]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/memcontrol.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
a181b0e8 76#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 77
f7e1cb6e
JW
78/* Socket memory accounting disabled? */
79static bool cgroup_memory_nosocket;
80
04823c83
VD
81/* Kernel memory accounting disabled? */
82static bool cgroup_memory_nokmem;
83
21afa38e 84/* Whether the swap controller is active */
c255a458 85#ifdef CONFIG_MEMCG_SWAP
c077719b 86int do_swap_account __read_mostly;
c077719b 87#else
a0db00fc 88#define do_swap_account 0
c077719b
KH
89#endif
90
97b27821
TH
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
a0db00fc
KS
101#define THRESHOLDS_EVENTS_TARGET 128
102#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 103
bb4cc1a8
AM
104/*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
ef8f2327 109struct mem_cgroup_tree_per_node {
bb4cc1a8 110 struct rb_root rb_root;
fa90b2fd 111 struct rb_node *rb_rightmost;
bb4cc1a8
AM
112 spinlock_t lock;
113};
114
bb4cc1a8
AM
115struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117};
118
119static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
9490ff27
KH
121/* for OOM */
122struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125};
2e72b634 126
79bd9814
TH
127/*
128 * cgroup_event represents events which userspace want to receive.
129 */
3bc942f3 130struct mem_cgroup_event {
79bd9814 131 /*
59b6f873 132 * memcg which the event belongs to.
79bd9814 133 */
59b6f873 134 struct mem_cgroup *memcg;
79bd9814
TH
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
fba94807
TH
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
59b6f873 148 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 149 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
59b6f873 155 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 156 struct eventfd_ctx *eventfd);
79bd9814
TH
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
ac6424b9 163 wait_queue_entry_t wait;
79bd9814
TH
164 struct work_struct remove;
165};
166
c0ff4b85
R
167static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 169
7dc74be0
DN
170/* Stuffs for move charges at task migration. */
171/*
1dfab5ab 172 * Types of charges to be moved.
7dc74be0 173 */
1dfab5ab
JW
174#define MOVE_ANON 0x1U
175#define MOVE_FILE 0x2U
176#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 177
4ffef5fe
DN
178/* "mc" and its members are protected by cgroup_mutex */
179static struct move_charge_struct {
b1dd693e 180 spinlock_t lock; /* for from, to */
264a0ae1 181 struct mm_struct *mm;
4ffef5fe
DN
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
1dfab5ab 184 unsigned long flags;
4ffef5fe 185 unsigned long precharge;
854ffa8d 186 unsigned long moved_charge;
483c30b5 187 unsigned long moved_swap;
8033b97c
DN
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190} mc = {
2bd9bb20 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193};
4ffef5fe 194
4e416953
BS
195/*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
a0db00fc 199#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 200#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 201
217bc319
KH
202enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 204 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
207 NR_CHARGE_TYPE,
208};
209
8c7c6e34 210/* for encoding cft->private value on file */
86ae53e1
GC
211enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
510fc4e1 215 _KMEM,
d55f90bf 216 _TCP,
86ae53e1
GC
217};
218
a0db00fc
KS
219#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 221#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
222/* Used for OOM nofiier */
223#define OOM_CONTROL (0)
8c7c6e34 224
b05706f1
KT
225/*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230#define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235#define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
7775face
TH
240static inline bool should_force_charge(void)
241{
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244}
245
70ddf637
AV
246/* Some nice accessors for the vmpressure. */
247struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248{
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252}
253
254struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255{
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257}
258
84c07d11 259#ifdef CONFIG_MEMCG_KMEM
55007d84 260/*
f7ce3190 261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
55007d84 267 *
dbcf73e2
VD
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
55007d84 270 */
dbcf73e2
VD
271static DEFINE_IDA(memcg_cache_ida);
272int memcg_nr_cache_ids;
749c5415 273
05257a1a
VD
274/* Protects memcg_nr_cache_ids */
275static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277void memcg_get_cache_ids(void)
278{
279 down_read(&memcg_cache_ids_sem);
280}
281
282void memcg_put_cache_ids(void)
283{
284 up_read(&memcg_cache_ids_sem);
285}
286
55007d84
GC
287/*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
b8627835 293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
297 * increase ours as well if it increases.
298 */
299#define MEMCG_CACHES_MIN_SIZE 4
b8627835 300#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 301
d7f25f8a
GC
302/*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
ef12947c 308DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 309EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 310
17cc4dfe 311struct workqueue_struct *memcg_kmem_cache_wq;
0a432dcb 312#endif
17cc4dfe 313
0a4465d3
KT
314static int memcg_shrinker_map_size;
315static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318{
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320}
321
322static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324{
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
86daf94e 337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350}
351
352static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353{
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368}
369
370static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371{
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
86daf94e 381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392}
393
394int memcg_expand_shrinker_maps(int new_id)
395{
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 414 goto unlock;
75866af6 415 }
0a4465d3
KT
416 }
417unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422}
fae91d6d
KT
423
424void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425{
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
fae91d6d
KT
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436}
437
ad7fa852
TH
438/**
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
441 *
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
445 *
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
ad7fa852
TH
448 */
449struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450{
451 struct mem_cgroup *memcg;
452
ad7fa852
TH
453 memcg = page->mem_cgroup;
454
9e10a130 455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
456 memcg = root_mem_cgroup;
457
ad7fa852
TH
458 return &memcg->css;
459}
460
2fc04524
VD
461/**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474ino_t page_cgroup_ino(struct page *page)
475{
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
221ec5c0 480 if (PageSlab(page) && !PageTail(page))
4d96ba35
RG
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
2fc04524
VD
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
490}
491
ef8f2327
MG
492static struct mem_cgroup_per_node *
493mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 494{
97a6c37b 495 int nid = page_to_nid(page);
f64c3f54 496
ef8f2327 497 return memcg->nodeinfo[nid];
f64c3f54
BS
498}
499
ef8f2327
MG
500static struct mem_cgroup_tree_per_node *
501soft_limit_tree_node(int nid)
bb4cc1a8 502{
ef8f2327 503 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
504}
505
ef8f2327 506static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
507soft_limit_tree_from_page(struct page *page)
508{
509 int nid = page_to_nid(page);
bb4cc1a8 510
ef8f2327 511 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
512}
513
ef8f2327
MG
514static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 516 unsigned long new_usage_in_excess)
bb4cc1a8
AM
517{
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
ef8f2327 520 struct mem_cgroup_per_node *mz_node;
fa90b2fd 521 bool rightmost = true;
bb4cc1a8
AM
522
523 if (mz->on_tree)
524 return;
525
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
ef8f2327 531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 532 tree_node);
fa90b2fd 533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 534 p = &(*p)->rb_left;
fa90b2fd
DB
535 rightmost = false;
536 }
537
bb4cc1a8
AM
538 /*
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
541 */
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
544 }
fa90b2fd
DB
545
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
548
bb4cc1a8
AM
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
552}
553
ef8f2327
MG
554static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
556{
557 if (!mz->on_tree)
558 return;
fa90b2fd
DB
559
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
562
bb4cc1a8
AM
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565}
566
ef8f2327
MG
567static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 569{
0a31bc97
JW
570 unsigned long flags;
571
572 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 573 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 574 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
575}
576
3e32cb2e
JW
577static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578{
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
581 unsigned long excess = 0;
582
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
585
586 return excess;
587}
bb4cc1a8
AM
588
589static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590{
3e32cb2e 591 unsigned long excess;
ef8f2327
MG
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 594
e231875b 595 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
596 if (!mctz)
597 return;
bb4cc1a8
AM
598 /*
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
601 */
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 603 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 604 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
605 /*
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
608 */
609 if (excess || mz->on_tree) {
0a31bc97
JW
610 unsigned long flags;
611
612 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
613 /* if on-tree, remove it */
614 if (mz->on_tree)
cf2c8127 615 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
616 /*
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
619 */
cf2c8127 620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 621 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
622 }
623 }
624}
625
626static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627{
ef8f2327
MG
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
bb4cc1a8 631
e231875b 632 for_each_node(nid) {
ef8f2327
MG
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
637 }
638}
639
ef8f2327
MG
640static struct mem_cgroup_per_node *
641__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 642{
ef8f2327 643 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
644
645retry:
646 mz = NULL;
fa90b2fd 647 if (!mctz->rb_rightmost)
bb4cc1a8
AM
648 goto done; /* Nothing to reclaim from */
649
fa90b2fd
DB
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
652 /*
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
656 */
cf2c8127 657 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 658 if (!soft_limit_excess(mz->memcg) ||
8965aa28 659 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
660 goto retry;
661done:
662 return mz;
663}
664
ef8f2327
MG
665static struct mem_cgroup_per_node *
666mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 667{
ef8f2327 668 struct mem_cgroup_per_node *mz;
bb4cc1a8 669
0a31bc97 670 spin_lock_irq(&mctz->lock);
bb4cc1a8 671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 672 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
673 return mz;
674}
675
db9adbcb
JW
676/**
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
681 */
682void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683{
684 long x;
685
686 if (mem_cgroup_disabled())
687 return;
688
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
691 struct mem_cgroup *mi;
692
766a4c19
YS
693 /*
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
696 */
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
700 x = 0;
701 }
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703}
704
42a30035
JW
705static struct mem_cgroup_per_node *
706parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707{
708 struct mem_cgroup *parent;
709
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
714}
715
db9adbcb
JW
716/**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728{
42a30035 729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
db9adbcb 730 struct mem_cgroup_per_node *pn;
42a30035 731 struct mem_cgroup *memcg;
db9adbcb
JW
732 long x;
733
734 /* Update node */
42a30035 735 __mod_node_page_state(pgdat, idx, val);
db9adbcb
JW
736
737 if (mem_cgroup_disabled())
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 741 memcg = pn->memcg;
db9adbcb
JW
742
743 /* Update memcg */
42a30035 744 __mod_memcg_state(memcg, idx, val);
db9adbcb 745
b4c46484
RG
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748
db9adbcb
JW
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
42a30035
JW
751 struct mem_cgroup_per_node *pi;
752
42a30035
JW
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
755 x = 0;
756 }
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758}
759
ec9f0238
RG
760void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761{
4f103c63 762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
4f103c63 767 memcg = mem_cgroup_from_obj(p);
ec9f0238
RG
768
769 /* Untracked pages have no memcg, no lruvec. Update only the node */
770 if (!memcg || memcg == root_mem_cgroup) {
771 __mod_node_page_state(pgdat, idx, val);
772 } else {
867e5e1d 773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
774 __mod_lruvec_state(lruvec, idx, val);
775 }
776 rcu_read_unlock();
777}
778
8380ce47
RG
779void mod_memcg_obj_state(void *p, int idx, int val)
780{
781 struct mem_cgroup *memcg;
782
783 rcu_read_lock();
784 memcg = mem_cgroup_from_obj(p);
785 if (memcg)
786 mod_memcg_state(memcg, idx, val);
787 rcu_read_unlock();
788}
789
db9adbcb
JW
790/**
791 * __count_memcg_events - account VM events in a cgroup
792 * @memcg: the memory cgroup
793 * @idx: the event item
794 * @count: the number of events that occured
795 */
796void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
797 unsigned long count)
798{
799 unsigned long x;
800
801 if (mem_cgroup_disabled())
802 return;
803
804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
806 struct mem_cgroup *mi;
807
766a4c19
YS
808 /*
809 * Batch local counters to keep them in sync with
810 * the hierarchical ones.
811 */
812 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
815 x = 0;
816 }
817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
818}
819
42a30035 820static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 821{
871789d4 822 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
823}
824
42a30035
JW
825static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
826{
815744d7
JW
827 long x = 0;
828 int cpu;
829
830 for_each_possible_cpu(cpu)
831 x += per_cpu(memcg->vmstats_local->events[event], cpu);
832 return x;
42a30035
JW
833}
834
c0ff4b85 835static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 836 struct page *page,
f627c2f5 837 bool compound, int nr_pages)
d52aa412 838{
b2402857
KH
839 /*
840 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
841 * counted as CACHE even if it's on ANON LRU.
842 */
0a31bc97 843 if (PageAnon(page))
c9019e9b 844 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 845 else {
c9019e9b 846 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 847 if (PageSwapBacked(page))
c9019e9b 848 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 849 }
55e462b0 850
f627c2f5
KS
851 if (compound) {
852 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 853 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 854 }
b070e65c 855
e401f176
KH
856 /* pagein of a big page is an event. So, ignore page size */
857 if (nr_pages > 0)
c9019e9b 858 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 859 else {
c9019e9b 860 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
861 nr_pages = -nr_pages; /* for event */
862 }
e401f176 863
871789d4 864 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
865}
866
f53d7ce3
JW
867static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
868 enum mem_cgroup_events_target target)
7a159cc9
JW
869{
870 unsigned long val, next;
871
871789d4
CD
872 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
873 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 874 /* from time_after() in jiffies.h */
6a1a8b80 875 if ((long)(next - val) < 0) {
f53d7ce3
JW
876 switch (target) {
877 case MEM_CGROUP_TARGET_THRESH:
878 next = val + THRESHOLDS_EVENTS_TARGET;
879 break;
bb4cc1a8
AM
880 case MEM_CGROUP_TARGET_SOFTLIMIT:
881 next = val + SOFTLIMIT_EVENTS_TARGET;
882 break;
f53d7ce3
JW
883 default:
884 break;
885 }
871789d4 886 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 887 return true;
7a159cc9 888 }
f53d7ce3 889 return false;
d2265e6f
KH
890}
891
892/*
893 * Check events in order.
894 *
895 */
c0ff4b85 896static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
897{
898 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
899 if (unlikely(mem_cgroup_event_ratelimit(memcg,
900 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 901 bool do_softlimit;
f53d7ce3 902
bb4cc1a8
AM
903 do_softlimit = mem_cgroup_event_ratelimit(memcg,
904 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 905 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
906 if (unlikely(do_softlimit))
907 mem_cgroup_update_tree(memcg, page);
0a31bc97 908 }
d2265e6f
KH
909}
910
cf475ad2 911struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 912{
31a78f23
BS
913 /*
914 * mm_update_next_owner() may clear mm->owner to NULL
915 * if it races with swapoff, page migration, etc.
916 * So this can be called with p == NULL.
917 */
918 if (unlikely(!p))
919 return NULL;
920
073219e9 921 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 922}
33398cf2 923EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 924
d46eb14b
SB
925/**
926 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
927 * @mm: mm from which memcg should be extracted. It can be NULL.
928 *
929 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
930 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
931 * returned.
932 */
933struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 934{
d46eb14b
SB
935 struct mem_cgroup *memcg;
936
937 if (mem_cgroup_disabled())
938 return NULL;
0b7f569e 939
54595fe2
KH
940 rcu_read_lock();
941 do {
6f6acb00
MH
942 /*
943 * Page cache insertions can happen withou an
944 * actual mm context, e.g. during disk probing
945 * on boot, loopback IO, acct() writes etc.
946 */
947 if (unlikely(!mm))
df381975 948 memcg = root_mem_cgroup;
6f6acb00
MH
949 else {
950 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
951 if (unlikely(!memcg))
952 memcg = root_mem_cgroup;
953 }
00d484f3 954 } while (!css_tryget(&memcg->css));
54595fe2 955 rcu_read_unlock();
c0ff4b85 956 return memcg;
54595fe2 957}
d46eb14b
SB
958EXPORT_SYMBOL(get_mem_cgroup_from_mm);
959
f745c6f5
SB
960/**
961 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
962 * @page: page from which memcg should be extracted.
963 *
964 * Obtain a reference on page->memcg and returns it if successful. Otherwise
965 * root_mem_cgroup is returned.
966 */
967struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
968{
969 struct mem_cgroup *memcg = page->mem_cgroup;
970
971 if (mem_cgroup_disabled())
972 return NULL;
973
974 rcu_read_lock();
8965aa28
SB
975 /* Page should not get uncharged and freed memcg under us. */
976 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
977 memcg = root_mem_cgroup;
978 rcu_read_unlock();
979 return memcg;
980}
981EXPORT_SYMBOL(get_mem_cgroup_from_page);
982
d46eb14b
SB
983/**
984 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
985 */
986static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
987{
988 if (unlikely(current->active_memcg)) {
8965aa28 989 struct mem_cgroup *memcg;
d46eb14b
SB
990
991 rcu_read_lock();
8965aa28
SB
992 /* current->active_memcg must hold a ref. */
993 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
994 memcg = root_mem_cgroup;
995 else
d46eb14b
SB
996 memcg = current->active_memcg;
997 rcu_read_unlock();
998 return memcg;
999 }
1000 return get_mem_cgroup_from_mm(current->mm);
1001}
54595fe2 1002
5660048c
JW
1003/**
1004 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1005 * @root: hierarchy root
1006 * @prev: previously returned memcg, NULL on first invocation
1007 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1008 *
1009 * Returns references to children of the hierarchy below @root, or
1010 * @root itself, or %NULL after a full round-trip.
1011 *
1012 * Caller must pass the return value in @prev on subsequent
1013 * invocations for reference counting, or use mem_cgroup_iter_break()
1014 * to cancel a hierarchy walk before the round-trip is complete.
1015 *
b213b54f 1016 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1017 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1018 * reclaimers operating on the same node and priority.
5660048c 1019 */
694fbc0f 1020struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1021 struct mem_cgroup *prev,
694fbc0f 1022 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1023{
33398cf2 1024 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 1025 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1026 struct mem_cgroup *memcg = NULL;
5ac8fb31 1027 struct mem_cgroup *pos = NULL;
711d3d2c 1028
694fbc0f
AM
1029 if (mem_cgroup_disabled())
1030 return NULL;
5660048c 1031
9f3a0d09
JW
1032 if (!root)
1033 root = root_mem_cgroup;
7d74b06f 1034
9f3a0d09 1035 if (prev && !reclaim)
5ac8fb31 1036 pos = prev;
14067bb3 1037
9f3a0d09
JW
1038 if (!root->use_hierarchy && root != root_mem_cgroup) {
1039 if (prev)
5ac8fb31 1040 goto out;
694fbc0f 1041 return root;
9f3a0d09 1042 }
14067bb3 1043
542f85f9 1044 rcu_read_lock();
5f578161 1045
5ac8fb31 1046 if (reclaim) {
ef8f2327 1047 struct mem_cgroup_per_node *mz;
5ac8fb31 1048
ef8f2327 1049 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1050 iter = &mz->iter;
5ac8fb31
JW
1051
1052 if (prev && reclaim->generation != iter->generation)
1053 goto out_unlock;
1054
6df38689 1055 while (1) {
4db0c3c2 1056 pos = READ_ONCE(iter->position);
6df38689
VD
1057 if (!pos || css_tryget(&pos->css))
1058 break;
5ac8fb31 1059 /*
6df38689
VD
1060 * css reference reached zero, so iter->position will
1061 * be cleared by ->css_released. However, we should not
1062 * rely on this happening soon, because ->css_released
1063 * is called from a work queue, and by busy-waiting we
1064 * might block it. So we clear iter->position right
1065 * away.
5ac8fb31 1066 */
6df38689
VD
1067 (void)cmpxchg(&iter->position, pos, NULL);
1068 }
5ac8fb31
JW
1069 }
1070
1071 if (pos)
1072 css = &pos->css;
1073
1074 for (;;) {
1075 css = css_next_descendant_pre(css, &root->css);
1076 if (!css) {
1077 /*
1078 * Reclaimers share the hierarchy walk, and a
1079 * new one might jump in right at the end of
1080 * the hierarchy - make sure they see at least
1081 * one group and restart from the beginning.
1082 */
1083 if (!prev)
1084 continue;
1085 break;
527a5ec9 1086 }
7d74b06f 1087
5ac8fb31
JW
1088 /*
1089 * Verify the css and acquire a reference. The root
1090 * is provided by the caller, so we know it's alive
1091 * and kicking, and don't take an extra reference.
1092 */
1093 memcg = mem_cgroup_from_css(css);
14067bb3 1094
5ac8fb31
JW
1095 if (css == &root->css)
1096 break;
14067bb3 1097
0b8f73e1
JW
1098 if (css_tryget(css))
1099 break;
9f3a0d09 1100
5ac8fb31 1101 memcg = NULL;
9f3a0d09 1102 }
5ac8fb31
JW
1103
1104 if (reclaim) {
5ac8fb31 1105 /*
6df38689
VD
1106 * The position could have already been updated by a competing
1107 * thread, so check that the value hasn't changed since we read
1108 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1109 */
6df38689
VD
1110 (void)cmpxchg(&iter->position, pos, memcg);
1111
5ac8fb31
JW
1112 if (pos)
1113 css_put(&pos->css);
1114
1115 if (!memcg)
1116 iter->generation++;
1117 else if (!prev)
1118 reclaim->generation = iter->generation;
9f3a0d09 1119 }
5ac8fb31 1120
542f85f9
MH
1121out_unlock:
1122 rcu_read_unlock();
5ac8fb31 1123out:
c40046f3
MH
1124 if (prev && prev != root)
1125 css_put(&prev->css);
1126
9f3a0d09 1127 return memcg;
14067bb3 1128}
7d74b06f 1129
5660048c
JW
1130/**
1131 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1132 * @root: hierarchy root
1133 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1134 */
1135void mem_cgroup_iter_break(struct mem_cgroup *root,
1136 struct mem_cgroup *prev)
9f3a0d09
JW
1137{
1138 if (!root)
1139 root = root_mem_cgroup;
1140 if (prev && prev != root)
1141 css_put(&prev->css);
1142}
7d74b06f 1143
54a83d6b
MC
1144static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1145 struct mem_cgroup *dead_memcg)
6df38689 1146{
6df38689 1147 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1148 struct mem_cgroup_per_node *mz;
1149 int nid;
6df38689 1150
54a83d6b
MC
1151 for_each_node(nid) {
1152 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1153 iter = &mz->iter;
1154 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1155 }
1156}
1157
54a83d6b
MC
1158static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1159{
1160 struct mem_cgroup *memcg = dead_memcg;
1161 struct mem_cgroup *last;
1162
1163 do {
1164 __invalidate_reclaim_iterators(memcg, dead_memcg);
1165 last = memcg;
1166 } while ((memcg = parent_mem_cgroup(memcg)));
1167
1168 /*
1169 * When cgruop1 non-hierarchy mode is used,
1170 * parent_mem_cgroup() does not walk all the way up to the
1171 * cgroup root (root_mem_cgroup). So we have to handle
1172 * dead_memcg from cgroup root separately.
1173 */
1174 if (last != root_mem_cgroup)
1175 __invalidate_reclaim_iterators(root_mem_cgroup,
1176 dead_memcg);
1177}
1178
7c5f64f8
VD
1179/**
1180 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1181 * @memcg: hierarchy root
1182 * @fn: function to call for each task
1183 * @arg: argument passed to @fn
1184 *
1185 * This function iterates over tasks attached to @memcg or to any of its
1186 * descendants and calls @fn for each task. If @fn returns a non-zero
1187 * value, the function breaks the iteration loop and returns the value.
1188 * Otherwise, it will iterate over all tasks and return 0.
1189 *
1190 * This function must not be called for the root memory cgroup.
1191 */
1192int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1193 int (*fn)(struct task_struct *, void *), void *arg)
1194{
1195 struct mem_cgroup *iter;
1196 int ret = 0;
1197
1198 BUG_ON(memcg == root_mem_cgroup);
1199
1200 for_each_mem_cgroup_tree(iter, memcg) {
1201 struct css_task_iter it;
1202 struct task_struct *task;
1203
f168a9a5 1204 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1205 while (!ret && (task = css_task_iter_next(&it)))
1206 ret = fn(task, arg);
1207 css_task_iter_end(&it);
1208 if (ret) {
1209 mem_cgroup_iter_break(memcg, iter);
1210 break;
1211 }
1212 }
1213 return ret;
1214}
1215
925b7673 1216/**
dfe0e773 1217 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1218 * @page: the page
f144c390 1219 * @pgdat: pgdat of the page
dfe0e773
JW
1220 *
1221 * This function is only safe when following the LRU page isolation
1222 * and putback protocol: the LRU lock must be held, and the page must
1223 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1224 */
599d0c95 1225struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1226{
ef8f2327 1227 struct mem_cgroup_per_node *mz;
925b7673 1228 struct mem_cgroup *memcg;
bea8c150 1229 struct lruvec *lruvec;
6d12e2d8 1230
bea8c150 1231 if (mem_cgroup_disabled()) {
867e5e1d 1232 lruvec = &pgdat->__lruvec;
bea8c150
HD
1233 goto out;
1234 }
925b7673 1235
1306a85a 1236 memcg = page->mem_cgroup;
7512102c 1237 /*
dfe0e773 1238 * Swapcache readahead pages are added to the LRU - and
29833315 1239 * possibly migrated - before they are charged.
7512102c 1240 */
29833315
JW
1241 if (!memcg)
1242 memcg = root_mem_cgroup;
7512102c 1243
ef8f2327 1244 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1245 lruvec = &mz->lruvec;
1246out:
1247 /*
1248 * Since a node can be onlined after the mem_cgroup was created,
1249 * we have to be prepared to initialize lruvec->zone here;
1250 * and if offlined then reonlined, we need to reinitialize it.
