]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
memcg: always free struct memcg through schedule_work()
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 62static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b 75#else
a0db00fc 76#define do_swap_account 0
c077719b
KH
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
d52aa412
KH
91 MEM_CGROUP_STAT_NSTATS,
92};
93
af7c4b0e
JW
94static const char * const mem_cgroup_stat_names[] = {
95 "cache",
96 "rss",
97 "mapped_file",
98 "swap",
99};
100
e9f8974f
JW
101enum mem_cgroup_events_index {
102 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
103 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
104 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
105 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
106 MEM_CGROUP_EVENTS_NSTATS,
107};
af7c4b0e
JW
108
109static const char * const mem_cgroup_events_names[] = {
110 "pgpgin",
111 "pgpgout",
112 "pgfault",
113 "pgmajfault",
114};
115
7a159cc9
JW
116/*
117 * Per memcg event counter is incremented at every pagein/pageout. With THP,
118 * it will be incremated by the number of pages. This counter is used for
119 * for trigger some periodic events. This is straightforward and better
120 * than using jiffies etc. to handle periodic memcg event.
121 */
122enum mem_cgroup_events_target {
123 MEM_CGROUP_TARGET_THRESH,
124 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 125 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
126 MEM_CGROUP_NTARGETS,
127};
a0db00fc
KS
128#define THRESHOLDS_EVENTS_TARGET 128
129#define SOFTLIMIT_EVENTS_TARGET 1024
130#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 131
d52aa412 132struct mem_cgroup_stat_cpu {
7a159cc9 133 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 134 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 135 unsigned long nr_page_events;
7a159cc9 136 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
137};
138
527a5ec9
JW
139struct mem_cgroup_reclaim_iter {
140 /* css_id of the last scanned hierarchy member */
141 int position;
142 /* scan generation, increased every round-trip */
143 unsigned int generation;
144};
145
6d12e2d8
KH
146/*
147 * per-zone information in memory controller.
148 */
6d12e2d8 149struct mem_cgroup_per_zone {
6290df54 150 struct lruvec lruvec;
1eb49272 151 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 152
527a5ec9
JW
153 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
154
f64c3f54
BS
155 struct rb_node tree_node; /* RB tree node */
156 unsigned long long usage_in_excess;/* Set to the value by which */
157 /* the soft limit is exceeded*/
158 bool on_tree;
d79154bb 159 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 160 /* use container_of */
6d12e2d8 161};
6d12e2d8
KH
162
163struct mem_cgroup_per_node {
164 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
165};
166
167struct mem_cgroup_lru_info {
168 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
169};
170
f64c3f54
BS
171/*
172 * Cgroups above their limits are maintained in a RB-Tree, independent of
173 * their hierarchy representation
174 */
175
176struct mem_cgroup_tree_per_zone {
177 struct rb_root rb_root;
178 spinlock_t lock;
179};
180
181struct mem_cgroup_tree_per_node {
182 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
183};
184
185struct mem_cgroup_tree {
186 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
187};
188
189static struct mem_cgroup_tree soft_limit_tree __read_mostly;
190
2e72b634
KS
191struct mem_cgroup_threshold {
192 struct eventfd_ctx *eventfd;
193 u64 threshold;
194};
195
9490ff27 196/* For threshold */
2e72b634 197struct mem_cgroup_threshold_ary {
748dad36 198 /* An array index points to threshold just below or equal to usage. */
5407a562 199 int current_threshold;
2e72b634
KS
200 /* Size of entries[] */
201 unsigned int size;
202 /* Array of thresholds */
203 struct mem_cgroup_threshold entries[0];
204};
2c488db2
KS
205
206struct mem_cgroup_thresholds {
207 /* Primary thresholds array */
208 struct mem_cgroup_threshold_ary *primary;
209 /*
210 * Spare threshold array.
211 * This is needed to make mem_cgroup_unregister_event() "never fail".
212 * It must be able to store at least primary->size - 1 entries.
213 */
214 struct mem_cgroup_threshold_ary *spare;
215};
216
9490ff27
KH
217/* for OOM */
218struct mem_cgroup_eventfd_list {
219 struct list_head list;
220 struct eventfd_ctx *eventfd;
221};
2e72b634 222
c0ff4b85
R
223static void mem_cgroup_threshold(struct mem_cgroup *memcg);
224static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 225
8cdea7c0
BS
226/*
227 * The memory controller data structure. The memory controller controls both
228 * page cache and RSS per cgroup. We would eventually like to provide
229 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
230 * to help the administrator determine what knobs to tune.
231 *
232 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
233 * we hit the water mark. May be even add a low water mark, such that
234 * no reclaim occurs from a cgroup at it's low water mark, this is
235 * a feature that will be implemented much later in the future.
8cdea7c0
BS
236 */
237struct mem_cgroup {
238 struct cgroup_subsys_state css;
239 /*
240 * the counter to account for memory usage
241 */
242 struct res_counter res;
59927fb9
HD
243
244 union {
245 /*
246 * the counter to account for mem+swap usage.
247 */
248 struct res_counter memsw;
249
250 /*
251 * rcu_freeing is used only when freeing struct mem_cgroup,
252 * so put it into a union to avoid wasting more memory.
253 * It must be disjoint from the css field. It could be
254 * in a union with the res field, but res plays a much
255 * larger part in mem_cgroup life than memsw, and might
256 * be of interest, even at time of free, when debugging.
257 * So share rcu_head with the less interesting memsw.
258 */
259 struct rcu_head rcu_freeing;
260 /*
3afe36b1
GC
261 * We also need some space for a worker in deferred freeing.
262 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
263 */
264 struct work_struct work_freeing;
265 };
266
78fb7466
PE
267 /*
268 * Per cgroup active and inactive list, similar to the
269 * per zone LRU lists.
78fb7466 270 */
6d12e2d8 271 struct mem_cgroup_lru_info info;
889976db
YH
272 int last_scanned_node;
273#if MAX_NUMNODES > 1
274 nodemask_t scan_nodes;
453a9bf3
KH
275 atomic_t numainfo_events;
276 atomic_t numainfo_updating;
889976db 277#endif
18f59ea7
BS
278 /*
279 * Should the accounting and control be hierarchical, per subtree?
280 */
281 bool use_hierarchy;
79dfdacc
MH
282
283 bool oom_lock;
284 atomic_t under_oom;
285
8c7c6e34 286 atomic_t refcnt;
14797e23 287
1f4c025b 288 int swappiness;
3c11ecf4
KH
289 /* OOM-Killer disable */
290 int oom_kill_disable;
a7885eb8 291
22a668d7
KH
292 /* set when res.limit == memsw.limit */
293 bool memsw_is_minimum;
294
2e72b634
KS
295 /* protect arrays of thresholds */
296 struct mutex thresholds_lock;
297
298 /* thresholds for memory usage. RCU-protected */
2c488db2 299 struct mem_cgroup_thresholds thresholds;
907860ed 300
2e72b634 301 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 302 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 303
9490ff27
KH
304 /* For oom notifier event fd */
305 struct list_head oom_notify;
185efc0f 306
7dc74be0
DN
307 /*
308 * Should we move charges of a task when a task is moved into this
309 * mem_cgroup ? And what type of charges should we move ?
310 */
311 unsigned long move_charge_at_immigrate;
619d094b
KH
312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */
315 atomic_t moving_account;
312734c0
KH
316 /* taken only while moving_account > 0 */
317 spinlock_t move_lock;
d52aa412 318 /*
c62b1a3b 319 * percpu counter.
d52aa412 320 */
3a7951b4 321 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
322 /*
323 * used when a cpu is offlined or other synchronizations
324 * See mem_cgroup_read_stat().
325 */
326 struct mem_cgroup_stat_cpu nocpu_base;
327 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
328
329#ifdef CONFIG_INET
330 struct tcp_memcontrol tcp_mem;
331#endif
8cdea7c0
BS
332};
333
7dc74be0
DN
334/* Stuffs for move charges at task migration. */
335/*
336 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
337 * left-shifted bitmap of these types.
338 */
339enum move_type {
4ffef5fe 340 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 341 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
342 NR_MOVE_TYPE,
343};
344
4ffef5fe
DN
345/* "mc" and its members are protected by cgroup_mutex */
346static struct move_charge_struct {
b1dd693e 347 spinlock_t lock; /* for from, to */
4ffef5fe
DN
348 struct mem_cgroup *from;
349 struct mem_cgroup *to;
350 unsigned long precharge;
854ffa8d 351 unsigned long moved_charge;
483c30b5 352 unsigned long moved_swap;
8033b97c
DN
353 struct task_struct *moving_task; /* a task moving charges */
354 wait_queue_head_t waitq; /* a waitq for other context */
355} mc = {
2bd9bb20 356 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
357 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
358};
4ffef5fe 359
90254a65
DN
360static bool move_anon(void)
361{
362 return test_bit(MOVE_CHARGE_TYPE_ANON,
363 &mc.to->move_charge_at_immigrate);
364}
365
87946a72
DN
366static bool move_file(void)
367{
368 return test_bit(MOVE_CHARGE_TYPE_FILE,
369 &mc.to->move_charge_at_immigrate);
370}
371
4e416953
BS
372/*
373 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
374 * limit reclaim to prevent infinite loops, if they ever occur.
375 */
a0db00fc
KS
376#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
377#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 378
217bc319
KH
379enum charge_type {
380 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
381 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 382 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 383 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 384 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 385 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
386 NR_CHARGE_TYPE,
387};
388
8c7c6e34 389/* for encoding cft->private value on file */
65c64ce8
GC
390#define _MEM (0)
391#define _MEMSWAP (1)
392#define _OOM_TYPE (2)
a0db00fc
KS
393#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
394#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 395#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
396/* Used for OOM nofiier */
397#define OOM_CONTROL (0)
8c7c6e34 398
75822b44
BS
399/*
400 * Reclaim flags for mem_cgroup_hierarchical_reclaim
401 */
402#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
403#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
404#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
405#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
406
c0ff4b85
R
407static void mem_cgroup_get(struct mem_cgroup *memcg);
408static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
409
410/* Writing them here to avoid exposing memcg's inner layout */
411#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e1aab161 412#include <net/sock.h>
d1a4c0b3 413#include <net/ip.h>
e1aab161
GC
414
415static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
416void sock_update_memcg(struct sock *sk)
417{
376be5ff 418 if (mem_cgroup_sockets_enabled) {
e1aab161
GC
419 struct mem_cgroup *memcg;
420
421 BUG_ON(!sk->sk_prot->proto_cgroup);
422
f3f511e1
GC
423 /* Socket cloning can throw us here with sk_cgrp already
424 * filled. It won't however, necessarily happen from
425 * process context. So the test for root memcg given
426 * the current task's memcg won't help us in this case.
427 *
428 * Respecting the original socket's memcg is a better
429 * decision in this case.
430 */
431 if (sk->sk_cgrp) {
432 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
433 mem_cgroup_get(sk->sk_cgrp->memcg);
434 return;
435 }
436
e1aab161
GC
437 rcu_read_lock();
438 memcg = mem_cgroup_from_task(current);
439 if (!mem_cgroup_is_root(memcg)) {
440 mem_cgroup_get(memcg);
441 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
442 }
443 rcu_read_unlock();
444 }
445}
446EXPORT_SYMBOL(sock_update_memcg);
447
448void sock_release_memcg(struct sock *sk)
449{
376be5ff 450 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
451 struct mem_cgroup *memcg;
452 WARN_ON(!sk->sk_cgrp->memcg);
453 memcg = sk->sk_cgrp->memcg;
454 mem_cgroup_put(memcg);
455 }
456}
d1a4c0b3 457
319d3b9c 458#ifdef CONFIG_INET
d1a4c0b3
GC
459struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
460{
461 if (!memcg || mem_cgroup_is_root(memcg))
462 return NULL;
463
464 return &memcg->tcp_mem.cg_proto;
465}
466EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
467#endif /* CONFIG_INET */
468#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
469
c0ff4b85 470static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 471
f64c3f54 472static struct mem_cgroup_per_zone *
c0ff4b85 473mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 474{
c0ff4b85 475 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
476}
477
c0ff4b85 478struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 479{
c0ff4b85 480 return &memcg->css;
d324236b
WF
481}
482
f64c3f54 483static struct mem_cgroup_per_zone *
c0ff4b85 484page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 485{
97a6c37b
JW
486 int nid = page_to_nid(page);
487 int zid = page_zonenum(page);
f64c3f54 488
c0ff4b85 489 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
490}
491
492static struct mem_cgroup_tree_per_zone *
493soft_limit_tree_node_zone(int nid, int zid)
494{
495 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
496}
497
498static struct mem_cgroup_tree_per_zone *
499soft_limit_tree_from_page(struct page *page)
500{
501 int nid = page_to_nid(page);
502 int zid = page_zonenum(page);
503
504 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
505}
506
507static void
c0ff4b85 508__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 509 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
510 struct mem_cgroup_tree_per_zone *mctz,
511 unsigned long long new_usage_in_excess)
f64c3f54
BS
512{
513 struct rb_node **p = &mctz->rb_root.rb_node;
514 struct rb_node *parent = NULL;
515 struct mem_cgroup_per_zone *mz_node;
516
517 if (mz->on_tree)
518 return;
519
ef8745c1
KH
520 mz->usage_in_excess = new_usage_in_excess;
521 if (!mz->usage_in_excess)
522 return;
f64c3f54
BS
523 while (*p) {
524 parent = *p;
525 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
526 tree_node);
527 if (mz->usage_in_excess < mz_node->usage_in_excess)
528 p = &(*p)->rb_left;
529 /*
530 * We can't avoid mem cgroups that are over their soft
531 * limit by the same amount
532 */
533 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
534 p = &(*p)->rb_right;
535 }
536 rb_link_node(&mz->tree_node, parent, p);
537 rb_insert_color(&mz->tree_node, &mctz->rb_root);
538 mz->on_tree = true;
4e416953
BS
539}
540
541static void
c0ff4b85 542__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
543 struct mem_cgroup_per_zone *mz,
544 struct mem_cgroup_tree_per_zone *mctz)
545{
546 if (!mz->on_tree)
547 return;
548 rb_erase(&mz->tree_node, &mctz->rb_root);
549 mz->on_tree = false;
550}
551
f64c3f54 552static void
c0ff4b85 553mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
554 struct mem_cgroup_per_zone *mz,
555 struct mem_cgroup_tree_per_zone *mctz)
556{
557 spin_lock(&mctz->lock);
c0ff4b85 558 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
559 spin_unlock(&mctz->lock);
560}
561
f64c3f54 562
c0ff4b85 563static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 564{
ef8745c1 565 unsigned long long excess;
f64c3f54
BS
566 struct mem_cgroup_per_zone *mz;
567 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
568 int nid = page_to_nid(page);
569 int zid = page_zonenum(page);
f64c3f54
BS
570 mctz = soft_limit_tree_from_page(page);
571
572 /*
4e649152
KH
573 * Necessary to update all ancestors when hierarchy is used.
574 * because their event counter is not touched.
f64c3f54 575 */
c0ff4b85
R
576 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
577 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
578 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
579 /*
580 * We have to update the tree if mz is on RB-tree or
581 * mem is over its softlimit.
582 */
ef8745c1 583 if (excess || mz->on_tree) {
4e649152
KH
584 spin_lock(&mctz->lock);
585 /* if on-tree, remove it */
586 if (mz->on_tree)
c0ff4b85 587 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 588 /*
ef8745c1
KH
589 * Insert again. mz->usage_in_excess will be updated.
590 * If excess is 0, no tree ops.
4e649152 591 */
c0ff4b85 592 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
593 spin_unlock(&mctz->lock);
594 }
f64c3f54
BS
595 }
596}
597
c0ff4b85 598static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
599{
600 int node, zone;
601 struct mem_cgroup_per_zone *mz;
602 struct mem_cgroup_tree_per_zone *mctz;
603
3ed28fa1 604 for_each_node(node) {
f64c3f54 605 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 606 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 607 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 608 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
609 }
610 }
611}
612
4e416953
BS
613static struct mem_cgroup_per_zone *
614__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
615{
616 struct rb_node *rightmost = NULL;
26251eaf 617 struct mem_cgroup_per_zone *mz;
4e416953
BS
618
619retry:
26251eaf 620 mz = NULL;
4e416953
BS
621 rightmost = rb_last(&mctz->rb_root);
622 if (!rightmost)
623 goto done; /* Nothing to reclaim from */
624
625 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
626 /*
627 * Remove the node now but someone else can add it back,
628 * we will to add it back at the end of reclaim to its correct
629 * position in the tree.
630 */
d79154bb
HD
631 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
632 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
633 !css_tryget(&mz->memcg->css))
4e416953
BS
634 goto retry;
635done:
636 return mz;
637}
638
639static struct mem_cgroup_per_zone *
640mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
641{
642 struct mem_cgroup_per_zone *mz;
643
644 spin_lock(&mctz->lock);
645 mz = __mem_cgroup_largest_soft_limit_node(mctz);
646 spin_unlock(&mctz->lock);
647 return mz;
648}
649
711d3d2c
KH
650/*
651 * Implementation Note: reading percpu statistics for memcg.
652 *
653 * Both of vmstat[] and percpu_counter has threshold and do periodic
654 * synchronization to implement "quick" read. There are trade-off between
655 * reading cost and precision of value. Then, we may have a chance to implement
656 * a periodic synchronizion of counter in memcg's counter.
657 *
658 * But this _read() function is used for user interface now. The user accounts
659 * memory usage by memory cgroup and he _always_ requires exact value because
660 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
661 * have to visit all online cpus and make sum. So, for now, unnecessary
662 * synchronization is not implemented. (just implemented for cpu hotplug)
663 *
664 * If there are kernel internal actions which can make use of some not-exact
665 * value, and reading all cpu value can be performance bottleneck in some
666 * common workload, threashold and synchonization as vmstat[] should be
667 * implemented.
668 */
c0ff4b85 669static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 670 enum mem_cgroup_stat_index idx)
c62b1a3b 671{
7a159cc9 672 long val = 0;
c62b1a3b 673 int cpu;
c62b1a3b 674
711d3d2c
KH
675 get_online_cpus();
676 for_each_online_cpu(cpu)
c0ff4b85 677 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 678#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
679 spin_lock(&memcg->pcp_counter_lock);
680 val += memcg->nocpu_base.count[idx];
681 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
682#endif
683 put_online_cpus();
c62b1a3b
KH
684 return val;
685}
686
c0ff4b85 687static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
688 bool charge)
689{
690 int val = (charge) ? 1 : -1;
c0ff4b85 691 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
692}
693
c0ff4b85 694static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
695 enum mem_cgroup_events_index idx)
696{
697 unsigned long val = 0;
698 int cpu;
699
700 for_each_online_cpu(cpu)
c0ff4b85 701 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 702#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
703 spin_lock(&memcg->pcp_counter_lock);
704 val += memcg->nocpu_base.events[idx];
705 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
706#endif
707 return val;
708}
709
c0ff4b85 710static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 711 bool anon, int nr_pages)
d52aa412 712{
c62b1a3b
KH
713 preempt_disable();
714
b2402857
KH
715 /*
716 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
717 * counted as CACHE even if it's on ANON LRU.
718 */
719 if (anon)
720 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 721 nr_pages);
d52aa412 722 else
b2402857 723 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 724 nr_pages);
55e462b0 725
e401f176
KH
726 /* pagein of a big page is an event. So, ignore page size */
727 if (nr_pages > 0)
c0ff4b85 728 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 729 else {
c0ff4b85 730 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
731 nr_pages = -nr_pages; /* for event */
732 }
e401f176 733
13114716 734 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 735
c62b1a3b 736 preempt_enable();
6d12e2d8
KH
737}
738
bb2a0de9 739unsigned long
4d7dcca2 740mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
741{
742 struct mem_cgroup_per_zone *mz;
743
744 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
745 return mz->lru_size[lru];
746}
747
748static unsigned long
c0ff4b85 749mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 750 unsigned int lru_mask)
889976db
YH
751{
752 struct mem_cgroup_per_zone *mz;
f156ab93 753 enum lru_list lru;
bb2a0de9
KH
754 unsigned long ret = 0;
755
c0ff4b85 756 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 757
f156ab93
HD
758 for_each_lru(lru) {
759 if (BIT(lru) & lru_mask)
760 ret += mz->lru_size[lru];
bb2a0de9
KH
761 }
762 return ret;
763}
764
765static unsigned long
c0ff4b85 766mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
767 int nid, unsigned int lru_mask)
768{
889976db
YH
769 u64 total = 0;
770 int zid;
771
bb2a0de9 772 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
773 total += mem_cgroup_zone_nr_lru_pages(memcg,
774 nid, zid, lru_mask);
bb2a0de9 775
889976db
YH
776 return total;
777}
bb2a0de9 778
c0ff4b85 779static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 780 unsigned int lru_mask)
6d12e2d8 781{
889976db 782 int nid;
6d12e2d8
KH
783 u64 total = 0;
784
bb2a0de9 785 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 786 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 787 return total;
d52aa412
KH
788}
789
f53d7ce3
JW
790static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
791 enum mem_cgroup_events_target target)
7a159cc9
JW
792{
793 unsigned long val, next;
794
13114716 795 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 796 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 797 /* from time_after() in jiffies.h */
f53d7ce3
JW
798 if ((long)next - (long)val < 0) {
799 switch (target) {
800 case MEM_CGROUP_TARGET_THRESH:
801 next = val + THRESHOLDS_EVENTS_TARGET;
802 break;
803 case MEM_CGROUP_TARGET_SOFTLIMIT:
804 next = val + SOFTLIMIT_EVENTS_TARGET;
805 break;
806 case MEM_CGROUP_TARGET_NUMAINFO:
807 next = val + NUMAINFO_EVENTS_TARGET;
808 break;
809 default:
810 break;
811 }
812 __this_cpu_write(memcg->stat->targets[target], next);
813 return true;
7a159cc9 814 }
f53d7ce3 815 return false;
d2265e6f
KH
816}
817
818/*
819 * Check events in order.
