]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
memcg: change try_to_free_pages to hierarchical_reclaim
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
8c7c6e34 30#include <linux/mutex.h>
b6ac57d5 31#include <linux/slab.h>
66e1707b
BS
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
d2ceb9b7 35#include <linux/seq_file.h>
33327948 36#include <linux/vmalloc.h>
b69408e8 37#include <linux/mm_inline.h>
52d4b9ac 38#include <linux/page_cgroup.h>
08e552c6 39#include "internal.h"
8cdea7c0 40
8697d331
BS
41#include <asm/uaccess.h>
42
a181b0e8 43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 44#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 45
c077719b
KH
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
7f4d454d 54static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
c077719b 55
d52aa412
KH
56/*
57 * Statistics for memory cgroup.
58 */
59enum mem_cgroup_stat_index {
60 /*
61 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62 */
63 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
64 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
65 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
66 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
67
68 MEM_CGROUP_STAT_NSTATS,
69};
70
71struct mem_cgroup_stat_cpu {
72 s64 count[MEM_CGROUP_STAT_NSTATS];
73} ____cacheline_aligned_in_smp;
74
75struct mem_cgroup_stat {
c8dad2bb 76 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
77};
78
79/*
80 * For accounting under irq disable, no need for increment preempt count.
81 */
addb9efe 82static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
83 enum mem_cgroup_stat_index idx, int val)
84{
addb9efe 85 stat->count[idx] += val;
d52aa412
KH
86}
87
88static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
89 enum mem_cgroup_stat_index idx)
90{
91 int cpu;
92 s64 ret = 0;
93 for_each_possible_cpu(cpu)
94 ret += stat->cpustat[cpu].count[idx];
95 return ret;
96}
97
6d12e2d8
KH
98/*
99 * per-zone information in memory controller.
100 */
6d12e2d8 101struct mem_cgroup_per_zone {
072c56c1
KH
102 /*
103 * spin_lock to protect the per cgroup LRU
104 */
b69408e8
CL
105 struct list_head lists[NR_LRU_LISTS];
106 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
107
108 struct zone_reclaim_stat reclaim_stat;
6d12e2d8
KH
109};
110/* Macro for accessing counter */
111#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
112
113struct mem_cgroup_per_node {
114 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
115};
116
117struct mem_cgroup_lru_info {
118 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
119};
120
8cdea7c0
BS
121/*
122 * The memory controller data structure. The memory controller controls both
123 * page cache and RSS per cgroup. We would eventually like to provide
124 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
125 * to help the administrator determine what knobs to tune.
126 *
127 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
128 * we hit the water mark. May be even add a low water mark, such that
129 * no reclaim occurs from a cgroup at it's low water mark, this is
130 * a feature that will be implemented much later in the future.
8cdea7c0
BS
131 */
132struct mem_cgroup {
133 struct cgroup_subsys_state css;
134 /*
135 * the counter to account for memory usage
136 */
137 struct res_counter res;
8c7c6e34
KH
138 /*
139 * the counter to account for mem+swap usage.
140 */
141 struct res_counter memsw;
78fb7466
PE
142 /*
143 * Per cgroup active and inactive list, similar to the
144 * per zone LRU lists.
78fb7466 145 */
6d12e2d8 146 struct mem_cgroup_lru_info info;
072c56c1 147
2733c06a
KM
148 /*
149 protect against reclaim related member.
150 */
151 spinlock_t reclaim_param_lock;
152
6c48a1d0 153 int prev_priority; /* for recording reclaim priority */
6d61ef40
BS
154
155 /*
156 * While reclaiming in a hiearchy, we cache the last child we
157 * reclaimed from. Protected by cgroup_lock()
158 */
159 struct mem_cgroup *last_scanned_child;
18f59ea7
BS
160 /*
161 * Should the accounting and control be hierarchical, per subtree?
162 */
163 bool use_hierarchy;
a636b327 164 unsigned long last_oom_jiffies;
8c7c6e34
KH
165 int obsolete;
166 atomic_t refcnt;
14797e23 167
a7885eb8
KM
168 unsigned int swappiness;
169
d52aa412 170 /*
c8dad2bb 171 * statistics. This must be placed at the end of memcg.
d52aa412
KH
172 */
173 struct mem_cgroup_stat stat;
8cdea7c0
BS
174};
175
217bc319
KH
176enum charge_type {
177 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
178 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 179 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 180 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 181 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
182 NR_CHARGE_TYPE,
183};
184
52d4b9ac
KH
185/* only for here (for easy reading.) */
186#define PCGF_CACHE (1UL << PCG_CACHE)
187#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 188#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
189static const unsigned long
190pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
191 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
192 PCGF_USED | PCGF_LOCK, /* Anon */
193 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 194 0, /* FORCE */
217bc319
KH
195};
196
8c7c6e34
KH
197/* for encoding cft->private value on file */
198#define _MEM (0)
199#define _MEMSWAP (1)
200#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
201#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
202#define MEMFILE_ATTR(val) ((val) & 0xffff)
203
204static void mem_cgroup_get(struct mem_cgroup *mem);
205static void mem_cgroup_put(struct mem_cgroup *mem);
206
c05555b5
KH
207static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
208 struct page_cgroup *pc,
209 bool charge)
d52aa412
KH
210{
211 int val = (charge)? 1 : -1;
212 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 213 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 214 int cpu = get_cpu();
d52aa412 215
08e552c6 216 cpustat = &stat->cpustat[cpu];
c05555b5 217 if (PageCgroupCache(pc))
addb9efe 218 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 219 else
addb9efe 220 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
221
222 if (charge)
addb9efe 223 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
224 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
225 else
addb9efe 226 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 227 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 228 put_cpu();
6d12e2d8
KH
229}
230
d5b69e38 231static struct mem_cgroup_per_zone *
6d12e2d8
KH
232mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
233{
6d12e2d8
KH
234 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
235}
236
d5b69e38 237static struct mem_cgroup_per_zone *
6d12e2d8
KH
238page_cgroup_zoneinfo(struct page_cgroup *pc)
239{
240 struct mem_cgroup *mem = pc->mem_cgroup;
241 int nid = page_cgroup_nid(pc);
242 int zid = page_cgroup_zid(pc);
d52aa412 243
54992762
KM
244 if (!mem)
245 return NULL;
246
6d12e2d8
KH
247 return mem_cgroup_zoneinfo(mem, nid, zid);
248}
249
250static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 251 enum lru_list idx)
6d12e2d8
KH
252{
253 int nid, zid;
254 struct mem_cgroup_per_zone *mz;
255 u64 total = 0;
256
257 for_each_online_node(nid)
258 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
259 mz = mem_cgroup_zoneinfo(mem, nid, zid);
260 total += MEM_CGROUP_ZSTAT(mz, idx);
261 }
262 return total;
d52aa412
KH
263}
264
d5b69e38 265static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
266{
267 return container_of(cgroup_subsys_state(cont,
268 mem_cgroup_subsys_id), struct mem_cgroup,
269 css);
270}
271
cf475ad2 272struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 273{
31a78f23
BS
274 /*
275 * mm_update_next_owner() may clear mm->owner to NULL
276 * if it races with swapoff, page migration, etc.
277 * So this can be called with p == NULL.
278 */
279 if (unlikely(!p))
280 return NULL;
281
78fb7466
PE
282 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
283 struct mem_cgroup, css);
284}
285
08e552c6
KH
286/*
287 * Following LRU functions are allowed to be used without PCG_LOCK.
288 * Operations are called by routine of global LRU independently from memcg.
289 * What we have to take care of here is validness of pc->mem_cgroup.
290 *
291 * Changes to pc->mem_cgroup happens when
292 * 1. charge
293 * 2. moving account
294 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
295 * It is added to LRU before charge.
296 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
297 * When moving account, the page is not on LRU. It's isolated.