1251 */
599d0c95
MG
1252 if (unlikely(lruvec->pgdat != pgdat))
1253 lruvec->pgdat = pgdat;
bea8c150 1254 return lruvec;
08e552c6 1255}
b69408e8 1256
925b7673 1257/**
fa9add64
HD
1258 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1259 * @lruvec: mem_cgroup per zone lru vector
1260 * @lru: index of lru list the page is sitting on
b4536f0c 1261 * @zid: zone id of the accounted pages
fa9add64 1262 * @nr_pages: positive when adding or negative when removing
925b7673 1263 *
ca707239
HD
1264 * This function must be called under lru_lock, just before a page is added
1265 * to or just after a page is removed from an lru list (that ordering being
1266 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1267 */
fa9add64 1268void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1269 int zid, int nr_pages)
3f58a829 1270{
ef8f2327 1271 struct mem_cgroup_per_node *mz;
fa9add64 1272 unsigned long *lru_size;
ca707239 1273 long size;
3f58a829
MK
1274
1275 if (mem_cgroup_disabled())
1276 return;
1277
ef8f2327 1278 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1279 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1280
1281 if (nr_pages < 0)
1282 *lru_size += nr_pages;
1283
1284 size = *lru_size;
b4536f0c
MH
1285 if (WARN_ONCE(size < 0,
1286 "%s(%p, %d, %d): lru_size %ld\n",
1287 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1288 VM_BUG_ON(1);
1289 *lru_size = 0;
1290 }
1291
1292 if (nr_pages > 0)
1293 *lru_size += nr_pages;
08e552c6 1294}
544122e5 1295
19942822 1296/**
9d11ea9f 1297 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1298 * @memcg: the memory cgroup
19942822 1299 *
9d11ea9f 1300 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1301 * pages.
19942822 1302 */
c0ff4b85 1303static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1304{
3e32cb2e
JW
1305 unsigned long margin = 0;
1306 unsigned long count;
1307 unsigned long limit;
9d11ea9f 1308
3e32cb2e 1309 count = page_counter_read(&memcg->memory);
bbec2e15 1310 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1311 if (count < limit)
1312 margin = limit - count;
1313
7941d214 1314 if (do_memsw_account()) {
3e32cb2e 1315 count = page_counter_read(&memcg->memsw);
bbec2e15 1316 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1317 if (count <= limit)
1318 margin = min(margin, limit - count);
cbedbac3
LR
1319 else
1320 margin = 0;
3e32cb2e
JW
1321 }
1322
1323 return margin;
19942822
JW
1324}
1325
32047e2a 1326/*
bdcbb659 1327 * A routine for checking "mem" is under move_account() or not.
32047e2a 1328 *
bdcbb659
QH
1329 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1330 * moving cgroups. This is for waiting at high-memory pressure
1331 * caused by "move".
32047e2a 1332 */
c0ff4b85 1333static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1334{
2bd9bb20
KH
1335 struct mem_cgroup *from;
1336 struct mem_cgroup *to;
4b534334 1337 bool ret = false;
2bd9bb20
KH
1338 /*
1339 * Unlike task_move routines, we access mc.to, mc.from not under
1340 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1341 */
1342 spin_lock(&mc.lock);
1343 from = mc.from;
1344 to = mc.to;
1345 if (!from)
1346 goto unlock;
3e92041d 1347
2314b42d
JW
1348 ret = mem_cgroup_is_descendant(from, memcg) ||
1349 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1350unlock:
1351 spin_unlock(&mc.lock);
4b534334
KH
1352 return ret;
1353}
1354
c0ff4b85 1355static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1356{
1357 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1358 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1359 DEFINE_WAIT(wait);
1360 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1361 /* moving charge context might have finished. */
1362 if (mc.moving_task)
1363 schedule();
1364 finish_wait(&mc.waitq, &wait);
1365 return true;
1366 }
1367 }
1368 return false;
1369}
1370
c8713d0b
JW
1371static char *memory_stat_format(struct mem_cgroup *memcg)
1372{
1373 struct seq_buf s;
1374 int i;
71cd3113 1375
c8713d0b
JW
1376 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1377 if (!s.buffer)
1378 return NULL;
1379
1380 /*
1381 * Provide statistics on the state of the memory subsystem as
1382 * well as cumulative event counters that show past behavior.
1383 *
1384 * This list is ordered following a combination of these gradients:
1385 * 1) generic big picture -> specifics and details
1386 * 2) reflecting userspace activity -> reflecting kernel heuristics
1387 *
1388 * Current memory state:
1389 */
1390
1391 seq_buf_printf(&s, "anon %llu\n",
1392 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1393 PAGE_SIZE);
1394 seq_buf_printf(&s, "file %llu\n",
1395 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1396 PAGE_SIZE);
1397 seq_buf_printf(&s, "kernel_stack %llu\n",
1398 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1399 1024);
1400 seq_buf_printf(&s, "slab %llu\n",
1401 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1402 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1403 PAGE_SIZE);
1404 seq_buf_printf(&s, "sock %llu\n",
1405 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1406 PAGE_SIZE);
1407
1408 seq_buf_printf(&s, "shmem %llu\n",
1409 (u64)memcg_page_state(memcg, NR_SHMEM) *
1410 PAGE_SIZE);
1411 seq_buf_printf(&s, "file_mapped %llu\n",
1412 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1413 PAGE_SIZE);
1414 seq_buf_printf(&s, "file_dirty %llu\n",
1415 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1416 PAGE_SIZE);
1417 seq_buf_printf(&s, "file_writeback %llu\n",
1418 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1419 PAGE_SIZE);
1420
1421 /*
1422 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1423 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1424 * arse because it requires migrating the work out of rmap to a place
1425 * where the page->mem_cgroup is set up and stable.
1426 */
1427 seq_buf_printf(&s, "anon_thp %llu\n",
1428 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1429 PAGE_SIZE);
1430
1431 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 1432 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
c8713d0b
JW
1433 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1434 PAGE_SIZE);
1435
1436 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1437 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1438 PAGE_SIZE);
1439 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1440 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1441 PAGE_SIZE);
1442
1443 /* Accumulated memory events */
1444
ebc5d83d
KK
1445 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1446 memcg_events(memcg, PGFAULT));
1447 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1448 memcg_events(memcg, PGMAJFAULT));
c8713d0b
JW
1449
1450 seq_buf_printf(&s, "workingset_refault %lu\n",
1451 memcg_page_state(memcg, WORKINGSET_REFAULT));
1452 seq_buf_printf(&s, "workingset_activate %lu\n",
1453 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1454 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1455 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1456
ebc5d83d
KK
1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1458 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1459 seq_buf_printf(&s, "pgscan %lu\n",
1460 memcg_events(memcg, PGSCAN_KSWAPD) +
1461 memcg_events(memcg, PGSCAN_DIRECT));
1462 seq_buf_printf(&s, "pgsteal %lu\n",
1463 memcg_events(memcg, PGSTEAL_KSWAPD) +
1464 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1465 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1466 memcg_events(memcg, PGACTIVATE));
1467 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1468 memcg_events(memcg, PGDEACTIVATE));
1469 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1470 memcg_events(memcg, PGLAZYFREE));
1471 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1472 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1473
1474#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1475 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1476 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1477 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1478 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1479#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1480
1481 /* The above should easily fit into one page */
1482 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1483
1484 return s.buffer;
1485}
71cd3113 1486
58cf188e 1487#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1488/**
f0c867d9 1489 * mem_cgroup_print_oom_context: Print OOM information relevant to
1490 * memory controller.
e222432b
BS
1491 * @memcg: The memory cgroup that went over limit
1492 * @p: Task that is going to be killed
1493 *
1494 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1495 * enabled
1496 */
f0c867d9 1497void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1498{
e222432b
BS
1499 rcu_read_lock();
1500
f0c867d9 1501 if (memcg) {
1502 pr_cont(",oom_memcg=");
1503 pr_cont_cgroup_path(memcg->css.cgroup);
1504 } else
1505 pr_cont(",global_oom");
2415b9f5 1506 if (p) {
f0c867d9 1507 pr_cont(",task_memcg=");
2415b9f5 1508 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1509 }
e222432b 1510 rcu_read_unlock();
f0c867d9 1511}
1512
1513/**
1514 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1515 * memory controller.
1516 * @memcg: The memory cgroup that went over limit
1517 */
1518void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1519{
c8713d0b 1520 char *buf;
e222432b 1521
3e32cb2e
JW
1522 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1523 K((u64)page_counter_read(&memcg->memory)),
15b42562 1524 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1525 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1526 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1527 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1528 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1529 else {
1530 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1531 K((u64)page_counter_read(&memcg->memsw)),
1532 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1533 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1534 K((u64)page_counter_read(&memcg->kmem)),
1535 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1536 }
c8713d0b
JW
1537
1538 pr_info("Memory cgroup stats for ");
1539 pr_cont_cgroup_path(memcg->css.cgroup);
1540 pr_cont(":");
1541 buf = memory_stat_format(memcg);
1542 if (!buf)
1543 return;
1544 pr_info("%s", buf);
1545 kfree(buf);
e222432b
BS
1546}
1547
a63d83f4
DR
1548/*
1549 * Return the memory (and swap, if configured) limit for a memcg.
1550 */
bbec2e15 1551unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1552{
bbec2e15 1553 unsigned long max;
f3e8eb70 1554
15b42562 1555 max = READ_ONCE(memcg->memory.max);
9a5a8f19 1556 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1557 unsigned long memsw_max;
1558 unsigned long swap_max;
9a5a8f19 1559
bbec2e15 1560 memsw_max = memcg->memsw.max;
32d087cd 1561 swap_max = READ_ONCE(memcg->swap.max);
bbec2e15
RG
1562 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1563 max = min(max + swap_max, memsw_max);
9a5a8f19 1564 }
bbec2e15 1565 return max;
a63d83f4
DR
1566}
1567
9783aa99
CD
1568unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1569{
1570 return page_counter_read(&memcg->memory);
1571}
1572
b6e6edcf 1573static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1574 int order)
9cbb78bb 1575{
6e0fc46d
DR
1576 struct oom_control oc = {
1577 .zonelist = NULL,
1578 .nodemask = NULL,
2a966b77 1579 .memcg = memcg,
6e0fc46d
DR
1580 .gfp_mask = gfp_mask,
1581 .order = order,
6e0fc46d 1582 };
7c5f64f8 1583 bool ret;
9cbb78bb 1584
7775face
TH
1585 if (mutex_lock_killable(&oom_lock))
1586 return true;
1587 /*
1588 * A few threads which were not waiting at mutex_lock_killable() can
1589 * fail to bail out. Therefore, check again after holding oom_lock.
1590 */
1591 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1592 mutex_unlock(&oom_lock);
7c5f64f8 1593 return ret;
9cbb78bb
DR
1594}
1595
0608f43d 1596static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1597 pg_data_t *pgdat,
0608f43d
AM
1598 gfp_t gfp_mask,
1599 unsigned long *total_scanned)
1600{
1601 struct mem_cgroup *victim = NULL;
1602 int total = 0;
1603 int loop = 0;
1604 unsigned long excess;
1605 unsigned long nr_scanned;
1606 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1607 .pgdat = pgdat,
0608f43d
AM
1608 };
1609
3e32cb2e 1610 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1611
1612 while (1) {
1613 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1614 if (!victim) {
1615 loop++;
1616 if (loop >= 2) {
1617 /*
1618 * If we have not been able to reclaim
1619 * anything, it might because there are
1620 * no reclaimable pages under this hierarchy
1621 */
1622 if (!total)
1623 break;
1624 /*
1625 * We want to do more targeted reclaim.
1626 * excess >> 2 is not to excessive so as to
1627 * reclaim too much, nor too less that we keep
1628 * coming back to reclaim from this cgroup
1629 */
1630 if (total >= (excess >> 2) ||
1631 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1632 break;
1633 }
1634 continue;
1635 }
a9dd0a83 1636 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1637 pgdat, &nr_scanned);
0608f43d 1638 *total_scanned += nr_scanned;
3e32cb2e 1639 if (!soft_limit_excess(root_memcg))
0608f43d 1640 break;
6d61ef40 1641 }
0608f43d
AM
1642 mem_cgroup_iter_break(root_memcg, victim);
1643 return total;
6d61ef40
BS
1644}
1645
0056f4e6
JW
1646#ifdef CONFIG_LOCKDEP
1647static struct lockdep_map memcg_oom_lock_dep_map = {
1648 .name = "memcg_oom_lock",
1649};
1650#endif
1651
fb2a6fc5
JW
1652static DEFINE_SPINLOCK(memcg_oom_lock);
1653
867578cb
KH
1654/*
1655 * Check OOM-Killer is already running under our hierarchy.
1656 * If someone is running, return false.
1657 */
fb2a6fc5 1658static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1659{
79dfdacc 1660 struct mem_cgroup *iter, *failed = NULL;
a636b327 1661
fb2a6fc5
JW
1662 spin_lock(&memcg_oom_lock);
1663
9f3a0d09 1664 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1665 if (iter->oom_lock) {
79dfdacc
MH
1666 /*
1667 * this subtree of our hierarchy is already locked
1668 * so we cannot give a lock.
1669 */
79dfdacc 1670 failed = iter;
9f3a0d09
JW
1671 mem_cgroup_iter_break(memcg, iter);
1672 break;
23751be0
JW
1673 } else
1674 iter->oom_lock = true;
7d74b06f 1675 }
867578cb 1676
fb2a6fc5
JW
1677 if (failed) {
1678 /*
1679 * OK, we failed to lock the whole subtree so we have
1680 * to clean up what we set up to the failing subtree
1681 */
1682 for_each_mem_cgroup_tree(iter, memcg) {
1683 if (iter == failed) {
1684 mem_cgroup_iter_break(memcg, iter);
1685 break;
1686 }
1687 iter->oom_lock = false;
79dfdacc 1688 }
0056f4e6
JW
1689 } else
1690 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1691
1692 spin_unlock(&memcg_oom_lock);
1693
1694 return !failed;
a636b327 1695}
0b7f569e 1696
fb2a6fc5 1697static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1698{
7d74b06f
KH
1699 struct mem_cgroup *iter;
1700
fb2a6fc5 1701 spin_lock(&memcg_oom_lock);
5facae4f 1702 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1703 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1704 iter->oom_lock = false;
fb2a6fc5 1705 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1706}
1707
c0ff4b85 1708static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1709{
1710 struct mem_cgroup *iter;
1711
c2b42d3c 1712 spin_lock(&memcg_oom_lock);
c0ff4b85 1713 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1714 iter->under_oom++;
1715 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1716}
1717
c0ff4b85 1718static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1719{
1720 struct mem_cgroup *iter;
1721
867578cb
KH
1722 /*
1723 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1724 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1725 */
c2b42d3c 1726 spin_lock(&memcg_oom_lock);
c0ff4b85 1727 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1728 if (iter->under_oom > 0)
1729 iter->under_oom--;
1730 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1731}
1732
867578cb
KH
1733static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1734
dc98df5a 1735struct oom_wait_info {
d79154bb 1736 struct mem_cgroup *memcg;
ac6424b9 1737 wait_queue_entry_t wait;
dc98df5a
KH
1738};
1739
ac6424b9 1740static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1741 unsigned mode, int sync, void *arg)
1742{
d79154bb
HD
1743 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1744 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1745 struct oom_wait_info *oom_wait_info;
1746
1747 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1748 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1749
2314b42d
JW
1750 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1751 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1752 return 0;
dc98df5a
KH
1753 return autoremove_wake_function(wait, mode, sync, arg);
1754}
1755
c0ff4b85 1756static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1757{
c2b42d3c
TH
1758 /*
1759 * For the following lockless ->under_oom test, the only required
1760 * guarantee is that it must see the state asserted by an OOM when
1761 * this function is called as a result of userland actions
1762 * triggered by the notification of the OOM. This is trivially
1763 * achieved by invoking mem_cgroup_mark_under_oom() before
1764 * triggering notification.
1765 */
1766 if (memcg && memcg->under_oom)
f4b90b70 1767 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1768}
1769
29ef680a
MH
1770enum oom_status {
1771 OOM_SUCCESS,
1772 OOM_FAILED,
1773 OOM_ASYNC,
1774 OOM_SKIPPED
1775};
1776
1777static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1778{
7056d3a3
MH
1779 enum oom_status ret;
1780 bool locked;
1781
29ef680a
MH
1782 if (order > PAGE_ALLOC_COSTLY_ORDER)
1783 return OOM_SKIPPED;
1784
7a1adfdd
RG
1785 memcg_memory_event(memcg, MEMCG_OOM);
1786
867578cb 1787 /*
49426420
JW
1788 * We are in the middle of the charge context here, so we
1789 * don't want to block when potentially sitting on a callstack
1790 * that holds all kinds of filesystem and mm locks.
1791 *
29ef680a
MH
1792 * cgroup1 allows disabling the OOM killer and waiting for outside
1793 * handling until the charge can succeed; remember the context and put
1794 * the task to sleep at the end of the page fault when all locks are
1795 * released.
49426420 1796 *
29ef680a
MH
1797 * On the other hand, in-kernel OOM killer allows for an async victim
1798 * memory reclaim (oom_reaper) and that means that we are not solely
1799 * relying on the oom victim to make a forward progress and we can
1800 * invoke the oom killer here.
1801 *
1802 * Please note that mem_cgroup_out_of_memory might fail to find a
1803 * victim and then we have to bail out from the charge path.
867578cb 1804 */
29ef680a
MH
1805 if (memcg->oom_kill_disable) {
1806 if (!current->in_user_fault)
1807 return OOM_SKIPPED;
1808 css_get(&memcg->css);
1809 current->memcg_in_oom = memcg;
1810 current->memcg_oom_gfp_mask = mask;
1811 current->memcg_oom_order = order;
1812
1813 return OOM_ASYNC;
1814 }
1815
7056d3a3
MH
1816 mem_cgroup_mark_under_oom(memcg);
1817
1818 locked = mem_cgroup_oom_trylock(memcg);
1819
1820 if (locked)
1821 mem_cgroup_oom_notify(memcg);
1822
1823 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1824 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1825 ret = OOM_SUCCESS;
1826 else
1827 ret = OOM_FAILED;
1828
1829 if (locked)
1830 mem_cgroup_oom_unlock(memcg);
29ef680a 1831
7056d3a3 1832 return ret;
3812c8c8
JW
1833}
1834
1835/**
1836 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1837 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1838 *
49426420
JW
1839 * This has to be called at the end of a page fault if the memcg OOM
1840 * handler was enabled.
3812c8c8 1841 *
49426420 1842 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1843 * sleep on a waitqueue until the userspace task resolves the
1844 * situation. Sleeping directly in the charge context with all kinds
1845 * of locks held is not a good idea, instead we remember an OOM state
1846 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1847 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1848 *
1849 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1850 * completed, %false otherwise.
3812c8c8 1851 */
49426420 1852bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1853{
626ebc41 1854 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1855 struct oom_wait_info owait;
49426420 1856 bool locked;
3812c8c8
JW
1857
1858 /* OOM is global, do not handle */
3812c8c8 1859 if (!memcg)
49426420 1860 return false;
3812c8c8 1861
7c5f64f8 1862 if (!handle)
49426420 1863 goto cleanup;
3812c8c8
JW
1864
1865 owait.memcg = memcg;
1866 owait.wait.flags = 0;
1867 owait.wait.func = memcg_oom_wake_function;
1868 owait.wait.private = current;
2055da97 1869 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1870
3812c8c8 1871 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1872 mem_cgroup_mark_under_oom(memcg);
1873
1874 locked = mem_cgroup_oom_trylock(memcg);
1875
1876 if (locked)
1877 mem_cgroup_oom_notify(memcg);
1878
1879 if (locked && !memcg->oom_kill_disable) {
1880 mem_cgroup_unmark_under_oom(memcg);
1881 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1882 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1883 current->memcg_oom_order);
49426420 1884 } else {
3812c8c8 1885 schedule();
49426420
JW
1886 mem_cgroup_unmark_under_oom(memcg);
1887 finish_wait(&memcg_oom_waitq, &owait.wait);
1888 }
1889
1890 if (locked) {
fb2a6fc5
JW
1891 mem_cgroup_oom_unlock(memcg);
1892 /*
1893 * There is no guarantee that an OOM-lock contender
1894 * sees the wakeups triggered by the OOM kill
1895 * uncharges. Wake any sleepers explicitely.
1896 */
1897 memcg_oom_recover(memcg);
1898 }
49426420 1899cleanup:
626ebc41 1900 current->memcg_in_oom = NULL;
3812c8c8 1901 css_put(&memcg->css);
867578cb 1902 return true;
0b7f569e
KH
1903}
1904
3d8b38eb
RG
1905/**
1906 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1907 * @victim: task to be killed by the OOM killer
1908 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1909 *
1910 * Returns a pointer to a memory cgroup, which has to be cleaned up
1911 * by killing all belonging OOM-killable tasks.
1912 *
1913 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1914 */
1915struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1916 struct mem_cgroup *oom_domain)
1917{
1918 struct mem_cgroup *oom_group = NULL;
1919 struct mem_cgroup *memcg;
1920
1921 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1922 return NULL;
1923
1924 if (!oom_domain)
1925 oom_domain = root_mem_cgroup;
1926
1927 rcu_read_lock();
1928
1929 memcg = mem_cgroup_from_task(victim);
1930 if (memcg == root_mem_cgroup)
1931 goto out;
1932
48fe267c
RG
1933 /*
1934 * If the victim task has been asynchronously moved to a different
1935 * memory cgroup, we might end up killing tasks outside oom_domain.
1936 * In this case it's better to ignore memory.group.oom.
1937 */
1938 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1939 goto out;
1940
3d8b38eb
RG
1941 /*
1942 * Traverse the memory cgroup hierarchy from the victim task's
1943 * cgroup up to the OOMing cgroup (or root) to find the
1944 * highest-level memory cgroup with oom.group set.
1945 */
1946 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1947 if (memcg->oom_group)
1948 oom_group = memcg;
1949
1950 if (memcg == oom_domain)
1951 break;
1952 }
1953
1954 if (oom_group)
1955 css_get(&oom_group->css);
1956out:
1957 rcu_read_unlock();
1958
1959 return oom_group;
1960}
1961
1962void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1963{
1964 pr_info("Tasks in ");
1965 pr_cont_cgroup_path(memcg->css.cgroup);
1966 pr_cont(" are going to be killed due to memory.oom.group set\n");
1967}
1968
d7365e78 1969/**
81f8c3a4
JW
1970 * lock_page_memcg - lock a page->mem_cgroup binding
1971 * @page: the page
32047e2a 1972 *
81f8c3a4 1973 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1974 * another cgroup.
1975 *
1976 * It ensures lifetime of the returned memcg. Caller is responsible
1977 * for the lifetime of the page; __unlock_page_memcg() is available
1978 * when @page might get freed inside the locked section.
d69b042f 1979 */
739f79fc 1980struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1981{
1982 struct mem_cgroup *memcg;
6de22619 1983 unsigned long flags;
89c06bd5 1984
6de22619
JW
1985 /*
1986 * The RCU lock is held throughout the transaction. The fast
1987 * path can get away without acquiring the memcg->move_lock
1988 * because page moving starts with an RCU grace period.
739f79fc
JW
1989 *
1990 * The RCU lock also protects the memcg from being freed when
1991 * the page state that is going to change is the only thing
1992 * preventing the page itself from being freed. E.g. writeback
1993 * doesn't hold a page reference and relies on PG_writeback to
1994 * keep off truncation, migration and so forth.
1995 */
d7365e78
JW
1996 rcu_read_lock();
1997
1998 if (mem_cgroup_disabled())
739f79fc 1999 return NULL;
89c06bd5 2000again:
1306a85a 2001 memcg = page->mem_cgroup;
29833315 2002 if (unlikely(!memcg))
739f79fc 2003 return NULL;
d7365e78 2004
bdcbb659 2005 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2006 return memcg;
89c06bd5 2007
6de22619 2008 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2009 if (memcg != page->mem_cgroup) {
6de22619 2010 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2011 goto again;
2012 }
6de22619
JW
2013
2014 /*
2015 * When charge migration first begins, we can have locked and
2016 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2017 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2018 */
2019 memcg->move_lock_task = current;
2020 memcg->move_lock_flags = flags;
d7365e78 2021
739f79fc 2022 return memcg;
89c06bd5 2023}
81f8c3a4 2024EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2025
d7365e78 2026/**
739f79fc
JW
2027 * __unlock_page_memcg - unlock and unpin a memcg
2028 * @memcg: the memcg
2029 *
2030 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2031 */
739f79fc 2032void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2033{
6de22619
JW
2034 if (memcg && memcg->move_lock_task == current) {
2035 unsigned long flags = memcg->move_lock_flags;
2036
2037 memcg->move_lock_task = NULL;
2038 memcg->move_lock_flags = 0;
2039
2040 spin_unlock_irqrestore(&memcg->move_lock, flags);
2041 }
89c06bd5 2042
d7365e78 2043 rcu_read_unlock();
89c06bd5 2044}
739f79fc
JW
2045
2046/**
2047 * unlock_page_memcg - unlock a page->mem_cgroup binding
2048 * @page: the page
2049 */
2050void unlock_page_memcg(struct page *page)
2051{
2052 __unlock_page_memcg(page->mem_cgroup);
2053}
81f8c3a4 2054EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2055
cdec2e42
KH
2056struct memcg_stock_pcp {
2057 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2058 unsigned int nr_pages;
cdec2e42 2059 struct work_struct work;
26fe6168 2060 unsigned long flags;
a0db00fc 2061#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2062};
2063static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2064static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2065
a0956d54
SS
2066/**
2067 * consume_stock: Try to consume stocked charge on this cpu.
2068 * @memcg: memcg to consume from.
2069 * @nr_pages: how many pages to charge.
2070 *
2071 * The charges will only happen if @memcg matches the current cpu's memcg
2072 * stock, and at least @nr_pages are available in that stock. Failure to
2073 * service an allocation will refill the stock.
