]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
memcg: fail to create cgroup if the cgroup id is too big
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
b6ac57d5 42#include <linux/slab.h>
66e1707b 43#include <linux/swap.h>
02491447 44#include <linux/swapops.h>
66e1707b 45#include <linux/spinlock.h>
2e72b634
KS
46#include <linux/eventfd.h>
47#include <linux/sort.h>
66e1707b 48#include <linux/fs.h>
d2ceb9b7 49#include <linux/seq_file.h>
33327948 50#include <linux/vmalloc.h>
70ddf637 51#include <linux/vmpressure.h>
b69408e8 52#include <linux/mm_inline.h>
52d4b9ac 53#include <linux/page_cgroup.h>
cdec2e42 54#include <linux/cpu.h>
158e0a2d 55#include <linux/oom.h>
08e552c6 56#include "internal.h"
d1a4c0b3 57#include <net/sock.h>
4bd2c1ee 58#include <net/ip.h>
d1a4c0b3 59#include <net/tcp_memcontrol.h>
8cdea7c0 60
8697d331
BS
61#include <asm/uaccess.h>
62
cc8e970c
KM
63#include <trace/events/vmscan.h>
64
a181b0e8 65struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
66EXPORT_SYMBOL(mem_cgroup_subsys);
67
a181b0e8 68#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 69static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 70
c255a458 71#ifdef CONFIG_MEMCG_SWAP
338c8431 72/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 73int do_swap_account __read_mostly;
a42c390c
MH
74
75/* for remember boot option*/
c255a458 76#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
77static int really_do_swap_account __initdata = 1;
78#else
79static int really_do_swap_account __initdata = 0;
80#endif
81
c077719b 82#else
a0db00fc 83#define do_swap_account 0
c077719b
KH
84#endif
85
86
af7c4b0e
JW
87static const char * const mem_cgroup_stat_names[] = {
88 "cache",
89 "rss",
b070e65c 90 "rss_huge",
af7c4b0e 91 "mapped_file",
3ea67d06 92 "writeback",
af7c4b0e
JW
93 "swap",
94};
95
e9f8974f
JW
96enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
101 MEM_CGROUP_EVENTS_NSTATS,
102};
af7c4b0e
JW
103
104static const char * const mem_cgroup_events_names[] = {
105 "pgpgin",
106 "pgpgout",
107 "pgfault",
108 "pgmajfault",
109};
110
58cf188e
SZ
111static const char * const mem_cgroup_lru_names[] = {
112 "inactive_anon",
113 "active_anon",
114 "inactive_file",
115 "active_file",
116 "unevictable",
117};
118
7a159cc9
JW
119/*
120 * Per memcg event counter is incremented at every pagein/pageout. With THP,
121 * it will be incremated by the number of pages. This counter is used for
122 * for trigger some periodic events. This is straightforward and better
123 * than using jiffies etc. to handle periodic memcg event.
124 */
125enum mem_cgroup_events_target {
126 MEM_CGROUP_TARGET_THRESH,
7d910c05 127 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 128 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
129 MEM_CGROUP_NTARGETS,
130};
a0db00fc
KS
131#define THRESHOLDS_EVENTS_TARGET 128
132#define SOFTLIMIT_EVENTS_TARGET 1024
133#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 134
d52aa412 135struct mem_cgroup_stat_cpu {
7a159cc9 136 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 137 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 138 unsigned long nr_page_events;
7a159cc9 139 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
140};
141
527a5ec9 142struct mem_cgroup_reclaim_iter {
5f578161
MH
143 /*
144 * last scanned hierarchy member. Valid only if last_dead_count
145 * matches memcg->dead_count of the hierarchy root group.
146 */
542f85f9 147 struct mem_cgroup *last_visited;
5f578161
MH
148 unsigned long last_dead_count;
149
527a5ec9
JW
150 /* scan generation, increased every round-trip */
151 unsigned int generation;
152};
153
6d12e2d8
KH
154/*
155 * per-zone information in memory controller.
156 */
6d12e2d8 157struct mem_cgroup_per_zone {
6290df54 158 struct lruvec lruvec;
1eb49272 159 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 160
527a5ec9
JW
161 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
162
d79154bb 163 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 164 /* use container_of */
6d12e2d8 165};
6d12e2d8
KH
166
167struct mem_cgroup_per_node {
168 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
169};
170
2e72b634
KS
171struct mem_cgroup_threshold {
172 struct eventfd_ctx *eventfd;
173 u64 threshold;
174};
175
9490ff27 176/* For threshold */
2e72b634 177struct mem_cgroup_threshold_ary {
748dad36 178 /* An array index points to threshold just below or equal to usage. */
5407a562 179 int current_threshold;
2e72b634
KS
180 /* Size of entries[] */
181 unsigned int size;
182 /* Array of thresholds */
183 struct mem_cgroup_threshold entries[0];
184};
2c488db2
KS
185
186struct mem_cgroup_thresholds {
187 /* Primary thresholds array */
188 struct mem_cgroup_threshold_ary *primary;
189 /*
190 * Spare threshold array.
191 * This is needed to make mem_cgroup_unregister_event() "never fail".
192 * It must be able to store at least primary->size - 1 entries.
193 */
194 struct mem_cgroup_threshold_ary *spare;
195};
196
9490ff27
KH
197/* for OOM */
198struct mem_cgroup_eventfd_list {
199 struct list_head list;
200 struct eventfd_ctx *eventfd;
201};
2e72b634 202
c0ff4b85
R
203static void mem_cgroup_threshold(struct mem_cgroup *memcg);
204static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 205
8cdea7c0
BS
206/*
207 * The memory controller data structure. The memory controller controls both
208 * page cache and RSS per cgroup. We would eventually like to provide
209 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
210 * to help the administrator determine what knobs to tune.
211 *
212 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
213 * we hit the water mark. May be even add a low water mark, such that
214 * no reclaim occurs from a cgroup at it's low water mark, this is
215 * a feature that will be implemented much later in the future.
8cdea7c0
BS
216 */
217struct mem_cgroup {
218 struct cgroup_subsys_state css;
219 /*
220 * the counter to account for memory usage
221 */
222 struct res_counter res;
59927fb9 223
70ddf637
AV
224 /* vmpressure notifications */
225 struct vmpressure vmpressure;
226
465939a1
LZ
227 /*
228 * the counter to account for mem+swap usage.
229 */
230 struct res_counter memsw;
59927fb9 231
510fc4e1
GC
232 /*
233 * the counter to account for kernel memory usage.
234 */
235 struct res_counter kmem;
18f59ea7
BS
236 /*
237 * Should the accounting and control be hierarchical, per subtree?
238 */
239 bool use_hierarchy;
510fc4e1 240 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
241
242 bool oom_lock;
243 atomic_t under_oom;
3812c8c8 244 atomic_t oom_wakeups;
79dfdacc 245
1f4c025b 246 int swappiness;
3c11ecf4
KH
247 /* OOM-Killer disable */
248 int oom_kill_disable;
a7885eb8 249
22a668d7
KH
250 /* set when res.limit == memsw.limit */
251 bool memsw_is_minimum;
252
2e72b634
KS
253 /* protect arrays of thresholds */
254 struct mutex thresholds_lock;
255
256 /* thresholds for memory usage. RCU-protected */
2c488db2 257 struct mem_cgroup_thresholds thresholds;
907860ed 258
2e72b634 259 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 260 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 261
9490ff27
KH
262 /* For oom notifier event fd */
263 struct list_head oom_notify;
185efc0f 264
7dc74be0
DN
265 /*
266 * Should we move charges of a task when a task is moved into this
267 * mem_cgroup ? And what type of charges should we move ?
268 */
f894ffa8 269 unsigned long move_charge_at_immigrate;
619d094b
KH
270 /*
271 * set > 0 if pages under this cgroup are moving to other cgroup.
272 */
273 atomic_t moving_account;
312734c0
KH
274 /* taken only while moving_account > 0 */
275 spinlock_t move_lock;
d52aa412 276 /*
c62b1a3b 277 * percpu counter.
d52aa412 278 */
3a7951b4 279 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
280 /*
281 * used when a cpu is offlined or other synchronizations
282 * See mem_cgroup_read_stat().
283 */
284 struct mem_cgroup_stat_cpu nocpu_base;
285 spinlock_t pcp_counter_lock;
d1a4c0b3 286
5f578161 287 atomic_t dead_count;
4bd2c1ee 288#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
289 struct tcp_memcontrol tcp_mem;
290#endif
2633d7a0
GC
291#if defined(CONFIG_MEMCG_KMEM)
292 /* analogous to slab_common's slab_caches list. per-memcg */
293 struct list_head memcg_slab_caches;
294 /* Not a spinlock, we can take a lot of time walking the list */
295 struct mutex slab_caches_mutex;
296 /* Index in the kmem_cache->memcg_params->memcg_caches array */
297 int kmemcg_id;
298#endif
45cf7ebd
GC
299
300 int last_scanned_node;
301#if MAX_NUMNODES > 1
302 nodemask_t scan_nodes;
303 atomic_t numainfo_events;
304 atomic_t numainfo_updating;
305#endif
7d910c05
MH
306 /*
307 * Protects soft_contributed transitions.
308 * See mem_cgroup_update_soft_limit
309 */
310 spinlock_t soft_lock;
311
312 /*
313 * If true then this group has increased parents' children_in_excess
f894ffa8 314 * when it got over the soft limit.
7d910c05
MH
315 * When a group falls bellow the soft limit, parents' children_in_excess
316 * is decreased and soft_contributed changed to false.
317 */
318 bool soft_contributed;
319
320 /* Number of children that are in soft limit excess */
321 atomic_t children_in_excess;
70ddf637 322
54f72fe0
JW
323 struct mem_cgroup_per_node *nodeinfo[0];
324 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
325};
326
45cf7ebd
GC
327static size_t memcg_size(void)
328{
329 return sizeof(struct mem_cgroup) +
330 nr_node_ids * sizeof(struct mem_cgroup_per_node);
331}
332
510fc4e1
GC
333/* internal only representation about the status of kmem accounting. */
334enum {
335 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 336 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 337 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
338};
339
a8964b9b
GC
340/* We account when limit is on, but only after call sites are patched */
341#define KMEM_ACCOUNTED_MASK \
342 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
343
344#ifdef CONFIG_MEMCG_KMEM
345static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
346{
347 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
348}
7de37682
GC
349
350static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
351{
352 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
353}
354
a8964b9b
GC
355static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
356{
357 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
358}
359
55007d84
GC
360static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
361{
362 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
363}
364
7de37682
GC
365static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
366{
10d5ebf4
LZ
367 /*
368 * Our caller must use css_get() first, because memcg_uncharge_kmem()
369 * will call css_put() if it sees the memcg is dead.
370 */
371 smp_wmb();
7de37682
GC
372 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
373 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
374}
375
376static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
377{
378 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
379 &memcg->kmem_account_flags);
380}
510fc4e1
GC
381#endif
382
7dc74be0
DN
383/* Stuffs for move charges at task migration. */
384/*
ee5e8472
GC
385 * Types of charges to be moved. "move_charge_at_immitgrate" and
386 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
387 */
388enum move_type {
4ffef5fe 389 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 390 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
391 NR_MOVE_TYPE,
392};
393
4ffef5fe
DN
394/* "mc" and its members are protected by cgroup_mutex */
395static struct move_charge_struct {
b1dd693e 396 spinlock_t lock; /* for from, to */
4ffef5fe
DN
397 struct mem_cgroup *from;
398 struct mem_cgroup *to;
ee5e8472 399 unsigned long immigrate_flags;
4ffef5fe 400 unsigned long precharge;
854ffa8d 401 unsigned long moved_charge;
483c30b5 402 unsigned long moved_swap;
8033b97c
DN
403 struct task_struct *moving_task; /* a task moving charges */
404 wait_queue_head_t waitq; /* a waitq for other context */
405} mc = {
2bd9bb20 406 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
407 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
408};
4ffef5fe 409
90254a65
DN
410static bool move_anon(void)
411{
ee5e8472 412 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
413}
414
87946a72
DN
415static bool move_file(void)
416{
ee5e8472 417 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
418}
419
4e416953
BS
420/*
421 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
422 * limit reclaim to prevent infinite loops, if they ever occur.
423 */
a0db00fc 424#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
4e416953 425
217bc319
KH
426enum charge_type {
427 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 428 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 429 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 430 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
431 NR_CHARGE_TYPE,
432};
433
8c7c6e34 434/* for encoding cft->private value on file */
86ae53e1
GC
435enum res_type {
436 _MEM,
437 _MEMSWAP,
438 _OOM_TYPE,
510fc4e1 439 _KMEM,
86ae53e1
GC
440};
441
a0db00fc
KS
442#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
443#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 444#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
445/* Used for OOM nofiier */
446#define OOM_CONTROL (0)
8c7c6e34 447
75822b44
BS
448/*
449 * Reclaim flags for mem_cgroup_hierarchical_reclaim
450 */
451#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
452#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
453#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
454#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
455
0999821b
GC
456/*
457 * The memcg_create_mutex will be held whenever a new cgroup is created.
458 * As a consequence, any change that needs to protect against new child cgroups
459 * appearing has to hold it as well.
460 */
461static DEFINE_MUTEX(memcg_create_mutex);
462
b2145145
WL
463struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
464{
a7c6d554 465 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
466}
467
70ddf637
AV
468/* Some nice accessors for the vmpressure. */
469struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
470{
471 if (!memcg)
472 memcg = root_mem_cgroup;
473 return &memcg->vmpressure;
474}
475
476struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
477{
478 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
479}
480
481struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
482{
483 return &mem_cgroup_from_css(css)->vmpressure;
484}
485
7ffc0edc
MH
486static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
487{
488 return (memcg == root_mem_cgroup);
489}
490
4219b2da
LZ
491/*
492 * We restrict the id in the range of [1, 65535], so it can fit into
493 * an unsigned short.
494 */
495#define MEM_CGROUP_ID_MAX USHRT_MAX
496
34c00c31
LZ
497static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
498{
499 /*
500 * The ID of the root cgroup is 0, but memcg treat 0 as an
501 * invalid ID, so we return (cgroup_id + 1).
502 */
503 return memcg->css.cgroup->id + 1;
504}
505
506static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
507{
508 struct cgroup_subsys_state *css;
509
510 css = css_from_id(id - 1, &mem_cgroup_subsys);
511 return mem_cgroup_from_css(css);
512}
513
e1aab161 514/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 515#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 516
e1aab161
GC
517void sock_update_memcg(struct sock *sk)
518{
376be5ff 519 if (mem_cgroup_sockets_enabled) {
e1aab161 520 struct mem_cgroup *memcg;
3f134619 521 struct cg_proto *cg_proto;
e1aab161
GC
522
523 BUG_ON(!sk->sk_prot->proto_cgroup);
524
f3f511e1
GC
525 /* Socket cloning can throw us here with sk_cgrp already
526 * filled. It won't however, necessarily happen from
527 * process context. So the test for root memcg given
528 * the current task's memcg won't help us in this case.
529 *
530 * Respecting the original socket's memcg is a better
531 * decision in this case.
532 */
533 if (sk->sk_cgrp) {
534 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 535 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
536 return;
537 }
538
e1aab161
GC
539 rcu_read_lock();
540 memcg = mem_cgroup_from_task(current);
3f134619 541 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
542 if (!mem_cgroup_is_root(memcg) &&
543 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 544 sk->sk_cgrp = cg_proto;
e1aab161
GC
545 }
546 rcu_read_unlock();
547 }
548}
549EXPORT_SYMBOL(sock_update_memcg);
550
551void sock_release_memcg(struct sock *sk)
552{
376be5ff 553 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
554 struct mem_cgroup *memcg;
555 WARN_ON(!sk->sk_cgrp->memcg);
556 memcg = sk->sk_cgrp->memcg;
5347e5ae 557 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
558 }
559}
d1a4c0b3
GC
560
561struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
562{
563 if (!memcg || mem_cgroup_is_root(memcg))
564 return NULL;
565
566 return &memcg->tcp_mem.cg_proto;
567}
568EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 569
3f134619
GC
570static void disarm_sock_keys(struct mem_cgroup *memcg)
571{
572 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
573 return;
574 static_key_slow_dec(&memcg_socket_limit_enabled);
575}
576#else
577static void disarm_sock_keys(struct mem_cgroup *memcg)
578{
579}
580#endif
581
a8964b9b 582#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
583/*
584 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
585 * There are two main reasons for not using the css_id for this:
586 * 1) this works better in sparse environments, where we have a lot of memcgs,
587 * but only a few kmem-limited. Or also, if we have, for instance, 200
588 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
589 * 200 entry array for that.
590 *
591 * 2) In order not to violate the cgroup API, we would like to do all memory
592 * allocation in ->create(). At that point, we haven't yet allocated the
593 * css_id. Having a separate index prevents us from messing with the cgroup
594 * core for this
595 *
596 * The current size of the caches array is stored in
597 * memcg_limited_groups_array_size. It will double each time we have to
598 * increase it.
599 */
600static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
601int memcg_limited_groups_array_size;
602
55007d84
GC
603/*
604 * MIN_SIZE is different than 1, because we would like to avoid going through
605 * the alloc/free process all the time. In a small machine, 4 kmem-limited
606 * cgroups is a reasonable guess. In the future, it could be a parameter or
607 * tunable, but that is strictly not necessary.
608 *
609 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
610 * this constant directly from cgroup, but it is understandable that this is
611 * better kept as an internal representation in cgroup.c. In any case, the
612 * css_id space is not getting any smaller, and we don't have to necessarily
613 * increase ours as well if it increases.
614 */
615#define MEMCG_CACHES_MIN_SIZE 4
616#define MEMCG_CACHES_MAX_SIZE 65535
617
d7f25f8a
GC
618/*
619 * A lot of the calls to the cache allocation functions are expected to be
620 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
621 * conditional to this static branch, we'll have to allow modules that does
622 * kmem_cache_alloc and the such to see this symbol as well
623 */
a8964b9b 624struct static_key memcg_kmem_enabled_key;
d7f25f8a 625EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
626
627static void disarm_kmem_keys(struct mem_cgroup *memcg)
628{
55007d84 629 if (memcg_kmem_is_active(memcg)) {
a8964b9b 630 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
631 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
632 }
bea207c8
GC
633 /*
634 * This check can't live in kmem destruction function,
635 * since the charges will outlive the cgroup
636 */
637 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
638}
639#else
640static void disarm_kmem_keys(struct mem_cgroup *memcg)
641{
642}
643#endif /* CONFIG_MEMCG_KMEM */
644
645static void disarm_static_keys(struct mem_cgroup *memcg)
646{
647 disarm_sock_keys(memcg);
648 disarm_kmem_keys(memcg);
649}
650
c0ff4b85 651static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 652
f64c3f54 653static struct mem_cgroup_per_zone *
c0ff4b85 654mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 655{
45cf7ebd 656 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
658}
659
c0ff4b85 660struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 661{
c0ff4b85 662 return &memcg->css;
d324236b
WF
663}
664
f64c3f54 665static struct mem_cgroup_per_zone *
c0ff4b85 666page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 667{
97a6c37b
JW
668 int nid = page_to_nid(page);
669 int zid = page_zonenum(page);
f64c3f54 670
c0ff4b85 671 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
672}
673
711d3d2c
KH
674/*
675 * Implementation Note: reading percpu statistics for memcg.
676 *
677 * Both of vmstat[] and percpu_counter has threshold and do periodic
678 * synchronization to implement "quick" read. There are trade-off between
679 * reading cost and precision of value. Then, we may have a chance to implement
680 * a periodic synchronizion of counter in memcg's counter.
681 *
682 * But this _read() function is used for user interface now. The user accounts
683 * memory usage by memory cgroup and he _always_ requires exact value because
684 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
685 * have to visit all online cpus and make sum. So, for now, unnecessary
686 * synchronization is not implemented. (just implemented for cpu hotplug)
687 *
688 * If there are kernel internal actions which can make use of some not-exact
689 * value, and reading all cpu value can be performance bottleneck in some
690 * common workload, threashold and synchonization as vmstat[] should be
691 * implemented.
692 */
c0ff4b85 693static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 694 enum mem_cgroup_stat_index idx)
c62b1a3b 695{
7a159cc9 696 long val = 0;
c62b1a3b 697 int cpu;
c62b1a3b 698
711d3d2c
KH
699 get_online_cpus();
700 for_each_online_cpu(cpu)
c0ff4b85 701 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 702#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
703 spin_lock(&memcg->pcp_counter_lock);
704 val += memcg->nocpu_base.count[idx];
705 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
706#endif
707 put_online_cpus();
c62b1a3b
KH
708 return val;
709}
710
c0ff4b85 711static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
712 bool charge)
713{
714 int val = (charge) ? 1 : -1;
bff6bb83 715 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
716}
717
c0ff4b85 718static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
719 enum mem_cgroup_events_index idx)
720{
721 unsigned long val = 0;
722 int cpu;
723
724 for_each_online_cpu(cpu)
c0ff4b85 725 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 726#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
727 spin_lock(&memcg->pcp_counter_lock);
728 val += memcg->nocpu_base.events[idx];
729 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
730#endif
731 return val;
732}
733
c0ff4b85 734static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 735 struct page *page,
b2402857 736 bool anon, int nr_pages)
d52aa412 737{
c62b1a3b
KH
738 preempt_disable();
739
b2402857
KH
740 /*
741 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
742 * counted as CACHE even if it's on ANON LRU.
743 */
744 if (anon)
745 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 746 nr_pages);
d52aa412 747 else
b2402857 748 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 749 nr_pages);
55e462b0 750
b070e65c
DR
751 if (PageTransHuge(page))
752 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
753 nr_pages);
754
e401f176
KH
755 /* pagein of a big page is an event. So, ignore page size */
756 if (nr_pages > 0)
c0ff4b85 757 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 758 else {
c0ff4b85 759 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
760 nr_pages = -nr_pages; /* for event */
761 }
e401f176 762
13114716 763 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 764
c62b1a3b 765 preempt_enable();
6d12e2d8
KH
766}
767
bb2a0de9 768unsigned long
4d7dcca2 769mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
770{
771 struct mem_cgroup_per_zone *mz;
772
773 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
774 return mz->lru_size[lru];
775}
776
777static unsigned long
c0ff4b85 778mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 779 unsigned int lru_mask)
889976db
YH
780{
781 struct mem_cgroup_per_zone *mz;
f156ab93 782 enum lru_list lru;
bb2a0de9
KH
783 unsigned long ret = 0;
784
c0ff4b85 785 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 786
f156ab93
HD
787 for_each_lru(lru) {
788 if (BIT(lru) & lru_mask)
789 ret += mz->lru_size[lru];
bb2a0de9
KH
790 }
791 return ret;
792}
793
794static unsigned long
c0ff4b85 795mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
796 int nid, unsigned int lru_mask)
797{
889976db
YH
798 u64 total = 0;
799 int zid;
800
bb2a0de9 801 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
802 total += mem_cgroup_zone_nr_lru_pages(memcg,
803 nid, zid, lru_mask);
bb2a0de9 804
889976db
YH
805 return total;
806}
bb2a0de9 807
c0ff4b85 808static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 809 unsigned int lru_mask)
6d12e2d8 810{
889976db 811 int nid;
6d12e2d8
KH
812 u64 total = 0;
813
31aaea4a 814 for_each_node_state(nid, N_MEMORY)
c0ff4b85 815 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 816 return total;
d52aa412
KH
817}
818
f53d7ce3
JW
819static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
820 enum mem_cgroup_events_target target)
7a159cc9
JW
821{
822 unsigned long val, next;
823
13114716 824 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 825 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 826 /* from time_after() in jiffies.h */
f53d7ce3
JW
827 if ((long)next - (long)val < 0) {
828 switch (target) {
829 case MEM_CGROUP_TARGET_THRESH:
830 next = val + THRESHOLDS_EVENTS_TARGET;
831 break;
7d910c05
MH
832 case MEM_CGROUP_TARGET_SOFTLIMIT:
833 next = val + SOFTLIMIT_EVENTS_TARGET;
834 break;
f53d7ce3
JW
835 case MEM_CGROUP_TARGET_NUMAINFO:
836 next = val + NUMAINFO_EVENTS_TARGET;
837 break;
838 default:
839 break;
840 }
841 __this_cpu_write(memcg->stat->targets[target], next);
842 return true;
7a159cc9 843 }
f53d7ce3 844 return false;
d2265e6f
KH
845}
846
7d910c05 847/*
f894ffa8 848 * Called from rate-limited memcg_check_events when enough
7d910c05 849 * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure
f894ffa8 850 * that all the parents up the hierarchy will be notified that this group
7d910c05
MH
851 * is in excess or that it is not in excess anymore. mmecg->soft_contributed
852 * makes the transition a single action whenever the state flips from one to
f894ffa8 853 * the other.
7d910c05
MH
854 */
855static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg)
856{
857 unsigned long long excess = res_counter_soft_limit_excess(&memcg->res);
858 struct mem_cgroup *parent = memcg;
859 int delta = 0;
860
861 spin_lock(&memcg->soft_lock);
862 if (excess) {
863 if (!memcg->soft_contributed) {
864 delta = 1;
865 memcg->soft_contributed = true;
866 }
867 } else {
868 if (memcg->soft_contributed) {
869 delta = -1;
870 memcg->soft_contributed = false;
871 }
872 }
873
874 /*
875 * Necessary to update all ancestors when hierarchy is used
876 * because their event counter is not touched.
1be171d6
MH
877 * We track children even outside the hierarchy for the root
878 * cgroup because tree walk starting at root should visit
879 * all cgroups and we want to prevent from pointless tree
880 * walk if no children is below the limit.
7d910c05
MH
881 */
882 while (delta && (parent = parent_mem_cgroup(parent)))
883 atomic_add(delta, &parent->children_in_excess);
1be171d6
MH
884 if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
885 atomic_add(delta, &root_mem_cgroup->children_in_excess);
7d910c05
MH
886 spin_unlock(&memcg->soft_lock);
887}
888
d2265e6f
KH
889/*
890 * Check events in order.
891 *
892 */
c0ff4b85 893static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 894{
4799401f 895 preempt_disable();
d2265e6f 896 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
897 if (unlikely(mem_cgroup_event_ratelimit(memcg,
898 MEM_CGROUP_TARGET_THRESH))) {
7d910c05 899 bool do_softlimit;
82b3f2a7 900 bool do_numainfo __maybe_unused;
f53d7ce3 901
7d910c05
MH
902 do_softlimit = mem_cgroup_event_ratelimit(memcg,
903 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
904#if MAX_NUMNODES > 1
905 do_numainfo = mem_cgroup_event_ratelimit(memcg,
906 MEM_CGROUP_TARGET_NUMAINFO);
907#endif
908 preempt_enable();
909
c0ff4b85 910 mem_cgroup_threshold(memcg);
7d910c05
MH
911 if (unlikely(do_softlimit))
912 mem_cgroup_update_soft_limit(memcg);
453a9bf3 913#if MAX_NUMNODES > 1
f53d7ce3 914 if (unlikely(do_numainfo))
c0ff4b85 915 atomic_inc(&memcg->numainfo_events);
453a9bf3 916#endif
f53d7ce3
JW
917 } else
918 preempt_enable();
d2265e6f
KH
919}
920
cf475ad2 921struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 922{
31a78f23
BS
923 /*
924 * mm_update_next_owner() may clear mm->owner to NULL
925 * if it races with swapoff, page migration, etc.
926 * So this can be called with p == NULL.