298 */
4f98a2fe 299
08e552c6
KH
300void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
301{
302 struct page_cgroup *pc;
303 struct mem_cgroup *mem;
304 struct mem_cgroup_per_zone *mz;
6d12e2d8 305
f8d66542 306 if (mem_cgroup_disabled())
08e552c6
KH
307 return;
308 pc = lookup_page_cgroup(page);
309 /* can happen while we handle swapcache. */
310 if (list_empty(&pc->lru))
311 return;
312 mz = page_cgroup_zoneinfo(pc);
313 mem = pc->mem_cgroup;
b69408e8 314 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
315 list_del_init(&pc->lru);
316 return;
6d12e2d8
KH
317}
318
08e552c6 319void mem_cgroup_del_lru(struct page *page)
6d12e2d8 320{
08e552c6
KH
321 mem_cgroup_del_lru_list(page, page_lru(page));
322}
b69408e8 323
08e552c6
KH
324void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
325{
326 struct mem_cgroup_per_zone *mz;
327 struct page_cgroup *pc;
b69408e8 328
f8d66542 329 if (mem_cgroup_disabled())
08e552c6 330 return;
6d12e2d8 331
08e552c6
KH
332 pc = lookup_page_cgroup(page);
333 smp_rmb();
334 /* unused page is not rotated. */
335 if (!PageCgroupUsed(pc))
336 return;
337 mz = page_cgroup_zoneinfo(pc);
338 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
339}
340
08e552c6 341void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 342{
08e552c6
KH
343 struct page_cgroup *pc;
344 struct mem_cgroup_per_zone *mz;
6d12e2d8 345
f8d66542 346 if (mem_cgroup_disabled())
08e552c6
KH
347 return;
348 pc = lookup_page_cgroup(page);
349 /* barrier to sync with "charge" */
350 smp_rmb();
351 if (!PageCgroupUsed(pc))
894bc310 352 return;
b69408e8 353
08e552c6 354 mz = page_cgroup_zoneinfo(pc);
b69408e8 355 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
356 list_add(&pc->lru, &mz->lists[lru]);
357}
358/*
359 * To add swapcache into LRU. Be careful to all this function.
360 * zone->lru_lock shouldn't be held and irq must not be disabled.
361 */
362static void mem_cgroup_lru_fixup(struct page *page)
363{
364 if (!isolate_lru_page(page))
365 putback_lru_page(page);
366}
367
368void mem_cgroup_move_lists(struct page *page,
369 enum lru_list from, enum lru_list to)
370{
f8d66542 371 if (mem_cgroup_disabled())
08e552c6
KH
372 return;
373 mem_cgroup_del_lru_list(page, from);
374 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
375}
376
4c4a2214
DR
377int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
378{
379 int ret;
380
381 task_lock(task);
bd845e38 382 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
383 task_unlock(task);
384 return ret;
385}
386
58ae83db
KH
387/*
388 * Calculate mapped_ratio under memory controller. This will be used in
389 * vmscan.c for deteremining we have to reclaim mapped pages.
390 */
391int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
392{
393 long total, rss;
394
395 /*
396 * usage is recorded in bytes. But, here, we assume the number of
397 * physical pages can be represented by "long" on any arch.
398 */
399 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
400 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
401 return (int)((rss * 100L) / total);
402}
8869b8f6 403
6c48a1d0
KH
404/*
405 * prev_priority control...this will be used in memory reclaim path.
406 */
407int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
408{
2733c06a
KM
409 int prev_priority;
410
411 spin_lock(&mem->reclaim_param_lock);
412 prev_priority = mem->prev_priority;
413 spin_unlock(&mem->reclaim_param_lock);
414
415 return prev_priority;
6c48a1d0
KH
416}
417
418void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
419{
2733c06a 420 spin_lock(&mem->reclaim_param_lock);
6c48a1d0
KH
421 if (priority < mem->prev_priority)
422 mem->prev_priority = priority;
2733c06a 423 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
424}
425
426void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
427{
2733c06a 428 spin_lock(&mem->reclaim_param_lock);
6c48a1d0 429 mem->prev_priority = priority;
2733c06a 430 spin_unlock(&mem->reclaim_param_lock);
6c48a1d0
KH
431}
432
c772be93 433static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
434{
435 unsigned long active;
436 unsigned long inactive;
c772be93
KM
437 unsigned long gb;
438 unsigned long inactive_ratio;
14797e23
KM
439
440 inactive = mem_cgroup_get_all_zonestat(memcg, LRU_INACTIVE_ANON);
441 active = mem_cgroup_get_all_zonestat(memcg, LRU_ACTIVE_ANON);
442
c772be93
KM
443 gb = (inactive + active) >> (30 - PAGE_SHIFT);
444 if (gb)
445 inactive_ratio = int_sqrt(10 * gb);
446 else
447 inactive_ratio = 1;
448
449 if (present_pages) {
450 present_pages[0] = inactive;
451 present_pages[1] = active;
452 }
453
454 return inactive_ratio;
455}
456
457int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
458{
459 unsigned long active;
460 unsigned long inactive;
461 unsigned long present_pages[2];
462 unsigned long inactive_ratio;
463
464 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
465
466 inactive = present_pages[0];
467 active = present_pages[1];
468
469 if (inactive * inactive_ratio < active)
14797e23
KM
470 return 1;
471
472 return 0;
473}
474
a3d8e054
KM
475unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
476 struct zone *zone,
477 enum lru_list lru)
478{
479 int nid = zone->zone_pgdat->node_id;
480 int zid = zone_idx(zone);
481 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
482
483 return MEM_CGROUP_ZSTAT(mz, lru);
484}
485
3e2f41f1
KM
486struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
487 struct zone *zone)
488{
489 int nid = zone->zone_pgdat->node_id;
490 int zid = zone_idx(zone);
491 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
492
493 return &mz->reclaim_stat;
494}
495
496struct zone_reclaim_stat *
497mem_cgroup_get_reclaim_stat_from_page(struct page *page)
498{
499 struct page_cgroup *pc;
500 struct mem_cgroup_per_zone *mz;
501
502 if (mem_cgroup_disabled())
503 return NULL;
504
505 pc = lookup_page_cgroup(page);
506 mz = page_cgroup_zoneinfo(pc);
507 if (!mz)
508 return NULL;
509
510 return &mz->reclaim_stat;
511}
512
66e1707b
BS
513unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
514 struct list_head *dst,
515 unsigned long *scanned, int order,
516 int mode, struct zone *z,
517 struct mem_cgroup *mem_cont,
4f98a2fe 518 int active, int file)
66e1707b
BS
519{
520 unsigned long nr_taken = 0;
521 struct page *page;
522 unsigned long scan;
523 LIST_HEAD(pc_list);
524 struct list_head *src;
ff7283fa 525 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
526 int nid = z->zone_pgdat->node_id;
527 int zid = zone_idx(z);
528 struct mem_cgroup_per_zone *mz;
4f98a2fe 529 int lru = LRU_FILE * !!file + !!active;
66e1707b 530
cf475ad2 531 BUG_ON(!mem_cont);
1ecaab2b 532 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 533 src = &mz->lists[lru];
66e1707b 534
ff7283fa
KH
535 scan = 0;
536 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 537 if (scan >= nr_to_scan)
ff7283fa 538 break;
08e552c6
KH
539
540 page = pc->page;
52d4b9ac
KH
541 if (unlikely(!PageCgroupUsed(pc)))
542 continue;
436c6541 543 if (unlikely(!PageLRU(page)))
ff7283fa 544 continue;
ff7283fa 545
436c6541 546 scan++;
4f98a2fe 547 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
548 list_move(&page->lru, dst);
549 nr_taken++;
550 }
551 }
552
66e1707b
BS
553 *scanned = scan;
554 return nr_taken;
555}
556
6d61ef40
BS
557#define mem_cgroup_from_res_counter(counter, member) \
558 container_of(counter, struct mem_cgroup, member)
559
560/*
561 * This routine finds the DFS walk successor. This routine should be
562 * called with cgroup_mutex held
563 */
564static struct mem_cgroup *
565mem_cgroup_get_next_node(struct mem_cgroup *curr, struct mem_cgroup *root_mem)
566{
567 struct cgroup *cgroup, *curr_cgroup, *root_cgroup;
568
569 curr_cgroup = curr->css.cgroup;
570 root_cgroup = root_mem->css.cgroup;
571
572 if (!list_empty(&curr_cgroup->children)) {
573 /*
574 * Walk down to children
575 */
576 mem_cgroup_put(curr);
577 cgroup = list_entry(curr_cgroup->children.next,
578 struct cgroup, sibling);
579 curr = mem_cgroup_from_cont(cgroup);
580 mem_cgroup_get(curr);
581 goto done;
582 }
583
584visit_parent:
585 if (curr_cgroup == root_cgroup) {
586 mem_cgroup_put(curr);
587 curr = root_mem;
588 mem_cgroup_get(curr);
589 goto done;
590 }
591
592 /*
593 * Goto next sibling
594 */
595 if (curr_cgroup->sibling.next != &curr_cgroup->parent->children) {
596 mem_cgroup_put(curr);
597 cgroup = list_entry(curr_cgroup->sibling.next, struct cgroup,
598 sibling);
599 curr = mem_cgroup_from_cont(cgroup);
600 mem_cgroup_get(curr);
601 goto done;
602 }
603
604 /*
605 * Go up to next parent and next parent's sibling if need be
606 */
607 curr_cgroup = curr_cgroup->parent;
608 goto visit_parent;
609
610done:
611 root_mem->last_scanned_child = curr;
612 return curr;
613}
614
615/*
616 * Visit the first child (need not be the first child as per the ordering
617 * of the cgroup list, since we track last_scanned_child) of @mem and use
618 * that to reclaim free pages from.
