d83f4
DR
1776/*
1777 * Return the memory (and swap, if configured) limit for a memcg.
1778 */
9cbb78bb 1779static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1780{
1781 u64 limit;
a63d83f4 1782
f3e8eb70 1783 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1784
a63d83f4 1785 /*
9a5a8f19 1786 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1787 */
9a5a8f19
MH
1788 if (mem_cgroup_swappiness(memcg)) {
1789 u64 memsw;
1790
1791 limit += total_swap_pages << PAGE_SHIFT;
1792 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1793
1794 /*
1795 * If memsw is finite and limits the amount of swap space
1796 * available to this memcg, return that limit.
1797 */
1798 limit = min(limit, memsw);
1799 }
1800
1801 return limit;
a63d83f4
DR
1802}
1803
19965460
DR
1804static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1805 int order)
9cbb78bb
DR
1806{
1807 struct mem_cgroup *iter;
1808 unsigned long chosen_points = 0;
1809 unsigned long totalpages;
1810 unsigned int points = 0;
1811 struct task_struct *chosen = NULL;
1812
876aafbf 1813 /*
465adcf1
DR
1814 * If current has a pending SIGKILL or is exiting, then automatically
1815 * select it. The goal is to allow it to allocate so that it may
1816 * quickly exit and free its memory.
876aafbf 1817 */
465adcf1 1818 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1819 set_thread_flag(TIF_MEMDIE);
1820 return;
1821 }
1822
1823 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1824 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1825 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1826 struct css_task_iter it;
9cbb78bb
DR
1827 struct task_struct *task;
1828
72ec7029
TH
1829 css_task_iter_start(&iter->css, &it);
1830 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1831 switch (oom_scan_process_thread(task, totalpages, NULL,
1832 false)) {
1833 case OOM_SCAN_SELECT:
1834 if (chosen)
1835 put_task_struct(chosen);
1836 chosen = task;
1837 chosen_points = ULONG_MAX;
1838 get_task_struct(chosen);
1839 /* fall through */
1840 case OOM_SCAN_CONTINUE:
1841 continue;
1842 case OOM_SCAN_ABORT:
72ec7029 1843 css_task_iter_end(&it);
9cbb78bb
DR
1844 mem_cgroup_iter_break(memcg, iter);
1845 if (chosen)
1846 put_task_struct(chosen);
1847 return;
1848 case OOM_SCAN_OK:
1849 break;
1850 };
1851 points = oom_badness(task, memcg, NULL, totalpages);
1852 if (points > chosen_points) {
1853 if (chosen)
1854 put_task_struct(chosen);
1855 chosen = task;
1856 chosen_points = points;
1857 get_task_struct(chosen);
1858 }
1859 }
72ec7029 1860 css_task_iter_end(&it);
9cbb78bb
DR
1861 }
1862
1863 if (!chosen)
1864 return;
1865 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1866 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1867 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1868}
1869
5660048c
JW
1870static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1871 gfp_t gfp_mask,
1872 unsigned long flags)
1873{
1874 unsigned long total = 0;
1875 bool noswap = false;
1876 int loop;
1877
1878 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1879 noswap = true;
1880 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1881 noswap = true;
1882
1883 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1884 if (loop)
1885 drain_all_stock_async(memcg);
1886 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1887 /*
1888 * Allow limit shrinkers, which are triggered directly
1889 * by userspace, to catch signals and stop reclaim
1890 * after minimal progress, regardless of the margin.
1891 */
1892 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1893 break;
1894 if (mem_cgroup_margin(memcg))
1895 break;
1896 /*
1897 * If nothing was reclaimed after two attempts, there
1898 * may be no reclaimable pages in this hierarchy.
1899 */
1900 if (loop && !total)
1901 break;
1902 }
1903 return total;
1904}
1905
4d0c066d
KH
1906/**
1907 * test_mem_cgroup_node_reclaimable
dad7557e 1908 * @memcg: the target memcg
4d0c066d
KH
1909 * @nid: the node ID to be checked.
1910 * @noswap : specify true here if the user wants flle only information.
1911 *
1912 * This function returns whether the specified memcg contains any
1913 * reclaimable pages on a node. Returns true if there are any reclaimable
1914 * pages in the node.
1915 */
c0ff4b85 1916static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1917 int nid, bool noswap)
1918{
c0ff4b85 1919 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1920 return true;
1921 if (noswap || !total_swap_pages)
1922 return false;
c0ff4b85 1923 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1924 return true;
1925 return false;
1926
1927}
bb4cc1a8 1928#if MAX_NUMNODES > 1
889976db
YH
1929
1930/*
1931 * Always updating the nodemask is not very good - even if we have an empty
1932 * list or the wrong list here, we can start from some node and traverse all
1933 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1934 *
1935 */
c0ff4b85 1936static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1937{
1938 int nid;
453a9bf3
KH
1939 /*
1940 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1941 * pagein/pageout changes since the last update.
1942 */
c0ff4b85 1943 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1944 return;
c0ff4b85 1945 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1946 return;
1947
889976db 1948 /* make a nodemask where this memcg uses memory from */
31aaea4a 1949 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1950
31aaea4a 1951 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1952
c0ff4b85
R
1953 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1954 node_clear(nid, memcg->scan_nodes);
889976db 1955 }
453a9bf3 1956
c0ff4b85
R
1957 atomic_set(&memcg->numainfo_events, 0);
1958 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1959}
1960
1961/*
1962 * Selecting a node where we start reclaim from. Because what we need is just
1963 * reducing usage counter, start from anywhere is O,K. Considering
1964 * memory reclaim from current node, there are pros. and cons.
1965 *
1966 * Freeing memory from current node means freeing memory from a node which
1967 * we'll use or we've used. So, it may make LRU bad. And if several threads
1968 * hit limits, it will see a contention on a node. But freeing from remote
1969 * node means more costs for memory reclaim because of memory latency.
1970 *
1971 * Now, we use round-robin. Better algorithm is welcomed.
1972 */
c0ff4b85 1973int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1974{
1975 int node;
1976
c0ff4b85
R
1977 mem_cgroup_may_update_nodemask(memcg);
1978 node = memcg->last_scanned_node;
889976db 1979
c0ff4b85 1980 node = next_node(node, memcg->scan_nodes);
889976db 1981 if (node == MAX_NUMNODES)
c0ff4b85 1982 node = first_node(memcg->scan_nodes);
889976db
YH
1983 /*
1984 * We call this when we hit limit, not when pages are added to LRU.
1985 * No LRU may hold pages because all pages are UNEVICTABLE or
1986 * memcg is too small and all pages are not on LRU. In that case,
1987 * we use curret node.
1988 */
1989 if (unlikely(node == MAX_NUMNODES))
1990 node = numa_node_id();
1991
c0ff4b85 1992 memcg->last_scanned_node = node;
889976db
YH
1993 return node;
1994}
1995
bb4cc1a8
AM
1996/*
1997 * Check all nodes whether it contains reclaimable pages or not.
1998 * For quick scan, we make use of scan_nodes. This will allow us to skip
1999 * unused nodes. But scan_nodes is lazily updated and may not cotain
2000 * enough new information. We need to do double check.
2001 */
2002static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2003{
2004 int nid;
2005
2006 /*
2007 * quick check...making use of scan_node.
2008 * We can skip unused nodes.
2009 */
2010 if (!nodes_empty(memcg->scan_nodes)) {
2011 for (nid = first_node(memcg->scan_nodes);
2012 nid < MAX_NUMNODES;
2013 nid = next_node(nid, memcg->scan_nodes)) {
2014
2015 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2016 return true;
2017 }
2018 }
2019 /*
2020 * Check rest of nodes.
2021 */
2022 for_each_node_state(nid, N_MEMORY) {
2023 if (node_isset(nid, memcg->scan_nodes))
2024 continue;
2025 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2026 return true;
2027 }
2028 return false;
2029}
2030
889976db 2031#else
c0ff4b85 2032int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2033{
2034 return 0;
2035}
4d0c066d 2036
bb4cc1a8
AM
2037static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2038{
2039 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2040}
889976db
YH
2041#endif
2042
0608f43d
AM
2043static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2044 struct zone *zone,
2045 gfp_t gfp_mask,
2046 unsigned long *total_scanned)
2047{
2048 struct mem_cgroup *victim = NULL;
2049 int total = 0;
2050 int loop = 0;
2051 unsigned long excess;
2052 unsigned long nr_scanned;
2053 struct mem_cgroup_reclaim_cookie reclaim = {
2054 .zone = zone,
2055 .priority = 0,
2056 };
2057
2058 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2059
2060 while (1) {
2061 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2062 if (!victim) {
2063 loop++;
2064 if (loop >= 2) {
2065 /*
2066 * If we have not been able to reclaim
2067 * anything, it might because there are
2068 * no reclaimable pages under this hierarchy
2069 */
2070 if (!total)
2071 break;
2072 /*
2073 * We want to do more targeted reclaim.
2074 * excess >> 2 is not to excessive so as to
2075 * reclaim too much, nor too less that we keep
2076 * coming back to reclaim from this cgroup
2077 */
2078 if (total >= (excess >> 2) ||
2079 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2080 break;
2081 }
2082 continue;
2083 }
2084 if (!mem_cgroup_reclaimable(victim, false))
2085 continue;
2086 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2087 zone, &nr_scanned);
2088 *total_scanned += nr_scanned;
2089 if (!res_counter_soft_limit_excess(&root_memcg->res))
2090 break;
6d61ef40 2091 }
0608f43d
AM
2092 mem_cgroup_iter_break(root_memcg, victim);
2093 return total;
6d61ef40
BS
2094}
2095
0056f4e6
JW
2096#ifdef CONFIG_LOCKDEP
2097static struct lockdep_map memcg_oom_lock_dep_map = {
2098 .name = "memcg_oom_lock",
2099};
2100#endif
2101
fb2a6fc5
JW
2102static DEFINE_SPINLOCK(memcg_oom_lock);
2103
867578cb
KH
2104/*
2105 * Check OOM-Killer is already running under our hierarchy.
2106 * If someone is running, return false.
2107 */
fb2a6fc5 2108static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2109{
79dfdacc 2110 struct mem_cgroup *iter, *failed = NULL;
a636b327 2111
fb2a6fc5
JW
2112 spin_lock(&memcg_oom_lock);
2113
9f3a0d09 2114 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2115 if (iter->oom_lock) {
79dfdacc
MH
2116 /*
2117 * this subtree of our hierarchy is already locked
2118 * so we cannot give a lock.
2119 */
79dfdacc 2120 failed = iter;
9f3a0d09
JW
2121 mem_cgroup_iter_break(memcg, iter);
2122 break;
23751be0
JW
2123 } else
2124 iter->oom_lock = true;
7d74b06f 2125 }
867578cb 2126
fb2a6fc5
JW
2127 if (failed) {
2128 /*
2129 * OK, we failed to lock the whole subtree so we have
2130 * to clean up what we set up to the failing subtree
2131 */
2132 for_each_mem_cgroup_tree(iter, memcg) {
2133 if (iter == failed) {
2134 mem_cgroup_iter_break(memcg, iter);
2135 break;
2136 }
2137 iter->oom_lock = false;
79dfdacc 2138 }
0056f4e6
JW
2139 } else
2140 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2141
2142 spin_unlock(&memcg_oom_lock);
2143
2144 return !failed;
a636b327 2145}
0b7f569e 2146
fb2a6fc5 2147static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2148{
7d74b06f
KH
2149 struct mem_cgroup *iter;
2150
fb2a6fc5 2151 spin_lock(&memcg_oom_lock);
0056f4e6 2152 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2153 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2154 iter->oom_lock = false;
fb2a6fc5 2155 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2156}
2157
c0ff4b85 2158static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2159{
2160 struct mem_cgroup *iter;
2161
c0ff4b85 2162 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2163 atomic_inc(&iter->under_oom);
2164}
2165
c0ff4b85 2166static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2167{
2168 struct mem_cgroup *iter;
2169
867578cb
KH
2170 /*
2171 * When a new child is created while the hierarchy is under oom,
2172 * mem_cgroup_oom_lock() may not be called. We have to use
2173 * atomic_add_unless() here.
2174 */
c0ff4b85 2175 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2176 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2177}
2178
867578cb
KH
2179static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2180
dc98df5a 2181struct oom_wait_info {
d79154bb 2182 struct mem_cgroup *memcg;
dc98df5a
KH
2183 wait_queue_t wait;
2184};
2185
2186static int memcg_oom_wake_function(wait_queue_t *wait,
2187 unsigned mode, int sync, void *arg)
2188{
d79154bb
HD
2189 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2190 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2191 struct oom_wait_info *oom_wait_info;
2192
2193 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2194 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2195
dc98df5a 2196 /*
d79154bb 2197 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2198 * Then we can use css_is_ancestor without taking care of RCU.
2199 */
c0ff4b85
R
2200 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2201 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2202 return 0;
dc98df5a
KH
2203 return autoremove_wake_function(wait, mode, sync, arg);
2204}
2205
c0ff4b85 2206static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2207{
3812c8c8 2208 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2209 /* for filtering, pass "memcg" as argument. */
2210 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2211}
2212
c0ff4b85 2213static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2214{
c0ff4b85
R
2215 if (memcg && atomic_read(&memcg->under_oom))
2216 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2217}
2218
3812c8c8 2219static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2220{
3812c8c8
JW
2221 if (!current->memcg_oom.may_oom)
2222 return;
867578cb 2223 /*
49426420
JW
2224 * We are in the middle of the charge context here, so we
2225 * don't want to block when potentially sitting on a callstack
2226 * that holds all kinds of filesystem and mm locks.
2227 *
2228 * Also, the caller may handle a failed allocation gracefully
2229 * (like optional page cache readahead) and so an OOM killer
2230 * invocation might not even be necessary.
2231 *
2232 * That's why we don't do anything here except remember the
2233 * OOM context and then deal with it at the end of the page
2234 * fault when the stack is unwound, the locks are released,
2235 * and when we know whether the fault was overall successful.
867578cb 2236 */
49426420
JW
2237 css_get(&memcg->css);
2238 current->memcg_oom.memcg = memcg;
2239 current->memcg_oom.gfp_mask = mask;
2240 current->memcg_oom.order = order;
3812c8c8
JW
2241}
2242
2243/**
2244 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2245 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2246 *
49426420
JW
2247 * This has to be called at the end of a page fault if the memcg OOM
2248 * handler was enabled.
3812c8c8 2249 *
49426420 2250 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2251 * sleep on a waitqueue until the userspace task resolves the
2252 * situation. Sleeping directly in the charge context with all kinds
2253 * of locks held is not a good idea, instead we remember an OOM state
2254 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2255 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2256 *
2257 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2258 * completed, %false otherwise.
3812c8c8 2259 */
49426420 2260bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2261{
49426420 2262 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2263 struct oom_wait_info owait;
49426420 2264 bool locked;
3812c8c8
JW
2265
2266 /* OOM is global, do not handle */
3812c8c8 2267 if (!memcg)
49426420 2268 return false;
3812c8c8 2269
49426420
JW
2270 if (!handle)
2271 goto cleanup;
3812c8c8
JW
2272
2273 owait.memcg = memcg;
2274 owait.wait.flags = 0;
2275 owait.wait.func = memcg_oom_wake_function;
2276 owait.wait.private = current;
2277 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2278
3812c8c8 2279 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2280 mem_cgroup_mark_under_oom(memcg);
2281
2282 locked = mem_cgroup_oom_trylock(memcg);
2283
2284 if (locked)
2285 mem_cgroup_oom_notify(memcg);
2286
2287 if (locked && !memcg->oom_kill_disable) {
2288 mem_cgroup_unmark_under_oom(memcg);
2289 finish_wait(&memcg_oom_waitq, &owait.wait);
2290 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2291 current->memcg_oom.order);
2292 } else {
3812c8c8 2293 schedule();
49426420
JW
2294 mem_cgroup_unmark_under_oom(memcg);
2295 finish_wait(&memcg_oom_waitq, &owait.wait);
2296 }
2297
2298 if (locked) {
fb2a6fc5
JW
2299 mem_cgroup_oom_unlock(memcg);
2300 /*
2301 * There is no guarantee that an OOM-lock contender
2302 * sees the wakeups triggered by the OOM kill
2303 * uncharges. Wake any sleepers explicitely.
2304 */
2305 memcg_oom_recover(memcg);
2306 }
49426420
JW
2307cleanup:
2308 current->memcg_oom.memcg = NULL;
3812c8c8 2309 css_put(&memcg->css);
867578cb 2310 return true;
0b7f569e
KH
2311}
2312
d69b042f
BS
2313/*
2314 * Currently used to update mapped file statistics, but the routine can be
2315 * generalized to update other statistics as well.
32047e2a
KH
2316 *
2317 * Notes: Race condition
2318 *
2319 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2320 * it tends to be costly. But considering some conditions, we doesn't need
2321 * to do so _always_.
2322 *
2323 * Considering "charge", lock_page_cgroup() is not required because all
2324 * file-stat operations happen after a page is attached to radix-tree. There
2325 * are no race with "charge".
2326 *
2327 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2328 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2329 * if there are race with "uncharge". Statistics itself is properly handled
2330 * by flags.
2331 *
2332 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2333 * small, we check mm->moving_account and detect there are possibility of race
2334 * If there is, we take a lock.
d69b042f 2335 */
26174efd 2336
89c06bd5
KH
2337void __mem_cgroup_begin_update_page_stat(struct page *page,
2338 bool *locked, unsigned long *flags)
2339{
2340 struct mem_cgroup *memcg;
2341 struct page_cgroup *pc;
2342
2343 pc = lookup_page_cgroup(page);
2344again:
2345 memcg = pc->mem_cgroup;
2346 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2347 return;
2348 /*
2349 * If this memory cgroup is not under account moving, we don't
da92c47d 2350 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2351 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2352 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2353 */
13fd1dd9 2354 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2355 return;
2356
2357 move_lock_mem_cgroup(memcg, flags);
2358 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2359 move_unlock_mem_cgroup(memcg, flags);
2360 goto again;
2361 }
2362 *locked = true;
2363}
2364
2365void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2366{
2367 struct page_cgroup *pc = lookup_page_cgroup(page);
2368
2369 /*
2370 * It's guaranteed that pc->mem_cgroup never changes while
2371 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2372 * should take move_lock_mem_cgroup().
89c06bd5
KH
2373 */
2374 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2375}
2376
2a7106f2 2377void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2378 enum mem_cgroup_stat_index idx, int val)
d69b042f 2379{
c0ff4b85 2380 struct mem_cgroup *memcg;
32047e2a 2381 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2382 unsigned long uninitialized_var(flags);
d69b042f 2383
cfa44946 2384 if (mem_cgroup_disabled())
d69b042f 2385 return;
89c06bd5 2386
658b72c5 2387 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2388 memcg = pc->mem_cgroup;
2389 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2390 return;
26174efd 2391
c0ff4b85 2392 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2393}
26174efd 2394
cdec2e42
KH
2395/*
2396 * size of first charge trial. "32" comes from vmscan.c's magic value.
2397 * TODO: maybe necessary to use big numbers in big irons.
2398 */
7ec99d62 2399#define CHARGE_BATCH 32U
cdec2e42
KH
2400struct memcg_stock_pcp {
2401 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2402 unsigned int nr_pages;
cdec2e42 2403 struct work_struct work;
26fe6168 2404 unsigned long flags;
a0db00fc 2405#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2406};
2407static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2408static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2409
a0956d54
SS
2410/**
2411 * consume_stock: Try to consume stocked charge on this cpu.
2412 * @memcg: memcg to consume from.
2413 * @nr_pages: how many pages to charge.
2414 *
2415 * The charges will only happen if @memcg matches the current cpu's memcg
2416 * stock, and at least @nr_pages are available in that stock. Failure to
2417 * service an allocation will refill the stock.
2418 *
2419 * returns true if successful, false otherwise.
cdec2e42 2420 */
a0956d54 2421static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2422{
2423 struct memcg_stock_pcp *stock;
2424 bool ret = true;
2425
a0956d54
SS
2426 if (nr_pages > CHARGE_BATCH)
2427 return false;
2428
cdec2e42 2429 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2430 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2431 stock->nr_pages -= nr_pages;
cdec2e42
KH
2432 else /* need to call res_counter_charge */
2433 ret = false;
2434 put_cpu_var(memcg_stock);
2435 return ret;
2436}
2437
2438/*
2439 * Returns stocks cached in percpu to res_counter and reset cached information.
2440 */
2441static void drain_stock(struct memcg_stock_pcp *stock)
2442{
2443 struct mem_cgroup *old = stock->cached;
2444
11c9ea4e
JW
2445 if (stock->nr_pages) {
2446 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2447
2448 res_counter_uncharge(&old->res, bytes);
cdec2e42 2449 if (do_swap_account)
11c9ea4e
JW
2450 res_counter_uncharge(&old->memsw, bytes);
2451 stock->nr_pages = 0;
cdec2e42
KH
2452 }
2453 stock->cached = NULL;
cdec2e42
KH
2454}
2455
2456/*
2457 * This must be called under preempt disabled or must be called by
2458 * a thread which is pinned to local cpu.
2459 */
2460static void drain_local_stock(struct work_struct *dummy)
2461{
2462 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2463 drain_stock(stock);
26fe6168 2464 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2465}
2466
e4777496
MH
2467static void __init memcg_stock_init(void)
2468{
2469 int cpu;
2470
2471 for_each_possible_cpu(cpu) {
2472 struct memcg_stock_pcp *stock =
2473 &per_cpu(memcg_stock, cpu);
2474 INIT_WORK(&stock->work, drain_local_stock);
2475 }
2476}
2477
cdec2e42
KH
2478/*
2479 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2480 * This will be consumed by consume_stock() function, later.
cdec2e42 2481 */
c0ff4b85 2482static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2483{
2484 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2485
c0ff4b85 2486 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2487 drain_stock(stock);
c0ff4b85 2488 stock->cached = memcg;
cdec2e42 2489 }
11c9ea4e 2490 stock->nr_pages += nr_pages;
cdec2e42
KH
2491 put_cpu_var(memcg_stock);
2492}
2493
2494/*
c0ff4b85 2495 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2496 * of the hierarchy under it. sync flag says whether we should block
2497 * until the work is done.
cdec2e42 2498 */
c0ff4b85 2499static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2500{
26fe6168 2501 int cpu, curcpu;
d38144b7 2502
cdec2e42 2503 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2504 get_online_cpus();
5af12d0e 2505 curcpu = get_cpu();
cdec2e42
KH
2506 for_each_online_cpu(cpu) {
2507 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2508 struct mem_cgroup *memcg;
26fe6168 2509
c0ff4b85
R
2510 memcg = stock->cached;
2511 if (!memcg || !stock->nr_pages)
26fe6168 2512 continue;
c0ff4b85 2513 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2514 continue;
d1a05b69
MH
2515 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2516 if (cpu == curcpu)
2517 drain_local_stock(&stock->work);
2518 else
2519 schedule_work_on(cpu, &stock->work);
2520 }
cdec2e42 2521 }
5af12d0e 2522 put_cpu();
d38144b7
MH
2523
2524 if (!sync)
2525 goto out;
2526
2527 for_each_online_cpu(cpu) {
2528 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2529 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2530 flush_work(&stock->work);
2531 }
2532out:
f894ffa8 2533 put_online_cpus();
d38144b7
MH
2534}
2535
2536/*
2537 * Tries to drain stocked charges in other cpus. This function is asynchronous
2538 * and just put a work per cpu for draining localy on each cpu. Caller can
2539 * expects some charges will be back to res_counter later but cannot wait for
2540 * it.