820 *
821 */
c0ff4b85 822static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 823{
4799401f 824 preempt_disable();
d2265e6f 825 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
826 if (unlikely(mem_cgroup_event_ratelimit(memcg,
827 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
828 bool do_softlimit;
829 bool do_numainfo __maybe_unused;
f53d7ce3
JW
830
831 do_softlimit = mem_cgroup_event_ratelimit(memcg,
832 MEM_CGROUP_TARGET_SOFTLIMIT);
833#if MAX_NUMNODES > 1
834 do_numainfo = mem_cgroup_event_ratelimit(memcg,
835 MEM_CGROUP_TARGET_NUMAINFO);
836#endif
837 preempt_enable();
838
c0ff4b85 839 mem_cgroup_threshold(memcg);
f53d7ce3 840 if (unlikely(do_softlimit))
c0ff4b85 841 mem_cgroup_update_tree(memcg, page);
453a9bf3 842#if MAX_NUMNODES > 1
f53d7ce3 843 if (unlikely(do_numainfo))
c0ff4b85 844 atomic_inc(&memcg->numainfo_events);
453a9bf3 845#endif
f53d7ce3
JW
846 } else
847 preempt_enable();
d2265e6f
KH
848}
849
d1a4c0b3 850struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
851{
852 return container_of(cgroup_subsys_state(cont,
853 mem_cgroup_subsys_id), struct mem_cgroup,
854 css);
855}
856
cf475ad2 857struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 858{
31a78f23
BS
859 /*
860 * mm_update_next_owner() may clear mm->owner to NULL
861 * if it races with swapoff, page migration, etc.
862 * So this can be called with p == NULL.
863 */
864 if (unlikely(!p))
865 return NULL;
866
78fb7466
PE
867 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
868 struct mem_cgroup, css);
869}
870
a433658c 871struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 872{
c0ff4b85 873 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
874
875 if (!mm)
876 return NULL;
54595fe2
KH
877 /*
878 * Because we have no locks, mm->owner's may be being moved to other
879 * cgroup. We use css_tryget() here even if this looks
880 * pessimistic (rather than adding locks here).
881 */
882 rcu_read_lock();
883 do {
c0ff4b85
R
884 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
885 if (unlikely(!memcg))
54595fe2 886 break;
c0ff4b85 887 } while (!css_tryget(&memcg->css));
54595fe2 888 rcu_read_unlock();
c0ff4b85 889 return memcg;
54595fe2
KH
890}
891
5660048c
JW
892/**
893 * mem_cgroup_iter - iterate over memory cgroup hierarchy
894 * @root: hierarchy root
895 * @prev: previously returned memcg, NULL on first invocation
896 * @reclaim: cookie for shared reclaim walks, NULL for full walks
897 *
898 * Returns references to children of the hierarchy below @root, or
899 * @root itself, or %NULL after a full round-trip.
900 *
901 * Caller must pass the return value in @prev on subsequent
902 * invocations for reference counting, or use mem_cgroup_iter_break()
903 * to cancel a hierarchy walk before the round-trip is complete.
904 *
905 * Reclaimers can specify a zone and a priority level in @reclaim to
906 * divide up the memcgs in the hierarchy among all concurrent
907 * reclaimers operating on the same zone and priority.
908 */
909struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
910 struct mem_cgroup *prev,
911 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 912{
9f3a0d09
JW
913 struct mem_cgroup *memcg = NULL;
914 int id = 0;
711d3d2c 915
5660048c
JW
916 if (mem_cgroup_disabled())
917 return NULL;
918
9f3a0d09
JW
919 if (!root)
920 root = root_mem_cgroup;
7d74b06f 921
9f3a0d09
JW
922 if (prev && !reclaim)
923 id = css_id(&prev->css);
14067bb3 924
9f3a0d09
JW
925 if (prev && prev != root)
926 css_put(&prev->css);
14067bb3 927
9f3a0d09
JW
928 if (!root->use_hierarchy && root != root_mem_cgroup) {
929 if (prev)
930 return NULL;
931 return root;
932 }
14067bb3 933
9f3a0d09 934 while (!memcg) {
527a5ec9 935 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 936 struct cgroup_subsys_state *css;
711d3d2c 937
527a5ec9
JW
938 if (reclaim) {
939 int nid = zone_to_nid(reclaim->zone);
940 int zid = zone_idx(reclaim->zone);
941 struct mem_cgroup_per_zone *mz;
942
943 mz = mem_cgroup_zoneinfo(root, nid, zid);
944 iter = &mz->reclaim_iter[reclaim->priority];
945 if (prev && reclaim->generation != iter->generation)
946 return NULL;
947 id = iter->position;
948 }
7d74b06f 949
9f3a0d09
JW
950 rcu_read_lock();
951 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
952 if (css) {
953 if (css == &root->css || css_tryget(css))
954 memcg = container_of(css,
955 struct mem_cgroup, css);
956 } else
957 id = 0;
14067bb3 958 rcu_read_unlock();
14067bb3 959
527a5ec9
JW
960 if (reclaim) {
961 iter->position = id;
962 if (!css)
963 iter->generation++;
964 else if (!prev && memcg)
965 reclaim->generation = iter->generation;
966 }
9f3a0d09
JW
967
968 if (prev && !css)
969 return NULL;
970 }
971 return memcg;
14067bb3 972}
7d74b06f 973
5660048c
JW
974/**
975 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
976 * @root: hierarchy root
977 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
978 */
979void mem_cgroup_iter_break(struct mem_cgroup *root,
980 struct mem_cgroup *prev)
9f3a0d09
JW
981{
982 if (!root)
983 root = root_mem_cgroup;
984 if (prev && prev != root)
985 css_put(&prev->css);
986}
7d74b06f 987
9f3a0d09
JW
988/*
989 * Iteration constructs for visiting all cgroups (under a tree). If
990 * loops are exited prematurely (break), mem_cgroup_iter_break() must
991 * be used for reference counting.
992 */
993#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 994 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 995 iter != NULL; \
527a5ec9 996 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 997
9f3a0d09 998#define for_each_mem_cgroup(iter) \
527a5ec9 999 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1000 iter != NULL; \
527a5ec9 1001 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1002
c0ff4b85 1003static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 1004{
c0ff4b85 1005 return (memcg == root_mem_cgroup);
4b3bde4c
BS
1006}
1007
456f998e
YH
1008void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1009{
c0ff4b85 1010 struct mem_cgroup *memcg;
456f998e
YH
1011
1012 if (!mm)
1013 return;
1014
1015 rcu_read_lock();
c0ff4b85
R
1016 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1017 if (unlikely(!memcg))
456f998e
YH
1018 goto out;
1019
1020 switch (idx) {
456f998e 1021 case PGFAULT:
0e574a93
JW
1022 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1023 break;
1024 case PGMAJFAULT:
1025 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1026 break;
1027 default:
1028 BUG();
1029 }
1030out:
1031 rcu_read_unlock();
1032}
1033EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1034
925b7673
JW
1035/**
1036 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1037 * @zone: zone of the wanted lruvec
fa9add64 1038 * @memcg: memcg of the wanted lruvec
925b7673
JW
1039 *
1040 * Returns the lru list vector holding pages for the given @zone and
1041 * @mem. This can be the global zone lruvec, if the memory controller
1042 * is disabled.
1043 */
1044struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1045 struct mem_cgroup *memcg)
1046{
1047 struct mem_cgroup_per_zone *mz;
1048
1049 if (mem_cgroup_disabled())
1050 return &zone->lruvec;
1051
1052 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1053 return &mz->lruvec;
1054}
1055
08e552c6
KH
1056/*
1057 * Following LRU functions are allowed to be used without PCG_LOCK.
1058 * Operations are called by routine of global LRU independently from memcg.
1059 * What we have to take care of here is validness of pc->mem_cgroup.
1060 *
1061 * Changes to pc->mem_cgroup happens when
1062 * 1. charge
1063 * 2. moving account
1064 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1065 * It is added to LRU before charge.
1066 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1067 * When moving account, the page is not on LRU. It's isolated.
1068 */
4f98a2fe 1069
925b7673 1070/**
fa9add64 1071 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1072 * @page: the page
fa9add64 1073 * @zone: zone of the page
925b7673 1074 */
fa9add64 1075struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1076{
08e552c6 1077 struct mem_cgroup_per_zone *mz;
925b7673
JW
1078 struct mem_cgroup *memcg;
1079 struct page_cgroup *pc;
6d12e2d8 1080
f8d66542 1081 if (mem_cgroup_disabled())
925b7673
JW
1082 return &zone->lruvec;
1083
08e552c6 1084 pc = lookup_page_cgroup(page);
38c5d72f 1085 memcg = pc->mem_cgroup;
7512102c
HD
1086
1087 /*
fa9add64 1088 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1089 * an uncharged page off lru does nothing to secure
1090 * its former mem_cgroup from sudden removal.
1091 *
1092 * Our caller holds lru_lock, and PageCgroupUsed is updated
1093 * under page_cgroup lock: between them, they make all uses
1094 * of pc->mem_cgroup safe.
1095 */
fa9add64 1096 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1097 pc->mem_cgroup = memcg = root_mem_cgroup;
1098
925b7673 1099 mz = page_cgroup_zoneinfo(memcg, page);
925b7673 1100 return &mz->lruvec;
08e552c6 1101}
b69408e8 1102
925b7673 1103/**
fa9add64
HD
1104 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1105 * @lruvec: mem_cgroup per zone lru vector
1106 * @lru: index of lru list the page is sitting on
1107 * @nr_pages: positive when adding or negative when removing
925b7673 1108 *
fa9add64
HD
1109 * This function must be called when a page is added to or removed from an
1110 * lru list.
3f58a829 1111 */
fa9add64
HD
1112void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1113 int nr_pages)
3f58a829
MK
1114{
1115 struct mem_cgroup_per_zone *mz;
fa9add64 1116 unsigned long *lru_size;
3f58a829
MK
1117
1118 if (mem_cgroup_disabled())
1119 return;
1120
fa9add64
HD
1121 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1122 lru_size = mz->lru_size + lru;
1123 *lru_size += nr_pages;
1124 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1125}
544122e5 1126
3e92041d 1127/*
c0ff4b85 1128 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1129 * hierarchy subtree
1130 */
c3ac9a8a
JW
1131bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1132 struct mem_cgroup *memcg)
3e92041d 1133{
91c63734
JW
1134 if (root_memcg == memcg)
1135 return true;
1136 if (!root_memcg->use_hierarchy)
1137 return false;
c3ac9a8a
JW
1138 return css_is_ancestor(&memcg->css, &root_memcg->css);
1139}
1140
1141static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1142 struct mem_cgroup *memcg)
1143{
1144 bool ret;
1145
91c63734 1146 rcu_read_lock();
c3ac9a8a 1147 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1148 rcu_read_unlock();
1149 return ret;
3e92041d
MH
1150}
1151
c0ff4b85 1152int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1153{
1154 int ret;
0b7f569e 1155 struct mem_cgroup *curr = NULL;
158e0a2d 1156 struct task_struct *p;
4c4a2214 1157
158e0a2d 1158 p = find_lock_task_mm(task);
de077d22
DR
1159 if (p) {
1160 curr = try_get_mem_cgroup_from_mm(p->mm);
1161 task_unlock(p);
1162 } else {
1163 /*
1164 * All threads may have already detached their mm's, but the oom
1165 * killer still needs to detect if they have already been oom
1166 * killed to prevent needlessly killing additional tasks.
1167 */
1168 task_lock(task);
1169 curr = mem_cgroup_from_task(task);
1170 if (curr)
1171 css_get(&curr->css);
1172 task_unlock(task);
1173 }
0b7f569e
KH
1174 if (!curr)
1175 return 0;
d31f56db 1176 /*
c0ff4b85 1177 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1178 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1179 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1180 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1181 */
c0ff4b85 1182 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1183 css_put(&curr->css);
4c4a2214
DR
1184 return ret;
1185}
1186
c56d5c7d 1187int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1188{
9b272977 1189 unsigned long inactive_ratio;
14797e23 1190 unsigned long inactive;
9b272977 1191 unsigned long active;
c772be93 1192 unsigned long gb;
14797e23 1193
4d7dcca2
HD
1194 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1195 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1196
c772be93
KM
1197 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1198 if (gb)
1199 inactive_ratio = int_sqrt(10 * gb);
1200 else
1201 inactive_ratio = 1;
1202
9b272977 1203 return inactive * inactive_ratio < active;
14797e23
KM
1204}
1205
c56d5c7d 1206int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1207{
1208 unsigned long active;
1209 unsigned long inactive;
1210
4d7dcca2
HD
1211 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1212 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1213
1214 return (active > inactive);
1215}
1216
6d61ef40
BS
1217#define mem_cgroup_from_res_counter(counter, member) \
1218 container_of(counter, struct mem_cgroup, member)
1219
19942822 1220/**
9d11ea9f
JW
1221 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1222 * @mem: the memory cgroup
19942822 1223 *
9d11ea9f 1224 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1225 * pages.
19942822 1226 */
c0ff4b85 1227static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1228{
9d11ea9f
JW
1229 unsigned long long margin;
1230
c0ff4b85 1231 margin = res_counter_margin(&memcg->res);
9d11ea9f 1232 if (do_swap_account)
c0ff4b85 1233 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1234 return margin >> PAGE_SHIFT;
19942822
JW
1235}
1236
1f4c025b 1237int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1238{
1239 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1240
1241 /* root ? */
1242 if (cgrp->parent == NULL)
1243 return vm_swappiness;
1244
bf1ff263 1245 return memcg->swappiness;
a7885eb8
KM
1246}
1247
619d094b
KH
1248/*
1249 * memcg->moving_account is used for checking possibility that some thread is
1250 * calling move_account(). When a thread on CPU-A starts moving pages under
1251 * a memcg, other threads should check memcg->moving_account under
1252 * rcu_read_lock(), like this:
1253 *
1254 * CPU-A CPU-B
1255 * rcu_read_lock()
1256 * memcg->moving_account+1 if (memcg->mocing_account)
1257 * take heavy locks.
1258 * synchronize_rcu() update something.
1259 * rcu_read_unlock()
1260 * start move here.
1261 */
4331f7d3
KH
1262
1263/* for quick checking without looking up memcg */
1264atomic_t memcg_moving __read_mostly;
1265
c0ff4b85 1266static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1267{
4331f7d3 1268 atomic_inc(&memcg_moving);
619d094b 1269 atomic_inc(&memcg->moving_account);
32047e2a
KH
1270 synchronize_rcu();
1271}
1272
c0ff4b85 1273static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1274{
619d094b
KH
1275 /*
1276 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1277 * We check NULL in callee rather than caller.
1278 */
4331f7d3
KH
1279 if (memcg) {
1280 atomic_dec(&memcg_moving);
619d094b 1281 atomic_dec(&memcg->moving_account);
4331f7d3 1282 }
32047e2a 1283}
619d094b 1284
32047e2a
KH
1285/*
1286 * 2 routines for checking "mem" is under move_account() or not.
1287 *
13fd1dd9
AM
1288 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1289 * is used for avoiding races in accounting. If true,
32047e2a
KH
1290 * pc->mem_cgroup may be overwritten.
1291 *
1292 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1293 * under hierarchy of moving cgroups. This is for
1294 * waiting at hith-memory prressure caused by "move".
1295 */
1296
13fd1dd9 1297static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1298{
1299 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1300 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1301}
4b534334 1302
c0ff4b85 1303static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1304{
2bd9bb20
KH
1305 struct mem_cgroup *from;
1306 struct mem_cgroup *to;
4b534334 1307 bool ret = false;
2bd9bb20
KH
1308 /*
1309 * Unlike task_move routines, we access mc.to, mc.from not under
1310 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1311 */
1312 spin_lock(&mc.lock);
1313 from = mc.from;
1314 to = mc.to;
1315 if (!from)
1316 goto unlock;
3e92041d 1317
c0ff4b85
R
1318 ret = mem_cgroup_same_or_subtree(memcg, from)
1319 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1320unlock:
1321 spin_unlock(&mc.lock);
4b534334
KH
1322 return ret;
1323}
1324
c0ff4b85 1325static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1326{
1327 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1328 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1329 DEFINE_WAIT(wait);
1330 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1331 /* moving charge context might have finished. */
1332 if (mc.moving_task)
1333 schedule();
1334 finish_wait(&mc.waitq, &wait);
1335 return true;
1336 }
1337 }
1338 return false;
1339}
1340
312734c0
KH
1341/*
1342 * Take this lock when
1343 * - a code tries to modify page's memcg while it's USED.
1344 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1345 * see mem_cgroup_stolen(), too.
312734c0
KH
1346 */
1347static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1348 unsigned long *flags)
1349{
1350 spin_lock_irqsave(&memcg->move_lock, *flags);
1351}
1352
1353static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1354 unsigned long *flags)
1355{
1356 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1357}
1358
e222432b 1359/**
6a6135b6 1360 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1361 * @memcg: The memory cgroup that went over limit
1362 * @p: Task that is going to be killed
1363 *
1364 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1365 * enabled
1366 */
1367void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1368{
1369 struct cgroup *task_cgrp;
1370 struct cgroup *mem_cgrp;
1371 /*
1372 * Need a buffer in BSS, can't rely on allocations. The code relies
1373 * on the assumption that OOM is serialized for memory controller.
1374 * If this assumption is broken, revisit this code.
1375 */
1376 static char memcg_name[PATH_MAX];
1377 int ret;
1378
d31f56db 1379 if (!memcg || !p)
e222432b
BS
1380 return;
1381
e222432b
BS
1382 rcu_read_lock();
1383
1384 mem_cgrp = memcg->css.cgroup;
1385 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1386
1387 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1388 if (ret < 0) {
1389 /*
1390 * Unfortunately, we are unable to convert to a useful name
1391 * But we'll still print out the usage information
1392 */
1393 rcu_read_unlock();
1394 goto done;
1395 }
1396 rcu_read_unlock();
1397
1398 printk(KERN_INFO "Task in %s killed", memcg_name);
1399
1400 rcu_read_lock();
1401 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1402 if (ret < 0) {
1403 rcu_read_unlock();
1404 goto done;
1405 }
1406 rcu_read_unlock();
1407
1408 /*
1409 * Continues from above, so we don't need an KERN_ level
1410 */
1411 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1412done:
1413
1414 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1415 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1416 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1417 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1418 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1419 "failcnt %llu\n",
1420 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1421 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1422 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1423}
1424
81d39c20
KH
1425/*
1426 * This function returns the number of memcg under hierarchy tree. Returns
1427 * 1(self count) if no children.
1428 */
c0ff4b85 1429static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1430{
1431 int num = 0;
7d74b06f
KH
1432 struct mem_cgroup *iter;
1433
c0ff4b85 1434 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1435 num++;
81d39c20
KH
1436 return num;
1437}
1438
a63d83f4
DR
1439/*
1440 * Return the memory (and swap, if configured) limit for a memcg.
1441 */
1442u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1443{
1444 u64 limit;
1445 u64 memsw;
1446
f3e8eb70
JW
1447 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1448 limit += total_swap_pages << PAGE_SHIFT;
1449
a63d83f4
DR
1450 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1451 /*
1452 * If memsw is finite and limits the amount of swap space available
1453 * to this memcg, return that limit.
1454 */
1455 return min(limit, memsw);
1456}
1457
5660048c
JW
1458static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1459 gfp_t gfp_mask,
1460 unsigned long flags)
1461{
1462 unsigned long total = 0;
1463 bool noswap = false;
1464 int loop;
1465
1466 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1467 noswap = true;
1468 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1469 noswap = true;
1470
1471 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1472 if (loop)
1473 drain_all_stock_async(memcg);
1474 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1475 /*
1476 * Allow limit shrinkers, which are triggered directly
1477 * by userspace, to catch signals and stop reclaim
1478 * after minimal progress, regardless of the margin.
1479 */
1480 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1481 break;
1482 if (mem_cgroup_margin(memcg))
1483 break;
1484 /*
1485 * If nothing was reclaimed after two attempts, there
1486 * may be no reclaimable pages in this hierarchy.
1487 */
1488 if (loop && !total)
1489 break;
1490 }
1491 return total;
1492}
1493
4d0c066d
KH
1494/**
1495 * test_mem_cgroup_node_reclaimable
1496 * @mem: the target memcg
1497 * @nid: the node ID to be checked.
1498 * @noswap : specify true here if the user wants flle only information.
1499 *
1500 * This function returns whether the specified memcg contains any
1501 * reclaimable pages on a node. Returns true if there are any reclaimable
1502 * pages in the node.
1503 */
c0ff4b85 1504static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1505 int nid, bool noswap)
1506{
c0ff4b85 1507 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1508 return true;
1509 if (noswap || !total_swap_pages)
1510 return false;
c0ff4b85 1511 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1512 return true;
1513 return false;
1514
1515}
889976db
YH
1516#if MAX_NUMNODES > 1
1517
1518/*
1519 * Always updating the nodemask is not very good - even if we have an empty
1520 * list or the wrong list here, we can start from some node and traverse all
1521 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1522 *
1523 */
c0ff4b85 1524static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1525{
1526 int nid;
453a9bf3
KH
1527 /*
1528 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1529 * pagein/pageout changes since the last update.
1530 */
c0ff4b85 1531 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1532 return;
c0ff4b85 1533 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1534 return;
1535
889976db 1536 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1537 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1538
1539 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1540
c0ff4b85
R
1541 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1542 node_clear(nid, memcg->scan_nodes);
889976db 1543 }
453a9bf3 1544
c0ff4b85
R
1545 atomic_set(&memcg->numainfo_events, 0);
1546 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1547}
1548
1549/*
1550 * Selecting a node where we start reclaim from. Because what we need is just
1551 * reducing usage counter, start from anywhere is O,K. Considering
1552 * memory reclaim from current node, there are pros. and cons.