927 */
928 if (unlikely(!p))
929 return NULL;
930
8af01f56 931 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
932}
933
a433658c 934struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 935{
c0ff4b85 936 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
937
938 if (!mm)
939 return NULL;
54595fe2
KH
940 /*
941 * Because we have no locks, mm->owner's may be being moved to other
942 * cgroup. We use css_tryget() here even if this looks
943 * pessimistic (rather than adding locks here).
944 */
945 rcu_read_lock();
946 do {
c0ff4b85
R
947 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
948 if (unlikely(!memcg))
54595fe2 949 break;
c0ff4b85 950 } while (!css_tryget(&memcg->css));
54595fe2 951 rcu_read_unlock();
c0ff4b85 952 return memcg;
54595fe2
KH
953}
954
de57780d
MH
955static enum mem_cgroup_filter_t
956mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
957 mem_cgroup_iter_filter cond)
958{
959 if (!cond)
960 return VISIT;
961 return cond(memcg, root);
962}
963
16248d8f
MH
964/*
965 * Returns a next (in a pre-order walk) alive memcg (with elevated css
966 * ref. count) or NULL if the whole root's subtree has been visited.
967 *
968 * helper function to be used by mem_cgroup_iter
969 */
970static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
de57780d 971 struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
16248d8f 972{
492eb21b 973 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 974
bd8815a6 975 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 976skip_node:
492eb21b 977 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
978
979 /*
980 * Even if we found a group we have to make sure it is
981 * alive. css && !memcg means that the groups should be
982 * skipped and we should continue the tree walk.
983 * last_visited css is safe to use because it is
984 * protected by css_get and the tree walk is rcu safe.
985 */
492eb21b
TH
986 if (next_css) {
987 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
988
de57780d
MH
989 switch (mem_cgroup_filter(mem, root, cond)) {
990 case SKIP:
492eb21b 991 prev_css = next_css;
16248d8f 992 goto skip_node;
de57780d
MH
993 case SKIP_TREE:
994 if (mem == root)
995 return NULL;
996 /*
997 * css_rightmost_descendant is not an optimal way to
998 * skip through a subtree (especially for imbalanced
999 * trees leaning to right) but that's what we have right
1000 * now. More effective solution would be traversing
1001 * right-up for first non-NULL without calling
1002 * css_next_descendant_pre afterwards.
1003 */
1004 prev_css = css_rightmost_descendant(next_css);
1005 goto skip_node;
1006 case VISIT:
1007 if (css_tryget(&mem->css))
1008 return mem;
1009 else {
1010 prev_css = next_css;
1011 goto skip_node;
1012 }
1013 break;
16248d8f
MH
1014 }
1015 }
1016
1017 return NULL;
1018}
1019
519ebea3
JW
1020static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1021{
1022 /*
1023 * When a group in the hierarchy below root is destroyed, the
1024 * hierarchy iterator can no longer be trusted since it might
1025 * have pointed to the destroyed group. Invalidate it.
1026 */
1027 atomic_inc(&root->dead_count);
1028}
1029
1030static struct mem_cgroup *
1031mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1032 struct mem_cgroup *root,
1033 int *sequence)
1034{
1035 struct mem_cgroup *position = NULL;
1036 /*
1037 * A cgroup destruction happens in two stages: offlining and
1038 * release. They are separated by a RCU grace period.
1039 *
1040 * If the iterator is valid, we may still race with an
1041 * offlining. The RCU lock ensures the object won't be
1042 * released, tryget will fail if we lost the race.
1043 */
1044 *sequence = atomic_read(&root->dead_count);
1045 if (iter->last_dead_count == *sequence) {
1046 smp_rmb();
1047 position = iter->last_visited;
1048 if (position && !css_tryget(&position->css))
1049 position = NULL;
1050 }
1051 return position;
1052}
1053
1054static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1055 struct mem_cgroup *last_visited,
1056 struct mem_cgroup *new_position,
1057 int sequence)
1058{
1059 if (last_visited)
1060 css_put(&last_visited->css);
1061 /*
1062 * We store the sequence count from the time @last_visited was
1063 * loaded successfully instead of rereading it here so that we
1064 * don't lose destruction events in between. We could have
1065 * raced with the destruction of @new_position after all.
1066 */
1067 iter->last_visited = new_position;
1068 smp_wmb();
1069 iter->last_dead_count = sequence;
1070}
1071
5660048c
JW
1072/**
1073 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1074 * @root: hierarchy root
1075 * @prev: previously returned memcg, NULL on first invocation
1076 * @reclaim: cookie for shared reclaim walks, NULL for full walks
de57780d 1077 * @cond: filter for visited nodes, NULL for no filter
5660048c
JW
1078 *
1079 * Returns references to children of the hierarchy below @root, or
1080 * @root itself, or %NULL after a full round-trip.
1081 *
1082 * Caller must pass the return value in @prev on subsequent
1083 * invocations for reference counting, or use mem_cgroup_iter_break()
1084 * to cancel a hierarchy walk before the round-trip is complete.
1085 *
1086 * Reclaimers can specify a zone and a priority level in @reclaim to
1087 * divide up the memcgs in the hierarchy among all concurrent
1088 * reclaimers operating on the same zone and priority.
1089 */
de57780d 1090struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
5660048c 1091 struct mem_cgroup *prev,
de57780d
MH
1092 struct mem_cgroup_reclaim_cookie *reclaim,
1093 mem_cgroup_iter_filter cond)
14067bb3 1094{
9f3a0d09 1095 struct mem_cgroup *memcg = NULL;
542f85f9 1096 struct mem_cgroup *last_visited = NULL;
711d3d2c 1097
de57780d
MH
1098 if (mem_cgroup_disabled()) {
1099 /* first call must return non-NULL, second return NULL */
1100 return (struct mem_cgroup *)(unsigned long)!prev;
1101 }
5660048c 1102
9f3a0d09
JW
1103 if (!root)
1104 root = root_mem_cgroup;
7d74b06f 1105
9f3a0d09 1106 if (prev && !reclaim)
542f85f9 1107 last_visited = prev;
14067bb3 1108
9f3a0d09
JW
1109 if (!root->use_hierarchy && root != root_mem_cgroup) {
1110 if (prev)
c40046f3 1111 goto out_css_put;
de57780d
MH
1112 if (mem_cgroup_filter(root, root, cond) == VISIT)
1113 return root;
1114 return NULL;
9f3a0d09 1115 }
14067bb3 1116
542f85f9 1117 rcu_read_lock();
9f3a0d09 1118 while (!memcg) {
527a5ec9 1119 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1120 int uninitialized_var(seq);
711d3d2c 1121
527a5ec9
JW
1122 if (reclaim) {
1123 int nid = zone_to_nid(reclaim->zone);
1124 int zid = zone_idx(reclaim->zone);
1125 struct mem_cgroup_per_zone *mz;
1126
1127 mz = mem_cgroup_zoneinfo(root, nid, zid);
1128 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1129 if (prev && reclaim->generation != iter->generation) {
5f578161 1130 iter->last_visited = NULL;
542f85f9
MH
1131 goto out_unlock;
1132 }
5f578161 1133
519ebea3 1134 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1135 }
7d74b06f 1136
de57780d 1137 memcg = __mem_cgroup_iter_next(root, last_visited, cond);
14067bb3 1138
527a5ec9 1139 if (reclaim) {
519ebea3 1140 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1141
19f39402 1142 if (!memcg)
527a5ec9
JW
1143 iter->generation++;
1144 else if (!prev && memcg)
1145 reclaim->generation = iter->generation;
1146 }
9f3a0d09 1147
de57780d
MH
1148 /*
1149 * We have finished the whole tree walk or no group has been
1150 * visited because filter told us to skip the root node.
1151 */
1152 if (!memcg && (prev || (cond && !last_visited)))
542f85f9 1153 goto out_unlock;
9f3a0d09 1154 }
542f85f9
MH
1155out_unlock:
1156 rcu_read_unlock();
c40046f3
MH
1157out_css_put:
1158 if (prev && prev != root)
1159 css_put(&prev->css);
1160
9f3a0d09 1161 return memcg;
14067bb3 1162}
7d74b06f 1163
5660048c
JW
1164/**
1165 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1166 * @root: hierarchy root
1167 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1168 */
1169void mem_cgroup_iter_break(struct mem_cgroup *root,
1170 struct mem_cgroup *prev)
9f3a0d09
JW
1171{
1172 if (!root)
1173 root = root_mem_cgroup;
1174 if (prev && prev != root)
1175 css_put(&prev->css);
1176}
7d74b06f 1177
9f3a0d09
JW
1178/*
1179 * Iteration constructs for visiting all cgroups (under a tree). If
1180 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1181 * be used for reference counting.
1182 */
1183#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1184 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1185 iter != NULL; \
527a5ec9 1186 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1187
9f3a0d09 1188#define for_each_mem_cgroup(iter) \
527a5ec9 1189 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1190 iter != NULL; \
527a5ec9 1191 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1192
68ae564b 1193void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1194{
c0ff4b85 1195 struct mem_cgroup *memcg;
456f998e 1196
456f998e 1197 rcu_read_lock();
c0ff4b85
R
1198 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1199 if (unlikely(!memcg))
456f998e
YH
1200 goto out;
1201
1202 switch (idx) {
456f998e 1203 case PGFAULT:
0e574a93
JW
1204 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1205 break;
1206 case PGMAJFAULT:
1207 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1208 break;
1209 default:
1210 BUG();
1211 }
1212out:
1213 rcu_read_unlock();
1214}
68ae564b 1215EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1216
925b7673
JW
1217/**
1218 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1219 * @zone: zone of the wanted lruvec
fa9add64 1220 * @memcg: memcg of the wanted lruvec
925b7673
JW
1221 *
1222 * Returns the lru list vector holding pages for the given @zone and
1223 * @mem. This can be the global zone lruvec, if the memory controller
1224 * is disabled.
1225 */
1226struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1227 struct mem_cgroup *memcg)
1228{
1229 struct mem_cgroup_per_zone *mz;
bea8c150 1230 struct lruvec *lruvec;
925b7673 1231
bea8c150
HD
1232 if (mem_cgroup_disabled()) {
1233 lruvec = &zone->lruvec;
1234 goto out;
1235 }
925b7673
JW
1236
1237 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1238 lruvec = &mz->lruvec;
1239out:
1240 /*
1241 * Since a node can be onlined after the mem_cgroup was created,
1242 * we have to be prepared to initialize lruvec->zone here;
1243 * and if offlined then reonlined, we need to reinitialize it.
1244 */
1245 if (unlikely(lruvec->zone != zone))
1246 lruvec->zone = zone;
1247 return lruvec;
925b7673
JW
1248}
1249
08e552c6
KH
1250/*
1251 * Following LRU functions are allowed to be used without PCG_LOCK.
1252 * Operations are called by routine of global LRU independently from memcg.
1253 * What we have to take care of here is validness of pc->mem_cgroup.
1254 *
1255 * Changes to pc->mem_cgroup happens when
1256 * 1. charge
1257 * 2. moving account
1258 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1259 * It is added to LRU before charge.
1260 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1261 * When moving account, the page is not on LRU. It's isolated.
1262 */
4f98a2fe 1263
925b7673 1264/**
fa9add64 1265 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1266 * @page: the page
fa9add64 1267 * @zone: zone of the page
925b7673 1268 */
fa9add64 1269struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1270{
08e552c6 1271 struct mem_cgroup_per_zone *mz;
925b7673
JW
1272 struct mem_cgroup *memcg;
1273 struct page_cgroup *pc;
bea8c150 1274 struct lruvec *lruvec;
6d12e2d8 1275
bea8c150
HD
1276 if (mem_cgroup_disabled()) {
1277 lruvec = &zone->lruvec;
1278 goto out;
1279 }
925b7673 1280
08e552c6 1281 pc = lookup_page_cgroup(page);
38c5d72f 1282 memcg = pc->mem_cgroup;
7512102c
HD
1283
1284 /*
fa9add64 1285 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1286 * an uncharged page off lru does nothing to secure
1287 * its former mem_cgroup from sudden removal.
1288 *
1289 * Our caller holds lru_lock, and PageCgroupUsed is updated
1290 * under page_cgroup lock: between them, they make all uses
1291 * of pc->mem_cgroup safe.
1292 */
fa9add64 1293 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1294 pc->mem_cgroup = memcg = root_mem_cgroup;
1295
925b7673 1296 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1297 lruvec = &mz->lruvec;
1298out:
1299 /*
1300 * Since a node can be onlined after the mem_cgroup was created,
1301 * we have to be prepared to initialize lruvec->zone here;
1302 * and if offlined then reonlined, we need to reinitialize it.
1303 */
1304 if (unlikely(lruvec->zone != zone))
1305 lruvec->zone = zone;
1306 return lruvec;
08e552c6 1307}
b69408e8 1308
925b7673 1309/**
fa9add64
HD
1310 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1311 * @lruvec: mem_cgroup per zone lru vector
1312 * @lru: index of lru list the page is sitting on
1313 * @nr_pages: positive when adding or negative when removing
925b7673 1314 *
fa9add64
HD
1315 * This function must be called when a page is added to or removed from an
1316 * lru list.
3f58a829 1317 */
fa9add64
HD
1318void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1319 int nr_pages)
3f58a829
MK
1320{
1321 struct mem_cgroup_per_zone *mz;
fa9add64 1322 unsigned long *lru_size;
3f58a829
MK
1323
1324 if (mem_cgroup_disabled())
1325 return;
1326
fa9add64
HD
1327 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1328 lru_size = mz->lru_size + lru;
1329 *lru_size += nr_pages;
1330 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1331}
544122e5 1332
3e92041d 1333/*
c0ff4b85 1334 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1335 * hierarchy subtree
1336 */
c3ac9a8a
JW
1337bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1338 struct mem_cgroup *memcg)
3e92041d 1339{
91c63734
JW
1340 if (root_memcg == memcg)
1341 return true;
3a981f48 1342 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1343 return false;
b47f77b5 1344 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1345}
1346
1347static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1348 struct mem_cgroup *memcg)
1349{
1350 bool ret;
1351
91c63734 1352 rcu_read_lock();
c3ac9a8a 1353 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1354 rcu_read_unlock();
1355 return ret;
3e92041d
MH
1356}
1357
ffbdccf5
DR
1358bool task_in_mem_cgroup(struct task_struct *task,
1359 const struct mem_cgroup *memcg)
4c4a2214 1360{
0b7f569e 1361 struct mem_cgroup *curr = NULL;
158e0a2d 1362 struct task_struct *p;
ffbdccf5 1363 bool ret;
4c4a2214 1364
158e0a2d 1365 p = find_lock_task_mm(task);
de077d22
DR
1366 if (p) {
1367 curr = try_get_mem_cgroup_from_mm(p->mm);
1368 task_unlock(p);
1369 } else {
1370 /*
1371 * All threads may have already detached their mm's, but the oom
1372 * killer still needs to detect if they have already been oom
1373 * killed to prevent needlessly killing additional tasks.
1374 */
ffbdccf5 1375 rcu_read_lock();
de077d22
DR
1376 curr = mem_cgroup_from_task(task);
1377 if (curr)
1378 css_get(&curr->css);
ffbdccf5 1379 rcu_read_unlock();
de077d22 1380 }
0b7f569e 1381 if (!curr)
ffbdccf5 1382 return false;
d31f56db 1383 /*
c0ff4b85 1384 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1385 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1386 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1387 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1388 */
c0ff4b85 1389 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1390 css_put(&curr->css);
4c4a2214
DR
1391 return ret;
1392}
1393
c56d5c7d 1394int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1395{
9b272977 1396 unsigned long inactive_ratio;
14797e23 1397 unsigned long inactive;
9b272977 1398 unsigned long active;
c772be93 1399 unsigned long gb;
14797e23 1400
4d7dcca2
HD
1401 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1402 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1403
c772be93
KM
1404 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1405 if (gb)
1406 inactive_ratio = int_sqrt(10 * gb);
1407 else
1408 inactive_ratio = 1;
1409
9b272977 1410 return inactive * inactive_ratio < active;
14797e23
KM
1411}
1412
6d61ef40
BS
1413#define mem_cgroup_from_res_counter(counter, member) \
1414 container_of(counter, struct mem_cgroup, member)
1415
19942822 1416/**
9d11ea9f 1417 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1418 * @memcg: the memory cgroup
19942822 1419 *
9d11ea9f 1420 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1421 * pages.
19942822 1422 */
c0ff4b85 1423static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1424{
9d11ea9f
JW
1425 unsigned long long margin;
1426
c0ff4b85 1427 margin = res_counter_margin(&memcg->res);
9d11ea9f 1428 if (do_swap_account)
c0ff4b85 1429 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1430 return margin >> PAGE_SHIFT;
19942822
JW
1431}
1432
1f4c025b 1433int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1434{
a7885eb8 1435 /* root ? */
63876986 1436 if (!css_parent(&memcg->css))
a7885eb8
KM
1437 return vm_swappiness;
1438
bf1ff263 1439 return memcg->swappiness;
a7885eb8
KM
1440}
1441
619d094b
KH
1442/*
1443 * memcg->moving_account is used for checking possibility that some thread is
1444 * calling move_account(). When a thread on CPU-A starts moving pages under
1445 * a memcg, other threads should check memcg->moving_account under
1446 * rcu_read_lock(), like this:
1447 *
1448 * CPU-A CPU-B
1449 * rcu_read_lock()
1450 * memcg->moving_account+1 if (memcg->mocing_account)
1451 * take heavy locks.
1452 * synchronize_rcu() update something.
1453 * rcu_read_unlock()
1454 * start move here.
1455 */
4331f7d3
KH
1456
1457/* for quick checking without looking up memcg */
1458atomic_t memcg_moving __read_mostly;
1459
c0ff4b85 1460static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1461{
4331f7d3 1462 atomic_inc(&memcg_moving);
619d094b 1463 atomic_inc(&memcg->moving_account);
32047e2a
KH
1464 synchronize_rcu();
1465}
1466
c0ff4b85 1467static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1468{
619d094b
KH
1469 /*
1470 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1471 * We check NULL in callee rather than caller.
1472 */
4331f7d3
KH
1473 if (memcg) {
1474 atomic_dec(&memcg_moving);
619d094b 1475 atomic_dec(&memcg->moving_account);
4331f7d3 1476 }
32047e2a 1477}
619d094b 1478
32047e2a
KH
1479/*
1480 * 2 routines for checking "mem" is under move_account() or not.
1481 *
13fd1dd9
AM
1482 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1483 * is used for avoiding races in accounting. If true,
32047e2a
KH
1484 * pc->mem_cgroup may be overwritten.
1485 *
1486 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1487 * under hierarchy of moving cgroups. This is for
1488 * waiting at hith-memory prressure caused by "move".
1489 */
1490
13fd1dd9 1491static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1492{
1493 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1494 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1495}
4b534334 1496
c0ff4b85 1497static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1498{
2bd9bb20
KH
1499 struct mem_cgroup *from;
1500 struct mem_cgroup *to;
4b534334 1501 bool ret = false;
2bd9bb20
KH
1502 /*
1503 * Unlike task_move routines, we access mc.to, mc.from not under
1504 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1505 */
1506 spin_lock(&mc.lock);
1507 from = mc.from;
1508 to = mc.to;
1509 if (!from)
1510 goto unlock;
3e92041d 1511
c0ff4b85
R
1512 ret = mem_cgroup_same_or_subtree(memcg, from)
1513 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1514unlock:
1515 spin_unlock(&mc.lock);
4b534334
KH
1516 return ret;
1517}
1518
c0ff4b85 1519static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1520{
1521 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1522 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1523 DEFINE_WAIT(wait);
1524 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1525 /* moving charge context might have finished. */
1526 if (mc.moving_task)
1527 schedule();
1528 finish_wait(&mc.waitq, &wait);
1529 return true;
1530 }
1531 }
1532 return false;
1533}
1534
312734c0
KH
1535/*
1536 * Take this lock when
1537 * - a code tries to modify page's memcg while it's USED.
1538 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1539 * see mem_cgroup_stolen(), too.
312734c0
KH
1540 */
1541static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1542 unsigned long *flags)
1543{
1544 spin_lock_irqsave(&memcg->move_lock, *flags);
1545}
1546
1547static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1548 unsigned long *flags)
1549{
1550 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1551}
1552
58cf188e 1553#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1554/**
58cf188e 1555 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1556 * @memcg: The memory cgroup that went over limit
1557 * @p: Task that is going to be killed
1558 *
1559 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1560 * enabled
1561 */
1562void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1563{
1564 struct cgroup *task_cgrp;
1565 struct cgroup *mem_cgrp;
1566 /*
1567 * Need a buffer in BSS, can't rely on allocations. The code relies
1568 * on the assumption that OOM is serialized for memory controller.
1569 * If this assumption is broken, revisit this code.
1570 */
1571 static char memcg_name[PATH_MAX];
1572 int ret;
58cf188e
SZ
1573 struct mem_cgroup *iter;
1574 unsigned int i;
e222432b 1575
58cf188e 1576 if (!p)
e222432b
BS
1577 return;
1578
e222432b
BS
1579 rcu_read_lock();
1580
1581 mem_cgrp = memcg->css.cgroup;
1582 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1583
1584 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1585 if (ret < 0) {
1586 /*
1587 * Unfortunately, we are unable to convert to a useful name
1588 * But we'll still print out the usage information
1589 */
1590 rcu_read_unlock();
1591 goto done;
1592 }
1593 rcu_read_unlock();
1594
d045197f 1595 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1596
1597 rcu_read_lock();
1598 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1599 if (ret < 0) {
1600 rcu_read_unlock();
1601 goto done;
1602 }
1603 rcu_read_unlock();
1604
1605 /*
1606 * Continues from above, so we don't need an KERN_ level
1607 */
d045197f 1608 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1609done:
1610
d045197f 1611 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1612 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1613 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1614 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1615 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1616 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1617 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1618 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1619 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1620 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1621 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1622 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1623
1624 for_each_mem_cgroup_tree(iter, memcg) {
1625 pr_info("Memory cgroup stats");
1626
1627 rcu_read_lock();
1628 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1629 if (!ret)
1630 pr_cont(" for %s", memcg_name);
1631 rcu_read_unlock();
1632 pr_cont(":");
1633
1634 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1635 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1636 continue;
1637 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1638 K(mem_cgroup_read_stat(iter, i)));
1639 }
1640
1641 for (i = 0; i < NR_LRU_LISTS; i++)
1642 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1643 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1644
1645 pr_cont("\n");
1646 }
e222432b
BS
1647}
1648
81d39c20
KH
1649/*
1650 * This function returns the number of memcg under hierarchy tree. Returns
1651 * 1(self count) if no children.
1652 */
c0ff4b85 1653static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1654{
1655 int num = 0;
7d74b06f
KH
1656 struct mem_cgroup *iter;
1657
c0ff4b85 1658 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1659 num++;
81d39c20
KH
1660 return num;
1661}
1662
a63d83f4
DR
1663/*
1664 * Return the memory (and swap, if configured) limit for a memcg.
1665 */
9cbb78bb 1666static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1667{
1668 u64 limit;
a63d83f4 1669
f3e8eb70 1670 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1671
a63d83f4 1672 /*
9a5a8f19 1673 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1674 */
9a5a8f19
MH
1675 if (mem_cgroup_swappiness(memcg)) {
1676 u64 memsw;
1677
1678 limit += total_swap_pages << PAGE_SHIFT;
1679 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1680
1681 /*
1682 * If memsw is finite and limits the amount of swap space
1683 * available to this memcg, return that limit.
1684 */
1685 limit = min(limit, memsw);
1686 }
1687
1688 return limit;
a63d83f4
DR
1689}
1690
19965460
DR
1691static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1692 int order)
9cbb78bb
DR
1693{
1694 struct mem_cgroup *iter;
1695 unsigned long chosen_points = 0;
1696 unsigned long totalpages;
1697 unsigned int points = 0;
1698 struct task_struct *chosen = NULL;
1699
876aafbf 1700 /*
465adcf1
DR
1701 * If current has a pending SIGKILL or is exiting, then automatically
1702 * select it. The goal is to allow it to allocate so that it may
1703 * quickly exit and free its memory.
876aafbf 1704 */
465adcf1 1705 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1706 set_thread_flag(TIF_MEMDIE);
1707 return;
1708 }
1709
1710 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1711 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1712 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1713 struct css_task_iter it;
9cbb78bb
DR
1714 struct task_struct *task;
1715
72ec7029
TH
1716 css_task_iter_start(&iter->css, &it);
1717 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1718 switch (oom_scan_process_thread(task, totalpages, NULL,
1719 false)) {
1720 case OOM_SCAN_SELECT:
1721 if (chosen)
1722 put_task_struct(chosen);
1723 chosen = task;
1724 chosen_points = ULONG_MAX;
1725 get_task_struct(chosen);
1726 /* fall through */
1727 case OOM_SCAN_CONTINUE:
1728 continue;
1729 case OOM_SCAN_ABORT:
72ec7029 1730 css_task_iter_end(&it);
9cbb78bb
DR
1731 mem_cgroup_iter_break(memcg, iter);
1732 if (chosen)
1733 put_task_struct(chosen);
1734 return;
1735 case OOM_SCAN_OK:
1736 break;
1737 };
1738 points = oom_badness(task, memcg, NULL, totalpages);
1739 if (points > chosen_points) {
1740 if (chosen)
1741 put_task_struct(chosen);
1742 chosen = task;
1743 chosen_points = points;
1744 get_task_struct(chosen);
1745 }
1746 }
72ec7029 1747 css_task_iter_end(&it);
9cbb78bb
DR
1748 }
1749
1750 if (!chosen)
1751 return;
1752 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1753 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1754 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1755}
1756
5660048c
JW
1757static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1758 gfp_t gfp_mask,
1759 unsigned long flags)
1760{
1761 unsigned long total = 0;
1762 bool noswap = false;
1763 int loop;
1764
1765 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1766 noswap = true;
1767 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1768 noswap = true;
1769
1770 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1771 if (loop)
1772 drain_all_stock_async(memcg);
1773 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1774 /*
1775 * Allow limit shrinkers, which are triggered directly
1776 * by userspace, to catch signals and stop reclaim
1777 * after minimal progress, regardless of the margin.
1778 */
1779 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1780 break;
1781 if (mem_cgroup_margin(memcg))
1782 break;
1783 /*
1784 * If nothing was reclaimed after two attempts, there
1785 * may be no reclaimable pages in this hierarchy.
1786 */
1787 if (loop && !total)
1788 break;
1789 }
1790 return total;
1791}
1792
e883110a 1793#if MAX_NUMNODES > 1
4d0c066d
KH
1794/**
1795 * test_mem_cgroup_node_reclaimable
dad7557e 1796 * @memcg: the target memcg
4d0c066d
KH
1797 * @nid: the node ID to be checked.
1798 * @noswap : specify true here if the user wants flle only information.
1799 *
1800 * This function returns whether the specified memcg contains any
1801 * reclaimable pages on a node. Returns true if there are any reclaimable
1802 * pages in the node.
1803 */
c0ff4b85 1804static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1805 int nid, bool noswap)
1806{
c0ff4b85 1807 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1808 return true;
1809 if (noswap || !total_swap_pages)
1810 return false;
c0ff4b85 1811 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1812 return true;
1813 return false;
1814
1815}
889976db
YH
1816
1817/*
1818 * Always updating the nodemask is not very good - even if we have an empty
1819 * list or the wrong list here, we can start from some node and traverse all
1820 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1821 *
1822 */
c0ff4b85 1823static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1824{
1825 int nid;
453a9bf3
KH
1826 /*
1827 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1828 * pagein/pageout changes since the last update.