2541 */
c0ff4b85 2542static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2543{
9f50fad6
MH
2544 /*
2545 * If someone calls draining, avoid adding more kworker runs.
2546 */
2547 if (!mutex_trylock(&percpu_charge_mutex))
2548 return;
c0ff4b85 2549 drain_all_stock(root_memcg, false);
9f50fad6 2550 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2551}
2552
2553/* This is a synchronous drain interface. */
c0ff4b85 2554static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2555{
2556 /* called when force_empty is called */
9f50fad6 2557 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2558 drain_all_stock(root_memcg, true);
9f50fad6 2559 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2560}
2561
711d3d2c
KH
2562/*
2563 * This function drains percpu counter value from DEAD cpu and
2564 * move it to local cpu. Note that this function can be preempted.
2565 */
c0ff4b85 2566static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2567{
2568 int i;
2569
c0ff4b85 2570 spin_lock(&memcg->pcp_counter_lock);
6104621d 2571 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2572 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2573
c0ff4b85
R
2574 per_cpu(memcg->stat->count[i], cpu) = 0;
2575 memcg->nocpu_base.count[i] += x;
711d3d2c 2576 }
e9f8974f 2577 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2578 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2579
c0ff4b85
R
2580 per_cpu(memcg->stat->events[i], cpu) = 0;
2581 memcg->nocpu_base.events[i] += x;
e9f8974f 2582 }
c0ff4b85 2583 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2584}
2585
0db0628d 2586static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2587 unsigned long action,
2588 void *hcpu)
2589{
2590 int cpu = (unsigned long)hcpu;
2591 struct memcg_stock_pcp *stock;
711d3d2c 2592 struct mem_cgroup *iter;
cdec2e42 2593
619d094b 2594 if (action == CPU_ONLINE)
1489ebad 2595 return NOTIFY_OK;
1489ebad 2596
d833049b 2597 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2598 return NOTIFY_OK;
711d3d2c 2599
9f3a0d09 2600 for_each_mem_cgroup(iter)
711d3d2c
KH
2601 mem_cgroup_drain_pcp_counter(iter, cpu);
2602
cdec2e42
KH
2603 stock = &per_cpu(memcg_stock, cpu);
2604 drain_stock(stock);
2605 return NOTIFY_OK;
2606}
2607
4b534334
KH
2608
2609/* See __mem_cgroup_try_charge() for details */
2610enum {
2611 CHARGE_OK, /* success */
2612 CHARGE_RETRY, /* need to retry but retry is not bad */
2613 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2614 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2615};
2616
c0ff4b85 2617static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2618 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2619 bool invoke_oom)
4b534334 2620{
7ec99d62 2621 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2622 struct mem_cgroup *mem_over_limit;
2623 struct res_counter *fail_res;
2624 unsigned long flags = 0;
2625 int ret;
2626
c0ff4b85 2627 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2628
2629 if (likely(!ret)) {
2630 if (!do_swap_account)
2631 return CHARGE_OK;
c0ff4b85 2632 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2633 if (likely(!ret))
2634 return CHARGE_OK;
2635
c0ff4b85 2636 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2637 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2638 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2639 } else
2640 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2641 /*
9221edb7
JW
2642 * Never reclaim on behalf of optional batching, retry with a
2643 * single page instead.
2644 */
4c9c5359 2645 if (nr_pages > min_pages)
4b534334
KH
2646 return CHARGE_RETRY;
2647
2648 if (!(gfp_mask & __GFP_WAIT))
2649 return CHARGE_WOULDBLOCK;
2650
4c9c5359
SS
2651 if (gfp_mask & __GFP_NORETRY)
2652 return CHARGE_NOMEM;
2653
5660048c 2654 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2655 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2656 return CHARGE_RETRY;
4b534334 2657 /*
19942822
JW
2658 * Even though the limit is exceeded at this point, reclaim
2659 * may have been able to free some pages. Retry the charge
2660 * before killing the task.
2661 *
2662 * Only for regular pages, though: huge pages are rather
2663 * unlikely to succeed so close to the limit, and we fall back
2664 * to regular pages anyway in case of failure.
4b534334 2665 */
4c9c5359 2666 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2667 return CHARGE_RETRY;
2668
2669 /*
2670 * At task move, charge accounts can be doubly counted. So, it's
2671 * better to wait until the end of task_move if something is going on.
2672 */
2673 if (mem_cgroup_wait_acct_move(mem_over_limit))
2674 return CHARGE_RETRY;
2675
3812c8c8
JW
2676 if (invoke_oom)
2677 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2678
3812c8c8 2679 return CHARGE_NOMEM;
4b534334
KH
2680}
2681
f817ed48 2682/*
38c5d72f
KH
2683 * __mem_cgroup_try_charge() does
2684 * 1. detect memcg to be charged against from passed *mm and *ptr,
2685 * 2. update res_counter
2686 * 3. call memory reclaim if necessary.
2687 *
2688 * In some special case, if the task is fatal, fatal_signal_pending() or
2689 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2690 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2691 * as possible without any hazards. 2: all pages should have a valid
2692 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2693 * pointer, that is treated as a charge to root_mem_cgroup.
2694 *
2695 * So __mem_cgroup_try_charge() will return
2696 * 0 ... on success, filling *ptr with a valid memcg pointer.
2697 * -ENOMEM ... charge failure because of resource limits.
2698 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2699 *
2700 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2701 * the oom-killer can be invoked.
8a9f3ccd 2702 */
f817ed48 2703static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2704 gfp_t gfp_mask,
7ec99d62 2705 unsigned int nr_pages,
c0ff4b85 2706 struct mem_cgroup **ptr,
7ec99d62 2707 bool oom)
8a9f3ccd 2708{
7ec99d62 2709 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2710 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2711 struct mem_cgroup *memcg = NULL;
4b534334 2712 int ret;
a636b327 2713
867578cb
KH
2714 /*
2715 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2716 * in system level. So, allow to go ahead dying process in addition to
2717 * MEMDIE process.
2718 */
2719 if (unlikely(test_thread_flag(TIF_MEMDIE)
2720 || fatal_signal_pending(current)))
2721 goto bypass;
a636b327 2722
49426420
JW
2723 if (unlikely(task_in_memcg_oom(current)))
2724 goto bypass;
2725
8a9f3ccd 2726 /*
3be91277
HD
2727 * We always charge the cgroup the mm_struct belongs to.
2728 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2729 * thread group leader migrates. It's possible that mm is not
24467cac 2730 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2731 */
c0ff4b85 2732 if (!*ptr && !mm)
38c5d72f 2733 *ptr = root_mem_cgroup;
f75ca962 2734again:
c0ff4b85
R
2735 if (*ptr) { /* css should be a valid one */
2736 memcg = *ptr;
c0ff4b85 2737 if (mem_cgroup_is_root(memcg))
f75ca962 2738 goto done;
a0956d54 2739 if (consume_stock(memcg, nr_pages))
f75ca962 2740 goto done;
c0ff4b85 2741 css_get(&memcg->css);
4b534334 2742 } else {
f75ca962 2743 struct task_struct *p;
54595fe2 2744
f75ca962
KH
2745 rcu_read_lock();
2746 p = rcu_dereference(mm->owner);
f75ca962 2747 /*
ebb76ce1 2748 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2749 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2750 * race with swapoff. Then, we have small risk of mis-accouning.
2751 * But such kind of mis-account by race always happens because
2752 * we don't have cgroup_mutex(). It's overkill and we allo that
2753 * small race, here.
2754 * (*) swapoff at el will charge against mm-struct not against
2755 * task-struct. So, mm->owner can be NULL.
f75ca962 2756 */
c0ff4b85 2757 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2758 if (!memcg)
2759 memcg = root_mem_cgroup;
2760 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2761 rcu_read_unlock();
2762 goto done;
2763 }
a0956d54 2764 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2765 /*
2766 * It seems dagerous to access memcg without css_get().
2767 * But considering how consume_stok works, it's not
2768 * necessary. If consume_stock success, some charges
2769 * from this memcg are cached on this cpu. So, we
2770 * don't need to call css_get()/css_tryget() before
2771 * calling consume_stock().
2772 */
2773 rcu_read_unlock();
2774 goto done;
2775 }
2776 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2777 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2778 rcu_read_unlock();
2779 goto again;
2780 }
2781 rcu_read_unlock();
2782 }
8a9f3ccd 2783
4b534334 2784 do {
3812c8c8 2785 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2786
4b534334 2787 /* If killed, bypass charge */
f75ca962 2788 if (fatal_signal_pending(current)) {
c0ff4b85 2789 css_put(&memcg->css);
4b534334 2790 goto bypass;
f75ca962 2791 }
6d61ef40 2792
3812c8c8
JW
2793 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2794 nr_pages, invoke_oom);
4b534334
KH
2795 switch (ret) {
2796 case CHARGE_OK:
2797 break;
2798 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2799 batch = nr_pages;
c0ff4b85
R
2800 css_put(&memcg->css);
2801 memcg = NULL;
f75ca962 2802 goto again;
4b534334 2803 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2804 css_put(&memcg->css);
4b534334
KH
2805 goto nomem;
2806 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2807 if (!oom || invoke_oom) {
c0ff4b85 2808 css_put(&memcg->css);
867578cb 2809 goto nomem;
f75ca962 2810 }
4b534334
KH
2811 nr_oom_retries--;
2812 break;
66e1707b 2813 }
4b534334
KH
2814 } while (ret != CHARGE_OK);
2815
7ec99d62 2816 if (batch > nr_pages)
c0ff4b85
R
2817 refill_stock(memcg, batch - nr_pages);
2818 css_put(&memcg->css);
0c3e73e8 2819done:
c0ff4b85 2820 *ptr = memcg;
7a81b88c
KH
2821 return 0;
2822nomem:
3168ecbe
JW
2823 if (!(gfp_mask & __GFP_NOFAIL)) {
2824 *ptr = NULL;
2825 return -ENOMEM;
2826 }
867578cb 2827bypass:
38c5d72f
KH
2828 *ptr = root_mem_cgroup;
2829 return -EINTR;
7a81b88c 2830}
8a9f3ccd 2831
a3032a2c
DN
2832/*
2833 * Somemtimes we have to undo a charge we got by try_charge().
2834 * This function is for that and do uncharge, put css's refcnt.
2835 * gotten by try_charge().
2836 */
c0ff4b85 2837static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2838 unsigned int nr_pages)
a3032a2c 2839{
c0ff4b85 2840 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2841 unsigned long bytes = nr_pages * PAGE_SIZE;
2842
c0ff4b85 2843 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2844 if (do_swap_account)
c0ff4b85 2845 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2846 }
854ffa8d
DN
2847}
2848
d01dd17f
KH
2849/*
2850 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2851 * This is useful when moving usage to parent cgroup.
2852 */
2853static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2854 unsigned int nr_pages)
2855{
2856 unsigned long bytes = nr_pages * PAGE_SIZE;
2857
2858 if (mem_cgroup_is_root(memcg))
2859 return;
2860
2861 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2862 if (do_swap_account)
2863 res_counter_uncharge_until(&memcg->memsw,
2864 memcg->memsw.parent, bytes);
2865}
2866
a3b2d692
KH
2867/*
2868 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2869 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2870 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2871 * called against removed memcg.)
a3b2d692
KH
2872 */
2873static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2874{
2875 struct cgroup_subsys_state *css;
2876
2877 /* ID 0 is unused ID */
2878 if (!id)
2879 return NULL;
2880 css = css_lookup(&mem_cgroup_subsys, id);
2881 if (!css)
2882 return NULL;
b2145145 2883 return mem_cgroup_from_css(css);
a3b2d692
KH
2884}
2885
e42d9d5d 2886struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2887{
c0ff4b85 2888 struct mem_cgroup *memcg = NULL;
3c776e64 2889 struct page_cgroup *pc;
a3b2d692 2890 unsigned short id;
b5a84319
KH
2891 swp_entry_t ent;
2892
3c776e64
DN
2893 VM_BUG_ON(!PageLocked(page));
2894
3c776e64 2895 pc = lookup_page_cgroup(page);
c0bd3f63 2896 lock_page_cgroup(pc);
a3b2d692 2897 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2898 memcg = pc->mem_cgroup;
2899 if (memcg && !css_tryget(&memcg->css))
2900 memcg = NULL;
e42d9d5d 2901 } else if (PageSwapCache(page)) {
3c776e64 2902 ent.val = page_private(page);
9fb4b7cc 2903 id = lookup_swap_cgroup_id(ent);
a3b2d692 2904 rcu_read_lock();
c0ff4b85
R
2905 memcg = mem_cgroup_lookup(id);
2906 if (memcg && !css_tryget(&memcg->css))
2907 memcg = NULL;
a3b2d692 2908 rcu_read_unlock();
3c776e64 2909 }
c0bd3f63 2910 unlock_page_cgroup(pc);
c0ff4b85 2911 return memcg;
b5a84319
KH
2912}
2913
c0ff4b85 2914static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2915 struct page *page,
7ec99d62 2916 unsigned int nr_pages,
9ce70c02
HD
2917 enum charge_type ctype,
2918 bool lrucare)
7a81b88c 2919{
ce587e65 2920 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2921 struct zone *uninitialized_var(zone);
fa9add64 2922 struct lruvec *lruvec;
9ce70c02 2923 bool was_on_lru = false;
b2402857 2924 bool anon;
9ce70c02 2925
ca3e0214 2926 lock_page_cgroup(pc);
90deb788 2927 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2928 /*
2929 * we don't need page_cgroup_lock about tail pages, becase they are not
2930 * accessed by any other context at this point.
2931 */
9ce70c02
HD
2932
2933 /*
2934 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2935 * may already be on some other mem_cgroup's LRU. Take care of it.
2936 */
2937 if (lrucare) {
2938 zone = page_zone(page);
2939 spin_lock_irq(&zone->lru_lock);
2940 if (PageLRU(page)) {
fa9add64 2941 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2942 ClearPageLRU(page);
fa9add64 2943 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2944 was_on_lru = true;
2945 }
2946 }
2947
c0ff4b85 2948 pc->mem_cgroup = memcg;
261fb61a
KH
2949 /*
2950 * We access a page_cgroup asynchronously without lock_page_cgroup().
2951 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2952 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2953 * before USED bit, we need memory barrier here.
2954 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2955 */
08e552c6 2956 smp_wmb();
b2402857 2957 SetPageCgroupUsed(pc);
3be91277 2958
9ce70c02
HD
2959 if (lrucare) {
2960 if (was_on_lru) {
fa9add64 2961 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2962 VM_BUG_ON(PageLRU(page));
2963 SetPageLRU(page);
fa9add64 2964 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2965 }
2966 spin_unlock_irq(&zone->lru_lock);
2967 }
2968
41326c17 2969 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2970 anon = true;
2971 else
2972 anon = false;
2973
b070e65c 2974 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2975 unlock_page_cgroup(pc);
9ce70c02 2976
430e4863 2977 /*
bb4cc1a8
AM
2978 * "charge_statistics" updated event counter. Then, check it.
2979 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2980 * if they exceeds softlimit.
430e4863 2981 */
c0ff4b85 2982 memcg_check_events(memcg, page);
7a81b88c 2983}
66e1707b 2984
7cf27982
GC
2985static DEFINE_MUTEX(set_limit_mutex);
2986
7ae1e1d0
GC
2987#ifdef CONFIG_MEMCG_KMEM
2988static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2989{
2990 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2991 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2992}
2993
1f458cbf
GC
2994/*
2995 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2996 * in the memcg_cache_params struct.
2997 */
2998static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2999{
3000 struct kmem_cache *cachep;
3001
3002 VM_BUG_ON(p->is_root_cache);
3003 cachep = p->root_cache;
3004 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
3005}
3006
749c5415 3007#ifdef CONFIG_SLABINFO
182446d0
TH
3008static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
3009 struct cftype *cft, struct seq_file *m)
749c5415 3010{
182446d0 3011 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
749c5415
GC
3012 struct memcg_cache_params *params;
3013
3014 if (!memcg_can_account_kmem(memcg))
3015 return -EIO;
3016
3017 print_slabinfo_header(m);
3018
3019 mutex_lock(&memcg->slab_caches_mutex);
3020 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3021 cache_show(memcg_params_to_cache(params), m);
3022 mutex_unlock(&memcg->slab_caches_mutex);
3023
3024 return 0;
3025}
3026#endif
3027
7ae1e1d0
GC
3028static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3029{
3030 struct res_counter *fail_res;
3031 struct mem_cgroup *_memcg;
3032 int ret = 0;
3033 bool may_oom;
3034
3035 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3036 if (ret)
3037 return ret;
3038
3039 /*
3040 * Conditions under which we can wait for the oom_killer. Those are
3041 * the same conditions tested by the core page allocator
3042 */
3043 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3044
3045 _memcg = memcg;
3046 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3047 &_memcg, may_oom);
3048
3049 if (ret == -EINTR) {
3050 /*
3051 * __mem_cgroup_try_charge() chosed to bypass to root due to
3052 * OOM kill or fatal signal. Since our only options are to
3053 * either fail the allocation or charge it to this cgroup, do
3054 * it as a temporary condition. But we can't fail. From a
3055 * kmem/slab perspective, the cache has already been selected,
3056 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3057 * our minds.
3058 *
3059 * This condition will only trigger if the task entered
3060 * memcg_charge_kmem in a sane state, but was OOM-killed during
3061 * __mem_cgroup_try_charge() above. Tasks that were already
3062 * dying when the allocation triggers should have been already
3063 * directed to the root cgroup in memcontrol.h
3064 */
3065 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3066 if (do_swap_account)
3067 res_counter_charge_nofail(&memcg->memsw, size,
3068 &fail_res);
3069 ret = 0;
3070 } else if (ret)
3071 res_counter_uncharge(&memcg->kmem, size);
3072
3073 return ret;
3074}
3075
3076static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3077{
7ae1e1d0
GC
3078 res_counter_uncharge(&memcg->res, size);
3079 if (do_swap_account)
3080 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3081
3082 /* Not down to 0 */
3083 if (res_counter_uncharge(&memcg->kmem, size))
3084 return;
3085
10d5ebf4
LZ
3086 /*
3087 * Releases a reference taken in kmem_cgroup_css_offline in case
3088 * this last uncharge is racing with the offlining code or it is
3089 * outliving the memcg existence.
3090 *
3091 * The memory barrier imposed by test&clear is paired with the
3092 * explicit one in memcg_kmem_mark_dead().
3093 */
7de37682 3094 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3095 css_put(&memcg->css);
7ae1e1d0
GC
3096}
3097
2633d7a0
GC
3098void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3099{
3100 if (!memcg)
3101 return;
3102
3103 mutex_lock(&memcg->slab_caches_mutex);
3104 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3105 mutex_unlock(&memcg->slab_caches_mutex);
3106}
3107
3108/*
3109 * helper for acessing a memcg's index. It will be used as an index in the
3110 * child cache array in kmem_cache, and also to derive its name. This function
3111 * will return -1 when this is not a kmem-limited memcg.
3112 */
3113int memcg_cache_id(struct mem_cgroup *memcg)
3114{
3115 return memcg ? memcg->kmemcg_id : -1;
3116}
3117
55007d84
GC
3118/*
3119 * This ends up being protected by the set_limit mutex, during normal
3120 * operation, because that is its main call site.
3121 *
3122 * But when we create a new cache, we can call this as well if its parent
3123 * is kmem-limited. That will have to hold set_limit_mutex as well.
3124 */
3125int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3126{
3127 int num, ret;
3128
3129 num = ida_simple_get(&kmem_limited_groups,
3130 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3131 if (num < 0)
3132 return num;
3133 /*
3134 * After this point, kmem_accounted (that we test atomically in
3135 * the beginning of this conditional), is no longer 0. This
3136 * guarantees only one process will set the following boolean
3137 * to true. We don't need test_and_set because we're protected
3138 * by the set_limit_mutex anyway.
3139 */
3140 memcg_kmem_set_activated(memcg);
3141
3142 ret = memcg_update_all_caches(num+1);
3143 if (ret) {
3144 ida_simple_remove(&kmem_limited_groups, num);
3145 memcg_kmem_clear_activated(memcg);
3146 return ret;
3147 }
3148
3149 memcg->kmemcg_id = num;
3150 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3151 mutex_init(&memcg->slab_caches_mutex);
3152 return 0;
3153}
3154
3155static size_t memcg_caches_array_size(int num_groups)
3156{
3157 ssize_t size;
3158 if (num_groups <= 0)
3159 return 0;
3160
3161 size = 2 * num_groups;
3162 if (size < MEMCG_CACHES_MIN_SIZE)
3163 size = MEMCG_CACHES_MIN_SIZE;
3164 else if (size > MEMCG_CACHES_MAX_SIZE)
3165 size = MEMCG_CACHES_MAX_SIZE;
3166
3167 return size;
3168}
3169
3170/*
3171 * We should update the current array size iff all caches updates succeed. This
3172 * can only be done from the slab side. The slab mutex needs to be held when
3173 * calling this.
3174 */
3175void memcg_update_array_size(int num)
3176{
3177 if (num > memcg_limited_groups_array_size)
3178 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3179}
3180
15cf17d2
KK
3181static void kmem_cache_destroy_work_func(struct work_struct *w);
3182
55007d84
GC
3183int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3184{
3185 struct memcg_cache_params *cur_params = s->memcg_params;
3186
3187 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3188
3189 if (num_groups > memcg_limited_groups_array_size) {
3190 int i;
3191 ssize_t size = memcg_caches_array_size(num_groups);
3192
3193 size *= sizeof(void *);
90c7a79c 3194 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84
GC
3195
3196 s->memcg_params = kzalloc(size, GFP_KERNEL);
3197 if (!s->memcg_params) {
3198 s->memcg_params = cur_params;
3199 return -ENOMEM;
3200 }
3201
3202 s->memcg_params->is_root_cache = true;
3203
3204 /*
3205 * There is the chance it will be bigger than
3206 * memcg_limited_groups_array_size, if we failed an allocation
3207 * in a cache, in which case all caches updated before it, will
3208 * have a bigger array.
