]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/memcontrol.c
mm/zsmalloc.c: fix build when CONFIG_COMPACTION=n
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
78fb7466 28#include <linux/mm.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
c8713d0b 60#include <linux/seq_buf.h>
08e552c6 61#include "internal.h"
d1a4c0b3 62#include <net/sock.h>
4bd2c1ee 63#include <net/ip.h>
f35c3a8e 64#include "slab.h"
8cdea7c0 65
7c0f6ba6 66#include <linux/uaccess.h>
8697d331 67
cc8e970c
KM
68#include <trace/events/vmscan.h>
69
073219e9
TH
70struct cgroup_subsys memory_cgrp_subsys __read_mostly;
71EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 72
7d828602
JW
73struct mem_cgroup *root_mem_cgroup __read_mostly;
74
a181b0e8 75#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 76
f7e1cb6e
JW
77/* Socket memory accounting disabled? */
78static bool cgroup_memory_nosocket;
79
04823c83
VD
80/* Kernel memory accounting disabled? */
81static bool cgroup_memory_nokmem;
82
21afa38e 83/* Whether the swap controller is active */
c255a458 84#ifdef CONFIG_MEMCG_SWAP
c077719b 85int do_swap_account __read_mostly;
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
7941d214
JW
90/* Whether legacy memory+swap accounting is active */
91static bool do_memsw_account(void)
92{
93 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
94}
95
71cd3113 96static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
97 "inactive_anon",
98 "active_anon",
99 "inactive_file",
100 "active_file",
101 "unevictable",
102};
103
a0db00fc
KS
104#define THRESHOLDS_EVENTS_TARGET 128
105#define SOFTLIMIT_EVENTS_TARGET 1024
106#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 107
bb4cc1a8
AM
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
ef8f2327 113struct mem_cgroup_tree_per_node {
bb4cc1a8 114 struct rb_root rb_root;
fa90b2fd 115 struct rb_node *rb_rightmost;
bb4cc1a8
AM
116 spinlock_t lock;
117};
118
bb4cc1a8
AM
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
9490ff27
KH
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
2e72b634 130
79bd9814
TH
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
3bc942f3 134struct mem_cgroup_event {
79bd9814 135 /*
59b6f873 136 * memcg which the event belongs to.
79bd9814 137 */
59b6f873 138 struct mem_cgroup *memcg;
79bd9814
TH
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
fba94807
TH
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
59b6f873 152 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 153 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
59b6f873 159 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 160 struct eventfd_ctx *eventfd);
79bd9814
TH
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
ac6424b9 167 wait_queue_entry_t wait;
79bd9814
TH
168 struct work_struct remove;
169};
170
c0ff4b85
R
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 173
7dc74be0
DN
174/* Stuffs for move charges at task migration. */
175/*
1dfab5ab 176 * Types of charges to be moved.
7dc74be0 177 */
1dfab5ab
JW
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 181
4ffef5fe
DN
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
b1dd693e 184 spinlock_t lock; /* for from, to */
264a0ae1 185 struct mm_struct *mm;
4ffef5fe
DN
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
1dfab5ab 188 unsigned long flags;
4ffef5fe 189 unsigned long precharge;
854ffa8d 190 unsigned long moved_charge;
483c30b5 191 unsigned long moved_swap;
8033b97c
DN
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
2bd9bb20 195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
4ffef5fe 198
4e416953
BS
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
a0db00fc 203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 205
217bc319
KH
206enum charge_type {
207 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 208 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 209 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 210 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
211 NR_CHARGE_TYPE,
212};
213
8c7c6e34 214/* for encoding cft->private value on file */
86ae53e1
GC
215enum res_type {
216 _MEM,
217 _MEMSWAP,
218 _OOM_TYPE,
510fc4e1 219 _KMEM,
d55f90bf 220 _TCP,
86ae53e1
GC
221};
222
a0db00fc
KS
223#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
224#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 225#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
226/* Used for OOM nofiier */
227#define OOM_CONTROL (0)
8c7c6e34 228
b05706f1
KT
229/*
230 * Iteration constructs for visiting all cgroups (under a tree). If
231 * loops are exited prematurely (break), mem_cgroup_iter_break() must
232 * be used for reference counting.
233 */
234#define for_each_mem_cgroup_tree(iter, root) \
235 for (iter = mem_cgroup_iter(root, NULL, NULL); \
236 iter != NULL; \
237 iter = mem_cgroup_iter(root, iter, NULL))
238
239#define for_each_mem_cgroup(iter) \
240 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
241 iter != NULL; \
242 iter = mem_cgroup_iter(NULL, iter, NULL))
243
7775face
TH
244static inline bool should_force_charge(void)
245{
246 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
247 (current->flags & PF_EXITING);
248}
249
70ddf637
AV
250/* Some nice accessors for the vmpressure. */
251struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252{
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256}
257
258struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259{
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261}
262
84c07d11 263#ifdef CONFIG_MEMCG_KMEM
55007d84 264/*
f7ce3190 265 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
266 * The main reason for not using cgroup id for this:
267 * this works better in sparse environments, where we have a lot of memcgs,
268 * but only a few kmem-limited. Or also, if we have, for instance, 200
269 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
270 * 200 entry array for that.
55007d84 271 *
dbcf73e2
VD
272 * The current size of the caches array is stored in memcg_nr_cache_ids. It
273 * will double each time we have to increase it.
55007d84 274 */
dbcf73e2
VD
275static DEFINE_IDA(memcg_cache_ida);
276int memcg_nr_cache_ids;
749c5415 277
05257a1a
VD
278/* Protects memcg_nr_cache_ids */
279static DECLARE_RWSEM(memcg_cache_ids_sem);
280
281void memcg_get_cache_ids(void)
282{
283 down_read(&memcg_cache_ids_sem);
284}
285
286void memcg_put_cache_ids(void)
287{
288 up_read(&memcg_cache_ids_sem);
289}
290
55007d84
GC
291/*
292 * MIN_SIZE is different than 1, because we would like to avoid going through
293 * the alloc/free process all the time. In a small machine, 4 kmem-limited
294 * cgroups is a reasonable guess. In the future, it could be a parameter or
295 * tunable, but that is strictly not necessary.
296 *
b8627835 297 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
298 * this constant directly from cgroup, but it is understandable that this is
299 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 300 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
301 * increase ours as well if it increases.
302 */
303#define MEMCG_CACHES_MIN_SIZE 4
b8627835 304#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 305
d7f25f8a
GC
306/*
307 * A lot of the calls to the cache allocation functions are expected to be
308 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
309 * conditional to this static branch, we'll have to allow modules that does
310 * kmem_cache_alloc and the such to see this symbol as well
311 */
ef12947c 312DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 313EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 314
17cc4dfe
TH
315struct workqueue_struct *memcg_kmem_cache_wq;
316
0a4465d3
KT
317static int memcg_shrinker_map_size;
318static DEFINE_MUTEX(memcg_shrinker_map_mutex);
319
320static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
321{
322 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
323}
324
325static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
326 int size, int old_size)
327{
328 struct memcg_shrinker_map *new, *old;
329 int nid;
330
331 lockdep_assert_held(&memcg_shrinker_map_mutex);
332
333 for_each_node(nid) {
334 old = rcu_dereference_protected(
335 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
336 /* Not yet online memcg */
337 if (!old)
338 return 0;
339
340 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
341 if (!new)
342 return -ENOMEM;
343
344 /* Set all old bits, clear all new bits */
345 memset(new->map, (int)0xff, old_size);
346 memset((void *)new->map + old_size, 0, size - old_size);
347
348 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
349 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
350 }
351
352 return 0;
353}
354
355static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
356{
357 struct mem_cgroup_per_node *pn;
358 struct memcg_shrinker_map *map;
359 int nid;
360
361 if (mem_cgroup_is_root(memcg))
362 return;
363
364 for_each_node(nid) {
365 pn = mem_cgroup_nodeinfo(memcg, nid);
366 map = rcu_dereference_protected(pn->shrinker_map, true);
367 if (map)
368 kvfree(map);
369 rcu_assign_pointer(pn->shrinker_map, NULL);
370 }
371}
372
373static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
374{
375 struct memcg_shrinker_map *map;
376 int nid, size, ret = 0;
377
378 if (mem_cgroup_is_root(memcg))
379 return 0;
380
381 mutex_lock(&memcg_shrinker_map_mutex);
382 size = memcg_shrinker_map_size;
383 for_each_node(nid) {
384 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
385 if (!map) {
386 memcg_free_shrinker_maps(memcg);
387 ret = -ENOMEM;
388 break;
389 }
390 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
391 }
392 mutex_unlock(&memcg_shrinker_map_mutex);
393
394 return ret;
395}
396
397int memcg_expand_shrinker_maps(int new_id)
398{
399 int size, old_size, ret = 0;
400 struct mem_cgroup *memcg;
401
402 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
403 old_size = memcg_shrinker_map_size;
404 if (size <= old_size)
405 return 0;
406
407 mutex_lock(&memcg_shrinker_map_mutex);
408 if (!root_mem_cgroup)
409 goto unlock;
410
411 for_each_mem_cgroup(memcg) {
412 if (mem_cgroup_is_root(memcg))
413 continue;
414 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
415 if (ret)
416 goto unlock;
417 }
418unlock:
419 if (!ret)
420 memcg_shrinker_map_size = size;
421 mutex_unlock(&memcg_shrinker_map_mutex);
422 return ret;
423}
fae91d6d
KT
424
425void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426{
427 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
428 struct memcg_shrinker_map *map;
429
430 rcu_read_lock();
431 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
432 /* Pairs with smp mb in shrink_slab() */
433 smp_mb__before_atomic();
fae91d6d
KT
434 set_bit(shrinker_id, map->map);
435 rcu_read_unlock();
436 }
437}
438
0a4465d3
KT
439#else /* CONFIG_MEMCG_KMEM */
440static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
441{
442 return 0;
443}
444static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
84c07d11 445#endif /* CONFIG_MEMCG_KMEM */
a8964b9b 446
ad7fa852
TH
447/**
448 * mem_cgroup_css_from_page - css of the memcg associated with a page
449 * @page: page of interest
450 *
451 * If memcg is bound to the default hierarchy, css of the memcg associated
452 * with @page is returned. The returned css remains associated with @page
453 * until it is released.
454 *
455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
456 * is returned.
ad7fa852
TH
457 */
458struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
459{
460 struct mem_cgroup *memcg;
461
ad7fa852
TH
462 memcg = page->mem_cgroup;
463
9e10a130 464 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
465 memcg = root_mem_cgroup;
466
ad7fa852
TH
467 return &memcg->css;
468}
469
2fc04524
VD
470/**
471 * page_cgroup_ino - return inode number of the memcg a page is charged to
472 * @page: the page
473 *
474 * Look up the closest online ancestor of the memory cgroup @page is charged to
475 * and return its inode number or 0 if @page is not charged to any cgroup. It
476 * is safe to call this function without holding a reference to @page.
477 *
478 * Note, this function is inherently racy, because there is nothing to prevent
479 * the cgroup inode from getting torn down and potentially reallocated a moment
480 * after page_cgroup_ino() returns, so it only should be used by callers that
481 * do not care (such as procfs interfaces).
482 */
483ino_t page_cgroup_ino(struct page *page)
484{
485 struct mem_cgroup *memcg;
486 unsigned long ino = 0;
487
488 rcu_read_lock();
4d96ba35
RG
489 if (PageHead(page) && PageSlab(page))
490 memcg = memcg_from_slab_page(page);
491 else
492 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
493 while (memcg && !(memcg->css.flags & CSS_ONLINE))
494 memcg = parent_mem_cgroup(memcg);
495 if (memcg)
496 ino = cgroup_ino(memcg->css.cgroup);
497 rcu_read_unlock();
498 return ino;
499}
500
ef8f2327
MG
501static struct mem_cgroup_per_node *
502mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 503{
97a6c37b 504 int nid = page_to_nid(page);
f64c3f54 505
ef8f2327 506 return memcg->nodeinfo[nid];
f64c3f54
BS
507}
508
ef8f2327
MG
509static struct mem_cgroup_tree_per_node *
510soft_limit_tree_node(int nid)
bb4cc1a8 511{
ef8f2327 512 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
513}
514
ef8f2327 515static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
516soft_limit_tree_from_page(struct page *page)
517{
518 int nid = page_to_nid(page);
bb4cc1a8 519
ef8f2327 520 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
521}
522
ef8f2327
MG
523static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
524 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 525 unsigned long new_usage_in_excess)
bb4cc1a8
AM
526{
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
ef8f2327 529 struct mem_cgroup_per_node *mz_node;
fa90b2fd 530 bool rightmost = true;
bb4cc1a8
AM
531
532 if (mz->on_tree)
533 return;
534
535 mz->usage_in_excess = new_usage_in_excess;
536 if (!mz->usage_in_excess)
537 return;
538 while (*p) {
539 parent = *p;
ef8f2327 540 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 541 tree_node);
fa90b2fd 542 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 543 p = &(*p)->rb_left;
fa90b2fd
DB
544 rightmost = false;
545 }
546
bb4cc1a8
AM
547 /*
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
550 */
551 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 p = &(*p)->rb_right;
553 }
fa90b2fd
DB
554
555 if (rightmost)
556 mctz->rb_rightmost = &mz->tree_node;
557
bb4cc1a8
AM
558 rb_link_node(&mz->tree_node, parent, p);
559 rb_insert_color(&mz->tree_node, &mctz->rb_root);
560 mz->on_tree = true;
561}
562
ef8f2327
MG
563static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
564 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
565{
566 if (!mz->on_tree)
567 return;
fa90b2fd
DB
568
569 if (&mz->tree_node == mctz->rb_rightmost)
570 mctz->rb_rightmost = rb_prev(&mz->tree_node);
571
bb4cc1a8
AM
572 rb_erase(&mz->tree_node, &mctz->rb_root);
573 mz->on_tree = false;
574}
575
ef8f2327
MG
576static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
577 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 578{
0a31bc97
JW
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 582 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 583 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
584}
585
3e32cb2e
JW
586static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
587{
588 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 589 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
590 unsigned long excess = 0;
591
592 if (nr_pages > soft_limit)
593 excess = nr_pages - soft_limit;
594
595 return excess;
596}
bb4cc1a8
AM
597
598static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
599{
3e32cb2e 600 unsigned long excess;
ef8f2327
MG
601 struct mem_cgroup_per_node *mz;
602 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 603
e231875b 604 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
605 if (!mctz)
606 return;
bb4cc1a8
AM
607 /*
608 * Necessary to update all ancestors when hierarchy is used.
609 * because their event counter is not touched.
610 */
611 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 612 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 613 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
614 /*
615 * We have to update the tree if mz is on RB-tree or
616 * mem is over its softlimit.
617 */
618 if (excess || mz->on_tree) {
0a31bc97
JW
619 unsigned long flags;
620
621 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
622 /* if on-tree, remove it */
623 if (mz->on_tree)
cf2c8127 624 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
625 /*
626 * Insert again. mz->usage_in_excess will be updated.
627 * If excess is 0, no tree ops.
628 */
cf2c8127 629 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 630 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
631 }
632 }
633}
634
635static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
636{
ef8f2327
MG
637 struct mem_cgroup_tree_per_node *mctz;
638 struct mem_cgroup_per_node *mz;
639 int nid;
bb4cc1a8 640
e231875b 641 for_each_node(nid) {
ef8f2327
MG
642 mz = mem_cgroup_nodeinfo(memcg, nid);
643 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
644 if (mctz)
645 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
646 }
647}
648
ef8f2327
MG
649static struct mem_cgroup_per_node *
650__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 651{
ef8f2327 652 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
653
654retry:
655 mz = NULL;
fa90b2fd 656 if (!mctz->rb_rightmost)
bb4cc1a8
AM
657 goto done; /* Nothing to reclaim from */
658
fa90b2fd
DB
659 mz = rb_entry(mctz->rb_rightmost,
660 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
661 /*
662 * Remove the node now but someone else can add it back,
663 * we will to add it back at the end of reclaim to its correct
664 * position in the tree.
665 */
cf2c8127 666 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 667 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 668 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
669 goto retry;
670done:
671 return mz;
672}
673
ef8f2327
MG
674static struct mem_cgroup_per_node *
675mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 676{
ef8f2327 677 struct mem_cgroup_per_node *mz;
bb4cc1a8 678
0a31bc97 679 spin_lock_irq(&mctz->lock);
bb4cc1a8 680 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 681 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
682 return mz;
683}
684
db9adbcb
JW
685/**
686 * __mod_memcg_state - update cgroup memory statistics
687 * @memcg: the memory cgroup
688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689 * @val: delta to add to the counter, can be negative
690 */
691void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
692{
693 long x;
694
695 if (mem_cgroup_disabled())
696 return;
697
698 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
699 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
700 struct mem_cgroup *mi;
701
766a4c19
YS
702 /*
703 * Batch local counters to keep them in sync with
704 * the hierarchical ones.
705 */
706 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
707 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
708 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
709 x = 0;
710 }
711 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
712}
713
42a30035
JW
714static struct mem_cgroup_per_node *
715parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
716{
717 struct mem_cgroup *parent;
718
719 parent = parent_mem_cgroup(pn->memcg);
720 if (!parent)
721 return NULL;
722 return mem_cgroup_nodeinfo(parent, nid);
723}
724
db9adbcb
JW
725/**
726 * __mod_lruvec_state - update lruvec memory statistics
727 * @lruvec: the lruvec
728 * @idx: the stat item
729 * @val: delta to add to the counter, can be negative
730 *
731 * The lruvec is the intersection of the NUMA node and a cgroup. This
732 * function updates the all three counters that are affected by a
733 * change of state at this level: per-node, per-cgroup, per-lruvec.
734 */
735void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
736 int val)
737{
42a30035 738 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 739 struct mem_cgroup_per_node *pn;
42a30035 740 struct mem_cgroup *memcg;
db9adbcb
JW
741 long x;
742
743 /* Update node */
42a30035 744 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
745
746 if (mem_cgroup_disabled())
747 return;
748
749 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 750 memcg = pn->memcg;
db9adbcb
JW
751
752 /* Update memcg */
42a30035 753 __mod_memcg_state(memcg, idx, val);
db9adbcb 754
db9adbcb
JW
755 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
756 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
757 struct mem_cgroup_per_node *pi;
758
766a4c19
YS
759 /*
760 * Batch local counters to keep them in sync with
761 * the hierarchical ones.
762 */
763 __this_cpu_add(pn->lruvec_stat_local->count[idx], x);
42a30035
JW
764 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
765 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
766 x = 0;
767 }
768 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
769}
770
ec9f0238
RG
771void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
772{
773 struct page *page = virt_to_head_page(p);
774 pg_data_t *pgdat = page_pgdat(page);
775 struct mem_cgroup *memcg;
776 struct lruvec *lruvec;
777
778 rcu_read_lock();
779 memcg = memcg_from_slab_page(page);
780
781 /* Untracked pages have no memcg, no lruvec. Update only the node */
782 if (!memcg || memcg == root_mem_cgroup) {
783 __mod_node_page_state(pgdat, idx, val);
784 } else {
785 lruvec = mem_cgroup_lruvec(pgdat, memcg);
786 __mod_lruvec_state(lruvec, idx, val);
787 }
788 rcu_read_unlock();
789}
790
db9adbcb
JW
791/**
792 * __count_memcg_events - account VM events in a cgroup
793 * @memcg: the memory cgroup
794 * @idx: the event item
795 * @count: the number of events that occured
796 */
797void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
798 unsigned long count)
799{
800 unsigned long x;
801
802 if (mem_cgroup_disabled())
803 return;
804
805 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
806 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
807 struct mem_cgroup *mi;
808
766a4c19
YS
809 /*
810 * Batch local counters to keep them in sync with
811 * the hierarchical ones.
812 */
813 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
814 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
815 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
816 x = 0;
817 }
818 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
819}
820
42a30035 821static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 822{
871789d4 823 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
824}
825
42a30035
JW
826static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
827{
815744d7
JW
828 long x = 0;
829 int cpu;
830
831 for_each_possible_cpu(cpu)
832 x += per_cpu(memcg->vmstats_local->events[event], cpu);
833 return x;
42a30035
JW
834}
835
c0ff4b85 836static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 837 struct page *page,
f627c2f5 838 bool compound, int nr_pages)
d52aa412 839{
b2402857
KH
840 /*
841 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
842 * counted as CACHE even if it's on ANON LRU.
843 */
0a31bc97 844 if (PageAnon(page))
c9019e9b 845 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 846 else {
c9019e9b 847 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 848 if (PageSwapBacked(page))
c9019e9b 849 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 850 }
55e462b0 851
f627c2f5
KS
852 if (compound) {
853 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 854 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 855 }
b070e65c 856
e401f176
KH
857 /* pagein of a big page is an event. So, ignore page size */
858 if (nr_pages > 0)
c9019e9b 859 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 860 else {
c9019e9b 861 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
862 nr_pages = -nr_pages; /* for event */
863 }
e401f176 864
871789d4 865 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
866}
867
f53d7ce3
JW
868static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
869 enum mem_cgroup_events_target target)
7a159cc9
JW
870{
871 unsigned long val, next;
872
871789d4
CD
873 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
874 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 875 /* from time_after() in jiffies.h */
6a1a8b80 876 if ((long)(next - val) < 0) {
f53d7ce3
JW
877 switch (target) {
878 case MEM_CGROUP_TARGET_THRESH:
879 next = val + THRESHOLDS_EVENTS_TARGET;
880 break;
bb4cc1a8
AM
881 case MEM_CGROUP_TARGET_SOFTLIMIT:
882 next = val + SOFTLIMIT_EVENTS_TARGET;
883 break;
f53d7ce3
JW
884 case MEM_CGROUP_TARGET_NUMAINFO:
885 next = val + NUMAINFO_EVENTS_TARGET;
886 break;
887 default:
888 break;
889 }
871789d4 890 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 891 return true;
7a159cc9 892 }
f53d7ce3 893 return false;
d2265e6f
KH
894}
895
896/*
897 * Check events in order.
898 *
899 */
c0ff4b85 900static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
901{
902 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
903 if (unlikely(mem_cgroup_event_ratelimit(memcg,
904 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 905 bool do_softlimit;
82b3f2a7 906 bool do_numainfo __maybe_unused;
f53d7ce3 907
bb4cc1a8
AM
908 do_softlimit = mem_cgroup_event_ratelimit(memcg,
909 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
910#if MAX_NUMNODES > 1
911 do_numainfo = mem_cgroup_event_ratelimit(memcg,
912 MEM_CGROUP_TARGET_NUMAINFO);
913#endif
c0ff4b85 914 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
915 if (unlikely(do_softlimit))
916 mem_cgroup_update_tree(memcg, page);
453a9bf3 917#if MAX_NUMNODES > 1
f53d7ce3 918 if (unlikely(do_numainfo))
c0ff4b85 919 atomic_inc(&memcg->numainfo_events);
453a9bf3 920#endif
0a31bc97 921 }
d2265e6f
KH
922}
923
cf475ad2 924struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 925{
31a78f23
BS
926 /*
927 * mm_update_next_owner() may clear mm->owner to NULL
928 * if it races with swapoff, page migration, etc.
929 * So this can be called with p == NULL.
930 */
931 if (unlikely(!p))
932 return NULL;
933
073219e9 934 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 935}
33398cf2 936EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 937
d46eb14b
SB
938/**
939 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
940 * @mm: mm from which memcg should be extracted. It can be NULL.
941 *
942 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
943 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
944 * returned.
945 */
946struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 947{
d46eb14b
SB
948 struct mem_cgroup *memcg;
949
950 if (mem_cgroup_disabled())
951 return NULL;
0b7f569e 952
54595fe2
KH
953 rcu_read_lock();
954 do {
6f6acb00
MH
955 /*
956 * Page cache insertions can happen withou an
957 * actual mm context, e.g. during disk probing
958 * on boot, loopback IO, acct() writes etc.
959 */
960 if (unlikely(!mm))
df381975 961 memcg = root_mem_cgroup;
6f6acb00
MH
962 else {
963 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
964 if (unlikely(!memcg))
965 memcg = root_mem_cgroup;
966 }
ec903c0c 967 } while (!css_tryget_online(&memcg->css));
54595fe2 968 rcu_read_unlock();
c0ff4b85 969 return memcg;
54595fe2 970}
d46eb14b
SB
971EXPORT_SYMBOL(get_mem_cgroup_from_mm);
972
f745c6f5
SB
973/**
974 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
975 * @page: page from which memcg should be extracted.
976 *
977 * Obtain a reference on page->memcg and returns it if successful. Otherwise
978 * root_mem_cgroup is returned.
979 */
980struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
981{
982 struct mem_cgroup *memcg = page->mem_cgroup;
983
984 if (mem_cgroup_disabled())
985 return NULL;
986
987 rcu_read_lock();
988 if (!memcg || !css_tryget_online(&memcg->css))
989 memcg = root_mem_cgroup;
990 rcu_read_unlock();
991 return memcg;
992}
993EXPORT_SYMBOL(get_mem_cgroup_from_page);
994
d46eb14b
SB
995/**
996 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
997 */
998static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
999{
1000 if (unlikely(current->active_memcg)) {
1001 struct mem_cgroup *memcg = root_mem_cgroup;
1002
1003 rcu_read_lock();
1004 if (css_tryget_online(&current->active_memcg->css))
1005 memcg = current->active_memcg;
1006 rcu_read_unlock();
1007 return memcg;
1008 }
1009 return get_mem_cgroup_from_mm(current->mm);
1010}
54595fe2 1011
5660048c
JW
1012/**
1013 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1014 * @root: hierarchy root
1015 * @prev: previously returned memcg, NULL on first invocation
1016 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1017 *
1018 * Returns references to children of the hierarchy below @root, or
1019 * @root itself, or %NULL after a full round-trip.
1020 *
1021 * Caller must pass the return value in @prev on subsequent
1022 * invocations for reference counting, or use mem_cgroup_iter_break()
1023 * to cancel a hierarchy walk before the round-trip is complete.
1024 *
b213b54f 1025 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1026 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1027 * reclaimers operating on the same node and priority.