619 */
620static struct mem_cgroup *
621mem_cgroup_get_first_node(struct mem_cgroup *root_mem)
622{
623 struct cgroup *cgroup;
624 struct mem_cgroup *ret;
625 bool obsolete = (root_mem->last_scanned_child &&
626 root_mem->last_scanned_child->obsolete);
627
628 /*
629 * Scan all children under the mem_cgroup mem
630 */
631 cgroup_lock();
632 if (list_empty(&root_mem->css.cgroup->children)) {
633 ret = root_mem;
634 goto done;
635 }
636
637 if (!root_mem->last_scanned_child || obsolete) {
638
639 if (obsolete)
640 mem_cgroup_put(root_mem->last_scanned_child);
641
642 cgroup = list_first_entry(&root_mem->css.cgroup->children,
643 struct cgroup, sibling);
644 ret = mem_cgroup_from_cont(cgroup);
645 mem_cgroup_get(ret);
646 } else
647 ret = mem_cgroup_get_next_node(root_mem->last_scanned_child,
648 root_mem);
649
650done:
651 root_mem->last_scanned_child = ret;
652 cgroup_unlock();
653 return ret;
654}
655
b85a96c0
DN
656static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
657{
658 if (do_swap_account) {
659 if (res_counter_check_under_limit(&mem->res) &&
660 res_counter_check_under_limit(&mem->memsw))
661 return true;
662 } else
663 if (res_counter_check_under_limit(&mem->res))
664 return true;
665 return false;
666}
667
a7885eb8
KM
668static unsigned int get_swappiness(struct mem_cgroup *memcg)
669{
670 struct cgroup *cgrp = memcg->css.cgroup;
671 unsigned int swappiness;
672
673 /* root ? */
674 if (cgrp->parent == NULL)
675 return vm_swappiness;
676
677 spin_lock(&memcg->reclaim_param_lock);
678 swappiness = memcg->swappiness;
679 spin_unlock(&memcg->reclaim_param_lock);
680
681 return swappiness;
682}
683
6d61ef40
BS
684/*
685 * Dance down the hierarchy if needed to reclaim memory. We remember the
686 * last child we reclaimed from, so that we don't end up penalizing
687 * one child extensively based on its position in the children list.
688 *
689 * root_mem is the original ancestor that we've been reclaim from.
690 */
691static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
692 gfp_t gfp_mask, bool noswap)
693{
694 struct mem_cgroup *next_mem;
695 int ret = 0;
696
697 /*
698 * Reclaim unconditionally and don't check for return value.
699 * We need to reclaim in the current group and down the tree.
700 * One might think about checking for children before reclaiming,
701 * but there might be left over accounting, even after children
702 * have left.
703 */
a7885eb8
KM
704 ret = try_to_free_mem_cgroup_pages(root_mem, gfp_mask, noswap,
705 get_swappiness(root_mem));
b85a96c0 706 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40 707 return 0;
670ec2f1
DN
708 if (!root_mem->use_hierarchy)
709 return ret;
6d61ef40
BS
710
711 next_mem = mem_cgroup_get_first_node(root_mem);
712
713 while (next_mem != root_mem) {
714 if (next_mem->obsolete) {
715 mem_cgroup_put(next_mem);
716 cgroup_lock();
717 next_mem = mem_cgroup_get_first_node(root_mem);
718 cgroup_unlock();
719 continue;
720 }
a7885eb8
KM
721 ret = try_to_free_mem_cgroup_pages(next_mem, gfp_mask, noswap,
722 get_swappiness(next_mem));
b85a96c0 723 if (mem_cgroup_check_under_limit(root_mem))
6d61ef40
BS
724 return 0;
725 cgroup_lock();
726 next_mem = mem_cgroup_get_next_node(next_mem, root_mem);
727 cgroup_unlock();
728 }
729 return ret;
730}
731
a636b327
KH
732bool mem_cgroup_oom_called(struct task_struct *task)
733{
734 bool ret = false;
735 struct mem_cgroup *mem;
736 struct mm_struct *mm;
737
738 rcu_read_lock();
739 mm = task->mm;
740 if (!mm)
741 mm = &init_mm;
742 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
743 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
744 ret = true;
745 rcu_read_unlock();
746 return ret;
747}
f817ed48
KH
748/*
749 * Unlike exported interface, "oom" parameter is added. if oom==true,
750 * oom-killer can be invoked.
8a9f3ccd 751 */
f817ed48 752static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
753 gfp_t gfp_mask, struct mem_cgroup **memcg,
754 bool oom)
8a9f3ccd 755{
6d61ef40 756 struct mem_cgroup *mem, *mem_over_limit;
7a81b88c 757 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 758 struct res_counter *fail_res;
a636b327
KH
759
760 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
761 /* Don't account this! */
762 *memcg = NULL;
763 return 0;
764 }
765
8a9f3ccd 766 /*
3be91277
HD
767 * We always charge the cgroup the mm_struct belongs to.
768 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
769 * thread group leader migrates. It's possible that mm is not
770 * set, if so charge the init_mm (happens for pagecache usage).
771 */
7a81b88c 772 if (likely(!*memcg)) {
e8589cc1
KH
773 rcu_read_lock();
774 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
775 if (unlikely(!mem)) {
776 rcu_read_unlock();
31a78f23
BS
777 return 0;
778 }
e8589cc1
KH
779 /*
780 * For every charge from the cgroup, increment reference count
781 */
782 css_get(&mem->css);
7a81b88c 783 *memcg = mem;
e8589cc1
KH
784 rcu_read_unlock();
785 } else {
7a81b88c
KH
786 mem = *memcg;
787 css_get(&mem->css);
e8589cc1 788 }
8a9f3ccd 789
8c7c6e34
KH
790 while (1) {
791 int ret;
792 bool noswap = false;
7a81b88c 793
28dbc4b6 794 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
795 if (likely(!ret)) {
796 if (!do_swap_account)
797 break;
28dbc4b6
BS
798 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
799 &fail_res);
8c7c6e34
KH
800 if (likely(!ret))
801 break;
802 /* mem+swap counter fails */
803 res_counter_uncharge(&mem->res, PAGE_SIZE);
804 noswap = true;
6d61ef40
BS
805 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
806 memsw);
807 } else
808 /* mem counter fails */
809 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
810 res);
811
3be91277 812 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 813 goto nomem;
e1a1cd59 814
6d61ef40
BS
815 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
816 noswap);
66e1707b
BS
817
818 /*
8869b8f6
HD
819 * try_to_free_mem_cgroup_pages() might not give us a full
820 * picture of reclaim. Some pages are reclaimed and might be
821 * moved to swap cache or just unmapped from the cgroup.
822 * Check the limit again to see if the reclaim reduced the
823 * current usage of the cgroup before giving up
8c7c6e34 824 *
8869b8f6 825 */
b85a96c0
DN
826 if (mem_cgroup_check_under_limit(mem_over_limit))
827 continue;
3be91277
HD
828
829 if (!nr_retries--) {
a636b327 830 if (oom) {
7f4d454d 831 mutex_lock(&memcg_tasklist);
88700756 832 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
7f4d454d 833 mutex_unlock(&memcg_tasklist);
88700756 834 mem_over_limit->last_oom_jiffies = jiffies;
a636b327 835 }
7a81b88c 836 goto nomem;
66e1707b 837 }
8a9f3ccd 838 }
7a81b88c
KH
839 return 0;
840nomem:
841 css_put(&mem->css);
842 return -ENOMEM;
843}
8a9f3ccd 844
7a81b88c 845/*
a5e924f5 846 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
7a81b88c
KH
847 * USED state. If already USED, uncharge and return.
848 */
849
850static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
851 struct page_cgroup *pc,
852 enum charge_type ctype)
853{
7a81b88c
KH
854 /* try_charge() can return NULL to *memcg, taking care of it. */
855 if (!mem)
856 return;
52d4b9ac
KH
857
858 lock_page_cgroup(pc);
859 if (unlikely(PageCgroupUsed(pc))) {
860 unlock_page_cgroup(pc);
861 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
862 if (do_swap_account)
863 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 864 css_put(&mem->css);
7a81b88c 865 return;
52d4b9ac 866 }
8a9f3ccd 867 pc->mem_cgroup = mem;
08e552c6 868 smp_wmb();
c05555b5 869 pc->flags = pcg_default_flags[ctype];
3be91277 870
08e552c6 871 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 872
52d4b9ac 873 unlock_page_cgroup(pc);
7a81b88c 874}
66e1707b 875
f817ed48
KH
876/**
877 * mem_cgroup_move_account - move account of the page
878 * @pc: page_cgroup of the page.
879 * @from: mem_cgroup which the page is moved from.
880 * @to: mem_cgroup which the page is moved to. @from != @to.
881 *
882 * The caller must confirm following.
08e552c6 883 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
884 *
885 * returns 0 at success,
886 * returns -EBUSY when lock is busy or "pc" is unstable.