3209 *
3210 * But if that is the case, the data after
3211 * memcg_limited_groups_array_size is certainly unused
3212 */
3213 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3214 if (!cur_params->memcg_caches[i])
3215 continue;
3216 s->memcg_params->memcg_caches[i] =
3217 cur_params->memcg_caches[i];
3218 }
3219
3220 /*
3221 * Ideally, we would wait until all caches succeed, and only
3222 * then free the old one. But this is not worth the extra
3223 * pointer per-cache we'd have to have for this.
3224 *
3225 * It is not a big deal if some caches are left with a size
3226 * bigger than the others. And all updates will reset this
3227 * anyway.
3228 */
3229 kfree(cur_params);
3230 }
3231 return 0;
3232}
3233
943a451a
GC
3234int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3235 struct kmem_cache *root_cache)
2633d7a0 3236{
90c7a79c 3237 size_t size;
2633d7a0
GC
3238
3239 if (!memcg_kmem_enabled())
3240 return 0;
3241
90c7a79c
AV
3242 if (!memcg) {
3243 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3244 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3245 } else
3246 size = sizeof(struct memcg_cache_params);
55007d84 3247
2633d7a0
GC
3248 s->memcg_params = kzalloc(size, GFP_KERNEL);
3249 if (!s->memcg_params)
3250 return -ENOMEM;
3251
943a451a 3252 if (memcg) {
2633d7a0 3253 s->memcg_params->memcg = memcg;
943a451a 3254 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3255 INIT_WORK(&s->memcg_params->destroy,
3256 kmem_cache_destroy_work_func);
4ba902b5
GC
3257 } else
3258 s->memcg_params->is_root_cache = true;
3259
2633d7a0
GC
3260 return 0;
3261}
3262
3263void memcg_release_cache(struct kmem_cache *s)
3264{
d7f25f8a
GC
3265 struct kmem_cache *root;
3266 struct mem_cgroup *memcg;
3267 int id;
3268
3269 /*
3270 * This happens, for instance, when a root cache goes away before we
3271 * add any memcg.
3272 */
3273 if (!s->memcg_params)
3274 return;
3275
3276 if (s->memcg_params->is_root_cache)
3277 goto out;
3278
3279 memcg = s->memcg_params->memcg;
3280 id = memcg_cache_id(memcg);
3281
3282 root = s->memcg_params->root_cache;
3283 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3284
3285 mutex_lock(&memcg->slab_caches_mutex);
3286 list_del(&s->memcg_params->list);
3287 mutex_unlock(&memcg->slab_caches_mutex);
3288
20f05310 3289 css_put(&memcg->css);
d7f25f8a 3290out:
2633d7a0
GC
3291 kfree(s->memcg_params);
3292}
3293
0e9d92f2
GC
3294/*
3295 * During the creation a new cache, we need to disable our accounting mechanism
3296 * altogether. This is true even if we are not creating, but rather just
3297 * enqueing new caches to be created.
3298 *
3299 * This is because that process will trigger allocations; some visible, like
3300 * explicit kmallocs to auxiliary data structures, name strings and internal
3301 * cache structures; some well concealed, like INIT_WORK() that can allocate
3302 * objects during debug.
3303 *
3304 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3305 * to it. This may not be a bounded recursion: since the first cache creation
3306 * failed to complete (waiting on the allocation), we'll just try to create the
3307 * cache again, failing at the same point.
3308 *
3309 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3310 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3311 * inside the following two functions.
3312 */
3313static inline void memcg_stop_kmem_account(void)
3314{
3315 VM_BUG_ON(!current->mm);
3316 current->memcg_kmem_skip_account++;
3317}
3318
3319static inline void memcg_resume_kmem_account(void)
3320{
3321 VM_BUG_ON(!current->mm);
3322 current->memcg_kmem_skip_account--;
3323}
3324
1f458cbf
GC
3325static void kmem_cache_destroy_work_func(struct work_struct *w)
3326{
3327 struct kmem_cache *cachep;
3328 struct memcg_cache_params *p;
3329
3330 p = container_of(w, struct memcg_cache_params, destroy);
3331
3332 cachep = memcg_params_to_cache(p);
3333
22933152
GC
3334 /*
3335 * If we get down to 0 after shrink, we could delete right away.
3336 * However, memcg_release_pages() already puts us back in the workqueue
3337 * in that case. If we proceed deleting, we'll get a dangling
3338 * reference, and removing the object from the workqueue in that case
3339 * is unnecessary complication. We are not a fast path.
3340 *
3341 * Note that this case is fundamentally different from racing with
3342 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3343 * kmem_cache_shrink, not only we would be reinserting a dead cache
3344 * into the queue, but doing so from inside the worker racing to
3345 * destroy it.
3346 *
3347 * So if we aren't down to zero, we'll just schedule a worker and try
3348 * again
3349 */
3350 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3351 kmem_cache_shrink(cachep);
3352 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3353 return;
3354 } else
1f458cbf
GC
3355 kmem_cache_destroy(cachep);
3356}
3357
3358void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3359{
3360 if (!cachep->memcg_params->dead)
3361 return;
3362
22933152
GC
3363 /*
3364 * There are many ways in which we can get here.
3365 *
3366 * We can get to a memory-pressure situation while the delayed work is
3367 * still pending to run. The vmscan shrinkers can then release all
3368 * cache memory and get us to destruction. If this is the case, we'll
3369 * be executed twice, which is a bug (the second time will execute over
3370 * bogus data). In this case, cancelling the work should be fine.
3371 *
3372 * But we can also get here from the worker itself, if
3373 * kmem_cache_shrink is enough to shake all the remaining objects and
3374 * get the page count to 0. In this case, we'll deadlock if we try to
3375 * cancel the work (the worker runs with an internal lock held, which
3376 * is the same lock we would hold for cancel_work_sync().)
3377 *
3378 * Since we can't possibly know who got us here, just refrain from
3379 * running if there is already work pending
3380 */
3381 if (work_pending(&cachep->memcg_params->destroy))
3382 return;
1f458cbf
GC
3383 /*
3384 * We have to defer the actual destroying to a workqueue, because
3385 * we might currently be in a context that cannot sleep.
3386 */
3387 schedule_work(&cachep->memcg_params->destroy);
3388}
3389
d9c10ddd
MH
3390/*
3391 * This lock protects updaters, not readers. We want readers to be as fast as
3392 * they can, and they will either see NULL or a valid cache value. Our model
3393 * allow them to see NULL, in which case the root memcg will be selected.
3394 *
3395 * We need this lock because multiple allocations to the same cache from a non
3396 * will span more than one worker. Only one of them can create the cache.
3397 */
3398static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3399
d9c10ddd
MH
3400/*
3401 * Called with memcg_cache_mutex held
3402 */
d7f25f8a
GC
3403static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3404 struct kmem_cache *s)
3405{
d7f25f8a 3406 struct kmem_cache *new;
d9c10ddd 3407 static char *tmp_name = NULL;
d7f25f8a 3408
d9c10ddd
MH
3409 lockdep_assert_held(&memcg_cache_mutex);
3410
3411 /*
3412 * kmem_cache_create_memcg duplicates the given name and
3413 * cgroup_name for this name requires RCU context.
3414 * This static temporary buffer is used to prevent from
3415 * pointless shortliving allocation.
3416 */
3417 if (!tmp_name) {
3418 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3419 if (!tmp_name)
3420 return NULL;
3421 }
3422
3423 rcu_read_lock();
3424 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3425 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3426 rcu_read_unlock();
d7f25f8a 3427
d9c10ddd 3428 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3429 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3430
d79923fa
GC
3431 if (new)
3432 new->allocflags |= __GFP_KMEMCG;
3433
d7f25f8a
GC
3434 return new;
3435}
3436
d7f25f8a
GC
3437static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3438 struct kmem_cache *cachep)
3439{
3440 struct kmem_cache *new_cachep;
3441 int idx;
3442
3443 BUG_ON(!memcg_can_account_kmem(memcg));
3444
3445 idx = memcg_cache_id(memcg);
3446
3447 mutex_lock(&memcg_cache_mutex);
3448 new_cachep = cachep->memcg_params->memcg_caches[idx];
20f05310
LZ
3449 if (new_cachep) {
3450 css_put(&memcg->css);
d7f25f8a 3451 goto out;
20f05310 3452 }
d7f25f8a
GC
3453
3454 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3455 if (new_cachep == NULL) {
3456 new_cachep = cachep;
20f05310 3457 css_put(&memcg->css);
d7f25f8a
GC
3458 goto out;
3459 }
3460
1f458cbf 3461 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3462
3463 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3464 /*
3465 * the readers won't lock, make sure everybody sees the updated value,
3466 * so they won't put stuff in the queue again for no reason
3467 */
3468 wmb();
3469out:
3470 mutex_unlock(&memcg_cache_mutex);
3471 return new_cachep;
3472}
3473
7cf27982
GC
3474void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3475{
3476 struct kmem_cache *c;
3477 int i;
3478
3479 if (!s->memcg_params)
3480 return;
3481 if (!s->memcg_params->is_root_cache)
3482 return;
3483
3484 /*
3485 * If the cache is being destroyed, we trust that there is no one else
3486 * requesting objects from it. Even if there are, the sanity checks in
3487 * kmem_cache_destroy should caught this ill-case.
3488 *
3489 * Still, we don't want anyone else freeing memcg_caches under our
3490 * noses, which can happen if a new memcg comes to life. As usual,
3491 * we'll take the set_limit_mutex to protect ourselves against this.
3492 */
3493 mutex_lock(&set_limit_mutex);
3494 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3495 c = s->memcg_params->memcg_caches[i];
3496 if (!c)
3497 continue;
3498
3499 /*
3500 * We will now manually delete the caches, so to avoid races
3501 * we need to cancel all pending destruction workers and
3502 * proceed with destruction ourselves.
3503 *
3504 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3505 * and that could spawn the workers again: it is likely that
3506 * the cache still have active pages until this very moment.
3507 * This would lead us back to mem_cgroup_destroy_cache.
3508 *
3509 * But that will not execute at all if the "dead" flag is not
3510 * set, so flip it down to guarantee we are in control.
3511 */
3512 c->memcg_params->dead = false;
22933152 3513 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3514 kmem_cache_destroy(c);
3515 }
3516 mutex_unlock(&set_limit_mutex);
3517}
3518
d7f25f8a
GC
3519struct create_work {
3520 struct mem_cgroup *memcg;
3521 struct kmem_cache *cachep;
3522 struct work_struct work;
3523};
3524
1f458cbf
GC
3525static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3526{
3527 struct kmem_cache *cachep;
3528 struct memcg_cache_params *params;
3529
3530 if (!memcg_kmem_is_active(memcg))
3531 return;
3532
3533 mutex_lock(&memcg->slab_caches_mutex);
3534 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3535 cachep = memcg_params_to_cache(params);
3536 cachep->memcg_params->dead = true;
1f458cbf
GC
3537 schedule_work(&cachep->memcg_params->destroy);
3538 }
3539 mutex_unlock(&memcg->slab_caches_mutex);
3540}
3541
d7f25f8a
GC
3542static void memcg_create_cache_work_func(struct work_struct *w)
3543{
3544 struct create_work *cw;
3545
3546 cw = container_of(w, struct create_work, work);
3547 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3548 kfree(cw);
3549}
3550
3551/*
3552 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3553 */
0e9d92f2
GC
3554static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3555 struct kmem_cache *cachep)
d7f25f8a
GC
3556{
3557 struct create_work *cw;
3558
3559 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3560 if (cw == NULL) {
3561 css_put(&memcg->css);
d7f25f8a
GC
3562 return;
3563 }
3564
3565 cw->memcg = memcg;
3566 cw->cachep = cachep;
3567
3568 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3569 schedule_work(&cw->work);
3570}
3571
0e9d92f2
GC
3572static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3573 struct kmem_cache *cachep)
3574{
3575 /*
3576 * We need to stop accounting when we kmalloc, because if the
3577 * corresponding kmalloc cache is not yet created, the first allocation
3578 * in __memcg_create_cache_enqueue will recurse.
3579 *
3580 * However, it is better to enclose the whole function. Depending on
3581 * the debugging options enabled, INIT_WORK(), for instance, can
3582 * trigger an allocation. This too, will make us recurse. Because at
3583 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3584 * the safest choice is to do it like this, wrapping the whole function.
3585 */
3586 memcg_stop_kmem_account();
3587 __memcg_create_cache_enqueue(memcg, cachep);
3588 memcg_resume_kmem_account();
3589}
d7f25f8a
GC
3590/*
3591 * Return the kmem_cache we're supposed to use for a slab allocation.
3592 * We try to use the current memcg's version of the cache.
3593 *
3594 * If the cache does not exist yet, if we are the first user of it,
3595 * we either create it immediately, if possible, or create it asynchronously
3596 * in a workqueue.
3597 * In the latter case, we will let the current allocation go through with
3598 * the original cache.
3599 *
3600 * Can't be called in interrupt context or from kernel threads.
3601 * This function needs to be called with rcu_read_lock() held.
3602 */
3603struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3604 gfp_t gfp)
3605{
3606 struct mem_cgroup *memcg;
3607 int idx;
3608
3609 VM_BUG_ON(!cachep->memcg_params);
3610 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3611
0e9d92f2
GC
3612 if (!current->mm || current->memcg_kmem_skip_account)
3613 return cachep;
3614
d7f25f8a
GC
3615 rcu_read_lock();
3616 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3617
3618 if (!memcg_can_account_kmem(memcg))
ca0dde97 3619 goto out;
d7f25f8a
GC
3620
3621 idx = memcg_cache_id(memcg);
3622
3623 /*
3624 * barrier to mare sure we're always seeing the up to date value. The
3625 * code updating memcg_caches will issue a write barrier to match this.
3626 */
3627 read_barrier_depends();
ca0dde97
LZ
3628 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3629 cachep = cachep->memcg_params->memcg_caches[idx];
3630 goto out;
d7f25f8a
GC
3631 }
3632
ca0dde97
LZ
3633 /* The corresponding put will be done in the workqueue. */
3634 if (!css_tryget(&memcg->css))
3635 goto out;
3636 rcu_read_unlock();
3637
3638 /*
3639 * If we are in a safe context (can wait, and not in interrupt
3640 * context), we could be be predictable and return right away.
3641 * This would guarantee that the allocation being performed
3642 * already belongs in the new cache.
3643 *
3644 * However, there are some clashes that can arrive from locking.
3645 * For instance, because we acquire the slab_mutex while doing
3646 * kmem_cache_dup, this means no further allocation could happen
3647 * with the slab_mutex held.
3648 *
3649 * Also, because cache creation issue get_online_cpus(), this
3650 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3651 * that ends up reversed during cpu hotplug. (cpuset allocates
3652 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3653 * better to defer everything.
3654 */
3655 memcg_create_cache_enqueue(memcg, cachep);
3656 return cachep;
3657out:
3658 rcu_read_unlock();
3659 return cachep;
d7f25f8a
GC
3660}
3661EXPORT_SYMBOL(__memcg_kmem_get_cache);
3662
7ae1e1d0
GC
3663/*
3664 * We need to verify if the allocation against current->mm->owner's memcg is
3665 * possible for the given order. But the page is not allocated yet, so we'll
3666 * need a further commit step to do the final arrangements.
3667 *
3668 * It is possible for the task to switch cgroups in this mean time, so at
3669 * commit time, we can't rely on task conversion any longer. We'll then use
3670 * the handle argument to return to the caller which cgroup we should commit
3671 * against. We could also return the memcg directly and avoid the pointer
3672 * passing, but a boolean return value gives better semantics considering
3673 * the compiled-out case as well.
3674 *
3675 * Returning true means the allocation is possible.
3676 */
3677bool
3678__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3679{
3680 struct mem_cgroup *memcg;
3681 int ret;
3682
3683 *_memcg = NULL;
6d42c232
GC
3684
3685 /*
3686 * Disabling accounting is only relevant for some specific memcg
3687 * internal allocations. Therefore we would initially not have such
3688 * check here, since direct calls to the page allocator that are marked
3689 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3690 * concerned with cache allocations, and by having this test at
3691 * memcg_kmem_get_cache, we are already able to relay the allocation to
3692 * the root cache and bypass the memcg cache altogether.
3693 *
3694 * There is one exception, though: the SLUB allocator does not create
3695 * large order caches, but rather service large kmallocs directly from
3696 * the page allocator. Therefore, the following sequence when backed by
3697 * the SLUB allocator:
3698 *
f894ffa8
AM
3699 * memcg_stop_kmem_account();
3700 * kmalloc(<large_number>)
3701 * memcg_resume_kmem_account();
6d42c232
GC
3702 *
3703 * would effectively ignore the fact that we should skip accounting,
3704 * since it will drive us directly to this function without passing
3705 * through the cache selector memcg_kmem_get_cache. Such large
3706 * allocations are extremely rare but can happen, for instance, for the
3707 * cache arrays. We bring this test here.
3708 */
3709 if (!current->mm || current->memcg_kmem_skip_account)
3710 return true;
3711
7ae1e1d0
GC
3712 memcg = try_get_mem_cgroup_from_mm(current->mm);
3713
3714 /*
3715 * very rare case described in mem_cgroup_from_task. Unfortunately there
3716 * isn't much we can do without complicating this too much, and it would
3717 * be gfp-dependent anyway. Just let it go
3718 */
3719 if (unlikely(!memcg))
3720 return true;
3721
3722 if (!memcg_can_account_kmem(memcg)) {
3723 css_put(&memcg->css);
3724 return true;
3725 }
3726
7ae1e1d0
GC
3727 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3728 if (!ret)
3729 *_memcg = memcg;
7ae1e1d0
GC
3730
3731 css_put(&memcg->css);
3732 return (ret == 0);
3733}
3734
3735void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3736 int order)
3737{
3738 struct page_cgroup *pc;
3739
3740 VM_BUG_ON(mem_cgroup_is_root(memcg));
3741
3742 /* The page allocation failed. Revert */
3743 if (!page) {
3744 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3745 return;
3746 }
3747
3748 pc = lookup_page_cgroup(page);
3749 lock_page_cgroup(pc);
3750 pc->mem_cgroup = memcg;
3751 SetPageCgroupUsed(pc);
3752 unlock_page_cgroup(pc);
3753}
3754
3755void __memcg_kmem_uncharge_pages(struct page *page, int order)
3756{
3757 struct mem_cgroup *memcg = NULL;
3758 struct page_cgroup *pc;
3759
3760
3761 pc = lookup_page_cgroup(page);
3762 /*
3763 * Fast unlocked return. Theoretically might have changed, have to
3764 * check again after locking.
3765 */
3766 if (!PageCgroupUsed(pc))
3767 return;
3768
3769 lock_page_cgroup(pc);
3770 if (PageCgroupUsed(pc)) {
3771 memcg = pc->mem_cgroup;
3772 ClearPageCgroupUsed(pc);
3773 }
3774 unlock_page_cgroup(pc);
3775
3776 /*
3777 * We trust that only if there is a memcg associated with the page, it
3778 * is a valid allocation
3779 */
3780 if (!memcg)
3781 return;
3782
3783 VM_BUG_ON(mem_cgroup_is_root(memcg));
3784 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3785}
1f458cbf
GC
3786#else
3787static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3788{
3789}
7ae1e1d0
GC
3790#endif /* CONFIG_MEMCG_KMEM */
3791
ca3e0214
KH
3792#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3793
a0db00fc 3794#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3795/*
3796 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3797 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3798 * charge/uncharge will be never happen and move_account() is done under
3799 * compound_lock(), so we don't have to take care of races.
ca3e0214 3800 */
e94c8a9c 3801void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3802{
3803 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3804 struct page_cgroup *pc;
b070e65c 3805 struct mem_cgroup *memcg;
e94c8a9c 3806 int i;
ca3e0214 3807
3d37c4a9
KH
3808 if (mem_cgroup_disabled())
3809 return;
b070e65c
DR
3810
3811 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3812 for (i = 1; i < HPAGE_PMD_NR; i++) {
3813 pc = head_pc + i;
b070e65c 3814 pc->mem_cgroup = memcg;
e94c8a9c 3815 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3816 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3817 }
b070e65c
DR
3818 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3819 HPAGE_PMD_NR);
ca3e0214 3820}
12d27107 3821#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3822
3ea67d06
SZ
3823static inline
3824void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3825 struct mem_cgroup *to,
3826 unsigned int nr_pages,
3827 enum mem_cgroup_stat_index idx)
3828{
3829 /* Update stat data for mem_cgroup */
3830 preempt_disable();
5e8cfc3c 3831 __this_cpu_sub(from->stat->count[idx], nr_pages);
3ea67d06
SZ
3832 __this_cpu_add(to->stat->count[idx], nr_pages);
3833 preempt_enable();
3834}
3835
f817ed48 3836/**
de3638d9 3837 * mem_cgroup_move_account - move account of the page
5564e88b 3838 * @page: the page
7ec99d62 3839 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3840 * @pc: page_cgroup of the page.
3841 * @from: mem_cgroup which the page is moved from.
3842 * @to: mem_cgroup which the page is moved to. @from != @to.
3843 *
3844 * The caller must confirm following.
08e552c6 3845 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3846 * - compound_lock is held when nr_pages > 1
f817ed48 3847 *
2f3479b1
KH
3848 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3849 * from old cgroup.
f817ed48 3850 */
7ec99d62
JW
3851static int mem_cgroup_move_account(struct page *page,
3852 unsigned int nr_pages,
3853 struct page_cgroup *pc,
3854 struct mem_cgroup *from,
2f3479b1 3855 struct mem_cgroup *to)
f817ed48 3856{
de3638d9
JW
3857 unsigned long flags;
3858 int ret;
b2402857 3859 bool anon = PageAnon(page);
987eba66 3860
f817ed48 3861 VM_BUG_ON(from == to);
5564e88b 3862 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3863 /*
3864 * The page is isolated from LRU. So, collapse function
3865 * will not handle this page. But page splitting can happen.
3866 * Do this check under compound_page_lock(). The caller should
3867 * hold it.
