]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/memcontrol.c
mm/list_lru.c: add memcg argument to list_lru_from_kmem()
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
71cd3113 103static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 114
bb4cc1a8
AM
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
ef8f2327 120struct mem_cgroup_tree_per_node {
bb4cc1a8 121 struct rb_root rb_root;
fa90b2fd 122 struct rb_node *rb_rightmost;
bb4cc1a8
AM
123 spinlock_t lock;
124};
125
bb4cc1a8
AM
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
9490ff27
KH
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
2e72b634 137
79bd9814
TH
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
3bc942f3 141struct mem_cgroup_event {
79bd9814 142 /*
59b6f873 143 * memcg which the event belongs to.
79bd9814 144 */
59b6f873 145 struct mem_cgroup *memcg;
79bd9814
TH
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
fba94807
TH
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
59b6f873 159 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 160 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
59b6f873 166 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 167 struct eventfd_ctx *eventfd);
79bd9814
TH
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
ac6424b9 174 wait_queue_entry_t wait;
79bd9814
TH
175 struct work_struct remove;
176};
177
c0ff4b85
R
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 180
7dc74be0
DN
181/* Stuffs for move charges at task migration. */
182/*
1dfab5ab 183 * Types of charges to be moved.
7dc74be0 184 */
1dfab5ab
JW
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 188
4ffef5fe
DN
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
b1dd693e 191 spinlock_t lock; /* for from, to */
264a0ae1 192 struct mm_struct *mm;
4ffef5fe
DN
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
1dfab5ab 195 unsigned long flags;
4ffef5fe 196 unsigned long precharge;
854ffa8d 197 unsigned long moved_charge;
483c30b5 198 unsigned long moved_swap;
8033b97c
DN
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
2bd9bb20 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
4ffef5fe 205
4e416953
BS
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
a0db00fc 210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 212
217bc319
KH
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 215 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
218 NR_CHARGE_TYPE,
219};
220
8c7c6e34 221/* for encoding cft->private value on file */
86ae53e1
GC
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
510fc4e1 226 _KMEM,
d55f90bf 227 _TCP,
86ae53e1
GC
228};
229
a0db00fc
KS
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 232#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
8c7c6e34 235
b05706f1
KT
236/*
237 * Iteration constructs for visiting all cgroups (under a tree). If
238 * loops are exited prematurely (break), mem_cgroup_iter_break() must
239 * be used for reference counting.
240 */
241#define for_each_mem_cgroup_tree(iter, root) \
242 for (iter = mem_cgroup_iter(root, NULL, NULL); \
243 iter != NULL; \
244 iter = mem_cgroup_iter(root, iter, NULL))
245
246#define for_each_mem_cgroup(iter) \
247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
248 iter != NULL; \
249 iter = mem_cgroup_iter(NULL, iter, NULL))
250
70ddf637
AV
251/* Some nice accessors for the vmpressure. */
252struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253{
254 if (!memcg)
255 memcg = root_mem_cgroup;
256 return &memcg->vmpressure;
257}
258
259struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
260{
261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
262}
263
7ffc0edc
MH
264static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
265{
266 return (memcg == root_mem_cgroup);
267}
268
84c07d11 269#ifdef CONFIG_MEMCG_KMEM
55007d84 270/*
f7ce3190 271 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
272 * The main reason for not using cgroup id for this:
273 * this works better in sparse environments, where we have a lot of memcgs,
274 * but only a few kmem-limited. Or also, if we have, for instance, 200
275 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
276 * 200 entry array for that.
55007d84 277 *
dbcf73e2
VD
278 * The current size of the caches array is stored in memcg_nr_cache_ids. It
279 * will double each time we have to increase it.
55007d84 280 */
dbcf73e2
VD
281static DEFINE_IDA(memcg_cache_ida);
282int memcg_nr_cache_ids;
749c5415 283
05257a1a
VD
284/* Protects memcg_nr_cache_ids */
285static DECLARE_RWSEM(memcg_cache_ids_sem);
286
287void memcg_get_cache_ids(void)
288{
289 down_read(&memcg_cache_ids_sem);
290}
291
292void memcg_put_cache_ids(void)
293{
294 up_read(&memcg_cache_ids_sem);
295}
296
55007d84
GC
297/*
298 * MIN_SIZE is different than 1, because we would like to avoid going through
299 * the alloc/free process all the time. In a small machine, 4 kmem-limited
300 * cgroups is a reasonable guess. In the future, it could be a parameter or
301 * tunable, but that is strictly not necessary.
302 *
b8627835 303 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
304 * this constant directly from cgroup, but it is understandable that this is
305 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 306 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
307 * increase ours as well if it increases.
308 */
309#define MEMCG_CACHES_MIN_SIZE 4
b8627835 310#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 311
d7f25f8a
GC
312/*
313 * A lot of the calls to the cache allocation functions are expected to be
314 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
315 * conditional to this static branch, we'll have to allow modules that does
316 * kmem_cache_alloc and the such to see this symbol as well
317 */
ef12947c 318DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 319EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 320
17cc4dfe
TH
321struct workqueue_struct *memcg_kmem_cache_wq;
322
0a4465d3
KT
323static int memcg_shrinker_map_size;
324static DEFINE_MUTEX(memcg_shrinker_map_mutex);
325
326static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
327{
328 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
329}
330
331static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
332 int size, int old_size)
333{
334 struct memcg_shrinker_map *new, *old;
335 int nid;
336
337 lockdep_assert_held(&memcg_shrinker_map_mutex);
338
339 for_each_node(nid) {
340 old = rcu_dereference_protected(
341 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
342 /* Not yet online memcg */
343 if (!old)
344 return 0;
345
346 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
347 if (!new)
348 return -ENOMEM;
349
350 /* Set all old bits, clear all new bits */
351 memset(new->map, (int)0xff, old_size);
352 memset((void *)new->map + old_size, 0, size - old_size);
353
354 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
355 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
356 }
357
358 return 0;
359}
360
361static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
362{
363 struct mem_cgroup_per_node *pn;
364 struct memcg_shrinker_map *map;
365 int nid;
366
367 if (mem_cgroup_is_root(memcg))
368 return;
369
370 for_each_node(nid) {
371 pn = mem_cgroup_nodeinfo(memcg, nid);
372 map = rcu_dereference_protected(pn->shrinker_map, true);
373 if (map)
374 kvfree(map);
375 rcu_assign_pointer(pn->shrinker_map, NULL);
376 }
377}
378
379static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
380{
381 struct memcg_shrinker_map *map;
382 int nid, size, ret = 0;
383
384 if (mem_cgroup_is_root(memcg))
385 return 0;
386
387 mutex_lock(&memcg_shrinker_map_mutex);
388 size = memcg_shrinker_map_size;
389 for_each_node(nid) {
390 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
391 if (!map) {
392 memcg_free_shrinker_maps(memcg);
393 ret = -ENOMEM;
394 break;
395 }
396 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
397 }
398 mutex_unlock(&memcg_shrinker_map_mutex);
399
400 return ret;
401}
402
403int memcg_expand_shrinker_maps(int new_id)
404{
405 int size, old_size, ret = 0;
406 struct mem_cgroup *memcg;
407
408 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
409 old_size = memcg_shrinker_map_size;
410 if (size <= old_size)
411 return 0;
412
413 mutex_lock(&memcg_shrinker_map_mutex);
414 if (!root_mem_cgroup)
415 goto unlock;
416
417 for_each_mem_cgroup(memcg) {
418 if (mem_cgroup_is_root(memcg))
419 continue;
420 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
421 if (ret)
422 goto unlock;
423 }
424unlock:
425 if (!ret)
426 memcg_shrinker_map_size = size;
427 mutex_unlock(&memcg_shrinker_map_mutex);
428 return ret;
429}
430#else /* CONFIG_MEMCG_KMEM */
431static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
432{
433 return 0;
434}
435static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
84c07d11 436#endif /* CONFIG_MEMCG_KMEM */
a8964b9b 437
ad7fa852
TH
438/**
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
441 *
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
445 *
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
ad7fa852
TH
448 */
449struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450{
451 struct mem_cgroup *memcg;
452
ad7fa852
TH
453 memcg = page->mem_cgroup;
454
9e10a130 455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
456 memcg = root_mem_cgroup;
457
ad7fa852
TH
458 return &memcg->css;
459}
460
2fc04524
VD
461/**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474ino_t page_cgroup_ino(struct page *page)
475{
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
480 memcg = READ_ONCE(page->mem_cgroup);
481 while (memcg && !(memcg->css.flags & CSS_ONLINE))
482 memcg = parent_mem_cgroup(memcg);
483 if (memcg)
484 ino = cgroup_ino(memcg->css.cgroup);
485 rcu_read_unlock();
486 return ino;
487}
488
ef8f2327
MG
489static struct mem_cgroup_per_node *
490mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 491{
97a6c37b 492 int nid = page_to_nid(page);
f64c3f54 493
ef8f2327 494 return memcg->nodeinfo[nid];
f64c3f54
BS
495}
496
ef8f2327
MG
497static struct mem_cgroup_tree_per_node *
498soft_limit_tree_node(int nid)
bb4cc1a8 499{
ef8f2327 500 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
501}
502
ef8f2327 503static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
504soft_limit_tree_from_page(struct page *page)
505{
506 int nid = page_to_nid(page);
bb4cc1a8 507
ef8f2327 508 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
509}
510
ef8f2327
MG
511static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
512 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 513 unsigned long new_usage_in_excess)
bb4cc1a8
AM
514{
515 struct rb_node **p = &mctz->rb_root.rb_node;
516 struct rb_node *parent = NULL;
ef8f2327 517 struct mem_cgroup_per_node *mz_node;
fa90b2fd 518 bool rightmost = true;
bb4cc1a8
AM
519
520 if (mz->on_tree)
521 return;
522
523 mz->usage_in_excess = new_usage_in_excess;
524 if (!mz->usage_in_excess)
525 return;
526 while (*p) {
527 parent = *p;
ef8f2327 528 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 529 tree_node);
fa90b2fd 530 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 531 p = &(*p)->rb_left;
fa90b2fd
DB
532 rightmost = false;
533 }
534
bb4cc1a8
AM
535 /*
536 * We can't avoid mem cgroups that are over their soft
537 * limit by the same amount
538 */
539 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
540 p = &(*p)->rb_right;
541 }
fa90b2fd
DB
542
543 if (rightmost)
544 mctz->rb_rightmost = &mz->tree_node;
545
bb4cc1a8
AM
546 rb_link_node(&mz->tree_node, parent, p);
547 rb_insert_color(&mz->tree_node, &mctz->rb_root);
548 mz->on_tree = true;
549}
550
ef8f2327
MG
551static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
552 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
553{
554 if (!mz->on_tree)
555 return;
fa90b2fd
DB
556
557 if (&mz->tree_node == mctz->rb_rightmost)
558 mctz->rb_rightmost = rb_prev(&mz->tree_node);
559
bb4cc1a8
AM
560 rb_erase(&mz->tree_node, &mctz->rb_root);
561 mz->on_tree = false;
562}
563
ef8f2327
MG
564static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
565 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 566{
0a31bc97
JW
567 unsigned long flags;
568
569 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 570 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 571 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
572}
573
3e32cb2e
JW
574static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
575{
576 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 577 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
578 unsigned long excess = 0;
579
580 if (nr_pages > soft_limit)
581 excess = nr_pages - soft_limit;
582
583 return excess;
584}
bb4cc1a8
AM
585
586static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
587{
3e32cb2e 588 unsigned long excess;
ef8f2327
MG
589 struct mem_cgroup_per_node *mz;
590 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 591
e231875b 592 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
593 if (!mctz)
594 return;
bb4cc1a8
AM
595 /*
596 * Necessary to update all ancestors when hierarchy is used.
597 * because their event counter is not touched.
598 */
599 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 600 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 601 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
602 /*
603 * We have to update the tree if mz is on RB-tree or
604 * mem is over its softlimit.
605 */
606 if (excess || mz->on_tree) {
0a31bc97
JW
607 unsigned long flags;
608
609 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
610 /* if on-tree, remove it */
611 if (mz->on_tree)
cf2c8127 612 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
613 /*
614 * Insert again. mz->usage_in_excess will be updated.
615 * If excess is 0, no tree ops.
616 */
cf2c8127 617 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 618 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
619 }
620 }
621}
622
623static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
624{
ef8f2327
MG
625 struct mem_cgroup_tree_per_node *mctz;
626 struct mem_cgroup_per_node *mz;
627 int nid;
bb4cc1a8 628
e231875b 629 for_each_node(nid) {
ef8f2327
MG
630 mz = mem_cgroup_nodeinfo(memcg, nid);
631 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
632 if (mctz)
633 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
634 }
635}
636
ef8f2327
MG
637static struct mem_cgroup_per_node *
638__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 639{
ef8f2327 640 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
641
642retry:
643 mz = NULL;
fa90b2fd 644 if (!mctz->rb_rightmost)
bb4cc1a8
AM
645 goto done; /* Nothing to reclaim from */
646
fa90b2fd
DB
647 mz = rb_entry(mctz->rb_rightmost,
648 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
649 /*
650 * Remove the node now but someone else can add it back,
651 * we will to add it back at the end of reclaim to its correct
652 * position in the tree.
653 */
cf2c8127 654 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 655 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 656 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
657 goto retry;
658done:
659 return mz;
660}
661
ef8f2327
MG
662static struct mem_cgroup_per_node *
663mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 664{
ef8f2327 665 struct mem_cgroup_per_node *mz;
bb4cc1a8 666
0a31bc97 667 spin_lock_irq(&mctz->lock);
bb4cc1a8 668 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 669 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
670 return mz;
671}
672
ccda7f43 673static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
04fecbf5 674 int event)
e9f8974f 675{
a983b5eb 676 return atomic_long_read(&memcg->events[event]);
e9f8974f
JW
677}
678
c0ff4b85 679static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 680 struct page *page,
f627c2f5 681 bool compound, int nr_pages)
d52aa412 682{
b2402857
KH
683 /*
684 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
685 * counted as CACHE even if it's on ANON LRU.
686 */
0a31bc97 687 if (PageAnon(page))
c9019e9b 688 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 689 else {
c9019e9b 690 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 691 if (PageSwapBacked(page))
c9019e9b 692 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 693 }
55e462b0 694
f627c2f5
KS
695 if (compound) {
696 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 697 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 698 }
b070e65c 699
e401f176
KH
700 /* pagein of a big page is an event. So, ignore page size */
701 if (nr_pages > 0)
c9019e9b 702 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 703 else {
c9019e9b 704 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
705 nr_pages = -nr_pages; /* for event */
706 }
e401f176 707
a983b5eb 708 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
6d12e2d8
KH
709}
710
0a6b76dd
VD
711unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
712 int nid, unsigned int lru_mask)
bb2a0de9 713{
b4536f0c 714 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 715 unsigned long nr = 0;
ef8f2327 716 enum lru_list lru;
889976db 717
e231875b 718 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 719
ef8f2327
MG
720 for_each_lru(lru) {
721 if (!(BIT(lru) & lru_mask))
722 continue;
b4536f0c 723 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
724 }
725 return nr;
889976db 726}
bb2a0de9 727
c0ff4b85 728static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 729 unsigned int lru_mask)
6d12e2d8 730{
e231875b 731 unsigned long nr = 0;
889976db 732 int nid;
6d12e2d8 733
31aaea4a 734 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
735 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
736 return nr;
d52aa412
KH
737}
738
f53d7ce3
JW
739static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
740 enum mem_cgroup_events_target target)
7a159cc9
JW
741{
742 unsigned long val, next;
743
a983b5eb
JW
744 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
745 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
7a159cc9 746 /* from time_after() in jiffies.h */
6a1a8b80 747 if ((long)(next - val) < 0) {
f53d7ce3
JW
748 switch (target) {
749 case MEM_CGROUP_TARGET_THRESH:
750 next = val + THRESHOLDS_EVENTS_TARGET;
751 break;
bb4cc1a8
AM
752 case MEM_CGROUP_TARGET_SOFTLIMIT:
753 next = val + SOFTLIMIT_EVENTS_TARGET;
754 break;
f53d7ce3
JW
755 case MEM_CGROUP_TARGET_NUMAINFO:
756 next = val + NUMAINFO_EVENTS_TARGET;
757 break;
758 default:
759 break;
760 }
a983b5eb 761 __this_cpu_write(memcg->stat_cpu->targets[target], next);
f53d7ce3 762 return true;
7a159cc9 763 }
f53d7ce3 764 return false;
d2265e6f
KH
765}
766
767/*
768 * Check events in order.
769 *
770 */
c0ff4b85 771static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
772{
773 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
774 if (unlikely(mem_cgroup_event_ratelimit(memcg,
775 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 776 bool do_softlimit;
82b3f2a7 777 bool do_numainfo __maybe_unused;
f53d7ce3 778
bb4cc1a8
AM
779 do_softlimit = mem_cgroup_event_ratelimit(memcg,
780 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
781#if MAX_NUMNODES > 1
782 do_numainfo = mem_cgroup_event_ratelimit(memcg,
783 MEM_CGROUP_TARGET_NUMAINFO);
784#endif
c0ff4b85 785 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
786 if (unlikely(do_softlimit))
787 mem_cgroup_update_tree(memcg, page);
453a9bf3 788#if MAX_NUMNODES > 1
f53d7ce3 789 if (unlikely(do_numainfo))
c0ff4b85 790 atomic_inc(&memcg->numainfo_events);
453a9bf3 791#endif
0a31bc97 792 }
d2265e6f
KH
793}
794
cf475ad2 795struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 796{
31a78f23
BS
797 /*
798 * mm_update_next_owner() may clear mm->owner to NULL
799 * if it races with swapoff, page migration, etc.
800 * So this can be called with p == NULL.
801 */
802 if (unlikely(!p))
803 return NULL;
804
073219e9 805 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 806}
33398cf2 807EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 808
d46eb14b
SB
809/**
810 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
811 * @mm: mm from which memcg should be extracted. It can be NULL.
812 *
813 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
814 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
815 * returned.
816 */
817struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 818{
d46eb14b
SB
819 struct mem_cgroup *memcg;
820
821 if (mem_cgroup_disabled())
822 return NULL;
0b7f569e 823
54595fe2
KH
824 rcu_read_lock();
825 do {
6f6acb00
MH
826 /*
827 * Page cache insertions can happen withou an
828 * actual mm context, e.g. during disk probing
829 * on boot, loopback IO, acct() writes etc.
830 */
831 if (unlikely(!mm))
df381975 832 memcg = root_mem_cgroup;
6f6acb00
MH
833 else {
834 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
835 if (unlikely(!memcg))
836 memcg = root_mem_cgroup;
837 }
ec903c0c 838 } while (!css_tryget_online(&memcg->css));
54595fe2 839 rcu_read_unlock();
c0ff4b85 840 return memcg;
54595fe2 841}
d46eb14b
SB
842EXPORT_SYMBOL(get_mem_cgroup_from_mm);
843
f745c6f5
SB
844/**
845 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
846 * @page: page from which memcg should be extracted.
847 *
848 * Obtain a reference on page->memcg and returns it if successful. Otherwise
849 * root_mem_cgroup is returned.
850 */
851struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
852{
853 struct mem_cgroup *memcg = page->mem_cgroup;
854
855 if (mem_cgroup_disabled())
856 return NULL;
857
858 rcu_read_lock();
859 if (!memcg || !css_tryget_online(&memcg->css))
860 memcg = root_mem_cgroup;
861 rcu_read_unlock();
862 return memcg;
863}
864EXPORT_SYMBOL(get_mem_cgroup_from_page);
865
d46eb14b
SB
866/**
867 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
868 */
869static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
870{
871 if (unlikely(current->active_memcg)) {
872 struct mem_cgroup *memcg = root_mem_cgroup;
873
874 rcu_read_lock();
875 if (css_tryget_online(&current->active_memcg->css))
876 memcg = current->active_memcg;
877 rcu_read_unlock();
878 return memcg;
879 }
880 return get_mem_cgroup_from_mm(current->mm);
881}
54595fe2 882
5660048c
JW
883/**
884 * mem_cgroup_iter - iterate over memory cgroup hierarchy
885 * @root: hierarchy root
886 * @prev: previously returned memcg, NULL on first invocation
887 * @reclaim: cookie for shared reclaim walks, NULL for full walks
888 *
889 * Returns references to children of the hierarchy below @root, or
890 * @root itself, or %NULL after a full round-trip.
891 *
892 * Caller must pass the return value in @prev on subsequent
893 * invocations for reference counting, or use mem_cgroup_iter_break()
894 * to cancel a hierarchy walk before the round-trip is complete.
895 *
b213b54f 896 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 897 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 898 * reclaimers operating on the same node and priority.
5660048c 899 */
694fbc0f 900struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 901 struct mem_cgroup *prev,
694fbc0f 902 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 903{
33398cf2 904 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 905 struct cgroup_subsys_state *css = NULL;
9f3a0d09 906 struct mem_cgroup *memcg = NULL;
5ac8fb31 907 struct mem_cgroup *pos = NULL;
711d3d2c 908
694fbc0f
AM
909 if (mem_cgroup_disabled())
910 return NULL;
5660048c 911
9f3a0d09
JW
912 if (!root)
913 root = root_mem_cgroup;
7d74b06f 914
9f3a0d09 915 if (prev && !reclaim)
5ac8fb31 916 pos = prev;
14067bb3 917
9f3a0d09
JW
918 if (!root->use_hierarchy && root != root_mem_cgroup) {
919 if (prev)
5ac8fb31 920 goto out;
694fbc0f 921 return root;
9f3a0d09 922 }
14067bb3 923
542f85f9 924 rcu_read_lock();
5f578161 925
5ac8fb31 926 if (reclaim) {
ef8f2327 927 struct mem_cgroup_per_node *mz;
5ac8fb31 928
ef8f2327 929 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
930 iter = &mz->iter[reclaim->priority];
931
932 if (prev && reclaim->generation != iter->generation)
933 goto out_unlock;
934
6df38689 935 while (1) {
4db0c3c2 936 pos = READ_ONCE(iter->position);
6df38689
VD
937 if (!pos || css_tryget(&pos->css))
938 break;
5ac8fb31 939 /*
6df38689
VD
940 * css reference reached zero, so iter->position will
941 * be cleared by ->css_released. However, we should not
942 * rely on this happening soon, because ->css_released
943 * is called from a work queue, and by busy-waiting we
944 * might block it. So we clear iter->position right
945 * away.
5ac8fb31 946 */
6df38689
VD
947 (void)cmpxchg(&iter->position, pos, NULL);
948 }
5ac8fb31
JW
949 }
950
951 if (pos)
952 css = &pos->css;
953
954 for (;;) {
955 css = css_next_descendant_pre(css, &root->css);
956 if (!css) {
957 /*
958 * Reclaimers share the hierarchy walk, and a
959 * new one might jump in right at the end of
960 * the hierarchy - make sure they see at least
961 * one group and restart from the beginning.
962 */
963 if (!prev)
964 continue;
965 break;
527a5ec9 966 }
7d74b06f 967
5ac8fb31
JW
968 /*
969 * Verify the css and acquire a reference. The root
970 * is provided by the caller, so we know it's alive
971 * and kicking, and don't take an extra reference.
972 */
973 memcg = mem_cgroup_from_css(css);
14067bb3 974
5ac8fb31
JW
975 if (css == &root->css)
976 break;
14067bb3 977
0b8f73e1
JW
978 if (css_tryget(css))
979 break;
9f3a0d09 980
5ac8fb31 981 memcg = NULL;
9f3a0d09 982 }
5ac8fb31
JW
983
984 if (reclaim) {
5ac8fb31 985 /*
6df38689
VD
986 * The position could have already been updated by a competing
987 * thread, so check that the value hasn't changed since we read
988 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 989 */
6df38689
VD
990 (void)cmpxchg(&iter->position, pos, memcg);
991
5ac8fb31
JW
992 if (pos)
993 css_put(&pos->css);
994
995 if (!memcg)
996 iter->generation++;
997 else if (!prev)
998 reclaim->generation = iter->generation;
9f3a0d09 999 }
5ac8fb31 1000
542f85f9
MH
1001out_unlock:
1002 rcu_read_unlock();
5ac8fb31 1003out:
c40046f3
MH
1004 if (prev && prev != root)
1005 css_put(&prev->css);
1006
9f3a0d09 1007 return memcg;
14067bb3 1008}
7d74b06f 1009
5660048c
JW
1010/**
1011 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1012 * @root: hierarchy root
1013 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1014 */
1015void mem_cgroup_iter_break(struct mem_cgroup *root,
1016 struct mem_cgroup *prev)
9f3a0d09
JW
1017{
1018 if (!root)
1019 root = root_mem_cgroup;
1020 if (prev && prev != root)
1021 css_put(&prev->css);
1022}
7d74b06f 1023
6df38689
VD
1024static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1025{
1026 struct mem_cgroup *memcg = dead_memcg;
1027 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1028 struct mem_cgroup_per_node *mz;
1029 int nid;
6df38689
VD
1030 int i;
1031
9f15bde6 1032 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 1033 for_each_node(nid) {
ef8f2327
MG
1034 mz = mem_cgroup_nodeinfo(memcg, nid);
1035 for (i = 0; i <= DEF_PRIORITY; i++) {
1036 iter = &mz->iter[i];
1037 cmpxchg(&iter->position,
1038 dead_memcg, NULL);
6df38689
VD
1039 }
1040 }
1041 }
1042}
1043
7c5f64f8
VD
1044/**
1045 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1046 * @memcg: hierarchy root
1047 * @fn: function to call for each task
1048 * @arg: argument passed to @fn
1049 *
1050 * This function iterates over tasks attached to @memcg or to any of its
1051 * descendants and calls @fn for each task. If @fn returns a non-zero
1052 * value, the function breaks the iteration loop and returns the value.
