]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux...
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 62struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b
KH
75#else
76#define do_swap_account (0)
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
93 MEM_CGROUP_STAT_NSTATS,
94};
95
e9f8974f
JW
96enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
102 MEM_CGROUP_EVENTS_NSTATS,
103};
7a159cc9
JW
104/*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 113 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
114 MEM_CGROUP_NTARGETS,
115};
116#define THRESHOLDS_EVENTS_TARGET (128)
117#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 118#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 119
d52aa412 120struct mem_cgroup_stat_cpu {
7a159cc9 121 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 123 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
124};
125
6d12e2d8
KH
126/*
127 * per-zone information in memory controller.
128 */
6d12e2d8 129struct mem_cgroup_per_zone {
072c56c1
KH
130 /*
131 * spin_lock to protect the per cgroup LRU
132 */
b69408e8
CL
133 struct list_head lists[NR_LRU_LISTS];
134 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
135
136 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
137 struct rb_node tree_node; /* RB tree node */
138 unsigned long long usage_in_excess;/* Set to the value by which */
139 /* the soft limit is exceeded*/
140 bool on_tree;
4e416953
BS
141 struct mem_cgroup *mem; /* Back pointer, we cannot */
142 /* use container_of */
6d12e2d8
KH
143};
144/* Macro for accessing counter */
145#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
146
147struct mem_cgroup_per_node {
148 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
149};
150
151struct mem_cgroup_lru_info {
152 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
153};
154
f64c3f54
BS
155/*
156 * Cgroups above their limits are maintained in a RB-Tree, independent of
157 * their hierarchy representation
158 */
159
160struct mem_cgroup_tree_per_zone {
161 struct rb_root rb_root;
162 spinlock_t lock;
163};
164
165struct mem_cgroup_tree_per_node {
166 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
167};
168
169struct mem_cgroup_tree {
170 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
171};
172
173static struct mem_cgroup_tree soft_limit_tree __read_mostly;
174
2e72b634
KS
175struct mem_cgroup_threshold {
176 struct eventfd_ctx *eventfd;
177 u64 threshold;
178};
179
9490ff27 180/* For threshold */
2e72b634
KS
181struct mem_cgroup_threshold_ary {
182 /* An array index points to threshold just below usage. */
5407a562 183 int current_threshold;
2e72b634
KS
184 /* Size of entries[] */
185 unsigned int size;
186 /* Array of thresholds */
187 struct mem_cgroup_threshold entries[0];
188};
2c488db2
KS
189
190struct mem_cgroup_thresholds {
191 /* Primary thresholds array */
192 struct mem_cgroup_threshold_ary *primary;
193 /*
194 * Spare threshold array.
195 * This is needed to make mem_cgroup_unregister_event() "never fail".
196 * It must be able to store at least primary->size - 1 entries.
197 */
198 struct mem_cgroup_threshold_ary *spare;
199};
200
9490ff27
KH
201/* for OOM */
202struct mem_cgroup_eventfd_list {
203 struct list_head list;
204 struct eventfd_ctx *eventfd;
205};
2e72b634 206
c0ff4b85
R
207static void mem_cgroup_threshold(struct mem_cgroup *memcg);
208static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 209
8cdea7c0
BS
210/*
211 * The memory controller data structure. The memory controller controls both
212 * page cache and RSS per cgroup. We would eventually like to provide
213 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
214 * to help the administrator determine what knobs to tune.
215 *
216 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
217 * we hit the water mark. May be even add a low water mark, such that
218 * no reclaim occurs from a cgroup at it's low water mark, this is
219 * a feature that will be implemented much later in the future.
8cdea7c0
BS
220 */
221struct mem_cgroup {
222 struct cgroup_subsys_state css;
223 /*
224 * the counter to account for memory usage
225 */
226 struct res_counter res;
8c7c6e34
KH
227 /*
228 * the counter to account for mem+swap usage.
229 */
230 struct res_counter memsw;
78fb7466
PE
231 /*
232 * Per cgroup active and inactive list, similar to the
233 * per zone LRU lists.
78fb7466 234 */
6d12e2d8 235 struct mem_cgroup_lru_info info;
6d61ef40 236 /*
af901ca1 237 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 238 * reclaimed from.
6d61ef40 239 */
04046e1a 240 int last_scanned_child;
889976db
YH
241 int last_scanned_node;
242#if MAX_NUMNODES > 1
243 nodemask_t scan_nodes;
453a9bf3
KH
244 atomic_t numainfo_events;
245 atomic_t numainfo_updating;
889976db 246#endif
18f59ea7
BS
247 /*
248 * Should the accounting and control be hierarchical, per subtree?
249 */
250 bool use_hierarchy;
79dfdacc
MH
251
252 bool oom_lock;
253 atomic_t under_oom;
254
8c7c6e34 255 atomic_t refcnt;
14797e23 256
1f4c025b 257 int swappiness;
3c11ecf4
KH
258 /* OOM-Killer disable */
259 int oom_kill_disable;
a7885eb8 260
22a668d7
KH
261 /* set when res.limit == memsw.limit */
262 bool memsw_is_minimum;
263
2e72b634
KS
264 /* protect arrays of thresholds */
265 struct mutex thresholds_lock;
266
267 /* thresholds for memory usage. RCU-protected */
2c488db2 268 struct mem_cgroup_thresholds thresholds;
907860ed 269
2e72b634 270 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 271 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 272
9490ff27
KH
273 /* For oom notifier event fd */
274 struct list_head oom_notify;
185efc0f 275
7dc74be0
DN
276 /*
277 * Should we move charges of a task when a task is moved into this
278 * mem_cgroup ? And what type of charges should we move ?
279 */
280 unsigned long move_charge_at_immigrate;
d52aa412 281 /*
c62b1a3b 282 * percpu counter.
d52aa412 283 */
c62b1a3b 284 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
285 /*
286 * used when a cpu is offlined or other synchronizations
287 * See mem_cgroup_read_stat().
288 */
289 struct mem_cgroup_stat_cpu nocpu_base;
290 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
291
292#ifdef CONFIG_INET
293 struct tcp_memcontrol tcp_mem;
294#endif
8cdea7c0
BS
295};
296
7dc74be0
DN
297/* Stuffs for move charges at task migration. */
298/*
299 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
300 * left-shifted bitmap of these types.
301 */
302enum move_type {
4ffef5fe 303 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 304 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
305 NR_MOVE_TYPE,
306};
307
4ffef5fe
DN
308/* "mc" and its members are protected by cgroup_mutex */
309static struct move_charge_struct {
b1dd693e 310 spinlock_t lock; /* for from, to */
4ffef5fe
DN
311 struct mem_cgroup *from;
312 struct mem_cgroup *to;
313 unsigned long precharge;
854ffa8d 314 unsigned long moved_charge;
483c30b5 315 unsigned long moved_swap;
8033b97c
DN
316 struct task_struct *moving_task; /* a task moving charges */
317 wait_queue_head_t waitq; /* a waitq for other context */
318} mc = {
2bd9bb20 319 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
320 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
321};
4ffef5fe 322
90254a65
DN
323static bool move_anon(void)
324{
325 return test_bit(MOVE_CHARGE_TYPE_ANON,
326 &mc.to->move_charge_at_immigrate);
327}
328
87946a72
DN
329static bool move_file(void)
330{
331 return test_bit(MOVE_CHARGE_TYPE_FILE,
332 &mc.to->move_charge_at_immigrate);
333}
334
4e416953
BS
335/*
336 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
337 * limit reclaim to prevent infinite loops, if they ever occur.
338 */
339#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
340#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
341
217bc319
KH
342enum charge_type {
343 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
344 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 345 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 346 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 347 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 348 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
349 NR_CHARGE_TYPE,
350};
351
8c7c6e34 352/* for encoding cft->private value on file */
65c64ce8
GC
353#define _MEM (0)
354#define _MEMSWAP (1)
355#define _OOM_TYPE (2)
8c7c6e34
KH
356#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
357#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
358#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
359/* Used for OOM nofiier */
360#define OOM_CONTROL (0)
8c7c6e34 361
75822b44
BS
362/*
363 * Reclaim flags for mem_cgroup_hierarchical_reclaim
364 */
365#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
366#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
367#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
368#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
369#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
370#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 371
c0ff4b85
R
372static void mem_cgroup_get(struct mem_cgroup *memcg);
373static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
374
375/* Writing them here to avoid exposing memcg's inner layout */
376#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
377#ifdef CONFIG_INET
378#include <net/sock.h>
d1a4c0b3 379#include <net/ip.h>
e1aab161
GC
380
381static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
382void sock_update_memcg(struct sock *sk)
383{
384 /* A socket spends its whole life in the same cgroup */
385 if (sk->sk_cgrp) {
386 WARN_ON(1);
387 return;
388 }
389 if (static_branch(&memcg_socket_limit_enabled)) {
390 struct mem_cgroup *memcg;
391
392 BUG_ON(!sk->sk_prot->proto_cgroup);
393
394 rcu_read_lock();
395 memcg = mem_cgroup_from_task(current);
396 if (!mem_cgroup_is_root(memcg)) {
397 mem_cgroup_get(memcg);
398 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
399 }
400 rcu_read_unlock();
401 }
402}
403EXPORT_SYMBOL(sock_update_memcg);
404
405void sock_release_memcg(struct sock *sk)
406{
407 if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
408 struct mem_cgroup *memcg;
409 WARN_ON(!sk->sk_cgrp->memcg);
410 memcg = sk->sk_cgrp->memcg;
411 mem_cgroup_put(memcg);
412 }
413}
d1a4c0b3
GC
414
415struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
416{
417 if (!memcg || mem_cgroup_is_root(memcg))
418 return NULL;
419
420 return &memcg->tcp_mem.cg_proto;
421}
422EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
423#endif /* CONFIG_INET */
424#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
425
c0ff4b85 426static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 427
f64c3f54 428static struct mem_cgroup_per_zone *
c0ff4b85 429mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 430{
c0ff4b85 431 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
432}
433
c0ff4b85 434struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 435{
c0ff4b85 436 return &memcg->css;
d324236b
WF
437}
438
f64c3f54 439static struct mem_cgroup_per_zone *
c0ff4b85 440page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 441{
97a6c37b
JW
442 int nid = page_to_nid(page);
443 int zid = page_zonenum(page);
f64c3f54 444
c0ff4b85 445 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
446}
447
448static struct mem_cgroup_tree_per_zone *
449soft_limit_tree_node_zone(int nid, int zid)
450{
451 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
452}
453
454static struct mem_cgroup_tree_per_zone *
455soft_limit_tree_from_page(struct page *page)
456{
457 int nid = page_to_nid(page);
458 int zid = page_zonenum(page);
459
460 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
461}
462
463static void
c0ff4b85 464__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 465 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
466 struct mem_cgroup_tree_per_zone *mctz,
467 unsigned long long new_usage_in_excess)
f64c3f54
BS
468{
469 struct rb_node **p = &mctz->rb_root.rb_node;
470 struct rb_node *parent = NULL;
471 struct mem_cgroup_per_zone *mz_node;
472
473 if (mz->on_tree)
474 return;
475
ef8745c1
KH
476 mz->usage_in_excess = new_usage_in_excess;
477 if (!mz->usage_in_excess)
478 return;
f64c3f54
BS
479 while (*p) {
480 parent = *p;
481 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
482 tree_node);
483 if (mz->usage_in_excess < mz_node->usage_in_excess)
484 p = &(*p)->rb_left;
485 /*
486 * We can't avoid mem cgroups that are over their soft
487 * limit by the same amount
488 */
489 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
490 p = &(*p)->rb_right;
491 }
492 rb_link_node(&mz->tree_node, parent, p);
493 rb_insert_color(&mz->tree_node, &mctz->rb_root);
494 mz->on_tree = true;
4e416953
BS
495}
496
497static void
c0ff4b85 498__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
499 struct mem_cgroup_per_zone *mz,
500 struct mem_cgroup_tree_per_zone *mctz)
501{
502 if (!mz->on_tree)
503 return;
504 rb_erase(&mz->tree_node, &mctz->rb_root);
505 mz->on_tree = false;
506}
507
f64c3f54 508static void
c0ff4b85 509mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
510 struct mem_cgroup_per_zone *mz,
511 struct mem_cgroup_tree_per_zone *mctz)
512{
513 spin_lock(&mctz->lock);
c0ff4b85 514 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
515 spin_unlock(&mctz->lock);
516}
517
f64c3f54 518
c0ff4b85 519static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 520{
ef8745c1 521 unsigned long long excess;
f64c3f54
BS
522 struct mem_cgroup_per_zone *mz;
523 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
524 int nid = page_to_nid(page);
525 int zid = page_zonenum(page);
f64c3f54
BS
526 mctz = soft_limit_tree_from_page(page);
527
528 /*
4e649152
KH
529 * Necessary to update all ancestors when hierarchy is used.
530 * because their event counter is not touched.
f64c3f54 531 */
c0ff4b85
R
532 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
533 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
534 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
535 /*
536 * We have to update the tree if mz is on RB-tree or
537 * mem is over its softlimit.
538 */
ef8745c1 539 if (excess || mz->on_tree) {
4e649152
KH
540 spin_lock(&mctz->lock);
541 /* if on-tree, remove it */
542 if (mz->on_tree)
c0ff4b85 543 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 544 /*
ef8745c1
KH
545 * Insert again. mz->usage_in_excess will be updated.
546 * If excess is 0, no tree ops.
4e649152 547 */
c0ff4b85 548 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
549 spin_unlock(&mctz->lock);
550 }
f64c3f54
BS
551 }
552}
553
c0ff4b85 554static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
555{
556 int node, zone;
557 struct mem_cgroup_per_zone *mz;
558 struct mem_cgroup_tree_per_zone *mctz;
559
560 for_each_node_state(node, N_POSSIBLE) {
561 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 562 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 563 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 564 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
565 }
566 }
567}
568
4e416953
BS
569static struct mem_cgroup_per_zone *
570__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
571{
572 struct rb_node *rightmost = NULL;
26251eaf 573 struct mem_cgroup_per_zone *mz;
4e416953
BS
574
575retry:
26251eaf 576 mz = NULL;
4e416953
BS
577 rightmost = rb_last(&mctz->rb_root);
578 if (!rightmost)
579 goto done; /* Nothing to reclaim from */
580
581 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
582 /*
583 * Remove the node now but someone else can add it back,
584 * we will to add it back at the end of reclaim to its correct
585 * position in the tree.
586 */
587 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
588 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
589 !css_tryget(&mz->mem->css))
590 goto retry;
591done:
592 return mz;
593}
594
595static struct mem_cgroup_per_zone *
596mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
597{
598 struct mem_cgroup_per_zone *mz;
599
600 spin_lock(&mctz->lock);
601 mz = __mem_cgroup_largest_soft_limit_node(mctz);
602 spin_unlock(&mctz->lock);
603 return mz;
604}
605
711d3d2c
KH
606/*
607 * Implementation Note: reading percpu statistics for memcg.
608 *
609 * Both of vmstat[] and percpu_counter has threshold and do periodic
610 * synchronization to implement "quick" read. There are trade-off between
611 * reading cost and precision of value. Then, we may have a chance to implement
612 * a periodic synchronizion of counter in memcg's counter.
613 *
614 * But this _read() function is used for user interface now. The user accounts
615 * memory usage by memory cgroup and he _always_ requires exact value because
616 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
617 * have to visit all online cpus and make sum. So, for now, unnecessary
618 * synchronization is not implemented. (just implemented for cpu hotplug)
619 *
620 * If there are kernel internal actions which can make use of some not-exact
621 * value, and reading all cpu value can be performance bottleneck in some
622 * common workload, threashold and synchonization as vmstat[] should be
623 * implemented.
624 */
c0ff4b85 625static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 626 enum mem_cgroup_stat_index idx)
c62b1a3b 627{
7a159cc9 628 long val = 0;
c62b1a3b 629 int cpu;
c62b1a3b 630
711d3d2c
KH
631 get_online_cpus();
632 for_each_online_cpu(cpu)
c0ff4b85 633 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 634#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
635 spin_lock(&memcg->pcp_counter_lock);
636 val += memcg->nocpu_base.count[idx];
637 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
638#endif
639 put_online_cpus();
c62b1a3b
KH
640 return val;
641}
642
c0ff4b85 643static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
644 bool charge)
645{
646 int val = (charge) ? 1 : -1;
c0ff4b85 647 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
648}
649
c0ff4b85 650void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
456f998e 651{
c0ff4b85 652 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
456f998e
YH
653}
654
c0ff4b85 655void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
456f998e 656{
c0ff4b85 657 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
456f998e
YH
658}
659
c0ff4b85 660static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
661 enum mem_cgroup_events_index idx)
662{
663 unsigned long val = 0;
664 int cpu;
665
666 for_each_online_cpu(cpu)
c0ff4b85 667 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 668#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
669 spin_lock(&memcg->pcp_counter_lock);
670 val += memcg->nocpu_base.events[idx];
671 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
672#endif
673 return val;
674}
675
c0ff4b85 676static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
e401f176 677 bool file, int nr_pages)
d52aa412 678{
c62b1a3b
KH
679 preempt_disable();
680
e401f176 681 if (file)
c0ff4b85
R
682 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
683 nr_pages);
d52aa412 684 else
c0ff4b85
R
685 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
686 nr_pages);
55e462b0 687
e401f176
KH
688 /* pagein of a big page is an event. So, ignore page size */
689 if (nr_pages > 0)
c0ff4b85 690 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 691 else {
c0ff4b85 692 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
693 nr_pages = -nr_pages; /* for event */
694 }
e401f176 695
c0ff4b85 696 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 697
c62b1a3b 698 preempt_enable();
6d12e2d8
KH
699}
700
bb2a0de9 701unsigned long
c0ff4b85 702mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 703 unsigned int lru_mask)
889976db
YH
704{
705 struct mem_cgroup_per_zone *mz;
bb2a0de9
KH
706 enum lru_list l;
707 unsigned long ret = 0;
708
c0ff4b85 709 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9
KH
710
711 for_each_lru(l) {
712 if (BIT(l) & lru_mask)
713 ret += MEM_CGROUP_ZSTAT(mz, l);
714 }
715 return ret;
716}
717
718static unsigned long
c0ff4b85 719mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
720 int nid, unsigned int lru_mask)
721{
889976db
YH
722 u64 total = 0;
723 int zid;
724
bb2a0de9 725 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
726 total += mem_cgroup_zone_nr_lru_pages(memcg,
727 nid, zid, lru_mask);
bb2a0de9 728
889976db
YH
729 return total;
730}
bb2a0de9 731
c0ff4b85 732static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 733 unsigned int lru_mask)
6d12e2d8 734{
889976db 735 int nid;
6d12e2d8
KH
736 u64 total = 0;
737
bb2a0de9 738 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 739 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 740 return total;
d52aa412
KH
741}
742
c0ff4b85 743static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
7a159cc9
JW
744{
745 unsigned long val, next;
746
4799401f
SR
747 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
748 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9
JW
749 /* from time_after() in jiffies.h */
750 return ((long)next - (long)val < 0);
751}
752
c0ff4b85 753static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
d2265e6f 754{
7a159cc9 755 unsigned long val, next;
d2265e6f 756
4799401f 757 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
d2265e6f 758
7a159cc9
JW
759 switch (target) {
760 case MEM_CGROUP_TARGET_THRESH:
761 next = val + THRESHOLDS_EVENTS_TARGET;
762 break;
763 case MEM_CGROUP_TARGET_SOFTLIMIT:
764 next = val + SOFTLIMIT_EVENTS_TARGET;
765 break;
453a9bf3
KH
766 case MEM_CGROUP_TARGET_NUMAINFO:
767 next = val + NUMAINFO_EVENTS_TARGET;
768 break;
7a159cc9
JW
769 default:
770 return;
771 }
772
4799401f 773 __this_cpu_write(memcg->stat->targets[target], next);
d2265e6f
KH
774}
775
776/*
777 * Check events in order.
778 *
779 */
c0ff4b85 780static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 781{
4799401f 782 preempt_disable();
d2265e6f 783 /* threshold event is triggered in finer grain than soft limit */
c0ff4b85
R
784 if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
785 mem_cgroup_threshold(memcg);
786 __mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
787 if (unlikely(__memcg_event_check(memcg,
453a9bf3 788 MEM_CGROUP_TARGET_SOFTLIMIT))) {
c0ff4b85
R
789 mem_cgroup_update_tree(memcg, page);
790 __mem_cgroup_target_update(memcg,
453a9bf3
KH
791 MEM_CGROUP_TARGET_SOFTLIMIT);
792 }
793#if MAX_NUMNODES > 1
c0ff4b85 794 if (unlikely(__memcg_event_check(memcg,
453a9bf3 795 MEM_CGROUP_TARGET_NUMAINFO))) {
c0ff4b85
R
796 atomic_inc(&memcg->numainfo_events);
797 __mem_cgroup_target_update(memcg,
453a9bf3 798 MEM_CGROUP_TARGET_NUMAINFO);
7a159cc9 799 }
453a9bf3 800#endif
d2265e6f 801 }
4799401f 802 preempt_enable();
d2265e6f
KH
803}
804
d1a4c0b3 805struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
806{
807 return container_of(cgroup_subsys_state(cont,
808 mem_cgroup_subsys_id), struct mem_cgroup,
809 css);
810}
811
cf475ad2 812struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 813{
31a78f23
BS
814 /*
815 * mm_update_next_owner() may clear mm->owner to NULL
816 * if it races with swapoff, page migration, etc.
817 * So this can be called with p == NULL.
818 */
819 if (unlikely(!p))
820 return NULL;
821
78fb7466
PE
822 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
823 struct mem_cgroup, css);
824}
825
a433658c 826struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 827{
c0ff4b85 828 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
829
830 if (!mm)
831 return NULL;
54595fe2
KH
832 /*
833 * Because we have no locks, mm->owner's may be being moved to other
834 * cgroup. We use css_tryget() here even if this looks
835 * pessimistic (rather than adding locks here).