5660048c 1028 */
694fbc0f 1029struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1030 struct mem_cgroup *prev,
694fbc0f 1031 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1032{
33398cf2 1033 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1034 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1035 struct mem_cgroup *memcg = NULL;
5ac8fb31 1036 struct mem_cgroup *pos = NULL;
711d3d2c 1037
694fbc0f
AM
1038 if (mem_cgroup_disabled())
1039 return NULL;
5660048c 1040
9f3a0d09
JW
1041 if (!root)
1042 root = root_mem_cgroup;
7d74b06f 1043
9f3a0d09 1044 if (prev && !reclaim)
5ac8fb31 1045 pos = prev;
14067bb3 1046
9f3a0d09
JW
1047 if (!root->use_hierarchy && root != root_mem_cgroup) {
1048 if (prev)
5ac8fb31 1049 goto out;
694fbc0f 1050 return root;
9f3a0d09 1051 }
14067bb3 1052
542f85f9 1053 rcu_read_lock();
5f578161 1054
5ac8fb31 1055 if (reclaim) {
ef8f2327 1056 struct mem_cgroup_per_node *mz;
5ac8fb31 1057
ef8f2327 1058 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
1059 iter = &mz->iter[reclaim->priority];
1060
1061 if (prev && reclaim->generation != iter->generation)
1062 goto out_unlock;
1063
6df38689 1064 while (1) {
4db0c3c2 1065 pos = READ_ONCE(iter->position);
6df38689
VD
1066 if (!pos || css_tryget(&pos->css))
1067 break;
5ac8fb31 1068 /*
6df38689
VD
1069 * css reference reached zero, so iter->position will
1070 * be cleared by ->css_released. However, we should not
1071 * rely on this happening soon, because ->css_released
1072 * is called from a work queue, and by busy-waiting we
1073 * might block it. So we clear iter->position right
1074 * away.
5ac8fb31 1075 */
6df38689
VD
1076 (void)cmpxchg(&iter->position, pos, NULL);
1077 }
5ac8fb31
JW
1078 }
1079
1080 if (pos)
1081 css = &pos->css;
1082
1083 for (;;) {
1084 css = css_next_descendant_pre(css, &root->css);
1085 if (!css) {
1086 /*
1087 * Reclaimers share the hierarchy walk, and a
1088 * new one might jump in right at the end of
1089 * the hierarchy - make sure they see at least
1090 * one group and restart from the beginning.
1091 */
1092 if (!prev)
1093 continue;
1094 break;
527a5ec9 1095 }
7d74b06f 1096
5ac8fb31
JW
1097 /*
1098 * Verify the css and acquire a reference. The root
1099 * is provided by the caller, so we know it's alive
1100 * and kicking, and don't take an extra reference.
1101 */
1102 memcg = mem_cgroup_from_css(css);
14067bb3 1103
5ac8fb31
JW
1104 if (css == &root->css)
1105 break;
14067bb3 1106
0b8f73e1
JW
1107 if (css_tryget(css))
1108 break;
9f3a0d09 1109
5ac8fb31 1110 memcg = NULL;
9f3a0d09 1111 }
5ac8fb31
JW
1112
1113 if (reclaim) {
5ac8fb31 1114 /*
6df38689
VD
1115 * The position could have already been updated by a competing
1116 * thread, so check that the value hasn't changed since we read
1117 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1118 */
6df38689
VD
1119 (void)cmpxchg(&iter->position, pos, memcg);
1120
5ac8fb31
JW
1121 if (pos)
1122 css_put(&pos->css);
1123
1124 if (!memcg)
1125 iter->generation++;
1126 else if (!prev)
1127 reclaim->generation = iter->generation;
9f3a0d09 1128 }
5ac8fb31 1129
542f85f9
MH
1130out_unlock:
1131 rcu_read_unlock();
5ac8fb31 1132out:
c40046f3
MH
1133 if (prev && prev != root)
1134 css_put(&prev->css);
1135
9f3a0d09 1136 return memcg;
14067bb3 1137}
7d74b06f 1138
5660048c
JW
1139/**
1140 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1141 * @root: hierarchy root
1142 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1143 */
1144void mem_cgroup_iter_break(struct mem_cgroup *root,
1145 struct mem_cgroup *prev)
9f3a0d09
JW
1146{
1147 if (!root)
1148 root = root_mem_cgroup;
1149 if (prev && prev != root)
1150 css_put(&prev->css);
1151}
7d74b06f 1152
54a83d6b
MC
1153static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1154 struct mem_cgroup *dead_memcg)
6df38689 1155{
6df38689 1156 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1157 struct mem_cgroup_per_node *mz;
1158 int nid;
6df38689
VD
1159 int i;
1160
54a83d6b
MC
1161 for_each_node(nid) {
1162 mz = mem_cgroup_nodeinfo(from, nid);
1163 for (i = 0; i <= DEF_PRIORITY; i++) {
1164 iter = &mz->iter[i];
1165 cmpxchg(&iter->position,
1166 dead_memcg, NULL);
6df38689
VD
1167 }
1168 }
1169}
1170
54a83d6b
MC
1171static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1172{
1173 struct mem_cgroup *memcg = dead_memcg;
1174 struct mem_cgroup *last;
1175
1176 do {
1177 __invalidate_reclaim_iterators(memcg, dead_memcg);
1178 last = memcg;
1179 } while ((memcg = parent_mem_cgroup(memcg)));
1180
1181 /*
1182 * When cgruop1 non-hierarchy mode is used,
1183 * parent_mem_cgroup() does not walk all the way up to the
1184 * cgroup root (root_mem_cgroup). So we have to handle
1185 * dead_memcg from cgroup root separately.
1186 */
1187 if (last != root_mem_cgroup)
1188 __invalidate_reclaim_iterators(root_mem_cgroup,
1189 dead_memcg);
1190}
1191
7c5f64f8
VD
1192/**
1193 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1194 * @memcg: hierarchy root
1195 * @fn: function to call for each task
1196 * @arg: argument passed to @fn
1197 *
1198 * This function iterates over tasks attached to @memcg or to any of its
1199 * descendants and calls @fn for each task. If @fn returns a non-zero
1200 * value, the function breaks the iteration loop and returns the value.
1201 * Otherwise, it will iterate over all tasks and return 0.
1202 *
1203 * This function must not be called for the root memory cgroup.
1204 */
1205int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1206 int (*fn)(struct task_struct *, void *), void *arg)
1207{
1208 struct mem_cgroup *iter;
1209 int ret = 0;
1210
1211 BUG_ON(memcg == root_mem_cgroup);
1212
1213 for_each_mem_cgroup_tree(iter, memcg) {
1214 struct css_task_iter it;
1215 struct task_struct *task;
1216
f168a9a5 1217 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1218 while (!ret && (task = css_task_iter_next(&it)))
1219 ret = fn(task, arg);
1220 css_task_iter_end(&it);
1221 if (ret) {
1222 mem_cgroup_iter_break(memcg, iter);
1223 break;
1224 }
1225 }
1226 return ret;
1227}
1228
925b7673 1229/**
dfe0e773 1230 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1231 * @page: the page
f144c390 1232 * @pgdat: pgdat of the page
dfe0e773
JW
1233 *
1234 * This function is only safe when following the LRU page isolation
1235 * and putback protocol: the LRU lock must be held, and the page must
1236 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1237 */
599d0c95 1238struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1239{
ef8f2327 1240 struct mem_cgroup_per_node *mz;
925b7673 1241 struct mem_cgroup *memcg;
bea8c150 1242 struct lruvec *lruvec;
6d12e2d8 1243
bea8c150 1244 if (mem_cgroup_disabled()) {
599d0c95 1245 lruvec = &pgdat->lruvec;
bea8c150
HD
1246 goto out;
1247 }
925b7673 1248
1306a85a 1249 memcg = page->mem_cgroup;
7512102c 1250 /*
dfe0e773 1251 * Swapcache readahead pages are added to the LRU - and
29833315 1252 * possibly migrated - before they are charged.
7512102c 1253 */
29833315
JW
1254 if (!memcg)
1255 memcg = root_mem_cgroup;
7512102c 1256
ef8f2327 1257 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1258 lruvec = &mz->lruvec;
1259out:
1260 /*
1261 * Since a node can be onlined after the mem_cgroup was created,
1262 * we have to be prepared to initialize lruvec->zone here;
1263 * and if offlined then reonlined, we need to reinitialize it.
1264 */
599d0c95
MG
1265 if (unlikely(lruvec->pgdat != pgdat))
1266 lruvec->pgdat = pgdat;
bea8c150 1267 return lruvec;
08e552c6 1268}
b69408e8 1269
925b7673 1270/**
fa9add64
HD
1271 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1272 * @lruvec: mem_cgroup per zone lru vector
1273 * @lru: index of lru list the page is sitting on
b4536f0c 1274 * @zid: zone id of the accounted pages
fa9add64 1275 * @nr_pages: positive when adding or negative when removing
925b7673 1276 *
ca707239
HD
1277 * This function must be called under lru_lock, just before a page is added
1278 * to or just after a page is removed from an lru list (that ordering being
1279 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1280 */
fa9add64 1281void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1282 int zid, int nr_pages)
3f58a829 1283{
ef8f2327 1284 struct mem_cgroup_per_node *mz;
fa9add64 1285 unsigned long *lru_size;
ca707239 1286 long size;
3f58a829
MK
1287
1288 if (mem_cgroup_disabled())
1289 return;
1290
ef8f2327 1291 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1292 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1293
1294 if (nr_pages < 0)
1295 *lru_size += nr_pages;
1296
1297 size = *lru_size;
b4536f0c
MH
1298 if (WARN_ONCE(size < 0,
1299 "%s(%p, %d, %d): lru_size %ld\n",
1300 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1301 VM_BUG_ON(1);
1302 *lru_size = 0;
1303 }
1304
1305 if (nr_pages > 0)
1306 *lru_size += nr_pages;
08e552c6 1307}
544122e5 1308
19942822 1309/**
9d11ea9f 1310 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1311 * @memcg: the memory cgroup
19942822 1312 *
9d11ea9f 1313 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1314 * pages.
19942822 1315 */
c0ff4b85 1316static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1317{
3e32cb2e
JW
1318 unsigned long margin = 0;
1319 unsigned long count;
1320 unsigned long limit;
9d11ea9f 1321
3e32cb2e 1322 count = page_counter_read(&memcg->memory);
bbec2e15 1323 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1324 if (count < limit)
1325 margin = limit - count;
1326
7941d214 1327 if (do_memsw_account()) {
3e32cb2e 1328 count = page_counter_read(&memcg->memsw);
bbec2e15 1329 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1330 if (count <= limit)
1331 margin = min(margin, limit - count);
cbedbac3
LR
1332 else
1333 margin = 0;
3e32cb2e
JW
1334 }
1335
1336 return margin;
19942822
JW
1337}
1338
32047e2a 1339/*
bdcbb659 1340 * A routine for checking "mem" is under move_account() or not.
32047e2a 1341 *
bdcbb659
QH
1342 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1343 * moving cgroups. This is for waiting at high-memory pressure
1344 * caused by "move".
32047e2a 1345 */
c0ff4b85 1346static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1347{
2bd9bb20
KH
1348 struct mem_cgroup *from;
1349 struct mem_cgroup *to;
4b534334 1350 bool ret = false;
2bd9bb20
KH
1351 /*
1352 * Unlike task_move routines, we access mc.to, mc.from not under
1353 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1354 */
1355 spin_lock(&mc.lock);
1356 from = mc.from;
1357 to = mc.to;
1358 if (!from)
1359 goto unlock;
3e92041d 1360
2314b42d
JW
1361 ret = mem_cgroup_is_descendant(from, memcg) ||
1362 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1363unlock:
1364 spin_unlock(&mc.lock);
4b534334
KH
1365 return ret;
1366}
1367
c0ff4b85 1368static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1369{
1370 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1371 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1372 DEFINE_WAIT(wait);
1373 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1374 /* moving charge context might have finished. */
1375 if (mc.moving_task)
1376 schedule();
1377 finish_wait(&mc.waitq, &wait);
1378 return true;
1379 }
1380 }
1381 return false;
1382}
1383
c8713d0b
JW
1384static char *memory_stat_format(struct mem_cgroup *memcg)
1385{
1386 struct seq_buf s;
1387 int i;
71cd3113 1388
c8713d0b
JW
1389 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1390 if (!s.buffer)
1391 return NULL;
1392
1393 /*
1394 * Provide statistics on the state of the memory subsystem as
1395 * well as cumulative event counters that show past behavior.
1396 *
1397 * This list is ordered following a combination of these gradients:
1398 * 1) generic big picture -> specifics and details
1399 * 2) reflecting userspace activity -> reflecting kernel heuristics
1400 *
1401 * Current memory state:
1402 */
1403
1404 seq_buf_printf(&s, "anon %llu\n",
1405 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1406 PAGE_SIZE);
1407 seq_buf_printf(&s, "file %llu\n",
1408 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1409 PAGE_SIZE);
1410 seq_buf_printf(&s, "kernel_stack %llu\n",
1411 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1412 1024);
1413 seq_buf_printf(&s, "slab %llu\n",
1414 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1415 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1416 PAGE_SIZE);
1417 seq_buf_printf(&s, "sock %llu\n",
1418 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1419 PAGE_SIZE);
1420
1421 seq_buf_printf(&s, "shmem %llu\n",
1422 (u64)memcg_page_state(memcg, NR_SHMEM) *
1423 PAGE_SIZE);
1424 seq_buf_printf(&s, "file_mapped %llu\n",
1425 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1426 PAGE_SIZE);
1427 seq_buf_printf(&s, "file_dirty %llu\n",
1428 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1429 PAGE_SIZE);
1430 seq_buf_printf(&s, "file_writeback %llu\n",
1431 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1432 PAGE_SIZE);
1433
1434 /*
1435 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1436 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1437 * arse because it requires migrating the work out of rmap to a place
1438 * where the page->mem_cgroup is set up and stable.
1439 */
1440 seq_buf_printf(&s, "anon_thp %llu\n",
1441 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1442 PAGE_SIZE);
1443
1444 for (i = 0; i < NR_LRU_LISTS; i++)
1445 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1446 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1447 PAGE_SIZE);
1448
1449 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1450 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1451 PAGE_SIZE);
1452 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1453 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1454 PAGE_SIZE);
1455
1456 /* Accumulated memory events */
1457
1458 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1459 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1460
1461 seq_buf_printf(&s, "workingset_refault %lu\n",
1462 memcg_page_state(memcg, WORKINGSET_REFAULT));
1463 seq_buf_printf(&s, "workingset_activate %lu\n",
1464 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1465 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1466 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1467
1468 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1469 seq_buf_printf(&s, "pgscan %lu\n",
1470 memcg_events(memcg, PGSCAN_KSWAPD) +
1471 memcg_events(memcg, PGSCAN_DIRECT));
1472 seq_buf_printf(&s, "pgsteal %lu\n",
1473 memcg_events(memcg, PGSTEAL_KSWAPD) +
1474 memcg_events(memcg, PGSTEAL_DIRECT));
1475 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1476 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1477 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1478 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1479
1480#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1481 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1482 memcg_events(memcg, THP_FAULT_ALLOC));
1483 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1484 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1485#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1486
1487 /* The above should easily fit into one page */
1488 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1489
1490 return s.buffer;
1491}
71cd3113 1492
58cf188e 1493#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1494/**
f0c867d9 1495 * mem_cgroup_print_oom_context: Print OOM information relevant to
1496 * memory controller.
e222432b
BS
1497 * @memcg: The memory cgroup that went over limit
1498 * @p: Task that is going to be killed
1499 *
1500 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1501 * enabled
1502 */
f0c867d9 1503void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1504{
e222432b
BS
1505 rcu_read_lock();
1506
f0c867d9 1507 if (memcg) {
1508 pr_cont(",oom_memcg=");
1509 pr_cont_cgroup_path(memcg->css.cgroup);
1510 } else
1511 pr_cont(",global_oom");
2415b9f5 1512 if (p) {
f0c867d9 1513 pr_cont(",task_memcg=");
2415b9f5 1514 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1515 }
e222432b 1516 rcu_read_unlock();
f0c867d9 1517}
1518
1519/**
1520 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1521 * memory controller.
1522 * @memcg: The memory cgroup that went over limit
1523 */
1524void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1525{
c8713d0b 1526 char *buf;
e222432b 1527
3e32cb2e
JW
1528 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1529 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1530 K((u64)memcg->memory.max), memcg->memory.failcnt);
c8713d0b
JW
1531 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1532 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1533 K((u64)page_counter_read(&memcg->swap)),
1534 K((u64)memcg->swap.max), memcg->swap.failcnt);
1535 else {
1536 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1537 K((u64)page_counter_read(&memcg->memsw)),
1538 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1539 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1540 K((u64)page_counter_read(&memcg->kmem)),
1541 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1542 }
c8713d0b
JW
1543
1544 pr_info("Memory cgroup stats for ");
1545 pr_cont_cgroup_path(memcg->css.cgroup);
1546 pr_cont(":");
1547 buf = memory_stat_format(memcg);
1548 if (!buf)
1549 return;
1550 pr_info("%s", buf);
1551 kfree(buf);
e222432b
BS
1552}
1553
a63d83f4
DR
1554/*
1555 * Return the memory (and swap, if configured) limit for a memcg.
1556 */
bbec2e15 1557unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1558{
bbec2e15 1559 unsigned long max;
f3e8eb70 1560
bbec2e15 1561 max = memcg->memory.max;
9a5a8f19 1562 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1563 unsigned long memsw_max;
1564 unsigned long swap_max;
9a5a8f19 1565
bbec2e15
RG
1566 memsw_max = memcg->memsw.max;
1567 swap_max = memcg->swap.max;
1568 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1569 max = min(max + swap_max, memsw_max);
9a5a8f19 1570 }
bbec2e15 1571 return max;
a63d83f4
DR
1572}
1573
b6e6edcf 1574static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1575 int order)
9cbb78bb 1576{
6e0fc46d
DR
1577 struct oom_control oc = {
1578 .zonelist = NULL,
1579 .nodemask = NULL,
2a966b77 1580 .memcg = memcg,
6e0fc46d
DR
1581 .gfp_mask = gfp_mask,
1582 .order = order,
6e0fc46d 1583 };
7c5f64f8 1584 bool ret;
9cbb78bb 1585
7775face
TH
1586 if (mutex_lock_killable(&oom_lock))
1587 return true;
1588 /*
1589 * A few threads which were not waiting at mutex_lock_killable() can
1590 * fail to bail out. Therefore, check again after holding oom_lock.
1591 */
1592 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1593 mutex_unlock(&oom_lock);
7c5f64f8 1594 return ret;
9cbb78bb
DR
1595}
1596
ae6e71d3
MC
1597#if MAX_NUMNODES > 1
1598
4d0c066d
KH
1599/**
1600 * test_mem_cgroup_node_reclaimable
dad7557e 1601 * @memcg: the target memcg
4d0c066d
KH
1602 * @nid: the node ID to be checked.
1603 * @noswap : specify true here if the user wants flle only information.
1604 *
1605 * This function returns whether the specified memcg contains any
1606 * reclaimable pages on a node. Returns true if there are any reclaimable
1607 * pages in the node.
1608 */
c0ff4b85 1609static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1610 int nid, bool noswap)
1611{
2b487e59
JW
1612 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1613
def0fdae
JW
1614 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1615 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
4d0c066d
KH
1616 return true;
1617 if (noswap || !total_swap_pages)
1618 return false;
def0fdae
JW
1619 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1620 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
4d0c066d
KH
1621 return true;
1622 return false;
1623
1624}
889976db
YH
1625
1626/*
1627 * Always updating the nodemask is not very good - even if we have an empty
1628 * list or the wrong list here, we can start from some node and traverse all
1629 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1630 *
1631 */
c0ff4b85 1632static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1633{
1634 int nid;
453a9bf3
KH
1635 /*
1636 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1637 * pagein/pageout changes since the last update.
1638 */
c0ff4b85 1639 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1640 return;
c0ff4b85 1641 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1642 return;
1643
889976db 1644 /* make a nodemask where this memcg uses memory from */
31aaea4a 1645 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1646
31aaea4a 1647 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1648
c0ff4b85
R
1649 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1650 node_clear(nid, memcg->scan_nodes);
889976db 1651 }
453a9bf3 1652
c0ff4b85
R
1653 atomic_set(&memcg->numainfo_events, 0);
1654 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1655}
1656
1657/*
1658 * Selecting a node where we start reclaim from. Because what we need is just
1659 * reducing usage counter, start from anywhere is O,K. Considering
1660 * memory reclaim from current node, there are pros. and cons.
1661 *
1662 * Freeing memory from current node means freeing memory from a node which
1663 * we'll use or we've used. So, it may make LRU bad. And if several threads
1664 * hit limits, it will see a contention on a node. But freeing from remote
1665 * node means more costs for memory reclaim because of memory latency.
1666 *
1667 * Now, we use round-robin. Better algorithm is welcomed.
1668 */
c0ff4b85 1669int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1670{
1671 int node;
1672
c0ff4b85
R
1673 mem_cgroup_may_update_nodemask(memcg);
1674 node = memcg->last_scanned_node;
889976db 1675
0edaf86c 1676 node = next_node_in(node, memcg->scan_nodes);
889976db 1677 /*
fda3d69b
MH
1678 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1679 * last time it really checked all the LRUs due to rate limiting.
1680 * Fallback to the current node in that case for simplicity.
889976db
YH
1681 */
1682 if (unlikely(node == MAX_NUMNODES))
1683 node = numa_node_id();
1684
c0ff4b85 1685 memcg->last_scanned_node = node;
889976db
YH
1686 return node;
1687}
889976db 1688#else
c0ff4b85 1689int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1690{
1691 return 0;
1692}
1693#endif
1694
0608f43d 1695static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1696 pg_data_t *pgdat,
0608f43d
AM
1697 gfp_t gfp_mask,
1698 unsigned long *total_scanned)
1699{
1700 struct mem_cgroup *victim = NULL;
1701 int total = 0;
1702 int loop = 0;
1703 unsigned long excess;
1704 unsigned long nr_scanned;
1705 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1706 .pgdat = pgdat,
0608f43d
AM
1707 .priority = 0,
1708 };
1709
3e32cb2e 1710 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1711
1712 while (1) {
1713 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1714 if (!victim) {
1715 loop++;
1716 if (loop >= 2) {
1717 /*
1718 * If we have not been able to reclaim
1719 * anything, it might because there are
1720 * no reclaimable pages under this hierarchy
1721 */
1722 if (!total)
1723 break;
1724 /*
1725 * We want to do more targeted reclaim.
1726 * excess >> 2 is not to excessive so as to
1727 * reclaim too much, nor too less that we keep
1728 * coming back to reclaim from this cgroup
1729 */
1730 if (total >= (excess >> 2) ||
1731 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1732 break;
1733 }
1734 continue;
1735 }
a9dd0a83 1736 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1737 pgdat, &nr_scanned);
0608f43d 1738 *total_scanned += nr_scanned;
3e32cb2e 1739 if (!soft_limit_excess(root_memcg))
0608f43d 1740 break;
6d61ef40 1741 }
0608f43d
AM
1742 mem_cgroup_iter_break(root_memcg, victim);
1743 return total;
6d61ef40
BS
1744}
1745
0056f4e6
JW
1746#ifdef CONFIG_LOCKDEP
1747static struct lockdep_map memcg_oom_lock_dep_map = {
1748 .name = "memcg_oom_lock",
1749};
1750#endif
1751
fb2a6fc5
JW
1752static DEFINE_SPINLOCK(memcg_oom_lock);
1753
867578cb
KH
1754/*
1755 * Check OOM-Killer is already running under our hierarchy.
1756 * If someone is running, return false.
1757 */
fb2a6fc5 1758static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1759{
79dfdacc 1760 struct mem_cgroup *iter, *failed = NULL;
a636b327 1761
fb2a6fc5
JW
1762 spin_lock(&memcg_oom_lock);
1763
9f3a0d09 1764 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1765 if (iter->oom_lock) {
79dfdacc
MH
1766 /*
1767 * this subtree of our hierarchy is already locked
1768 * so we cannot give a lock.
1769 */
79dfdacc 1770 failed = iter;
9f3a0d09
JW
1771 mem_cgroup_iter_break(memcg, iter);
1772 break;
23751be0
JW
1773 } else
1774 iter->oom_lock = true;
7d74b06f 1775 }
867578cb 1776
fb2a6fc5
JW
1777 if (failed) {
1778 /*
1779 * OK, we failed to lock the whole subtree so we have
1780 * to clean up what we set up to the failing subtree
1781 */
1782 for_each_mem_cgroup_tree(iter, memcg) {
1783 if (iter == failed) {
1784 mem_cgroup_iter_break(memcg, iter);
1785 break;
1786 }
1787 iter->oom_lock = false;
79dfdacc 1788 }
0056f4e6
JW
1789 } else
1790 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1791
1792 spin_unlock(&memcg_oom_lock);
1793
1794 return !failed;
a636b327 1795}
0b7f569e 1796
fb2a6fc5 1797static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1798{
7d74b06f
KH
1799 struct mem_cgroup *iter;
1800
fb2a6fc5 1801 spin_lock(&memcg_oom_lock);
0056f4e6 1802 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1803 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1804 iter->oom_lock = false;
fb2a6fc5 1805 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1806}
1807
c0ff4b85 1808static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1809{
1810 struct mem_cgroup *iter;
1811
c2b42d3c 1812 spin_lock(&memcg_oom_lock);
c0ff4b85 1813 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1814 iter->under_oom++;
1815 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1816}
1817
c0ff4b85 1818static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1819{
1820 struct mem_cgroup *iter;
1821
867578cb
KH
1822 /*
1823 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1824 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1825 */
c2b42d3c 1826 spin_lock(&memcg_oom_lock);
c0ff4b85 1827 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1828 if (iter->under_oom > 0)
1829 iter->under_oom--;
1830 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1831}
1832
867578cb
KH
1833static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1834
dc98df5a 1835struct oom_wait_info {
d79154bb 1836 struct mem_cgroup *memcg;
ac6424b9 1837 wait_queue_entry_t wait;
dc98df5a
KH
1838};
1839
ac6424b9 1840static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1841 unsigned mode, int sync, void *arg)
1842{
d79154bb
HD
1843 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1844 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1845 struct oom_wait_info *oom_wait_info;
1846
1847 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1848 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1849
2314b42d
JW
1850 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1851 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1852 return 0;
dc98df5a
KH
1853 return autoremove_wake_function(wait, mode, sync, arg);
1854}
1855
c0ff4b85 1856static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1857{
c2b42d3c
TH
1858 /*
1859 * For the following lockless ->under_oom test, the only required
1860 * guarantee is that it must see the state asserted by an OOM when
1861 * this function is called as a result of userland actions
1862 * triggered by the notification of the OOM. This is trivially
1863 * achieved by invoking mem_cgroup_mark_under_oom() before
1864 * triggering notification.