3868 */
3869 ret = -EBUSY;
7ec99d62 3870 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3871 goto out;
3872
3873 lock_page_cgroup(pc);
3874
3875 ret = -EINVAL;
3876 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3877 goto unlock;
3878
312734c0 3879 move_lock_mem_cgroup(from, &flags);
f817ed48 3880
3ea67d06
SZ
3881 if (!anon && page_mapped(page))
3882 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3883 MEM_CGROUP_STAT_FILE_MAPPED);
3884
3885 if (PageWriteback(page))
3886 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3887 MEM_CGROUP_STAT_WRITEBACK);
3888
b070e65c 3889 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3890
854ffa8d 3891 /* caller should have done css_get */
08e552c6 3892 pc->mem_cgroup = to;
b070e65c 3893 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3894 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3895 ret = 0;
3896unlock:
57f9fd7d 3897 unlock_page_cgroup(pc);
d2265e6f
KH
3898 /*
3899 * check events
3900 */
5564e88b
JW
3901 memcg_check_events(to, page);
3902 memcg_check_events(from, page);
de3638d9 3903out:
f817ed48
KH
3904 return ret;
3905}
3906
2ef37d3f
MH
3907/**
3908 * mem_cgroup_move_parent - moves page to the parent group
3909 * @page: the page to move
3910 * @pc: page_cgroup of the page
3911 * @child: page's cgroup
3912 *
3913 * move charges to its parent or the root cgroup if the group has no
3914 * parent (aka use_hierarchy==0).
3915 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3916 * mem_cgroup_move_account fails) the failure is always temporary and
3917 * it signals a race with a page removal/uncharge or migration. In the
3918 * first case the page is on the way out and it will vanish from the LRU
3919 * on the next attempt and the call should be retried later.
3920 * Isolation from the LRU fails only if page has been isolated from
3921 * the LRU since we looked at it and that usually means either global
3922 * reclaim or migration going on. The page will either get back to the
3923 * LRU or vanish.
3924 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3925 * (!PageCgroupUsed) or moved to a different group. The page will
3926 * disappear in the next attempt.
f817ed48 3927 */
5564e88b
JW
3928static int mem_cgroup_move_parent(struct page *page,
3929 struct page_cgroup *pc,
6068bf01 3930 struct mem_cgroup *child)
f817ed48 3931{
f817ed48 3932 struct mem_cgroup *parent;
7ec99d62 3933 unsigned int nr_pages;
4be4489f 3934 unsigned long uninitialized_var(flags);
f817ed48
KH
3935 int ret;
3936
d8423011 3937 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3938
57f9fd7d
DN
3939 ret = -EBUSY;
3940 if (!get_page_unless_zero(page))
3941 goto out;
3942 if (isolate_lru_page(page))
3943 goto put;
52dbb905 3944
7ec99d62 3945 nr_pages = hpage_nr_pages(page);
08e552c6 3946
cc926f78
KH
3947 parent = parent_mem_cgroup(child);
3948 /*
3949 * If no parent, move charges to root cgroup.
3950 */
3951 if (!parent)
3952 parent = root_mem_cgroup;
f817ed48 3953
2ef37d3f
MH
3954 if (nr_pages > 1) {
3955 VM_BUG_ON(!PageTransHuge(page));
987eba66 3956 flags = compound_lock_irqsave(page);
2ef37d3f 3957 }
987eba66 3958
cc926f78 3959 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3960 pc, child, parent);
cc926f78
KH
3961 if (!ret)
3962 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3963
7ec99d62 3964 if (nr_pages > 1)
987eba66 3965 compound_unlock_irqrestore(page, flags);
08e552c6 3966 putback_lru_page(page);
57f9fd7d 3967put:
40d58138 3968 put_page(page);
57f9fd7d 3969out:
f817ed48
KH
3970 return ret;
3971}
3972
7a81b88c
KH
3973/*
3974 * Charge the memory controller for page usage.
3975 * Return
3976 * 0 if the charge was successful
3977 * < 0 if the cgroup is over its limit
3978 */
3979static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3980 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3981{
c0ff4b85 3982 struct mem_cgroup *memcg = NULL;
7ec99d62 3983 unsigned int nr_pages = 1;
8493ae43 3984 bool oom = true;
7a81b88c 3985 int ret;
ec168510 3986
37c2ac78 3987 if (PageTransHuge(page)) {
7ec99d62 3988 nr_pages <<= compound_order(page);
37c2ac78 3989 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3990 /*
3991 * Never OOM-kill a process for a huge page. The
3992 * fault handler will fall back to regular pages.
3993 */
3994 oom = false;
37c2ac78 3995 }
7a81b88c 3996
c0ff4b85 3997 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3998 if (ret == -ENOMEM)
7a81b88c 3999 return ret;
ce587e65 4000 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 4001 return 0;
8a9f3ccd
BS
4002}
4003
7a81b88c
KH
4004int mem_cgroup_newpage_charge(struct page *page,
4005 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 4006{
f8d66542 4007 if (mem_cgroup_disabled())
cede86ac 4008 return 0;
7a0524cf
JW
4009 VM_BUG_ON(page_mapped(page));
4010 VM_BUG_ON(page->mapping && !PageAnon(page));
4011 VM_BUG_ON(!mm);
217bc319 4012 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 4013 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
4014}
4015
54595fe2
KH
4016/*
4017 * While swap-in, try_charge -> commit or cancel, the page is locked.
4018 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 4019 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
4020 * "commit()" or removed by "cancel()"
4021 */
0435a2fd
JW
4022static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
4023 struct page *page,
4024 gfp_t mask,
4025 struct mem_cgroup **memcgp)
8c7c6e34 4026{
c0ff4b85 4027 struct mem_cgroup *memcg;
90deb788 4028 struct page_cgroup *pc;
54595fe2 4029 int ret;
8c7c6e34 4030
90deb788
JW
4031 pc = lookup_page_cgroup(page);
4032 /*
4033 * Every swap fault against a single page tries to charge the
4034 * page, bail as early as possible. shmem_unuse() encounters
4035 * already charged pages, too. The USED bit is protected by
4036 * the page lock, which serializes swap cache removal, which
4037 * in turn serializes uncharging.
4038 */
4039 if (PageCgroupUsed(pc))
4040 return 0;
8c7c6e34
KH
4041 if (!do_swap_account)
4042 goto charge_cur_mm;
c0ff4b85
R
4043 memcg = try_get_mem_cgroup_from_page(page);
4044 if (!memcg)
54595fe2 4045 goto charge_cur_mm;
72835c86
JW
4046 *memcgp = memcg;
4047 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 4048 css_put(&memcg->css);
38c5d72f
KH
4049 if (ret == -EINTR)
4050 ret = 0;
54595fe2 4051 return ret;
8c7c6e34 4052charge_cur_mm:
38c5d72f
KH
4053 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
4054 if (ret == -EINTR)
4055 ret = 0;
4056 return ret;
8c7c6e34
KH
4057}
4058
0435a2fd
JW
4059int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
4060 gfp_t gfp_mask, struct mem_cgroup **memcgp)
4061{
4062 *memcgp = NULL;
4063 if (mem_cgroup_disabled())
4064 return 0;
bdf4f4d2
JW
4065 /*
4066 * A racing thread's fault, or swapoff, may have already
4067 * updated the pte, and even removed page from swap cache: in
4068 * those cases unuse_pte()'s pte_same() test will fail; but
4069 * there's also a KSM case which does need to charge the page.
4070 */
4071 if (!PageSwapCache(page)) {
4072 int ret;
4073
4074 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4075 if (ret == -EINTR)
4076 ret = 0;
4077 return ret;
4078 }
0435a2fd
JW
4079 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4080}
4081
827a03d2
JW
4082void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4083{
4084 if (mem_cgroup_disabled())
4085 return;
4086 if (!memcg)
4087 return;
4088 __mem_cgroup_cancel_charge(memcg, 1);
4089}
4090
83aae4c7 4091static void
72835c86 4092__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4093 enum charge_type ctype)
7a81b88c 4094{
f8d66542 4095 if (mem_cgroup_disabled())
7a81b88c 4096 return;
72835c86 4097 if (!memcg)
7a81b88c 4098 return;
5a6475a4 4099
ce587e65 4100 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4101 /*
4102 * Now swap is on-memory. This means this page may be
4103 * counted both as mem and swap....double count.
03f3c433
KH
4104 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4105 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4106 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4107 */
03f3c433 4108 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4109 swp_entry_t ent = {.val = page_private(page)};
86493009 4110 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4111 }
7a81b88c
KH
4112}
4113
72835c86
JW
4114void mem_cgroup_commit_charge_swapin(struct page *page,
4115 struct mem_cgroup *memcg)
83aae4c7 4116{
72835c86 4117 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4118 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4119}
4120
827a03d2
JW
4121int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4122 gfp_t gfp_mask)
7a81b88c 4123{
827a03d2
JW
4124 struct mem_cgroup *memcg = NULL;
4125 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4126 int ret;
4127
f8d66542 4128 if (mem_cgroup_disabled())
827a03d2
JW
4129 return 0;
4130 if (PageCompound(page))
4131 return 0;
4132
827a03d2
JW
4133 if (!PageSwapCache(page))
4134 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4135 else { /* page is swapcache/shmem */
0435a2fd
JW
4136 ret = __mem_cgroup_try_charge_swapin(mm, page,
4137 gfp_mask, &memcg);
827a03d2
JW
4138 if (!ret)
4139 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4140 }
4141 return ret;
7a81b88c
KH
4142}
4143
c0ff4b85 4144static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4145 unsigned int nr_pages,
4146 const enum charge_type ctype)
569b846d
KH
4147{
4148 struct memcg_batch_info *batch = NULL;
4149 bool uncharge_memsw = true;
7ec99d62 4150
569b846d
KH
4151 /* If swapout, usage of swap doesn't decrease */
4152 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4153 uncharge_memsw = false;
569b846d
KH
4154
4155 batch = &current->memcg_batch;
4156 /*
4157 * In usual, we do css_get() when we remember memcg pointer.
4158 * But in this case, we keep res->usage until end of a series of
4159 * uncharges. Then, it's ok to ignore memcg's refcnt.
4160 */
4161 if (!batch->memcg)
c0ff4b85 4162 batch->memcg = memcg;
3c11ecf4
KH
4163 /*
4164 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4165 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4166 * the same cgroup and we have chance to coalesce uncharges.
4167 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4168 * because we want to do uncharge as soon as possible.
4169 */
4170
4171 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4172 goto direct_uncharge;
4173
7ec99d62 4174 if (nr_pages > 1)
ec168510
AA
4175 goto direct_uncharge;
4176
569b846d
KH
4177 /*
4178 * In typical case, batch->memcg == mem. This means we can
4179 * merge a series of uncharges to an uncharge of res_counter.
4180 * If not, we uncharge res_counter ony by one.
4181 */
c0ff4b85 4182 if (batch->memcg != memcg)
569b846d
KH
4183 goto direct_uncharge;
4184 /* remember freed charge and uncharge it later */
7ffd4ca7 4185 batch->nr_pages++;
569b846d 4186 if (uncharge_memsw)
7ffd4ca7 4187 batch->memsw_nr_pages++;
569b846d
KH
4188 return;
4189direct_uncharge:
c0ff4b85 4190 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4191 if (uncharge_memsw)
c0ff4b85
R
4192 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4193 if (unlikely(batch->memcg != memcg))
4194 memcg_oom_recover(memcg);
569b846d 4195}
7a81b88c 4196
8a9f3ccd 4197/*
69029cd5 4198 * uncharge if !page_mapped(page)
8a9f3ccd 4199 */
8c7c6e34 4200static struct mem_cgroup *
0030f535
JW
4201__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4202 bool end_migration)
8a9f3ccd 4203{
c0ff4b85 4204 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4205 unsigned int nr_pages = 1;
4206 struct page_cgroup *pc;
b2402857 4207 bool anon;
8a9f3ccd 4208
f8d66542 4209 if (mem_cgroup_disabled())
8c7c6e34 4210 return NULL;
4077960e 4211
37c2ac78 4212 if (PageTransHuge(page)) {
7ec99d62 4213 nr_pages <<= compound_order(page);
37c2ac78
AA
4214 VM_BUG_ON(!PageTransHuge(page));
4215 }
8697d331 4216 /*
3c541e14 4217 * Check if our page_cgroup is valid
8697d331 4218 */
52d4b9ac 4219 pc = lookup_page_cgroup(page);
cfa44946 4220 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4221 return NULL;
b9c565d5 4222
52d4b9ac 4223 lock_page_cgroup(pc);
d13d1443 4224
c0ff4b85 4225 memcg = pc->mem_cgroup;
8c7c6e34 4226
d13d1443
KH
4227 if (!PageCgroupUsed(pc))
4228 goto unlock_out;
4229
b2402857
KH
4230 anon = PageAnon(page);
4231
d13d1443 4232 switch (ctype) {
41326c17 4233 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4234 /*
4235 * Generally PageAnon tells if it's the anon statistics to be
4236 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4237 * used before page reached the stage of being marked PageAnon.
4238 */
b2402857
KH
4239 anon = true;
4240 /* fallthrough */
8a9478ca 4241 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4242 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4243 if (page_mapped(page))
4244 goto unlock_out;
4245 /*
4246 * Pages under migration may not be uncharged. But
4247 * end_migration() /must/ be the one uncharging the
4248 * unused post-migration page and so it has to call
4249 * here with the migration bit still set. See the
4250 * res_counter handling below.
4251 */
4252 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4253 goto unlock_out;
4254 break;
4255 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4256 if (!PageAnon(page)) { /* Shared memory */
4257 if (page->mapping && !page_is_file_cache(page))
4258 goto unlock_out;
4259 } else if (page_mapped(page)) /* Anon */
4260 goto unlock_out;
4261 break;
4262 default:
4263 break;
52d4b9ac 4264 }
d13d1443 4265
b070e65c 4266 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4267
52d4b9ac 4268 ClearPageCgroupUsed(pc);
544122e5
KH
4269 /*
4270 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4271 * freed from LRU. This is safe because uncharged page is expected not
4272 * to be reused (freed soon). Exception is SwapCache, it's handled by
4273 * special functions.
4274 */
b9c565d5 4275
52d4b9ac 4276 unlock_page_cgroup(pc);
f75ca962 4277 /*
c0ff4b85 4278 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4279 * will never be freed, so it's safe to call css_get().
f75ca962 4280 */
c0ff4b85 4281 memcg_check_events(memcg, page);
f75ca962 4282 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4283 mem_cgroup_swap_statistics(memcg, true);
4050377b 4284 css_get(&memcg->css);
f75ca962 4285 }
0030f535
JW
4286 /*
4287 * Migration does not charge the res_counter for the
4288 * replacement page, so leave it alone when phasing out the
4289 * page that is unused after the migration.
4290 */
4291 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4292 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4293
c0ff4b85 4294 return memcg;
d13d1443
KH
4295
4296unlock_out:
4297 unlock_page_cgroup(pc);
8c7c6e34 4298 return NULL;
3c541e14
BS
4299}
4300
69029cd5
KH
4301void mem_cgroup_uncharge_page(struct page *page)
4302{
52d4b9ac
KH
4303 /* early check. */
4304 if (page_mapped(page))
4305 return;
40f23a21 4306 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4307 /*
4308 * If the page is in swap cache, uncharge should be deferred
4309 * to the swap path, which also properly accounts swap usage
4310 * and handles memcg lifetime.
4311 *
4312 * Note that this check is not stable and reclaim may add the
4313 * page to swap cache at any time after this. However, if the
4314 * page is not in swap cache by the time page->mapcount hits
4315 * 0, there won't be any page table references to the swap
4316 * slot, and reclaim will free it and not actually write the
4317 * page to disk.
4318 */
0c59b89c
JW
4319 if (PageSwapCache(page))
4320 return;
0030f535 4321 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4322}
4323
4324void mem_cgroup_uncharge_cache_page(struct page *page)
4325{
4326 VM_BUG_ON(page_mapped(page));
b7abea96 4327 VM_BUG_ON(page->mapping);
0030f535 4328 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4329}
4330
569b846d
KH
4331/*
4332 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4333 * In that cases, pages are freed continuously and we can expect pages
4334 * are in the same memcg. All these calls itself limits the number of
4335 * pages freed at once, then uncharge_start/end() is called properly.
4336 * This may be called prural(2) times in a context,
4337 */
4338
4339void mem_cgroup_uncharge_start(void)
4340{
4341 current->memcg_batch.do_batch++;
4342 /* We can do nest. */
4343 if (current->memcg_batch.do_batch == 1) {
4344 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4345 current->memcg_batch.nr_pages = 0;
4346 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4347 }
4348}
4349
4350void mem_cgroup_uncharge_end(void)
4351{
4352 struct memcg_batch_info *batch = &current->memcg_batch;
4353
4354 if (!batch->do_batch)
4355 return;
4356
4357 batch->do_batch--;
4358 if (batch->do_batch) /* If stacked, do nothing. */
4359 return;
4360
4361 if (!batch->memcg)
4362 return;
4363 /*
4364 * This "batch->memcg" is valid without any css_get/put etc...
4365 * bacause we hide charges behind us.
4366 */
7ffd4ca7
JW
4367 if (batch->nr_pages)
4368 res_counter_uncharge(&batch->memcg->res,
4369 batch->nr_pages * PAGE_SIZE);
4370 if (batch->memsw_nr_pages)
4371 res_counter_uncharge(&batch->memcg->memsw,
4372 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4373 memcg_oom_recover(batch->memcg);
569b846d
KH
4374 /* forget this pointer (for sanity check) */
4375 batch->memcg = NULL;
4376}
4377
e767e056 4378#ifdef CONFIG_SWAP
8c7c6e34 4379/*
e767e056 4380 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4381 * memcg information is recorded to swap_cgroup of "ent"
4382 */
8a9478ca
KH
4383void
4384mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4385{
4386 struct mem_cgroup *memcg;
8a9478ca
KH
4387 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4388
4389 if (!swapout) /* this was a swap cache but the swap is unused ! */
4390 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4391
0030f535 4392 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4393
f75ca962
KH
4394 /*
4395 * record memcg information, if swapout && memcg != NULL,
4050377b 4396 * css_get() was called in uncharge().
f75ca962
KH
4397 */
4398 if (do_swap_account && swapout && memcg)
a3b2d692 4399 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4400}
e767e056 4401#endif
8c7c6e34 4402
c255a458 4403#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4404/*
4405 * called from swap_entry_free(). remove record in swap_cgroup and
4406 * uncharge "memsw" account.
4407 */
4408void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4409{
8c7c6e34 4410 struct mem_cgroup *memcg;
a3b2d692 4411 unsigned short id;
8c7c6e34
KH
4412
4413 if (!do_swap_account)
4414 return;
4415
a3b2d692
KH
4416 id = swap_cgroup_record(ent, 0);
4417 rcu_read_lock();
4418 memcg = mem_cgroup_lookup(id);
8c7c6e34 4419 if (memcg) {
a3b2d692
KH
4420 /*
4421 * We uncharge this because swap is freed.
4422 * This memcg can be obsolete one. We avoid calling css_tryget
4423 */
0c3e73e8 4424 if (!mem_cgroup_is_root(memcg))
4e649152 4425 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4426 mem_cgroup_swap_statistics(memcg, false);
4050377b 4427 css_put(&memcg->css);
8c7c6e34 4428 }
a3b2d692 4429 rcu_read_unlock();
d13d1443 4430}
02491447
DN
4431
4432/**
4433 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4434 * @entry: swap entry to be moved
4435 * @from: mem_cgroup which the entry is moved from
4436 * @to: mem_cgroup which the entry is moved to
4437 *
4438 * It succeeds only when the swap_cgroup's record for this entry is the same
4439 * as the mem_cgroup's id of @from.
4440 *
4441 * Returns 0 on success, -EINVAL on failure.
4442 *
4443 * The caller must have charged to @to, IOW, called res_counter_charge() about
4444 * both res and memsw, and called css_get().
4445 */
4446static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4447 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4448{
4449 unsigned short old_id, new_id;
4450
4451 old_id = css_id(&from->css);
4452 new_id = css_id(&to->css);
4453
4454 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4455 mem_cgroup_swap_statistics(from, false);
483c30b5 4456 mem_cgroup_swap_statistics(to, true);
02491447 4457 /*
483c30b5
DN
4458 * This function is only called from task migration context now.
4459 * It postpones res_counter and refcount handling till the end
4460 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4461 * improvement. But we cannot postpone css_get(to) because if
4462 * the process that has been moved to @to does swap-in, the
4463 * refcount of @to might be decreased to 0.
4464 *
4465 * We are in attach() phase, so the cgroup is guaranteed to be
4466 * alive, so we can just call css_get().
02491447 4467 */
4050377b 4468 css_get(&to->css);
02491447
DN
4469 return 0;
4470 }
4471 return -EINVAL;
4472}
4473#else
4474static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4475 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4476{
4477 return -EINVAL;
4478}
8c7c6e34 4479#endif
d13d1443 4480
ae41be37 4481/*
01b1ae63
KH
4482 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4483 * page belongs to.
ae41be37 4484 */
0030f535
JW
4485void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4486 struct mem_cgroup **memcgp)
ae41be37 4487{
c0ff4b85 4488 struct mem_cgroup *memcg = NULL;
b32967ff 4489 unsigned int nr_pages = 1;
7ec99d62 4490 struct page_cgroup *pc;
ac39cf8c 4491 enum charge_type ctype;
8869b8f6 4492
72835c86 4493 *memcgp = NULL;
56039efa 4494
f8d66542 4495 if (mem_cgroup_disabled())
0030f535 4496 return;
4077960e 4497
b32967ff
MG
4498 if (PageTransHuge(page))
4499 nr_pages <<= compound_order(page);
4500
52d4b9ac
KH
4501 pc = lookup_page_cgroup(page);
4502 lock_page_cgroup(pc);
4503 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4504 memcg = pc->mem_cgroup;
4505 css_get(&memcg->css);
ac39cf8c
AM
4506 /*
4507 * At migrating an anonymous page, its mapcount goes down
4508 * to 0 and uncharge() will be called. But, even if it's fully
4509 * unmapped, migration may fail and this page has to be
4510 * charged again. We set MIGRATION flag here and delay uncharge
4511 * until end_migration() is called
4512 *
4513 * Corner Case Thinking
4514 * A)
4515 * When the old page was mapped as Anon and it's unmap-and-freed
4516 * while migration was ongoing.
4517 * If unmap finds the old page, uncharge() of it will be delayed
4518 * until end_migration(). If unmap finds a new page, it's
4519 * uncharged when it make mapcount to be 1->0. If unmap code
4520 * finds swap_migration_entry, the new page will not be mapped
4521 * and end_migration() will find it(mapcount==0).