2074 *
2075 * returns true if successful, false otherwise.
cdec2e42 2076 */
a0956d54 2077static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2078{
2079 struct memcg_stock_pcp *stock;
db2ba40c 2080 unsigned long flags;
3e32cb2e 2081 bool ret = false;
cdec2e42 2082
a983b5eb 2083 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2084 return ret;
a0956d54 2085
db2ba40c
JW
2086 local_irq_save(flags);
2087
2088 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2089 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2090 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2091 ret = true;
2092 }
db2ba40c
JW
2093
2094 local_irq_restore(flags);
2095
cdec2e42
KH
2096 return ret;
2097}
2098
2099/*
3e32cb2e 2100 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2101 */
2102static void drain_stock(struct memcg_stock_pcp *stock)
2103{
2104 struct mem_cgroup *old = stock->cached;
2105
11c9ea4e 2106 if (stock->nr_pages) {
3e32cb2e 2107 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2108 if (do_memsw_account())
3e32cb2e 2109 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2110 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2111 stock->nr_pages = 0;
cdec2e42
KH
2112 }
2113 stock->cached = NULL;
cdec2e42
KH
2114}
2115
cdec2e42
KH
2116static void drain_local_stock(struct work_struct *dummy)
2117{
db2ba40c
JW
2118 struct memcg_stock_pcp *stock;
2119 unsigned long flags;
2120
72f0184c
MH
2121 /*
2122 * The only protection from memory hotplug vs. drain_stock races is
2123 * that we always operate on local CPU stock here with IRQ disabled
2124 */
db2ba40c
JW
2125 local_irq_save(flags);
2126
2127 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2128 drain_stock(stock);
26fe6168 2129 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2130
2131 local_irq_restore(flags);
cdec2e42
KH
2132}
2133
2134/*
3e32cb2e 2135 * Cache charges(val) to local per_cpu area.
320cc51d 2136 * This will be consumed by consume_stock() function, later.
cdec2e42 2137 */
c0ff4b85 2138static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2139{
db2ba40c
JW
2140 struct memcg_stock_pcp *stock;
2141 unsigned long flags;
2142
2143 local_irq_save(flags);
cdec2e42 2144
db2ba40c 2145 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2146 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2147 drain_stock(stock);
c0ff4b85 2148 stock->cached = memcg;
cdec2e42 2149 }
11c9ea4e 2150 stock->nr_pages += nr_pages;
db2ba40c 2151
a983b5eb 2152 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2153 drain_stock(stock);
2154
db2ba40c 2155 local_irq_restore(flags);
cdec2e42
KH
2156}
2157
2158/*
c0ff4b85 2159 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2160 * of the hierarchy under it.
cdec2e42 2161 */
6d3d6aa2 2162static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2163{
26fe6168 2164 int cpu, curcpu;
d38144b7 2165
6d3d6aa2
JW
2166 /* If someone's already draining, avoid adding running more workers. */
2167 if (!mutex_trylock(&percpu_charge_mutex))
2168 return;
72f0184c
MH
2169 /*
2170 * Notify other cpus that system-wide "drain" is running
2171 * We do not care about races with the cpu hotplug because cpu down
2172 * as well as workers from this path always operate on the local
2173 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2174 */
5af12d0e 2175 curcpu = get_cpu();
cdec2e42
KH
2176 for_each_online_cpu(cpu) {
2177 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2178 struct mem_cgroup *memcg;
e1a366be 2179 bool flush = false;
26fe6168 2180
e1a366be 2181 rcu_read_lock();
c0ff4b85 2182 memcg = stock->cached;
e1a366be
RG
2183 if (memcg && stock->nr_pages &&
2184 mem_cgroup_is_descendant(memcg, root_memcg))
2185 flush = true;
2186 rcu_read_unlock();
2187
2188 if (flush &&
2189 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2190 if (cpu == curcpu)
2191 drain_local_stock(&stock->work);
2192 else
2193 schedule_work_on(cpu, &stock->work);
2194 }
cdec2e42 2195 }
5af12d0e 2196 put_cpu();
9f50fad6 2197 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2198}
2199
308167fc 2200static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2201{
cdec2e42 2202 struct memcg_stock_pcp *stock;
42a30035 2203 struct mem_cgroup *memcg, *mi;
cdec2e42 2204
cdec2e42
KH
2205 stock = &per_cpu(memcg_stock, cpu);
2206 drain_stock(stock);
a983b5eb
JW
2207
2208 for_each_mem_cgroup(memcg) {
2209 int i;
2210
2211 for (i = 0; i < MEMCG_NR_STAT; i++) {
2212 int nid;
2213 long x;
2214
871789d4 2215 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2216 if (x)
42a30035
JW
2217 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2218 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2219
2220 if (i >= NR_VM_NODE_STAT_ITEMS)
2221 continue;
2222
2223 for_each_node(nid) {
2224 struct mem_cgroup_per_node *pn;
2225
2226 pn = mem_cgroup_nodeinfo(memcg, nid);
2227 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2228 if (x)
42a30035
JW
2229 do {
2230 atomic_long_add(x, &pn->lruvec_stat[i]);
2231 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2232 }
2233 }
2234
e27be240 2235 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2236 long x;
2237
871789d4 2238 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2239 if (x)
42a30035
JW
2240 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2241 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2242 }
2243 }
2244
308167fc 2245 return 0;
cdec2e42
KH
2246}
2247
f7e1cb6e
JW
2248static void reclaim_high(struct mem_cgroup *memcg,
2249 unsigned int nr_pages,
2250 gfp_t gfp_mask)
2251{
2252 do {
f6f989c5 2253 if (page_counter_read(&memcg->memory) <= READ_ONCE(memcg->high))
f7e1cb6e 2254 continue;
e27be240 2255 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2256 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2257 } while ((memcg = parent_mem_cgroup(memcg)));
2258}
2259
2260static void high_work_func(struct work_struct *work)
2261{
2262 struct mem_cgroup *memcg;
2263
2264 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2265 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2266}
2267
0e4b01df
CD
2268/*
2269 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2270 * enough to still cause a significant slowdown in most cases, while still
2271 * allowing diagnostics and tracing to proceed without becoming stuck.
2272 */
2273#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2274
2275/*
2276 * When calculating the delay, we use these either side of the exponentiation to
2277 * maintain precision and scale to a reasonable number of jiffies (see the table
2278 * below.
2279 *
2280 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2281 * overage ratio to a delay.
2282 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2283 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2284 * to produce a reasonable delay curve.
2285 *
2286 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2287 * reasonable delay curve compared to precision-adjusted overage, not
2288 * penalising heavily at first, but still making sure that growth beyond the
2289 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2290 * example, with a high of 100 megabytes:
2291 *
2292 * +-------+------------------------+
2293 * | usage | time to allocate in ms |
2294 * +-------+------------------------+
2295 * | 100M | 0 |
2296 * | 101M | 6 |
2297 * | 102M | 25 |
2298 * | 103M | 57 |
2299 * | 104M | 102 |
2300 * | 105M | 159 |
2301 * | 106M | 230 |
2302 * | 107M | 313 |
2303 * | 108M | 409 |
2304 * | 109M | 518 |
2305 * | 110M | 639 |
2306 * | 111M | 774 |
2307 * | 112M | 921 |
2308 * | 113M | 1081 |
2309 * | 114M | 1254 |
2310 * | 115M | 1439 |
2311 * | 116M | 1638 |
2312 * | 117M | 1849 |
2313 * | 118M | 2000 |
2314 * | 119M | 2000 |
2315 * | 120M | 2000 |
2316 * +-------+------------------------+
2317 */
2318 #define MEMCG_DELAY_PRECISION_SHIFT 20
2319 #define MEMCG_DELAY_SCALING_SHIFT 14
2320
b23afb93 2321/*
e26733e0
CD
2322 * Get the number of jiffies that we should penalise a mischievous cgroup which
2323 * is exceeding its memory.high by checking both it and its ancestors.
b23afb93 2324 */
e26733e0
CD
2325static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2326 unsigned int nr_pages)
b23afb93 2327{
e26733e0
CD
2328 unsigned long penalty_jiffies;
2329 u64 max_overage = 0;
b23afb93 2330
e26733e0
CD
2331 do {
2332 unsigned long usage, high;
2333 u64 overage;
b23afb93 2334
e26733e0
CD
2335 usage = page_counter_read(&memcg->memory);
2336 high = READ_ONCE(memcg->high);
2337
2338 /*
2339 * Prevent division by 0 in overage calculation by acting as if
2340 * it was a threshold of 1 page
2341 */
2342 high = max(high, 1UL);
2343
2344 overage = usage - high;
2345 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2346 overage = div64_u64(overage, high);
2347
2348 if (overage > max_overage)
2349 max_overage = overage;
2350 } while ((memcg = parent_mem_cgroup(memcg)) &&
2351 !mem_cgroup_is_root(memcg));
2352
2353 if (!max_overage)
2354 return 0;
0e4b01df
CD
2355
2356 /*
0e4b01df
CD
2357 * We use overage compared to memory.high to calculate the number of
2358 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2359 * fairly lenient on small overages, and increasingly harsh when the
2360 * memcg in question makes it clear that it has no intention of stopping
2361 * its crazy behaviour, so we exponentially increase the delay based on
2362 * overage amount.
2363 */
e26733e0
CD
2364 penalty_jiffies = max_overage * max_overage * HZ;
2365 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2366 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2367
2368 /*
2369 * Factor in the task's own contribution to the overage, such that four
2370 * N-sized allocations are throttled approximately the same as one
2371 * 4N-sized allocation.
2372 *
2373 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2374 * larger the current charge patch is than that.
2375 */
2376 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2377
2378 /*
2379 * Clamp the max delay per usermode return so as to still keep the
2380 * application moving forwards and also permit diagnostics, albeit
2381 * extremely slowly.
2382 */
e26733e0
CD
2383 return min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2384}
2385
2386/*
2387 * Scheduled by try_charge() to be executed from the userland return path
2388 * and reclaims memory over the high limit.
2389 */
2390void mem_cgroup_handle_over_high(void)
2391{
2392 unsigned long penalty_jiffies;
2393 unsigned long pflags;
2394 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2395 struct mem_cgroup *memcg;
2396
2397 if (likely(!nr_pages))
2398 return;
2399
2400 memcg = get_mem_cgroup_from_mm(current->mm);
2401 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2402 current->memcg_nr_pages_over_high = 0;
2403
2404 /*
2405 * memory.high is breached and reclaim is unable to keep up. Throttle
2406 * allocators proactively to slow down excessive growth.
2407 */
2408 penalty_jiffies = calculate_high_delay(memcg, nr_pages);
0e4b01df
CD
2409
2410 /*
2411 * Don't sleep if the amount of jiffies this memcg owes us is so low
2412 * that it's not even worth doing, in an attempt to be nice to those who
2413 * go only a small amount over their memory.high value and maybe haven't
2414 * been aggressively reclaimed enough yet.
2415 */
2416 if (penalty_jiffies <= HZ / 100)
2417 goto out;
2418
2419 /*
2420 * If we exit early, we're guaranteed to die (since
2421 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2422 * need to account for any ill-begotten jiffies to pay them off later.
2423 */
2424 psi_memstall_enter(&pflags);
2425 schedule_timeout_killable(penalty_jiffies);
2426 psi_memstall_leave(&pflags);
2427
2428out:
2429 css_put(&memcg->css);
b23afb93
TH
2430}
2431
00501b53
JW
2432static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2433 unsigned int nr_pages)
8a9f3ccd 2434{
a983b5eb 2435 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2436 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2437 struct mem_cgroup *mem_over_limit;
3e32cb2e 2438 struct page_counter *counter;
6539cc05 2439 unsigned long nr_reclaimed;
b70a2a21
JW
2440 bool may_swap = true;
2441 bool drained = false;
29ef680a 2442 enum oom_status oom_status;
a636b327 2443
ce00a967 2444 if (mem_cgroup_is_root(memcg))
10d53c74 2445 return 0;
6539cc05 2446retry:
b6b6cc72 2447 if (consume_stock(memcg, nr_pages))
10d53c74 2448 return 0;
8a9f3ccd 2449
7941d214 2450 if (!do_memsw_account() ||
6071ca52
JW
2451 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2452 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2453 goto done_restock;
7941d214 2454 if (do_memsw_account())
3e32cb2e
JW
2455 page_counter_uncharge(&memcg->memsw, batch);
2456 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2457 } else {
3e32cb2e 2458 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2459 may_swap = false;
3fbe7244 2460 }
7a81b88c 2461
6539cc05
JW
2462 if (batch > nr_pages) {
2463 batch = nr_pages;
2464 goto retry;
2465 }
6d61ef40 2466
869712fd
JW
2467 /*
2468 * Memcg doesn't have a dedicated reserve for atomic
2469 * allocations. But like the global atomic pool, we need to
2470 * put the burden of reclaim on regular allocation requests
2471 * and let these go through as privileged allocations.
2472 */
2473 if (gfp_mask & __GFP_ATOMIC)
2474 goto force;
2475
06b078fc
JW
2476 /*
2477 * Unlike in global OOM situations, memcg is not in a physical
2478 * memory shortage. Allow dying and OOM-killed tasks to
2479 * bypass the last charges so that they can exit quickly and
2480 * free their memory.
2481 */
7775face 2482 if (unlikely(should_force_charge()))
10d53c74 2483 goto force;
06b078fc 2484
89a28483
JW
2485 /*
2486 * Prevent unbounded recursion when reclaim operations need to
2487 * allocate memory. This might exceed the limits temporarily,
2488 * but we prefer facilitating memory reclaim and getting back
2489 * under the limit over triggering OOM kills in these cases.
2490 */
2491 if (unlikely(current->flags & PF_MEMALLOC))
2492 goto force;
2493
06b078fc
JW
2494 if (unlikely(task_in_memcg_oom(current)))
2495 goto nomem;
2496
d0164adc 2497 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2498 goto nomem;
4b534334 2499
e27be240 2500 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2501
b70a2a21
JW
2502 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2503 gfp_mask, may_swap);
6539cc05 2504
61e02c74 2505 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2506 goto retry;
28c34c29 2507
b70a2a21 2508 if (!drained) {
6d3d6aa2 2509 drain_all_stock(mem_over_limit);
b70a2a21
JW
2510 drained = true;
2511 goto retry;
2512 }
2513
28c34c29
JW
2514 if (gfp_mask & __GFP_NORETRY)
2515 goto nomem;
6539cc05
JW
2516 /*
2517 * Even though the limit is exceeded at this point, reclaim
2518 * may have been able to free some pages. Retry the charge
2519 * before killing the task.
2520 *
2521 * Only for regular pages, though: huge pages are rather
2522 * unlikely to succeed so close to the limit, and we fall back
2523 * to regular pages anyway in case of failure.
2524 */
61e02c74 2525 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2526 goto retry;
2527 /*
2528 * At task move, charge accounts can be doubly counted. So, it's
2529 * better to wait until the end of task_move if something is going on.
2530 */
2531 if (mem_cgroup_wait_acct_move(mem_over_limit))
2532 goto retry;
2533
9b130619
JW
2534 if (nr_retries--)
2535 goto retry;
2536
38d38493 2537 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2538 goto nomem;
2539
06b078fc 2540 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2541 goto force;
06b078fc 2542
6539cc05 2543 if (fatal_signal_pending(current))
10d53c74 2544 goto force;
6539cc05 2545
29ef680a
MH
2546 /*
2547 * keep retrying as long as the memcg oom killer is able to make
2548 * a forward progress or bypass the charge if the oom killer
2549 * couldn't make any progress.
2550 */
2551 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2552 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2553 switch (oom_status) {
2554 case OOM_SUCCESS:
2555 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2556 goto retry;
2557 case OOM_FAILED:
2558 goto force;
2559 default:
2560 goto nomem;
2561 }
7a81b88c 2562nomem:
6d1fdc48 2563 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2564 return -ENOMEM;
10d53c74
TH
2565force:
2566 /*
2567 * The allocation either can't fail or will lead to more memory
2568 * being freed very soon. Allow memory usage go over the limit
2569 * temporarily by force charging it.
2570 */
2571 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2572 if (do_memsw_account())
10d53c74
TH
2573 page_counter_charge(&memcg->memsw, nr_pages);
2574 css_get_many(&memcg->css, nr_pages);
2575
2576 return 0;
6539cc05
JW
2577
2578done_restock:
e8ea14cc 2579 css_get_many(&memcg->css, batch);
6539cc05
JW
2580 if (batch > nr_pages)
2581 refill_stock(memcg, batch - nr_pages);
b23afb93 2582
241994ed 2583 /*
b23afb93
TH
2584 * If the hierarchy is above the normal consumption range, schedule
2585 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2586 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2587 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2588 * not recorded as it most likely matches current's and won't
2589 * change in the meantime. As high limit is checked again before
2590 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2591 */
2592 do {
f6f989c5 2593 if (page_counter_read(&memcg->memory) > READ_ONCE(memcg->high)) {
f7e1cb6e
JW
2594 /* Don't bother a random interrupted task */
2595 if (in_interrupt()) {
2596 schedule_work(&memcg->high_work);
2597 break;
2598 }
9516a18a 2599 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2600 set_notify_resume(current);
2601 break;
2602 }
241994ed 2603 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2604
2605 return 0;
7a81b88c 2606}
8a9f3ccd 2607
00501b53 2608static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2609{
ce00a967
JW
2610 if (mem_cgroup_is_root(memcg))
2611 return;
2612
3e32cb2e 2613 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2614 if (do_memsw_account())
3e32cb2e 2615 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2616
e8ea14cc 2617 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2618}
2619
0a31bc97
JW
2620static void lock_page_lru(struct page *page, int *isolated)
2621{
f4b7e272 2622 pg_data_t *pgdat = page_pgdat(page);
0a31bc97 2623
f4b7e272 2624 spin_lock_irq(&pgdat->lru_lock);
0a31bc97
JW
2625 if (PageLRU(page)) {
2626 struct lruvec *lruvec;
2627
f4b7e272 2628 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2629 ClearPageLRU(page);
2630 del_page_from_lru_list(page, lruvec, page_lru(page));
2631 *isolated = 1;
2632 } else
2633 *isolated = 0;
2634}
2635
2636static void unlock_page_lru(struct page *page, int isolated)
2637{
f4b7e272 2638 pg_data_t *pgdat = page_pgdat(page);
0a31bc97
JW
2639
2640 if (isolated) {
2641 struct lruvec *lruvec;
2642
f4b7e272 2643 lruvec = mem_cgroup_page_lruvec(page, pgdat);
0a31bc97
JW
2644 VM_BUG_ON_PAGE(PageLRU(page), page);
2645 SetPageLRU(page);
2646 add_page_to_lru_list(page, lruvec, page_lru(page));
2647 }
f4b7e272 2648 spin_unlock_irq(&pgdat->lru_lock);
0a31bc97
JW
2649}
2650
00501b53 2651static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2652 bool lrucare)
7a81b88c 2653{
0a31bc97 2654 int isolated;
9ce70c02 2655
1306a85a 2656 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2657
2658 /*
2659 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2660 * may already be on some other mem_cgroup's LRU. Take care of it.
2661 */
0a31bc97
JW
2662 if (lrucare)
2663 lock_page_lru(page, &isolated);
9ce70c02 2664
0a31bc97
JW
2665 /*
2666 * Nobody should be changing or seriously looking at
1306a85a 2667 * page->mem_cgroup at this point:
0a31bc97
JW
2668 *
2669 * - the page is uncharged
2670 *
2671 * - the page is off-LRU
2672 *
2673 * - an anonymous fault has exclusive page access, except for
2674 * a locked page table
2675 *
2676 * - a page cache insertion, a swapin fault, or a migration
2677 * have the page locked
2678 */
1306a85a 2679 page->mem_cgroup = memcg;
9ce70c02 2680
0a31bc97
JW
2681 if (lrucare)
2682 unlock_page_lru(page, isolated);
7a81b88c 2683}
66e1707b 2684
84c07d11 2685#ifdef CONFIG_MEMCG_KMEM
8380ce47
RG
2686/*
2687 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2688 *
2689 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2690 * cgroup_mutex, etc.
2691 */
2692struct mem_cgroup *mem_cgroup_from_obj(void *p)
2693{
2694 struct page *page;
2695
2696 if (mem_cgroup_disabled())
2697 return NULL;
2698
2699 page = virt_to_head_page(p);
2700
2701 /*
2702 * Slab pages don't have page->mem_cgroup set because corresponding
2703 * kmem caches can be reparented during the lifetime. That's why
2704 * memcg_from_slab_page() should be used instead.
2705 */
2706 if (PageSlab(page))
2707 return memcg_from_slab_page(page);
2708
2709 /* All other pages use page->mem_cgroup */
2710 return page->mem_cgroup;
2711}
2712
f3bb3043 2713static int memcg_alloc_cache_id(void)
55007d84 2714{
f3bb3043
VD
2715 int id, size;
2716 int err;
2717
dbcf73e2 2718 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2719 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2720 if (id < 0)
2721 return id;
55007d84 2722
dbcf73e2 2723 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2724 return id;
2725
2726 /*
2727 * There's no space for the new id in memcg_caches arrays,
2728 * so we have to grow them.
2729 */
05257a1a 2730 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2731
2732 size = 2 * (id + 1);
55007d84
GC
2733 if (size < MEMCG_CACHES_MIN_SIZE)
2734 size = MEMCG_CACHES_MIN_SIZE;
2735 else if (size > MEMCG_CACHES_MAX_SIZE)
2736 size = MEMCG_CACHES_MAX_SIZE;
2737
f3bb3043 2738 err = memcg_update_all_caches(size);
60d3fd32
VD
2739 if (!err)
2740 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2741 if (!err)
2742 memcg_nr_cache_ids = size;
2743
2744 up_write(&memcg_cache_ids_sem);
2745
f3bb3043 2746 if (err) {
dbcf73e2 2747 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2748 return err;
2749 }
2750 return id;
2751}
2752
2753static void memcg_free_cache_id(int id)
2754{
dbcf73e2 2755 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2756}
2757
d5b3cf71 2758struct memcg_kmem_cache_create_work {
5722d094
VD
2759 struct mem_cgroup *memcg;
2760 struct kmem_cache *cachep;
2761 struct work_struct work;
2762};
2763
d5b3cf71 2764static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2765{
d5b3cf71
VD
2766 struct memcg_kmem_cache_create_work *cw =
2767 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2768 struct mem_cgroup *memcg = cw->memcg;
2769 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2770
d5b3cf71 2771 memcg_create_kmem_cache(memcg, cachep);
bd673145 2772
5722d094 2773 css_put(&memcg->css);
d7f25f8a
GC
2774 kfree(cw);
2775}
2776
2777/*
2778 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2779 */
85cfb245 2780static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
d5b3cf71 2781 struct kmem_cache *cachep)
d7f25f8a 2782{
d5b3cf71 2783 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2784
f0a3a24b
RG
2785 if (!css_tryget_online(&memcg->css))
2786 return;
2787
c892fd82 2788 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2789 if (!cw)
d7f25f8a 2790 return;
8135be5a 2791
d7f25f8a
GC
2792 cw->memcg = memcg;
2793 cw->cachep = cachep;
d5b3cf71 2794 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2795
17cc4dfe 2796 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2797}
2798
45264778
VD
2799static inline bool memcg_kmem_bypass(void)
2800{
2801 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2802 return true;
2803 return false;
2804}
2805
2806/**
2807 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2808 * @cachep: the original global kmem cache
2809 *
d7f25f8a
GC
2810 * Return the kmem_cache we're supposed to use for a slab allocation.
2811 * We try to use the current memcg's version of the cache.
2812 *
45264778
VD
2813 * If the cache does not exist yet, if we are the first user of it, we
2814 * create it asynchronously in a workqueue and let the current allocation
2815 * go through with the original cache.
d7f25f8a 2816 *
45264778
VD
2817 * This function takes a reference to the cache it returns to assure it
2818 * won't get destroyed while we are working with it. Once the caller is
2819 * done with it, memcg_kmem_put_cache() must be called to release the
2820 * reference.
d7f25f8a 2821 */
45264778 2822struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2823{
2824 struct mem_cgroup *memcg;
959c8963 2825 struct kmem_cache *memcg_cachep;
f0a3a24b 2826 struct memcg_cache_array *arr;
2a4db7eb 2827 int kmemcg_id;
d7f25f8a 2828
f7ce3190 2829 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2830
45264778 2831 if (memcg_kmem_bypass())
230e9fc2
VD
2832 return cachep;
2833
f0a3a24b
RG
2834 rcu_read_lock();
2835
2836 if (unlikely(current->active_memcg))
2837 memcg = current->active_memcg;
2838 else
2839 memcg = mem_cgroup_from_task(current);
2840
2841 if (!memcg || memcg == root_mem_cgroup)
2842 goto out_unlock;
2843
4db0c3c2 2844 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2845 if (kmemcg_id < 0)
f0a3a24b 2846 goto out_unlock;
d7f25f8a 2847
f0a3a24b
RG
2848 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2849
2850 /*
2851 * Make sure we will access the up-to-date value. The code updating
2852 * memcg_caches issues a write barrier to match the data dependency
2853 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2854 */
2855 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
ca0dde97
LZ
2856
2857 /*
2858 * If we are in a safe context (can wait, and not in interrupt
2859 * context), we could be be predictable and return right away.
2860 * This would guarantee that the allocation being performed
2861 * already belongs in the new cache.
2862 *
2863 * However, there are some clashes that can arrive from locking.