1553 *
1554 * Freeing memory from current node means freeing memory from a node which
1555 * we'll use or we've used. So, it may make LRU bad. And if several threads
1556 * hit limits, it will see a contention on a node. But freeing from remote
1557 * node means more costs for memory reclaim because of memory latency.
1558 *
1559 * Now, we use round-robin. Better algorithm is welcomed.
1560 */
c0ff4b85 1561int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1562{
1563 int node;
1564
c0ff4b85
R
1565 mem_cgroup_may_update_nodemask(memcg);
1566 node = memcg->last_scanned_node;
889976db 1567
c0ff4b85 1568 node = next_node(node, memcg->scan_nodes);
889976db 1569 if (node == MAX_NUMNODES)
c0ff4b85 1570 node = first_node(memcg->scan_nodes);
889976db
YH
1571 /*
1572 * We call this when we hit limit, not when pages are added to LRU.
1573 * No LRU may hold pages because all pages are UNEVICTABLE or
1574 * memcg is too small and all pages are not on LRU. In that case,
1575 * we use curret node.
1576 */
1577 if (unlikely(node == MAX_NUMNODES))
1578 node = numa_node_id();
1579
c0ff4b85 1580 memcg->last_scanned_node = node;
889976db
YH
1581 return node;
1582}
1583
4d0c066d
KH
1584/*
1585 * Check all nodes whether it contains reclaimable pages or not.
1586 * For quick scan, we make use of scan_nodes. This will allow us to skip
1587 * unused nodes. But scan_nodes is lazily updated and may not cotain
1588 * enough new information. We need to do double check.
1589 */
6bbda35c 1590static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1591{
1592 int nid;
1593
1594 /*
1595 * quick check...making use of scan_node.
1596 * We can skip unused nodes.
1597 */
c0ff4b85
R
1598 if (!nodes_empty(memcg->scan_nodes)) {
1599 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1600 nid < MAX_NUMNODES;
c0ff4b85 1601 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1602
c0ff4b85 1603 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1604 return true;
1605 }
1606 }
1607 /*
1608 * Check rest of nodes.
1609 */
1610 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1611 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1612 continue;
c0ff4b85 1613 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1614 return true;
1615 }
1616 return false;
1617}
1618
889976db 1619#else
c0ff4b85 1620int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1621{
1622 return 0;
1623}
4d0c066d 1624
6bbda35c 1625static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1626{
c0ff4b85 1627 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1628}
889976db
YH
1629#endif
1630
5660048c
JW
1631static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1632 struct zone *zone,
1633 gfp_t gfp_mask,
1634 unsigned long *total_scanned)
6d61ef40 1635{
9f3a0d09 1636 struct mem_cgroup *victim = NULL;
5660048c 1637 int total = 0;
04046e1a 1638 int loop = 0;
9d11ea9f 1639 unsigned long excess;
185efc0f 1640 unsigned long nr_scanned;
527a5ec9
JW
1641 struct mem_cgroup_reclaim_cookie reclaim = {
1642 .zone = zone,
1643 .priority = 0,
1644 };
9d11ea9f 1645
c0ff4b85 1646 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1647
4e416953 1648 while (1) {
527a5ec9 1649 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1650 if (!victim) {
04046e1a 1651 loop++;
4e416953
BS
1652 if (loop >= 2) {
1653 /*
1654 * If we have not been able to reclaim
1655 * anything, it might because there are
1656 * no reclaimable pages under this hierarchy
1657 */
5660048c 1658 if (!total)
4e416953 1659 break;
4e416953 1660 /*
25985edc 1661 * We want to do more targeted reclaim.
4e416953
BS
1662 * excess >> 2 is not to excessive so as to
1663 * reclaim too much, nor too less that we keep
1664 * coming back to reclaim from this cgroup
1665 */
1666 if (total >= (excess >> 2) ||
9f3a0d09 1667 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1668 break;
4e416953 1669 }
9f3a0d09 1670 continue;
4e416953 1671 }
5660048c 1672 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1673 continue;
5660048c
JW
1674 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1675 zone, &nr_scanned);
1676 *total_scanned += nr_scanned;
1677 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1678 break;
6d61ef40 1679 }
9f3a0d09 1680 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1681 return total;
6d61ef40
BS
1682}
1683
867578cb
KH
1684/*
1685 * Check OOM-Killer is already running under our hierarchy.
1686 * If someone is running, return false.
1af8efe9 1687 * Has to be called with memcg_oom_lock
867578cb 1688 */
c0ff4b85 1689static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1690{
79dfdacc 1691 struct mem_cgroup *iter, *failed = NULL;
a636b327 1692
9f3a0d09 1693 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1694 if (iter->oom_lock) {
79dfdacc
MH
1695 /*
1696 * this subtree of our hierarchy is already locked
1697 * so we cannot give a lock.
1698 */
79dfdacc 1699 failed = iter;
9f3a0d09
JW
1700 mem_cgroup_iter_break(memcg, iter);
1701 break;
23751be0
JW
1702 } else
1703 iter->oom_lock = true;
7d74b06f 1704 }
867578cb 1705
79dfdacc 1706 if (!failed)
23751be0 1707 return true;
79dfdacc
MH
1708
1709 /*
1710 * OK, we failed to lock the whole subtree so we have to clean up
1711 * what we set up to the failing subtree
1712 */
9f3a0d09 1713 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1714 if (iter == failed) {
9f3a0d09
JW
1715 mem_cgroup_iter_break(memcg, iter);
1716 break;
79dfdacc
MH
1717 }
1718 iter->oom_lock = false;
1719 }
23751be0 1720 return false;
a636b327 1721}
0b7f569e 1722
79dfdacc 1723/*
1af8efe9 1724 * Has to be called with memcg_oom_lock
79dfdacc 1725 */
c0ff4b85 1726static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1727{
7d74b06f
KH
1728 struct mem_cgroup *iter;
1729
c0ff4b85 1730 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1731 iter->oom_lock = false;
1732 return 0;
1733}
1734
c0ff4b85 1735static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1736{
1737 struct mem_cgroup *iter;
1738
c0ff4b85 1739 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1740 atomic_inc(&iter->under_oom);
1741}
1742
c0ff4b85 1743static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1744{
1745 struct mem_cgroup *iter;
1746
867578cb
KH
1747 /*
1748 * When a new child is created while the hierarchy is under oom,
1749 * mem_cgroup_oom_lock() may not be called. We have to use
1750 * atomic_add_unless() here.
1751 */
c0ff4b85 1752 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1753 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1754}
1755
1af8efe9 1756static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1757static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1758
dc98df5a 1759struct oom_wait_info {
d79154bb 1760 struct mem_cgroup *memcg;
dc98df5a
KH
1761 wait_queue_t wait;
1762};
1763
1764static int memcg_oom_wake_function(wait_queue_t *wait,
1765 unsigned mode, int sync, void *arg)
1766{
d79154bb
HD
1767 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1768 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1769 struct oom_wait_info *oom_wait_info;
1770
1771 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1772 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1773
dc98df5a 1774 /*
d79154bb 1775 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1776 * Then we can use css_is_ancestor without taking care of RCU.
1777 */
c0ff4b85
R
1778 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1779 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1780 return 0;
dc98df5a
KH
1781 return autoremove_wake_function(wait, mode, sync, arg);
1782}
1783
c0ff4b85 1784static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1785{
c0ff4b85
R
1786 /* for filtering, pass "memcg" as argument. */
1787 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1788}
1789
c0ff4b85 1790static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1791{
c0ff4b85
R
1792 if (memcg && atomic_read(&memcg->under_oom))
1793 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1794}
1795
867578cb
KH
1796/*
1797 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1798 */
6bbda35c
KS
1799static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1800 int order)
0b7f569e 1801{
dc98df5a 1802 struct oom_wait_info owait;
3c11ecf4 1803 bool locked, need_to_kill;
867578cb 1804
d79154bb 1805 owait.memcg = memcg;
dc98df5a
KH
1806 owait.wait.flags = 0;
1807 owait.wait.func = memcg_oom_wake_function;
1808 owait.wait.private = current;
1809 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1810 need_to_kill = true;
c0ff4b85 1811 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1812
c0ff4b85 1813 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1814 spin_lock(&memcg_oom_lock);
c0ff4b85 1815 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1816 /*
1817 * Even if signal_pending(), we can't quit charge() loop without
1818 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1819 * under OOM is always welcomed, use TASK_KILLABLE here.
1820 */
3c11ecf4 1821 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1822 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1823 need_to_kill = false;
1824 if (locked)
c0ff4b85 1825 mem_cgroup_oom_notify(memcg);
1af8efe9 1826 spin_unlock(&memcg_oom_lock);
867578cb 1827
3c11ecf4
KH
1828 if (need_to_kill) {
1829 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1830 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1831 } else {
867578cb 1832 schedule();
dc98df5a 1833 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1834 }
1af8efe9 1835 spin_lock(&memcg_oom_lock);
79dfdacc 1836 if (locked)
c0ff4b85
R
1837 mem_cgroup_oom_unlock(memcg);
1838 memcg_wakeup_oom(memcg);
1af8efe9 1839 spin_unlock(&memcg_oom_lock);
867578cb 1840
c0ff4b85 1841 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1842
867578cb
KH
1843 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1844 return false;
1845 /* Give chance to dying process */
715a5ee8 1846 schedule_timeout_uninterruptible(1);
867578cb 1847 return true;
0b7f569e
KH
1848}
1849
d69b042f
BS
1850/*
1851 * Currently used to update mapped file statistics, but the routine can be
1852 * generalized to update other statistics as well.
32047e2a
KH
1853 *
1854 * Notes: Race condition
1855 *
1856 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1857 * it tends to be costly. But considering some conditions, we doesn't need
1858 * to do so _always_.
1859 *
1860 * Considering "charge", lock_page_cgroup() is not required because all
1861 * file-stat operations happen after a page is attached to radix-tree. There
1862 * are no race with "charge".
1863 *
1864 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1865 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1866 * if there are race with "uncharge". Statistics itself is properly handled
1867 * by flags.
1868 *
1869 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1870 * small, we check mm->moving_account and detect there are possibility of race
1871 * If there is, we take a lock.
d69b042f 1872 */
26174efd 1873
89c06bd5
KH
1874void __mem_cgroup_begin_update_page_stat(struct page *page,
1875 bool *locked, unsigned long *flags)
1876{
1877 struct mem_cgroup *memcg;
1878 struct page_cgroup *pc;
1879
1880 pc = lookup_page_cgroup(page);
1881again:
1882 memcg = pc->mem_cgroup;
1883 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1884 return;
1885 /*
1886 * If this memory cgroup is not under account moving, we don't
1887 * need to take move_lock_page_cgroup(). Because we already hold
1888 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1889 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 1890 */
13fd1dd9 1891 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
1892 return;
1893
1894 move_lock_mem_cgroup(memcg, flags);
1895 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1896 move_unlock_mem_cgroup(memcg, flags);
1897 goto again;
1898 }
1899 *locked = true;
1900}
1901
1902void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1903{
1904 struct page_cgroup *pc = lookup_page_cgroup(page);
1905
1906 /*
1907 * It's guaranteed that pc->mem_cgroup never changes while
1908 * lock is held because a routine modifies pc->mem_cgroup
1909 * should take move_lock_page_cgroup().
1910 */
1911 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1912}
1913
2a7106f2
GT
1914void mem_cgroup_update_page_stat(struct page *page,
1915 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1916{
c0ff4b85 1917 struct mem_cgroup *memcg;
32047e2a 1918 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 1919 unsigned long uninitialized_var(flags);
d69b042f 1920
cfa44946 1921 if (mem_cgroup_disabled())
d69b042f 1922 return;
89c06bd5 1923
c0ff4b85
R
1924 memcg = pc->mem_cgroup;
1925 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 1926 return;
26174efd 1927
26174efd 1928 switch (idx) {
2a7106f2 1929 case MEMCG_NR_FILE_MAPPED:
2a7106f2 1930 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1931 break;
1932 default:
1933 BUG();
8725d541 1934 }
d69b042f 1935
c0ff4b85 1936 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 1937}
26174efd 1938
cdec2e42
KH
1939/*
1940 * size of first charge trial. "32" comes from vmscan.c's magic value.
1941 * TODO: maybe necessary to use big numbers in big irons.
1942 */
7ec99d62 1943#define CHARGE_BATCH 32U
cdec2e42
KH
1944struct memcg_stock_pcp {
1945 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1946 unsigned int nr_pages;
cdec2e42 1947 struct work_struct work;
26fe6168 1948 unsigned long flags;
a0db00fc 1949#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1950};
1951static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1952static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
1953
1954/*
11c9ea4e 1955 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1956 * from local stock and true is returned. If the stock is 0 or charges from a
1957 * cgroup which is not current target, returns false. This stock will be
1958 * refilled.
1959 */
c0ff4b85 1960static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
1961{
1962 struct memcg_stock_pcp *stock;
1963 bool ret = true;
1964
1965 stock = &get_cpu_var(memcg_stock);
c0ff4b85 1966 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 1967 stock->nr_pages--;
cdec2e42
KH
1968 else /* need to call res_counter_charge */
1969 ret = false;
1970 put_cpu_var(memcg_stock);
1971 return ret;
1972}
1973
1974/*
1975 * Returns stocks cached in percpu to res_counter and reset cached information.
1976 */
1977static void drain_stock(struct memcg_stock_pcp *stock)
1978{
1979 struct mem_cgroup *old = stock->cached;
1980
11c9ea4e
JW
1981 if (stock->nr_pages) {
1982 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1983
1984 res_counter_uncharge(&old->res, bytes);
cdec2e42 1985 if (do_swap_account)
11c9ea4e
JW
1986 res_counter_uncharge(&old->memsw, bytes);
1987 stock->nr_pages = 0;
cdec2e42
KH
1988 }
1989 stock->cached = NULL;
cdec2e42
KH
1990}
1991
1992/*
1993 * This must be called under preempt disabled or must be called by
1994 * a thread which is pinned to local cpu.
1995 */
1996static void drain_local_stock(struct work_struct *dummy)
1997{
1998 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1999 drain_stock(stock);
26fe6168 2000 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2001}
2002
2003/*
2004 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2005 * This will be consumed by consume_stock() function, later.
cdec2e42 2006 */
c0ff4b85 2007static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2008{
2009 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2010
c0ff4b85 2011 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2012 drain_stock(stock);
c0ff4b85 2013 stock->cached = memcg;
cdec2e42 2014 }
11c9ea4e 2015 stock->nr_pages += nr_pages;
cdec2e42
KH
2016 put_cpu_var(memcg_stock);
2017}
2018
2019/*
c0ff4b85 2020 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2021 * of the hierarchy under it. sync flag says whether we should block
2022 * until the work is done.
cdec2e42 2023 */
c0ff4b85 2024static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2025{
26fe6168 2026 int cpu, curcpu;
d38144b7 2027
cdec2e42 2028 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2029 get_online_cpus();
5af12d0e 2030 curcpu = get_cpu();
cdec2e42
KH
2031 for_each_online_cpu(cpu) {
2032 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2033 struct mem_cgroup *memcg;
26fe6168 2034
c0ff4b85
R
2035 memcg = stock->cached;
2036 if (!memcg || !stock->nr_pages)
26fe6168 2037 continue;
c0ff4b85 2038 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2039 continue;
d1a05b69
MH
2040 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2041 if (cpu == curcpu)
2042 drain_local_stock(&stock->work);
2043 else
2044 schedule_work_on(cpu, &stock->work);
2045 }
cdec2e42 2046 }
5af12d0e 2047 put_cpu();
d38144b7
MH
2048
2049 if (!sync)
2050 goto out;
2051
2052 for_each_online_cpu(cpu) {
2053 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2054 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2055 flush_work(&stock->work);
2056 }
2057out:
cdec2e42 2058 put_online_cpus();
d38144b7
MH
2059}
2060
2061/*
2062 * Tries to drain stocked charges in other cpus. This function is asynchronous
2063 * and just put a work per cpu for draining localy on each cpu. Caller can
2064 * expects some charges will be back to res_counter later but cannot wait for
2065 * it.
2066 */
c0ff4b85 2067static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2068{
9f50fad6
MH
2069 /*
2070 * If someone calls draining, avoid adding more kworker runs.
2071 */
2072 if (!mutex_trylock(&percpu_charge_mutex))
2073 return;
c0ff4b85 2074 drain_all_stock(root_memcg, false);
9f50fad6 2075 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2076}
2077
2078/* This is a synchronous drain interface. */
c0ff4b85 2079static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2080{
2081 /* called when force_empty is called */
9f50fad6 2082 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2083 drain_all_stock(root_memcg, true);
9f50fad6 2084 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2085}
2086
711d3d2c
KH
2087/*
2088 * This function drains percpu counter value from DEAD cpu and
2089 * move it to local cpu. Note that this function can be preempted.
2090 */
c0ff4b85 2091static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2092{
2093 int i;
2094
c0ff4b85 2095 spin_lock(&memcg->pcp_counter_lock);
6104621d 2096 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2097 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2098
c0ff4b85
R
2099 per_cpu(memcg->stat->count[i], cpu) = 0;
2100 memcg->nocpu_base.count[i] += x;
711d3d2c 2101 }
e9f8974f 2102 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2103 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2104
c0ff4b85
R
2105 per_cpu(memcg->stat->events[i], cpu) = 0;
2106 memcg->nocpu_base.events[i] += x;
e9f8974f 2107 }
c0ff4b85 2108 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2109}
2110
2111static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2112 unsigned long action,
2113 void *hcpu)
2114{
2115 int cpu = (unsigned long)hcpu;
2116 struct memcg_stock_pcp *stock;
711d3d2c 2117 struct mem_cgroup *iter;
cdec2e42 2118
619d094b 2119 if (action == CPU_ONLINE)
1489ebad 2120 return NOTIFY_OK;
1489ebad 2121
d833049b 2122 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2123 return NOTIFY_OK;
711d3d2c 2124
9f3a0d09 2125 for_each_mem_cgroup(iter)
711d3d2c
KH
2126 mem_cgroup_drain_pcp_counter(iter, cpu);
2127
cdec2e42
KH
2128 stock = &per_cpu(memcg_stock, cpu);
2129 drain_stock(stock);
2130 return NOTIFY_OK;
2131}
2132
4b534334
KH
2133
2134/* See __mem_cgroup_try_charge() for details */
2135enum {
2136 CHARGE_OK, /* success */
2137 CHARGE_RETRY, /* need to retry but retry is not bad */
2138 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2139 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2140 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2141};
2142
c0ff4b85 2143static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2144 unsigned int nr_pages, bool oom_check)
4b534334 2145{
7ec99d62 2146 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2147 struct mem_cgroup *mem_over_limit;
2148 struct res_counter *fail_res;
2149 unsigned long flags = 0;
2150 int ret;
2151
c0ff4b85 2152 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2153
2154 if (likely(!ret)) {
2155 if (!do_swap_account)
2156 return CHARGE_OK;
c0ff4b85 2157 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2158 if (likely(!ret))
2159 return CHARGE_OK;
2160
c0ff4b85 2161 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2162 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2163 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2164 } else
2165 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2166 /*
7ec99d62
JW
2167 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2168 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2169 *
2170 * Never reclaim on behalf of optional batching, retry with a
2171 * single page instead.
2172 */
7ec99d62 2173 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2174 return CHARGE_RETRY;
2175
2176 if (!(gfp_mask & __GFP_WAIT))
2177 return CHARGE_WOULDBLOCK;
2178
5660048c 2179 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2180 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2181 return CHARGE_RETRY;
4b534334 2182 /*
19942822
JW
2183 * Even though the limit is exceeded at this point, reclaim
2184 * may have been able to free some pages. Retry the charge
2185 * before killing the task.
2186 *
2187 * Only for regular pages, though: huge pages are rather
2188 * unlikely to succeed so close to the limit, and we fall back
2189 * to regular pages anyway in case of failure.
4b534334 2190 */
7ec99d62 2191 if (nr_pages == 1 && ret)
4b534334
KH
2192 return CHARGE_RETRY;
2193
2194 /*
2195 * At task move, charge accounts can be doubly counted. So, it's
2196 * better to wait until the end of task_move if something is going on.
2197 */
2198 if (mem_cgroup_wait_acct_move(mem_over_limit))
2199 return CHARGE_RETRY;
2200
2201 /* If we don't need to call oom-killer at el, return immediately */
2202 if (!oom_check)
2203 return CHARGE_NOMEM;
2204 /* check OOM */
e845e199 2205 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2206 return CHARGE_OOM_DIE;
2207
2208 return CHARGE_RETRY;
2209}
2210
f817ed48 2211/*
38c5d72f
KH
2212 * __mem_cgroup_try_charge() does
2213 * 1. detect memcg to be charged against from passed *mm and *ptr,
2214 * 2. update res_counter
2215 * 3. call memory reclaim if necessary.
2216 *
2217 * In some special case, if the task is fatal, fatal_signal_pending() or
2218 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2219 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2220 * as possible without any hazards. 2: all pages should have a valid
2221 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2222 * pointer, that is treated as a charge to root_mem_cgroup.
2223 *
2224 * So __mem_cgroup_try_charge() will return
2225 * 0 ... on success, filling *ptr with a valid memcg pointer.
2226 * -ENOMEM ... charge failure because of resource limits.
2227 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2228 *
2229 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2230 * the oom-killer can be invoked.
8a9f3ccd 2231 */
f817ed48 2232static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2233 gfp_t gfp_mask,
7ec99d62 2234 unsigned int nr_pages,
c0ff4b85 2235 struct mem_cgroup **ptr,
7ec99d62 2236 bool oom)
8a9f3ccd 2237{
7ec99d62 2238 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2239 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2240 struct mem_cgroup *memcg = NULL;
4b534334 2241 int ret;
a636b327 2242
867578cb
KH
2243 /*
2244 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2245 * in system level. So, allow to go ahead dying process in addition to
2246 * MEMDIE process.