1053 * Otherwise, it will iterate over all tasks and return 0.
1054 *
1055 * This function must not be called for the root memory cgroup.
1056 */
1057int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1058 int (*fn)(struct task_struct *, void *), void *arg)
1059{
1060 struct mem_cgroup *iter;
1061 int ret = 0;
1062
1063 BUG_ON(memcg == root_mem_cgroup);
1064
1065 for_each_mem_cgroup_tree(iter, memcg) {
1066 struct css_task_iter it;
1067 struct task_struct *task;
1068
bc2fb7ed 1069 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
1070 while (!ret && (task = css_task_iter_next(&it)))
1071 ret = fn(task, arg);
1072 css_task_iter_end(&it);
1073 if (ret) {
1074 mem_cgroup_iter_break(memcg, iter);
1075 break;
1076 }
1077 }
1078 return ret;
1079}
1080
925b7673 1081/**
dfe0e773 1082 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1083 * @page: the page
f144c390 1084 * @pgdat: pgdat of the page
dfe0e773
JW
1085 *
1086 * This function is only safe when following the LRU page isolation
1087 * and putback protocol: the LRU lock must be held, and the page must
1088 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1089 */
599d0c95 1090struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1091{
ef8f2327 1092 struct mem_cgroup_per_node *mz;
925b7673 1093 struct mem_cgroup *memcg;
bea8c150 1094 struct lruvec *lruvec;
6d12e2d8 1095
bea8c150 1096 if (mem_cgroup_disabled()) {
599d0c95 1097 lruvec = &pgdat->lruvec;
bea8c150
HD
1098 goto out;
1099 }
925b7673 1100
1306a85a 1101 memcg = page->mem_cgroup;
7512102c 1102 /*
dfe0e773 1103 * Swapcache readahead pages are added to the LRU - and
29833315 1104 * possibly migrated - before they are charged.
7512102c 1105 */
29833315
JW
1106 if (!memcg)
1107 memcg = root_mem_cgroup;
7512102c 1108
ef8f2327 1109 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1110 lruvec = &mz->lruvec;
1111out:
1112 /*
1113 * Since a node can be onlined after the mem_cgroup was created,
1114 * we have to be prepared to initialize lruvec->zone here;
1115 * and if offlined then reonlined, we need to reinitialize it.
1116 */
599d0c95
MG
1117 if (unlikely(lruvec->pgdat != pgdat))
1118 lruvec->pgdat = pgdat;
bea8c150 1119 return lruvec;
08e552c6 1120}
b69408e8 1121
925b7673 1122/**
fa9add64
HD
1123 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1124 * @lruvec: mem_cgroup per zone lru vector
1125 * @lru: index of lru list the page is sitting on
b4536f0c 1126 * @zid: zone id of the accounted pages
fa9add64 1127 * @nr_pages: positive when adding or negative when removing
925b7673 1128 *
ca707239
HD
1129 * This function must be called under lru_lock, just before a page is added
1130 * to or just after a page is removed from an lru list (that ordering being
1131 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1132 */
fa9add64 1133void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1134 int zid, int nr_pages)
3f58a829 1135{
ef8f2327 1136 struct mem_cgroup_per_node *mz;
fa9add64 1137 unsigned long *lru_size;
ca707239 1138 long size;
3f58a829
MK
1139
1140 if (mem_cgroup_disabled())
1141 return;
1142
ef8f2327 1143 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1144 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1145
1146 if (nr_pages < 0)
1147 *lru_size += nr_pages;
1148
1149 size = *lru_size;
b4536f0c
MH
1150 if (WARN_ONCE(size < 0,
1151 "%s(%p, %d, %d): lru_size %ld\n",
1152 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1153 VM_BUG_ON(1);
1154 *lru_size = 0;
1155 }
1156
1157 if (nr_pages > 0)
1158 *lru_size += nr_pages;
08e552c6 1159}
544122e5 1160
2314b42d 1161bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1162{
2314b42d 1163 struct mem_cgroup *task_memcg;
158e0a2d 1164 struct task_struct *p;
ffbdccf5 1165 bool ret;
4c4a2214 1166
158e0a2d 1167 p = find_lock_task_mm(task);
de077d22 1168 if (p) {
2314b42d 1169 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1170 task_unlock(p);
1171 } else {
1172 /*
1173 * All threads may have already detached their mm's, but the oom
1174 * killer still needs to detect if they have already been oom
1175 * killed to prevent needlessly killing additional tasks.
1176 */
ffbdccf5 1177 rcu_read_lock();
2314b42d
JW
1178 task_memcg = mem_cgroup_from_task(task);
1179 css_get(&task_memcg->css);
ffbdccf5 1180 rcu_read_unlock();
de077d22 1181 }
2314b42d
JW
1182 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1183 css_put(&task_memcg->css);
4c4a2214
DR
1184 return ret;
1185}
1186
19942822 1187/**
9d11ea9f 1188 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1189 * @memcg: the memory cgroup
19942822 1190 *
9d11ea9f 1191 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1192 * pages.
19942822 1193 */
c0ff4b85 1194static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1195{
3e32cb2e
JW
1196 unsigned long margin = 0;
1197 unsigned long count;
1198 unsigned long limit;
9d11ea9f 1199
3e32cb2e 1200 count = page_counter_read(&memcg->memory);
bbec2e15 1201 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1202 if (count < limit)
1203 margin = limit - count;
1204
7941d214 1205 if (do_memsw_account()) {
3e32cb2e 1206 count = page_counter_read(&memcg->memsw);
bbec2e15 1207 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1208 if (count <= limit)
1209 margin = min(margin, limit - count);
cbedbac3
LR
1210 else
1211 margin = 0;
3e32cb2e
JW
1212 }
1213
1214 return margin;
19942822
JW
1215}
1216
32047e2a 1217/*
bdcbb659 1218 * A routine for checking "mem" is under move_account() or not.
32047e2a 1219 *
bdcbb659
QH
1220 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1221 * moving cgroups. This is for waiting at high-memory pressure
1222 * caused by "move".
32047e2a 1223 */
c0ff4b85 1224static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1225{
2bd9bb20
KH
1226 struct mem_cgroup *from;
1227 struct mem_cgroup *to;
4b534334 1228 bool ret = false;
2bd9bb20
KH
1229 /*
1230 * Unlike task_move routines, we access mc.to, mc.from not under
1231 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1232 */
1233 spin_lock(&mc.lock);
1234 from = mc.from;
1235 to = mc.to;
1236 if (!from)
1237 goto unlock;
3e92041d 1238
2314b42d
JW
1239 ret = mem_cgroup_is_descendant(from, memcg) ||
1240 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1241unlock:
1242 spin_unlock(&mc.lock);
4b534334
KH
1243 return ret;
1244}
1245
c0ff4b85 1246static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1247{
1248 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1249 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1250 DEFINE_WAIT(wait);
1251 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1252 /* moving charge context might have finished. */
1253 if (mc.moving_task)
1254 schedule();
1255 finish_wait(&mc.waitq, &wait);
1256 return true;
1257 }
1258 }
1259 return false;
1260}
1261
8ad6e404 1262static const unsigned int memcg1_stats[] = {
71cd3113
JW
1263 MEMCG_CACHE,
1264 MEMCG_RSS,
1265 MEMCG_RSS_HUGE,
1266 NR_SHMEM,
1267 NR_FILE_MAPPED,
1268 NR_FILE_DIRTY,
1269 NR_WRITEBACK,
1270 MEMCG_SWAP,
1271};
1272
1273static const char *const memcg1_stat_names[] = {
1274 "cache",
1275 "rss",
1276 "rss_huge",
1277 "shmem",
1278 "mapped_file",
1279 "dirty",
1280 "writeback",
1281 "swap",
1282};
1283
58cf188e 1284#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1285/**
58cf188e 1286 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1287 * @memcg: The memory cgroup that went over limit
1288 * @p: Task that is going to be killed
1289 *
1290 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1291 * enabled
1292 */
1293void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1294{
58cf188e
SZ
1295 struct mem_cgroup *iter;
1296 unsigned int i;
e222432b 1297
e222432b
BS
1298 rcu_read_lock();
1299
2415b9f5
BV
1300 if (p) {
1301 pr_info("Task in ");
1302 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1303 pr_cont(" killed as a result of limit of ");
1304 } else {
1305 pr_info("Memory limit reached of cgroup ");
1306 }
1307
e61734c5 1308 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1309 pr_cont("\n");
e222432b 1310
e222432b
BS
1311 rcu_read_unlock();
1312
3e32cb2e
JW
1313 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1314 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1315 K((u64)memcg->memory.max), memcg->memory.failcnt);
3e32cb2e
JW
1316 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1317 K((u64)page_counter_read(&memcg->memsw)),
bbec2e15 1318 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
3e32cb2e
JW
1319 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1320 K((u64)page_counter_read(&memcg->kmem)),
bbec2e15 1321 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e
SZ
1322
1323 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1324 pr_info("Memory cgroup stats for ");
1325 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1326 pr_cont(":");
1327
71cd3113
JW
1328 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1329 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1330 continue;
71cd3113 1331 pr_cont(" %s:%luKB", memcg1_stat_names[i],
ccda7f43 1332 K(memcg_page_state(iter, memcg1_stats[i])));
58cf188e
SZ
1333 }
1334
1335 for (i = 0; i < NR_LRU_LISTS; i++)
1336 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1337 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1338
1339 pr_cont("\n");
1340 }
e222432b
BS
1341}
1342
a63d83f4
DR
1343/*
1344 * Return the memory (and swap, if configured) limit for a memcg.
1345 */
bbec2e15 1346unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1347{
bbec2e15 1348 unsigned long max;
f3e8eb70 1349
bbec2e15 1350 max = memcg->memory.max;
9a5a8f19 1351 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1352 unsigned long memsw_max;
1353 unsigned long swap_max;
9a5a8f19 1354
bbec2e15
RG
1355 memsw_max = memcg->memsw.max;
1356 swap_max = memcg->swap.max;
1357 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1358 max = min(max + swap_max, memsw_max);
9a5a8f19 1359 }
bbec2e15 1360 return max;
a63d83f4
DR
1361}
1362
b6e6edcf 1363static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1364 int order)
9cbb78bb 1365{
6e0fc46d
DR
1366 struct oom_control oc = {
1367 .zonelist = NULL,
1368 .nodemask = NULL,
2a966b77 1369 .memcg = memcg,
6e0fc46d
DR
1370 .gfp_mask = gfp_mask,
1371 .order = order,
6e0fc46d 1372 };
7c5f64f8 1373 bool ret;
9cbb78bb 1374
dc56401f 1375 mutex_lock(&oom_lock);
7c5f64f8 1376 ret = out_of_memory(&oc);
dc56401f 1377 mutex_unlock(&oom_lock);
7c5f64f8 1378 return ret;
9cbb78bb
DR
1379}
1380
ae6e71d3
MC
1381#if MAX_NUMNODES > 1
1382
4d0c066d
KH
1383/**
1384 * test_mem_cgroup_node_reclaimable
dad7557e 1385 * @memcg: the target memcg
4d0c066d
KH
1386 * @nid: the node ID to be checked.
1387 * @noswap : specify true here if the user wants flle only information.
1388 *
1389 * This function returns whether the specified memcg contains any
1390 * reclaimable pages on a node. Returns true if there are any reclaimable
1391 * pages in the node.
1392 */
c0ff4b85 1393static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1394 int nid, bool noswap)
1395{
c0ff4b85 1396 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1397 return true;
1398 if (noswap || !total_swap_pages)
1399 return false;
c0ff4b85 1400 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1401 return true;
1402 return false;
1403
1404}
889976db
YH
1405
1406/*
1407 * Always updating the nodemask is not very good - even if we have an empty
1408 * list or the wrong list here, we can start from some node and traverse all
1409 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1410 *
1411 */
c0ff4b85 1412static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1413{
1414 int nid;
453a9bf3
KH
1415 /*
1416 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1417 * pagein/pageout changes since the last update.
1418 */
c0ff4b85 1419 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1420 return;
c0ff4b85 1421 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1422 return;
1423
889976db 1424 /* make a nodemask where this memcg uses memory from */
31aaea4a 1425 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1426
31aaea4a 1427 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1428
c0ff4b85
R
1429 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1430 node_clear(nid, memcg->scan_nodes);
889976db 1431 }
453a9bf3 1432
c0ff4b85
R
1433 atomic_set(&memcg->numainfo_events, 0);
1434 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1435}
1436
1437/*
1438 * Selecting a node where we start reclaim from. Because what we need is just
1439 * reducing usage counter, start from anywhere is O,K. Considering
1440 * memory reclaim from current node, there are pros. and cons.
1441 *
1442 * Freeing memory from current node means freeing memory from a node which
1443 * we'll use or we've used. So, it may make LRU bad. And if several threads
1444 * hit limits, it will see a contention on a node. But freeing from remote
1445 * node means more costs for memory reclaim because of memory latency.
1446 *
1447 * Now, we use round-robin. Better algorithm is welcomed.
1448 */
c0ff4b85 1449int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1450{
1451 int node;
1452
c0ff4b85
R
1453 mem_cgroup_may_update_nodemask(memcg);
1454 node = memcg->last_scanned_node;
889976db 1455
0edaf86c 1456 node = next_node_in(node, memcg->scan_nodes);
889976db 1457 /*
fda3d69b
MH
1458 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1459 * last time it really checked all the LRUs due to rate limiting.
1460 * Fallback to the current node in that case for simplicity.
889976db
YH
1461 */
1462 if (unlikely(node == MAX_NUMNODES))
1463 node = numa_node_id();
1464
c0ff4b85 1465 memcg->last_scanned_node = node;
889976db
YH
1466 return node;
1467}
889976db 1468#else
c0ff4b85 1469int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1470{
1471 return 0;
1472}
1473#endif
1474
0608f43d 1475static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1476 pg_data_t *pgdat,
0608f43d
AM
1477 gfp_t gfp_mask,
1478 unsigned long *total_scanned)
1479{
1480 struct mem_cgroup *victim = NULL;
1481 int total = 0;
1482 int loop = 0;
1483 unsigned long excess;
1484 unsigned long nr_scanned;
1485 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1486 .pgdat = pgdat,
0608f43d
AM
1487 .priority = 0,
1488 };
1489
3e32cb2e 1490 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1491
1492 while (1) {
1493 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1494 if (!victim) {
1495 loop++;
1496 if (loop >= 2) {
1497 /*
1498 * If we have not been able to reclaim
1499 * anything, it might because there are
1500 * no reclaimable pages under this hierarchy
1501 */
1502 if (!total)
1503 break;
1504 /*
1505 * We want to do more targeted reclaim.
1506 * excess >> 2 is not to excessive so as to
1507 * reclaim too much, nor too less that we keep
1508 * coming back to reclaim from this cgroup
1509 */
1510 if (total >= (excess >> 2) ||
1511 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1512 break;
1513 }
1514 continue;
1515 }
a9dd0a83 1516 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1517 pgdat, &nr_scanned);
0608f43d 1518 *total_scanned += nr_scanned;
3e32cb2e 1519 if (!soft_limit_excess(root_memcg))
0608f43d 1520 break;
6d61ef40 1521 }
0608f43d
AM
1522 mem_cgroup_iter_break(root_memcg, victim);
1523 return total;
6d61ef40
BS
1524}
1525
0056f4e6
JW
1526#ifdef CONFIG_LOCKDEP
1527static struct lockdep_map memcg_oom_lock_dep_map = {
1528 .name = "memcg_oom_lock",
1529};
1530#endif
1531
fb2a6fc5
JW
1532static DEFINE_SPINLOCK(memcg_oom_lock);
1533
867578cb
KH
1534/*
1535 * Check OOM-Killer is already running under our hierarchy.
1536 * If someone is running, return false.
1537 */
fb2a6fc5 1538static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1539{
79dfdacc 1540 struct mem_cgroup *iter, *failed = NULL;
a636b327 1541
fb2a6fc5
JW
1542 spin_lock(&memcg_oom_lock);
1543
9f3a0d09 1544 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1545 if (iter->oom_lock) {
79dfdacc
MH
1546 /*
1547 * this subtree of our hierarchy is already locked
1548 * so we cannot give a lock.
1549 */
79dfdacc 1550 failed = iter;
9f3a0d09
JW
1551 mem_cgroup_iter_break(memcg, iter);
1552 break;
23751be0
JW
1553 } else
1554 iter->oom_lock = true;
7d74b06f 1555 }
867578cb 1556
fb2a6fc5
JW
1557 if (failed) {
1558 /*
1559 * OK, we failed to lock the whole subtree so we have
1560 * to clean up what we set up to the failing subtree
1561 */
1562 for_each_mem_cgroup_tree(iter, memcg) {
1563 if (iter == failed) {
1564 mem_cgroup_iter_break(memcg, iter);
1565 break;
1566 }
1567 iter->oom_lock = false;
79dfdacc 1568 }
0056f4e6
JW
1569 } else
1570 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1571
1572 spin_unlock(&memcg_oom_lock);
1573
1574 return !failed;
a636b327 1575}
0b7f569e 1576
fb2a6fc5 1577static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1578{
7d74b06f
KH
1579 struct mem_cgroup *iter;
1580
fb2a6fc5 1581 spin_lock(&memcg_oom_lock);
0056f4e6 1582 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1583 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1584 iter->oom_lock = false;
fb2a6fc5 1585 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1586}
1587
c0ff4b85 1588static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1589{
1590 struct mem_cgroup *iter;
1591
c2b42d3c 1592 spin_lock(&memcg_oom_lock);
c0ff4b85 1593 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1594 iter->under_oom++;
1595 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1596}
1597
c0ff4b85 1598static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1599{
1600 struct mem_cgroup *iter;
1601
867578cb
KH
1602 /*
1603 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1604 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1605 */
c2b42d3c 1606 spin_lock(&memcg_oom_lock);
c0ff4b85 1607 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1608 if (iter->under_oom > 0)
1609 iter->under_oom--;
1610 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1611}
1612
867578cb
KH
1613static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1614
dc98df5a 1615struct oom_wait_info {
d79154bb 1616 struct mem_cgroup *memcg;
ac6424b9 1617 wait_queue_entry_t wait;
dc98df5a
KH
1618};
1619
ac6424b9 1620static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1621 unsigned mode, int sync, void *arg)
1622{
d79154bb
HD
1623 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1624 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1625 struct oom_wait_info *oom_wait_info;
1626
1627 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1628 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1629
2314b42d
JW
1630 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1631 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1632 return 0;
dc98df5a
KH
1633 return autoremove_wake_function(wait, mode, sync, arg);
1634}
1635
c0ff4b85 1636static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1637{
c2b42d3c
TH
1638 /*
1639 * For the following lockless ->under_oom test, the only required
1640 * guarantee is that it must see the state asserted by an OOM when
1641 * this function is called as a result of userland actions
1642 * triggered by the notification of the OOM. This is trivially
1643 * achieved by invoking mem_cgroup_mark_under_oom() before
1644 * triggering notification.
1645 */
1646 if (memcg && memcg->under_oom)
f4b90b70 1647 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1648}
1649
29ef680a
MH
1650enum oom_status {
1651 OOM_SUCCESS,
1652 OOM_FAILED,
1653 OOM_ASYNC,
1654 OOM_SKIPPED
1655};
1656
1657static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1658{
29ef680a
MH
1659 if (order > PAGE_ALLOC_COSTLY_ORDER)
1660 return OOM_SKIPPED;
1661
867578cb 1662 /*
49426420
JW
1663 * We are in the middle of the charge context here, so we
1664 * don't want to block when potentially sitting on a callstack
1665 * that holds all kinds of filesystem and mm locks.
1666 *
29ef680a
MH
1667 * cgroup1 allows disabling the OOM killer and waiting for outside
1668 * handling until the charge can succeed; remember the context and put
1669 * the task to sleep at the end of the page fault when all locks are
1670 * released.
49426420 1671 *
29ef680a
MH
1672 * On the other hand, in-kernel OOM killer allows for an async victim
1673 * memory reclaim (oom_reaper) and that means that we are not solely
1674 * relying on the oom victim to make a forward progress and we can
1675 * invoke the oom killer here.
1676 *
1677 * Please note that mem_cgroup_out_of_memory might fail to find a
1678 * victim and then we have to bail out from the charge path.
867578cb 1679 */
29ef680a
MH
1680 if (memcg->oom_kill_disable) {
1681 if (!current->in_user_fault)
1682 return OOM_SKIPPED;
1683 css_get(&memcg->css);
1684 current->memcg_in_oom = memcg;
1685 current->memcg_oom_gfp_mask = mask;
1686 current->memcg_oom_order = order;
1687
1688 return OOM_ASYNC;
1689 }
1690
1691 if (mem_cgroup_out_of_memory(memcg, mask, order))
1692 return OOM_SUCCESS;
1693
1694 WARN(1,"Memory cgroup charge failed because of no reclaimable memory! "
1695 "This looks like a misconfiguration or a kernel bug.");
1696 return OOM_FAILED;
3812c8c8
JW
1697}
1698
1699/**
1700 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1701 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1702 *
49426420
JW
1703 * This has to be called at the end of a page fault if the memcg OOM
1704 * handler was enabled.
3812c8c8 1705 *
49426420 1706 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1707 * sleep on a waitqueue until the userspace task resolves the
1708 * situation. Sleeping directly in the charge context with all kinds
1709 * of locks held is not a good idea, instead we remember an OOM state
1710 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1711 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1712 *
1713 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1714 * completed, %false otherwise.
3812c8c8 1715 */
49426420 1716bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1717{
626ebc41 1718 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1719 struct oom_wait_info owait;
49426420 1720 bool locked;
3812c8c8
JW
1721
1722 /* OOM is global, do not handle */
3812c8c8 1723 if (!memcg)
49426420 1724 return false;
3812c8c8 1725
7c5f64f8 1726 if (!handle)
49426420 1727 goto cleanup;
3812c8c8
JW
1728
1729 owait.memcg = memcg;
1730 owait.wait.flags = 0;
1731 owait.wait.func = memcg_oom_wake_function;
1732 owait.wait.private = current;
2055da97 1733 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1734
3812c8c8 1735 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1736 mem_cgroup_mark_under_oom(memcg);
1737
1738 locked = mem_cgroup_oom_trylock(memcg);
1739
1740 if (locked)
1741 mem_cgroup_oom_notify(memcg);
1742
1743 if (locked && !memcg->oom_kill_disable) {
1744 mem_cgroup_unmark_under_oom(memcg);
1745 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1746 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1747 current->memcg_oom_order);
49426420 1748 } else {
3812c8c8 1749 schedule();
49426420
JW
1750 mem_cgroup_unmark_under_oom(memcg);
1751 finish_wait(&memcg_oom_waitq, &owait.wait);
1752 }
1753
1754 if (locked) {
fb2a6fc5
JW
1755 mem_cgroup_oom_unlock(memcg);
1756 /*
1757 * There is no guarantee that an OOM-lock contender
1758 * sees the wakeups triggered by the OOM kill
1759 * uncharges. Wake any sleepers explicitely.
1760 */
1761 memcg_oom_recover(memcg);
1762 }
49426420 1763cleanup:
626ebc41 1764 current->memcg_in_oom = NULL;
3812c8c8 1765 css_put(&memcg->css);
867578cb 1766 return true;
0b7f569e
KH
1767}
1768
d7365e78 1769/**
81f8c3a4
JW
1770 * lock_page_memcg - lock a page->mem_cgroup binding
1771 * @page: the page
32047e2a 1772 *
81f8c3a4 1773 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1774 * another cgroup.
1775 *
1776 * It ensures lifetime of the returned memcg. Caller is responsible
1777 * for the lifetime of the page; __unlock_page_memcg() is available
1778 * when @page might get freed inside the locked section.
d69b042f 1779 */
739f79fc 1780struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1781{
1782 struct mem_cgroup *memcg;
6de22619 1783 unsigned long flags;
89c06bd5 1784
6de22619
JW
1785 /*
1786 * The RCU lock is held throughout the transaction. The fast
1787 * path can get away without acquiring the memcg->move_lock
1788 * because page moving starts with an RCU grace period.
739f79fc
JW
1789 *
1790 * The RCU lock also protects the memcg from being freed when
1791 * the page state that is going to change is the only thing
1792 * preventing the page itself from being freed. E.g. writeback
1793 * doesn't hold a page reference and relies on PG_writeback to
1794 * keep off truncation, migration and so forth.