1829 */
c0ff4b85 1830 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1831 return;
c0ff4b85 1832 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1833 return;
1834
889976db 1835 /* make a nodemask where this memcg uses memory from */
31aaea4a 1836 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1837
31aaea4a 1838 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1839
c0ff4b85
R
1840 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1841 node_clear(nid, memcg->scan_nodes);
889976db 1842 }
453a9bf3 1843
c0ff4b85
R
1844 atomic_set(&memcg->numainfo_events, 0);
1845 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1846}
1847
1848/*
1849 * Selecting a node where we start reclaim from. Because what we need is just
1850 * reducing usage counter, start from anywhere is O,K. Considering
1851 * memory reclaim from current node, there are pros. and cons.
1852 *
1853 * Freeing memory from current node means freeing memory from a node which
1854 * we'll use or we've used. So, it may make LRU bad. And if several threads
1855 * hit limits, it will see a contention on a node. But freeing from remote
1856 * node means more costs for memory reclaim because of memory latency.
1857 *
1858 * Now, we use round-robin. Better algorithm is welcomed.
1859 */
c0ff4b85 1860int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1861{
1862 int node;
1863
c0ff4b85
R
1864 mem_cgroup_may_update_nodemask(memcg);
1865 node = memcg->last_scanned_node;
889976db 1866
c0ff4b85 1867 node = next_node(node, memcg->scan_nodes);
889976db 1868 if (node == MAX_NUMNODES)
c0ff4b85 1869 node = first_node(memcg->scan_nodes);
889976db
YH
1870 /*
1871 * We call this when we hit limit, not when pages are added to LRU.
1872 * No LRU may hold pages because all pages are UNEVICTABLE or
1873 * memcg is too small and all pages are not on LRU. In that case,
1874 * we use curret node.
1875 */
1876 if (unlikely(node == MAX_NUMNODES))
1877 node = numa_node_id();
1878
c0ff4b85 1879 memcg->last_scanned_node = node;
889976db
YH
1880 return node;
1881}
1882
1883#else
c0ff4b85 1884int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1885{
1886 return 0;
1887}
4d0c066d 1888
889976db
YH
1889#endif
1890
3b38722e 1891/*
a5b7c87f
MH
1892 * A group is eligible for the soft limit reclaim under the given root
1893 * hierarchy if
f894ffa8
AM
1894 * a) it is over its soft limit
1895 * b) any parent up the hierarchy is over its soft limit
7d910c05
MH
1896 *
1897 * If the given group doesn't have any children over the limit then it
1898 * doesn't make any sense to iterate its subtree.
3b38722e 1899 */
de57780d
MH
1900enum mem_cgroup_filter_t
1901mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
a5b7c87f 1902 struct mem_cgroup *root)
3b38722e 1903{
e839b6a1
MH
1904 struct mem_cgroup *parent;
1905
1906 if (!memcg)
1907 memcg = root_mem_cgroup;
1908 parent = memcg;
3b38722e
MH
1909
1910 if (res_counter_soft_limit_excess(&memcg->res))
de57780d 1911 return VISIT;
3b38722e
MH
1912
1913 /*
a5b7c87f
MH
1914 * If any parent up to the root in the hierarchy is over its soft limit
1915 * then we have to obey and reclaim from this group as well.
3b38722e 1916 */
f894ffa8 1917 while ((parent = parent_mem_cgroup(parent))) {
3b38722e 1918 if (res_counter_soft_limit_excess(&parent->res))
de57780d 1919 return VISIT;
a5b7c87f
MH
1920 if (parent == root)
1921 break;
6d61ef40 1922 }
3b38722e 1923
7d910c05
MH
1924 if (!atomic_read(&memcg->children_in_excess))
1925 return SKIP_TREE;
de57780d 1926 return SKIP;
6d61ef40
BS
1927}
1928
fb2a6fc5
JW
1929static DEFINE_SPINLOCK(memcg_oom_lock);
1930
867578cb
KH
1931/*
1932 * Check OOM-Killer is already running under our hierarchy.
1933 * If someone is running, return false.
1934 */
fb2a6fc5 1935static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1936{
79dfdacc 1937 struct mem_cgroup *iter, *failed = NULL;
a636b327 1938
fb2a6fc5
JW
1939 spin_lock(&memcg_oom_lock);
1940
9f3a0d09 1941 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1942 if (iter->oom_lock) {
79dfdacc
MH
1943 /*
1944 * this subtree of our hierarchy is already locked
1945 * so we cannot give a lock.
1946 */
79dfdacc 1947 failed = iter;
9f3a0d09
JW
1948 mem_cgroup_iter_break(memcg, iter);
1949 break;
23751be0
JW
1950 } else
1951 iter->oom_lock = true;
7d74b06f 1952 }
867578cb 1953
fb2a6fc5
JW
1954 if (failed) {
1955 /*
1956 * OK, we failed to lock the whole subtree so we have
1957 * to clean up what we set up to the failing subtree
1958 */
1959 for_each_mem_cgroup_tree(iter, memcg) {
1960 if (iter == failed) {
1961 mem_cgroup_iter_break(memcg, iter);
1962 break;
1963 }
1964 iter->oom_lock = false;
79dfdacc 1965 }
79dfdacc 1966 }
fb2a6fc5
JW
1967
1968 spin_unlock(&memcg_oom_lock);
1969
1970 return !failed;
a636b327 1971}
0b7f569e 1972
fb2a6fc5 1973static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1974{
7d74b06f
KH
1975 struct mem_cgroup *iter;
1976
fb2a6fc5 1977 spin_lock(&memcg_oom_lock);
c0ff4b85 1978 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1979 iter->oom_lock = false;
fb2a6fc5 1980 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1981}
1982
c0ff4b85 1983static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1984{
1985 struct mem_cgroup *iter;
1986
c0ff4b85 1987 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1988 atomic_inc(&iter->under_oom);
1989}
1990
c0ff4b85 1991static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1992{
1993 struct mem_cgroup *iter;
1994
867578cb
KH
1995 /*
1996 * When a new child is created while the hierarchy is under oom,
1997 * mem_cgroup_oom_lock() may not be called. We have to use
1998 * atomic_add_unless() here.
1999 */
c0ff4b85 2000 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2001 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2002}
2003
867578cb
KH
2004static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2005
dc98df5a 2006struct oom_wait_info {
d79154bb 2007 struct mem_cgroup *memcg;
dc98df5a
KH
2008 wait_queue_t wait;
2009};
2010
2011static int memcg_oom_wake_function(wait_queue_t *wait,
2012 unsigned mode, int sync, void *arg)
2013{
d79154bb
HD
2014 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2015 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2016 struct oom_wait_info *oom_wait_info;
2017
2018 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2019 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2020
dc98df5a 2021 /*
d79154bb 2022 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2023 * Then we can use css_is_ancestor without taking care of RCU.
2024 */
c0ff4b85
R
2025 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2026 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2027 return 0;
dc98df5a
KH
2028 return autoremove_wake_function(wait, mode, sync, arg);
2029}
2030
c0ff4b85 2031static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2032{
3812c8c8 2033 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2034 /* for filtering, pass "memcg" as argument. */
2035 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2036}
2037
c0ff4b85 2038static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2039{
c0ff4b85
R
2040 if (memcg && atomic_read(&memcg->under_oom))
2041 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2042}
2043
867578cb 2044/*
3812c8c8 2045 * try to call OOM killer
867578cb 2046 */
3812c8c8 2047static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2048{
fb2a6fc5 2049 bool locked;
3812c8c8 2050 int wakeups;
867578cb 2051
3812c8c8
JW
2052 if (!current->memcg_oom.may_oom)
2053 return;
2054
2055 current->memcg_oom.in_memcg_oom = 1;
79dfdacc 2056
867578cb 2057 /*
fb2a6fc5
JW
2058 * As with any blocking lock, a contender needs to start
2059 * listening for wakeups before attempting the trylock,
2060 * otherwise it can miss the wakeup from the unlock and sleep
2061 * indefinitely. This is just open-coded because our locking
2062 * is so particular to memcg hierarchies.
867578cb 2063 */
3812c8c8 2064 wakeups = atomic_read(&memcg->oom_wakeups);
fb2a6fc5
JW
2065 mem_cgroup_mark_under_oom(memcg);
2066
2067 locked = mem_cgroup_oom_trylock(memcg);
2068
3c11ecf4 2069 if (locked)
c0ff4b85 2070 mem_cgroup_oom_notify(memcg);
867578cb 2071
fb2a6fc5
JW
2072 if (locked && !memcg->oom_kill_disable) {
2073 mem_cgroup_unmark_under_oom(memcg);
e845e199 2074 mem_cgroup_out_of_memory(memcg, mask, order);
3812c8c8
JW
2075 mem_cgroup_oom_unlock(memcg);
2076 /*
2077 * There is no guarantee that an OOM-lock contender
2078 * sees the wakeups triggered by the OOM kill
2079 * uncharges. Wake any sleepers explicitely.
2080 */
2081 memcg_oom_recover(memcg);
3c11ecf4 2082 } else {
3812c8c8
JW
2083 /*
2084 * A system call can just return -ENOMEM, but if this
2085 * is a page fault and somebody else is handling the
2086 * OOM already, we need to sleep on the OOM waitqueue
2087 * for this memcg until the situation is resolved.
2088 * Which can take some time because it might be
2089 * handled by a userspace task.
2090 *
2091 * However, this is the charge context, which means
2092 * that we may sit on a large call stack and hold
2093 * various filesystem locks, the mmap_sem etc. and we
2094 * don't want the OOM handler to deadlock on them
2095 * while we sit here and wait. Store the current OOM
2096 * context in the task_struct, then return -ENOMEM.
2097 * At the end of the page fault handler, with the
2098 * stack unwound, pagefault_out_of_memory() will check
2099 * back with us by calling
2100 * mem_cgroup_oom_synchronize(), possibly putting the
2101 * task to sleep.
2102 */
2103 current->memcg_oom.oom_locked = locked;
2104 current->memcg_oom.wakeups = wakeups;
2105 css_get(&memcg->css);
2106 current->memcg_oom.wait_on_memcg = memcg;
867578cb 2107 }
3812c8c8
JW
2108}
2109
2110/**
2111 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2112 *
2113 * This has to be called at the end of a page fault if the the memcg
2114 * OOM handler was enabled and the fault is returning %VM_FAULT_OOM.
2115 *
2116 * Memcg supports userspace OOM handling, so failed allocations must
2117 * sleep on a waitqueue until the userspace task resolves the
2118 * situation. Sleeping directly in the charge context with all kinds
2119 * of locks held is not a good idea, instead we remember an OOM state
2120 * in the task and mem_cgroup_oom_synchronize() has to be called at
2121 * the end of the page fault to put the task to sleep and clean up the
2122 * OOM state.
2123 *
2124 * Returns %true if an ongoing memcg OOM situation was detected and
2125 * finalized, %false otherwise.
2126 */
2127bool mem_cgroup_oom_synchronize(void)
2128{
2129 struct oom_wait_info owait;
2130 struct mem_cgroup *memcg;
2131
2132 /* OOM is global, do not handle */
2133 if (!current->memcg_oom.in_memcg_oom)
2134 return false;
2135
2136 /*
2137 * We invoked the OOM killer but there is a chance that a kill
2138 * did not free up any charges. Everybody else might already
2139 * be sleeping, so restart the fault and keep the rampage
2140 * going until some charges are released.
2141 */
2142 memcg = current->memcg_oom.wait_on_memcg;
2143 if (!memcg)
2144 goto out;
2145
2146 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2147 goto out_memcg;
2148
2149 owait.memcg = memcg;
2150 owait.wait.flags = 0;
2151 owait.wait.func = memcg_oom_wake_function;
2152 owait.wait.private = current;
2153 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2154
3812c8c8
JW
2155 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2156 /* Only sleep if we didn't miss any wakeups since OOM */
2157 if (atomic_read(&memcg->oom_wakeups) == current->memcg_oom.wakeups)
2158 schedule();
2159 finish_wait(&memcg_oom_waitq, &owait.wait);
2160out_memcg:
2161 mem_cgroup_unmark_under_oom(memcg);
2162 if (current->memcg_oom.oom_locked) {
fb2a6fc5
JW
2163 mem_cgroup_oom_unlock(memcg);
2164 /*
2165 * There is no guarantee that an OOM-lock contender
2166 * sees the wakeups triggered by the OOM kill
2167 * uncharges. Wake any sleepers explicitely.
2168 */
2169 memcg_oom_recover(memcg);
2170 }
3812c8c8
JW
2171 css_put(&memcg->css);
2172 current->memcg_oom.wait_on_memcg = NULL;
2173out:
2174 current->memcg_oom.in_memcg_oom = 0;
867578cb 2175 return true;
0b7f569e
KH
2176}
2177
d69b042f
BS
2178/*
2179 * Currently used to update mapped file statistics, but the routine can be
2180 * generalized to update other statistics as well.
32047e2a
KH
2181 *
2182 * Notes: Race condition
2183 *
2184 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2185 * it tends to be costly. But considering some conditions, we doesn't need
2186 * to do so _always_.
2187 *
2188 * Considering "charge", lock_page_cgroup() is not required because all
2189 * file-stat operations happen after a page is attached to radix-tree. There
2190 * are no race with "charge".
2191 *
2192 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2193 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2194 * if there are race with "uncharge". Statistics itself is properly handled
2195 * by flags.
2196 *
2197 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2198 * small, we check mm->moving_account and detect there are possibility of race
2199 * If there is, we take a lock.
d69b042f 2200 */
26174efd 2201
89c06bd5
KH
2202void __mem_cgroup_begin_update_page_stat(struct page *page,
2203 bool *locked, unsigned long *flags)
2204{
2205 struct mem_cgroup *memcg;
2206 struct page_cgroup *pc;
2207
2208 pc = lookup_page_cgroup(page);
2209again:
2210 memcg = pc->mem_cgroup;
2211 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2212 return;
2213 /*
2214 * If this memory cgroup is not under account moving, we don't
da92c47d 2215 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2216 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2217 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2218 */
13fd1dd9 2219 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2220 return;
2221
2222 move_lock_mem_cgroup(memcg, flags);
2223 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2224 move_unlock_mem_cgroup(memcg, flags);
2225 goto again;
2226 }
2227 *locked = true;
2228}
2229
2230void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2231{
2232 struct page_cgroup *pc = lookup_page_cgroup(page);
2233
2234 /*
2235 * It's guaranteed that pc->mem_cgroup never changes while
2236 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2237 * should take move_lock_mem_cgroup().
89c06bd5
KH
2238 */
2239 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2240}
2241
2a7106f2 2242void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2243 enum mem_cgroup_stat_index idx, int val)
d69b042f 2244{
c0ff4b85 2245 struct mem_cgroup *memcg;
32047e2a 2246 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2247 unsigned long uninitialized_var(flags);
d69b042f 2248
cfa44946 2249 if (mem_cgroup_disabled())
d69b042f 2250 return;
89c06bd5 2251
658b72c5 2252 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2253 memcg = pc->mem_cgroup;
2254 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2255 return;
26174efd 2256
c0ff4b85 2257 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2258}
26174efd 2259
cdec2e42
KH
2260/*
2261 * size of first charge trial. "32" comes from vmscan.c's magic value.
2262 * TODO: maybe necessary to use big numbers in big irons.
2263 */
7ec99d62 2264#define CHARGE_BATCH 32U
cdec2e42
KH
2265struct memcg_stock_pcp {
2266 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2267 unsigned int nr_pages;
cdec2e42 2268 struct work_struct work;
26fe6168 2269 unsigned long flags;
a0db00fc 2270#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2271};
2272static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2273static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2274
a0956d54
SS
2275/**
2276 * consume_stock: Try to consume stocked charge on this cpu.
2277 * @memcg: memcg to consume from.
2278 * @nr_pages: how many pages to charge.
2279 *
2280 * The charges will only happen if @memcg matches the current cpu's memcg
2281 * stock, and at least @nr_pages are available in that stock. Failure to
2282 * service an allocation will refill the stock.
2283 *
2284 * returns true if successful, false otherwise.
cdec2e42 2285 */
a0956d54 2286static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2287{
2288 struct memcg_stock_pcp *stock;
2289 bool ret = true;
2290
a0956d54
SS
2291 if (nr_pages > CHARGE_BATCH)
2292 return false;
2293
cdec2e42 2294 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2295 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2296 stock->nr_pages -= nr_pages;
cdec2e42
KH
2297 else /* need to call res_counter_charge */
2298 ret = false;
2299 put_cpu_var(memcg_stock);
2300 return ret;
2301}
2302
2303/*
2304 * Returns stocks cached in percpu to res_counter and reset cached information.
2305 */
2306static void drain_stock(struct memcg_stock_pcp *stock)
2307{
2308 struct mem_cgroup *old = stock->cached;
2309
11c9ea4e
JW
2310 if (stock->nr_pages) {
2311 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2312
2313 res_counter_uncharge(&old->res, bytes);
cdec2e42 2314 if (do_swap_account)
11c9ea4e
JW
2315 res_counter_uncharge(&old->memsw, bytes);
2316 stock->nr_pages = 0;
cdec2e42
KH
2317 }
2318 stock->cached = NULL;
cdec2e42
KH
2319}
2320
2321/*
2322 * This must be called under preempt disabled or must be called by
2323 * a thread which is pinned to local cpu.
2324 */
2325static void drain_local_stock(struct work_struct *dummy)
2326{
2327 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2328 drain_stock(stock);
26fe6168 2329 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2330}
2331
e4777496
MH
2332static void __init memcg_stock_init(void)
2333{
2334 int cpu;
2335
2336 for_each_possible_cpu(cpu) {
2337 struct memcg_stock_pcp *stock =
2338 &per_cpu(memcg_stock, cpu);
2339 INIT_WORK(&stock->work, drain_local_stock);
2340 }
2341}
2342
cdec2e42
KH
2343/*
2344 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2345 * This will be consumed by consume_stock() function, later.
cdec2e42 2346 */
c0ff4b85 2347static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2348{
2349 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2350
c0ff4b85 2351 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2352 drain_stock(stock);
c0ff4b85 2353 stock->cached = memcg;
cdec2e42 2354 }
11c9ea4e 2355 stock->nr_pages += nr_pages;
cdec2e42
KH
2356 put_cpu_var(memcg_stock);
2357}
2358
2359/*
c0ff4b85 2360 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2361 * of the hierarchy under it. sync flag says whether we should block
2362 * until the work is done.
cdec2e42 2363 */
c0ff4b85 2364static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2365{
26fe6168 2366 int cpu, curcpu;
d38144b7 2367
cdec2e42 2368 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2369 get_online_cpus();
5af12d0e 2370 curcpu = get_cpu();
cdec2e42
KH
2371 for_each_online_cpu(cpu) {
2372 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2373 struct mem_cgroup *memcg;
26fe6168 2374
c0ff4b85
R
2375 memcg = stock->cached;
2376 if (!memcg || !stock->nr_pages)
26fe6168 2377 continue;
c0ff4b85 2378 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2379 continue;
d1a05b69
MH
2380 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2381 if (cpu == curcpu)
2382 drain_local_stock(&stock->work);
2383 else
2384 schedule_work_on(cpu, &stock->work);
2385 }
cdec2e42 2386 }
5af12d0e 2387 put_cpu();
d38144b7
MH
2388
2389 if (!sync)
2390 goto out;
2391
2392 for_each_online_cpu(cpu) {
2393 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2394 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2395 flush_work(&stock->work);
2396 }
2397out:
f894ffa8 2398 put_online_cpus();
d38144b7
MH
2399}
2400
2401/*
2402 * Tries to drain stocked charges in other cpus. This function is asynchronous
2403 * and just put a work per cpu for draining localy on each cpu. Caller can
2404 * expects some charges will be back to res_counter later but cannot wait for
2405 * it.
2406 */
c0ff4b85 2407static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2408{
9f50fad6
MH
2409 /*
2410 * If someone calls draining, avoid adding more kworker runs.
2411 */
2412 if (!mutex_trylock(&percpu_charge_mutex))
2413 return;
c0ff4b85 2414 drain_all_stock(root_memcg, false);
9f50fad6 2415 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2416}
2417
2418/* This is a synchronous drain interface. */
c0ff4b85 2419static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2420{
2421 /* called when force_empty is called */
9f50fad6 2422 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2423 drain_all_stock(root_memcg, true);
9f50fad6 2424 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2425}
2426
711d3d2c
KH
2427/*
2428 * This function drains percpu counter value from DEAD cpu and
2429 * move it to local cpu. Note that this function can be preempted.
2430 */
c0ff4b85 2431static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2432{
2433 int i;
2434
c0ff4b85 2435 spin_lock(&memcg->pcp_counter_lock);
6104621d 2436 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2437 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2438
c0ff4b85
R
2439 per_cpu(memcg->stat->count[i], cpu) = 0;
2440 memcg->nocpu_base.count[i] += x;
711d3d2c 2441 }
e9f8974f 2442 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2443 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2444
c0ff4b85
R
2445 per_cpu(memcg->stat->events[i], cpu) = 0;
2446 memcg->nocpu_base.events[i] += x;
e9f8974f 2447 }
c0ff4b85 2448 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2449}
2450
0db0628d 2451static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2452 unsigned long action,
2453 void *hcpu)
2454{
2455 int cpu = (unsigned long)hcpu;
2456 struct memcg_stock_pcp *stock;
711d3d2c 2457 struct mem_cgroup *iter;
cdec2e42 2458
619d094b 2459 if (action == CPU_ONLINE)
1489ebad 2460 return NOTIFY_OK;
1489ebad 2461
d833049b 2462 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2463 return NOTIFY_OK;
711d3d2c 2464
9f3a0d09 2465 for_each_mem_cgroup(iter)
711d3d2c
KH
2466 mem_cgroup_drain_pcp_counter(iter, cpu);
2467
cdec2e42
KH
2468 stock = &per_cpu(memcg_stock, cpu);
2469 drain_stock(stock);
2470 return NOTIFY_OK;
2471}
2472
4b534334
KH
2473
2474/* See __mem_cgroup_try_charge() for details */
2475enum {
2476 CHARGE_OK, /* success */
2477 CHARGE_RETRY, /* need to retry but retry is not bad */
2478 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2479 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2480};
2481
c0ff4b85 2482static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2483 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2484 bool invoke_oom)
4b534334 2485{
7ec99d62 2486 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2487 struct mem_cgroup *mem_over_limit;
2488 struct res_counter *fail_res;
2489 unsigned long flags = 0;
2490 int ret;
2491
c0ff4b85 2492 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2493
2494 if (likely(!ret)) {
2495 if (!do_swap_account)
2496 return CHARGE_OK;
c0ff4b85 2497 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2498 if (likely(!ret))
2499 return CHARGE_OK;
2500
c0ff4b85 2501 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2502 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2503 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2504 } else
2505 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2506 /*
9221edb7
JW
2507 * Never reclaim on behalf of optional batching, retry with a
2508 * single page instead.
2509 */
4c9c5359 2510 if (nr_pages > min_pages)
4b534334
KH
2511 return CHARGE_RETRY;
2512
2513 if (!(gfp_mask & __GFP_WAIT))
2514 return CHARGE_WOULDBLOCK;
2515
4c9c5359
SS
2516 if (gfp_mask & __GFP_NORETRY)
2517 return CHARGE_NOMEM;
2518
5660048c 2519 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2520 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2521 return CHARGE_RETRY;
4b534334 2522 /*
19942822
JW
2523 * Even though the limit is exceeded at this point, reclaim
2524 * may have been able to free some pages. Retry the charge
2525 * before killing the task.
2526 *
2527 * Only for regular pages, though: huge pages are rather
2528 * unlikely to succeed so close to the limit, and we fall back
2529 * to regular pages anyway in case of failure.
4b534334 2530 */
4c9c5359 2531 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2532 return CHARGE_RETRY;
2533
2534 /*
2535 * At task move, charge accounts can be doubly counted. So, it's
2536 * better to wait until the end of task_move if something is going on.
2537 */
2538 if (mem_cgroup_wait_acct_move(mem_over_limit))
2539 return CHARGE_RETRY;
2540
3812c8c8
JW
2541 if (invoke_oom)
2542 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2543
3812c8c8 2544 return CHARGE_NOMEM;
4b534334
KH
2545}
2546
f817ed48 2547/*
38c5d72f
KH
2548 * __mem_cgroup_try_charge() does
2549 * 1. detect memcg to be charged against from passed *mm and *ptr,
2550 * 2. update res_counter
2551 * 3. call memory reclaim if necessary.
2552 *
2553 * In some special case, if the task is fatal, fatal_signal_pending() or
2554 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2555 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2556 * as possible without any hazards. 2: all pages should have a valid
2557 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2558 * pointer, that is treated as a charge to root_mem_cgroup.
2559 *
2560 * So __mem_cgroup_try_charge() will return
2561 * 0 ... on success, filling *ptr with a valid memcg pointer.
2562 * -ENOMEM ... charge failure because of resource limits.
2563 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2564 *
2565 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2566 * the oom-killer can be invoked.
8a9f3ccd 2567 */
f817ed48 2568static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2569 gfp_t gfp_mask,
7ec99d62 2570 unsigned int nr_pages,
c0ff4b85 2571 struct mem_cgroup **ptr,
7ec99d62 2572 bool oom)
8a9f3ccd 2573{
7ec99d62 2574 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2575 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2576 struct mem_cgroup *memcg = NULL;
4b534334 2577 int ret;
a636b327 2578
867578cb
KH
2579 /*
2580 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2581 * in system level. So, allow to go ahead dying process in addition to
2582 * MEMDIE process.
2583 */
2584 if (unlikely(test_thread_flag(TIF_MEMDIE)
2585 || fatal_signal_pending(current)))
2586 goto bypass;
a636b327 2587
8a9f3ccd 2588 /*
3be91277
HD
2589 * We always charge the cgroup the mm_struct belongs to.
2590 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2591 * thread group leader migrates. It's possible that mm is not
24467cac 2592 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2593 */
c0ff4b85 2594 if (!*ptr && !mm)
38c5d72f 2595 *ptr = root_mem_cgroup;
f75ca962 2596again:
c0ff4b85
R
2597 if (*ptr) { /* css should be a valid one */
2598 memcg = *ptr;
c0ff4b85 2599 if (mem_cgroup_is_root(memcg))
f75ca962 2600 goto done;
a0956d54 2601 if (consume_stock(memcg, nr_pages))
f75ca962 2602 goto done;
c0ff4b85 2603 css_get(&memcg->css);
4b534334 2604 } else {
f75ca962 2605 struct task_struct *p;
54595fe2 2606
f75ca962
KH
2607 rcu_read_lock();
2608 p = rcu_dereference(mm->owner);
f75ca962 2609 /*
ebb76ce1 2610 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2611 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2612 * race with swapoff. Then, we have small risk of mis-accouning.
2613 * But such kind of mis-account by race always happens because
2614 * we don't have cgroup_mutex(). It's overkill and we allo that
2615 * small race, here.
2616 * (*) swapoff at el will charge against mm-struct not against
2617 * task-struct. So, mm->owner can be NULL.
f75ca962 2618 */
c0ff4b85 2619 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2620 if (!memcg)
2621 memcg = root_mem_cgroup;
2622 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2623 rcu_read_unlock();
2624 goto done;
2625 }
a0956d54 2626 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2627 /*
2628 * It seems dagerous to access memcg without css_get().
2629 * But considering how consume_stok works, it's not
2630 * necessary. If consume_stock success, some charges
2631 * from this memcg are cached on this cpu. So, we
2632 * don't need to call css_get()/css_tryget() before
2633 * calling consume_stock().