2247 */
2248 if (unlikely(test_thread_flag(TIF_MEMDIE)
2249 || fatal_signal_pending(current)))
2250 goto bypass;
a636b327 2251
8a9f3ccd 2252 /*
3be91277
HD
2253 * We always charge the cgroup the mm_struct belongs to.
2254 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2255 * thread group leader migrates. It's possible that mm is not
2256 * set, if so charge the init_mm (happens for pagecache usage).
2257 */
c0ff4b85 2258 if (!*ptr && !mm)
38c5d72f 2259 *ptr = root_mem_cgroup;
f75ca962 2260again:
c0ff4b85
R
2261 if (*ptr) { /* css should be a valid one */
2262 memcg = *ptr;
2263 VM_BUG_ON(css_is_removed(&memcg->css));
2264 if (mem_cgroup_is_root(memcg))
f75ca962 2265 goto done;
c0ff4b85 2266 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2267 goto done;
c0ff4b85 2268 css_get(&memcg->css);
4b534334 2269 } else {
f75ca962 2270 struct task_struct *p;
54595fe2 2271
f75ca962
KH
2272 rcu_read_lock();
2273 p = rcu_dereference(mm->owner);
f75ca962 2274 /*
ebb76ce1 2275 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2276 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2277 * race with swapoff. Then, we have small risk of mis-accouning.
2278 * But such kind of mis-account by race always happens because
2279 * we don't have cgroup_mutex(). It's overkill and we allo that
2280 * small race, here.
2281 * (*) swapoff at el will charge against mm-struct not against
2282 * task-struct. So, mm->owner can be NULL.
f75ca962 2283 */
c0ff4b85 2284 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2285 if (!memcg)
2286 memcg = root_mem_cgroup;
2287 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2288 rcu_read_unlock();
2289 goto done;
2290 }
c0ff4b85 2291 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2292 /*
2293 * It seems dagerous to access memcg without css_get().
2294 * But considering how consume_stok works, it's not
2295 * necessary. If consume_stock success, some charges
2296 * from this memcg are cached on this cpu. So, we
2297 * don't need to call css_get()/css_tryget() before
2298 * calling consume_stock().
2299 */
2300 rcu_read_unlock();
2301 goto done;
2302 }
2303 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2304 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2305 rcu_read_unlock();
2306 goto again;
2307 }
2308 rcu_read_unlock();
2309 }
8a9f3ccd 2310
4b534334
KH
2311 do {
2312 bool oom_check;
7a81b88c 2313
4b534334 2314 /* If killed, bypass charge */
f75ca962 2315 if (fatal_signal_pending(current)) {
c0ff4b85 2316 css_put(&memcg->css);
4b534334 2317 goto bypass;
f75ca962 2318 }
6d61ef40 2319
4b534334
KH
2320 oom_check = false;
2321 if (oom && !nr_oom_retries) {
2322 oom_check = true;
2323 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2324 }
66e1707b 2325
c0ff4b85 2326 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2327 switch (ret) {
2328 case CHARGE_OK:
2329 break;
2330 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2331 batch = nr_pages;
c0ff4b85
R
2332 css_put(&memcg->css);
2333 memcg = NULL;
f75ca962 2334 goto again;
4b534334 2335 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2336 css_put(&memcg->css);
4b534334
KH
2337 goto nomem;
2338 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2339 if (!oom) {
c0ff4b85 2340 css_put(&memcg->css);
867578cb 2341 goto nomem;
f75ca962 2342 }
4b534334
KH
2343 /* If oom, we never return -ENOMEM */
2344 nr_oom_retries--;
2345 break;
2346 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2347 css_put(&memcg->css);
867578cb 2348 goto bypass;
66e1707b 2349 }
4b534334
KH
2350 } while (ret != CHARGE_OK);
2351
7ec99d62 2352 if (batch > nr_pages)
c0ff4b85
R
2353 refill_stock(memcg, batch - nr_pages);
2354 css_put(&memcg->css);
0c3e73e8 2355done:
c0ff4b85 2356 *ptr = memcg;
7a81b88c
KH
2357 return 0;
2358nomem:
c0ff4b85 2359 *ptr = NULL;
7a81b88c 2360 return -ENOMEM;
867578cb 2361bypass:
38c5d72f
KH
2362 *ptr = root_mem_cgroup;
2363 return -EINTR;
7a81b88c 2364}
8a9f3ccd 2365
a3032a2c
DN
2366/*
2367 * Somemtimes we have to undo a charge we got by try_charge().
2368 * This function is for that and do uncharge, put css's refcnt.
2369 * gotten by try_charge().
2370 */
c0ff4b85 2371static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2372 unsigned int nr_pages)
a3032a2c 2373{
c0ff4b85 2374 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2375 unsigned long bytes = nr_pages * PAGE_SIZE;
2376
c0ff4b85 2377 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2378 if (do_swap_account)
c0ff4b85 2379 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2380 }
854ffa8d
DN
2381}
2382
d01dd17f
KH
2383/*
2384 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2385 * This is useful when moving usage to parent cgroup.
2386 */
2387static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2388 unsigned int nr_pages)
2389{
2390 unsigned long bytes = nr_pages * PAGE_SIZE;
2391
2392 if (mem_cgroup_is_root(memcg))
2393 return;
2394
2395 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2396 if (do_swap_account)
2397 res_counter_uncharge_until(&memcg->memsw,
2398 memcg->memsw.parent, bytes);
2399}
2400
a3b2d692
KH
2401/*
2402 * A helper function to get mem_cgroup from ID. must be called under
2403 * rcu_read_lock(). The caller must check css_is_removed() or some if
2404 * it's concern. (dropping refcnt from swap can be called against removed
2405 * memcg.)
2406 */
2407static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2408{
2409 struct cgroup_subsys_state *css;
2410
2411 /* ID 0 is unused ID */
2412 if (!id)
2413 return NULL;
2414 css = css_lookup(&mem_cgroup_subsys, id);
2415 if (!css)
2416 return NULL;
2417 return container_of(css, struct mem_cgroup, css);
2418}
2419
e42d9d5d 2420struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2421{
c0ff4b85 2422 struct mem_cgroup *memcg = NULL;
3c776e64 2423 struct page_cgroup *pc;
a3b2d692 2424 unsigned short id;
b5a84319
KH
2425 swp_entry_t ent;
2426
3c776e64
DN
2427 VM_BUG_ON(!PageLocked(page));
2428
3c776e64 2429 pc = lookup_page_cgroup(page);
c0bd3f63 2430 lock_page_cgroup(pc);
a3b2d692 2431 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2432 memcg = pc->mem_cgroup;
2433 if (memcg && !css_tryget(&memcg->css))
2434 memcg = NULL;
e42d9d5d 2435 } else if (PageSwapCache(page)) {
3c776e64 2436 ent.val = page_private(page);
9fb4b7cc 2437 id = lookup_swap_cgroup_id(ent);
a3b2d692 2438 rcu_read_lock();
c0ff4b85
R
2439 memcg = mem_cgroup_lookup(id);
2440 if (memcg && !css_tryget(&memcg->css))
2441 memcg = NULL;
a3b2d692 2442 rcu_read_unlock();
3c776e64 2443 }
c0bd3f63 2444 unlock_page_cgroup(pc);
c0ff4b85 2445 return memcg;
b5a84319
KH
2446}
2447
c0ff4b85 2448static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2449 struct page *page,
7ec99d62 2450 unsigned int nr_pages,
9ce70c02
HD
2451 enum charge_type ctype,
2452 bool lrucare)
7a81b88c 2453{
ce587e65 2454 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2455 struct zone *uninitialized_var(zone);
fa9add64 2456 struct lruvec *lruvec;
9ce70c02 2457 bool was_on_lru = false;
b2402857 2458 bool anon;
9ce70c02 2459
ca3e0214
KH
2460 lock_page_cgroup(pc);
2461 if (unlikely(PageCgroupUsed(pc))) {
2462 unlock_page_cgroup(pc);
c0ff4b85 2463 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2464 return;
2465 }
2466 /*
2467 * we don't need page_cgroup_lock about tail pages, becase they are not
2468 * accessed by any other context at this point.
2469 */
9ce70c02
HD
2470
2471 /*
2472 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2473 * may already be on some other mem_cgroup's LRU. Take care of it.
2474 */
2475 if (lrucare) {
2476 zone = page_zone(page);
2477 spin_lock_irq(&zone->lru_lock);
2478 if (PageLRU(page)) {
fa9add64 2479 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2480 ClearPageLRU(page);
fa9add64 2481 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2482 was_on_lru = true;
2483 }
2484 }
2485
c0ff4b85 2486 pc->mem_cgroup = memcg;
261fb61a
KH
2487 /*
2488 * We access a page_cgroup asynchronously without lock_page_cgroup().
2489 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2490 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2491 * before USED bit, we need memory barrier here.
2492 * See mem_cgroup_add_lru_list(), etc.
2493 */
08e552c6 2494 smp_wmb();
b2402857 2495 SetPageCgroupUsed(pc);
3be91277 2496
9ce70c02
HD
2497 if (lrucare) {
2498 if (was_on_lru) {
fa9add64 2499 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2500 VM_BUG_ON(PageLRU(page));
2501 SetPageLRU(page);
fa9add64 2502 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2503 }
2504 spin_unlock_irq(&zone->lru_lock);
2505 }
2506
b2402857
KH
2507 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2508 anon = true;
2509 else
2510 anon = false;
2511
2512 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2513 unlock_page_cgroup(pc);
9ce70c02 2514
430e4863
KH
2515 /*
2516 * "charge_statistics" updated event counter. Then, check it.
2517 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2518 * if they exceeds softlimit.
2519 */
c0ff4b85 2520 memcg_check_events(memcg, page);
7a81b88c 2521}
66e1707b 2522
ca3e0214
KH
2523#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2524
a0db00fc 2525#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
2526/*
2527 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2528 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2529 * charge/uncharge will be never happen and move_account() is done under
2530 * compound_lock(), so we don't have to take care of races.
ca3e0214 2531 */
e94c8a9c 2532void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2533{
2534 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2535 struct page_cgroup *pc;
2536 int i;
ca3e0214 2537
3d37c4a9
KH
2538 if (mem_cgroup_disabled())
2539 return;
e94c8a9c
KH
2540 for (i = 1; i < HPAGE_PMD_NR; i++) {
2541 pc = head_pc + i;
2542 pc->mem_cgroup = head_pc->mem_cgroup;
2543 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2544 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2545 }
ca3e0214 2546}
12d27107 2547#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2548
f817ed48 2549/**
de3638d9 2550 * mem_cgroup_move_account - move account of the page
5564e88b 2551 * @page: the page
7ec99d62 2552 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2553 * @pc: page_cgroup of the page.
2554 * @from: mem_cgroup which the page is moved from.
2555 * @to: mem_cgroup which the page is moved to. @from != @to.
2556 *
2557 * The caller must confirm following.
08e552c6 2558 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2559 * - compound_lock is held when nr_pages > 1
f817ed48 2560 *
2f3479b1
KH
2561 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2562 * from old cgroup.
f817ed48 2563 */
7ec99d62
JW
2564static int mem_cgroup_move_account(struct page *page,
2565 unsigned int nr_pages,
2566 struct page_cgroup *pc,
2567 struct mem_cgroup *from,
2f3479b1 2568 struct mem_cgroup *to)
f817ed48 2569{
de3638d9
JW
2570 unsigned long flags;
2571 int ret;
b2402857 2572 bool anon = PageAnon(page);
987eba66 2573
f817ed48 2574 VM_BUG_ON(from == to);
5564e88b 2575 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2576 /*
2577 * The page is isolated from LRU. So, collapse function
2578 * will not handle this page. But page splitting can happen.
2579 * Do this check under compound_page_lock(). The caller should
2580 * hold it.
2581 */
2582 ret = -EBUSY;
7ec99d62 2583 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2584 goto out;
2585
2586 lock_page_cgroup(pc);
2587
2588 ret = -EINVAL;
2589 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2590 goto unlock;
2591
312734c0 2592 move_lock_mem_cgroup(from, &flags);
f817ed48 2593
2ff76f11 2594 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2595 /* Update mapped_file data for mem_cgroup */
2596 preempt_disable();
2597 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2598 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2599 preempt_enable();
d69b042f 2600 }
b2402857 2601 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 2602
854ffa8d 2603 /* caller should have done css_get */
08e552c6 2604 pc->mem_cgroup = to;
b2402857 2605 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2606 /*
2607 * We charges against "to" which may not have any tasks. Then, "to"
2608 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2609 * this function is just force_empty() and move charge, so it's
25985edc 2610 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2611 * status here.
88703267 2612 */
312734c0 2613 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2614 ret = 0;
2615unlock:
57f9fd7d 2616 unlock_page_cgroup(pc);
d2265e6f
KH
2617 /*
2618 * check events
2619 */
5564e88b
JW
2620 memcg_check_events(to, page);
2621 memcg_check_events(from, page);
de3638d9 2622out:
f817ed48
KH
2623 return ret;
2624}
2625
2626/*
2627 * move charges to its parent.
2628 */
2629
5564e88b
JW
2630static int mem_cgroup_move_parent(struct page *page,
2631 struct page_cgroup *pc,
f817ed48
KH
2632 struct mem_cgroup *child,
2633 gfp_t gfp_mask)
2634{
f817ed48 2635 struct mem_cgroup *parent;
7ec99d62 2636 unsigned int nr_pages;
4be4489f 2637 unsigned long uninitialized_var(flags);
f817ed48
KH
2638 int ret;
2639
2640 /* Is ROOT ? */
cc926f78 2641 if (mem_cgroup_is_root(child))
f817ed48
KH
2642 return -EINVAL;
2643
57f9fd7d
DN
2644 ret = -EBUSY;
2645 if (!get_page_unless_zero(page))
2646 goto out;
2647 if (isolate_lru_page(page))
2648 goto put;
52dbb905 2649
7ec99d62 2650 nr_pages = hpage_nr_pages(page);
08e552c6 2651
cc926f78
KH
2652 parent = parent_mem_cgroup(child);
2653 /*
2654 * If no parent, move charges to root cgroup.
2655 */
2656 if (!parent)
2657 parent = root_mem_cgroup;
f817ed48 2658
7ec99d62 2659 if (nr_pages > 1)
987eba66
KH
2660 flags = compound_lock_irqsave(page);
2661
cc926f78 2662 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 2663 pc, child, parent);
cc926f78
KH
2664 if (!ret)
2665 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 2666
7ec99d62 2667 if (nr_pages > 1)
987eba66 2668 compound_unlock_irqrestore(page, flags);
08e552c6 2669 putback_lru_page(page);
57f9fd7d 2670put:
40d58138 2671 put_page(page);
57f9fd7d 2672out:
f817ed48
KH
2673 return ret;
2674}
2675
7a81b88c
KH
2676/*
2677 * Charge the memory controller for page usage.
2678 * Return
2679 * 0 if the charge was successful
2680 * < 0 if the cgroup is over its limit
2681 */
2682static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2683 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2684{
c0ff4b85 2685 struct mem_cgroup *memcg = NULL;
7ec99d62 2686 unsigned int nr_pages = 1;
8493ae43 2687 bool oom = true;
7a81b88c 2688 int ret;
ec168510 2689
37c2ac78 2690 if (PageTransHuge(page)) {
7ec99d62 2691 nr_pages <<= compound_order(page);
37c2ac78 2692 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2693 /*
2694 * Never OOM-kill a process for a huge page. The
2695 * fault handler will fall back to regular pages.
2696 */
2697 oom = false;
37c2ac78 2698 }
7a81b88c 2699
c0ff4b85 2700 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2701 if (ret == -ENOMEM)
7a81b88c 2702 return ret;
ce587e65 2703 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2704 return 0;
8a9f3ccd
BS
2705}
2706
7a81b88c
KH
2707int mem_cgroup_newpage_charge(struct page *page,
2708 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2709{
f8d66542 2710 if (mem_cgroup_disabled())
cede86ac 2711 return 0;
7a0524cf
JW
2712 VM_BUG_ON(page_mapped(page));
2713 VM_BUG_ON(page->mapping && !PageAnon(page));
2714 VM_BUG_ON(!mm);
217bc319 2715 return mem_cgroup_charge_common(page, mm, gfp_mask,
7a0524cf 2716 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2717}
2718
83aae4c7
DN
2719static void
2720__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2721 enum charge_type ctype);
2722
e1a1cd59
BS
2723int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2724 gfp_t gfp_mask)
8697d331 2725{
c0ff4b85 2726 struct mem_cgroup *memcg = NULL;
dc67d504 2727 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
b5a84319
KH
2728 int ret;
2729
f8d66542 2730 if (mem_cgroup_disabled())
cede86ac 2731 return 0;
52d4b9ac
KH
2732 if (PageCompound(page))
2733 return 0;
accf163e 2734
73045c47 2735 if (unlikely(!mm))
8697d331 2736 mm = &init_mm;
dc67d504
KH
2737 if (!page_is_file_cache(page))
2738 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
accf163e 2739
38c5d72f 2740 if (!PageSwapCache(page))
dc67d504 2741 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
38c5d72f 2742 else { /* page is swapcache/shmem */
c0ff4b85 2743 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2744 if (!ret)
dc67d504
KH
2745 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2746 }
b5a84319 2747 return ret;
e8589cc1
KH
2748}
2749
54595fe2
KH
2750/*
2751 * While swap-in, try_charge -> commit or cancel, the page is locked.
2752 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2753 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2754 * "commit()" or removed by "cancel()"
2755 */
8c7c6e34
KH
2756int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2757 struct page *page,
72835c86 2758 gfp_t mask, struct mem_cgroup **memcgp)
8c7c6e34 2759{
c0ff4b85 2760 struct mem_cgroup *memcg;
54595fe2 2761 int ret;
8c7c6e34 2762
72835c86 2763 *memcgp = NULL;
56039efa 2764
f8d66542 2765 if (mem_cgroup_disabled())
8c7c6e34
KH
2766 return 0;
2767
2768 if (!do_swap_account)
2769 goto charge_cur_mm;
8c7c6e34
KH
2770 /*
2771 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2772 * the pte, and even removed page from swap cache: in those cases
2773 * do_swap_page()'s pte_same() test will fail; but there's also a
2774 * KSM case which does need to charge the page.
8c7c6e34
KH
2775 */
2776 if (!PageSwapCache(page))
407f9c8b 2777 goto charge_cur_mm;
c0ff4b85
R
2778 memcg = try_get_mem_cgroup_from_page(page);
2779 if (!memcg)
54595fe2 2780 goto charge_cur_mm;
72835c86
JW
2781 *memcgp = memcg;
2782 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2783 css_put(&memcg->css);
38c5d72f
KH
2784 if (ret == -EINTR)
2785 ret = 0;
54595fe2 2786 return ret;
8c7c6e34
KH
2787charge_cur_mm:
2788 if (unlikely(!mm))
2789 mm = &init_mm;
38c5d72f
KH
2790 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2791 if (ret == -EINTR)
2792 ret = 0;
2793 return ret;
8c7c6e34
KH
2794}
2795
83aae4c7 2796static void
72835c86 2797__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2798 enum charge_type ctype)
7a81b88c 2799{
f8d66542 2800 if (mem_cgroup_disabled())
7a81b88c 2801 return;
72835c86 2802 if (!memcg)
7a81b88c 2803 return;
72835c86 2804 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2805
ce587e65 2806 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2807 /*
2808 * Now swap is on-memory. This means this page may be
2809 * counted both as mem and swap....double count.
03f3c433
KH
2810 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2811 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2812 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2813 */
03f3c433 2814 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2815 swp_entry_t ent = {.val = page_private(page)};
86493009 2816 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2817 }
88703267
KH
2818 /*
2819 * At swapin, we may charge account against cgroup which has no tasks.
2820 * So, rmdir()->pre_destroy() can be called while we do this charge.
2821 * In that case, we need to call pre_destroy() again. check it here.
2822 */
72835c86 2823 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2824}
2825
72835c86
JW
2826void mem_cgroup_commit_charge_swapin(struct page *page,
2827 struct mem_cgroup *memcg)
83aae4c7 2828{
72835c86
JW
2829 __mem_cgroup_commit_charge_swapin(page, memcg,
2830 MEM_CGROUP_CHARGE_TYPE_MAPPED);
83aae4c7
DN
2831}
2832
c0ff4b85 2833void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2834{
f8d66542 2835 if (mem_cgroup_disabled())
7a81b88c 2836 return;
c0ff4b85 2837 if (!memcg)
7a81b88c 2838 return;
c0ff4b85 2839 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2840}
2841
c0ff4b85 2842static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2843 unsigned int nr_pages,
2844 const enum charge_type ctype)
569b846d
KH
2845{
2846 struct memcg_batch_info *batch = NULL;
2847 bool uncharge_memsw = true;
7ec99d62 2848
569b846d
KH
2849 /* If swapout, usage of swap doesn't decrease */
2850 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2851 uncharge_memsw = false;
569b846d
KH
2852
2853 batch = &current->memcg_batch;
2854 /*
2855 * In usual, we do css_get() when we remember memcg pointer.
2856 * But in this case, we keep res->usage until end of a series of
2857 * uncharges. Then, it's ok to ignore memcg's refcnt.
2858 */
2859 if (!batch->memcg)
c0ff4b85 2860 batch->memcg = memcg;
3c11ecf4
KH
2861 /*
2862 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2863 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2864 * the same cgroup and we have chance to coalesce uncharges.
2865 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2866 * because we want to do uncharge as soon as possible.
2867 */
2868
2869 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2870 goto direct_uncharge;
2871
7ec99d62 2872 if (nr_pages > 1)
ec168510
AA
2873 goto direct_uncharge;
2874
569b846d
KH
2875 /*
2876 * In typical case, batch->memcg == mem. This means we can
2877 * merge a series of uncharges to an uncharge of res_counter.
2878 * If not, we uncharge res_counter ony by one.