2864 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2865 * memcg_create_kmem_cache, this means no further allocation
2866 * could happen with the slab_mutex held. So it's better to
2867 * defer everything.
f0a3a24b
RG
2868 *
2869 * If the memcg is dying or memcg_cache is about to be released,
2870 * don't bother creating new kmem_caches. Because memcg_cachep
2871 * is ZEROed as the fist step of kmem offlining, we don't need
2872 * percpu_ref_tryget_live() here. css_tryget_online() check in
2873 * memcg_schedule_kmem_cache_create() will prevent us from
2874 * creation of a new kmem_cache.
ca0dde97 2875 */
f0a3a24b
RG
2876 if (unlikely(!memcg_cachep))
2877 memcg_schedule_kmem_cache_create(memcg, cachep);
2878 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2879 cachep = memcg_cachep;
2880out_unlock:
2881 rcu_read_unlock();
ca0dde97 2882 return cachep;
d7f25f8a 2883}
d7f25f8a 2884
45264778
VD
2885/**
2886 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2887 * @cachep: the cache returned by memcg_kmem_get_cache
2888 */
2889void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2890{
2891 if (!is_root_cache(cachep))
f0a3a24b 2892 percpu_ref_put(&cachep->memcg_params.refcnt);
8135be5a
VD
2893}
2894
45264778 2895/**
4b13f64d 2896 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 2897 * @memcg: memory cgroup to charge
45264778 2898 * @gfp: reclaim mode
92d0510c 2899 * @nr_pages: number of pages to charge
45264778
VD
2900 *
2901 * Returns 0 on success, an error code on failure.
2902 */
4b13f64d
RG
2903int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2904 unsigned int nr_pages)
7ae1e1d0 2905{
f3ccb2c4 2906 struct page_counter *counter;
7ae1e1d0
GC
2907 int ret;
2908
f3ccb2c4 2909 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2910 if (ret)
f3ccb2c4 2911 return ret;
52c29b04
JW
2912
2913 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2914 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2915
2916 /*
2917 * Enforce __GFP_NOFAIL allocation because callers are not
2918 * prepared to see failures and likely do not have any failure
2919 * handling code.
2920 */
2921 if (gfp & __GFP_NOFAIL) {
2922 page_counter_charge(&memcg->kmem, nr_pages);
2923 return 0;
2924 }
52c29b04
JW
2925 cancel_charge(memcg, nr_pages);
2926 return -ENOMEM;
7ae1e1d0 2927 }
f3ccb2c4 2928 return 0;
7ae1e1d0
GC
2929}
2930
4b13f64d
RG
2931/**
2932 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2933 * @memcg: memcg to uncharge
2934 * @nr_pages: number of pages to uncharge
2935 */
2936void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2937{
2938 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2939 page_counter_uncharge(&memcg->kmem, nr_pages);
2940
2941 page_counter_uncharge(&memcg->memory, nr_pages);
2942 if (do_memsw_account())
2943 page_counter_uncharge(&memcg->memsw, nr_pages);
2944}
2945
45264778 2946/**
f4b00eab 2947 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
2948 * @page: page to charge
2949 * @gfp: reclaim mode
2950 * @order: allocation order
2951 *
2952 * Returns 0 on success, an error code on failure.
2953 */
f4b00eab 2954int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2955{
f3ccb2c4 2956 struct mem_cgroup *memcg;
fcff7d7e 2957 int ret = 0;
7ae1e1d0 2958
60cd4bcd 2959 if (memcg_kmem_bypass())
45264778
VD
2960 return 0;
2961
d46eb14b 2962 memcg = get_mem_cgroup_from_current();
c4159a75 2963 if (!mem_cgroup_is_root(memcg)) {
4b13f64d 2964 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35
RG
2965 if (!ret) {
2966 page->mem_cgroup = memcg;
c4159a75 2967 __SetPageKmemcg(page);
4d96ba35 2968 }
c4159a75 2969 }
7ae1e1d0 2970 css_put(&memcg->css);
d05e83a6 2971 return ret;
7ae1e1d0 2972}
49a18eae 2973
45264778 2974/**
f4b00eab 2975 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
2976 * @page: page to uncharge
2977 * @order: allocation order
2978 */
f4b00eab 2979void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 2980{
1306a85a 2981 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2982 unsigned int nr_pages = 1 << order;
7ae1e1d0 2983
7ae1e1d0
GC
2984 if (!memcg)
2985 return;
2986
309381fe 2987 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 2988 __memcg_kmem_uncharge(memcg, nr_pages);
1306a85a 2989 page->mem_cgroup = NULL;
c4159a75
VD
2990
2991 /* slab pages do not have PageKmemcg flag set */
2992 if (PageKmemcg(page))
2993 __ClearPageKmemcg(page);
2994
f3ccb2c4 2995 css_put_many(&memcg->css, nr_pages);
60d3fd32 2996}
84c07d11 2997#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2998
ca3e0214
KH
2999#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3000
ca3e0214
KH
3001/*
3002 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 3003 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 3004 */
e94c8a9c 3005void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3006{
e94c8a9c 3007 int i;
ca3e0214 3008
3d37c4a9
KH
3009 if (mem_cgroup_disabled())
3010 return;
b070e65c 3011
29833315 3012 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 3013 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 3014
c9019e9b 3015 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 3016}
12d27107 3017#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3018
c255a458 3019#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3020/**
3021 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3022 * @entry: swap entry to be moved
3023 * @from: mem_cgroup which the entry is moved from
3024 * @to: mem_cgroup which the entry is moved to
3025 *
3026 * It succeeds only when the swap_cgroup's record for this entry is the same
3027 * as the mem_cgroup's id of @from.
3028 *
3029 * Returns 0 on success, -EINVAL on failure.
3030 *
3e32cb2e 3031 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3032 * both res and memsw, and called css_get().
3033 */
3034static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3035 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3036{
3037 unsigned short old_id, new_id;
3038
34c00c31
LZ
3039 old_id = mem_cgroup_id(from);
3040 new_id = mem_cgroup_id(to);
02491447
DN
3041
3042 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3043 mod_memcg_state(from, MEMCG_SWAP, -1);
3044 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3045 return 0;
3046 }
3047 return -EINVAL;
3048}
3049#else
3050static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3051 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3052{
3053 return -EINVAL;
3054}
8c7c6e34 3055#endif
d13d1443 3056
bbec2e15 3057static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3058
bbec2e15
RG
3059static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3060 unsigned long max, bool memsw)
628f4235 3061{
3e32cb2e 3062 bool enlarge = false;
bb4a7ea2 3063 bool drained = false;
3e32cb2e 3064 int ret;
c054a78c
YZ
3065 bool limits_invariant;
3066 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3067
3e32cb2e 3068 do {
628f4235
KH
3069 if (signal_pending(current)) {
3070 ret = -EINTR;
3071 break;
3072 }
3e32cb2e 3073
bbec2e15 3074 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3075 /*
3076 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3077 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3078 */
15b42562 3079 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3080 max <= memcg->memsw.max;
c054a78c 3081 if (!limits_invariant) {
bbec2e15 3082 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3083 ret = -EINVAL;
8c7c6e34
KH
3084 break;
3085 }
bbec2e15 3086 if (max > counter->max)
3e32cb2e 3087 enlarge = true;
bbec2e15
RG
3088 ret = page_counter_set_max(counter, max);
3089 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3090
3091 if (!ret)
3092 break;
3093
bb4a7ea2
SB
3094 if (!drained) {
3095 drain_all_stock(memcg);
3096 drained = true;
3097 continue;
3098 }
3099
1ab5c056
AR
3100 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3101 GFP_KERNEL, !memsw)) {
3102 ret = -EBUSY;
3103 break;
3104 }
3105 } while (true);
3e32cb2e 3106
3c11ecf4
KH
3107 if (!ret && enlarge)
3108 memcg_oom_recover(memcg);
3e32cb2e 3109
628f4235
KH
3110 return ret;
3111}
3112
ef8f2327 3113unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3114 gfp_t gfp_mask,
3115 unsigned long *total_scanned)
3116{
3117 unsigned long nr_reclaimed = 0;
ef8f2327 3118 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3119 unsigned long reclaimed;
3120 int loop = 0;
ef8f2327 3121 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3122 unsigned long excess;
0608f43d
AM
3123 unsigned long nr_scanned;
3124
3125 if (order > 0)
3126 return 0;
3127
ef8f2327 3128 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3129
3130 /*
3131 * Do not even bother to check the largest node if the root
3132 * is empty. Do it lockless to prevent lock bouncing. Races
3133 * are acceptable as soft limit is best effort anyway.
3134 */
bfc7228b 3135 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3136 return 0;
3137
0608f43d
AM
3138 /*
3139 * This loop can run a while, specially if mem_cgroup's continuously
3140 * keep exceeding their soft limit and putting the system under
3141 * pressure
3142 */
3143 do {
3144 if (next_mz)
3145 mz = next_mz;
3146 else
3147 mz = mem_cgroup_largest_soft_limit_node(mctz);
3148 if (!mz)
3149 break;
3150
3151 nr_scanned = 0;
ef8f2327 3152 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3153 gfp_mask, &nr_scanned);
3154 nr_reclaimed += reclaimed;
3155 *total_scanned += nr_scanned;
0a31bc97 3156 spin_lock_irq(&mctz->lock);
bc2f2e7f 3157 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3158
3159 /*
3160 * If we failed to reclaim anything from this memory cgroup
3161 * it is time to move on to the next cgroup
3162 */
3163 next_mz = NULL;
bc2f2e7f
VD
3164 if (!reclaimed)
3165 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3166
3e32cb2e 3167 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3168 /*
3169 * One school of thought says that we should not add
3170 * back the node to the tree if reclaim returns 0.
3171 * But our reclaim could return 0, simply because due
3172 * to priority we are exposing a smaller subset of
3173 * memory to reclaim from. Consider this as a longer
3174 * term TODO.
3175 */
3176 /* If excess == 0, no tree ops */
cf2c8127 3177 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3178 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3179 css_put(&mz->memcg->css);
3180 loop++;
3181 /*
3182 * Could not reclaim anything and there are no more
3183 * mem cgroups to try or we seem to be looping without
3184 * reclaiming anything.
3185 */
3186 if (!nr_reclaimed &&
3187 (next_mz == NULL ||
3188 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3189 break;
3190 } while (!nr_reclaimed);
3191 if (next_mz)
3192 css_put(&next_mz->memcg->css);
3193 return nr_reclaimed;
3194}
3195
ea280e7b
TH
3196/*
3197 * Test whether @memcg has children, dead or alive. Note that this
3198 * function doesn't care whether @memcg has use_hierarchy enabled and
3199 * returns %true if there are child csses according to the cgroup
3200 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3201 */
b5f99b53
GC
3202static inline bool memcg_has_children(struct mem_cgroup *memcg)
3203{
ea280e7b
TH
3204 bool ret;
3205
ea280e7b
TH
3206 rcu_read_lock();
3207 ret = css_next_child(NULL, &memcg->css);
3208 rcu_read_unlock();
3209 return ret;
b5f99b53
GC
3210}
3211
c26251f9 3212/*
51038171 3213 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3214 *
3215 * Caller is responsible for holding css reference for memcg.
3216 */
3217static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3218{
3219 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3220
c1e862c1
KH
3221 /* we call try-to-free pages for make this cgroup empty */
3222 lru_add_drain_all();
d12c60f6
JS
3223
3224 drain_all_stock(memcg);
3225
f817ed48 3226 /* try to free all pages in this cgroup */
3e32cb2e 3227 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3228 int progress;
c1e862c1 3229
c26251f9
MH
3230 if (signal_pending(current))
3231 return -EINTR;
3232
b70a2a21
JW
3233 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3234 GFP_KERNEL, true);
c1e862c1 3235 if (!progress) {
f817ed48 3236 nr_retries--;
c1e862c1 3237 /* maybe some writeback is necessary */
8aa7e847 3238 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3239 }
f817ed48
KH
3240
3241 }
ab5196c2
MH
3242
3243 return 0;
cc847582
KH
3244}
3245
6770c64e
TH
3246static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3247 char *buf, size_t nbytes,
3248 loff_t off)
c1e862c1 3249{
6770c64e 3250 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3251
d8423011
MH
3252 if (mem_cgroup_is_root(memcg))
3253 return -EINVAL;
6770c64e 3254 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3255}
3256
182446d0
TH
3257static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3258 struct cftype *cft)
18f59ea7 3259{
182446d0 3260 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3261}
3262
182446d0
TH
3263static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3264 struct cftype *cft, u64 val)
18f59ea7
BS
3265{
3266 int retval = 0;
182446d0 3267 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3268 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3269
567fb435 3270 if (memcg->use_hierarchy == val)
0b8f73e1 3271 return 0;
567fb435 3272
18f59ea7 3273 /*
af901ca1 3274 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3275 * in the child subtrees. If it is unset, then the change can
3276 * occur, provided the current cgroup has no children.
3277 *
3278 * For the root cgroup, parent_mem is NULL, we allow value to be
3279 * set if there are no children.
3280 */
c0ff4b85 3281 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3282 (val == 1 || val == 0)) {
ea280e7b 3283 if (!memcg_has_children(memcg))
c0ff4b85 3284 memcg->use_hierarchy = val;
18f59ea7
BS
3285 else
3286 retval = -EBUSY;
3287 } else
3288 retval = -EINVAL;
567fb435 3289
18f59ea7
BS
3290 return retval;
3291}
3292
6f646156 3293static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3294{
42a30035 3295 unsigned long val;
ce00a967 3296
3e32cb2e 3297 if (mem_cgroup_is_root(memcg)) {
42a30035
JW
3298 val = memcg_page_state(memcg, MEMCG_CACHE) +
3299 memcg_page_state(memcg, MEMCG_RSS);
3300 if (swap)
3301 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3302 } else {
ce00a967 3303 if (!swap)
3e32cb2e 3304 val = page_counter_read(&memcg->memory);
ce00a967 3305 else
3e32cb2e 3306 val = page_counter_read(&memcg->memsw);
ce00a967 3307 }
c12176d3 3308 return val;
ce00a967
JW
3309}
3310
3e32cb2e
JW
3311enum {
3312 RES_USAGE,
3313 RES_LIMIT,
3314 RES_MAX_USAGE,
3315 RES_FAILCNT,
3316 RES_SOFT_LIMIT,
3317};
ce00a967 3318
791badbd 3319static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3320 struct cftype *cft)
8cdea7c0 3321{
182446d0 3322 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3323 struct page_counter *counter;
af36f906 3324
3e32cb2e 3325 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3326 case _MEM:
3e32cb2e
JW
3327 counter = &memcg->memory;
3328 break;
8c7c6e34 3329 case _MEMSWAP:
3e32cb2e
JW
3330 counter = &memcg->memsw;
3331 break;
510fc4e1 3332 case _KMEM:
3e32cb2e 3333 counter = &memcg->kmem;
510fc4e1 3334 break;
d55f90bf 3335 case _TCP:
0db15298 3336 counter = &memcg->tcpmem;
d55f90bf 3337 break;
8c7c6e34
KH
3338 default:
3339 BUG();
8c7c6e34 3340 }
3e32cb2e
JW
3341
3342 switch (MEMFILE_ATTR(cft->private)) {
3343 case RES_USAGE:
3344 if (counter == &memcg->memory)
c12176d3 3345 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3346 if (counter == &memcg->memsw)
c12176d3 3347 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3348 return (u64)page_counter_read(counter) * PAGE_SIZE;
3349 case RES_LIMIT:
bbec2e15 3350 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3351 case RES_MAX_USAGE:
3352 return (u64)counter->watermark * PAGE_SIZE;
3353 case RES_FAILCNT:
3354 return counter->failcnt;
3355 case RES_SOFT_LIMIT:
3356 return (u64)memcg->soft_limit * PAGE_SIZE;
3357 default:
3358 BUG();
3359 }
8cdea7c0 3360}
510fc4e1 3361
4a87e2a2 3362static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3363{
4a87e2a2 3364 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3365 struct mem_cgroup *mi;
3366 int node, cpu, i;
c350a99e
RG
3367
3368 for_each_online_cpu(cpu)
4a87e2a2 3369 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3370 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3371
3372 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3373 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3374 atomic_long_add(stat[i], &mi->vmstats[i]);
3375
3376 for_each_node(node) {
3377 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3378 struct mem_cgroup_per_node *pi;
3379
4a87e2a2 3380 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3381 stat[i] = 0;
3382
3383 for_each_online_cpu(cpu)
4a87e2a2 3384 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3385 stat[i] += per_cpu(
3386 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3387
3388 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3389 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3390 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3391 }
3392}
3393
bb65f89b
RG
3394static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3395{
3396 unsigned long events[NR_VM_EVENT_ITEMS];
3397 struct mem_cgroup *mi;
3398 int cpu, i;
3399
3400 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3401 events[i] = 0;
3402
3403 for_each_online_cpu(cpu)
3404 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3405 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3406 cpu);
bb65f89b
RG
3407
3408 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3409 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3410 atomic_long_add(events[i], &mi->vmevents[i]);
3411}
3412
84c07d11 3413#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3414static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3415{
d6441637
VD
3416 int memcg_id;
3417
b313aeee
VD
3418 if (cgroup_memory_nokmem)
3419 return 0;
3420
2a4db7eb 3421 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3422 BUG_ON(memcg->kmem_state);
d6441637 3423
f3bb3043 3424 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3425 if (memcg_id < 0)
3426 return memcg_id;
d6441637 3427
ef12947c 3428 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3429 /*
567e9ab2 3430 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3431 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3432 * guarantee no one starts accounting before all call sites are
3433 * patched.
3434 */
900a38f0 3435 memcg->kmemcg_id = memcg_id;
567e9ab2 3436 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3437 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3438
3439 return 0;
d6441637
VD
3440}
3441
8e0a8912
JW
3442static void memcg_offline_kmem(struct mem_cgroup *memcg)
3443{
3444 struct cgroup_subsys_state *css;
3445 struct mem_cgroup *parent, *child;
3446 int kmemcg_id;
3447
3448 if (memcg->kmem_state != KMEM_ONLINE)
3449 return;
3450 /*
3451 * Clear the online state before clearing memcg_caches array
3452 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3453 * guarantees that no cache will be created for this cgroup
3454 * after we are done (see memcg_create_kmem_cache()).
3455 */
3456 memcg->kmem_state = KMEM_ALLOCATED;
3457
8e0a8912
JW
3458 parent = parent_mem_cgroup(memcg);
3459 if (!parent)
3460 parent = root_mem_cgroup;
3461
bee07b33 3462 /*
4a87e2a2 3463 * Deactivate and reparent kmem_caches.
bee07b33 3464 */
fb2f2b0a
RG
3465 memcg_deactivate_kmem_caches(memcg, parent);
3466
3467 kmemcg_id = memcg->kmemcg_id;
3468 BUG_ON(kmemcg_id < 0);
3469
8e0a8912
JW
3470 /*
3471 * Change kmemcg_id of this cgroup and all its descendants to the
3472 * parent's id, and then move all entries from this cgroup's list_lrus
3473 * to ones of the parent. After we have finished, all list_lrus
3474 * corresponding to this cgroup are guaranteed to remain empty. The
3475 * ordering is imposed by list_lru_node->lock taken by
3476 * memcg_drain_all_list_lrus().
3477 */
3a06bb78 3478 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3479 css_for_each_descendant_pre(css, &memcg->css) {
3480 child = mem_cgroup_from_css(css);
3481 BUG_ON(child->kmemcg_id != kmemcg_id);
3482 child->kmemcg_id = parent->kmemcg_id;
3483 if (!memcg->use_hierarchy)
3484 break;
3485 }
3a06bb78
TH
3486 rcu_read_unlock();
3487
9bec5c35 3488 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3489
3490 memcg_free_cache_id(kmemcg_id);
3491}
3492
3493static void memcg_free_kmem(struct mem_cgroup *memcg)
3494{
0b8f73e1
JW
3495 /* css_alloc() failed, offlining didn't happen */
3496 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3497 memcg_offline_kmem(memcg);
3498
8e0a8912 3499 if (memcg->kmem_state == KMEM_ALLOCATED) {
f0a3a24b 3500 WARN_ON(!list_empty(&memcg->kmem_caches));
8e0a8912 3501 static_branch_dec(&memcg_kmem_enabled_key);
8e0a8912 3502 }
8e0a8912 3503}
d6441637 3504#else
0b8f73e1 3505static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3506{
3507 return 0;
3508}
3509static void memcg_offline_kmem(struct mem_cgroup *memcg)
3510{
3511}
3512static void memcg_free_kmem(struct mem_cgroup *memcg)
3513{
3514}
84c07d11 3515#endif /* CONFIG_MEMCG_KMEM */
127424c8 3516
bbec2e15
RG
3517static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3518 unsigned long max)
d6441637 3519{
b313aeee 3520 int ret;
127424c8 3521
bbec2e15
RG
3522 mutex_lock(&memcg_max_mutex);
3523 ret = page_counter_set_max(&memcg->kmem, max);
3524 mutex_unlock(&memcg_max_mutex);
127424c8 3525 return ret;
d6441637 3526}
510fc4e1 3527
bbec2e15 3528static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3529{
3530 int ret;
3531
bbec2e15 3532 mutex_lock(&memcg_max_mutex);
d55f90bf 3533
bbec2e15 3534 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3535 if (ret)
3536 goto out;
3537
0db15298 3538 if (!memcg->tcpmem_active) {
d55f90bf
VD
3539 /*
3540 * The active flag needs to be written after the static_key
3541 * update. This is what guarantees that the socket activation
2d758073
JW
3542 * function is the last one to run. See mem_cgroup_sk_alloc()
3543 * for details, and note that we don't mark any socket as
3544 * belonging to this memcg until that flag is up.
d55f90bf
VD
3545 *
3546 * We need to do this, because static_keys will span multiple
3547 * sites, but we can't control their order. If we mark a socket
3548 * as accounted, but the accounting functions are not patched in
3549 * yet, we'll lose accounting.
3550 *
2d758073 3551 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3552 * because when this value change, the code to process it is not
3553 * patched in yet.
3554 */
3555 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3556 memcg->tcpmem_active = true;
d55f90bf
VD
3557 }
3558out:
bbec2e15 3559 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3560 return ret;
3561}
d55f90bf 3562
628f4235
KH
3563/*
3564 * The user of this function is...
3565 * RES_LIMIT.
3566 */
451af504
TH
3567static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3568 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3569{
451af504 3570 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3571 unsigned long nr_pages;
628f4235
KH
3572 int ret;
3573
451af504 3574 buf = strstrip(buf);
650c5e56 3575 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3576 if (ret)
3577 return ret;
af36f906 3578
3e32cb2e 3579 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3580 case RES_LIMIT:
4b3bde4c
BS
3581 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3582 ret = -EINVAL;
3583 break;
3584 }
3e32cb2e
JW
3585 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3586 case _MEM:
bbec2e15 3587 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3588 break;
3e32cb2e 3589 case _MEMSWAP:
bbec2e15 3590 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3591 break;
3e32cb2e 3592 case _KMEM:
0158115f
MH
3593 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3594 "Please report your usecase to linux-mm@kvack.org if you "
3595 "depend on this functionality.\n");
bbec2e15 3596 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3597 break;
d55f90bf 3598 case _TCP:
bbec2e15 3599 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3600 break;
3e32cb2e 3601 }
296c81d8 3602 break;
3e32cb2e
JW
3603 case RES_SOFT_LIMIT:
3604 memcg->soft_limit = nr_pages;
3605 ret = 0;
628f4235
KH
3606 break;
3607 }
451af504 3608 return ret ?: nbytes;
8cdea7c0
BS
3609}
3610
6770c64e
TH
3611static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3612 size_t nbytes, loff_t off)
c84872e1 3613{
6770c64e 3614 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3615 struct page_counter *counter;
c84872e1 3616
3e32cb2e
JW
3617 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3618 case _MEM:
3619 counter = &memcg->memory;
3620 break;
3621 case _MEMSWAP:
3622 counter = &memcg->memsw;
3623 break;
3624 case _KMEM:
3625 counter = &memcg->kmem;
3626 break;
d55f90bf 3627 case _TCP:
0db15298 3628 counter = &memcg->tcpmem;
d55f90bf 3629 break;
3e32cb2e
JW
3630 default:
3631 BUG();
3632 }
af36f906 3633
3e32cb2e 3634 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3635 case RES_MAX_USAGE:
3e32cb2e 3636 page_counter_reset_watermark(counter);
29f2a4da
PE
3637 break;
3638 case RES_FAILCNT:
3e32cb2e 3639 counter->failcnt = 0;
29f2a4da 3640 break;
3e32cb2e
JW
3641 default:
3642 BUG();
29f2a4da 3643 }
f64c3f54 3644
6770c64e 3645 return nbytes;
c84872e1
PE
3646}
3647
182446d0 3648static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3649 struct cftype *cft)
3650{
182446d0 3651 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3652}
3653
02491447 3654#ifdef CONFIG_MMU
182446d0 3655static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3656 struct cftype *cft, u64 val)
3657{
182446d0 3658 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3659
1dfab5ab 3660 if (val & ~MOVE_MASK)
7dc74be0 3661 return -EINVAL;
ee5e8472 3662
7dc74be0 3663 /*
ee5e8472
GC
3664 * No kind of locking is needed in here, because ->can_attach() will
3665 * check this value once in the beginning of the process, and then carry
3666 * on with stale data. This means that changes to this value will only
3667 * affect task migrations starting after the change.