1795 */
d7365e78
JW
1796 rcu_read_lock();
1797
1798 if (mem_cgroup_disabled())
739f79fc 1799 return NULL;
89c06bd5 1800again:
1306a85a 1801 memcg = page->mem_cgroup;
29833315 1802 if (unlikely(!memcg))
739f79fc 1803 return NULL;
d7365e78 1804
bdcbb659 1805 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1806 return memcg;
89c06bd5 1807
6de22619 1808 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1809 if (memcg != page->mem_cgroup) {
6de22619 1810 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1811 goto again;
1812 }
6de22619
JW
1813
1814 /*
1815 * When charge migration first begins, we can have locked and
1816 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1817 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1818 */
1819 memcg->move_lock_task = current;
1820 memcg->move_lock_flags = flags;
d7365e78 1821
739f79fc 1822 return memcg;
89c06bd5 1823}
81f8c3a4 1824EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1825
d7365e78 1826/**
739f79fc
JW
1827 * __unlock_page_memcg - unlock and unpin a memcg
1828 * @memcg: the memcg
1829 *
1830 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1831 */
739f79fc 1832void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1833{
6de22619
JW
1834 if (memcg && memcg->move_lock_task == current) {
1835 unsigned long flags = memcg->move_lock_flags;
1836
1837 memcg->move_lock_task = NULL;
1838 memcg->move_lock_flags = 0;
1839
1840 spin_unlock_irqrestore(&memcg->move_lock, flags);
1841 }
89c06bd5 1842
d7365e78 1843 rcu_read_unlock();
89c06bd5 1844}
739f79fc
JW
1845
1846/**
1847 * unlock_page_memcg - unlock a page->mem_cgroup binding
1848 * @page: the page
1849 */
1850void unlock_page_memcg(struct page *page)
1851{
1852 __unlock_page_memcg(page->mem_cgroup);
1853}
81f8c3a4 1854EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1855
cdec2e42
KH
1856struct memcg_stock_pcp {
1857 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1858 unsigned int nr_pages;
cdec2e42 1859 struct work_struct work;
26fe6168 1860 unsigned long flags;
a0db00fc 1861#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1862};
1863static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1864static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1865
a0956d54
SS
1866/**
1867 * consume_stock: Try to consume stocked charge on this cpu.
1868 * @memcg: memcg to consume from.
1869 * @nr_pages: how many pages to charge.
1870 *
1871 * The charges will only happen if @memcg matches the current cpu's memcg
1872 * stock, and at least @nr_pages are available in that stock. Failure to
1873 * service an allocation will refill the stock.
1874 *
1875 * returns true if successful, false otherwise.
cdec2e42 1876 */
a0956d54 1877static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1878{
1879 struct memcg_stock_pcp *stock;
db2ba40c 1880 unsigned long flags;
3e32cb2e 1881 bool ret = false;
cdec2e42 1882
a983b5eb 1883 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 1884 return ret;
a0956d54 1885
db2ba40c
JW
1886 local_irq_save(flags);
1887
1888 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1889 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1890 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1891 ret = true;
1892 }
db2ba40c
JW
1893
1894 local_irq_restore(flags);
1895
cdec2e42
KH
1896 return ret;
1897}
1898
1899/*
3e32cb2e 1900 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1901 */
1902static void drain_stock(struct memcg_stock_pcp *stock)
1903{
1904 struct mem_cgroup *old = stock->cached;
1905
11c9ea4e 1906 if (stock->nr_pages) {
3e32cb2e 1907 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1908 if (do_memsw_account())
3e32cb2e 1909 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1910 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1911 stock->nr_pages = 0;
cdec2e42
KH
1912 }
1913 stock->cached = NULL;
cdec2e42
KH
1914}
1915
cdec2e42
KH
1916static void drain_local_stock(struct work_struct *dummy)
1917{
db2ba40c
JW
1918 struct memcg_stock_pcp *stock;
1919 unsigned long flags;
1920
72f0184c
MH
1921 /*
1922 * The only protection from memory hotplug vs. drain_stock races is
1923 * that we always operate on local CPU stock here with IRQ disabled
1924 */
db2ba40c
JW
1925 local_irq_save(flags);
1926
1927 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1928 drain_stock(stock);
26fe6168 1929 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1930
1931 local_irq_restore(flags);
cdec2e42
KH
1932}
1933
1934/*
3e32cb2e 1935 * Cache charges(val) to local per_cpu area.
320cc51d 1936 * This will be consumed by consume_stock() function, later.
cdec2e42 1937 */
c0ff4b85 1938static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1939{
db2ba40c
JW
1940 struct memcg_stock_pcp *stock;
1941 unsigned long flags;
1942
1943 local_irq_save(flags);
cdec2e42 1944
db2ba40c 1945 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1946 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1947 drain_stock(stock);
c0ff4b85 1948 stock->cached = memcg;
cdec2e42 1949 }
11c9ea4e 1950 stock->nr_pages += nr_pages;
db2ba40c 1951
a983b5eb 1952 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
1953 drain_stock(stock);
1954
db2ba40c 1955 local_irq_restore(flags);
cdec2e42
KH
1956}
1957
1958/*
c0ff4b85 1959 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1960 * of the hierarchy under it.
cdec2e42 1961 */
6d3d6aa2 1962static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1963{
26fe6168 1964 int cpu, curcpu;
d38144b7 1965
6d3d6aa2
JW
1966 /* If someone's already draining, avoid adding running more workers. */
1967 if (!mutex_trylock(&percpu_charge_mutex))
1968 return;
72f0184c
MH
1969 /*
1970 * Notify other cpus that system-wide "drain" is running
1971 * We do not care about races with the cpu hotplug because cpu down
1972 * as well as workers from this path always operate on the local
1973 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1974 */
5af12d0e 1975 curcpu = get_cpu();
cdec2e42
KH
1976 for_each_online_cpu(cpu) {
1977 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1978 struct mem_cgroup *memcg;
26fe6168 1979
c0ff4b85 1980 memcg = stock->cached;
72f0184c 1981 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 1982 continue;
72f0184c
MH
1983 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1984 css_put(&memcg->css);
3e92041d 1985 continue;
72f0184c 1986 }
d1a05b69
MH
1987 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1988 if (cpu == curcpu)
1989 drain_local_stock(&stock->work);
1990 else
1991 schedule_work_on(cpu, &stock->work);
1992 }
72f0184c 1993 css_put(&memcg->css);
cdec2e42 1994 }
5af12d0e 1995 put_cpu();
9f50fad6 1996 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1997}
1998
308167fc 1999static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2000{
cdec2e42 2001 struct memcg_stock_pcp *stock;
a983b5eb 2002 struct mem_cgroup *memcg;
cdec2e42 2003
cdec2e42
KH
2004 stock = &per_cpu(memcg_stock, cpu);
2005 drain_stock(stock);
a983b5eb
JW
2006
2007 for_each_mem_cgroup(memcg) {
2008 int i;
2009
2010 for (i = 0; i < MEMCG_NR_STAT; i++) {
2011 int nid;
2012 long x;
2013
2014 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2015 if (x)
2016 atomic_long_add(x, &memcg->stat[i]);
2017
2018 if (i >= NR_VM_NODE_STAT_ITEMS)
2019 continue;
2020
2021 for_each_node(nid) {
2022 struct mem_cgroup_per_node *pn;
2023
2024 pn = mem_cgroup_nodeinfo(memcg, nid);
2025 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2026 if (x)
2027 atomic_long_add(x, &pn->lruvec_stat[i]);
2028 }
2029 }
2030
e27be240 2031 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2032 long x;
2033
2034 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2035 if (x)
2036 atomic_long_add(x, &memcg->events[i]);
2037 }
2038 }
2039
308167fc 2040 return 0;
cdec2e42
KH
2041}
2042
f7e1cb6e
JW
2043static void reclaim_high(struct mem_cgroup *memcg,
2044 unsigned int nr_pages,
2045 gfp_t gfp_mask)
2046{
2047 do {
2048 if (page_counter_read(&memcg->memory) <= memcg->high)
2049 continue;
e27be240 2050 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2051 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2052 } while ((memcg = parent_mem_cgroup(memcg)));
2053}
2054
2055static void high_work_func(struct work_struct *work)
2056{
2057 struct mem_cgroup *memcg;
2058
2059 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2060 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2061}
2062
b23afb93
TH
2063/*
2064 * Scheduled by try_charge() to be executed from the userland return path
2065 * and reclaims memory over the high limit.
2066 */
2067void mem_cgroup_handle_over_high(void)
2068{
2069 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2070 struct mem_cgroup *memcg;
b23afb93
TH
2071
2072 if (likely(!nr_pages))
2073 return;
2074
f7e1cb6e
JW
2075 memcg = get_mem_cgroup_from_mm(current->mm);
2076 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
2077 css_put(&memcg->css);
2078 current->memcg_nr_pages_over_high = 0;
2079}
2080
00501b53
JW
2081static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2082 unsigned int nr_pages)
8a9f3ccd 2083{
a983b5eb 2084 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2085 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2086 struct mem_cgroup *mem_over_limit;
3e32cb2e 2087 struct page_counter *counter;
6539cc05 2088 unsigned long nr_reclaimed;
b70a2a21
JW
2089 bool may_swap = true;
2090 bool drained = false;
29ef680a
MH
2091 bool oomed = false;
2092 enum oom_status oom_status;
a636b327 2093
ce00a967 2094 if (mem_cgroup_is_root(memcg))
10d53c74 2095 return 0;
6539cc05 2096retry:
b6b6cc72 2097 if (consume_stock(memcg, nr_pages))
10d53c74 2098 return 0;
8a9f3ccd 2099
7941d214 2100 if (!do_memsw_account() ||
6071ca52
JW
2101 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2102 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2103 goto done_restock;
7941d214 2104 if (do_memsw_account())
3e32cb2e
JW
2105 page_counter_uncharge(&memcg->memsw, batch);
2106 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2107 } else {
3e32cb2e 2108 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2109 may_swap = false;
3fbe7244 2110 }
7a81b88c 2111
6539cc05
JW
2112 if (batch > nr_pages) {
2113 batch = nr_pages;
2114 goto retry;
2115 }
6d61ef40 2116
06b078fc
JW
2117 /*
2118 * Unlike in global OOM situations, memcg is not in a physical
2119 * memory shortage. Allow dying and OOM-killed tasks to
2120 * bypass the last charges so that they can exit quickly and
2121 * free their memory.
2122 */
da99ecf1 2123 if (unlikely(tsk_is_oom_victim(current) ||
06b078fc
JW
2124 fatal_signal_pending(current) ||
2125 current->flags & PF_EXITING))
10d53c74 2126 goto force;
06b078fc 2127
89a28483
JW
2128 /*
2129 * Prevent unbounded recursion when reclaim operations need to
2130 * allocate memory. This might exceed the limits temporarily,
2131 * but we prefer facilitating memory reclaim and getting back
2132 * under the limit over triggering OOM kills in these cases.
2133 */
2134 if (unlikely(current->flags & PF_MEMALLOC))
2135 goto force;
2136
06b078fc
JW
2137 if (unlikely(task_in_memcg_oom(current)))
2138 goto nomem;
2139
d0164adc 2140 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2141 goto nomem;
4b534334 2142
e27be240 2143 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2144
b70a2a21
JW
2145 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2146 gfp_mask, may_swap);
6539cc05 2147
61e02c74 2148 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2149 goto retry;
28c34c29 2150
b70a2a21 2151 if (!drained) {
6d3d6aa2 2152 drain_all_stock(mem_over_limit);
b70a2a21
JW
2153 drained = true;
2154 goto retry;
2155 }
2156
28c34c29
JW
2157 if (gfp_mask & __GFP_NORETRY)
2158 goto nomem;
6539cc05
JW
2159 /*
2160 * Even though the limit is exceeded at this point, reclaim
2161 * may have been able to free some pages. Retry the charge
2162 * before killing the task.
2163 *
2164 * Only for regular pages, though: huge pages are rather
2165 * unlikely to succeed so close to the limit, and we fall back
2166 * to regular pages anyway in case of failure.
2167 */
61e02c74 2168 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2169 goto retry;
2170 /*
2171 * At task move, charge accounts can be doubly counted. So, it's
2172 * better to wait until the end of task_move if something is going on.
2173 */
2174 if (mem_cgroup_wait_acct_move(mem_over_limit))
2175 goto retry;
2176
9b130619
JW
2177 if (nr_retries--)
2178 goto retry;
2179
29ef680a
MH
2180 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2181 goto nomem;
2182
06b078fc 2183 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2184 goto force;
06b078fc 2185
6539cc05 2186 if (fatal_signal_pending(current))
10d53c74 2187 goto force;
6539cc05 2188
e27be240 2189 memcg_memory_event(mem_over_limit, MEMCG_OOM);
241994ed 2190
29ef680a
MH
2191 /*
2192 * keep retrying as long as the memcg oom killer is able to make
2193 * a forward progress or bypass the charge if the oom killer
2194 * couldn't make any progress.
2195 */
2196 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2197 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2198 switch (oom_status) {
2199 case OOM_SUCCESS:
2200 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2201 oomed = true;
2202 goto retry;
2203 case OOM_FAILED:
2204 goto force;
2205 default:
2206 goto nomem;
2207 }
7a81b88c 2208nomem:
6d1fdc48 2209 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2210 return -ENOMEM;
10d53c74
TH
2211force:
2212 /*
2213 * The allocation either can't fail or will lead to more memory
2214 * being freed very soon. Allow memory usage go over the limit
2215 * temporarily by force charging it.
2216 */
2217 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2218 if (do_memsw_account())
10d53c74
TH
2219 page_counter_charge(&memcg->memsw, nr_pages);
2220 css_get_many(&memcg->css, nr_pages);
2221
2222 return 0;
6539cc05
JW
2223
2224done_restock:
e8ea14cc 2225 css_get_many(&memcg->css, batch);
6539cc05
JW
2226 if (batch > nr_pages)
2227 refill_stock(memcg, batch - nr_pages);
b23afb93 2228
241994ed 2229 /*
b23afb93
TH
2230 * If the hierarchy is above the normal consumption range, schedule
2231 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2232 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2233 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2234 * not recorded as it most likely matches current's and won't
2235 * change in the meantime. As high limit is checked again before
2236 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2237 */
2238 do {
b23afb93 2239 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2240 /* Don't bother a random interrupted task */
2241 if (in_interrupt()) {
2242 schedule_work(&memcg->high_work);
2243 break;
2244 }
9516a18a 2245 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2246 set_notify_resume(current);
2247 break;
2248 }
241994ed 2249 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2250
2251 return 0;
7a81b88c 2252}
8a9f3ccd 2253
00501b53 2254static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2255{
ce00a967
JW
2256 if (mem_cgroup_is_root(memcg))
2257 return;
2258
3e32cb2e 2259 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2260 if (do_memsw_account())
3e32cb2e 2261 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2262
e8ea14cc 2263 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2264}
2265
0a31bc97
JW
2266static void lock_page_lru(struct page *page, int *isolated)
2267{
2268 struct zone *zone = page_zone(page);
2269
a52633d8 2270 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2271 if (PageLRU(page)) {
2272 struct lruvec *lruvec;
2273
599d0c95 2274 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2275 ClearPageLRU(page);
2276 del_page_from_lru_list(page, lruvec, page_lru(page));
2277 *isolated = 1;
2278 } else
2279 *isolated = 0;
2280}
2281
2282static void unlock_page_lru(struct page *page, int isolated)
2283{
2284 struct zone *zone = page_zone(page);
2285
2286 if (isolated) {
2287 struct lruvec *lruvec;
2288
599d0c95 2289 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2290 VM_BUG_ON_PAGE(PageLRU(page), page);
2291 SetPageLRU(page);
2292 add_page_to_lru_list(page, lruvec, page_lru(page));
2293 }
a52633d8 2294 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2295}
2296
00501b53 2297static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2298 bool lrucare)
7a81b88c 2299{
0a31bc97 2300 int isolated;
9ce70c02 2301
1306a85a 2302 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2303
2304 /*
2305 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2306 * may already be on some other mem_cgroup's LRU. Take care of it.
2307 */
0a31bc97
JW
2308 if (lrucare)
2309 lock_page_lru(page, &isolated);
9ce70c02 2310
0a31bc97
JW
2311 /*
2312 * Nobody should be changing or seriously looking at
1306a85a 2313 * page->mem_cgroup at this point:
0a31bc97
JW
2314 *
2315 * - the page is uncharged
2316 *
2317 * - the page is off-LRU
2318 *
2319 * - an anonymous fault has exclusive page access, except for
2320 * a locked page table
2321 *
2322 * - a page cache insertion, a swapin fault, or a migration
2323 * have the page locked
2324 */
1306a85a 2325 page->mem_cgroup = memcg;
9ce70c02 2326
0a31bc97
JW
2327 if (lrucare)
2328 unlock_page_lru(page, isolated);
7a81b88c 2329}
66e1707b 2330
84c07d11 2331#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2332static int memcg_alloc_cache_id(void)
55007d84 2333{
f3bb3043
VD
2334 int id, size;
2335 int err;
2336
dbcf73e2 2337 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2338 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2339 if (id < 0)
2340 return id;
55007d84 2341
dbcf73e2 2342 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2343 return id;
2344
2345 /*
2346 * There's no space for the new id in memcg_caches arrays,
2347 * so we have to grow them.
2348 */
05257a1a 2349 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2350
2351 size = 2 * (id + 1);
55007d84
GC
2352 if (size < MEMCG_CACHES_MIN_SIZE)
2353 size = MEMCG_CACHES_MIN_SIZE;
2354 else if (size > MEMCG_CACHES_MAX_SIZE)
2355 size = MEMCG_CACHES_MAX_SIZE;
2356
f3bb3043 2357 err = memcg_update_all_caches(size);
60d3fd32
VD
2358 if (!err)
2359 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2360 if (!err)
2361 memcg_nr_cache_ids = size;
2362
2363 up_write(&memcg_cache_ids_sem);
2364
f3bb3043 2365 if (err) {
dbcf73e2 2366 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2367 return err;
2368 }
2369 return id;
2370}
2371
2372static void memcg_free_cache_id(int id)
2373{
dbcf73e2 2374 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2375}
2376
d5b3cf71 2377struct memcg_kmem_cache_create_work {
5722d094
VD
2378 struct mem_cgroup *memcg;
2379 struct kmem_cache *cachep;
2380 struct work_struct work;
2381};
2382
d5b3cf71 2383static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2384{
d5b3cf71
VD
2385 struct memcg_kmem_cache_create_work *cw =
2386 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2387 struct mem_cgroup *memcg = cw->memcg;
2388 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2389
d5b3cf71 2390 memcg_create_kmem_cache(memcg, cachep);
bd673145 2391
5722d094 2392 css_put(&memcg->css);
d7f25f8a
GC
2393 kfree(cw);
2394}
2395
2396/*
2397 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2398 */
d5b3cf71
VD
2399static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2400 struct kmem_cache *cachep)
d7f25f8a 2401{
d5b3cf71 2402 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2403
c892fd82 2404 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2405 if (!cw)
d7f25f8a 2406 return;
8135be5a
VD
2407
2408 css_get(&memcg->css);
d7f25f8a
GC
2409
2410 cw->memcg = memcg;
2411 cw->cachep = cachep;
d5b3cf71 2412 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2413
17cc4dfe 2414 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2415}
2416
d5b3cf71
VD
2417static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2418 struct kmem_cache *cachep)
0e9d92f2
GC
2419{
2420 /*
2421 * We need to stop accounting when we kmalloc, because if the
2422 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2423 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2424 *
2425 * However, it is better to enclose the whole function. Depending on
2426 * the debugging options enabled, INIT_WORK(), for instance, can
2427 * trigger an allocation. This too, will make us recurse. Because at
2428 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2429 * the safest choice is to do it like this, wrapping the whole function.
2430 */
6f185c29 2431 current->memcg_kmem_skip_account = 1;
d5b3cf71 2432 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2433 current->memcg_kmem_skip_account = 0;
0e9d92f2 2434}
c67a8a68 2435
45264778
VD
2436static inline bool memcg_kmem_bypass(void)
2437{
2438 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2439 return true;
2440 return false;
2441}
2442
2443/**
2444 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2445 * @cachep: the original global kmem cache
2446 *
d7f25f8a
GC
2447 * Return the kmem_cache we're supposed to use for a slab allocation.
2448 * We try to use the current memcg's version of the cache.
2449 *
45264778
VD
2450 * If the cache does not exist yet, if we are the first user of it, we
2451 * create it asynchronously in a workqueue and let the current allocation
2452 * go through with the original cache.
d7f25f8a 2453 *
45264778
VD
2454 * This function takes a reference to the cache it returns to assure it
2455 * won't get destroyed while we are working with it. Once the caller is
2456 * done with it, memcg_kmem_put_cache() must be called to release the
2457 * reference.
d7f25f8a 2458 */
45264778 2459struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2460{
2461 struct mem_cgroup *memcg;
959c8963 2462 struct kmem_cache *memcg_cachep;
2a4db7eb 2463 int kmemcg_id;
d7f25f8a 2464
f7ce3190 2465 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2466
45264778 2467 if (memcg_kmem_bypass())
230e9fc2
VD
2468 return cachep;
2469
9d100c5e 2470 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2471 return cachep;
2472
d46eb14b 2473 memcg = get_mem_cgroup_from_current();
4db0c3c2 2474 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2475 if (kmemcg_id < 0)
ca0dde97 2476 goto out;
d7f25f8a 2477
2a4db7eb 2478 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2479 if (likely(memcg_cachep))
2480 return memcg_cachep;
ca0dde97
LZ
2481
2482 /*
2483 * If we are in a safe context (can wait, and not in interrupt
2484 * context), we could be be predictable and return right away.
2485 * This would guarantee that the allocation being performed
2486 * already belongs in the new cache.
2487 *
2488 * However, there are some clashes that can arrive from locking.
2489 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2490 * memcg_create_kmem_cache, this means no further allocation
2491 * could happen with the slab_mutex held. So it's better to
2492 * defer everything.
ca0dde97 2493 */
d5b3cf71 2494 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2495out:
8135be5a 2496 css_put(&memcg->css);
ca0dde97 2497 return cachep;
d7f25f8a 2498}
d7f25f8a 2499
45264778
VD
2500/**
2501 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2502 * @cachep: the cache returned by memcg_kmem_get_cache
2503 */
2504void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2505{
2506 if (!is_root_cache(cachep))
f7ce3190 2507 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2508}
2509
45264778 2510/**
b213b54f 2511 * memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2512 * @page: page to charge
2513 * @gfp: reclaim mode
2514 * @order: allocation order
2515 * @memcg: memory cgroup to charge
2516 *
2517 * Returns 0 on success, an error code on failure.
2518 */
2519int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2520 struct mem_cgroup *memcg)
7ae1e1d0 2521{
f3ccb2c4
VD
2522 unsigned int nr_pages = 1 << order;
2523 struct page_counter *counter;
7ae1e1d0
GC
2524 int ret;
2525
f3ccb2c4 2526 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2527 if (ret)
f3ccb2c4 2528 return ret;
52c29b04
JW
2529
2530 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2531 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2532 cancel_charge(memcg, nr_pages);
2533 return -ENOMEM;
7ae1e1d0
GC
2534 }
2535
f3ccb2c4 2536 page->mem_cgroup = memcg;
7ae1e1d0 2537
f3ccb2c4 2538 return 0;
7ae1e1d0
GC
2539}
2540
45264778
VD
2541/**
2542 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2543 * @page: page to charge
2544 * @gfp: reclaim mode
2545 * @order: allocation order
2546 *
2547 * Returns 0 on success, an error code on failure.
2548 */
2549int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2550{
f3ccb2c4 2551 struct mem_cgroup *memcg;
fcff7d7e 2552 int ret = 0;
7ae1e1d0 2553
45264778
VD
2554 if (memcg_kmem_bypass())
2555 return 0;
2556
d46eb14b 2557 memcg = get_mem_cgroup_from_current();
c4159a75 2558 if (!mem_cgroup_is_root(memcg)) {
45264778 2559 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2560 if (!ret)
2561 __SetPageKmemcg(page);
2562 }
7ae1e1d0 2563 css_put(&memcg->css);
d05e83a6 2564 return ret;
7ae1e1d0 2565}
45264778
VD
2566/**
2567 * memcg_kmem_uncharge: uncharge a kmem page
2568 * @page: page to uncharge
2569 * @order: allocation order
2570 */
2571void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2572{
1306a85a 2573 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2574 unsigned int nr_pages = 1 << order;
7ae1e1d0 2575
7ae1e1d0
GC
2576 if (!memcg)
2577 return;
2578
309381fe 2579 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2580
52c29b04
JW
2581 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2582 page_counter_uncharge(&memcg->kmem, nr_pages);
2583
f3ccb2c4 2584 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2585 if (do_memsw_account())
f3ccb2c4 2586 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2587
1306a85a 2588 page->mem_cgroup = NULL;
c4159a75
VD
2589
2590 /* slab pages do not have PageKmemcg flag set */
2591 if (PageKmemcg(page))
2592 __ClearPageKmemcg(page);
2593
f3ccb2c4 2594 css_put_many(&memcg->css, nr_pages);
60d3fd32 2595}
84c07d11 2596#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2597
ca3e0214
KH
2598#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2599
ca3e0214
KH
2600/*
2601 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2602 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2603 */
e94c8a9c 2604void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2605{
e94c8a9c 2606 int i;
ca3e0214 2607
3d37c4a9
KH
2608 if (mem_cgroup_disabled())
2609 return;
b070e65c 2610
29833315 2611 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2612 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2613
c9019e9b 2614 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2615}
12d27107 2616#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2617
c255a458 2618#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2619/**
2620 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2621 * @entry: swap entry to be moved
2622 * @from: mem_cgroup which the entry is moved from
2623 * @to: mem_cgroup which the entry is moved to
2624 *
2625 * It succeeds only when the swap_cgroup's record for this entry is the same
2626 * as the mem_cgroup's id of @from.