4522 *
4523 * B)
4524 * When the old page was mapped but migraion fails, the kernel
4525 * remaps it. A charge for it is kept by MIGRATION flag even
4526 * if mapcount goes down to 0. We can do remap successfully
4527 * without charging it again.
4528 *
4529 * C)
4530 * The "old" page is under lock_page() until the end of
4531 * migration, so, the old page itself will not be swapped-out.
4532 * If the new page is swapped out before end_migraton, our
4533 * hook to usual swap-out path will catch the event.
4534 */
4535 if (PageAnon(page))
4536 SetPageCgroupMigration(pc);
e8589cc1 4537 }
52d4b9ac 4538 unlock_page_cgroup(pc);
ac39cf8c
AM
4539 /*
4540 * If the page is not charged at this point,
4541 * we return here.
4542 */
c0ff4b85 4543 if (!memcg)
0030f535 4544 return;
01b1ae63 4545
72835c86 4546 *memcgp = memcg;
ac39cf8c
AM
4547 /*
4548 * We charge new page before it's used/mapped. So, even if unlock_page()
4549 * is called before end_migration, we can catch all events on this new
4550 * page. In the case new page is migrated but not remapped, new page's
4551 * mapcount will be finally 0 and we call uncharge in end_migration().
4552 */
ac39cf8c 4553 if (PageAnon(page))
41326c17 4554 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4555 else
62ba7442 4556 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4557 /*
4558 * The page is committed to the memcg, but it's not actually
4559 * charged to the res_counter since we plan on replacing the
4560 * old one and only one page is going to be left afterwards.
4561 */
b32967ff 4562 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4563}
8869b8f6 4564
69029cd5 4565/* remove redundant charge if migration failed*/
c0ff4b85 4566void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4567 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4568{
ac39cf8c 4569 struct page *used, *unused;
01b1ae63 4570 struct page_cgroup *pc;
b2402857 4571 bool anon;
01b1ae63 4572
c0ff4b85 4573 if (!memcg)
01b1ae63 4574 return;
b25ed609 4575
50de1dd9 4576 if (!migration_ok) {
ac39cf8c
AM
4577 used = oldpage;
4578 unused = newpage;
01b1ae63 4579 } else {
ac39cf8c 4580 used = newpage;
01b1ae63
KH
4581 unused = oldpage;
4582 }
0030f535 4583 anon = PageAnon(used);
7d188958
JW
4584 __mem_cgroup_uncharge_common(unused,
4585 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4586 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4587 true);
0030f535 4588 css_put(&memcg->css);
69029cd5 4589 /*
ac39cf8c
AM
4590 * We disallowed uncharge of pages under migration because mapcount
4591 * of the page goes down to zero, temporarly.
4592 * Clear the flag and check the page should be charged.
01b1ae63 4593 */
ac39cf8c
AM
4594 pc = lookup_page_cgroup(oldpage);
4595 lock_page_cgroup(pc);
4596 ClearPageCgroupMigration(pc);
4597 unlock_page_cgroup(pc);
ac39cf8c 4598
01b1ae63 4599 /*
ac39cf8c
AM
4600 * If a page is a file cache, radix-tree replacement is very atomic
4601 * and we can skip this check. When it was an Anon page, its mapcount
4602 * goes down to 0. But because we added MIGRATION flage, it's not
4603 * uncharged yet. There are several case but page->mapcount check
4604 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4605 * check. (see prepare_charge() also)
69029cd5 4606 */
b2402857 4607 if (anon)
ac39cf8c 4608 mem_cgroup_uncharge_page(used);
ae41be37 4609}
78fb7466 4610
ab936cbc
KH
4611/*
4612 * At replace page cache, newpage is not under any memcg but it's on
4613 * LRU. So, this function doesn't touch res_counter but handles LRU
4614 * in correct way. Both pages are locked so we cannot race with uncharge.
4615 */
4616void mem_cgroup_replace_page_cache(struct page *oldpage,
4617 struct page *newpage)
4618{
bde05d1c 4619 struct mem_cgroup *memcg = NULL;
ab936cbc 4620 struct page_cgroup *pc;
ab936cbc 4621 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4622
4623 if (mem_cgroup_disabled())
4624 return;
4625
4626 pc = lookup_page_cgroup(oldpage);
4627 /* fix accounting on old pages */
4628 lock_page_cgroup(pc);
bde05d1c
HD
4629 if (PageCgroupUsed(pc)) {
4630 memcg = pc->mem_cgroup;
b070e65c 4631 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4632 ClearPageCgroupUsed(pc);
4633 }
ab936cbc
KH
4634 unlock_page_cgroup(pc);
4635
bde05d1c
HD
4636 /*
4637 * When called from shmem_replace_page(), in some cases the
4638 * oldpage has already been charged, and in some cases not.
4639 */
4640 if (!memcg)
4641 return;
ab936cbc
KH
4642 /*
4643 * Even if newpage->mapping was NULL before starting replacement,
4644 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4645 * LRU while we overwrite pc->mem_cgroup.
4646 */
ce587e65 4647 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4648}
4649
f212ad7c
DN
4650#ifdef CONFIG_DEBUG_VM
4651static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4652{
4653 struct page_cgroup *pc;
4654
4655 pc = lookup_page_cgroup(page);
cfa44946
JW
4656 /*
4657 * Can be NULL while feeding pages into the page allocator for
4658 * the first time, i.e. during boot or memory hotplug;
4659 * or when mem_cgroup_disabled().
4660 */
f212ad7c
DN
4661 if (likely(pc) && PageCgroupUsed(pc))
4662 return pc;
4663 return NULL;
4664}
4665
4666bool mem_cgroup_bad_page_check(struct page *page)
4667{
4668 if (mem_cgroup_disabled())
4669 return false;
4670
4671 return lookup_page_cgroup_used(page) != NULL;
4672}
4673
4674void mem_cgroup_print_bad_page(struct page *page)
4675{
4676 struct page_cgroup *pc;
4677
4678 pc = lookup_page_cgroup_used(page);
4679 if (pc) {
d045197f
AM
4680 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4681 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4682 }
4683}
4684#endif
4685
d38d2a75 4686static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4687 unsigned long long val)
628f4235 4688{
81d39c20 4689 int retry_count;
3c11ecf4 4690 u64 memswlimit, memlimit;
628f4235 4691 int ret = 0;
81d39c20
KH
4692 int children = mem_cgroup_count_children(memcg);
4693 u64 curusage, oldusage;
3c11ecf4 4694 int enlarge;
81d39c20
KH
4695
4696 /*
4697 * For keeping hierarchical_reclaim simple, how long we should retry
4698 * is depends on callers. We set our retry-count to be function
4699 * of # of children which we should visit in this loop.
4700 */
4701 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4702
4703 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4704
3c11ecf4 4705 enlarge = 0;
8c7c6e34 4706 while (retry_count) {
628f4235
KH
4707 if (signal_pending(current)) {
4708 ret = -EINTR;
4709 break;
4710 }
8c7c6e34
KH
4711 /*
4712 * Rather than hide all in some function, I do this in
4713 * open coded manner. You see what this really does.
aaad153e 4714 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4715 */
4716 mutex_lock(&set_limit_mutex);
4717 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4718 if (memswlimit < val) {
4719 ret = -EINVAL;
4720 mutex_unlock(&set_limit_mutex);
628f4235
KH
4721 break;
4722 }
3c11ecf4
KH
4723
4724 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4725 if (memlimit < val)
4726 enlarge = 1;
4727
8c7c6e34 4728 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4729 if (!ret) {
4730 if (memswlimit == val)
4731 memcg->memsw_is_minimum = true;
4732 else
4733 memcg->memsw_is_minimum = false;
4734 }
8c7c6e34
KH
4735 mutex_unlock(&set_limit_mutex);
4736
4737 if (!ret)
4738 break;
4739
5660048c
JW
4740 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4741 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4742 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4743 /* Usage is reduced ? */
f894ffa8 4744 if (curusage >= oldusage)
81d39c20
KH
4745 retry_count--;
4746 else
4747 oldusage = curusage;
8c7c6e34 4748 }
3c11ecf4
KH
4749 if (!ret && enlarge)
4750 memcg_oom_recover(memcg);
14797e23 4751
8c7c6e34
KH
4752 return ret;
4753}
4754
338c8431
LZ
4755static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4756 unsigned long long val)
8c7c6e34 4757{
81d39c20 4758 int retry_count;
3c11ecf4 4759 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4760 int children = mem_cgroup_count_children(memcg);
4761 int ret = -EBUSY;
3c11ecf4 4762 int enlarge = 0;
8c7c6e34 4763
81d39c20 4764 /* see mem_cgroup_resize_res_limit */
f894ffa8 4765 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4766 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4767 while (retry_count) {
4768 if (signal_pending(current)) {
4769 ret = -EINTR;
4770 break;
4771 }
4772 /*
4773 * Rather than hide all in some function, I do this in
4774 * open coded manner. You see what this really does.
aaad153e 4775 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4776 */
4777 mutex_lock(&set_limit_mutex);
4778 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4779 if (memlimit > val) {
4780 ret = -EINVAL;
4781 mutex_unlock(&set_limit_mutex);
4782 break;
4783 }
3c11ecf4
KH
4784 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4785 if (memswlimit < val)
4786 enlarge = 1;
8c7c6e34 4787 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4788 if (!ret) {
4789 if (memlimit == val)
4790 memcg->memsw_is_minimum = true;
4791 else
4792 memcg->memsw_is_minimum = false;
4793 }
8c7c6e34
KH
4794 mutex_unlock(&set_limit_mutex);
4795
4796 if (!ret)
4797 break;
4798
5660048c
JW
4799 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4800 MEM_CGROUP_RECLAIM_NOSWAP |
4801 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4802 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4803 /* Usage is reduced ? */
8c7c6e34 4804 if (curusage >= oldusage)
628f4235 4805 retry_count--;
81d39c20
KH
4806 else
4807 oldusage = curusage;
628f4235 4808 }
3c11ecf4
KH
4809 if (!ret && enlarge)
4810 memcg_oom_recover(memcg);
628f4235
KH
4811 return ret;
4812}
4813
0608f43d
AM
4814unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4815 gfp_t gfp_mask,
4816 unsigned long *total_scanned)
4817{
4818 unsigned long nr_reclaimed = 0;
4819 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4820 unsigned long reclaimed;
4821 int loop = 0;
4822 struct mem_cgroup_tree_per_zone *mctz;
4823 unsigned long long excess;
4824 unsigned long nr_scanned;
4825
4826 if (order > 0)
4827 return 0;
4828
4829 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4830 /*
4831 * This loop can run a while, specially if mem_cgroup's continuously
4832 * keep exceeding their soft limit and putting the system under
4833 * pressure
4834 */
4835 do {
4836 if (next_mz)
4837 mz = next_mz;
4838 else
4839 mz = mem_cgroup_largest_soft_limit_node(mctz);
4840 if (!mz)
4841 break;
4842
4843 nr_scanned = 0;
4844 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4845 gfp_mask, &nr_scanned);
4846 nr_reclaimed += reclaimed;
4847 *total_scanned += nr_scanned;
4848 spin_lock(&mctz->lock);
4849
4850 /*
4851 * If we failed to reclaim anything from this memory cgroup
4852 * it is time to move on to the next cgroup
4853 */
4854 next_mz = NULL;
4855 if (!reclaimed) {
4856 do {
4857 /*
4858 * Loop until we find yet another one.
4859 *
4860 * By the time we get the soft_limit lock
4861 * again, someone might have aded the
4862 * group back on the RB tree. Iterate to
4863 * make sure we get a different mem.
4864 * mem_cgroup_largest_soft_limit_node returns
4865 * NULL if no other cgroup is present on
4866 * the tree
4867 */
4868 next_mz =
4869 __mem_cgroup_largest_soft_limit_node(mctz);
4870 if (next_mz == mz)
4871 css_put(&next_mz->memcg->css);
4872 else /* next_mz == NULL or other memcg */
4873 break;
4874 } while (1);
4875 }
4876 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4877 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4878 /*
4879 * One school of thought says that we should not add
4880 * back the node to the tree if reclaim returns 0.
4881 * But our reclaim could return 0, simply because due
4882 * to priority we are exposing a smaller subset of
4883 * memory to reclaim from. Consider this as a longer
4884 * term TODO.
4885 */
4886 /* If excess == 0, no tree ops */
4887 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4888 spin_unlock(&mctz->lock);
4889 css_put(&mz->memcg->css);
4890 loop++;
4891 /*
4892 * Could not reclaim anything and there are no more
4893 * mem cgroups to try or we seem to be looping without
4894 * reclaiming anything.
4895 */
4896 if (!nr_reclaimed &&
4897 (next_mz == NULL ||
4898 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4899 break;
4900 } while (!nr_reclaimed);
4901 if (next_mz)
4902 css_put(&next_mz->memcg->css);
4903 return nr_reclaimed;
4904}
4905
2ef37d3f
MH
4906/**
4907 * mem_cgroup_force_empty_list - clears LRU of a group
4908 * @memcg: group to clear
4909 * @node: NUMA node
4910 * @zid: zone id
4911 * @lru: lru to to clear
4912 *
3c935d18 4913 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4914 * reclaim the pages page themselves - pages are moved to the parent (or root)
4915 * group.
cc847582 4916 */
2ef37d3f 4917static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4918 int node, int zid, enum lru_list lru)
cc847582 4919{
bea8c150 4920 struct lruvec *lruvec;
2ef37d3f 4921 unsigned long flags;
072c56c1 4922 struct list_head *list;
925b7673
JW
4923 struct page *busy;
4924 struct zone *zone;
072c56c1 4925
08e552c6 4926 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4927 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4928 list = &lruvec->lists[lru];
cc847582 4929
f817ed48 4930 busy = NULL;
2ef37d3f 4931 do {
925b7673 4932 struct page_cgroup *pc;
5564e88b
JW
4933 struct page *page;
4934
08e552c6 4935 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4936 if (list_empty(list)) {
08e552c6 4937 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4938 break;
f817ed48 4939 }
925b7673
JW
4940 page = list_entry(list->prev, struct page, lru);
4941 if (busy == page) {
4942 list_move(&page->lru, list);
648bcc77 4943 busy = NULL;
08e552c6 4944 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4945 continue;
4946 }
08e552c6 4947 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4948
925b7673 4949 pc = lookup_page_cgroup(page);
5564e88b 4950
3c935d18 4951 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4952 /* found lock contention or "pc" is obsolete. */
925b7673 4953 busy = page;
f817ed48
KH
4954 cond_resched();
4955 } else
4956 busy = NULL;
2ef37d3f 4957 } while (!list_empty(list));
cc847582
KH
4958}
4959
4960/*
c26251f9
MH
4961 * make mem_cgroup's charge to be 0 if there is no task by moving
4962 * all the charges and pages to the parent.
cc847582 4963 * This enables deleting this mem_cgroup.
c26251f9
MH
4964 *
4965 * Caller is responsible for holding css reference on the memcg.
cc847582 4966 */
ab5196c2 4967static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4968{
c26251f9 4969 int node, zid;
bea207c8 4970 u64 usage;
f817ed48 4971
fce66477 4972 do {
52d4b9ac
KH
4973 /* This is for making all *used* pages to be on LRU. */
4974 lru_add_drain_all();
c0ff4b85 4975 drain_all_stock_sync(memcg);
c0ff4b85 4976 mem_cgroup_start_move(memcg);
31aaea4a 4977 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4978 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4979 enum lru_list lru;
4980 for_each_lru(lru) {
2ef37d3f 4981 mem_cgroup_force_empty_list(memcg,
f156ab93 4982 node, zid, lru);
f817ed48 4983 }
1ecaab2b 4984 }
f817ed48 4985 }
c0ff4b85
R
4986 mem_cgroup_end_move(memcg);
4987 memcg_oom_recover(memcg);
52d4b9ac 4988 cond_resched();
f817ed48 4989
2ef37d3f 4990 /*
bea207c8
GC
4991 * Kernel memory may not necessarily be trackable to a specific
4992 * process. So they are not migrated, and therefore we can't
4993 * expect their value to drop to 0 here.
4994 * Having res filled up with kmem only is enough.
4995 *
2ef37d3f
MH
4996 * This is a safety check because mem_cgroup_force_empty_list
4997 * could have raced with mem_cgroup_replace_page_cache callers
4998 * so the lru seemed empty but the page could have been added
4999 * right after the check. RES_USAGE should be safe as we always
5000 * charge before adding to the LRU.
5001 */
bea207c8
GC
5002 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
5003 res_counter_read_u64(&memcg->kmem, RES_USAGE);
5004 } while (usage > 0);
c26251f9
MH
5005}
5006
b5f99b53
GC
5007static inline bool memcg_has_children(struct mem_cgroup *memcg)
5008{
696ac172
JW
5009 lockdep_assert_held(&memcg_create_mutex);
5010 /*
5011 * The lock does not prevent addition or deletion to the list
5012 * of children, but it prevents a new child from being
5013 * initialized based on this parent in css_online(), so it's
5014 * enough to decide whether hierarchically inherited
5015 * attributes can still be changed or not.
5016 */
5017 return memcg->use_hierarchy &&
5018 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
5019}
5020
c26251f9
MH
5021/*
5022 * Reclaims as many pages from the given memcg as possible and moves
5023 * the rest to the parent.
5024 *
5025 * Caller is responsible for holding css reference for memcg.
5026 */
5027static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
5028{
5029 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5030 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 5031
c1e862c1 5032 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
5033 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
5034 return -EBUSY;
5035
c1e862c1
KH
5036 /* we call try-to-free pages for make this cgroup empty */
5037 lru_add_drain_all();
f817ed48 5038 /* try to free all pages in this cgroup */
569530fb 5039 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 5040 int progress;
c1e862c1 5041
c26251f9
MH
5042 if (signal_pending(current))
5043 return -EINTR;
5044
c0ff4b85 5045 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 5046 false);
c1e862c1 5047 if (!progress) {
f817ed48 5048 nr_retries--;
c1e862c1 5049 /* maybe some writeback is necessary */
8aa7e847 5050 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 5051 }
f817ed48
KH
5052
5053 }
08e552c6 5054 lru_add_drain();
ab5196c2
MH
5055 mem_cgroup_reparent_charges(memcg);
5056
5057 return 0;
cc847582
KH
5058}
5059
182446d0
TH
5060static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
5061 unsigned int event)
c1e862c1 5062{
182446d0 5063 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 5064
d8423011
MH
5065 if (mem_cgroup_is_root(memcg))
5066 return -EINVAL;
c33bd835 5067 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
5068}
5069
182446d0
TH
5070static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
5071 struct cftype *cft)
18f59ea7 5072{
182446d0 5073 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
5074}
5075
182446d0
TH
5076static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
5077 struct cftype *cft, u64 val)
18f59ea7
BS
5078{
5079 int retval = 0;
182446d0 5080 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5081 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 5082
0999821b 5083 mutex_lock(&memcg_create_mutex);
567fb435
GC
5084
5085 if (memcg->use_hierarchy == val)
5086 goto out;
5087
18f59ea7 5088 /*
af901ca1 5089 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5090 * in the child subtrees. If it is unset, then the change can
5091 * occur, provided the current cgroup has no children.
5092 *
5093 * For the root cgroup, parent_mem is NULL, we allow value to be
5094 * set if there are no children.
5095 */
c0ff4b85 5096 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5097 (val == 1 || val == 0)) {
696ac172 5098 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 5099 memcg->use_hierarchy = val;
18f59ea7
BS
5100 else
5101 retval = -EBUSY;
5102 } else
5103 retval = -EINVAL;
567fb435
GC
5104
5105out:
0999821b 5106 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5107
5108 return retval;
5109}
5110
0c3e73e8 5111
c0ff4b85 5112static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5113 enum mem_cgroup_stat_index idx)
0c3e73e8 5114{
7d74b06f 5115 struct mem_cgroup *iter;
7a159cc9 5116 long val = 0;
0c3e73e8 5117
7a159cc9 5118 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5119 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5120 val += mem_cgroup_read_stat(iter, idx);
5121
5122 if (val < 0) /* race ? */
5123 val = 0;
5124 return val;
0c3e73e8
BS
5125}
5126
c0ff4b85 5127static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5128{
7d74b06f 5129 u64 val;
104f3928 5130
c0ff4b85 5131 if (!mem_cgroup_is_root(memcg)) {
104f3928 5132 if (!swap)
65c64ce8 5133 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5134 else
65c64ce8 5135 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5136 }
5137
b070e65c
DR
5138 /*
5139 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5140 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5141 */
c0ff4b85
R
5142 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5143 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5144
7d74b06f 5145 if (swap)
bff6bb83 5146 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5147
5148 return val << PAGE_SHIFT;
5149}
5150
182446d0
TH
5151static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
5152 struct cftype *cft, struct file *file,
5153 char __user *buf, size_t nbytes, loff_t *ppos)
8cdea7c0 5154{
182446d0 5155 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af36f906 5156 char str[64];
104f3928 5157 u64 val;
86ae53e1
GC
5158 int name, len;
5159 enum res_type type;
8c7c6e34
KH
5160
5161 type = MEMFILE_TYPE(cft->private);
5162 name = MEMFILE_ATTR(cft->private);
af36f906 5163
8c7c6e34
KH
5164 switch (type) {
5165 case _MEM:
104f3928 5166 if (name == RES_USAGE)
c0ff4b85 5167 val = mem_cgroup_usage(memcg, false);
104f3928 5168 else
c0ff4b85 5169 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5170 break;
5171 case _MEMSWAP:
104f3928 5172 if (name == RES_USAGE)
c0ff4b85 5173 val = mem_cgroup_usage(memcg, true);
104f3928 5174 else
c0ff4b85 5175 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5176 break;
510fc4e1
GC
5177 case _KMEM:
5178 val = res_counter_read_u64(&memcg->kmem, name);
5179 break;
8c7c6e34
KH
5180 default:
5181 BUG();
8c7c6e34 5182 }
af36f906
TH
5183
5184 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5185 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5186}
510fc4e1 5187
182446d0 5188static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
5189{
5190 int ret = -EINVAL;
5191#ifdef CONFIG_MEMCG_KMEM
182446d0 5192 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
5193 /*
5194 * For simplicity, we won't allow this to be disabled. It also can't
5195 * be changed if the cgroup has children already, or if tasks had
5196 * already joined.
5197 *
5198 * If tasks join before we set the limit, a person looking at
5199 * kmem.usage_in_bytes will have no way to determine when it took
5200 * place, which makes the value quite meaningless.
5201 *
5202 * After it first became limited, changes in the value of the limit are
5203 * of course permitted.