836 */
837 rcu_read_lock();
838 do {
c0ff4b85
R
839 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
840 if (unlikely(!memcg))
54595fe2 841 break;
c0ff4b85 842 } while (!css_tryget(&memcg->css));
54595fe2 843 rcu_read_unlock();
c0ff4b85 844 return memcg;
54595fe2
KH
845}
846
7d74b06f 847/* The caller has to guarantee "mem" exists before calling this */
c0ff4b85 848static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *memcg)
14067bb3 849{
711d3d2c
KH
850 struct cgroup_subsys_state *css;
851 int found;
852
c0ff4b85 853 if (!memcg) /* ROOT cgroup has the smallest ID */
711d3d2c 854 return root_mem_cgroup; /*css_put/get against root is ignored*/
c0ff4b85
R
855 if (!memcg->use_hierarchy) {
856 if (css_tryget(&memcg->css))
857 return memcg;
711d3d2c
KH
858 return NULL;
859 }
860 rcu_read_lock();
861 /*
862 * searching a memory cgroup which has the smallest ID under given
863 * ROOT cgroup. (ID >= 1)
864 */
c0ff4b85 865 css = css_get_next(&mem_cgroup_subsys, 1, &memcg->css, &found);
711d3d2c 866 if (css && css_tryget(css))
c0ff4b85 867 memcg = container_of(css, struct mem_cgroup, css);
711d3d2c 868 else
c0ff4b85 869 memcg = NULL;
711d3d2c 870 rcu_read_unlock();
c0ff4b85 871 return memcg;
7d74b06f
KH
872}
873
874static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
875 struct mem_cgroup *root,
876 bool cond)
877{
878 int nextid = css_id(&iter->css) + 1;
879 int found;
880 int hierarchy_used;
14067bb3 881 struct cgroup_subsys_state *css;
14067bb3 882
7d74b06f 883 hierarchy_used = iter->use_hierarchy;
14067bb3 884
7d74b06f 885 css_put(&iter->css);
711d3d2c
KH
886 /* If no ROOT, walk all, ignore hierarchy */
887 if (!cond || (root && !hierarchy_used))
7d74b06f 888 return NULL;
14067bb3 889
711d3d2c
KH
890 if (!root)
891 root = root_mem_cgroup;
892
7d74b06f
KH
893 do {
894 iter = NULL;
14067bb3 895 rcu_read_lock();
7d74b06f
KH
896
897 css = css_get_next(&mem_cgroup_subsys, nextid,
898 &root->css, &found);
14067bb3 899 if (css && css_tryget(css))
7d74b06f 900 iter = container_of(css, struct mem_cgroup, css);
14067bb3 901 rcu_read_unlock();
7d74b06f 902 /* If css is NULL, no more cgroups will be found */
14067bb3 903 nextid = found + 1;
7d74b06f 904 } while (css && !iter);
14067bb3 905
7d74b06f 906 return iter;
14067bb3 907}
7d74b06f
KH
908/*
909 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
910 * be careful that "break" loop is not allowed. We have reference count.
911 * Instead of that modify "cond" to be false and "continue" to exit the loop.
912 */
913#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
914 for (iter = mem_cgroup_start_loop(root);\
915 iter != NULL;\
916 iter = mem_cgroup_get_next(iter, root, cond))
917
918#define for_each_mem_cgroup_tree(iter, root) \
919 for_each_mem_cgroup_tree_cond(iter, root, true)
920
711d3d2c
KH
921#define for_each_mem_cgroup_all(iter) \
922 for_each_mem_cgroup_tree_cond(iter, NULL, true)
923
14067bb3 924
c0ff4b85 925static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 926{
c0ff4b85 927 return (memcg == root_mem_cgroup);
4b3bde4c
BS
928}
929
456f998e
YH
930void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
931{
c0ff4b85 932 struct mem_cgroup *memcg;
456f998e
YH
933
934 if (!mm)
935 return;
936
937 rcu_read_lock();
c0ff4b85
R
938 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
939 if (unlikely(!memcg))
456f998e
YH
940 goto out;
941
942 switch (idx) {
943 case PGMAJFAULT:
c0ff4b85 944 mem_cgroup_pgmajfault(memcg, 1);
456f998e
YH
945 break;
946 case PGFAULT:
c0ff4b85 947 mem_cgroup_pgfault(memcg, 1);
456f998e
YH
948 break;
949 default:
950 BUG();
951 }
952out:
953 rcu_read_unlock();
954}
955EXPORT_SYMBOL(mem_cgroup_count_vm_event);
956
08e552c6
KH
957/*
958 * Following LRU functions are allowed to be used without PCG_LOCK.
959 * Operations are called by routine of global LRU independently from memcg.
960 * What we have to take care of here is validness of pc->mem_cgroup.
961 *
962 * Changes to pc->mem_cgroup happens when
963 * 1. charge
964 * 2. moving account
965 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
966 * It is added to LRU before charge.
967 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
968 * When moving account, the page is not on LRU. It's isolated.
969 */
4f98a2fe 970
08e552c6
KH
971void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
972{
973 struct page_cgroup *pc;
08e552c6 974 struct mem_cgroup_per_zone *mz;
6d12e2d8 975
f8d66542 976 if (mem_cgroup_disabled())
08e552c6
KH
977 return;
978 pc = lookup_page_cgroup(page);
979 /* can happen while we handle swapcache. */
4b3bde4c 980 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 981 return;
4b3bde4c 982 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
983 /*
984 * We don't check PCG_USED bit. It's cleared when the "page" is finally
985 * removed from global LRU.
986 */
97a6c37b 987 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
988 /* huge page split is done under lru_lock. so, we have no races. */
989 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
990 if (mem_cgroup_is_root(pc->mem_cgroup))
991 return;
992 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 993 list_del_init(&pc->lru);
6d12e2d8
KH
994}
995
08e552c6 996void mem_cgroup_del_lru(struct page *page)
6d12e2d8 997{
08e552c6
KH
998 mem_cgroup_del_lru_list(page, page_lru(page));
999}
b69408e8 1000
3f58a829
MK
1001/*
1002 * Writeback is about to end against a page which has been marked for immediate
1003 * reclaim. If it still appears to be reclaimable, move it to the tail of the
1004 * inactive list.
1005 */
1006void mem_cgroup_rotate_reclaimable_page(struct page *page)
1007{
1008 struct mem_cgroup_per_zone *mz;
1009 struct page_cgroup *pc;
1010 enum lru_list lru = page_lru(page);
1011
1012 if (mem_cgroup_disabled())
1013 return;
1014
1015 pc = lookup_page_cgroup(page);
1016 /* unused or root page is not rotated. */
1017 if (!PageCgroupUsed(pc))
1018 return;
1019 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1020 smp_rmb();
1021 if (mem_cgroup_is_root(pc->mem_cgroup))
1022 return;
97a6c37b 1023 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3f58a829
MK
1024 list_move_tail(&pc->lru, &mz->lists[lru]);
1025}
1026
08e552c6
KH
1027void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1028{
1029 struct mem_cgroup_per_zone *mz;
1030 struct page_cgroup *pc;
b69408e8 1031
f8d66542 1032 if (mem_cgroup_disabled())
08e552c6 1033 return;
6d12e2d8 1034
08e552c6 1035 pc = lookup_page_cgroup(page);
4b3bde4c 1036 /* unused or root page is not rotated. */
713735b4
JW
1037 if (!PageCgroupUsed(pc))
1038 return;
1039 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1040 smp_rmb();
1041 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6 1042 return;
97a6c37b 1043 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
08e552c6 1044 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
1045}
1046
08e552c6 1047void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 1048{
08e552c6
KH
1049 struct page_cgroup *pc;
1050 struct mem_cgroup_per_zone *mz;
6d12e2d8 1051
f8d66542 1052 if (mem_cgroup_disabled())
08e552c6
KH
1053 return;
1054 pc = lookup_page_cgroup(page);
4b3bde4c 1055 VM_BUG_ON(PageCgroupAcctLRU(pc));
a61ed3ce
JW
1056 /*
1057 * putback: charge:
1058 * SetPageLRU SetPageCgroupUsed
1059 * smp_mb smp_mb
1060 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1061 *
1062 * Ensure that one of the two sides adds the page to the memcg
1063 * LRU during a race.
1064 */
1065 smp_mb();
08e552c6 1066 if (!PageCgroupUsed(pc))
894bc310 1067 return;
713735b4
JW
1068 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1069 smp_rmb();
97a6c37b 1070 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
1071 /* huge page split is done under lru_lock. so, we have no races. */
1072 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
1073 SetPageCgroupAcctLRU(pc);
1074 if (mem_cgroup_is_root(pc->mem_cgroup))
1075 return;
08e552c6
KH
1076 list_add(&pc->lru, &mz->lists[lru]);
1077}
544122e5 1078
08e552c6 1079/*
5a6475a4
KH
1080 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1081 * while it's linked to lru because the page may be reused after it's fully
1082 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1083 * It's done under lock_page and expected that zone->lru_lock isnever held.
08e552c6 1084 */
5a6475a4 1085static void mem_cgroup_lru_del_before_commit(struct page *page)
08e552c6 1086{
544122e5
KH
1087 unsigned long flags;
1088 struct zone *zone = page_zone(page);
1089 struct page_cgroup *pc = lookup_page_cgroup(page);
1090
5a6475a4
KH
1091 /*
1092 * Doing this check without taking ->lru_lock seems wrong but this
1093 * is safe. Because if page_cgroup's USED bit is unset, the page
1094 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1095 * set, the commit after this will fail, anyway.
1096 * This all charge/uncharge is done under some mutual execustion.
1097 * So, we don't need to taking care of changes in USED bit.
1098 */
1099 if (likely(!PageLRU(page)))
1100 return;
1101
544122e5
KH
1102 spin_lock_irqsave(&zone->lru_lock, flags);
1103 /*
1104 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1105 * is guarded by lock_page() because the page is SwapCache.
1106 */
1107 if (!PageCgroupUsed(pc))
1108 mem_cgroup_del_lru_list(page, page_lru(page));
1109 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
1110}
1111
5a6475a4 1112static void mem_cgroup_lru_add_after_commit(struct page *page)
544122e5
KH
1113{
1114 unsigned long flags;
1115 struct zone *zone = page_zone(page);
1116 struct page_cgroup *pc = lookup_page_cgroup(page);
a61ed3ce
JW
1117 /*
1118 * putback: charge:
1119 * SetPageLRU SetPageCgroupUsed
1120 * smp_mb smp_mb
1121 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1122 *
1123 * Ensure that one of the two sides adds the page to the memcg
1124 * LRU during a race.
1125 */
1126 smp_mb();
5a6475a4
KH
1127 /* taking care of that the page is added to LRU while we commit it */
1128 if (likely(!PageLRU(page)))
1129 return;
544122e5
KH
1130 spin_lock_irqsave(&zone->lru_lock, flags);
1131 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 1132 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
1133 mem_cgroup_add_lru_list(page, page_lru(page));
1134 spin_unlock_irqrestore(&zone->lru_lock, flags);
1135}
1136
1137
08e552c6
KH
1138void mem_cgroup_move_lists(struct page *page,
1139 enum lru_list from, enum lru_list to)
1140{
f8d66542 1141 if (mem_cgroup_disabled())
08e552c6
KH
1142 return;
1143 mem_cgroup_del_lru_list(page, from);
1144 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
1145}
1146
3e92041d 1147/*
c0ff4b85 1148 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1149 * hierarchy subtree
1150 */
c0ff4b85
R
1151static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1152 struct mem_cgroup *memcg)
3e92041d 1153{
c0ff4b85
R
1154 if (root_memcg != memcg) {
1155 return (root_memcg->use_hierarchy &&
1156 css_is_ancestor(&memcg->css, &root_memcg->css));
3e92041d
MH
1157 }
1158
1159 return true;
1160}
1161
c0ff4b85 1162int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1163{
1164 int ret;
0b7f569e 1165 struct mem_cgroup *curr = NULL;
158e0a2d 1166 struct task_struct *p;
4c4a2214 1167
158e0a2d
KH
1168 p = find_lock_task_mm(task);
1169 if (!p)
1170 return 0;
1171 curr = try_get_mem_cgroup_from_mm(p->mm);
1172 task_unlock(p);
0b7f569e
KH
1173 if (!curr)
1174 return 0;
d31f56db 1175 /*
c0ff4b85 1176 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1177 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1178 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1179 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1180 */
c0ff4b85 1181 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1182 css_put(&curr->css);
4c4a2214
DR
1183 return ret;
1184}
1185
9b272977 1186int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1187{
9b272977
JW
1188 unsigned long inactive_ratio;
1189 int nid = zone_to_nid(zone);
1190 int zid = zone_idx(zone);
14797e23 1191 unsigned long inactive;
9b272977 1192 unsigned long active;
c772be93 1193 unsigned long gb;
14797e23 1194
9b272977
JW
1195 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1196 BIT(LRU_INACTIVE_ANON));
1197 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1198 BIT(LRU_ACTIVE_ANON));
14797e23 1199
c772be93
KM
1200 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1201 if (gb)
1202 inactive_ratio = int_sqrt(10 * gb);
1203 else
1204 inactive_ratio = 1;
1205
9b272977 1206 return inactive * inactive_ratio < active;
14797e23
KM
1207}
1208
9b272977 1209int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1210{
1211 unsigned long active;
1212 unsigned long inactive;
9b272977
JW
1213 int zid = zone_idx(zone);
1214 int nid = zone_to_nid(zone);
56e49d21 1215
9b272977
JW
1216 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1217 BIT(LRU_INACTIVE_FILE));
1218 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1219 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1220
1221 return (active > inactive);
1222}
1223
3e2f41f1
KM
1224struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1225 struct zone *zone)
1226{
13d7e3a2 1227 int nid = zone_to_nid(zone);
3e2f41f1
KM
1228 int zid = zone_idx(zone);
1229 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1230
1231 return &mz->reclaim_stat;
1232}
1233
1234struct zone_reclaim_stat *
1235mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1236{
1237 struct page_cgroup *pc;
1238 struct mem_cgroup_per_zone *mz;
1239
1240 if (mem_cgroup_disabled())
1241 return NULL;
1242
1243 pc = lookup_page_cgroup(page);
bd112db8
DN
1244 if (!PageCgroupUsed(pc))
1245 return NULL;
713735b4
JW
1246 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1247 smp_rmb();
97a6c37b 1248 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1249 return &mz->reclaim_stat;
1250}
1251
66e1707b
BS
1252unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1253 struct list_head *dst,
1254 unsigned long *scanned, int order,
4356f21d
MK
1255 isolate_mode_t mode,
1256 struct zone *z,
66e1707b 1257 struct mem_cgroup *mem_cont,
4f98a2fe 1258 int active, int file)
66e1707b
BS
1259{
1260 unsigned long nr_taken = 0;
1261 struct page *page;
1262 unsigned long scan;
1263 LIST_HEAD(pc_list);
1264 struct list_head *src;
ff7283fa 1265 struct page_cgroup *pc, *tmp;
13d7e3a2 1266 int nid = zone_to_nid(z);
1ecaab2b
KH
1267 int zid = zone_idx(z);
1268 struct mem_cgroup_per_zone *mz;
b7c46d15 1269 int lru = LRU_FILE * file + active;
2ffebca6 1270 int ret;
66e1707b 1271
cf475ad2 1272 BUG_ON(!mem_cont);
1ecaab2b 1273 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1274 src = &mz->lists[lru];
66e1707b 1275
ff7283fa
KH
1276 scan = 0;
1277 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1278 if (scan >= nr_to_scan)
ff7283fa 1279 break;
08e552c6 1280
52d4b9ac
KH
1281 if (unlikely(!PageCgroupUsed(pc)))
1282 continue;
5564e88b 1283
6b3ae58e 1284 page = lookup_cgroup_page(pc);
5564e88b 1285
436c6541 1286 if (unlikely(!PageLRU(page)))
ff7283fa 1287 continue;
ff7283fa 1288
436c6541 1289 scan++;
2ffebca6
KH
1290 ret = __isolate_lru_page(page, mode, file);
1291 switch (ret) {
1292 case 0:
66e1707b 1293 list_move(&page->lru, dst);
2ffebca6 1294 mem_cgroup_del_lru(page);
2c888cfb 1295 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1296 break;
1297 case -EBUSY:
1298 /* we don't affect global LRU but rotate in our LRU */
1299 mem_cgroup_rotate_lru_list(page, page_lru(page));
1300 break;
1301 default:
1302 break;
66e1707b
BS
1303 }
1304 }
1305
66e1707b 1306 *scanned = scan;
cc8e970c
KM
1307
1308 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1309 0, 0, 0, mode);
1310
66e1707b
BS
1311 return nr_taken;
1312}
1313
6d61ef40
BS
1314#define mem_cgroup_from_res_counter(counter, member) \
1315 container_of(counter, struct mem_cgroup, member)
1316
19942822 1317/**
9d11ea9f
JW
1318 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1319 * @mem: the memory cgroup
19942822 1320 *
9d11ea9f 1321 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1322 * pages.
19942822 1323 */
c0ff4b85 1324static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1325{
9d11ea9f
JW
1326 unsigned long long margin;
1327
c0ff4b85 1328 margin = res_counter_margin(&memcg->res);
9d11ea9f 1329 if (do_swap_account)
c0ff4b85 1330 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1331 return margin >> PAGE_SHIFT;
19942822
JW
1332}
1333
1f4c025b 1334int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1335{
1336 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1337
1338 /* root ? */
1339 if (cgrp->parent == NULL)
1340 return vm_swappiness;
1341
bf1ff263 1342 return memcg->swappiness;
a7885eb8
KM
1343}
1344
c0ff4b85 1345static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a
KH
1346{
1347 int cpu;
1489ebad
KH
1348
1349 get_online_cpus();
c0ff4b85 1350 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1351 for_each_online_cpu(cpu)
c0ff4b85
R
1352 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1353 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1354 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1355 put_online_cpus();
32047e2a
KH
1356
1357 synchronize_rcu();
1358}
1359
c0ff4b85 1360static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a
KH
1361{
1362 int cpu;
1363
c0ff4b85 1364 if (!memcg)
32047e2a 1365 return;
1489ebad 1366 get_online_cpus();
c0ff4b85 1367 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1368 for_each_online_cpu(cpu)
c0ff4b85
R
1369 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1370 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1371 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1372 put_online_cpus();
32047e2a
KH
1373}
1374/*
1375 * 2 routines for checking "mem" is under move_account() or not.
1376 *
1377 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1378 * for avoiding race in accounting. If true,
1379 * pc->mem_cgroup may be overwritten.
1380 *
1381 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1382 * under hierarchy of moving cgroups. This is for
1383 * waiting at hith-memory prressure caused by "move".
1384 */
1385
c0ff4b85 1386static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
32047e2a
KH
1387{
1388 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85 1389 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
32047e2a 1390}
4b534334 1391
c0ff4b85 1392static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1393{
2bd9bb20
KH
1394 struct mem_cgroup *from;
1395 struct mem_cgroup *to;
4b534334 1396 bool ret = false;
2bd9bb20
KH
1397 /*
1398 * Unlike task_move routines, we access mc.to, mc.from not under
1399 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1400 */
1401 spin_lock(&mc.lock);
1402 from = mc.from;
1403 to = mc.to;
1404 if (!from)
1405 goto unlock;
3e92041d 1406
c0ff4b85
R
1407 ret = mem_cgroup_same_or_subtree(memcg, from)
1408 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1409unlock:
1410 spin_unlock(&mc.lock);
4b534334
KH
1411 return ret;
1412}
1413
c0ff4b85 1414static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1415{
1416 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1417 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1418 DEFINE_WAIT(wait);
1419 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1420 /* moving charge context might have finished. */
1421 if (mc.moving_task)
1422 schedule();
1423 finish_wait(&mc.waitq, &wait);
1424 return true;
1425 }
1426 }
1427 return false;
1428}
1429
e222432b 1430/**
6a6135b6 1431 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1432 * @memcg: The memory cgroup that went over limit
1433 * @p: Task that is going to be killed
1434 *
1435 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1436 * enabled
1437 */
1438void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1439{
1440 struct cgroup *task_cgrp;
1441 struct cgroup *mem_cgrp;
1442 /*
1443 * Need a buffer in BSS, can't rely on allocations. The code relies
1444 * on the assumption that OOM is serialized for memory controller.
1445 * If this assumption is broken, revisit this code.
1446 */
1447 static char memcg_name[PATH_MAX];
1448 int ret;
1449
d31f56db 1450 if (!memcg || !p)
e222432b
BS
1451 return;
1452
1453
1454 rcu_read_lock();
1455
1456 mem_cgrp = memcg->css.cgroup;
1457 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1458
1459 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1460 if (ret < 0) {
1461 /*
1462 * Unfortunately, we are unable to convert to a useful name
1463 * But we'll still print out the usage information
1464 */
1465 rcu_read_unlock();
1466 goto done;
1467 }
1468 rcu_read_unlock();
1469
1470 printk(KERN_INFO "Task in %s killed", memcg_name);
1471
1472 rcu_read_lock();
1473 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1474 if (ret < 0) {
1475 rcu_read_unlock();
1476 goto done;
1477 }
1478 rcu_read_unlock();
1479
1480 /*
1481 * Continues from above, so we don't need an KERN_ level
1482 */
1483 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1484done:
1485
1486 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1487 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1488 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1489 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1490 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1491 "failcnt %llu\n",
1492 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1493 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1494 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1495}
1496
81d39c20
KH
1497/*
1498 * This function returns the number of memcg under hierarchy tree. Returns
1499 * 1(self count) if no children.
1500 */
c0ff4b85 1501static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1502{
1503 int num = 0;
7d74b06f
KH
1504 struct mem_cgroup *iter;
1505
c0ff4b85 1506 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1507 num++;
81d39c20
KH
1508 return num;
1509}
1510
a63d83f4
DR
1511/*
1512 * Return the memory (and swap, if configured) limit for a memcg.
1513 */
1514u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1515{
1516 u64 limit;
1517 u64 memsw;
1518
f3e8eb70
JW
1519 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1520 limit += total_swap_pages << PAGE_SHIFT;
1521
a63d83f4
DR
1522 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1523 /*
1524 * If memsw is finite and limits the amount of swap space available
1525 * to this memcg, return that limit.
1526 */
1527 return min(limit, memsw);
1528}
1529
6d61ef40 1530/*
04046e1a
KH
1531 * Visit the first child (need not be the first child as per the ordering
1532 * of the cgroup list, since we track last_scanned_child) of @mem and use
1533 * that to reclaim free pages from.