2627 *
2628 * Returns 0 on success, -EINVAL on failure.
2629 *
3e32cb2e 2630 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2631 * both res and memsw, and called css_get().
2632 */
2633static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2634 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2635{
2636 unsigned short old_id, new_id;
2637
34c00c31
LZ
2638 old_id = mem_cgroup_id(from);
2639 new_id = mem_cgroup_id(to);
02491447
DN
2640
2641 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2642 mod_memcg_state(from, MEMCG_SWAP, -1);
2643 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2644 return 0;
2645 }
2646 return -EINVAL;
2647}
2648#else
2649static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2650 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2651{
2652 return -EINVAL;
2653}
8c7c6e34 2654#endif
d13d1443 2655
bbec2e15 2656static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2657
bbec2e15
RG
2658static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2659 unsigned long max, bool memsw)
628f4235 2660{
3e32cb2e 2661 bool enlarge = false;
bb4a7ea2 2662 bool drained = false;
3e32cb2e 2663 int ret;
c054a78c
YZ
2664 bool limits_invariant;
2665 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2666
3e32cb2e 2667 do {
628f4235
KH
2668 if (signal_pending(current)) {
2669 ret = -EINTR;
2670 break;
2671 }
3e32cb2e 2672
bbec2e15 2673 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2674 /*
2675 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2676 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2677 */
bbec2e15
RG
2678 limits_invariant = memsw ? max >= memcg->memory.max :
2679 max <= memcg->memsw.max;
c054a78c 2680 if (!limits_invariant) {
bbec2e15 2681 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2682 ret = -EINVAL;
8c7c6e34
KH
2683 break;
2684 }
bbec2e15 2685 if (max > counter->max)
3e32cb2e 2686 enlarge = true;
bbec2e15
RG
2687 ret = page_counter_set_max(counter, max);
2688 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2689
2690 if (!ret)
2691 break;
2692
bb4a7ea2
SB
2693 if (!drained) {
2694 drain_all_stock(memcg);
2695 drained = true;
2696 continue;
2697 }
2698
1ab5c056
AR
2699 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2700 GFP_KERNEL, !memsw)) {
2701 ret = -EBUSY;
2702 break;
2703 }
2704 } while (true);
3e32cb2e 2705
3c11ecf4
KH
2706 if (!ret && enlarge)
2707 memcg_oom_recover(memcg);
3e32cb2e 2708
628f4235
KH
2709 return ret;
2710}
2711
ef8f2327 2712unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2713 gfp_t gfp_mask,
2714 unsigned long *total_scanned)
2715{
2716 unsigned long nr_reclaimed = 0;
ef8f2327 2717 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2718 unsigned long reclaimed;
2719 int loop = 0;
ef8f2327 2720 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2721 unsigned long excess;
0608f43d
AM
2722 unsigned long nr_scanned;
2723
2724 if (order > 0)
2725 return 0;
2726
ef8f2327 2727 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2728
2729 /*
2730 * Do not even bother to check the largest node if the root
2731 * is empty. Do it lockless to prevent lock bouncing. Races
2732 * are acceptable as soft limit is best effort anyway.
2733 */
bfc7228b 2734 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2735 return 0;
2736
0608f43d
AM
2737 /*
2738 * This loop can run a while, specially if mem_cgroup's continuously
2739 * keep exceeding their soft limit and putting the system under
2740 * pressure
2741 */
2742 do {
2743 if (next_mz)
2744 mz = next_mz;
2745 else
2746 mz = mem_cgroup_largest_soft_limit_node(mctz);
2747 if (!mz)
2748 break;
2749
2750 nr_scanned = 0;
ef8f2327 2751 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2752 gfp_mask, &nr_scanned);
2753 nr_reclaimed += reclaimed;
2754 *total_scanned += nr_scanned;
0a31bc97 2755 spin_lock_irq(&mctz->lock);
bc2f2e7f 2756 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2757
2758 /*
2759 * If we failed to reclaim anything from this memory cgroup
2760 * it is time to move on to the next cgroup
2761 */
2762 next_mz = NULL;
bc2f2e7f
VD
2763 if (!reclaimed)
2764 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2765
3e32cb2e 2766 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2767 /*
2768 * One school of thought says that we should not add
2769 * back the node to the tree if reclaim returns 0.
2770 * But our reclaim could return 0, simply because due
2771 * to priority we are exposing a smaller subset of
2772 * memory to reclaim from. Consider this as a longer
2773 * term TODO.
2774 */
2775 /* If excess == 0, no tree ops */
cf2c8127 2776 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2777 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2778 css_put(&mz->memcg->css);
2779 loop++;
2780 /*
2781 * Could not reclaim anything and there are no more
2782 * mem cgroups to try or we seem to be looping without
2783 * reclaiming anything.
2784 */
2785 if (!nr_reclaimed &&
2786 (next_mz == NULL ||
2787 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2788 break;
2789 } while (!nr_reclaimed);
2790 if (next_mz)
2791 css_put(&next_mz->memcg->css);
2792 return nr_reclaimed;
2793}
2794
ea280e7b
TH
2795/*
2796 * Test whether @memcg has children, dead or alive. Note that this
2797 * function doesn't care whether @memcg has use_hierarchy enabled and
2798 * returns %true if there are child csses according to the cgroup
2799 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2800 */
b5f99b53
GC
2801static inline bool memcg_has_children(struct mem_cgroup *memcg)
2802{
ea280e7b
TH
2803 bool ret;
2804
ea280e7b
TH
2805 rcu_read_lock();
2806 ret = css_next_child(NULL, &memcg->css);
2807 rcu_read_unlock();
2808 return ret;
b5f99b53
GC
2809}
2810
c26251f9 2811/*
51038171 2812 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2813 *
2814 * Caller is responsible for holding css reference for memcg.
2815 */
2816static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2817{
2818 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2819
c1e862c1
KH
2820 /* we call try-to-free pages for make this cgroup empty */
2821 lru_add_drain_all();
d12c60f6
JS
2822
2823 drain_all_stock(memcg);
2824
f817ed48 2825 /* try to free all pages in this cgroup */
3e32cb2e 2826 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2827 int progress;
c1e862c1 2828
c26251f9
MH
2829 if (signal_pending(current))
2830 return -EINTR;
2831
b70a2a21
JW
2832 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2833 GFP_KERNEL, true);
c1e862c1 2834 if (!progress) {
f817ed48 2835 nr_retries--;
c1e862c1 2836 /* maybe some writeback is necessary */
8aa7e847 2837 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2838 }
f817ed48
KH
2839
2840 }
ab5196c2
MH
2841
2842 return 0;
cc847582
KH
2843}
2844
6770c64e
TH
2845static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2846 char *buf, size_t nbytes,
2847 loff_t off)
c1e862c1 2848{
6770c64e 2849 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2850
d8423011
MH
2851 if (mem_cgroup_is_root(memcg))
2852 return -EINVAL;
6770c64e 2853 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2854}
2855
182446d0
TH
2856static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2857 struct cftype *cft)
18f59ea7 2858{
182446d0 2859 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2860}
2861
182446d0
TH
2862static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2863 struct cftype *cft, u64 val)
18f59ea7
BS
2864{
2865 int retval = 0;
182446d0 2866 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2867 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2868
567fb435 2869 if (memcg->use_hierarchy == val)
0b8f73e1 2870 return 0;
567fb435 2871
18f59ea7 2872 /*
af901ca1 2873 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2874 * in the child subtrees. If it is unset, then the change can
2875 * occur, provided the current cgroup has no children.
2876 *
2877 * For the root cgroup, parent_mem is NULL, we allow value to be
2878 * set if there are no children.
2879 */
c0ff4b85 2880 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2881 (val == 1 || val == 0)) {
ea280e7b 2882 if (!memcg_has_children(memcg))
c0ff4b85 2883 memcg->use_hierarchy = val;
18f59ea7
BS
2884 else
2885 retval = -EBUSY;
2886 } else
2887 retval = -EINVAL;
567fb435 2888
18f59ea7
BS
2889 return retval;
2890}
2891
72b54e73 2892static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2893{
2894 struct mem_cgroup *iter;
72b54e73 2895 int i;
ce00a967 2896
72b54e73 2897 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2898
72b54e73
VD
2899 for_each_mem_cgroup_tree(iter, memcg) {
2900 for (i = 0; i < MEMCG_NR_STAT; i++)
ccda7f43 2901 stat[i] += memcg_page_state(iter, i);
72b54e73 2902 }
ce00a967
JW
2903}
2904
72b54e73 2905static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2906{
2907 struct mem_cgroup *iter;
72b54e73 2908 int i;
587d9f72 2909
e27be240 2910 memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
587d9f72 2911
72b54e73 2912 for_each_mem_cgroup_tree(iter, memcg) {
e27be240 2913 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
ccda7f43 2914 events[i] += memcg_sum_events(iter, i);
72b54e73 2915 }
587d9f72
JW
2916}
2917
6f646156 2918static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2919{
72b54e73 2920 unsigned long val = 0;
ce00a967 2921
3e32cb2e 2922 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2923 struct mem_cgroup *iter;
2924
2925 for_each_mem_cgroup_tree(iter, memcg) {
ccda7f43
JW
2926 val += memcg_page_state(iter, MEMCG_CACHE);
2927 val += memcg_page_state(iter, MEMCG_RSS);
72b54e73 2928 if (swap)
ccda7f43 2929 val += memcg_page_state(iter, MEMCG_SWAP);
72b54e73 2930 }
3e32cb2e 2931 } else {
ce00a967 2932 if (!swap)
3e32cb2e 2933 val = page_counter_read(&memcg->memory);
ce00a967 2934 else
3e32cb2e 2935 val = page_counter_read(&memcg->memsw);
ce00a967 2936 }
c12176d3 2937 return val;
ce00a967
JW
2938}
2939
3e32cb2e
JW
2940enum {
2941 RES_USAGE,
2942 RES_LIMIT,
2943 RES_MAX_USAGE,
2944 RES_FAILCNT,
2945 RES_SOFT_LIMIT,
2946};
ce00a967 2947
791badbd 2948static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2949 struct cftype *cft)
8cdea7c0 2950{
182446d0 2951 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2952 struct page_counter *counter;
af36f906 2953
3e32cb2e 2954 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2955 case _MEM:
3e32cb2e
JW
2956 counter = &memcg->memory;
2957 break;
8c7c6e34 2958 case _MEMSWAP:
3e32cb2e
JW
2959 counter = &memcg->memsw;
2960 break;
510fc4e1 2961 case _KMEM:
3e32cb2e 2962 counter = &memcg->kmem;
510fc4e1 2963 break;
d55f90bf 2964 case _TCP:
0db15298 2965 counter = &memcg->tcpmem;
d55f90bf 2966 break;
8c7c6e34
KH
2967 default:
2968 BUG();
8c7c6e34 2969 }
3e32cb2e
JW
2970
2971 switch (MEMFILE_ATTR(cft->private)) {
2972 case RES_USAGE:
2973 if (counter == &memcg->memory)
c12176d3 2974 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2975 if (counter == &memcg->memsw)
c12176d3 2976 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2977 return (u64)page_counter_read(counter) * PAGE_SIZE;
2978 case RES_LIMIT:
bbec2e15 2979 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
2980 case RES_MAX_USAGE:
2981 return (u64)counter->watermark * PAGE_SIZE;
2982 case RES_FAILCNT:
2983 return counter->failcnt;
2984 case RES_SOFT_LIMIT:
2985 return (u64)memcg->soft_limit * PAGE_SIZE;
2986 default:
2987 BUG();
2988 }
8cdea7c0 2989}
510fc4e1 2990
84c07d11 2991#ifdef CONFIG_MEMCG_KMEM
567e9ab2 2992static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2993{
d6441637
VD
2994 int memcg_id;
2995
b313aeee
VD
2996 if (cgroup_memory_nokmem)
2997 return 0;
2998
2a4db7eb 2999 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3000 BUG_ON(memcg->kmem_state);
d6441637 3001
f3bb3043 3002 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3003 if (memcg_id < 0)
3004 return memcg_id;
d6441637 3005
ef12947c 3006 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3007 /*
567e9ab2 3008 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3009 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3010 * guarantee no one starts accounting before all call sites are
3011 * patched.
3012 */
900a38f0 3013 memcg->kmemcg_id = memcg_id;
567e9ab2 3014 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3015 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3016
3017 return 0;
d6441637
VD
3018}
3019
8e0a8912
JW
3020static void memcg_offline_kmem(struct mem_cgroup *memcg)
3021{
3022 struct cgroup_subsys_state *css;
3023 struct mem_cgroup *parent, *child;
3024 int kmemcg_id;
3025
3026 if (memcg->kmem_state != KMEM_ONLINE)
3027 return;
3028 /*
3029 * Clear the online state before clearing memcg_caches array
3030 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3031 * guarantees that no cache will be created for this cgroup
3032 * after we are done (see memcg_create_kmem_cache()).
3033 */
3034 memcg->kmem_state = KMEM_ALLOCATED;
3035
3036 memcg_deactivate_kmem_caches(memcg);
3037
3038 kmemcg_id = memcg->kmemcg_id;
3039 BUG_ON(kmemcg_id < 0);
3040
3041 parent = parent_mem_cgroup(memcg);
3042 if (!parent)
3043 parent = root_mem_cgroup;
3044
3045 /*
3046 * Change kmemcg_id of this cgroup and all its descendants to the
3047 * parent's id, and then move all entries from this cgroup's list_lrus
3048 * to ones of the parent. After we have finished, all list_lrus
3049 * corresponding to this cgroup are guaranteed to remain empty. The
3050 * ordering is imposed by list_lru_node->lock taken by
3051 * memcg_drain_all_list_lrus().
3052 */
3a06bb78 3053 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3054 css_for_each_descendant_pre(css, &memcg->css) {
3055 child = mem_cgroup_from_css(css);
3056 BUG_ON(child->kmemcg_id != kmemcg_id);
3057 child->kmemcg_id = parent->kmemcg_id;
3058 if (!memcg->use_hierarchy)
3059 break;
3060 }
3a06bb78
TH
3061 rcu_read_unlock();
3062
8e0a8912
JW
3063 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
3064
3065 memcg_free_cache_id(kmemcg_id);
3066}
3067
3068static void memcg_free_kmem(struct mem_cgroup *memcg)
3069{
0b8f73e1
JW
3070 /* css_alloc() failed, offlining didn't happen */
3071 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3072 memcg_offline_kmem(memcg);
3073
8e0a8912
JW
3074 if (memcg->kmem_state == KMEM_ALLOCATED) {
3075 memcg_destroy_kmem_caches(memcg);
3076 static_branch_dec(&memcg_kmem_enabled_key);
3077 WARN_ON(page_counter_read(&memcg->kmem));
3078 }
8e0a8912 3079}
d6441637 3080#else
0b8f73e1 3081static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3082{
3083 return 0;
3084}
3085static void memcg_offline_kmem(struct mem_cgroup *memcg)
3086{
3087}
3088static void memcg_free_kmem(struct mem_cgroup *memcg)
3089{
3090}
84c07d11 3091#endif /* CONFIG_MEMCG_KMEM */
127424c8 3092
bbec2e15
RG
3093static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3094 unsigned long max)
d6441637 3095{
b313aeee 3096 int ret;
127424c8 3097
bbec2e15
RG
3098 mutex_lock(&memcg_max_mutex);
3099 ret = page_counter_set_max(&memcg->kmem, max);
3100 mutex_unlock(&memcg_max_mutex);
127424c8 3101 return ret;
d6441637 3102}
510fc4e1 3103
bbec2e15 3104static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3105{
3106 int ret;
3107
bbec2e15 3108 mutex_lock(&memcg_max_mutex);
d55f90bf 3109
bbec2e15 3110 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3111 if (ret)
3112 goto out;
3113
0db15298 3114 if (!memcg->tcpmem_active) {
d55f90bf
VD
3115 /*
3116 * The active flag needs to be written after the static_key
3117 * update. This is what guarantees that the socket activation
2d758073
JW
3118 * function is the last one to run. See mem_cgroup_sk_alloc()
3119 * for details, and note that we don't mark any socket as
3120 * belonging to this memcg until that flag is up.
d55f90bf
VD
3121 *
3122 * We need to do this, because static_keys will span multiple
3123 * sites, but we can't control their order. If we mark a socket
3124 * as accounted, but the accounting functions are not patched in
3125 * yet, we'll lose accounting.
3126 *
2d758073 3127 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3128 * because when this value change, the code to process it is not
3129 * patched in yet.
3130 */
3131 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3132 memcg->tcpmem_active = true;
d55f90bf
VD
3133 }
3134out:
bbec2e15 3135 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3136 return ret;
3137}
d55f90bf 3138
628f4235
KH
3139/*
3140 * The user of this function is...
3141 * RES_LIMIT.
3142 */
451af504
TH
3143static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3144 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3145{
451af504 3146 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3147 unsigned long nr_pages;
628f4235
KH
3148 int ret;
3149
451af504 3150 buf = strstrip(buf);
650c5e56 3151 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3152 if (ret)
3153 return ret;
af36f906 3154
3e32cb2e 3155 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3156 case RES_LIMIT:
4b3bde4c
BS
3157 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3158 ret = -EINVAL;
3159 break;
3160 }
3e32cb2e
JW
3161 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3162 case _MEM:
bbec2e15 3163 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3164 break;
3e32cb2e 3165 case _MEMSWAP:
bbec2e15 3166 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3167 break;
3e32cb2e 3168 case _KMEM:
bbec2e15 3169 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3170 break;
d55f90bf 3171 case _TCP:
bbec2e15 3172 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3173 break;
3e32cb2e 3174 }
296c81d8 3175 break;
3e32cb2e
JW
3176 case RES_SOFT_LIMIT:
3177 memcg->soft_limit = nr_pages;
3178 ret = 0;
628f4235
KH
3179 break;
3180 }
451af504 3181 return ret ?: nbytes;
8cdea7c0
BS
3182}
3183
6770c64e
TH
3184static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3185 size_t nbytes, loff_t off)
c84872e1 3186{
6770c64e 3187 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3188 struct page_counter *counter;
c84872e1 3189
3e32cb2e
JW
3190 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3191 case _MEM:
3192 counter = &memcg->memory;
3193 break;
3194 case _MEMSWAP:
3195 counter = &memcg->memsw;
3196 break;
3197 case _KMEM:
3198 counter = &memcg->kmem;
3199 break;
d55f90bf 3200 case _TCP:
0db15298 3201 counter = &memcg->tcpmem;
d55f90bf 3202 break;
3e32cb2e
JW
3203 default:
3204 BUG();
3205 }
af36f906 3206
3e32cb2e 3207 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3208 case RES_MAX_USAGE:
3e32cb2e 3209 page_counter_reset_watermark(counter);
29f2a4da
PE
3210 break;
3211 case RES_FAILCNT:
3e32cb2e 3212 counter->failcnt = 0;
29f2a4da 3213 break;
3e32cb2e
JW
3214 default:
3215 BUG();
29f2a4da 3216 }
f64c3f54 3217
6770c64e 3218 return nbytes;
c84872e1
PE
3219}
3220
182446d0 3221static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3222 struct cftype *cft)
3223{
182446d0 3224 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3225}
3226
02491447 3227#ifdef CONFIG_MMU
182446d0 3228static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3229 struct cftype *cft, u64 val)
3230{
182446d0 3231 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3232
1dfab5ab 3233 if (val & ~MOVE_MASK)
7dc74be0 3234 return -EINVAL;
ee5e8472 3235
7dc74be0 3236 /*
ee5e8472
GC
3237 * No kind of locking is needed in here, because ->can_attach() will
3238 * check this value once in the beginning of the process, and then carry
3239 * on with stale data. This means that changes to this value will only
3240 * affect task migrations starting after the change.
7dc74be0 3241 */
c0ff4b85 3242 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3243 return 0;
3244}
02491447 3245#else
182446d0 3246static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3247 struct cftype *cft, u64 val)
3248{
3249 return -ENOSYS;
3250}
3251#endif
7dc74be0 3252
406eb0c9 3253#ifdef CONFIG_NUMA
2da8ca82 3254static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3255{
25485de6
GT
3256 struct numa_stat {
3257 const char *name;
3258 unsigned int lru_mask;
3259 };
3260
3261 static const struct numa_stat stats[] = {
3262 { "total", LRU_ALL },
3263 { "file", LRU_ALL_FILE },
3264 { "anon", LRU_ALL_ANON },
3265 { "unevictable", BIT(LRU_UNEVICTABLE) },
3266 };
3267 const struct numa_stat *stat;
406eb0c9 3268 int nid;
25485de6 3269 unsigned long nr;
2da8ca82 3270 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3271
25485de6
GT
3272 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3273 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3274 seq_printf(m, "%s=%lu", stat->name, nr);
3275 for_each_node_state(nid, N_MEMORY) {
3276 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3277 stat->lru_mask);
3278 seq_printf(m, " N%d=%lu", nid, nr);
3279 }
3280 seq_putc(m, '\n');
406eb0c9 3281 }
406eb0c9 3282
071aee13
YH
3283 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3284 struct mem_cgroup *iter;
3285
3286 nr = 0;
3287 for_each_mem_cgroup_tree(iter, memcg)
3288 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3289 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3290 for_each_node_state(nid, N_MEMORY) {
3291 nr = 0;
3292 for_each_mem_cgroup_tree(iter, memcg)
3293 nr += mem_cgroup_node_nr_lru_pages(
3294 iter, nid, stat->lru_mask);
3295 seq_printf(m, " N%d=%lu", nid, nr);
3296 }
3297 seq_putc(m, '\n');
406eb0c9 3298 }
406eb0c9 3299
406eb0c9
YH
3300 return 0;
3301}
3302#endif /* CONFIG_NUMA */
3303
df0e53d0 3304/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3305static const unsigned int memcg1_events[] = {
df0e53d0
JW
3306 PGPGIN,
3307 PGPGOUT,
3308 PGFAULT,
3309 PGMAJFAULT,
3310};
3311
3312static const char *const memcg1_event_names[] = {
3313 "pgpgin",
3314 "pgpgout",
3315 "pgfault",
3316 "pgmajfault",
3317};
3318
2da8ca82 3319static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3320{
2da8ca82 3321 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3322 unsigned long memory, memsw;
af7c4b0e
JW
3323 struct mem_cgroup *mi;
3324 unsigned int i;
406eb0c9 3325
71cd3113 3326 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3327 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3328
71cd3113
JW
3329 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3330 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3331 continue;
71cd3113 3332 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
ccda7f43 3333 memcg_page_state(memcg, memcg1_stats[i]) *
71cd3113 3334 PAGE_SIZE);
1dd3a273 3335 }
7b854121 3336
df0e53d0
JW
3337 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3338 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
ccda7f43 3339 memcg_sum_events(memcg, memcg1_events[i]));
af7c4b0e
JW
3340
3341 for (i = 0; i < NR_LRU_LISTS; i++)
3342 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3343 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3344
14067bb3 3345 /* Hierarchical information */
3e32cb2e
JW
3346 memory = memsw = PAGE_COUNTER_MAX;
3347 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3348 memory = min(memory, mi->memory.max);
3349 memsw = min(memsw, mi->memsw.max);
fee7b548 3350 }
3e32cb2e
JW
3351 seq_printf(m, "hierarchical_memory_limit %llu\n",
3352 (u64)memory * PAGE_SIZE);
7941d214 3353 if (do_memsw_account())
3e32cb2e
JW
3354 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3355 (u64)memsw * PAGE_SIZE);
7f016ee8 3356
71cd3113 3357 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
484ebb3b 3358 unsigned long long val = 0;
af7c4b0e 3359
71cd3113 3360 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3361 continue;
af7c4b0e 3362 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3363 val += memcg_page_state(mi, memcg1_stats[i]) *
71cd3113
JW
3364 PAGE_SIZE;
3365 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
af7c4b0e
JW
3366 }
3367
df0e53d0 3368 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
af7c4b0e
JW
3369 unsigned long long val = 0;
3370
3371 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3372 val += memcg_sum_events(mi, memcg1_events[i]);
df0e53d0 3373 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
af7c4b0e
JW
3374 }
3375
3376 for (i = 0; i < NR_LRU_LISTS; i++) {
3377 unsigned long long val = 0;
3378
3379 for_each_mem_cgroup_tree(mi, memcg)
3380 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3381 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3382 }
14067bb3 3383
7f016ee8 3384#ifdef CONFIG_DEBUG_VM
7f016ee8 3385 {
ef8f2327
MG
3386 pg_data_t *pgdat;
3387 struct mem_cgroup_per_node *mz;
89abfab1 3388 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3389 unsigned long recent_rotated[2] = {0, 0};
3390 unsigned long recent_scanned[2] = {0, 0};
3391
ef8f2327
MG
3392 for_each_online_pgdat(pgdat) {
3393 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3394 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3395
ef8f2327
MG
3396 recent_rotated[0] += rstat->recent_rotated[0];
3397 recent_rotated[1] += rstat->recent_rotated[1];
3398 recent_scanned[0] += rstat->recent_scanned[0];
3399 recent_scanned[1] += rstat->recent_scanned[1];
3400 }
78ccf5b5
JW
3401 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3402 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3403 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3404 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3405 }
3406#endif
3407
d2ceb9b7
KH
3408 return 0;
3409}
3410
182446d0
TH
3411static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3412 struct cftype *cft)
a7885eb8 3413{
182446d0 3414 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3415
1f4c025b 3416 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3417}
3418
182446d0
TH
3419static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3420 struct cftype *cft, u64 val)
a7885eb8 3421{
182446d0 3422 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3423
3dae7fec 3424 if (val > 100)
a7885eb8
KM
3425 return -EINVAL;
3426
14208b0e 3427 if (css->parent)
3dae7fec
JW
3428 memcg->swappiness = val;
3429 else
3430 vm_swappiness = val;
068b38c1 3431
a7885eb8
KM
3432 return 0;
3433}
3434
2e72b634
KS
3435static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3436{
3437 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3438 unsigned long usage;
2e72b634
KS
3439 int i;
3440
3441 rcu_read_lock();
3442 if (!swap)
2c488db2 3443 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3444 else
2c488db2 3445 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3446
3447 if (!t)
3448 goto unlock;
3449
ce00a967 3450 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3451
3452 /*
748dad36 3453 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3454 * If it's not true, a threshold was crossed after last
3455 * call of __mem_cgroup_threshold().