7dc74be0 3668 */
c0ff4b85 3669 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3670 return 0;
3671}
02491447 3672#else
182446d0 3673static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3674 struct cftype *cft, u64 val)
3675{
3676 return -ENOSYS;
3677}
3678#endif
7dc74be0 3679
406eb0c9 3680#ifdef CONFIG_NUMA
113b7dfd
JW
3681
3682#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3683#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3684#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3685
3686static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3687 int nid, unsigned int lru_mask)
3688{
867e5e1d 3689 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3690 unsigned long nr = 0;
3691 enum lru_list lru;
3692
3693 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3694
3695 for_each_lru(lru) {
3696 if (!(BIT(lru) & lru_mask))
3697 continue;
205b20cc 3698 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3699 }
3700 return nr;
3701}
3702
3703static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3704 unsigned int lru_mask)
3705{
3706 unsigned long nr = 0;
3707 enum lru_list lru;
3708
3709 for_each_lru(lru) {
3710 if (!(BIT(lru) & lru_mask))
3711 continue;
205b20cc 3712 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3713 }
3714 return nr;
3715}
3716
2da8ca82 3717static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3718{
25485de6
GT
3719 struct numa_stat {
3720 const char *name;
3721 unsigned int lru_mask;
3722 };
3723
3724 static const struct numa_stat stats[] = {
3725 { "total", LRU_ALL },
3726 { "file", LRU_ALL_FILE },
3727 { "anon", LRU_ALL_ANON },
3728 { "unevictable", BIT(LRU_UNEVICTABLE) },
3729 };
3730 const struct numa_stat *stat;
406eb0c9 3731 int nid;
25485de6 3732 unsigned long nr;
aa9694bb 3733 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3734
25485de6
GT
3735 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3736 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3737 seq_printf(m, "%s=%lu", stat->name, nr);
3738 for_each_node_state(nid, N_MEMORY) {
3739 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3740 stat->lru_mask);
3741 seq_printf(m, " N%d=%lu", nid, nr);
3742 }
3743 seq_putc(m, '\n');
406eb0c9 3744 }
406eb0c9 3745
071aee13
YH
3746 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3747 struct mem_cgroup *iter;
3748
3749 nr = 0;
3750 for_each_mem_cgroup_tree(iter, memcg)
3751 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3752 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3753 for_each_node_state(nid, N_MEMORY) {
3754 nr = 0;
3755 for_each_mem_cgroup_tree(iter, memcg)
3756 nr += mem_cgroup_node_nr_lru_pages(
3757 iter, nid, stat->lru_mask);
3758 seq_printf(m, " N%d=%lu", nid, nr);
3759 }
3760 seq_putc(m, '\n');
406eb0c9 3761 }
406eb0c9 3762
406eb0c9
YH
3763 return 0;
3764}
3765#endif /* CONFIG_NUMA */
3766
c8713d0b
JW
3767static const unsigned int memcg1_stats[] = {
3768 MEMCG_CACHE,
3769 MEMCG_RSS,
3770 MEMCG_RSS_HUGE,
3771 NR_SHMEM,
3772 NR_FILE_MAPPED,
3773 NR_FILE_DIRTY,
3774 NR_WRITEBACK,
3775 MEMCG_SWAP,
3776};
3777
3778static const char *const memcg1_stat_names[] = {
3779 "cache",
3780 "rss",
3781 "rss_huge",
3782 "shmem",
3783 "mapped_file",
3784 "dirty",
3785 "writeback",
3786 "swap",
3787};
3788
df0e53d0 3789/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3790static const unsigned int memcg1_events[] = {
df0e53d0
JW
3791 PGPGIN,
3792 PGPGOUT,
3793 PGFAULT,
3794 PGMAJFAULT,
3795};
3796
2da8ca82 3797static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3798{
aa9694bb 3799 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3800 unsigned long memory, memsw;
af7c4b0e
JW
3801 struct mem_cgroup *mi;
3802 unsigned int i;
406eb0c9 3803
71cd3113 3804 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3805
71cd3113
JW
3806 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3807 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3808 continue;
71cd3113 3809 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
205b20cc 3810 memcg_page_state_local(memcg, memcg1_stats[i]) *
71cd3113 3811 PAGE_SIZE);
1dd3a273 3812 }
7b854121 3813
df0e53d0 3814 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3815 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3816 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3817
3818 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3819 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3820 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3821 PAGE_SIZE);
af7c4b0e 3822
14067bb3 3823 /* Hierarchical information */
3e32cb2e
JW
3824 memory = memsw = PAGE_COUNTER_MAX;
3825 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
3826 memory = min(memory, READ_ONCE(mi->memory.max));
3827 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 3828 }
3e32cb2e
JW
3829 seq_printf(m, "hierarchical_memory_limit %llu\n",
3830 (u64)memory * PAGE_SIZE);
7941d214 3831 if (do_memsw_account())
3e32cb2e
JW
3832 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3833 (u64)memsw * PAGE_SIZE);
7f016ee8 3834
8de7ecc6 3835 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3836 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3837 continue;
8de7ecc6 3838 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
3839 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3840 PAGE_SIZE);
af7c4b0e
JW
3841 }
3842
8de7ecc6 3843 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
3844 seq_printf(m, "total_%s %llu\n",
3845 vm_event_name(memcg1_events[i]),
dd923990 3846 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 3847
8de7ecc6 3848 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3849 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
3850 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3851 PAGE_SIZE);
14067bb3 3852
7f016ee8 3853#ifdef CONFIG_DEBUG_VM
7f016ee8 3854 {
ef8f2327
MG
3855 pg_data_t *pgdat;
3856 struct mem_cgroup_per_node *mz;
89abfab1 3857 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3858 unsigned long recent_rotated[2] = {0, 0};
3859 unsigned long recent_scanned[2] = {0, 0};
3860
ef8f2327
MG
3861 for_each_online_pgdat(pgdat) {
3862 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3863 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3864
ef8f2327
MG
3865 recent_rotated[0] += rstat->recent_rotated[0];
3866 recent_rotated[1] += rstat->recent_rotated[1];
3867 recent_scanned[0] += rstat->recent_scanned[0];
3868 recent_scanned[1] += rstat->recent_scanned[1];
3869 }
78ccf5b5
JW
3870 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3871 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3872 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3873 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3874 }
3875#endif
3876
d2ceb9b7
KH
3877 return 0;
3878}
3879
182446d0
TH
3880static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3881 struct cftype *cft)
a7885eb8 3882{
182446d0 3883 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3884
1f4c025b 3885 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3886}
3887
182446d0
TH
3888static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3889 struct cftype *cft, u64 val)
a7885eb8 3890{
182446d0 3891 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3892
3dae7fec 3893 if (val > 100)
a7885eb8
KM
3894 return -EINVAL;
3895
14208b0e 3896 if (css->parent)
3dae7fec
JW
3897 memcg->swappiness = val;
3898 else
3899 vm_swappiness = val;
068b38c1 3900
a7885eb8
KM
3901 return 0;
3902}
3903
2e72b634
KS
3904static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3905{
3906 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3907 unsigned long usage;
2e72b634
KS
3908 int i;
3909
3910 rcu_read_lock();
3911 if (!swap)
2c488db2 3912 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3913 else
2c488db2 3914 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3915
3916 if (!t)
3917 goto unlock;
3918
ce00a967 3919 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3920
3921 /*
748dad36 3922 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3923 * If it's not true, a threshold was crossed after last
3924 * call of __mem_cgroup_threshold().
3925 */
5407a562 3926 i = t->current_threshold;
2e72b634
KS
3927
3928 /*
3929 * Iterate backward over array of thresholds starting from
3930 * current_threshold and check if a threshold is crossed.
3931 * If none of thresholds below usage is crossed, we read
3932 * only one element of the array here.
3933 */
3934 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3935 eventfd_signal(t->entries[i].eventfd, 1);
3936
3937 /* i = current_threshold + 1 */
3938 i++;
3939
3940 /*
3941 * Iterate forward over array of thresholds starting from
3942 * current_threshold+1 and check if a threshold is crossed.
3943 * If none of thresholds above usage is crossed, we read
3944 * only one element of the array here.
3945 */
3946 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3947 eventfd_signal(t->entries[i].eventfd, 1);
3948
3949 /* Update current_threshold */
5407a562 3950 t->current_threshold = i - 1;
2e72b634
KS
3951unlock:
3952 rcu_read_unlock();
3953}
3954
3955static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3956{
ad4ca5f4
KS
3957 while (memcg) {
3958 __mem_cgroup_threshold(memcg, false);
7941d214 3959 if (do_memsw_account())
ad4ca5f4
KS
3960 __mem_cgroup_threshold(memcg, true);
3961
3962 memcg = parent_mem_cgroup(memcg);
3963 }
2e72b634
KS
3964}
3965
3966static int compare_thresholds(const void *a, const void *b)
3967{
3968 const struct mem_cgroup_threshold *_a = a;
3969 const struct mem_cgroup_threshold *_b = b;
3970
2bff24a3
GT
3971 if (_a->threshold > _b->threshold)
3972 return 1;
3973
3974 if (_a->threshold < _b->threshold)
3975 return -1;
3976
3977 return 0;
2e72b634
KS
3978}
3979
c0ff4b85 3980static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3981{
3982 struct mem_cgroup_eventfd_list *ev;
3983
2bcf2e92
MH
3984 spin_lock(&memcg_oom_lock);
3985
c0ff4b85 3986 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3987 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3988
3989 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3990 return 0;
3991}
3992
c0ff4b85 3993static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3994{
7d74b06f
KH
3995 struct mem_cgroup *iter;
3996
c0ff4b85 3997 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3998 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3999}
4000
59b6f873 4001static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4002 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4003{
2c488db2
KS
4004 struct mem_cgroup_thresholds *thresholds;
4005 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4006 unsigned long threshold;
4007 unsigned long usage;
2c488db2 4008 int i, size, ret;
2e72b634 4009
650c5e56 4010 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4011 if (ret)
4012 return ret;
4013
4014 mutex_lock(&memcg->thresholds_lock);
2c488db2 4015
05b84301 4016 if (type == _MEM) {
2c488db2 4017 thresholds = &memcg->thresholds;
ce00a967 4018 usage = mem_cgroup_usage(memcg, false);
05b84301 4019 } else if (type == _MEMSWAP) {
2c488db2 4020 thresholds = &memcg->memsw_thresholds;
ce00a967 4021 usage = mem_cgroup_usage(memcg, true);
05b84301 4022 } else
2e72b634
KS
4023 BUG();
4024
2e72b634 4025 /* Check if a threshold crossed before adding a new one */
2c488db2 4026 if (thresholds->primary)
2e72b634
KS
4027 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4028
2c488db2 4029 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4030
4031 /* Allocate memory for new array of thresholds */
67b8046f 4032 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4033 if (!new) {
2e72b634
KS
4034 ret = -ENOMEM;
4035 goto unlock;
4036 }
2c488db2 4037 new->size = size;
2e72b634
KS
4038
4039 /* Copy thresholds (if any) to new array */
2c488db2
KS
4040 if (thresholds->primary) {
4041 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4042 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4043 }
4044
2e72b634 4045 /* Add new threshold */
2c488db2
KS
4046 new->entries[size - 1].eventfd = eventfd;
4047 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4048
4049 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4050 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4051 compare_thresholds, NULL);
4052
4053 /* Find current threshold */
2c488db2 4054 new->current_threshold = -1;
2e72b634 4055 for (i = 0; i < size; i++) {
748dad36 4056 if (new->entries[i].threshold <= usage) {
2e72b634 4057 /*
2c488db2
KS
4058 * new->current_threshold will not be used until
4059 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4060 * it here.
4061 */
2c488db2 4062 ++new->current_threshold;
748dad36
SZ
4063 } else
4064 break;
2e72b634
KS
4065 }
4066
2c488db2
KS
4067 /* Free old spare buffer and save old primary buffer as spare */
4068 kfree(thresholds->spare);
4069 thresholds->spare = thresholds->primary;
4070
4071 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4072
907860ed 4073 /* To be sure that nobody uses thresholds */
2e72b634
KS
4074 synchronize_rcu();
4075
2e72b634
KS
4076unlock:
4077 mutex_unlock(&memcg->thresholds_lock);
4078
4079 return ret;
4080}
4081
59b6f873 4082static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4083 struct eventfd_ctx *eventfd, const char *args)
4084{
59b6f873 4085 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4086}
4087
59b6f873 4088static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4089 struct eventfd_ctx *eventfd, const char *args)
4090{
59b6f873 4091 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4092}
4093
59b6f873 4094static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4095 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4096{
2c488db2
KS
4097 struct mem_cgroup_thresholds *thresholds;
4098 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4099 unsigned long usage;
7d36665a 4100 int i, j, size, entries;
2e72b634
KS
4101
4102 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4103
4104 if (type == _MEM) {
2c488db2 4105 thresholds = &memcg->thresholds;
ce00a967 4106 usage = mem_cgroup_usage(memcg, false);
05b84301 4107 } else if (type == _MEMSWAP) {
2c488db2 4108 thresholds = &memcg->memsw_thresholds;
ce00a967 4109 usage = mem_cgroup_usage(memcg, true);
05b84301 4110 } else
2e72b634
KS
4111 BUG();
4112
371528ca
AV
4113 if (!thresholds->primary)
4114 goto unlock;
4115
2e72b634
KS
4116 /* Check if a threshold crossed before removing */
4117 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4118
4119 /* Calculate new number of threshold */
7d36665a 4120 size = entries = 0;
2c488db2
KS
4121 for (i = 0; i < thresholds->primary->size; i++) {
4122 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4123 size++;
7d36665a
CX
4124 else
4125 entries++;
2e72b634
KS
4126 }
4127
2c488db2 4128 new = thresholds->spare;
907860ed 4129
7d36665a
CX
4130 /* If no items related to eventfd have been cleared, nothing to do */
4131 if (!entries)
4132 goto unlock;
4133
2e72b634
KS
4134 /* Set thresholds array to NULL if we don't have thresholds */
4135 if (!size) {
2c488db2
KS
4136 kfree(new);
4137 new = NULL;
907860ed 4138 goto swap_buffers;
2e72b634
KS
4139 }
4140
2c488db2 4141 new->size = size;
2e72b634
KS
4142
4143 /* Copy thresholds and find current threshold */
2c488db2
KS
4144 new->current_threshold = -1;
4145 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4146 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4147 continue;
4148
2c488db2 4149 new->entries[j] = thresholds->primary->entries[i];
748dad36 4150 if (new->entries[j].threshold <= usage) {
2e72b634 4151 /*
2c488db2 4152 * new->current_threshold will not be used
2e72b634
KS
4153 * until rcu_assign_pointer(), so it's safe to increment
4154 * it here.
4155 */
2c488db2 4156 ++new->current_threshold;
2e72b634
KS
4157 }
4158 j++;
4159 }
4160
907860ed 4161swap_buffers:
2c488db2
KS
4162 /* Swap primary and spare array */
4163 thresholds->spare = thresholds->primary;
8c757763 4164
2c488db2 4165 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4166
907860ed 4167 /* To be sure that nobody uses thresholds */
2e72b634 4168 synchronize_rcu();
6611d8d7
MC
4169
4170 /* If all events are unregistered, free the spare array */
4171 if (!new) {
4172 kfree(thresholds->spare);
4173 thresholds->spare = NULL;
4174 }
371528ca 4175unlock:
2e72b634 4176 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4177}
c1e862c1 4178
59b6f873 4179static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4180 struct eventfd_ctx *eventfd)
4181{
59b6f873 4182 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4183}
4184
59b6f873 4185static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4186 struct eventfd_ctx *eventfd)
4187{
59b6f873 4188 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4189}
4190
59b6f873 4191static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4192 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4193{
9490ff27 4194 struct mem_cgroup_eventfd_list *event;
9490ff27 4195
9490ff27
KH
4196 event = kmalloc(sizeof(*event), GFP_KERNEL);
4197 if (!event)
4198 return -ENOMEM;
4199
1af8efe9 4200 spin_lock(&memcg_oom_lock);
9490ff27
KH
4201
4202 event->eventfd = eventfd;
4203 list_add(&event->list, &memcg->oom_notify);
4204
4205 /* already in OOM ? */
c2b42d3c 4206 if (memcg->under_oom)
9490ff27 4207 eventfd_signal(eventfd, 1);
1af8efe9 4208 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4209
4210 return 0;
4211}
4212
59b6f873 4213static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4214 struct eventfd_ctx *eventfd)
9490ff27 4215{
9490ff27 4216 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4217
1af8efe9 4218 spin_lock(&memcg_oom_lock);
9490ff27 4219
c0ff4b85 4220 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4221 if (ev->eventfd == eventfd) {
4222 list_del(&ev->list);
4223 kfree(ev);
4224 }
4225 }
4226
1af8efe9 4227 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4228}
4229
2da8ca82 4230static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4231{
aa9694bb 4232 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4233
791badbd 4234 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4235 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4236 seq_printf(sf, "oom_kill %lu\n",
4237 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4238 return 0;
4239}
4240
182446d0 4241static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4242 struct cftype *cft, u64 val)
4243{
182446d0 4244 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4245
4246 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4247 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4248 return -EINVAL;
4249
c0ff4b85 4250 memcg->oom_kill_disable = val;
4d845ebf 4251 if (!val)
c0ff4b85 4252 memcg_oom_recover(memcg);
3dae7fec 4253
3c11ecf4
KH
4254 return 0;
4255}
4256
52ebea74
TH
4257#ifdef CONFIG_CGROUP_WRITEBACK
4258
3a8e9ac8
TH
4259#include <trace/events/writeback.h>
4260
841710aa
TH
4261static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4262{
4263 return wb_domain_init(&memcg->cgwb_domain, gfp);
4264}
4265
4266static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4267{
4268 wb_domain_exit(&memcg->cgwb_domain);
4269}
4270
2529bb3a
TH
4271static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4272{
4273 wb_domain_size_changed(&memcg->cgwb_domain);
4274}
4275
841710aa
TH
4276struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4277{
4278 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4279
4280 if (!memcg->css.parent)
4281 return NULL;
4282
4283 return &memcg->cgwb_domain;
4284}
4285
0b3d6e6f
GT
4286/*
4287 * idx can be of type enum memcg_stat_item or node_stat_item.
4288 * Keep in sync with memcg_exact_page().
4289 */
4290static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4291{
871789d4 4292 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4293 int cpu;
4294
4295 for_each_online_cpu(cpu)
871789d4 4296 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4297 if (x < 0)
4298 x = 0;
4299 return x;
4300}
4301
c2aa723a
TH
4302/**
4303 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4304 * @wb: bdi_writeback in question
c5edf9cd
TH
4305 * @pfilepages: out parameter for number of file pages
4306 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4307 * @pdirty: out parameter for number of dirty pages
4308 * @pwriteback: out parameter for number of pages under writeback
4309 *
c5edf9cd
TH
4310 * Determine the numbers of file, headroom, dirty, and writeback pages in
4311 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4312 * is a bit more involved.
c2aa723a 4313 *
c5edf9cd
TH
4314 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4315 * headroom is calculated as the lowest headroom of itself and the
4316 * ancestors. Note that this doesn't consider the actual amount of
4317 * available memory in the system. The caller should further cap
4318 * *@pheadroom accordingly.
c2aa723a 4319 */
c5edf9cd
TH
4320void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4321 unsigned long *pheadroom, unsigned long *pdirty,
4322 unsigned long *pwriteback)
c2aa723a
TH
4323{
4324 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4325 struct mem_cgroup *parent;
c2aa723a 4326
0b3d6e6f 4327 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
4328
4329 /* this should eventually include NR_UNSTABLE_NFS */
0b3d6e6f 4330 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4331 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4332 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4333 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4334
c2aa723a 4335 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4336 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
f6f989c5 4337 READ_ONCE(memcg->high));
c2aa723a
TH
4338 unsigned long used = page_counter_read(&memcg->memory);
4339
c5edf9cd 4340 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4341 memcg = parent;
4342 }
c2aa723a
TH
4343}
4344
97b27821
TH
4345/*
4346 * Foreign dirty flushing
4347 *
4348 * There's an inherent mismatch between memcg and writeback. The former
4349 * trackes ownership per-page while the latter per-inode. This was a
4350 * deliberate design decision because honoring per-page ownership in the
4351 * writeback path is complicated, may lead to higher CPU and IO overheads
4352 * and deemed unnecessary given that write-sharing an inode across
4353 * different cgroups isn't a common use-case.
4354 *
4355 * Combined with inode majority-writer ownership switching, this works well
4356 * enough in most cases but there are some pathological cases. For
4357 * example, let's say there are two cgroups A and B which keep writing to
4358 * different but confined parts of the same inode. B owns the inode and
4359 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4360 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4361 * triggering background writeback. A will be slowed down without a way to
4362 * make writeback of the dirty pages happen.
4363 *
4364 * Conditions like the above can lead to a cgroup getting repatedly and
4365 * severely throttled after making some progress after each
4366 * dirty_expire_interval while the underyling IO device is almost
4367 * completely idle.
4368 *
4369 * Solving this problem completely requires matching the ownership tracking
4370 * granularities between memcg and writeback in either direction. However,
4371 * the more egregious behaviors can be avoided by simply remembering the
4372 * most recent foreign dirtying events and initiating remote flushes on
4373 * them when local writeback isn't enough to keep the memory clean enough.
4374 *
4375 * The following two functions implement such mechanism. When a foreign
4376 * page - a page whose memcg and writeback ownerships don't match - is
4377 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4378 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4379 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4380 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4381 * foreign bdi_writebacks which haven't expired. Both the numbers of
4382 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4383 * limited to MEMCG_CGWB_FRN_CNT.
4384 *
4385 * The mechanism only remembers IDs and doesn't hold any object references.
4386 * As being wrong occasionally doesn't matter, updates and accesses to the
4387 * records are lockless and racy.
4388 */
4389void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4390 struct bdi_writeback *wb)
4391{
4392 struct mem_cgroup *memcg = page->mem_cgroup;
4393 struct memcg_cgwb_frn *frn;
4394 u64 now = get_jiffies_64();
4395 u64 oldest_at = now;
4396 int oldest = -1;
4397 int i;
4398
3a8e9ac8
TH
4399 trace_track_foreign_dirty(page, wb);
4400
97b27821
TH
4401 /*
4402 * Pick the slot to use. If there is already a slot for @wb, keep
4403 * using it. If not replace the oldest one which isn't being
4404 * written out.
4405 */
4406 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4407 frn = &memcg->cgwb_frn[i];
4408 if (frn->bdi_id == wb->bdi->id &&
4409 frn->memcg_id == wb->memcg_css->id)
4410 break;
4411 if (time_before64(frn->at, oldest_at) &&
4412 atomic_read(&frn->done.cnt) == 1) {
4413 oldest = i;
4414 oldest_at = frn->at;
4415 }
4416 }
4417
4418 if (i < MEMCG_CGWB_FRN_CNT) {
4419 /*
4420 * Re-using an existing one. Update timestamp lazily to
4421 * avoid making the cacheline hot. We want them to be
4422 * reasonably up-to-date and significantly shorter than
4423 * dirty_expire_interval as that's what expires the record.
4424 * Use the shorter of 1s and dirty_expire_interval / 8.
4425 */
4426 unsigned long update_intv =
4427 min_t(unsigned long, HZ,
4428 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4429
4430 if (time_before64(frn->at, now - update_intv))
4431 frn->at = now;
4432 } else if (oldest >= 0) {
4433 /* replace the oldest free one */
4434 frn = &memcg->cgwb_frn[oldest];
4435 frn->bdi_id = wb->bdi->id;
4436 frn->memcg_id = wb->memcg_css->id;
4437 frn->at = now;
4438 }
4439}
4440
4441/* issue foreign writeback flushes for recorded foreign dirtying events */
4442void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4443{
4444 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4445 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4446 u64 now = jiffies_64;
4447 int i;
4448
4449 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4450 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4451
4452 /*
4453 * If the record is older than dirty_expire_interval,
4454 * writeback on it has already started. No need to kick it
4455 * off again. Also, don't start a new one if there's
4456 * already one in flight.
4457 */
4458 if (time_after64(frn->at, now - intv) &&
4459 atomic_read(&frn->done.cnt) == 1) {
4460 frn->at = 0;
3a8e9ac8 4461 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4462 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4463 WB_REASON_FOREIGN_FLUSH,
4464 &frn->done);
4465 }
4466 }
4467}
4468
841710aa
TH
4469#else /* CONFIG_CGROUP_WRITEBACK */
4470
4471static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4472{
4473 return 0;
4474}
4475
4476static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4477{
4478}
4479
2529bb3a
TH
4480static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4481{
4482}
4483
52ebea74
TH
4484#endif /* CONFIG_CGROUP_WRITEBACK */
4485
3bc942f3
TH
4486/*
4487 * DO NOT USE IN NEW FILES.
4488 *
4489 * "cgroup.event_control" implementation.
4490 *
4491 * This is way over-engineered. It tries to support fully configurable
4492 * events for each user. Such level of flexibility is completely
4493 * unnecessary especially in the light of the planned unified hierarchy.
4494 *
4495 * Please deprecate this and replace with something simpler if at all
4496 * possible.
4497 */
4498
79bd9814
TH
4499/*
4500 * Unregister event and free resources.
4501 *
4502 * Gets called from workqueue.
4503 */
3bc942f3 4504static void memcg_event_remove(struct work_struct *work)
79bd9814 4505{
3bc942f3
TH
4506 struct mem_cgroup_event *event =
4507 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4508 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4509
4510 remove_wait_queue(event->wqh, &event->wait);
4511
59b6f873 4512 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4513
4514 /* Notify userspace the event is going away. */
4515 eventfd_signal(event->eventfd, 1);
4516
4517 eventfd_ctx_put(event->eventfd);
4518 kfree(event);
59b6f873 4519 css_put(&memcg->css);
79bd9814
TH
4520}
4521
4522/*
a9a08845 4523 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4524 *
4525 * Called with wqh->lock held and interrupts disabled.
4526 */
ac6424b9 4527static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4528 int sync, void *key)
79bd9814 4529{
3bc942f3
TH
4530 struct mem_cgroup_event *event =
4531 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4532 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4533 __poll_t flags = key_to_poll(key);
79bd9814 4534
a9a08845 4535 if (flags & EPOLLHUP) {
79bd9814
TH
4536 /*
4537 * If the event has been detached at cgroup removal, we
4538 * can simply return knowing the other side will cleanup
4539 * for us.
4540 *
4541 * We can't race against event freeing since the other
4542 * side will require wqh->lock via remove_wait_queue(),
4543 * which we hold.