1534 */
1535static struct mem_cgroup *
c0ff4b85 1536mem_cgroup_select_victim(struct mem_cgroup *root_memcg)
04046e1a
KH
1537{
1538 struct mem_cgroup *ret = NULL;
1539 struct cgroup_subsys_state *css;
1540 int nextid, found;
1541
c0ff4b85
R
1542 if (!root_memcg->use_hierarchy) {
1543 css_get(&root_memcg->css);
1544 ret = root_memcg;
04046e1a
KH
1545 }
1546
1547 while (!ret) {
1548 rcu_read_lock();
c0ff4b85
R
1549 nextid = root_memcg->last_scanned_child + 1;
1550 css = css_get_next(&mem_cgroup_subsys, nextid, &root_memcg->css,
04046e1a
KH
1551 &found);
1552 if (css && css_tryget(css))
1553 ret = container_of(css, struct mem_cgroup, css);
1554
1555 rcu_read_unlock();
1556 /* Updates scanning parameter */
04046e1a
KH
1557 if (!css) {
1558 /* this means start scan from ID:1 */
c0ff4b85 1559 root_memcg->last_scanned_child = 0;
04046e1a 1560 } else
c0ff4b85 1561 root_memcg->last_scanned_child = found;
04046e1a
KH
1562 }
1563
1564 return ret;
1565}
1566
4d0c066d
KH
1567/**
1568 * test_mem_cgroup_node_reclaimable
1569 * @mem: the target memcg
1570 * @nid: the node ID to be checked.
1571 * @noswap : specify true here if the user wants flle only information.
1572 *
1573 * This function returns whether the specified memcg contains any
1574 * reclaimable pages on a node. Returns true if there are any reclaimable
1575 * pages in the node.
1576 */
c0ff4b85 1577static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1578 int nid, bool noswap)
1579{
c0ff4b85 1580 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1581 return true;
1582 if (noswap || !total_swap_pages)
1583 return false;
c0ff4b85 1584 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1585 return true;
1586 return false;
1587
1588}
889976db
YH
1589#if MAX_NUMNODES > 1
1590
1591/*
1592 * Always updating the nodemask is not very good - even if we have an empty
1593 * list or the wrong list here, we can start from some node and traverse all
1594 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1595 *
1596 */
c0ff4b85 1597static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1598{
1599 int nid;
453a9bf3
KH
1600 /*
1601 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1602 * pagein/pageout changes since the last update.
1603 */
c0ff4b85 1604 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1605 return;
c0ff4b85 1606 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1607 return;
1608
889976db 1609 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1610 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1611
1612 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1613
c0ff4b85
R
1614 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1615 node_clear(nid, memcg->scan_nodes);
889976db 1616 }
453a9bf3 1617
c0ff4b85
R
1618 atomic_set(&memcg->numainfo_events, 0);
1619 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1620}
1621
1622/*
1623 * Selecting a node where we start reclaim from. Because what we need is just
1624 * reducing usage counter, start from anywhere is O,K. Considering
1625 * memory reclaim from current node, there are pros. and cons.
1626 *
1627 * Freeing memory from current node means freeing memory from a node which
1628 * we'll use or we've used. So, it may make LRU bad. And if several threads
1629 * hit limits, it will see a contention on a node. But freeing from remote
1630 * node means more costs for memory reclaim because of memory latency.
1631 *
1632 * Now, we use round-robin. Better algorithm is welcomed.
1633 */
c0ff4b85 1634int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1635{
1636 int node;
1637
c0ff4b85
R
1638 mem_cgroup_may_update_nodemask(memcg);
1639 node = memcg->last_scanned_node;
889976db 1640
c0ff4b85 1641 node = next_node(node, memcg->scan_nodes);
889976db 1642 if (node == MAX_NUMNODES)
c0ff4b85 1643 node = first_node(memcg->scan_nodes);
889976db
YH
1644 /*
1645 * We call this when we hit limit, not when pages are added to LRU.
1646 * No LRU may hold pages because all pages are UNEVICTABLE or
1647 * memcg is too small and all pages are not on LRU. In that case,
1648 * we use curret node.
1649 */
1650 if (unlikely(node == MAX_NUMNODES))
1651 node = numa_node_id();
1652
c0ff4b85 1653 memcg->last_scanned_node = node;
889976db
YH
1654 return node;
1655}
1656
4d0c066d
KH
1657/*
1658 * Check all nodes whether it contains reclaimable pages or not.
1659 * For quick scan, we make use of scan_nodes. This will allow us to skip
1660 * unused nodes. But scan_nodes is lazily updated and may not cotain
1661 * enough new information. We need to do double check.
1662 */
c0ff4b85 1663bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1664{
1665 int nid;
1666
1667 /*
1668 * quick check...making use of scan_node.
1669 * We can skip unused nodes.
1670 */
c0ff4b85
R
1671 if (!nodes_empty(memcg->scan_nodes)) {
1672 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1673 nid < MAX_NUMNODES;
c0ff4b85 1674 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1675
c0ff4b85 1676 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1677 return true;
1678 }
1679 }
1680 /*
1681 * Check rest of nodes.
1682 */
1683 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1684 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1685 continue;
c0ff4b85 1686 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1687 return true;
1688 }
1689 return false;
1690}
1691
889976db 1692#else
c0ff4b85 1693int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1694{
1695 return 0;
1696}
4d0c066d 1697
c0ff4b85 1698bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1699{
c0ff4b85 1700 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1701}
889976db
YH
1702#endif
1703
04046e1a
KH
1704/*
1705 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1706 * we reclaimed from, so that we don't end up penalizing one child extensively
1707 * based on its position in the children list.
6d61ef40 1708 *
c0ff4b85 1709 * root_memcg is the original ancestor that we've been reclaim from.
04046e1a 1710 *
c0ff4b85 1711 * We give up and return to the caller when we visit root_memcg twice.
04046e1a 1712 * (other groups can be removed while we're walking....)
81d39c20
KH
1713 *
1714 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40 1715 */
c0ff4b85 1716static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
4e416953 1717 struct zone *zone,
75822b44 1718 gfp_t gfp_mask,
0ae5e89c
YH
1719 unsigned long reclaim_options,
1720 unsigned long *total_scanned)
6d61ef40 1721{
04046e1a
KH
1722 struct mem_cgroup *victim;
1723 int ret, total = 0;
1724 int loop = 0;
75822b44
BS
1725 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1726 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953 1727 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
9d11ea9f 1728 unsigned long excess;
185efc0f 1729 unsigned long nr_scanned;
9d11ea9f 1730
c0ff4b85 1731 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1732
22a668d7 1733 /* If memsw_is_minimum==1, swap-out is of-no-use. */
c0ff4b85 1734 if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
22a668d7
KH
1735 noswap = true;
1736
4e416953 1737 while (1) {
c0ff4b85
R
1738 victim = mem_cgroup_select_victim(root_memcg);
1739 if (victim == root_memcg) {
04046e1a 1740 loop++;
fbc29a25
KH
1741 /*
1742 * We are not draining per cpu cached charges during
1743 * soft limit reclaim because global reclaim doesn't
1744 * care about charges. It tries to free some memory and
1745 * charges will not give any.
1746 */
1747 if (!check_soft && loop >= 1)
c0ff4b85 1748 drain_all_stock_async(root_memcg);
4e416953
BS
1749 if (loop >= 2) {
1750 /*
1751 * If we have not been able to reclaim
1752 * anything, it might because there are
1753 * no reclaimable pages under this hierarchy
1754 */
1755 if (!check_soft || !total) {
1756 css_put(&victim->css);
1757 break;
1758 }
1759 /*
25985edc 1760 * We want to do more targeted reclaim.
4e416953
BS
1761 * excess >> 2 is not to excessive so as to
1762 * reclaim too much, nor too less that we keep
1763 * coming back to reclaim from this cgroup
1764 */
1765 if (total >= (excess >> 2) ||
1766 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1767 css_put(&victim->css);
1768 break;
1769 }
1770 }
1771 }
4d0c066d 1772 if (!mem_cgroup_reclaimable(victim, noswap)) {
04046e1a
KH
1773 /* this cgroup's local usage == 0 */
1774 css_put(&victim->css);
6d61ef40
BS
1775 continue;
1776 }
04046e1a 1777 /* we use swappiness of local cgroup */
0ae5e89c 1778 if (check_soft) {
4e416953 1779 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
185efc0f
JW
1780 noswap, zone, &nr_scanned);
1781 *total_scanned += nr_scanned;
0ae5e89c 1782 } else
4e416953 1783 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
185efc0f 1784 noswap);
04046e1a 1785 css_put(&victim->css);
81d39c20
KH
1786 /*
1787 * At shrinking usage, we can't check we should stop here or
1788 * reclaim more. It's depends on callers. last_scanned_child
1789 * will work enough for keeping fairness under tree.
1790 */
1791 if (shrink)
1792 return ret;
04046e1a 1793 total += ret;
4e416953 1794 if (check_soft) {
c0ff4b85 1795 if (!res_counter_soft_limit_excess(&root_memcg->res))
4e416953 1796 return total;
c0ff4b85 1797 } else if (mem_cgroup_margin(root_memcg))
4fd14ebf 1798 return total;
6d61ef40 1799 }
04046e1a 1800 return total;
6d61ef40
BS
1801}
1802
867578cb
KH
1803/*
1804 * Check OOM-Killer is already running under our hierarchy.
1805 * If someone is running, return false.
1af8efe9 1806 * Has to be called with memcg_oom_lock
867578cb 1807 */
c0ff4b85 1808static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1809{
79dfdacc
MH
1810 struct mem_cgroup *iter, *failed = NULL;
1811 bool cond = true;
a636b327 1812
c0ff4b85 1813 for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
23751be0 1814 if (iter->oom_lock) {
79dfdacc
MH
1815 /*
1816 * this subtree of our hierarchy is already locked
1817 * so we cannot give a lock.
1818 */
79dfdacc
MH
1819 failed = iter;
1820 cond = false;
23751be0
JW
1821 } else
1822 iter->oom_lock = true;
7d74b06f 1823 }
867578cb 1824
79dfdacc 1825 if (!failed)
23751be0 1826 return true;
79dfdacc
MH
1827
1828 /*
1829 * OK, we failed to lock the whole subtree so we have to clean up
1830 * what we set up to the failing subtree
1831 */
1832 cond = true;
c0ff4b85 1833 for_each_mem_cgroup_tree_cond(iter, memcg, cond) {
79dfdacc
MH
1834 if (iter == failed) {
1835 cond = false;
1836 continue;
1837 }
1838 iter->oom_lock = false;
1839 }
23751be0 1840 return false;
a636b327 1841}
0b7f569e 1842
79dfdacc 1843/*
1af8efe9 1844 * Has to be called with memcg_oom_lock
79dfdacc 1845 */
c0ff4b85 1846static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1847{
7d74b06f
KH
1848 struct mem_cgroup *iter;
1849
c0ff4b85 1850 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1851 iter->oom_lock = false;
1852 return 0;
1853}
1854
c0ff4b85 1855static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1856{
1857 struct mem_cgroup *iter;
1858
c0ff4b85 1859 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1860 atomic_inc(&iter->under_oom);
1861}
1862
c0ff4b85 1863static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1864{
1865 struct mem_cgroup *iter;
1866
867578cb
KH
1867 /*
1868 * When a new child is created while the hierarchy is under oom,
1869 * mem_cgroup_oom_lock() may not be called. We have to use
1870 * atomic_add_unless() here.
1871 */
c0ff4b85 1872 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1873 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1874}
1875
1af8efe9 1876static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1877static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1878
dc98df5a
KH
1879struct oom_wait_info {
1880 struct mem_cgroup *mem;
1881 wait_queue_t wait;
1882};
1883
1884static int memcg_oom_wake_function(wait_queue_t *wait,
1885 unsigned mode, int sync, void *arg)
1886{
c0ff4b85
R
1887 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1888 *oom_wait_memcg;
dc98df5a
KH
1889 struct oom_wait_info *oom_wait_info;
1890
1891 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
c0ff4b85 1892 oom_wait_memcg = oom_wait_info->mem;
dc98df5a 1893
dc98df5a
KH
1894 /*
1895 * Both of oom_wait_info->mem and wake_mem are stable under us.
1896 * Then we can use css_is_ancestor without taking care of RCU.
1897 */
c0ff4b85
R
1898 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1899 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1900 return 0;
dc98df5a
KH
1901 return autoremove_wake_function(wait, mode, sync, arg);
1902}
1903
c0ff4b85 1904static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1905{
c0ff4b85
R
1906 /* for filtering, pass "memcg" as argument. */
1907 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1908}
1909
c0ff4b85 1910static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1911{
c0ff4b85
R
1912 if (memcg && atomic_read(&memcg->under_oom))
1913 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1914}
1915
867578cb
KH
1916/*
1917 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1918 */
c0ff4b85 1919bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
0b7f569e 1920{
dc98df5a 1921 struct oom_wait_info owait;
3c11ecf4 1922 bool locked, need_to_kill;
867578cb 1923
c0ff4b85 1924 owait.mem = memcg;
dc98df5a
KH
1925 owait.wait.flags = 0;
1926 owait.wait.func = memcg_oom_wake_function;
1927 owait.wait.private = current;
1928 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1929 need_to_kill = true;
c0ff4b85 1930 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1931
c0ff4b85 1932 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1933 spin_lock(&memcg_oom_lock);
c0ff4b85 1934 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1935 /*
1936 * Even if signal_pending(), we can't quit charge() loop without
1937 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1938 * under OOM is always welcomed, use TASK_KILLABLE here.
1939 */
3c11ecf4 1940 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1941 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1942 need_to_kill = false;
1943 if (locked)
c0ff4b85 1944 mem_cgroup_oom_notify(memcg);
1af8efe9 1945 spin_unlock(&memcg_oom_lock);
867578cb 1946
3c11ecf4
KH
1947 if (need_to_kill) {
1948 finish_wait(&memcg_oom_waitq, &owait.wait);
c0ff4b85 1949 mem_cgroup_out_of_memory(memcg, mask);
3c11ecf4 1950 } else {
867578cb 1951 schedule();
dc98df5a 1952 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1953 }
1af8efe9 1954 spin_lock(&memcg_oom_lock);
79dfdacc 1955 if (locked)
c0ff4b85
R
1956 mem_cgroup_oom_unlock(memcg);
1957 memcg_wakeup_oom(memcg);
1af8efe9 1958 spin_unlock(&memcg_oom_lock);
867578cb 1959
c0ff4b85 1960 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1961
867578cb
KH
1962 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1963 return false;
1964 /* Give chance to dying process */
715a5ee8 1965 schedule_timeout_uninterruptible(1);
867578cb 1966 return true;
0b7f569e
KH
1967}
1968
d69b042f
BS
1969/*
1970 * Currently used to update mapped file statistics, but the routine can be
1971 * generalized to update other statistics as well.
32047e2a
KH
1972 *
1973 * Notes: Race condition
1974 *
1975 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1976 * it tends to be costly. But considering some conditions, we doesn't need
1977 * to do so _always_.
1978 *
1979 * Considering "charge", lock_page_cgroup() is not required because all
1980 * file-stat operations happen after a page is attached to radix-tree. There
1981 * are no race with "charge".
1982 *
1983 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1984 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1985 * if there are race with "uncharge". Statistics itself is properly handled
1986 * by flags.
1987 *
1988 * Considering "move", this is an only case we see a race. To make the race
1989 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1990 * possibility of race condition. If there is, we take a lock.
d69b042f 1991 */
26174efd 1992
2a7106f2
GT
1993void mem_cgroup_update_page_stat(struct page *page,
1994 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1995{
c0ff4b85 1996 struct mem_cgroup *memcg;
32047e2a
KH
1997 struct page_cgroup *pc = lookup_page_cgroup(page);
1998 bool need_unlock = false;
dbd4ea78 1999 unsigned long uninitialized_var(flags);
d69b042f 2000
d69b042f
BS
2001 if (unlikely(!pc))
2002 return;
2003
32047e2a 2004 rcu_read_lock();
c0ff4b85
R
2005 memcg = pc->mem_cgroup;
2006 if (unlikely(!memcg || !PageCgroupUsed(pc)))
32047e2a
KH
2007 goto out;
2008 /* pc->mem_cgroup is unstable ? */
c0ff4b85 2009 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
32047e2a 2010 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 2011 move_lock_page_cgroup(pc, &flags);
32047e2a 2012 need_unlock = true;
c0ff4b85
R
2013 memcg = pc->mem_cgroup;
2014 if (!memcg || !PageCgroupUsed(pc))
32047e2a
KH
2015 goto out;
2016 }
26174efd 2017
26174efd 2018 switch (idx) {
2a7106f2 2019 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
2020 if (val > 0)
2021 SetPageCgroupFileMapped(pc);
2022 else if (!page_mapped(page))
0c270f8f 2023 ClearPageCgroupFileMapped(pc);
2a7106f2 2024 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2025 break;
2026 default:
2027 BUG();
8725d541 2028 }
d69b042f 2029
c0ff4b85 2030 this_cpu_add(memcg->stat->count[idx], val);
2a7106f2 2031
32047e2a
KH
2032out:
2033 if (unlikely(need_unlock))
dbd4ea78 2034 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
2035 rcu_read_unlock();
2036 return;
d69b042f 2037}
2a7106f2 2038EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 2039
cdec2e42
KH
2040/*
2041 * size of first charge trial. "32" comes from vmscan.c's magic value.
2042 * TODO: maybe necessary to use big numbers in big irons.
2043 */
7ec99d62 2044#define CHARGE_BATCH 32U
cdec2e42
KH
2045struct memcg_stock_pcp {
2046 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2047 unsigned int nr_pages;
cdec2e42 2048 struct work_struct work;
26fe6168
KH
2049 unsigned long flags;
2050#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
2051};
2052static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2053static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2054
2055/*
11c9ea4e 2056 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2057 * from local stock and true is returned. If the stock is 0 or charges from a
2058 * cgroup which is not current target, returns false. This stock will be
2059 * refilled.
2060 */
c0ff4b85 2061static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2062{
2063 struct memcg_stock_pcp *stock;
2064 bool ret = true;
2065
2066 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2067 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2068 stock->nr_pages--;
cdec2e42
KH
2069 else /* need to call res_counter_charge */
2070 ret = false;
2071 put_cpu_var(memcg_stock);
2072 return ret;
2073}
2074
2075/*
2076 * Returns stocks cached in percpu to res_counter and reset cached information.
2077 */
2078static void drain_stock(struct memcg_stock_pcp *stock)
2079{
2080 struct mem_cgroup *old = stock->cached;
2081
11c9ea4e
JW
2082 if (stock->nr_pages) {
2083 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2084
2085 res_counter_uncharge(&old->res, bytes);
cdec2e42 2086 if (do_swap_account)
11c9ea4e
JW
2087 res_counter_uncharge(&old->memsw, bytes);
2088 stock->nr_pages = 0;
cdec2e42
KH
2089 }
2090 stock->cached = NULL;
cdec2e42
KH
2091}
2092
2093/*
2094 * This must be called under preempt disabled or must be called by
2095 * a thread which is pinned to local cpu.
2096 */
2097static void drain_local_stock(struct work_struct *dummy)
2098{
2099 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2100 drain_stock(stock);
26fe6168 2101 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2102}
2103
2104/*
2105 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2106 * This will be consumed by consume_stock() function, later.
cdec2e42 2107 */
c0ff4b85 2108static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2109{
2110 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2111
c0ff4b85 2112 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2113 drain_stock(stock);
c0ff4b85 2114 stock->cached = memcg;
cdec2e42 2115 }
11c9ea4e 2116 stock->nr_pages += nr_pages;
cdec2e42
KH
2117 put_cpu_var(memcg_stock);
2118}
2119
2120/*
c0ff4b85 2121 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2122 * of the hierarchy under it. sync flag says whether we should block
2123 * until the work is done.
cdec2e42 2124 */
c0ff4b85 2125static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2126{
26fe6168 2127 int cpu, curcpu;
d38144b7 2128
cdec2e42 2129 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2130 get_online_cpus();
5af12d0e 2131 curcpu = get_cpu();
cdec2e42
KH
2132 for_each_online_cpu(cpu) {
2133 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2134 struct mem_cgroup *memcg;
26fe6168 2135
c0ff4b85
R
2136 memcg = stock->cached;
2137 if (!memcg || !stock->nr_pages)
26fe6168 2138 continue;
c0ff4b85 2139 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2140 continue;
d1a05b69
MH
2141 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2142 if (cpu == curcpu)
2143 drain_local_stock(&stock->work);
2144 else
2145 schedule_work_on(cpu, &stock->work);
2146 }
cdec2e42 2147 }
5af12d0e 2148 put_cpu();
d38144b7
MH
2149
2150 if (!sync)
2151 goto out;
2152
2153 for_each_online_cpu(cpu) {
2154 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2155 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2156 flush_work(&stock->work);
2157 }
2158out:
cdec2e42 2159 put_online_cpus();
d38144b7
MH
2160}
2161
2162/*
2163 * Tries to drain stocked charges in other cpus. This function is asynchronous
2164 * and just put a work per cpu for draining localy on each cpu. Caller can
2165 * expects some charges will be back to res_counter later but cannot wait for
2166 * it.
2167 */
c0ff4b85 2168static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2169{
9f50fad6
MH
2170 /*
2171 * If someone calls draining, avoid adding more kworker runs.
2172 */
2173 if (!mutex_trylock(&percpu_charge_mutex))
2174 return;
c0ff4b85 2175 drain_all_stock(root_memcg, false);
9f50fad6 2176 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2177}
2178
2179/* This is a synchronous drain interface. */
c0ff4b85 2180static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2181{
2182 /* called when force_empty is called */
9f50fad6 2183 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2184 drain_all_stock(root_memcg, true);
9f50fad6 2185 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2186}
2187
711d3d2c
KH
2188/*
2189 * This function drains percpu counter value from DEAD cpu and
2190 * move it to local cpu. Note that this function can be preempted.