2634 */
2635 rcu_read_unlock();
2636 goto done;
2637 }
2638 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2639 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2640 rcu_read_unlock();
2641 goto again;
2642 }
2643 rcu_read_unlock();
2644 }
8a9f3ccd 2645
4b534334 2646 do {
3812c8c8 2647 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2648
4b534334 2649 /* If killed, bypass charge */
f75ca962 2650 if (fatal_signal_pending(current)) {
c0ff4b85 2651 css_put(&memcg->css);
4b534334 2652 goto bypass;
f75ca962 2653 }
6d61ef40 2654
3812c8c8
JW
2655 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2656 nr_pages, invoke_oom);
4b534334
KH
2657 switch (ret) {
2658 case CHARGE_OK:
2659 break;
2660 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2661 batch = nr_pages;
c0ff4b85
R
2662 css_put(&memcg->css);
2663 memcg = NULL;
f75ca962 2664 goto again;
4b534334 2665 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2666 css_put(&memcg->css);
4b534334
KH
2667 goto nomem;
2668 case CHARGE_NOMEM: /* OOM routine works */
3812c8c8 2669 if (!oom || invoke_oom) {
c0ff4b85 2670 css_put(&memcg->css);
867578cb 2671 goto nomem;
f75ca962 2672 }
4b534334
KH
2673 nr_oom_retries--;
2674 break;
66e1707b 2675 }
4b534334
KH
2676 } while (ret != CHARGE_OK);
2677
7ec99d62 2678 if (batch > nr_pages)
c0ff4b85
R
2679 refill_stock(memcg, batch - nr_pages);
2680 css_put(&memcg->css);
0c3e73e8 2681done:
c0ff4b85 2682 *ptr = memcg;
7a81b88c
KH
2683 return 0;
2684nomem:
c0ff4b85 2685 *ptr = NULL;
7a81b88c 2686 return -ENOMEM;
867578cb 2687bypass:
38c5d72f
KH
2688 *ptr = root_mem_cgroup;
2689 return -EINTR;
7a81b88c 2690}
8a9f3ccd 2691
a3032a2c
DN
2692/*
2693 * Somemtimes we have to undo a charge we got by try_charge().
2694 * This function is for that and do uncharge, put css's refcnt.
2695 * gotten by try_charge().
2696 */
c0ff4b85 2697static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2698 unsigned int nr_pages)
a3032a2c 2699{
c0ff4b85 2700 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2701 unsigned long bytes = nr_pages * PAGE_SIZE;
2702
c0ff4b85 2703 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2704 if (do_swap_account)
c0ff4b85 2705 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2706 }
854ffa8d
DN
2707}
2708
d01dd17f
KH
2709/*
2710 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2711 * This is useful when moving usage to parent cgroup.
2712 */
2713static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2714 unsigned int nr_pages)
2715{
2716 unsigned long bytes = nr_pages * PAGE_SIZE;
2717
2718 if (mem_cgroup_is_root(memcg))
2719 return;
2720
2721 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2722 if (do_swap_account)
2723 res_counter_uncharge_until(&memcg->memsw,
2724 memcg->memsw.parent, bytes);
2725}
2726
a3b2d692
KH
2727/*
2728 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2729 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2730 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2731 * called against removed memcg.)
a3b2d692
KH
2732 */
2733static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2734{
a3b2d692
KH
2735 /* ID 0 is unused ID */
2736 if (!id)
2737 return NULL;
34c00c31 2738 return mem_cgroup_from_id(id);
a3b2d692
KH
2739}
2740
e42d9d5d 2741struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2742{
c0ff4b85 2743 struct mem_cgroup *memcg = NULL;
3c776e64 2744 struct page_cgroup *pc;
a3b2d692 2745 unsigned short id;
b5a84319
KH
2746 swp_entry_t ent;
2747
3c776e64
DN
2748 VM_BUG_ON(!PageLocked(page));
2749
3c776e64 2750 pc = lookup_page_cgroup(page);
c0bd3f63 2751 lock_page_cgroup(pc);
a3b2d692 2752 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2753 memcg = pc->mem_cgroup;
2754 if (memcg && !css_tryget(&memcg->css))
2755 memcg = NULL;
e42d9d5d 2756 } else if (PageSwapCache(page)) {
3c776e64 2757 ent.val = page_private(page);
9fb4b7cc 2758 id = lookup_swap_cgroup_id(ent);
a3b2d692 2759 rcu_read_lock();
c0ff4b85
R
2760 memcg = mem_cgroup_lookup(id);
2761 if (memcg && !css_tryget(&memcg->css))
2762 memcg = NULL;
a3b2d692 2763 rcu_read_unlock();
3c776e64 2764 }
c0bd3f63 2765 unlock_page_cgroup(pc);
c0ff4b85 2766 return memcg;
b5a84319
KH
2767}
2768
c0ff4b85 2769static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2770 struct page *page,
7ec99d62 2771 unsigned int nr_pages,
9ce70c02
HD
2772 enum charge_type ctype,
2773 bool lrucare)
7a81b88c 2774{
ce587e65 2775 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2776 struct zone *uninitialized_var(zone);
fa9add64 2777 struct lruvec *lruvec;
9ce70c02 2778 bool was_on_lru = false;
b2402857 2779 bool anon;
9ce70c02 2780
ca3e0214 2781 lock_page_cgroup(pc);
90deb788 2782 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2783 /*
2784 * we don't need page_cgroup_lock about tail pages, becase they are not
2785 * accessed by any other context at this point.
2786 */
9ce70c02
HD
2787
2788 /*
2789 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2790 * may already be on some other mem_cgroup's LRU. Take care of it.
2791 */
2792 if (lrucare) {
2793 zone = page_zone(page);
2794 spin_lock_irq(&zone->lru_lock);
2795 if (PageLRU(page)) {
fa9add64 2796 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2797 ClearPageLRU(page);
fa9add64 2798 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2799 was_on_lru = true;
2800 }
2801 }
2802
c0ff4b85 2803 pc->mem_cgroup = memcg;
261fb61a
KH
2804 /*
2805 * We access a page_cgroup asynchronously without lock_page_cgroup().
2806 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2807 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2808 * before USED bit, we need memory barrier here.
2809 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2810 */
08e552c6 2811 smp_wmb();
b2402857 2812 SetPageCgroupUsed(pc);
3be91277 2813
9ce70c02
HD
2814 if (lrucare) {
2815 if (was_on_lru) {
fa9add64 2816 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2817 VM_BUG_ON(PageLRU(page));
2818 SetPageLRU(page);
fa9add64 2819 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2820 }
2821 spin_unlock_irq(&zone->lru_lock);
2822 }
2823
41326c17 2824 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2825 anon = true;
2826 else
2827 anon = false;
2828
b070e65c 2829 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2830 unlock_page_cgroup(pc);
9ce70c02 2831
430e4863 2832 /*
e883110a 2833 * "charge_statistics" updated event counter.
430e4863 2834 */
c0ff4b85 2835 memcg_check_events(memcg, page);
7a81b88c 2836}
66e1707b 2837
7cf27982
GC
2838static DEFINE_MUTEX(set_limit_mutex);
2839
7ae1e1d0
GC
2840#ifdef CONFIG_MEMCG_KMEM
2841static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2842{
2843 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2844 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2845}
2846
1f458cbf
GC
2847/*
2848 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2849 * in the memcg_cache_params struct.
2850 */
2851static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2852{
2853 struct kmem_cache *cachep;
2854
2855 VM_BUG_ON(p->is_root_cache);
2856 cachep = p->root_cache;
2857 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2858}
2859
749c5415 2860#ifdef CONFIG_SLABINFO
182446d0
TH
2861static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2862 struct cftype *cft, struct seq_file *m)
749c5415 2863{
182446d0 2864 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
749c5415
GC
2865 struct memcg_cache_params *params;
2866
2867 if (!memcg_can_account_kmem(memcg))
2868 return -EIO;
2869
2870 print_slabinfo_header(m);
2871
2872 mutex_lock(&memcg->slab_caches_mutex);
2873 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2874 cache_show(memcg_params_to_cache(params), m);
2875 mutex_unlock(&memcg->slab_caches_mutex);
2876
2877 return 0;
2878}
2879#endif
2880
7ae1e1d0
GC
2881static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2882{
2883 struct res_counter *fail_res;
2884 struct mem_cgroup *_memcg;
2885 int ret = 0;
2886 bool may_oom;
2887
2888 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2889 if (ret)
2890 return ret;
2891
2892 /*
2893 * Conditions under which we can wait for the oom_killer. Those are
2894 * the same conditions tested by the core page allocator
2895 */
2896 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2897
2898 _memcg = memcg;
2899 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2900 &_memcg, may_oom);
2901
2902 if (ret == -EINTR) {
2903 /*
2904 * __mem_cgroup_try_charge() chosed to bypass to root due to
2905 * OOM kill or fatal signal. Since our only options are to
2906 * either fail the allocation or charge it to this cgroup, do
2907 * it as a temporary condition. But we can't fail. From a
2908 * kmem/slab perspective, the cache has already been selected,
2909 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2910 * our minds.
2911 *
2912 * This condition will only trigger if the task entered
2913 * memcg_charge_kmem in a sane state, but was OOM-killed during
2914 * __mem_cgroup_try_charge() above. Tasks that were already
2915 * dying when the allocation triggers should have been already
2916 * directed to the root cgroup in memcontrol.h
2917 */
2918 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2919 if (do_swap_account)
2920 res_counter_charge_nofail(&memcg->memsw, size,
2921 &fail_res);
2922 ret = 0;
2923 } else if (ret)
2924 res_counter_uncharge(&memcg->kmem, size);
2925
2926 return ret;
2927}
2928
2929static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2930{
7ae1e1d0
GC
2931 res_counter_uncharge(&memcg->res, size);
2932 if (do_swap_account)
2933 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2934
2935 /* Not down to 0 */
2936 if (res_counter_uncharge(&memcg->kmem, size))
2937 return;
2938
10d5ebf4
LZ
2939 /*
2940 * Releases a reference taken in kmem_cgroup_css_offline in case
2941 * this last uncharge is racing with the offlining code or it is
2942 * outliving the memcg existence.
2943 *
2944 * The memory barrier imposed by test&clear is paired with the
2945 * explicit one in memcg_kmem_mark_dead().
2946 */
7de37682 2947 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 2948 css_put(&memcg->css);
7ae1e1d0
GC
2949}
2950
2633d7a0
GC
2951void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2952{
2953 if (!memcg)
2954 return;
2955
2956 mutex_lock(&memcg->slab_caches_mutex);
2957 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2958 mutex_unlock(&memcg->slab_caches_mutex);
2959}
2960
2961/*
2962 * helper for acessing a memcg's index. It will be used as an index in the
2963 * child cache array in kmem_cache, and also to derive its name. This function
2964 * will return -1 when this is not a kmem-limited memcg.
2965 */
2966int memcg_cache_id(struct mem_cgroup *memcg)
2967{
2968 return memcg ? memcg->kmemcg_id : -1;
2969}
2970
55007d84
GC
2971/*
2972 * This ends up being protected by the set_limit mutex, during normal
2973 * operation, because that is its main call site.
2974 *
2975 * But when we create a new cache, we can call this as well if its parent
2976 * is kmem-limited. That will have to hold set_limit_mutex as well.
2977 */
2978int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2979{
2980 int num, ret;
2981
2982 num = ida_simple_get(&kmem_limited_groups,
2983 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2984 if (num < 0)
2985 return num;
2986 /*
2987 * After this point, kmem_accounted (that we test atomically in
2988 * the beginning of this conditional), is no longer 0. This
2989 * guarantees only one process will set the following boolean
2990 * to true. We don't need test_and_set because we're protected
2991 * by the set_limit_mutex anyway.
2992 */
2993 memcg_kmem_set_activated(memcg);
2994
2995 ret = memcg_update_all_caches(num+1);
2996 if (ret) {
2997 ida_simple_remove(&kmem_limited_groups, num);
2998 memcg_kmem_clear_activated(memcg);
2999 return ret;
3000 }
3001
3002 memcg->kmemcg_id = num;
3003 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3004 mutex_init(&memcg->slab_caches_mutex);
3005 return 0;
3006}
3007
3008static size_t memcg_caches_array_size(int num_groups)
3009{
3010 ssize_t size;
3011 if (num_groups <= 0)
3012 return 0;
3013
3014 size = 2 * num_groups;
3015 if (size < MEMCG_CACHES_MIN_SIZE)
3016 size = MEMCG_CACHES_MIN_SIZE;
3017 else if (size > MEMCG_CACHES_MAX_SIZE)
3018 size = MEMCG_CACHES_MAX_SIZE;
3019
3020 return size;
3021}
3022
3023/*
3024 * We should update the current array size iff all caches updates succeed. This
3025 * can only be done from the slab side. The slab mutex needs to be held when
3026 * calling this.
3027 */
3028void memcg_update_array_size(int num)
3029{
3030 if (num > memcg_limited_groups_array_size)
3031 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3032}
3033
15cf17d2
KK
3034static void kmem_cache_destroy_work_func(struct work_struct *w);
3035
55007d84
GC
3036int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3037{
3038 struct memcg_cache_params *cur_params = s->memcg_params;
3039
3040 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3041
3042 if (num_groups > memcg_limited_groups_array_size) {
3043 int i;
3044 ssize_t size = memcg_caches_array_size(num_groups);
3045
3046 size *= sizeof(void *);
90c7a79c 3047 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84
GC
3048
3049 s->memcg_params = kzalloc(size, GFP_KERNEL);
3050 if (!s->memcg_params) {
3051 s->memcg_params = cur_params;
3052 return -ENOMEM;
3053 }
3054
3055 s->memcg_params->is_root_cache = true;
3056
3057 /*
3058 * There is the chance it will be bigger than
3059 * memcg_limited_groups_array_size, if we failed an allocation
3060 * in a cache, in which case all caches updated before it, will
3061 * have a bigger array.
3062 *
3063 * But if that is the case, the data after
3064 * memcg_limited_groups_array_size is certainly unused
3065 */
3066 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3067 if (!cur_params->memcg_caches[i])
3068 continue;
3069 s->memcg_params->memcg_caches[i] =
3070 cur_params->memcg_caches[i];
3071 }
3072
3073 /*
3074 * Ideally, we would wait until all caches succeed, and only
3075 * then free the old one. But this is not worth the extra
3076 * pointer per-cache we'd have to have for this.
3077 *
3078 * It is not a big deal if some caches are left with a size
3079 * bigger than the others. And all updates will reset this
3080 * anyway.
3081 */
3082 kfree(cur_params);
3083 }
3084 return 0;
3085}
3086
943a451a
GC
3087int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3088 struct kmem_cache *root_cache)
2633d7a0 3089{
90c7a79c 3090 size_t size;
2633d7a0
GC
3091
3092 if (!memcg_kmem_enabled())
3093 return 0;
3094
90c7a79c
AV
3095 if (!memcg) {
3096 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3097 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3098 } else
3099 size = sizeof(struct memcg_cache_params);
55007d84 3100
2633d7a0
GC
3101 s->memcg_params = kzalloc(size, GFP_KERNEL);
3102 if (!s->memcg_params)
3103 return -ENOMEM;
3104
943a451a 3105 if (memcg) {
2633d7a0 3106 s->memcg_params->memcg = memcg;
943a451a 3107 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3108 INIT_WORK(&s->memcg_params->destroy,
3109 kmem_cache_destroy_work_func);
4ba902b5
GC
3110 } else
3111 s->memcg_params->is_root_cache = true;
3112
2633d7a0
GC
3113 return 0;
3114}
3115
3116void memcg_release_cache(struct kmem_cache *s)
3117{
d7f25f8a
GC
3118 struct kmem_cache *root;
3119 struct mem_cgroup *memcg;
3120 int id;
3121
3122 /*
3123 * This happens, for instance, when a root cache goes away before we
3124 * add any memcg.
3125 */
3126 if (!s->memcg_params)
3127 return;
3128
3129 if (s->memcg_params->is_root_cache)
3130 goto out;
3131
3132 memcg = s->memcg_params->memcg;
3133 id = memcg_cache_id(memcg);
3134
3135 root = s->memcg_params->root_cache;
3136 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3137
3138 mutex_lock(&memcg->slab_caches_mutex);
3139 list_del(&s->memcg_params->list);
3140 mutex_unlock(&memcg->slab_caches_mutex);
3141
20f05310 3142 css_put(&memcg->css);
d7f25f8a 3143out:
2633d7a0
GC
3144 kfree(s->memcg_params);
3145}
3146
0e9d92f2
GC
3147/*
3148 * During the creation a new cache, we need to disable our accounting mechanism
3149 * altogether. This is true even if we are not creating, but rather just
3150 * enqueing new caches to be created.
3151 *
3152 * This is because that process will trigger allocations; some visible, like
3153 * explicit kmallocs to auxiliary data structures, name strings and internal
3154 * cache structures; some well concealed, like INIT_WORK() that can allocate
3155 * objects during debug.
3156 *
3157 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3158 * to it. This may not be a bounded recursion: since the first cache creation
3159 * failed to complete (waiting on the allocation), we'll just try to create the
3160 * cache again, failing at the same point.
3161 *
3162 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3163 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3164 * inside the following two functions.
3165 */
3166static inline void memcg_stop_kmem_account(void)
3167{
3168 VM_BUG_ON(!current->mm);
3169 current->memcg_kmem_skip_account++;
3170}
3171
3172static inline void memcg_resume_kmem_account(void)
3173{
3174 VM_BUG_ON(!current->mm);
3175 current->memcg_kmem_skip_account--;
3176}
3177
1f458cbf
GC
3178static void kmem_cache_destroy_work_func(struct work_struct *w)
3179{
3180 struct kmem_cache *cachep;
3181 struct memcg_cache_params *p;
3182
3183 p = container_of(w, struct memcg_cache_params, destroy);
3184
3185 cachep = memcg_params_to_cache(p);
3186
22933152
GC
3187 /*
3188 * If we get down to 0 after shrink, we could delete right away.
3189 * However, memcg_release_pages() already puts us back in the workqueue
3190 * in that case. If we proceed deleting, we'll get a dangling
3191 * reference, and removing the object from the workqueue in that case
3192 * is unnecessary complication. We are not a fast path.
3193 *
3194 * Note that this case is fundamentally different from racing with
3195 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3196 * kmem_cache_shrink, not only we would be reinserting a dead cache
3197 * into the queue, but doing so from inside the worker racing to
3198 * destroy it.
3199 *
3200 * So if we aren't down to zero, we'll just schedule a worker and try
3201 * again
3202 */
3203 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3204 kmem_cache_shrink(cachep);
3205 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3206 return;
3207 } else
1f458cbf
GC
3208 kmem_cache_destroy(cachep);
3209}
3210
3211void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3212{
3213 if (!cachep->memcg_params->dead)
3214 return;
3215
22933152
GC
3216 /*
3217 * There are many ways in which we can get here.
3218 *
3219 * We can get to a memory-pressure situation while the delayed work is
3220 * still pending to run. The vmscan shrinkers can then release all
3221 * cache memory and get us to destruction. If this is the case, we'll
3222 * be executed twice, which is a bug (the second time will execute over
3223 * bogus data). In this case, cancelling the work should be fine.
3224 *
3225 * But we can also get here from the worker itself, if
3226 * kmem_cache_shrink is enough to shake all the remaining objects and
3227 * get the page count to 0. In this case, we'll deadlock if we try to
3228 * cancel the work (the worker runs with an internal lock held, which
3229 * is the same lock we would hold for cancel_work_sync().)
3230 *
3231 * Since we can't possibly know who got us here, just refrain from
3232 * running if there is already work pending
3233 */
3234 if (work_pending(&cachep->memcg_params->destroy))
3235 return;
1f458cbf
GC
3236 /*
3237 * We have to defer the actual destroying to a workqueue, because
3238 * we might currently be in a context that cannot sleep.
3239 */
3240 schedule_work(&cachep->memcg_params->destroy);
3241}
3242
d9c10ddd
MH
3243/*
3244 * This lock protects updaters, not readers. We want readers to be as fast as
3245 * they can, and they will either see NULL or a valid cache value. Our model
3246 * allow them to see NULL, in which case the root memcg will be selected.
3247 *
3248 * We need this lock because multiple allocations to the same cache from a non
3249 * will span more than one worker. Only one of them can create the cache.
3250 */
3251static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3252
d9c10ddd
MH
3253/*
3254 * Called with memcg_cache_mutex held
3255 */
d7f25f8a
GC
3256static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3257 struct kmem_cache *s)
3258{
d7f25f8a 3259 struct kmem_cache *new;
d9c10ddd 3260 static char *tmp_name = NULL;
d7f25f8a 3261
d9c10ddd
MH
3262 lockdep_assert_held(&memcg_cache_mutex);
3263
3264 /*
3265 * kmem_cache_create_memcg duplicates the given name and
3266 * cgroup_name for this name requires RCU context.
3267 * This static temporary buffer is used to prevent from
3268 * pointless shortliving allocation.
3269 */
3270 if (!tmp_name) {
3271 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3272 if (!tmp_name)
3273 return NULL;
3274 }
3275
3276 rcu_read_lock();
3277 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3278 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3279 rcu_read_unlock();
d7f25f8a 3280
d9c10ddd 3281 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3282 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3283
d79923fa
GC
3284 if (new)
3285 new->allocflags |= __GFP_KMEMCG;
3286
d7f25f8a
GC
3287 return new;
3288}
3289
d7f25f8a
GC
3290static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3291 struct kmem_cache *cachep)
3292{
3293 struct kmem_cache *new_cachep;
3294 int idx;
3295
3296 BUG_ON(!memcg_can_account_kmem(memcg));
3297
3298 idx = memcg_cache_id(memcg);
3299
3300 mutex_lock(&memcg_cache_mutex);
3301 new_cachep = cachep->memcg_params->memcg_caches[idx];
20f05310
LZ
3302 if (new_cachep) {
3303 css_put(&memcg->css);
d7f25f8a 3304 goto out;
20f05310 3305 }
d7f25f8a
GC
3306
3307 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3308 if (new_cachep == NULL) {
3309 new_cachep = cachep;
20f05310 3310 css_put(&memcg->css);
d7f25f8a
GC
3311 goto out;
3312 }
3313
1f458cbf 3314 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3315
3316 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3317 /*
3318 * the readers won't lock, make sure everybody sees the updated value,
3319 * so they won't put stuff in the queue again for no reason
3320 */
3321 wmb();
3322out:
3323 mutex_unlock(&memcg_cache_mutex);
3324 return new_cachep;
3325}
3326
7cf27982
GC
3327void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3328{
3329 struct kmem_cache *c;
3330 int i;
3331
3332 if (!s->memcg_params)
3333 return;
3334 if (!s->memcg_params->is_root_cache)
3335 return;
3336
3337 /*
3338 * If the cache is being destroyed, we trust that there is no one else
3339 * requesting objects from it. Even if there are, the sanity checks in
3340 * kmem_cache_destroy should caught this ill-case.
3341 *
3342 * Still, we don't want anyone else freeing memcg_caches under our
3343 * noses, which can happen if a new memcg comes to life. As usual,
3344 * we'll take the set_limit_mutex to protect ourselves against this.
3345 */
3346 mutex_lock(&set_limit_mutex);
3347 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3348 c = s->memcg_params->memcg_caches[i];
3349 if (!c)
3350 continue;
3351
3352 /*
3353 * We will now manually delete the caches, so to avoid races
3354 * we need to cancel all pending destruction workers and
3355 * proceed with destruction ourselves.
3356 *
3357 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3358 * and that could spawn the workers again: it is likely that
3359 * the cache still have active pages until this very moment.
3360 * This would lead us back to mem_cgroup_destroy_cache.
3361 *
3362 * But that will not execute at all if the "dead" flag is not
3363 * set, so flip it down to guarantee we are in control.
3364 */
3365 c->memcg_params->dead = false;
22933152 3366 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3367 kmem_cache_destroy(c);
3368 }
3369 mutex_unlock(&set_limit_mutex);
3370}
3371
d7f25f8a
GC
3372struct create_work {
3373 struct mem_cgroup *memcg;
3374 struct kmem_cache *cachep;
3375 struct work_struct work;
3376};
3377
1f458cbf
GC
3378static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3379{
3380 struct kmem_cache *cachep;
3381 struct memcg_cache_params *params;
3382
3383 if (!memcg_kmem_is_active(memcg))
3384 return;
3385
3386 mutex_lock(&memcg->slab_caches_mutex);
3387 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3388 cachep = memcg_params_to_cache(params);
3389 cachep->memcg_params->dead = true;
1f458cbf
GC
3390 schedule_work(&cachep->memcg_params->destroy);
3391 }
3392 mutex_unlock(&memcg->slab_caches_mutex);
3393}
3394
d7f25f8a
GC
3395static void memcg_create_cache_work_func(struct work_struct *w)
3396{
3397 struct create_work *cw;
3398
3399 cw = container_of(w, struct create_work, work);
3400 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3401 kfree(cw);
3402}
3403
3404/*
3405 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3406 */
0e9d92f2
GC
3407static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3408 struct kmem_cache *cachep)
d7f25f8a
GC
3409{
3410 struct create_work *cw;
3411
3412 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3413 if (cw == NULL) {
3414 css_put(&memcg->css);
d7f25f8a
GC
3415 return;
3416 }
3417
3418 cw->memcg = memcg;
3419 cw->cachep = cachep;
3420
3421 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3422 schedule_work(&cw->work);
3423}
3424
0e9d92f2
GC
3425static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3426 struct kmem_cache *cachep)
3427{
3428 /*
3429 * We need to stop accounting when we kmalloc, because if the
3430 * corresponding kmalloc cache is not yet created, the first allocation
3431 * in __memcg_create_cache_enqueue will recurse.
3432 *
3433 * However, it is better to enclose the whole function. Depending on
3434 * the debugging options enabled, INIT_WORK(), for instance, can
3435 * trigger an allocation. This too, will make us recurse. Because at
3436 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3437 * the safest choice is to do it like this, wrapping the whole function.
3438 */
3439 memcg_stop_kmem_account();
3440 __memcg_create_cache_enqueue(memcg, cachep);
3441 memcg_resume_kmem_account();
3442}
d7f25f8a
GC
3443/*
3444 * Return the kmem_cache we're supposed to use for a slab allocation.
3445 * We try to use the current memcg's version of the cache.
3446 *
3447 * If the cache does not exist yet, if we are the first user of it,
3448 * we either create it immediately, if possible, or create it asynchronously
3449 * in a workqueue.
3450 * In the latter case, we will let the current allocation go through with
3451 * the original cache.
3452 *
3453 * Can't be called in interrupt context or from kernel threads.
3454 * This function needs to be called with rcu_read_lock() held.
3455 */
3456struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3457 gfp_t gfp)
3458{
3459 struct mem_cgroup *memcg;
3460 int idx;
3461
3462 VM_BUG_ON(!cachep->memcg_params);
3463 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3464
0e9d92f2
GC
3465 if (!current->mm || current->memcg_kmem_skip_account)
3466 return cachep;
3467
d7f25f8a
GC
3468 rcu_read_lock();
3469 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3470
3471 if (!memcg_can_account_kmem(memcg))
ca0dde97 3472 goto out;
d7f25f8a
GC
3473
3474 idx = memcg_cache_id(memcg);
3475
3476 /*
3477 * barrier to mare sure we're always seeing the up to date value. The
3478 * code updating memcg_caches will issue a write barrier to match this.