4544 */
fba94807 4545 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4546 if (!list_empty(&event->list)) {
4547 list_del_init(&event->list);
4548 /*
4549 * We are in atomic context, but cgroup_event_remove()
4550 * may sleep, so we have to call it in workqueue.
4551 */
4552 schedule_work(&event->remove);
4553 }
fba94807 4554 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4555 }
4556
4557 return 0;
4558}
4559
3bc942f3 4560static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4561 wait_queue_head_t *wqh, poll_table *pt)
4562{
3bc942f3
TH
4563 struct mem_cgroup_event *event =
4564 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4565
4566 event->wqh = wqh;
4567 add_wait_queue(wqh, &event->wait);
4568}
4569
4570/*
3bc942f3
TH
4571 * DO NOT USE IN NEW FILES.
4572 *
79bd9814
TH
4573 * Parse input and register new cgroup event handler.
4574 *
4575 * Input must be in format '<event_fd> <control_fd> <args>'.
4576 * Interpretation of args is defined by control file implementation.
4577 */
451af504
TH
4578static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4579 char *buf, size_t nbytes, loff_t off)
79bd9814 4580{
451af504 4581 struct cgroup_subsys_state *css = of_css(of);
fba94807 4582 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4583 struct mem_cgroup_event *event;
79bd9814
TH
4584 struct cgroup_subsys_state *cfile_css;
4585 unsigned int efd, cfd;
4586 struct fd efile;
4587 struct fd cfile;
fba94807 4588 const char *name;
79bd9814
TH
4589 char *endp;
4590 int ret;
4591
451af504
TH
4592 buf = strstrip(buf);
4593
4594 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4595 if (*endp != ' ')
4596 return -EINVAL;
451af504 4597 buf = endp + 1;
79bd9814 4598
451af504 4599 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4600 if ((*endp != ' ') && (*endp != '\0'))
4601 return -EINVAL;
451af504 4602 buf = endp + 1;
79bd9814
TH
4603
4604 event = kzalloc(sizeof(*event), GFP_KERNEL);
4605 if (!event)
4606 return -ENOMEM;
4607
59b6f873 4608 event->memcg = memcg;
79bd9814 4609 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4610 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4611 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4612 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4613
4614 efile = fdget(efd);
4615 if (!efile.file) {
4616 ret = -EBADF;
4617 goto out_kfree;
4618 }
4619
4620 event->eventfd = eventfd_ctx_fileget(efile.file);
4621 if (IS_ERR(event->eventfd)) {
4622 ret = PTR_ERR(event->eventfd);
4623 goto out_put_efile;
4624 }
4625
4626 cfile = fdget(cfd);
4627 if (!cfile.file) {
4628 ret = -EBADF;
4629 goto out_put_eventfd;
4630 }
4631
4632 /* the process need read permission on control file */
4633 /* AV: shouldn't we check that it's been opened for read instead? */
4634 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4635 if (ret < 0)
4636 goto out_put_cfile;
4637
fba94807
TH
4638 /*
4639 * Determine the event callbacks and set them in @event. This used
4640 * to be done via struct cftype but cgroup core no longer knows
4641 * about these events. The following is crude but the whole thing
4642 * is for compatibility anyway.
3bc942f3
TH
4643 *
4644 * DO NOT ADD NEW FILES.
fba94807 4645 */
b583043e 4646 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4647
4648 if (!strcmp(name, "memory.usage_in_bytes")) {
4649 event->register_event = mem_cgroup_usage_register_event;
4650 event->unregister_event = mem_cgroup_usage_unregister_event;
4651 } else if (!strcmp(name, "memory.oom_control")) {
4652 event->register_event = mem_cgroup_oom_register_event;
4653 event->unregister_event = mem_cgroup_oom_unregister_event;
4654 } else if (!strcmp(name, "memory.pressure_level")) {
4655 event->register_event = vmpressure_register_event;
4656 event->unregister_event = vmpressure_unregister_event;
4657 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4658 event->register_event = memsw_cgroup_usage_register_event;
4659 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4660 } else {
4661 ret = -EINVAL;
4662 goto out_put_cfile;
4663 }
4664
79bd9814 4665 /*
b5557c4c
TH
4666 * Verify @cfile should belong to @css. Also, remaining events are
4667 * automatically removed on cgroup destruction but the removal is
4668 * asynchronous, so take an extra ref on @css.
79bd9814 4669 */
b583043e 4670 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4671 &memory_cgrp_subsys);
79bd9814 4672 ret = -EINVAL;
5a17f543 4673 if (IS_ERR(cfile_css))
79bd9814 4674 goto out_put_cfile;
5a17f543
TH
4675 if (cfile_css != css) {
4676 css_put(cfile_css);
79bd9814 4677 goto out_put_cfile;
5a17f543 4678 }
79bd9814 4679
451af504 4680 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4681 if (ret)
4682 goto out_put_css;
4683
9965ed17 4684 vfs_poll(efile.file, &event->pt);
79bd9814 4685
fba94807
TH
4686 spin_lock(&memcg->event_list_lock);
4687 list_add(&event->list, &memcg->event_list);
4688 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4689
4690 fdput(cfile);
4691 fdput(efile);
4692
451af504 4693 return nbytes;
79bd9814
TH
4694
4695out_put_css:
b5557c4c 4696 css_put(css);
79bd9814
TH
4697out_put_cfile:
4698 fdput(cfile);
4699out_put_eventfd:
4700 eventfd_ctx_put(event->eventfd);
4701out_put_efile:
4702 fdput(efile);
4703out_kfree:
4704 kfree(event);
4705
4706 return ret;
4707}
4708
241994ed 4709static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4710 {
0eea1030 4711 .name = "usage_in_bytes",
8c7c6e34 4712 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4713 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4714 },
c84872e1
PE
4715 {
4716 .name = "max_usage_in_bytes",
8c7c6e34 4717 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4718 .write = mem_cgroup_reset,
791badbd 4719 .read_u64 = mem_cgroup_read_u64,
c84872e1 4720 },
8cdea7c0 4721 {
0eea1030 4722 .name = "limit_in_bytes",
8c7c6e34 4723 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4724 .write = mem_cgroup_write,
791badbd 4725 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4726 },
296c81d8
BS
4727 {
4728 .name = "soft_limit_in_bytes",
4729 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4730 .write = mem_cgroup_write,
791badbd 4731 .read_u64 = mem_cgroup_read_u64,
296c81d8 4732 },
8cdea7c0
BS
4733 {
4734 .name = "failcnt",
8c7c6e34 4735 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4736 .write = mem_cgroup_reset,
791badbd 4737 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4738 },
d2ceb9b7
KH
4739 {
4740 .name = "stat",
2da8ca82 4741 .seq_show = memcg_stat_show,
d2ceb9b7 4742 },
c1e862c1
KH
4743 {
4744 .name = "force_empty",
6770c64e 4745 .write = mem_cgroup_force_empty_write,
c1e862c1 4746 },
18f59ea7
BS
4747 {
4748 .name = "use_hierarchy",
4749 .write_u64 = mem_cgroup_hierarchy_write,
4750 .read_u64 = mem_cgroup_hierarchy_read,
4751 },
79bd9814 4752 {
3bc942f3 4753 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4754 .write = memcg_write_event_control,
7dbdb199 4755 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4756 },
a7885eb8
KM
4757 {
4758 .name = "swappiness",
4759 .read_u64 = mem_cgroup_swappiness_read,
4760 .write_u64 = mem_cgroup_swappiness_write,
4761 },
7dc74be0
DN
4762 {
4763 .name = "move_charge_at_immigrate",
4764 .read_u64 = mem_cgroup_move_charge_read,
4765 .write_u64 = mem_cgroup_move_charge_write,
4766 },
9490ff27
KH
4767 {
4768 .name = "oom_control",
2da8ca82 4769 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4770 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4771 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4772 },
70ddf637
AV
4773 {
4774 .name = "pressure_level",
70ddf637 4775 },
406eb0c9
YH
4776#ifdef CONFIG_NUMA
4777 {
4778 .name = "numa_stat",
2da8ca82 4779 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4780 },
4781#endif
510fc4e1
GC
4782 {
4783 .name = "kmem.limit_in_bytes",
4784 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4785 .write = mem_cgroup_write,
791badbd 4786 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4787 },
4788 {
4789 .name = "kmem.usage_in_bytes",
4790 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4791 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4792 },
4793 {
4794 .name = "kmem.failcnt",
4795 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4796 .write = mem_cgroup_reset,
791badbd 4797 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4798 },
4799 {
4800 .name = "kmem.max_usage_in_bytes",
4801 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4802 .write = mem_cgroup_reset,
791badbd 4803 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4804 },
a87425a3
YS
4805#if defined(CONFIG_MEMCG_KMEM) && \
4806 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
4807 {
4808 .name = "kmem.slabinfo",
bc2791f8
TH
4809 .seq_start = memcg_slab_start,
4810 .seq_next = memcg_slab_next,
4811 .seq_stop = memcg_slab_stop,
b047501c 4812 .seq_show = memcg_slab_show,
749c5415
GC
4813 },
4814#endif
d55f90bf
VD
4815 {
4816 .name = "kmem.tcp.limit_in_bytes",
4817 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4818 .write = mem_cgroup_write,
4819 .read_u64 = mem_cgroup_read_u64,
4820 },
4821 {
4822 .name = "kmem.tcp.usage_in_bytes",
4823 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4824 .read_u64 = mem_cgroup_read_u64,
4825 },
4826 {
4827 .name = "kmem.tcp.failcnt",
4828 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4829 .write = mem_cgroup_reset,
4830 .read_u64 = mem_cgroup_read_u64,
4831 },
4832 {
4833 .name = "kmem.tcp.max_usage_in_bytes",
4834 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4835 .write = mem_cgroup_reset,
4836 .read_u64 = mem_cgroup_read_u64,
4837 },
6bc10349 4838 { }, /* terminate */
af36f906 4839};
8c7c6e34 4840
73f576c0
JW
4841/*
4842 * Private memory cgroup IDR
4843 *
4844 * Swap-out records and page cache shadow entries need to store memcg
4845 * references in constrained space, so we maintain an ID space that is
4846 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4847 * memory-controlled cgroups to 64k.
4848 *
4849 * However, there usually are many references to the oflline CSS after
4850 * the cgroup has been destroyed, such as page cache or reclaimable
4851 * slab objects, that don't need to hang on to the ID. We want to keep
4852 * those dead CSS from occupying IDs, or we might quickly exhaust the
4853 * relatively small ID space and prevent the creation of new cgroups
4854 * even when there are much fewer than 64k cgroups - possibly none.
4855 *
4856 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4857 * be freed and recycled when it's no longer needed, which is usually
4858 * when the CSS is offlined.
4859 *
4860 * The only exception to that are records of swapped out tmpfs/shmem
4861 * pages that need to be attributed to live ancestors on swapin. But
4862 * those references are manageable from userspace.
4863 */
4864
4865static DEFINE_IDR(mem_cgroup_idr);
4866
7e97de0b
KT
4867static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4868{
4869 if (memcg->id.id > 0) {
4870 idr_remove(&mem_cgroup_idr, memcg->id.id);
4871 memcg->id.id = 0;
4872 }
4873}
4874
c1514c0a
VF
4875static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4876 unsigned int n)
73f576c0 4877{
1c2d479a 4878 refcount_add(n, &memcg->id.ref);
73f576c0
JW
4879}
4880
615d66c3 4881static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4882{
1c2d479a 4883 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4884 mem_cgroup_id_remove(memcg);
73f576c0
JW
4885
4886 /* Memcg ID pins CSS */
4887 css_put(&memcg->css);
4888 }
4889}
4890
615d66c3
VD
4891static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4892{
4893 mem_cgroup_id_put_many(memcg, 1);
4894}
4895
73f576c0
JW
4896/**
4897 * mem_cgroup_from_id - look up a memcg from a memcg id
4898 * @id: the memcg id to look up
4899 *
4900 * Caller must hold rcu_read_lock().
4901 */
4902struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4903{
4904 WARN_ON_ONCE(!rcu_read_lock_held());
4905 return idr_find(&mem_cgroup_idr, id);
4906}
4907
ef8f2327 4908static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4909{
4910 struct mem_cgroup_per_node *pn;
ef8f2327 4911 int tmp = node;
1ecaab2b
KH
4912 /*
4913 * This routine is called against possible nodes.
4914 * But it's BUG to call kmalloc() against offline node.
4915 *
4916 * TODO: this routine can waste much memory for nodes which will
4917 * never be onlined. It's better to use memory hotplug callback
4918 * function.
4919 */
41e3355d
KH
4920 if (!node_state(node, N_NORMAL_MEMORY))
4921 tmp = -1;
17295c88 4922 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4923 if (!pn)
4924 return 1;
1ecaab2b 4925
815744d7
JW
4926 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4927 if (!pn->lruvec_stat_local) {
4928 kfree(pn);
4929 return 1;
4930 }
4931
a983b5eb
JW
4932 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4933 if (!pn->lruvec_stat_cpu) {
815744d7 4934 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
4935 kfree(pn);
4936 return 1;
4937 }
4938
ef8f2327
MG
4939 lruvec_init(&pn->lruvec);
4940 pn->usage_in_excess = 0;
4941 pn->on_tree = false;
4942 pn->memcg = memcg;
4943
54f72fe0 4944 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4945 return 0;
4946}
4947
ef8f2327 4948static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4949{
00f3ca2c
JW
4950 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4951
4eaf431f
MH
4952 if (!pn)
4953 return;
4954
a983b5eb 4955 free_percpu(pn->lruvec_stat_cpu);
815744d7 4956 free_percpu(pn->lruvec_stat_local);
00f3ca2c 4957 kfree(pn);
1ecaab2b
KH
4958}
4959
40e952f9 4960static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4961{
c8b2a36f 4962 int node;
59927fb9 4963
c8b2a36f 4964 for_each_node(node)
ef8f2327 4965 free_mem_cgroup_per_node_info(memcg, node);
871789d4 4966 free_percpu(memcg->vmstats_percpu);
815744d7 4967 free_percpu(memcg->vmstats_local);
8ff69e2c 4968 kfree(memcg);
59927fb9 4969}
3afe36b1 4970
40e952f9
TE
4971static void mem_cgroup_free(struct mem_cgroup *memcg)
4972{
4973 memcg_wb_domain_exit(memcg);
7961eee3
SB
4974 /*
4975 * Flush percpu vmstats and vmevents to guarantee the value correctness
4976 * on parent's and all ancestor levels.
4977 */
4a87e2a2 4978 memcg_flush_percpu_vmstats(memcg);
7961eee3 4979 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
4980 __mem_cgroup_free(memcg);
4981}
4982
0b8f73e1 4983static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4984{
d142e3e6 4985 struct mem_cgroup *memcg;
b9726c26 4986 unsigned int size;
6d12e2d8 4987 int node;
97b27821 4988 int __maybe_unused i;
8cdea7c0 4989
0b8f73e1
JW
4990 size = sizeof(struct mem_cgroup);
4991 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4992
4993 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4994 if (!memcg)
0b8f73e1
JW
4995 return NULL;
4996
73f576c0
JW
4997 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4998 1, MEM_CGROUP_ID_MAX,
4999 GFP_KERNEL);
5000 if (memcg->id.id < 0)
5001 goto fail;
5002
815744d7
JW
5003 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5004 if (!memcg->vmstats_local)
5005 goto fail;
5006
871789d4
CD
5007 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5008 if (!memcg->vmstats_percpu)
0b8f73e1 5009 goto fail;
78fb7466 5010
3ed28fa1 5011 for_each_node(node)
ef8f2327 5012 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5013 goto fail;
f64c3f54 5014
0b8f73e1
JW
5015 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5016 goto fail;
28dbc4b6 5017
f7e1cb6e 5018 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5019 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5020 mutex_init(&memcg->thresholds_lock);
5021 spin_lock_init(&memcg->move_lock);
70ddf637 5022 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5023 INIT_LIST_HEAD(&memcg->event_list);
5024 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5025 memcg->socket_pressure = jiffies;
84c07d11 5026#ifdef CONFIG_MEMCG_KMEM
900a38f0 5027 memcg->kmemcg_id = -1;
900a38f0 5028#endif
52ebea74
TH
5029#ifdef CONFIG_CGROUP_WRITEBACK
5030 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5031 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5032 memcg->cgwb_frn[i].done =
5033 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5034#endif
5035#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5036 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5037 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5038 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5039#endif
73f576c0 5040 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5041 return memcg;
5042fail:
7e97de0b 5043 mem_cgroup_id_remove(memcg);
40e952f9 5044 __mem_cgroup_free(memcg);
0b8f73e1 5045 return NULL;
d142e3e6
GC
5046}
5047
0b8f73e1
JW
5048static struct cgroup_subsys_state * __ref
5049mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5050{
0b8f73e1
JW
5051 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5052 struct mem_cgroup *memcg;
5053 long error = -ENOMEM;
d142e3e6 5054
0b8f73e1
JW
5055 memcg = mem_cgroup_alloc();
5056 if (!memcg)
5057 return ERR_PTR(error);
d142e3e6 5058
f6f989c5 5059 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX);
0b8f73e1
JW
5060 memcg->soft_limit = PAGE_COUNTER_MAX;
5061 if (parent) {
5062 memcg->swappiness = mem_cgroup_swappiness(parent);
5063 memcg->oom_kill_disable = parent->oom_kill_disable;
5064 }
5065 if (parent && parent->use_hierarchy) {
5066 memcg->use_hierarchy = true;
3e32cb2e 5067 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5068 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
5069 page_counter_init(&memcg->memsw, &parent->memsw);
5070 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5071 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5072 } else {
3e32cb2e 5073 page_counter_init(&memcg->memory, NULL);
37e84351 5074 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
5075 page_counter_init(&memcg->memsw, NULL);
5076 page_counter_init(&memcg->kmem, NULL);
0db15298 5077 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
5078 /*
5079 * Deeper hierachy with use_hierarchy == false doesn't make
5080 * much sense so let cgroup subsystem know about this
5081 * unfortunate state in our controller.
5082 */
d142e3e6 5083 if (parent != root_mem_cgroup)
073219e9 5084 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5085 }
d6441637 5086
0b8f73e1
JW
5087 /* The following stuff does not apply to the root */
5088 if (!parent) {
fb2f2b0a
RG
5089#ifdef CONFIG_MEMCG_KMEM
5090 INIT_LIST_HEAD(&memcg->kmem_caches);
5091#endif
0b8f73e1
JW
5092 root_mem_cgroup = memcg;
5093 return &memcg->css;
5094 }
5095
b313aeee 5096 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5097 if (error)
5098 goto fail;
127424c8 5099
f7e1cb6e 5100 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5101 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5102
0b8f73e1
JW
5103 return &memcg->css;
5104fail:
7e97de0b 5105 mem_cgroup_id_remove(memcg);
0b8f73e1 5106 mem_cgroup_free(memcg);
ea3a9645 5107 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
5108}
5109
73f576c0 5110static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5111{
58fa2a55
VD
5112 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5113
0a4465d3
KT
5114 /*
5115 * A memcg must be visible for memcg_expand_shrinker_maps()
5116 * by the time the maps are allocated. So, we allocate maps
5117 * here, when for_each_mem_cgroup() can't skip it.
5118 */
5119 if (memcg_alloc_shrinker_maps(memcg)) {
5120 mem_cgroup_id_remove(memcg);
5121 return -ENOMEM;
5122 }
5123
73f576c0 5124 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5125 refcount_set(&memcg->id.ref, 1);
73f576c0 5126 css_get(css);
2f7dd7a4 5127 return 0;
8cdea7c0
BS
5128}
5129
eb95419b 5130static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5131{
eb95419b 5132 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5133 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5134
5135 /*
5136 * Unregister events and notify userspace.
5137 * Notify userspace about cgroup removing only after rmdir of cgroup
5138 * directory to avoid race between userspace and kernelspace.
5139 */
fba94807
TH
5140 spin_lock(&memcg->event_list_lock);
5141 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5142 list_del_init(&event->list);
5143 schedule_work(&event->remove);
5144 }
fba94807 5145 spin_unlock(&memcg->event_list_lock);
ec64f515 5146
bf8d5d52 5147 page_counter_set_min(&memcg->memory, 0);
23067153 5148 page_counter_set_low(&memcg->memory, 0);
63677c74 5149
567e9ab2 5150 memcg_offline_kmem(memcg);
52ebea74 5151 wb_memcg_offline(memcg);
73f576c0 5152
591edfb1
RG
5153 drain_all_stock(memcg);
5154
73f576c0 5155 mem_cgroup_id_put(memcg);
df878fb0
KH
5156}
5157
6df38689
VD
5158static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5159{
5160 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5161
5162 invalidate_reclaim_iterators(memcg);
5163}
5164
eb95419b 5165static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5166{
eb95419b 5167 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5168 int __maybe_unused i;
c268e994 5169
97b27821
TH
5170#ifdef CONFIG_CGROUP_WRITEBACK
5171 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5172 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5173#endif
f7e1cb6e 5174 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5175 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5176
0db15298 5177 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5178 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5179
0b8f73e1
JW
5180 vmpressure_cleanup(&memcg->vmpressure);
5181 cancel_work_sync(&memcg->high_work);
5182 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5183 memcg_free_shrinker_maps(memcg);
d886f4e4 5184 memcg_free_kmem(memcg);
0b8f73e1 5185 mem_cgroup_free(memcg);
8cdea7c0
BS
5186}
5187
1ced953b
TH
5188/**
5189 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5190 * @css: the target css
5191 *
5192 * Reset the states of the mem_cgroup associated with @css. This is
5193 * invoked when the userland requests disabling on the default hierarchy
5194 * but the memcg is pinned through dependency. The memcg should stop
5195 * applying policies and should revert to the vanilla state as it may be
5196 * made visible again.
5197 *
5198 * The current implementation only resets the essential configurations.
5199 * This needs to be expanded to cover all the visible parts.
5200 */
5201static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5202{
5203 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5204
bbec2e15
RG
5205 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5206 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5207 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5208 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5209 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5210 page_counter_set_min(&memcg->memory, 0);
23067153 5211 page_counter_set_low(&memcg->memory, 0);
f6f989c5 5212 WRITE_ONCE(memcg->high, PAGE_COUNTER_MAX);
24d404dc 5213 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 5214 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5215}
5216
02491447 5217#ifdef CONFIG_MMU
7dc74be0 5218/* Handlers for move charge at task migration. */
854ffa8d 5219static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5220{
05b84301 5221 int ret;
9476db97 5222
d0164adc
MG
5223 /* Try a single bulk charge without reclaim first, kswapd may wake */
5224 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5225 if (!ret) {
854ffa8d 5226 mc.precharge += count;
854ffa8d
DN
5227 return ret;
5228 }
9476db97 5229
3674534b 5230 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5231 while (count--) {
3674534b 5232 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5233 if (ret)
38c5d72f 5234 return ret;
854ffa8d 5235 mc.precharge++;
9476db97 5236 cond_resched();
854ffa8d 5237 }
9476db97 5238 return 0;
4ffef5fe
DN
5239}
5240
4ffef5fe
DN
5241union mc_target {
5242 struct page *page;
02491447 5243 swp_entry_t ent;
4ffef5fe
DN
5244};
5245
4ffef5fe 5246enum mc_target_type {
8d32ff84 5247 MC_TARGET_NONE = 0,
4ffef5fe 5248 MC_TARGET_PAGE,
02491447 5249 MC_TARGET_SWAP,
c733a828 5250 MC_TARGET_DEVICE,
4ffef5fe
DN
5251};
5252
90254a65
DN
5253static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5254 unsigned long addr, pte_t ptent)
4ffef5fe 5255{
25b2995a 5256 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5257
90254a65
DN
5258 if (!page || !page_mapped(page))
5259 return NULL;
5260 if (PageAnon(page)) {
1dfab5ab 5261 if (!(mc.flags & MOVE_ANON))
90254a65 5262 return NULL;
1dfab5ab
JW
5263 } else {
5264 if (!(mc.flags & MOVE_FILE))
5265 return NULL;
5266 }
90254a65
DN
5267 if (!get_page_unless_zero(page))
5268 return NULL;
5269
5270 return page;
5271}
5272
c733a828 5273#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5274static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5275 pte_t ptent, swp_entry_t *entry)
90254a65 5276{
90254a65
DN
5277 struct page *page = NULL;
5278 swp_entry_t ent = pte_to_swp_entry(ptent);
5279
1dfab5ab 5280 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5281 return NULL;
c733a828
JG
5282
5283 /*
5284 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5285 * a device and because they are not accessible by CPU they are store
5286 * as special swap entry in the CPU page table.
5287 */
5288 if (is_device_private_entry(ent)) {
5289 page = device_private_entry_to_page(ent);
5290 /*
5291 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5292 * a refcount of 1 when free (unlike normal page)
5293 */
5294 if (!page_ref_add_unless(page, 1, 1))
5295 return NULL;
5296 return page;
5297 }
5298
4b91355e
KH
5299 /*
5300 * Because lookup_swap_cache() updates some statistics counter,
5301 * we call find_get_page() with swapper_space directly.