887 *
888 * This function does "uncharge" from old cgroup but doesn't do "charge" to
889 * new cgroup. It should be done by a caller.
890 */
891
892static int mem_cgroup_move_account(struct page_cgroup *pc,
893 struct mem_cgroup *from, struct mem_cgroup *to)
894{
895 struct mem_cgroup_per_zone *from_mz, *to_mz;
896 int nid, zid;
897 int ret = -EBUSY;
898
f817ed48 899 VM_BUG_ON(from == to);
08e552c6 900 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
901
902 nid = page_cgroup_nid(pc);
903 zid = page_cgroup_zid(pc);
904 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
905 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
906
f817ed48
KH
907 if (!trylock_page_cgroup(pc))
908 return ret;
909
910 if (!PageCgroupUsed(pc))
911 goto out;
912
913 if (pc->mem_cgroup != from)
914 goto out;
915
08e552c6
KH
916 css_put(&from->css);
917 res_counter_uncharge(&from->res, PAGE_SIZE);
918 mem_cgroup_charge_statistics(from, pc, false);
919 if (do_swap_account)
920 res_counter_uncharge(&from->memsw, PAGE_SIZE);
921 pc->mem_cgroup = to;
922 mem_cgroup_charge_statistics(to, pc, true);
923 css_get(&to->css);
924 ret = 0;
f817ed48
KH
925out:
926 unlock_page_cgroup(pc);
927 return ret;
928}
929
930/*
931 * move charges to its parent.
932 */
933
934static int mem_cgroup_move_parent(struct page_cgroup *pc,
935 struct mem_cgroup *child,
936 gfp_t gfp_mask)
937{
08e552c6 938 struct page *page = pc->page;
f817ed48
KH
939 struct cgroup *cg = child->css.cgroup;
940 struct cgroup *pcg = cg->parent;
941 struct mem_cgroup *parent;
f817ed48
KH
942 int ret;
943
944 /* Is ROOT ? */
945 if (!pcg)
946 return -EINVAL;
947
08e552c6 948
f817ed48
KH
949 parent = mem_cgroup_from_cont(pcg);
950
08e552c6 951
f817ed48 952 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
a636b327 953 if (ret || !parent)
f817ed48
KH
954 return ret;
955
08e552c6
KH
956 if (!get_page_unless_zero(page))
957 return -EBUSY;
958
959 ret = isolate_lru_page(page);
960
961 if (ret)
962 goto cancel;
f817ed48 963
f817ed48 964 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 965
08e552c6 966 /* drop extra refcnt by try_charge() (move_account increment one) */
f817ed48 967 css_put(&parent->css);
08e552c6
KH
968 putback_lru_page(page);
969 if (!ret) {
970 put_page(page);
971 return 0;
8c7c6e34 972 }
08e552c6
KH
973 /* uncharge if move fails */
974cancel:
975 res_counter_uncharge(&parent->res, PAGE_SIZE);
976 if (do_swap_account)
977 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
978 put_page(page);
f817ed48
KH
979 return ret;
980}
981
7a81b88c
KH
982/*
983 * Charge the memory controller for page usage.
984 * Return
985 * 0 if the charge was successful
986 * < 0 if the cgroup is over its limit
987 */
988static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
989 gfp_t gfp_mask, enum charge_type ctype,
990 struct mem_cgroup *memcg)
991{
992 struct mem_cgroup *mem;
993 struct page_cgroup *pc;
994 int ret;
995
996 pc = lookup_page_cgroup(page);
997 /* can happen at boot */
998 if (unlikely(!pc))
999 return 0;
1000 prefetchw(pc);
1001
1002 mem = memcg;
f817ed48 1003 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
a636b327 1004 if (ret || !mem)
7a81b88c
KH
1005 return ret;
1006
1007 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 1008 return 0;
8a9f3ccd
BS
1009}
1010
7a81b88c
KH
1011int mem_cgroup_newpage_charge(struct page *page,
1012 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 1013{
f8d66542 1014 if (mem_cgroup_disabled())
cede86ac 1015 return 0;
52d4b9ac
KH
1016 if (PageCompound(page))
1017 return 0;
69029cd5
KH
1018 /*
1019 * If already mapped, we don't have to account.
1020 * If page cache, page->mapping has address_space.
1021 * But page->mapping may have out-of-use anon_vma pointer,
1022 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1023 * is NULL.
1024 */
1025 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1026 return 0;
1027 if (unlikely(!mm))
1028 mm = &init_mm;
217bc319 1029 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1030 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
1031}
1032
e1a1cd59
BS
1033int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1034 gfp_t gfp_mask)
8697d331 1035{
f8d66542 1036 if (mem_cgroup_disabled())
cede86ac 1037 return 0;
52d4b9ac
KH
1038 if (PageCompound(page))
1039 return 0;
accf163e
KH
1040 /*
1041 * Corner case handling. This is called from add_to_page_cache()
1042 * in usual. But some FS (shmem) precharges this page before calling it
1043 * and call add_to_page_cache() with GFP_NOWAIT.
1044 *
1045 * For GFP_NOWAIT case, the page may be pre-charged before calling
1046 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1047 * charge twice. (It works but has to pay a bit larger cost.)
1048 */
1049 if (!(gfp_mask & __GFP_WAIT)) {
1050 struct page_cgroup *pc;
1051
52d4b9ac
KH
1052
1053 pc = lookup_page_cgroup(page);
1054 if (!pc)
1055 return 0;
1056 lock_page_cgroup(pc);
1057 if (PageCgroupUsed(pc)) {
1058 unlock_page_cgroup(pc);
accf163e
KH
1059 return 0;
1060 }
52d4b9ac 1061 unlock_page_cgroup(pc);
accf163e
KH
1062 }
1063
69029cd5 1064 if (unlikely(!mm))
8697d331 1065 mm = &init_mm;
accf163e 1066
c05555b5
KH
1067 if (page_is_file_cache(page))
1068 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 1069 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
c05555b5
KH
1070 else
1071 return mem_cgroup_charge_common(page, mm, gfp_mask,
1072 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
e8589cc1
KH
1073}
1074
8c7c6e34
KH
1075int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1076 struct page *page,
1077 gfp_t mask, struct mem_cgroup **ptr)
1078{
1079 struct mem_cgroup *mem;
1080 swp_entry_t ent;
1081
f8d66542 1082 if (mem_cgroup_disabled())
8c7c6e34
KH
1083 return 0;
1084
1085 if (!do_swap_account)
1086 goto charge_cur_mm;
1087
1088 /*
1089 * A racing thread's fault, or swapoff, may have already updated
1090 * the pte, and even removed page from swap cache: return success
1091 * to go on to do_swap_page()'s pte_same() test, which should fail.
1092 */
1093 if (!PageSwapCache(page))
1094 return 0;
1095
1096 ent.val = page_private(page);
1097
1098 mem = lookup_swap_cgroup(ent);
1099 if (!mem || mem->obsolete)
1100 goto charge_cur_mm;
1101 *ptr = mem;
1102 return __mem_cgroup_try_charge(NULL, mask, ptr, true);
1103charge_cur_mm:
1104 if (unlikely(!mm))
1105 mm = &init_mm;
1106 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1107}
1108
d13d1443 1109#ifdef CONFIG_SWAP
8c7c6e34 1110
d13d1443
KH
1111int mem_cgroup_cache_charge_swapin(struct page *page,
1112 struct mm_struct *mm, gfp_t mask, bool locked)
1113{
1114 int ret = 0;
1115
f8d66542 1116 if (mem_cgroup_disabled())
d13d1443
KH
1117 return 0;
1118 if (unlikely(!mm))
1119 mm = &init_mm;
1120 if (!locked)
1121 lock_page(page);
1122 /*
1123 * If not locked, the page can be dropped from SwapCache until
1124 * we reach here.
1125 */
1126 if (PageSwapCache(page)) {
8c7c6e34
KH
1127 struct mem_cgroup *mem = NULL;
1128 swp_entry_t ent;
1129
1130 ent.val = page_private(page);
1131 if (do_swap_account) {
1132 mem = lookup_swap_cgroup(ent);
1133 if (mem && mem->obsolete)
1134 mem = NULL;
1135 if (mem)
1136 mm = NULL;
1137 }
d13d1443 1138 ret = mem_cgroup_charge_common(page, mm, mask,
8c7c6e34
KH
1139 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1140
1141 if (!ret && do_swap_account) {
1142 /* avoid double counting */
1143 mem = swap_cgroup_record(ent, NULL);
1144 if (mem) {
1145 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1146 mem_cgroup_put(mem);
1147 }
1148 }
d13d1443
KH
1149 }
1150 if (!locked)
1151 unlock_page(page);
08e552c6
KH
1152 /* add this page(page_cgroup) to the LRU we want. */
1153 mem_cgroup_lru_fixup(page);
d13d1443
KH
1154
1155 return ret;
1156}
1157#endif
1158
7a81b88c
KH
1159void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1160{
1161 struct page_cgroup *pc;
1162
f8d66542 1163 if (mem_cgroup_disabled())
7a81b88c
KH
1164 return;
1165 if (!ptr)
1166 return;
1167 pc = lookup_page_cgroup(page);
1168 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
8c7c6e34
KH
1169 /*
1170 * Now swap is on-memory. This means this page may be
1171 * counted both as mem and swap....double count.