1865 */
1866 if (memcg && memcg->under_oom)
f4b90b70 1867 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1868}
1869
29ef680a
MH
1870enum oom_status {
1871 OOM_SUCCESS,
1872 OOM_FAILED,
1873 OOM_ASYNC,
1874 OOM_SKIPPED
1875};
1876
1877static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1878{
7056d3a3
MH
1879 enum oom_status ret;
1880 bool locked;
1881
29ef680a
MH
1882 if (order > PAGE_ALLOC_COSTLY_ORDER)
1883 return OOM_SKIPPED;
1884
7a1adfdd
RG
1885 memcg_memory_event(memcg, MEMCG_OOM);
1886
867578cb 1887 /*
49426420
JW
1888 * We are in the middle of the charge context here, so we
1889 * don't want to block when potentially sitting on a callstack
1890 * that holds all kinds of filesystem and mm locks.
1891 *
29ef680a
MH
1892 * cgroup1 allows disabling the OOM killer and waiting for outside
1893 * handling until the charge can succeed; remember the context and put
1894 * the task to sleep at the end of the page fault when all locks are
1895 * released.
49426420 1896 *
29ef680a
MH
1897 * On the other hand, in-kernel OOM killer allows for an async victim
1898 * memory reclaim (oom_reaper) and that means that we are not solely
1899 * relying on the oom victim to make a forward progress and we can
1900 * invoke the oom killer here.
1901 *
1902 * Please note that mem_cgroup_out_of_memory might fail to find a
1903 * victim and then we have to bail out from the charge path.
867578cb 1904 */
29ef680a
MH
1905 if (memcg->oom_kill_disable) {
1906 if (!current->in_user_fault)
1907 return OOM_SKIPPED;
1908 css_get(&memcg->css);
1909 current->memcg_in_oom = memcg;
1910 current->memcg_oom_gfp_mask = mask;
1911 current->memcg_oom_order = order;
1912
1913 return OOM_ASYNC;
1914 }
1915
7056d3a3
MH
1916 mem_cgroup_mark_under_oom(memcg);
1917
1918 locked = mem_cgroup_oom_trylock(memcg);
1919
1920 if (locked)
1921 mem_cgroup_oom_notify(memcg);
1922
1923 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1924 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1925 ret = OOM_SUCCESS;
1926 else
1927 ret = OOM_FAILED;
1928
1929 if (locked)
1930 mem_cgroup_oom_unlock(memcg);
29ef680a 1931
7056d3a3 1932 return ret;
3812c8c8
JW
1933}
1934
1935/**
1936 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1937 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1938 *
49426420
JW
1939 * This has to be called at the end of a page fault if the memcg OOM
1940 * handler was enabled.
3812c8c8 1941 *
49426420 1942 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1943 * sleep on a waitqueue until the userspace task resolves the
1944 * situation. Sleeping directly in the charge context with all kinds
1945 * of locks held is not a good idea, instead we remember an OOM state
1946 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1947 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1948 *
1949 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1950 * completed, %false otherwise.
3812c8c8 1951 */
49426420 1952bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1953{
626ebc41 1954 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1955 struct oom_wait_info owait;
49426420 1956 bool locked;
3812c8c8
JW
1957
1958 /* OOM is global, do not handle */
3812c8c8 1959 if (!memcg)
49426420 1960 return false;
3812c8c8 1961
7c5f64f8 1962 if (!handle)
49426420 1963 goto cleanup;
3812c8c8
JW
1964
1965 owait.memcg = memcg;
1966 owait.wait.flags = 0;
1967 owait.wait.func = memcg_oom_wake_function;
1968 owait.wait.private = current;
2055da97 1969 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1970
3812c8c8 1971 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1972 mem_cgroup_mark_under_oom(memcg);
1973
1974 locked = mem_cgroup_oom_trylock(memcg);
1975
1976 if (locked)
1977 mem_cgroup_oom_notify(memcg);
1978
1979 if (locked && !memcg->oom_kill_disable) {
1980 mem_cgroup_unmark_under_oom(memcg);
1981 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1982 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1983 current->memcg_oom_order);
49426420 1984 } else {
3812c8c8 1985 schedule();
49426420
JW
1986 mem_cgroup_unmark_under_oom(memcg);
1987 finish_wait(&memcg_oom_waitq, &owait.wait);
1988 }
1989
1990 if (locked) {
fb2a6fc5
JW
1991 mem_cgroup_oom_unlock(memcg);
1992 /*
1993 * There is no guarantee that an OOM-lock contender
1994 * sees the wakeups triggered by the OOM kill
1995 * uncharges. Wake any sleepers explicitely.
1996 */
1997 memcg_oom_recover(memcg);
1998 }
49426420 1999cleanup:
626ebc41 2000 current->memcg_in_oom = NULL;
3812c8c8 2001 css_put(&memcg->css);
867578cb 2002 return true;
0b7f569e
KH
2003}
2004
3d8b38eb
RG
2005/**
2006 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2007 * @victim: task to be killed by the OOM killer
2008 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2009 *
2010 * Returns a pointer to a memory cgroup, which has to be cleaned up
2011 * by killing all belonging OOM-killable tasks.
2012 *
2013 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2014 */
2015struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2016 struct mem_cgroup *oom_domain)
2017{
2018 struct mem_cgroup *oom_group = NULL;
2019 struct mem_cgroup *memcg;
2020
2021 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2022 return NULL;
2023
2024 if (!oom_domain)
2025 oom_domain = root_mem_cgroup;
2026
2027 rcu_read_lock();
2028
2029 memcg = mem_cgroup_from_task(victim);
2030 if (memcg == root_mem_cgroup)
2031 goto out;
2032
2033 /*
2034 * Traverse the memory cgroup hierarchy from the victim task's
2035 * cgroup up to the OOMing cgroup (or root) to find the
2036 * highest-level memory cgroup with oom.group set.
2037 */
2038 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2039 if (memcg->oom_group)
2040 oom_group = memcg;
2041
2042 if (memcg == oom_domain)
2043 break;
2044 }
2045
2046 if (oom_group)
2047 css_get(&oom_group->css);
2048out:
2049 rcu_read_unlock();
2050
2051 return oom_group;
2052}
2053
2054void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2055{
2056 pr_info("Tasks in ");
2057 pr_cont_cgroup_path(memcg->css.cgroup);
2058 pr_cont(" are going to be killed due to memory.oom.group set\n");
2059}
2060
d7365e78 2061/**
81f8c3a4
JW
2062 * lock_page_memcg - lock a page->mem_cgroup binding
2063 * @page: the page
32047e2a 2064 *
81f8c3a4 2065 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2066 * another cgroup.
2067 *
2068 * It ensures lifetime of the returned memcg. Caller is responsible
2069 * for the lifetime of the page; __unlock_page_memcg() is available
2070 * when @page might get freed inside the locked section.
d69b042f 2071 */
739f79fc 2072struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
2073{
2074 struct mem_cgroup *memcg;
6de22619 2075 unsigned long flags;
89c06bd5 2076
6de22619
JW
2077 /*
2078 * The RCU lock is held throughout the transaction. The fast
2079 * path can get away without acquiring the memcg->move_lock
2080 * because page moving starts with an RCU grace period.
739f79fc
JW
2081 *
2082 * The RCU lock also protects the memcg from being freed when
2083 * the page state that is going to change is the only thing
2084 * preventing the page itself from being freed. E.g. writeback
2085 * doesn't hold a page reference and relies on PG_writeback to
2086 * keep off truncation, migration and so forth.
2087 */
d7365e78
JW
2088 rcu_read_lock();
2089
2090 if (mem_cgroup_disabled())
739f79fc 2091 return NULL;
89c06bd5 2092again:
1306a85a 2093 memcg = page->mem_cgroup;
29833315 2094 if (unlikely(!memcg))
739f79fc 2095 return NULL;
d7365e78 2096
bdcbb659 2097 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2098 return memcg;
89c06bd5 2099
6de22619 2100 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2101 if (memcg != page->mem_cgroup) {
6de22619 2102 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2103 goto again;
2104 }
6de22619
JW
2105
2106 /*
2107 * When charge migration first begins, we can have locked and
2108 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2109 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2110 */
2111 memcg->move_lock_task = current;
2112 memcg->move_lock_flags = flags;
d7365e78 2113
739f79fc 2114 return memcg;
89c06bd5 2115}
81f8c3a4 2116EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2117
d7365e78 2118/**
739f79fc
JW
2119 * __unlock_page_memcg - unlock and unpin a memcg
2120 * @memcg: the memcg
2121 *
2122 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2123 */
739f79fc 2124void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2125{
6de22619
JW
2126 if (memcg && memcg->move_lock_task == current) {
2127 unsigned long flags = memcg->move_lock_flags;
2128
2129 memcg->move_lock_task = NULL;
2130 memcg->move_lock_flags = 0;
2131
2132 spin_unlock_irqrestore(&memcg->move_lock, flags);
2133 }
89c06bd5 2134
d7365e78 2135 rcu_read_unlock();
89c06bd5 2136}
739f79fc
JW
2137
2138/**
2139 * unlock_page_memcg - unlock a page->mem_cgroup binding
2140 * @page: the page
2141 */
2142void unlock_page_memcg(struct page *page)
2143{
2144 __unlock_page_memcg(page->mem_cgroup);
2145}
81f8c3a4 2146EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2147
cdec2e42
KH
2148struct memcg_stock_pcp {
2149 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2150 unsigned int nr_pages;
cdec2e42 2151 struct work_struct work;
26fe6168 2152 unsigned long flags;
a0db00fc 2153#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2154};
2155static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2156static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2157
a0956d54
SS
2158/**
2159 * consume_stock: Try to consume stocked charge on this cpu.
2160 * @memcg: memcg to consume from.
2161 * @nr_pages: how many pages to charge.
2162 *
2163 * The charges will only happen if @memcg matches the current cpu's memcg
2164 * stock, and at least @nr_pages are available in that stock. Failure to
2165 * service an allocation will refill the stock.
2166 *
2167 * returns true if successful, false otherwise.
cdec2e42 2168 */
a0956d54 2169static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2170{
2171 struct memcg_stock_pcp *stock;
db2ba40c 2172 unsigned long flags;
3e32cb2e 2173 bool ret = false;
cdec2e42 2174
a983b5eb 2175 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2176 return ret;
a0956d54 2177
db2ba40c
JW
2178 local_irq_save(flags);
2179
2180 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2181 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2182 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2183 ret = true;
2184 }
db2ba40c
JW
2185
2186 local_irq_restore(flags);
2187
cdec2e42
KH
2188 return ret;
2189}
2190
2191/*
3e32cb2e 2192 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2193 */
2194static void drain_stock(struct memcg_stock_pcp *stock)
2195{
2196 struct mem_cgroup *old = stock->cached;
2197
11c9ea4e 2198 if (stock->nr_pages) {
3e32cb2e 2199 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2200 if (do_memsw_account())
3e32cb2e 2201 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2202 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2203 stock->nr_pages = 0;
cdec2e42
KH
2204 }
2205 stock->cached = NULL;
cdec2e42
KH
2206}
2207
cdec2e42
KH
2208static void drain_local_stock(struct work_struct *dummy)
2209{
db2ba40c
JW
2210 struct memcg_stock_pcp *stock;
2211 unsigned long flags;
2212
72f0184c
MH
2213 /*
2214 * The only protection from memory hotplug vs. drain_stock races is
2215 * that we always operate on local CPU stock here with IRQ disabled
2216 */
db2ba40c
JW
2217 local_irq_save(flags);
2218
2219 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2220 drain_stock(stock);
26fe6168 2221 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2222
2223 local_irq_restore(flags);
cdec2e42
KH
2224}
2225
2226/*
3e32cb2e 2227 * Cache charges(val) to local per_cpu area.
320cc51d 2228 * This will be consumed by consume_stock() function, later.
cdec2e42 2229 */
c0ff4b85 2230static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2231{
db2ba40c
JW
2232 struct memcg_stock_pcp *stock;
2233 unsigned long flags;
2234
2235 local_irq_save(flags);
cdec2e42 2236
db2ba40c 2237 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2238 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2239 drain_stock(stock);
c0ff4b85 2240 stock->cached = memcg;
cdec2e42 2241 }
11c9ea4e 2242 stock->nr_pages += nr_pages;
db2ba40c 2243
a983b5eb 2244 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2245 drain_stock(stock);
2246
db2ba40c 2247 local_irq_restore(flags);
cdec2e42
KH
2248}
2249
2250/*
c0ff4b85 2251 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2252 * of the hierarchy under it.
cdec2e42 2253 */
6d3d6aa2 2254static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2255{
26fe6168 2256 int cpu, curcpu;
d38144b7 2257
6d3d6aa2
JW
2258 /* If someone's already draining, avoid adding running more workers. */
2259 if (!mutex_trylock(&percpu_charge_mutex))
2260 return;
72f0184c
MH
2261 /*
2262 * Notify other cpus that system-wide "drain" is running
2263 * We do not care about races with the cpu hotplug because cpu down
2264 * as well as workers from this path always operate on the local
2265 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2266 */
5af12d0e 2267 curcpu = get_cpu();
cdec2e42
KH
2268 for_each_online_cpu(cpu) {
2269 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2270 struct mem_cgroup *memcg;
26fe6168 2271
c0ff4b85 2272 memcg = stock->cached;
72f0184c 2273 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 2274 continue;
72f0184c
MH
2275 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2276 css_put(&memcg->css);
3e92041d 2277 continue;
72f0184c 2278 }
d1a05b69
MH
2279 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2280 if (cpu == curcpu)
2281 drain_local_stock(&stock->work);
2282 else
2283 schedule_work_on(cpu, &stock->work);
2284 }
72f0184c 2285 css_put(&memcg->css);
cdec2e42 2286 }
5af12d0e 2287 put_cpu();
9f50fad6 2288 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2289}
2290
308167fc 2291static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2292{
cdec2e42 2293 struct memcg_stock_pcp *stock;
42a30035 2294 struct mem_cgroup *memcg, *mi;
cdec2e42 2295
cdec2e42
KH
2296 stock = &per_cpu(memcg_stock, cpu);
2297 drain_stock(stock);
a983b5eb
JW
2298
2299 for_each_mem_cgroup(memcg) {
2300 int i;
2301
2302 for (i = 0; i < MEMCG_NR_STAT; i++) {
2303 int nid;
2304 long x;
2305
871789d4 2306 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2307 if (x)
42a30035
JW
2308 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2309 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2310
2311 if (i >= NR_VM_NODE_STAT_ITEMS)
2312 continue;
2313
2314 for_each_node(nid) {
2315 struct mem_cgroup_per_node *pn;
2316
2317 pn = mem_cgroup_nodeinfo(memcg, nid);
2318 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2319 if (x)
42a30035
JW
2320 do {
2321 atomic_long_add(x, &pn->lruvec_stat[i]);
2322 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2323 }
2324 }
2325
e27be240 2326 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2327 long x;
2328
871789d4 2329 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2330 if (x)
42a30035
JW
2331 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2332 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2333 }
2334 }
2335
308167fc 2336 return 0;
cdec2e42
KH
2337}
2338
f7e1cb6e
JW
2339static void reclaim_high(struct mem_cgroup *memcg,
2340 unsigned int nr_pages,
2341 gfp_t gfp_mask)
2342{
2343 do {
2344 if (page_counter_read(&memcg->memory) <= memcg->high)
2345 continue;
e27be240 2346 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2347 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2348 } while ((memcg = parent_mem_cgroup(memcg)));
2349}
2350
2351static void high_work_func(struct work_struct *work)
2352{
2353 struct mem_cgroup *memcg;
2354
2355 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2356 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2357}
2358
b23afb93
TH
2359/*
2360 * Scheduled by try_charge() to be executed from the userland return path
2361 * and reclaims memory over the high limit.
2362 */
2363void mem_cgroup_handle_over_high(void)
2364{
2365 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2366 struct mem_cgroup *memcg;
b23afb93
TH
2367
2368 if (likely(!nr_pages))
2369 return;
2370
f7e1cb6e
JW
2371 memcg = get_mem_cgroup_from_mm(current->mm);
2372 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
2373 css_put(&memcg->css);
2374 current->memcg_nr_pages_over_high = 0;
2375}
2376
00501b53
JW
2377static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2378 unsigned int nr_pages)
8a9f3ccd 2379{
a983b5eb 2380 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2381 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2382 struct mem_cgroup *mem_over_limit;
3e32cb2e 2383 struct page_counter *counter;
6539cc05 2384 unsigned long nr_reclaimed;
b70a2a21
JW
2385 bool may_swap = true;
2386 bool drained = false;
29ef680a 2387 enum oom_status oom_status;
a636b327 2388
ce00a967 2389 if (mem_cgroup_is_root(memcg))
10d53c74 2390 return 0;
6539cc05 2391retry:
b6b6cc72 2392 if (consume_stock(memcg, nr_pages))
10d53c74 2393 return 0;
8a9f3ccd 2394
7941d214 2395 if (!do_memsw_account() ||
6071ca52
JW
2396 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2397 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2398 goto done_restock;
7941d214 2399 if (do_memsw_account())
3e32cb2e
JW
2400 page_counter_uncharge(&memcg->memsw, batch);
2401 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2402 } else {
3e32cb2e 2403 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2404 may_swap = false;
3fbe7244 2405 }
7a81b88c 2406
6539cc05
JW
2407 if (batch > nr_pages) {
2408 batch = nr_pages;
2409 goto retry;
2410 }
6d61ef40 2411
06b078fc
JW
2412 /*
2413 * Unlike in global OOM situations, memcg is not in a physical
2414 * memory shortage. Allow dying and OOM-killed tasks to
2415 * bypass the last charges so that they can exit quickly and
2416 * free their memory.
2417 */
7775face 2418 if (unlikely(should_force_charge()))
10d53c74 2419 goto force;
06b078fc 2420
89a28483
JW
2421 /*
2422 * Prevent unbounded recursion when reclaim operations need to
2423 * allocate memory. This might exceed the limits temporarily,
2424 * but we prefer facilitating memory reclaim and getting back
2425 * under the limit over triggering OOM kills in these cases.
2426 */
2427 if (unlikely(current->flags & PF_MEMALLOC))
2428 goto force;
2429
06b078fc
JW
2430 if (unlikely(task_in_memcg_oom(current)))
2431 goto nomem;
2432
d0164adc 2433 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2434 goto nomem;
4b534334 2435
e27be240 2436 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2437
b70a2a21
JW
2438 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2439 gfp_mask, may_swap);
6539cc05 2440
61e02c74 2441 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2442 goto retry;
28c34c29 2443
b70a2a21 2444 if (!drained) {
6d3d6aa2 2445 drain_all_stock(mem_over_limit);
b70a2a21
JW
2446 drained = true;
2447 goto retry;
2448 }
2449
28c34c29
JW
2450 if (gfp_mask & __GFP_NORETRY)
2451 goto nomem;
6539cc05
JW
2452 /*
2453 * Even though the limit is exceeded at this point, reclaim
2454 * may have been able to free some pages. Retry the charge
2455 * before killing the task.
2456 *
2457 * Only for regular pages, though: huge pages are rather
2458 * unlikely to succeed so close to the limit, and we fall back
2459 * to regular pages anyway in case of failure.
2460 */
61e02c74 2461 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2462 goto retry;
2463 /*
2464 * At task move, charge accounts can be doubly counted. So, it's
2465 * better to wait until the end of task_move if something is going on.
2466 */
2467 if (mem_cgroup_wait_acct_move(mem_over_limit))
2468 goto retry;
2469
9b130619
JW
2470 if (nr_retries--)
2471 goto retry;
2472
38d38493 2473 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2474 goto nomem;
2475
06b078fc 2476 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2477 goto force;
06b078fc 2478
6539cc05 2479 if (fatal_signal_pending(current))
10d53c74 2480 goto force;
6539cc05 2481
29ef680a
MH
2482 /*
2483 * keep retrying as long as the memcg oom killer is able to make
2484 * a forward progress or bypass the charge if the oom killer
2485 * couldn't make any progress.
2486 */
2487 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2488 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2489 switch (oom_status) {
2490 case OOM_SUCCESS:
2491 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2492 goto retry;
2493 case OOM_FAILED:
2494 goto force;
2495 default:
2496 goto nomem;
2497 }
7a81b88c 2498nomem:
6d1fdc48 2499 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2500 return -ENOMEM;
10d53c74
TH
2501force:
2502 /*
2503 * The allocation either can't fail or will lead to more memory
2504 * being freed very soon. Allow memory usage go over the limit
2505 * temporarily by force charging it.
2506 */
2507 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2508 if (do_memsw_account())
10d53c74
TH
2509 page_counter_charge(&memcg->memsw, nr_pages);
2510 css_get_many(&memcg->css, nr_pages);
2511
2512 return 0;
6539cc05
JW
2513
2514done_restock:
e8ea14cc 2515 css_get_many(&memcg->css, batch);
6539cc05
JW
2516 if (batch > nr_pages)
2517 refill_stock(memcg, batch - nr_pages);
b23afb93 2518
241994ed 2519 /*
b23afb93
TH
2520 * If the hierarchy is above the normal consumption range, schedule
2521 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2522 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2523 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2524 * not recorded as it most likely matches current's and won't
2525 * change in the meantime. As high limit is checked again before
2526 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2527 */
2528 do {
b23afb93 2529 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2530 /* Don't bother a random interrupted task */
2531 if (in_interrupt()) {
2532 schedule_work(&memcg->high_work);
2533 break;
2534 }
9516a18a 2535 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2536 set_notify_resume(current);
2537 break;
2538 }
241994ed 2539 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2540
2541 return 0;
7a81b88c 2542}
8a9f3ccd 2543
00501b53 2544static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2545{
ce00a967
JW
2546 if (mem_cgroup_is_root(memcg))
2547 return;
2548
3e32cb2e 2549 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2550 if (do_memsw_account())
3e32cb2e 2551 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2552
e8ea14cc 2553 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2554}
2555
0a31bc97
JW
2556static void lock_page_lru(struct page *page, int *isolated)
2557{
f4b7e272 2558 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2559
f4b7e272 2560 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2561 if (PageLRU(page)) {
2562 struct lruvec *lruvec;
2563
f4b7e272 2564 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2565 ClearPageLRU(page);
2566 del_page_from_lru_list(page, lruvec, page_lru(page));
2567 *isolated = 1;
2568 } else
2569 *isolated = 0;
2570}
2571
2572static void unlock_page_lru(struct page *page, int isolated)
2573{
f4b7e272 2574 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2575
2576 if (isolated) {
2577 struct lruvec *lruvec;
2578
f4b7e272 2579 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2580 VM_BUG_ON_PAGE(PageLRU(page), page);
2581 SetPageLRU(page);
2582 add_page_to_lru_list(page, lruvec, page_lru(page));
2583 }
f4b7e272 2584 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2585}
2586
00501b53 2587static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2588 bool lrucare)
7a81b88c 2589{
0a31bc97 2590 int isolated;
9ce70c02 2591
1306a85a 2592 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2593
2594 /*
2595 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2596 * may already be on some other mem_cgroup's LRU. Take care of it.
2597 */
0a31bc97
JW
2598 if (lrucare)
2599 lock_page_lru(page, &isolated);
9ce70c02 2600
0a31bc97
JW
2601 /*
2602 * Nobody should be changing or seriously looking at
1306a85a 2603 * page->mem_cgroup at this point:
0a31bc97
JW
2604 *
2605 * - the page is uncharged
2606 *
2607 * - the page is off-LRU
2608 *
2609 * - an anonymous fault has exclusive page access, except for
2610 * a locked page table
2611 *
2612 * - a page cache insertion, a swapin fault, or a migration
2613 * have the page locked
2614 */
1306a85a 2615 page->mem_cgroup = memcg;
9ce70c02 2616
0a31bc97
JW
2617 if (lrucare)
2618 unlock_page_lru(page, isolated);
7a81b88c 2619}
66e1707b 2620
84c07d11 2621#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2622static int memcg_alloc_cache_id(void)
55007d84 2623{
f3bb3043
VD
2624 int id, size;
2625 int err;
2626
dbcf73e2 2627 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2628 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2629 if (id < 0)
2630 return id;
55007d84 2631
dbcf73e2 2632 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2633 return id;
2634
2635 /*
2636 * There's no space for the new id in memcg_caches arrays,
2637 * so we have to grow them.
2638 */
05257a1a 2639 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2640
2641 size = 2 * (id + 1);
55007d84
GC
2642 if (size < MEMCG_CACHES_MIN_SIZE)
2643 size = MEMCG_CACHES_MIN_SIZE;
2644 else if (size > MEMCG_CACHES_MAX_SIZE)
2645 size = MEMCG_CACHES_MAX_SIZE;
2646
f3bb3043 2647 err = memcg_update_all_caches(size);
60d3fd32
VD
2648 if (!err)
2649 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2650 if (!err)
2651 memcg_nr_cache_ids = size;
2652
2653 up_write(&memcg_cache_ids_sem);
2654
f3bb3043 2655 if (err) {
dbcf73e2 2656 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2657 return err;
2658 }
2659 return id;
2660}
2661
2662static void memcg_free_cache_id(int id)
2663{
dbcf73e2 2664 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2665}
2666
d5b3cf71 2667struct memcg_kmem_cache_create_work {
5722d094
VD
2668 struct mem_cgroup *memcg;
2669 struct kmem_cache *cachep;
2670 struct work_struct work;
2671};
2672
d5b3cf71 2673static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2674{
d5b3cf71
VD
2675 struct memcg_kmem_cache_create_work *cw =
2676 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2677 struct mem_cgroup *memcg = cw->memcg;
2678 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2679
d5b3cf71 2680 memcg_create_kmem_cache(memcg, cachep);
bd673145 2681
5722d094 2682 css_put(&memcg->css);
d7f25f8a
GC
2683 kfree(cw);
2684}
2685
2686/*
2687 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2688 */
85cfb245 2689static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2690 struct kmem_cache *cachep)
d7f25f8a 2691{
d5b3cf71 2692 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2693
f0a3a24b
RG
2694 if (!css_tryget_online(&memcg->css))
2695 return;
2696
c892fd82 2697 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2698 if (!cw)
d7f25f8a 2699 return;
8135be5a 2700
d7f25f8a
GC
2701 cw->memcg = memcg;
2702 cw->cachep = cachep;
d5b3cf71 2703 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2704
17cc4dfe 2705 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2706}
2707
45264778
VD
2708static inline bool memcg_kmem_bypass(void)
2709{
2710 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2711 return true;
2712 return false;
2713}
2714
2715/**
2716 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2717 * @cachep: the original global kmem cache
2718 *
d7f25f8a
GC
2719 * Return the kmem_cache we're supposed to use for a slab allocation.
2720 * We try to use the current memcg's version of the cache.