3479 */
3480 read_barrier_depends();
ca0dde97
LZ
3481 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3482 cachep = cachep->memcg_params->memcg_caches[idx];
3483 goto out;
d7f25f8a
GC
3484 }
3485
ca0dde97
LZ
3486 /* The corresponding put will be done in the workqueue. */
3487 if (!css_tryget(&memcg->css))
3488 goto out;
3489 rcu_read_unlock();
3490
3491 /*
3492 * If we are in a safe context (can wait, and not in interrupt
3493 * context), we could be be predictable and return right away.
3494 * This would guarantee that the allocation being performed
3495 * already belongs in the new cache.
3496 *
3497 * However, there are some clashes that can arrive from locking.
3498 * For instance, because we acquire the slab_mutex while doing
3499 * kmem_cache_dup, this means no further allocation could happen
3500 * with the slab_mutex held.
3501 *
3502 * Also, because cache creation issue get_online_cpus(), this
3503 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3504 * that ends up reversed during cpu hotplug. (cpuset allocates
3505 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3506 * better to defer everything.
3507 */
3508 memcg_create_cache_enqueue(memcg, cachep);
3509 return cachep;
3510out:
3511 rcu_read_unlock();
3512 return cachep;
d7f25f8a
GC
3513}
3514EXPORT_SYMBOL(__memcg_kmem_get_cache);
3515
7ae1e1d0
GC
3516/*
3517 * We need to verify if the allocation against current->mm->owner's memcg is
3518 * possible for the given order. But the page is not allocated yet, so we'll
3519 * need a further commit step to do the final arrangements.
3520 *
3521 * It is possible for the task to switch cgroups in this mean time, so at
3522 * commit time, we can't rely on task conversion any longer. We'll then use
3523 * the handle argument to return to the caller which cgroup we should commit
3524 * against. We could also return the memcg directly and avoid the pointer
3525 * passing, but a boolean return value gives better semantics considering
3526 * the compiled-out case as well.
3527 *
3528 * Returning true means the allocation is possible.
3529 */
3530bool
3531__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3532{
3533 struct mem_cgroup *memcg;
3534 int ret;
3535
3536 *_memcg = NULL;
6d42c232
GC
3537
3538 /*
3539 * Disabling accounting is only relevant for some specific memcg
3540 * internal allocations. Therefore we would initially not have such
3541 * check here, since direct calls to the page allocator that are marked
3542 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3543 * concerned with cache allocations, and by having this test at
3544 * memcg_kmem_get_cache, we are already able to relay the allocation to
3545 * the root cache and bypass the memcg cache altogether.
3546 *
3547 * There is one exception, though: the SLUB allocator does not create
3548 * large order caches, but rather service large kmallocs directly from
3549 * the page allocator. Therefore, the following sequence when backed by
3550 * the SLUB allocator:
3551 *
f894ffa8
AM
3552 * memcg_stop_kmem_account();
3553 * kmalloc(<large_number>)
3554 * memcg_resume_kmem_account();
6d42c232
GC
3555 *
3556 * would effectively ignore the fact that we should skip accounting,
3557 * since it will drive us directly to this function without passing
3558 * through the cache selector memcg_kmem_get_cache. Such large
3559 * allocations are extremely rare but can happen, for instance, for the
3560 * cache arrays. We bring this test here.
3561 */
3562 if (!current->mm || current->memcg_kmem_skip_account)
3563 return true;
3564
7ae1e1d0
GC
3565 memcg = try_get_mem_cgroup_from_mm(current->mm);
3566
3567 /*
3568 * very rare case described in mem_cgroup_from_task. Unfortunately there
3569 * isn't much we can do without complicating this too much, and it would
3570 * be gfp-dependent anyway. Just let it go
3571 */
3572 if (unlikely(!memcg))
3573 return true;
3574
3575 if (!memcg_can_account_kmem(memcg)) {
3576 css_put(&memcg->css);
3577 return true;
3578 }
3579
7ae1e1d0
GC
3580 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3581 if (!ret)
3582 *_memcg = memcg;
7ae1e1d0
GC
3583
3584 css_put(&memcg->css);
3585 return (ret == 0);
3586}
3587
3588void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3589 int order)
3590{
3591 struct page_cgroup *pc;
3592
3593 VM_BUG_ON(mem_cgroup_is_root(memcg));
3594
3595 /* The page allocation failed. Revert */
3596 if (!page) {
3597 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3598 return;
3599 }
3600
3601 pc = lookup_page_cgroup(page);
3602 lock_page_cgroup(pc);
3603 pc->mem_cgroup = memcg;
3604 SetPageCgroupUsed(pc);
3605 unlock_page_cgroup(pc);
3606}
3607
3608void __memcg_kmem_uncharge_pages(struct page *page, int order)
3609{
3610 struct mem_cgroup *memcg = NULL;
3611 struct page_cgroup *pc;
3612
3613
3614 pc = lookup_page_cgroup(page);
3615 /*
3616 * Fast unlocked return. Theoretically might have changed, have to
3617 * check again after locking.
3618 */
3619 if (!PageCgroupUsed(pc))
3620 return;
3621
3622 lock_page_cgroup(pc);
3623 if (PageCgroupUsed(pc)) {
3624 memcg = pc->mem_cgroup;
3625 ClearPageCgroupUsed(pc);
3626 }
3627 unlock_page_cgroup(pc);
3628
3629 /*
3630 * We trust that only if there is a memcg associated with the page, it
3631 * is a valid allocation
3632 */
3633 if (!memcg)
3634 return;
3635
3636 VM_BUG_ON(mem_cgroup_is_root(memcg));
3637 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3638}
1f458cbf
GC
3639#else
3640static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3641{
3642}
7ae1e1d0
GC
3643#endif /* CONFIG_MEMCG_KMEM */
3644
ca3e0214
KH
3645#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3646
a0db00fc 3647#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3648/*
3649 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3650 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3651 * charge/uncharge will be never happen and move_account() is done under
3652 * compound_lock(), so we don't have to take care of races.
ca3e0214 3653 */
e94c8a9c 3654void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3655{
3656 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3657 struct page_cgroup *pc;
b070e65c 3658 struct mem_cgroup *memcg;
e94c8a9c 3659 int i;
ca3e0214 3660
3d37c4a9
KH
3661 if (mem_cgroup_disabled())
3662 return;
b070e65c
DR
3663
3664 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3665 for (i = 1; i < HPAGE_PMD_NR; i++) {
3666 pc = head_pc + i;
b070e65c 3667 pc->mem_cgroup = memcg;
e94c8a9c 3668 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3669 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3670 }
b070e65c
DR
3671 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3672 HPAGE_PMD_NR);
ca3e0214 3673}
12d27107 3674#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3675
3ea67d06
SZ
3676static inline
3677void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
3678 struct mem_cgroup *to,
3679 unsigned int nr_pages,
3680 enum mem_cgroup_stat_index idx)
3681{
3682 /* Update stat data for mem_cgroup */
3683 preempt_disable();
3684 WARN_ON_ONCE(from->stat->count[idx] < nr_pages);
3685 __this_cpu_add(from->stat->count[idx], -nr_pages);
3686 __this_cpu_add(to->stat->count[idx], nr_pages);
3687 preempt_enable();
3688}
3689
f817ed48 3690/**
de3638d9 3691 * mem_cgroup_move_account - move account of the page
5564e88b 3692 * @page: the page
7ec99d62 3693 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3694 * @pc: page_cgroup of the page.
3695 * @from: mem_cgroup which the page is moved from.
3696 * @to: mem_cgroup which the page is moved to. @from != @to.
3697 *
3698 * The caller must confirm following.
08e552c6 3699 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3700 * - compound_lock is held when nr_pages > 1
f817ed48 3701 *
2f3479b1
KH
3702 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3703 * from old cgroup.
f817ed48 3704 */
7ec99d62
JW
3705static int mem_cgroup_move_account(struct page *page,
3706 unsigned int nr_pages,
3707 struct page_cgroup *pc,
3708 struct mem_cgroup *from,
2f3479b1 3709 struct mem_cgroup *to)
f817ed48 3710{
de3638d9
JW
3711 unsigned long flags;
3712 int ret;
b2402857 3713 bool anon = PageAnon(page);
987eba66 3714
f817ed48 3715 VM_BUG_ON(from == to);
5564e88b 3716 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3717 /*
3718 * The page is isolated from LRU. So, collapse function
3719 * will not handle this page. But page splitting can happen.
3720 * Do this check under compound_page_lock(). The caller should
3721 * hold it.
3722 */
3723 ret = -EBUSY;
7ec99d62 3724 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3725 goto out;
3726
3727 lock_page_cgroup(pc);
3728
3729 ret = -EINVAL;
3730 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3731 goto unlock;
3732
312734c0 3733 move_lock_mem_cgroup(from, &flags);
f817ed48 3734
3ea67d06
SZ
3735 if (!anon && page_mapped(page))
3736 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3737 MEM_CGROUP_STAT_FILE_MAPPED);
3738
3739 if (PageWriteback(page))
3740 mem_cgroup_move_account_page_stat(from, to, nr_pages,
3741 MEM_CGROUP_STAT_WRITEBACK);
3742
b070e65c 3743 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3744
854ffa8d 3745 /* caller should have done css_get */
08e552c6 3746 pc->mem_cgroup = to;
b070e65c 3747 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3748 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3749 ret = 0;
3750unlock:
57f9fd7d 3751 unlock_page_cgroup(pc);
d2265e6f
KH
3752 /*
3753 * check events
3754 */
5564e88b
JW
3755 memcg_check_events(to, page);
3756 memcg_check_events(from, page);
de3638d9 3757out:
f817ed48
KH
3758 return ret;
3759}
3760
2ef37d3f
MH
3761/**
3762 * mem_cgroup_move_parent - moves page to the parent group
3763 * @page: the page to move
3764 * @pc: page_cgroup of the page
3765 * @child: page's cgroup
3766 *
3767 * move charges to its parent or the root cgroup if the group has no
3768 * parent (aka use_hierarchy==0).
3769 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3770 * mem_cgroup_move_account fails) the failure is always temporary and
3771 * it signals a race with a page removal/uncharge or migration. In the
3772 * first case the page is on the way out and it will vanish from the LRU
3773 * on the next attempt and the call should be retried later.
3774 * Isolation from the LRU fails only if page has been isolated from
3775 * the LRU since we looked at it and that usually means either global
3776 * reclaim or migration going on. The page will either get back to the
3777 * LRU or vanish.
3778 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3779 * (!PageCgroupUsed) or moved to a different group. The page will
3780 * disappear in the next attempt.
f817ed48 3781 */
5564e88b
JW
3782static int mem_cgroup_move_parent(struct page *page,
3783 struct page_cgroup *pc,
6068bf01 3784 struct mem_cgroup *child)
f817ed48 3785{
f817ed48 3786 struct mem_cgroup *parent;
7ec99d62 3787 unsigned int nr_pages;
4be4489f 3788 unsigned long uninitialized_var(flags);
f817ed48
KH
3789 int ret;
3790
d8423011 3791 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3792
57f9fd7d
DN
3793 ret = -EBUSY;
3794 if (!get_page_unless_zero(page))
3795 goto out;
3796 if (isolate_lru_page(page))
3797 goto put;
52dbb905 3798
7ec99d62 3799 nr_pages = hpage_nr_pages(page);
08e552c6 3800
cc926f78
KH
3801 parent = parent_mem_cgroup(child);
3802 /*
3803 * If no parent, move charges to root cgroup.
3804 */
3805 if (!parent)
3806 parent = root_mem_cgroup;
f817ed48 3807
2ef37d3f
MH
3808 if (nr_pages > 1) {
3809 VM_BUG_ON(!PageTransHuge(page));
987eba66 3810 flags = compound_lock_irqsave(page);
2ef37d3f 3811 }
987eba66 3812
cc926f78 3813 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3814 pc, child, parent);
cc926f78
KH
3815 if (!ret)
3816 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3817
7ec99d62 3818 if (nr_pages > 1)
987eba66 3819 compound_unlock_irqrestore(page, flags);
08e552c6 3820 putback_lru_page(page);
57f9fd7d 3821put:
40d58138 3822 put_page(page);
57f9fd7d 3823out:
f817ed48
KH
3824 return ret;
3825}
3826
7a81b88c
KH
3827/*
3828 * Charge the memory controller for page usage.
3829 * Return
3830 * 0 if the charge was successful
3831 * < 0 if the cgroup is over its limit
3832 */
3833static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3834 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3835{
c0ff4b85 3836 struct mem_cgroup *memcg = NULL;
7ec99d62 3837 unsigned int nr_pages = 1;
8493ae43 3838 bool oom = true;
7a81b88c 3839 int ret;
ec168510 3840
37c2ac78 3841 if (PageTransHuge(page)) {
7ec99d62 3842 nr_pages <<= compound_order(page);
37c2ac78 3843 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3844 /*
3845 * Never OOM-kill a process for a huge page. The
3846 * fault handler will fall back to regular pages.
3847 */
3848 oom = false;
37c2ac78 3849 }
7a81b88c 3850
c0ff4b85 3851 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3852 if (ret == -ENOMEM)
7a81b88c 3853 return ret;
ce587e65 3854 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3855 return 0;
8a9f3ccd
BS
3856}
3857
7a81b88c
KH
3858int mem_cgroup_newpage_charge(struct page *page,
3859 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3860{
f8d66542 3861 if (mem_cgroup_disabled())
cede86ac 3862 return 0;
7a0524cf
JW
3863 VM_BUG_ON(page_mapped(page));
3864 VM_BUG_ON(page->mapping && !PageAnon(page));
3865 VM_BUG_ON(!mm);
217bc319 3866 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3867 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3868}
3869
54595fe2
KH
3870/*
3871 * While swap-in, try_charge -> commit or cancel, the page is locked.
3872 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3873 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3874 * "commit()" or removed by "cancel()"
3875 */
0435a2fd
JW
3876static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3877 struct page *page,
3878 gfp_t mask,
3879 struct mem_cgroup **memcgp)
8c7c6e34 3880{
c0ff4b85 3881 struct mem_cgroup *memcg;
90deb788 3882 struct page_cgroup *pc;
54595fe2 3883 int ret;
8c7c6e34 3884
90deb788
JW
3885 pc = lookup_page_cgroup(page);
3886 /*
3887 * Every swap fault against a single page tries to charge the
3888 * page, bail as early as possible. shmem_unuse() encounters
3889 * already charged pages, too. The USED bit is protected by
3890 * the page lock, which serializes swap cache removal, which
3891 * in turn serializes uncharging.
3892 */
3893 if (PageCgroupUsed(pc))
3894 return 0;
8c7c6e34
KH
3895 if (!do_swap_account)
3896 goto charge_cur_mm;
c0ff4b85
R
3897 memcg = try_get_mem_cgroup_from_page(page);
3898 if (!memcg)
54595fe2 3899 goto charge_cur_mm;
72835c86
JW
3900 *memcgp = memcg;
3901 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3902 css_put(&memcg->css);
38c5d72f
KH
3903 if (ret == -EINTR)
3904 ret = 0;
54595fe2 3905 return ret;
8c7c6e34 3906charge_cur_mm:
38c5d72f
KH
3907 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3908 if (ret == -EINTR)
3909 ret = 0;
3910 return ret;
8c7c6e34
KH
3911}
3912
0435a2fd
JW
3913int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3914 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3915{
3916 *memcgp = NULL;
3917 if (mem_cgroup_disabled())
3918 return 0;
bdf4f4d2
JW
3919 /*
3920 * A racing thread's fault, or swapoff, may have already
3921 * updated the pte, and even removed page from swap cache: in
3922 * those cases unuse_pte()'s pte_same() test will fail; but
3923 * there's also a KSM case which does need to charge the page.
3924 */
3925 if (!PageSwapCache(page)) {
3926 int ret;
3927
3928 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3929 if (ret == -EINTR)
3930 ret = 0;
3931 return ret;
3932 }
0435a2fd
JW
3933 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3934}
3935
827a03d2
JW
3936void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3937{
3938 if (mem_cgroup_disabled())
3939 return;
3940 if (!memcg)
3941 return;
3942 __mem_cgroup_cancel_charge(memcg, 1);
3943}
3944
83aae4c7 3945static void
72835c86 3946__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3947 enum charge_type ctype)
7a81b88c 3948{
f8d66542 3949 if (mem_cgroup_disabled())
7a81b88c 3950 return;
72835c86 3951 if (!memcg)
7a81b88c 3952 return;
5a6475a4 3953
ce587e65 3954 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3955 /*
3956 * Now swap is on-memory. This means this page may be
3957 * counted both as mem and swap....double count.
03f3c433
KH
3958 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3959 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3960 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3961 */
03f3c433 3962 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3963 swp_entry_t ent = {.val = page_private(page)};
86493009 3964 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3965 }
7a81b88c
KH
3966}
3967
72835c86
JW
3968void mem_cgroup_commit_charge_swapin(struct page *page,
3969 struct mem_cgroup *memcg)
83aae4c7 3970{
72835c86 3971 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3972 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3973}
3974
827a03d2
JW
3975int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3976 gfp_t gfp_mask)
7a81b88c 3977{
827a03d2
JW
3978 struct mem_cgroup *memcg = NULL;
3979 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3980 int ret;
3981
f8d66542 3982 if (mem_cgroup_disabled())
827a03d2
JW
3983 return 0;
3984 if (PageCompound(page))
3985 return 0;
3986
827a03d2
JW
3987 if (!PageSwapCache(page))
3988 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3989 else { /* page is swapcache/shmem */
0435a2fd
JW
3990 ret = __mem_cgroup_try_charge_swapin(mm, page,
3991 gfp_mask, &memcg);
827a03d2
JW
3992 if (!ret)
3993 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3994 }
3995 return ret;
7a81b88c
KH
3996}
3997
c0ff4b85 3998static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3999 unsigned int nr_pages,
4000 const enum charge_type ctype)
569b846d
KH
4001{
4002 struct memcg_batch_info *batch = NULL;
4003 bool uncharge_memsw = true;
7ec99d62 4004
569b846d
KH
4005 /* If swapout, usage of swap doesn't decrease */
4006 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4007 uncharge_memsw = false;
569b846d
KH
4008
4009 batch = &current->memcg_batch;
4010 /*
4011 * In usual, we do css_get() when we remember memcg pointer.
4012 * But in this case, we keep res->usage until end of a series of
4013 * uncharges. Then, it's ok to ignore memcg's refcnt.
4014 */
4015 if (!batch->memcg)
c0ff4b85 4016 batch->memcg = memcg;
3c11ecf4
KH
4017 /*
4018 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4019 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4020 * the same cgroup and we have chance to coalesce uncharges.
4021 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4022 * because we want to do uncharge as soon as possible.
4023 */
4024
4025 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4026 goto direct_uncharge;
4027
7ec99d62 4028 if (nr_pages > 1)
ec168510
AA
4029 goto direct_uncharge;
4030
569b846d
KH
4031 /*
4032 * In typical case, batch->memcg == mem. This means we can
4033 * merge a series of uncharges to an uncharge of res_counter.
4034 * If not, we uncharge res_counter ony by one.
4035 */
c0ff4b85 4036 if (batch->memcg != memcg)
569b846d
KH
4037 goto direct_uncharge;
4038 /* remember freed charge and uncharge it later */
7ffd4ca7 4039 batch->nr_pages++;
569b846d 4040 if (uncharge_memsw)
7ffd4ca7 4041 batch->memsw_nr_pages++;
569b846d
KH
4042 return;
4043direct_uncharge:
c0ff4b85 4044 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4045 if (uncharge_memsw)
c0ff4b85
R
4046 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4047 if (unlikely(batch->memcg != memcg))
4048 memcg_oom_recover(memcg);
569b846d 4049}
7a81b88c 4050
8a9f3ccd 4051/*
69029cd5 4052 * uncharge if !page_mapped(page)
8a9f3ccd 4053 */
8c7c6e34 4054static struct mem_cgroup *
0030f535
JW
4055__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4056 bool end_migration)
8a9f3ccd 4057{
c0ff4b85 4058 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4059 unsigned int nr_pages = 1;
4060 struct page_cgroup *pc;
b2402857 4061 bool anon;
8a9f3ccd 4062
f8d66542 4063 if (mem_cgroup_disabled())
8c7c6e34 4064 return NULL;
4077960e 4065
37c2ac78 4066 if (PageTransHuge(page)) {
7ec99d62 4067 nr_pages <<= compound_order(page);
37c2ac78
AA
4068 VM_BUG_ON(!PageTransHuge(page));
4069 }
8697d331 4070 /*
3c541e14 4071 * Check if our page_cgroup is valid
8697d331 4072 */
52d4b9ac 4073 pc = lookup_page_cgroup(page);
cfa44946 4074 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4075 return NULL;
b9c565d5 4076
52d4b9ac 4077 lock_page_cgroup(pc);
d13d1443 4078
c0ff4b85 4079 memcg = pc->mem_cgroup;
8c7c6e34 4080
d13d1443
KH
4081 if (!PageCgroupUsed(pc))
4082 goto unlock_out;
4083
b2402857
KH
4084 anon = PageAnon(page);
4085
d13d1443 4086 switch (ctype) {
41326c17 4087 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4088 /*
4089 * Generally PageAnon tells if it's the anon statistics to be
4090 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4091 * used before page reached the stage of being marked PageAnon.
4092 */
b2402857
KH
4093 anon = true;
4094 /* fallthrough */
8a9478ca 4095 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4096 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4097 if (page_mapped(page))
4098 goto unlock_out;
4099 /*
4100 * Pages under migration may not be uncharged. But
4101 * end_migration() /must/ be the one uncharging the
4102 * unused post-migration page and so it has to call
4103 * here with the migration bit still set. See the
4104 * res_counter handling below.
4105 */
4106 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4107 goto unlock_out;
4108 break;
4109 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4110 if (!PageAnon(page)) { /* Shared memory */
4111 if (page->mapping && !page_is_file_cache(page))
4112 goto unlock_out;
4113 } else if (page_mapped(page)) /* Anon */
4114 goto unlock_out;
4115 break;
4116 default:
4117 break;
52d4b9ac 4118 }
d13d1443 4119
b070e65c 4120 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4121
52d4b9ac 4122 ClearPageCgroupUsed(pc);
544122e5
KH
4123 /*
4124 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4125 * freed from LRU. This is safe because uncharged page is expected not
4126 * to be reused (freed soon). Exception is SwapCache, it's handled by
4127 * special functions.
4128 */
b9c565d5 4129
52d4b9ac 4130 unlock_page_cgroup(pc);
f75ca962 4131 /*
c0ff4b85 4132 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4133 * will never be freed, so it's safe to call css_get().
f75ca962 4134 */
c0ff4b85 4135 memcg_check_events(memcg, page);
f75ca962 4136 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4137 mem_cgroup_swap_statistics(memcg, true);
4050377b 4138 css_get(&memcg->css);
f75ca962 4139 }
0030f535
JW
4140 /*
4141 * Migration does not charge the res_counter for the
4142 * replacement page, so leave it alone when phasing out the
4143 * page that is unused after the migration.
4144 */
4145 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4146 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4147
c0ff4b85 4148 return memcg;
d13d1443
KH
4149
4150unlock_out:
4151 unlock_page_cgroup(pc);
8c7c6e34 4152 return NULL;
3c541e14
BS
4153}
4154
69029cd5
KH
4155void mem_cgroup_uncharge_page(struct page *page)
4156{
52d4b9ac
KH
4157 /* early check. */
4158 if (page_mapped(page))
4159 return;
40f23a21 4160 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4161 /*
4162 * If the page is in swap cache, uncharge should be deferred
4163 * to the swap path, which also properly accounts swap usage
4164 * and handles memcg lifetime.
4165 *
4166 * Note that this check is not stable and reclaim may add the
4167 * page to swap cache at any time after this. However, if the
4168 * page is not in swap cache by the time page->mapcount hits
4169 * 0, there won't be any page table references to the swap
4170 * slot, and reclaim will free it and not actually write the
4171 * page to disk.
4172 */
0c59b89c
JW
4173 if (PageSwapCache(page))
4174 return;
0030f535 4175 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4176}
4177
4178void mem_cgroup_uncharge_cache_page(struct page *page)
4179{
4180 VM_BUG_ON(page_mapped(page));
b7abea96 4181 VM_BUG_ON(page->mapping);
0030f535 4182 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4183}
4184
569b846d
KH
4185/*
4186 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4187 * In that cases, pages are freed continuously and we can expect pages
4188 * are in the same memcg. All these calls itself limits the number of
4189 * pages freed at once, then uncharge_start/end() is called properly.
4190 * This may be called prural(2) times in a context,
4191 */
4192
4193void mem_cgroup_uncharge_start(void)
4194{
4195 current->memcg_batch.do_batch++;
4196 /* We can do nest. */
4197 if (current->memcg_batch.do_batch == 1) {
4198 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4199 current->memcg_batch.nr_pages = 0;
4200 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4201 }
4202}
4203
4204void mem_cgroup_uncharge_end(void)
4205{
4206 struct memcg_batch_info *batch = &current->memcg_batch;
4207
4208 if (!batch->do_batch)
4209 return;
4210
4211 batch->do_batch--;
4212 if (batch->do_batch) /* If stacked, do nothing. */
4213 return;
4214
4215 if (!batch->memcg)
4216 return;
4217 /*
4218 * This "batch->memcg" is valid without any css_get/put etc...
4219 * bacause we hide charges behind us.
4220 */
7ffd4ca7
JW
4221 if (batch->nr_pages)
4222 res_counter_uncharge(&batch->memcg->res,
4223 batch->nr_pages * PAGE_SIZE);
4224 if (batch->memsw_nr_pages)
4225 res_counter_uncharge(&batch->memcg->memsw,
4226 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4227 memcg_oom_recover(batch->memcg);
569b846d
KH
4228 /* forget this pointer (for sanity check) */
4229 batch->memcg = NULL;
4230}
4231
e767e056 4232#ifdef CONFIG_SWAP
8c7c6e34 4233/*
e767e056 4234 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4235 * memcg information is recorded to swap_cgroup of "ent"
4236 */
8a9478ca
KH
4237void
4238mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4239{
4240 struct mem_cgroup *memcg;
8a9478ca
KH
4241 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4242
4243 if (!swapout) /* this was a swap cache but the swap is unused ! */
4244 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4245
0030f535 4246 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4247
f75ca962
KH
4248 /*
4249 * record memcg information, if swapout && memcg != NULL,
4050377b 4250 * css_get() was called in uncharge().
f75ca962
KH
4251 */
4252 if (do_swap_account && swapout && memcg)
34c00c31 4253 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4254}
e767e056 4255#endif
8c7c6e34 4256
c255a458 4257#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4258/*
4259 * called from swap_entry_free(). remove record in swap_cgroup and
4260 * uncharge "memsw" account.
4261 */
4262void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4263{
8c7c6e34 4264 struct mem_cgroup *memcg;
a3b2d692 4265 unsigned short id;
8c7c6e34
KH
4266
4267 if (!do_swap_account)
4268 return;
4269
a3b2d692
KH
4270 id = swap_cgroup_record(ent, 0);
4271 rcu_read_lock();
4272 memcg = mem_cgroup_lookup(id);
8c7c6e34 4273 if (memcg) {
a3b2d692
KH
4274 /*
4275 * We uncharge this because swap is freed.