1172 * Fix it by uncharging from memsw. This SwapCache is stable
1173 * because we're still under lock_page().
1174 */
1175 if (do_swap_account) {
1176 swp_entry_t ent = {.val = page_private(page)};
1177 struct mem_cgroup *memcg;
1178 memcg = swap_cgroup_record(ent, NULL);
1179 if (memcg) {
1180 /* If memcg is obsolete, memcg can be != ptr */
1181 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1182 mem_cgroup_put(memcg);
1183 }
1184
1185 }
08e552c6
KH
1186 /* add this page(page_cgroup) to the LRU we want. */
1187 mem_cgroup_lru_fixup(page);
7a81b88c
KH
1188}
1189
1190void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1191{
f8d66542 1192 if (mem_cgroup_disabled())
7a81b88c
KH
1193 return;
1194 if (!mem)
1195 return;
1196 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
1197 if (do_swap_account)
1198 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
1199 css_put(&mem->css);
1200}
1201
1202
8a9f3ccd 1203/*
69029cd5 1204 * uncharge if !page_mapped(page)
8a9f3ccd 1205 */
8c7c6e34 1206static struct mem_cgroup *
69029cd5 1207__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 1208{
8289546e 1209 struct page_cgroup *pc;
8c7c6e34 1210 struct mem_cgroup *mem = NULL;
072c56c1 1211 struct mem_cgroup_per_zone *mz;
8a9f3ccd 1212
f8d66542 1213 if (mem_cgroup_disabled())
8c7c6e34 1214 return NULL;
4077960e 1215
d13d1443 1216 if (PageSwapCache(page))
8c7c6e34 1217 return NULL;
d13d1443 1218
8697d331 1219 /*
3c541e14 1220 * Check if our page_cgroup is valid
8697d331 1221 */
52d4b9ac
KH
1222 pc = lookup_page_cgroup(page);
1223 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 1224 return NULL;
b9c565d5 1225
52d4b9ac 1226 lock_page_cgroup(pc);
d13d1443 1227
8c7c6e34
KH
1228 mem = pc->mem_cgroup;
1229
d13d1443
KH
1230 if (!PageCgroupUsed(pc))
1231 goto unlock_out;
1232
1233 switch (ctype) {
1234 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1235 if (page_mapped(page))
1236 goto unlock_out;
1237 break;
1238 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1239 if (!PageAnon(page)) { /* Shared memory */
1240 if (page->mapping && !page_is_file_cache(page))
1241 goto unlock_out;
1242 } else if (page_mapped(page)) /* Anon */
1243 goto unlock_out;
1244 break;
1245 default:
1246 break;
52d4b9ac 1247 }
d13d1443 1248
8c7c6e34
KH
1249 res_counter_uncharge(&mem->res, PAGE_SIZE);
1250 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1251 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1252
08e552c6 1253 mem_cgroup_charge_statistics(mem, pc, false);
52d4b9ac 1254 ClearPageCgroupUsed(pc);
b9c565d5 1255
69029cd5 1256 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 1257 unlock_page_cgroup(pc);
fb59e9f1 1258
a7fe942e
KH
1259 /* at swapout, this memcg will be accessed to record to swap */
1260 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1261 css_put(&mem->css);
6d12e2d8 1262
8c7c6e34 1263 return mem;
d13d1443
KH
1264
1265unlock_out:
1266 unlock_page_cgroup(pc);
8c7c6e34 1267 return NULL;
3c541e14
BS
1268}
1269
69029cd5
KH
1270void mem_cgroup_uncharge_page(struct page *page)
1271{
52d4b9ac
KH
1272 /* early check. */
1273 if (page_mapped(page))
1274 return;
1275 if (page->mapping && !PageAnon(page))
1276 return;
69029cd5
KH
1277 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1278}
1279
1280void mem_cgroup_uncharge_cache_page(struct page *page)
1281{
1282 VM_BUG_ON(page_mapped(page));
b7abea96 1283 VM_BUG_ON(page->mapping);
69029cd5
KH
1284 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1285}
1286
8c7c6e34
KH
1287/*
1288 * called from __delete_from_swap_cache() and drop "page" account.
1289 * memcg information is recorded to swap_cgroup of "ent"
1290 */
1291void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1292{
1293 struct mem_cgroup *memcg;
1294
1295 memcg = __mem_cgroup_uncharge_common(page,
1296 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1297 /* record memcg information */
1298 if (do_swap_account && memcg) {
1299 swap_cgroup_record(ent, memcg);
1300 mem_cgroup_get(memcg);
1301 }
a7fe942e
KH
1302 if (memcg)
1303 css_put(&memcg->css);
8c7c6e34
KH
1304}
1305
1306#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1307/*
1308 * called from swap_entry_free(). remove record in swap_cgroup and
1309 * uncharge "memsw" account.
1310 */
1311void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1312{
8c7c6e34
KH
1313 struct mem_cgroup *memcg;
1314
1315 if (!do_swap_account)
1316 return;
1317
1318 memcg = swap_cgroup_record(ent, NULL);
1319 if (memcg) {
1320 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1321 mem_cgroup_put(memcg);
1322 }
d13d1443 1323}
8c7c6e34 1324#endif
d13d1443 1325
ae41be37 1326/*
01b1ae63
KH
1327 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1328 * page belongs to.
ae41be37 1329 */
01b1ae63 1330int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1331{
1332 struct page_cgroup *pc;
e8589cc1 1333 struct mem_cgroup *mem = NULL;
e8589cc1 1334 int ret = 0;
8869b8f6 1335
f8d66542 1336 if (mem_cgroup_disabled())
4077960e
BS
1337 return 0;
1338
52d4b9ac
KH
1339 pc = lookup_page_cgroup(page);
1340 lock_page_cgroup(pc);
1341 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1342 mem = pc->mem_cgroup;
1343 css_get(&mem->css);
e8589cc1 1344 }
52d4b9ac 1345 unlock_page_cgroup(pc);
01b1ae63 1346
e8589cc1 1347 if (mem) {
3bb4edf2 1348 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
e8589cc1
KH
1349 css_put(&mem->css);
1350 }
01b1ae63 1351 *ptr = mem;
e8589cc1 1352 return ret;
ae41be37 1353}
8869b8f6 1354
69029cd5 1355/* remove redundant charge if migration failed*/
01b1ae63
KH
1356void mem_cgroup_end_migration(struct mem_cgroup *mem,
1357 struct page *oldpage, struct page *newpage)
ae41be37 1358{
01b1ae63
KH
1359 struct page *target, *unused;
1360 struct page_cgroup *pc;
1361 enum charge_type ctype;
1362
1363 if (!mem)
1364 return;
1365
1366 /* at migration success, oldpage->mapping is NULL. */
1367 if (oldpage->mapping) {
1368 target = oldpage;
1369 unused = NULL;
1370 } else {
1371 target = newpage;
1372 unused = oldpage;
1373 }
1374
1375 if (PageAnon(target))
1376 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1377 else if (page_is_file_cache(target))
1378 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1379 else
1380 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1381
1382 /* unused page is not on radix-tree now. */
d13d1443 1383 if (unused)
01b1ae63
KH
1384 __mem_cgroup_uncharge_common(unused, ctype);
1385
1386 pc = lookup_page_cgroup(target);
69029cd5 1387 /*
01b1ae63
KH
1388 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1389 * So, double-counting is effectively avoided.
1390 */
1391 __mem_cgroup_commit_charge(mem, pc, ctype);
1392
1393 /*
1394 * Both of oldpage and newpage are still under lock_page().
1395 * Then, we don't have to care about race in radix-tree.
1396 * But we have to be careful that this page is unmapped or not.
1397 *
1398 * There is a case for !page_mapped(). At the start of
1399 * migration, oldpage was mapped. But now, it's zapped.
1400 * But we know *target* page is not freed/reused under us.
1401 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1402 */
01b1ae63
KH
1403 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1404 mem_cgroup_uncharge_page(target);
ae41be37 1405}
78fb7466 1406
c9b0ed51
KH
1407/*
1408 * A call to try to shrink memory usage under specified resource controller.
1409 * This is typically used for page reclaiming for shmem for reducing side
1410 * effect of page allocation from shmem, which is used by some mem_cgroup.