3456 */
5407a562 3457 i = t->current_threshold;
2e72b634
KS
3458
3459 /*
3460 * Iterate backward over array of thresholds starting from
3461 * current_threshold and check if a threshold is crossed.
3462 * If none of thresholds below usage is crossed, we read
3463 * only one element of the array here.
3464 */
3465 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3466 eventfd_signal(t->entries[i].eventfd, 1);
3467
3468 /* i = current_threshold + 1 */
3469 i++;
3470
3471 /*
3472 * Iterate forward over array of thresholds starting from
3473 * current_threshold+1 and check if a threshold is crossed.
3474 * If none of thresholds above usage is crossed, we read
3475 * only one element of the array here.
3476 */
3477 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3478 eventfd_signal(t->entries[i].eventfd, 1);
3479
3480 /* Update current_threshold */
5407a562 3481 t->current_threshold = i - 1;
2e72b634
KS
3482unlock:
3483 rcu_read_unlock();
3484}
3485
3486static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3487{
ad4ca5f4
KS
3488 while (memcg) {
3489 __mem_cgroup_threshold(memcg, false);
7941d214 3490 if (do_memsw_account())
ad4ca5f4
KS
3491 __mem_cgroup_threshold(memcg, true);
3492
3493 memcg = parent_mem_cgroup(memcg);
3494 }
2e72b634
KS
3495}
3496
3497static int compare_thresholds(const void *a, const void *b)
3498{
3499 const struct mem_cgroup_threshold *_a = a;
3500 const struct mem_cgroup_threshold *_b = b;
3501
2bff24a3
GT
3502 if (_a->threshold > _b->threshold)
3503 return 1;
3504
3505 if (_a->threshold < _b->threshold)
3506 return -1;
3507
3508 return 0;
2e72b634
KS
3509}
3510
c0ff4b85 3511static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3512{
3513 struct mem_cgroup_eventfd_list *ev;
3514
2bcf2e92
MH
3515 spin_lock(&memcg_oom_lock);
3516
c0ff4b85 3517 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3518 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3519
3520 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3521 return 0;
3522}
3523
c0ff4b85 3524static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3525{
7d74b06f
KH
3526 struct mem_cgroup *iter;
3527
c0ff4b85 3528 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3529 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3530}
3531
59b6f873 3532static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3533 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3534{
2c488db2
KS
3535 struct mem_cgroup_thresholds *thresholds;
3536 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3537 unsigned long threshold;
3538 unsigned long usage;
2c488db2 3539 int i, size, ret;
2e72b634 3540
650c5e56 3541 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3542 if (ret)
3543 return ret;
3544
3545 mutex_lock(&memcg->thresholds_lock);
2c488db2 3546
05b84301 3547 if (type == _MEM) {
2c488db2 3548 thresholds = &memcg->thresholds;
ce00a967 3549 usage = mem_cgroup_usage(memcg, false);
05b84301 3550 } else if (type == _MEMSWAP) {
2c488db2 3551 thresholds = &memcg->memsw_thresholds;
ce00a967 3552 usage = mem_cgroup_usage(memcg, true);
05b84301 3553 } else
2e72b634
KS
3554 BUG();
3555
2e72b634 3556 /* Check if a threshold crossed before adding a new one */
2c488db2 3557 if (thresholds->primary)
2e72b634
KS
3558 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3559
2c488db2 3560 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3561
3562 /* Allocate memory for new array of thresholds */
2c488db2 3563 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3564 GFP_KERNEL);
2c488db2 3565 if (!new) {
2e72b634
KS
3566 ret = -ENOMEM;
3567 goto unlock;
3568 }
2c488db2 3569 new->size = size;
2e72b634
KS
3570
3571 /* Copy thresholds (if any) to new array */
2c488db2
KS
3572 if (thresholds->primary) {
3573 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3574 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3575 }
3576
2e72b634 3577 /* Add new threshold */
2c488db2
KS
3578 new->entries[size - 1].eventfd = eventfd;
3579 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3580
3581 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3582 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3583 compare_thresholds, NULL);
3584
3585 /* Find current threshold */
2c488db2 3586 new->current_threshold = -1;
2e72b634 3587 for (i = 0; i < size; i++) {
748dad36 3588 if (new->entries[i].threshold <= usage) {
2e72b634 3589 /*
2c488db2
KS
3590 * new->current_threshold will not be used until
3591 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3592 * it here.
3593 */
2c488db2 3594 ++new->current_threshold;
748dad36
SZ
3595 } else
3596 break;
2e72b634
KS
3597 }
3598
2c488db2
KS
3599 /* Free old spare buffer and save old primary buffer as spare */
3600 kfree(thresholds->spare);
3601 thresholds->spare = thresholds->primary;
3602
3603 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3604
907860ed 3605 /* To be sure that nobody uses thresholds */
2e72b634
KS
3606 synchronize_rcu();
3607
2e72b634
KS
3608unlock:
3609 mutex_unlock(&memcg->thresholds_lock);
3610
3611 return ret;
3612}
3613
59b6f873 3614static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3615 struct eventfd_ctx *eventfd, const char *args)
3616{
59b6f873 3617 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3618}
3619
59b6f873 3620static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3621 struct eventfd_ctx *eventfd, const char *args)
3622{
59b6f873 3623 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3624}
3625
59b6f873 3626static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3627 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3628{
2c488db2
KS
3629 struct mem_cgroup_thresholds *thresholds;
3630 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3631 unsigned long usage;
2c488db2 3632 int i, j, size;
2e72b634
KS
3633
3634 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3635
3636 if (type == _MEM) {
2c488db2 3637 thresholds = &memcg->thresholds;
ce00a967 3638 usage = mem_cgroup_usage(memcg, false);
05b84301 3639 } else if (type == _MEMSWAP) {
2c488db2 3640 thresholds = &memcg->memsw_thresholds;
ce00a967 3641 usage = mem_cgroup_usage(memcg, true);
05b84301 3642 } else
2e72b634
KS
3643 BUG();
3644
371528ca
AV
3645 if (!thresholds->primary)
3646 goto unlock;
3647
2e72b634
KS
3648 /* Check if a threshold crossed before removing */
3649 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3650
3651 /* Calculate new number of threshold */
2c488db2
KS
3652 size = 0;
3653 for (i = 0; i < thresholds->primary->size; i++) {
3654 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3655 size++;
3656 }
3657
2c488db2 3658 new = thresholds->spare;
907860ed 3659
2e72b634
KS
3660 /* Set thresholds array to NULL if we don't have thresholds */
3661 if (!size) {
2c488db2
KS
3662 kfree(new);
3663 new = NULL;
907860ed 3664 goto swap_buffers;
2e72b634
KS
3665 }
3666
2c488db2 3667 new->size = size;
2e72b634
KS
3668
3669 /* Copy thresholds and find current threshold */
2c488db2
KS
3670 new->current_threshold = -1;
3671 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3672 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3673 continue;
3674
2c488db2 3675 new->entries[j] = thresholds->primary->entries[i];
748dad36 3676 if (new->entries[j].threshold <= usage) {
2e72b634 3677 /*
2c488db2 3678 * new->current_threshold will not be used
2e72b634
KS
3679 * until rcu_assign_pointer(), so it's safe to increment
3680 * it here.
3681 */
2c488db2 3682 ++new->current_threshold;
2e72b634
KS
3683 }
3684 j++;
3685 }
3686
907860ed 3687swap_buffers:
2c488db2
KS
3688 /* Swap primary and spare array */
3689 thresholds->spare = thresholds->primary;
8c757763 3690
2c488db2 3691 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3692
907860ed 3693 /* To be sure that nobody uses thresholds */
2e72b634 3694 synchronize_rcu();
6611d8d7
MC
3695
3696 /* If all events are unregistered, free the spare array */
3697 if (!new) {
3698 kfree(thresholds->spare);
3699 thresholds->spare = NULL;
3700 }
371528ca 3701unlock:
2e72b634 3702 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3703}
c1e862c1 3704
59b6f873 3705static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3706 struct eventfd_ctx *eventfd)
3707{
59b6f873 3708 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3709}
3710
59b6f873 3711static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3712 struct eventfd_ctx *eventfd)
3713{
59b6f873 3714 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3715}
3716
59b6f873 3717static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3718 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3719{
9490ff27 3720 struct mem_cgroup_eventfd_list *event;
9490ff27 3721
9490ff27
KH
3722 event = kmalloc(sizeof(*event), GFP_KERNEL);
3723 if (!event)
3724 return -ENOMEM;
3725
1af8efe9 3726 spin_lock(&memcg_oom_lock);
9490ff27
KH
3727
3728 event->eventfd = eventfd;
3729 list_add(&event->list, &memcg->oom_notify);
3730
3731 /* already in OOM ? */
c2b42d3c 3732 if (memcg->under_oom)
9490ff27 3733 eventfd_signal(eventfd, 1);
1af8efe9 3734 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3735
3736 return 0;
3737}
3738
59b6f873 3739static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3740 struct eventfd_ctx *eventfd)
9490ff27 3741{
9490ff27 3742 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3743
1af8efe9 3744 spin_lock(&memcg_oom_lock);
9490ff27 3745
c0ff4b85 3746 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3747 if (ev->eventfd == eventfd) {
3748 list_del(&ev->list);
3749 kfree(ev);
3750 }
3751 }
3752
1af8efe9 3753 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3754}
3755
2da8ca82 3756static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3757{
2da8ca82 3758 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3759
791badbd 3760 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3761 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
3762 seq_printf(sf, "oom_kill %lu\n",
3763 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
3764 return 0;
3765}
3766
182446d0 3767static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3768 struct cftype *cft, u64 val)
3769{
182446d0 3770 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3771
3772 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3773 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3774 return -EINVAL;
3775
c0ff4b85 3776 memcg->oom_kill_disable = val;
4d845ebf 3777 if (!val)
c0ff4b85 3778 memcg_oom_recover(memcg);
3dae7fec 3779
3c11ecf4
KH
3780 return 0;
3781}
3782
52ebea74
TH
3783#ifdef CONFIG_CGROUP_WRITEBACK
3784
841710aa
TH
3785static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3786{
3787 return wb_domain_init(&memcg->cgwb_domain, gfp);
3788}
3789
3790static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3791{
3792 wb_domain_exit(&memcg->cgwb_domain);
3793}
3794
2529bb3a
TH
3795static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3796{
3797 wb_domain_size_changed(&memcg->cgwb_domain);
3798}
3799
841710aa
TH
3800struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3801{
3802 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3803
3804 if (!memcg->css.parent)
3805 return NULL;
3806
3807 return &memcg->cgwb_domain;
3808}
3809
c2aa723a
TH
3810/**
3811 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3812 * @wb: bdi_writeback in question
c5edf9cd
TH
3813 * @pfilepages: out parameter for number of file pages
3814 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3815 * @pdirty: out parameter for number of dirty pages
3816 * @pwriteback: out parameter for number of pages under writeback
3817 *
c5edf9cd
TH
3818 * Determine the numbers of file, headroom, dirty, and writeback pages in
3819 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3820 * is a bit more involved.
c2aa723a 3821 *
c5edf9cd
TH
3822 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3823 * headroom is calculated as the lowest headroom of itself and the
3824 * ancestors. Note that this doesn't consider the actual amount of
3825 * available memory in the system. The caller should further cap
3826 * *@pheadroom accordingly.
c2aa723a 3827 */
c5edf9cd
TH
3828void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3829 unsigned long *pheadroom, unsigned long *pdirty,
3830 unsigned long *pwriteback)
c2aa723a
TH
3831{
3832 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3833 struct mem_cgroup *parent;
c2aa723a 3834
ccda7f43 3835 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3836
3837 /* this should eventually include NR_UNSTABLE_NFS */
ccda7f43 3838 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
c5edf9cd
TH
3839 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3840 (1 << LRU_ACTIVE_FILE));
3841 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3842
c2aa723a 3843 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 3844 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
3845 unsigned long used = page_counter_read(&memcg->memory);
3846
c5edf9cd 3847 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3848 memcg = parent;
3849 }
c2aa723a
TH
3850}
3851
841710aa
TH
3852#else /* CONFIG_CGROUP_WRITEBACK */
3853
3854static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3855{
3856 return 0;
3857}
3858
3859static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3860{
3861}
3862
2529bb3a
TH
3863static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3864{
3865}
3866
52ebea74
TH
3867#endif /* CONFIG_CGROUP_WRITEBACK */
3868
3bc942f3
TH
3869/*
3870 * DO NOT USE IN NEW FILES.
3871 *
3872 * "cgroup.event_control" implementation.
3873 *
3874 * This is way over-engineered. It tries to support fully configurable
3875 * events for each user. Such level of flexibility is completely
3876 * unnecessary especially in the light of the planned unified hierarchy.
3877 *
3878 * Please deprecate this and replace with something simpler if at all
3879 * possible.
3880 */
3881
79bd9814
TH
3882/*
3883 * Unregister event and free resources.
3884 *
3885 * Gets called from workqueue.
3886 */
3bc942f3 3887static void memcg_event_remove(struct work_struct *work)
79bd9814 3888{
3bc942f3
TH
3889 struct mem_cgroup_event *event =
3890 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3891 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3892
3893 remove_wait_queue(event->wqh, &event->wait);
3894
59b6f873 3895 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3896
3897 /* Notify userspace the event is going away. */
3898 eventfd_signal(event->eventfd, 1);
3899
3900 eventfd_ctx_put(event->eventfd);
3901 kfree(event);
59b6f873 3902 css_put(&memcg->css);
79bd9814
TH
3903}
3904
3905/*
a9a08845 3906 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
3907 *
3908 * Called with wqh->lock held and interrupts disabled.
3909 */
ac6424b9 3910static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 3911 int sync, void *key)
79bd9814 3912{
3bc942f3
TH
3913 struct mem_cgroup_event *event =
3914 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3915 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 3916 __poll_t flags = key_to_poll(key);
79bd9814 3917
a9a08845 3918 if (flags & EPOLLHUP) {
79bd9814
TH
3919 /*
3920 * If the event has been detached at cgroup removal, we
3921 * can simply return knowing the other side will cleanup
3922 * for us.
3923 *
3924 * We can't race against event freeing since the other
3925 * side will require wqh->lock via remove_wait_queue(),
3926 * which we hold.
3927 */
fba94807 3928 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3929 if (!list_empty(&event->list)) {
3930 list_del_init(&event->list);
3931 /*
3932 * We are in atomic context, but cgroup_event_remove()
3933 * may sleep, so we have to call it in workqueue.
3934 */
3935 schedule_work(&event->remove);
3936 }
fba94807 3937 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3938 }
3939
3940 return 0;
3941}
3942
3bc942f3 3943static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3944 wait_queue_head_t *wqh, poll_table *pt)
3945{
3bc942f3
TH
3946 struct mem_cgroup_event *event =
3947 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3948
3949 event->wqh = wqh;
3950 add_wait_queue(wqh, &event->wait);
3951}
3952
3953/*
3bc942f3
TH
3954 * DO NOT USE IN NEW FILES.
3955 *
79bd9814
TH
3956 * Parse input and register new cgroup event handler.
3957 *
3958 * Input must be in format '<event_fd> <control_fd> <args>'.
3959 * Interpretation of args is defined by control file implementation.
3960 */
451af504
TH
3961static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3962 char *buf, size_t nbytes, loff_t off)
79bd9814 3963{
451af504 3964 struct cgroup_subsys_state *css = of_css(of);
fba94807 3965 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3966 struct mem_cgroup_event *event;
79bd9814
TH
3967 struct cgroup_subsys_state *cfile_css;
3968 unsigned int efd, cfd;
3969 struct fd efile;
3970 struct fd cfile;
fba94807 3971 const char *name;
79bd9814
TH
3972 char *endp;
3973 int ret;
3974
451af504
TH
3975 buf = strstrip(buf);
3976
3977 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3978 if (*endp != ' ')
3979 return -EINVAL;
451af504 3980 buf = endp + 1;
79bd9814 3981
451af504 3982 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3983 if ((*endp != ' ') && (*endp != '\0'))
3984 return -EINVAL;
451af504 3985 buf = endp + 1;
79bd9814
TH
3986
3987 event = kzalloc(sizeof(*event), GFP_KERNEL);
3988 if (!event)
3989 return -ENOMEM;
3990
59b6f873 3991 event->memcg = memcg;
79bd9814 3992 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3993 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3994 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3995 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3996
3997 efile = fdget(efd);
3998 if (!efile.file) {
3999 ret = -EBADF;
4000 goto out_kfree;
4001 }
4002
4003 event->eventfd = eventfd_ctx_fileget(efile.file);
4004 if (IS_ERR(event->eventfd)) {
4005 ret = PTR_ERR(event->eventfd);
4006 goto out_put_efile;
4007 }
4008
4009 cfile = fdget(cfd);
4010 if (!cfile.file) {
4011 ret = -EBADF;
4012 goto out_put_eventfd;
4013 }
4014
4015 /* the process need read permission on control file */
4016 /* AV: shouldn't we check that it's been opened for read instead? */
4017 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4018 if (ret < 0)
4019 goto out_put_cfile;
4020
fba94807
TH
4021 /*
4022 * Determine the event callbacks and set them in @event. This used
4023 * to be done via struct cftype but cgroup core no longer knows
4024 * about these events. The following is crude but the whole thing
4025 * is for compatibility anyway.
3bc942f3
TH
4026 *
4027 * DO NOT ADD NEW FILES.
fba94807 4028 */
b583043e 4029 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4030
4031 if (!strcmp(name, "memory.usage_in_bytes")) {
4032 event->register_event = mem_cgroup_usage_register_event;
4033 event->unregister_event = mem_cgroup_usage_unregister_event;
4034 } else if (!strcmp(name, "memory.oom_control")) {
4035 event->register_event = mem_cgroup_oom_register_event;
4036 event->unregister_event = mem_cgroup_oom_unregister_event;
4037 } else if (!strcmp(name, "memory.pressure_level")) {
4038 event->register_event = vmpressure_register_event;
4039 event->unregister_event = vmpressure_unregister_event;
4040 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4041 event->register_event = memsw_cgroup_usage_register_event;
4042 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4043 } else {
4044 ret = -EINVAL;
4045 goto out_put_cfile;
4046 }
4047
79bd9814 4048 /*
b5557c4c
TH
4049 * Verify @cfile should belong to @css. Also, remaining events are
4050 * automatically removed on cgroup destruction but the removal is
4051 * asynchronous, so take an extra ref on @css.
79bd9814 4052 */
b583043e 4053 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4054 &memory_cgrp_subsys);
79bd9814 4055 ret = -EINVAL;
5a17f543 4056 if (IS_ERR(cfile_css))
79bd9814 4057 goto out_put_cfile;
5a17f543
TH
4058 if (cfile_css != css) {
4059 css_put(cfile_css);
79bd9814 4060 goto out_put_cfile;
5a17f543 4061 }
79bd9814 4062
451af504 4063 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4064 if (ret)
4065 goto out_put_css;
4066
9965ed17 4067 vfs_poll(efile.file, &event->pt);
79bd9814 4068
fba94807
TH
4069 spin_lock(&memcg->event_list_lock);
4070 list_add(&event->list, &memcg->event_list);
4071 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4072
4073 fdput(cfile);
4074 fdput(efile);
4075
451af504 4076 return nbytes;
79bd9814
TH
4077
4078out_put_css:
b5557c4c 4079 css_put(css);
79bd9814
TH
4080out_put_cfile:
4081 fdput(cfile);
4082out_put_eventfd:
4083 eventfd_ctx_put(event->eventfd);
4084out_put_efile:
4085 fdput(efile);
4086out_kfree:
4087 kfree(event);
4088
4089 return ret;
4090}
4091
241994ed 4092static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4093 {
0eea1030 4094 .name = "usage_in_bytes",
8c7c6e34 4095 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4096 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4097 },
c84872e1
PE
4098 {
4099 .name = "max_usage_in_bytes",
8c7c6e34 4100 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4101 .write = mem_cgroup_reset,
791badbd 4102 .read_u64 = mem_cgroup_read_u64,
c84872e1 4103 },
8cdea7c0 4104 {
0eea1030 4105 .name = "limit_in_bytes",
8c7c6e34 4106 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4107 .write = mem_cgroup_write,
791badbd 4108 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4109 },
296c81d8
BS
4110 {
4111 .name = "soft_limit_in_bytes",
4112 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4113 .write = mem_cgroup_write,
791badbd 4114 .read_u64 = mem_cgroup_read_u64,
296c81d8 4115 },
8cdea7c0
BS
4116 {
4117 .name = "failcnt",
8c7c6e34 4118 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4119 .write = mem_cgroup_reset,
791badbd 4120 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4121 },
d2ceb9b7
KH
4122 {
4123 .name = "stat",
2da8ca82 4124 .seq_show = memcg_stat_show,
d2ceb9b7 4125 },
c1e862c1
KH
4126 {
4127 .name = "force_empty",
6770c64e 4128 .write = mem_cgroup_force_empty_write,
c1e862c1 4129 },
18f59ea7
BS
4130 {
4131 .name = "use_hierarchy",
4132 .write_u64 = mem_cgroup_hierarchy_write,
4133 .read_u64 = mem_cgroup_hierarchy_read,
4134 },
79bd9814 4135 {
3bc942f3 4136 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4137 .write = memcg_write_event_control,
7dbdb199 4138 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4139 },
a7885eb8
KM
4140 {
4141 .name = "swappiness",
4142 .read_u64 = mem_cgroup_swappiness_read,
4143 .write_u64 = mem_cgroup_swappiness_write,
4144 },
7dc74be0
DN
4145 {
4146 .name = "move_charge_at_immigrate",
4147 .read_u64 = mem_cgroup_move_charge_read,
4148 .write_u64 = mem_cgroup_move_charge_write,
4149 },
9490ff27
KH
4150 {
4151 .name = "oom_control",
2da8ca82 4152 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4153 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4154 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4155 },
70ddf637
AV
4156 {
4157 .name = "pressure_level",
70ddf637 4158 },
406eb0c9
YH
4159#ifdef CONFIG_NUMA
4160 {
4161 .name = "numa_stat",
2da8ca82 4162 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4163 },
4164#endif
510fc4e1
GC
4165 {
4166 .name = "kmem.limit_in_bytes",
4167 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4168 .write = mem_cgroup_write,
791badbd 4169 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4170 },
4171 {
4172 .name = "kmem.usage_in_bytes",
4173 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4174 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4175 },
4176 {
4177 .name = "kmem.failcnt",
4178 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4179 .write = mem_cgroup_reset,
791badbd 4180 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4181 },
4182 {
4183 .name = "kmem.max_usage_in_bytes",
4184 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4185 .write = mem_cgroup_reset,
791badbd 4186 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4187 },
5b365771 4188#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4189 {
4190 .name = "kmem.slabinfo",
bc2791f8
TH
4191 .seq_start = memcg_slab_start,
4192 .seq_next = memcg_slab_next,
4193 .seq_stop = memcg_slab_stop,
b047501c 4194 .seq_show = memcg_slab_show,
749c5415
GC
4195 },
4196#endif
d55f90bf
VD
4197 {
4198 .name = "kmem.tcp.limit_in_bytes",
4199 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4200 .write = mem_cgroup_write,
4201 .read_u64 = mem_cgroup_read_u64,
4202 },
4203 {
4204 .name = "kmem.tcp.usage_in_bytes",
4205 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4206 .read_u64 = mem_cgroup_read_u64,
4207 },
4208 {
4209 .name = "kmem.tcp.failcnt",
4210 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4211 .write = mem_cgroup_reset,
4212 .read_u64 = mem_cgroup_read_u64,
4213 },
4214 {
4215 .name = "kmem.tcp.max_usage_in_bytes",
4216 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4217 .write = mem_cgroup_reset,
4218 .read_u64 = mem_cgroup_read_u64,
4219 },
6bc10349 4220 { }, /* terminate */
af36f906 4221};
8c7c6e34 4222
73f576c0
JW
4223/*
4224 * Private memory cgroup IDR
4225 *
4226 * Swap-out records and page cache shadow entries need to store memcg
4227 * references in constrained space, so we maintain an ID space that is
4228 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4229 * memory-controlled cgroups to 64k.