510fc4e1 5204 */
0999821b 5205 mutex_lock(&memcg_create_mutex);
510fc4e1 5206 mutex_lock(&set_limit_mutex);
6de5a8bf 5207 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
182446d0 5208 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
5209 ret = -EBUSY;
5210 goto out;
5211 }
5212 ret = res_counter_set_limit(&memcg->kmem, val);
5213 VM_BUG_ON(ret);
5214
55007d84
GC
5215 ret = memcg_update_cache_sizes(memcg);
5216 if (ret) {
6de5a8bf 5217 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
55007d84
GC
5218 goto out;
5219 }
692e89ab
GC
5220 static_key_slow_inc(&memcg_kmem_enabled_key);
5221 /*
5222 * setting the active bit after the inc will guarantee no one
5223 * starts accounting before all call sites are patched
5224 */
5225 memcg_kmem_set_active(memcg);
510fc4e1
GC
5226 } else
5227 ret = res_counter_set_limit(&memcg->kmem, val);
5228out:
5229 mutex_unlock(&set_limit_mutex);
0999821b 5230 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5231#endif
5232 return ret;
5233}
5234
6d043990 5235#ifdef CONFIG_MEMCG_KMEM
55007d84 5236static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5237{
55007d84 5238 int ret = 0;
510fc4e1
GC
5239 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5240 if (!parent)
55007d84
GC
5241 goto out;
5242
510fc4e1 5243 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5244 /*
5245 * When that happen, we need to disable the static branch only on those
5246 * memcgs that enabled it. To achieve this, we would be forced to
5247 * complicate the code by keeping track of which memcgs were the ones
5248 * that actually enabled limits, and which ones got it from its
5249 * parents.
5250 *
5251 * It is a lot simpler just to do static_key_slow_inc() on every child
5252 * that is accounted.
5253 */
55007d84
GC
5254 if (!memcg_kmem_is_active(memcg))
5255 goto out;
5256
5257 /*
10d5ebf4
LZ
5258 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5259 * memcg is active already. If the later initialization fails then the
5260 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5261 */
55007d84
GC
5262 static_key_slow_inc(&memcg_kmem_enabled_key);
5263
5264 mutex_lock(&set_limit_mutex);
425c598d 5265 memcg_stop_kmem_account();
55007d84 5266 ret = memcg_update_cache_sizes(memcg);
425c598d 5267 memcg_resume_kmem_account();
55007d84 5268 mutex_unlock(&set_limit_mutex);
55007d84
GC
5269out:
5270 return ret;
510fc4e1 5271}
6d043990 5272#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5273
628f4235
KH
5274/*
5275 * The user of this function is...
5276 * RES_LIMIT.
5277 */
182446d0 5278static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5279 const char *buffer)
8cdea7c0 5280{
182446d0 5281 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5282 enum res_type type;
5283 int name;
628f4235
KH
5284 unsigned long long val;
5285 int ret;
5286
8c7c6e34
KH
5287 type = MEMFILE_TYPE(cft->private);
5288 name = MEMFILE_ATTR(cft->private);
af36f906 5289
8c7c6e34 5290 switch (name) {
628f4235 5291 case RES_LIMIT:
4b3bde4c
BS
5292 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5293 ret = -EINVAL;
5294 break;
5295 }
628f4235
KH
5296 /* This function does all necessary parse...reuse it */
5297 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5298 if (ret)
5299 break;
5300 if (type == _MEM)
628f4235 5301 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5302 else if (type == _MEMSWAP)
8c7c6e34 5303 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5304 else if (type == _KMEM)
182446d0 5305 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5306 else
5307 return -EINVAL;
628f4235 5308 break;
296c81d8
BS
5309 case RES_SOFT_LIMIT:
5310 ret = res_counter_memparse_write_strategy(buffer, &val);
5311 if (ret)
5312 break;
5313 /*
5314 * For memsw, soft limits are hard to implement in terms
5315 * of semantics, for now, we support soft limits for
5316 * control without swap
5317 */
5318 if (type == _MEM)
5319 ret = res_counter_set_soft_limit(&memcg->res, val);
5320 else
5321 ret = -EINVAL;
5322 break;
628f4235
KH
5323 default:
5324 ret = -EINVAL; /* should be BUG() ? */
5325 break;
5326 }
5327 return ret;
8cdea7c0
BS
5328}
5329
fee7b548
KH
5330static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5331 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5332{
fee7b548
KH
5333 unsigned long long min_limit, min_memsw_limit, tmp;
5334
5335 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5336 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5337 if (!memcg->use_hierarchy)
5338 goto out;
5339
63876986
TH
5340 while (css_parent(&memcg->css)) {
5341 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5342 if (!memcg->use_hierarchy)
5343 break;
5344 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5345 min_limit = min(min_limit, tmp);
5346 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5347 min_memsw_limit = min(min_memsw_limit, tmp);
5348 }
5349out:
5350 *mem_limit = min_limit;
5351 *memsw_limit = min_memsw_limit;
fee7b548
KH
5352}
5353
182446d0 5354static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5355{
182446d0 5356 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5357 int name;
5358 enum res_type type;
c84872e1 5359
8c7c6e34
KH
5360 type = MEMFILE_TYPE(event);
5361 name = MEMFILE_ATTR(event);
af36f906 5362
8c7c6e34 5363 switch (name) {
29f2a4da 5364 case RES_MAX_USAGE:
8c7c6e34 5365 if (type == _MEM)
c0ff4b85 5366 res_counter_reset_max(&memcg->res);
510fc4e1 5367 else if (type == _MEMSWAP)
c0ff4b85 5368 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5369 else if (type == _KMEM)
5370 res_counter_reset_max(&memcg->kmem);
5371 else
5372 return -EINVAL;
29f2a4da
PE
5373 break;
5374 case RES_FAILCNT:
8c7c6e34 5375 if (type == _MEM)
c0ff4b85 5376 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5377 else if (type == _MEMSWAP)
c0ff4b85 5378 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5379 else if (type == _KMEM)
5380 res_counter_reset_failcnt(&memcg->kmem);
5381 else
5382 return -EINVAL;
29f2a4da
PE
5383 break;
5384 }
f64c3f54 5385
85cc59db 5386 return 0;
c84872e1
PE
5387}
5388
182446d0 5389static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5390 struct cftype *cft)
5391{
182446d0 5392 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5393}
5394
02491447 5395#ifdef CONFIG_MMU
182446d0 5396static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5397 struct cftype *cft, u64 val)
5398{
182446d0 5399 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5400
5401 if (val >= (1 << NR_MOVE_TYPE))
5402 return -EINVAL;
ee5e8472 5403
7dc74be0 5404 /*
ee5e8472
GC
5405 * No kind of locking is needed in here, because ->can_attach() will
5406 * check this value once in the beginning of the process, and then carry
5407 * on with stale data. This means that changes to this value will only
5408 * affect task migrations starting after the change.
7dc74be0 5409 */
c0ff4b85 5410 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5411 return 0;
5412}
02491447 5413#else
182446d0 5414static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5415 struct cftype *cft, u64 val)
5416{
5417 return -ENOSYS;
5418}
5419#endif
7dc74be0 5420
406eb0c9 5421#ifdef CONFIG_NUMA
182446d0
TH
5422static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5423 struct cftype *cft, struct seq_file *m)
406eb0c9
YH
5424{
5425 int nid;
5426 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5427 unsigned long node_nr;
182446d0 5428 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
406eb0c9 5429
d79154bb 5430 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5431 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5432 for_each_node_state(nid, N_MEMORY) {
d79154bb 5433 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5434 seq_printf(m, " N%d=%lu", nid, node_nr);
5435 }
5436 seq_putc(m, '\n');
5437
d79154bb 5438 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5439 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5440 for_each_node_state(nid, N_MEMORY) {
d79154bb 5441 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5442 LRU_ALL_FILE);
406eb0c9
YH
5443 seq_printf(m, " N%d=%lu", nid, node_nr);
5444 }
5445 seq_putc(m, '\n');
5446
d79154bb 5447 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5448 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5449 for_each_node_state(nid, N_MEMORY) {
d79154bb 5450 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5451 LRU_ALL_ANON);
406eb0c9
YH
5452 seq_printf(m, " N%d=%lu", nid, node_nr);
5453 }
5454 seq_putc(m, '\n');
5455
d79154bb 5456 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5457 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5458 for_each_node_state(nid, N_MEMORY) {
d79154bb 5459 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5460 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5461 seq_printf(m, " N%d=%lu", nid, node_nr);
5462 }
5463 seq_putc(m, '\n');
5464 return 0;
5465}
5466#endif /* CONFIG_NUMA */
5467
af7c4b0e
JW
5468static inline void mem_cgroup_lru_names_not_uptodate(void)
5469{
5470 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5471}
5472
182446d0 5473static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
78ccf5b5 5474 struct seq_file *m)
d2ceb9b7 5475{
182446d0 5476 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af7c4b0e
JW
5477 struct mem_cgroup *mi;
5478 unsigned int i;
406eb0c9 5479
af7c4b0e 5480 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5481 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5482 continue;
af7c4b0e
JW
5483 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5484 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5485 }
7b854121 5486
af7c4b0e
JW
5487 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5488 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5489 mem_cgroup_read_events(memcg, i));
5490
5491 for (i = 0; i < NR_LRU_LISTS; i++)
5492 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5493 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5494
14067bb3 5495 /* Hierarchical information */
fee7b548
KH
5496 {
5497 unsigned long long limit, memsw_limit;
d79154bb 5498 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5499 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5500 if (do_swap_account)
78ccf5b5
JW
5501 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5502 memsw_limit);
fee7b548 5503 }
7f016ee8 5504
af7c4b0e
JW
5505 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5506 long long val = 0;
5507
bff6bb83 5508 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5509 continue;
af7c4b0e
JW
5510 for_each_mem_cgroup_tree(mi, memcg)
5511 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5512 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5513 }
5514
5515 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5516 unsigned long long val = 0;
5517
5518 for_each_mem_cgroup_tree(mi, memcg)
5519 val += mem_cgroup_read_events(mi, i);
5520 seq_printf(m, "total_%s %llu\n",
5521 mem_cgroup_events_names[i], val);
5522 }
5523
5524 for (i = 0; i < NR_LRU_LISTS; i++) {
5525 unsigned long long val = 0;
5526
5527 for_each_mem_cgroup_tree(mi, memcg)
5528 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5529 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5530 }
14067bb3 5531
7f016ee8 5532#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5533 {
5534 int nid, zid;
5535 struct mem_cgroup_per_zone *mz;
89abfab1 5536 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5537 unsigned long recent_rotated[2] = {0, 0};
5538 unsigned long recent_scanned[2] = {0, 0};
5539
5540 for_each_online_node(nid)
5541 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5542 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5543 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5544
89abfab1
HD
5545 recent_rotated[0] += rstat->recent_rotated[0];
5546 recent_rotated[1] += rstat->recent_rotated[1];
5547 recent_scanned[0] += rstat->recent_scanned[0];
5548 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5549 }
78ccf5b5
JW
5550 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5551 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5552 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5553 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5554 }
5555#endif
5556
d2ceb9b7
KH
5557 return 0;
5558}
5559
182446d0
TH
5560static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5561 struct cftype *cft)
a7885eb8 5562{
182446d0 5563 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5564
1f4c025b 5565 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5566}
5567
182446d0
TH
5568static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5569 struct cftype *cft, u64 val)
a7885eb8 5570{
182446d0 5571 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5572 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5573
63876986 5574 if (val > 100 || !parent)
a7885eb8
KM
5575 return -EINVAL;
5576
0999821b 5577 mutex_lock(&memcg_create_mutex);
068b38c1 5578
a7885eb8 5579 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5580 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5581 mutex_unlock(&memcg_create_mutex);
a7885eb8 5582 return -EINVAL;
068b38c1 5583 }
a7885eb8 5584
a7885eb8 5585 memcg->swappiness = val;
a7885eb8 5586
0999821b 5587 mutex_unlock(&memcg_create_mutex);
068b38c1 5588
a7885eb8
KM
5589 return 0;
5590}
5591
2e72b634
KS
5592static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5593{
5594 struct mem_cgroup_threshold_ary *t;
5595 u64 usage;
5596 int i;
5597
5598 rcu_read_lock();
5599 if (!swap)
2c488db2 5600 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5601 else
2c488db2 5602 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5603
5604 if (!t)
5605 goto unlock;
5606
5607 usage = mem_cgroup_usage(memcg, swap);
5608
5609 /*
748dad36 5610 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5611 * If it's not true, a threshold was crossed after last
5612 * call of __mem_cgroup_threshold().
5613 */
5407a562 5614 i = t->current_threshold;
2e72b634
KS
5615
5616 /*
5617 * Iterate backward over array of thresholds starting from
5618 * current_threshold and check if a threshold is crossed.
5619 * If none of thresholds below usage is crossed, we read
5620 * only one element of the array here.
5621 */
5622 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5623 eventfd_signal(t->entries[i].eventfd, 1);
5624
5625 /* i = current_threshold + 1 */
5626 i++;
5627
5628 /*
5629 * Iterate forward over array of thresholds starting from
5630 * current_threshold+1 and check if a threshold is crossed.
5631 * If none of thresholds above usage is crossed, we read
5632 * only one element of the array here.
5633 */
5634 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5635 eventfd_signal(t->entries[i].eventfd, 1);
5636
5637 /* Update current_threshold */
5407a562 5638 t->current_threshold = i - 1;
2e72b634
KS
5639unlock:
5640 rcu_read_unlock();
5641}
5642
5643static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5644{
ad4ca5f4
KS
5645 while (memcg) {
5646 __mem_cgroup_threshold(memcg, false);
5647 if (do_swap_account)
5648 __mem_cgroup_threshold(memcg, true);
5649
5650 memcg = parent_mem_cgroup(memcg);
5651 }
2e72b634
KS
5652}
5653
5654static int compare_thresholds(const void *a, const void *b)
5655{
5656 const struct mem_cgroup_threshold *_a = a;
5657 const struct mem_cgroup_threshold *_b = b;
5658
2bff24a3
GT
5659 if (_a->threshold > _b->threshold)
5660 return 1;
5661
5662 if (_a->threshold < _b->threshold)
5663 return -1;
5664
5665 return 0;
2e72b634
KS
5666}
5667
c0ff4b85 5668static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5669{
5670 struct mem_cgroup_eventfd_list *ev;
5671
c0ff4b85 5672 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5673 eventfd_signal(ev->eventfd, 1);
5674 return 0;
5675}
5676
c0ff4b85 5677static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5678{
7d74b06f
KH
5679 struct mem_cgroup *iter;
5680
c0ff4b85 5681 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5682 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5683}
5684
347c4a87
TH
5685static int __mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5686 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5687{
81eeaf04 5688 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5689 struct mem_cgroup_thresholds *thresholds;
5690 struct mem_cgroup_threshold_ary *new;
2e72b634 5691 u64 threshold, usage;
2c488db2 5692 int i, size, ret;
2e72b634
KS
5693
5694 ret = res_counter_memparse_write_strategy(args, &threshold);
5695 if (ret)
5696 return ret;
5697
5698 mutex_lock(&memcg->thresholds_lock);
2c488db2 5699
2e72b634 5700 if (type == _MEM)
2c488db2 5701 thresholds = &memcg->thresholds;
2e72b634 5702 else if (type == _MEMSWAP)
2c488db2 5703 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5704 else
5705 BUG();
5706
5707 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5708
5709 /* Check if a threshold crossed before adding a new one */
2c488db2 5710 if (thresholds->primary)
2e72b634
KS
5711 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5712
2c488db2 5713 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5714
5715 /* Allocate memory for new array of thresholds */
2c488db2 5716 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5717 GFP_KERNEL);
2c488db2 5718 if (!new) {
2e72b634
KS
5719 ret = -ENOMEM;
5720 goto unlock;
5721 }
2c488db2 5722 new->size = size;
2e72b634
KS
5723
5724 /* Copy thresholds (if any) to new array */
2c488db2
KS
5725 if (thresholds->primary) {
5726 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5727 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5728 }
5729
2e72b634 5730 /* Add new threshold */
2c488db2
KS
5731 new->entries[size - 1].eventfd = eventfd;
5732 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5733
5734 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5735 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5736 compare_thresholds, NULL);
5737
5738 /* Find current threshold */
2c488db2 5739 new->current_threshold = -1;
2e72b634 5740 for (i = 0; i < size; i++) {
748dad36 5741 if (new->entries[i].threshold <= usage) {
2e72b634 5742 /*
2c488db2
KS
5743 * new->current_threshold will not be used until
5744 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5745 * it here.
5746 */
2c488db2 5747 ++new->current_threshold;
748dad36
SZ
5748 } else
5749 break;
2e72b634
KS
5750 }
5751
2c488db2
KS
5752 /* Free old spare buffer and save old primary buffer as spare */
5753 kfree(thresholds->spare);
5754 thresholds->spare = thresholds->primary;
5755
5756 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5757
907860ed 5758 /* To be sure that nobody uses thresholds */
2e72b634
KS
5759 synchronize_rcu();
5760
2e72b634
KS
5761unlock:
5762 mutex_unlock(&memcg->thresholds_lock);
5763
5764 return ret;
5765}
5766
347c4a87
TH
5767static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5768 struct eventfd_ctx *eventfd, const char *args)
5769{
5770 return __mem_cgroup_usage_register_event(css, eventfd, args, _MEM);
5771}
5772
5773static int memsw_cgroup_usage_register_event(struct cgroup_subsys_state *css,
5774 struct eventfd_ctx *eventfd, const char *args)
5775{
5776 return __mem_cgroup_usage_register_event(css, eventfd, args, _MEMSWAP);
5777}
5778
5779static void __mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5780 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5781{
81eeaf04 5782 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5783 struct mem_cgroup_thresholds *thresholds;
5784 struct mem_cgroup_threshold_ary *new;
2e72b634 5785 u64 usage;
2c488db2 5786 int i, j, size;
2e72b634
KS
5787
5788 mutex_lock(&memcg->thresholds_lock);
5789 if (type == _MEM)
2c488db2 5790 thresholds = &memcg->thresholds;
2e72b634 5791 else if (type == _MEMSWAP)
2c488db2 5792 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5793 else
5794 BUG();
5795
371528ca
AV
5796 if (!thresholds->primary)
5797 goto unlock;
5798
2e72b634
KS
5799 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5800
5801 /* Check if a threshold crossed before removing */
5802 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5803
5804 /* Calculate new number of threshold */
2c488db2
KS
5805 size = 0;
5806 for (i = 0; i < thresholds->primary->size; i++) {
5807 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5808 size++;
5809 }
5810
2c488db2 5811 new = thresholds->spare;
907860ed 5812
2e72b634
KS
5813 /* Set thresholds array to NULL if we don't have thresholds */
5814 if (!size) {
2c488db2
KS
5815 kfree(new);
5816 new = NULL;
907860ed 5817 goto swap_buffers;
2e72b634
KS
5818 }
5819
2c488db2 5820 new->size = size;
2e72b634
KS
5821
5822 /* Copy thresholds and find current threshold */
2c488db2
KS
5823 new->current_threshold = -1;
5824 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5825 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5826 continue;
5827
2c488db2 5828 new->entries[j] = thresholds->primary->entries[i];
748dad36 5829 if (new->entries[j].threshold <= usage) {
2e72b634 5830 /*
2c488db2 5831 * new->current_threshold will not be used
2e72b634
KS
5832 * until rcu_assign_pointer(), so it's safe to increment
5833 * it here.
5834 */
2c488db2 5835 ++new->current_threshold;
2e72b634
KS
5836 }
5837 j++;
5838 }
5839
907860ed 5840swap_buffers:
2c488db2
KS
5841 /* Swap primary and spare array */
5842 thresholds->spare = thresholds->primary;
8c757763
SZ
5843 /* If all events are unregistered, free the spare array */
5844 if (!new) {
5845 kfree(thresholds->spare);
5846 thresholds->spare = NULL;
5847 }
5848
2c488db2 5849 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5850
907860ed 5851 /* To be sure that nobody uses thresholds */
2e72b634 5852 synchronize_rcu();
371528ca 5853unlock:
2e72b634 5854 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5855}
c1e862c1 5856
347c4a87
TH
5857static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5858 struct eventfd_ctx *eventfd)
5859{
5860 return __mem_cgroup_usage_unregister_event(css, eventfd, _MEM);
5861}
5862
5863static void memsw_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
5864 struct eventfd_ctx *eventfd)
5865{
5866 return __mem_cgroup_usage_unregister_event(css, eventfd, _MEMSWAP);
5867}
5868
81eeaf04 5869static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
347c4a87 5870 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5871{
81eeaf04 5872 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5873 struct mem_cgroup_eventfd_list *event;
9490ff27 5874
9490ff27
KH
5875 event = kmalloc(sizeof(*event), GFP_KERNEL);
5876 if (!event)
5877 return -ENOMEM;
5878
1af8efe9 5879 spin_lock(&memcg_oom_lock);
9490ff27
KH
5880
5881 event->eventfd = eventfd;
5882 list_add(&event->list, &memcg->oom_notify);
5883
5884 /* already in OOM ? */
79dfdacc 5885 if (atomic_read(&memcg->under_oom))
9490ff27 5886 eventfd_signal(eventfd, 1);
1af8efe9 5887 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5888
5889 return 0;
5890}
5891
81eeaf04 5892static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
347c4a87 5893 struct eventfd_ctx *eventfd)
9490ff27 5894{
81eeaf04 5895 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5896 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5897
1af8efe9 5898 spin_lock(&memcg_oom_lock);
9490ff27 5899
c0ff4b85 5900 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5901 if (ev->eventfd == eventfd) {
5902 list_del(&ev->list);
5903 kfree(ev);
5904 }
5905 }
5906
1af8efe9 5907 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5908}
5909
182446d0 5910static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
3c11ecf4
KH
5911 struct cftype *cft, struct cgroup_map_cb *cb)
5912{
182446d0 5913 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4 5914
c0ff4b85 5915 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5916
c0ff4b85 5917 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5918 cb->fill(cb, "under_oom", 1);
5919 else
5920 cb->fill(cb, "under_oom", 0);
5921 return 0;
5922}
5923
182446d0 5924static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5925 struct cftype *cft, u64 val)
5926{
182446d0 5927 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5928 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5929
5930 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5931 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5932 return -EINVAL;
5933
0999821b 5934 mutex_lock(&memcg_create_mutex);
3c11ecf4 5935 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5936 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5937 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5938 return -EINVAL;
5939 }
c0ff4b85 5940 memcg->oom_kill_disable = val;
4d845ebf 5941 if (!val)
c0ff4b85 5942 memcg_oom_recover(memcg);
0999821b 5943 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5944 return 0;
5945}
5946
c255a458 5947#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5948static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5949{
55007d84
GC
5950 int ret;
5951
2633d7a0 5952 memcg->kmemcg_id = -1;
55007d84
GC
5953 ret = memcg_propagate_kmem(memcg);
5954 if (ret)
5955 return ret;
2633d7a0 5956
1d62e436 5957 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5958}
e5671dfa 5959
10d5ebf4 5960static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5961{
1d62e436 5962 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5963}
5964
5965static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5966{
5967 if (!memcg_kmem_is_active(memcg))
5968 return;
5969
5970 /*
5971 * kmem charges can outlive the cgroup. In the case of slab
5972 * pages, for instance, a page contain objects from various
5973 * processes. As we prevent from taking a reference for every
5974 * such allocation we have to be careful when doing uncharge
5975 * (see memcg_uncharge_kmem) and here during offlining.