1411 */
1412int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1413{
1414 struct mem_cgroup *mem;
1415 int progress = 0;
1416 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1417
f8d66542 1418 if (mem_cgroup_disabled())
cede86ac 1419 return 0;
9623e078
HD
1420 if (!mm)
1421 return 0;
cede86ac 1422
c9b0ed51
KH
1423 rcu_read_lock();
1424 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
1425 if (unlikely(!mem)) {
1426 rcu_read_unlock();
1427 return 0;
1428 }
c9b0ed51
KH
1429 css_get(&mem->css);
1430 rcu_read_unlock();
1431
1432 do {
42e9abb6 1433 progress = mem_cgroup_hierarchical_reclaim(mem, gfp_mask, true);
b85a96c0 1434 progress += mem_cgroup_check_under_limit(mem);
c9b0ed51
KH
1435 } while (!progress && --retry);
1436
1437 css_put(&mem->css);
1438 if (!retry)
1439 return -ENOMEM;
1440 return 0;
1441}
1442
8c7c6e34
KH
1443static DEFINE_MUTEX(set_limit_mutex);
1444
d38d2a75 1445static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1446 unsigned long long val)
628f4235
KH
1447{
1448
1449 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1450 int progress;
8c7c6e34 1451 u64 memswlimit;
628f4235
KH
1452 int ret = 0;
1453
8c7c6e34 1454 while (retry_count) {
628f4235
KH
1455 if (signal_pending(current)) {
1456 ret = -EINTR;
1457 break;
1458 }
8c7c6e34
KH
1459 /*
1460 * Rather than hide all in some function, I do this in
1461 * open coded manner. You see what this really does.
1462 * We have to guarantee mem->res.limit < mem->memsw.limit.
1463 */
1464 mutex_lock(&set_limit_mutex);
1465 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1466 if (memswlimit < val) {
1467 ret = -EINVAL;
1468 mutex_unlock(&set_limit_mutex);
628f4235
KH
1469 break;
1470 }
8c7c6e34
KH
1471 ret = res_counter_set_limit(&memcg->res, val);
1472 mutex_unlock(&set_limit_mutex);
1473
1474 if (!ret)
1475 break;
1476
42e9abb6
DN
1477 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1478 false);
8c7c6e34
KH
1479 if (!progress) retry_count--;
1480 }
14797e23 1481
8c7c6e34
KH
1482 return ret;
1483}
1484
1485int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1486 unsigned long long val)
1487{
1488 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1489 u64 memlimit, oldusage, curusage;
1490 int ret;
1491
1492 if (!do_swap_account)
1493 return -EINVAL;
1494
1495 while (retry_count) {
1496 if (signal_pending(current)) {
1497 ret = -EINTR;
1498 break;
1499 }
1500 /*
1501 * Rather than hide all in some function, I do this in
1502 * open coded manner. You see what this really does.
1503 * We have to guarantee mem->res.limit < mem->memsw.limit.
1504 */
1505 mutex_lock(&set_limit_mutex);
1506 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1507 if (memlimit > val) {
1508 ret = -EINVAL;
1509 mutex_unlock(&set_limit_mutex);
1510 break;
1511 }
1512 ret = res_counter_set_limit(&memcg->memsw, val);
1513 mutex_unlock(&set_limit_mutex);
1514
1515 if (!ret)
1516 break;
1517
1518 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
42e9abb6 1519 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true);
8c7c6e34
KH
1520 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1521 if (curusage >= oldusage)
628f4235
KH
1522 retry_count--;
1523 }
1524 return ret;
1525}
1526
cc847582
KH
1527/*
1528 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1529 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1530 */
f817ed48 1531static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1532 int node, int zid, enum lru_list lru)
cc847582 1533{
08e552c6
KH
1534 struct zone *zone;
1535 struct mem_cgroup_per_zone *mz;
f817ed48 1536 struct page_cgroup *pc, *busy;
08e552c6 1537 unsigned long flags, loop;
072c56c1 1538 struct list_head *list;
f817ed48 1539 int ret = 0;
072c56c1 1540
08e552c6
KH
1541 zone = &NODE_DATA(node)->node_zones[zid];
1542 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1543 list = &mz->lists[lru];
cc847582 1544
f817ed48
KH
1545 loop = MEM_CGROUP_ZSTAT(mz, lru);
1546 /* give some margin against EBUSY etc...*/
1547 loop += 256;
1548 busy = NULL;
1549 while (loop--) {
1550 ret = 0;
08e552c6 1551 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1552 if (list_empty(list)) {
08e552c6 1553 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1554 break;
f817ed48
KH
1555 }
1556 pc = list_entry(list->prev, struct page_cgroup, lru);
1557 if (busy == pc) {
1558 list_move(&pc->lru, list);
1559 busy = 0;
08e552c6 1560 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1561 continue;
1562 }
08e552c6 1563 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 1564
2c26fdd7 1565 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
f817ed48 1566 if (ret == -ENOMEM)
52d4b9ac 1567 break;
f817ed48
KH
1568
1569 if (ret == -EBUSY || ret == -EINVAL) {
1570 /* found lock contention or "pc" is obsolete. */
1571 busy = pc;
1572 cond_resched();
1573 } else
1574 busy = NULL;
cc847582 1575 }
08e552c6 1576
f817ed48
KH
1577 if (!ret && !list_empty(list))
1578 return -EBUSY;
1579 return ret;
cc847582
KH
1580}
1581
1582/*
1583 * make mem_cgroup's charge to be 0 if there is no task.
1584 * This enables deleting this mem_cgroup.
1585 */
c1e862c1 1586static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1587{
f817ed48
KH
1588 int ret;
1589 int node, zid, shrink;
1590 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1591 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1592
cc847582 1593 css_get(&mem->css);
f817ed48
KH
1594
1595 shrink = 0;
c1e862c1
KH
1596 /* should free all ? */
1597 if (free_all)
1598 goto try_to_free;
f817ed48 1599move_account:
1ecaab2b 1600 while (mem->res.usage > 0) {
f817ed48 1601 ret = -EBUSY;
c1e862c1
KH
1602 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1603 goto out;
1604 ret = -EINTR;
1605 if (signal_pending(current))
cc847582 1606 goto out;
52d4b9ac
KH
1607 /* This is for making all *used* pages to be on LRU. */
1608 lru_add_drain_all();
f817ed48
KH
1609 ret = 0;
1610 for_each_node_state(node, N_POSSIBLE) {
1611 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1612 enum lru_list l;
f817ed48
KH
1613 for_each_lru(l) {
1614 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1615 node, zid, l);
f817ed48
KH
1616 if (ret)
1617 break;
1618 }
1ecaab2b 1619 }
f817ed48
KH
1620 if (ret)
1621 break;
1622 }
1623 /* it seems parent cgroup doesn't have enough mem */
1624 if (ret == -ENOMEM)
1625 goto try_to_free;
52d4b9ac 1626 cond_resched();
cc847582
KH
1627 }
1628 ret = 0;
1629out:
1630 css_put(&mem->css);
1631 return ret;
f817ed48
KH
1632
1633try_to_free:
c1e862c1
KH
1634 /* returns EBUSY if there is a task or if we come here twice. */
1635 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1636 ret = -EBUSY;
1637 goto out;
1638 }
c1e862c1
KH
1639 /* we call try-to-free pages for make this cgroup empty */
1640 lru_add_drain_all();
f817ed48
KH
1641 /* try to free all pages in this cgroup */
1642 shrink = 1;
1643 while (nr_retries && mem->res.usage > 0) {
1644 int progress;
c1e862c1
KH
1645
1646 if (signal_pending(current)) {
1647 ret = -EINTR;
1648 goto out;
1649 }
a7885eb8
KM
1650 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1651 false, get_swappiness(mem));
c1e862c1 1652 if (!progress) {
f817ed48 1653 nr_retries--;
c1e862c1
KH
1654 /* maybe some writeback is necessary */
1655 congestion_wait(WRITE, HZ/10);
1656 }
f817ed48
KH
1657
1658 }
08e552c6 1659 lru_add_drain();
f817ed48
KH
1660 /* try move_account...there may be some *locked* pages. */
1661 if (mem->res.usage)
1662 goto move_account;
1663 ret = 0;
1664 goto out;
cc847582
KH
1665}
1666
c1e862c1
KH
1667int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1668{
1669 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1670}
1671
1672
18f59ea7
BS
1673static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1674{
1675 return mem_cgroup_from_cont(cont)->use_hierarchy;
1676}
1677
1678static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1679 u64 val)
1680{
1681 int retval = 0;
1682 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1683 struct cgroup *parent = cont->parent;
1684 struct mem_cgroup *parent_mem = NULL;
1685
1686 if (parent)
1687 parent_mem = mem_cgroup_from_cont(parent);
1688
1689 cgroup_lock();
1690 /*
1691 * If parent's use_hiearchy is set, we can't make any modifications
1692 * in the child subtrees. If it is unset, then the change can
1693 * occur, provided the current cgroup has no children.