4230 *
4231 * However, there usually are many references to the oflline CSS after
4232 * the cgroup has been destroyed, such as page cache or reclaimable
4233 * slab objects, that don't need to hang on to the ID. We want to keep
4234 * those dead CSS from occupying IDs, or we might quickly exhaust the
4235 * relatively small ID space and prevent the creation of new cgroups
4236 * even when there are much fewer than 64k cgroups - possibly none.
4237 *
4238 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4239 * be freed and recycled when it's no longer needed, which is usually
4240 * when the CSS is offlined.
4241 *
4242 * The only exception to that are records of swapped out tmpfs/shmem
4243 * pages that need to be attributed to live ancestors on swapin. But
4244 * those references are manageable from userspace.
4245 */
4246
4247static DEFINE_IDR(mem_cgroup_idr);
4248
7e97de0b
KT
4249static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4250{
4251 if (memcg->id.id > 0) {
4252 idr_remove(&mem_cgroup_idr, memcg->id.id);
4253 memcg->id.id = 0;
4254 }
4255}
4256
615d66c3 4257static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4258{
58fa2a55 4259 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4260 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4261}
4262
615d66c3 4263static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4264{
58fa2a55 4265 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4266 if (atomic_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4267 mem_cgroup_id_remove(memcg);
73f576c0
JW
4268
4269 /* Memcg ID pins CSS */
4270 css_put(&memcg->css);
4271 }
4272}
4273
615d66c3
VD
4274static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4275{
4276 mem_cgroup_id_get_many(memcg, 1);
4277}
4278
4279static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4280{
4281 mem_cgroup_id_put_many(memcg, 1);
4282}
4283
73f576c0
JW
4284/**
4285 * mem_cgroup_from_id - look up a memcg from a memcg id
4286 * @id: the memcg id to look up
4287 *
4288 * Caller must hold rcu_read_lock().
4289 */
4290struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4291{
4292 WARN_ON_ONCE(!rcu_read_lock_held());
4293 return idr_find(&mem_cgroup_idr, id);
4294}
4295
ef8f2327 4296static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4297{
4298 struct mem_cgroup_per_node *pn;
ef8f2327 4299 int tmp = node;
1ecaab2b
KH
4300 /*
4301 * This routine is called against possible nodes.
4302 * But it's BUG to call kmalloc() against offline node.
4303 *
4304 * TODO: this routine can waste much memory for nodes which will
4305 * never be onlined. It's better to use memory hotplug callback
4306 * function.
4307 */
41e3355d
KH
4308 if (!node_state(node, N_NORMAL_MEMORY))
4309 tmp = -1;
17295c88 4310 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4311 if (!pn)
4312 return 1;
1ecaab2b 4313
a983b5eb
JW
4314 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4315 if (!pn->lruvec_stat_cpu) {
00f3ca2c
JW
4316 kfree(pn);
4317 return 1;
4318 }
4319
ef8f2327
MG
4320 lruvec_init(&pn->lruvec);
4321 pn->usage_in_excess = 0;
4322 pn->on_tree = false;
4323 pn->memcg = memcg;
4324
54f72fe0 4325 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4326 return 0;
4327}
4328
ef8f2327 4329static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4330{
00f3ca2c
JW
4331 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4332
4eaf431f
MH
4333 if (!pn)
4334 return;
4335
a983b5eb 4336 free_percpu(pn->lruvec_stat_cpu);
00f3ca2c 4337 kfree(pn);
1ecaab2b
KH
4338}
4339
40e952f9 4340static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4341{
c8b2a36f 4342 int node;
59927fb9 4343
c8b2a36f 4344 for_each_node(node)
ef8f2327 4345 free_mem_cgroup_per_node_info(memcg, node);
a983b5eb 4346 free_percpu(memcg->stat_cpu);
8ff69e2c 4347 kfree(memcg);
59927fb9 4348}
3afe36b1 4349
40e952f9
TE
4350static void mem_cgroup_free(struct mem_cgroup *memcg)
4351{
4352 memcg_wb_domain_exit(memcg);
4353 __mem_cgroup_free(memcg);
4354}
4355
0b8f73e1 4356static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4357{
d142e3e6 4358 struct mem_cgroup *memcg;
0b8f73e1 4359 size_t size;
6d12e2d8 4360 int node;
8cdea7c0 4361
0b8f73e1
JW
4362 size = sizeof(struct mem_cgroup);
4363 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4364
4365 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4366 if (!memcg)
0b8f73e1
JW
4367 return NULL;
4368
73f576c0
JW
4369 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4370 1, MEM_CGROUP_ID_MAX,
4371 GFP_KERNEL);
4372 if (memcg->id.id < 0)
4373 goto fail;
4374
a983b5eb
JW
4375 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4376 if (!memcg->stat_cpu)
0b8f73e1 4377 goto fail;
78fb7466 4378
3ed28fa1 4379 for_each_node(node)
ef8f2327 4380 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4381 goto fail;
f64c3f54 4382
0b8f73e1
JW
4383 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4384 goto fail;
28dbc4b6 4385
f7e1cb6e 4386 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4387 memcg->last_scanned_node = MAX_NUMNODES;
4388 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4389 mutex_init(&memcg->thresholds_lock);
4390 spin_lock_init(&memcg->move_lock);
70ddf637 4391 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4392 INIT_LIST_HEAD(&memcg->event_list);
4393 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4394 memcg->socket_pressure = jiffies;
84c07d11 4395#ifdef CONFIG_MEMCG_KMEM
900a38f0 4396 memcg->kmemcg_id = -1;
900a38f0 4397#endif
52ebea74
TH
4398#ifdef CONFIG_CGROUP_WRITEBACK
4399 INIT_LIST_HEAD(&memcg->cgwb_list);
4400#endif
73f576c0 4401 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4402 return memcg;
4403fail:
7e97de0b 4404 mem_cgroup_id_remove(memcg);
40e952f9 4405 __mem_cgroup_free(memcg);
0b8f73e1 4406 return NULL;
d142e3e6
GC
4407}
4408
0b8f73e1
JW
4409static struct cgroup_subsys_state * __ref
4410mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4411{
0b8f73e1
JW
4412 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4413 struct mem_cgroup *memcg;
4414 long error = -ENOMEM;
d142e3e6 4415
0b8f73e1
JW
4416 memcg = mem_cgroup_alloc();
4417 if (!memcg)
4418 return ERR_PTR(error);
d142e3e6 4419
0b8f73e1
JW
4420 memcg->high = PAGE_COUNTER_MAX;
4421 memcg->soft_limit = PAGE_COUNTER_MAX;
4422 if (parent) {
4423 memcg->swappiness = mem_cgroup_swappiness(parent);
4424 memcg->oom_kill_disable = parent->oom_kill_disable;
4425 }
4426 if (parent && parent->use_hierarchy) {
4427 memcg->use_hierarchy = true;
3e32cb2e 4428 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4429 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4430 page_counter_init(&memcg->memsw, &parent->memsw);
4431 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4432 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4433 } else {
3e32cb2e 4434 page_counter_init(&memcg->memory, NULL);
37e84351 4435 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4436 page_counter_init(&memcg->memsw, NULL);
4437 page_counter_init(&memcg->kmem, NULL);
0db15298 4438 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4439 /*
4440 * Deeper hierachy with use_hierarchy == false doesn't make
4441 * much sense so let cgroup subsystem know about this
4442 * unfortunate state in our controller.
4443 */
d142e3e6 4444 if (parent != root_mem_cgroup)
073219e9 4445 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4446 }
d6441637 4447
0b8f73e1
JW
4448 /* The following stuff does not apply to the root */
4449 if (!parent) {
4450 root_mem_cgroup = memcg;
4451 return &memcg->css;
4452 }
4453
b313aeee 4454 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4455 if (error)
4456 goto fail;
127424c8 4457
f7e1cb6e 4458 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4459 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4460
0b8f73e1
JW
4461 return &memcg->css;
4462fail:
7e97de0b 4463 mem_cgroup_id_remove(memcg);
0b8f73e1 4464 mem_cgroup_free(memcg);
ea3a9645 4465 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4466}
4467
73f576c0 4468static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4469{
58fa2a55
VD
4470 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4471
0a4465d3
KT
4472 /*
4473 * A memcg must be visible for memcg_expand_shrinker_maps()
4474 * by the time the maps are allocated. So, we allocate maps
4475 * here, when for_each_mem_cgroup() can't skip it.
4476 */
4477 if (memcg_alloc_shrinker_maps(memcg)) {
4478 mem_cgroup_id_remove(memcg);
4479 return -ENOMEM;
4480 }
4481
73f576c0 4482 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4483 atomic_set(&memcg->id.ref, 1);
73f576c0 4484 css_get(css);
2f7dd7a4 4485 return 0;
8cdea7c0
BS
4486}
4487
eb95419b 4488static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4489{
eb95419b 4490 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4491 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4492
4493 /*
4494 * Unregister events and notify userspace.
4495 * Notify userspace about cgroup removing only after rmdir of cgroup
4496 * directory to avoid race between userspace and kernelspace.
4497 */
fba94807
TH
4498 spin_lock(&memcg->event_list_lock);
4499 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4500 list_del_init(&event->list);
4501 schedule_work(&event->remove);
4502 }
fba94807 4503 spin_unlock(&memcg->event_list_lock);
ec64f515 4504
bf8d5d52 4505 page_counter_set_min(&memcg->memory, 0);
23067153 4506 page_counter_set_low(&memcg->memory, 0);
63677c74 4507
567e9ab2 4508 memcg_offline_kmem(memcg);
52ebea74 4509 wb_memcg_offline(memcg);
73f576c0
JW
4510
4511 mem_cgroup_id_put(memcg);
df878fb0
KH
4512}
4513
6df38689
VD
4514static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4515{
4516 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4517
4518 invalidate_reclaim_iterators(memcg);
4519}
4520
eb95419b 4521static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4522{
eb95419b 4523 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4524
f7e1cb6e 4525 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4526 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4527
0db15298 4528 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4529 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4530
0b8f73e1
JW
4531 vmpressure_cleanup(&memcg->vmpressure);
4532 cancel_work_sync(&memcg->high_work);
4533 mem_cgroup_remove_from_trees(memcg);
0a4465d3 4534 memcg_free_shrinker_maps(memcg);
d886f4e4 4535 memcg_free_kmem(memcg);
0b8f73e1 4536 mem_cgroup_free(memcg);
8cdea7c0
BS
4537}
4538
1ced953b
TH
4539/**
4540 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4541 * @css: the target css
4542 *
4543 * Reset the states of the mem_cgroup associated with @css. This is
4544 * invoked when the userland requests disabling on the default hierarchy
4545 * but the memcg is pinned through dependency. The memcg should stop
4546 * applying policies and should revert to the vanilla state as it may be
4547 * made visible again.
4548 *
4549 * The current implementation only resets the essential configurations.
4550 * This needs to be expanded to cover all the visible parts.
4551 */
4552static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4553{
4554 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4555
bbec2e15
RG
4556 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4557 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4558 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4559 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4560 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4561 page_counter_set_min(&memcg->memory, 0);
23067153 4562 page_counter_set_low(&memcg->memory, 0);
241994ed 4563 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4564 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4565 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4566}
4567
02491447 4568#ifdef CONFIG_MMU
7dc74be0 4569/* Handlers for move charge at task migration. */
854ffa8d 4570static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4571{
05b84301 4572 int ret;
9476db97 4573
d0164adc
MG
4574 /* Try a single bulk charge without reclaim first, kswapd may wake */
4575 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4576 if (!ret) {
854ffa8d 4577 mc.precharge += count;
854ffa8d
DN
4578 return ret;
4579 }
9476db97 4580
3674534b 4581 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4582 while (count--) {
3674534b 4583 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4584 if (ret)
38c5d72f 4585 return ret;
854ffa8d 4586 mc.precharge++;
9476db97 4587 cond_resched();
854ffa8d 4588 }
9476db97 4589 return 0;
4ffef5fe
DN
4590}
4591
4ffef5fe
DN
4592union mc_target {
4593 struct page *page;
02491447 4594 swp_entry_t ent;
4ffef5fe
DN
4595};
4596
4ffef5fe 4597enum mc_target_type {
8d32ff84 4598 MC_TARGET_NONE = 0,
4ffef5fe 4599 MC_TARGET_PAGE,
02491447 4600 MC_TARGET_SWAP,
c733a828 4601 MC_TARGET_DEVICE,
4ffef5fe
DN
4602};
4603
90254a65
DN
4604static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4605 unsigned long addr, pte_t ptent)
4ffef5fe 4606{
c733a828 4607 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4608
90254a65
DN
4609 if (!page || !page_mapped(page))
4610 return NULL;
4611 if (PageAnon(page)) {
1dfab5ab 4612 if (!(mc.flags & MOVE_ANON))
90254a65 4613 return NULL;
1dfab5ab
JW
4614 } else {
4615 if (!(mc.flags & MOVE_FILE))
4616 return NULL;
4617 }
90254a65
DN
4618 if (!get_page_unless_zero(page))
4619 return NULL;
4620
4621 return page;
4622}
4623
c733a828 4624#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4625static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4626 pte_t ptent, swp_entry_t *entry)
90254a65 4627{
90254a65
DN
4628 struct page *page = NULL;
4629 swp_entry_t ent = pte_to_swp_entry(ptent);
4630
1dfab5ab 4631 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4632 return NULL;
c733a828
JG
4633
4634 /*
4635 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4636 * a device and because they are not accessible by CPU they are store
4637 * as special swap entry in the CPU page table.
4638 */
4639 if (is_device_private_entry(ent)) {
4640 page = device_private_entry_to_page(ent);
4641 /*
4642 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4643 * a refcount of 1 when free (unlike normal page)
4644 */
4645 if (!page_ref_add_unless(page, 1, 1))
4646 return NULL;
4647 return page;
4648 }
4649
4b91355e
KH
4650 /*
4651 * Because lookup_swap_cache() updates some statistics counter,
4652 * we call find_get_page() with swapper_space directly.
4653 */
f6ab1f7f 4654 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4655 if (do_memsw_account())
90254a65
DN
4656 entry->val = ent.val;
4657
4658 return page;
4659}
4b91355e
KH
4660#else
4661static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4662 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4663{
4664 return NULL;
4665}
4666#endif
90254a65 4667
87946a72
DN
4668static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4669 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4670{
4671 struct page *page = NULL;
87946a72
DN
4672 struct address_space *mapping;
4673 pgoff_t pgoff;
4674
4675 if (!vma->vm_file) /* anonymous vma */
4676 return NULL;
1dfab5ab 4677 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4678 return NULL;
4679
87946a72 4680 mapping = vma->vm_file->f_mapping;
0661a336 4681 pgoff = linear_page_index(vma, addr);
87946a72
DN
4682
4683 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4684#ifdef CONFIG_SWAP
4685 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4686 if (shmem_mapping(mapping)) {
4687 page = find_get_entry(mapping, pgoff);
4688 if (radix_tree_exceptional_entry(page)) {
4689 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4690 if (do_memsw_account())
139b6a6f 4691 *entry = swp;
f6ab1f7f
HY
4692 page = find_get_page(swap_address_space(swp),
4693 swp_offset(swp));
139b6a6f
JW
4694 }
4695 } else
4696 page = find_get_page(mapping, pgoff);
4697#else
4698 page = find_get_page(mapping, pgoff);
aa3b1895 4699#endif
87946a72
DN
4700 return page;
4701}
4702
b1b0deab
CG
4703/**
4704 * mem_cgroup_move_account - move account of the page
4705 * @page: the page
25843c2b 4706 * @compound: charge the page as compound or small page
b1b0deab
CG
4707 * @from: mem_cgroup which the page is moved from.
4708 * @to: mem_cgroup which the page is moved to. @from != @to.
4709 *
3ac808fd 4710 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4711 *
4712 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4713 * from old cgroup.
4714 */
4715static int mem_cgroup_move_account(struct page *page,
f627c2f5 4716 bool compound,
b1b0deab
CG
4717 struct mem_cgroup *from,
4718 struct mem_cgroup *to)
4719{
4720 unsigned long flags;
f627c2f5 4721 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4722 int ret;
c4843a75 4723 bool anon;
b1b0deab
CG
4724
4725 VM_BUG_ON(from == to);
4726 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4727 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4728
4729 /*
6a93ca8f 4730 * Prevent mem_cgroup_migrate() from looking at
45637bab 4731 * page->mem_cgroup of its source page while we change it.
b1b0deab 4732 */
f627c2f5 4733 ret = -EBUSY;
b1b0deab
CG
4734 if (!trylock_page(page))
4735 goto out;
4736
4737 ret = -EINVAL;
4738 if (page->mem_cgroup != from)
4739 goto out_unlock;
4740
c4843a75
GT
4741 anon = PageAnon(page);
4742
b1b0deab
CG
4743 spin_lock_irqsave(&from->move_lock, flags);
4744
c4843a75 4745 if (!anon && page_mapped(page)) {
c9019e9b
JW
4746 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4747 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
4748 }
4749
c4843a75
GT
4750 /*
4751 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4752 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4753 * So mapping should be stable for dirty pages.
4754 */
4755 if (!anon && PageDirty(page)) {
4756 struct address_space *mapping = page_mapping(page);
4757
4758 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
4759 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4760 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
4761 }
4762 }
4763
b1b0deab 4764 if (PageWriteback(page)) {
c9019e9b
JW
4765 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4766 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
4767 }
4768
4769 /*
4770 * It is safe to change page->mem_cgroup here because the page
4771 * is referenced, charged, and isolated - we can't race with
4772 * uncharging, charging, migration, or LRU putback.
4773 */
4774
4775 /* caller should have done css_get */
4776 page->mem_cgroup = to;
4777 spin_unlock_irqrestore(&from->move_lock, flags);
4778
4779 ret = 0;
4780
4781 local_irq_disable();
f627c2f5 4782 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4783 memcg_check_events(to, page);
f627c2f5 4784 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4785 memcg_check_events(from, page);
4786 local_irq_enable();
4787out_unlock:
4788 unlock_page(page);
4789out:
4790 return ret;
4791}
4792
7cf7806c
LR
4793/**
4794 * get_mctgt_type - get target type of moving charge
4795 * @vma: the vma the pte to be checked belongs
4796 * @addr: the address corresponding to the pte to be checked
4797 * @ptent: the pte to be checked
4798 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4799 *
4800 * Returns
4801 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4802 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4803 * move charge. if @target is not NULL, the page is stored in target->page
4804 * with extra refcnt got(Callers should handle it).
4805 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4806 * target for charge migration. if @target is not NULL, the entry is stored
4807 * in target->ent.
df6ad698
JG
4808 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4809 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4810 * For now we such page is charge like a regular page would be as for all
4811 * intent and purposes it is just special memory taking the place of a
4812 * regular page.
c733a828
JG
4813 *
4814 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
4815 *
4816 * Called with pte lock held.
4817 */
4818
8d32ff84 4819static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4820 unsigned long addr, pte_t ptent, union mc_target *target)
4821{
4822 struct page *page = NULL;
8d32ff84 4823 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4824 swp_entry_t ent = { .val = 0 };
4825
4826 if (pte_present(ptent))
4827 page = mc_handle_present_pte(vma, addr, ptent);
4828 else if (is_swap_pte(ptent))
48406ef8 4829 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4830 else if (pte_none(ptent))
87946a72 4831 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4832
4833 if (!page && !ent.val)
8d32ff84 4834 return ret;
02491447 4835 if (page) {
02491447 4836 /*
0a31bc97 4837 * Do only loose check w/o serialization.
1306a85a 4838 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4839 * not under LRU exclusion.
02491447 4840 */
1306a85a 4841 if (page->mem_cgroup == mc.from) {
02491447 4842 ret = MC_TARGET_PAGE;
df6ad698
JG
4843 if (is_device_private_page(page) ||
4844 is_device_public_page(page))
c733a828 4845 ret = MC_TARGET_DEVICE;
02491447
DN
4846 if (target)
4847 target->page = page;
4848 }
4849 if (!ret || !target)
4850 put_page(page);
4851 }
3e14a57b
HY
4852 /*
4853 * There is a swap entry and a page doesn't exist or isn't charged.
4854 * But we cannot move a tail-page in a THP.
4855 */
4856 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 4857 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4858 ret = MC_TARGET_SWAP;
4859 if (target)
4860 target->ent = ent;
4ffef5fe 4861 }
4ffef5fe
DN
4862 return ret;
4863}
4864
12724850
NH
4865#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4866/*
d6810d73
HY
4867 * We don't consider PMD mapped swapping or file mapped pages because THP does
4868 * not support them for now.
12724850
NH
4869 * Caller should make sure that pmd_trans_huge(pmd) is true.
4870 */
4871static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4872 unsigned long addr, pmd_t pmd, union mc_target *target)
4873{
4874 struct page *page = NULL;
12724850
NH
4875 enum mc_target_type ret = MC_TARGET_NONE;
4876
84c3fc4e
ZY
4877 if (unlikely(is_swap_pmd(pmd))) {
4878 VM_BUG_ON(thp_migration_supported() &&
4879 !is_pmd_migration_entry(pmd));
4880 return ret;
4881 }
12724850 4882 page = pmd_page(pmd);
309381fe 4883 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4884 if (!(mc.flags & MOVE_ANON))
12724850 4885 return ret;
1306a85a 4886 if (page->mem_cgroup == mc.from) {
12724850
NH
4887 ret = MC_TARGET_PAGE;
4888 if (target) {
4889 get_page(page);
4890 target->page = page;
4891 }
4892 }
4893 return ret;
4894}
4895#else
4896static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4897 unsigned long addr, pmd_t pmd, union mc_target *target)
4898{
4899 return MC_TARGET_NONE;
4900}
4901#endif
4902
4ffef5fe
DN
4903static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4904 unsigned long addr, unsigned long end,
4905 struct mm_walk *walk)
4906{
26bcd64a 4907 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4908 pte_t *pte;
4909 spinlock_t *ptl;
4910
b6ec57f4
KS
4911 ptl = pmd_trans_huge_lock(pmd, vma);
4912 if (ptl) {
c733a828
JG
4913 /*
4914 * Note their can not be MC_TARGET_DEVICE for now as we do not
4915 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4916 * MEMORY_DEVICE_PRIVATE but this might change.
4917 */
12724850
NH
4918 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4919 mc.precharge += HPAGE_PMD_NR;
bf929152 4920 spin_unlock(ptl);
1a5a9906 4921 return 0;
12724850 4922 }
03319327 4923
45f83cef
AA
4924 if (pmd_trans_unstable(pmd))
4925 return 0;
4ffef5fe
DN
4926 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4927 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4928 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4929 mc.precharge++; /* increment precharge temporarily */
4930 pte_unmap_unlock(pte - 1, ptl);
4931 cond_resched();
4932
7dc74be0
DN
4933 return 0;
4934}
4935
4ffef5fe
DN
4936static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4937{
4938 unsigned long precharge;
4ffef5fe 4939
26bcd64a
NH
4940 struct mm_walk mem_cgroup_count_precharge_walk = {
4941 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4942 .mm = mm,
4943 };
dfe076b0 4944 down_read(&mm->mmap_sem);
0247f3f4
JM
4945 walk_page_range(0, mm->highest_vm_end,
4946 &mem_cgroup_count_precharge_walk);
dfe076b0 4947 up_read(&mm->mmap_sem);
4ffef5fe
DN
4948
4949 precharge = mc.precharge;
4950 mc.precharge = 0;
4951
4952 return precharge;
4953}
4954
4ffef5fe
DN
4955static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4956{
dfe076b0
DN
4957 unsigned long precharge = mem_cgroup_count_precharge(mm);
4958
4959 VM_BUG_ON(mc.moving_task);
4960 mc.moving_task = current;
4961 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4962}
4963
dfe076b0
DN
4964/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4965static void __mem_cgroup_clear_mc(void)
4ffef5fe 4966{
2bd9bb20
KH
4967 struct mem_cgroup *from = mc.from;
4968 struct mem_cgroup *to = mc.to;
4969
4ffef5fe 4970 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4971 if (mc.precharge) {
00501b53 4972 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4973 mc.precharge = 0;
4974 }
4975 /*
4976 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4977 * we must uncharge here.
4978 */
4979 if (mc.moved_charge) {
00501b53 4980 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4981 mc.moved_charge = 0;
4ffef5fe 4982 }
483c30b5
DN
4983 /* we must fixup refcnts and charges */
4984 if (mc.moved_swap) {
483c30b5 4985 /* uncharge swap account from the old cgroup */
ce00a967 4986 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4987 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4988
615d66c3
VD
4989 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4990
05b84301 4991 /*
3e32cb2e
JW
4992 * we charged both to->memory and to->memsw, so we
4993 * should uncharge to->memory.