2879 */
c0ff4b85 2880 if (batch->memcg != memcg)
569b846d
KH
2881 goto direct_uncharge;
2882 /* remember freed charge and uncharge it later */
7ffd4ca7 2883 batch->nr_pages++;
569b846d 2884 if (uncharge_memsw)
7ffd4ca7 2885 batch->memsw_nr_pages++;
569b846d
KH
2886 return;
2887direct_uncharge:
c0ff4b85 2888 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2889 if (uncharge_memsw)
c0ff4b85
R
2890 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2891 if (unlikely(batch->memcg != memcg))
2892 memcg_oom_recover(memcg);
569b846d 2893}
7a81b88c 2894
8a9f3ccd 2895/*
69029cd5 2896 * uncharge if !page_mapped(page)
8a9f3ccd 2897 */
8c7c6e34 2898static struct mem_cgroup *
69029cd5 2899__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2900{
c0ff4b85 2901 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2902 unsigned int nr_pages = 1;
2903 struct page_cgroup *pc;
b2402857 2904 bool anon;
8a9f3ccd 2905
f8d66542 2906 if (mem_cgroup_disabled())
8c7c6e34 2907 return NULL;
4077960e 2908
d13d1443 2909 if (PageSwapCache(page))
8c7c6e34 2910 return NULL;
d13d1443 2911
37c2ac78 2912 if (PageTransHuge(page)) {
7ec99d62 2913 nr_pages <<= compound_order(page);
37c2ac78
AA
2914 VM_BUG_ON(!PageTransHuge(page));
2915 }
8697d331 2916 /*
3c541e14 2917 * Check if our page_cgroup is valid
8697d331 2918 */
52d4b9ac 2919 pc = lookup_page_cgroup(page);
cfa44946 2920 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 2921 return NULL;
b9c565d5 2922
52d4b9ac 2923 lock_page_cgroup(pc);
d13d1443 2924
c0ff4b85 2925 memcg = pc->mem_cgroup;
8c7c6e34 2926
d13d1443
KH
2927 if (!PageCgroupUsed(pc))
2928 goto unlock_out;
2929
b2402857
KH
2930 anon = PageAnon(page);
2931
d13d1443
KH
2932 switch (ctype) {
2933 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2ff76f11
KH
2934 /*
2935 * Generally PageAnon tells if it's the anon statistics to be
2936 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2937 * used before page reached the stage of being marked PageAnon.
2938 */
b2402857
KH
2939 anon = true;
2940 /* fallthrough */
8a9478ca 2941 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
2942 /* See mem_cgroup_prepare_migration() */
2943 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2944 goto unlock_out;
2945 break;
2946 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2947 if (!PageAnon(page)) { /* Shared memory */
2948 if (page->mapping && !page_is_file_cache(page))
2949 goto unlock_out;
2950 } else if (page_mapped(page)) /* Anon */
2951 goto unlock_out;
2952 break;
2953 default:
2954 break;
52d4b9ac 2955 }
d13d1443 2956
b2402857 2957 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 2958
52d4b9ac 2959 ClearPageCgroupUsed(pc);
544122e5
KH
2960 /*
2961 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2962 * freed from LRU. This is safe because uncharged page is expected not
2963 * to be reused (freed soon). Exception is SwapCache, it's handled by
2964 * special functions.
2965 */
b9c565d5 2966
52d4b9ac 2967 unlock_page_cgroup(pc);
f75ca962 2968 /*
c0ff4b85 2969 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
2970 * will never be freed.
2971 */
c0ff4b85 2972 memcg_check_events(memcg, page);
f75ca962 2973 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
2974 mem_cgroup_swap_statistics(memcg, true);
2975 mem_cgroup_get(memcg);
f75ca962 2976 }
c0ff4b85
R
2977 if (!mem_cgroup_is_root(memcg))
2978 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 2979
c0ff4b85 2980 return memcg;
d13d1443
KH
2981
2982unlock_out:
2983 unlock_page_cgroup(pc);
8c7c6e34 2984 return NULL;
3c541e14
BS
2985}
2986
69029cd5
KH
2987void mem_cgroup_uncharge_page(struct page *page)
2988{
52d4b9ac
KH
2989 /* early check. */
2990 if (page_mapped(page))
2991 return;
40f23a21 2992 VM_BUG_ON(page->mapping && !PageAnon(page));
69029cd5
KH
2993 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2994}
2995
2996void mem_cgroup_uncharge_cache_page(struct page *page)
2997{
2998 VM_BUG_ON(page_mapped(page));
b7abea96 2999 VM_BUG_ON(page->mapping);
69029cd5
KH
3000 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3001}
3002
569b846d
KH
3003/*
3004 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3005 * In that cases, pages are freed continuously and we can expect pages
3006 * are in the same memcg. All these calls itself limits the number of
3007 * pages freed at once, then uncharge_start/end() is called properly.
3008 * This may be called prural(2) times in a context,
3009 */
3010
3011void mem_cgroup_uncharge_start(void)
3012{
3013 current->memcg_batch.do_batch++;
3014 /* We can do nest. */
3015 if (current->memcg_batch.do_batch == 1) {
3016 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3017 current->memcg_batch.nr_pages = 0;
3018 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3019 }
3020}
3021
3022void mem_cgroup_uncharge_end(void)
3023{
3024 struct memcg_batch_info *batch = &current->memcg_batch;
3025
3026 if (!batch->do_batch)
3027 return;
3028
3029 batch->do_batch--;
3030 if (batch->do_batch) /* If stacked, do nothing. */
3031 return;
3032
3033 if (!batch->memcg)
3034 return;
3035 /*
3036 * This "batch->memcg" is valid without any css_get/put etc...
3037 * bacause we hide charges behind us.
3038 */
7ffd4ca7
JW
3039 if (batch->nr_pages)
3040 res_counter_uncharge(&batch->memcg->res,
3041 batch->nr_pages * PAGE_SIZE);
3042 if (batch->memsw_nr_pages)
3043 res_counter_uncharge(&batch->memcg->memsw,
3044 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3045 memcg_oom_recover(batch->memcg);
569b846d
KH
3046 /* forget this pointer (for sanity check) */
3047 batch->memcg = NULL;
3048}
3049
e767e056 3050#ifdef CONFIG_SWAP
8c7c6e34 3051/*
e767e056 3052 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3053 * memcg information is recorded to swap_cgroup of "ent"
3054 */
8a9478ca
KH
3055void
3056mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3057{
3058 struct mem_cgroup *memcg;
8a9478ca
KH
3059 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3060
3061 if (!swapout) /* this was a swap cache but the swap is unused ! */
3062 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3063
3064 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3065
f75ca962
KH
3066 /*
3067 * record memcg information, if swapout && memcg != NULL,
3068 * mem_cgroup_get() was called in uncharge().
3069 */
3070 if (do_swap_account && swapout && memcg)
a3b2d692 3071 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3072}
e767e056 3073#endif
8c7c6e34
KH
3074
3075#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3076/*
3077 * called from swap_entry_free(). remove record in swap_cgroup and
3078 * uncharge "memsw" account.
3079 */
3080void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3081{
8c7c6e34 3082 struct mem_cgroup *memcg;
a3b2d692 3083 unsigned short id;
8c7c6e34
KH
3084
3085 if (!do_swap_account)
3086 return;
3087
a3b2d692
KH
3088 id = swap_cgroup_record(ent, 0);
3089 rcu_read_lock();
3090 memcg = mem_cgroup_lookup(id);
8c7c6e34 3091 if (memcg) {
a3b2d692
KH
3092 /*
3093 * We uncharge this because swap is freed.
3094 * This memcg can be obsolete one. We avoid calling css_tryget
3095 */
0c3e73e8 3096 if (!mem_cgroup_is_root(memcg))
4e649152 3097 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3098 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3099 mem_cgroup_put(memcg);
3100 }
a3b2d692 3101 rcu_read_unlock();
d13d1443 3102}
02491447
DN
3103
3104/**
3105 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3106 * @entry: swap entry to be moved
3107 * @from: mem_cgroup which the entry is moved from
3108 * @to: mem_cgroup which the entry is moved to
3109 *
3110 * It succeeds only when the swap_cgroup's record for this entry is the same
3111 * as the mem_cgroup's id of @from.
3112 *
3113 * Returns 0 on success, -EINVAL on failure.
3114 *
3115 * The caller must have charged to @to, IOW, called res_counter_charge() about
3116 * both res and memsw, and called css_get().
3117 */
3118static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3119 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3120{
3121 unsigned short old_id, new_id;
3122
3123 old_id = css_id(&from->css);
3124 new_id = css_id(&to->css);
3125
3126 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3127 mem_cgroup_swap_statistics(from, false);
483c30b5 3128 mem_cgroup_swap_statistics(to, true);
02491447 3129 /*
483c30b5
DN
3130 * This function is only called from task migration context now.
3131 * It postpones res_counter and refcount handling till the end
3132 * of task migration(mem_cgroup_clear_mc()) for performance
3133 * improvement. But we cannot postpone mem_cgroup_get(to)
3134 * because if the process that has been moved to @to does
3135 * swap-in, the refcount of @to might be decreased to 0.
02491447 3136 */
02491447 3137 mem_cgroup_get(to);
02491447
DN
3138 return 0;
3139 }
3140 return -EINVAL;
3141}
3142#else
3143static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3144 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3145{
3146 return -EINVAL;
3147}
8c7c6e34 3148#endif
d13d1443 3149
ae41be37 3150/*
01b1ae63
KH
3151 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3152 * page belongs to.
ae41be37 3153 */
ac39cf8c 3154int mem_cgroup_prepare_migration(struct page *page,
72835c86 3155 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
ae41be37 3156{
c0ff4b85 3157 struct mem_cgroup *memcg = NULL;
7ec99d62 3158 struct page_cgroup *pc;
ac39cf8c 3159 enum charge_type ctype;
e8589cc1 3160 int ret = 0;
8869b8f6 3161
72835c86 3162 *memcgp = NULL;
56039efa 3163
ec168510 3164 VM_BUG_ON(PageTransHuge(page));
f8d66542 3165 if (mem_cgroup_disabled())
4077960e
BS
3166 return 0;
3167
52d4b9ac
KH
3168 pc = lookup_page_cgroup(page);
3169 lock_page_cgroup(pc);
3170 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3171 memcg = pc->mem_cgroup;
3172 css_get(&memcg->css);
ac39cf8c
AM
3173 /*
3174 * At migrating an anonymous page, its mapcount goes down
3175 * to 0 and uncharge() will be called. But, even if it's fully
3176 * unmapped, migration may fail and this page has to be
3177 * charged again. We set MIGRATION flag here and delay uncharge
3178 * until end_migration() is called
3179 *
3180 * Corner Case Thinking
3181 * A)
3182 * When the old page was mapped as Anon and it's unmap-and-freed
3183 * while migration was ongoing.
3184 * If unmap finds the old page, uncharge() of it will be delayed
3185 * until end_migration(). If unmap finds a new page, it's
3186 * uncharged when it make mapcount to be 1->0. If unmap code
3187 * finds swap_migration_entry, the new page will not be mapped
3188 * and end_migration() will find it(mapcount==0).
3189 *
3190 * B)
3191 * When the old page was mapped but migraion fails, the kernel
3192 * remaps it. A charge for it is kept by MIGRATION flag even
3193 * if mapcount goes down to 0. We can do remap successfully
3194 * without charging it again.
3195 *
3196 * C)
3197 * The "old" page is under lock_page() until the end of
3198 * migration, so, the old page itself will not be swapped-out.
3199 * If the new page is swapped out before end_migraton, our
3200 * hook to usual swap-out path will catch the event.
3201 */
3202 if (PageAnon(page))
3203 SetPageCgroupMigration(pc);
e8589cc1 3204 }
52d4b9ac 3205 unlock_page_cgroup(pc);
ac39cf8c
AM
3206 /*
3207 * If the page is not charged at this point,
3208 * we return here.
3209 */
c0ff4b85 3210 if (!memcg)
ac39cf8c 3211 return 0;
01b1ae63 3212
72835c86
JW
3213 *memcgp = memcg;
3214 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
c0ff4b85 3215 css_put(&memcg->css);/* drop extra refcnt */
38c5d72f 3216 if (ret) {
ac39cf8c
AM
3217 if (PageAnon(page)) {
3218 lock_page_cgroup(pc);
3219 ClearPageCgroupMigration(pc);
3220 unlock_page_cgroup(pc);
3221 /*
3222 * The old page may be fully unmapped while we kept it.
3223 */
3224 mem_cgroup_uncharge_page(page);
3225 }
38c5d72f 3226 /* we'll need to revisit this error code (we have -EINTR) */
ac39cf8c 3227 return -ENOMEM;
e8589cc1 3228 }
ac39cf8c
AM
3229 /*
3230 * We charge new page before it's used/mapped. So, even if unlock_page()
3231 * is called before end_migration, we can catch all events on this new
3232 * page. In the case new page is migrated but not remapped, new page's
3233 * mapcount will be finally 0 and we call uncharge in end_migration().
3234 */
ac39cf8c
AM
3235 if (PageAnon(page))
3236 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3237 else if (page_is_file_cache(page))
3238 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3239 else
3240 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
ce587e65 3241 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
e8589cc1 3242 return ret;
ae41be37 3243}
8869b8f6 3244
69029cd5 3245/* remove redundant charge if migration failed*/
c0ff4b85 3246void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3247 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3248{
ac39cf8c 3249 struct page *used, *unused;
01b1ae63 3250 struct page_cgroup *pc;
b2402857 3251 bool anon;
01b1ae63 3252
c0ff4b85 3253 if (!memcg)
01b1ae63 3254 return;
ac39cf8c 3255 /* blocks rmdir() */
c0ff4b85 3256 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3257 if (!migration_ok) {
ac39cf8c
AM
3258 used = oldpage;
3259 unused = newpage;
01b1ae63 3260 } else {
ac39cf8c 3261 used = newpage;
01b1ae63
KH
3262 unused = oldpage;
3263 }
69029cd5 3264 /*
ac39cf8c
AM
3265 * We disallowed uncharge of pages under migration because mapcount
3266 * of the page goes down to zero, temporarly.
3267 * Clear the flag and check the page should be charged.
01b1ae63 3268 */
ac39cf8c
AM
3269 pc = lookup_page_cgroup(oldpage);
3270 lock_page_cgroup(pc);
3271 ClearPageCgroupMigration(pc);
3272 unlock_page_cgroup(pc);
b2402857
KH
3273 anon = PageAnon(used);
3274 __mem_cgroup_uncharge_common(unused,
3275 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3276 : MEM_CGROUP_CHARGE_TYPE_CACHE);
ac39cf8c 3277
01b1ae63 3278 /*
ac39cf8c
AM
3279 * If a page is a file cache, radix-tree replacement is very atomic
3280 * and we can skip this check. When it was an Anon page, its mapcount
3281 * goes down to 0. But because we added MIGRATION flage, it's not
3282 * uncharged yet. There are several case but page->mapcount check
3283 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3284 * check. (see prepare_charge() also)
69029cd5 3285 */
b2402857 3286 if (anon)
ac39cf8c 3287 mem_cgroup_uncharge_page(used);
88703267 3288 /*
ac39cf8c
AM
3289 * At migration, we may charge account against cgroup which has no
3290 * tasks.
88703267
KH
3291 * So, rmdir()->pre_destroy() can be called while we do this charge.
3292 * In that case, we need to call pre_destroy() again. check it here.
3293 */
c0ff4b85 3294 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3295}
78fb7466 3296
ab936cbc
KH
3297/*
3298 * At replace page cache, newpage is not under any memcg but it's on
3299 * LRU. So, this function doesn't touch res_counter but handles LRU
3300 * in correct way. Both pages are locked so we cannot race with uncharge.
3301 */
3302void mem_cgroup_replace_page_cache(struct page *oldpage,
3303 struct page *newpage)
3304{
bde05d1c 3305 struct mem_cgroup *memcg = NULL;
ab936cbc 3306 struct page_cgroup *pc;
ab936cbc 3307 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3308
3309 if (mem_cgroup_disabled())
3310 return;
3311
3312 pc = lookup_page_cgroup(oldpage);
3313 /* fix accounting on old pages */
3314 lock_page_cgroup(pc);
bde05d1c
HD
3315 if (PageCgroupUsed(pc)) {
3316 memcg = pc->mem_cgroup;
3317 mem_cgroup_charge_statistics(memcg, false, -1);
3318 ClearPageCgroupUsed(pc);
3319 }
ab936cbc
KH
3320 unlock_page_cgroup(pc);
3321
bde05d1c
HD
3322 /*
3323 * When called from shmem_replace_page(), in some cases the
3324 * oldpage has already been charged, and in some cases not.
3325 */
3326 if (!memcg)
3327 return;
3328
ab936cbc
KH
3329 if (PageSwapBacked(oldpage))
3330 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3331
ab936cbc
KH
3332 /*
3333 * Even if newpage->mapping was NULL before starting replacement,
3334 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3335 * LRU while we overwrite pc->mem_cgroup.
3336 */
ce587e65 3337 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3338}
3339
f212ad7c
DN
3340#ifdef CONFIG_DEBUG_VM
3341static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3342{
3343 struct page_cgroup *pc;
3344
3345 pc = lookup_page_cgroup(page);
cfa44946
JW
3346 /*
3347 * Can be NULL while feeding pages into the page allocator for
3348 * the first time, i.e. during boot or memory hotplug;
3349 * or when mem_cgroup_disabled().
3350 */
f212ad7c
DN
3351 if (likely(pc) && PageCgroupUsed(pc))
3352 return pc;
3353 return NULL;
3354}
3355
3356bool mem_cgroup_bad_page_check(struct page *page)
3357{
3358 if (mem_cgroup_disabled())
3359 return false;
3360
3361 return lookup_page_cgroup_used(page) != NULL;
3362}
3363
3364void mem_cgroup_print_bad_page(struct page *page)
3365{
3366 struct page_cgroup *pc;
3367
3368 pc = lookup_page_cgroup_used(page);
3369 if (pc) {
90b3feae 3370 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3371 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3372 }
3373}
3374#endif
3375
8c7c6e34
KH
3376static DEFINE_MUTEX(set_limit_mutex);
3377
d38d2a75 3378static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3379 unsigned long long val)
628f4235 3380{
81d39c20 3381 int retry_count;
3c11ecf4 3382 u64 memswlimit, memlimit;
628f4235 3383 int ret = 0;
81d39c20
KH
3384 int children = mem_cgroup_count_children(memcg);
3385 u64 curusage, oldusage;
3c11ecf4 3386 int enlarge;
81d39c20
KH
3387
3388 /*
3389 * For keeping hierarchical_reclaim simple, how long we should retry
3390 * is depends on callers. We set our retry-count to be function
3391 * of # of children which we should visit in this loop.
3392 */
3393 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3394
3395 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3396
3c11ecf4 3397 enlarge = 0;
8c7c6e34 3398 while (retry_count) {
628f4235
KH
3399 if (signal_pending(current)) {
3400 ret = -EINTR;
3401 break;
3402 }
8c7c6e34
KH
3403 /*
3404 * Rather than hide all in some function, I do this in
3405 * open coded manner. You see what this really does.
c0ff4b85 3406 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3407 */
3408 mutex_lock(&set_limit_mutex);
3409 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3410 if (memswlimit < val) {
3411 ret = -EINVAL;
3412 mutex_unlock(&set_limit_mutex);
628f4235
KH
3413 break;
3414 }
3c11ecf4
KH
3415
3416 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3417 if (memlimit < val)
3418 enlarge = 1;
3419
8c7c6e34 3420 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3421 if (!ret) {
3422 if (memswlimit == val)
3423 memcg->memsw_is_minimum = true;
3424 else
3425 memcg->memsw_is_minimum = false;
3426 }
8c7c6e34
KH
3427 mutex_unlock(&set_limit_mutex);
3428
3429 if (!ret)
3430 break;
3431
5660048c
JW
3432 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3433 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3434 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3435 /* Usage is reduced ? */
3436 if (curusage >= oldusage)
3437 retry_count--;
3438 else
3439 oldusage = curusage;
8c7c6e34 3440 }
3c11ecf4
KH
3441 if (!ret && enlarge)
3442 memcg_oom_recover(memcg);
14797e23 3443
8c7c6e34
KH
3444 return ret;
3445}
3446
338c8431
LZ
3447static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3448 unsigned long long val)
8c7c6e34 3449{
81d39c20 3450 int retry_count;
3c11ecf4 3451 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3452 int children = mem_cgroup_count_children(memcg);
3453 int ret = -EBUSY;
3c11ecf4 3454 int enlarge = 0;
8c7c6e34 3455
81d39c20
KH
3456 /* see mem_cgroup_resize_res_limit */
3457 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3458 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3459 while (retry_count) {
3460 if (signal_pending(current)) {
3461 ret = -EINTR;
3462 break;
3463 }
3464 /*
3465 * Rather than hide all in some function, I do this in
3466 * open coded manner. You see what this really does.
c0ff4b85 3467 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3468 */
3469 mutex_lock(&set_limit_mutex);
3470 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3471 if (memlimit > val) {
3472 ret = -EINVAL;
3473 mutex_unlock(&set_limit_mutex);
3474 break;
3475 }
3c11ecf4
KH
3476 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3477 if (memswlimit < val)
3478 enlarge = 1;
8c7c6e34 3479 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3480 if (!ret) {
3481 if (memlimit == val)
3482 memcg->memsw_is_minimum = true;
3483 else
3484 memcg->memsw_is_minimum = false;
3485 }
8c7c6e34
KH
3486 mutex_unlock(&set_limit_mutex);
3487
3488 if (!ret)
3489 break;
3490
5660048c
JW
3491 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3492 MEM_CGROUP_RECLAIM_NOSWAP |
3493 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3494 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3495 /* Usage is reduced ? */
8c7c6e34 3496 if (curusage >= oldusage)
628f4235 3497 retry_count--;
81d39c20
KH
3498 else
3499 oldusage = curusage;
628f4235 3500 }
3c11ecf4
KH
3501 if (!ret && enlarge)
3502 memcg_oom_recover(memcg);
628f4235
KH
3503 return ret;
3504}
3505
4e416953 3506unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3507 gfp_t gfp_mask,
3508 unsigned long *total_scanned)
4e416953
BS
3509{
3510 unsigned long nr_reclaimed = 0;
3511 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3512 unsigned long reclaimed;
3513 int loop = 0;
3514 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3515 unsigned long long excess;
0ae5e89c 3516 unsigned long nr_scanned;
4e416953
BS
3517
3518 if (order > 0)
3519 return 0;
3520
00918b6a 3521 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3522 /*
3523 * This loop can run a while, specially if mem_cgroup's continuously
3524 * keep exceeding their soft limit and putting the system under
3525 * pressure
3526 */
3527 do {
3528 if (next_mz)
3529 mz = next_mz;
3530 else
3531 mz = mem_cgroup_largest_soft_limit_node(mctz);
3532 if (!mz)
3533 break;
3534
0ae5e89c 3535 nr_scanned = 0;
d79154bb 3536 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3537 gfp_mask, &nr_scanned);
4e416953 3538 nr_reclaimed += reclaimed;
0ae5e89c 3539 *total_scanned += nr_scanned;
4e416953
BS
3540 spin_lock(&mctz->lock);
3541
3542 /*
3543 * If we failed to reclaim anything from this memory cgroup
3544 * it is time to move on to the next cgroup
3545 */
3546 next_mz = NULL;
3547 if (!reclaimed) {
3548 do {
3549 /*
3550 * Loop until we find yet another one.