1694 *
1695 * For the root cgroup, parent_mem is NULL, we allow value to be
1696 * set if there are no children.
1697 */
1698 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1699 (val == 1 || val == 0)) {
1700 if (list_empty(&cont->children))
1701 mem->use_hierarchy = val;
1702 else
1703 retval = -EBUSY;
1704 } else
1705 retval = -EINVAL;
1706 cgroup_unlock();
1707
1708 return retval;
1709}
1710
2c3daa72 1711static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1712{
8c7c6e34
KH
1713 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1714 u64 val = 0;
1715 int type, name;
1716
1717 type = MEMFILE_TYPE(cft->private);
1718 name = MEMFILE_ATTR(cft->private);
1719 switch (type) {
1720 case _MEM:
1721 val = res_counter_read_u64(&mem->res, name);
1722 break;
1723 case _MEMSWAP:
1724 if (do_swap_account)
1725 val = res_counter_read_u64(&mem->memsw, name);
1726 break;
1727 default:
1728 BUG();
1729 break;
1730 }
1731 return val;
8cdea7c0 1732}
628f4235
KH
1733/*
1734 * The user of this function is...
1735 * RES_LIMIT.
1736 */
856c13aa
PM
1737static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1738 const char *buffer)
8cdea7c0 1739{
628f4235 1740 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 1741 int type, name;
628f4235
KH
1742 unsigned long long val;
1743 int ret;
1744
8c7c6e34
KH
1745 type = MEMFILE_TYPE(cft->private);
1746 name = MEMFILE_ATTR(cft->private);
1747 switch (name) {
628f4235
KH
1748 case RES_LIMIT:
1749 /* This function does all necessary parse...reuse it */
1750 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
1751 if (ret)
1752 break;
1753 if (type == _MEM)
628f4235 1754 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
1755 else
1756 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
1757 break;
1758 default:
1759 ret = -EINVAL; /* should be BUG() ? */
1760 break;
1761 }
1762 return ret;
8cdea7c0
BS
1763}
1764
fee7b548
KH
1765static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
1766 unsigned long long *mem_limit, unsigned long long *memsw_limit)
1767{
1768 struct cgroup *cgroup;
1769 unsigned long long min_limit, min_memsw_limit, tmp;
1770
1771 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1772 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1773 cgroup = memcg->css.cgroup;
1774 if (!memcg->use_hierarchy)
1775 goto out;
1776
1777 while (cgroup->parent) {
1778 cgroup = cgroup->parent;
1779 memcg = mem_cgroup_from_cont(cgroup);
1780 if (!memcg->use_hierarchy)
1781 break;
1782 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
1783 min_limit = min(min_limit, tmp);
1784 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1785 min_memsw_limit = min(min_memsw_limit, tmp);
1786 }
1787out:
1788 *mem_limit = min_limit;
1789 *memsw_limit = min_memsw_limit;
1790 return;
1791}
1792
29f2a4da 1793static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1794{
1795 struct mem_cgroup *mem;
8c7c6e34 1796 int type, name;
c84872e1
PE
1797
1798 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
1799 type = MEMFILE_TYPE(event);
1800 name = MEMFILE_ATTR(event);
1801 switch (name) {
29f2a4da 1802 case RES_MAX_USAGE:
8c7c6e34
KH
1803 if (type == _MEM)
1804 res_counter_reset_max(&mem->res);
1805 else
1806 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
1807 break;
1808 case RES_FAILCNT:
8c7c6e34
KH
1809 if (type == _MEM)
1810 res_counter_reset_failcnt(&mem->res);
1811 else
1812 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
1813 break;
1814 }
85cc59db 1815 return 0;
c84872e1
PE
1816}
1817
d2ceb9b7
KH
1818static const struct mem_cgroup_stat_desc {
1819 const char *msg;
1820 u64 unit;
1821} mem_cgroup_stat_desc[] = {
1822 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1823 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1824 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1825 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1826};
1827
c64745cf
PM
1828static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1829 struct cgroup_map_cb *cb)
d2ceb9b7 1830{
d2ceb9b7
KH
1831 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1832 struct mem_cgroup_stat *stat = &mem_cont->stat;
1833 int i;
1834
1835 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1836 s64 val;
1837
1838 val = mem_cgroup_read_stat(stat, i);
1839 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1840 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1841 }
6d12e2d8
KH
1842 /* showing # of active pages */
1843 {
4f98a2fe
RR
1844 unsigned long active_anon, inactive_anon;
1845 unsigned long active_file, inactive_file;
7b854121 1846 unsigned long unevictable;
4f98a2fe
RR
1847
1848 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1849 LRU_INACTIVE_ANON);
1850 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1851 LRU_ACTIVE_ANON);
1852 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1853 LRU_INACTIVE_FILE);
1854 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1855 LRU_ACTIVE_FILE);
7b854121
LS
1856 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1857 LRU_UNEVICTABLE);
1858
4f98a2fe
RR
1859 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1860 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1861 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1862 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1863 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1864
6d12e2d8 1865 }
fee7b548
KH
1866 {
1867 unsigned long long limit, memsw_limit;
1868 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
1869 cb->fill(cb, "hierarchical_memory_limit", limit);
1870 if (do_swap_account)
1871 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
1872 }
7f016ee8
KM
1873
1874#ifdef CONFIG_DEBUG_VM
c772be93 1875 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
1876
1877 {
1878 int nid, zid;
1879 struct mem_cgroup_per_zone *mz;
1880 unsigned long recent_rotated[2] = {0, 0};
1881 unsigned long recent_scanned[2] = {0, 0};
1882
1883 for_each_online_node(nid)
1884 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1885 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1886
1887 recent_rotated[0] +=
1888 mz->reclaim_stat.recent_rotated[0];
1889 recent_rotated[1] +=
1890 mz->reclaim_stat.recent_rotated[1];
1891 recent_scanned[0] +=
1892 mz->reclaim_stat.recent_scanned[0];
1893 recent_scanned[1] +=
1894 mz->reclaim_stat.recent_scanned[1];
1895 }
1896 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
1897 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
1898 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
1899 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
1900 }
1901#endif
1902
d2ceb9b7
KH
1903 return 0;
1904}
1905
a7885eb8
KM
1906static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
1907{
1908 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1909
1910 return get_swappiness(memcg);
1911}
1912
1913static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
1914 u64 val)
1915{
1916 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
1917 struct mem_cgroup *parent;
1918 if (val > 100)
1919 return -EINVAL;
1920
1921 if (cgrp->parent == NULL)
1922 return -EINVAL;
1923
1924 parent = mem_cgroup_from_cont(cgrp->parent);
1925 /* If under hierarchy, only empty-root can set this value */
1926 if ((parent->use_hierarchy) ||
1927 (memcg->use_hierarchy && !list_empty(&cgrp->children)))
1928 return -EINVAL;
1929
1930 spin_lock(&memcg->reclaim_param_lock);
1931 memcg->swappiness = val;
1932 spin_unlock(&memcg->reclaim_param_lock);
1933
1934 return 0;
1935}
1936
c1e862c1 1937
8cdea7c0
BS
1938static struct cftype mem_cgroup_files[] = {
1939 {
0eea1030 1940 .name = "usage_in_bytes",
8c7c6e34 1941 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 1942 .read_u64 = mem_cgroup_read,
8cdea7c0 1943 },
c84872e1
PE
1944 {
1945 .name = "max_usage_in_bytes",
8c7c6e34 1946 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 1947 .trigger = mem_cgroup_reset,
c84872e1
PE
1948 .read_u64 = mem_cgroup_read,
1949 },
8cdea7c0 1950 {
0eea1030 1951 .name = "limit_in_bytes",
8c7c6e34 1952 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 1953 .write_string = mem_cgroup_write,
2c3daa72 1954 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
1955 },
1956 {
1957 .name = "failcnt",
8c7c6e34 1958 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 1959 .trigger = mem_cgroup_reset,
2c3daa72 1960 .read_u64 = mem_cgroup_read,
8cdea7c0 1961 },
d2ceb9b7
KH
1962 {
1963 .name = "stat",
c64745cf 1964 .read_map = mem_control_stat_show,
d2ceb9b7 1965 },
c1e862c1
KH
1966 {
1967 .name = "force_empty",
1968 .trigger = mem_cgroup_force_empty_write,
1969 },
18f59ea7
BS
1970 {
1971 .name = "use_hierarchy",
1972 .write_u64 = mem_cgroup_hierarchy_write,
1973 .read_u64 = mem_cgroup_hierarchy_read,
1974 },
a7885eb8
KM
1975 {
1976 .name = "swappiness",
1977 .read_u64 = mem_cgroup_swappiness_read,
1978 .write_u64 = mem_cgroup_swappiness_write,
1979 },
8cdea7c0
BS
1980};
1981
8c7c6e34
KH
1982#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1983static struct cftype memsw_cgroup_files[] = {
1984 {
1985 .name = "memsw.usage_in_bytes",
1986 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
1987 .read_u64 = mem_cgroup_read,
1988 },
1989 {
1990 .name = "memsw.max_usage_in_bytes",
1991 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
1992 .trigger = mem_cgroup_reset,
1993 .read_u64 = mem_cgroup_read,
1994 },
1995 {
1996 .name = "memsw.limit_in_bytes",
1997 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
1998 .write_string = mem_cgroup_write,
1999 .read_u64 = mem_cgroup_read,
2000 },
2001 {
2002 .name = "memsw.failcnt",
2003 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2004 .trigger = mem_cgroup_reset,
2005 .read_u64 = mem_cgroup_read,
2006 },
2007};
2008
2009static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2010{
2011 if (!do_swap_account)
2012 return 0;
2013 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2014 ARRAY_SIZE(memsw_cgroup_files));
2015};
2016#else
2017static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2018{
2019 return 0;
2020}
2021#endif
2022
6d12e2d8
KH
2023static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2024{
2025 struct mem_cgroup_per_node *pn;
1ecaab2b 2026 struct mem_cgroup_per_zone *mz;
b69408e8 2027 enum lru_list l;
41e3355d 2028 int zone, tmp = node;
1ecaab2b
KH
2029 /*
2030 * This routine is called against possible nodes.