2721 *
45264778
VD
2722 * If the cache does not exist yet, if we are the first user of it, we
2723 * create it asynchronously in a workqueue and let the current allocation
2724 * go through with the original cache.
d7f25f8a 2725 *
45264778
VD
2726 * This function takes a reference to the cache it returns to assure it
2727 * won't get destroyed while we are working with it. Once the caller is
2728 * done with it, memcg_kmem_put_cache() must be called to release the
2729 * reference.
d7f25f8a 2730 */
45264778 2731struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2732{
2733 struct mem_cgroup *memcg;
959c8963 2734 struct kmem_cache *memcg_cachep;
f0a3a24b 2735 struct memcg_cache_array *arr;
2a4db7eb 2736 int kmemcg_id;
d7f25f8a 2737
f7ce3190 2738 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2739
45264778 2740 if (memcg_kmem_bypass())
230e9fc2
VD
2741 return cachep;
2742
f0a3a24b
RG
2743 rcu_read_lock();
2744
2745 if (unlikely(current->active_memcg))
2746 memcg = current->active_memcg;
2747 else
2748 memcg = mem_cgroup_from_task(current);
2749
2750 if (!memcg || memcg == root_mem_cgroup)
2751 goto out_unlock;
2752
4db0c3c2 2753 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2754 if (kmemcg_id < 0)
f0a3a24b 2755 goto out_unlock;
d7f25f8a 2756
f0a3a24b
RG
2757 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2758
2759 /*
2760 * Make sure we will access the up-to-date value. The code updating
2761 * memcg_caches issues a write barrier to match the data dependency
2762 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2763 */
2764 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2765
2766 /*
2767 * If we are in a safe context (can wait, and not in interrupt
2768 * context), we could be be predictable and return right away.
2769 * This would guarantee that the allocation being performed
2770 * already belongs in the new cache.
2771 *
2772 * However, there are some clashes that can arrive from locking.
2773 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2774 * memcg_create_kmem_cache, this means no further allocation
2775 * could happen with the slab_mutex held. So it's better to
2776 * defer everything.
f0a3a24b
RG
2777 *
2778 * If the memcg is dying or memcg_cache is about to be released,
2779 * don't bother creating new kmem_caches. Because memcg_cachep
2780 * is ZEROed as the fist step of kmem offlining, we don't need
2781 * percpu_ref_tryget_live() here. css_tryget_online() check in
2782 * memcg_schedule_kmem_cache_create() will prevent us from
2783 * creation of a new kmem_cache.
ca0dde97 2784 */
f0a3a24b
RG
2785 if (unlikely(!memcg_cachep))
2786 memcg_schedule_kmem_cache_create(memcg, cachep);
2787 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2788 cachep = memcg_cachep;
2789out_unlock:
2790 rcu_read_unlock();
ca0dde97 2791 return cachep;
d7f25f8a 2792}
d7f25f8a 2793
45264778
VD
2794/**
2795 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2796 * @cachep: the cache returned by memcg_kmem_get_cache
2797 */
2798void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2799{
2800 if (!is_root_cache(cachep))
f0a3a24b 2801 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2802}
2803
45264778 2804/**
60cd4bcd 2805 * __memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2806 * @page: page to charge
2807 * @gfp: reclaim mode
2808 * @order: allocation order
2809 * @memcg: memory cgroup to charge
2810 *
2811 * Returns 0 on success, an error code on failure.
2812 */
60cd4bcd 2813int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
45264778 2814 struct mem_cgroup *memcg)
7ae1e1d0 2815{
f3ccb2c4
VD
2816 unsigned int nr_pages = 1 << order;
2817 struct page_counter *counter;
7ae1e1d0
GC
2818 int ret;
2819
f3ccb2c4 2820 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2821 if (ret)
f3ccb2c4 2822 return ret;
52c29b04
JW
2823
2824 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2825 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2826 cancel_charge(memcg, nr_pages);
2827 return -ENOMEM;
7ae1e1d0 2828 }
f3ccb2c4 2829 return 0;
7ae1e1d0
GC
2830}
2831
45264778 2832/**
60cd4bcd 2833 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
45264778
VD
2834 * @page: page to charge
2835 * @gfp: reclaim mode
2836 * @order: allocation order
2837 *
2838 * Returns 0 on success, an error code on failure.
2839 */
60cd4bcd 2840int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2841{
f3ccb2c4 2842 struct mem_cgroup *memcg;
fcff7d7e 2843 int ret = 0;
7ae1e1d0 2844
60cd4bcd 2845 if (memcg_kmem_bypass())
45264778
VD
2846 return 0;
2847
d46eb14b 2848 memcg = get_mem_cgroup_from_current();
c4159a75 2849 if (!mem_cgroup_is_root(memcg)) {
60cd4bcd 2850 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
4d96ba35
RG
2851 if (!ret) {
2852 page->mem_cgroup = memcg;
c4159a75 2853 __SetPageKmemcg(page);
4d96ba35 2854 }
c4159a75 2855 }
7ae1e1d0 2856 css_put(&memcg->css);
d05e83a6 2857 return ret;
7ae1e1d0 2858}
49a18eae
RG
2859
2860/**
2861 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2862 * @memcg: memcg to uncharge
2863 * @nr_pages: number of pages to uncharge
2864 */
2865void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2866 unsigned int nr_pages)
2867{
2868 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2869 page_counter_uncharge(&memcg->kmem, nr_pages);
2870
2871 page_counter_uncharge(&memcg->memory, nr_pages);
2872 if (do_memsw_account())
2873 page_counter_uncharge(&memcg->memsw, nr_pages);
2874}
45264778 2875/**
60cd4bcd 2876 * __memcg_kmem_uncharge: uncharge a kmem page
45264778
VD
2877 * @page: page to uncharge
2878 * @order: allocation order
2879 */
60cd4bcd 2880void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2881{
1306a85a 2882 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2883 unsigned int nr_pages = 1 << order;
7ae1e1d0 2884
7ae1e1d0
GC
2885 if (!memcg)
2886 return;
2887
309381fe 2888 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
49a18eae 2889 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
1306a85a 2890 page->mem_cgroup = NULL;
c4159a75
VD
2891
2892 /* slab pages do not have PageKmemcg flag set */
2893 if (PageKmemcg(page))
2894 __ClearPageKmemcg(page);
2895
f3ccb2c4 2896 css_put_many(&memcg->css, nr_pages);
60d3fd32 2897}
84c07d11 2898#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2899
ca3e0214
KH
2900#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2901
ca3e0214
KH
2902/*
2903 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 2904 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 2905 */
e94c8a9c 2906void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2907{
e94c8a9c 2908 int i;
ca3e0214 2909
3d37c4a9
KH
2910 if (mem_cgroup_disabled())
2911 return;
b070e65c 2912
29833315 2913 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2914 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2915
c9019e9b 2916 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2917}
12d27107 2918#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2919
c255a458 2920#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2921/**
2922 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2923 * @entry: swap entry to be moved
2924 * @from: mem_cgroup which the entry is moved from
2925 * @to: mem_cgroup which the entry is moved to
2926 *
2927 * It succeeds only when the swap_cgroup's record for this entry is the same
2928 * as the mem_cgroup's id of @from.
2929 *
2930 * Returns 0 on success, -EINVAL on failure.
2931 *
3e32cb2e 2932 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2933 * both res and memsw, and called css_get().
2934 */
2935static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2936 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2937{
2938 unsigned short old_id, new_id;
2939
34c00c31
LZ
2940 old_id = mem_cgroup_id(from);
2941 new_id = mem_cgroup_id(to);
02491447
DN
2942
2943 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2944 mod_memcg_state(from, MEMCG_SWAP, -1);
2945 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2946 return 0;
2947 }
2948 return -EINVAL;
2949}
2950#else
2951static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2952 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2953{
2954 return -EINVAL;
2955}
8c7c6e34 2956#endif
d13d1443 2957
bbec2e15 2958static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2959
bbec2e15
RG
2960static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2961 unsigned long max, bool memsw)
628f4235 2962{
3e32cb2e 2963 bool enlarge = false;
bb4a7ea2 2964 bool drained = false;
3e32cb2e 2965 int ret;
c054a78c
YZ
2966 bool limits_invariant;
2967 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2968
3e32cb2e 2969 do {
628f4235
KH
2970 if (signal_pending(current)) {
2971 ret = -EINTR;
2972 break;
2973 }
3e32cb2e 2974
bbec2e15 2975 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2976 /*
2977 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2978 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2979 */
bbec2e15
RG
2980 limits_invariant = memsw ? max >= memcg->memory.max :
2981 max <= memcg->memsw.max;
c054a78c 2982 if (!limits_invariant) {
bbec2e15 2983 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2984 ret = -EINVAL;
8c7c6e34
KH
2985 break;
2986 }
bbec2e15 2987 if (max > counter->max)
3e32cb2e 2988 enlarge = true;
bbec2e15
RG
2989 ret = page_counter_set_max(counter, max);
2990 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2991
2992 if (!ret)
2993 break;
2994
bb4a7ea2
SB
2995 if (!drained) {
2996 drain_all_stock(memcg);
2997 drained = true;
2998 continue;
2999 }
3000
1ab5c056
AR
3001 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3002 GFP_KERNEL, !memsw)) {
3003 ret = -EBUSY;
3004 break;
3005 }
3006 } while (true);
3e32cb2e 3007
3c11ecf4
KH
3008 if (!ret && enlarge)
3009 memcg_oom_recover(memcg);
3e32cb2e 3010
628f4235
KH
3011 return ret;
3012}
3013
ef8f2327 3014unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3015 gfp_t gfp_mask,
3016 unsigned long *total_scanned)
3017{
3018 unsigned long nr_reclaimed = 0;
ef8f2327 3019 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3020 unsigned long reclaimed;
3021 int loop = 0;
ef8f2327 3022 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3023 unsigned long excess;
0608f43d
AM
3024 unsigned long nr_scanned;
3025
3026 if (order > 0)
3027 return 0;
3028
ef8f2327 3029 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3030
3031 /*
3032 * Do not even bother to check the largest node if the root
3033 * is empty. Do it lockless to prevent lock bouncing. Races
3034 * are acceptable as soft limit is best effort anyway.
3035 */
bfc7228b 3036 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3037 return 0;
3038
0608f43d
AM
3039 /*
3040 * This loop can run a while, specially if mem_cgroup's continuously
3041 * keep exceeding their soft limit and putting the system under
3042 * pressure
3043 */
3044 do {
3045 if (next_mz)
3046 mz = next_mz;
3047 else
3048 mz = mem_cgroup_largest_soft_limit_node(mctz);
3049 if (!mz)
3050 break;
3051
3052 nr_scanned = 0;
ef8f2327 3053 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3054 gfp_mask, &nr_scanned);
3055 nr_reclaimed += reclaimed;
3056 *total_scanned += nr_scanned;
0a31bc97 3057 spin_lock_irq(&mctz->lock);
bc2f2e7f 3058 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3059
3060 /*
3061 * If we failed to reclaim anything from this memory cgroup
3062 * it is time to move on to the next cgroup
3063 */
3064 next_mz = NULL;
bc2f2e7f
VD
3065 if (!reclaimed)
3066 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3067
3e32cb2e 3068 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3069 /*
3070 * One school of thought says that we should not add
3071 * back the node to the tree if reclaim returns 0.
3072 * But our reclaim could return 0, simply because due
3073 * to priority we are exposing a smaller subset of
3074 * memory to reclaim from. Consider this as a longer
3075 * term TODO.
3076 */
3077 /* If excess == 0, no tree ops */
cf2c8127 3078 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3079 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3080 css_put(&mz->memcg->css);
3081 loop++;
3082 /*
3083 * Could not reclaim anything and there are no more
3084 * mem cgroups to try or we seem to be looping without
3085 * reclaiming anything.
3086 */
3087 if (!nr_reclaimed &&
3088 (next_mz == NULL ||
3089 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3090 break;
3091 } while (!nr_reclaimed);
3092 if (next_mz)
3093 css_put(&next_mz->memcg->css);
3094 return nr_reclaimed;
3095}
3096
ea280e7b
TH
3097/*
3098 * Test whether @memcg has children, dead or alive. Note that this
3099 * function doesn't care whether @memcg has use_hierarchy enabled and
3100 * returns %true if there are child csses according to the cgroup
3101 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3102 */
b5f99b53
GC
3103static inline bool memcg_has_children(struct mem_cgroup *memcg)
3104{
ea280e7b
TH
3105 bool ret;
3106
ea280e7b
TH
3107 rcu_read_lock();
3108 ret = css_next_child(NULL, &memcg->css);
3109 rcu_read_unlock();
3110 return ret;
b5f99b53
GC
3111}
3112
c26251f9 3113/*
51038171 3114 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3115 *
3116 * Caller is responsible for holding css reference for memcg.
3117 */
3118static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3119{
3120 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3121
c1e862c1
KH
3122 /* we call try-to-free pages for make this cgroup empty */
3123 lru_add_drain_all();
d12c60f6
JS
3124
3125 drain_all_stock(memcg);
3126
f817ed48 3127 /* try to free all pages in this cgroup */
3e32cb2e 3128 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3129 int progress;
c1e862c1 3130
c26251f9
MH
3131 if (signal_pending(current))
3132 return -EINTR;
3133
b70a2a21
JW
3134 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3135 GFP_KERNEL, true);
c1e862c1 3136 if (!progress) {
f817ed48 3137 nr_retries--;
c1e862c1 3138 /* maybe some writeback is necessary */
8aa7e847 3139 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3140 }
f817ed48
KH
3141
3142 }
ab5196c2
MH
3143
3144 return 0;
cc847582
KH
3145}
3146
6770c64e
TH
3147static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3148 char *buf, size_t nbytes,
3149 loff_t off)
c1e862c1 3150{
6770c64e 3151 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3152
d8423011
MH
3153 if (mem_cgroup_is_root(memcg))
3154 return -EINVAL;
6770c64e 3155 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3156}
3157
182446d0
TH
3158static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3159 struct cftype *cft)
18f59ea7 3160{
182446d0 3161 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3162}
3163
182446d0
TH
3164static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3165 struct cftype *cft, u64 val)
18f59ea7
BS
3166{
3167 int retval = 0;
182446d0 3168 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3169 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3170
567fb435 3171 if (memcg->use_hierarchy == val)
0b8f73e1 3172 return 0;
567fb435 3173
18f59ea7 3174 /*
af901ca1 3175 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3176 * in the child subtrees. If it is unset, then the change can
3177 * occur, provided the current cgroup has no children.
3178 *
3179 * For the root cgroup, parent_mem is NULL, we allow value to be
3180 * set if there are no children.
3181 */
c0ff4b85 3182 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3183 (val == 1 || val == 0)) {
ea280e7b 3184 if (!memcg_has_children(memcg))
c0ff4b85 3185 memcg->use_hierarchy = val;
18f59ea7
BS
3186 else
3187 retval = -EBUSY;
3188 } else
3189 retval = -EINVAL;
567fb435 3190
18f59ea7
BS
3191 return retval;
3192}
3193
6f646156 3194static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3195{
42a30035 3196 unsigned long val;
ce00a967 3197
3e32cb2e 3198 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3199 val = memcg_page_state(memcg, MEMCG_CACHE) +
3200 memcg_page_state(memcg, MEMCG_RSS);
3201 if (swap)
3202 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3203 } else {
ce00a967 3204 if (!swap)
3e32cb2e 3205 val = page_counter_read(&memcg->memory);
ce00a967 3206 else
3e32cb2e 3207 val = page_counter_read(&memcg->memsw);
ce00a967 3208 }
c12176d3 3209 return val;
ce00a967
JW
3210}
3211
3e32cb2e
JW
3212enum {
3213 RES_USAGE,
3214 RES_LIMIT,
3215 RES_MAX_USAGE,
3216 RES_FAILCNT,
3217 RES_SOFT_LIMIT,
3218};
ce00a967 3219
791badbd 3220static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3221 struct cftype *cft)
8cdea7c0 3222{
182446d0 3223 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3224 struct page_counter *counter;
af36f906 3225
3e32cb2e 3226 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3227 case _MEM:
3e32cb2e
JW
3228 counter = &memcg->memory;
3229 break;
8c7c6e34 3230 case _MEMSWAP:
3e32cb2e
JW
3231 counter = &memcg->memsw;
3232 break;
510fc4e1 3233 case _KMEM:
3e32cb2e 3234 counter = &memcg->kmem;
510fc4e1 3235 break;
d55f90bf 3236 case _TCP:
0db15298 3237 counter = &memcg->tcpmem;
d55f90bf 3238 break;
8c7c6e34
KH
3239 default:
3240 BUG();
8c7c6e34 3241 }
3e32cb2e
JW
3242
3243 switch (MEMFILE_ATTR(cft->private)) {
3244 case RES_USAGE:
3245 if (counter == &memcg->memory)
c12176d3 3246 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3247 if (counter == &memcg->memsw)
c12176d3 3248 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3249 return (u64)page_counter_read(counter) * PAGE_SIZE;
3250 case RES_LIMIT:
bbec2e15 3251 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3252 case RES_MAX_USAGE:
3253 return (u64)counter->watermark * PAGE_SIZE;
3254 case RES_FAILCNT:
3255 return counter->failcnt;
3256 case RES_SOFT_LIMIT:
3257 return (u64)memcg->soft_limit * PAGE_SIZE;
3258 default:
3259 BUG();
3260 }
8cdea7c0 3261}
510fc4e1 3262
bee07b33 3263static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg, bool slab_only)
c350a99e
RG
3264{
3265 unsigned long stat[MEMCG_NR_STAT];
3266 struct mem_cgroup *mi;
3267 int node, cpu, i;
bee07b33 3268 int min_idx, max_idx;
c350a99e 3269
bee07b33
RG
3270 if (slab_only) {
3271 min_idx = NR_SLAB_RECLAIMABLE;
3272 max_idx = NR_SLAB_UNRECLAIMABLE;
3273 } else {
3274 min_idx = 0;
3275 max_idx = MEMCG_NR_STAT;
3276 }
3277
3278 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3279 stat[i] = 0;
3280
3281 for_each_online_cpu(cpu)
bee07b33 3282 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3283 stat[i] += raw_cpu_read(memcg->vmstats_percpu->stat[i]);
3284
3285 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
bee07b33 3286 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3287 atomic_long_add(stat[i], &mi->vmstats[i]);
3288
bee07b33
RG
3289 if (!slab_only)
3290 max_idx = NR_VM_NODE_STAT_ITEMS;
3291
c350a99e
RG
3292 for_each_node(node) {
3293 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3294 struct mem_cgroup_per_node *pi;
3295
bee07b33 3296 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3297 stat[i] = 0;
3298
3299 for_each_online_cpu(cpu)
bee07b33 3300 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3301 stat[i] += raw_cpu_read(
3302 pn->lruvec_stat_cpu->count[i]);
3303
3304 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
bee07b33 3305 for (i = min_idx; i < max_idx; i++)
c350a99e
RG
3306 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3307 }
3308}
3309
bb65f89b
RG
3310static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3311{
3312 unsigned long events[NR_VM_EVENT_ITEMS];
3313 struct mem_cgroup *mi;
3314 int cpu, i;
3315
3316 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3317 events[i] = 0;
3318
3319 for_each_online_cpu(cpu)
3320 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3321 events[i] += raw_cpu_read(
3322 memcg->vmstats_percpu->events[i]);
3323
3324 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3325 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3326 atomic_long_add(events[i], &mi->vmevents[i]);
3327}
3328
84c07d11 3329#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3330static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3331{
d6441637
VD
3332 int memcg_id;
3333
b313aeee
VD
3334 if (cgroup_memory_nokmem)
3335 return 0;
3336
2a4db7eb 3337 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3338 BUG_ON(memcg->kmem_state);
d6441637 3339
f3bb3043 3340 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3341 if (memcg_id < 0)
3342 return memcg_id;
d6441637 3343
ef12947c 3344 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3345 /*
567e9ab2 3346 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3347 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3348 * guarantee no one starts accounting before all call sites are
3349 * patched.
3350 */
900a38f0 3351 memcg->kmemcg_id = memcg_id;
567e9ab2 3352 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3353 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3354
3355 return 0;
d6441637
VD
3356}
3357
8e0a8912
JW
3358static void memcg_offline_kmem(struct mem_cgroup *memcg)
3359{
3360 struct cgroup_subsys_state *css;
3361 struct mem_cgroup *parent, *child;
3362 int kmemcg_id;
3363
3364 if (memcg->kmem_state != KMEM_ONLINE)
3365 return;
3366 /*
3367 * Clear the online state before clearing memcg_caches array
3368 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3369 * guarantees that no cache will be created for this cgroup
3370 * after we are done (see memcg_create_kmem_cache()).
3371 */
3372 memcg->kmem_state = KMEM_ALLOCATED;
3373
8e0a8912
JW
3374 parent = parent_mem_cgroup(memcg);
3375 if (!parent)
3376 parent = root_mem_cgroup;
3377
bee07b33
RG
3378 /*
3379 * Deactivate and reparent kmem_caches. Then flush percpu
3380 * slab statistics to have precise values at the parent and
3381 * all ancestor levels. It's required to keep slab stats
3382 * accurate after the reparenting of kmem_caches.
3383 */
fb2f2b0a 3384 memcg_deactivate_kmem_caches(memcg, parent);
bee07b33 3385 memcg_flush_percpu_vmstats(memcg, true);
fb2f2b0a
RG
3386
3387 kmemcg_id = memcg->kmemcg_id;
3388 BUG_ON(kmemcg_id < 0);
3389
8e0a8912
JW
3390 /*
3391 * Change kmemcg_id of this cgroup and all its descendants to the
3392 * parent's id, and then move all entries from this cgroup's list_lrus
3393 * to ones of the parent. After we have finished, all list_lrus
3394 * corresponding to this cgroup are guaranteed to remain empty. The
3395 * ordering is imposed by list_lru_node->lock taken by
3396 * memcg_drain_all_list_lrus().
3397 */
3a06bb78 3398 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3399 css_for_each_descendant_pre(css, &memcg->css) {
3400 child = mem_cgroup_from_css(css);
3401 BUG_ON(child->kmemcg_id != kmemcg_id);
3402 child->kmemcg_id = parent->kmemcg_id;
3403 if (!memcg->use_hierarchy)
3404 break;
3405 }
3a06bb78
TH
3406 rcu_read_unlock();
3407
9bec5c35 3408 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3409
3410 memcg_free_cache_id(kmemcg_id);
3411}
3412
3413static void memcg_free_kmem(struct mem_cgroup *memcg)
3414{
0b8f73e1
JW
3415 /* css_alloc() failed, offlining didn't happen */
3416 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3417 memcg_offline_kmem(memcg);
3418
8e0a8912 3419 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3420 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3421 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3422 }
8e0a8912 3423}
d6441637 3424#else
0b8f73e1 3425static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3426{
3427 return 0;
3428}
3429static void memcg_offline_kmem(struct mem_cgroup *memcg)
3430{
3431}
3432static void memcg_free_kmem(struct mem_cgroup *memcg)
3433{
3434}
84c07d11 3435#endif /* CONFIG_MEMCG_KMEM */
127424c8 3436
bbec2e15
RG
3437static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3438 unsigned long max)
d6441637 3439{
b313aeee 3440 int ret;
127424c8 3441
bbec2e15
RG
3442 mutex_lock(&memcg_max_mutex);
3443 ret = page_counter_set_max(&memcg->kmem, max);
3444 mutex_unlock(&memcg_max_mutex);
127424c8 3445 return ret;
d6441637 3446}
510fc4e1 3447
bbec2e15 3448static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3449{
3450 int ret;
3451
bbec2e15 3452 mutex_lock(&memcg_max_mutex);
d55f90bf 3453
bbec2e15 3454 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3455 if (ret)
3456 goto out;
3457
0db15298 3458 if (!memcg->tcpmem_active) {
d55f90bf
VD
3459 /*
3460 * The active flag needs to be written after the static_key
3461 * update. This is what guarantees that the socket activation
2d758073
JW
3462 * function is the last one to run. See mem_cgroup_sk_alloc()
3463 * for details, and note that we don't mark any socket as
3464 * belonging to this memcg until that flag is up.
d55f90bf
VD
3465 *
3466 * We need to do this, because static_keys will span multiple
3467 * sites, but we can't control their order. If we mark a socket
3468 * as accounted, but the accounting functions are not patched in
3469 * yet, we'll lose accounting.
3470 *
2d758073 3471 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3472 * because when this value change, the code to process it is not
3473 * patched in yet.
3474 */
3475 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3476 memcg->tcpmem_active = true;
d55f90bf
VD
3477 }
3478out:
bbec2e15 3479 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3480 return ret;
3481}
d55f90bf 3482
628f4235
KH
3483/*
3484 * The user of this function is...
3485 * RES_LIMIT.
3486 */
451af504
TH
3487static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3488 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3489{
451af504 3490 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3491 unsigned long nr_pages;
628f4235
KH
3492 int ret;
3493
451af504 3494 buf = strstrip(buf);
650c5e56 3495 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3496 if (ret)
3497 return ret;
af36f906 3498
3e32cb2e 3499 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3500 case RES_LIMIT:
4b3bde4c
BS
3501 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3502 ret = -EINVAL;
3503 break;
3504 }
3e32cb2e
JW
3505 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3506 case _MEM:
bbec2e15 3507 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3508 break;
3e32cb2e 3509 case _MEMSWAP:
bbec2e15 3510 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3511 break;
3e32cb2e 3512 case _KMEM:
bbec2e15 3513 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3514 break;
d55f90bf 3515 case _TCP:
bbec2e15 3516 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3517 break;
3e32cb2e 3518 }
296c81d8 3519 break;
3e32cb2e
JW
3520 case RES_SOFT_LIMIT:
3521 memcg->soft_limit = nr_pages;
3522 ret = 0;
628f4235
KH
3523 break;
3524 }
451af504 3525 return ret ?: nbytes;
8cdea7c0
BS
3526}
3527
6770c64e
TH
3528static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3529 size_t nbytes, loff_t off)
c84872e1 3530{
6770c64e 3531 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3532 struct page_counter *counter;
c84872e1 3533
3e32cb2e
JW
3534 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3535 case _MEM:
3536 counter = &memcg->memory;
3537 break;
3538 case _MEMSWAP:
3539 counter = &memcg->memsw;
3540 break;
3541 case _KMEM:
3542 counter = &memcg->kmem;
3543 break;
d55f90bf 3544 case _TCP:
0db15298 3545 counter = &memcg->tcpmem;
d55f90bf 3546 break;
3e32cb2e
JW
3547 default:
3548 BUG();
3549 }
af36f906 3550
3e32cb2e 3551 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3552 case RES_MAX_USAGE:
3e32cb2e 3553 page_counter_reset_watermark(counter);
29f2a4da
PE
3554 break;
3555 case RES_FAILCNT:
3e32cb2e 3556 counter->failcnt = 0;
29f2a4da 3557 break;
3e32cb2e
JW
3558 default:
3559 BUG();
29f2a4da 3560 }
f64c3f54 3561
6770c64e 3562 return nbytes;
c84872e1
PE
3563}
3564
182446d0 3565static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3566 struct cftype *cft)
3567{
182446d0 3568 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3569}
3570
02491447 3571#ifdef CONFIG_MMU
182446d0 3572static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3573 struct cftype *cft, u64 val)
3574{
182446d0 3575 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3576
1dfab5ab 3577 if (val & ~MOVE_MASK)
7dc74be0 3578 return -EINVAL;
ee5e8472 3579
7dc74be0 3580 /*
ee5e8472
GC
3581 * No kind of locking is needed in here, because ->can_attach() will
3582 * check this value once in the beginning of the process, and then carry
3583 * on with stale data. This means that changes to this value will only
3584 * affect task migrations starting after the change.