3551 *
3552 * By the time we get the soft_limit lock
3553 * again, someone might have aded the
3554 * group back on the RB tree. Iterate to
3555 * make sure we get a different mem.
3556 * mem_cgroup_largest_soft_limit_node returns
3557 * NULL if no other cgroup is present on
3558 * the tree
3559 */
3560 next_mz =
3561 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3562 if (next_mz == mz)
d79154bb 3563 css_put(&next_mz->memcg->css);
39cc98f1 3564 else /* next_mz == NULL or other memcg */
4e416953
BS
3565 break;
3566 } while (1);
3567 }
d79154bb
HD
3568 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3569 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3570 /*
3571 * One school of thought says that we should not add
3572 * back the node to the tree if reclaim returns 0.
3573 * But our reclaim could return 0, simply because due
3574 * to priority we are exposing a smaller subset of
3575 * memory to reclaim from. Consider this as a longer
3576 * term TODO.
3577 */
ef8745c1 3578 /* If excess == 0, no tree ops */
d79154bb 3579 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3580 spin_unlock(&mctz->lock);
d79154bb 3581 css_put(&mz->memcg->css);
4e416953
BS
3582 loop++;
3583 /*
3584 * Could not reclaim anything and there are no more
3585 * mem cgroups to try or we seem to be looping without
3586 * reclaiming anything.
3587 */
3588 if (!nr_reclaimed &&
3589 (next_mz == NULL ||
3590 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3591 break;
3592 } while (!nr_reclaimed);
3593 if (next_mz)
d79154bb 3594 css_put(&next_mz->memcg->css);
4e416953
BS
3595 return nr_reclaimed;
3596}
3597
cc847582
KH
3598/*
3599 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3600 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3601 */
c0ff4b85 3602static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3603 int node, int zid, enum lru_list lru)
cc847582 3604{
08e552c6 3605 struct mem_cgroup_per_zone *mz;
08e552c6 3606 unsigned long flags, loop;
072c56c1 3607 struct list_head *list;
925b7673
JW
3608 struct page *busy;
3609 struct zone *zone;
f817ed48 3610 int ret = 0;
072c56c1 3611
08e552c6 3612 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3613 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3614 list = &mz->lruvec.lists[lru];
cc847582 3615
1eb49272 3616 loop = mz->lru_size[lru];
f817ed48
KH
3617 /* give some margin against EBUSY etc...*/
3618 loop += 256;
3619 busy = NULL;
3620 while (loop--) {
925b7673 3621 struct page_cgroup *pc;
5564e88b
JW
3622 struct page *page;
3623
f817ed48 3624 ret = 0;
08e552c6 3625 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3626 if (list_empty(list)) {
08e552c6 3627 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3628 break;
f817ed48 3629 }
925b7673
JW
3630 page = list_entry(list->prev, struct page, lru);
3631 if (busy == page) {
3632 list_move(&page->lru, list);
648bcc77 3633 busy = NULL;
08e552c6 3634 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3635 continue;
3636 }
08e552c6 3637 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3638
925b7673 3639 pc = lookup_page_cgroup(page);
5564e88b 3640
c0ff4b85 3641 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
38c5d72f 3642 if (ret == -ENOMEM || ret == -EINTR)
52d4b9ac 3643 break;
f817ed48
KH
3644
3645 if (ret == -EBUSY || ret == -EINVAL) {
3646 /* found lock contention or "pc" is obsolete. */
925b7673 3647 busy = page;
f817ed48
KH
3648 cond_resched();
3649 } else
3650 busy = NULL;
cc847582 3651 }
08e552c6 3652
f817ed48
KH
3653 if (!ret && !list_empty(list))
3654 return -EBUSY;
3655 return ret;
cc847582
KH
3656}
3657
3658/*
3659 * make mem_cgroup's charge to be 0 if there is no task.
3660 * This enables deleting this mem_cgroup.
3661 */
c0ff4b85 3662static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3663{
f817ed48
KH
3664 int ret;
3665 int node, zid, shrink;
3666 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3667 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3668
c0ff4b85 3669 css_get(&memcg->css);
f817ed48
KH
3670
3671 shrink = 0;
c1e862c1
KH
3672 /* should free all ? */
3673 if (free_all)
3674 goto try_to_free;
f817ed48 3675move_account:
fce66477 3676 do {
f817ed48 3677 ret = -EBUSY;
c1e862c1
KH
3678 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3679 goto out;
3680 ret = -EINTR;
3681 if (signal_pending(current))
cc847582 3682 goto out;
52d4b9ac
KH
3683 /* This is for making all *used* pages to be on LRU. */
3684 lru_add_drain_all();
c0ff4b85 3685 drain_all_stock_sync(memcg);
f817ed48 3686 ret = 0;
c0ff4b85 3687 mem_cgroup_start_move(memcg);
299b4eaa 3688 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3689 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3690 enum lru_list lru;
3691 for_each_lru(lru) {
c0ff4b85 3692 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3693 node, zid, lru);
f817ed48
KH
3694 if (ret)
3695 break;
3696 }
1ecaab2b 3697 }
f817ed48
KH
3698 if (ret)
3699 break;
3700 }
c0ff4b85
R
3701 mem_cgroup_end_move(memcg);
3702 memcg_oom_recover(memcg);
f817ed48
KH
3703 /* it seems parent cgroup doesn't have enough mem */
3704 if (ret == -ENOMEM)
3705 goto try_to_free;
52d4b9ac 3706 cond_resched();
fce66477 3707 /* "ret" should also be checked to ensure all lists are empty. */
569530fb 3708 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
cc847582 3709out:
c0ff4b85 3710 css_put(&memcg->css);
cc847582 3711 return ret;
f817ed48
KH
3712
3713try_to_free:
c1e862c1
KH
3714 /* returns EBUSY if there is a task or if we come here twice. */
3715 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3716 ret = -EBUSY;
3717 goto out;
3718 }
c1e862c1
KH
3719 /* we call try-to-free pages for make this cgroup empty */
3720 lru_add_drain_all();
f817ed48
KH
3721 /* try to free all pages in this cgroup */
3722 shrink = 1;
569530fb 3723 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3724 int progress;
c1e862c1
KH
3725
3726 if (signal_pending(current)) {
3727 ret = -EINTR;
3728 goto out;
3729 }
c0ff4b85 3730 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3731 false);
c1e862c1 3732 if (!progress) {
f817ed48 3733 nr_retries--;
c1e862c1 3734 /* maybe some writeback is necessary */
8aa7e847 3735 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3736 }
f817ed48
KH
3737
3738 }
08e552c6 3739 lru_add_drain();
f817ed48 3740 /* try move_account...there may be some *locked* pages. */
fce66477 3741 goto move_account;
cc847582
KH
3742}
3743
6bbda35c 3744static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1
KH
3745{
3746 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3747}
3748
3749
18f59ea7
BS
3750static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3751{
3752 return mem_cgroup_from_cont(cont)->use_hierarchy;
3753}
3754
3755static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3756 u64 val)
3757{
3758 int retval = 0;
c0ff4b85 3759 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3760 struct cgroup *parent = cont->parent;
c0ff4b85 3761 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3762
3763 if (parent)
c0ff4b85 3764 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3765
3766 cgroup_lock();
3767 /*
af901ca1 3768 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3769 * in the child subtrees. If it is unset, then the change can
3770 * occur, provided the current cgroup has no children.
3771 *
3772 * For the root cgroup, parent_mem is NULL, we allow value to be
3773 * set if there are no children.
3774 */
c0ff4b85 3775 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3776 (val == 1 || val == 0)) {
3777 if (list_empty(&cont->children))
c0ff4b85 3778 memcg->use_hierarchy = val;
18f59ea7
BS
3779 else
3780 retval = -EBUSY;
3781 } else
3782 retval = -EINVAL;
3783 cgroup_unlock();
3784
3785 return retval;
3786}
3787
0c3e73e8 3788
c0ff4b85 3789static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3790 enum mem_cgroup_stat_index idx)
0c3e73e8 3791{
7d74b06f 3792 struct mem_cgroup *iter;
7a159cc9 3793 long val = 0;
0c3e73e8 3794
7a159cc9 3795 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3796 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3797 val += mem_cgroup_read_stat(iter, idx);
3798
3799 if (val < 0) /* race ? */
3800 val = 0;
3801 return val;
0c3e73e8
BS
3802}
3803
c0ff4b85 3804static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3805{
7d74b06f 3806 u64 val;
104f3928 3807
c0ff4b85 3808 if (!mem_cgroup_is_root(memcg)) {
104f3928 3809 if (!swap)
65c64ce8 3810 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3811 else
65c64ce8 3812 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3813 }
3814
c0ff4b85
R
3815 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3816 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3817
7d74b06f 3818 if (swap)
c0ff4b85 3819 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3820
3821 return val << PAGE_SHIFT;
3822}
3823
af36f906
TH
3824static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3825 struct file *file, char __user *buf,
3826 size_t nbytes, loff_t *ppos)
8cdea7c0 3827{
c0ff4b85 3828 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3829 char str[64];
104f3928 3830 u64 val;
af36f906 3831 int type, name, len;
8c7c6e34
KH
3832
3833 type = MEMFILE_TYPE(cft->private);
3834 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3835
3836 if (!do_swap_account && type == _MEMSWAP)
3837 return -EOPNOTSUPP;
3838
8c7c6e34
KH
3839 switch (type) {
3840 case _MEM:
104f3928 3841 if (name == RES_USAGE)
c0ff4b85 3842 val = mem_cgroup_usage(memcg, false);
104f3928 3843 else
c0ff4b85 3844 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3845 break;
3846 case _MEMSWAP:
104f3928 3847 if (name == RES_USAGE)
c0ff4b85 3848 val = mem_cgroup_usage(memcg, true);
104f3928 3849 else
c0ff4b85 3850 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3851 break;
3852 default:
3853 BUG();
8c7c6e34 3854 }
af36f906
TH
3855
3856 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3857 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3858}
628f4235
KH
3859/*
3860 * The user of this function is...
3861 * RES_LIMIT.
3862 */
856c13aa
PM
3863static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3864 const char *buffer)
8cdea7c0 3865{
628f4235 3866 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3867 int type, name;
628f4235
KH
3868 unsigned long long val;
3869 int ret;
3870
8c7c6e34
KH
3871 type = MEMFILE_TYPE(cft->private);
3872 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3873
3874 if (!do_swap_account && type == _MEMSWAP)
3875 return -EOPNOTSUPP;
3876
8c7c6e34 3877 switch (name) {
628f4235 3878 case RES_LIMIT:
4b3bde4c
BS
3879 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3880 ret = -EINVAL;
3881 break;
3882 }
628f4235
KH
3883 /* This function does all necessary parse...reuse it */
3884 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3885 if (ret)
3886 break;
3887 if (type == _MEM)
628f4235 3888 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3889 else
3890 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3891 break;
296c81d8
BS
3892 case RES_SOFT_LIMIT:
3893 ret = res_counter_memparse_write_strategy(buffer, &val);
3894 if (ret)
3895 break;
3896 /*
3897 * For memsw, soft limits are hard to implement in terms
3898 * of semantics, for now, we support soft limits for
3899 * control without swap
3900 */
3901 if (type == _MEM)
3902 ret = res_counter_set_soft_limit(&memcg->res, val);
3903 else
3904 ret = -EINVAL;
3905 break;
628f4235
KH
3906 default:
3907 ret = -EINVAL; /* should be BUG() ? */
3908 break;
3909 }
3910 return ret;
8cdea7c0
BS
3911}
3912
fee7b548
KH
3913static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3914 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3915{
3916 struct cgroup *cgroup;
3917 unsigned long long min_limit, min_memsw_limit, tmp;
3918
3919 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3920 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3921 cgroup = memcg->css.cgroup;
3922 if (!memcg->use_hierarchy)
3923 goto out;
3924
3925 while (cgroup->parent) {
3926 cgroup = cgroup->parent;
3927 memcg = mem_cgroup_from_cont(cgroup);
3928 if (!memcg->use_hierarchy)
3929 break;
3930 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3931 min_limit = min(min_limit, tmp);
3932 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3933 min_memsw_limit = min(min_memsw_limit, tmp);
3934 }
3935out:
3936 *mem_limit = min_limit;
3937 *memsw_limit = min_memsw_limit;
fee7b548
KH
3938}
3939
29f2a4da 3940static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 3941{
af36f906 3942 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3943 int type, name;
c84872e1 3944
8c7c6e34
KH
3945 type = MEMFILE_TYPE(event);
3946 name = MEMFILE_ATTR(event);
af36f906
TH
3947
3948 if (!do_swap_account && type == _MEMSWAP)
3949 return -EOPNOTSUPP;
3950
8c7c6e34 3951 switch (name) {
29f2a4da 3952 case RES_MAX_USAGE:
8c7c6e34 3953 if (type == _MEM)
c0ff4b85 3954 res_counter_reset_max(&memcg->res);
8c7c6e34 3955 else
c0ff4b85 3956 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
3957 break;
3958 case RES_FAILCNT:
8c7c6e34 3959 if (type == _MEM)
c0ff4b85 3960 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 3961 else
c0ff4b85 3962 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
3963 break;
3964 }
f64c3f54 3965
85cc59db 3966 return 0;
c84872e1
PE
3967}
3968
7dc74be0
DN
3969static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3970 struct cftype *cft)
3971{
3972 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3973}
3974
02491447 3975#ifdef CONFIG_MMU
7dc74be0
DN
3976static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3977 struct cftype *cft, u64 val)
3978{
c0ff4b85 3979 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
3980
3981 if (val >= (1 << NR_MOVE_TYPE))
3982 return -EINVAL;
3983 /*
3984 * We check this value several times in both in can_attach() and
3985 * attach(), so we need cgroup lock to prevent this value from being
3986 * inconsistent.
3987 */
3988 cgroup_lock();
c0ff4b85 3989 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3990 cgroup_unlock();
3991
3992 return 0;
3993}
02491447
DN
3994#else
3995static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3996 struct cftype *cft, u64 val)
3997{
3998 return -ENOSYS;
3999}
4000#endif
7dc74be0 4001
406eb0c9 4002#ifdef CONFIG_NUMA
fada52ca
JW
4003static int mem_control_numa_stat_show(struct cgroup *cont, struct cftype *cft,
4004 struct seq_file *m)
406eb0c9
YH
4005{
4006 int nid;
4007 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4008 unsigned long node_nr;
d79154bb 4009 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4010
d79154bb 4011 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4012 seq_printf(m, "total=%lu", total_nr);
4013 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4014 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4015 seq_printf(m, " N%d=%lu", nid, node_nr);
4016 }
4017 seq_putc(m, '\n');
4018
d79154bb 4019 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4020 seq_printf(m, "file=%lu", file_nr);
4021 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4022 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4023 LRU_ALL_FILE);
406eb0c9
YH
4024 seq_printf(m, " N%d=%lu", nid, node_nr);
4025 }
4026 seq_putc(m, '\n');
4027
d79154bb 4028 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4029 seq_printf(m, "anon=%lu", anon_nr);
4030 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4031 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4032 LRU_ALL_ANON);
406eb0c9
YH
4033 seq_printf(m, " N%d=%lu", nid, node_nr);
4034 }
4035 seq_putc(m, '\n');
4036
d79154bb 4037 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4038 seq_printf(m, "unevictable=%lu", unevictable_nr);
4039 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4040 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4041 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4042 seq_printf(m, " N%d=%lu", nid, node_nr);
4043 }
4044 seq_putc(m, '\n');
4045 return 0;
4046}
4047#endif /* CONFIG_NUMA */
4048
af7c4b0e
JW
4049static const char * const mem_cgroup_lru_names[] = {
4050 "inactive_anon",
4051 "active_anon",
4052 "inactive_file",
4053 "active_file",
4054 "unevictable",
4055};
4056
4057static inline void mem_cgroup_lru_names_not_uptodate(void)
4058{
4059 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4060}
4061
c64745cf 4062static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 4063 struct seq_file *m)
d2ceb9b7 4064{
d79154bb 4065 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
4066 struct mem_cgroup *mi;
4067 unsigned int i;
406eb0c9 4068
af7c4b0e
JW
4069 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4070 if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
1dd3a273 4071 continue;
af7c4b0e
JW
4072 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4073 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4074 }
7b854121 4075
af7c4b0e
JW
4076 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4077 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4078 mem_cgroup_read_events(memcg, i));
4079
4080 for (i = 0; i < NR_LRU_LISTS; i++)
4081 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4082 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4083
14067bb3 4084 /* Hierarchical information */
fee7b548
KH
4085 {
4086 unsigned long long limit, memsw_limit;
d79154bb 4087 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4088 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4089 if (do_swap_account)
78ccf5b5
JW
4090 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4091 memsw_limit);
fee7b548 4092 }
7f016ee8 4093
af7c4b0e
JW
4094 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4095 long long val = 0;
4096
4097 if (i == MEM_CGROUP_STAT_SWAPOUT && !do_swap_account)
1dd3a273 4098 continue;
af7c4b0e
JW
4099 for_each_mem_cgroup_tree(mi, memcg)
4100 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4101 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4102 }
4103
4104 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4105 unsigned long long val = 0;
4106
4107 for_each_mem_cgroup_tree(mi, memcg)
4108 val += mem_cgroup_read_events(mi, i);
4109 seq_printf(m, "total_%s %llu\n",
4110 mem_cgroup_events_names[i], val);
4111 }
4112
4113 for (i = 0; i < NR_LRU_LISTS; i++) {
4114 unsigned long long val = 0;
4115
4116 for_each_mem_cgroup_tree(mi, memcg)
4117 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4118 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4119 }
14067bb3 4120
7f016ee8 4121#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4122 {
4123 int nid, zid;
4124 struct mem_cgroup_per_zone *mz;
89abfab1 4125 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4126 unsigned long recent_rotated[2] = {0, 0};
4127 unsigned long recent_scanned[2] = {0, 0};
4128
4129 for_each_online_node(nid)
4130 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4131 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4132 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4133
89abfab1
HD
4134 recent_rotated[0] += rstat->recent_rotated[0];
4135 recent_rotated[1] += rstat->recent_rotated[1];
4136 recent_scanned[0] += rstat->recent_scanned[0];
4137 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4138 }
78ccf5b5
JW
4139 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4140 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4141 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4142 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4143 }
4144#endif
4145
d2ceb9b7
KH
4146 return 0;
4147}
4148
a7885eb8
KM
4149static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4150{
4151 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4152
1f4c025b 4153 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4154}
4155
4156static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4157 u64 val)
4158{
4159 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4160 struct mem_cgroup *parent;
068b38c1 4161
a7885eb8
KM
4162 if (val > 100)
4163 return -EINVAL;
4164
4165 if (cgrp->parent == NULL)
4166 return -EINVAL;
4167
4168 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4169
4170 cgroup_lock();
4171
a7885eb8
KM
4172 /* If under hierarchy, only empty-root can set this value */
4173 if ((parent->use_hierarchy) ||
068b38c1
LZ
4174 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4175 cgroup_unlock();
a7885eb8 4176 return -EINVAL;
068b38c1 4177 }
a7885eb8 4178
a7885eb8 4179 memcg->swappiness = val;
a7885eb8 4180
068b38c1
LZ
4181 cgroup_unlock();
4182
a7885eb8
KM
4183 return 0;
4184}
4185
2e72b634
KS
4186static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4187{
4188 struct mem_cgroup_threshold_ary *t;
4189 u64 usage;
4190 int i;
4191
4192 rcu_read_lock();
4193 if (!swap)
2c488db2 4194 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4195 else
2c488db2 4196 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4197
4198 if (!t)
4199 goto unlock;
4200
4201 usage = mem_cgroup_usage(memcg, swap);
4202
4203 /*
748dad36 4204 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4205 * If it's not true, a threshold was crossed after last
4206 * call of __mem_cgroup_threshold().
4207 */
5407a562 4208 i = t->current_threshold;
2e72b634
KS
4209
4210 /*
4211 * Iterate backward over array of thresholds starting from
4212 * current_threshold and check if a threshold is crossed.
4213 * If none of thresholds below usage is crossed, we read
4214 * only one element of the array here.
4215 */
4216 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4217 eventfd_signal(t->entries[i].eventfd, 1);
4218
4219 /* i = current_threshold + 1 */
4220 i++;
4221
4222 /*
4223 * Iterate forward over array of thresholds starting from
4224 * current_threshold+1 and check if a threshold is crossed.