2031 * But it's BUG to call kmalloc() against offline node.
2032 *
2033 * TODO: this routine can waste much memory for nodes which will
2034 * never be onlined. It's better to use memory hotplug callback
2035 * function.
2036 */
41e3355d
KH
2037 if (!node_state(node, N_NORMAL_MEMORY))
2038 tmp = -1;
2039 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
2040 if (!pn)
2041 return 1;
1ecaab2b 2042
6d12e2d8
KH
2043 mem->info.nodeinfo[node] = pn;
2044 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
2045
2046 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2047 mz = &pn->zoneinfo[zone];
b69408e8
CL
2048 for_each_lru(l)
2049 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 2050 }
6d12e2d8
KH
2051 return 0;
2052}
2053
1ecaab2b
KH
2054static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2055{
2056 kfree(mem->info.nodeinfo[node]);
2057}
2058
c8dad2bb
JB
2059static int mem_cgroup_size(void)
2060{
2061 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2062 return sizeof(struct mem_cgroup) + cpustat_size;
2063}
2064
33327948
KH
2065static struct mem_cgroup *mem_cgroup_alloc(void)
2066{
2067 struct mem_cgroup *mem;
c8dad2bb 2068 int size = mem_cgroup_size();
33327948 2069
c8dad2bb
JB
2070 if (size < PAGE_SIZE)
2071 mem = kmalloc(size, GFP_KERNEL);
33327948 2072 else
c8dad2bb 2073 mem = vmalloc(size);
33327948
KH
2074
2075 if (mem)
c8dad2bb 2076 memset(mem, 0, size);
33327948
KH
2077 return mem;
2078}
2079
8c7c6e34
KH
2080/*
2081 * At destroying mem_cgroup, references from swap_cgroup can remain.
2082 * (scanning all at force_empty is too costly...)
2083 *
2084 * Instead of clearing all references at force_empty, we remember
2085 * the number of reference from swap_cgroup and free mem_cgroup when
2086 * it goes down to 0.
2087 *
2088 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
2089 * entry which points to this memcg will be ignore at swapin.
2090 *
2091 * Removal of cgroup itself succeeds regardless of refs from swap.
2092 */
2093
33327948
KH
2094static void mem_cgroup_free(struct mem_cgroup *mem)
2095{
08e552c6
KH
2096 int node;
2097
8c7c6e34
KH
2098 if (atomic_read(&mem->refcnt) > 0)
2099 return;
08e552c6
KH
2100
2101
2102 for_each_node_state(node, N_POSSIBLE)
2103 free_mem_cgroup_per_zone_info(mem, node);
2104
c8dad2bb 2105 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
2106 kfree(mem);
2107 else
2108 vfree(mem);
2109}
2110
8c7c6e34
KH
2111static void mem_cgroup_get(struct mem_cgroup *mem)
2112{
2113 atomic_inc(&mem->refcnt);
2114}
2115
2116static void mem_cgroup_put(struct mem_cgroup *mem)
2117{
2118 if (atomic_dec_and_test(&mem->refcnt)) {
2119 if (!mem->obsolete)
2120 return;
2121 mem_cgroup_free(mem);
2122 }
2123}
2124
33327948 2125
c077719b
KH
2126#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2127static void __init enable_swap_cgroup(void)
2128{
f8d66542 2129 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
2130 do_swap_account = 1;
2131}
2132#else
2133static void __init enable_swap_cgroup(void)
2134{
2135}
2136#endif
2137
8cdea7c0
BS
2138static struct cgroup_subsys_state *
2139mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2140{
28dbc4b6 2141 struct mem_cgroup *mem, *parent;
6d12e2d8 2142 int node;
8cdea7c0 2143
c8dad2bb
JB
2144 mem = mem_cgroup_alloc();
2145 if (!mem)
2146 return ERR_PTR(-ENOMEM);
78fb7466 2147
6d12e2d8
KH
2148 for_each_node_state(node, N_POSSIBLE)
2149 if (alloc_mem_cgroup_per_zone_info(mem, node))
2150 goto free_out;
c077719b 2151 /* root ? */
28dbc4b6 2152 if (cont->parent == NULL) {
c077719b 2153 enable_swap_cgroup();
28dbc4b6 2154 parent = NULL;
18f59ea7 2155 } else {
28dbc4b6 2156 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7
BS
2157 mem->use_hierarchy = parent->use_hierarchy;
2158 }
28dbc4b6 2159
18f59ea7
BS
2160 if (parent && parent->use_hierarchy) {
2161 res_counter_init(&mem->res, &parent->res);
2162 res_counter_init(&mem->memsw, &parent->memsw);
2163 } else {
2164 res_counter_init(&mem->res, NULL);
2165 res_counter_init(&mem->memsw, NULL);
2166 }
6d61ef40 2167 mem->last_scanned_child = NULL;
2733c06a 2168 spin_lock_init(&mem->reclaim_param_lock);
6d61ef40 2169
a7885eb8
KM
2170 if (parent)
2171 mem->swappiness = get_swappiness(parent);
2172
8cdea7c0 2173 return &mem->css;
6d12e2d8
KH
2174free_out:
2175 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 2176 free_mem_cgroup_per_zone_info(mem, node);
c8dad2bb 2177 mem_cgroup_free(mem);
2dda81ca 2178 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
2179}
2180
df878fb0
KH
2181static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2182 struct cgroup *cont)
2183{
2184 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
8c7c6e34 2185 mem->obsolete = 1;
c1e862c1 2186 mem_cgroup_force_empty(mem, false);
df878fb0
KH
2187}
2188
8cdea7c0
BS
2189static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2190 struct cgroup *cont)
2191{
33327948 2192 mem_cgroup_free(mem_cgroup_from_cont(cont));
8cdea7c0
BS
2193}
2194
2195static int mem_cgroup_populate(struct cgroup_subsys *ss,
2196 struct cgroup *cont)
2197{
8c7c6e34
KH
2198 int ret;
2199
2200 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2201 ARRAY_SIZE(mem_cgroup_files));
2202
2203 if (!ret)
2204 ret = register_memsw_files(cont, ss);
2205 return ret;
8cdea7c0
BS
2206}
2207
67e465a7
BS
2208static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2209 struct cgroup *cont,
2210 struct cgroup *old_cont,
2211 struct task_struct *p)
2212{
7f4d454d 2213 mutex_lock(&memcg_tasklist);
67e465a7 2214 /*
f9717d28
NK
2215 * FIXME: It's better to move charges of this process from old
2216 * memcg to new memcg. But it's just on TODO-List now.
67e465a7 2217 */
7f4d454d 2218 mutex_unlock(&memcg_tasklist);
67e465a7
BS
2219}
2220
8cdea7c0
BS
2221struct cgroup_subsys mem_cgroup_subsys = {
2222 .name = "memory",
2223 .subsys_id = mem_cgroup_subsys_id,
2224 .create = mem_cgroup_create,
df878fb0 2225 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
2226 .destroy = mem_cgroup_destroy,
2227 .populate = mem_cgroup_populate,
67e465a7 2228 .attach = mem_cgroup_move_task,
6d12e2d8 2229 .early_init = 0,
8cdea7c0 2230};
c077719b
KH
2231
2232#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2233
2234static int __init disable_swap_account(char *s)
2235{
2236 really_do_swap_account = 0;
2237 return 1;
2238}
2239__setup("noswapaccount", disable_swap_account);
2240#endif