2191 */
c0ff4b85 2192static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2193{
2194 int i;
2195
c0ff4b85 2196 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2197 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2198 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2199
c0ff4b85
R
2200 per_cpu(memcg->stat->count[i], cpu) = 0;
2201 memcg->nocpu_base.count[i] += x;
711d3d2c 2202 }
e9f8974f 2203 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2204 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2205
c0ff4b85
R
2206 per_cpu(memcg->stat->events[i], cpu) = 0;
2207 memcg->nocpu_base.events[i] += x;
e9f8974f 2208 }
1489ebad 2209 /* need to clear ON_MOVE value, works as a kind of lock. */
c0ff4b85
R
2210 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2211 spin_unlock(&memcg->pcp_counter_lock);
1489ebad
KH
2212}
2213
c0ff4b85 2214static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
1489ebad
KH
2215{
2216 int idx = MEM_CGROUP_ON_MOVE;
2217
c0ff4b85
R
2218 spin_lock(&memcg->pcp_counter_lock);
2219 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2220 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2221}
2222
2223static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2224 unsigned long action,
2225 void *hcpu)
2226{
2227 int cpu = (unsigned long)hcpu;
2228 struct memcg_stock_pcp *stock;
711d3d2c 2229 struct mem_cgroup *iter;
cdec2e42 2230
1489ebad
KH
2231 if ((action == CPU_ONLINE)) {
2232 for_each_mem_cgroup_all(iter)
2233 synchronize_mem_cgroup_on_move(iter, cpu);
2234 return NOTIFY_OK;
2235 }
2236
711d3d2c 2237 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2238 return NOTIFY_OK;
711d3d2c
KH
2239
2240 for_each_mem_cgroup_all(iter)
2241 mem_cgroup_drain_pcp_counter(iter, cpu);
2242
cdec2e42
KH
2243 stock = &per_cpu(memcg_stock, cpu);
2244 drain_stock(stock);
2245 return NOTIFY_OK;
2246}
2247
4b534334
KH
2248
2249/* See __mem_cgroup_try_charge() for details */
2250enum {
2251 CHARGE_OK, /* success */
2252 CHARGE_RETRY, /* need to retry but retry is not bad */
2253 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2254 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2255 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2256};
2257
c0ff4b85 2258static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2259 unsigned int nr_pages, bool oom_check)
4b534334 2260{
7ec99d62 2261 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2262 struct mem_cgroup *mem_over_limit;
2263 struct res_counter *fail_res;
2264 unsigned long flags = 0;
2265 int ret;
2266
c0ff4b85 2267 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2268
2269 if (likely(!ret)) {
2270 if (!do_swap_account)
2271 return CHARGE_OK;
c0ff4b85 2272 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2273 if (likely(!ret))
2274 return CHARGE_OK;
2275
c0ff4b85 2276 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2277 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2278 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2279 } else
2280 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2281 /*
7ec99d62
JW
2282 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2283 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2284 *
2285 * Never reclaim on behalf of optional batching, retry with a
2286 * single page instead.
2287 */
7ec99d62 2288 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2289 return CHARGE_RETRY;
2290
2291 if (!(gfp_mask & __GFP_WAIT))
2292 return CHARGE_WOULDBLOCK;
2293
2294 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
0ae5e89c 2295 gfp_mask, flags, NULL);
7ec99d62 2296 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2297 return CHARGE_RETRY;
4b534334 2298 /*
19942822
JW
2299 * Even though the limit is exceeded at this point, reclaim
2300 * may have been able to free some pages. Retry the charge
2301 * before killing the task.
2302 *
2303 * Only for regular pages, though: huge pages are rather
2304 * unlikely to succeed so close to the limit, and we fall back
2305 * to regular pages anyway in case of failure.
4b534334 2306 */
7ec99d62 2307 if (nr_pages == 1 && ret)
4b534334
KH
2308 return CHARGE_RETRY;
2309
2310 /*
2311 * At task move, charge accounts can be doubly counted. So, it's
2312 * better to wait until the end of task_move if something is going on.
2313 */
2314 if (mem_cgroup_wait_acct_move(mem_over_limit))
2315 return CHARGE_RETRY;
2316
2317 /* If we don't need to call oom-killer at el, return immediately */
2318 if (!oom_check)
2319 return CHARGE_NOMEM;
2320 /* check OOM */
2321 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2322 return CHARGE_OOM_DIE;
2323
2324 return CHARGE_RETRY;
2325}
2326
f817ed48
KH
2327/*
2328 * Unlike exported interface, "oom" parameter is added. if oom==true,
2329 * oom-killer can be invoked.
8a9f3ccd 2330 */
f817ed48 2331static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2332 gfp_t gfp_mask,
7ec99d62 2333 unsigned int nr_pages,
c0ff4b85 2334 struct mem_cgroup **ptr,
7ec99d62 2335 bool oom)
8a9f3ccd 2336{
7ec99d62 2337 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2338 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2339 struct mem_cgroup *memcg = NULL;
4b534334 2340 int ret;
a636b327 2341
867578cb
KH
2342 /*
2343 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2344 * in system level. So, allow to go ahead dying process in addition to
2345 * MEMDIE process.
2346 */
2347 if (unlikely(test_thread_flag(TIF_MEMDIE)
2348 || fatal_signal_pending(current)))
2349 goto bypass;
a636b327 2350
8a9f3ccd 2351 /*
3be91277
HD
2352 * We always charge the cgroup the mm_struct belongs to.
2353 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2354 * thread group leader migrates. It's possible that mm is not
2355 * set, if so charge the init_mm (happens for pagecache usage).
2356 */
c0ff4b85 2357 if (!*ptr && !mm)
f75ca962
KH
2358 goto bypass;
2359again:
c0ff4b85
R
2360 if (*ptr) { /* css should be a valid one */
2361 memcg = *ptr;
2362 VM_BUG_ON(css_is_removed(&memcg->css));
2363 if (mem_cgroup_is_root(memcg))
f75ca962 2364 goto done;
c0ff4b85 2365 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2366 goto done;
c0ff4b85 2367 css_get(&memcg->css);
4b534334 2368 } else {
f75ca962 2369 struct task_struct *p;
54595fe2 2370
f75ca962
KH
2371 rcu_read_lock();
2372 p = rcu_dereference(mm->owner);
f75ca962 2373 /*
ebb76ce1 2374 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2375 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2376 * race with swapoff. Then, we have small risk of mis-accouning.
2377 * But such kind of mis-account by race always happens because
2378 * we don't have cgroup_mutex(). It's overkill and we allo that
2379 * small race, here.
2380 * (*) swapoff at el will charge against mm-struct not against
2381 * task-struct. So, mm->owner can be NULL.
f75ca962 2382 */
c0ff4b85
R
2383 memcg = mem_cgroup_from_task(p);
2384 if (!memcg || mem_cgroup_is_root(memcg)) {
f75ca962
KH
2385 rcu_read_unlock();
2386 goto done;
2387 }
c0ff4b85 2388 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2389 /*
2390 * It seems dagerous to access memcg without css_get().
2391 * But considering how consume_stok works, it's not
2392 * necessary. If consume_stock success, some charges
2393 * from this memcg are cached on this cpu. So, we
2394 * don't need to call css_get()/css_tryget() before
2395 * calling consume_stock().
2396 */
2397 rcu_read_unlock();
2398 goto done;
2399 }
2400 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2401 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2402 rcu_read_unlock();
2403 goto again;
2404 }
2405 rcu_read_unlock();
2406 }
8a9f3ccd 2407
4b534334
KH
2408 do {
2409 bool oom_check;
7a81b88c 2410
4b534334 2411 /* If killed, bypass charge */
f75ca962 2412 if (fatal_signal_pending(current)) {
c0ff4b85 2413 css_put(&memcg->css);
4b534334 2414 goto bypass;
f75ca962 2415 }
6d61ef40 2416
4b534334
KH
2417 oom_check = false;
2418 if (oom && !nr_oom_retries) {
2419 oom_check = true;
2420 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2421 }
66e1707b 2422
c0ff4b85 2423 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2424 switch (ret) {
2425 case CHARGE_OK:
2426 break;
2427 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2428 batch = nr_pages;
c0ff4b85
R
2429 css_put(&memcg->css);
2430 memcg = NULL;
f75ca962 2431 goto again;
4b534334 2432 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2433 css_put(&memcg->css);
4b534334
KH
2434 goto nomem;
2435 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2436 if (!oom) {
c0ff4b85 2437 css_put(&memcg->css);
867578cb 2438 goto nomem;
f75ca962 2439 }
4b534334
KH
2440 /* If oom, we never return -ENOMEM */
2441 nr_oom_retries--;
2442 break;
2443 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2444 css_put(&memcg->css);
867578cb 2445 goto bypass;
66e1707b 2446 }
4b534334
KH
2447 } while (ret != CHARGE_OK);
2448
7ec99d62 2449 if (batch > nr_pages)
c0ff4b85
R
2450 refill_stock(memcg, batch - nr_pages);
2451 css_put(&memcg->css);
0c3e73e8 2452done:
c0ff4b85 2453 *ptr = memcg;
7a81b88c
KH
2454 return 0;
2455nomem:
c0ff4b85 2456 *ptr = NULL;
7a81b88c 2457 return -ENOMEM;
867578cb 2458bypass:
c0ff4b85 2459 *ptr = NULL;
867578cb 2460 return 0;
7a81b88c 2461}
8a9f3ccd 2462
a3032a2c
DN
2463/*
2464 * Somemtimes we have to undo a charge we got by try_charge().
2465 * This function is for that and do uncharge, put css's refcnt.
2466 * gotten by try_charge().
2467 */
c0ff4b85 2468static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2469 unsigned int nr_pages)
a3032a2c 2470{
c0ff4b85 2471 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2472 unsigned long bytes = nr_pages * PAGE_SIZE;
2473
c0ff4b85 2474 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2475 if (do_swap_account)
c0ff4b85 2476 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2477 }
854ffa8d
DN
2478}
2479
a3b2d692
KH
2480/*
2481 * A helper function to get mem_cgroup from ID. must be called under
2482 * rcu_read_lock(). The caller must check css_is_removed() or some if
2483 * it's concern. (dropping refcnt from swap can be called against removed
2484 * memcg.)
2485 */
2486static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2487{
2488 struct cgroup_subsys_state *css;
2489
2490 /* ID 0 is unused ID */
2491 if (!id)
2492 return NULL;
2493 css = css_lookup(&mem_cgroup_subsys, id);
2494 if (!css)
2495 return NULL;
2496 return container_of(css, struct mem_cgroup, css);
2497}
2498
e42d9d5d 2499struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2500{
c0ff4b85 2501 struct mem_cgroup *memcg = NULL;
3c776e64 2502 struct page_cgroup *pc;
a3b2d692 2503 unsigned short id;
b5a84319
KH
2504 swp_entry_t ent;
2505
3c776e64
DN
2506 VM_BUG_ON(!PageLocked(page));
2507
3c776e64 2508 pc = lookup_page_cgroup(page);
c0bd3f63 2509 lock_page_cgroup(pc);
a3b2d692 2510 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2511 memcg = pc->mem_cgroup;
2512 if (memcg && !css_tryget(&memcg->css))
2513 memcg = NULL;
e42d9d5d 2514 } else if (PageSwapCache(page)) {
3c776e64 2515 ent.val = page_private(page);
a3b2d692
KH
2516 id = lookup_swap_cgroup(ent);
2517 rcu_read_lock();
c0ff4b85
R
2518 memcg = mem_cgroup_lookup(id);
2519 if (memcg && !css_tryget(&memcg->css))
2520 memcg = NULL;
a3b2d692 2521 rcu_read_unlock();
3c776e64 2522 }
c0bd3f63 2523 unlock_page_cgroup(pc);
c0ff4b85 2524 return memcg;
b5a84319
KH
2525}
2526
c0ff4b85 2527static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2528 struct page *page,
7ec99d62 2529 unsigned int nr_pages,
ca3e0214 2530 struct page_cgroup *pc,
7ec99d62 2531 enum charge_type ctype)
7a81b88c 2532{
ca3e0214
KH
2533 lock_page_cgroup(pc);
2534 if (unlikely(PageCgroupUsed(pc))) {
2535 unlock_page_cgroup(pc);
c0ff4b85 2536 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2537 return;
2538 }
2539 /*
2540 * we don't need page_cgroup_lock about tail pages, becase they are not
2541 * accessed by any other context at this point.
2542 */
c0ff4b85 2543 pc->mem_cgroup = memcg;
261fb61a
KH
2544 /*
2545 * We access a page_cgroup asynchronously without lock_page_cgroup().
2546 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2547 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2548 * before USED bit, we need memory barrier here.
2549 * See mem_cgroup_add_lru_list(), etc.
2550 */
08e552c6 2551 smp_wmb();
4b3bde4c
BS
2552 switch (ctype) {
2553 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2554 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2555 SetPageCgroupCache(pc);
2556 SetPageCgroupUsed(pc);
2557 break;
2558 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2559 ClearPageCgroupCache(pc);
2560 SetPageCgroupUsed(pc);
2561 break;
2562 default:
2563 break;
2564 }
3be91277 2565
c0ff4b85 2566 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
52d4b9ac 2567 unlock_page_cgroup(pc);
430e4863
KH
2568 /*
2569 * "charge_statistics" updated event counter. Then, check it.
2570 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2571 * if they exceeds softlimit.
2572 */
c0ff4b85 2573 memcg_check_events(memcg, page);
7a81b88c 2574}
66e1707b 2575
ca3e0214
KH
2576#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2577
2578#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2579 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2580/*
2581 * Because tail pages are not marked as "used", set it. We're under
2582 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2583 */
2584void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2585{
2586 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2587 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2588 unsigned long flags;
2589
3d37c4a9
KH
2590 if (mem_cgroup_disabled())
2591 return;
ca3e0214 2592 /*
ece35ca8 2593 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2594 * page state accounting.
2595 */
2596 move_lock_page_cgroup(head_pc, &flags);
2597
2598 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2599 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2600 if (PageCgroupAcctLRU(head_pc)) {
2601 enum lru_list lru;
2602 struct mem_cgroup_per_zone *mz;
2603
2604 /*
2605 * LRU flags cannot be copied because we need to add tail
2606 *.page to LRU by generic call and our hook will be called.
2607 * We hold lru_lock, then, reduce counter directly.
2608 */
2609 lru = page_lru(head);
97a6c37b 2610 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
ece35ca8
KH
2611 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2612 }
ca3e0214
KH
2613 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2614 move_unlock_page_cgroup(head_pc, &flags);
2615}
2616#endif
2617
f817ed48 2618/**
de3638d9 2619 * mem_cgroup_move_account - move account of the page
5564e88b 2620 * @page: the page
7ec99d62 2621 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2622 * @pc: page_cgroup of the page.
2623 * @from: mem_cgroup which the page is moved from.
2624 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2625 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2626 *
2627 * The caller must confirm following.
08e552c6 2628 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2629 * - compound_lock is held when nr_pages > 1
f817ed48 2630 *
854ffa8d 2631 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2632 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2633 * true, this function does "uncharge" from old cgroup, but it doesn't if
2634 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2635 */
7ec99d62
JW
2636static int mem_cgroup_move_account(struct page *page,
2637 unsigned int nr_pages,
2638 struct page_cgroup *pc,
2639 struct mem_cgroup *from,
2640 struct mem_cgroup *to,
2641 bool uncharge)
f817ed48 2642{
de3638d9
JW
2643 unsigned long flags;
2644 int ret;
987eba66 2645
f817ed48 2646 VM_BUG_ON(from == to);
5564e88b 2647 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2648 /*
2649 * The page is isolated from LRU. So, collapse function
2650 * will not handle this page. But page splitting can happen.
2651 * Do this check under compound_page_lock(). The caller should
2652 * hold it.
2653 */
2654 ret = -EBUSY;
7ec99d62 2655 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2656 goto out;
2657
2658 lock_page_cgroup(pc);
2659
2660 ret = -EINVAL;
2661 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2662 goto unlock;
2663
2664 move_lock_page_cgroup(pc, &flags);
f817ed48 2665
8725d541 2666 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2667 /* Update mapped_file data for mem_cgroup */
2668 preempt_disable();
2669 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2670 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2671 preempt_enable();
d69b042f 2672 }
987eba66 2673 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2674 if (uncharge)
2675 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2676 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2677
854ffa8d 2678 /* caller should have done css_get */
08e552c6 2679 pc->mem_cgroup = to;
987eba66 2680 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2681 /*
2682 * We charges against "to" which may not have any tasks. Then, "to"
2683 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2684 * this function is just force_empty() and move charge, so it's
25985edc 2685 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2686 * status here.
88703267 2687 */
de3638d9
JW
2688 move_unlock_page_cgroup(pc, &flags);
2689 ret = 0;
2690unlock:
57f9fd7d 2691 unlock_page_cgroup(pc);
d2265e6f
KH
2692 /*
2693 * check events
2694 */
5564e88b
JW
2695 memcg_check_events(to, page);
2696 memcg_check_events(from, page);
de3638d9 2697out:
f817ed48
KH
2698 return ret;
2699}
2700
2701/*
2702 * move charges to its parent.
2703 */
2704
5564e88b
JW
2705static int mem_cgroup_move_parent(struct page *page,
2706 struct page_cgroup *pc,
f817ed48
KH
2707 struct mem_cgroup *child,
2708 gfp_t gfp_mask)
2709{
2710 struct cgroup *cg = child->css.cgroup;
2711 struct cgroup *pcg = cg->parent;
2712 struct mem_cgroup *parent;
7ec99d62 2713 unsigned int nr_pages;
4be4489f 2714 unsigned long uninitialized_var(flags);
f817ed48
KH
2715 int ret;
2716
2717 /* Is ROOT ? */
2718 if (!pcg)
2719 return -EINVAL;
2720
57f9fd7d
DN
2721 ret = -EBUSY;
2722 if (!get_page_unless_zero(page))
2723 goto out;
2724 if (isolate_lru_page(page))
2725 goto put;
52dbb905 2726
7ec99d62 2727 nr_pages = hpage_nr_pages(page);
08e552c6 2728
f817ed48 2729 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2730 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
a636b327 2731 if (ret || !parent)
57f9fd7d 2732 goto put_back;
f817ed48 2733
7ec99d62 2734 if (nr_pages > 1)
987eba66
KH
2735 flags = compound_lock_irqsave(page);
2736
7ec99d62 2737 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2738 if (ret)
7ec99d62 2739 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2740
7ec99d62 2741 if (nr_pages > 1)
987eba66 2742 compound_unlock_irqrestore(page, flags);
8dba474f 2743put_back:
08e552c6 2744 putback_lru_page(page);
57f9fd7d 2745put:
40d58138 2746 put_page(page);
57f9fd7d 2747out:
f817ed48
KH
2748 return ret;
2749}
2750
7a81b88c
KH
2751/*
2752 * Charge the memory controller for page usage.
2753 * Return
2754 * 0 if the charge was successful
2755 * < 0 if the cgroup is over its limit
2756 */
2757static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2758 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2759{
c0ff4b85 2760 struct mem_cgroup *memcg = NULL;
7ec99d62 2761 unsigned int nr_pages = 1;
7a81b88c 2762 struct page_cgroup *pc;
8493ae43 2763 bool oom = true;
7a81b88c 2764 int ret;
ec168510 2765
37c2ac78 2766 if (PageTransHuge(page)) {
7ec99d62 2767 nr_pages <<= compound_order(page);
37c2ac78 2768 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2769 /*
2770 * Never OOM-kill a process for a huge page. The
2771 * fault handler will fall back to regular pages.
2772 */
2773 oom = false;
37c2ac78 2774 }
7a81b88c
KH
2775
2776 pc = lookup_page_cgroup(page);
af4a6621 2777 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
7a81b88c 2778
c0ff4b85
R
2779 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2780 if (ret || !memcg)
7a81b88c
KH
2781 return ret;
2782
c0ff4b85 2783 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
8a9f3ccd 2784 return 0;
8a9f3ccd
BS
2785}
2786
7a81b88c
KH
2787int mem_cgroup_newpage_charge(struct page *page,
2788 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2789{
f8d66542 2790 if (mem_cgroup_disabled())
cede86ac 2791 return 0;
69029cd5
KH
2792 /*
2793 * If already mapped, we don't have to account.
2794 * If page cache, page->mapping has address_space.
2795 * But page->mapping may have out-of-use anon_vma pointer,
2796 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2797 * is NULL.
2798 */
2799 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2800 return 0;
2801 if (unlikely(!mm))
2802 mm = &init_mm;
217bc319 2803 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2804 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2805}
2806
83aae4c7
DN
2807static void
2808__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2809 enum charge_type ctype);
2810
5a6475a4 2811static void
c0ff4b85 2812__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
5a6475a4
KH
2813 enum charge_type ctype)
2814{
2815 struct page_cgroup *pc = lookup_page_cgroup(page);
2816 /*
2817 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2818 * is already on LRU. It means the page may on some other page_cgroup's
2819 * LRU. Take care of it.
2820 */
2821 mem_cgroup_lru_del_before_commit(page);
c0ff4b85 2822 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
5a6475a4
KH
2823 mem_cgroup_lru_add_after_commit(page);
2824 return;
2825}
2826
e1a1cd59
BS
2827int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2828 gfp_t gfp_mask)
8697d331 2829{
c0ff4b85 2830 struct mem_cgroup *memcg = NULL;
b5a84319
KH
2831 int ret;
2832
f8d66542 2833 if (mem_cgroup_disabled())
cede86ac 2834 return 0;
52d4b9ac
KH
2835 if (PageCompound(page))
2836 return 0;
accf163e 2837
73045c47 2838 if (unlikely(!mm))
8697d331 2839 mm = &init_mm;
accf163e 2840
5a6475a4 2841 if (page_is_file_cache(page)) {
c0ff4b85
R
2842 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2843 if (ret || !memcg)
5a6475a4 2844 return ret;
b5a84319 2845
5a6475a4
KH
2846 /*
2847 * FUSE reuses pages without going through the final
2848 * put that would remove them from the LRU list, make
2849 * sure that they get relinked properly.
2850 */
c0ff4b85 2851 __mem_cgroup_commit_charge_lrucare(page, memcg,
5a6475a4
KH
2852 MEM_CGROUP_CHARGE_TYPE_CACHE);
2853 return ret;
2854 }
83aae4c7
DN
2855 /* shmem */
2856 if (PageSwapCache(page)) {
c0ff4b85 2857 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2858 if (!ret)
c0ff4b85 2859 __mem_cgroup_commit_charge_swapin(page, memcg,
83aae4c7
DN
2860 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2861 } else
2862 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2863 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2864
b5a84319 2865 return ret;
e8589cc1
KH
2866}
2867
54595fe2
KH
2868/*
2869 * While swap-in, try_charge -> commit or cancel, the page is locked.