4276 * This memcg can be obsolete one. We avoid calling css_tryget
4277 */
0c3e73e8 4278 if (!mem_cgroup_is_root(memcg))
4e649152 4279 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4280 mem_cgroup_swap_statistics(memcg, false);
4050377b 4281 css_put(&memcg->css);
8c7c6e34 4282 }
a3b2d692 4283 rcu_read_unlock();
d13d1443 4284}
02491447
DN
4285
4286/**
4287 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4288 * @entry: swap entry to be moved
4289 * @from: mem_cgroup which the entry is moved from
4290 * @to: mem_cgroup which the entry is moved to
4291 *
4292 * It succeeds only when the swap_cgroup's record for this entry is the same
4293 * as the mem_cgroup's id of @from.
4294 *
4295 * Returns 0 on success, -EINVAL on failure.
4296 *
4297 * The caller must have charged to @to, IOW, called res_counter_charge() about
4298 * both res and memsw, and called css_get().
4299 */
4300static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4301 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4302{
4303 unsigned short old_id, new_id;
4304
34c00c31
LZ
4305 old_id = mem_cgroup_id(from);
4306 new_id = mem_cgroup_id(to);
02491447
DN
4307
4308 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4309 mem_cgroup_swap_statistics(from, false);
483c30b5 4310 mem_cgroup_swap_statistics(to, true);
02491447 4311 /*
483c30b5
DN
4312 * This function is only called from task migration context now.
4313 * It postpones res_counter and refcount handling till the end
4314 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4315 * improvement. But we cannot postpone css_get(to) because if
4316 * the process that has been moved to @to does swap-in, the
4317 * refcount of @to might be decreased to 0.
4318 *
4319 * We are in attach() phase, so the cgroup is guaranteed to be
4320 * alive, so we can just call css_get().
02491447 4321 */
4050377b 4322 css_get(&to->css);
02491447
DN
4323 return 0;
4324 }
4325 return -EINVAL;
4326}
4327#else
4328static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4329 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4330{
4331 return -EINVAL;
4332}
8c7c6e34 4333#endif
d13d1443 4334
ae41be37 4335/*
01b1ae63
KH
4336 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4337 * page belongs to.
ae41be37 4338 */
0030f535
JW
4339void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4340 struct mem_cgroup **memcgp)
ae41be37 4341{
c0ff4b85 4342 struct mem_cgroup *memcg = NULL;
b32967ff 4343 unsigned int nr_pages = 1;
7ec99d62 4344 struct page_cgroup *pc;
ac39cf8c 4345 enum charge_type ctype;
8869b8f6 4346
72835c86 4347 *memcgp = NULL;
56039efa 4348
f8d66542 4349 if (mem_cgroup_disabled())
0030f535 4350 return;
4077960e 4351
b32967ff
MG
4352 if (PageTransHuge(page))
4353 nr_pages <<= compound_order(page);
4354
52d4b9ac
KH
4355 pc = lookup_page_cgroup(page);
4356 lock_page_cgroup(pc);
4357 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4358 memcg = pc->mem_cgroup;
4359 css_get(&memcg->css);
ac39cf8c
AM
4360 /*
4361 * At migrating an anonymous page, its mapcount goes down
4362 * to 0 and uncharge() will be called. But, even if it's fully
4363 * unmapped, migration may fail and this page has to be
4364 * charged again. We set MIGRATION flag here and delay uncharge
4365 * until end_migration() is called
4366 *
4367 * Corner Case Thinking
4368 * A)
4369 * When the old page was mapped as Anon and it's unmap-and-freed
4370 * while migration was ongoing.
4371 * If unmap finds the old page, uncharge() of it will be delayed
4372 * until end_migration(). If unmap finds a new page, it's
4373 * uncharged when it make mapcount to be 1->0. If unmap code
4374 * finds swap_migration_entry, the new page will not be mapped
4375 * and end_migration() will find it(mapcount==0).
4376 *
4377 * B)
4378 * When the old page was mapped but migraion fails, the kernel
4379 * remaps it. A charge for it is kept by MIGRATION flag even
4380 * if mapcount goes down to 0. We can do remap successfully
4381 * without charging it again.
4382 *
4383 * C)
4384 * The "old" page is under lock_page() until the end of
4385 * migration, so, the old page itself will not be swapped-out.
4386 * If the new page is swapped out before end_migraton, our
4387 * hook to usual swap-out path will catch the event.
4388 */
4389 if (PageAnon(page))
4390 SetPageCgroupMigration(pc);
e8589cc1 4391 }
52d4b9ac 4392 unlock_page_cgroup(pc);
ac39cf8c
AM
4393 /*
4394 * If the page is not charged at this point,
4395 * we return here.
4396 */
c0ff4b85 4397 if (!memcg)
0030f535 4398 return;
01b1ae63 4399
72835c86 4400 *memcgp = memcg;
ac39cf8c
AM
4401 /*
4402 * We charge new page before it's used/mapped. So, even if unlock_page()
4403 * is called before end_migration, we can catch all events on this new
4404 * page. In the case new page is migrated but not remapped, new page's
4405 * mapcount will be finally 0 and we call uncharge in end_migration().
4406 */
ac39cf8c 4407 if (PageAnon(page))
41326c17 4408 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4409 else
62ba7442 4410 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4411 /*
4412 * The page is committed to the memcg, but it's not actually
4413 * charged to the res_counter since we plan on replacing the
4414 * old one and only one page is going to be left afterwards.
4415 */
b32967ff 4416 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4417}
8869b8f6 4418
69029cd5 4419/* remove redundant charge if migration failed*/
c0ff4b85 4420void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4421 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4422{
ac39cf8c 4423 struct page *used, *unused;
01b1ae63 4424 struct page_cgroup *pc;
b2402857 4425 bool anon;
01b1ae63 4426
c0ff4b85 4427 if (!memcg)
01b1ae63 4428 return;
b25ed609 4429
50de1dd9 4430 if (!migration_ok) {
ac39cf8c
AM
4431 used = oldpage;
4432 unused = newpage;
01b1ae63 4433 } else {
ac39cf8c 4434 used = newpage;
01b1ae63
KH
4435 unused = oldpage;
4436 }
0030f535 4437 anon = PageAnon(used);
7d188958
JW
4438 __mem_cgroup_uncharge_common(unused,
4439 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4440 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4441 true);
0030f535 4442 css_put(&memcg->css);
69029cd5 4443 /*
ac39cf8c
AM
4444 * We disallowed uncharge of pages under migration because mapcount
4445 * of the page goes down to zero, temporarly.
4446 * Clear the flag and check the page should be charged.
01b1ae63 4447 */
ac39cf8c
AM
4448 pc = lookup_page_cgroup(oldpage);
4449 lock_page_cgroup(pc);
4450 ClearPageCgroupMigration(pc);
4451 unlock_page_cgroup(pc);
ac39cf8c 4452
01b1ae63 4453 /*
ac39cf8c
AM
4454 * If a page is a file cache, radix-tree replacement is very atomic
4455 * and we can skip this check. When it was an Anon page, its mapcount
4456 * goes down to 0. But because we added MIGRATION flage, it's not
4457 * uncharged yet. There are several case but page->mapcount check
4458 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4459 * check. (see prepare_charge() also)
69029cd5 4460 */
b2402857 4461 if (anon)
ac39cf8c 4462 mem_cgroup_uncharge_page(used);
ae41be37 4463}
78fb7466 4464
ab936cbc
KH
4465/*
4466 * At replace page cache, newpage is not under any memcg but it's on
4467 * LRU. So, this function doesn't touch res_counter but handles LRU
4468 * in correct way. Both pages are locked so we cannot race with uncharge.
4469 */
4470void mem_cgroup_replace_page_cache(struct page *oldpage,
4471 struct page *newpage)
4472{
bde05d1c 4473 struct mem_cgroup *memcg = NULL;
ab936cbc 4474 struct page_cgroup *pc;
ab936cbc 4475 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4476
4477 if (mem_cgroup_disabled())
4478 return;
4479
4480 pc = lookup_page_cgroup(oldpage);
4481 /* fix accounting on old pages */
4482 lock_page_cgroup(pc);
bde05d1c
HD
4483 if (PageCgroupUsed(pc)) {
4484 memcg = pc->mem_cgroup;
b070e65c 4485 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4486 ClearPageCgroupUsed(pc);
4487 }
ab936cbc
KH
4488 unlock_page_cgroup(pc);
4489
bde05d1c
HD
4490 /*
4491 * When called from shmem_replace_page(), in some cases the
4492 * oldpage has already been charged, and in some cases not.
4493 */
4494 if (!memcg)
4495 return;
ab936cbc
KH
4496 /*
4497 * Even if newpage->mapping was NULL before starting replacement,
4498 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4499 * LRU while we overwrite pc->mem_cgroup.
4500 */
ce587e65 4501 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4502}
4503
f212ad7c
DN
4504#ifdef CONFIG_DEBUG_VM
4505static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4506{
4507 struct page_cgroup *pc;
4508
4509 pc = lookup_page_cgroup(page);
cfa44946
JW
4510 /*
4511 * Can be NULL while feeding pages into the page allocator for
4512 * the first time, i.e. during boot or memory hotplug;
4513 * or when mem_cgroup_disabled().
4514 */
f212ad7c
DN
4515 if (likely(pc) && PageCgroupUsed(pc))
4516 return pc;
4517 return NULL;
4518}
4519
4520bool mem_cgroup_bad_page_check(struct page *page)
4521{
4522 if (mem_cgroup_disabled())
4523 return false;
4524
4525 return lookup_page_cgroup_used(page) != NULL;
4526}
4527
4528void mem_cgroup_print_bad_page(struct page *page)
4529{
4530 struct page_cgroup *pc;
4531
4532 pc = lookup_page_cgroup_used(page);
4533 if (pc) {
d045197f
AM
4534 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4535 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4536 }
4537}
4538#endif
4539
d38d2a75 4540static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4541 unsigned long long val)
628f4235 4542{
81d39c20 4543 int retry_count;
3c11ecf4 4544 u64 memswlimit, memlimit;
628f4235 4545 int ret = 0;
81d39c20
KH
4546 int children = mem_cgroup_count_children(memcg);
4547 u64 curusage, oldusage;
3c11ecf4 4548 int enlarge;
81d39c20
KH
4549
4550 /*
4551 * For keeping hierarchical_reclaim simple, how long we should retry
4552 * is depends on callers. We set our retry-count to be function
4553 * of # of children which we should visit in this loop.
4554 */
4555 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4556
4557 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4558
3c11ecf4 4559 enlarge = 0;
8c7c6e34 4560 while (retry_count) {
628f4235
KH
4561 if (signal_pending(current)) {
4562 ret = -EINTR;
4563 break;
4564 }
8c7c6e34
KH
4565 /*
4566 * Rather than hide all in some function, I do this in
4567 * open coded manner. You see what this really does.
aaad153e 4568 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4569 */
4570 mutex_lock(&set_limit_mutex);
4571 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4572 if (memswlimit < val) {
4573 ret = -EINVAL;
4574 mutex_unlock(&set_limit_mutex);
628f4235
KH
4575 break;
4576 }
3c11ecf4
KH
4577
4578 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4579 if (memlimit < val)
4580 enlarge = 1;
4581
8c7c6e34 4582 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4583 if (!ret) {
4584 if (memswlimit == val)
4585 memcg->memsw_is_minimum = true;
4586 else
4587 memcg->memsw_is_minimum = false;
4588 }
8c7c6e34
KH
4589 mutex_unlock(&set_limit_mutex);
4590
4591 if (!ret)
4592 break;
4593
5660048c
JW
4594 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4595 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4596 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4597 /* Usage is reduced ? */
f894ffa8 4598 if (curusage >= oldusage)
81d39c20
KH
4599 retry_count--;
4600 else
4601 oldusage = curusage;
8c7c6e34 4602 }
3c11ecf4
KH
4603 if (!ret && enlarge)
4604 memcg_oom_recover(memcg);
14797e23 4605
8c7c6e34
KH
4606 return ret;
4607}
4608
338c8431
LZ
4609static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4610 unsigned long long val)
8c7c6e34 4611{
81d39c20 4612 int retry_count;
3c11ecf4 4613 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4614 int children = mem_cgroup_count_children(memcg);
4615 int ret = -EBUSY;
3c11ecf4 4616 int enlarge = 0;
8c7c6e34 4617
81d39c20 4618 /* see mem_cgroup_resize_res_limit */
f894ffa8 4619 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4620 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4621 while (retry_count) {
4622 if (signal_pending(current)) {
4623 ret = -EINTR;
4624 break;
4625 }
4626 /*
4627 * Rather than hide all in some function, I do this in
4628 * open coded manner. You see what this really does.
aaad153e 4629 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4630 */
4631 mutex_lock(&set_limit_mutex);
4632 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4633 if (memlimit > val) {
4634 ret = -EINVAL;
4635 mutex_unlock(&set_limit_mutex);
4636 break;
4637 }
3c11ecf4
KH
4638 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4639 if (memswlimit < val)
4640 enlarge = 1;
8c7c6e34 4641 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4642 if (!ret) {
4643 if (memlimit == val)
4644 memcg->memsw_is_minimum = true;
4645 else
4646 memcg->memsw_is_minimum = false;
4647 }
8c7c6e34
KH
4648 mutex_unlock(&set_limit_mutex);
4649
4650 if (!ret)
4651 break;
4652
5660048c
JW
4653 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4654 MEM_CGROUP_RECLAIM_NOSWAP |
4655 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4656 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4657 /* Usage is reduced ? */
8c7c6e34 4658 if (curusage >= oldusage)
628f4235 4659 retry_count--;
81d39c20
KH
4660 else
4661 oldusage = curusage;
628f4235 4662 }
3c11ecf4
KH
4663 if (!ret && enlarge)
4664 memcg_oom_recover(memcg);
628f4235
KH
4665 return ret;
4666}
4667
2ef37d3f
MH
4668/**
4669 * mem_cgroup_force_empty_list - clears LRU of a group
4670 * @memcg: group to clear
4671 * @node: NUMA node
4672 * @zid: zone id
4673 * @lru: lru to to clear
4674 *
3c935d18 4675 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4676 * reclaim the pages page themselves - pages are moved to the parent (or root)
4677 * group.
cc847582 4678 */
2ef37d3f 4679static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4680 int node, int zid, enum lru_list lru)
cc847582 4681{
bea8c150 4682 struct lruvec *lruvec;
2ef37d3f 4683 unsigned long flags;
072c56c1 4684 struct list_head *list;
925b7673
JW
4685 struct page *busy;
4686 struct zone *zone;
072c56c1 4687
08e552c6 4688 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4689 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4690 list = &lruvec->lists[lru];
cc847582 4691
f817ed48 4692 busy = NULL;
2ef37d3f 4693 do {
925b7673 4694 struct page_cgroup *pc;
5564e88b
JW
4695 struct page *page;
4696
08e552c6 4697 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4698 if (list_empty(list)) {
08e552c6 4699 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4700 break;
f817ed48 4701 }
925b7673
JW
4702 page = list_entry(list->prev, struct page, lru);
4703 if (busy == page) {
4704 list_move(&page->lru, list);
648bcc77 4705 busy = NULL;
08e552c6 4706 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4707 continue;
4708 }
08e552c6 4709 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4710
925b7673 4711 pc = lookup_page_cgroup(page);
5564e88b 4712
3c935d18 4713 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4714 /* found lock contention or "pc" is obsolete. */
925b7673 4715 busy = page;
f817ed48
KH
4716 cond_resched();
4717 } else
4718 busy = NULL;
2ef37d3f 4719 } while (!list_empty(list));
cc847582
KH
4720}
4721
4722/*
c26251f9
MH
4723 * make mem_cgroup's charge to be 0 if there is no task by moving
4724 * all the charges and pages to the parent.
cc847582 4725 * This enables deleting this mem_cgroup.
c26251f9
MH
4726 *
4727 * Caller is responsible for holding css reference on the memcg.
cc847582 4728 */
ab5196c2 4729static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4730{
c26251f9 4731 int node, zid;
bea207c8 4732 u64 usage;
f817ed48 4733
fce66477 4734 do {
52d4b9ac
KH
4735 /* This is for making all *used* pages to be on LRU. */
4736 lru_add_drain_all();
c0ff4b85 4737 drain_all_stock_sync(memcg);
c0ff4b85 4738 mem_cgroup_start_move(memcg);
31aaea4a 4739 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4740 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4741 enum lru_list lru;
4742 for_each_lru(lru) {
2ef37d3f 4743 mem_cgroup_force_empty_list(memcg,
f156ab93 4744 node, zid, lru);
f817ed48 4745 }
1ecaab2b 4746 }
f817ed48 4747 }
c0ff4b85
R
4748 mem_cgroup_end_move(memcg);
4749 memcg_oom_recover(memcg);
52d4b9ac 4750 cond_resched();
f817ed48 4751
2ef37d3f 4752 /*
bea207c8
GC
4753 * Kernel memory may not necessarily be trackable to a specific
4754 * process. So they are not migrated, and therefore we can't
4755 * expect their value to drop to 0 here.
4756 * Having res filled up with kmem only is enough.
4757 *
2ef37d3f
MH
4758 * This is a safety check because mem_cgroup_force_empty_list
4759 * could have raced with mem_cgroup_replace_page_cache callers
4760 * so the lru seemed empty but the page could have been added
4761 * right after the check. RES_USAGE should be safe as we always
4762 * charge before adding to the LRU.
4763 */
bea207c8
GC
4764 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4765 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4766 } while (usage > 0);
c26251f9
MH
4767}
4768
b5f99b53
GC
4769/*
4770 * This mainly exists for tests during the setting of set of use_hierarchy.
4771 * Since this is the very setting we are changing, the current hierarchy value
4772 * is meaningless
4773 */
4774static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4775{
492eb21b 4776 struct cgroup_subsys_state *pos;
b5f99b53
GC
4777
4778 /* bounce at first found */
492eb21b 4779 css_for_each_child(pos, &memcg->css)
b5f99b53
GC
4780 return true;
4781 return false;
4782}
4783
4784/*
0999821b
GC
4785 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4786 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4787 * from mem_cgroup_count_children(), in the sense that we don't really care how
4788 * many children we have; we only need to know if we have any. It also counts
4789 * any memcg without hierarchy as infertile.
4790 */
4791static inline bool memcg_has_children(struct mem_cgroup *memcg)
4792{
4793 return memcg->use_hierarchy && __memcg_has_children(memcg);
4794}
4795
c26251f9
MH
4796/*
4797 * Reclaims as many pages from the given memcg as possible and moves
4798 * the rest to the parent.
4799 *
4800 * Caller is responsible for holding css reference for memcg.
4801 */
4802static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4803{
4804 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4805 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4806
c1e862c1 4807 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4808 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4809 return -EBUSY;
4810
c1e862c1
KH
4811 /* we call try-to-free pages for make this cgroup empty */
4812 lru_add_drain_all();
f817ed48 4813 /* try to free all pages in this cgroup */
569530fb 4814 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4815 int progress;
c1e862c1 4816
c26251f9
MH
4817 if (signal_pending(current))
4818 return -EINTR;
4819
c0ff4b85 4820 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4821 false);
c1e862c1 4822 if (!progress) {
f817ed48 4823 nr_retries--;
c1e862c1 4824 /* maybe some writeback is necessary */
8aa7e847 4825 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4826 }
f817ed48
KH
4827
4828 }
08e552c6 4829 lru_add_drain();
ab5196c2
MH
4830 mem_cgroup_reparent_charges(memcg);
4831
4832 return 0;
cc847582
KH
4833}
4834
182446d0
TH
4835static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4836 unsigned int event)
c1e862c1 4837{
182446d0 4838 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 4839
d8423011
MH
4840 if (mem_cgroup_is_root(memcg))
4841 return -EINVAL;
c33bd835 4842 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
4843}
4844
182446d0
TH
4845static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4846 struct cftype *cft)
18f59ea7 4847{
182446d0 4848 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4849}
4850
182446d0
TH
4851static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4852 struct cftype *cft, u64 val)
18f59ea7
BS
4853{
4854 int retval = 0;
182446d0 4855 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 4856 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 4857
0999821b 4858 mutex_lock(&memcg_create_mutex);
567fb435
GC
4859
4860 if (memcg->use_hierarchy == val)
4861 goto out;
4862
18f59ea7 4863 /*
af901ca1 4864 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4865 * in the child subtrees. If it is unset, then the change can
4866 * occur, provided the current cgroup has no children.
4867 *
4868 * For the root cgroup, parent_mem is NULL, we allow value to be
4869 * set if there are no children.
4870 */
c0ff4b85 4871 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4872 (val == 1 || val == 0)) {
b5f99b53 4873 if (!__memcg_has_children(memcg))
c0ff4b85 4874 memcg->use_hierarchy = val;
18f59ea7
BS
4875 else
4876 retval = -EBUSY;
4877 } else
4878 retval = -EINVAL;
567fb435
GC
4879
4880out:
0999821b 4881 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4882
4883 return retval;
4884}
4885
0c3e73e8 4886
c0ff4b85 4887static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4888 enum mem_cgroup_stat_index idx)
0c3e73e8 4889{
7d74b06f 4890 struct mem_cgroup *iter;
7a159cc9 4891 long val = 0;
0c3e73e8 4892
7a159cc9 4893 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4894 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4895 val += mem_cgroup_read_stat(iter, idx);
4896
4897 if (val < 0) /* race ? */
4898 val = 0;
4899 return val;
0c3e73e8
BS
4900}
4901
c0ff4b85 4902static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4903{
7d74b06f 4904 u64 val;
104f3928 4905
c0ff4b85 4906 if (!mem_cgroup_is_root(memcg)) {
104f3928 4907 if (!swap)
65c64ce8 4908 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4909 else
65c64ce8 4910 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4911 }
4912
b070e65c
DR
4913 /*
4914 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4915 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4916 */
c0ff4b85
R
4917 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4918 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4919
7d74b06f 4920 if (swap)
bff6bb83 4921 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4922
4923 return val << PAGE_SHIFT;
4924}
4925
182446d0
TH
4926static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
4927 struct cftype *cft, struct file *file,
4928 char __user *buf, size_t nbytes, loff_t *ppos)
8cdea7c0 4929{
182446d0 4930 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af36f906 4931 char str[64];
104f3928 4932 u64 val;
86ae53e1
GC
4933 int name, len;
4934 enum res_type type;
8c7c6e34
KH
4935
4936 type = MEMFILE_TYPE(cft->private);
4937 name = MEMFILE_ATTR(cft->private);
af36f906 4938
8c7c6e34
KH
4939 switch (type) {
4940 case _MEM:
104f3928 4941 if (name == RES_USAGE)
c0ff4b85 4942 val = mem_cgroup_usage(memcg, false);
104f3928 4943 else
c0ff4b85 4944 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
4945 break;
4946 case _MEMSWAP:
104f3928 4947 if (name == RES_USAGE)
c0ff4b85 4948 val = mem_cgroup_usage(memcg, true);
104f3928 4949 else
c0ff4b85 4950 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 4951 break;
510fc4e1
GC
4952 case _KMEM:
4953 val = res_counter_read_u64(&memcg->kmem, name);
4954 break;
8c7c6e34
KH
4955 default:
4956 BUG();
8c7c6e34 4957 }
af36f906
TH
4958
4959 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4960 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 4961}
510fc4e1 4962
182446d0 4963static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
4964{
4965 int ret = -EINVAL;
4966#ifdef CONFIG_MEMCG_KMEM
182446d0 4967 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
4968 /*
4969 * For simplicity, we won't allow this to be disabled. It also can't
4970 * be changed if the cgroup has children already, or if tasks had
4971 * already joined.
4972 *
4973 * If tasks join before we set the limit, a person looking at
4974 * kmem.usage_in_bytes will have no way to determine when it took
4975 * place, which makes the value quite meaningless.
4976 *
4977 * After it first became limited, changes in the value of the limit are
4978 * of course permitted.
510fc4e1 4979 */
0999821b 4980 mutex_lock(&memcg_create_mutex);
510fc4e1 4981 mutex_lock(&set_limit_mutex);
6de5a8bf 4982 if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
182446d0 4983 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
4984 ret = -EBUSY;
4985 goto out;
4986 }
4987 ret = res_counter_set_limit(&memcg->kmem, val);
4988 VM_BUG_ON(ret);
4989
55007d84
GC
4990 ret = memcg_update_cache_sizes(memcg);
4991 if (ret) {
6de5a8bf 4992 res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
55007d84
GC
4993 goto out;
4994 }
692e89ab
GC
4995 static_key_slow_inc(&memcg_kmem_enabled_key);
4996 /*
4997 * setting the active bit after the inc will guarantee no one
4998 * starts accounting before all call sites are patched
4999 */
5000 memcg_kmem_set_active(memcg);
510fc4e1
GC
5001 } else
5002 ret = res_counter_set_limit(&memcg->kmem, val);
5003out:
5004 mutex_unlock(&set_limit_mutex);
0999821b 5005 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5006#endif
5007 return ret;
5008}
5009
6d043990 5010#ifdef CONFIG_MEMCG_KMEM
55007d84 5011static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5012{
55007d84 5013 int ret = 0;
510fc4e1
GC
5014 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5015 if (!parent)
55007d84
GC
5016 goto out;
5017
510fc4e1 5018 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5019 /*
5020 * When that happen, we need to disable the static branch only on those
5021 * memcgs that enabled it. To achieve this, we would be forced to
5022 * complicate the code by keeping track of which memcgs were the ones
5023 * that actually enabled limits, and which ones got it from its
5024 * parents.
5025 *
5026 * It is a lot simpler just to do static_key_slow_inc() on every child
5027 * that is accounted.
5028 */
55007d84
GC
5029 if (!memcg_kmem_is_active(memcg))
5030 goto out;
5031
5032 /*
10d5ebf4
LZ
5033 * __mem_cgroup_free() will issue static_key_slow_dec() because this
5034 * memcg is active already. If the later initialization fails then the
5035 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 5036 */
55007d84
GC
5037 static_key_slow_inc(&memcg_kmem_enabled_key);
5038
5039 mutex_lock(&set_limit_mutex);
425c598d 5040 memcg_stop_kmem_account();
55007d84 5041 ret = memcg_update_cache_sizes(memcg);
425c598d 5042 memcg_resume_kmem_account();
55007d84 5043 mutex_unlock(&set_limit_mutex);
55007d84
GC
5044out:
5045 return ret;
510fc4e1 5046}
6d043990 5047#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5048
628f4235
KH
5049/*
5050 * The user of this function is...
5051 * RES_LIMIT.