5302 */
f6ab1f7f 5303 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 5304 if (do_memsw_account())
90254a65
DN
5305 entry->val = ent.val;
5306
5307 return page;
5308}
4b91355e
KH
5309#else
5310static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5311 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5312{
5313 return NULL;
5314}
5315#endif
90254a65 5316
87946a72
DN
5317static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5318 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5319{
5320 struct page *page = NULL;
87946a72
DN
5321 struct address_space *mapping;
5322 pgoff_t pgoff;
5323
5324 if (!vma->vm_file) /* anonymous vma */
5325 return NULL;
1dfab5ab 5326 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5327 return NULL;
5328
87946a72 5329 mapping = vma->vm_file->f_mapping;
0661a336 5330 pgoff = linear_page_index(vma, addr);
87946a72
DN
5331
5332 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5333#ifdef CONFIG_SWAP
5334 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5335 if (shmem_mapping(mapping)) {
5336 page = find_get_entry(mapping, pgoff);
3159f943 5337 if (xa_is_value(page)) {
139b6a6f 5338 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 5339 if (do_memsw_account())
139b6a6f 5340 *entry = swp;
f6ab1f7f
HY
5341 page = find_get_page(swap_address_space(swp),
5342 swp_offset(swp));
139b6a6f
JW
5343 }
5344 } else
5345 page = find_get_page(mapping, pgoff);
5346#else
5347 page = find_get_page(mapping, pgoff);
aa3b1895 5348#endif
87946a72
DN
5349 return page;
5350}
5351
b1b0deab
CG
5352/**
5353 * mem_cgroup_move_account - move account of the page
5354 * @page: the page
25843c2b 5355 * @compound: charge the page as compound or small page
b1b0deab
CG
5356 * @from: mem_cgroup which the page is moved from.
5357 * @to: mem_cgroup which the page is moved to. @from != @to.
5358 *
3ac808fd 5359 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5360 *
5361 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5362 * from old cgroup.
5363 */
5364static int mem_cgroup_move_account(struct page *page,
f627c2f5 5365 bool compound,
b1b0deab
CG
5366 struct mem_cgroup *from,
5367 struct mem_cgroup *to)
5368{
ae8af438
KK
5369 struct lruvec *from_vec, *to_vec;
5370 struct pglist_data *pgdat;
b1b0deab 5371 unsigned long flags;
f627c2f5 5372 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 5373 int ret;
c4843a75 5374 bool anon;
b1b0deab
CG
5375
5376 VM_BUG_ON(from == to);
5377 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5378 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5379
5380 /*
6a93ca8f 5381 * Prevent mem_cgroup_migrate() from looking at
45637bab 5382 * page->mem_cgroup of its source page while we change it.
b1b0deab 5383 */
f627c2f5 5384 ret = -EBUSY;
b1b0deab
CG
5385 if (!trylock_page(page))
5386 goto out;
5387
5388 ret = -EINVAL;
5389 if (page->mem_cgroup != from)
5390 goto out_unlock;
5391
c4843a75
GT
5392 anon = PageAnon(page);
5393
ae8af438 5394 pgdat = page_pgdat(page);
867e5e1d
JW
5395 from_vec = mem_cgroup_lruvec(from, pgdat);
5396 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5397
b1b0deab
CG
5398 spin_lock_irqsave(&from->move_lock, flags);
5399
c4843a75 5400 if (!anon && page_mapped(page)) {
ae8af438
KK
5401 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5402 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
5403 }
5404
c4843a75
GT
5405 /*
5406 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 5407 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
5408 * So mapping should be stable for dirty pages.
5409 */
5410 if (!anon && PageDirty(page)) {
5411 struct address_space *mapping = page_mapping(page);
5412
5413 if (mapping_cap_account_dirty(mapping)) {
ae8af438
KK
5414 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5415 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
5416 }
5417 }
5418
b1b0deab 5419 if (PageWriteback(page)) {
ae8af438
KK
5420 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5421 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5422 }
5423
5424 /*
5425 * It is safe to change page->mem_cgroup here because the page
5426 * is referenced, charged, and isolated - we can't race with
5427 * uncharging, charging, migration, or LRU putback.
5428 */
5429
5430 /* caller should have done css_get */
5431 page->mem_cgroup = to;
87eaceb3 5432
b1b0deab
CG
5433 spin_unlock_irqrestore(&from->move_lock, flags);
5434
5435 ret = 0;
5436
5437 local_irq_disable();
f627c2f5 5438 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 5439 memcg_check_events(to, page);
f627c2f5 5440 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
5441 memcg_check_events(from, page);
5442 local_irq_enable();
5443out_unlock:
5444 unlock_page(page);
5445out:
5446 return ret;
5447}
5448
7cf7806c
LR
5449/**
5450 * get_mctgt_type - get target type of moving charge
5451 * @vma: the vma the pte to be checked belongs
5452 * @addr: the address corresponding to the pte to be checked
5453 * @ptent: the pte to be checked
5454 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5455 *
5456 * Returns
5457 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5458 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5459 * move charge. if @target is not NULL, the page is stored in target->page
5460 * with extra refcnt got(Callers should handle it).
5461 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5462 * target for charge migration. if @target is not NULL, the entry is stored
5463 * in target->ent.
25b2995a
CH
5464 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5465 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5466 * For now we such page is charge like a regular page would be as for all
5467 * intent and purposes it is just special memory taking the place of a
5468 * regular page.
c733a828
JG
5469 *
5470 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5471 *
5472 * Called with pte lock held.
5473 */
5474
8d32ff84 5475static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5476 unsigned long addr, pte_t ptent, union mc_target *target)
5477{
5478 struct page *page = NULL;
8d32ff84 5479 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5480 swp_entry_t ent = { .val = 0 };
5481
5482 if (pte_present(ptent))
5483 page = mc_handle_present_pte(vma, addr, ptent);
5484 else if (is_swap_pte(ptent))
48406ef8 5485 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5486 else if (pte_none(ptent))
87946a72 5487 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5488
5489 if (!page && !ent.val)
8d32ff84 5490 return ret;
02491447 5491 if (page) {
02491447 5492 /*
0a31bc97 5493 * Do only loose check w/o serialization.
1306a85a 5494 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5495 * not under LRU exclusion.
02491447 5496 */
1306a85a 5497 if (page->mem_cgroup == mc.from) {
02491447 5498 ret = MC_TARGET_PAGE;
25b2995a 5499 if (is_device_private_page(page))
c733a828 5500 ret = MC_TARGET_DEVICE;
02491447
DN
5501 if (target)
5502 target->page = page;
5503 }
5504 if (!ret || !target)
5505 put_page(page);
5506 }
3e14a57b
HY
5507 /*
5508 * There is a swap entry and a page doesn't exist or isn't charged.
5509 * But we cannot move a tail-page in a THP.
5510 */
5511 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5512 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5513 ret = MC_TARGET_SWAP;
5514 if (target)
5515 target->ent = ent;
4ffef5fe 5516 }
4ffef5fe
DN
5517 return ret;
5518}
5519
12724850
NH
5520#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5521/*
d6810d73
HY
5522 * We don't consider PMD mapped swapping or file mapped pages because THP does
5523 * not support them for now.
12724850
NH
5524 * Caller should make sure that pmd_trans_huge(pmd) is true.
5525 */
5526static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5527 unsigned long addr, pmd_t pmd, union mc_target *target)
5528{
5529 struct page *page = NULL;
12724850
NH
5530 enum mc_target_type ret = MC_TARGET_NONE;
5531
84c3fc4e
ZY
5532 if (unlikely(is_swap_pmd(pmd))) {
5533 VM_BUG_ON(thp_migration_supported() &&
5534 !is_pmd_migration_entry(pmd));
5535 return ret;
5536 }
12724850 5537 page = pmd_page(pmd);
309381fe 5538 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5539 if (!(mc.flags & MOVE_ANON))
12724850 5540 return ret;
1306a85a 5541 if (page->mem_cgroup == mc.from) {
12724850
NH
5542 ret = MC_TARGET_PAGE;
5543 if (target) {
5544 get_page(page);
5545 target->page = page;
5546 }
5547 }
5548 return ret;
5549}
5550#else
5551static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5552 unsigned long addr, pmd_t pmd, union mc_target *target)
5553{
5554 return MC_TARGET_NONE;
5555}
5556#endif
5557
4ffef5fe
DN
5558static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5559 unsigned long addr, unsigned long end,
5560 struct mm_walk *walk)
5561{
26bcd64a 5562 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5563 pte_t *pte;
5564 spinlock_t *ptl;
5565
b6ec57f4
KS
5566 ptl = pmd_trans_huge_lock(pmd, vma);
5567 if (ptl) {
c733a828
JG
5568 /*
5569 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5570 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5571 * this might change.
c733a828 5572 */
12724850
NH
5573 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5574 mc.precharge += HPAGE_PMD_NR;
bf929152 5575 spin_unlock(ptl);
1a5a9906 5576 return 0;
12724850 5577 }
03319327 5578
45f83cef
AA
5579 if (pmd_trans_unstable(pmd))
5580 return 0;
4ffef5fe
DN
5581 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5582 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5583 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5584 mc.precharge++; /* increment precharge temporarily */
5585 pte_unmap_unlock(pte - 1, ptl);
5586 cond_resched();
5587
7dc74be0
DN
5588 return 0;
5589}
5590
7b86ac33
CH
5591static const struct mm_walk_ops precharge_walk_ops = {
5592 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5593};
5594
4ffef5fe
DN
5595static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5596{
5597 unsigned long precharge;
4ffef5fe 5598
dfe076b0 5599 down_read(&mm->mmap_sem);
7b86ac33 5600 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
dfe076b0 5601 up_read(&mm->mmap_sem);
4ffef5fe
DN
5602
5603 precharge = mc.precharge;
5604 mc.precharge = 0;
5605
5606 return precharge;
5607}
5608
4ffef5fe
DN
5609static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5610{
dfe076b0
DN
5611 unsigned long precharge = mem_cgroup_count_precharge(mm);
5612
5613 VM_BUG_ON(mc.moving_task);
5614 mc.moving_task = current;
5615 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5616}
5617
dfe076b0
DN
5618/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5619static void __mem_cgroup_clear_mc(void)
4ffef5fe 5620{
2bd9bb20
KH
5621 struct mem_cgroup *from = mc.from;
5622 struct mem_cgroup *to = mc.to;
5623
4ffef5fe 5624 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5625 if (mc.precharge) {
00501b53 5626 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5627 mc.precharge = 0;
5628 }
5629 /*
5630 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5631 * we must uncharge here.
5632 */
5633 if (mc.moved_charge) {
00501b53 5634 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5635 mc.moved_charge = 0;
4ffef5fe 5636 }
483c30b5
DN
5637 /* we must fixup refcnts and charges */
5638 if (mc.moved_swap) {
483c30b5 5639 /* uncharge swap account from the old cgroup */
ce00a967 5640 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5641 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5642
615d66c3
VD
5643 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5644
05b84301 5645 /*
3e32cb2e
JW
5646 * we charged both to->memory and to->memsw, so we
5647 * should uncharge to->memory.
05b84301 5648 */
ce00a967 5649 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5650 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5651
615d66c3
VD
5652 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5653 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5654
483c30b5
DN
5655 mc.moved_swap = 0;
5656 }
dfe076b0
DN
5657 memcg_oom_recover(from);
5658 memcg_oom_recover(to);
5659 wake_up_all(&mc.waitq);
5660}
5661
5662static void mem_cgroup_clear_mc(void)
5663{
264a0ae1
TH
5664 struct mm_struct *mm = mc.mm;
5665
dfe076b0
DN
5666 /*
5667 * we must clear moving_task before waking up waiters at the end of
5668 * task migration.
5669 */
5670 mc.moving_task = NULL;
5671 __mem_cgroup_clear_mc();
2bd9bb20 5672 spin_lock(&mc.lock);
4ffef5fe
DN
5673 mc.from = NULL;
5674 mc.to = NULL;
264a0ae1 5675 mc.mm = NULL;
2bd9bb20 5676 spin_unlock(&mc.lock);
264a0ae1
TH
5677
5678 mmput(mm);
4ffef5fe
DN
5679}
5680
1f7dd3e5 5681static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5682{
1f7dd3e5 5683 struct cgroup_subsys_state *css;
eed67d75 5684 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5685 struct mem_cgroup *from;
4530eddb 5686 struct task_struct *leader, *p;
9f2115f9 5687 struct mm_struct *mm;
1dfab5ab 5688 unsigned long move_flags;
9f2115f9 5689 int ret = 0;
7dc74be0 5690
1f7dd3e5
TH
5691 /* charge immigration isn't supported on the default hierarchy */
5692 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5693 return 0;
5694
4530eddb
TH
5695 /*
5696 * Multi-process migrations only happen on the default hierarchy
5697 * where charge immigration is not used. Perform charge
5698 * immigration if @tset contains a leader and whine if there are
5699 * multiple.
5700 */
5701 p = NULL;
1f7dd3e5 5702 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5703 WARN_ON_ONCE(p);
5704 p = leader;
1f7dd3e5 5705 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5706 }
5707 if (!p)
5708 return 0;
5709
1f7dd3e5
TH
5710 /*
5711 * We are now commited to this value whatever it is. Changes in this
5712 * tunable will only affect upcoming migrations, not the current one.
5713 * So we need to save it, and keep it going.
5714 */
5715 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5716 if (!move_flags)
5717 return 0;
5718
9f2115f9
TH
5719 from = mem_cgroup_from_task(p);
5720
5721 VM_BUG_ON(from == memcg);
5722
5723 mm = get_task_mm(p);
5724 if (!mm)
5725 return 0;
5726 /* We move charges only when we move a owner of the mm */
5727 if (mm->owner == p) {
5728 VM_BUG_ON(mc.from);
5729 VM_BUG_ON(mc.to);
5730 VM_BUG_ON(mc.precharge);
5731 VM_BUG_ON(mc.moved_charge);
5732 VM_BUG_ON(mc.moved_swap);
5733
5734 spin_lock(&mc.lock);
264a0ae1 5735 mc.mm = mm;
9f2115f9
TH
5736 mc.from = from;
5737 mc.to = memcg;
5738 mc.flags = move_flags;
5739 spin_unlock(&mc.lock);
5740 /* We set mc.moving_task later */
5741
5742 ret = mem_cgroup_precharge_mc(mm);
5743 if (ret)
5744 mem_cgroup_clear_mc();
264a0ae1
TH
5745 } else {
5746 mmput(mm);
7dc74be0
DN
5747 }
5748 return ret;
5749}
5750
1f7dd3e5 5751static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5752{
4e2f245d
JW
5753 if (mc.to)
5754 mem_cgroup_clear_mc();
7dc74be0
DN
5755}
5756
4ffef5fe
DN
5757static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5758 unsigned long addr, unsigned long end,
5759 struct mm_walk *walk)
7dc74be0 5760{
4ffef5fe 5761 int ret = 0;
26bcd64a 5762 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5763 pte_t *pte;
5764 spinlock_t *ptl;
12724850
NH
5765 enum mc_target_type target_type;
5766 union mc_target target;
5767 struct page *page;
4ffef5fe 5768
b6ec57f4
KS
5769 ptl = pmd_trans_huge_lock(pmd, vma);
5770 if (ptl) {
62ade86a 5771 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5772 spin_unlock(ptl);
12724850
NH
5773 return 0;
5774 }
5775 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5776 if (target_type == MC_TARGET_PAGE) {
5777 page = target.page;
5778 if (!isolate_lru_page(page)) {
f627c2f5 5779 if (!mem_cgroup_move_account(page, true,
1306a85a 5780 mc.from, mc.to)) {
12724850
NH
5781 mc.precharge -= HPAGE_PMD_NR;
5782 mc.moved_charge += HPAGE_PMD_NR;
5783 }
5784 putback_lru_page(page);
5785 }
5786 put_page(page);
c733a828
JG
5787 } else if (target_type == MC_TARGET_DEVICE) {
5788 page = target.page;
5789 if (!mem_cgroup_move_account(page, true,
5790 mc.from, mc.to)) {
5791 mc.precharge -= HPAGE_PMD_NR;
5792 mc.moved_charge += HPAGE_PMD_NR;
5793 }
5794 put_page(page);
12724850 5795 }
bf929152 5796 spin_unlock(ptl);
1a5a9906 5797 return 0;
12724850
NH
5798 }
5799
45f83cef
AA
5800 if (pmd_trans_unstable(pmd))
5801 return 0;
4ffef5fe
DN
5802retry:
5803 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5804 for (; addr != end; addr += PAGE_SIZE) {
5805 pte_t ptent = *(pte++);
c733a828 5806 bool device = false;
02491447 5807 swp_entry_t ent;
4ffef5fe
DN
5808
5809 if (!mc.precharge)
5810 break;
5811
8d32ff84 5812 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5813 case MC_TARGET_DEVICE:
5814 device = true;
5815 /* fall through */
4ffef5fe
DN
5816 case MC_TARGET_PAGE:
5817 page = target.page;
53f9263b
KS
5818 /*
5819 * We can have a part of the split pmd here. Moving it
5820 * can be done but it would be too convoluted so simply
5821 * ignore such a partial THP and keep it in original
5822 * memcg. There should be somebody mapping the head.
5823 */
5824 if (PageTransCompound(page))
5825 goto put;
c733a828 5826 if (!device && isolate_lru_page(page))
4ffef5fe 5827 goto put;
f627c2f5
KS
5828 if (!mem_cgroup_move_account(page, false,
5829 mc.from, mc.to)) {
4ffef5fe 5830 mc.precharge--;
854ffa8d
DN
5831 /* we uncharge from mc.from later. */
5832 mc.moved_charge++;
4ffef5fe 5833 }
c733a828
JG
5834 if (!device)
5835 putback_lru_page(page);
8d32ff84 5836put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5837 put_page(page);
5838 break;
02491447
DN
5839 case MC_TARGET_SWAP:
5840 ent = target.ent;
e91cbb42 5841 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5842 mc.precharge--;
483c30b5
DN
5843 /* we fixup refcnts and charges later. */
5844 mc.moved_swap++;
5845 }
02491447 5846 break;
4ffef5fe
DN
5847 default:
5848 break;
5849 }
5850 }
5851 pte_unmap_unlock(pte - 1, ptl);
5852 cond_resched();
5853
5854 if (addr != end) {
5855 /*
5856 * We have consumed all precharges we got in can_attach().
5857 * We try charge one by one, but don't do any additional
5858 * charges to mc.to if we have failed in charge once in attach()
5859 * phase.
5860 */
854ffa8d 5861 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5862 if (!ret)
5863 goto retry;
5864 }
5865
5866 return ret;
5867}
5868
7b86ac33
CH
5869static const struct mm_walk_ops charge_walk_ops = {
5870 .pmd_entry = mem_cgroup_move_charge_pte_range,
5871};
5872
264a0ae1 5873static void mem_cgroup_move_charge(void)
4ffef5fe 5874{
4ffef5fe 5875 lru_add_drain_all();
312722cb 5876 /*
81f8c3a4
JW
5877 * Signal lock_page_memcg() to take the memcg's move_lock
5878 * while we're moving its pages to another memcg. Then wait
5879 * for already started RCU-only updates to finish.
312722cb
JW
5880 */
5881 atomic_inc(&mc.from->moving_account);
5882 synchronize_rcu();
dfe076b0 5883retry:
264a0ae1 5884 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5885 /*
5886 * Someone who are holding the mmap_sem might be waiting in
5887 * waitq. So we cancel all extra charges, wake up all waiters,
5888 * and retry. Because we cancel precharges, we might not be able
5889 * to move enough charges, but moving charge is a best-effort
5890 * feature anyway, so it wouldn't be a big problem.
5891 */
5892 __mem_cgroup_clear_mc();
5893 cond_resched();
5894 goto retry;
5895 }
26bcd64a
NH
5896 /*
5897 * When we have consumed all precharges and failed in doing
5898 * additional charge, the page walk just aborts.
5899 */
7b86ac33
CH
5900 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5901 NULL);
0247f3f4 5902
264a0ae1 5903 up_read(&mc.mm->mmap_sem);
312722cb 5904 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5905}
5906
264a0ae1 5907static void mem_cgroup_move_task(void)
67e465a7 5908{
264a0ae1
TH
5909 if (mc.to) {
5910 mem_cgroup_move_charge();
a433658c 5911 mem_cgroup_clear_mc();
264a0ae1 5912 }
67e465a7 5913}
5cfb80a7 5914#else /* !CONFIG_MMU */
1f7dd3e5 5915static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5916{
5917 return 0;
5918}
1f7dd3e5 5919static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5920{
5921}
264a0ae1 5922static void mem_cgroup_move_task(void)
5cfb80a7
DN
5923{
5924}
5925#endif
67e465a7 5926
f00baae7
TH
5927/*
5928 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5929 * to verify whether we're attached to the default hierarchy on each mount
5930 * attempt.
f00baae7 5931 */
eb95419b 5932static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5933{
5934 /*
aa6ec29b 5935 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5936 * guarantees that @root doesn't have any children, so turning it
5937 * on for the root memcg is enough.
5938 */
9e10a130 5939 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5940 root_mem_cgroup->use_hierarchy = true;
5941 else
5942 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5943}
5944
677dc973
CD
5945static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5946{
5947 if (value == PAGE_COUNTER_MAX)
5948 seq_puts(m, "max\n");
5949 else
5950 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5951
5952 return 0;
5953}
5954
241994ed
JW
5955static u64 memory_current_read(struct cgroup_subsys_state *css,
5956 struct cftype *cft)
5957{
f5fc3c5d
JW
5958 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5959
5960 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5961}
5962
bf8d5d52
RG
5963static int memory_min_show(struct seq_file *m, void *v)
5964{
677dc973
CD
5965 return seq_puts_memcg_tunable(m,
5966 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
5967}
5968
5969static ssize_t memory_min_write(struct kernfs_open_file *of,
5970 char *buf, size_t nbytes, loff_t off)
5971{
5972 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5973 unsigned long min;
5974 int err;
5975
5976 buf = strstrip(buf);
5977 err = page_counter_memparse(buf, "max", &min);
5978 if (err)
5979 return err;
5980
5981 page_counter_set_min(&memcg->memory, min);
5982
5983 return nbytes;
5984}
5985
241994ed
JW
5986static int memory_low_show(struct seq_file *m, void *v)
5987{
677dc973
CD
5988 return seq_puts_memcg_tunable(m,
5989 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
5990}
5991
5992static ssize_t memory_low_write(struct kernfs_open_file *of,
5993 char *buf, size_t nbytes, loff_t off)
5994{
5995 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5996 unsigned long low;
5997 int err;
5998
5999 buf = strstrip(buf);
d2973697 6000 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6001 if (err)
6002 return err;
6003
23067153 6004 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6005
6006 return nbytes;
6007}
6008
6009static int memory_high_show(struct seq_file *m, void *v)
6010{
677dc973 6011 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
241994ed
JW
6012}
6013
6014static ssize_t memory_high_write(struct kernfs_open_file *of,
6015 char *buf, size_t nbytes, loff_t off)
6016{
6017 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8c8c383c
JW
6018 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6019 bool drained = false;
241994ed
JW
6020 unsigned long high;
6021 int err;
6022
6023 buf = strstrip(buf);
d2973697 6024 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6025 if (err)
6026 return err;
6027
f6f989c5 6028 WRITE_ONCE(memcg->high, high);
241994ed 6029
8c8c383c
JW
6030 for (;;) {
6031 unsigned long nr_pages = page_counter_read(&memcg->memory);
6032 unsigned long reclaimed;
6033
6034 if (nr_pages <= high)
6035 break;
6036
6037 if (signal_pending(current))
6038 break;
6039
6040 if (!drained) {
6041 drain_all_stock(memcg);
6042 drained = true;
6043 continue;
6044 }
6045
6046 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6047 GFP_KERNEL, true);
6048
6049 if (!reclaimed && !nr_retries--)
6050 break;
6051 }
588083bb 6052
241994ed
JW
6053 return nbytes;
6054}
6055
6056static int memory_max_show(struct seq_file *m, void *v)
6057{
677dc973
CD
6058 return seq_puts_memcg_tunable(m,
6059 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6060}
6061
6062static ssize_t memory_max_write(struct kernfs_open_file *of,
6063 char *buf, size_t nbytes, loff_t off)
6064{
6065 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
6066 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6067 bool drained = false;
241994ed
JW
6068 unsigned long max;
6069 int err;
6070
6071 buf = strstrip(buf);
d2973697 6072 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6073 if (err)
6074 return err;
6075
bbec2e15 6076 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6077
6078 for (;;) {
6079 unsigned long nr_pages = page_counter_read(&memcg->memory);
6080
6081 if (nr_pages <= max)
6082 break;
6083
7249c9f0 6084 if (signal_pending(current))
b6e6edcf 6085 break;
b6e6edcf
JW
6086
6087 if (!drained) {
6088 drain_all_stock(memcg);
6089 drained = true;
6090 continue;
6091 }
6092
6093 if (nr_reclaims) {
6094 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6095 GFP_KERNEL, true))
6096 nr_reclaims--;
6097 continue;
6098 }
6099
e27be240 6100 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6101 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6102 break;
6103 }
241994ed 6104
2529bb3a 6105 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6106 return nbytes;
6107}
6108
1e577f97
SB
6109static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6110{
6111 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6112 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6113 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6114 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6115 seq_printf(m, "oom_kill %lu\n",
6116 atomic_long_read(&events[MEMCG_OOM_KILL]));
6117}
6118
241994ed
JW
6119static int memory_events_show(struct seq_file *m, void *v)
6120{
aa9694bb 6121 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6122
1e577f97
SB
6123 __memory_events_show(m, memcg->memory_events);
6124 return 0;
6125}
6126
6127static int memory_events_local_show(struct seq_file *m, void *v)
6128{
6129 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6130
1e577f97 6131 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6132 return 0;
6133}
6134
587d9f72
JW
6135static int memory_stat_show(struct seq_file *m, void *v)
6136{
aa9694bb 6137 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6138 char *buf;
1ff9e6e1 6139
c8713d0b
JW
6140 buf = memory_stat_format(memcg);
6141 if (!buf)
6142 return -ENOMEM;
6143 seq_puts(m, buf);
6144 kfree(buf);
587d9f72
JW
6145 return 0;
6146}
6147
3d8b38eb
RG
6148static int memory_oom_group_show(struct seq_file *m, void *v)
6149{
aa9694bb 6150 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6151
6152 seq_printf(m, "%d\n", memcg->oom_group);
6153
6154 return 0;
6155}
6156
6157static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6158 char *buf, size_t nbytes, loff_t off)
6159{
6160 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6161 int ret, oom_group;
6162
6163 buf = strstrip(buf);
6164 if (!buf)
6165 return -EINVAL;
6166
6167 ret = kstrtoint(buf, 0, &oom_group);
6168 if (ret)
6169 return ret;
6170
6171 if (oom_group != 0 && oom_group != 1)
6172 return -EINVAL;
6173
6174 memcg->oom_group = oom_group;
6175
6176 return nbytes;
6177}
6178
241994ed
JW
6179static struct cftype memory_files[] = {
6180 {
6181 .name = "current",
f5fc3c5d 6182 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6183 .read_u64 = memory_current_read,
6184 },
bf8d5d52
RG
6185 {
6186 .name = "min",
6187 .flags = CFTYPE_NOT_ON_ROOT,
6188 .seq_show = memory_min_show,
6189 .write = memory_min_write,
6190 },
241994ed
JW
6191 {
6192 .name = "low",
6193 .flags = CFTYPE_NOT_ON_ROOT,
6194 .seq_show = memory_low_show,
6195 .write = memory_low_write,
6196 },
6197 {
6198 .name = "high",
6199 .flags = CFTYPE_NOT_ON_ROOT,
6200 .seq_show = memory_high_show,
6201 .write = memory_high_write,
6202 },
6203 {
6204 .name = "max",
6205 .flags = CFTYPE_NOT_ON_ROOT,
6206 .seq_show = memory_max_show,
6207 .write = memory_max_write,
6208 },
6209 {
6210 .name = "events",
6211 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6212 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6213 .seq_show = memory_events_show,
6214 },
1e577f97
SB
6215 {
6216 .name = "events.local",
6217 .flags = CFTYPE_NOT_ON_ROOT,
6218 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6219 .seq_show = memory_events_local_show,
6220 },
587d9f72
JW
6221 {
6222 .name = "stat",
6223 .flags = CFTYPE_NOT_ON_ROOT,
6224 .seq_show = memory_stat_show,
6225 },
3d8b38eb
RG
6226 {
6227 .name = "oom.group",
6228 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6229 .seq_show = memory_oom_group_show,
6230 .write = memory_oom_group_write,
6231 },
241994ed
JW
6232 { } /* terminate */
6233};
6234
073219e9 6235struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6236 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6237 .css_online = mem_cgroup_css_online,
92fb9748 6238 .css_offline = mem_cgroup_css_offline,
6df38689 6239 .css_released = mem_cgroup_css_released,
92fb9748 6240 .css_free = mem_cgroup_css_free,
1ced953b 6241 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6242 .can_attach = mem_cgroup_can_attach,
6243 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6244 .post_attach = mem_cgroup_move_task,
f00baae7 6245 .bind = mem_cgroup_bind,
241994ed
JW
6246 .dfl_cftypes = memory_files,
6247 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6248 .early_init = 0,
8cdea7c0 6249};
c077719b 6250
bc50bcc6
JW
6251/*
6252 * This function calculates an individual cgroup's effective
6253 * protection which is derived from its own memory.min/low, its
6254 * parent's and siblings' settings, as well as the actual memory
6255 * distribution in the tree.