7dc74be0 3585 */
c0ff4b85 3586 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3587 return 0;
3588}
02491447 3589#else
182446d0 3590static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3591 struct cftype *cft, u64 val)
3592{
3593 return -ENOSYS;
3594}
3595#endif
7dc74be0 3596
406eb0c9 3597#ifdef CONFIG_NUMA
113b7dfd
JW
3598
3599#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3600#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3601#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3602
3603static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3604 int nid, unsigned int lru_mask)
3605{
3606 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3607 unsigned long nr = 0;
3608 enum lru_list lru;
3609
3610 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3611
3612 for_each_lru(lru) {
3613 if (!(BIT(lru) & lru_mask))
3614 continue;
205b20cc 3615 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3616 }
3617 return nr;
3618}
3619
3620static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3621 unsigned int lru_mask)
3622{
3623 unsigned long nr = 0;
3624 enum lru_list lru;
3625
3626 for_each_lru(lru) {
3627 if (!(BIT(lru) & lru_mask))
3628 continue;
205b20cc 3629 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3630 }
3631 return nr;
3632}
3633
2da8ca82 3634static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3635{
25485de6
GT
3636 struct numa_stat {
3637 const char *name;
3638 unsigned int lru_mask;
3639 };
3640
3641 static const struct numa_stat stats[] = {
3642 { "total", LRU_ALL },
3643 { "file", LRU_ALL_FILE },
3644 { "anon", LRU_ALL_ANON },
3645 { "unevictable", BIT(LRU_UNEVICTABLE) },
3646 };
3647 const struct numa_stat *stat;
406eb0c9 3648 int nid;
25485de6 3649 unsigned long nr;
aa9694bb 3650 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3651
25485de6
GT
3652 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3653 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3654 seq_printf(m, "%s=%lu", stat->name, nr);
3655 for_each_node_state(nid, N_MEMORY) {
3656 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3657 stat->lru_mask);
3658 seq_printf(m, " N%d=%lu", nid, nr);
3659 }
3660 seq_putc(m, '\n');
406eb0c9 3661 }
406eb0c9 3662
071aee13
YH
3663 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3664 struct mem_cgroup *iter;
3665
3666 nr = 0;
3667 for_each_mem_cgroup_tree(iter, memcg)
3668 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3669 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3670 for_each_node_state(nid, N_MEMORY) {
3671 nr = 0;
3672 for_each_mem_cgroup_tree(iter, memcg)
3673 nr += mem_cgroup_node_nr_lru_pages(
3674 iter, nid, stat->lru_mask);
3675 seq_printf(m, " N%d=%lu", nid, nr);
3676 }
3677 seq_putc(m, '\n');
406eb0c9 3678 }
406eb0c9 3679
406eb0c9
YH
3680 return 0;
3681}
3682#endif /* CONFIG_NUMA */
3683
c8713d0b
JW
3684static const unsigned int memcg1_stats[] = {
3685 MEMCG_CACHE,
3686 MEMCG_RSS,
3687 MEMCG_RSS_HUGE,
3688 NR_SHMEM,
3689 NR_FILE_MAPPED,
3690 NR_FILE_DIRTY,
3691 NR_WRITEBACK,
3692 MEMCG_SWAP,
3693};
3694
3695static const char *const memcg1_stat_names[] = {
3696 "cache",
3697 "rss",
3698 "rss_huge",
3699 "shmem",
3700 "mapped_file",
3701 "dirty",
3702 "writeback",
3703 "swap",
3704};
3705
df0e53d0 3706/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3707static const unsigned int memcg1_events[] = {
df0e53d0
JW
3708 PGPGIN,
3709 PGPGOUT,
3710 PGFAULT,
3711 PGMAJFAULT,
3712};
3713
3714static const char *const memcg1_event_names[] = {
3715 "pgpgin",
3716 "pgpgout",
3717 "pgfault",
3718 "pgmajfault",
3719};
3720
2da8ca82 3721static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3722{
aa9694bb 3723 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3724 unsigned long memory, memsw;
af7c4b0e
JW
3725 struct mem_cgroup *mi;
3726 unsigned int i;
406eb0c9 3727
71cd3113 3728 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3729 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3730
71cd3113
JW
3731 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3732 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3733 continue;
71cd3113 3734 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3735 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3736 PAGE_SIZE);
1dd3a273 3737 }
7b854121 3738
df0e53d0
JW
3739 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3740 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
205b20cc 3741 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3742
3743 for (i = 0; i < NR_LRU_LISTS; i++)
3744 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
205b20cc 3745 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3746 PAGE_SIZE);
af7c4b0e 3747
14067bb3 3748 /* Hierarchical information */
3e32cb2e
JW
3749 memory = memsw = PAGE_COUNTER_MAX;
3750 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3751 memory = min(memory, mi->memory.max);
3752 memsw = min(memsw, mi->memsw.max);
fee7b548 3753 }
3e32cb2e
JW
3754 seq_printf(m, "hierarchical_memory_limit %llu\n",
3755 (u64)memory * PAGE_SIZE);
7941d214 3756 if (do_memsw_account())
3e32cb2e
JW
3757 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3758 (u64)memsw * PAGE_SIZE);
7f016ee8 3759
8de7ecc6 3760 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3761 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3762 continue;
8de7ecc6 3763 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3764 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3765 PAGE_SIZE);
af7c4b0e
JW
3766 }
3767
8de7ecc6
SB
3768 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3769 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
dd923990 3770 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3771
8de7ecc6
SB
3772 for (i = 0; i < NR_LRU_LISTS; i++)
3773 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
42a30035
JW
3774 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3775 PAGE_SIZE);
14067bb3 3776
7f016ee8 3777#ifdef CONFIG_DEBUG_VM
7f016ee8 3778 {
ef8f2327
MG
3779 pg_data_t *pgdat;
3780 struct mem_cgroup_per_node *mz;
89abfab1 3781 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3782 unsigned long recent_rotated[2] = {0, 0};
3783 unsigned long recent_scanned[2] = {0, 0};
3784
ef8f2327
MG
3785 for_each_online_pgdat(pgdat) {
3786 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3787 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3788
ef8f2327
MG
3789 recent_rotated[0] += rstat->recent_rotated[0];
3790 recent_rotated[1] += rstat->recent_rotated[1];
3791 recent_scanned[0] += rstat->recent_scanned[0];
3792 recent_scanned[1] += rstat->recent_scanned[1];
3793 }
78ccf5b5
JW
3794 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3795 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3796 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3797 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3798 }
3799#endif
3800
d2ceb9b7
KH
3801 return 0;
3802}
3803
182446d0
TH
3804static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3805 struct cftype *cft)
a7885eb8 3806{
182446d0 3807 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3808
1f4c025b 3809 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3810}
3811
182446d0
TH
3812static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3813 struct cftype *cft, u64 val)
a7885eb8 3814{
182446d0 3815 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3816
3dae7fec 3817 if (val > 100)
a7885eb8
KM
3818 return -EINVAL;
3819
14208b0e 3820 if (css->parent)
3dae7fec
JW
3821 memcg->swappiness = val;
3822 else
3823 vm_swappiness = val;
068b38c1 3824
a7885eb8
KM
3825 return 0;
3826}
3827
2e72b634
KS
3828static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3829{
3830 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3831 unsigned long usage;
2e72b634
KS
3832 int i;
3833
3834 rcu_read_lock();
3835 if (!swap)
2c488db2 3836 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3837 else
2c488db2 3838 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3839
3840 if (!t)
3841 goto unlock;
3842
ce00a967 3843 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3844
3845 /*
748dad36 3846 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3847 * If it's not true, a threshold was crossed after last
3848 * call of __mem_cgroup_threshold().
3849 */
5407a562 3850 i = t->current_threshold;
2e72b634
KS
3851
3852 /*
3853 * Iterate backward over array of thresholds starting from
3854 * current_threshold and check if a threshold is crossed.
3855 * If none of thresholds below usage is crossed, we read
3856 * only one element of the array here.
3857 */
3858 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3859 eventfd_signal(t->entries[i].eventfd, 1);
3860
3861 /* i = current_threshold + 1 */
3862 i++;
3863
3864 /*
3865 * Iterate forward over array of thresholds starting from
3866 * current_threshold+1 and check if a threshold is crossed.
3867 * If none of thresholds above usage is crossed, we read
3868 * only one element of the array here.
3869 */
3870 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3871 eventfd_signal(t->entries[i].eventfd, 1);
3872
3873 /* Update current_threshold */
5407a562 3874 t->current_threshold = i - 1;
2e72b634
KS
3875unlock:
3876 rcu_read_unlock();
3877}
3878
3879static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3880{
ad4ca5f4
KS
3881 while (memcg) {
3882 __mem_cgroup_threshold(memcg, false);
7941d214 3883 if (do_memsw_account())
ad4ca5f4
KS
3884 __mem_cgroup_threshold(memcg, true);
3885
3886 memcg = parent_mem_cgroup(memcg);
3887 }
2e72b634
KS
3888}
3889
3890static int compare_thresholds(const void *a, const void *b)
3891{
3892 const struct mem_cgroup_threshold *_a = a;
3893 const struct mem_cgroup_threshold *_b = b;
3894
2bff24a3
GT
3895 if (_a->threshold > _b->threshold)
3896 return 1;
3897
3898 if (_a->threshold < _b->threshold)
3899 return -1;
3900
3901 return 0;
2e72b634
KS
3902}
3903
c0ff4b85 3904static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3905{
3906 struct mem_cgroup_eventfd_list *ev;
3907
2bcf2e92
MH
3908 spin_lock(&memcg_oom_lock);
3909
c0ff4b85 3910 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3911 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3912
3913 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3914 return 0;
3915}
3916
c0ff4b85 3917static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3918{
7d74b06f
KH
3919 struct mem_cgroup *iter;
3920
c0ff4b85 3921 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3922 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3923}
3924
59b6f873 3925static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3926 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3927{
2c488db2
KS
3928 struct mem_cgroup_thresholds *thresholds;
3929 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3930 unsigned long threshold;
3931 unsigned long usage;
2c488db2 3932 int i, size, ret;
2e72b634 3933
650c5e56 3934 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3935 if (ret)
3936 return ret;
3937
3938 mutex_lock(&memcg->thresholds_lock);
2c488db2 3939
05b84301 3940 if (type == _MEM) {
2c488db2 3941 thresholds = &memcg->thresholds;
ce00a967 3942 usage = mem_cgroup_usage(memcg, false);
05b84301 3943 } else if (type == _MEMSWAP) {
2c488db2 3944 thresholds = &memcg->memsw_thresholds;
ce00a967 3945 usage = mem_cgroup_usage(memcg, true);
05b84301 3946 } else
2e72b634
KS
3947 BUG();
3948
2e72b634 3949 /* Check if a threshold crossed before adding a new one */
2c488db2 3950 if (thresholds->primary)
2e72b634
KS
3951 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3952
2c488db2 3953 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3954
3955 /* Allocate memory for new array of thresholds */
67b8046f 3956 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 3957 if (!new) {
2e72b634
KS
3958 ret = -ENOMEM;
3959 goto unlock;
3960 }
2c488db2 3961 new->size = size;
2e72b634
KS
3962
3963 /* Copy thresholds (if any) to new array */
2c488db2
KS
3964 if (thresholds->primary) {
3965 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3966 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3967 }
3968
2e72b634 3969 /* Add new threshold */
2c488db2
KS
3970 new->entries[size - 1].eventfd = eventfd;
3971 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3972
3973 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3974 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3975 compare_thresholds, NULL);
3976
3977 /* Find current threshold */
2c488db2 3978 new->current_threshold = -1;
2e72b634 3979 for (i = 0; i < size; i++) {
748dad36 3980 if (new->entries[i].threshold <= usage) {
2e72b634 3981 /*
2c488db2
KS
3982 * new->current_threshold will not be used until
3983 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3984 * it here.
3985 */
2c488db2 3986 ++new->current_threshold;
748dad36
SZ
3987 } else
3988 break;
2e72b634
KS
3989 }
3990
2c488db2
KS
3991 /* Free old spare buffer and save old primary buffer as spare */
3992 kfree(thresholds->spare);
3993 thresholds->spare = thresholds->primary;
3994
3995 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3996
907860ed 3997 /* To be sure that nobody uses thresholds */
2e72b634
KS
3998 synchronize_rcu();
3999
2e72b634
KS
4000unlock:
4001 mutex_unlock(&memcg->thresholds_lock);
4002
4003 return ret;
4004}
4005
59b6f873 4006static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4007 struct eventfd_ctx *eventfd, const char *args)
4008{
59b6f873 4009 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4010}
4011
59b6f873 4012static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4013 struct eventfd_ctx *eventfd, const char *args)
4014{
59b6f873 4015 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4016}
4017
59b6f873 4018static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4019 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4020{
2c488db2
KS
4021 struct mem_cgroup_thresholds *thresholds;
4022 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4023 unsigned long usage;
2c488db2 4024 int i, j, size;
2e72b634
KS
4025
4026 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4027
4028 if (type == _MEM) {
2c488db2 4029 thresholds = &memcg->thresholds;
ce00a967 4030 usage = mem_cgroup_usage(memcg, false);
05b84301 4031 } else if (type == _MEMSWAP) {
2c488db2 4032 thresholds = &memcg->memsw_thresholds;
ce00a967 4033 usage = mem_cgroup_usage(memcg, true);
05b84301 4034 } else
2e72b634
KS
4035 BUG();
4036
371528ca
AV
4037 if (!thresholds->primary)
4038 goto unlock;
4039
2e72b634
KS
4040 /* Check if a threshold crossed before removing */
4041 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4042
4043 /* Calculate new number of threshold */
2c488db2
KS
4044 size = 0;
4045 for (i = 0; i < thresholds->primary->size; i++) {
4046 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4047 size++;
4048 }
4049
2c488db2 4050 new = thresholds->spare;
907860ed 4051
2e72b634
KS
4052 /* Set thresholds array to NULL if we don't have thresholds */
4053 if (!size) {
2c488db2
KS
4054 kfree(new);
4055 new = NULL;
907860ed 4056 goto swap_buffers;
2e72b634
KS
4057 }
4058
2c488db2 4059 new->size = size;
2e72b634
KS
4060
4061 /* Copy thresholds and find current threshold */
2c488db2
KS
4062 new->current_threshold = -1;
4063 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4064 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4065 continue;
4066
2c488db2 4067 new->entries[j] = thresholds->primary->entries[i];
748dad36 4068 if (new->entries[j].threshold <= usage) {
2e72b634 4069 /*
2c488db2 4070 * new->current_threshold will not be used
2e72b634
KS
4071 * until rcu_assign_pointer(), so it's safe to increment
4072 * it here.
4073 */
2c488db2 4074 ++new->current_threshold;
2e72b634
KS
4075 }
4076 j++;
4077 }
4078
907860ed 4079swap_buffers:
2c488db2
KS
4080 /* Swap primary and spare array */
4081 thresholds->spare = thresholds->primary;
8c757763 4082
2c488db2 4083 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4084
907860ed 4085 /* To be sure that nobody uses thresholds */
2e72b634 4086 synchronize_rcu();
6611d8d7
MC
4087
4088 /* If all events are unregistered, free the spare array */
4089 if (!new) {
4090 kfree(thresholds->spare);
4091 thresholds->spare = NULL;
4092 }
371528ca 4093unlock:
2e72b634 4094 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4095}
c1e862c1 4096
59b6f873 4097static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4098 struct eventfd_ctx *eventfd)
4099{
59b6f873 4100 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4101}
4102
59b6f873 4103static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4104 struct eventfd_ctx *eventfd)
4105{
59b6f873 4106 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4107}
4108
59b6f873 4109static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4110 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4111{
9490ff27 4112 struct mem_cgroup_eventfd_list *event;
9490ff27 4113
9490ff27
KH
4114 event = kmalloc(sizeof(*event), GFP_KERNEL);
4115 if (!event)
4116 return -ENOMEM;
4117
1af8efe9 4118 spin_lock(&memcg_oom_lock);
9490ff27
KH
4119
4120 event->eventfd = eventfd;
4121 list_add(&event->list, &memcg->oom_notify);
4122
4123 /* already in OOM ? */
c2b42d3c 4124 if (memcg->under_oom)
9490ff27 4125 eventfd_signal(eventfd, 1);
1af8efe9 4126 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4127
4128 return 0;
4129}
4130
59b6f873 4131static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4132 struct eventfd_ctx *eventfd)
9490ff27 4133{
9490ff27 4134 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4135
1af8efe9 4136 spin_lock(&memcg_oom_lock);
9490ff27 4137
c0ff4b85 4138 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4139 if (ev->eventfd == eventfd) {
4140 list_del(&ev->list);
4141 kfree(ev);
4142 }
4143 }
4144
1af8efe9 4145 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4146}
4147
2da8ca82 4148static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4149{
aa9694bb 4150 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4151
791badbd 4152 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4153 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4154 seq_printf(sf, "oom_kill %lu\n",
4155 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4156 return 0;
4157}
4158
182446d0 4159static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4160 struct cftype *cft, u64 val)
4161{
182446d0 4162 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4163
4164 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4165 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4166 return -EINVAL;
4167
c0ff4b85 4168 memcg->oom_kill_disable = val;
4d845ebf 4169 if (!val)
c0ff4b85 4170 memcg_oom_recover(memcg);
3dae7fec 4171
3c11ecf4
KH
4172 return 0;
4173}
4174
52ebea74
TH
4175#ifdef CONFIG_CGROUP_WRITEBACK
4176
841710aa
TH
4177static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4178{
4179 return wb_domain_init(&memcg->cgwb_domain, gfp);
4180}
4181
4182static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4183{
4184 wb_domain_exit(&memcg->cgwb_domain);
4185}
4186
2529bb3a
TH
4187static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4188{
4189 wb_domain_size_changed(&memcg->cgwb_domain);
4190}
4191
841710aa
TH
4192struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4193{
4194 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4195
4196 if (!memcg->css.parent)
4197 return NULL;
4198
4199 return &memcg->cgwb_domain;
4200}
4201
0b3d6e6f
GT
4202/*
4203 * idx can be of type enum memcg_stat_item or node_stat_item.
4204 * Keep in sync with memcg_exact_page().
4205 */
4206static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4207{
871789d4 4208 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4209 int cpu;
4210
4211 for_each_online_cpu(cpu)
871789d4 4212 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4213 if (x < 0)
4214 x = 0;
4215 return x;
4216}
4217
c2aa723a
TH
4218/**
4219 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4220 * @wb: bdi_writeback in question
c5edf9cd
TH
4221 * @pfilepages: out parameter for number of file pages
4222 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4223 * @pdirty: out parameter for number of dirty pages
4224 * @pwriteback: out parameter for number of pages under writeback
4225 *
c5edf9cd
TH
4226 * Determine the numbers of file, headroom, dirty, and writeback pages in
4227 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4228 * is a bit more involved.
c2aa723a 4229 *
c5edf9cd
TH
4230 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4231 * headroom is calculated as the lowest headroom of itself and the
4232 * ancestors. Note that this doesn't consider the actual amount of
4233 * available memory in the system. The caller should further cap
4234 * *@pheadroom accordingly.
c2aa723a 4235 */
c5edf9cd
TH
4236void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4237 unsigned long *pheadroom, unsigned long *pdirty,
4238 unsigned long *pwriteback)
c2aa723a
TH
4239{
4240 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4241 struct mem_cgroup *parent;
c2aa723a 4242
0b3d6e6f 4243 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
4244
4245 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 4246 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4247 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4248 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4249 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4250
c2aa723a 4251 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 4252 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
4253 unsigned long used = page_counter_read(&memcg->memory);
4254
c5edf9cd 4255 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4256 memcg = parent;
4257 }
c2aa723a
TH
4258}
4259
841710aa
TH
4260#else /* CONFIG_CGROUP_WRITEBACK */
4261
4262static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4263{
4264 return 0;
4265}
4266
4267static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4268{
4269}
4270
2529bb3a
TH
4271static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4272{
4273}
4274
52ebea74
TH
4275#endif /* CONFIG_CGROUP_WRITEBACK */
4276
3bc942f3
TH
4277/*
4278 * DO NOT USE IN NEW FILES.
4279 *
4280 * "cgroup.event_control" implementation.
4281 *
4282 * This is way over-engineered. It tries to support fully configurable
4283 * events for each user. Such level of flexibility is completely
4284 * unnecessary especially in the light of the planned unified hierarchy.
4285 *
4286 * Please deprecate this and replace with something simpler if at all
4287 * possible.
4288 */
4289
79bd9814
TH
4290/*
4291 * Unregister event and free resources.
4292 *
4293 * Gets called from workqueue.
4294 */
3bc942f3 4295static void memcg_event_remove(struct work_struct *work)
79bd9814 4296{
3bc942f3
TH
4297 struct mem_cgroup_event *event =
4298 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4299 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4300
4301 remove_wait_queue(event->wqh, &event->wait);
4302
59b6f873 4303 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4304
4305 /* Notify userspace the event is going away. */
4306 eventfd_signal(event->eventfd, 1);
4307
4308 eventfd_ctx_put(event->eventfd);
4309 kfree(event);
59b6f873 4310 css_put(&memcg->css);
79bd9814
TH
4311}
4312
4313/*
a9a08845 4314 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4315 *
4316 * Called with wqh->lock held and interrupts disabled.
4317 */
ac6424b9 4318static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4319 int sync, void *key)
79bd9814 4320{
3bc942f3
TH
4321 struct mem_cgroup_event *event =
4322 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4323 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4324 __poll_t flags = key_to_poll(key);
79bd9814 4325
a9a08845 4326 if (flags & EPOLLHUP) {
79bd9814
TH
4327 /*
4328 * If the event has been detached at cgroup removal, we
4329 * can simply return knowing the other side will cleanup
4330 * for us.
4331 *
4332 * We can't race against event freeing since the other
4333 * side will require wqh->lock via remove_wait_queue(),
4334 * which we hold.
4335 */
fba94807 4336 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4337 if (!list_empty(&event->list)) {
4338 list_del_init(&event->list);
4339 /*
4340 * We are in atomic context, but cgroup_event_remove()
4341 * may sleep, so we have to call it in workqueue.
4342 */
4343 schedule_work(&event->remove);
4344 }
fba94807 4345 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4346 }
4347
4348 return 0;
4349}
4350
3bc942f3 4351static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4352 wait_queue_head_t *wqh, poll_table *pt)
4353{
3bc942f3
TH
4354 struct mem_cgroup_event *event =
4355 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4356
4357 event->wqh = wqh;
4358 add_wait_queue(wqh, &event->wait);
4359}
4360
4361/*
3bc942f3
TH
4362 * DO NOT USE IN NEW FILES.
4363 *
79bd9814
TH
4364 * Parse input and register new cgroup event handler.
4365 *
4366 * Input must be in format '<event_fd> <control_fd> <args>'.
4367 * Interpretation of args is defined by control file implementation.
4368 */
451af504
TH
4369static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4370 char *buf, size_t nbytes, loff_t off)
79bd9814 4371{
451af504 4372 struct cgroup_subsys_state *css = of_css(of);
fba94807 4373 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4374 struct mem_cgroup_event *event;
79bd9814
TH
4375 struct cgroup_subsys_state *cfile_css;
4376 unsigned int efd, cfd;
4377 struct fd efile;
4378 struct fd cfile;
fba94807 4379 const char *name;
79bd9814
TH
4380 char *endp;
4381 int ret;
4382
451af504
TH
4383 buf = strstrip(buf);
4384
4385 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4386 if (*endp != ' ')
4387 return -EINVAL;
451af504 4388 buf = endp + 1;
79bd9814 4389
451af504 4390 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4391 if ((*endp != ' ') && (*endp != '\0'))
4392 return -EINVAL;
451af504 4393 buf = endp + 1;
79bd9814
TH
4394
4395 event = kzalloc(sizeof(*event), GFP_KERNEL);
4396 if (!event)
4397 return -ENOMEM;
4398
59b6f873 4399 event->memcg = memcg;
79bd9814 4400 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4401 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4402 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4403 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4404
4405 efile = fdget(efd);
4406 if (!efile.file) {
4407 ret = -EBADF;
4408 goto out_kfree;
4409 }
4410
4411 event->eventfd = eventfd_ctx_fileget(efile.file);
4412 if (IS_ERR(event->eventfd)) {
4413 ret = PTR_ERR(event->eventfd);
4414 goto out_put_efile;
4415 }
4416
4417 cfile = fdget(cfd);
4418 if (!cfile.file) {
4419 ret = -EBADF;
4420 goto out_put_eventfd;
4421 }
4422
4423 /* the process need read permission on control file */
4424 /* AV: shouldn't we check that it's been opened for read instead? */
4425 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4426 if (ret < 0)
4427 goto out_put_cfile;
4428
fba94807
TH
4429 /*
4430 * Determine the event callbacks and set them in @event. This used
4431 * to be done via struct cftype but cgroup core no longer knows
4432 * about these events. The following is crude but the whole thing
4433 * is for compatibility anyway.
3bc942f3
TH
4434 *
4435 * DO NOT ADD NEW FILES.
fba94807 4436 */
b583043e 4437 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4438
4439 if (!strcmp(name, "memory.usage_in_bytes")) {
4440 event->register_event = mem_cgroup_usage_register_event;
4441 event->unregister_event = mem_cgroup_usage_unregister_event;
4442 } else if (!strcmp(name, "memory.oom_control")) {
4443 event->register_event = mem_cgroup_oom_register_event;
4444 event->unregister_event = mem_cgroup_oom_unregister_event;
4445 } else if (!strcmp(name, "memory.pressure_level")) {
4446 event->register_event = vmpressure_register_event;
4447 event->unregister_event = vmpressure_unregister_event;
4448 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4449 event->register_event = memsw_cgroup_usage_register_event;
4450 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4451 } else {
4452 ret = -EINVAL;
4453 goto out_put_cfile;
4454 }
4455
79bd9814 4456 /*
b5557c4c
TH
4457 * Verify @cfile should belong to @css. Also, remaining events are
4458 * automatically removed on cgroup destruction but the removal is
4459 * asynchronous, so take an extra ref on @css.