5976 *
5977 * The idea is that that only the _last_ uncharge which sees
5978 * the dead memcg will drop the last reference. An additional
5979 * reference is taken here before the group is marked dead
5980 * which is then paired with css_put during uncharge resp. here.
5981 *
5982 * Although this might sound strange as this path is called from
5983 * css_offline() when the referencemight have dropped down to 0
5984 * and shouldn't be incremented anymore (css_tryget would fail)
5985 * we do not have other options because of the kmem allocations
5986 * lifetime.
5987 */
5988 css_get(&memcg->css);
7de37682
GC
5989
5990 memcg_kmem_mark_dead(memcg);
5991
5992 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5993 return;
5994
7de37682 5995 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5996 css_put(&memcg->css);
d1a4c0b3 5997}
e5671dfa 5998#else
cbe128e3 5999static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
6000{
6001 return 0;
6002}
d1a4c0b3 6003
10d5ebf4
LZ
6004static void memcg_destroy_kmem(struct mem_cgroup *memcg)
6005{
6006}
6007
6008static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
6009{
6010}
e5671dfa
GC
6011#endif
6012
79bd9814
TH
6013/*
6014 * Unregister event and free resources.
6015 *
6016 * Gets called from workqueue.
6017 */
6018static void cgroup_event_remove(struct work_struct *work)
6019{
6020 struct cgroup_event *event = container_of(work, struct cgroup_event,
6021 remove);
6022 struct cgroup_subsys_state *css = event->css;
6023
6024 remove_wait_queue(event->wqh, &event->wait);
6025
347c4a87 6026 event->unregister_event(css, event->eventfd);
79bd9814
TH
6027
6028 /* Notify userspace the event is going away. */
6029 eventfd_signal(event->eventfd, 1);
6030
6031 eventfd_ctx_put(event->eventfd);
6032 kfree(event);
6033 css_put(css);
6034}
6035
6036/*
6037 * Gets called on POLLHUP on eventfd when user closes it.
6038 *
6039 * Called with wqh->lock held and interrupts disabled.
6040 */
6041static int cgroup_event_wake(wait_queue_t *wait, unsigned mode,
6042 int sync, void *key)
6043{
6044 struct cgroup_event *event = container_of(wait,
6045 struct cgroup_event, wait);
fba94807 6046 struct mem_cgroup *memcg = mem_cgroup_from_css(event->css);
79bd9814
TH
6047 unsigned long flags = (unsigned long)key;
6048
6049 if (flags & POLLHUP) {
6050 /*
6051 * If the event has been detached at cgroup removal, we
6052 * can simply return knowing the other side will cleanup
6053 * for us.
6054 *
6055 * We can't race against event freeing since the other
6056 * side will require wqh->lock via remove_wait_queue(),
6057 * which we hold.
6058 */
fba94807 6059 spin_lock(&memcg->event_list_lock);
79bd9814
TH
6060 if (!list_empty(&event->list)) {
6061 list_del_init(&event->list);
6062 /*
6063 * We are in atomic context, but cgroup_event_remove()
6064 * may sleep, so we have to call it in workqueue.
6065 */
6066 schedule_work(&event->remove);
6067 }
fba94807 6068 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6069 }
6070
6071 return 0;
6072}
6073
6074static void cgroup_event_ptable_queue_proc(struct file *file,
6075 wait_queue_head_t *wqh, poll_table *pt)
6076{
6077 struct cgroup_event *event = container_of(pt,
6078 struct cgroup_event, pt);
6079
6080 event->wqh = wqh;
6081 add_wait_queue(wqh, &event->wait);
6082}
6083
6084/*
6085 * Parse input and register new cgroup event handler.
6086 *
6087 * Input must be in format '<event_fd> <control_fd> <args>'.
6088 * Interpretation of args is defined by control file implementation.
6089 */
b5557c4c 6090static int cgroup_write_event_control(struct cgroup_subsys_state *css,
79bd9814
TH
6091 struct cftype *cft, const char *buffer)
6092{
fba94807 6093 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
79bd9814
TH
6094 struct cgroup_event *event;
6095 struct cgroup_subsys_state *cfile_css;
6096 unsigned int efd, cfd;
6097 struct fd efile;
6098 struct fd cfile;
fba94807 6099 const char *name;
79bd9814
TH
6100 char *endp;
6101 int ret;
6102
6103 efd = simple_strtoul(buffer, &endp, 10);
6104 if (*endp != ' ')
6105 return -EINVAL;
6106 buffer = endp + 1;
6107
6108 cfd = simple_strtoul(buffer, &endp, 10);
6109 if ((*endp != ' ') && (*endp != '\0'))
6110 return -EINVAL;
6111 buffer = endp + 1;
6112
6113 event = kzalloc(sizeof(*event), GFP_KERNEL);
6114 if (!event)
6115 return -ENOMEM;
6116
b5557c4c 6117 event->css = css;
79bd9814
TH
6118 INIT_LIST_HEAD(&event->list);
6119 init_poll_funcptr(&event->pt, cgroup_event_ptable_queue_proc);
6120 init_waitqueue_func_entry(&event->wait, cgroup_event_wake);
6121 INIT_WORK(&event->remove, cgroup_event_remove);
6122
6123 efile = fdget(efd);
6124 if (!efile.file) {
6125 ret = -EBADF;
6126 goto out_kfree;
6127 }
6128
6129 event->eventfd = eventfd_ctx_fileget(efile.file);
6130 if (IS_ERR(event->eventfd)) {
6131 ret = PTR_ERR(event->eventfd);
6132 goto out_put_efile;
6133 }
6134
6135 cfile = fdget(cfd);
6136 if (!cfile.file) {
6137 ret = -EBADF;
6138 goto out_put_eventfd;
6139 }
6140
6141 /* the process need read permission on control file */
6142 /* AV: shouldn't we check that it's been opened for read instead? */
6143 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6144 if (ret < 0)
6145 goto out_put_cfile;
6146
fba94807
TH
6147 /*
6148 * Determine the event callbacks and set them in @event. This used
6149 * to be done via struct cftype but cgroup core no longer knows
6150 * about these events. The following is crude but the whole thing
6151 * is for compatibility anyway.
6152 */
6153 name = cfile.file->f_dentry->d_name.name;
6154
6155 if (!strcmp(name, "memory.usage_in_bytes")) {
6156 event->register_event = mem_cgroup_usage_register_event;
6157 event->unregister_event = mem_cgroup_usage_unregister_event;
6158 } else if (!strcmp(name, "memory.oom_control")) {
6159 event->register_event = mem_cgroup_oom_register_event;
6160 event->unregister_event = mem_cgroup_oom_unregister_event;
6161 } else if (!strcmp(name, "memory.pressure_level")) {
6162 event->register_event = vmpressure_register_event;
6163 event->unregister_event = vmpressure_unregister_event;
6164 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
6165 event->register_event = memsw_cgroup_usage_register_event;
6166 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
6167 } else {
6168 ret = -EINVAL;
6169 goto out_put_cfile;
6170 }
6171
79bd9814 6172 /*
b5557c4c
TH
6173 * Verify @cfile should belong to @css. Also, remaining events are
6174 * automatically removed on cgroup destruction but the removal is
6175 * asynchronous, so take an extra ref on @css.
79bd9814
TH
6176 */
6177 rcu_read_lock();
6178
6179 ret = -EINVAL;
b5557c4c
TH
6180 cfile_css = css_from_dir(cfile.file->f_dentry->d_parent,
6181 &mem_cgroup_subsys);
6182 if (cfile_css == css && css_tryget(css))
79bd9814
TH
6183 ret = 0;
6184
6185 rcu_read_unlock();
6186 if (ret)
6187 goto out_put_cfile;
6188
347c4a87 6189 ret = event->register_event(css, event->eventfd, buffer);
79bd9814
TH
6190 if (ret)
6191 goto out_put_css;
6192
6193 efile.file->f_op->poll(efile.file, &event->pt);
6194
fba94807
TH
6195 spin_lock(&memcg->event_list_lock);
6196 list_add(&event->list, &memcg->event_list);
6197 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6198
6199 fdput(cfile);
6200 fdput(efile);
6201
6202 return 0;
6203
6204out_put_css:
b5557c4c 6205 css_put(css);
79bd9814
TH
6206out_put_cfile:
6207 fdput(cfile);
6208out_put_eventfd:
6209 eventfd_ctx_put(event->eventfd);
6210out_put_efile:
6211 fdput(efile);
6212out_kfree:
6213 kfree(event);
6214
6215 return ret;
6216}
6217
8cdea7c0
BS
6218static struct cftype mem_cgroup_files[] = {
6219 {
0eea1030 6220 .name = "usage_in_bytes",
8c7c6e34 6221 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 6222 .read = mem_cgroup_read,
8cdea7c0 6223 },
c84872e1
PE
6224 {
6225 .name = "max_usage_in_bytes",
8c7c6e34 6226 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 6227 .trigger = mem_cgroup_reset,
af36f906 6228 .read = mem_cgroup_read,
c84872e1 6229 },
8cdea7c0 6230 {
0eea1030 6231 .name = "limit_in_bytes",
8c7c6e34 6232 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 6233 .write_string = mem_cgroup_write,
af36f906 6234 .read = mem_cgroup_read,
8cdea7c0 6235 },
296c81d8
BS
6236 {
6237 .name = "soft_limit_in_bytes",
6238 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6239 .write_string = mem_cgroup_write,
af36f906 6240 .read = mem_cgroup_read,
296c81d8 6241 },
8cdea7c0
BS
6242 {
6243 .name = "failcnt",
8c7c6e34 6244 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6245 .trigger = mem_cgroup_reset,
af36f906 6246 .read = mem_cgroup_read,
8cdea7c0 6247 },
d2ceb9b7
KH
6248 {
6249 .name = "stat",
ab215884 6250 .read_seq_string = memcg_stat_show,
d2ceb9b7 6251 },
c1e862c1
KH
6252 {
6253 .name = "force_empty",
6254 .trigger = mem_cgroup_force_empty_write,
6255 },
18f59ea7
BS
6256 {
6257 .name = "use_hierarchy",
f00baae7 6258 .flags = CFTYPE_INSANE,
18f59ea7
BS
6259 .write_u64 = mem_cgroup_hierarchy_write,
6260 .read_u64 = mem_cgroup_hierarchy_read,
6261 },
79bd9814
TH
6262 {
6263 .name = "cgroup.event_control",
6264 .write_string = cgroup_write_event_control,
6265 .flags = CFTYPE_NO_PREFIX,
6266 .mode = S_IWUGO,
6267 },
a7885eb8
KM
6268 {
6269 .name = "swappiness",
6270 .read_u64 = mem_cgroup_swappiness_read,
6271 .write_u64 = mem_cgroup_swappiness_write,
6272 },
7dc74be0
DN
6273 {
6274 .name = "move_charge_at_immigrate",
6275 .read_u64 = mem_cgroup_move_charge_read,
6276 .write_u64 = mem_cgroup_move_charge_write,
6277 },
9490ff27
KH
6278 {
6279 .name = "oom_control",
3c11ecf4
KH
6280 .read_map = mem_cgroup_oom_control_read,
6281 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6282 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6283 },
70ddf637
AV
6284 {
6285 .name = "pressure_level",
70ddf637 6286 },
406eb0c9
YH
6287#ifdef CONFIG_NUMA
6288 {
6289 .name = "numa_stat",
ab215884 6290 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
6291 },
6292#endif
510fc4e1
GC
6293#ifdef CONFIG_MEMCG_KMEM
6294 {
6295 .name = "kmem.limit_in_bytes",
6296 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6297 .write_string = mem_cgroup_write,
6298 .read = mem_cgroup_read,
6299 },
6300 {
6301 .name = "kmem.usage_in_bytes",
6302 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6303 .read = mem_cgroup_read,
6304 },
6305 {
6306 .name = "kmem.failcnt",
6307 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6308 .trigger = mem_cgroup_reset,
6309 .read = mem_cgroup_read,
6310 },
6311 {
6312 .name = "kmem.max_usage_in_bytes",
6313 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6314 .trigger = mem_cgroup_reset,
6315 .read = mem_cgroup_read,
6316 },
749c5415
GC
6317#ifdef CONFIG_SLABINFO
6318 {
6319 .name = "kmem.slabinfo",
6320 .read_seq_string = mem_cgroup_slabinfo_read,
6321 },
6322#endif
8c7c6e34 6323#endif
6bc10349 6324 { }, /* terminate */
af36f906 6325};
8c7c6e34 6326
2d11085e
MH
6327#ifdef CONFIG_MEMCG_SWAP
6328static struct cftype memsw_cgroup_files[] = {
6329 {
6330 .name = "memsw.usage_in_bytes",
6331 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6332 .read = mem_cgroup_read,
2d11085e
MH
6333 },
6334 {
6335 .name = "memsw.max_usage_in_bytes",
6336 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6337 .trigger = mem_cgroup_reset,
6338 .read = mem_cgroup_read,
6339 },
6340 {
6341 .name = "memsw.limit_in_bytes",
6342 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6343 .write_string = mem_cgroup_write,
6344 .read = mem_cgroup_read,
6345 },
6346 {
6347 .name = "memsw.failcnt",
6348 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6349 .trigger = mem_cgroup_reset,
6350 .read = mem_cgroup_read,
6351 },
6352 { }, /* terminate */
6353};
6354#endif
c0ff4b85 6355static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6356{
6357 struct mem_cgroup_per_node *pn;
1ecaab2b 6358 struct mem_cgroup_per_zone *mz;
41e3355d 6359 int zone, tmp = node;
1ecaab2b
KH
6360 /*
6361 * This routine is called against possible nodes.
6362 * But it's BUG to call kmalloc() against offline node.
6363 *
6364 * TODO: this routine can waste much memory for nodes which will
6365 * never be onlined. It's better to use memory hotplug callback
6366 * function.
6367 */
41e3355d
KH
6368 if (!node_state(node, N_NORMAL_MEMORY))
6369 tmp = -1;
17295c88 6370 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6371 if (!pn)
6372 return 1;
1ecaab2b 6373
1ecaab2b
KH
6374 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6375 mz = &pn->zoneinfo[zone];
bea8c150 6376 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6377 mz->usage_in_excess = 0;
6378 mz->on_tree = false;
d79154bb 6379 mz->memcg = memcg;
1ecaab2b 6380 }
54f72fe0 6381 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6382 return 0;
6383}
6384
c0ff4b85 6385static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6386{
54f72fe0 6387 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6388}
6389
33327948
KH
6390static struct mem_cgroup *mem_cgroup_alloc(void)
6391{
d79154bb 6392 struct mem_cgroup *memcg;
45cf7ebd 6393 size_t size = memcg_size();
33327948 6394
45cf7ebd 6395 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6396 if (size < PAGE_SIZE)
d79154bb 6397 memcg = kzalloc(size, GFP_KERNEL);
33327948 6398 else
d79154bb 6399 memcg = vzalloc(size);
33327948 6400
d79154bb 6401 if (!memcg)
e7bbcdf3
DC
6402 return NULL;
6403
d79154bb
HD
6404 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6405 if (!memcg->stat)
d2e61b8d 6406 goto out_free;
d79154bb
HD
6407 spin_lock_init(&memcg->pcp_counter_lock);
6408 return memcg;
d2e61b8d
DC
6409
6410out_free:
6411 if (size < PAGE_SIZE)
d79154bb 6412 kfree(memcg);
d2e61b8d 6413 else
d79154bb 6414 vfree(memcg);
d2e61b8d 6415 return NULL;
33327948
KH
6416}
6417
59927fb9 6418/*
c8b2a36f
GC
6419 * At destroying mem_cgroup, references from swap_cgroup can remain.
6420 * (scanning all at force_empty is too costly...)
6421 *
6422 * Instead of clearing all references at force_empty, we remember
6423 * the number of reference from swap_cgroup and free mem_cgroup when
6424 * it goes down to 0.
6425 *
6426 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6427 */
c8b2a36f
GC
6428
6429static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6430{
c8b2a36f 6431 int node;
45cf7ebd 6432 size_t size = memcg_size();
59927fb9 6433
bb4cc1a8 6434 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6435 free_css_id(&mem_cgroup_subsys, &memcg->css);
6436
6437 for_each_node(node)
6438 free_mem_cgroup_per_zone_info(memcg, node);
6439
6440 free_percpu(memcg->stat);
6441
3f134619
GC
6442 /*
6443 * We need to make sure that (at least for now), the jump label
6444 * destruction code runs outside of the cgroup lock. This is because
6445 * get_online_cpus(), which is called from the static_branch update,
6446 * can't be called inside the cgroup_lock. cpusets are the ones
6447 * enforcing this dependency, so if they ever change, we might as well.
6448 *
6449 * schedule_work() will guarantee this happens. Be careful if you need
6450 * to move this code around, and make sure it is outside
6451 * the cgroup_lock.
6452 */
a8964b9b 6453 disarm_static_keys(memcg);
3afe36b1
GC
6454 if (size < PAGE_SIZE)
6455 kfree(memcg);
6456 else
6457 vfree(memcg);
59927fb9 6458}
3afe36b1 6459
7bcc1bb1
DN
6460/*
6461 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6462 */
e1aab161 6463struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6464{
c0ff4b85 6465 if (!memcg->res.parent)
7bcc1bb1 6466 return NULL;
c0ff4b85 6467 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6468}
e1aab161 6469EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6470
bb4cc1a8
AM
6471static void __init mem_cgroup_soft_limit_tree_init(void)
6472{
6473 struct mem_cgroup_tree_per_node *rtpn;
6474 struct mem_cgroup_tree_per_zone *rtpz;
6475 int tmp, node, zone;
6476
6477 for_each_node(node) {
6478 tmp = node;
6479 if (!node_state(node, N_NORMAL_MEMORY))
6480 tmp = -1;
6481 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6482 BUG_ON(!rtpn);
6483
6484 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6485
6486 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6487 rtpz = &rtpn->rb_tree_per_zone[zone];
6488 rtpz->rb_root = RB_ROOT;
6489 spin_lock_init(&rtpz->lock);
6490 }
6491 }
6492}
6493
0eb253e2 6494static struct cgroup_subsys_state * __ref
eb95419b 6495mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6496{
d142e3e6 6497 struct mem_cgroup *memcg;
04046e1a 6498 long error = -ENOMEM;
6d12e2d8 6499 int node;
8cdea7c0 6500
c0ff4b85
R
6501 memcg = mem_cgroup_alloc();
6502 if (!memcg)
04046e1a 6503 return ERR_PTR(error);
78fb7466 6504
3ed28fa1 6505 for_each_node(node)
c0ff4b85 6506 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6507 goto free_out;
f64c3f54 6508
c077719b 6509 /* root ? */
eb95419b 6510 if (parent_css == NULL) {
a41c58a6 6511 root_mem_cgroup = memcg;
d142e3e6
GC
6512 res_counter_init(&memcg->res, NULL);
6513 res_counter_init(&memcg->memsw, NULL);
6514 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6515 }
28dbc4b6 6516
d142e3e6
GC
6517 memcg->last_scanned_node = MAX_NUMNODES;
6518 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6519 memcg->move_charge_at_immigrate = 0;
6520 mutex_init(&memcg->thresholds_lock);
6521 spin_lock_init(&memcg->move_lock);
70ddf637 6522 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6523 INIT_LIST_HEAD(&memcg->event_list);
6524 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6525
6526 return &memcg->css;
6527
6528free_out:
6529 __mem_cgroup_free(memcg);
6530 return ERR_PTR(error);
6531}
6532
6533static int
eb95419b 6534mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6535{
eb95419b
TH
6536 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6537 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
6538 int error = 0;
6539
63876986 6540 if (!parent)
d142e3e6
GC
6541 return 0;
6542
0999821b 6543 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6544
6545 memcg->use_hierarchy = parent->use_hierarchy;
6546 memcg->oom_kill_disable = parent->oom_kill_disable;
6547 memcg->swappiness = mem_cgroup_swappiness(parent);
6548
6549 if (parent->use_hierarchy) {
c0ff4b85
R
6550 res_counter_init(&memcg->res, &parent->res);
6551 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6552 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6553
7bcc1bb1 6554 /*
8d76a979
LZ
6555 * No need to take a reference to the parent because cgroup
6556 * core guarantees its existence.
7bcc1bb1 6557 */
18f59ea7 6558 } else {
c0ff4b85
R
6559 res_counter_init(&memcg->res, NULL);
6560 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6561 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6562 /*
6563 * Deeper hierachy with use_hierarchy == false doesn't make
6564 * much sense so let cgroup subsystem know about this
6565 * unfortunate state in our controller.
6566 */
d142e3e6 6567 if (parent != root_mem_cgroup)
8c7f6edb 6568 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6569 }
cbe128e3
GC
6570
6571 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6572 mutex_unlock(&memcg_create_mutex);
d142e3e6 6573 return error;
8cdea7c0
BS
6574}
6575
5f578161
MH
6576/*
6577 * Announce all parents that a group from their hierarchy is gone.
6578 */
6579static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6580{
6581 struct mem_cgroup *parent = memcg;
6582
6583 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6584 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6585
6586 /*
6587 * if the root memcg is not hierarchical we have to check it
6588 * explicitely.
6589 */
6590 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6591 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6592}
6593
eb95419b 6594static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6595{
eb95419b 6596 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
79bd9814
TH
6597 struct cgroup_event *event, *tmp;
6598
6599 /*
6600 * Unregister events and notify userspace.
6601 * Notify userspace about cgroup removing only after rmdir of cgroup
6602 * directory to avoid race between userspace and kernelspace.