2870 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2871 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2872 * "commit()" or removed by "cancel()"
2873 */
8c7c6e34
KH
2874int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2875 struct page *page,
2876 gfp_t mask, struct mem_cgroup **ptr)
2877{
c0ff4b85 2878 struct mem_cgroup *memcg;
54595fe2 2879 int ret;
8c7c6e34 2880
56039efa
KH
2881 *ptr = NULL;
2882
f8d66542 2883 if (mem_cgroup_disabled())
8c7c6e34
KH
2884 return 0;
2885
2886 if (!do_swap_account)
2887 goto charge_cur_mm;
8c7c6e34
KH
2888 /*
2889 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2890 * the pte, and even removed page from swap cache: in those cases
2891 * do_swap_page()'s pte_same() test will fail; but there's also a
2892 * KSM case which does need to charge the page.
8c7c6e34
KH
2893 */
2894 if (!PageSwapCache(page))
407f9c8b 2895 goto charge_cur_mm;
c0ff4b85
R
2896 memcg = try_get_mem_cgroup_from_page(page);
2897 if (!memcg)
54595fe2 2898 goto charge_cur_mm;
c0ff4b85 2899 *ptr = memcg;
7ec99d62 2900 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
c0ff4b85 2901 css_put(&memcg->css);
54595fe2 2902 return ret;
8c7c6e34
KH
2903charge_cur_mm:
2904 if (unlikely(!mm))
2905 mm = &init_mm;
7ec99d62 2906 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
8c7c6e34
KH
2907}
2908
83aae4c7
DN
2909static void
2910__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2911 enum charge_type ctype)
7a81b88c 2912{
f8d66542 2913 if (mem_cgroup_disabled())
7a81b88c
KH
2914 return;
2915 if (!ptr)
2916 return;
88703267 2917 cgroup_exclude_rmdir(&ptr->css);
5a6475a4
KH
2918
2919 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
8c7c6e34
KH
2920 /*
2921 * Now swap is on-memory. This means this page may be
2922 * counted both as mem and swap....double count.
03f3c433
KH
2923 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2924 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2925 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2926 */
03f3c433 2927 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2928 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2929 unsigned short id;
8c7c6e34 2930 struct mem_cgroup *memcg;
a3b2d692
KH
2931
2932 id = swap_cgroup_record(ent, 0);
2933 rcu_read_lock();
2934 memcg = mem_cgroup_lookup(id);
8c7c6e34 2935 if (memcg) {
a3b2d692
KH
2936 /*
2937 * This recorded memcg can be obsolete one. So, avoid
2938 * calling css_tryget
2939 */
0c3e73e8 2940 if (!mem_cgroup_is_root(memcg))
4e649152 2941 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2942 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2943 mem_cgroup_put(memcg);
2944 }
a3b2d692 2945 rcu_read_unlock();
8c7c6e34 2946 }
88703267
KH
2947 /*
2948 * At swapin, we may charge account against cgroup which has no tasks.
2949 * So, rmdir()->pre_destroy() can be called while we do this charge.
2950 * In that case, we need to call pre_destroy() again. check it here.
2951 */
2952 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2953}
2954
83aae4c7
DN
2955void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2956{
2957 __mem_cgroup_commit_charge_swapin(page, ptr,
2958 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2959}
2960
c0ff4b85 2961void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2962{
f8d66542 2963 if (mem_cgroup_disabled())
7a81b88c 2964 return;
c0ff4b85 2965 if (!memcg)
7a81b88c 2966 return;
c0ff4b85 2967 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2968}
2969
c0ff4b85 2970static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2971 unsigned int nr_pages,
2972 const enum charge_type ctype)
569b846d
KH
2973{
2974 struct memcg_batch_info *batch = NULL;
2975 bool uncharge_memsw = true;
7ec99d62 2976
569b846d
KH
2977 /* If swapout, usage of swap doesn't decrease */
2978 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2979 uncharge_memsw = false;
569b846d
KH
2980
2981 batch = &current->memcg_batch;
2982 /*
2983 * In usual, we do css_get() when we remember memcg pointer.
2984 * But in this case, we keep res->usage until end of a series of
2985 * uncharges. Then, it's ok to ignore memcg's refcnt.
2986 */
2987 if (!batch->memcg)
c0ff4b85 2988 batch->memcg = memcg;
3c11ecf4
KH
2989 /*
2990 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2991 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2992 * the same cgroup and we have chance to coalesce uncharges.
2993 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2994 * because we want to do uncharge as soon as possible.
2995 */
2996
2997 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2998 goto direct_uncharge;
2999
7ec99d62 3000 if (nr_pages > 1)
ec168510
AA
3001 goto direct_uncharge;
3002
569b846d
KH
3003 /*
3004 * In typical case, batch->memcg == mem. This means we can
3005 * merge a series of uncharges to an uncharge of res_counter.
3006 * If not, we uncharge res_counter ony by one.
3007 */
c0ff4b85 3008 if (batch->memcg != memcg)
569b846d
KH
3009 goto direct_uncharge;
3010 /* remember freed charge and uncharge it later */
7ffd4ca7 3011 batch->nr_pages++;
569b846d 3012 if (uncharge_memsw)
7ffd4ca7 3013 batch->memsw_nr_pages++;
569b846d
KH
3014 return;
3015direct_uncharge:
c0ff4b85 3016 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3017 if (uncharge_memsw)
c0ff4b85
R
3018 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3019 if (unlikely(batch->memcg != memcg))
3020 memcg_oom_recover(memcg);
569b846d
KH
3021 return;
3022}
7a81b88c 3023
8a9f3ccd 3024/*
69029cd5 3025 * uncharge if !page_mapped(page)
8a9f3ccd 3026 */
8c7c6e34 3027static struct mem_cgroup *
69029cd5 3028__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 3029{
c0ff4b85 3030 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3031 unsigned int nr_pages = 1;
3032 struct page_cgroup *pc;
8a9f3ccd 3033
f8d66542 3034 if (mem_cgroup_disabled())
8c7c6e34 3035 return NULL;
4077960e 3036
d13d1443 3037 if (PageSwapCache(page))
8c7c6e34 3038 return NULL;
d13d1443 3039
37c2ac78 3040 if (PageTransHuge(page)) {
7ec99d62 3041 nr_pages <<= compound_order(page);
37c2ac78
AA
3042 VM_BUG_ON(!PageTransHuge(page));
3043 }
8697d331 3044 /*
3c541e14 3045 * Check if our page_cgroup is valid
8697d331 3046 */
52d4b9ac
KH
3047 pc = lookup_page_cgroup(page);
3048 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 3049 return NULL;
b9c565d5 3050
52d4b9ac 3051 lock_page_cgroup(pc);
d13d1443 3052
c0ff4b85 3053 memcg = pc->mem_cgroup;
8c7c6e34 3054
d13d1443
KH
3055 if (!PageCgroupUsed(pc))
3056 goto unlock_out;
3057
3058 switch (ctype) {
3059 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 3060 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
3061 /* See mem_cgroup_prepare_migration() */
3062 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
3063 goto unlock_out;
3064 break;
3065 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3066 if (!PageAnon(page)) { /* Shared memory */
3067 if (page->mapping && !page_is_file_cache(page))
3068 goto unlock_out;
3069 } else if (page_mapped(page)) /* Anon */
3070 goto unlock_out;
3071 break;
3072 default:
3073 break;
52d4b9ac 3074 }
d13d1443 3075
c0ff4b85 3076 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
04046e1a 3077
52d4b9ac 3078 ClearPageCgroupUsed(pc);
544122e5
KH
3079 /*
3080 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3081 * freed from LRU. This is safe because uncharged page is expected not
3082 * to be reused (freed soon). Exception is SwapCache, it's handled by
3083 * special functions.
3084 */
b9c565d5 3085
52d4b9ac 3086 unlock_page_cgroup(pc);
f75ca962 3087 /*
c0ff4b85 3088 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3089 * will never be freed.
3090 */
c0ff4b85 3091 memcg_check_events(memcg, page);
f75ca962 3092 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3093 mem_cgroup_swap_statistics(memcg, true);
3094 mem_cgroup_get(memcg);
f75ca962 3095 }
c0ff4b85
R
3096 if (!mem_cgroup_is_root(memcg))
3097 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3098
c0ff4b85 3099 return memcg;
d13d1443
KH
3100
3101unlock_out:
3102 unlock_page_cgroup(pc);
8c7c6e34 3103 return NULL;
3c541e14
BS
3104}
3105
69029cd5
KH
3106void mem_cgroup_uncharge_page(struct page *page)
3107{
52d4b9ac
KH
3108 /* early check. */
3109 if (page_mapped(page))
3110 return;
3111 if (page->mapping && !PageAnon(page))
3112 return;
69029cd5
KH
3113 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3114}
3115
3116void mem_cgroup_uncharge_cache_page(struct page *page)
3117{
3118 VM_BUG_ON(page_mapped(page));
b7abea96 3119 VM_BUG_ON(page->mapping);
69029cd5
KH
3120 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3121}
3122
569b846d
KH
3123/*
3124 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3125 * In that cases, pages are freed continuously and we can expect pages
3126 * are in the same memcg. All these calls itself limits the number of
3127 * pages freed at once, then uncharge_start/end() is called properly.
3128 * This may be called prural(2) times in a context,
3129 */
3130
3131void mem_cgroup_uncharge_start(void)
3132{
3133 current->memcg_batch.do_batch++;
3134 /* We can do nest. */
3135 if (current->memcg_batch.do_batch == 1) {
3136 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3137 current->memcg_batch.nr_pages = 0;
3138 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3139 }
3140}
3141
3142void mem_cgroup_uncharge_end(void)
3143{
3144 struct memcg_batch_info *batch = &current->memcg_batch;
3145
3146 if (!batch->do_batch)
3147 return;
3148
3149 batch->do_batch--;
3150 if (batch->do_batch) /* If stacked, do nothing. */
3151 return;
3152
3153 if (!batch->memcg)
3154 return;
3155 /*
3156 * This "batch->memcg" is valid without any css_get/put etc...
3157 * bacause we hide charges behind us.
3158 */
7ffd4ca7
JW
3159 if (batch->nr_pages)
3160 res_counter_uncharge(&batch->memcg->res,
3161 batch->nr_pages * PAGE_SIZE);
3162 if (batch->memsw_nr_pages)
3163 res_counter_uncharge(&batch->memcg->memsw,
3164 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3165 memcg_oom_recover(batch->memcg);
569b846d
KH
3166 /* forget this pointer (for sanity check) */
3167 batch->memcg = NULL;
3168}
3169
e767e056 3170#ifdef CONFIG_SWAP
8c7c6e34 3171/*
e767e056 3172 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3173 * memcg information is recorded to swap_cgroup of "ent"
3174 */
8a9478ca
KH
3175void
3176mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3177{
3178 struct mem_cgroup *memcg;
8a9478ca
KH
3179 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3180
3181 if (!swapout) /* this was a swap cache but the swap is unused ! */
3182 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3183
3184 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3185
f75ca962
KH
3186 /*
3187 * record memcg information, if swapout && memcg != NULL,
3188 * mem_cgroup_get() was called in uncharge().
3189 */
3190 if (do_swap_account && swapout && memcg)
a3b2d692 3191 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3192}
e767e056 3193#endif
8c7c6e34
KH
3194
3195#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3196/*
3197 * called from swap_entry_free(). remove record in swap_cgroup and
3198 * uncharge "memsw" account.
3199 */
3200void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3201{
8c7c6e34 3202 struct mem_cgroup *memcg;
a3b2d692 3203 unsigned short id;
8c7c6e34
KH
3204
3205 if (!do_swap_account)
3206 return;
3207
a3b2d692
KH
3208 id = swap_cgroup_record(ent, 0);
3209 rcu_read_lock();
3210 memcg = mem_cgroup_lookup(id);
8c7c6e34 3211 if (memcg) {
a3b2d692
KH
3212 /*
3213 * We uncharge this because swap is freed.
3214 * This memcg can be obsolete one. We avoid calling css_tryget
3215 */
0c3e73e8 3216 if (!mem_cgroup_is_root(memcg))
4e649152 3217 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3218 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3219 mem_cgroup_put(memcg);
3220 }
a3b2d692 3221 rcu_read_unlock();
d13d1443 3222}
02491447
DN
3223
3224/**
3225 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3226 * @entry: swap entry to be moved
3227 * @from: mem_cgroup which the entry is moved from
3228 * @to: mem_cgroup which the entry is moved to
483c30b5 3229 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3230 *
3231 * It succeeds only when the swap_cgroup's record for this entry is the same
3232 * as the mem_cgroup's id of @from.
3233 *
3234 * Returns 0 on success, -EINVAL on failure.
3235 *
3236 * The caller must have charged to @to, IOW, called res_counter_charge() about
3237 * both res and memsw, and called css_get().
3238 */
3239static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3240 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3241{
3242 unsigned short old_id, new_id;
3243
3244 old_id = css_id(&from->css);
3245 new_id = css_id(&to->css);
3246
3247 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3248 mem_cgroup_swap_statistics(from, false);
483c30b5 3249 mem_cgroup_swap_statistics(to, true);
02491447 3250 /*
483c30b5
DN
3251 * This function is only called from task migration context now.
3252 * It postpones res_counter and refcount handling till the end
3253 * of task migration(mem_cgroup_clear_mc()) for performance
3254 * improvement. But we cannot postpone mem_cgroup_get(to)
3255 * because if the process that has been moved to @to does
3256 * swap-in, the refcount of @to might be decreased to 0.
02491447 3257 */
02491447 3258 mem_cgroup_get(to);
483c30b5
DN
3259 if (need_fixup) {
3260 if (!mem_cgroup_is_root(from))
3261 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3262 mem_cgroup_put(from);
3263 /*
3264 * we charged both to->res and to->memsw, so we should
3265 * uncharge to->res.
3266 */
3267 if (!mem_cgroup_is_root(to))
3268 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3269 }
02491447
DN
3270 return 0;
3271 }
3272 return -EINVAL;
3273}
3274#else
3275static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3276 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3277{
3278 return -EINVAL;
3279}
8c7c6e34 3280#endif
d13d1443 3281
ae41be37 3282/*
01b1ae63
KH
3283 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3284 * page belongs to.
ae41be37 3285 */
ac39cf8c 3286int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 3287 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37 3288{
c0ff4b85 3289 struct mem_cgroup *memcg = NULL;
7ec99d62 3290 struct page_cgroup *pc;
ac39cf8c 3291 enum charge_type ctype;
e8589cc1 3292 int ret = 0;
8869b8f6 3293
56039efa
KH
3294 *ptr = NULL;
3295
ec168510 3296 VM_BUG_ON(PageTransHuge(page));
f8d66542 3297 if (mem_cgroup_disabled())
4077960e
BS
3298 return 0;
3299
52d4b9ac
KH
3300 pc = lookup_page_cgroup(page);
3301 lock_page_cgroup(pc);
3302 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3303 memcg = pc->mem_cgroup;
3304 css_get(&memcg->css);
ac39cf8c
AM
3305 /*
3306 * At migrating an anonymous page, its mapcount goes down
3307 * to 0 and uncharge() will be called. But, even if it's fully
3308 * unmapped, migration may fail and this page has to be
3309 * charged again. We set MIGRATION flag here and delay uncharge
3310 * until end_migration() is called
3311 *
3312 * Corner Case Thinking
3313 * A)
3314 * When the old page was mapped as Anon and it's unmap-and-freed
3315 * while migration was ongoing.
3316 * If unmap finds the old page, uncharge() of it will be delayed
3317 * until end_migration(). If unmap finds a new page, it's
3318 * uncharged when it make mapcount to be 1->0. If unmap code
3319 * finds swap_migration_entry, the new page will not be mapped
3320 * and end_migration() will find it(mapcount==0).
3321 *
3322 * B)
3323 * When the old page was mapped but migraion fails, the kernel
3324 * remaps it. A charge for it is kept by MIGRATION flag even
3325 * if mapcount goes down to 0. We can do remap successfully
3326 * without charging it again.
3327 *
3328 * C)
3329 * The "old" page is under lock_page() until the end of
3330 * migration, so, the old page itself will not be swapped-out.
3331 * If the new page is swapped out before end_migraton, our
3332 * hook to usual swap-out path will catch the event.
3333 */
3334 if (PageAnon(page))
3335 SetPageCgroupMigration(pc);
e8589cc1 3336 }
52d4b9ac 3337 unlock_page_cgroup(pc);
ac39cf8c
AM
3338 /*
3339 * If the page is not charged at this point,
3340 * we return here.
3341 */
c0ff4b85 3342 if (!memcg)
ac39cf8c 3343 return 0;
01b1ae63 3344
c0ff4b85 3345 *ptr = memcg;
7ec99d62 3346 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
c0ff4b85 3347 css_put(&memcg->css);/* drop extra refcnt */
ac39cf8c
AM
3348 if (ret || *ptr == NULL) {
3349 if (PageAnon(page)) {
3350 lock_page_cgroup(pc);
3351 ClearPageCgroupMigration(pc);
3352 unlock_page_cgroup(pc);
3353 /*
3354 * The old page may be fully unmapped while we kept it.
3355 */
3356 mem_cgroup_uncharge_page(page);
3357 }
3358 return -ENOMEM;
e8589cc1 3359 }
ac39cf8c
AM
3360 /*
3361 * We charge new page before it's used/mapped. So, even if unlock_page()
3362 * is called before end_migration, we can catch all events on this new
3363 * page. In the case new page is migrated but not remapped, new page's
3364 * mapcount will be finally 0 and we call uncharge in end_migration().
3365 */
3366 pc = lookup_page_cgroup(newpage);
3367 if (PageAnon(page))
3368 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3369 else if (page_is_file_cache(page))
3370 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3371 else
3372 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
c0ff4b85 3373 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
e8589cc1 3374 return ret;
ae41be37 3375}
8869b8f6 3376
69029cd5 3377/* remove redundant charge if migration failed*/
c0ff4b85 3378void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3379 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3380{
ac39cf8c 3381 struct page *used, *unused;
01b1ae63 3382 struct page_cgroup *pc;
01b1ae63 3383
c0ff4b85 3384 if (!memcg)
01b1ae63 3385 return;
ac39cf8c 3386 /* blocks rmdir() */
c0ff4b85 3387 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3388 if (!migration_ok) {
ac39cf8c
AM
3389 used = oldpage;
3390 unused = newpage;
01b1ae63 3391 } else {
ac39cf8c 3392 used = newpage;
01b1ae63
KH
3393 unused = oldpage;
3394 }
69029cd5 3395 /*
ac39cf8c
AM
3396 * We disallowed uncharge of pages under migration because mapcount
3397 * of the page goes down to zero, temporarly.
3398 * Clear the flag and check the page should be charged.
01b1ae63 3399 */
ac39cf8c
AM
3400 pc = lookup_page_cgroup(oldpage);
3401 lock_page_cgroup(pc);
3402 ClearPageCgroupMigration(pc);
3403 unlock_page_cgroup(pc);
01b1ae63 3404
ac39cf8c
AM
3405 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3406
01b1ae63 3407 /*
ac39cf8c
AM
3408 * If a page is a file cache, radix-tree replacement is very atomic
3409 * and we can skip this check. When it was an Anon page, its mapcount
3410 * goes down to 0. But because we added MIGRATION flage, it's not
3411 * uncharged yet. There are several case but page->mapcount check
3412 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3413 * check. (see prepare_charge() also)
69029cd5 3414 */
ac39cf8c
AM
3415 if (PageAnon(used))
3416 mem_cgroup_uncharge_page(used);
88703267 3417 /*
ac39cf8c
AM
3418 * At migration, we may charge account against cgroup which has no
3419 * tasks.
88703267
KH
3420 * So, rmdir()->pre_destroy() can be called while we do this charge.
3421 * In that case, we need to call pre_destroy() again. check it here.
3422 */
c0ff4b85 3423 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3424}
78fb7466 3425
f212ad7c
DN
3426#ifdef CONFIG_DEBUG_VM
3427static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3428{
3429 struct page_cgroup *pc;
3430
3431 pc = lookup_page_cgroup(page);
3432 if (likely(pc) && PageCgroupUsed(pc))
3433 return pc;
3434 return NULL;
3435}
3436
3437bool mem_cgroup_bad_page_check(struct page *page)
3438{
3439 if (mem_cgroup_disabled())
3440 return false;
3441
3442 return lookup_page_cgroup_used(page) != NULL;
3443}
3444
3445void mem_cgroup_print_bad_page(struct page *page)
3446{
3447 struct page_cgroup *pc;
3448
3449 pc = lookup_page_cgroup_used(page);
3450 if (pc) {
3451 int ret = -1;
3452 char *path;
3453
3454 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3455 pc, pc->flags, pc->mem_cgroup);
3456
3457 path = kmalloc(PATH_MAX, GFP_KERNEL);
3458 if (path) {
3459 rcu_read_lock();
3460 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3461 path, PATH_MAX);
3462 rcu_read_unlock();
3463 }
3464
3465 printk(KERN_CONT "(%s)\n",
3466 (ret < 0) ? "cannot get the path" : path);
3467 kfree(path);
3468 }
3469}
3470#endif
3471
8c7c6e34
KH
3472static DEFINE_MUTEX(set_limit_mutex);
3473
d38d2a75 3474static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3475 unsigned long long val)
628f4235 3476{
81d39c20 3477 int retry_count;
3c11ecf4 3478 u64 memswlimit, memlimit;
628f4235 3479 int ret = 0;
81d39c20
KH
3480 int children = mem_cgroup_count_children(memcg);
3481 u64 curusage, oldusage;
3c11ecf4 3482 int enlarge;
81d39c20
KH
3483
3484 /*
3485 * For keeping hierarchical_reclaim simple, how long we should retry
3486 * is depends on callers. We set our retry-count to be function
3487 * of # of children which we should visit in this loop.