4225 * If none of thresholds above usage is crossed, we read
4226 * only one element of the array here.
4227 */
4228 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4229 eventfd_signal(t->entries[i].eventfd, 1);
4230
4231 /* Update current_threshold */
5407a562 4232 t->current_threshold = i - 1;
2e72b634
KS
4233unlock:
4234 rcu_read_unlock();
4235}
4236
4237static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4238{
ad4ca5f4
KS
4239 while (memcg) {
4240 __mem_cgroup_threshold(memcg, false);
4241 if (do_swap_account)
4242 __mem_cgroup_threshold(memcg, true);
4243
4244 memcg = parent_mem_cgroup(memcg);
4245 }
2e72b634
KS
4246}
4247
4248static int compare_thresholds(const void *a, const void *b)
4249{
4250 const struct mem_cgroup_threshold *_a = a;
4251 const struct mem_cgroup_threshold *_b = b;
4252
4253 return _a->threshold - _b->threshold;
4254}
4255
c0ff4b85 4256static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4257{
4258 struct mem_cgroup_eventfd_list *ev;
4259
c0ff4b85 4260 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4261 eventfd_signal(ev->eventfd, 1);
4262 return 0;
4263}
4264
c0ff4b85 4265static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4266{
7d74b06f
KH
4267 struct mem_cgroup *iter;
4268
c0ff4b85 4269 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4270 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4271}
4272
4273static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4274 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4275{
4276 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4277 struct mem_cgroup_thresholds *thresholds;
4278 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4279 int type = MEMFILE_TYPE(cft->private);
4280 u64 threshold, usage;
2c488db2 4281 int i, size, ret;
2e72b634
KS
4282
4283 ret = res_counter_memparse_write_strategy(args, &threshold);
4284 if (ret)
4285 return ret;
4286
4287 mutex_lock(&memcg->thresholds_lock);
2c488db2 4288
2e72b634 4289 if (type == _MEM)
2c488db2 4290 thresholds = &memcg->thresholds;
2e72b634 4291 else if (type == _MEMSWAP)
2c488db2 4292 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4293 else
4294 BUG();
4295
4296 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4297
4298 /* Check if a threshold crossed before adding a new one */
2c488db2 4299 if (thresholds->primary)
2e72b634
KS
4300 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4301
2c488db2 4302 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4303
4304 /* Allocate memory for new array of thresholds */
2c488db2 4305 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4306 GFP_KERNEL);
2c488db2 4307 if (!new) {
2e72b634
KS
4308 ret = -ENOMEM;
4309 goto unlock;
4310 }
2c488db2 4311 new->size = size;
2e72b634
KS
4312
4313 /* Copy thresholds (if any) to new array */
2c488db2
KS
4314 if (thresholds->primary) {
4315 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4316 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4317 }
4318
2e72b634 4319 /* Add new threshold */
2c488db2
KS
4320 new->entries[size - 1].eventfd = eventfd;
4321 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4322
4323 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4324 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4325 compare_thresholds, NULL);
4326
4327 /* Find current threshold */
2c488db2 4328 new->current_threshold = -1;
2e72b634 4329 for (i = 0; i < size; i++) {
748dad36 4330 if (new->entries[i].threshold <= usage) {
2e72b634 4331 /*
2c488db2
KS
4332 * new->current_threshold will not be used until
4333 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4334 * it here.
4335 */
2c488db2 4336 ++new->current_threshold;
748dad36
SZ
4337 } else
4338 break;
2e72b634
KS
4339 }
4340
2c488db2
KS
4341 /* Free old spare buffer and save old primary buffer as spare */
4342 kfree(thresholds->spare);
4343 thresholds->spare = thresholds->primary;
4344
4345 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4346
907860ed 4347 /* To be sure that nobody uses thresholds */
2e72b634
KS
4348 synchronize_rcu();
4349
2e72b634
KS
4350unlock:
4351 mutex_unlock(&memcg->thresholds_lock);
4352
4353 return ret;
4354}
4355
907860ed 4356static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4357 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4358{
4359 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4360 struct mem_cgroup_thresholds *thresholds;
4361 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4362 int type = MEMFILE_TYPE(cft->private);
4363 u64 usage;
2c488db2 4364 int i, j, size;
2e72b634
KS
4365
4366 mutex_lock(&memcg->thresholds_lock);
4367 if (type == _MEM)
2c488db2 4368 thresholds = &memcg->thresholds;
2e72b634 4369 else if (type == _MEMSWAP)
2c488db2 4370 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4371 else
4372 BUG();
4373
371528ca
AV
4374 if (!thresholds->primary)
4375 goto unlock;
4376
2e72b634
KS
4377 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4378
4379 /* Check if a threshold crossed before removing */
4380 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4381
4382 /* Calculate new number of threshold */
2c488db2
KS
4383 size = 0;
4384 for (i = 0; i < thresholds->primary->size; i++) {
4385 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4386 size++;
4387 }
4388
2c488db2 4389 new = thresholds->spare;
907860ed 4390
2e72b634
KS
4391 /* Set thresholds array to NULL if we don't have thresholds */
4392 if (!size) {
2c488db2
KS
4393 kfree(new);
4394 new = NULL;
907860ed 4395 goto swap_buffers;
2e72b634
KS
4396 }
4397
2c488db2 4398 new->size = size;
2e72b634
KS
4399
4400 /* Copy thresholds and find current threshold */
2c488db2
KS
4401 new->current_threshold = -1;
4402 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4403 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4404 continue;
4405
2c488db2 4406 new->entries[j] = thresholds->primary->entries[i];
748dad36 4407 if (new->entries[j].threshold <= usage) {
2e72b634 4408 /*
2c488db2 4409 * new->current_threshold will not be used
2e72b634
KS
4410 * until rcu_assign_pointer(), so it's safe to increment
4411 * it here.
4412 */
2c488db2 4413 ++new->current_threshold;
2e72b634
KS
4414 }
4415 j++;
4416 }
4417
907860ed 4418swap_buffers:
2c488db2
KS
4419 /* Swap primary and spare array */
4420 thresholds->spare = thresholds->primary;
8c757763
SZ
4421 /* If all events are unregistered, free the spare array */
4422 if (!new) {
4423 kfree(thresholds->spare);
4424 thresholds->spare = NULL;
4425 }
4426
2c488db2 4427 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4428
907860ed 4429 /* To be sure that nobody uses thresholds */
2e72b634 4430 synchronize_rcu();
371528ca 4431unlock:
2e72b634 4432 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4433}
c1e862c1 4434
9490ff27
KH
4435static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4436 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4437{
4438 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4439 struct mem_cgroup_eventfd_list *event;
4440 int type = MEMFILE_TYPE(cft->private);
4441
4442 BUG_ON(type != _OOM_TYPE);
4443 event = kmalloc(sizeof(*event), GFP_KERNEL);
4444 if (!event)
4445 return -ENOMEM;
4446
1af8efe9 4447 spin_lock(&memcg_oom_lock);
9490ff27
KH
4448
4449 event->eventfd = eventfd;
4450 list_add(&event->list, &memcg->oom_notify);
4451
4452 /* already in OOM ? */
79dfdacc 4453 if (atomic_read(&memcg->under_oom))
9490ff27 4454 eventfd_signal(eventfd, 1);
1af8efe9 4455 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4456
4457 return 0;
4458}
4459
907860ed 4460static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4461 struct cftype *cft, struct eventfd_ctx *eventfd)
4462{
c0ff4b85 4463 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4464 struct mem_cgroup_eventfd_list *ev, *tmp;
4465 int type = MEMFILE_TYPE(cft->private);
4466
4467 BUG_ON(type != _OOM_TYPE);
4468
1af8efe9 4469 spin_lock(&memcg_oom_lock);
9490ff27 4470
c0ff4b85 4471 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4472 if (ev->eventfd == eventfd) {
4473 list_del(&ev->list);
4474 kfree(ev);
4475 }
4476 }
4477
1af8efe9 4478 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4479}
4480
3c11ecf4
KH
4481static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4482 struct cftype *cft, struct cgroup_map_cb *cb)
4483{
c0ff4b85 4484 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4485
c0ff4b85 4486 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4487
c0ff4b85 4488 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4489 cb->fill(cb, "under_oom", 1);
4490 else
4491 cb->fill(cb, "under_oom", 0);
4492 return 0;
4493}
4494
3c11ecf4
KH
4495static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4496 struct cftype *cft, u64 val)
4497{
c0ff4b85 4498 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4499 struct mem_cgroup *parent;
4500
4501 /* cannot set to root cgroup and only 0 and 1 are allowed */
4502 if (!cgrp->parent || !((val == 0) || (val == 1)))
4503 return -EINVAL;
4504
4505 parent = mem_cgroup_from_cont(cgrp->parent);
4506
4507 cgroup_lock();
4508 /* oom-kill-disable is a flag for subhierarchy. */
4509 if ((parent->use_hierarchy) ||
c0ff4b85 4510 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4511 cgroup_unlock();
4512 return -EINVAL;
4513 }
c0ff4b85 4514 memcg->oom_kill_disable = val;
4d845ebf 4515 if (!val)
c0ff4b85 4516 memcg_oom_recover(memcg);
3c11ecf4
KH
4517 cgroup_unlock();
4518 return 0;
4519}
4520
e5671dfa 4521#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
cbe128e3 4522static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4523{
1d62e436 4524 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4525};
4526
1d62e436 4527static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4528{
1d62e436 4529 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4530}
e5671dfa 4531#else
cbe128e3 4532static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4533{
4534 return 0;
4535}
d1a4c0b3 4536
1d62e436 4537static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4538{
4539}
e5671dfa
GC
4540#endif
4541
8cdea7c0
BS
4542static struct cftype mem_cgroup_files[] = {
4543 {
0eea1030 4544 .name = "usage_in_bytes",
8c7c6e34 4545 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4546 .read = mem_cgroup_read,
9490ff27
KH
4547 .register_event = mem_cgroup_usage_register_event,
4548 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4549 },
c84872e1
PE
4550 {
4551 .name = "max_usage_in_bytes",
8c7c6e34 4552 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4553 .trigger = mem_cgroup_reset,
af36f906 4554 .read = mem_cgroup_read,
c84872e1 4555 },
8cdea7c0 4556 {
0eea1030 4557 .name = "limit_in_bytes",
8c7c6e34 4558 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4559 .write_string = mem_cgroup_write,
af36f906 4560 .read = mem_cgroup_read,
8cdea7c0 4561 },
296c81d8
BS
4562 {
4563 .name = "soft_limit_in_bytes",
4564 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4565 .write_string = mem_cgroup_write,
af36f906 4566 .read = mem_cgroup_read,
296c81d8 4567 },
8cdea7c0
BS
4568 {
4569 .name = "failcnt",
8c7c6e34 4570 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4571 .trigger = mem_cgroup_reset,
af36f906 4572 .read = mem_cgroup_read,
8cdea7c0 4573 },
d2ceb9b7
KH
4574 {
4575 .name = "stat",
78ccf5b5 4576 .read_seq_string = mem_control_stat_show,
d2ceb9b7 4577 },
c1e862c1
KH
4578 {
4579 .name = "force_empty",
4580 .trigger = mem_cgroup_force_empty_write,
4581 },
18f59ea7
BS
4582 {
4583 .name = "use_hierarchy",
4584 .write_u64 = mem_cgroup_hierarchy_write,
4585 .read_u64 = mem_cgroup_hierarchy_read,
4586 },
a7885eb8
KM
4587 {
4588 .name = "swappiness",
4589 .read_u64 = mem_cgroup_swappiness_read,
4590 .write_u64 = mem_cgroup_swappiness_write,
4591 },
7dc74be0
DN
4592 {
4593 .name = "move_charge_at_immigrate",
4594 .read_u64 = mem_cgroup_move_charge_read,
4595 .write_u64 = mem_cgroup_move_charge_write,
4596 },
9490ff27
KH
4597 {
4598 .name = "oom_control",
3c11ecf4
KH
4599 .read_map = mem_cgroup_oom_control_read,
4600 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4601 .register_event = mem_cgroup_oom_register_event,
4602 .unregister_event = mem_cgroup_oom_unregister_event,
4603 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4604 },
406eb0c9
YH
4605#ifdef CONFIG_NUMA
4606 {
4607 .name = "numa_stat",
fada52ca 4608 .read_seq_string = mem_control_numa_stat_show,
406eb0c9
YH
4609 },
4610#endif
8c7c6e34 4611#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
8c7c6e34
KH
4612 {
4613 .name = "memsw.usage_in_bytes",
4614 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4615 .read = mem_cgroup_read,
9490ff27
KH
4616 .register_event = mem_cgroup_usage_register_event,
4617 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4618 },
4619 {
4620 .name = "memsw.max_usage_in_bytes",
4621 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4622 .trigger = mem_cgroup_reset,
af36f906 4623 .read = mem_cgroup_read,
8c7c6e34
KH
4624 },
4625 {
4626 .name = "memsw.limit_in_bytes",
4627 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4628 .write_string = mem_cgroup_write,
af36f906 4629 .read = mem_cgroup_read,
8c7c6e34
KH
4630 },
4631 {
4632 .name = "memsw.failcnt",
4633 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4634 .trigger = mem_cgroup_reset,
af36f906 4635 .read = mem_cgroup_read,
8c7c6e34 4636 },
8c7c6e34 4637#endif
6bc10349 4638 { }, /* terminate */
af36f906 4639};
8c7c6e34 4640
c0ff4b85 4641static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4642{
4643 struct mem_cgroup_per_node *pn;
1ecaab2b 4644 struct mem_cgroup_per_zone *mz;
41e3355d 4645 int zone, tmp = node;
1ecaab2b
KH
4646 /*
4647 * This routine is called against possible nodes.
4648 * But it's BUG to call kmalloc() against offline node.
4649 *
4650 * TODO: this routine can waste much memory for nodes which will
4651 * never be onlined. It's better to use memory hotplug callback
4652 * function.
4653 */
41e3355d
KH
4654 if (!node_state(node, N_NORMAL_MEMORY))
4655 tmp = -1;
17295c88 4656 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4657 if (!pn)
4658 return 1;
1ecaab2b 4659
1ecaab2b
KH
4660 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4661 mz = &pn->zoneinfo[zone];
7f5e86c2 4662 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
f64c3f54 4663 mz->usage_in_excess = 0;
4e416953 4664 mz->on_tree = false;
d79154bb 4665 mz->memcg = memcg;
1ecaab2b 4666 }
0a619e58 4667 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4668 return 0;
4669}
4670
c0ff4b85 4671static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4672{
c0ff4b85 4673 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4674}
4675
33327948
KH
4676static struct mem_cgroup *mem_cgroup_alloc(void)
4677{
d79154bb 4678 struct mem_cgroup *memcg;
c62b1a3b 4679 int size = sizeof(struct mem_cgroup);
33327948 4680
c62b1a3b 4681 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4682 if (size < PAGE_SIZE)
d79154bb 4683 memcg = kzalloc(size, GFP_KERNEL);
33327948 4684 else
d79154bb 4685 memcg = vzalloc(size);
33327948 4686
d79154bb 4687 if (!memcg)
e7bbcdf3
DC
4688 return NULL;
4689
d79154bb
HD
4690 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4691 if (!memcg->stat)
d2e61b8d 4692 goto out_free;
d79154bb
HD
4693 spin_lock_init(&memcg->pcp_counter_lock);
4694 return memcg;
d2e61b8d
DC
4695
4696out_free:
4697 if (size < PAGE_SIZE)
d79154bb 4698 kfree(memcg);
d2e61b8d 4699 else
d79154bb 4700 vfree(memcg);
d2e61b8d 4701 return NULL;
33327948
KH
4702}
4703
59927fb9 4704/*
3afe36b1 4705 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
59927fb9
HD
4706 * but in process context. The work_freeing structure is overlaid
4707 * on the rcu_freeing structure, which itself is overlaid on memsw.
4708 */
3afe36b1 4709static void free_work(struct work_struct *work)
59927fb9
HD
4710{
4711 struct mem_cgroup *memcg;
3afe36b1 4712 int size = sizeof(struct mem_cgroup);
59927fb9
HD
4713
4714 memcg = container_of(work, struct mem_cgroup, work_freeing);
3afe36b1
GC
4715 if (size < PAGE_SIZE)
4716 kfree(memcg);
4717 else
4718 vfree(memcg);
59927fb9 4719}
3afe36b1
GC
4720
4721static void free_rcu(struct rcu_head *rcu_head)
59927fb9
HD
4722{
4723 struct mem_cgroup *memcg;
4724
4725 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
3afe36b1 4726 INIT_WORK(&memcg->work_freeing, free_work);
59927fb9
HD
4727 schedule_work(&memcg->work_freeing);
4728}
4729
8c7c6e34
KH
4730/*
4731 * At destroying mem_cgroup, references from swap_cgroup can remain.
4732 * (scanning all at force_empty is too costly...)
4733 *
4734 * Instead of clearing all references at force_empty, we remember
4735 * the number of reference from swap_cgroup and free mem_cgroup when
4736 * it goes down to 0.
4737 *
8c7c6e34
KH
4738 * Removal of cgroup itself succeeds regardless of refs from swap.
4739 */
4740
c0ff4b85 4741static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4742{
08e552c6
KH
4743 int node;
4744
c0ff4b85
R
4745 mem_cgroup_remove_from_trees(memcg);
4746 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4747
3ed28fa1 4748 for_each_node(node)
c0ff4b85 4749 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4750
c0ff4b85 4751 free_percpu(memcg->stat);
3afe36b1 4752 call_rcu(&memcg->rcu_freeing, free_rcu);
33327948
KH
4753}
4754
c0ff4b85 4755static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4756{
c0ff4b85 4757 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4758}
4759
c0ff4b85 4760static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4761{
c0ff4b85
R
4762 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4763 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4764 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4765 if (parent)
4766 mem_cgroup_put(parent);
4767 }
8c7c6e34
KH
4768}
4769
c0ff4b85 4770static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4771{
c0ff4b85 4772 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4773}
4774
7bcc1bb1
DN
4775/*
4776 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4777 */
e1aab161 4778struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4779{
c0ff4b85 4780 if (!memcg->res.parent)
7bcc1bb1 4781 return NULL;
c0ff4b85 4782 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4783}
e1aab161 4784EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4785
c077719b
KH
4786#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4787static void __init enable_swap_cgroup(void)
4788{
f8d66542 4789 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4790 do_swap_account = 1;
4791}
4792#else
4793static void __init enable_swap_cgroup(void)
4794{
4795}
4796#endif
4797
f64c3f54
BS
4798static int mem_cgroup_soft_limit_tree_init(void)
4799{
4800 struct mem_cgroup_tree_per_node *rtpn;
4801 struct mem_cgroup_tree_per_zone *rtpz;
4802 int tmp, node, zone;
4803
3ed28fa1 4804 for_each_node(node) {
f64c3f54
BS
4805 tmp = node;
4806 if (!node_state(node, N_NORMAL_MEMORY))
4807 tmp = -1;
4808 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4809 if (!rtpn)
c3cecc68 4810 goto err_cleanup;
f64c3f54
BS
4811
4812 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4813
4814 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4815 rtpz = &rtpn->rb_tree_per_zone[zone];
4816 rtpz->rb_root = RB_ROOT;
4817 spin_lock_init(&rtpz->lock);
4818 }
4819 }
4820 return 0;
c3cecc68
MH
4821
4822err_cleanup:
3ed28fa1 4823 for_each_node(node) {
c3cecc68
MH
4824 if (!soft_limit_tree.rb_tree_per_node[node])
4825 break;
4826 kfree(soft_limit_tree.rb_tree_per_node[node]);
4827 soft_limit_tree.rb_tree_per_node[node] = NULL;
4828 }
4829 return 1;
4830
f64c3f54
BS
4831}
4832
0eb253e2 4833static struct cgroup_subsys_state * __ref
761b3ef5 4834mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4835{
c0ff4b85 4836 struct mem_cgroup *memcg, *parent;
04046e1a 4837 long error = -ENOMEM;
6d12e2d8 4838 int node;
8cdea7c0 4839
c0ff4b85
R
4840 memcg = mem_cgroup_alloc();
4841 if (!memcg)
04046e1a 4842 return ERR_PTR(error);
78fb7466 4843
3ed28fa1 4844 for_each_node(node)
c0ff4b85 4845 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4846 goto free_out;
f64c3f54 4847
c077719b 4848 /* root ? */
28dbc4b6 4849 if (cont->parent == NULL) {
cdec2e42 4850 int cpu;
c077719b 4851 enable_swap_cgroup();
28dbc4b6 4852 parent = NULL;
f64c3f54
BS
4853 if (mem_cgroup_soft_limit_tree_init())
4854 goto free_out;
a41c58a6 4855 root_mem_cgroup = memcg;
cdec2e42
KH
4856 for_each_possible_cpu(cpu) {
4857 struct memcg_stock_pcp *stock =
4858 &per_cpu(memcg_stock, cpu);
4859 INIT_WORK(&stock->work, drain_local_stock);
4860 }
711d3d2c 4861 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4862 } else {
28dbc4b6 4863 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4864 memcg->use_hierarchy = parent->use_hierarchy;
4865 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4866 }
28dbc4b6 4867
18f59ea7 4868 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4869 res_counter_init(&memcg->res, &parent->res);
4870 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4871 /*
4872 * We increment refcnt of the parent to ensure that we can
4873 * safely access it on res_counter_charge/uncharge.
4874 * This refcnt will be decremented when freeing this
4875 * mem_cgroup(see mem_cgroup_put).