6603 */
fba94807
TH
6604 spin_lock(&memcg->event_list_lock);
6605 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6606 list_del_init(&event->list);
6607 schedule_work(&event->remove);
6608 }
fba94807 6609 spin_unlock(&memcg->event_list_lock);
ec64f515 6610
10d5ebf4
LZ
6611 kmem_cgroup_css_offline(memcg);
6612
5f578161 6613 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6614 mem_cgroup_reparent_charges(memcg);
1f458cbf 6615 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6616 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6617}
6618
eb95419b 6619static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6620{
eb95419b 6621 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 6622
10d5ebf4 6623 memcg_destroy_kmem(memcg);
465939a1 6624 __mem_cgroup_free(memcg);
8cdea7c0
BS
6625}
6626
02491447 6627#ifdef CONFIG_MMU
7dc74be0 6628/* Handlers for move charge at task migration. */
854ffa8d
DN
6629#define PRECHARGE_COUNT_AT_ONCE 256
6630static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6631{
854ffa8d
DN
6632 int ret = 0;
6633 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6634 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6635
c0ff4b85 6636 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6637 mc.precharge += count;
6638 /* we don't need css_get for root */
6639 return ret;
6640 }
6641 /* try to charge at once */
6642 if (count > 1) {
6643 struct res_counter *dummy;
6644 /*
c0ff4b85 6645 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6646 * by cgroup_lock_live_cgroup() that it is not removed and we
6647 * are still under the same cgroup_mutex. So we can postpone
6648 * css_get().
6649 */
c0ff4b85 6650 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6651 goto one_by_one;
c0ff4b85 6652 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6653 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6654 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6655 goto one_by_one;
6656 }
6657 mc.precharge += count;
854ffa8d
DN
6658 return ret;
6659 }
6660one_by_one:
6661 /* fall back to one by one charge */
6662 while (count--) {
6663 if (signal_pending(current)) {
6664 ret = -EINTR;
6665 break;
6666 }
6667 if (!batch_count--) {
6668 batch_count = PRECHARGE_COUNT_AT_ONCE;
6669 cond_resched();
6670 }
c0ff4b85
R
6671 ret = __mem_cgroup_try_charge(NULL,
6672 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6673 if (ret)
854ffa8d 6674 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6675 return ret;
854ffa8d
DN
6676 mc.precharge++;
6677 }
4ffef5fe
DN
6678 return ret;
6679}
6680
6681/**
8d32ff84 6682 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6683 * @vma: the vma the pte to be checked belongs
6684 * @addr: the address corresponding to the pte to be checked
6685 * @ptent: the pte to be checked
02491447 6686 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6687 *
6688 * Returns
6689 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6690 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6691 * move charge. if @target is not NULL, the page is stored in target->page
6692 * with extra refcnt got(Callers should handle it).
02491447
DN
6693 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6694 * target for charge migration. if @target is not NULL, the entry is stored
6695 * in target->ent.
4ffef5fe
DN
6696 *
6697 * Called with pte lock held.
6698 */
4ffef5fe
DN
6699union mc_target {
6700 struct page *page;
02491447 6701 swp_entry_t ent;
4ffef5fe
DN
6702};
6703
4ffef5fe 6704enum mc_target_type {
8d32ff84 6705 MC_TARGET_NONE = 0,
4ffef5fe 6706 MC_TARGET_PAGE,
02491447 6707 MC_TARGET_SWAP,
4ffef5fe
DN
6708};
6709
90254a65
DN
6710static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6711 unsigned long addr, pte_t ptent)
4ffef5fe 6712{
90254a65 6713 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6714
90254a65
DN
6715 if (!page || !page_mapped(page))
6716 return NULL;
6717 if (PageAnon(page)) {
6718 /* we don't move shared anon */
4b91355e 6719 if (!move_anon())
90254a65 6720 return NULL;
87946a72
DN
6721 } else if (!move_file())
6722 /* we ignore mapcount for file pages */
90254a65
DN
6723 return NULL;
6724 if (!get_page_unless_zero(page))
6725 return NULL;
6726
6727 return page;
6728}
6729
4b91355e 6730#ifdef CONFIG_SWAP
90254a65
DN
6731static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6732 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6733{
90254a65
DN
6734 struct page *page = NULL;
6735 swp_entry_t ent = pte_to_swp_entry(ptent);
6736
6737 if (!move_anon() || non_swap_entry(ent))
6738 return NULL;
4b91355e
KH
6739 /*
6740 * Because lookup_swap_cache() updates some statistics counter,
6741 * we call find_get_page() with swapper_space directly.
6742 */
33806f06 6743 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6744 if (do_swap_account)
6745 entry->val = ent.val;
6746
6747 return page;
6748}
4b91355e
KH
6749#else
6750static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6751 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6752{
6753 return NULL;
6754}
6755#endif
90254a65 6756
87946a72
DN
6757static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6758 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6759{
6760 struct page *page = NULL;
87946a72
DN
6761 struct address_space *mapping;
6762 pgoff_t pgoff;
6763
6764 if (!vma->vm_file) /* anonymous vma */
6765 return NULL;
6766 if (!move_file())
6767 return NULL;
6768
87946a72
DN
6769 mapping = vma->vm_file->f_mapping;
6770 if (pte_none(ptent))
6771 pgoff = linear_page_index(vma, addr);
6772 else /* pte_file(ptent) is true */
6773 pgoff = pte_to_pgoff(ptent);
6774
6775 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6776 page = find_get_page(mapping, pgoff);
6777
6778#ifdef CONFIG_SWAP
6779 /* shmem/tmpfs may report page out on swap: account for that too. */
6780 if (radix_tree_exceptional_entry(page)) {
6781 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6782 if (do_swap_account)
aa3b1895 6783 *entry = swap;
33806f06 6784 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6785 }
aa3b1895 6786#endif
87946a72
DN
6787 return page;
6788}
6789
8d32ff84 6790static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6791 unsigned long addr, pte_t ptent, union mc_target *target)
6792{
6793 struct page *page = NULL;
6794 struct page_cgroup *pc;
8d32ff84 6795 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6796 swp_entry_t ent = { .val = 0 };
6797
6798 if (pte_present(ptent))
6799 page = mc_handle_present_pte(vma, addr, ptent);
6800 else if (is_swap_pte(ptent))
6801 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6802 else if (pte_none(ptent) || pte_file(ptent))
6803 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6804
6805 if (!page && !ent.val)
8d32ff84 6806 return ret;
02491447
DN
6807 if (page) {
6808 pc = lookup_page_cgroup(page);
6809 /*
6810 * Do only loose check w/o page_cgroup lock.
6811 * mem_cgroup_move_account() checks the pc is valid or not under
6812 * the lock.
6813 */
6814 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6815 ret = MC_TARGET_PAGE;
6816 if (target)
6817 target->page = page;
6818 }
6819 if (!ret || !target)
6820 put_page(page);
6821 }
90254a65
DN
6822 /* There is a swap entry and a page doesn't exist or isn't charged */
6823 if (ent.val && !ret &&
9fb4b7cc 6824 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6825 ret = MC_TARGET_SWAP;
6826 if (target)
6827 target->ent = ent;
4ffef5fe 6828 }
4ffef5fe
DN
6829 return ret;
6830}
6831
12724850
NH
6832#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6833/*
6834 * We don't consider swapping or file mapped pages because THP does not
6835 * support them for now.
6836 * Caller should make sure that pmd_trans_huge(pmd) is true.
6837 */
6838static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6839 unsigned long addr, pmd_t pmd, union mc_target *target)
6840{
6841 struct page *page = NULL;
6842 struct page_cgroup *pc;
6843 enum mc_target_type ret = MC_TARGET_NONE;
6844
6845 page = pmd_page(pmd);
6846 VM_BUG_ON(!page || !PageHead(page));
6847 if (!move_anon())
6848 return ret;
6849 pc = lookup_page_cgroup(page);
6850 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6851 ret = MC_TARGET_PAGE;
6852 if (target) {
6853 get_page(page);
6854 target->page = page;
6855 }
6856 }
6857 return ret;
6858}
6859#else
6860static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6861 unsigned long addr, pmd_t pmd, union mc_target *target)
6862{
6863 return MC_TARGET_NONE;
6864}
6865#endif
6866
4ffef5fe
DN
6867static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6868 unsigned long addr, unsigned long end,
6869 struct mm_walk *walk)
6870{
6871 struct vm_area_struct *vma = walk->private;
6872 pte_t *pte;
6873 spinlock_t *ptl;
6874
12724850
NH
6875 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6876 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6877 mc.precharge += HPAGE_PMD_NR;
6878 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6879 return 0;
12724850 6880 }
03319327 6881
45f83cef
AA
6882 if (pmd_trans_unstable(pmd))
6883 return 0;
4ffef5fe
DN
6884 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6885 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6886 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6887 mc.precharge++; /* increment precharge temporarily */
6888 pte_unmap_unlock(pte - 1, ptl);
6889 cond_resched();
6890
7dc74be0
DN
6891 return 0;
6892}
6893
4ffef5fe
DN
6894static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6895{
6896 unsigned long precharge;
6897 struct vm_area_struct *vma;
6898
dfe076b0 6899 down_read(&mm->mmap_sem);
4ffef5fe
DN
6900 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6901 struct mm_walk mem_cgroup_count_precharge_walk = {
6902 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6903 .mm = mm,
6904 .private = vma,
6905 };
6906 if (is_vm_hugetlb_page(vma))
6907 continue;
4ffef5fe
DN
6908 walk_page_range(vma->vm_start, vma->vm_end,
6909 &mem_cgroup_count_precharge_walk);
6910 }
dfe076b0 6911 up_read(&mm->mmap_sem);
4ffef5fe
DN
6912
6913 precharge = mc.precharge;
6914 mc.precharge = 0;
6915
6916 return precharge;
6917}
6918
4ffef5fe
DN
6919static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6920{
dfe076b0
DN
6921 unsigned long precharge = mem_cgroup_count_precharge(mm);
6922
6923 VM_BUG_ON(mc.moving_task);
6924 mc.moving_task = current;
6925 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6926}
6927
dfe076b0
DN
6928/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6929static void __mem_cgroup_clear_mc(void)
4ffef5fe 6930{
2bd9bb20
KH
6931 struct mem_cgroup *from = mc.from;
6932 struct mem_cgroup *to = mc.to;
4050377b 6933 int i;
2bd9bb20 6934
4ffef5fe 6935 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6936 if (mc.precharge) {
6937 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6938 mc.precharge = 0;
6939 }
6940 /*
6941 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6942 * we must uncharge here.
6943 */
6944 if (mc.moved_charge) {
6945 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6946 mc.moved_charge = 0;
4ffef5fe 6947 }
483c30b5
DN
6948 /* we must fixup refcnts and charges */
6949 if (mc.moved_swap) {
483c30b5
DN
6950 /* uncharge swap account from the old cgroup */
6951 if (!mem_cgroup_is_root(mc.from))
6952 res_counter_uncharge(&mc.from->memsw,
6953 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6954
6955 for (i = 0; i < mc.moved_swap; i++)
6956 css_put(&mc.from->css);
483c30b5
DN
6957
6958 if (!mem_cgroup_is_root(mc.to)) {
6959 /*
6960 * we charged both to->res and to->memsw, so we should
6961 * uncharge to->res.
6962 */
6963 res_counter_uncharge(&mc.to->res,
6964 PAGE_SIZE * mc.moved_swap);
483c30b5 6965 }
4050377b 6966 /* we've already done css_get(mc.to) */
483c30b5
DN
6967 mc.moved_swap = 0;
6968 }
dfe076b0
DN
6969 memcg_oom_recover(from);
6970 memcg_oom_recover(to);
6971 wake_up_all(&mc.waitq);
6972}
6973
6974static void mem_cgroup_clear_mc(void)
6975{
6976 struct mem_cgroup *from = mc.from;
6977
6978 /*
6979 * we must clear moving_task before waking up waiters at the end of
6980 * task migration.
6981 */
6982 mc.moving_task = NULL;
6983 __mem_cgroup_clear_mc();
2bd9bb20 6984 spin_lock(&mc.lock);
4ffef5fe
DN
6985 mc.from = NULL;
6986 mc.to = NULL;
2bd9bb20 6987 spin_unlock(&mc.lock);
32047e2a 6988 mem_cgroup_end_move(from);
4ffef5fe
DN
6989}
6990
eb95419b 6991static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6992 struct cgroup_taskset *tset)
7dc74be0 6993{
2f7ee569 6994 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6995 int ret = 0;
eb95419b 6996 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6997 unsigned long move_charge_at_immigrate;
7dc74be0 6998
ee5e8472
GC
6999 /*
7000 * We are now commited to this value whatever it is. Changes in this
7001 * tunable will only affect upcoming migrations, not the current one.
7002 * So we need to save it, and keep it going.
7003 */
7004 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
7005 if (move_charge_at_immigrate) {
7dc74be0
DN
7006 struct mm_struct *mm;
7007 struct mem_cgroup *from = mem_cgroup_from_task(p);
7008
c0ff4b85 7009 VM_BUG_ON(from == memcg);
7dc74be0
DN
7010
7011 mm = get_task_mm(p);
7012 if (!mm)
7013 return 0;
7dc74be0 7014 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
7015 if (mm->owner == p) {
7016 VM_BUG_ON(mc.from);
7017 VM_BUG_ON(mc.to);
7018 VM_BUG_ON(mc.precharge);
854ffa8d 7019 VM_BUG_ON(mc.moved_charge);
483c30b5 7020 VM_BUG_ON(mc.moved_swap);
32047e2a 7021 mem_cgroup_start_move(from);
2bd9bb20 7022 spin_lock(&mc.lock);
4ffef5fe 7023 mc.from = from;
c0ff4b85 7024 mc.to = memcg;
ee5e8472 7025 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 7026 spin_unlock(&mc.lock);
dfe076b0 7027 /* We set mc.moving_task later */
4ffef5fe
DN
7028
7029 ret = mem_cgroup_precharge_mc(mm);
7030 if (ret)
7031 mem_cgroup_clear_mc();
dfe076b0
DN
7032 }
7033 mmput(mm);
7dc74be0
DN
7034 }
7035 return ret;
7036}
7037
eb95419b 7038static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7039 struct cgroup_taskset *tset)
7dc74be0 7040{
4ffef5fe 7041 mem_cgroup_clear_mc();
7dc74be0
DN
7042}
7043
4ffef5fe
DN
7044static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
7045 unsigned long addr, unsigned long end,
7046 struct mm_walk *walk)
7dc74be0 7047{
4ffef5fe
DN
7048 int ret = 0;
7049 struct vm_area_struct *vma = walk->private;
7050 pte_t *pte;
7051 spinlock_t *ptl;
12724850
NH
7052 enum mc_target_type target_type;
7053 union mc_target target;
7054 struct page *page;
7055 struct page_cgroup *pc;
4ffef5fe 7056
12724850
NH
7057 /*
7058 * We don't take compound_lock() here but no race with splitting thp
7059 * happens because:
7060 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
7061 * under splitting, which means there's no concurrent thp split,
7062 * - if another thread runs into split_huge_page() just after we
7063 * entered this if-block, the thread must wait for page table lock
7064 * to be unlocked in __split_huge_page_splitting(), where the main
7065 * part of thp split is not executed yet.
7066 */
7067 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 7068 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
7069 spin_unlock(&vma->vm_mm->page_table_lock);
7070 return 0;
7071 }
7072 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
7073 if (target_type == MC_TARGET_PAGE) {
7074 page = target.page;
7075 if (!isolate_lru_page(page)) {
7076 pc = lookup_page_cgroup(page);
7077 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 7078 pc, mc.from, mc.to)) {
12724850
NH
7079 mc.precharge -= HPAGE_PMD_NR;
7080 mc.moved_charge += HPAGE_PMD_NR;
7081 }
7082 putback_lru_page(page);
7083 }
7084 put_page(page);
7085 }
7086 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 7087 return 0;
12724850
NH
7088 }
7089
45f83cef
AA
7090 if (pmd_trans_unstable(pmd))
7091 return 0;
4ffef5fe
DN
7092retry:
7093 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7094 for (; addr != end; addr += PAGE_SIZE) {
7095 pte_t ptent = *(pte++);
02491447 7096 swp_entry_t ent;
4ffef5fe
DN
7097
7098 if (!mc.precharge)
7099 break;
7100
8d32ff84 7101 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
7102 case MC_TARGET_PAGE:
7103 page = target.page;
7104 if (isolate_lru_page(page))
7105 goto put;
7106 pc = lookup_page_cgroup(page);
7ec99d62 7107 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 7108 mc.from, mc.to)) {
4ffef5fe 7109 mc.precharge--;
854ffa8d
DN
7110 /* we uncharge from mc.from later. */
7111 mc.moved_charge++;
4ffef5fe
DN
7112 }
7113 putback_lru_page(page);
8d32ff84 7114put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
7115 put_page(page);
7116 break;
02491447
DN
7117 case MC_TARGET_SWAP:
7118 ent = target.ent;
e91cbb42 7119 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 7120 mc.precharge--;
483c30b5
DN
7121 /* we fixup refcnts and charges later. */
7122 mc.moved_swap++;
7123 }
02491447 7124 break;
4ffef5fe
DN
7125 default:
7126 break;
7127 }
7128 }
7129 pte_unmap_unlock(pte - 1, ptl);
7130 cond_resched();
7131
7132 if (addr != end) {
7133 /*
7134 * We have consumed all precharges we got in can_attach().
7135 * We try charge one by one, but don't do any additional
7136 * charges to mc.to if we have failed in charge once in attach()
7137 * phase.
7138 */
854ffa8d 7139 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
7140 if (!ret)
7141 goto retry;
7142 }
7143
7144 return ret;
7145}
7146
7147static void mem_cgroup_move_charge(struct mm_struct *mm)
7148{
7149 struct vm_area_struct *vma;
7150
7151 lru_add_drain_all();
dfe076b0
DN
7152retry:
7153 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7154 /*
7155 * Someone who are holding the mmap_sem might be waiting in
7156 * waitq. So we cancel all extra charges, wake up all waiters,
7157 * and retry. Because we cancel precharges, we might not be able
7158 * to move enough charges, but moving charge is a best-effort
7159 * feature anyway, so it wouldn't be a big problem.
7160 */
7161 __mem_cgroup_clear_mc();
7162 cond_resched();
7163 goto retry;
7164 }
4ffef5fe
DN
7165 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7166 int ret;
7167 struct mm_walk mem_cgroup_move_charge_walk = {
7168 .pmd_entry = mem_cgroup_move_charge_pte_range,
7169 .mm = mm,
7170 .private = vma,
7171 };
7172 if (is_vm_hugetlb_page(vma))
7173 continue;
4ffef5fe
DN
7174 ret = walk_page_range(vma->vm_start, vma->vm_end,
7175 &mem_cgroup_move_charge_walk);
7176 if (ret)
7177 /*
7178 * means we have consumed all precharges and failed in
7179 * doing additional charge. Just abandon here.
7180 */
7181 break;
7182 }
dfe076b0 7183 up_read(&mm->mmap_sem);
7dc74be0
DN
7184}
7185
eb95419b 7186static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7187 struct cgroup_taskset *tset)
67e465a7 7188{
2f7ee569 7189 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 7190 struct mm_struct *mm = get_task_mm(p);
dfe076b0 7191
dfe076b0 7192 if (mm) {
a433658c
KM
7193 if (mc.to)
7194 mem_cgroup_move_charge(mm);
dfe076b0
DN
7195 mmput(mm);
7196 }
a433658c
KM
7197 if (mc.to)
7198 mem_cgroup_clear_mc();
67e465a7 7199}
5cfb80a7 7200#else /* !CONFIG_MMU */
eb95419b 7201static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7202 struct cgroup_taskset *tset)
5cfb80a7
DN
7203{
7204 return 0;
7205}
eb95419b 7206static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7207 struct cgroup_taskset *tset)
5cfb80a7
DN
7208{
7209}
eb95419b 7210static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7211 struct cgroup_taskset *tset)
5cfb80a7
DN
7212{
7213}
7214#endif
67e465a7 7215
f00baae7
TH
7216/*
7217 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7218 * to verify sane_behavior flag on each mount attempt.
7219 */
eb95419b 7220static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7221{
7222 /*
7223 * use_hierarchy is forced with sane_behavior. cgroup core
7224 * guarantees that @root doesn't have any children, so turning it
7225 * on for the root memcg is enough.
7226 */
eb95419b
TH
7227 if (cgroup_sane_behavior(root_css->cgroup))
7228 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7229}
7230
8cdea7c0
BS
7231struct cgroup_subsys mem_cgroup_subsys = {
7232 .name = "memory",
7233 .subsys_id = mem_cgroup_subsys_id,
92fb9748 7234 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7235 .css_online = mem_cgroup_css_online,
92fb9748
TH
7236 .css_offline = mem_cgroup_css_offline,
7237 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7238 .can_attach = mem_cgroup_can_attach,
7239 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7240 .attach = mem_cgroup_move_task,
f00baae7 7241 .bind = mem_cgroup_bind,
6bc10349 7242 .base_cftypes = mem_cgroup_files,
6d12e2d8 7243 .early_init = 0,
04046e1a 7244 .use_id = 1,
8cdea7c0 7245};
c077719b 7246
c255a458 7247#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7248static int __init enable_swap_account(char *s)
7249{
a2c8990a 7250 if (!strcmp(s, "1"))
a42c390c 7251 really_do_swap_account = 1;
a2c8990a 7252 else if (!strcmp(s, "0"))
a42c390c
MH
7253 really_do_swap_account = 0;
7254 return 1;
7255}
a2c8990a 7256__setup("swapaccount=", enable_swap_account);
c077719b 7257
2d11085e
MH
7258static void __init memsw_file_init(void)
7259{
6acc8b02
MH
7260 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7261}
7262
7263static void __init enable_swap_cgroup(void)
7264{
7265 if (!mem_cgroup_disabled() && really_do_swap_account) {
7266 do_swap_account = 1;
7267 memsw_file_init();
7268 }
2d11085e 7269}
6acc8b02 7270
2d11085e 7271#else
6acc8b02 7272static void __init enable_swap_cgroup(void)
2d11085e
MH
7273{
7274}
c077719b 7275#endif
2d11085e
MH
7276
7277/*
1081312f
MH
7278 * subsys_initcall() for memory controller.
7279 *
7280 * Some parts like hotcpu_notifier() have to be initialized from this context
7281 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7282 * everything that doesn't depend on a specific mem_cgroup structure should
7283 * be initialized from here.
2d11085e
MH
7284 */
7285static int __init mem_cgroup_init(void)
7286{
7287 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7288 enable_swap_cgroup();
bb4cc1a8 7289 mem_cgroup_soft_limit_tree_init();
e4777496 7290 memcg_stock_init();
2d11085e
MH
7291 return 0;
7292}
7293subsys_initcall(mem_cgroup_init);