79bd9814 4460 */
b583043e 4461 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4462 &memory_cgrp_subsys);
79bd9814 4463 ret = -EINVAL;
5a17f543 4464 if (IS_ERR(cfile_css))
79bd9814 4465 goto out_put_cfile;
5a17f543
TH
4466 if (cfile_css != css) {
4467 css_put(cfile_css);
79bd9814 4468 goto out_put_cfile;
5a17f543 4469 }
79bd9814 4470
451af504 4471 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4472 if (ret)
4473 goto out_put_css;
4474
9965ed17 4475 vfs_poll(efile.file, &event->pt);
79bd9814 4476
fba94807
TH
4477 spin_lock(&memcg->event_list_lock);
4478 list_add(&event->list, &memcg->event_list);
4479 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4480
4481 fdput(cfile);
4482 fdput(efile);
4483
451af504 4484 return nbytes;
79bd9814
TH
4485
4486out_put_css:
b5557c4c 4487 css_put(css);
79bd9814
TH
4488out_put_cfile:
4489 fdput(cfile);
4490out_put_eventfd:
4491 eventfd_ctx_put(event->eventfd);
4492out_put_efile:
4493 fdput(efile);
4494out_kfree:
4495 kfree(event);
4496
4497 return ret;
4498}
4499
241994ed 4500static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4501 {
0eea1030 4502 .name = "usage_in_bytes",
8c7c6e34 4503 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4504 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4505 },
c84872e1
PE
4506 {
4507 .name = "max_usage_in_bytes",
8c7c6e34 4508 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4509 .write = mem_cgroup_reset,
791badbd 4510 .read_u64 = mem_cgroup_read_u64,
c84872e1 4511 },
8cdea7c0 4512 {
0eea1030 4513 .name = "limit_in_bytes",
8c7c6e34 4514 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4515 .write = mem_cgroup_write,
791badbd 4516 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4517 },
296c81d8
BS
4518 {
4519 .name = "soft_limit_in_bytes",
4520 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4521 .write = mem_cgroup_write,
791badbd 4522 .read_u64 = mem_cgroup_read_u64,
296c81d8 4523 },
8cdea7c0
BS
4524 {
4525 .name = "failcnt",
8c7c6e34 4526 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4527 .write = mem_cgroup_reset,
791badbd 4528 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4529 },
d2ceb9b7
KH
4530 {
4531 .name = "stat",
2da8ca82 4532 .seq_show = memcg_stat_show,
d2ceb9b7 4533 },
c1e862c1
KH
4534 {
4535 .name = "force_empty",
6770c64e 4536 .write = mem_cgroup_force_empty_write,
c1e862c1 4537 },
18f59ea7
BS
4538 {
4539 .name = "use_hierarchy",
4540 .write_u64 = mem_cgroup_hierarchy_write,
4541 .read_u64 = mem_cgroup_hierarchy_read,
4542 },
79bd9814 4543 {
3bc942f3 4544 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4545 .write = memcg_write_event_control,
7dbdb199 4546 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4547 },
a7885eb8
KM
4548 {
4549 .name = "swappiness",
4550 .read_u64 = mem_cgroup_swappiness_read,
4551 .write_u64 = mem_cgroup_swappiness_write,
4552 },
7dc74be0
DN
4553 {
4554 .name = "move_charge_at_immigrate",
4555 .read_u64 = mem_cgroup_move_charge_read,
4556 .write_u64 = mem_cgroup_move_charge_write,
4557 },
9490ff27
KH
4558 {
4559 .name = "oom_control",
2da8ca82 4560 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4561 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4562 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4563 },
70ddf637
AV
4564 {
4565 .name = "pressure_level",
70ddf637 4566 },
406eb0c9
YH
4567#ifdef CONFIG_NUMA
4568 {
4569 .name = "numa_stat",
2da8ca82 4570 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4571 },
4572#endif
510fc4e1
GC
4573 {
4574 .name = "kmem.limit_in_bytes",
4575 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4576 .write = mem_cgroup_write,
791badbd 4577 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4578 },
4579 {
4580 .name = "kmem.usage_in_bytes",
4581 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4582 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4583 },
4584 {
4585 .name = "kmem.failcnt",
4586 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4587 .write = mem_cgroup_reset,
791badbd 4588 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4589 },
4590 {
4591 .name = "kmem.max_usage_in_bytes",
4592 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4593 .write = mem_cgroup_reset,
791badbd 4594 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4595 },
5b365771 4596#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4597 {
4598 .name = "kmem.slabinfo",
bc2791f8
TH
4599 .seq_start = memcg_slab_start,
4600 .seq_next = memcg_slab_next,
4601 .seq_stop = memcg_slab_stop,
b047501c 4602 .seq_show = memcg_slab_show,
749c5415
GC
4603 },
4604#endif
d55f90bf
VD
4605 {
4606 .name = "kmem.tcp.limit_in_bytes",
4607 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4608 .write = mem_cgroup_write,
4609 .read_u64 = mem_cgroup_read_u64,
4610 },
4611 {
4612 .name = "kmem.tcp.usage_in_bytes",
4613 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4614 .read_u64 = mem_cgroup_read_u64,
4615 },
4616 {
4617 .name = "kmem.tcp.failcnt",
4618 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4619 .write = mem_cgroup_reset,
4620 .read_u64 = mem_cgroup_read_u64,
4621 },
4622 {
4623 .name = "kmem.tcp.max_usage_in_bytes",
4624 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4625 .write = mem_cgroup_reset,
4626 .read_u64 = mem_cgroup_read_u64,
4627 },
6bc10349 4628 { }, /* terminate */
af36f906 4629};
8c7c6e34 4630
73f576c0
JW
4631/*
4632 * Private memory cgroup IDR
4633 *
4634 * Swap-out records and page cache shadow entries need to store memcg
4635 * references in constrained space, so we maintain an ID space that is
4636 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4637 * memory-controlled cgroups to 64k.
4638 *
4639 * However, there usually are many references to the oflline CSS after
4640 * the cgroup has been destroyed, such as page cache or reclaimable
4641 * slab objects, that don't need to hang on to the ID. We want to keep
4642 * those dead CSS from occupying IDs, or we might quickly exhaust the
4643 * relatively small ID space and prevent the creation of new cgroups
4644 * even when there are much fewer than 64k cgroups - possibly none.
4645 *
4646 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4647 * be freed and recycled when it's no longer needed, which is usually
4648 * when the CSS is offlined.
4649 *
4650 * The only exception to that are records of swapped out tmpfs/shmem
4651 * pages that need to be attributed to live ancestors on swapin. But
4652 * those references are manageable from userspace.
4653 */
4654
4655static DEFINE_IDR(mem_cgroup_idr);
4656
7e97de0b
KT
4657static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4658{
4659 if (memcg->id.id > 0) {
4660 idr_remove(&mem_cgroup_idr, memcg->id.id);
4661 memcg->id.id = 0;
4662 }
4663}
4664
615d66c3 4665static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4666{
1c2d479a 4667 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4668}
4669
615d66c3 4670static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4671{
1c2d479a 4672 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4673 mem_cgroup_id_remove(memcg);
73f576c0
JW
4674
4675 /* Memcg ID pins CSS */
4676 css_put(&memcg->css);
4677 }
4678}
4679
615d66c3
VD
4680static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4681{
4682 mem_cgroup_id_get_many(memcg, 1);
4683}
4684
4685static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4686{
4687 mem_cgroup_id_put_many(memcg, 1);
4688}
4689
73f576c0
JW
4690/**
4691 * mem_cgroup_from_id - look up a memcg from a memcg id
4692 * @id: the memcg id to look up
4693 *
4694 * Caller must hold rcu_read_lock().
4695 */
4696struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4697{
4698 WARN_ON_ONCE(!rcu_read_lock_held());
4699 return idr_find(&mem_cgroup_idr, id);
4700}
4701
ef8f2327 4702static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4703{
4704 struct mem_cgroup_per_node *pn;
ef8f2327 4705 int tmp = node;
1ecaab2b
KH
4706 /*
4707 * This routine is called against possible nodes.
4708 * But it's BUG to call kmalloc() against offline node.
4709 *
4710 * TODO: this routine can waste much memory for nodes which will
4711 * never be onlined. It's better to use memory hotplug callback
4712 * function.
4713 */
41e3355d
KH
4714 if (!node_state(node, N_NORMAL_MEMORY))
4715 tmp = -1;
17295c88 4716 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4717 if (!pn)
4718 return 1;
1ecaab2b 4719
815744d7
JW
4720 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4721 if (!pn->lruvec_stat_local) {
4722 kfree(pn);
4723 return 1;
4724 }
4725
a983b5eb
JW
4726 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4727 if (!pn->lruvec_stat_cpu) {
815744d7 4728 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4729 kfree(pn);
4730 return 1;
4731 }
4732
ef8f2327
MG
4733 lruvec_init(&pn->lruvec);
4734 pn->usage_in_excess = 0;
4735 pn->on_tree = false;
4736 pn->memcg = memcg;
4737
54f72fe0 4738 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4739 return 0;
4740}
4741
ef8f2327 4742static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4743{
00f3ca2c
JW
4744 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4745
4eaf431f
MH
4746 if (!pn)
4747 return;
4748
a983b5eb 4749 free_percpu(pn->lruvec_stat_cpu);
815744d7 4750 free_percpu(pn->lruvec_stat_local);
00f3ca2c 4751 kfree(pn);
1ecaab2b
KH
4752}
4753
40e952f9 4754static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4755{
c8b2a36f 4756 int node;
59927fb9 4757
c350a99e 4758 /*
bb65f89b 4759 * Flush percpu vmstats and vmevents to guarantee the value correctness
c350a99e
RG
4760 * on parent's and all ancestor levels.
4761 */
bee07b33 4762 memcg_flush_percpu_vmstats(memcg, false);
bb65f89b 4763 memcg_flush_percpu_vmevents(memcg);
c8b2a36f 4764 for_each_node(node)
ef8f2327 4765 free_mem_cgroup_per_node_info(memcg, node);
871789d4 4766 free_percpu(memcg->vmstats_percpu);
815744d7 4767 free_percpu(memcg->vmstats_local);
8ff69e2c 4768 kfree(memcg);
59927fb9 4769}
3afe36b1 4770
40e952f9
TE
4771static void mem_cgroup_free(struct mem_cgroup *memcg)
4772{
4773 memcg_wb_domain_exit(memcg);
4774 __mem_cgroup_free(memcg);
4775}
4776
0b8f73e1 4777static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4778{
d142e3e6 4779 struct mem_cgroup *memcg;
b9726c26 4780 unsigned int size;
6d12e2d8 4781 int node;
8cdea7c0 4782
0b8f73e1
JW
4783 size = sizeof(struct mem_cgroup);
4784 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4785
4786 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4787 if (!memcg)
0b8f73e1
JW
4788 return NULL;
4789
73f576c0
JW
4790 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4791 1, MEM_CGROUP_ID_MAX,
4792 GFP_KERNEL);
4793 if (memcg->id.id < 0)
4794 goto fail;
4795
815744d7
JW
4796 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4797 if (!memcg->vmstats_local)
4798 goto fail;
4799
871789d4
CD
4800 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4801 if (!memcg->vmstats_percpu)
0b8f73e1 4802 goto fail;
78fb7466 4803
3ed28fa1 4804 for_each_node(node)
ef8f2327 4805 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4806 goto fail;
f64c3f54 4807
0b8f73e1
JW
4808 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4809 goto fail;
28dbc4b6 4810
f7e1cb6e 4811 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4812 memcg->last_scanned_node = MAX_NUMNODES;
4813 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4814 mutex_init(&memcg->thresholds_lock);
4815 spin_lock_init(&memcg->move_lock);
70ddf637 4816 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4817 INIT_LIST_HEAD(&memcg->event_list);
4818 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4819 memcg->socket_pressure = jiffies;
84c07d11 4820#ifdef CONFIG_MEMCG_KMEM
900a38f0 4821 memcg->kmemcg_id = -1;
900a38f0 4822#endif
52ebea74
TH
4823#ifdef CONFIG_CGROUP_WRITEBACK
4824 INIT_LIST_HEAD(&memcg->cgwb_list);
4825#endif
73f576c0 4826 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4827 return memcg;
4828fail:
7e97de0b 4829 mem_cgroup_id_remove(memcg);
40e952f9 4830 __mem_cgroup_free(memcg);
0b8f73e1 4831 return NULL;
d142e3e6
GC
4832}
4833
0b8f73e1
JW
4834static struct cgroup_subsys_state * __ref
4835mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4836{
0b8f73e1
JW
4837 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4838 struct mem_cgroup *memcg;
4839 long error = -ENOMEM;
d142e3e6 4840
0b8f73e1
JW
4841 memcg = mem_cgroup_alloc();
4842 if (!memcg)
4843 return ERR_PTR(error);
d142e3e6 4844
0b8f73e1
JW
4845 memcg->high = PAGE_COUNTER_MAX;
4846 memcg->soft_limit = PAGE_COUNTER_MAX;
4847 if (parent) {
4848 memcg->swappiness = mem_cgroup_swappiness(parent);
4849 memcg->oom_kill_disable = parent->oom_kill_disable;
4850 }
4851 if (parent && parent->use_hierarchy) {
4852 memcg->use_hierarchy = true;
3e32cb2e 4853 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4854 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4855 page_counter_init(&memcg->memsw, &parent->memsw);
4856 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4857 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4858 } else {
3e32cb2e 4859 page_counter_init(&memcg->memory, NULL);
37e84351 4860 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4861 page_counter_init(&memcg->memsw, NULL);
4862 page_counter_init(&memcg->kmem, NULL);
0db15298 4863 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4864 /*
4865 * Deeper hierachy with use_hierarchy == false doesn't make
4866 * much sense so let cgroup subsystem know about this
4867 * unfortunate state in our controller.
4868 */
d142e3e6 4869 if (parent != root_mem_cgroup)
073219e9 4870 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4871 }
d6441637 4872
0b8f73e1
JW
4873 /* The following stuff does not apply to the root */
4874 if (!parent) {
fb2f2b0a
RG
4875#ifdef CONFIG_MEMCG_KMEM
4876 INIT_LIST_HEAD(&memcg->kmem_caches);
4877#endif
0b8f73e1
JW
4878 root_mem_cgroup = memcg;
4879 return &memcg->css;
4880 }
4881
b313aeee 4882 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4883 if (error)
4884 goto fail;
127424c8 4885
f7e1cb6e 4886 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4887 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4888
0b8f73e1
JW
4889 return &memcg->css;
4890fail:
7e97de0b 4891 mem_cgroup_id_remove(memcg);
0b8f73e1 4892 mem_cgroup_free(memcg);
ea3a9645 4893 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4894}
4895
73f576c0 4896static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4897{
58fa2a55
VD
4898 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4899
0a4465d3
KT
4900 /*
4901 * A memcg must be visible for memcg_expand_shrinker_maps()
4902 * by the time the maps are allocated. So, we allocate maps
4903 * here, when for_each_mem_cgroup() can't skip it.
4904 */
4905 if (memcg_alloc_shrinker_maps(memcg)) {
4906 mem_cgroup_id_remove(memcg);
4907 return -ENOMEM;
4908 }
4909
73f576c0 4910 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 4911 refcount_set(&memcg->id.ref, 1);
73f576c0 4912 css_get(css);
2f7dd7a4 4913 return 0;
8cdea7c0
BS
4914}
4915
eb95419b 4916static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4917{
eb95419b 4918 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4919 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4920
4921 /*
4922 * Unregister events and notify userspace.
4923 * Notify userspace about cgroup removing only after rmdir of cgroup
4924 * directory to avoid race between userspace and kernelspace.
4925 */
fba94807
TH
4926 spin_lock(&memcg->event_list_lock);
4927 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4928 list_del_init(&event->list);
4929 schedule_work(&event->remove);
4930 }
fba94807 4931 spin_unlock(&memcg->event_list_lock);
ec64f515 4932
bf8d5d52 4933 page_counter_set_min(&memcg->memory, 0);
23067153 4934 page_counter_set_low(&memcg->memory, 0);
63677c74 4935
567e9ab2 4936 memcg_offline_kmem(memcg);
52ebea74 4937 wb_memcg_offline(memcg);
73f576c0 4938
591edfb1
RG
4939 drain_all_stock(memcg);
4940
73f576c0 4941 mem_cgroup_id_put(memcg);
df878fb0
KH
4942}
4943
6df38689
VD
4944static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4945{
4946 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4947
4948 invalidate_reclaim_iterators(memcg);
4949}
4950
eb95419b 4951static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4952{
eb95419b 4953 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4954
f7e1cb6e 4955 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4956 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4957
0db15298 4958 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4959 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4960
0b8f73e1
JW
4961 vmpressure_cleanup(&memcg->vmpressure);
4962 cancel_work_sync(&memcg->high_work);
4963 mem_cgroup_remove_from_trees(memcg);
0a4465d3 4964 memcg_free_shrinker_maps(memcg);
d886f4e4 4965 memcg_free_kmem(memcg);
0b8f73e1 4966 mem_cgroup_free(memcg);
8cdea7c0
BS
4967}
4968
1ced953b
TH
4969/**
4970 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4971 * @css: the target css
4972 *
4973 * Reset the states of the mem_cgroup associated with @css. This is
4974 * invoked when the userland requests disabling on the default hierarchy
4975 * but the memcg is pinned through dependency. The memcg should stop
4976 * applying policies and should revert to the vanilla state as it may be
4977 * made visible again.
4978 *
4979 * The current implementation only resets the essential configurations.
4980 * This needs to be expanded to cover all the visible parts.
4981 */
4982static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4983{
4984 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4985
bbec2e15
RG
4986 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4987 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4988 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4989 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4990 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4991 page_counter_set_min(&memcg->memory, 0);
23067153 4992 page_counter_set_low(&memcg->memory, 0);
241994ed 4993 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4994 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4995 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4996}
4997
02491447 4998#ifdef CONFIG_MMU
7dc74be0 4999/* Handlers for move charge at task migration. */
854ffa8d 5000static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5001{
05b84301 5002 int ret;
9476db97 5003
d0164adc
MG
5004 /* Try a single bulk charge without reclaim first, kswapd may wake */
5005 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5006 if (!ret) {
854ffa8d 5007 mc.precharge += count;
854ffa8d
DN
5008 return ret;
5009 }
9476db97 5010
3674534b 5011 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5012 while (count--) {
3674534b 5013 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5014 if (ret)
38c5d72f 5015 return ret;
854ffa8d 5016 mc.precharge++;
9476db97 5017 cond_resched();
854ffa8d 5018 }
9476db97 5019 return 0;
4ffef5fe
DN
5020}
5021
4ffef5fe
DN
5022union mc_target {
5023 struct page *page;
02491447 5024 swp_entry_t ent;
4ffef5fe
DN
5025};
5026
4ffef5fe 5027enum mc_target_type {
8d32ff84 5028 MC_TARGET_NONE = 0,
4ffef5fe 5029 MC_TARGET_PAGE,
02491447 5030 MC_TARGET_SWAP,
c733a828 5031 MC_TARGET_DEVICE,
4ffef5fe
DN
5032};
5033
90254a65
DN
5034static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5035 unsigned long addr, pte_t ptent)
4ffef5fe 5036{
25b2995a 5037 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5038
90254a65
DN
5039 if (!page || !page_mapped(page))
5040 return NULL;
5041 if (PageAnon(page)) {
1dfab5ab 5042 if (!(mc.flags & MOVE_ANON))
90254a65 5043 return NULL;
1dfab5ab
JW
5044 } else {
5045 if (!(mc.flags & MOVE_FILE))
5046 return NULL;
5047 }
90254a65
DN
5048 if (!get_page_unless_zero(page))
5049 return NULL;
5050
5051 return page;
5052}
5053
c733a828 5054#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5055static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5056 pte_t ptent, swp_entry_t *entry)
90254a65 5057{
90254a65
DN
5058 struct page *page = NULL;
5059 swp_entry_t ent = pte_to_swp_entry(ptent);
5060
1dfab5ab 5061 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5062 return NULL;
c733a828
JG
5063
5064 /*
5065 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5066 * a device and because they are not accessible by CPU they are store
5067 * as special swap entry in the CPU page table.
5068 */
5069 if (is_device_private_entry(ent)) {
5070 page = device_private_entry_to_page(ent);
5071 /*
5072 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5073 * a refcount of 1 when free (unlike normal page)
5074 */
5075 if (!page_ref_add_unless(page, 1, 1))
5076 return NULL;
5077 return page;
5078 }
5079
4b91355e
KH
5080 /*
5081 * Because lookup_swap_cache() updates some statistics counter,
5082 * we call find_get_page() with swapper_space directly.
5083 */
f6ab1f7f 5084 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 5085 if (do_memsw_account())
90254a65
DN
5086 entry->val = ent.val;
5087
5088 return page;
5089}
4b91355e
KH
5090#else
5091static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5092 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5093{
5094 return NULL;
5095}
5096#endif
90254a65 5097
87946a72
DN
5098static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5099 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5100{
5101 struct page *page = NULL;
87946a72
DN
5102 struct address_space *mapping;
5103 pgoff_t pgoff;
5104
5105 if (!vma->vm_file) /* anonymous vma */
5106 return NULL;
1dfab5ab 5107 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5108 return NULL;
5109
87946a72 5110 mapping = vma->vm_file->f_mapping;
0661a336 5111 pgoff = linear_page_index(vma, addr);
87946a72
DN
5112
5113 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5114#ifdef CONFIG_SWAP
5115 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5116 if (shmem_mapping(mapping)) {
5117 page = find_get_entry(mapping, pgoff);
3159f943 5118 if (xa_is_value(page)) {
139b6a6f 5119 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 5120 if (do_memsw_account())
139b6a6f 5121 *entry = swp;
f6ab1f7f
HY
5122 page = find_get_page(swap_address_space(swp),
5123 swp_offset(swp));
139b6a6f
JW
5124 }
5125 } else
5126 page = find_get_page(mapping, pgoff);
5127#else
5128 page = find_get_page(mapping, pgoff);
aa3b1895 5129#endif
87946a72
DN
5130 return page;
5131}
5132
b1b0deab
CG
5133/**
5134 * mem_cgroup_move_account - move account of the page
5135 * @page: the page
25843c2b 5136 * @compound: charge the page as compound or small page
b1b0deab
CG
5137 * @from: mem_cgroup which the page is moved from.
5138 * @to: mem_cgroup which the page is moved to. @from != @to.
5139 *
3ac808fd 5140 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5141 *
5142 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5143 * from old cgroup.
5144 */
5145static int mem_cgroup_move_account(struct page *page,
f627c2f5 5146 bool compound,
b1b0deab
CG
5147 struct mem_cgroup *from,
5148 struct mem_cgroup *to)
5149{
5150 unsigned long flags;
f627c2f5 5151 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 5152 int ret;
c4843a75 5153 bool anon;
b1b0deab
CG
5154
5155 VM_BUG_ON(from == to);
5156 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5157 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5158
5159 /*
6a93ca8f 5160 * Prevent mem_cgroup_migrate() from looking at
45637bab 5161 * page->mem_cgroup of its source page while we change it.
b1b0deab 5162 */
f627c2f5 5163 ret = -EBUSY;
b1b0deab
CG
5164 if (!trylock_page(page))
5165 goto out;
5166
5167 ret = -EINVAL;
5168 if (page->mem_cgroup != from)
5169 goto out_unlock;
5170
c4843a75
GT
5171 anon = PageAnon(page);
5172
b1b0deab
CG
5173 spin_lock_irqsave(&from->move_lock, flags);
5174
c4843a75 5175 if (!anon && page_mapped(page)) {
c9019e9b
JW
5176 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5177 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
5178 }
5179
c4843a75
GT
5180 /*
5181 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 5182 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
5183 * So mapping should be stable for dirty pages.
5184 */
5185 if (!anon && PageDirty(page)) {
5186 struct address_space *mapping = page_mapping(page);
5187
5188 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
5189 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5190 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
5191 }
5192 }
5193
b1b0deab 5194 if (PageWriteback(page)) {
c9019e9b
JW
5195 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5196 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5197 }
5198
5199 /*
5200 * It is safe to change page->mem_cgroup here because the page
5201 * is referenced, charged, and isolated - we can't race with
5202 * uncharging, charging, migration, or LRU putback.
5203 */
5204
5205 /* caller should have done css_get */
5206 page->mem_cgroup = to;
5207 spin_unlock_irqrestore(&from->move_lock, flags);
5208
5209 ret = 0;
5210
5211 local_irq_disable();
f627c2f5 5212 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 5213 memcg_check_events(to, page);
f627c2f5 5214 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
5215 memcg_check_events(from, page);
5216 local_irq_enable();
5217out_unlock:
5218 unlock_page(page);
5219out:
5220 return ret;
5221}
5222
7cf7806c
LR
5223/**
5224 * get_mctgt_type - get target type of moving charge
5225 * @vma: the vma the pte to be checked belongs
5226 * @addr: the address corresponding to the pte to be checked
5227 * @ptent: the pte to be checked
5228 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5229 *
5230 * Returns
5231 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5232 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5233 * move charge. if @target is not NULL, the page is stored in target->page
5234 * with extra refcnt got(Callers should handle it).
5235 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5236 * target for charge migration. if @target is not NULL, the entry is stored
5237 * in target->ent.
25b2995a
CH
5238 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5239 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5240 * For now we such page is charge like a regular page would be as for all
5241 * intent and purposes it is just special memory taking the place of a
5242 * regular page.
c733a828
JG
5243 *
5244 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5245 *
5246 * Called with pte lock held.
5247 */
5248
8d32ff84 5249static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5250 unsigned long addr, pte_t ptent, union mc_target *target)
5251{
5252 struct page *page = NULL;
8d32ff84 5253 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5254 swp_entry_t ent = { .val = 0 };
5255
5256 if (pte_present(ptent))
5257 page = mc_handle_present_pte(vma, addr, ptent);
5258 else if (is_swap_pte(ptent))
48406ef8 5259 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5260 else if (pte_none(ptent))
87946a72 5261 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5262
5263 if (!page && !ent.val)
8d32ff84 5264 return ret;
02491447 5265 if (page) {
02491447 5266 /*
0a31bc97 5267 * Do only loose check w/o serialization.
1306a85a 5268 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5269 * not under LRU exclusion.
02491447 5270 */
1306a85a 5271 if (page->mem_cgroup == mc.from) {
02491447 5272 ret = MC_TARGET_PAGE;
25b2995a 5273 if (is_device_private_page(page))
c733a828 5274 ret = MC_TARGET_DEVICE;
02491447
DN
5275 if (target)
5276 target->page = page;
5277 }
5278 if (!ret || !target)
5279 put_page(page);
5280 }
3e14a57b
HY
5281 /*
5282 * There is a swap entry and a page doesn't exist or isn't charged.