05b84301 4994 */
ce00a967 4995 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4996 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4997
615d66c3
VD
4998 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4999 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5000
483c30b5
DN
5001 mc.moved_swap = 0;
5002 }
dfe076b0
DN
5003 memcg_oom_recover(from);
5004 memcg_oom_recover(to);
5005 wake_up_all(&mc.waitq);
5006}
5007
5008static void mem_cgroup_clear_mc(void)
5009{
264a0ae1
TH
5010 struct mm_struct *mm = mc.mm;
5011
dfe076b0
DN
5012 /*
5013 * we must clear moving_task before waking up waiters at the end of
5014 * task migration.
5015 */
5016 mc.moving_task = NULL;
5017 __mem_cgroup_clear_mc();
2bd9bb20 5018 spin_lock(&mc.lock);
4ffef5fe
DN
5019 mc.from = NULL;
5020 mc.to = NULL;
264a0ae1 5021 mc.mm = NULL;
2bd9bb20 5022 spin_unlock(&mc.lock);
264a0ae1
TH
5023
5024 mmput(mm);
4ffef5fe
DN
5025}
5026
1f7dd3e5 5027static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5028{
1f7dd3e5 5029 struct cgroup_subsys_state *css;
eed67d75 5030 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5031 struct mem_cgroup *from;
4530eddb 5032 struct task_struct *leader, *p;
9f2115f9 5033 struct mm_struct *mm;
1dfab5ab 5034 unsigned long move_flags;
9f2115f9 5035 int ret = 0;
7dc74be0 5036
1f7dd3e5
TH
5037 /* charge immigration isn't supported on the default hierarchy */
5038 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5039 return 0;
5040
4530eddb
TH
5041 /*
5042 * Multi-process migrations only happen on the default hierarchy
5043 * where charge immigration is not used. Perform charge
5044 * immigration if @tset contains a leader and whine if there are
5045 * multiple.
5046 */
5047 p = NULL;
1f7dd3e5 5048 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5049 WARN_ON_ONCE(p);
5050 p = leader;
1f7dd3e5 5051 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5052 }
5053 if (!p)
5054 return 0;
5055
1f7dd3e5
TH
5056 /*
5057 * We are now commited to this value whatever it is. Changes in this
5058 * tunable will only affect upcoming migrations, not the current one.
5059 * So we need to save it, and keep it going.
5060 */
5061 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5062 if (!move_flags)
5063 return 0;
5064
9f2115f9
TH
5065 from = mem_cgroup_from_task(p);
5066
5067 VM_BUG_ON(from == memcg);
5068
5069 mm = get_task_mm(p);
5070 if (!mm)
5071 return 0;
5072 /* We move charges only when we move a owner of the mm */
5073 if (mm->owner == p) {
5074 VM_BUG_ON(mc.from);
5075 VM_BUG_ON(mc.to);
5076 VM_BUG_ON(mc.precharge);
5077 VM_BUG_ON(mc.moved_charge);
5078 VM_BUG_ON(mc.moved_swap);
5079
5080 spin_lock(&mc.lock);
264a0ae1 5081 mc.mm = mm;
9f2115f9
TH
5082 mc.from = from;
5083 mc.to = memcg;
5084 mc.flags = move_flags;
5085 spin_unlock(&mc.lock);
5086 /* We set mc.moving_task later */
5087
5088 ret = mem_cgroup_precharge_mc(mm);
5089 if (ret)
5090 mem_cgroup_clear_mc();
264a0ae1
TH
5091 } else {
5092 mmput(mm);
7dc74be0
DN
5093 }
5094 return ret;
5095}
5096
1f7dd3e5 5097static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5098{
4e2f245d
JW
5099 if (mc.to)
5100 mem_cgroup_clear_mc();
7dc74be0
DN
5101}
5102
4ffef5fe
DN
5103static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5104 unsigned long addr, unsigned long end,
5105 struct mm_walk *walk)
7dc74be0 5106{
4ffef5fe 5107 int ret = 0;
26bcd64a 5108 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5109 pte_t *pte;
5110 spinlock_t *ptl;
12724850
NH
5111 enum mc_target_type target_type;
5112 union mc_target target;
5113 struct page *page;
4ffef5fe 5114
b6ec57f4
KS
5115 ptl = pmd_trans_huge_lock(pmd, vma);
5116 if (ptl) {
62ade86a 5117 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5118 spin_unlock(ptl);
12724850
NH
5119 return 0;
5120 }
5121 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5122 if (target_type == MC_TARGET_PAGE) {
5123 page = target.page;
5124 if (!isolate_lru_page(page)) {
f627c2f5 5125 if (!mem_cgroup_move_account(page, true,
1306a85a 5126 mc.from, mc.to)) {
12724850
NH
5127 mc.precharge -= HPAGE_PMD_NR;
5128 mc.moved_charge += HPAGE_PMD_NR;
5129 }
5130 putback_lru_page(page);
5131 }
5132 put_page(page);
c733a828
JG
5133 } else if (target_type == MC_TARGET_DEVICE) {
5134 page = target.page;
5135 if (!mem_cgroup_move_account(page, true,
5136 mc.from, mc.to)) {
5137 mc.precharge -= HPAGE_PMD_NR;
5138 mc.moved_charge += HPAGE_PMD_NR;
5139 }
5140 put_page(page);
12724850 5141 }
bf929152 5142 spin_unlock(ptl);
1a5a9906 5143 return 0;
12724850
NH
5144 }
5145
45f83cef
AA
5146 if (pmd_trans_unstable(pmd))
5147 return 0;
4ffef5fe
DN
5148retry:
5149 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5150 for (; addr != end; addr += PAGE_SIZE) {
5151 pte_t ptent = *(pte++);
c733a828 5152 bool device = false;
02491447 5153 swp_entry_t ent;
4ffef5fe
DN
5154
5155 if (!mc.precharge)
5156 break;
5157
8d32ff84 5158 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5159 case MC_TARGET_DEVICE:
5160 device = true;
5161 /* fall through */
4ffef5fe
DN
5162 case MC_TARGET_PAGE:
5163 page = target.page;
53f9263b
KS
5164 /*
5165 * We can have a part of the split pmd here. Moving it
5166 * can be done but it would be too convoluted so simply
5167 * ignore such a partial THP and keep it in original
5168 * memcg. There should be somebody mapping the head.
5169 */
5170 if (PageTransCompound(page))
5171 goto put;
c733a828 5172 if (!device && isolate_lru_page(page))
4ffef5fe 5173 goto put;
f627c2f5
KS
5174 if (!mem_cgroup_move_account(page, false,
5175 mc.from, mc.to)) {
4ffef5fe 5176 mc.precharge--;
854ffa8d
DN
5177 /* we uncharge from mc.from later. */
5178 mc.moved_charge++;
4ffef5fe 5179 }
c733a828
JG
5180 if (!device)
5181 putback_lru_page(page);
8d32ff84 5182put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5183 put_page(page);
5184 break;
02491447
DN
5185 case MC_TARGET_SWAP:
5186 ent = target.ent;
e91cbb42 5187 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5188 mc.precharge--;
483c30b5
DN
5189 /* we fixup refcnts and charges later. */
5190 mc.moved_swap++;
5191 }
02491447 5192 break;
4ffef5fe
DN
5193 default:
5194 break;
5195 }
5196 }
5197 pte_unmap_unlock(pte - 1, ptl);
5198 cond_resched();
5199
5200 if (addr != end) {
5201 /*
5202 * We have consumed all precharges we got in can_attach().
5203 * We try charge one by one, but don't do any additional
5204 * charges to mc.to if we have failed in charge once in attach()
5205 * phase.
5206 */
854ffa8d 5207 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5208 if (!ret)
5209 goto retry;
5210 }
5211
5212 return ret;
5213}
5214
264a0ae1 5215static void mem_cgroup_move_charge(void)
4ffef5fe 5216{
26bcd64a
NH
5217 struct mm_walk mem_cgroup_move_charge_walk = {
5218 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5219 .mm = mc.mm,
26bcd64a 5220 };
4ffef5fe
DN
5221
5222 lru_add_drain_all();
312722cb 5223 /*
81f8c3a4
JW
5224 * Signal lock_page_memcg() to take the memcg's move_lock
5225 * while we're moving its pages to another memcg. Then wait
5226 * for already started RCU-only updates to finish.
312722cb
JW
5227 */
5228 atomic_inc(&mc.from->moving_account);
5229 synchronize_rcu();
dfe076b0 5230retry:
264a0ae1 5231 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5232 /*
5233 * Someone who are holding the mmap_sem might be waiting in
5234 * waitq. So we cancel all extra charges, wake up all waiters,
5235 * and retry. Because we cancel precharges, we might not be able
5236 * to move enough charges, but moving charge is a best-effort
5237 * feature anyway, so it wouldn't be a big problem.
5238 */
5239 __mem_cgroup_clear_mc();
5240 cond_resched();
5241 goto retry;
5242 }
26bcd64a
NH
5243 /*
5244 * When we have consumed all precharges and failed in doing
5245 * additional charge, the page walk just aborts.
5246 */
0247f3f4
JM
5247 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5248
264a0ae1 5249 up_read(&mc.mm->mmap_sem);
312722cb 5250 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5251}
5252
264a0ae1 5253static void mem_cgroup_move_task(void)
67e465a7 5254{
264a0ae1
TH
5255 if (mc.to) {
5256 mem_cgroup_move_charge();
a433658c 5257 mem_cgroup_clear_mc();
264a0ae1 5258 }
67e465a7 5259}
5cfb80a7 5260#else /* !CONFIG_MMU */
1f7dd3e5 5261static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5262{
5263 return 0;
5264}
1f7dd3e5 5265static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5266{
5267}
264a0ae1 5268static void mem_cgroup_move_task(void)
5cfb80a7
DN
5269{
5270}
5271#endif
67e465a7 5272
f00baae7
TH
5273/*
5274 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5275 * to verify whether we're attached to the default hierarchy on each mount
5276 * attempt.
f00baae7 5277 */
eb95419b 5278static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5279{
5280 /*
aa6ec29b 5281 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5282 * guarantees that @root doesn't have any children, so turning it
5283 * on for the root memcg is enough.
5284 */
9e10a130 5285 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5286 root_mem_cgroup->use_hierarchy = true;
5287 else
5288 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5289}
5290
241994ed
JW
5291static u64 memory_current_read(struct cgroup_subsys_state *css,
5292 struct cftype *cft)
5293{
f5fc3c5d
JW
5294 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5295
5296 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5297}
5298
bf8d5d52
RG
5299static int memory_min_show(struct seq_file *m, void *v)
5300{
5301 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5302 unsigned long min = READ_ONCE(memcg->memory.min);
5303
5304 if (min == PAGE_COUNTER_MAX)
5305 seq_puts(m, "max\n");
5306 else
5307 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5308
5309 return 0;
5310}
5311
5312static ssize_t memory_min_write(struct kernfs_open_file *of,
5313 char *buf, size_t nbytes, loff_t off)
5314{
5315 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5316 unsigned long min;
5317 int err;
5318
5319 buf = strstrip(buf);
5320 err = page_counter_memparse(buf, "max", &min);
5321 if (err)
5322 return err;
5323
5324 page_counter_set_min(&memcg->memory, min);
5325
5326 return nbytes;
5327}
5328
241994ed
JW
5329static int memory_low_show(struct seq_file *m, void *v)
5330{
5331 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
23067153 5332 unsigned long low = READ_ONCE(memcg->memory.low);
241994ed
JW
5333
5334 if (low == PAGE_COUNTER_MAX)
d2973697 5335 seq_puts(m, "max\n");
241994ed
JW
5336 else
5337 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5338
5339 return 0;
5340}
5341
5342static ssize_t memory_low_write(struct kernfs_open_file *of,
5343 char *buf, size_t nbytes, loff_t off)
5344{
5345 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5346 unsigned long low;
5347 int err;
5348
5349 buf = strstrip(buf);
d2973697 5350 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5351 if (err)
5352 return err;
5353
23067153 5354 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5355
5356 return nbytes;
5357}
5358
5359static int memory_high_show(struct seq_file *m, void *v)
5360{
5361 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5362 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5363
5364 if (high == PAGE_COUNTER_MAX)
d2973697 5365 seq_puts(m, "max\n");
241994ed
JW
5366 else
5367 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5368
5369 return 0;
5370}
5371
5372static ssize_t memory_high_write(struct kernfs_open_file *of,
5373 char *buf, size_t nbytes, loff_t off)
5374{
5375 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5376 unsigned long nr_pages;
241994ed
JW
5377 unsigned long high;
5378 int err;
5379
5380 buf = strstrip(buf);
d2973697 5381 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5382 if (err)
5383 return err;
5384
5385 memcg->high = high;
5386
588083bb
JW
5387 nr_pages = page_counter_read(&memcg->memory);
5388 if (nr_pages > high)
5389 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5390 GFP_KERNEL, true);
5391
2529bb3a 5392 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5393 return nbytes;
5394}
5395
5396static int memory_max_show(struct seq_file *m, void *v)
5397{
5398 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 5399 unsigned long max = READ_ONCE(memcg->memory.max);
241994ed
JW
5400
5401 if (max == PAGE_COUNTER_MAX)
d2973697 5402 seq_puts(m, "max\n");
241994ed
JW
5403 else
5404 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5405
5406 return 0;
5407}
5408
5409static ssize_t memory_max_write(struct kernfs_open_file *of,
5410 char *buf, size_t nbytes, loff_t off)
5411{
5412 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5413 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5414 bool drained = false;
241994ed
JW
5415 unsigned long max;
5416 int err;
5417
5418 buf = strstrip(buf);
d2973697 5419 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5420 if (err)
5421 return err;
5422
bbec2e15 5423 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5424
5425 for (;;) {
5426 unsigned long nr_pages = page_counter_read(&memcg->memory);
5427
5428 if (nr_pages <= max)
5429 break;
5430
5431 if (signal_pending(current)) {
5432 err = -EINTR;
5433 break;
5434 }
5435
5436 if (!drained) {
5437 drain_all_stock(memcg);
5438 drained = true;
5439 continue;
5440 }
5441
5442 if (nr_reclaims) {
5443 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5444 GFP_KERNEL, true))
5445 nr_reclaims--;
5446 continue;
5447 }
5448
e27be240 5449 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5450 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5451 break;
5452 }
241994ed 5453
2529bb3a 5454 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5455 return nbytes;
5456}
5457
5458static int memory_events_show(struct seq_file *m, void *v)
5459{
5460 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5461
e27be240
JW
5462 seq_printf(m, "low %lu\n",
5463 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5464 seq_printf(m, "high %lu\n",
5465 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5466 seq_printf(m, "max %lu\n",
5467 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5468 seq_printf(m, "oom %lu\n",
5469 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
fe6bdfc8
RG
5470 seq_printf(m, "oom_kill %lu\n",
5471 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
241994ed
JW
5472
5473 return 0;
5474}
5475
587d9f72
JW
5476static int memory_stat_show(struct seq_file *m, void *v)
5477{
5478 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73 5479 unsigned long stat[MEMCG_NR_STAT];
e27be240 5480 unsigned long events[NR_VM_EVENT_ITEMS];
587d9f72
JW
5481 int i;
5482
5483 /*
5484 * Provide statistics on the state of the memory subsystem as
5485 * well as cumulative event counters that show past behavior.
5486 *
5487 * This list is ordered following a combination of these gradients:
5488 * 1) generic big picture -> specifics and details
5489 * 2) reflecting userspace activity -> reflecting kernel heuristics
5490 *
5491 * Current memory state:
5492 */
5493
72b54e73
VD
5494 tree_stat(memcg, stat);
5495 tree_events(memcg, events);
5496
587d9f72 5497 seq_printf(m, "anon %llu\n",
71cd3113 5498 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5499 seq_printf(m, "file %llu\n",
71cd3113 5500 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5501 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5502 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5503 seq_printf(m, "slab %llu\n",
32049296
JW
5504 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5505 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5506 seq_printf(m, "sock %llu\n",
72b54e73 5507 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5508
9a4caf1e 5509 seq_printf(m, "shmem %llu\n",
71cd3113 5510 (u64)stat[NR_SHMEM] * PAGE_SIZE);
587d9f72 5511 seq_printf(m, "file_mapped %llu\n",
71cd3113 5512 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5513 seq_printf(m, "file_dirty %llu\n",
71cd3113 5514 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5515 seq_printf(m, "file_writeback %llu\n",
71cd3113 5516 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5517
5518 for (i = 0; i < NR_LRU_LISTS; i++) {
5519 struct mem_cgroup *mi;
5520 unsigned long val = 0;
5521
5522 for_each_mem_cgroup_tree(mi, memcg)
5523 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5524 seq_printf(m, "%s %llu\n",
5525 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5526 }
5527
27ee57c9 5528 seq_printf(m, "slab_reclaimable %llu\n",
32049296 5529 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5530 seq_printf(m, "slab_unreclaimable %llu\n",
32049296 5531 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5532
587d9f72
JW
5533 /* Accumulated memory events */
5534
df0e53d0
JW
5535 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5536 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
587d9f72 5537
2262185c
RG
5538 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5539 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5540 events[PGSCAN_DIRECT]);
5541 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5542 events[PGSTEAL_DIRECT]);
5543 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5544 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5545 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5546 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5547
2a2e4885 5548 seq_printf(m, "workingset_refault %lu\n",
71cd3113 5549 stat[WORKINGSET_REFAULT]);
2a2e4885 5550 seq_printf(m, "workingset_activate %lu\n",
71cd3113 5551 stat[WORKINGSET_ACTIVATE]);
2a2e4885 5552 seq_printf(m, "workingset_nodereclaim %lu\n",
71cd3113 5553 stat[WORKINGSET_NODERECLAIM]);
2a2e4885 5554
587d9f72
JW
5555 return 0;
5556}
5557
241994ed
JW
5558static struct cftype memory_files[] = {
5559 {
5560 .name = "current",
f5fc3c5d 5561 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5562 .read_u64 = memory_current_read,
5563 },
bf8d5d52
RG
5564 {
5565 .name = "min",
5566 .flags = CFTYPE_NOT_ON_ROOT,
5567 .seq_show = memory_min_show,
5568 .write = memory_min_write,
5569 },
241994ed
JW
5570 {
5571 .name = "low",
5572 .flags = CFTYPE_NOT_ON_ROOT,
5573 .seq_show = memory_low_show,
5574 .write = memory_low_write,
5575 },
5576 {
5577 .name = "high",
5578 .flags = CFTYPE_NOT_ON_ROOT,
5579 .seq_show = memory_high_show,
5580 .write = memory_high_write,
5581 },
5582 {
5583 .name = "max",
5584 .flags = CFTYPE_NOT_ON_ROOT,
5585 .seq_show = memory_max_show,
5586 .write = memory_max_write,
5587 },
5588 {
5589 .name = "events",
5590 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5591 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5592 .seq_show = memory_events_show,
5593 },
587d9f72
JW
5594 {
5595 .name = "stat",
5596 .flags = CFTYPE_NOT_ON_ROOT,
5597 .seq_show = memory_stat_show,
5598 },
241994ed
JW
5599 { } /* terminate */
5600};
5601
073219e9 5602struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5603 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5604 .css_online = mem_cgroup_css_online,
92fb9748 5605 .css_offline = mem_cgroup_css_offline,
6df38689 5606 .css_released = mem_cgroup_css_released,
92fb9748 5607 .css_free = mem_cgroup_css_free,
1ced953b 5608 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5609 .can_attach = mem_cgroup_can_attach,
5610 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5611 .post_attach = mem_cgroup_move_task,
f00baae7 5612 .bind = mem_cgroup_bind,
241994ed
JW
5613 .dfl_cftypes = memory_files,
5614 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5615 .early_init = 0,
8cdea7c0 5616};
c077719b 5617
241994ed 5618/**
bf8d5d52 5619 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 5620 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5621 * @memcg: the memory cgroup to check
5622 *
23067153
RG
5623 * WARNING: This function is not stateless! It can only be used as part
5624 * of a top-down tree iteration, not for isolated queries.
34c81057 5625 *
bf8d5d52
RG
5626 * Returns one of the following:
5627 * MEMCG_PROT_NONE: cgroup memory is not protected
5628 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5629 * an unprotected supply of reclaimable memory from other cgroups.
5630 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 5631 *
bf8d5d52 5632 * @root is exclusive; it is never protected when looked at directly
34c81057 5633 *
bf8d5d52
RG
5634 * To provide a proper hierarchical behavior, effective memory.min/low values
5635 * are used. Below is the description of how effective memory.low is calculated.
5636 * Effective memory.min values is calculated in the same way.
34c81057 5637 *
23067153
RG
5638 * Effective memory.low is always equal or less than the original memory.low.
5639 * If there is no memory.low overcommittment (which is always true for
5640 * top-level memory cgroups), these two values are equal.
5641 * Otherwise, it's a part of parent's effective memory.low,
5642 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5643 * memory.low usages, where memory.low usage is the size of actually
5644 * protected memory.
34c81057 5645 *
23067153
RG
5646 * low_usage
5647 * elow = min( memory.low, parent->elow * ------------------ ),
5648 * siblings_low_usage
34c81057 5649 *
23067153
RG
5650 * | memory.current, if memory.current < memory.low
5651 * low_usage = |
5652 | 0, otherwise.
34c81057 5653 *
23067153
RG
5654 *
5655 * Such definition of the effective memory.low provides the expected
5656 * hierarchical behavior: parent's memory.low value is limiting
5657 * children, unprotected memory is reclaimed first and cgroups,
5658 * which are not using their guarantee do not affect actual memory
5659 * distribution.
5660 *
5661 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5662 *
5663 * A A/memory.low = 2G, A/memory.current = 6G
5664 * //\\
5665 * BC DE B/memory.low = 3G B/memory.current = 2G
5666 * C/memory.low = 1G C/memory.current = 2G
5667 * D/memory.low = 0 D/memory.current = 2G
5668 * E/memory.low = 10G E/memory.current = 0
5669 *
5670 * and the memory pressure is applied, the following memory distribution
5671 * is expected (approximately):
5672 *
5673 * A/memory.current = 2G
5674 *
5675 * B/memory.current = 1.3G
5676 * C/memory.current = 0.6G
5677 * D/memory.current = 0
5678 * E/memory.current = 0
5679 *
5680 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
5681 * (see propagate_protected_usage()), as well as recursive calculation of
5682 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
5683 * path for each memory cgroup top-down from the reclaim,
5684 * it's possible to optimize this part, and save calculated elow
5685 * for next usage. This part is intentionally racy, but it's ok,
5686 * as memory.low is a best-effort mechanism.
241994ed 5687 */
bf8d5d52
RG
5688enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5689 struct mem_cgroup *memcg)
241994ed 5690{
23067153 5691 struct mem_cgroup *parent;
bf8d5d52
RG
5692 unsigned long emin, parent_emin;
5693 unsigned long elow, parent_elow;
5694 unsigned long usage;
23067153 5695
241994ed 5696 if (mem_cgroup_disabled())
bf8d5d52 5697 return MEMCG_PROT_NONE;
241994ed 5698
34c81057
SC
5699 if (!root)
5700 root = root_mem_cgroup;
5701 if (memcg == root)
bf8d5d52 5702 return MEMCG_PROT_NONE;
241994ed 5703
23067153 5704 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
5705 if (!usage)
5706 return MEMCG_PROT_NONE;
5707
5708 emin = memcg->memory.min;
5709 elow = memcg->memory.low;
34c81057 5710
bf8d5d52 5711 parent = parent_mem_cgroup(memcg);
df2a4196
RG
5712 /* No parent means a non-hierarchical mode on v1 memcg */
5713 if (!parent)
5714 return MEMCG_PROT_NONE;
5715
23067153
RG
5716 if (parent == root)
5717 goto exit;
5718
bf8d5d52
RG
5719 parent_emin = READ_ONCE(parent->memory.emin);
5720 emin = min(emin, parent_emin);
5721 if (emin && parent_emin) {
5722 unsigned long min_usage, siblings_min_usage;
5723
5724 min_usage = min(usage, memcg->memory.min);
5725 siblings_min_usage = atomic_long_read(
5726 &parent->memory.children_min_usage);
5727
5728 if (min_usage && siblings_min_usage)
5729 emin = min(emin, parent_emin * min_usage /
5730 siblings_min_usage);
5731 }
5732
23067153
RG
5733 parent_elow = READ_ONCE(parent->memory.elow);
5734 elow = min(elow, parent_elow);
bf8d5d52
RG
5735 if (elow && parent_elow) {
5736 unsigned long low_usage, siblings_low_usage;
23067153 5737
bf8d5d52
RG
5738 low_usage = min(usage, memcg->memory.low);
5739 siblings_low_usage = atomic_long_read(
5740 &parent->memory.children_low_usage);
23067153 5741
bf8d5d52
RG
5742 if (low_usage && siblings_low_usage)
5743 elow = min(elow, parent_elow * low_usage /
5744 siblings_low_usage);
5745 }
23067153 5746
23067153 5747exit:
bf8d5d52 5748 memcg->memory.emin = emin;
23067153 5749 memcg->memory.elow = elow;
bf8d5d52
RG
5750
5751 if (usage <= emin)
5752 return MEMCG_PROT_MIN;
5753 else if (usage <= elow)
5754 return MEMCG_PROT_LOW;
5755 else
5756 return MEMCG_PROT_NONE;
241994ed
JW
5757}
5758
00501b53
JW
5759/**
5760 * mem_cgroup_try_charge - try charging a page
5761 * @page: page to charge
5762 * @mm: mm context of the victim
5763 * @gfp_mask: reclaim mode
5764 * @memcgp: charged memcg return
25843c2b 5765 * @compound: charge the page as compound or small page
00501b53
JW
5766 *
5767 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5768 * pages according to @gfp_mask if necessary.