5052 */
182446d0 5053static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 5054 const char *buffer)
8cdea7c0 5055{
182446d0 5056 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5057 enum res_type type;
5058 int name;
628f4235
KH
5059 unsigned long long val;
5060 int ret;
5061
8c7c6e34
KH
5062 type = MEMFILE_TYPE(cft->private);
5063 name = MEMFILE_ATTR(cft->private);
af36f906 5064
8c7c6e34 5065 switch (name) {
628f4235 5066 case RES_LIMIT:
4b3bde4c
BS
5067 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5068 ret = -EINVAL;
5069 break;
5070 }
628f4235
KH
5071 /* This function does all necessary parse...reuse it */
5072 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5073 if (ret)
5074 break;
5075 if (type == _MEM)
628f4235 5076 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5077 else if (type == _MEMSWAP)
8c7c6e34 5078 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5079 else if (type == _KMEM)
182446d0 5080 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5081 else
5082 return -EINVAL;
628f4235 5083 break;
296c81d8
BS
5084 case RES_SOFT_LIMIT:
5085 ret = res_counter_memparse_write_strategy(buffer, &val);
5086 if (ret)
5087 break;
5088 /*
5089 * For memsw, soft limits are hard to implement in terms
5090 * of semantics, for now, we support soft limits for
5091 * control without swap
5092 */
5093 if (type == _MEM)
5094 ret = res_counter_set_soft_limit(&memcg->res, val);
5095 else
5096 ret = -EINVAL;
5097 break;
628f4235
KH
5098 default:
5099 ret = -EINVAL; /* should be BUG() ? */
5100 break;
5101 }
5102 return ret;
8cdea7c0
BS
5103}
5104
fee7b548
KH
5105static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5106 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5107{
fee7b548
KH
5108 unsigned long long min_limit, min_memsw_limit, tmp;
5109
5110 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5111 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5112 if (!memcg->use_hierarchy)
5113 goto out;
5114
63876986
TH
5115 while (css_parent(&memcg->css)) {
5116 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5117 if (!memcg->use_hierarchy)
5118 break;
5119 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5120 min_limit = min(min_limit, tmp);
5121 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5122 min_memsw_limit = min(min_memsw_limit, tmp);
5123 }
5124out:
5125 *mem_limit = min_limit;
5126 *memsw_limit = min_memsw_limit;
fee7b548
KH
5127}
5128
182446d0 5129static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5130{
182446d0 5131 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5132 int name;
5133 enum res_type type;
c84872e1 5134
8c7c6e34
KH
5135 type = MEMFILE_TYPE(event);
5136 name = MEMFILE_ATTR(event);
af36f906 5137
8c7c6e34 5138 switch (name) {
29f2a4da 5139 case RES_MAX_USAGE:
8c7c6e34 5140 if (type == _MEM)
c0ff4b85 5141 res_counter_reset_max(&memcg->res);
510fc4e1 5142 else if (type == _MEMSWAP)
c0ff4b85 5143 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5144 else if (type == _KMEM)
5145 res_counter_reset_max(&memcg->kmem);
5146 else
5147 return -EINVAL;
29f2a4da
PE
5148 break;
5149 case RES_FAILCNT:
8c7c6e34 5150 if (type == _MEM)
c0ff4b85 5151 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5152 else if (type == _MEMSWAP)
c0ff4b85 5153 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5154 else if (type == _KMEM)
5155 res_counter_reset_failcnt(&memcg->kmem);
5156 else
5157 return -EINVAL;
29f2a4da
PE
5158 break;
5159 }
f64c3f54 5160
85cc59db 5161 return 0;
c84872e1
PE
5162}
5163
182446d0 5164static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5165 struct cftype *cft)
5166{
182446d0 5167 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5168}
5169
02491447 5170#ifdef CONFIG_MMU
182446d0 5171static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5172 struct cftype *cft, u64 val)
5173{
182446d0 5174 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5175
5176 if (val >= (1 << NR_MOVE_TYPE))
5177 return -EINVAL;
ee5e8472 5178
7dc74be0 5179 /*
ee5e8472
GC
5180 * No kind of locking is needed in here, because ->can_attach() will
5181 * check this value once in the beginning of the process, and then carry
5182 * on with stale data. This means that changes to this value will only
5183 * affect task migrations starting after the change.
7dc74be0 5184 */
c0ff4b85 5185 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5186 return 0;
5187}
02491447 5188#else
182446d0 5189static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5190 struct cftype *cft, u64 val)
5191{
5192 return -ENOSYS;
5193}
5194#endif
7dc74be0 5195
406eb0c9 5196#ifdef CONFIG_NUMA
182446d0
TH
5197static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5198 struct cftype *cft, struct seq_file *m)
406eb0c9
YH
5199{
5200 int nid;
5201 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5202 unsigned long node_nr;
182446d0 5203 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
406eb0c9 5204
d79154bb 5205 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5206 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5207 for_each_node_state(nid, N_MEMORY) {
d79154bb 5208 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5209 seq_printf(m, " N%d=%lu", nid, node_nr);
5210 }
5211 seq_putc(m, '\n');
5212
d79154bb 5213 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5214 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5215 for_each_node_state(nid, N_MEMORY) {
d79154bb 5216 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5217 LRU_ALL_FILE);
406eb0c9
YH
5218 seq_printf(m, " N%d=%lu", nid, node_nr);
5219 }
5220 seq_putc(m, '\n');
5221
d79154bb 5222 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5223 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5224 for_each_node_state(nid, N_MEMORY) {
d79154bb 5225 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5226 LRU_ALL_ANON);
406eb0c9
YH
5227 seq_printf(m, " N%d=%lu", nid, node_nr);
5228 }
5229 seq_putc(m, '\n');
5230
d79154bb 5231 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5232 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5233 for_each_node_state(nid, N_MEMORY) {
d79154bb 5234 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5235 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5236 seq_printf(m, " N%d=%lu", nid, node_nr);
5237 }
5238 seq_putc(m, '\n');
5239 return 0;
5240}
5241#endif /* CONFIG_NUMA */
5242
af7c4b0e
JW
5243static inline void mem_cgroup_lru_names_not_uptodate(void)
5244{
5245 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5246}
5247
182446d0 5248static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
78ccf5b5 5249 struct seq_file *m)
d2ceb9b7 5250{
182446d0 5251 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af7c4b0e
JW
5252 struct mem_cgroup *mi;
5253 unsigned int i;
406eb0c9 5254
af7c4b0e 5255 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5256 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5257 continue;
af7c4b0e
JW
5258 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5259 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5260 }
7b854121 5261
af7c4b0e
JW
5262 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5263 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5264 mem_cgroup_read_events(memcg, i));
5265
5266 for (i = 0; i < NR_LRU_LISTS; i++)
5267 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5268 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5269
14067bb3 5270 /* Hierarchical information */
fee7b548
KH
5271 {
5272 unsigned long long limit, memsw_limit;
d79154bb 5273 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5274 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5275 if (do_swap_account)
78ccf5b5
JW
5276 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5277 memsw_limit);
fee7b548 5278 }
7f016ee8 5279
af7c4b0e
JW
5280 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5281 long long val = 0;
5282
bff6bb83 5283 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5284 continue;
af7c4b0e
JW
5285 for_each_mem_cgroup_tree(mi, memcg)
5286 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5287 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5288 }
5289
5290 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5291 unsigned long long val = 0;
5292
5293 for_each_mem_cgroup_tree(mi, memcg)
5294 val += mem_cgroup_read_events(mi, i);
5295 seq_printf(m, "total_%s %llu\n",
5296 mem_cgroup_events_names[i], val);
5297 }
5298
5299 for (i = 0; i < NR_LRU_LISTS; i++) {
5300 unsigned long long val = 0;
5301
5302 for_each_mem_cgroup_tree(mi, memcg)
5303 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5304 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5305 }
14067bb3 5306
7f016ee8 5307#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5308 {
5309 int nid, zid;
5310 struct mem_cgroup_per_zone *mz;
89abfab1 5311 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5312 unsigned long recent_rotated[2] = {0, 0};
5313 unsigned long recent_scanned[2] = {0, 0};
5314
5315 for_each_online_node(nid)
5316 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5317 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5318 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5319
89abfab1
HD
5320 recent_rotated[0] += rstat->recent_rotated[0];
5321 recent_rotated[1] += rstat->recent_rotated[1];
5322 recent_scanned[0] += rstat->recent_scanned[0];
5323 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5324 }
78ccf5b5
JW
5325 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5326 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5327 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5328 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5329 }
5330#endif
5331
d2ceb9b7
KH
5332 return 0;
5333}
5334
182446d0
TH
5335static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5336 struct cftype *cft)
a7885eb8 5337{
182446d0 5338 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5339
1f4c025b 5340 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5341}
5342
182446d0
TH
5343static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5344 struct cftype *cft, u64 val)
a7885eb8 5345{
182446d0 5346 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5347 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5348
63876986 5349 if (val > 100 || !parent)
a7885eb8
KM
5350 return -EINVAL;
5351
0999821b 5352 mutex_lock(&memcg_create_mutex);
068b38c1 5353
a7885eb8 5354 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5355 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5356 mutex_unlock(&memcg_create_mutex);
a7885eb8 5357 return -EINVAL;
068b38c1 5358 }
a7885eb8 5359
a7885eb8 5360 memcg->swappiness = val;
a7885eb8 5361
0999821b 5362 mutex_unlock(&memcg_create_mutex);
068b38c1 5363
a7885eb8
KM
5364 return 0;
5365}
5366
2e72b634
KS
5367static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5368{
5369 struct mem_cgroup_threshold_ary *t;
5370 u64 usage;
5371 int i;
5372
5373 rcu_read_lock();
5374 if (!swap)
2c488db2 5375 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5376 else
2c488db2 5377 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5378
5379 if (!t)
5380 goto unlock;
5381
5382 usage = mem_cgroup_usage(memcg, swap);
5383
5384 /*
748dad36 5385 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5386 * If it's not true, a threshold was crossed after last
5387 * call of __mem_cgroup_threshold().
5388 */
5407a562 5389 i = t->current_threshold;
2e72b634
KS
5390
5391 /*
5392 * Iterate backward over array of thresholds starting from
5393 * current_threshold and check if a threshold is crossed.
5394 * If none of thresholds below usage is crossed, we read
5395 * only one element of the array here.
5396 */
5397 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5398 eventfd_signal(t->entries[i].eventfd, 1);
5399
5400 /* i = current_threshold + 1 */
5401 i++;
5402
5403 /*
5404 * Iterate forward over array of thresholds starting from
5405 * current_threshold+1 and check if a threshold is crossed.
5406 * If none of thresholds above usage is crossed, we read
5407 * only one element of the array here.
5408 */
5409 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5410 eventfd_signal(t->entries[i].eventfd, 1);
5411
5412 /* Update current_threshold */
5407a562 5413 t->current_threshold = i - 1;
2e72b634
KS
5414unlock:
5415 rcu_read_unlock();
5416}
5417
5418static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5419{
ad4ca5f4
KS
5420 while (memcg) {
5421 __mem_cgroup_threshold(memcg, false);
5422 if (do_swap_account)
5423 __mem_cgroup_threshold(memcg, true);
5424
5425 memcg = parent_mem_cgroup(memcg);
5426 }
2e72b634
KS
5427}
5428
5429static int compare_thresholds(const void *a, const void *b)
5430{
5431 const struct mem_cgroup_threshold *_a = a;
5432 const struct mem_cgroup_threshold *_b = b;
5433
2bff24a3
GT
5434 if (_a->threshold > _b->threshold)
5435 return 1;
5436
5437 if (_a->threshold < _b->threshold)
5438 return -1;
5439
5440 return 0;
2e72b634
KS
5441}
5442
c0ff4b85 5443static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5444{
5445 struct mem_cgroup_eventfd_list *ev;
5446
c0ff4b85 5447 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5448 eventfd_signal(ev->eventfd, 1);
5449 return 0;
5450}
5451
c0ff4b85 5452static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5453{
7d74b06f
KH
5454 struct mem_cgroup *iter;
5455
c0ff4b85 5456 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5457 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5458}
5459
81eeaf04 5460static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
9490ff27 5461 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634 5462{
81eeaf04 5463 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5464 struct mem_cgroup_thresholds *thresholds;
5465 struct mem_cgroup_threshold_ary *new;
86ae53e1 5466 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5467 u64 threshold, usage;
2c488db2 5468 int i, size, ret;
2e72b634
KS
5469
5470 ret = res_counter_memparse_write_strategy(args, &threshold);
5471 if (ret)
5472 return ret;
5473
5474 mutex_lock(&memcg->thresholds_lock);
2c488db2 5475
2e72b634 5476 if (type == _MEM)
2c488db2 5477 thresholds = &memcg->thresholds;
2e72b634 5478 else if (type == _MEMSWAP)
2c488db2 5479 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5480 else
5481 BUG();
5482
5483 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5484
5485 /* Check if a threshold crossed before adding a new one */
2c488db2 5486 if (thresholds->primary)
2e72b634
KS
5487 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5488
2c488db2 5489 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5490
5491 /* Allocate memory for new array of thresholds */
2c488db2 5492 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5493 GFP_KERNEL);
2c488db2 5494 if (!new) {
2e72b634
KS
5495 ret = -ENOMEM;
5496 goto unlock;
5497 }
2c488db2 5498 new->size = size;
2e72b634
KS
5499
5500 /* Copy thresholds (if any) to new array */
2c488db2
KS
5501 if (thresholds->primary) {
5502 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5503 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5504 }
5505
2e72b634 5506 /* Add new threshold */
2c488db2
KS
5507 new->entries[size - 1].eventfd = eventfd;
5508 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5509
5510 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5511 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5512 compare_thresholds, NULL);
5513
5514 /* Find current threshold */
2c488db2 5515 new->current_threshold = -1;
2e72b634 5516 for (i = 0; i < size; i++) {
748dad36 5517 if (new->entries[i].threshold <= usage) {
2e72b634 5518 /*
2c488db2
KS
5519 * new->current_threshold will not be used until
5520 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5521 * it here.
5522 */
2c488db2 5523 ++new->current_threshold;
748dad36
SZ
5524 } else
5525 break;
2e72b634
KS
5526 }
5527
2c488db2
KS
5528 /* Free old spare buffer and save old primary buffer as spare */
5529 kfree(thresholds->spare);
5530 thresholds->spare = thresholds->primary;
5531
5532 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5533
907860ed 5534 /* To be sure that nobody uses thresholds */
2e72b634
KS
5535 synchronize_rcu();
5536
2e72b634
KS
5537unlock:
5538 mutex_unlock(&memcg->thresholds_lock);
5539
5540 return ret;
5541}
5542
81eeaf04 5543static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
9490ff27 5544 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634 5545{
81eeaf04 5546 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5547 struct mem_cgroup_thresholds *thresholds;
5548 struct mem_cgroup_threshold_ary *new;
86ae53e1 5549 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5550 u64 usage;
2c488db2 5551 int i, j, size;
2e72b634
KS
5552
5553 mutex_lock(&memcg->thresholds_lock);
5554 if (type == _MEM)
2c488db2 5555 thresholds = &memcg->thresholds;
2e72b634 5556 else if (type == _MEMSWAP)
2c488db2 5557 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5558 else
5559 BUG();
5560
371528ca
AV
5561 if (!thresholds->primary)
5562 goto unlock;
5563
2e72b634
KS
5564 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5565
5566 /* Check if a threshold crossed before removing */
5567 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5568
5569 /* Calculate new number of threshold */
2c488db2
KS
5570 size = 0;
5571 for (i = 0; i < thresholds->primary->size; i++) {
5572 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5573 size++;
5574 }
5575
2c488db2 5576 new = thresholds->spare;
907860ed 5577
2e72b634
KS
5578 /* Set thresholds array to NULL if we don't have thresholds */
5579 if (!size) {
2c488db2
KS
5580 kfree(new);
5581 new = NULL;
907860ed 5582 goto swap_buffers;
2e72b634
KS
5583 }
5584
2c488db2 5585 new->size = size;
2e72b634
KS
5586
5587 /* Copy thresholds and find current threshold */
2c488db2
KS
5588 new->current_threshold = -1;
5589 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5590 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5591 continue;
5592
2c488db2 5593 new->entries[j] = thresholds->primary->entries[i];
748dad36 5594 if (new->entries[j].threshold <= usage) {
2e72b634 5595 /*
2c488db2 5596 * new->current_threshold will not be used
2e72b634
KS
5597 * until rcu_assign_pointer(), so it's safe to increment
5598 * it here.
5599 */
2c488db2 5600 ++new->current_threshold;
2e72b634
KS
5601 }
5602 j++;
5603 }
5604
907860ed 5605swap_buffers:
2c488db2
KS
5606 /* Swap primary and spare array */
5607 thresholds->spare = thresholds->primary;
8c757763
SZ
5608 /* If all events are unregistered, free the spare array */
5609 if (!new) {
5610 kfree(thresholds->spare);
5611 thresholds->spare = NULL;
5612 }
5613
2c488db2 5614 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5615
907860ed 5616 /* To be sure that nobody uses thresholds */
2e72b634 5617 synchronize_rcu();
371528ca 5618unlock:
2e72b634 5619 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5620}
c1e862c1 5621
81eeaf04 5622static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
9490ff27
KH
5623 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5624{
81eeaf04 5625 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5626 struct mem_cgroup_eventfd_list *event;
86ae53e1 5627 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5628
5629 BUG_ON(type != _OOM_TYPE);
5630 event = kmalloc(sizeof(*event), GFP_KERNEL);
5631 if (!event)
5632 return -ENOMEM;
5633
1af8efe9 5634 spin_lock(&memcg_oom_lock);
9490ff27
KH
5635
5636 event->eventfd = eventfd;
5637 list_add(&event->list, &memcg->oom_notify);
5638
5639 /* already in OOM ? */
79dfdacc 5640 if (atomic_read(&memcg->under_oom))
9490ff27 5641 eventfd_signal(eventfd, 1);
1af8efe9 5642 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5643
5644 return 0;
5645}
5646
81eeaf04 5647static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
9490ff27
KH
5648 struct cftype *cft, struct eventfd_ctx *eventfd)
5649{
81eeaf04 5650 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5651 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5652 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5653
5654 BUG_ON(type != _OOM_TYPE);
5655
1af8efe9 5656 spin_lock(&memcg_oom_lock);
9490ff27 5657
c0ff4b85 5658 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5659 if (ev->eventfd == eventfd) {
5660 list_del(&ev->list);
5661 kfree(ev);
5662 }
5663 }
5664
1af8efe9 5665 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5666}
5667
182446d0 5668static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
3c11ecf4
KH
5669 struct cftype *cft, struct cgroup_map_cb *cb)
5670{
182446d0 5671 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4 5672
c0ff4b85 5673 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5674
c0ff4b85 5675 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5676 cb->fill(cb, "under_oom", 1);
5677 else
5678 cb->fill(cb, "under_oom", 0);
5679 return 0;
5680}
5681
182446d0 5682static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5683 struct cftype *cft, u64 val)
5684{
182446d0 5685 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5686 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5687
5688 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5689 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5690 return -EINVAL;
5691
0999821b 5692 mutex_lock(&memcg_create_mutex);
3c11ecf4 5693 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5694 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5695 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5696 return -EINVAL;
5697 }
c0ff4b85 5698 memcg->oom_kill_disable = val;
4d845ebf 5699 if (!val)
c0ff4b85 5700 memcg_oom_recover(memcg);
0999821b 5701 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5702 return 0;
5703}
5704
c255a458 5705#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5706static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5707{
55007d84
GC
5708 int ret;
5709
2633d7a0 5710 memcg->kmemcg_id = -1;
55007d84
GC
5711 ret = memcg_propagate_kmem(memcg);
5712 if (ret)
5713 return ret;
2633d7a0 5714
1d62e436 5715 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5716}
e5671dfa 5717
10d5ebf4 5718static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5719{
1d62e436 5720 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5721}
5722
5723static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5724{
5725 if (!memcg_kmem_is_active(memcg))
5726 return;
5727
5728 /*
5729 * kmem charges can outlive the cgroup. In the case of slab
5730 * pages, for instance, a page contain objects from various
5731 * processes. As we prevent from taking a reference for every
5732 * such allocation we have to be careful when doing uncharge
5733 * (see memcg_uncharge_kmem) and here during offlining.
5734 *
5735 * The idea is that that only the _last_ uncharge which sees
5736 * the dead memcg will drop the last reference. An additional
5737 * reference is taken here before the group is marked dead
5738 * which is then paired with css_put during uncharge resp. here.
5739 *
5740 * Although this might sound strange as this path is called from
5741 * css_offline() when the referencemight have dropped down to 0
5742 * and shouldn't be incremented anymore (css_tryget would fail)
5743 * we do not have other options because of the kmem allocations
5744 * lifetime.
5745 */
5746 css_get(&memcg->css);
7de37682
GC
5747
5748 memcg_kmem_mark_dead(memcg);
5749
5750 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5751 return;
5752
7de37682 5753 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5754 css_put(&memcg->css);
d1a4c0b3 5755}
e5671dfa 5756#else
cbe128e3 5757static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5758{
5759 return 0;
5760}
d1a4c0b3 5761
10d5ebf4
LZ
5762static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5763{
5764}
5765
5766static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5767{
5768}
e5671dfa
GC
5769#endif
5770
8cdea7c0
BS
5771static struct cftype mem_cgroup_files[] = {
5772 {
0eea1030 5773 .name = "usage_in_bytes",
8c7c6e34 5774 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5775 .read = mem_cgroup_read,
9490ff27
KH
5776 .register_event = mem_cgroup_usage_register_event,
5777 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5778 },
c84872e1
PE
5779 {
5780 .name = "max_usage_in_bytes",
8c7c6e34 5781 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5782 .trigger = mem_cgroup_reset,
af36f906 5783 .read = mem_cgroup_read,
c84872e1 5784 },
8cdea7c0 5785 {
0eea1030 5786 .name = "limit_in_bytes",
8c7c6e34 5787 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5788 .write_string = mem_cgroup_write,
af36f906 5789 .read = mem_cgroup_read,
8cdea7c0 5790 },
296c81d8
BS
5791 {
5792 .name = "soft_limit_in_bytes",
5793 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5794 .write_string = mem_cgroup_write,
af36f906 5795 .read = mem_cgroup_read,
296c81d8 5796 },
8cdea7c0
BS
5797 {
5798 .name = "failcnt",
8c7c6e34 5799 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5800 .trigger = mem_cgroup_reset,
af36f906 5801 .read = mem_cgroup_read,
8cdea7c0 5802 },
d2ceb9b7
KH
5803 {
5804 .name = "stat",
ab215884 5805 .read_seq_string = memcg_stat_show,
d2ceb9b7 5806 },
c1e862c1
KH
5807 {
5808 .name = "force_empty",
5809 .trigger = mem_cgroup_force_empty_write,
5810 },
18f59ea7
BS
5811 {
5812 .name = "use_hierarchy",
f00baae7 5813 .flags = CFTYPE_INSANE,
18f59ea7
BS
5814 .write_u64 = mem_cgroup_hierarchy_write,
5815 .read_u64 = mem_cgroup_hierarchy_read,
5816 },
a7885eb8
KM
5817 {
5818 .name = "swappiness",
5819 .read_u64 = mem_cgroup_swappiness_read,
5820 .write_u64 = mem_cgroup_swappiness_write,
5821 },
7dc74be0
DN
5822 {
5823 .name = "move_charge_at_immigrate",
5824 .read_u64 = mem_cgroup_move_charge_read,
5825 .write_u64 = mem_cgroup_move_charge_write,
5826 },
9490ff27
KH
5827 {
5828 .name = "oom_control",
3c11ecf4
KH
5829 .read_map = mem_cgroup_oom_control_read,
5830 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5831 .register_event = mem_cgroup_oom_register_event,
5832 .unregister_event = mem_cgroup_oom_unregister_event,
5833 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5834 },
70ddf637
AV
5835 {
5836 .name = "pressure_level",
5837 .register_event = vmpressure_register_event,
5838 .unregister_event = vmpressure_unregister_event,
5839 },
406eb0c9
YH
5840#ifdef CONFIG_NUMA
5841 {
5842 .name = "numa_stat",
ab215884 5843 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
5844 },
5845#endif
510fc4e1
GC
5846#ifdef CONFIG_MEMCG_KMEM
5847 {
5848 .name = "kmem.limit_in_bytes",
5849 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5850 .write_string = mem_cgroup_write,
5851 .read = mem_cgroup_read,
5852 },
5853 {
5854 .name = "kmem.usage_in_bytes",
5855 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5856 .read = mem_cgroup_read,
5857 },
5858 {
5859 .name = "kmem.failcnt",
5860 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5861 .trigger = mem_cgroup_reset,
5862 .read = mem_cgroup_read,
5863 },
5864 {
5865 .name = "kmem.max_usage_in_bytes",
5866 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5867 .trigger = mem_cgroup_reset,
5868 .read = mem_cgroup_read,
5869 },
749c5415
GC
5870#ifdef CONFIG_SLABINFO
5871 {
5872 .name = "kmem.slabinfo",
5873 .read_seq_string = mem_cgroup_slabinfo_read,
5874 },
5875#endif
8c7c6e34 5876#endif
6bc10349 5877 { }, /* terminate */
af36f906 5878};
8c7c6e34 5879
2d11085e
MH
5880#ifdef CONFIG_MEMCG_SWAP
5881static struct cftype memsw_cgroup_files[] = {
5882 {
5883 .name = "memsw.usage_in_bytes",
5884 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5885 .read = mem_cgroup_read,
5886 .register_event = mem_cgroup_usage_register_event,
5887 .unregister_event = mem_cgroup_usage_unregister_event,
5888 },
5889 {
5890 .name = "memsw.max_usage_in_bytes",
5891 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5892 .trigger = mem_cgroup_reset,
5893 .read = mem_cgroup_read,
5894 },
5895 {
5896 .name = "memsw.limit_in_bytes",
5897 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5898 .write_string = mem_cgroup_write,
5899 .read = mem_cgroup_read,
5900 },
5901 {
5902 .name = "memsw.failcnt",
5903 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5904 .trigger = mem_cgroup_reset,
5905 .read = mem_cgroup_read,
5906 },
5907 { }, /* terminate */
5908};
5909#endif
c0ff4b85 5910static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5911{
5912 struct mem_cgroup_per_node *pn;
1ecaab2b 5913 struct mem_cgroup_per_zone *mz;
41e3355d 5914 int zone, tmp = node;
1ecaab2b
KH
5915 /*
5916 * This routine is called against possible nodes.
5917 * But it's BUG to call kmalloc() against offline node.
5918 *
5919 * TODO: this routine can waste much memory for nodes which will
5920 * never be onlined. It's better to use memory hotplug callback
5921 * function.
5922 */
41e3355d
KH
5923 if (!node_state(node, N_NORMAL_MEMORY))
5924 tmp = -1;
17295c88 5925 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5926 if (!pn)
5927 return 1;
1ecaab2b 5928
1ecaab2b
KH
5929 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5930 mz = &pn->zoneinfo[zone];
bea8c150 5931 lruvec_init(&mz->lruvec);
d79154bb 5932 mz->memcg = memcg;
1ecaab2b 5933 }
54f72fe0 5934 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5935 return 0;
5936}
5937
c0ff4b85 5938static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5939{
54f72fe0 5940 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
5941}
5942
33327948
KH
5943static struct mem_cgroup *mem_cgroup_alloc(void)
5944{
d79154bb 5945 struct mem_cgroup *memcg;
45cf7ebd 5946 size_t size = memcg_size();
33327948 5947
45cf7ebd 5948 /* Can be very big if nr_node_ids is very big */
c8dad2bb 5949 if (size < PAGE_SIZE)
d79154bb 5950 memcg = kzalloc(size, GFP_KERNEL);
33327948 5951 else
d79154bb 5952 memcg = vzalloc(size);
33327948 5953
d79154bb 5954 if (!memcg)
e7bbcdf3
DC
5955 return NULL;
5956
d79154bb
HD
5957 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5958 if (!memcg->stat)
d2e61b8d 5959 goto out_free;
d79154bb
HD
5960 spin_lock_init(&memcg->pcp_counter_lock);
5961 return memcg;
d2e61b8d
DC
5962
5963out_free:
5964 if (size < PAGE_SIZE)
d79154bb 5965 kfree(memcg);
d2e61b8d 5966 else
d79154bb 5967 vfree(memcg);
d2e61b8d 5968 return NULL;
33327948
KH
5969}
5970
59927fb9 5971/*
c8b2a36f
GC
5972 * At destroying mem_cgroup, references from swap_cgroup can remain.
5973 * (scanning all at force_empty is too costly...)
5974 *
5975 * Instead of clearing all references at force_empty, we remember
5976 * the number of reference from swap_cgroup and free mem_cgroup when
5977 * it goes down to 0.