5283 * But we cannot move a tail-page in a THP.
5284 */
5285 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5286 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5287 ret = MC_TARGET_SWAP;
5288 if (target)
5289 target->ent = ent;
4ffef5fe 5290 }
4ffef5fe
DN
5291 return ret;
5292}
5293
12724850
NH
5294#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5295/*
d6810d73
HY
5296 * We don't consider PMD mapped swapping or file mapped pages because THP does
5297 * not support them for now.
12724850
NH
5298 * Caller should make sure that pmd_trans_huge(pmd) is true.
5299 */
5300static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5301 unsigned long addr, pmd_t pmd, union mc_target *target)
5302{
5303 struct page *page = NULL;
12724850
NH
5304 enum mc_target_type ret = MC_TARGET_NONE;
5305
84c3fc4e
ZY
5306 if (unlikely(is_swap_pmd(pmd))) {
5307 VM_BUG_ON(thp_migration_supported() &&
5308 !is_pmd_migration_entry(pmd));
5309 return ret;
5310 }
12724850 5311 page = pmd_page(pmd);
309381fe 5312 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5313 if (!(mc.flags & MOVE_ANON))
12724850 5314 return ret;
1306a85a 5315 if (page->mem_cgroup == mc.from) {
12724850
NH
5316 ret = MC_TARGET_PAGE;
5317 if (target) {
5318 get_page(page);
5319 target->page = page;
5320 }
5321 }
5322 return ret;
5323}
5324#else
5325static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5326 unsigned long addr, pmd_t pmd, union mc_target *target)
5327{
5328 return MC_TARGET_NONE;
5329}
5330#endif
5331
4ffef5fe
DN
5332static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5333 unsigned long addr, unsigned long end,
5334 struct mm_walk *walk)
5335{
26bcd64a 5336 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5337 pte_t *pte;
5338 spinlock_t *ptl;
5339
b6ec57f4
KS
5340 ptl = pmd_trans_huge_lock(pmd, vma);
5341 if (ptl) {
c733a828
JG
5342 /*
5343 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5344 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5345 * this might change.
c733a828 5346 */
12724850
NH
5347 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5348 mc.precharge += HPAGE_PMD_NR;
bf929152 5349 spin_unlock(ptl);
1a5a9906 5350 return 0;
12724850 5351 }
03319327 5352
45f83cef
AA
5353 if (pmd_trans_unstable(pmd))
5354 return 0;
4ffef5fe
DN
5355 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5356 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5357 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5358 mc.precharge++; /* increment precharge temporarily */
5359 pte_unmap_unlock(pte - 1, ptl);
5360 cond_resched();
5361
7dc74be0
DN
5362 return 0;
5363}
5364
4ffef5fe
DN
5365static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5366{
5367 unsigned long precharge;
4ffef5fe 5368
26bcd64a
NH
5369 struct mm_walk mem_cgroup_count_precharge_walk = {
5370 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5371 .mm = mm,
5372 };
dfe076b0 5373 down_read(&mm->mmap_sem);
0247f3f4
JM
5374 walk_page_range(0, mm->highest_vm_end,
5375 &mem_cgroup_count_precharge_walk);
dfe076b0 5376 up_read(&mm->mmap_sem);
4ffef5fe
DN
5377
5378 precharge = mc.precharge;
5379 mc.precharge = 0;
5380
5381 return precharge;
5382}
5383
4ffef5fe
DN
5384static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5385{
dfe076b0
DN
5386 unsigned long precharge = mem_cgroup_count_precharge(mm);
5387
5388 VM_BUG_ON(mc.moving_task);
5389 mc.moving_task = current;
5390 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5391}
5392
dfe076b0
DN
5393/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5394static void __mem_cgroup_clear_mc(void)
4ffef5fe 5395{
2bd9bb20
KH
5396 struct mem_cgroup *from = mc.from;
5397 struct mem_cgroup *to = mc.to;
5398
4ffef5fe 5399 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5400 if (mc.precharge) {
00501b53 5401 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5402 mc.precharge = 0;
5403 }
5404 /*
5405 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5406 * we must uncharge here.
5407 */
5408 if (mc.moved_charge) {
00501b53 5409 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5410 mc.moved_charge = 0;
4ffef5fe 5411 }
483c30b5
DN
5412 /* we must fixup refcnts and charges */
5413 if (mc.moved_swap) {
483c30b5 5414 /* uncharge swap account from the old cgroup */
ce00a967 5415 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5416 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5417
615d66c3
VD
5418 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5419
05b84301 5420 /*
3e32cb2e
JW
5421 * we charged both to->memory and to->memsw, so we
5422 * should uncharge to->memory.
05b84301 5423 */
ce00a967 5424 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5425 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5426
615d66c3
VD
5427 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5428 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5429
483c30b5
DN
5430 mc.moved_swap = 0;
5431 }
dfe076b0
DN
5432 memcg_oom_recover(from);
5433 memcg_oom_recover(to);
5434 wake_up_all(&mc.waitq);
5435}
5436
5437static void mem_cgroup_clear_mc(void)
5438{
264a0ae1
TH
5439 struct mm_struct *mm = mc.mm;
5440
dfe076b0
DN
5441 /*
5442 * we must clear moving_task before waking up waiters at the end of
5443 * task migration.
5444 */
5445 mc.moving_task = NULL;
5446 __mem_cgroup_clear_mc();
2bd9bb20 5447 spin_lock(&mc.lock);
4ffef5fe
DN
5448 mc.from = NULL;
5449 mc.to = NULL;
264a0ae1 5450 mc.mm = NULL;
2bd9bb20 5451 spin_unlock(&mc.lock);
264a0ae1
TH
5452
5453 mmput(mm);
4ffef5fe
DN
5454}
5455
1f7dd3e5 5456static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5457{
1f7dd3e5 5458 struct cgroup_subsys_state *css;
eed67d75 5459 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5460 struct mem_cgroup *from;
4530eddb 5461 struct task_struct *leader, *p;
9f2115f9 5462 struct mm_struct *mm;
1dfab5ab 5463 unsigned long move_flags;
9f2115f9 5464 int ret = 0;
7dc74be0 5465
1f7dd3e5
TH
5466 /* charge immigration isn't supported on the default hierarchy */
5467 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5468 return 0;
5469
4530eddb
TH
5470 /*
5471 * Multi-process migrations only happen on the default hierarchy
5472 * where charge immigration is not used. Perform charge
5473 * immigration if @tset contains a leader and whine if there are
5474 * multiple.
5475 */
5476 p = NULL;
1f7dd3e5 5477 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5478 WARN_ON_ONCE(p);
5479 p = leader;
1f7dd3e5 5480 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5481 }
5482 if (!p)
5483 return 0;
5484
1f7dd3e5
TH
5485 /*
5486 * We are now commited to this value whatever it is. Changes in this
5487 * tunable will only affect upcoming migrations, not the current one.
5488 * So we need to save it, and keep it going.
5489 */
5490 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5491 if (!move_flags)
5492 return 0;
5493
9f2115f9
TH
5494 from = mem_cgroup_from_task(p);
5495
5496 VM_BUG_ON(from == memcg);
5497
5498 mm = get_task_mm(p);
5499 if (!mm)
5500 return 0;
5501 /* We move charges only when we move a owner of the mm */
5502 if (mm->owner == p) {
5503 VM_BUG_ON(mc.from);
5504 VM_BUG_ON(mc.to);
5505 VM_BUG_ON(mc.precharge);
5506 VM_BUG_ON(mc.moved_charge);
5507 VM_BUG_ON(mc.moved_swap);
5508
5509 spin_lock(&mc.lock);
264a0ae1 5510 mc.mm = mm;
9f2115f9
TH
5511 mc.from = from;
5512 mc.to = memcg;
5513 mc.flags = move_flags;
5514 spin_unlock(&mc.lock);
5515 /* We set mc.moving_task later */
5516
5517 ret = mem_cgroup_precharge_mc(mm);
5518 if (ret)
5519 mem_cgroup_clear_mc();
264a0ae1
TH
5520 } else {
5521 mmput(mm);
7dc74be0
DN
5522 }
5523 return ret;
5524}
5525
1f7dd3e5 5526static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5527{
4e2f245d
JW
5528 if (mc.to)
5529 mem_cgroup_clear_mc();
7dc74be0
DN
5530}
5531
4ffef5fe
DN
5532static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5533 unsigned long addr, unsigned long end,
5534 struct mm_walk *walk)
7dc74be0 5535{
4ffef5fe 5536 int ret = 0;
26bcd64a 5537 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5538 pte_t *pte;
5539 spinlock_t *ptl;
12724850
NH
5540 enum mc_target_type target_type;
5541 union mc_target target;
5542 struct page *page;
4ffef5fe 5543
b6ec57f4
KS
5544 ptl = pmd_trans_huge_lock(pmd, vma);
5545 if (ptl) {
62ade86a 5546 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5547 spin_unlock(ptl);
12724850
NH
5548 return 0;
5549 }
5550 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5551 if (target_type == MC_TARGET_PAGE) {
5552 page = target.page;
5553 if (!isolate_lru_page(page)) {
f627c2f5 5554 if (!mem_cgroup_move_account(page, true,
1306a85a 5555 mc.from, mc.to)) {
12724850
NH
5556 mc.precharge -= HPAGE_PMD_NR;
5557 mc.moved_charge += HPAGE_PMD_NR;
5558 }
5559 putback_lru_page(page);
5560 }
5561 put_page(page);
c733a828
JG
5562 } else if (target_type == MC_TARGET_DEVICE) {
5563 page = target.page;
5564 if (!mem_cgroup_move_account(page, true,
5565 mc.from, mc.to)) {
5566 mc.precharge -= HPAGE_PMD_NR;
5567 mc.moved_charge += HPAGE_PMD_NR;
5568 }
5569 put_page(page);
12724850 5570 }
bf929152 5571 spin_unlock(ptl);
1a5a9906 5572 return 0;
12724850
NH
5573 }
5574
45f83cef
AA
5575 if (pmd_trans_unstable(pmd))
5576 return 0;
4ffef5fe
DN
5577retry:
5578 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5579 for (; addr != end; addr += PAGE_SIZE) {
5580 pte_t ptent = *(pte++);
c733a828 5581 bool device = false;
02491447 5582 swp_entry_t ent;
4ffef5fe
DN
5583
5584 if (!mc.precharge)
5585 break;
5586
8d32ff84 5587 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5588 case MC_TARGET_DEVICE:
5589 device = true;
5590 /* fall through */
4ffef5fe
DN
5591 case MC_TARGET_PAGE:
5592 page = target.page;
53f9263b
KS
5593 /*
5594 * We can have a part of the split pmd here. Moving it
5595 * can be done but it would be too convoluted so simply
5596 * ignore such a partial THP and keep it in original
5597 * memcg. There should be somebody mapping the head.
5598 */
5599 if (PageTransCompound(page))
5600 goto put;
c733a828 5601 if (!device && isolate_lru_page(page))
4ffef5fe 5602 goto put;
f627c2f5
KS
5603 if (!mem_cgroup_move_account(page, false,
5604 mc.from, mc.to)) {
4ffef5fe 5605 mc.precharge--;
854ffa8d
DN
5606 /* we uncharge from mc.from later. */
5607 mc.moved_charge++;
4ffef5fe 5608 }
c733a828
JG
5609 if (!device)
5610 putback_lru_page(page);
8d32ff84 5611put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5612 put_page(page);
5613 break;
02491447
DN
5614 case MC_TARGET_SWAP:
5615 ent = target.ent;
e91cbb42 5616 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5617 mc.precharge--;
483c30b5
DN
5618 /* we fixup refcnts and charges later. */
5619 mc.moved_swap++;
5620 }
02491447 5621 break;
4ffef5fe
DN
5622 default:
5623 break;
5624 }
5625 }
5626 pte_unmap_unlock(pte - 1, ptl);
5627 cond_resched();
5628
5629 if (addr != end) {
5630 /*
5631 * We have consumed all precharges we got in can_attach().
5632 * We try charge one by one, but don't do any additional
5633 * charges to mc.to if we have failed in charge once in attach()
5634 * phase.
5635 */
854ffa8d 5636 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5637 if (!ret)
5638 goto retry;
5639 }
5640
5641 return ret;
5642}
5643
264a0ae1 5644static void mem_cgroup_move_charge(void)
4ffef5fe 5645{
26bcd64a
NH
5646 struct mm_walk mem_cgroup_move_charge_walk = {
5647 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5648 .mm = mc.mm,
26bcd64a 5649 };
4ffef5fe
DN
5650
5651 lru_add_drain_all();
312722cb 5652 /*
81f8c3a4
JW
5653 * Signal lock_page_memcg() to take the memcg's move_lock
5654 * while we're moving its pages to another memcg. Then wait
5655 * for already started RCU-only updates to finish.
312722cb
JW
5656 */
5657 atomic_inc(&mc.from->moving_account);
5658 synchronize_rcu();
dfe076b0 5659retry:
264a0ae1 5660 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5661 /*
5662 * Someone who are holding the mmap_sem might be waiting in
5663 * waitq. So we cancel all extra charges, wake up all waiters,
5664 * and retry. Because we cancel precharges, we might not be able
5665 * to move enough charges, but moving charge is a best-effort
5666 * feature anyway, so it wouldn't be a big problem.
5667 */
5668 __mem_cgroup_clear_mc();
5669 cond_resched();
5670 goto retry;
5671 }
26bcd64a
NH
5672 /*
5673 * When we have consumed all precharges and failed in doing
5674 * additional charge, the page walk just aborts.
5675 */
0247f3f4
JM
5676 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5677
264a0ae1 5678 up_read(&mc.mm->mmap_sem);
312722cb 5679 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5680}
5681
264a0ae1 5682static void mem_cgroup_move_task(void)
67e465a7 5683{
264a0ae1
TH
5684 if (mc.to) {
5685 mem_cgroup_move_charge();
a433658c 5686 mem_cgroup_clear_mc();
264a0ae1 5687 }
67e465a7 5688}
5cfb80a7 5689#else /* !CONFIG_MMU */
1f7dd3e5 5690static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5691{
5692 return 0;
5693}
1f7dd3e5 5694static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5695{
5696}
264a0ae1 5697static void mem_cgroup_move_task(void)
5cfb80a7
DN
5698{
5699}
5700#endif
67e465a7 5701
f00baae7
TH
5702/*
5703 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5704 * to verify whether we're attached to the default hierarchy on each mount
5705 * attempt.
f00baae7 5706 */
eb95419b 5707static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5708{
5709 /*
aa6ec29b 5710 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5711 * guarantees that @root doesn't have any children, so turning it
5712 * on for the root memcg is enough.
5713 */
9e10a130 5714 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5715 root_mem_cgroup->use_hierarchy = true;
5716 else
5717 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5718}
5719
677dc973
CD
5720static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5721{
5722 if (value == PAGE_COUNTER_MAX)
5723 seq_puts(m, "max\n");
5724 else
5725 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5726
5727 return 0;
5728}
5729
241994ed
JW
5730static u64 memory_current_read(struct cgroup_subsys_state *css,
5731 struct cftype *cft)
5732{
f5fc3c5d
JW
5733 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5734
5735 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5736}
5737
bf8d5d52
RG
5738static int memory_min_show(struct seq_file *m, void *v)
5739{
677dc973
CD
5740 return seq_puts_memcg_tunable(m,
5741 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
5742}
5743
5744static ssize_t memory_min_write(struct kernfs_open_file *of,
5745 char *buf, size_t nbytes, loff_t off)
5746{
5747 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5748 unsigned long min;
5749 int err;
5750
5751 buf = strstrip(buf);
5752 err = page_counter_memparse(buf, "max", &min);
5753 if (err)
5754 return err;
5755
5756 page_counter_set_min(&memcg->memory, min);
5757
5758 return nbytes;
5759}
5760
241994ed
JW
5761static int memory_low_show(struct seq_file *m, void *v)
5762{
677dc973
CD
5763 return seq_puts_memcg_tunable(m,
5764 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
5765}
5766
5767static ssize_t memory_low_write(struct kernfs_open_file *of,
5768 char *buf, size_t nbytes, loff_t off)
5769{
5770 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5771 unsigned long low;
5772 int err;
5773
5774 buf = strstrip(buf);
d2973697 5775 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5776 if (err)
5777 return err;
5778
23067153 5779 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5780
5781 return nbytes;
5782}
5783
5784static int memory_high_show(struct seq_file *m, void *v)
5785{
677dc973 5786 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
5787}
5788
5789static ssize_t memory_high_write(struct kernfs_open_file *of,
5790 char *buf, size_t nbytes, loff_t off)
5791{
5792 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5793 unsigned long nr_pages;
241994ed
JW
5794 unsigned long high;
5795 int err;
5796
5797 buf = strstrip(buf);
d2973697 5798 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5799 if (err)
5800 return err;
5801
5802 memcg->high = high;
5803
588083bb
JW
5804 nr_pages = page_counter_read(&memcg->memory);
5805 if (nr_pages > high)
5806 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5807 GFP_KERNEL, true);
5808
2529bb3a 5809 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5810 return nbytes;
5811}
5812
5813static int memory_max_show(struct seq_file *m, void *v)
5814{
677dc973
CD
5815 return seq_puts_memcg_tunable(m,
5816 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
5817}
5818
5819static ssize_t memory_max_write(struct kernfs_open_file *of,
5820 char *buf, size_t nbytes, loff_t off)
5821{
5822 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5823 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5824 bool drained = false;
241994ed
JW
5825 unsigned long max;
5826 int err;
5827
5828 buf = strstrip(buf);
d2973697 5829 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5830 if (err)
5831 return err;
5832
bbec2e15 5833 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5834
5835 for (;;) {
5836 unsigned long nr_pages = page_counter_read(&memcg->memory);
5837
5838 if (nr_pages <= max)
5839 break;
5840
5841 if (signal_pending(current)) {
5842 err = -EINTR;
5843 break;
5844 }
5845
5846 if (!drained) {
5847 drain_all_stock(memcg);
5848 drained = true;
5849 continue;
5850 }
5851
5852 if (nr_reclaims) {
5853 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5854 GFP_KERNEL, true))
5855 nr_reclaims--;
5856 continue;
5857 }
5858
e27be240 5859 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5860 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5861 break;
5862 }
241994ed 5863
2529bb3a 5864 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5865 return nbytes;
5866}
5867
1e577f97
SB
5868static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
5869{
5870 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
5871 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
5872 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
5873 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
5874 seq_printf(m, "oom_kill %lu\n",
5875 atomic_long_read(&events[MEMCG_OOM_KILL]));
5876}
5877
241994ed
JW
5878static int memory_events_show(struct seq_file *m, void *v)
5879{
aa9694bb 5880 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 5881
1e577f97
SB
5882 __memory_events_show(m, memcg->memory_events);
5883 return 0;
5884}
5885
5886static int memory_events_local_show(struct seq_file *m, void *v)
5887{
5888 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 5889
1e577f97 5890 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
5891 return 0;
5892}
5893
587d9f72
JW
5894static int memory_stat_show(struct seq_file *m, void *v)
5895{
aa9694bb 5896 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 5897 char *buf;
1ff9e6e1 5898
c8713d0b
JW
5899 buf = memory_stat_format(memcg);
5900 if (!buf)
5901 return -ENOMEM;
5902 seq_puts(m, buf);
5903 kfree(buf);
587d9f72
JW
5904 return 0;
5905}
5906
3d8b38eb
RG
5907static int memory_oom_group_show(struct seq_file *m, void *v)
5908{
aa9694bb 5909 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
5910
5911 seq_printf(m, "%d\n", memcg->oom_group);
5912
5913 return 0;
5914}
5915
5916static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5917 char *buf, size_t nbytes, loff_t off)
5918{
5919 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5920 int ret, oom_group;
5921
5922 buf = strstrip(buf);
5923 if (!buf)
5924 return -EINVAL;
5925
5926 ret = kstrtoint(buf, 0, &oom_group);
5927 if (ret)
5928 return ret;
5929
5930 if (oom_group != 0 && oom_group != 1)
5931 return -EINVAL;
5932
5933 memcg->oom_group = oom_group;
5934
5935 return nbytes;
5936}
5937
241994ed
JW
5938static struct cftype memory_files[] = {
5939 {
5940 .name = "current",
f5fc3c5d 5941 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5942 .read_u64 = memory_current_read,
5943 },
bf8d5d52
RG
5944 {
5945 .name = "min",
5946 .flags = CFTYPE_NOT_ON_ROOT,
5947 .seq_show = memory_min_show,
5948 .write = memory_min_write,
5949 },
241994ed
JW
5950 {
5951 .name = "low",
5952 .flags = CFTYPE_NOT_ON_ROOT,
5953 .seq_show = memory_low_show,
5954 .write = memory_low_write,
5955 },
5956 {
5957 .name = "high",
5958 .flags = CFTYPE_NOT_ON_ROOT,
5959 .seq_show = memory_high_show,
5960 .write = memory_high_write,
5961 },
5962 {
5963 .name = "max",
5964 .flags = CFTYPE_NOT_ON_ROOT,
5965 .seq_show = memory_max_show,
5966 .write = memory_max_write,
5967 },
5968 {
5969 .name = "events",
5970 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5971 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5972 .seq_show = memory_events_show,
5973 },
1e577f97
SB
5974 {
5975 .name = "events.local",
5976 .flags = CFTYPE_NOT_ON_ROOT,
5977 .file_offset = offsetof(struct mem_cgroup, events_local_file),
5978 .seq_show = memory_events_local_show,
5979 },
587d9f72
JW
5980 {
5981 .name = "stat",
5982 .flags = CFTYPE_NOT_ON_ROOT,
5983 .seq_show = memory_stat_show,
5984 },
3d8b38eb
RG
5985 {
5986 .name = "oom.group",
5987 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5988 .seq_show = memory_oom_group_show,
5989 .write = memory_oom_group_write,
5990 },
241994ed
JW
5991 { } /* terminate */
5992};
5993
073219e9 5994struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5995 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5996 .css_online = mem_cgroup_css_online,
92fb9748 5997 .css_offline = mem_cgroup_css_offline,
6df38689 5998 .css_released = mem_cgroup_css_released,
92fb9748 5999 .css_free = mem_cgroup_css_free,
1ced953b 6000 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6001 .can_attach = mem_cgroup_can_attach,
6002 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6003 .post_attach = mem_cgroup_move_task,
f00baae7 6004 .bind = mem_cgroup_bind,
241994ed
JW
6005 .dfl_cftypes = memory_files,
6006 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6007 .early_init = 0,
8cdea7c0 6008};
c077719b 6009
241994ed 6010/**
bf8d5d52 6011 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6012 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6013 * @memcg: the memory cgroup to check
6014 *
23067153
RG
6015 * WARNING: This function is not stateless! It can only be used as part
6016 * of a top-down tree iteration, not for isolated queries.
34c81057 6017 *
bf8d5d52
RG
6018 * Returns one of the following:
6019 * MEMCG_PROT_NONE: cgroup memory is not protected
6020 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6021 * an unprotected supply of reclaimable memory from other cgroups.
6022 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 6023 *
bf8d5d52 6024 * @root is exclusive; it is never protected when looked at directly
34c81057 6025 *
bf8d5d52
RG
6026 * To provide a proper hierarchical behavior, effective memory.min/low values
6027 * are used. Below is the description of how effective memory.low is calculated.
6028 * Effective memory.min values is calculated in the same way.
34c81057 6029 *
23067153
RG
6030 * Effective memory.low is always equal or less than the original memory.low.
6031 * If there is no memory.low overcommittment (which is always true for
6032 * top-level memory cgroups), these two values are equal.
6033 * Otherwise, it's a part of parent's effective memory.low,
6034 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6035 * memory.low usages, where memory.low usage is the size of actually
6036 * protected memory.
34c81057 6037 *
23067153
RG
6038 * low_usage
6039 * elow = min( memory.low, parent->elow * ------------------ ),
6040 * siblings_low_usage
34c81057 6041 *
23067153
RG
6042 * | memory.current, if memory.current < memory.low
6043 * low_usage = |
82ede7ee 6044 * | 0, otherwise.
34c81057 6045 *
23067153
RG
6046 *
6047 * Such definition of the effective memory.low provides the expected
6048 * hierarchical behavior: parent's memory.low value is limiting
6049 * children, unprotected memory is reclaimed first and cgroups,
6050 * which are not using their guarantee do not affect actual memory
6051 * distribution.
6052 *
6053 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6054 *
6055 * A A/memory.low = 2G, A/memory.current = 6G
6056 * //\\
6057 * BC DE B/memory.low = 3G B/memory.current = 2G
6058 * C/memory.low = 1G C/memory.current = 2G
6059 * D/memory.low = 0 D/memory.current = 2G
6060 * E/memory.low = 10G E/memory.current = 0
6061 *
6062 * and the memory pressure is applied, the following memory distribution
6063 * is expected (approximately):
6064 *
6065 * A/memory.current = 2G
6066 *
6067 * B/memory.current = 1.3G
6068 * C/memory.current = 0.6G
6069 * D/memory.current = 0
6070 * E/memory.current = 0
6071 *
6072 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
6073 * (see propagate_protected_usage()), as well as recursive calculation of
6074 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
6075 * path for each memory cgroup top-down from the reclaim,
6076 * it's possible to optimize this part, and save calculated elow
6077 * for next usage. This part is intentionally racy, but it's ok,
6078 * as memory.low is a best-effort mechanism.