5769 *
5770 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5771 * Otherwise, an error code is returned.
5772 *
5773 * After page->mapping has been set up, the caller must finalize the
5774 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5775 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5776 */
5777int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5778 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5779 bool compound)
00501b53
JW
5780{
5781 struct mem_cgroup *memcg = NULL;
f627c2f5 5782 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5783 int ret = 0;
5784
5785 if (mem_cgroup_disabled())
5786 goto out;
5787
5788 if (PageSwapCache(page)) {
00501b53
JW
5789 /*
5790 * Every swap fault against a single page tries to charge the
5791 * page, bail as early as possible. shmem_unuse() encounters
5792 * already charged pages, too. The USED bit is protected by
5793 * the page lock, which serializes swap cache removal, which
5794 * in turn serializes uncharging.
5795 */
e993d905 5796 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 5797 if (compound_head(page)->mem_cgroup)
00501b53 5798 goto out;
e993d905 5799
37e84351 5800 if (do_swap_account) {
e993d905
VD
5801 swp_entry_t ent = { .val = page_private(page), };
5802 unsigned short id = lookup_swap_cgroup_id(ent);
5803
5804 rcu_read_lock();
5805 memcg = mem_cgroup_from_id(id);
5806 if (memcg && !css_tryget_online(&memcg->css))
5807 memcg = NULL;
5808 rcu_read_unlock();
5809 }
00501b53
JW
5810 }
5811
00501b53
JW
5812 if (!memcg)
5813 memcg = get_mem_cgroup_from_mm(mm);
5814
5815 ret = try_charge(memcg, gfp_mask, nr_pages);
5816
5817 css_put(&memcg->css);
00501b53
JW
5818out:
5819 *memcgp = memcg;
5820 return ret;
5821}
5822
2cf85583
TH
5823int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5824 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5825 bool compound)
5826{
5827 struct mem_cgroup *memcg;
5828 int ret;
5829
5830 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5831 memcg = *memcgp;
5832 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5833 return ret;
5834}
5835
00501b53
JW
5836/**
5837 * mem_cgroup_commit_charge - commit a page charge
5838 * @page: page to charge
5839 * @memcg: memcg to charge the page to
5840 * @lrucare: page might be on LRU already
25843c2b 5841 * @compound: charge the page as compound or small page
00501b53
JW
5842 *
5843 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5844 * after page->mapping has been set up. This must happen atomically
5845 * as part of the page instantiation, i.e. under the page table lock
5846 * for anonymous pages, under the page lock for page and swap cache.
5847 *
5848 * In addition, the page must not be on the LRU during the commit, to
5849 * prevent racing with task migration. If it might be, use @lrucare.
5850 *
5851 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5852 */
5853void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5854 bool lrucare, bool compound)
00501b53 5855{
f627c2f5 5856 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5857
5858 VM_BUG_ON_PAGE(!page->mapping, page);
5859 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5860
5861 if (mem_cgroup_disabled())
5862 return;
5863 /*
5864 * Swap faults will attempt to charge the same page multiple
5865 * times. But reuse_swap_page() might have removed the page
5866 * from swapcache already, so we can't check PageSwapCache().
5867 */
5868 if (!memcg)
5869 return;
5870
6abb5a86
JW
5871 commit_charge(page, memcg, lrucare);
5872
6abb5a86 5873 local_irq_disable();
f627c2f5 5874 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5875 memcg_check_events(memcg, page);
5876 local_irq_enable();
00501b53 5877
7941d214 5878 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5879 swp_entry_t entry = { .val = page_private(page) };
5880 /*
5881 * The swap entry might not get freed for a long time,
5882 * let's not wait for it. The page already received a
5883 * memory+swap charge, drop the swap entry duplicate.
5884 */
38d8b4e6 5885 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
5886 }
5887}
5888
5889/**
5890 * mem_cgroup_cancel_charge - cancel a page charge
5891 * @page: page to charge
5892 * @memcg: memcg to charge the page to
25843c2b 5893 * @compound: charge the page as compound or small page
00501b53
JW
5894 *
5895 * Cancel a charge transaction started by mem_cgroup_try_charge().
5896 */
f627c2f5
KS
5897void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5898 bool compound)
00501b53 5899{
f627c2f5 5900 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5901
5902 if (mem_cgroup_disabled())
5903 return;
5904 /*
5905 * Swap faults will attempt to charge the same page multiple
5906 * times. But reuse_swap_page() might have removed the page
5907 * from swapcache already, so we can't check PageSwapCache().
5908 */
5909 if (!memcg)
5910 return;
5911
00501b53
JW
5912 cancel_charge(memcg, nr_pages);
5913}
5914
a9d5adee
JG
5915struct uncharge_gather {
5916 struct mem_cgroup *memcg;
5917 unsigned long pgpgout;
5918 unsigned long nr_anon;
5919 unsigned long nr_file;
5920 unsigned long nr_kmem;
5921 unsigned long nr_huge;
5922 unsigned long nr_shmem;
5923 struct page *dummy_page;
5924};
5925
5926static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 5927{
a9d5adee
JG
5928 memset(ug, 0, sizeof(*ug));
5929}
5930
5931static void uncharge_batch(const struct uncharge_gather *ug)
5932{
5933 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
5934 unsigned long flags;
5935
a9d5adee
JG
5936 if (!mem_cgroup_is_root(ug->memcg)) {
5937 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 5938 if (do_memsw_account())
a9d5adee
JG
5939 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5940 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5941 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5942 memcg_oom_recover(ug->memcg);
ce00a967 5943 }
747db954
JW
5944
5945 local_irq_save(flags);
c9019e9b
JW
5946 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5947 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5948 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5949 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5950 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
a983b5eb 5951 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
a9d5adee 5952 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 5953 local_irq_restore(flags);
e8ea14cc 5954
a9d5adee
JG
5955 if (!mem_cgroup_is_root(ug->memcg))
5956 css_put_many(&ug->memcg->css, nr_pages);
5957}
5958
5959static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5960{
5961 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
5962 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5963 !PageHWPoison(page) , page);
a9d5adee
JG
5964
5965 if (!page->mem_cgroup)
5966 return;
5967
5968 /*
5969 * Nobody should be changing or seriously looking at
5970 * page->mem_cgroup at this point, we have fully
5971 * exclusive access to the page.
5972 */
5973
5974 if (ug->memcg != page->mem_cgroup) {
5975 if (ug->memcg) {
5976 uncharge_batch(ug);
5977 uncharge_gather_clear(ug);
5978 }
5979 ug->memcg = page->mem_cgroup;
5980 }
5981
5982 if (!PageKmemcg(page)) {
5983 unsigned int nr_pages = 1;
5984
5985 if (PageTransHuge(page)) {
5986 nr_pages <<= compound_order(page);
5987 ug->nr_huge += nr_pages;
5988 }
5989 if (PageAnon(page))
5990 ug->nr_anon += nr_pages;
5991 else {
5992 ug->nr_file += nr_pages;
5993 if (PageSwapBacked(page))
5994 ug->nr_shmem += nr_pages;
5995 }
5996 ug->pgpgout++;
5997 } else {
5998 ug->nr_kmem += 1 << compound_order(page);
5999 __ClearPageKmemcg(page);
6000 }
6001
6002 ug->dummy_page = page;
6003 page->mem_cgroup = NULL;
747db954
JW
6004}
6005
6006static void uncharge_list(struct list_head *page_list)
6007{
a9d5adee 6008 struct uncharge_gather ug;
747db954 6009 struct list_head *next;
a9d5adee
JG
6010
6011 uncharge_gather_clear(&ug);
747db954 6012
8b592656
JW
6013 /*
6014 * Note that the list can be a single page->lru; hence the
6015 * do-while loop instead of a simple list_for_each_entry().
6016 */
747db954
JW
6017 next = page_list->next;
6018 do {
a9d5adee
JG
6019 struct page *page;
6020
747db954
JW
6021 page = list_entry(next, struct page, lru);
6022 next = page->lru.next;
6023
a9d5adee 6024 uncharge_page(page, &ug);
747db954
JW
6025 } while (next != page_list);
6026
a9d5adee
JG
6027 if (ug.memcg)
6028 uncharge_batch(&ug);
747db954
JW
6029}
6030
0a31bc97
JW
6031/**
6032 * mem_cgroup_uncharge - uncharge a page
6033 * @page: page to uncharge
6034 *
6035 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6036 * mem_cgroup_commit_charge().
6037 */
6038void mem_cgroup_uncharge(struct page *page)
6039{
a9d5adee
JG
6040 struct uncharge_gather ug;
6041
0a31bc97
JW
6042 if (mem_cgroup_disabled())
6043 return;
6044
747db954 6045 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6046 if (!page->mem_cgroup)
0a31bc97
JW
6047 return;
6048
a9d5adee
JG
6049 uncharge_gather_clear(&ug);
6050 uncharge_page(page, &ug);
6051 uncharge_batch(&ug);
747db954 6052}
0a31bc97 6053
747db954
JW
6054/**
6055 * mem_cgroup_uncharge_list - uncharge a list of page
6056 * @page_list: list of pages to uncharge
6057 *
6058 * Uncharge a list of pages previously charged with
6059 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6060 */
6061void mem_cgroup_uncharge_list(struct list_head *page_list)
6062{
6063 if (mem_cgroup_disabled())
6064 return;
0a31bc97 6065
747db954
JW
6066 if (!list_empty(page_list))
6067 uncharge_list(page_list);
0a31bc97
JW
6068}
6069
6070/**
6a93ca8f
JW
6071 * mem_cgroup_migrate - charge a page's replacement
6072 * @oldpage: currently circulating page
6073 * @newpage: replacement page
0a31bc97 6074 *
6a93ca8f
JW
6075 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6076 * be uncharged upon free.
0a31bc97
JW
6077 *
6078 * Both pages must be locked, @newpage->mapping must be set up.
6079 */
6a93ca8f 6080void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6081{
29833315 6082 struct mem_cgroup *memcg;
44b7a8d3
JW
6083 unsigned int nr_pages;
6084 bool compound;
d93c4130 6085 unsigned long flags;
0a31bc97
JW
6086
6087 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6088 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6089 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6090 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6091 newpage);
0a31bc97
JW
6092
6093 if (mem_cgroup_disabled())
6094 return;
6095
6096 /* Page cache replacement: new page already charged? */
1306a85a 6097 if (newpage->mem_cgroup)
0a31bc97
JW
6098 return;
6099
45637bab 6100 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6101 memcg = oldpage->mem_cgroup;
29833315 6102 if (!memcg)
0a31bc97
JW
6103 return;
6104
44b7a8d3
JW
6105 /* Force-charge the new page. The old one will be freed soon */
6106 compound = PageTransHuge(newpage);
6107 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6108
6109 page_counter_charge(&memcg->memory, nr_pages);
6110 if (do_memsw_account())
6111 page_counter_charge(&memcg->memsw, nr_pages);
6112 css_get_many(&memcg->css, nr_pages);
0a31bc97 6113
9cf7666a 6114 commit_charge(newpage, memcg, false);
44b7a8d3 6115
d93c4130 6116 local_irq_save(flags);
44b7a8d3
JW
6117 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6118 memcg_check_events(memcg, newpage);
d93c4130 6119 local_irq_restore(flags);
0a31bc97
JW
6120}
6121
ef12947c 6122DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6123EXPORT_SYMBOL(memcg_sockets_enabled_key);
6124
2d758073 6125void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6126{
6127 struct mem_cgroup *memcg;
6128
2d758073
JW
6129 if (!mem_cgroup_sockets_enabled)
6130 return;
6131
edbe69ef
RG
6132 /*
6133 * Socket cloning can throw us here with sk_memcg already
6134 * filled. It won't however, necessarily happen from
6135 * process context. So the test for root memcg given
6136 * the current task's memcg won't help us in this case.
6137 *
6138 * Respecting the original socket's memcg is a better
6139 * decision in this case.
6140 */
6141 if (sk->sk_memcg) {
6142 css_get(&sk->sk_memcg->css);
6143 return;
6144 }
6145
11092087
JW
6146 rcu_read_lock();
6147 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6148 if (memcg == root_mem_cgroup)
6149 goto out;
0db15298 6150 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6151 goto out;
f7e1cb6e 6152 if (css_tryget_online(&memcg->css))
11092087 6153 sk->sk_memcg = memcg;
f7e1cb6e 6154out:
11092087
JW
6155 rcu_read_unlock();
6156}
11092087 6157
2d758073 6158void mem_cgroup_sk_free(struct sock *sk)
11092087 6159{
2d758073
JW
6160 if (sk->sk_memcg)
6161 css_put(&sk->sk_memcg->css);
11092087
JW
6162}
6163
6164/**
6165 * mem_cgroup_charge_skmem - charge socket memory
6166 * @memcg: memcg to charge
6167 * @nr_pages: number of pages to charge
6168 *
6169 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6170 * @memcg's configured limit, %false if the charge had to be forced.
6171 */
6172bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6173{
f7e1cb6e 6174 gfp_t gfp_mask = GFP_KERNEL;
11092087 6175
f7e1cb6e 6176 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6177 struct page_counter *fail;
f7e1cb6e 6178
0db15298
JW
6179 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6180 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6181 return true;
6182 }
0db15298
JW
6183 page_counter_charge(&memcg->tcpmem, nr_pages);
6184 memcg->tcpmem_pressure = 1;
f7e1cb6e 6185 return false;
11092087 6186 }
d886f4e4 6187
f7e1cb6e
JW
6188 /* Don't block in the packet receive path */
6189 if (in_softirq())
6190 gfp_mask = GFP_NOWAIT;
6191
c9019e9b 6192 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6193
f7e1cb6e
JW
6194 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6195 return true;
6196
6197 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6198 return false;
6199}
6200
6201/**
6202 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6203 * @memcg: memcg to uncharge
6204 * @nr_pages: number of pages to uncharge
11092087
JW
6205 */
6206void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6207{
f7e1cb6e 6208 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6209 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6210 return;
6211 }
d886f4e4 6212
c9019e9b 6213 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6214
475d0487 6215 refill_stock(memcg, nr_pages);
11092087
JW
6216}
6217
f7e1cb6e
JW
6218static int __init cgroup_memory(char *s)
6219{
6220 char *token;
6221
6222 while ((token = strsep(&s, ",")) != NULL) {
6223 if (!*token)
6224 continue;
6225 if (!strcmp(token, "nosocket"))
6226 cgroup_memory_nosocket = true;
04823c83
VD
6227 if (!strcmp(token, "nokmem"))
6228 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6229 }
6230 return 0;
6231}
6232__setup("cgroup.memory=", cgroup_memory);
11092087 6233
2d11085e 6234/*
1081312f
MH
6235 * subsys_initcall() for memory controller.
6236 *
308167fc
SAS
6237 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6238 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6239 * basically everything that doesn't depend on a specific mem_cgroup structure
6240 * should be initialized from here.
2d11085e
MH
6241 */
6242static int __init mem_cgroup_init(void)
6243{
95a045f6
JW
6244 int cpu, node;
6245
84c07d11 6246#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6247 /*
6248 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6249 * so use a workqueue with limited concurrency to avoid stalling
6250 * all worker threads in case lots of cgroups are created and
6251 * destroyed simultaneously.
13583c3d 6252 */
17cc4dfe
TH
6253 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6254 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6255#endif
6256
308167fc
SAS
6257 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6258 memcg_hotplug_cpu_dead);
95a045f6
JW
6259
6260 for_each_possible_cpu(cpu)
6261 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6262 drain_local_stock);
6263
6264 for_each_node(node) {
6265 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6266
6267 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6268 node_online(node) ? node : NUMA_NO_NODE);
6269
ef8f2327 6270 rtpn->rb_root = RB_ROOT;
fa90b2fd 6271 rtpn->rb_rightmost = NULL;
ef8f2327 6272 spin_lock_init(&rtpn->lock);
95a045f6
JW
6273 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6274 }
6275
2d11085e
MH
6276 return 0;
6277}
6278subsys_initcall(mem_cgroup_init);
21afa38e
JW
6279
6280#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6281static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6282{
6283 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6284 /*
6285 * The root cgroup cannot be destroyed, so it's refcount must
6286 * always be >= 1.
6287 */
6288 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6289 VM_BUG_ON(1);
6290 break;
6291 }
6292 memcg = parent_mem_cgroup(memcg);
6293 if (!memcg)
6294 memcg = root_mem_cgroup;
6295 }
6296 return memcg;
6297}
6298
21afa38e
JW
6299/**
6300 * mem_cgroup_swapout - transfer a memsw charge to swap
6301 * @page: page whose memsw charge to transfer
6302 * @entry: swap entry to move the charge to
6303 *
6304 * Transfer the memsw charge of @page to @entry.
6305 */
6306void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6307{
1f47b61f 6308 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6309 unsigned int nr_entries;
21afa38e
JW
6310 unsigned short oldid;
6311
6312 VM_BUG_ON_PAGE(PageLRU(page), page);
6313 VM_BUG_ON_PAGE(page_count(page), page);
6314
7941d214 6315 if (!do_memsw_account())
21afa38e
JW
6316 return;
6317
6318 memcg = page->mem_cgroup;
6319
6320 /* Readahead page, never charged */
6321 if (!memcg)
6322 return;
6323
1f47b61f
VD
6324 /*
6325 * In case the memcg owning these pages has been offlined and doesn't
6326 * have an ID allocated to it anymore, charge the closest online
6327 * ancestor for the swap instead and transfer the memory+swap charge.
6328 */
6329 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6330 nr_entries = hpage_nr_pages(page);
6331 /* Get references for the tail pages, too */
6332 if (nr_entries > 1)
6333 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6334 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6335 nr_entries);
21afa38e 6336 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6337 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6338
6339 page->mem_cgroup = NULL;
6340
6341 if (!mem_cgroup_is_root(memcg))
d6810d73 6342 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6343
1f47b61f
VD
6344 if (memcg != swap_memcg) {
6345 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6346 page_counter_charge(&swap_memcg->memsw, nr_entries);
6347 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6348 }
6349
ce9ce665
SAS
6350 /*
6351 * Interrupts should be disabled here because the caller holds the
b93b0163 6352 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6353 * important here to have the interrupts disabled because it is the
b93b0163 6354 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6355 */
6356 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6357 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6358 -nr_entries);
21afa38e 6359 memcg_check_events(memcg, page);
73f576c0
JW
6360
6361 if (!mem_cgroup_is_root(memcg))
d08afa14 6362 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6363}
6364
38d8b4e6
HY
6365/**
6366 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6367 * @page: page being added to swap
6368 * @entry: swap entry to charge
6369 *
38d8b4e6 6370 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6371 *
6372 * Returns 0 on success, -ENOMEM on failure.
6373 */
6374int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6375{
38d8b4e6 6376 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6377 struct page_counter *counter;
38d8b4e6 6378 struct mem_cgroup *memcg;
37e84351
VD
6379 unsigned short oldid;
6380
6381 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6382 return 0;
6383
6384 memcg = page->mem_cgroup;
6385
6386 /* Readahead page, never charged */
6387 if (!memcg)
6388 return 0;
6389
f3a53a3a
TH
6390 if (!entry.val) {
6391 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6392 return 0;
f3a53a3a 6393 }
bb98f2c5 6394
1f47b61f
VD
6395 memcg = mem_cgroup_id_get_online(memcg);
6396
37e84351 6397 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6398 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6399 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6400 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6401 mem_cgroup_id_put(memcg);
37e84351 6402 return -ENOMEM;
1f47b61f 6403 }
37e84351 6404
38d8b4e6
HY
6405 /* Get references for the tail pages, too */
6406 if (nr_pages > 1)
6407 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6408 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6409 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6410 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6411
37e84351
VD
6412 return 0;
6413}
6414
21afa38e 6415/**
38d8b4e6 6416 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6417 * @entry: swap entry to uncharge
38d8b4e6 6418 * @nr_pages: the amount of swap space to uncharge
21afa38e 6419 */
38d8b4e6 6420void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6421{
6422 struct mem_cgroup *memcg;
6423 unsigned short id;
6424
37e84351 6425 if (!do_swap_account)
21afa38e
JW
6426 return;
6427
38d8b4e6 6428 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6429 rcu_read_lock();
adbe427b 6430 memcg = mem_cgroup_from_id(id);
21afa38e 6431 if (memcg) {
37e84351
VD
6432 if (!mem_cgroup_is_root(memcg)) {
6433 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6434 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6435 else
38d8b4e6 6436 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6437 }
c9019e9b 6438 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6439 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6440 }
6441 rcu_read_unlock();
6442}
6443
d8b38438
VD
6444long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6445{
6446 long nr_swap_pages = get_nr_swap_pages();
6447
6448 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6449 return nr_swap_pages;
6450 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6451 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6452 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6453 page_counter_read(&memcg->swap));
6454 return nr_swap_pages;
6455}
6456
5ccc5aba
VD
6457bool mem_cgroup_swap_full(struct page *page)
6458{
6459 struct mem_cgroup *memcg;
6460
6461 VM_BUG_ON_PAGE(!PageLocked(page), page);
6462
6463 if (vm_swap_full())
6464 return true;
6465 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6466 return false;
6467
6468 memcg = page->mem_cgroup;
6469 if (!memcg)
6470 return false;
6471
6472 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6473 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6474 return true;
6475
6476 return false;
6477}
6478
21afa38e
JW
6479/* for remember boot option*/
6480#ifdef CONFIG_MEMCG_SWAP_ENABLED
6481static int really_do_swap_account __initdata = 1;
6482#else
6483static int really_do_swap_account __initdata;
6484#endif
6485
6486static int __init enable_swap_account(char *s)
6487{
6488 if (!strcmp(s, "1"))
6489 really_do_swap_account = 1;
6490 else if (!strcmp(s, "0"))
6491 really_do_swap_account = 0;
6492 return 1;
6493}
6494__setup("swapaccount=", enable_swap_account);
6495
37e84351
VD
6496static u64 swap_current_read(struct cgroup_subsys_state *css,
6497 struct cftype *cft)
6498{
6499 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6500
6501 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6502}
6503
6504static int swap_max_show(struct seq_file *m, void *v)
6505{
6506 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 6507 unsigned long max = READ_ONCE(memcg->swap.max);
37e84351
VD
6508
6509 if (max == PAGE_COUNTER_MAX)
6510 seq_puts(m, "max\n");
6511 else
6512 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6513
6514 return 0;
6515}
6516
6517static ssize_t swap_max_write(struct kernfs_open_file *of,
6518 char *buf, size_t nbytes, loff_t off)
6519{
6520 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6521 unsigned long max;
6522 int err;
6523
6524 buf = strstrip(buf);
6525 err = page_counter_memparse(buf, "max", &max);
6526 if (err)
6527 return err;
6528
be09102b 6529 xchg(&memcg->swap.max, max);
37e84351
VD
6530
6531 return nbytes;
6532}
6533
f3a53a3a
TH
6534static int swap_events_show(struct seq_file *m, void *v)
6535{
6536 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6537
6538 seq_printf(m, "max %lu\n",
6539 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6540 seq_printf(m, "fail %lu\n",
6541 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6542
6543 return 0;
6544}
6545
37e84351
VD
6546static struct cftype swap_files[] = {
6547 {
6548 .name = "swap.current",
6549 .flags = CFTYPE_NOT_ON_ROOT,
6550 .read_u64 = swap_current_read,
6551 },
6552 {
6553 .name = "swap.max",
6554 .flags = CFTYPE_NOT_ON_ROOT,
6555 .seq_show = swap_max_show,
6556 .write = swap_max_write,
6557 },
f3a53a3a
TH
6558 {
6559 .name = "swap.events",
6560 .flags = CFTYPE_NOT_ON_ROOT,
6561 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6562 .seq_show = swap_events_show,
6563 },
37e84351
VD
6564 { } /* terminate */
6565};
6566
21afa38e
JW
6567static struct cftype memsw_cgroup_files[] = {
6568 {
6569 .name = "memsw.usage_in_bytes",
6570 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6571 .read_u64 = mem_cgroup_read_u64,
6572 },
6573 {
6574 .name = "memsw.max_usage_in_bytes",
6575 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6576 .write = mem_cgroup_reset,
6577 .read_u64 = mem_cgroup_read_u64,
6578 },
6579 {
6580 .name = "memsw.limit_in_bytes",
6581 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6582 .write = mem_cgroup_write,
6583 .read_u64 = mem_cgroup_read_u64,
6584 },
6585 {
6586 .name = "memsw.failcnt",
6587 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6588 .write = mem_cgroup_reset,
6589 .read_u64 = mem_cgroup_read_u64,
6590 },
6591 { }, /* terminate */
6592};
6593
6594static int __init mem_cgroup_swap_init(void)
6595{
6596 if (!mem_cgroup_disabled() && really_do_swap_account) {
6597 do_swap_account = 1;
37e84351
VD
6598 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6599 swap_files));
21afa38e
JW
6600 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6601 memsw_cgroup_files));
6602 }
6603 return 0;
6604}
6605subsys_initcall(mem_cgroup_swap_init);
6606
6607#endif /* CONFIG_MEMCG_SWAP */