5978 *
5979 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 5980 */
c8b2a36f
GC
5981
5982static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5983{
c8b2a36f 5984 int node;
45cf7ebd 5985 size_t size = memcg_size();
59927fb9 5986
c8b2a36f
GC
5987 free_css_id(&mem_cgroup_subsys, &memcg->css);
5988
5989 for_each_node(node)
5990 free_mem_cgroup_per_zone_info(memcg, node);
5991
5992 free_percpu(memcg->stat);
5993
3f134619
GC
5994 /*
5995 * We need to make sure that (at least for now), the jump label
5996 * destruction code runs outside of the cgroup lock. This is because
5997 * get_online_cpus(), which is called from the static_branch update,
5998 * can't be called inside the cgroup_lock. cpusets are the ones
5999 * enforcing this dependency, so if they ever change, we might as well.
6000 *
6001 * schedule_work() will guarantee this happens. Be careful if you need
6002 * to move this code around, and make sure it is outside
6003 * the cgroup_lock.
6004 */
a8964b9b 6005 disarm_static_keys(memcg);
3afe36b1
GC
6006 if (size < PAGE_SIZE)
6007 kfree(memcg);
6008 else
6009 vfree(memcg);
59927fb9 6010}
3afe36b1 6011
7bcc1bb1
DN
6012/*
6013 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6014 */
e1aab161 6015struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6016{
c0ff4b85 6017 if (!memcg->res.parent)
7bcc1bb1 6018 return NULL;
c0ff4b85 6019 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6020}
e1aab161 6021EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6022
0eb253e2 6023static struct cgroup_subsys_state * __ref
eb95419b 6024mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6025{
d142e3e6 6026 struct mem_cgroup *memcg;
04046e1a 6027 long error = -ENOMEM;
6d12e2d8 6028 int node;
8cdea7c0 6029
c0ff4b85
R
6030 memcg = mem_cgroup_alloc();
6031 if (!memcg)
04046e1a 6032 return ERR_PTR(error);
78fb7466 6033
3ed28fa1 6034 for_each_node(node)
c0ff4b85 6035 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6036 goto free_out;
f64c3f54 6037
c077719b 6038 /* root ? */
eb95419b 6039 if (parent_css == NULL) {
a41c58a6 6040 root_mem_cgroup = memcg;
d142e3e6
GC
6041 res_counter_init(&memcg->res, NULL);
6042 res_counter_init(&memcg->memsw, NULL);
6043 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6044 }
28dbc4b6 6045
d142e3e6
GC
6046 memcg->last_scanned_node = MAX_NUMNODES;
6047 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6048 memcg->move_charge_at_immigrate = 0;
6049 mutex_init(&memcg->thresholds_lock);
6050 spin_lock_init(&memcg->move_lock);
70ddf637 6051 vmpressure_init(&memcg->vmpressure);
7d910c05 6052 spin_lock_init(&memcg->soft_lock);
d142e3e6
GC
6053
6054 return &memcg->css;
6055
6056free_out:
6057 __mem_cgroup_free(memcg);
6058 return ERR_PTR(error);
6059}
6060
6061static int
eb95419b 6062mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6063{
eb95419b
TH
6064 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6065 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
6066 int error = 0;
6067
4219b2da
LZ
6068 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6069 return -ENOSPC;
6070
63876986 6071 if (!parent)
d142e3e6
GC
6072 return 0;
6073
0999821b 6074 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6075
6076 memcg->use_hierarchy = parent->use_hierarchy;
6077 memcg->oom_kill_disable = parent->oom_kill_disable;
6078 memcg->swappiness = mem_cgroup_swappiness(parent);
6079
6080 if (parent->use_hierarchy) {
c0ff4b85
R
6081 res_counter_init(&memcg->res, &parent->res);
6082 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6083 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6084
7bcc1bb1 6085 /*
8d76a979
LZ
6086 * No need to take a reference to the parent because cgroup
6087 * core guarantees its existence.
7bcc1bb1 6088 */
18f59ea7 6089 } else {
c0ff4b85
R
6090 res_counter_init(&memcg->res, NULL);
6091 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6092 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6093 /*
6094 * Deeper hierachy with use_hierarchy == false doesn't make
6095 * much sense so let cgroup subsystem know about this
6096 * unfortunate state in our controller.
6097 */
d142e3e6 6098 if (parent != root_mem_cgroup)
8c7f6edb 6099 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6100 }
cbe128e3
GC
6101
6102 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6103 mutex_unlock(&memcg_create_mutex);
d142e3e6 6104 return error;
8cdea7c0
BS
6105}
6106
5f578161
MH
6107/*
6108 * Announce all parents that a group from their hierarchy is gone.
6109 */
6110static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6111{
6112 struct mem_cgroup *parent = memcg;
6113
6114 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6115 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6116
6117 /*
6118 * if the root memcg is not hierarchical we have to check it
6119 * explicitely.
6120 */
6121 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6122 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6123}
6124
eb95419b 6125static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6126{
eb95419b 6127 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ec64f515 6128
10d5ebf4
LZ
6129 kmem_cgroup_css_offline(memcg);
6130
5f578161 6131 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6132 mem_cgroup_reparent_charges(memcg);
7d910c05
MH
6133 if (memcg->soft_contributed) {
6134 while ((memcg = parent_mem_cgroup(memcg)))
6135 atomic_dec(&memcg->children_in_excess);
1be171d6
MH
6136
6137 if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
6138 atomic_dec(&root_mem_cgroup->children_in_excess);
7d910c05 6139 }
1f458cbf 6140 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6141 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6142}
6143
eb95419b 6144static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6145{
eb95419b 6146 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 6147
10d5ebf4 6148 memcg_destroy_kmem(memcg);
465939a1 6149 __mem_cgroup_free(memcg);
8cdea7c0
BS
6150}
6151
02491447 6152#ifdef CONFIG_MMU
7dc74be0 6153/* Handlers for move charge at task migration. */
854ffa8d
DN
6154#define PRECHARGE_COUNT_AT_ONCE 256
6155static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6156{
854ffa8d
DN
6157 int ret = 0;
6158 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6159 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6160
c0ff4b85 6161 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6162 mc.precharge += count;
6163 /* we don't need css_get for root */
6164 return ret;
6165 }
6166 /* try to charge at once */
6167 if (count > 1) {
6168 struct res_counter *dummy;
6169 /*
c0ff4b85 6170 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6171 * by cgroup_lock_live_cgroup() that it is not removed and we
6172 * are still under the same cgroup_mutex. So we can postpone
6173 * css_get().
6174 */
c0ff4b85 6175 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6176 goto one_by_one;
c0ff4b85 6177 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6178 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6179 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6180 goto one_by_one;
6181 }
6182 mc.precharge += count;
854ffa8d
DN
6183 return ret;
6184 }
6185one_by_one:
6186 /* fall back to one by one charge */
6187 while (count--) {
6188 if (signal_pending(current)) {
6189 ret = -EINTR;
6190 break;
6191 }
6192 if (!batch_count--) {
6193 batch_count = PRECHARGE_COUNT_AT_ONCE;
6194 cond_resched();
6195 }
c0ff4b85
R
6196 ret = __mem_cgroup_try_charge(NULL,
6197 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6198 if (ret)
854ffa8d 6199 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6200 return ret;
854ffa8d
DN
6201 mc.precharge++;
6202 }
4ffef5fe
DN
6203 return ret;
6204}
6205
6206/**
8d32ff84 6207 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6208 * @vma: the vma the pte to be checked belongs
6209 * @addr: the address corresponding to the pte to be checked
6210 * @ptent: the pte to be checked
02491447 6211 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6212 *
6213 * Returns
6214 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6215 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6216 * move charge. if @target is not NULL, the page is stored in target->page
6217 * with extra refcnt got(Callers should handle it).
02491447
DN
6218 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6219 * target for charge migration. if @target is not NULL, the entry is stored
6220 * in target->ent.
4ffef5fe
DN
6221 *
6222 * Called with pte lock held.
6223 */
4ffef5fe
DN
6224union mc_target {
6225 struct page *page;
02491447 6226 swp_entry_t ent;
4ffef5fe
DN
6227};
6228
4ffef5fe 6229enum mc_target_type {
8d32ff84 6230 MC_TARGET_NONE = 0,
4ffef5fe 6231 MC_TARGET_PAGE,
02491447 6232 MC_TARGET_SWAP,
4ffef5fe
DN
6233};
6234
90254a65
DN
6235static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6236 unsigned long addr, pte_t ptent)
4ffef5fe 6237{
90254a65 6238 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6239
90254a65
DN
6240 if (!page || !page_mapped(page))
6241 return NULL;
6242 if (PageAnon(page)) {
6243 /* we don't move shared anon */
4b91355e 6244 if (!move_anon())
90254a65 6245 return NULL;
87946a72
DN
6246 } else if (!move_file())
6247 /* we ignore mapcount for file pages */
90254a65
DN
6248 return NULL;
6249 if (!get_page_unless_zero(page))
6250 return NULL;
6251
6252 return page;
6253}
6254
4b91355e 6255#ifdef CONFIG_SWAP
90254a65
DN
6256static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6257 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6258{
90254a65
DN
6259 struct page *page = NULL;
6260 swp_entry_t ent = pte_to_swp_entry(ptent);
6261
6262 if (!move_anon() || non_swap_entry(ent))
6263 return NULL;
4b91355e
KH
6264 /*
6265 * Because lookup_swap_cache() updates some statistics counter,
6266 * we call find_get_page() with swapper_space directly.
6267 */
33806f06 6268 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6269 if (do_swap_account)
6270 entry->val = ent.val;
6271
6272 return page;
6273}
4b91355e
KH
6274#else
6275static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6276 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6277{
6278 return NULL;
6279}
6280#endif
90254a65 6281
87946a72
DN
6282static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6283 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6284{
6285 struct page *page = NULL;
87946a72
DN
6286 struct address_space *mapping;
6287 pgoff_t pgoff;
6288
6289 if (!vma->vm_file) /* anonymous vma */
6290 return NULL;
6291 if (!move_file())
6292 return NULL;
6293
87946a72
DN
6294 mapping = vma->vm_file->f_mapping;
6295 if (pte_none(ptent))
6296 pgoff = linear_page_index(vma, addr);
6297 else /* pte_file(ptent) is true */
6298 pgoff = pte_to_pgoff(ptent);
6299
6300 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6301 page = find_get_page(mapping, pgoff);
6302
6303#ifdef CONFIG_SWAP
6304 /* shmem/tmpfs may report page out on swap: account for that too. */
6305 if (radix_tree_exceptional_entry(page)) {
6306 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6307 if (do_swap_account)
aa3b1895 6308 *entry = swap;
33806f06 6309 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6310 }
aa3b1895 6311#endif
87946a72
DN
6312 return page;
6313}
6314
8d32ff84 6315static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6316 unsigned long addr, pte_t ptent, union mc_target *target)
6317{
6318 struct page *page = NULL;
6319 struct page_cgroup *pc;
8d32ff84 6320 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6321 swp_entry_t ent = { .val = 0 };
6322
6323 if (pte_present(ptent))
6324 page = mc_handle_present_pte(vma, addr, ptent);
6325 else if (is_swap_pte(ptent))
6326 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6327 else if (pte_none(ptent) || pte_file(ptent))
6328 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6329
6330 if (!page && !ent.val)
8d32ff84 6331 return ret;
02491447
DN
6332 if (page) {
6333 pc = lookup_page_cgroup(page);
6334 /*
6335 * Do only loose check w/o page_cgroup lock.
6336 * mem_cgroup_move_account() checks the pc is valid or not under
6337 * the lock.
6338 */
6339 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6340 ret = MC_TARGET_PAGE;
6341 if (target)
6342 target->page = page;
6343 }
6344 if (!ret || !target)
6345 put_page(page);
6346 }
90254a65
DN
6347 /* There is a swap entry and a page doesn't exist or isn't charged */
6348 if (ent.val && !ret &&
34c00c31 6349 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6350 ret = MC_TARGET_SWAP;
6351 if (target)
6352 target->ent = ent;
4ffef5fe 6353 }
4ffef5fe
DN
6354 return ret;
6355}
6356
12724850
NH
6357#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6358/*
6359 * We don't consider swapping or file mapped pages because THP does not
6360 * support them for now.
6361 * Caller should make sure that pmd_trans_huge(pmd) is true.
6362 */
6363static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6364 unsigned long addr, pmd_t pmd, union mc_target *target)
6365{
6366 struct page *page = NULL;
6367 struct page_cgroup *pc;
6368 enum mc_target_type ret = MC_TARGET_NONE;
6369
6370 page = pmd_page(pmd);
6371 VM_BUG_ON(!page || !PageHead(page));
6372 if (!move_anon())
6373 return ret;
6374 pc = lookup_page_cgroup(page);
6375 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6376 ret = MC_TARGET_PAGE;
6377 if (target) {
6378 get_page(page);
6379 target->page = page;
6380 }
6381 }
6382 return ret;
6383}
6384#else
6385static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6386 unsigned long addr, pmd_t pmd, union mc_target *target)
6387{
6388 return MC_TARGET_NONE;
6389}
6390#endif
6391
4ffef5fe
DN
6392static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6393 unsigned long addr, unsigned long end,
6394 struct mm_walk *walk)
6395{
6396 struct vm_area_struct *vma = walk->private;
6397 pte_t *pte;
6398 spinlock_t *ptl;
6399
12724850
NH
6400 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6401 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6402 mc.precharge += HPAGE_PMD_NR;
6403 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6404 return 0;
12724850 6405 }
03319327 6406
45f83cef
AA
6407 if (pmd_trans_unstable(pmd))
6408 return 0;
4ffef5fe
DN
6409 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6410 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6411 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6412 mc.precharge++; /* increment precharge temporarily */
6413 pte_unmap_unlock(pte - 1, ptl);
6414 cond_resched();
6415
7dc74be0
DN
6416 return 0;
6417}
6418
4ffef5fe
DN
6419static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6420{
6421 unsigned long precharge;
6422 struct vm_area_struct *vma;
6423
dfe076b0 6424 down_read(&mm->mmap_sem);
4ffef5fe
DN
6425 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6426 struct mm_walk mem_cgroup_count_precharge_walk = {
6427 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6428 .mm = mm,
6429 .private = vma,
6430 };
6431 if (is_vm_hugetlb_page(vma))
6432 continue;
4ffef5fe
DN
6433 walk_page_range(vma->vm_start, vma->vm_end,
6434 &mem_cgroup_count_precharge_walk);
6435 }
dfe076b0 6436 up_read(&mm->mmap_sem);
4ffef5fe
DN
6437
6438 precharge = mc.precharge;
6439 mc.precharge = 0;
6440
6441 return precharge;
6442}
6443
4ffef5fe
DN
6444static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6445{
dfe076b0
DN
6446 unsigned long precharge = mem_cgroup_count_precharge(mm);
6447
6448 VM_BUG_ON(mc.moving_task);
6449 mc.moving_task = current;
6450 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6451}
6452
dfe076b0
DN
6453/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6454static void __mem_cgroup_clear_mc(void)
4ffef5fe 6455{
2bd9bb20
KH
6456 struct mem_cgroup *from = mc.from;
6457 struct mem_cgroup *to = mc.to;
4050377b 6458 int i;
2bd9bb20 6459
4ffef5fe 6460 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6461 if (mc.precharge) {
6462 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6463 mc.precharge = 0;
6464 }
6465 /*
6466 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6467 * we must uncharge here.
6468 */
6469 if (mc.moved_charge) {
6470 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6471 mc.moved_charge = 0;
4ffef5fe 6472 }
483c30b5
DN
6473 /* we must fixup refcnts and charges */
6474 if (mc.moved_swap) {
483c30b5
DN
6475 /* uncharge swap account from the old cgroup */
6476 if (!mem_cgroup_is_root(mc.from))
6477 res_counter_uncharge(&mc.from->memsw,
6478 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6479
6480 for (i = 0; i < mc.moved_swap; i++)
6481 css_put(&mc.from->css);
483c30b5
DN
6482
6483 if (!mem_cgroup_is_root(mc.to)) {
6484 /*
6485 * we charged both to->res and to->memsw, so we should
6486 * uncharge to->res.
6487 */
6488 res_counter_uncharge(&mc.to->res,
6489 PAGE_SIZE * mc.moved_swap);
483c30b5 6490 }
4050377b 6491 /* we've already done css_get(mc.to) */
483c30b5
DN
6492 mc.moved_swap = 0;
6493 }
dfe076b0
DN
6494 memcg_oom_recover(from);
6495 memcg_oom_recover(to);
6496 wake_up_all(&mc.waitq);
6497}
6498
6499static void mem_cgroup_clear_mc(void)
6500{
6501 struct mem_cgroup *from = mc.from;
6502
6503 /*
6504 * we must clear moving_task before waking up waiters at the end of
6505 * task migration.
6506 */
6507 mc.moving_task = NULL;
6508 __mem_cgroup_clear_mc();
2bd9bb20 6509 spin_lock(&mc.lock);
4ffef5fe
DN
6510 mc.from = NULL;
6511 mc.to = NULL;
2bd9bb20 6512 spin_unlock(&mc.lock);
32047e2a 6513 mem_cgroup_end_move(from);
4ffef5fe
DN
6514}
6515
eb95419b 6516static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6517 struct cgroup_taskset *tset)
7dc74be0 6518{
2f7ee569 6519 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6520 int ret = 0;
eb95419b 6521 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6522 unsigned long move_charge_at_immigrate;
7dc74be0 6523
ee5e8472
GC
6524 /*
6525 * We are now commited to this value whatever it is. Changes in this
6526 * tunable will only affect upcoming migrations, not the current one.
6527 * So we need to save it, and keep it going.
6528 */
6529 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6530 if (move_charge_at_immigrate) {
7dc74be0
DN
6531 struct mm_struct *mm;
6532 struct mem_cgroup *from = mem_cgroup_from_task(p);
6533
c0ff4b85 6534 VM_BUG_ON(from == memcg);
7dc74be0
DN
6535
6536 mm = get_task_mm(p);
6537 if (!mm)
6538 return 0;
7dc74be0 6539 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6540 if (mm->owner == p) {
6541 VM_BUG_ON(mc.from);
6542 VM_BUG_ON(mc.to);
6543 VM_BUG_ON(mc.precharge);
854ffa8d 6544 VM_BUG_ON(mc.moved_charge);
483c30b5 6545 VM_BUG_ON(mc.moved_swap);
32047e2a 6546 mem_cgroup_start_move(from);
2bd9bb20 6547 spin_lock(&mc.lock);
4ffef5fe 6548 mc.from = from;
c0ff4b85 6549 mc.to = memcg;
ee5e8472 6550 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6551 spin_unlock(&mc.lock);
dfe076b0 6552 /* We set mc.moving_task later */
4ffef5fe
DN
6553
6554 ret = mem_cgroup_precharge_mc(mm);
6555 if (ret)
6556 mem_cgroup_clear_mc();
dfe076b0
DN
6557 }
6558 mmput(mm);
7dc74be0
DN
6559 }
6560 return ret;
6561}
6562
eb95419b 6563static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6564 struct cgroup_taskset *tset)
7dc74be0 6565{
4ffef5fe 6566 mem_cgroup_clear_mc();
7dc74be0
DN
6567}
6568
4ffef5fe
DN
6569static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6570 unsigned long addr, unsigned long end,
6571 struct mm_walk *walk)
7dc74be0 6572{
4ffef5fe
DN
6573 int ret = 0;
6574 struct vm_area_struct *vma = walk->private;
6575 pte_t *pte;
6576 spinlock_t *ptl;
12724850
NH
6577 enum mc_target_type target_type;
6578 union mc_target target;
6579 struct page *page;
6580 struct page_cgroup *pc;
4ffef5fe 6581
12724850
NH
6582 /*
6583 * We don't take compound_lock() here but no race with splitting thp
6584 * happens because:
6585 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6586 * under splitting, which means there's no concurrent thp split,
6587 * - if another thread runs into split_huge_page() just after we
6588 * entered this if-block, the thread must wait for page table lock
6589 * to be unlocked in __split_huge_page_splitting(), where the main
6590 * part of thp split is not executed yet.
6591 */
6592 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6593 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6594 spin_unlock(&vma->vm_mm->page_table_lock);
6595 return 0;
6596 }
6597 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6598 if (target_type == MC_TARGET_PAGE) {
6599 page = target.page;
6600 if (!isolate_lru_page(page)) {
6601 pc = lookup_page_cgroup(page);
6602 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6603 pc, mc.from, mc.to)) {
12724850
NH
6604 mc.precharge -= HPAGE_PMD_NR;
6605 mc.moved_charge += HPAGE_PMD_NR;
6606 }
6607 putback_lru_page(page);
6608 }
6609 put_page(page);
6610 }
6611 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6612 return 0;
12724850
NH
6613 }
6614
45f83cef
AA
6615 if (pmd_trans_unstable(pmd))
6616 return 0;
4ffef5fe
DN
6617retry:
6618 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6619 for (; addr != end; addr += PAGE_SIZE) {
6620 pte_t ptent = *(pte++);
02491447 6621 swp_entry_t ent;
4ffef5fe
DN
6622
6623 if (!mc.precharge)
6624 break;
6625
8d32ff84 6626 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6627 case MC_TARGET_PAGE:
6628 page = target.page;
6629 if (isolate_lru_page(page))
6630 goto put;
6631 pc = lookup_page_cgroup(page);
7ec99d62 6632 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6633 mc.from, mc.to)) {
4ffef5fe 6634 mc.precharge--;
854ffa8d
DN
6635 /* we uncharge from mc.from later. */
6636 mc.moved_charge++;
4ffef5fe
DN
6637 }
6638 putback_lru_page(page);
8d32ff84 6639put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6640 put_page(page);
6641 break;
02491447
DN
6642 case MC_TARGET_SWAP:
6643 ent = target.ent;
e91cbb42 6644 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6645 mc.precharge--;
483c30b5
DN
6646 /* we fixup refcnts and charges later. */
6647 mc.moved_swap++;
6648 }
02491447 6649 break;
4ffef5fe
DN
6650 default:
6651 break;
6652 }
6653 }
6654 pte_unmap_unlock(pte - 1, ptl);
6655 cond_resched();
6656
6657 if (addr != end) {
6658 /*
6659 * We have consumed all precharges we got in can_attach().
6660 * We try charge one by one, but don't do any additional
6661 * charges to mc.to if we have failed in charge once in attach()
6662 * phase.
6663 */
854ffa8d 6664 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6665 if (!ret)
6666 goto retry;
6667 }
6668
6669 return ret;
6670}
6671
6672static void mem_cgroup_move_charge(struct mm_struct *mm)
6673{
6674 struct vm_area_struct *vma;
6675
6676 lru_add_drain_all();
dfe076b0
DN
6677retry:
6678 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6679 /*
6680 * Someone who are holding the mmap_sem might be waiting in
6681 * waitq. So we cancel all extra charges, wake up all waiters,
6682 * and retry. Because we cancel precharges, we might not be able
6683 * to move enough charges, but moving charge is a best-effort
6684 * feature anyway, so it wouldn't be a big problem.
6685 */
6686 __mem_cgroup_clear_mc();
6687 cond_resched();
6688 goto retry;
6689 }
4ffef5fe
DN
6690 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6691 int ret;
6692 struct mm_walk mem_cgroup_move_charge_walk = {
6693 .pmd_entry = mem_cgroup_move_charge_pte_range,
6694 .mm = mm,
6695 .private = vma,
6696 };
6697 if (is_vm_hugetlb_page(vma))
6698 continue;
4ffef5fe
DN
6699 ret = walk_page_range(vma->vm_start, vma->vm_end,
6700 &mem_cgroup_move_charge_walk);
6701 if (ret)
6702 /*
6703 * means we have consumed all precharges and failed in
6704 * doing additional charge. Just abandon here.
6705 */
6706 break;
6707 }
dfe076b0 6708 up_read(&mm->mmap_sem);
7dc74be0
DN
6709}
6710
eb95419b 6711static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6712 struct cgroup_taskset *tset)
67e465a7 6713{
2f7ee569 6714 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6715 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6716
dfe076b0 6717 if (mm) {
a433658c
KM
6718 if (mc.to)
6719 mem_cgroup_move_charge(mm);
dfe076b0
DN
6720 mmput(mm);
6721 }
a433658c
KM
6722 if (mc.to)
6723 mem_cgroup_clear_mc();
67e465a7 6724}
5cfb80a7 6725#else /* !CONFIG_MMU */
eb95419b 6726static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6727 struct cgroup_taskset *tset)
5cfb80a7
DN
6728{
6729 return 0;
6730}
eb95419b 6731static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6732 struct cgroup_taskset *tset)
5cfb80a7
DN
6733{
6734}
eb95419b 6735static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6736 struct cgroup_taskset *tset)
5cfb80a7
DN
6737{
6738}
6739#endif
67e465a7 6740
f00baae7
TH
6741/*
6742 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6743 * to verify sane_behavior flag on each mount attempt.
6744 */
eb95419b 6745static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6746{
6747 /*
6748 * use_hierarchy is forced with sane_behavior. cgroup core
6749 * guarantees that @root doesn't have any children, so turning it
6750 * on for the root memcg is enough.
6751 */
eb95419b
TH
6752 if (cgroup_sane_behavior(root_css->cgroup))
6753 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6754}
6755
8cdea7c0
BS
6756struct cgroup_subsys mem_cgroup_subsys = {
6757 .name = "memory",
6758 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6759 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6760 .css_online = mem_cgroup_css_online,
92fb9748
TH
6761 .css_offline = mem_cgroup_css_offline,
6762 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6763 .can_attach = mem_cgroup_can_attach,
6764 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6765 .attach = mem_cgroup_move_task,
f00baae7 6766 .bind = mem_cgroup_bind,
6bc10349 6767 .base_cftypes = mem_cgroup_files,
6d12e2d8 6768 .early_init = 0,
04046e1a 6769 .use_id = 1,
8cdea7c0 6770};
c077719b 6771
c255a458 6772#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6773static int __init enable_swap_account(char *s)
6774{
a2c8990a 6775 if (!strcmp(s, "1"))
a42c390c 6776 really_do_swap_account = 1;
a2c8990a 6777 else if (!strcmp(s, "0"))
a42c390c
MH
6778 really_do_swap_account = 0;
6779 return 1;
6780}
a2c8990a 6781__setup("swapaccount=", enable_swap_account);
c077719b 6782
2d11085e
MH
6783static void __init memsw_file_init(void)
6784{
6acc8b02
MH
6785 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6786}
6787
6788static void __init enable_swap_cgroup(void)
6789{
6790 if (!mem_cgroup_disabled() && really_do_swap_account) {
6791 do_swap_account = 1;
6792 memsw_file_init();
6793 }
2d11085e 6794}
6acc8b02 6795
2d11085e 6796#else
6acc8b02 6797static void __init enable_swap_cgroup(void)
2d11085e
MH
6798{
6799}
c077719b 6800#endif
2d11085e
MH
6801
6802/*
1081312f
MH
6803 * subsys_initcall() for memory controller.
6804 *
6805 * Some parts like hotcpu_notifier() have to be initialized from this context
6806 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6807 * everything that doesn't depend on a specific mem_cgroup structure should
6808 * be initialized from here.
2d11085e
MH
6809 */
6810static int __init mem_cgroup_init(void)
6811{
6812 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6813 enable_swap_cgroup();
e4777496 6814 memcg_stock_init();
2d11085e
MH
6815 return 0;
6816}
6817subsys_initcall(mem_cgroup_init);