241994ed 6079 */
bf8d5d52
RG
6080enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6081 struct mem_cgroup *memcg)
241994ed 6082{
23067153 6083 struct mem_cgroup *parent;
bf8d5d52
RG
6084 unsigned long emin, parent_emin;
6085 unsigned long elow, parent_elow;
6086 unsigned long usage;
23067153 6087
241994ed 6088 if (mem_cgroup_disabled())
bf8d5d52 6089 return MEMCG_PROT_NONE;
241994ed 6090
34c81057
SC
6091 if (!root)
6092 root = root_mem_cgroup;
6093 if (memcg == root)
bf8d5d52 6094 return MEMCG_PROT_NONE;
241994ed 6095
23067153 6096 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
6097 if (!usage)
6098 return MEMCG_PROT_NONE;
6099
6100 emin = memcg->memory.min;
6101 elow = memcg->memory.low;
34c81057 6102
bf8d5d52 6103 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6104 /* No parent means a non-hierarchical mode on v1 memcg */
6105 if (!parent)
6106 return MEMCG_PROT_NONE;
6107
23067153
RG
6108 if (parent == root)
6109 goto exit;
6110
bf8d5d52
RG
6111 parent_emin = READ_ONCE(parent->memory.emin);
6112 emin = min(emin, parent_emin);
6113 if (emin && parent_emin) {
6114 unsigned long min_usage, siblings_min_usage;
6115
6116 min_usage = min(usage, memcg->memory.min);
6117 siblings_min_usage = atomic_long_read(
6118 &parent->memory.children_min_usage);
6119
6120 if (min_usage && siblings_min_usage)
6121 emin = min(emin, parent_emin * min_usage /
6122 siblings_min_usage);
6123 }
6124
23067153
RG
6125 parent_elow = READ_ONCE(parent->memory.elow);
6126 elow = min(elow, parent_elow);
bf8d5d52
RG
6127 if (elow && parent_elow) {
6128 unsigned long low_usage, siblings_low_usage;
23067153 6129
bf8d5d52
RG
6130 low_usage = min(usage, memcg->memory.low);
6131 siblings_low_usage = atomic_long_read(
6132 &parent->memory.children_low_usage);
23067153 6133
bf8d5d52
RG
6134 if (low_usage && siblings_low_usage)
6135 elow = min(elow, parent_elow * low_usage /
6136 siblings_low_usage);
6137 }
23067153 6138
23067153 6139exit:
bf8d5d52 6140 memcg->memory.emin = emin;
23067153 6141 memcg->memory.elow = elow;
bf8d5d52
RG
6142
6143 if (usage <= emin)
6144 return MEMCG_PROT_MIN;
6145 else if (usage <= elow)
6146 return MEMCG_PROT_LOW;
6147 else
6148 return MEMCG_PROT_NONE;
241994ed
JW
6149}
6150
00501b53
JW
6151/**
6152 * mem_cgroup_try_charge - try charging a page
6153 * @page: page to charge
6154 * @mm: mm context of the victim
6155 * @gfp_mask: reclaim mode
6156 * @memcgp: charged memcg return
25843c2b 6157 * @compound: charge the page as compound or small page
00501b53
JW
6158 *
6159 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6160 * pages according to @gfp_mask if necessary.
6161 *
6162 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6163 * Otherwise, an error code is returned.
6164 *
6165 * After page->mapping has been set up, the caller must finalize the
6166 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6167 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6168 */
6169int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
6170 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6171 bool compound)
00501b53
JW
6172{
6173 struct mem_cgroup *memcg = NULL;
f627c2f5 6174 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6175 int ret = 0;
6176
6177 if (mem_cgroup_disabled())
6178 goto out;
6179
6180 if (PageSwapCache(page)) {
00501b53
JW
6181 /*
6182 * Every swap fault against a single page tries to charge the
6183 * page, bail as early as possible. shmem_unuse() encounters
6184 * already charged pages, too. The USED bit is protected by
6185 * the page lock, which serializes swap cache removal, which
6186 * in turn serializes uncharging.
6187 */
e993d905 6188 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6189 if (compound_head(page)->mem_cgroup)
00501b53 6190 goto out;
e993d905 6191
37e84351 6192 if (do_swap_account) {
e993d905
VD
6193 swp_entry_t ent = { .val = page_private(page), };
6194 unsigned short id = lookup_swap_cgroup_id(ent);
6195
6196 rcu_read_lock();
6197 memcg = mem_cgroup_from_id(id);
6198 if (memcg && !css_tryget_online(&memcg->css))
6199 memcg = NULL;
6200 rcu_read_unlock();
6201 }
00501b53
JW
6202 }
6203
00501b53
JW
6204 if (!memcg)
6205 memcg = get_mem_cgroup_from_mm(mm);
6206
6207 ret = try_charge(memcg, gfp_mask, nr_pages);
6208
6209 css_put(&memcg->css);
00501b53
JW
6210out:
6211 *memcgp = memcg;
6212 return ret;
6213}
6214
2cf85583
TH
6215int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6216 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6217 bool compound)
6218{
6219 struct mem_cgroup *memcg;
6220 int ret;
6221
6222 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6223 memcg = *memcgp;
6224 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6225 return ret;
6226}
6227
00501b53
JW
6228/**
6229 * mem_cgroup_commit_charge - commit a page charge
6230 * @page: page to charge
6231 * @memcg: memcg to charge the page to
6232 * @lrucare: page might be on LRU already
25843c2b 6233 * @compound: charge the page as compound or small page
00501b53
JW
6234 *
6235 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6236 * after page->mapping has been set up. This must happen atomically
6237 * as part of the page instantiation, i.e. under the page table lock
6238 * for anonymous pages, under the page lock for page and swap cache.
6239 *
6240 * In addition, the page must not be on the LRU during the commit, to
6241 * prevent racing with task migration. If it might be, use @lrucare.
6242 *
6243 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6244 */
6245void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6246 bool lrucare, bool compound)
00501b53 6247{
f627c2f5 6248 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6249
6250 VM_BUG_ON_PAGE(!page->mapping, page);
6251 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6252
6253 if (mem_cgroup_disabled())
6254 return;
6255 /*
6256 * Swap faults will attempt to charge the same page multiple
6257 * times. But reuse_swap_page() might have removed the page
6258 * from swapcache already, so we can't check PageSwapCache().
6259 */
6260 if (!memcg)
6261 return;
6262
6abb5a86
JW
6263 commit_charge(page, memcg, lrucare);
6264
6abb5a86 6265 local_irq_disable();
f627c2f5 6266 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6267 memcg_check_events(memcg, page);
6268 local_irq_enable();
00501b53 6269
7941d214 6270 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6271 swp_entry_t entry = { .val = page_private(page) };
6272 /*
6273 * The swap entry might not get freed for a long time,
6274 * let's not wait for it. The page already received a
6275 * memory+swap charge, drop the swap entry duplicate.
6276 */
38d8b4e6 6277 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6278 }
6279}
6280
6281/**
6282 * mem_cgroup_cancel_charge - cancel a page charge
6283 * @page: page to charge
6284 * @memcg: memcg to charge the page to
25843c2b 6285 * @compound: charge the page as compound or small page
00501b53
JW
6286 *
6287 * Cancel a charge transaction started by mem_cgroup_try_charge().
6288 */
f627c2f5
KS
6289void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6290 bool compound)
00501b53 6291{
f627c2f5 6292 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6293
6294 if (mem_cgroup_disabled())
6295 return;
6296 /*
6297 * Swap faults will attempt to charge the same page multiple
6298 * times. But reuse_swap_page() might have removed the page
6299 * from swapcache already, so we can't check PageSwapCache().
6300 */
6301 if (!memcg)
6302 return;
6303
00501b53
JW
6304 cancel_charge(memcg, nr_pages);
6305}
6306
a9d5adee
JG
6307struct uncharge_gather {
6308 struct mem_cgroup *memcg;
6309 unsigned long pgpgout;
6310 unsigned long nr_anon;
6311 unsigned long nr_file;
6312 unsigned long nr_kmem;
6313 unsigned long nr_huge;
6314 unsigned long nr_shmem;
6315 struct page *dummy_page;
6316};
6317
6318static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6319{
a9d5adee
JG
6320 memset(ug, 0, sizeof(*ug));
6321}
6322
6323static void uncharge_batch(const struct uncharge_gather *ug)
6324{
6325 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6326 unsigned long flags;
6327
a9d5adee
JG
6328 if (!mem_cgroup_is_root(ug->memcg)) {
6329 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6330 if (do_memsw_account())
a9d5adee
JG
6331 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6332 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6333 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6334 memcg_oom_recover(ug->memcg);
ce00a967 6335 }
747db954
JW
6336
6337 local_irq_save(flags);
c9019e9b
JW
6338 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6339 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6340 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6341 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6342 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6343 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6344 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6345 local_irq_restore(flags);
e8ea14cc 6346
a9d5adee
JG
6347 if (!mem_cgroup_is_root(ug->memcg))
6348 css_put_many(&ug->memcg->css, nr_pages);
6349}
6350
6351static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6352{
6353 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6354 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6355 !PageHWPoison(page) , page);
a9d5adee
JG
6356
6357 if (!page->mem_cgroup)
6358 return;
6359
6360 /*
6361 * Nobody should be changing or seriously looking at
6362 * page->mem_cgroup at this point, we have fully
6363 * exclusive access to the page.
6364 */
6365
6366 if (ug->memcg != page->mem_cgroup) {
6367 if (ug->memcg) {
6368 uncharge_batch(ug);
6369 uncharge_gather_clear(ug);
6370 }
6371 ug->memcg = page->mem_cgroup;
6372 }
6373
6374 if (!PageKmemcg(page)) {
6375 unsigned int nr_pages = 1;
6376
6377 if (PageTransHuge(page)) {
6378 nr_pages <<= compound_order(page);
6379 ug->nr_huge += nr_pages;
6380 }
6381 if (PageAnon(page))
6382 ug->nr_anon += nr_pages;
6383 else {
6384 ug->nr_file += nr_pages;
6385 if (PageSwapBacked(page))
6386 ug->nr_shmem += nr_pages;
6387 }
6388 ug->pgpgout++;
6389 } else {
6390 ug->nr_kmem += 1 << compound_order(page);
6391 __ClearPageKmemcg(page);
6392 }
6393
6394 ug->dummy_page = page;
6395 page->mem_cgroup = NULL;
747db954
JW
6396}
6397
6398static void uncharge_list(struct list_head *page_list)
6399{
a9d5adee 6400 struct uncharge_gather ug;
747db954 6401 struct list_head *next;
a9d5adee
JG
6402
6403 uncharge_gather_clear(&ug);
747db954 6404
8b592656
JW
6405 /*
6406 * Note that the list can be a single page->lru; hence the
6407 * do-while loop instead of a simple list_for_each_entry().
6408 */
747db954
JW
6409 next = page_list->next;
6410 do {
a9d5adee
JG
6411 struct page *page;
6412
747db954
JW
6413 page = list_entry(next, struct page, lru);
6414 next = page->lru.next;
6415
a9d5adee 6416 uncharge_page(page, &ug);
747db954
JW
6417 } while (next != page_list);
6418
a9d5adee
JG
6419 if (ug.memcg)
6420 uncharge_batch(&ug);
747db954
JW
6421}
6422
0a31bc97
JW
6423/**
6424 * mem_cgroup_uncharge - uncharge a page
6425 * @page: page to uncharge
6426 *
6427 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6428 * mem_cgroup_commit_charge().
6429 */
6430void mem_cgroup_uncharge(struct page *page)
6431{
a9d5adee
JG
6432 struct uncharge_gather ug;
6433
0a31bc97
JW
6434 if (mem_cgroup_disabled())
6435 return;
6436
747db954 6437 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6438 if (!page->mem_cgroup)
0a31bc97
JW
6439 return;
6440
a9d5adee
JG
6441 uncharge_gather_clear(&ug);
6442 uncharge_page(page, &ug);
6443 uncharge_batch(&ug);
747db954 6444}
0a31bc97 6445
747db954
JW
6446/**
6447 * mem_cgroup_uncharge_list - uncharge a list of page
6448 * @page_list: list of pages to uncharge
6449 *
6450 * Uncharge a list of pages previously charged with
6451 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6452 */
6453void mem_cgroup_uncharge_list(struct list_head *page_list)
6454{
6455 if (mem_cgroup_disabled())
6456 return;
0a31bc97 6457
747db954
JW
6458 if (!list_empty(page_list))
6459 uncharge_list(page_list);
0a31bc97
JW
6460}
6461
6462/**
6a93ca8f
JW
6463 * mem_cgroup_migrate - charge a page's replacement
6464 * @oldpage: currently circulating page
6465 * @newpage: replacement page
0a31bc97 6466 *
6a93ca8f
JW
6467 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6468 * be uncharged upon free.
0a31bc97
JW
6469 *
6470 * Both pages must be locked, @newpage->mapping must be set up.
6471 */
6a93ca8f 6472void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6473{
29833315 6474 struct mem_cgroup *memcg;
44b7a8d3
JW
6475 unsigned int nr_pages;
6476 bool compound;
d93c4130 6477 unsigned long flags;
0a31bc97
JW
6478
6479 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6480 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6481 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6482 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6483 newpage);
0a31bc97
JW
6484
6485 if (mem_cgroup_disabled())
6486 return;
6487
6488 /* Page cache replacement: new page already charged? */
1306a85a 6489 if (newpage->mem_cgroup)
0a31bc97
JW
6490 return;
6491
45637bab 6492 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6493 memcg = oldpage->mem_cgroup;
29833315 6494 if (!memcg)
0a31bc97
JW
6495 return;
6496
44b7a8d3
JW
6497 /* Force-charge the new page. The old one will be freed soon */
6498 compound = PageTransHuge(newpage);
6499 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6500
6501 page_counter_charge(&memcg->memory, nr_pages);
6502 if (do_memsw_account())
6503 page_counter_charge(&memcg->memsw, nr_pages);
6504 css_get_many(&memcg->css, nr_pages);
0a31bc97 6505
9cf7666a 6506 commit_charge(newpage, memcg, false);
44b7a8d3 6507
d93c4130 6508 local_irq_save(flags);
44b7a8d3
JW
6509 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6510 memcg_check_events(memcg, newpage);
d93c4130 6511 local_irq_restore(flags);
0a31bc97
JW
6512}
6513
ef12947c 6514DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6515EXPORT_SYMBOL(memcg_sockets_enabled_key);
6516
2d758073 6517void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6518{
6519 struct mem_cgroup *memcg;
6520
2d758073
JW
6521 if (!mem_cgroup_sockets_enabled)
6522 return;
6523
edbe69ef
RG
6524 /*
6525 * Socket cloning can throw us here with sk_memcg already
6526 * filled. It won't however, necessarily happen from
6527 * process context. So the test for root memcg given
6528 * the current task's memcg won't help us in this case.
6529 *
6530 * Respecting the original socket's memcg is a better
6531 * decision in this case.
6532 */
6533 if (sk->sk_memcg) {
6534 css_get(&sk->sk_memcg->css);
6535 return;
6536 }
6537
11092087
JW
6538 rcu_read_lock();
6539 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6540 if (memcg == root_mem_cgroup)
6541 goto out;
0db15298 6542 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6543 goto out;
f7e1cb6e 6544 if (css_tryget_online(&memcg->css))
11092087 6545 sk->sk_memcg = memcg;
f7e1cb6e 6546out:
11092087
JW
6547 rcu_read_unlock();
6548}
11092087 6549
2d758073 6550void mem_cgroup_sk_free(struct sock *sk)
11092087 6551{
2d758073
JW
6552 if (sk->sk_memcg)
6553 css_put(&sk->sk_memcg->css);
11092087
JW
6554}
6555
6556/**
6557 * mem_cgroup_charge_skmem - charge socket memory
6558 * @memcg: memcg to charge
6559 * @nr_pages: number of pages to charge
6560 *
6561 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6562 * @memcg's configured limit, %false if the charge had to be forced.
6563 */
6564bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6565{
f7e1cb6e 6566 gfp_t gfp_mask = GFP_KERNEL;
11092087 6567
f7e1cb6e 6568 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6569 struct page_counter *fail;
f7e1cb6e 6570
0db15298
JW
6571 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6572 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6573 return true;
6574 }
0db15298
JW
6575 page_counter_charge(&memcg->tcpmem, nr_pages);
6576 memcg->tcpmem_pressure = 1;
f7e1cb6e 6577 return false;
11092087 6578 }
d886f4e4 6579
f7e1cb6e
JW
6580 /* Don't block in the packet receive path */
6581 if (in_softirq())
6582 gfp_mask = GFP_NOWAIT;
6583
c9019e9b 6584 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6585
f7e1cb6e
JW
6586 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6587 return true;
6588
6589 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6590 return false;
6591}
6592
6593/**
6594 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6595 * @memcg: memcg to uncharge
6596 * @nr_pages: number of pages to uncharge
11092087
JW
6597 */
6598void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6599{
f7e1cb6e 6600 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6601 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6602 return;
6603 }
d886f4e4 6604
c9019e9b 6605 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6606
475d0487 6607 refill_stock(memcg, nr_pages);
11092087
JW
6608}
6609
f7e1cb6e
JW
6610static int __init cgroup_memory(char *s)
6611{
6612 char *token;
6613
6614 while ((token = strsep(&s, ",")) != NULL) {
6615 if (!*token)
6616 continue;
6617 if (!strcmp(token, "nosocket"))
6618 cgroup_memory_nosocket = true;
04823c83
VD
6619 if (!strcmp(token, "nokmem"))
6620 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6621 }
6622 return 0;
6623}
6624__setup("cgroup.memory=", cgroup_memory);
11092087 6625
2d11085e 6626/*
1081312f
MH
6627 * subsys_initcall() for memory controller.
6628 *
308167fc
SAS
6629 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6630 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6631 * basically everything that doesn't depend on a specific mem_cgroup structure
6632 * should be initialized from here.
2d11085e
MH
6633 */
6634static int __init mem_cgroup_init(void)
6635{
95a045f6
JW
6636 int cpu, node;
6637
84c07d11 6638#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6639 /*
6640 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6641 * so use a workqueue with limited concurrency to avoid stalling
6642 * all worker threads in case lots of cgroups are created and
6643 * destroyed simultaneously.
13583c3d 6644 */
17cc4dfe
TH
6645 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6646 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6647#endif
6648
308167fc
SAS
6649 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6650 memcg_hotplug_cpu_dead);
95a045f6
JW
6651
6652 for_each_possible_cpu(cpu)
6653 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6654 drain_local_stock);
6655
6656 for_each_node(node) {
6657 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6658
6659 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6660 node_online(node) ? node : NUMA_NO_NODE);
6661
ef8f2327 6662 rtpn->rb_root = RB_ROOT;
fa90b2fd 6663 rtpn->rb_rightmost = NULL;
ef8f2327 6664 spin_lock_init(&rtpn->lock);
95a045f6
JW
6665 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6666 }
6667
2d11085e
MH
6668 return 0;
6669}
6670subsys_initcall(mem_cgroup_init);
21afa38e
JW
6671
6672#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6673static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6674{
1c2d479a 6675 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6676 /*
6677 * The root cgroup cannot be destroyed, so it's refcount must
6678 * always be >= 1.
6679 */
6680 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6681 VM_BUG_ON(1);
6682 break;
6683 }
6684 memcg = parent_mem_cgroup(memcg);
6685 if (!memcg)
6686 memcg = root_mem_cgroup;
6687 }
6688 return memcg;
6689}
6690
21afa38e
JW
6691/**
6692 * mem_cgroup_swapout - transfer a memsw charge to swap
6693 * @page: page whose memsw charge to transfer
6694 * @entry: swap entry to move the charge to
6695 *
6696 * Transfer the memsw charge of @page to @entry.
6697 */
6698void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6699{
1f47b61f 6700 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6701 unsigned int nr_entries;
21afa38e
JW
6702 unsigned short oldid;
6703
6704 VM_BUG_ON_PAGE(PageLRU(page), page);
6705 VM_BUG_ON_PAGE(page_count(page), page);
6706
7941d214 6707 if (!do_memsw_account())
21afa38e
JW
6708 return;
6709
6710 memcg = page->mem_cgroup;
6711
6712 /* Readahead page, never charged */
6713 if (!memcg)
6714 return;
6715
1f47b61f
VD
6716 /*
6717 * In case the memcg owning these pages has been offlined and doesn't
6718 * have an ID allocated to it anymore, charge the closest online
6719 * ancestor for the swap instead and transfer the memory+swap charge.
6720 */
6721 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6722 nr_entries = hpage_nr_pages(page);
6723 /* Get references for the tail pages, too */
6724 if (nr_entries > 1)
6725 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6726 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6727 nr_entries);
21afa38e 6728 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6729 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6730
6731 page->mem_cgroup = NULL;
6732
6733 if (!mem_cgroup_is_root(memcg))
d6810d73 6734 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6735
1f47b61f
VD
6736 if (memcg != swap_memcg) {
6737 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6738 page_counter_charge(&swap_memcg->memsw, nr_entries);
6739 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6740 }
6741
ce9ce665
SAS
6742 /*
6743 * Interrupts should be disabled here because the caller holds the
b93b0163 6744 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6745 * important here to have the interrupts disabled because it is the
b93b0163 6746 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6747 */
6748 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6749 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6750 -nr_entries);
21afa38e 6751 memcg_check_events(memcg, page);
73f576c0
JW
6752
6753 if (!mem_cgroup_is_root(memcg))
d08afa14 6754 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6755}
6756
38d8b4e6
HY
6757/**
6758 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6759 * @page: page being added to swap
6760 * @entry: swap entry to charge
6761 *
38d8b4e6 6762 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6763 *
6764 * Returns 0 on success, -ENOMEM on failure.
6765 */
6766int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6767{
38d8b4e6 6768 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6769 struct page_counter *counter;
38d8b4e6 6770 struct mem_cgroup *memcg;
37e84351
VD
6771 unsigned short oldid;
6772
6773 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6774 return 0;
6775
6776 memcg = page->mem_cgroup;
6777
6778 /* Readahead page, never charged */
6779 if (!memcg)
6780 return 0;
6781
f3a53a3a
TH
6782 if (!entry.val) {
6783 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6784 return 0;
f3a53a3a 6785 }
bb98f2c5 6786
1f47b61f
VD
6787 memcg = mem_cgroup_id_get_online(memcg);
6788
37e84351 6789 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6790 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6791 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6792 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6793 mem_cgroup_id_put(memcg);
37e84351 6794 return -ENOMEM;
1f47b61f 6795 }
37e84351 6796
38d8b4e6
HY
6797 /* Get references for the tail pages, too */
6798 if (nr_pages > 1)
6799 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6800 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6801 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6802 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6803
37e84351
VD
6804 return 0;
6805}
6806
21afa38e 6807/**
38d8b4e6 6808 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6809 * @entry: swap entry to uncharge
38d8b4e6 6810 * @nr_pages: the amount of swap space to uncharge
21afa38e 6811 */
38d8b4e6 6812void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6813{
6814 struct mem_cgroup *memcg;
6815 unsigned short id;
6816
37e84351 6817 if (!do_swap_account)
21afa38e
JW
6818 return;
6819
38d8b4e6 6820 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6821 rcu_read_lock();
adbe427b 6822 memcg = mem_cgroup_from_id(id);
21afa38e 6823 if (memcg) {
37e84351
VD
6824 if (!mem_cgroup_is_root(memcg)) {
6825 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6826 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6827 else
38d8b4e6 6828 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6829 }
c9019e9b 6830 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6831 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6832 }
6833 rcu_read_unlock();
6834}
6835
d8b38438
VD
6836long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6837{
6838 long nr_swap_pages = get_nr_swap_pages();
6839
6840 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6841 return nr_swap_pages;
6842 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6843 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6844 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6845 page_counter_read(&memcg->swap));
6846 return nr_swap_pages;
6847}
6848
5ccc5aba
VD
6849bool mem_cgroup_swap_full(struct page *page)
6850{
6851 struct mem_cgroup *memcg;
6852
6853 VM_BUG_ON_PAGE(!PageLocked(page), page);
6854
6855 if (vm_swap_full())
6856 return true;
6857 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6858 return false;
6859
6860 memcg = page->mem_cgroup;
6861 if (!memcg)
6862 return false;
6863
6864 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6865 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6866 return true;
6867
6868 return false;
6869}
6870
21afa38e
JW
6871/* for remember boot option*/
6872#ifdef CONFIG_MEMCG_SWAP_ENABLED
6873static int really_do_swap_account __initdata = 1;
6874#else
6875static int really_do_swap_account __initdata;
6876#endif
6877
6878static int __init enable_swap_account(char *s)
6879{
6880 if (!strcmp(s, "1"))
6881 really_do_swap_account = 1;
6882 else if (!strcmp(s, "0"))
6883 really_do_swap_account = 0;
6884 return 1;
6885}
6886__setup("swapaccount=", enable_swap_account);
6887
37e84351
VD
6888static u64 swap_current_read(struct cgroup_subsys_state *css,
6889 struct cftype *cft)
6890{
6891 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6892
6893 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6894}
6895
6896static int swap_max_show(struct seq_file *m, void *v)
6897{
677dc973
CD
6898 return seq_puts_memcg_tunable(m,
6899 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
6900}
6901
6902static ssize_t swap_max_write(struct kernfs_open_file *of,
6903 char *buf, size_t nbytes, loff_t off)
6904{
6905 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6906 unsigned long max;
6907 int err;
6908
6909 buf = strstrip(buf);
6910 err = page_counter_memparse(buf, "max", &max);
6911 if (err)
6912 return err;
6913
be09102b 6914 xchg(&memcg->swap.max, max);
37e84351
VD
6915
6916 return nbytes;
6917}
6918
f3a53a3a
TH
6919static int swap_events_show(struct seq_file *m, void *v)
6920{
aa9694bb 6921 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
6922
6923 seq_printf(m, "max %lu\n",
6924 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6925 seq_printf(m, "fail %lu\n",
6926 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6927
6928 return 0;
6929}
6930
37e84351
VD
6931static struct cftype swap_files[] = {
6932 {
6933 .name = "swap.current",
6934 .flags = CFTYPE_NOT_ON_ROOT,
6935 .read_u64 = swap_current_read,
6936 },
6937 {
6938 .name = "swap.max",
6939 .flags = CFTYPE_NOT_ON_ROOT,
6940 .seq_show = swap_max_show,
6941 .write = swap_max_write,
6942 },
f3a53a3a
TH
6943 {
6944 .name = "swap.events",
6945 .flags = CFTYPE_NOT_ON_ROOT,
6946 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6947 .seq_show = swap_events_show,
6948 },
37e84351
VD
6949 { } /* terminate */
6950};
6951
21afa38e
JW
6952static struct cftype memsw_cgroup_files[] = {
6953 {
6954 .name = "memsw.usage_in_bytes",
6955 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6956 .read_u64 = mem_cgroup_read_u64,
6957 },
6958 {
6959 .name = "memsw.max_usage_in_bytes",
6960 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6961 .write = mem_cgroup_reset,
6962 .read_u64 = mem_cgroup_read_u64,
6963 },
6964 {
6965 .name = "memsw.limit_in_bytes",
6966 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6967 .write = mem_cgroup_write,
6968 .read_u64 = mem_cgroup_read_u64,
6969 },
6970 {
6971 .name = "memsw.failcnt",
6972 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6973 .write = mem_cgroup_reset,
6974 .read_u64 = mem_cgroup_read_u64,
6975 },
6976 { }, /* terminate */
6977};
6978
6979static int __init mem_cgroup_swap_init(void)
6980{
6981 if (!mem_cgroup_disabled() && really_do_swap_account) {
6982 do_swap_account = 1;
37e84351
VD
6983 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6984 swap_files));
21afa38e
JW
6985 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6986 memsw_cgroup_files));
6987 }
6988 return 0;
6989}
6990subsys_initcall(mem_cgroup_swap_init);
6991
6992#endif /* CONFIG_MEMCG_SWAP */