3488 */
3489 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3490
3491 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3492
3c11ecf4 3493 enlarge = 0;
8c7c6e34 3494 while (retry_count) {
628f4235
KH
3495 if (signal_pending(current)) {
3496 ret = -EINTR;
3497 break;
3498 }
8c7c6e34
KH
3499 /*
3500 * Rather than hide all in some function, I do this in
3501 * open coded manner. You see what this really does.
c0ff4b85 3502 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3503 */
3504 mutex_lock(&set_limit_mutex);
3505 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3506 if (memswlimit < val) {
3507 ret = -EINVAL;
3508 mutex_unlock(&set_limit_mutex);
628f4235
KH
3509 break;
3510 }
3c11ecf4
KH
3511
3512 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3513 if (memlimit < val)
3514 enlarge = 1;
3515
8c7c6e34 3516 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3517 if (!ret) {
3518 if (memswlimit == val)
3519 memcg->memsw_is_minimum = true;
3520 else
3521 memcg->memsw_is_minimum = false;
3522 }
8c7c6e34
KH
3523 mutex_unlock(&set_limit_mutex);
3524
3525 if (!ret)
3526 break;
3527
aa20d489 3528 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
0ae5e89c
YH
3529 MEM_CGROUP_RECLAIM_SHRINK,
3530 NULL);
81d39c20
KH
3531 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3532 /* Usage is reduced ? */
3533 if (curusage >= oldusage)
3534 retry_count--;
3535 else
3536 oldusage = curusage;
8c7c6e34 3537 }
3c11ecf4
KH
3538 if (!ret && enlarge)
3539 memcg_oom_recover(memcg);
14797e23 3540
8c7c6e34
KH
3541 return ret;
3542}
3543
338c8431
LZ
3544static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3545 unsigned long long val)
8c7c6e34 3546{
81d39c20 3547 int retry_count;
3c11ecf4 3548 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3549 int children = mem_cgroup_count_children(memcg);
3550 int ret = -EBUSY;
3c11ecf4 3551 int enlarge = 0;
8c7c6e34 3552
81d39c20
KH
3553 /* see mem_cgroup_resize_res_limit */
3554 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3555 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3556 while (retry_count) {
3557 if (signal_pending(current)) {
3558 ret = -EINTR;
3559 break;
3560 }
3561 /*
3562 * Rather than hide all in some function, I do this in
3563 * open coded manner. You see what this really does.
c0ff4b85 3564 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3565 */
3566 mutex_lock(&set_limit_mutex);
3567 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3568 if (memlimit > val) {
3569 ret = -EINVAL;
3570 mutex_unlock(&set_limit_mutex);
3571 break;
3572 }
3c11ecf4
KH
3573 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3574 if (memswlimit < val)
3575 enlarge = 1;
8c7c6e34 3576 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3577 if (!ret) {
3578 if (memlimit == val)
3579 memcg->memsw_is_minimum = true;
3580 else
3581 memcg->memsw_is_minimum = false;
3582 }
8c7c6e34
KH
3583 mutex_unlock(&set_limit_mutex);
3584
3585 if (!ret)
3586 break;
3587
4e416953 3588 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44 3589 MEM_CGROUP_RECLAIM_NOSWAP |
0ae5e89c
YH
3590 MEM_CGROUP_RECLAIM_SHRINK,
3591 NULL);
8c7c6e34 3592 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3593 /* Usage is reduced ? */
8c7c6e34 3594 if (curusage >= oldusage)
628f4235 3595 retry_count--;
81d39c20
KH
3596 else
3597 oldusage = curusage;
628f4235 3598 }
3c11ecf4
KH
3599 if (!ret && enlarge)
3600 memcg_oom_recover(memcg);
628f4235
KH
3601 return ret;
3602}
3603
4e416953 3604unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3605 gfp_t gfp_mask,
3606 unsigned long *total_scanned)
4e416953
BS
3607{
3608 unsigned long nr_reclaimed = 0;
3609 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3610 unsigned long reclaimed;
3611 int loop = 0;
3612 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3613 unsigned long long excess;
0ae5e89c 3614 unsigned long nr_scanned;
4e416953
BS
3615
3616 if (order > 0)
3617 return 0;
3618
00918b6a 3619 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3620 /*
3621 * This loop can run a while, specially if mem_cgroup's continuously
3622 * keep exceeding their soft limit and putting the system under
3623 * pressure
3624 */
3625 do {
3626 if (next_mz)
3627 mz = next_mz;
3628 else
3629 mz = mem_cgroup_largest_soft_limit_node(mctz);
3630 if (!mz)
3631 break;
3632
0ae5e89c 3633 nr_scanned = 0;
4e416953
BS
3634 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3635 gfp_mask,
0ae5e89c
YH
3636 MEM_CGROUP_RECLAIM_SOFT,
3637 &nr_scanned);
4e416953 3638 nr_reclaimed += reclaimed;
0ae5e89c 3639 *total_scanned += nr_scanned;
4e416953
BS
3640 spin_lock(&mctz->lock);
3641
3642 /*
3643 * If we failed to reclaim anything from this memory cgroup
3644 * it is time to move on to the next cgroup
3645 */
3646 next_mz = NULL;
3647 if (!reclaimed) {
3648 do {
3649 /*
3650 * Loop until we find yet another one.
3651 *
3652 * By the time we get the soft_limit lock
3653 * again, someone might have aded the
3654 * group back on the RB tree. Iterate to
3655 * make sure we get a different mem.
3656 * mem_cgroup_largest_soft_limit_node returns
3657 * NULL if no other cgroup is present on
3658 * the tree
3659 */
3660 next_mz =
3661 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3662 if (next_mz == mz)
4e416953 3663 css_put(&next_mz->mem->css);
39cc98f1 3664 else /* next_mz == NULL or other memcg */
4e416953
BS
3665 break;
3666 } while (1);
3667 }
4e416953 3668 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3669 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3670 /*
3671 * One school of thought says that we should not add
3672 * back the node to the tree if reclaim returns 0.
3673 * But our reclaim could return 0, simply because due
3674 * to priority we are exposing a smaller subset of
3675 * memory to reclaim from. Consider this as a longer
3676 * term TODO.
3677 */
ef8745c1
KH
3678 /* If excess == 0, no tree ops */
3679 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3680 spin_unlock(&mctz->lock);
3681 css_put(&mz->mem->css);
3682 loop++;
3683 /*
3684 * Could not reclaim anything and there are no more
3685 * mem cgroups to try or we seem to be looping without
3686 * reclaiming anything.
3687 */
3688 if (!nr_reclaimed &&
3689 (next_mz == NULL ||
3690 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3691 break;
3692 } while (!nr_reclaimed);
3693 if (next_mz)
3694 css_put(&next_mz->mem->css);
3695 return nr_reclaimed;
3696}
3697
cc847582
KH
3698/*
3699 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3700 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3701 */
c0ff4b85 3702static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3703 int node, int zid, enum lru_list lru)
cc847582 3704{
08e552c6
KH
3705 struct zone *zone;
3706 struct mem_cgroup_per_zone *mz;
f817ed48 3707 struct page_cgroup *pc, *busy;
08e552c6 3708 unsigned long flags, loop;
072c56c1 3709 struct list_head *list;
f817ed48 3710 int ret = 0;
072c56c1 3711
08e552c6 3712 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3713 mz = mem_cgroup_zoneinfo(memcg, node, zid);
b69408e8 3714 list = &mz->lists[lru];
cc847582 3715
f817ed48
KH
3716 loop = MEM_CGROUP_ZSTAT(mz, lru);
3717 /* give some margin against EBUSY etc...*/
3718 loop += 256;
3719 busy = NULL;
3720 while (loop--) {
5564e88b
JW
3721 struct page *page;
3722
f817ed48 3723 ret = 0;
08e552c6 3724 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3725 if (list_empty(list)) {
08e552c6 3726 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3727 break;
f817ed48
KH
3728 }
3729 pc = list_entry(list->prev, struct page_cgroup, lru);
3730 if (busy == pc) {
3731 list_move(&pc->lru, list);
648bcc77 3732 busy = NULL;
08e552c6 3733 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3734 continue;
3735 }
08e552c6 3736 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3737
6b3ae58e 3738 page = lookup_cgroup_page(pc);
5564e88b 3739
c0ff4b85 3740 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
f817ed48 3741 if (ret == -ENOMEM)
52d4b9ac 3742 break;
f817ed48
KH
3743
3744 if (ret == -EBUSY || ret == -EINVAL) {
3745 /* found lock contention or "pc" is obsolete. */
3746 busy = pc;
3747 cond_resched();
3748 } else
3749 busy = NULL;
cc847582 3750 }
08e552c6 3751
f817ed48
KH
3752 if (!ret && !list_empty(list))
3753 return -EBUSY;
3754 return ret;
cc847582
KH
3755}
3756
3757/*
3758 * make mem_cgroup's charge to be 0 if there is no task.
3759 * This enables deleting this mem_cgroup.
3760 */
c0ff4b85 3761static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3762{
f817ed48
KH
3763 int ret;
3764 int node, zid, shrink;
3765 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3766 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3767
c0ff4b85 3768 css_get(&memcg->css);
f817ed48
KH
3769
3770 shrink = 0;
c1e862c1
KH
3771 /* should free all ? */
3772 if (free_all)
3773 goto try_to_free;
f817ed48 3774move_account:
fce66477 3775 do {
f817ed48 3776 ret = -EBUSY;
c1e862c1
KH
3777 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3778 goto out;
3779 ret = -EINTR;
3780 if (signal_pending(current))
cc847582 3781 goto out;
52d4b9ac
KH
3782 /* This is for making all *used* pages to be on LRU. */
3783 lru_add_drain_all();
c0ff4b85 3784 drain_all_stock_sync(memcg);
f817ed48 3785 ret = 0;
c0ff4b85 3786 mem_cgroup_start_move(memcg);
299b4eaa 3787 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3788 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3789 enum lru_list l;
f817ed48 3790 for_each_lru(l) {
c0ff4b85 3791 ret = mem_cgroup_force_empty_list(memcg,
08e552c6 3792 node, zid, l);
f817ed48
KH
3793 if (ret)
3794 break;
3795 }
1ecaab2b 3796 }
f817ed48
KH
3797 if (ret)
3798 break;
3799 }
c0ff4b85
R
3800 mem_cgroup_end_move(memcg);
3801 memcg_oom_recover(memcg);
f817ed48
KH
3802 /* it seems parent cgroup doesn't have enough mem */
3803 if (ret == -ENOMEM)
3804 goto try_to_free;
52d4b9ac 3805 cond_resched();
fce66477 3806 /* "ret" should also be checked to ensure all lists are empty. */
c0ff4b85 3807 } while (memcg->res.usage > 0 || ret);
cc847582 3808out:
c0ff4b85 3809 css_put(&memcg->css);
cc847582 3810 return ret;
f817ed48
KH
3811
3812try_to_free:
c1e862c1
KH
3813 /* returns EBUSY if there is a task or if we come here twice. */
3814 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3815 ret = -EBUSY;
3816 goto out;
3817 }
c1e862c1
KH
3818 /* we call try-to-free pages for make this cgroup empty */
3819 lru_add_drain_all();
f817ed48
KH
3820 /* try to free all pages in this cgroup */
3821 shrink = 1;
c0ff4b85 3822 while (nr_retries && memcg->res.usage > 0) {
f817ed48 3823 int progress;
c1e862c1
KH
3824
3825 if (signal_pending(current)) {
3826 ret = -EINTR;
3827 goto out;
3828 }
c0ff4b85 3829 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3830 false);
c1e862c1 3831 if (!progress) {
f817ed48 3832 nr_retries--;
c1e862c1 3833 /* maybe some writeback is necessary */
8aa7e847 3834 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3835 }
f817ed48
KH
3836
3837 }
08e552c6 3838 lru_add_drain();
f817ed48 3839 /* try move_account...there may be some *locked* pages. */
fce66477 3840 goto move_account;
cc847582
KH
3841}
3842
c1e862c1
KH
3843int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3844{
3845 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3846}
3847
3848
18f59ea7
BS
3849static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3850{
3851 return mem_cgroup_from_cont(cont)->use_hierarchy;
3852}
3853
3854static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3855 u64 val)
3856{
3857 int retval = 0;
c0ff4b85 3858 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3859 struct cgroup *parent = cont->parent;
c0ff4b85 3860 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3861
3862 if (parent)
c0ff4b85 3863 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3864
3865 cgroup_lock();
3866 /*
af901ca1 3867 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3868 * in the child subtrees. If it is unset, then the change can
3869 * occur, provided the current cgroup has no children.
3870 *
3871 * For the root cgroup, parent_mem is NULL, we allow value to be
3872 * set if there are no children.
3873 */
c0ff4b85 3874 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3875 (val == 1 || val == 0)) {
3876 if (list_empty(&cont->children))
c0ff4b85 3877 memcg->use_hierarchy = val;
18f59ea7
BS
3878 else
3879 retval = -EBUSY;
3880 } else
3881 retval = -EINVAL;
3882 cgroup_unlock();
3883
3884 return retval;
3885}
3886
0c3e73e8 3887
c0ff4b85 3888static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3889 enum mem_cgroup_stat_index idx)
0c3e73e8 3890{
7d74b06f 3891 struct mem_cgroup *iter;
7a159cc9 3892 long val = 0;
0c3e73e8 3893
7a159cc9 3894 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3895 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3896 val += mem_cgroup_read_stat(iter, idx);
3897
3898 if (val < 0) /* race ? */
3899 val = 0;
3900 return val;
0c3e73e8
BS
3901}
3902
c0ff4b85 3903static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3904{
7d74b06f 3905 u64 val;
104f3928 3906
c0ff4b85 3907 if (!mem_cgroup_is_root(memcg)) {
104f3928 3908 if (!swap)
65c64ce8 3909 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3910 else
65c64ce8 3911 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3912 }
3913
c0ff4b85
R
3914 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3915 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3916
7d74b06f 3917 if (swap)
c0ff4b85 3918 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3919
3920 return val << PAGE_SHIFT;
3921}
3922
2c3daa72 3923static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3924{
c0ff4b85 3925 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
104f3928 3926 u64 val;
8c7c6e34
KH
3927 int type, name;
3928
3929 type = MEMFILE_TYPE(cft->private);
3930 name = MEMFILE_ATTR(cft->private);
3931 switch (type) {
3932 case _MEM:
104f3928 3933 if (name == RES_USAGE)
c0ff4b85 3934 val = mem_cgroup_usage(memcg, false);
104f3928 3935 else
c0ff4b85 3936 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3937 break;
3938 case _MEMSWAP:
104f3928 3939 if (name == RES_USAGE)
c0ff4b85 3940 val = mem_cgroup_usage(memcg, true);
104f3928 3941 else
c0ff4b85 3942 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3943 break;
3944 default:
3945 BUG();
3946 break;
3947 }
3948 return val;
8cdea7c0 3949}
628f4235
KH
3950/*
3951 * The user of this function is...
3952 * RES_LIMIT.
3953 */
856c13aa
PM
3954static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3955 const char *buffer)
8cdea7c0 3956{
628f4235 3957 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3958 int type, name;
628f4235
KH
3959 unsigned long long val;
3960 int ret;
3961
8c7c6e34
KH
3962 type = MEMFILE_TYPE(cft->private);
3963 name = MEMFILE_ATTR(cft->private);
3964 switch (name) {
628f4235 3965 case RES_LIMIT:
4b3bde4c
BS
3966 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3967 ret = -EINVAL;
3968 break;
3969 }
628f4235
KH
3970 /* This function does all necessary parse...reuse it */
3971 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3972 if (ret)
3973 break;
3974 if (type == _MEM)
628f4235 3975 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3976 else
3977 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3978 break;
296c81d8
BS
3979 case RES_SOFT_LIMIT:
3980 ret = res_counter_memparse_write_strategy(buffer, &val);
3981 if (ret)
3982 break;
3983 /*
3984 * For memsw, soft limits are hard to implement in terms
3985 * of semantics, for now, we support soft limits for
3986 * control without swap
3987 */
3988 if (type == _MEM)
3989 ret = res_counter_set_soft_limit(&memcg->res, val);
3990 else
3991 ret = -EINVAL;
3992 break;
628f4235
KH
3993 default:
3994 ret = -EINVAL; /* should be BUG() ? */
3995 break;
3996 }
3997 return ret;
8cdea7c0
BS
3998}
3999
fee7b548
KH
4000static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4001 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4002{
4003 struct cgroup *cgroup;
4004 unsigned long long min_limit, min_memsw_limit, tmp;
4005
4006 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4007 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4008 cgroup = memcg->css.cgroup;
4009 if (!memcg->use_hierarchy)
4010 goto out;
4011
4012 while (cgroup->parent) {
4013 cgroup = cgroup->parent;
4014 memcg = mem_cgroup_from_cont(cgroup);
4015 if (!memcg->use_hierarchy)
4016 break;
4017 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4018 min_limit = min(min_limit, tmp);
4019 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4020 min_memsw_limit = min(min_memsw_limit, tmp);
4021 }
4022out:
4023 *mem_limit = min_limit;
4024 *memsw_limit = min_memsw_limit;
4025 return;
4026}
4027
29f2a4da 4028static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4029{
c0ff4b85 4030 struct mem_cgroup *memcg;
8c7c6e34 4031 int type, name;
c84872e1 4032
c0ff4b85 4033 memcg = mem_cgroup_from_cont(cont);
8c7c6e34
KH
4034 type = MEMFILE_TYPE(event);
4035 name = MEMFILE_ATTR(event);
4036 switch (name) {
29f2a4da 4037 case RES_MAX_USAGE:
8c7c6e34 4038 if (type == _MEM)
c0ff4b85 4039 res_counter_reset_max(&memcg->res);
8c7c6e34 4040 else
c0ff4b85 4041 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4042 break;
4043 case RES_FAILCNT:
8c7c6e34 4044 if (type == _MEM)
c0ff4b85 4045 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4046 else
c0ff4b85 4047 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4048 break;
4049 }
f64c3f54 4050
85cc59db 4051 return 0;
c84872e1
PE
4052}
4053
7dc74be0
DN
4054static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4055 struct cftype *cft)
4056{
4057 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4058}
4059
02491447 4060#ifdef CONFIG_MMU
7dc74be0
DN
4061static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4062 struct cftype *cft, u64 val)
4063{
c0ff4b85 4064 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4065
4066 if (val >= (1 << NR_MOVE_TYPE))
4067 return -EINVAL;
4068 /*
4069 * We check this value several times in both in can_attach() and
4070 * attach(), so we need cgroup lock to prevent this value from being
4071 * inconsistent.
4072 */
4073 cgroup_lock();
c0ff4b85 4074 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4075 cgroup_unlock();
4076
4077 return 0;
4078}
02491447
DN
4079#else
4080static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4081 struct cftype *cft, u64 val)
4082{
4083 return -ENOSYS;
4084}
4085#endif
7dc74be0 4086
14067bb3
KH
4087
4088/* For read statistics */
4089enum {
4090 MCS_CACHE,
4091 MCS_RSS,
d8046582 4092 MCS_FILE_MAPPED,
14067bb3
KH
4093 MCS_PGPGIN,
4094 MCS_PGPGOUT,
1dd3a273 4095 MCS_SWAP,
456f998e
YH
4096 MCS_PGFAULT,
4097 MCS_PGMAJFAULT,
14067bb3
KH
4098 MCS_INACTIVE_ANON,
4099 MCS_ACTIVE_ANON,
4100 MCS_INACTIVE_FILE,
4101 MCS_ACTIVE_FILE,
4102 MCS_UNEVICTABLE,
4103 NR_MCS_STAT,
4104};
4105
4106struct mcs_total_stat {
4107 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4108};
4109
14067bb3
KH
4110struct {
4111 char *local_name;
4112 char *total_name;
4113} memcg_stat_strings[NR_MCS_STAT] = {
4114 {"cache", "total_cache"},
4115 {"rss", "total_rss"},
d69b042f 4116 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4117 {"pgpgin", "total_pgpgin"},
4118 {"pgpgout", "total_pgpgout"},
1dd3a273 4119 {"swap", "total_swap"},
456f998e
YH
4120 {"pgfault", "total_pgfault"},
4121 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4122 {"inactive_anon", "total_inactive_anon"},
4123 {"active_anon", "total_active_anon"},
4124 {"inactive_file", "total_inactive_file"},
4125 {"active_file", "total_active_file"},
4126 {"unevictable", "total_unevictable"}
4127};
4128
4129
7d74b06f 4130static void
c0ff4b85 4131mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4132{
14067bb3
KH
4133 s64 val;
4134
4135 /* per cpu stat */
c0ff4b85 4136 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4137 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4138 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4139 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4140 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4141 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4142 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4143 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4144 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4145 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4146 if (do_swap_account) {
c0ff4b85 4147 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4148 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4149 }
c0ff4b85 4150 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4151 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4152 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4153 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4154
4155 /* per zone stat */
c0ff4b85 4156 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4157 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4158 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4159 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4160 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4161 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4162 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4163 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4164 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4165 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4166}
4167
4168static void
c0ff4b85 4169mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4170{
7d74b06f
KH
4171 struct mem_cgroup *iter;
4172
c0ff4b85 4173 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4174 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4175}
4176
406eb0c9
YH
4177#ifdef CONFIG_NUMA
4178static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4179{
4180 int nid;
4181 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4182 unsigned long node_nr;
4183 struct cgroup *cont = m->private;
4184 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4185
bb2a0de9 4186 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
406eb0c9
YH
4187 seq_printf(m, "total=%lu", total_nr);
4188 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9 4189 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
406eb0c9
YH
4190 seq_printf(m, " N%d=%lu", nid, node_nr);
4191 }
4192 seq_putc(m, '\n');
4193
bb2a0de9 4194 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
406eb0c9
YH
4195 seq_printf(m, "file=%lu", file_nr);
4196 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4197 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4198 LRU_ALL_FILE);
406eb0c9
YH
4199 seq_printf(m, " N%d=%lu", nid, node_nr);
4200 }
4201 seq_putc(m, '\n');
4202
bb2a0de9 4203 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
406eb0c9
YH
4204 seq_printf(m, "anon=%lu", anon_nr);
4205 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4206 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4207 LRU_ALL_ANON);
406eb0c9
YH
4208 seq_printf(m, " N%d=%lu", nid, node_nr);
4209 }
4210 seq_putc(m, '\n');
4211
bb2a0de9 4212 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4213 seq_printf(m, "unevictable=%lu", unevictable_nr);
4214 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4215 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4216 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4217 seq_printf(m, " N%d=%lu", nid, node_nr);
4218 }
4219 seq_putc(m, '\n');
4220 return 0;
4221}
4222#endif /* CONFIG_NUMA */
4223
c64745cf
PM
4224static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4225 struct cgroup_map_cb *cb)
d2ceb9b7 4226{
d2ceb9b7 4227 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 4228 struct mcs_total_stat mystat;
d2ceb9b7
KH
4229 int i;
4230
14067bb3
KH
4231 memset(&mystat, 0, sizeof(mystat));
4232 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 4233
406eb0c9 4234
1dd3a273
DN
4235 for (i = 0; i < NR_MCS_STAT; i++) {
4236 if (i == MCS_SWAP && !do_swap_account)
4237 continue;
14067bb3 4238 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4239 }
7b854121 4240
14067bb3 4241 /* Hierarchical information */
fee7b548
KH
4242 {
4243 unsigned long long limit, memsw_limit;
4244 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4245 cb->fill(cb, "hierarchical_memory_limit", limit);
4246 if (do_swap_account)
4247 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4248 }
7f016ee8 4249
14067bb3
KH
4250 memset(&mystat, 0, sizeof(mystat));
4251 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
4252 for (i = 0; i < NR_MCS_STAT; i++) {
4253 if (i == MCS_SWAP && !do_swap_account)
4254 continue;
14067bb3 4255 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4256 }
14067bb3 4257
7f016ee8 4258#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4259 {
4260 int nid, zid;
4261 struct mem_cgroup_per_zone *mz;
4262 unsigned long recent_rotated[2] = {0, 0};
4263 unsigned long recent_scanned[2] = {0, 0};
4264
4265 for_each_online_node(nid)
4266 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4267 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4268
4269 recent_rotated[0] +=
4270 mz->reclaim_stat.recent_rotated[0];
4271 recent_rotated[1] +=
4272 mz->reclaim_stat.recent_rotated[1];
4273 recent_scanned[0] +=
4274 mz->reclaim_stat.recent_scanned[0];
4275 recent_scanned[1] +=
4276 mz->reclaim_stat.recent_scanned[1];
4277 }
4278 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4279 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4280 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4281 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4282 }
4283#endif
4284
d2ceb9b7
KH
4285 return 0;
4286}
4287
a7885eb8
KM
4288static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4289{
4290 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4291
1f4c025b 4292 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4293}
4294
4295static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4296 u64 val)
4297{
4298 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4299 struct mem_cgroup *parent;
068b38c1 4300
a7885eb8
KM
4301 if (val > 100)
4302 return -EINVAL;
4303
4304 if (cgrp->parent == NULL)
4305 return -EINVAL;
4306
4307 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4308
4309 cgroup_lock();
4310
a7885eb8
KM
4311 /* If under hierarchy, only empty-root can set this value */
4312 if ((parent->use_hierarchy) ||
068b38c1
LZ
4313 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4314 cgroup_unlock();
a7885eb8 4315 return -EINVAL;
068b38c1 4316 }
a7885eb8 4317
a7885eb8 4318 memcg->swappiness = val;
a7885eb8 4319
068b38c1
LZ
4320 cgroup_unlock();
4321
a7885eb8
KM
4322 return 0;
4323}
4324
2e72b634
KS
4325static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4326{
4327 struct mem_cgroup_threshold_ary *t;
4328 u64 usage;
4329 int i;
4330
4331 rcu_read_lock();
4332 if (!swap)
2c488db2 4333 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4334 else
2c488db2 4335 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4336
4337 if (!t)
4338 goto unlock;
4339
4340 usage = mem_cgroup_usage(memcg, swap);
4341
4342 /*
4343 * current_threshold points to threshold just below usage.