4876 */
4877 mem_cgroup_get(parent);
18f59ea7 4878 } else {
c0ff4b85
R
4879 res_counter_init(&memcg->res, NULL);
4880 res_counter_init(&memcg->memsw, NULL);
18f59ea7 4881 }
c0ff4b85
R
4882 memcg->last_scanned_node = MAX_NUMNODES;
4883 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4884
a7885eb8 4885 if (parent)
c0ff4b85
R
4886 memcg->swappiness = mem_cgroup_swappiness(parent);
4887 atomic_set(&memcg->refcnt, 1);
4888 memcg->move_charge_at_immigrate = 0;
4889 mutex_init(&memcg->thresholds_lock);
312734c0 4890 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
4891
4892 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4893 if (error) {
4894 /*
4895 * We call put now because our (and parent's) refcnts
4896 * are already in place. mem_cgroup_put() will internally
4897 * call __mem_cgroup_free, so return directly
4898 */
4899 mem_cgroup_put(memcg);
4900 return ERR_PTR(error);
4901 }
c0ff4b85 4902 return &memcg->css;
6d12e2d8 4903free_out:
c0ff4b85 4904 __mem_cgroup_free(memcg);
04046e1a 4905 return ERR_PTR(error);
8cdea7c0
BS
4906}
4907
761b3ef5 4908static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 4909{
c0ff4b85 4910 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 4911
c0ff4b85 4912 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
4913}
4914
761b3ef5 4915static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 4916{
c0ff4b85 4917 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 4918
1d62e436 4919 kmem_cgroup_destroy(memcg);
d1a4c0b3 4920
c0ff4b85 4921 mem_cgroup_put(memcg);
8cdea7c0
BS
4922}
4923
02491447 4924#ifdef CONFIG_MMU
7dc74be0 4925/* Handlers for move charge at task migration. */
854ffa8d
DN
4926#define PRECHARGE_COUNT_AT_ONCE 256
4927static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4928{
854ffa8d
DN
4929 int ret = 0;
4930 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 4931 struct mem_cgroup *memcg = mc.to;
4ffef5fe 4932
c0ff4b85 4933 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
4934 mc.precharge += count;
4935 /* we don't need css_get for root */
4936 return ret;
4937 }
4938 /* try to charge at once */
4939 if (count > 1) {
4940 struct res_counter *dummy;
4941 /*
c0ff4b85 4942 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
4943 * by cgroup_lock_live_cgroup() that it is not removed and we
4944 * are still under the same cgroup_mutex. So we can postpone
4945 * css_get().
4946 */
c0ff4b85 4947 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 4948 goto one_by_one;
c0ff4b85 4949 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 4950 PAGE_SIZE * count, &dummy)) {
c0ff4b85 4951 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
4952 goto one_by_one;
4953 }
4954 mc.precharge += count;
854ffa8d
DN
4955 return ret;
4956 }
4957one_by_one:
4958 /* fall back to one by one charge */
4959 while (count--) {
4960 if (signal_pending(current)) {
4961 ret = -EINTR;
4962 break;
4963 }
4964 if (!batch_count--) {
4965 batch_count = PRECHARGE_COUNT_AT_ONCE;
4966 cond_resched();
4967 }
c0ff4b85
R
4968 ret = __mem_cgroup_try_charge(NULL,
4969 GFP_KERNEL, 1, &memcg, false);
38c5d72f 4970 if (ret)
854ffa8d 4971 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 4972 return ret;
854ffa8d
DN
4973 mc.precharge++;
4974 }
4ffef5fe
DN
4975 return ret;
4976}
4977
4978/**
8d32ff84 4979 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4980 * @vma: the vma the pte to be checked belongs
4981 * @addr: the address corresponding to the pte to be checked
4982 * @ptent: the pte to be checked
02491447 4983 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4984 *
4985 * Returns
4986 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4987 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4988 * move charge. if @target is not NULL, the page is stored in target->page
4989 * with extra refcnt got(Callers should handle it).
02491447
DN
4990 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4991 * target for charge migration. if @target is not NULL, the entry is stored
4992 * in target->ent.
4ffef5fe
DN
4993 *
4994 * Called with pte lock held.
4995 */
4ffef5fe
DN
4996union mc_target {
4997 struct page *page;
02491447 4998 swp_entry_t ent;
4ffef5fe
DN
4999};
5000
4ffef5fe 5001enum mc_target_type {
8d32ff84 5002 MC_TARGET_NONE = 0,
4ffef5fe 5003 MC_TARGET_PAGE,
02491447 5004 MC_TARGET_SWAP,
4ffef5fe
DN
5005};
5006
90254a65
DN
5007static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5008 unsigned long addr, pte_t ptent)
4ffef5fe 5009{
90254a65 5010 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5011
90254a65
DN
5012 if (!page || !page_mapped(page))
5013 return NULL;
5014 if (PageAnon(page)) {
5015 /* we don't move shared anon */
4b91355e 5016 if (!move_anon())
90254a65 5017 return NULL;
87946a72
DN
5018 } else if (!move_file())
5019 /* we ignore mapcount for file pages */
90254a65
DN
5020 return NULL;
5021 if (!get_page_unless_zero(page))
5022 return NULL;
5023
5024 return page;
5025}
5026
4b91355e 5027#ifdef CONFIG_SWAP
90254a65
DN
5028static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5029 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5030{
90254a65
DN
5031 struct page *page = NULL;
5032 swp_entry_t ent = pte_to_swp_entry(ptent);
5033
5034 if (!move_anon() || non_swap_entry(ent))
5035 return NULL;
4b91355e
KH
5036 /*
5037 * Because lookup_swap_cache() updates some statistics counter,
5038 * we call find_get_page() with swapper_space directly.
5039 */
5040 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5041 if (do_swap_account)
5042 entry->val = ent.val;
5043
5044 return page;
5045}
4b91355e
KH
5046#else
5047static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5048 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5049{
5050 return NULL;
5051}
5052#endif
90254a65 5053
87946a72
DN
5054static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5055 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5056{
5057 struct page *page = NULL;
87946a72
DN
5058 struct address_space *mapping;
5059 pgoff_t pgoff;
5060
5061 if (!vma->vm_file) /* anonymous vma */
5062 return NULL;
5063 if (!move_file())
5064 return NULL;
5065
87946a72
DN
5066 mapping = vma->vm_file->f_mapping;
5067 if (pte_none(ptent))
5068 pgoff = linear_page_index(vma, addr);
5069 else /* pte_file(ptent) is true */
5070 pgoff = pte_to_pgoff(ptent);
5071
5072 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5073 page = find_get_page(mapping, pgoff);
5074
5075#ifdef CONFIG_SWAP
5076 /* shmem/tmpfs may report page out on swap: account for that too. */
5077 if (radix_tree_exceptional_entry(page)) {
5078 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5079 if (do_swap_account)
aa3b1895
HD
5080 *entry = swap;
5081 page = find_get_page(&swapper_space, swap.val);
87946a72 5082 }
aa3b1895 5083#endif
87946a72
DN
5084 return page;
5085}
5086
8d32ff84 5087static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5088 unsigned long addr, pte_t ptent, union mc_target *target)
5089{
5090 struct page *page = NULL;
5091 struct page_cgroup *pc;
8d32ff84 5092 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5093 swp_entry_t ent = { .val = 0 };
5094
5095 if (pte_present(ptent))
5096 page = mc_handle_present_pte(vma, addr, ptent);
5097 else if (is_swap_pte(ptent))
5098 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5099 else if (pte_none(ptent) || pte_file(ptent))
5100 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5101
5102 if (!page && !ent.val)
8d32ff84 5103 return ret;
02491447
DN
5104 if (page) {
5105 pc = lookup_page_cgroup(page);
5106 /*
5107 * Do only loose check w/o page_cgroup lock.
5108 * mem_cgroup_move_account() checks the pc is valid or not under
5109 * the lock.
5110 */
5111 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5112 ret = MC_TARGET_PAGE;
5113 if (target)
5114 target->page = page;
5115 }
5116 if (!ret || !target)
5117 put_page(page);
5118 }
90254a65
DN
5119 /* There is a swap entry and a page doesn't exist or isn't charged */
5120 if (ent.val && !ret &&
9fb4b7cc 5121 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5122 ret = MC_TARGET_SWAP;
5123 if (target)
5124 target->ent = ent;
4ffef5fe 5125 }
4ffef5fe
DN
5126 return ret;
5127}
5128
12724850
NH
5129#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5130/*
5131 * We don't consider swapping or file mapped pages because THP does not
5132 * support them for now.
5133 * Caller should make sure that pmd_trans_huge(pmd) is true.
5134 */
5135static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5136 unsigned long addr, pmd_t pmd, union mc_target *target)
5137{
5138 struct page *page = NULL;
5139 struct page_cgroup *pc;
5140 enum mc_target_type ret = MC_TARGET_NONE;
5141
5142 page = pmd_page(pmd);
5143 VM_BUG_ON(!page || !PageHead(page));
5144 if (!move_anon())
5145 return ret;
5146 pc = lookup_page_cgroup(page);
5147 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5148 ret = MC_TARGET_PAGE;
5149 if (target) {
5150 get_page(page);
5151 target->page = page;
5152 }
5153 }
5154 return ret;
5155}
5156#else
5157static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5158 unsigned long addr, pmd_t pmd, union mc_target *target)
5159{
5160 return MC_TARGET_NONE;
5161}
5162#endif
5163
4ffef5fe
DN
5164static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5165 unsigned long addr, unsigned long end,
5166 struct mm_walk *walk)
5167{
5168 struct vm_area_struct *vma = walk->private;
5169 pte_t *pte;
5170 spinlock_t *ptl;
5171
12724850
NH
5172 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5173 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5174 mc.precharge += HPAGE_PMD_NR;
5175 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5176 return 0;
12724850 5177 }
03319327 5178
45f83cef
AA
5179 if (pmd_trans_unstable(pmd))
5180 return 0;
4ffef5fe
DN
5181 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5182 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5183 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5184 mc.precharge++; /* increment precharge temporarily */
5185 pte_unmap_unlock(pte - 1, ptl);
5186 cond_resched();
5187
7dc74be0
DN
5188 return 0;
5189}
5190
4ffef5fe
DN
5191static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5192{
5193 unsigned long precharge;
5194 struct vm_area_struct *vma;
5195
dfe076b0 5196 down_read(&mm->mmap_sem);
4ffef5fe
DN
5197 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5198 struct mm_walk mem_cgroup_count_precharge_walk = {
5199 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5200 .mm = mm,
5201 .private = vma,
5202 };
5203 if (is_vm_hugetlb_page(vma))
5204 continue;
4ffef5fe
DN
5205 walk_page_range(vma->vm_start, vma->vm_end,
5206 &mem_cgroup_count_precharge_walk);
5207 }
dfe076b0 5208 up_read(&mm->mmap_sem);
4ffef5fe
DN
5209
5210 precharge = mc.precharge;
5211 mc.precharge = 0;
5212
5213 return precharge;
5214}
5215
4ffef5fe
DN
5216static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5217{
dfe076b0
DN
5218 unsigned long precharge = mem_cgroup_count_precharge(mm);
5219
5220 VM_BUG_ON(mc.moving_task);
5221 mc.moving_task = current;
5222 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5223}
5224
dfe076b0
DN
5225/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5226static void __mem_cgroup_clear_mc(void)
4ffef5fe 5227{
2bd9bb20
KH
5228 struct mem_cgroup *from = mc.from;
5229 struct mem_cgroup *to = mc.to;
5230
4ffef5fe 5231 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5232 if (mc.precharge) {
5233 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5234 mc.precharge = 0;
5235 }
5236 /*
5237 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5238 * we must uncharge here.
5239 */
5240 if (mc.moved_charge) {
5241 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5242 mc.moved_charge = 0;
4ffef5fe 5243 }
483c30b5
DN
5244 /* we must fixup refcnts and charges */
5245 if (mc.moved_swap) {
483c30b5
DN
5246 /* uncharge swap account from the old cgroup */
5247 if (!mem_cgroup_is_root(mc.from))
5248 res_counter_uncharge(&mc.from->memsw,
5249 PAGE_SIZE * mc.moved_swap);
5250 __mem_cgroup_put(mc.from, mc.moved_swap);
5251
5252 if (!mem_cgroup_is_root(mc.to)) {
5253 /*
5254 * we charged both to->res and to->memsw, so we should
5255 * uncharge to->res.
5256 */
5257 res_counter_uncharge(&mc.to->res,
5258 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5259 }
5260 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5261 mc.moved_swap = 0;
5262 }
dfe076b0
DN
5263 memcg_oom_recover(from);
5264 memcg_oom_recover(to);
5265 wake_up_all(&mc.waitq);
5266}
5267
5268static void mem_cgroup_clear_mc(void)
5269{
5270 struct mem_cgroup *from = mc.from;
5271
5272 /*
5273 * we must clear moving_task before waking up waiters at the end of
5274 * task migration.
5275 */
5276 mc.moving_task = NULL;
5277 __mem_cgroup_clear_mc();
2bd9bb20 5278 spin_lock(&mc.lock);
4ffef5fe
DN
5279 mc.from = NULL;
5280 mc.to = NULL;
2bd9bb20 5281 spin_unlock(&mc.lock);
32047e2a 5282 mem_cgroup_end_move(from);
4ffef5fe
DN
5283}
5284
761b3ef5
LZ
5285static int mem_cgroup_can_attach(struct cgroup *cgroup,
5286 struct cgroup_taskset *tset)
7dc74be0 5287{
2f7ee569 5288 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5289 int ret = 0;
c0ff4b85 5290 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5291
c0ff4b85 5292 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5293 struct mm_struct *mm;
5294 struct mem_cgroup *from = mem_cgroup_from_task(p);
5295
c0ff4b85 5296 VM_BUG_ON(from == memcg);
7dc74be0
DN
5297
5298 mm = get_task_mm(p);
5299 if (!mm)
5300 return 0;
7dc74be0 5301 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5302 if (mm->owner == p) {
5303 VM_BUG_ON(mc.from);
5304 VM_BUG_ON(mc.to);
5305 VM_BUG_ON(mc.precharge);
854ffa8d 5306 VM_BUG_ON(mc.moved_charge);
483c30b5 5307 VM_BUG_ON(mc.moved_swap);
32047e2a 5308 mem_cgroup_start_move(from);
2bd9bb20 5309 spin_lock(&mc.lock);
4ffef5fe 5310 mc.from = from;
c0ff4b85 5311 mc.to = memcg;
2bd9bb20 5312 spin_unlock(&mc.lock);
dfe076b0 5313 /* We set mc.moving_task later */
4ffef5fe
DN
5314
5315 ret = mem_cgroup_precharge_mc(mm);
5316 if (ret)
5317 mem_cgroup_clear_mc();
dfe076b0
DN
5318 }
5319 mmput(mm);
7dc74be0
DN
5320 }
5321 return ret;
5322}
5323
761b3ef5
LZ
5324static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5325 struct cgroup_taskset *tset)
7dc74be0 5326{
4ffef5fe 5327 mem_cgroup_clear_mc();
7dc74be0
DN
5328}
5329
4ffef5fe
DN
5330static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5331 unsigned long addr, unsigned long end,
5332 struct mm_walk *walk)
7dc74be0 5333{
4ffef5fe
DN
5334 int ret = 0;
5335 struct vm_area_struct *vma = walk->private;
5336 pte_t *pte;
5337 spinlock_t *ptl;
12724850
NH
5338 enum mc_target_type target_type;
5339 union mc_target target;
5340 struct page *page;
5341 struct page_cgroup *pc;
4ffef5fe 5342
12724850
NH
5343 /*
5344 * We don't take compound_lock() here but no race with splitting thp
5345 * happens because:
5346 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5347 * under splitting, which means there's no concurrent thp split,
5348 * - if another thread runs into split_huge_page() just after we
5349 * entered this if-block, the thread must wait for page table lock
5350 * to be unlocked in __split_huge_page_splitting(), where the main
5351 * part of thp split is not executed yet.
5352 */
5353 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5354 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5355 spin_unlock(&vma->vm_mm->page_table_lock);
5356 return 0;
5357 }
5358 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5359 if (target_type == MC_TARGET_PAGE) {
5360 page = target.page;
5361 if (!isolate_lru_page(page)) {
5362 pc = lookup_page_cgroup(page);
5363 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5364 pc, mc.from, mc.to)) {
12724850
NH
5365 mc.precharge -= HPAGE_PMD_NR;
5366 mc.moved_charge += HPAGE_PMD_NR;
5367 }
5368 putback_lru_page(page);
5369 }
5370 put_page(page);
5371 }
5372 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5373 return 0;
12724850
NH
5374 }
5375
45f83cef
AA
5376 if (pmd_trans_unstable(pmd))
5377 return 0;
4ffef5fe
DN
5378retry:
5379 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5380 for (; addr != end; addr += PAGE_SIZE) {
5381 pte_t ptent = *(pte++);
02491447 5382 swp_entry_t ent;
4ffef5fe
DN
5383
5384 if (!mc.precharge)
5385 break;
5386
8d32ff84 5387 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5388 case MC_TARGET_PAGE:
5389 page = target.page;
5390 if (isolate_lru_page(page))
5391 goto put;
5392 pc = lookup_page_cgroup(page);
7ec99d62 5393 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5394 mc.from, mc.to)) {
4ffef5fe 5395 mc.precharge--;
854ffa8d
DN
5396 /* we uncharge from mc.from later. */
5397 mc.moved_charge++;
4ffef5fe
DN
5398 }
5399 putback_lru_page(page);
8d32ff84 5400put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5401 put_page(page);
5402 break;
02491447
DN
5403 case MC_TARGET_SWAP:
5404 ent = target.ent;
e91cbb42 5405 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5406 mc.precharge--;
483c30b5
DN
5407 /* we fixup refcnts and charges later. */
5408 mc.moved_swap++;
5409 }
02491447 5410 break;
4ffef5fe
DN
5411 default:
5412 break;
5413 }
5414 }
5415 pte_unmap_unlock(pte - 1, ptl);
5416 cond_resched();
5417
5418 if (addr != end) {
5419 /*
5420 * We have consumed all precharges we got in can_attach().
5421 * We try charge one by one, but don't do any additional
5422 * charges to mc.to if we have failed in charge once in attach()
5423 * phase.
5424 */
854ffa8d 5425 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5426 if (!ret)
5427 goto retry;
5428 }
5429
5430 return ret;
5431}
5432
5433static void mem_cgroup_move_charge(struct mm_struct *mm)
5434{
5435 struct vm_area_struct *vma;
5436
5437 lru_add_drain_all();
dfe076b0
DN
5438retry:
5439 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5440 /*
5441 * Someone who are holding the mmap_sem might be waiting in
5442 * waitq. So we cancel all extra charges, wake up all waiters,
5443 * and retry. Because we cancel precharges, we might not be able
5444 * to move enough charges, but moving charge is a best-effort
5445 * feature anyway, so it wouldn't be a big problem.
5446 */
5447 __mem_cgroup_clear_mc();
5448 cond_resched();
5449 goto retry;
5450 }
4ffef5fe
DN
5451 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5452 int ret;
5453 struct mm_walk mem_cgroup_move_charge_walk = {
5454 .pmd_entry = mem_cgroup_move_charge_pte_range,
5455 .mm = mm,
5456 .private = vma,
5457 };
5458 if (is_vm_hugetlb_page(vma))
5459 continue;
4ffef5fe
DN
5460 ret = walk_page_range(vma->vm_start, vma->vm_end,
5461 &mem_cgroup_move_charge_walk);
5462 if (ret)
5463 /*
5464 * means we have consumed all precharges and failed in
5465 * doing additional charge. Just abandon here.
5466 */
5467 break;
5468 }
dfe076b0 5469 up_read(&mm->mmap_sem);
7dc74be0
DN
5470}
5471
761b3ef5
LZ
5472static void mem_cgroup_move_task(struct cgroup *cont,
5473 struct cgroup_taskset *tset)
67e465a7 5474{
2f7ee569 5475 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5476 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5477
dfe076b0 5478 if (mm) {
a433658c
KM
5479 if (mc.to)
5480 mem_cgroup_move_charge(mm);
dfe076b0
DN
5481 mmput(mm);
5482 }
a433658c
KM
5483 if (mc.to)
5484 mem_cgroup_clear_mc();
67e465a7 5485}
5cfb80a7 5486#else /* !CONFIG_MMU */
761b3ef5
LZ
5487static int mem_cgroup_can_attach(struct cgroup *cgroup,
5488 struct cgroup_taskset *tset)
5cfb80a7
DN
5489{
5490 return 0;
5491}
761b3ef5
LZ
5492static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5493 struct cgroup_taskset *tset)
5cfb80a7
DN
5494{
5495}
761b3ef5
LZ
5496static void mem_cgroup_move_task(struct cgroup *cont,
5497 struct cgroup_taskset *tset)
5cfb80a7
DN
5498{
5499}
5500#endif
67e465a7 5501
8cdea7c0
BS
5502struct cgroup_subsys mem_cgroup_subsys = {
5503 .name = "memory",
5504 .subsys_id = mem_cgroup_subsys_id,
5505 .create = mem_cgroup_create,
df878fb0 5506 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0 5507 .destroy = mem_cgroup_destroy,
7dc74be0
DN
5508 .can_attach = mem_cgroup_can_attach,
5509 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5510 .attach = mem_cgroup_move_task,
6bc10349 5511 .base_cftypes = mem_cgroup_files,
6d12e2d8 5512 .early_init = 0,
04046e1a 5513 .use_id = 1,
48ddbe19 5514 .__DEPRECATED_clear_css_refs = true,
8cdea7c0 5515};
c077719b
KH
5516
5517#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5518static int __init enable_swap_account(char *s)
5519{
5520 /* consider enabled if no parameter or 1 is given */
a2c8990a 5521 if (!strcmp(s, "1"))
a42c390c 5522 really_do_swap_account = 1;
a2c8990a 5523 else if (!strcmp(s, "0"))
a42c390c
MH
5524 really_do_swap_account = 0;
5525 return 1;
5526}
a2c8990a 5527__setup("swapaccount=", enable_swap_account);
c077719b 5528
c077719b 5529#endif