4344 * If it's not true, a threshold was crossed after last
4345 * call of __mem_cgroup_threshold().
4346 */
5407a562 4347 i = t->current_threshold;
2e72b634
KS
4348
4349 /*
4350 * Iterate backward over array of thresholds starting from
4351 * current_threshold and check if a threshold is crossed.
4352 * If none of thresholds below usage is crossed, we read
4353 * only one element of the array here.
4354 */
4355 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4356 eventfd_signal(t->entries[i].eventfd, 1);
4357
4358 /* i = current_threshold + 1 */
4359 i++;
4360
4361 /*
4362 * Iterate forward over array of thresholds starting from
4363 * current_threshold+1 and check if a threshold is crossed.
4364 * If none of thresholds above usage is crossed, we read
4365 * only one element of the array here.
4366 */
4367 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4368 eventfd_signal(t->entries[i].eventfd, 1);
4369
4370 /* Update current_threshold */
5407a562 4371 t->current_threshold = i - 1;
2e72b634
KS
4372unlock:
4373 rcu_read_unlock();
4374}
4375
4376static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4377{
ad4ca5f4
KS
4378 while (memcg) {
4379 __mem_cgroup_threshold(memcg, false);
4380 if (do_swap_account)
4381 __mem_cgroup_threshold(memcg, true);
4382
4383 memcg = parent_mem_cgroup(memcg);
4384 }
2e72b634
KS
4385}
4386
4387static int compare_thresholds(const void *a, const void *b)
4388{
4389 const struct mem_cgroup_threshold *_a = a;
4390 const struct mem_cgroup_threshold *_b = b;
4391
4392 return _a->threshold - _b->threshold;
4393}
4394
c0ff4b85 4395static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4396{
4397 struct mem_cgroup_eventfd_list *ev;
4398
c0ff4b85 4399 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4400 eventfd_signal(ev->eventfd, 1);
4401 return 0;
4402}
4403
c0ff4b85 4404static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4405{
7d74b06f
KH
4406 struct mem_cgroup *iter;
4407
c0ff4b85 4408 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4409 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4410}
4411
4412static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4413 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4414{
4415 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4416 struct mem_cgroup_thresholds *thresholds;
4417 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4418 int type = MEMFILE_TYPE(cft->private);
4419 u64 threshold, usage;
2c488db2 4420 int i, size, ret;
2e72b634
KS
4421
4422 ret = res_counter_memparse_write_strategy(args, &threshold);
4423 if (ret)
4424 return ret;
4425
4426 mutex_lock(&memcg->thresholds_lock);
2c488db2 4427
2e72b634 4428 if (type == _MEM)
2c488db2 4429 thresholds = &memcg->thresholds;
2e72b634 4430 else if (type == _MEMSWAP)
2c488db2 4431 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4432 else
4433 BUG();
4434
4435 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4436
4437 /* Check if a threshold crossed before adding a new one */
2c488db2 4438 if (thresholds->primary)
2e72b634
KS
4439 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4440
2c488db2 4441 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4442
4443 /* Allocate memory for new array of thresholds */
2c488db2 4444 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4445 GFP_KERNEL);
2c488db2 4446 if (!new) {
2e72b634
KS
4447 ret = -ENOMEM;
4448 goto unlock;
4449 }
2c488db2 4450 new->size = size;
2e72b634
KS
4451
4452 /* Copy thresholds (if any) to new array */
2c488db2
KS
4453 if (thresholds->primary) {
4454 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4455 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4456 }
4457
2e72b634 4458 /* Add new threshold */
2c488db2
KS
4459 new->entries[size - 1].eventfd = eventfd;
4460 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4461
4462 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4463 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4464 compare_thresholds, NULL);
4465
4466 /* Find current threshold */
2c488db2 4467 new->current_threshold = -1;
2e72b634 4468 for (i = 0; i < size; i++) {
2c488db2 4469 if (new->entries[i].threshold < usage) {
2e72b634 4470 /*
2c488db2
KS
4471 * new->current_threshold will not be used until
4472 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4473 * it here.
4474 */
2c488db2 4475 ++new->current_threshold;
2e72b634
KS
4476 }
4477 }
4478
2c488db2
KS
4479 /* Free old spare buffer and save old primary buffer as spare */
4480 kfree(thresholds->spare);
4481 thresholds->spare = thresholds->primary;
4482
4483 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4484
907860ed 4485 /* To be sure that nobody uses thresholds */
2e72b634
KS
4486 synchronize_rcu();
4487
2e72b634
KS
4488unlock:
4489 mutex_unlock(&memcg->thresholds_lock);
4490
4491 return ret;
4492}
4493
907860ed 4494static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4495 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4496{
4497 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4498 struct mem_cgroup_thresholds *thresholds;
4499 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4500 int type = MEMFILE_TYPE(cft->private);
4501 u64 usage;
2c488db2 4502 int i, j, size;
2e72b634
KS
4503
4504 mutex_lock(&memcg->thresholds_lock);
4505 if (type == _MEM)
2c488db2 4506 thresholds = &memcg->thresholds;
2e72b634 4507 else if (type == _MEMSWAP)
2c488db2 4508 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4509 else
4510 BUG();
4511
4512 /*
4513 * Something went wrong if we trying to unregister a threshold
4514 * if we don't have thresholds
4515 */
4516 BUG_ON(!thresholds);
4517
4518 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4519
4520 /* Check if a threshold crossed before removing */
4521 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4522
4523 /* Calculate new number of threshold */
2c488db2
KS
4524 size = 0;
4525 for (i = 0; i < thresholds->primary->size; i++) {
4526 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4527 size++;
4528 }
4529
2c488db2 4530 new = thresholds->spare;
907860ed 4531
2e72b634
KS
4532 /* Set thresholds array to NULL if we don't have thresholds */
4533 if (!size) {
2c488db2
KS
4534 kfree(new);
4535 new = NULL;
907860ed 4536 goto swap_buffers;
2e72b634
KS
4537 }
4538
2c488db2 4539 new->size = size;
2e72b634
KS
4540
4541 /* Copy thresholds and find current threshold */
2c488db2
KS
4542 new->current_threshold = -1;
4543 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4544 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4545 continue;
4546
2c488db2
KS
4547 new->entries[j] = thresholds->primary->entries[i];
4548 if (new->entries[j].threshold < usage) {
2e72b634 4549 /*
2c488db2 4550 * new->current_threshold will not be used
2e72b634
KS
4551 * until rcu_assign_pointer(), so it's safe to increment
4552 * it here.
4553 */
2c488db2 4554 ++new->current_threshold;
2e72b634
KS
4555 }
4556 j++;
4557 }
4558
907860ed 4559swap_buffers:
2c488db2
KS
4560 /* Swap primary and spare array */
4561 thresholds->spare = thresholds->primary;
4562 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4563
907860ed 4564 /* To be sure that nobody uses thresholds */
2e72b634
KS
4565 synchronize_rcu();
4566
2e72b634 4567 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4568}
c1e862c1 4569
9490ff27
KH
4570static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4571 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4572{
4573 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4574 struct mem_cgroup_eventfd_list *event;
4575 int type = MEMFILE_TYPE(cft->private);
4576
4577 BUG_ON(type != _OOM_TYPE);
4578 event = kmalloc(sizeof(*event), GFP_KERNEL);
4579 if (!event)
4580 return -ENOMEM;
4581
1af8efe9 4582 spin_lock(&memcg_oom_lock);
9490ff27
KH
4583
4584 event->eventfd = eventfd;
4585 list_add(&event->list, &memcg->oom_notify);
4586
4587 /* already in OOM ? */
79dfdacc 4588 if (atomic_read(&memcg->under_oom))
9490ff27 4589 eventfd_signal(eventfd, 1);
1af8efe9 4590 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4591
4592 return 0;
4593}
4594
907860ed 4595static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4596 struct cftype *cft, struct eventfd_ctx *eventfd)
4597{
c0ff4b85 4598 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4599 struct mem_cgroup_eventfd_list *ev, *tmp;
4600 int type = MEMFILE_TYPE(cft->private);
4601
4602 BUG_ON(type != _OOM_TYPE);
4603
1af8efe9 4604 spin_lock(&memcg_oom_lock);
9490ff27 4605
c0ff4b85 4606 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4607 if (ev->eventfd == eventfd) {
4608 list_del(&ev->list);
4609 kfree(ev);
4610 }
4611 }
4612
1af8efe9 4613 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4614}
4615
3c11ecf4
KH
4616static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4617 struct cftype *cft, struct cgroup_map_cb *cb)
4618{
c0ff4b85 4619 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4620
c0ff4b85 4621 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4622
c0ff4b85 4623 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4624 cb->fill(cb, "under_oom", 1);
4625 else
4626 cb->fill(cb, "under_oom", 0);
4627 return 0;
4628}
4629
3c11ecf4
KH
4630static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4631 struct cftype *cft, u64 val)
4632{
c0ff4b85 4633 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4634 struct mem_cgroup *parent;
4635
4636 /* cannot set to root cgroup and only 0 and 1 are allowed */
4637 if (!cgrp->parent || !((val == 0) || (val == 1)))
4638 return -EINVAL;
4639
4640 parent = mem_cgroup_from_cont(cgrp->parent);
4641
4642 cgroup_lock();
4643 /* oom-kill-disable is a flag for subhierarchy. */
4644 if ((parent->use_hierarchy) ||
c0ff4b85 4645 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4646 cgroup_unlock();
4647 return -EINVAL;
4648 }
c0ff4b85 4649 memcg->oom_kill_disable = val;
4d845ebf 4650 if (!val)
c0ff4b85 4651 memcg_oom_recover(memcg);
3c11ecf4
KH
4652 cgroup_unlock();
4653 return 0;
4654}
4655
406eb0c9
YH
4656#ifdef CONFIG_NUMA
4657static const struct file_operations mem_control_numa_stat_file_operations = {
4658 .read = seq_read,
4659 .llseek = seq_lseek,
4660 .release = single_release,
4661};
4662
4663static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4664{
4665 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4666
4667 file->f_op = &mem_control_numa_stat_file_operations;
4668 return single_open(file, mem_control_numa_stat_show, cont);
4669}
4670#endif /* CONFIG_NUMA */
4671
e5671dfa 4672#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e5671dfa
GC
4673static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4674{
d1a4c0b3
GC
4675 /*
4676 * Part of this would be better living in a separate allocation
4677 * function, leaving us with just the cgroup tree population work.
4678 * We, however, depend on state such as network's proto_list that
4679 * is only initialized after cgroup creation. I found the less
4680 * cumbersome way to deal with it to defer it all to populate time
4681 */
65c64ce8 4682 return mem_cgroup_sockets_init(cont, ss);
e5671dfa
GC
4683};
4684
d1a4c0b3
GC
4685static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4686 struct cgroup *cont)
4687{
4688 mem_cgroup_sockets_destroy(cont, ss);
4689}
e5671dfa
GC
4690#else
4691static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4692{
4693 return 0;
4694}
d1a4c0b3
GC
4695
4696static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4697 struct cgroup *cont)
4698{
4699}
e5671dfa
GC
4700#endif
4701
8cdea7c0
BS
4702static struct cftype mem_cgroup_files[] = {
4703 {
0eea1030 4704 .name = "usage_in_bytes",
8c7c6e34 4705 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4706 .read_u64 = mem_cgroup_read,
9490ff27
KH
4707 .register_event = mem_cgroup_usage_register_event,
4708 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4709 },
c84872e1
PE
4710 {
4711 .name = "max_usage_in_bytes",
8c7c6e34 4712 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4713 .trigger = mem_cgroup_reset,
c84872e1
PE
4714 .read_u64 = mem_cgroup_read,
4715 },
8cdea7c0 4716 {
0eea1030 4717 .name = "limit_in_bytes",
8c7c6e34 4718 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4719 .write_string = mem_cgroup_write,
2c3daa72 4720 .read_u64 = mem_cgroup_read,
8cdea7c0 4721 },
296c81d8
BS
4722 {
4723 .name = "soft_limit_in_bytes",
4724 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4725 .write_string = mem_cgroup_write,
4726 .read_u64 = mem_cgroup_read,
4727 },
8cdea7c0
BS
4728 {
4729 .name = "failcnt",
8c7c6e34 4730 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4731 .trigger = mem_cgroup_reset,
2c3daa72 4732 .read_u64 = mem_cgroup_read,
8cdea7c0 4733 },
d2ceb9b7
KH
4734 {
4735 .name = "stat",
c64745cf 4736 .read_map = mem_control_stat_show,
d2ceb9b7 4737 },
c1e862c1
KH
4738 {
4739 .name = "force_empty",
4740 .trigger = mem_cgroup_force_empty_write,
4741 },
18f59ea7
BS
4742 {
4743 .name = "use_hierarchy",
4744 .write_u64 = mem_cgroup_hierarchy_write,
4745 .read_u64 = mem_cgroup_hierarchy_read,
4746 },
a7885eb8
KM
4747 {
4748 .name = "swappiness",
4749 .read_u64 = mem_cgroup_swappiness_read,
4750 .write_u64 = mem_cgroup_swappiness_write,
4751 },
7dc74be0
DN
4752 {
4753 .name = "move_charge_at_immigrate",
4754 .read_u64 = mem_cgroup_move_charge_read,
4755 .write_u64 = mem_cgroup_move_charge_write,
4756 },
9490ff27
KH
4757 {
4758 .name = "oom_control",
3c11ecf4
KH
4759 .read_map = mem_cgroup_oom_control_read,
4760 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4761 .register_event = mem_cgroup_oom_register_event,
4762 .unregister_event = mem_cgroup_oom_unregister_event,
4763 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4764 },
406eb0c9
YH
4765#ifdef CONFIG_NUMA
4766 {
4767 .name = "numa_stat",
4768 .open = mem_control_numa_stat_open,
89577127 4769 .mode = S_IRUGO,
406eb0c9
YH
4770 },
4771#endif
8cdea7c0
BS
4772};
4773
8c7c6e34
KH
4774#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4775static struct cftype memsw_cgroup_files[] = {
4776 {
4777 .name = "memsw.usage_in_bytes",
4778 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4779 .read_u64 = mem_cgroup_read,
9490ff27
KH
4780 .register_event = mem_cgroup_usage_register_event,
4781 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4782 },
4783 {
4784 .name = "memsw.max_usage_in_bytes",
4785 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4786 .trigger = mem_cgroup_reset,
4787 .read_u64 = mem_cgroup_read,
4788 },
4789 {
4790 .name = "memsw.limit_in_bytes",
4791 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4792 .write_string = mem_cgroup_write,
4793 .read_u64 = mem_cgroup_read,
4794 },
4795 {
4796 .name = "memsw.failcnt",
4797 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4798 .trigger = mem_cgroup_reset,
4799 .read_u64 = mem_cgroup_read,
4800 },
4801};
4802
4803static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4804{
4805 if (!do_swap_account)
4806 return 0;
4807 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4808 ARRAY_SIZE(memsw_cgroup_files));
4809};
4810#else
4811static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4812{
4813 return 0;
4814}
4815#endif
4816
c0ff4b85 4817static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4818{
4819 struct mem_cgroup_per_node *pn;
1ecaab2b 4820 struct mem_cgroup_per_zone *mz;
b69408e8 4821 enum lru_list l;
41e3355d 4822 int zone, tmp = node;
1ecaab2b
KH
4823 /*
4824 * This routine is called against possible nodes.
4825 * But it's BUG to call kmalloc() against offline node.
4826 *
4827 * TODO: this routine can waste much memory for nodes which will
4828 * never be onlined. It's better to use memory hotplug callback
4829 * function.
4830 */
41e3355d
KH
4831 if (!node_state(node, N_NORMAL_MEMORY))
4832 tmp = -1;
17295c88 4833 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4834 if (!pn)
4835 return 1;
1ecaab2b 4836
1ecaab2b
KH
4837 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4838 mz = &pn->zoneinfo[zone];
b69408e8
CL
4839 for_each_lru(l)
4840 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4841 mz->usage_in_excess = 0;
4e416953 4842 mz->on_tree = false;
c0ff4b85 4843 mz->mem = memcg;
1ecaab2b 4844 }
0a619e58 4845 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4846 return 0;
4847}
4848
c0ff4b85 4849static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4850{
c0ff4b85 4851 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4852}
4853
33327948
KH
4854static struct mem_cgroup *mem_cgroup_alloc(void)
4855{
4856 struct mem_cgroup *mem;
c62b1a3b 4857 int size = sizeof(struct mem_cgroup);
33327948 4858
c62b1a3b 4859 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4860 if (size < PAGE_SIZE)
17295c88 4861 mem = kzalloc(size, GFP_KERNEL);
33327948 4862 else
17295c88 4863 mem = vzalloc(size);
33327948 4864
e7bbcdf3
DC
4865 if (!mem)
4866 return NULL;
4867
c62b1a3b 4868 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4869 if (!mem->stat)
4870 goto out_free;
711d3d2c 4871 spin_lock_init(&mem->pcp_counter_lock);
33327948 4872 return mem;
d2e61b8d
DC
4873
4874out_free:
4875 if (size < PAGE_SIZE)
4876 kfree(mem);
4877 else
4878 vfree(mem);
4879 return NULL;
33327948
KH
4880}
4881
8c7c6e34
KH
4882/*
4883 * At destroying mem_cgroup, references from swap_cgroup can remain.
4884 * (scanning all at force_empty is too costly...)
4885 *
4886 * Instead of clearing all references at force_empty, we remember
4887 * the number of reference from swap_cgroup and free mem_cgroup when
4888 * it goes down to 0.
4889 *
8c7c6e34
KH
4890 * Removal of cgroup itself succeeds regardless of refs from swap.
4891 */
4892
c0ff4b85 4893static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4894{
08e552c6
KH
4895 int node;
4896
c0ff4b85
R
4897 mem_cgroup_remove_from_trees(memcg);
4898 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4899
08e552c6 4900 for_each_node_state(node, N_POSSIBLE)
c0ff4b85 4901 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4902
c0ff4b85 4903 free_percpu(memcg->stat);
c62b1a3b 4904 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
c0ff4b85 4905 kfree(memcg);
33327948 4906 else
c0ff4b85 4907 vfree(memcg);
33327948
KH
4908}
4909
c0ff4b85 4910static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4911{
c0ff4b85 4912 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4913}
4914
c0ff4b85 4915static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4916{
c0ff4b85
R
4917 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4918 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4919 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4920 if (parent)
4921 mem_cgroup_put(parent);
4922 }
8c7c6e34
KH
4923}
4924
c0ff4b85 4925static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4926{
c0ff4b85 4927 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4928}
4929
7bcc1bb1
DN
4930/*
4931 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4932 */
e1aab161 4933struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4934{
c0ff4b85 4935 if (!memcg->res.parent)
7bcc1bb1 4936 return NULL;
c0ff4b85 4937 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4938}
e1aab161 4939EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4940
c077719b
KH
4941#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4942static void __init enable_swap_cgroup(void)
4943{
f8d66542 4944 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4945 do_swap_account = 1;
4946}
4947#else
4948static void __init enable_swap_cgroup(void)
4949{
4950}
4951#endif
4952
f64c3f54
BS
4953static int mem_cgroup_soft_limit_tree_init(void)
4954{
4955 struct mem_cgroup_tree_per_node *rtpn;
4956 struct mem_cgroup_tree_per_zone *rtpz;
4957 int tmp, node, zone;
4958
4959 for_each_node_state(node, N_POSSIBLE) {
4960 tmp = node;
4961 if (!node_state(node, N_NORMAL_MEMORY))
4962 tmp = -1;
4963 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4964 if (!rtpn)
4965 return 1;
4966
4967 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4968
4969 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4970 rtpz = &rtpn->rb_tree_per_zone[zone];
4971 rtpz->rb_root = RB_ROOT;
4972 spin_lock_init(&rtpz->lock);
4973 }
4974 }
4975 return 0;
4976}
4977
0eb253e2 4978static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4979mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4980{
c0ff4b85 4981 struct mem_cgroup *memcg, *parent;
04046e1a 4982 long error = -ENOMEM;
6d12e2d8 4983 int node;
8cdea7c0 4984
c0ff4b85
R
4985 memcg = mem_cgroup_alloc();
4986 if (!memcg)
04046e1a 4987 return ERR_PTR(error);
78fb7466 4988
6d12e2d8 4989 for_each_node_state(node, N_POSSIBLE)
c0ff4b85 4990 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4991 goto free_out;
f64c3f54 4992
c077719b 4993 /* root ? */
28dbc4b6 4994 if (cont->parent == NULL) {
cdec2e42 4995 int cpu;
c077719b 4996 enable_swap_cgroup();
28dbc4b6 4997 parent = NULL;
f64c3f54
BS
4998 if (mem_cgroup_soft_limit_tree_init())
4999 goto free_out;
a41c58a6 5000 root_mem_cgroup = memcg;
cdec2e42
KH
5001 for_each_possible_cpu(cpu) {
5002 struct memcg_stock_pcp *stock =
5003 &per_cpu(memcg_stock, cpu);
5004 INIT_WORK(&stock->work, drain_local_stock);
5005 }
711d3d2c 5006 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 5007 } else {
28dbc4b6 5008 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
5009 memcg->use_hierarchy = parent->use_hierarchy;
5010 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 5011 }
28dbc4b6 5012
18f59ea7 5013 if (parent && parent->use_hierarchy) {
c0ff4b85
R
5014 res_counter_init(&memcg->res, &parent->res);
5015 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
5016 /*
5017 * We increment refcnt of the parent to ensure that we can
5018 * safely access it on res_counter_charge/uncharge.
5019 * This refcnt will be decremented when freeing this
5020 * mem_cgroup(see mem_cgroup_put).
5021 */
5022 mem_cgroup_get(parent);
18f59ea7 5023 } else {
c0ff4b85
R
5024 res_counter_init(&memcg->res, NULL);
5025 res_counter_init(&memcg->memsw, NULL);
18f59ea7 5026 }
c0ff4b85
R
5027 memcg->last_scanned_child = 0;
5028 memcg->last_scanned_node = MAX_NUMNODES;
5029 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 5030
a7885eb8 5031 if (parent)
c0ff4b85
R
5032 memcg->swappiness = mem_cgroup_swappiness(parent);
5033 atomic_set(&memcg->refcnt, 1);
5034 memcg->move_charge_at_immigrate = 0;
5035 mutex_init(&memcg->thresholds_lock);
5036 return &memcg->css;
6d12e2d8 5037free_out:
c0ff4b85 5038 __mem_cgroup_free(memcg);
04046e1a 5039 return ERR_PTR(error);
8cdea7c0
BS
5040}
5041
ec64f515 5042static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
5043 struct cgroup *cont)
5044{
c0ff4b85 5045 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5046
c0ff4b85 5047 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5048}
5049
8cdea7c0
BS
5050static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5051 struct cgroup *cont)
5052{
c0ff4b85 5053 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5054
d1a4c0b3
GC
5055 kmem_cgroup_destroy(ss, cont);
5056
c0ff4b85 5057 mem_cgroup_put(memcg);
8cdea7c0
BS
5058}
5059
5060static int mem_cgroup_populate(struct cgroup_subsys *ss,
5061 struct cgroup *cont)
5062{
8c7c6e34
KH
5063 int ret;
5064
5065 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5066 ARRAY_SIZE(mem_cgroup_files));
5067
5068 if (!ret)
5069 ret = register_memsw_files(cont, ss);
e5671dfa
GC
5070
5071 if (!ret)
5072 ret = register_kmem_files(cont, ss);
5073
8c7c6e34 5074 return ret;
8cdea7c0
BS
5075}
5076
02491447 5077#ifdef CONFIG_MMU
7dc74be0 5078/* Handlers for move charge at task migration. */
854ffa8d
DN
5079#define PRECHARGE_COUNT_AT_ONCE 256
5080static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5081{
854ffa8d
DN
5082 int ret = 0;
5083 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5084 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5085
c0ff4b85 5086 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5087 mc.precharge += count;
5088 /* we don't need css_get for root */
5089 return ret;
5090 }
5091 /* try to charge at once */
5092 if (count > 1) {
5093 struct res_counter *dummy;
5094 /*
c0ff4b85 5095 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5096 * by cgroup_lock_live_cgroup() that it is not removed and we
5097 * are still under the same cgroup_mutex. So we can postpone
5098 * css_get().
5099 */
c0ff4b85 5100 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5101 goto one_by_one;
c0ff4b85 5102 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5103 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5104 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5105 goto one_by_one;
5106 }
5107 mc.precharge += count;
854ffa8d
DN
5108 return ret;
5109 }
5110one_by_one:
5111 /* fall back to one by one charge */
5112 while (count--) {
5113 if (signal_pending(current)) {
5114 ret = -EINTR;
5115 break;
5116 }
5117 if (!batch_count--) {
5118 batch_count = PRECHARGE_COUNT_AT_ONCE;
5119 cond_resched();
5120 }
c0ff4b85
R
5121 ret = __mem_cgroup_try_charge(NULL,
5122 GFP_KERNEL, 1, &memcg, false);
5123 if (ret || !memcg)
854ffa8d
DN
5124 /* mem_cgroup_clear_mc() will do uncharge later */
5125 return -ENOMEM;
5126 mc.precharge++;
5127 }
4ffef5fe
DN
5128 return ret;
5129}
5130
5131/**
5132 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5133 * @vma: the vma the pte to be checked belongs
5134 * @addr: the address corresponding to the pte to be checked
5135 * @ptent: the pte to be checked
02491447 5136 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5137 *
5138 * Returns
5139 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5140 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5141 * move charge. if @target is not NULL, the page is stored in target->page
5142 * with extra refcnt got(Callers should handle it).
02491447
DN
5143 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5144 * target for charge migration. if @target is not NULL, the entry is stored
5145 * in target->ent.
4ffef5fe
DN
5146 *
5147 * Called with pte lock held.
5148 */
4ffef5fe
DN
5149union mc_target {
5150 struct page *page;
02491447 5151 swp_entry_t ent;
4ffef5fe
DN
5152};
5153
4ffef5fe
DN
5154enum mc_target_type {
5155 MC_TARGET_NONE, /* not used */
5156 MC_TARGET_PAGE,
02491447 5157 MC_TARGET_SWAP,
4ffef5fe
DN
5158};
5159
90254a65
DN
5160static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5161 unsigned long addr, pte_t ptent)
4ffef5fe 5162{
90254a65 5163 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5164
90254a65
DN
5165 if (!page || !page_mapped(page))
5166 return NULL;
5167 if (PageAnon(page)) {
5168 /* we don't move shared anon */
5169 if (!move_anon() || page_mapcount(page) > 2)
5170 return NULL;
87946a72
DN
5171 } else if (!move_file())
5172 /* we ignore mapcount for file pages */
90254a65
DN
5173 return NULL;
5174 if (!get_page_unless_zero(page))
5175 return NULL;
5176
5177 return page;
5178}
5179
5180static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5181 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5182{
5183 int usage_count;
5184 struct page *page = NULL;
5185 swp_entry_t ent = pte_to_swp_entry(ptent);
5186
5187 if (!move_anon() || non_swap_entry(ent))
5188 return NULL;
5189 usage_count = mem_cgroup_count_swap_user(ent, &page);
5190 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5191 if (page)
5192 put_page(page);
90254a65 5193 return NULL;
02491447 5194 }
90254a65
DN
5195 if (do_swap_account)
5196 entry->val = ent.val;
5197
5198 return page;
5199}
5200
87946a72
DN
5201static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5202 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5203{
5204 struct page *page = NULL;
5205 struct inode *inode;
5206 struct address_space *mapping;
5207 pgoff_t pgoff;
5208
5209 if (!vma->vm_file) /* anonymous vma */
5210 return NULL;
5211 if (!move_file())
5212 return NULL;
5213
5214 inode = vma->vm_file->f_path.dentry->d_inode;
5215 mapping = vma->vm_file->f_mapping;
5216 if (pte_none(ptent))
5217 pgoff = linear_page_index(vma, addr);
5218 else /* pte_file(ptent) is true */
5219 pgoff = pte_to_pgoff(ptent);
5220
5221 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5222 page = find_get_page(mapping, pgoff);
5223
5224#ifdef CONFIG_SWAP
5225 /* shmem/tmpfs may report page out on swap: account for that too. */
5226 if (radix_tree_exceptional_entry(page)) {
5227 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5228 if (do_swap_account)
aa3b1895
HD
5229 *entry = swap;
5230 page = find_get_page(&swapper_space, swap.val);
87946a72 5231 }
aa3b1895 5232#endif
87946a72
DN
5233 return page;
5234}
5235
90254a65
DN
5236static int is_target_pte_for_mc(struct vm_area_struct *vma,
5237 unsigned long addr, pte_t ptent, union mc_target *target)
5238{
5239 struct page *page = NULL;
5240 struct page_cgroup *pc;
5241 int ret = 0;
5242 swp_entry_t ent = { .val = 0 };
5243
5244 if (pte_present(ptent))
5245 page = mc_handle_present_pte(vma, addr, ptent);
5246 else if (is_swap_pte(ptent))
5247 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5248 else if (pte_none(ptent) || pte_file(ptent))
5249 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5250
5251 if (!page && !ent.val)
5252 return 0;
02491447
DN
5253 if (page) {
5254 pc = lookup_page_cgroup(page);
5255 /*
5256 * Do only loose check w/o page_cgroup lock.
5257 * mem_cgroup_move_account() checks the pc is valid or not under
5258 * the lock.
5259 */
5260 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5261 ret = MC_TARGET_PAGE;
5262 if (target)
5263 target->page = page;
5264 }
5265 if (!ret || !target)
5266 put_page(page);
5267 }
90254a65
DN
5268 /* There is a swap entry and a page doesn't exist or isn't charged */
5269 if (ent.val && !ret &&
7f0f1546
KH
5270 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5271 ret = MC_TARGET_SWAP;
5272 if (target)
5273 target->ent = ent;
4ffef5fe 5274 }
4ffef5fe
DN
5275 return ret;
5276}
5277
5278static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5279 unsigned long addr, unsigned long end,
5280 struct mm_walk *walk)
5281{
5282 struct vm_area_struct *vma = walk->private;
5283 pte_t *pte;
5284 spinlock_t *ptl;
5285
03319327
DH
5286 split_huge_page_pmd(walk->mm, pmd);
5287
4ffef5fe
DN
5288 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5289 for (; addr != end; pte++, addr += PAGE_SIZE)
5290 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5291 mc.precharge++; /* increment precharge temporarily */
5292 pte_unmap_unlock(pte - 1, ptl);
5293 cond_resched();
5294
7dc74be0
DN
5295 return 0;
5296}
5297
4ffef5fe
DN
5298static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5299{
5300 unsigned long precharge;
5301 struct vm_area_struct *vma;
5302
dfe076b0 5303 down_read(&mm->mmap_sem);
4ffef5fe
DN
5304 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5305 struct mm_walk mem_cgroup_count_precharge_walk = {
5306 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5307 .mm = mm,
5308 .private = vma,
5309 };
5310 if (is_vm_hugetlb_page(vma))
5311 continue;
4ffef5fe
DN
5312 walk_page_range(vma->vm_start, vma->vm_end,
5313 &mem_cgroup_count_precharge_walk);
5314 }
dfe076b0 5315 up_read(&mm->mmap_sem);
4ffef5fe
DN
5316
5317 precharge = mc.precharge;
5318 mc.precharge = 0;
5319
5320 return precharge;
5321}
5322
4ffef5fe
DN
5323static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5324{
dfe076b0
DN
5325 unsigned long precharge = mem_cgroup_count_precharge(mm);
5326
5327 VM_BUG_ON(mc.moving_task);
5328 mc.moving_task = current;
5329 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5330}
5331
dfe076b0
DN
5332/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5333static void __mem_cgroup_clear_mc(void)
4ffef5fe 5334{
2bd9bb20
KH
5335 struct mem_cgroup *from = mc.from;
5336 struct mem_cgroup *to = mc.to;
5337
4ffef5fe 5338 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5339 if (mc.precharge) {
5340 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5341 mc.precharge = 0;
5342 }
5343 /*
5344 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5345 * we must uncharge here.
5346 */
5347 if (mc.moved_charge) {
5348 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5349 mc.moved_charge = 0;
4ffef5fe 5350 }
483c30b5
DN
5351 /* we must fixup refcnts and charges */
5352 if (mc.moved_swap) {
483c30b5
DN
5353 /* uncharge swap account from the old cgroup */
5354 if (!mem_cgroup_is_root(mc.from))
5355 res_counter_uncharge(&mc.from->memsw,
5356 PAGE_SIZE * mc.moved_swap);
5357 __mem_cgroup_put(mc.from, mc.moved_swap);
5358
5359 if (!mem_cgroup_is_root(mc.to)) {
5360 /*
5361 * we charged both to->res and to->memsw, so we should
5362 * uncharge to->res.
5363 */
5364 res_counter_uncharge(&mc.to->res,
5365 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5366 }
5367 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5368 mc.moved_swap = 0;
5369 }
dfe076b0
DN
5370 memcg_oom_recover(from);
5371 memcg_oom_recover(to);
5372 wake_up_all(&mc.waitq);
5373}
5374
5375static void mem_cgroup_clear_mc(void)
5376{
5377 struct mem_cgroup *from = mc.from;
5378
5379 /*
5380 * we must clear moving_task before waking up waiters at the end of
5381 * task migration.
5382 */
5383 mc.moving_task = NULL;
5384 __mem_cgroup_clear_mc();
2bd9bb20 5385 spin_lock(&mc.lock);
4ffef5fe
DN
5386 mc.from = NULL;
5387 mc.to = NULL;
2bd9bb20 5388 spin_unlock(&mc.lock);
32047e2a 5389 mem_cgroup_end_move(from);
4ffef5fe
DN
5390}
5391
7dc74be0
DN
5392static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5393 struct cgroup *cgroup,
f780bdb7 5394 struct task_struct *p)
7dc74be0
DN
5395{
5396 int ret = 0;
c0ff4b85 5397 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5398
c0ff4b85 5399 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5400 struct mm_struct *mm;
5401 struct mem_cgroup *from = mem_cgroup_from_task(p);
5402
c0ff4b85 5403 VM_BUG_ON(from == memcg);
7dc74be0
DN
5404
5405 mm = get_task_mm(p);
5406 if (!mm)
5407 return 0;
7dc74be0 5408 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5409 if (mm->owner == p) {
5410 VM_BUG_ON(mc.from);
5411 VM_BUG_ON(mc.to);
5412 VM_BUG_ON(mc.precharge);
854ffa8d 5413 VM_BUG_ON(mc.moved_charge);
483c30b5 5414 VM_BUG_ON(mc.moved_swap);
32047e2a 5415 mem_cgroup_start_move(from);
2bd9bb20 5416 spin_lock(&mc.lock);
4ffef5fe 5417 mc.from = from;
c0ff4b85 5418 mc.to = memcg;
2bd9bb20 5419 spin_unlock(&mc.lock);
dfe076b0 5420 /* We set mc.moving_task later */
4ffef5fe
DN
5421
5422 ret = mem_cgroup_precharge_mc(mm);
5423 if (ret)
5424 mem_cgroup_clear_mc();
dfe076b0
DN
5425 }
5426 mmput(mm);
7dc74be0
DN
5427 }
5428 return ret;
5429}
5430
5431static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5432 struct cgroup *cgroup,
f780bdb7 5433 struct task_struct *p)
7dc74be0 5434{
4ffef5fe 5435 mem_cgroup_clear_mc();
7dc74be0
DN
5436}
5437
4ffef5fe
DN
5438static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5439 unsigned long addr, unsigned long end,
5440 struct mm_walk *walk)
7dc74be0 5441{
4ffef5fe
DN
5442 int ret = 0;
5443 struct vm_area_struct *vma = walk->private;
5444 pte_t *pte;
5445 spinlock_t *ptl;
5446
03319327 5447 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
5448retry:
5449 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5450 for (; addr != end; addr += PAGE_SIZE) {
5451 pte_t ptent = *(pte++);
5452 union mc_target target;
5453 int type;
5454 struct page *page;
5455 struct page_cgroup *pc;
02491447 5456 swp_entry_t ent;
4ffef5fe
DN
5457
5458 if (!mc.precharge)
5459 break;
5460
5461 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5462 switch (type) {
5463 case MC_TARGET_PAGE:
5464 page = target.page;
5465 if (isolate_lru_page(page))
5466 goto put;
5467 pc = lookup_page_cgroup(page);
7ec99d62
JW
5468 if (!mem_cgroup_move_account(page, 1, pc,
5469 mc.from, mc.to, false)) {
4ffef5fe 5470 mc.precharge--;
854ffa8d
DN
5471 /* we uncharge from mc.from later. */
5472 mc.moved_charge++;
4ffef5fe
DN
5473 }
5474 putback_lru_page(page);
5475put: /* is_target_pte_for_mc() gets the page */
5476 put_page(page);
5477 break;
02491447
DN
5478 case MC_TARGET_SWAP:
5479 ent = target.ent;
483c30b5
DN
5480 if (!mem_cgroup_move_swap_account(ent,
5481 mc.from, mc.to, false)) {
02491447 5482 mc.precharge--;
483c30b5
DN
5483 /* we fixup refcnts and charges later. */
5484 mc.moved_swap++;
5485 }
02491447 5486 break;
4ffef5fe
DN
5487 default:
5488 break;
5489 }
5490 }
5491 pte_unmap_unlock(pte - 1, ptl);
5492 cond_resched();
5493
5494 if (addr != end) {
5495 /*
5496 * We have consumed all precharges we got in can_attach().
5497 * We try charge one by one, but don't do any additional
5498 * charges to mc.to if we have failed in charge once in attach()
5499 * phase.
5500 */
854ffa8d 5501 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5502 if (!ret)
5503 goto retry;
5504 }
5505
5506 return ret;
5507}
5508
5509static void mem_cgroup_move_charge(struct mm_struct *mm)
5510{
5511 struct vm_area_struct *vma;
5512
5513 lru_add_drain_all();
dfe076b0
DN
5514retry:
5515 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5516 /*
5517 * Someone who are holding the mmap_sem might be waiting in
5518 * waitq. So we cancel all extra charges, wake up all waiters,
5519 * and retry. Because we cancel precharges, we might not be able
5520 * to move enough charges, but moving charge is a best-effort
5521 * feature anyway, so it wouldn't be a big problem.
5522 */
5523 __mem_cgroup_clear_mc();
5524 cond_resched();
5525 goto retry;
5526 }
4ffef5fe
DN
5527 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5528 int ret;
5529 struct mm_walk mem_cgroup_move_charge_walk = {
5530 .pmd_entry = mem_cgroup_move_charge_pte_range,
5531 .mm = mm,
5532 .private = vma,
5533 };
5534 if (is_vm_hugetlb_page(vma))
5535 continue;
4ffef5fe
DN
5536 ret = walk_page_range(vma->vm_start, vma->vm_end,
5537 &mem_cgroup_move_charge_walk);
5538 if (ret)
5539 /*
5540 * means we have consumed all precharges and failed in
5541 * doing additional charge. Just abandon here.
5542 */
5543 break;
5544 }
dfe076b0 5545 up_read(&mm->mmap_sem);
7dc74be0
DN
5546}
5547
67e465a7
BS
5548static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5549 struct cgroup *cont,
5550 struct cgroup *old_cont,
f780bdb7 5551 struct task_struct *p)
67e465a7 5552{
a433658c 5553 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5554
dfe076b0 5555 if (mm) {
a433658c
KM
5556 if (mc.to)
5557 mem_cgroup_move_charge(mm);
5558 put_swap_token(mm);
dfe076b0
DN
5559 mmput(mm);
5560 }
a433658c
KM
5561 if (mc.to)
5562 mem_cgroup_clear_mc();
67e465a7 5563}
5cfb80a7
DN
5564#else /* !CONFIG_MMU */
5565static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5566 struct cgroup *cgroup,
f780bdb7 5567 struct task_struct *p)
5cfb80a7
DN
5568{
5569 return 0;
5570}
5571static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5572 struct cgroup *cgroup,
f780bdb7 5573 struct task_struct *p)
5cfb80a7
DN
5574{
5575}
5576static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5577 struct cgroup *cont,
5578 struct cgroup *old_cont,
f780bdb7 5579 struct task_struct *p)
5cfb80a7
DN
5580{
5581}
5582#endif
67e465a7 5583
8cdea7c0
BS
5584struct cgroup_subsys mem_cgroup_subsys = {
5585 .name = "memory",
5586 .subsys_id = mem_cgroup_subsys_id,
5587 .create = mem_cgroup_create,
df878fb0 5588 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5589 .destroy = mem_cgroup_destroy,
5590 .populate = mem_cgroup_populate,
7dc74be0
DN
5591 .can_attach = mem_cgroup_can_attach,
5592 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5593 .attach = mem_cgroup_move_task,
6d12e2d8 5594 .early_init = 0,
04046e1a 5595 .use_id = 1,
8cdea7c0 5596};
c077719b
KH
5597
5598#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5599static int __init enable_swap_account(char *s)
5600{
5601 /* consider enabled if no parameter or 1 is given */
a2c8990a 5602 if (!strcmp(s, "1"))
a42c390c 5603 really_do_swap_account = 1;
a2c8990a 5604 else if (!strcmp(s, "0"))
a42c390c
MH
5605 really_do_swap_account = 0;
5606 return 1;
5607}
a2c8990a 5608__setup("swapaccount=", enable_swap_account);
c077719b 5609
c077719b 5610#endif