6256 *
6257 * The following rules apply to the effective protection values:
6258 *
6259 * 1. At the first level of reclaim, effective protection is equal to
6260 * the declared protection in memory.min and memory.low.
6261 *
6262 * 2. To enable safe delegation of the protection configuration, at
6263 * subsequent levels the effective protection is capped to the
6264 * parent's effective protection.
6265 *
6266 * 3. To make complex and dynamic subtrees easier to configure, the
6267 * user is allowed to overcommit the declared protection at a given
6268 * level. If that is the case, the parent's effective protection is
6269 * distributed to the children in proportion to how much protection
6270 * they have declared and how much of it they are utilizing.
6271 *
6272 * This makes distribution proportional, but also work-conserving:
6273 * if one cgroup claims much more protection than it uses memory,
6274 * the unused remainder is available to its siblings.
6275 *
6276 * 4. Conversely, when the declared protection is undercommitted at a
6277 * given level, the distribution of the larger parental protection
6278 * budget is NOT proportional. A cgroup's protection from a sibling
6279 * is capped to its own memory.min/low setting.
6280 *
8a931f80
JW
6281 * 5. However, to allow protecting recursive subtrees from each other
6282 * without having to declare each individual cgroup's fixed share
6283 * of the ancestor's claim to protection, any unutilized -
6284 * "floating" - protection from up the tree is distributed in
6285 * proportion to each cgroup's *usage*. This makes the protection
6286 * neutral wrt sibling cgroups and lets them compete freely over
6287 * the shared parental protection budget, but it protects the
6288 * subtree as a whole from neighboring subtrees.
6289 *
6290 * Note that 4. and 5. are not in conflict: 4. is about protecting
6291 * against immediate siblings whereas 5. is about protecting against
6292 * neighboring subtrees.
bc50bcc6
JW
6293 */
6294static unsigned long effective_protection(unsigned long usage,
8a931f80 6295 unsigned long parent_usage,
bc50bcc6
JW
6296 unsigned long setting,
6297 unsigned long parent_effective,
6298 unsigned long siblings_protected)
6299{
6300 unsigned long protected;
8a931f80 6301 unsigned long ep;
bc50bcc6
JW
6302
6303 protected = min(usage, setting);
6304 /*
6305 * If all cgroups at this level combined claim and use more
6306 * protection then what the parent affords them, distribute
6307 * shares in proportion to utilization.
6308 *
6309 * We are using actual utilization rather than the statically
6310 * claimed protection in order to be work-conserving: claimed
6311 * but unused protection is available to siblings that would
6312 * otherwise get a smaller chunk than what they claimed.
6313 */
6314 if (siblings_protected > parent_effective)
6315 return protected * parent_effective / siblings_protected;
6316
6317 /*
6318 * Ok, utilized protection of all children is within what the
6319 * parent affords them, so we know whatever this child claims
6320 * and utilizes is effectively protected.
6321 *
6322 * If there is unprotected usage beyond this value, reclaim
6323 * will apply pressure in proportion to that amount.
6324 *
6325 * If there is unutilized protection, the cgroup will be fully
6326 * shielded from reclaim, but we do return a smaller value for
6327 * protection than what the group could enjoy in theory. This
6328 * is okay. With the overcommit distribution above, effective
6329 * protection is always dependent on how memory is actually
6330 * consumed among the siblings anyway.
6331 */
8a931f80
JW
6332 ep = protected;
6333
6334 /*
6335 * If the children aren't claiming (all of) the protection
6336 * afforded to them by the parent, distribute the remainder in
6337 * proportion to the (unprotected) memory of each cgroup. That
6338 * way, cgroups that aren't explicitly prioritized wrt each
6339 * other compete freely over the allowance, but they are
6340 * collectively protected from neighboring trees.
6341 *
6342 * We're using unprotected memory for the weight so that if
6343 * some cgroups DO claim explicit protection, we don't protect
6344 * the same bytes twice.
6345 */
6346 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6347 return ep;
6348
6349 if (parent_effective > siblings_protected && usage > protected) {
6350 unsigned long unclaimed;
6351
6352 unclaimed = parent_effective - siblings_protected;
6353 unclaimed *= usage - protected;
6354 unclaimed /= parent_usage - siblings_protected;
6355
6356 ep += unclaimed;
6357 }
6358
6359 return ep;
bc50bcc6
JW
6360}
6361
241994ed 6362/**
bf8d5d52 6363 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6364 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6365 * @memcg: the memory cgroup to check
6366 *
23067153
RG
6367 * WARNING: This function is not stateless! It can only be used as part
6368 * of a top-down tree iteration, not for isolated queries.
34c81057 6369 *
bf8d5d52
RG
6370 * Returns one of the following:
6371 * MEMCG_PROT_NONE: cgroup memory is not protected
6372 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6373 * an unprotected supply of reclaimable memory from other cgroups.
6374 * MEMCG_PROT_MIN: cgroup memory is protected
241994ed 6375 */
bf8d5d52
RG
6376enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6377 struct mem_cgroup *memcg)
241994ed 6378{
8a931f80 6379 unsigned long usage, parent_usage;
23067153
RG
6380 struct mem_cgroup *parent;
6381
241994ed 6382 if (mem_cgroup_disabled())
bf8d5d52 6383 return MEMCG_PROT_NONE;
241994ed 6384
34c81057
SC
6385 if (!root)
6386 root = root_mem_cgroup;
6387 if (memcg == root)
bf8d5d52 6388 return MEMCG_PROT_NONE;
241994ed 6389
23067153 6390 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
6391 if (!usage)
6392 return MEMCG_PROT_NONE;
6393
bf8d5d52 6394 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6395 /* No parent means a non-hierarchical mode on v1 memcg */
6396 if (!parent)
6397 return MEMCG_PROT_NONE;
6398
bc50bcc6 6399 if (parent == root) {
c3d53200 6400 memcg->memory.emin = READ_ONCE(memcg->memory.min);
bc50bcc6
JW
6401 memcg->memory.elow = memcg->memory.low;
6402 goto out;
bf8d5d52
RG
6403 }
6404
8a931f80
JW
6405 parent_usage = page_counter_read(&parent->memory);
6406
b3a7822e 6407 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6408 READ_ONCE(memcg->memory.min),
6409 READ_ONCE(parent->memory.emin),
b3a7822e 6410 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6411
b3a7822e 6412 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
bc50bcc6 6413 memcg->memory.low, READ_ONCE(parent->memory.elow),
b3a7822e 6414 atomic_long_read(&parent->memory.children_low_usage)));
23067153 6415
bc50bcc6
JW
6416out:
6417 if (usage <= memcg->memory.emin)
bf8d5d52 6418 return MEMCG_PROT_MIN;
bc50bcc6 6419 else if (usage <= memcg->memory.elow)
bf8d5d52
RG
6420 return MEMCG_PROT_LOW;
6421 else
6422 return MEMCG_PROT_NONE;
241994ed
JW
6423}
6424
00501b53
JW
6425/**
6426 * mem_cgroup_try_charge - try charging a page
6427 * @page: page to charge
6428 * @mm: mm context of the victim
6429 * @gfp_mask: reclaim mode
6430 * @memcgp: charged memcg return
25843c2b 6431 * @compound: charge the page as compound or small page
00501b53
JW
6432 *
6433 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6434 * pages according to @gfp_mask if necessary.
6435 *
6436 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6437 * Otherwise, an error code is returned.
6438 *
6439 * After page->mapping has been set up, the caller must finalize the
6440 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6441 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6442 */
6443int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
6444 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6445 bool compound)
00501b53
JW
6446{
6447 struct mem_cgroup *memcg = NULL;
f627c2f5 6448 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6449 int ret = 0;
6450
6451 if (mem_cgroup_disabled())
6452 goto out;
6453
6454 if (PageSwapCache(page)) {
00501b53
JW
6455 /*
6456 * Every swap fault against a single page tries to charge the
6457 * page, bail as early as possible. shmem_unuse() encounters
6458 * already charged pages, too. The USED bit is protected by
6459 * the page lock, which serializes swap cache removal, which
6460 * in turn serializes uncharging.
6461 */
e993d905 6462 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6463 if (compound_head(page)->mem_cgroup)
00501b53 6464 goto out;
e993d905 6465
37e84351 6466 if (do_swap_account) {
e993d905
VD
6467 swp_entry_t ent = { .val = page_private(page), };
6468 unsigned short id = lookup_swap_cgroup_id(ent);
6469
6470 rcu_read_lock();
6471 memcg = mem_cgroup_from_id(id);
6472 if (memcg && !css_tryget_online(&memcg->css))
6473 memcg = NULL;
6474 rcu_read_unlock();
6475 }
00501b53
JW
6476 }
6477
00501b53
JW
6478 if (!memcg)
6479 memcg = get_mem_cgroup_from_mm(mm);
6480
6481 ret = try_charge(memcg, gfp_mask, nr_pages);
6482
6483 css_put(&memcg->css);
00501b53
JW
6484out:
6485 *memcgp = memcg;
6486 return ret;
6487}
6488
2cf85583
TH
6489int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6490 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6491 bool compound)
6492{
6493 struct mem_cgroup *memcg;
6494 int ret;
6495
6496 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6497 memcg = *memcgp;
6498 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6499 return ret;
6500}
6501
00501b53
JW
6502/**
6503 * mem_cgroup_commit_charge - commit a page charge
6504 * @page: page to charge
6505 * @memcg: memcg to charge the page to
6506 * @lrucare: page might be on LRU already
25843c2b 6507 * @compound: charge the page as compound or small page
00501b53
JW
6508 *
6509 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6510 * after page->mapping has been set up. This must happen atomically
6511 * as part of the page instantiation, i.e. under the page table lock
6512 * for anonymous pages, under the page lock for page and swap cache.
6513 *
6514 * In addition, the page must not be on the LRU during the commit, to
6515 * prevent racing with task migration. If it might be, use @lrucare.
6516 *
6517 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6518 */
6519void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 6520 bool lrucare, bool compound)
00501b53 6521{
f627c2f5 6522 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6523
6524 VM_BUG_ON_PAGE(!page->mapping, page);
6525 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6526
6527 if (mem_cgroup_disabled())
6528 return;
6529 /*
6530 * Swap faults will attempt to charge the same page multiple
6531 * times. But reuse_swap_page() might have removed the page
6532 * from swapcache already, so we can't check PageSwapCache().
6533 */
6534 if (!memcg)
6535 return;
6536
6abb5a86
JW
6537 commit_charge(page, memcg, lrucare);
6538
6abb5a86 6539 local_irq_disable();
f627c2f5 6540 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
6541 memcg_check_events(memcg, page);
6542 local_irq_enable();
00501b53 6543
7941d214 6544 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
6545 swp_entry_t entry = { .val = page_private(page) };
6546 /*
6547 * The swap entry might not get freed for a long time,
6548 * let's not wait for it. The page already received a
6549 * memory+swap charge, drop the swap entry duplicate.
6550 */
38d8b4e6 6551 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
6552 }
6553}
6554
6555/**
6556 * mem_cgroup_cancel_charge - cancel a page charge
6557 * @page: page to charge
6558 * @memcg: memcg to charge the page to
25843c2b 6559 * @compound: charge the page as compound or small page
00501b53
JW
6560 *
6561 * Cancel a charge transaction started by mem_cgroup_try_charge().
6562 */
f627c2f5
KS
6563void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6564 bool compound)
00501b53 6565{
f627c2f5 6566 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
6567
6568 if (mem_cgroup_disabled())
6569 return;
6570 /*
6571 * Swap faults will attempt to charge the same page multiple
6572 * times. But reuse_swap_page() might have removed the page
6573 * from swapcache already, so we can't check PageSwapCache().
6574 */
6575 if (!memcg)
6576 return;
6577
00501b53
JW
6578 cancel_charge(memcg, nr_pages);
6579}
6580
a9d5adee
JG
6581struct uncharge_gather {
6582 struct mem_cgroup *memcg;
6583 unsigned long pgpgout;
6584 unsigned long nr_anon;
6585 unsigned long nr_file;
6586 unsigned long nr_kmem;
6587 unsigned long nr_huge;
6588 unsigned long nr_shmem;
6589 struct page *dummy_page;
6590};
6591
6592static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6593{
a9d5adee
JG
6594 memset(ug, 0, sizeof(*ug));
6595}
6596
6597static void uncharge_batch(const struct uncharge_gather *ug)
6598{
6599 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
6600 unsigned long flags;
6601
a9d5adee
JG
6602 if (!mem_cgroup_is_root(ug->memcg)) {
6603 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 6604 if (do_memsw_account())
a9d5adee
JG
6605 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6606 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6607 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6608 memcg_oom_recover(ug->memcg);
ce00a967 6609 }
747db954
JW
6610
6611 local_irq_save(flags);
c9019e9b
JW
6612 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6613 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6614 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6615 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6616 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
871789d4 6617 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
a9d5adee 6618 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6619 local_irq_restore(flags);
e8ea14cc 6620
a9d5adee
JG
6621 if (!mem_cgroup_is_root(ug->memcg))
6622 css_put_many(&ug->memcg->css, nr_pages);
6623}
6624
6625static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6626{
6627 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
6628 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6629 !PageHWPoison(page) , page);
a9d5adee
JG
6630
6631 if (!page->mem_cgroup)
6632 return;
6633
6634 /*
6635 * Nobody should be changing or seriously looking at
6636 * page->mem_cgroup at this point, we have fully
6637 * exclusive access to the page.
6638 */
6639
6640 if (ug->memcg != page->mem_cgroup) {
6641 if (ug->memcg) {
6642 uncharge_batch(ug);
6643 uncharge_gather_clear(ug);
6644 }
6645 ug->memcg = page->mem_cgroup;
6646 }
6647
6648 if (!PageKmemcg(page)) {
6649 unsigned int nr_pages = 1;
6650
6651 if (PageTransHuge(page)) {
d8c6546b 6652 nr_pages = compound_nr(page);
a9d5adee
JG
6653 ug->nr_huge += nr_pages;
6654 }
6655 if (PageAnon(page))
6656 ug->nr_anon += nr_pages;
6657 else {
6658 ug->nr_file += nr_pages;
6659 if (PageSwapBacked(page))
6660 ug->nr_shmem += nr_pages;
6661 }
6662 ug->pgpgout++;
6663 } else {
d8c6546b 6664 ug->nr_kmem += compound_nr(page);
a9d5adee
JG
6665 __ClearPageKmemcg(page);
6666 }
6667
6668 ug->dummy_page = page;
6669 page->mem_cgroup = NULL;
747db954
JW
6670}
6671
6672static void uncharge_list(struct list_head *page_list)
6673{
a9d5adee 6674 struct uncharge_gather ug;
747db954 6675 struct list_head *next;
a9d5adee
JG
6676
6677 uncharge_gather_clear(&ug);
747db954 6678
8b592656
JW
6679 /*
6680 * Note that the list can be a single page->lru; hence the
6681 * do-while loop instead of a simple list_for_each_entry().
6682 */
747db954
JW
6683 next = page_list->next;
6684 do {
a9d5adee
JG
6685 struct page *page;
6686
747db954
JW
6687 page = list_entry(next, struct page, lru);
6688 next = page->lru.next;
6689
a9d5adee 6690 uncharge_page(page, &ug);
747db954
JW
6691 } while (next != page_list);
6692
a9d5adee
JG
6693 if (ug.memcg)
6694 uncharge_batch(&ug);
747db954
JW
6695}
6696
0a31bc97
JW
6697/**
6698 * mem_cgroup_uncharge - uncharge a page
6699 * @page: page to uncharge
6700 *
6701 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6702 * mem_cgroup_commit_charge().
6703 */
6704void mem_cgroup_uncharge(struct page *page)
6705{
a9d5adee
JG
6706 struct uncharge_gather ug;
6707
0a31bc97
JW
6708 if (mem_cgroup_disabled())
6709 return;
6710
747db954 6711 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6712 if (!page->mem_cgroup)
0a31bc97
JW
6713 return;
6714
a9d5adee
JG
6715 uncharge_gather_clear(&ug);
6716 uncharge_page(page, &ug);
6717 uncharge_batch(&ug);
747db954 6718}
0a31bc97 6719
747db954
JW
6720/**
6721 * mem_cgroup_uncharge_list - uncharge a list of page
6722 * @page_list: list of pages to uncharge
6723 *
6724 * Uncharge a list of pages previously charged with
6725 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6726 */
6727void mem_cgroup_uncharge_list(struct list_head *page_list)
6728{
6729 if (mem_cgroup_disabled())
6730 return;
0a31bc97 6731
747db954
JW
6732 if (!list_empty(page_list))
6733 uncharge_list(page_list);
0a31bc97
JW
6734}
6735
6736/**
6a93ca8f
JW
6737 * mem_cgroup_migrate - charge a page's replacement
6738 * @oldpage: currently circulating page
6739 * @newpage: replacement page
0a31bc97 6740 *
6a93ca8f
JW
6741 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6742 * be uncharged upon free.
0a31bc97
JW
6743 *
6744 * Both pages must be locked, @newpage->mapping must be set up.
6745 */
6a93ca8f 6746void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6747{
29833315 6748 struct mem_cgroup *memcg;
44b7a8d3 6749 unsigned int nr_pages;
d93c4130 6750 unsigned long flags;
0a31bc97
JW
6751
6752 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6753 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6754 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6755 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6756 newpage);
0a31bc97
JW
6757
6758 if (mem_cgroup_disabled())
6759 return;
6760
6761 /* Page cache replacement: new page already charged? */
1306a85a 6762 if (newpage->mem_cgroup)
0a31bc97
JW
6763 return;
6764
45637bab 6765 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6766 memcg = oldpage->mem_cgroup;
29833315 6767 if (!memcg)
0a31bc97
JW
6768 return;
6769
44b7a8d3 6770 /* Force-charge the new page. The old one will be freed soon */
92855270 6771 nr_pages = hpage_nr_pages(newpage);
44b7a8d3
JW
6772
6773 page_counter_charge(&memcg->memory, nr_pages);
6774 if (do_memsw_account())
6775 page_counter_charge(&memcg->memsw, nr_pages);
6776 css_get_many(&memcg->css, nr_pages);
0a31bc97 6777
9cf7666a 6778 commit_charge(newpage, memcg, false);
44b7a8d3 6779
d93c4130 6780 local_irq_save(flags);
92855270
KC
6781 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6782 nr_pages);
44b7a8d3 6783 memcg_check_events(memcg, newpage);
d93c4130 6784 local_irq_restore(flags);
0a31bc97
JW
6785}
6786
ef12947c 6787DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6788EXPORT_SYMBOL(memcg_sockets_enabled_key);
6789
2d758073 6790void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6791{
6792 struct mem_cgroup *memcg;
6793
2d758073
JW
6794 if (!mem_cgroup_sockets_enabled)
6795 return;
6796
e876ecc6
SB
6797 /* Do not associate the sock with unrelated interrupted task's memcg. */
6798 if (in_interrupt())
6799 return;
6800
11092087
JW
6801 rcu_read_lock();
6802 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6803 if (memcg == root_mem_cgroup)
6804 goto out;
0db15298 6805 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6806 goto out;
8965aa28 6807 if (css_tryget(&memcg->css))
11092087 6808 sk->sk_memcg = memcg;
f7e1cb6e 6809out:
11092087
JW
6810 rcu_read_unlock();
6811}
11092087 6812
2d758073 6813void mem_cgroup_sk_free(struct sock *sk)
11092087 6814{
2d758073
JW
6815 if (sk->sk_memcg)
6816 css_put(&sk->sk_memcg->css);
11092087
JW
6817}
6818
6819/**
6820 * mem_cgroup_charge_skmem - charge socket memory
6821 * @memcg: memcg to charge
6822 * @nr_pages: number of pages to charge
6823 *
6824 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6825 * @memcg's configured limit, %false if the charge had to be forced.
6826 */
6827bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6828{
f7e1cb6e 6829 gfp_t gfp_mask = GFP_KERNEL;
11092087 6830
f7e1cb6e 6831 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6832 struct page_counter *fail;
f7e1cb6e 6833
0db15298
JW
6834 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6835 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6836 return true;
6837 }
0db15298
JW
6838 page_counter_charge(&memcg->tcpmem, nr_pages);
6839 memcg->tcpmem_pressure = 1;
f7e1cb6e 6840 return false;
11092087 6841 }
d886f4e4 6842
f7e1cb6e
JW
6843 /* Don't block in the packet receive path */
6844 if (in_softirq())
6845 gfp_mask = GFP_NOWAIT;
6846
c9019e9b 6847 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6848
f7e1cb6e
JW
6849 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6850 return true;
6851
6852 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6853 return false;
6854}
6855
6856/**
6857 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6858 * @memcg: memcg to uncharge
6859 * @nr_pages: number of pages to uncharge
11092087
JW
6860 */
6861void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6862{
f7e1cb6e 6863 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6864 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6865 return;
6866 }
d886f4e4 6867
c9019e9b 6868 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6869
475d0487 6870 refill_stock(memcg, nr_pages);
11092087
JW
6871}
6872
f7e1cb6e
JW
6873static int __init cgroup_memory(char *s)
6874{
6875 char *token;
6876
6877 while ((token = strsep(&s, ",")) != NULL) {
6878 if (!*token)
6879 continue;
6880 if (!strcmp(token, "nosocket"))
6881 cgroup_memory_nosocket = true;
04823c83
VD
6882 if (!strcmp(token, "nokmem"))
6883 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6884 }
6885 return 0;
6886}
6887__setup("cgroup.memory=", cgroup_memory);
11092087 6888
2d11085e 6889/*
1081312f
MH
6890 * subsys_initcall() for memory controller.
6891 *
308167fc
SAS
6892 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6893 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6894 * basically everything that doesn't depend on a specific mem_cgroup structure
6895 * should be initialized from here.
2d11085e
MH
6896 */
6897static int __init mem_cgroup_init(void)
6898{
95a045f6
JW
6899 int cpu, node;
6900
84c07d11 6901#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6902 /*
6903 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6904 * so use a workqueue with limited concurrency to avoid stalling
6905 * all worker threads in case lots of cgroups are created and
6906 * destroyed simultaneously.
13583c3d 6907 */
17cc4dfe
TH
6908 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6909 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6910#endif
6911
308167fc
SAS
6912 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6913 memcg_hotplug_cpu_dead);
95a045f6
JW
6914
6915 for_each_possible_cpu(cpu)
6916 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6917 drain_local_stock);
6918
6919 for_each_node(node) {
6920 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6921
6922 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6923 node_online(node) ? node : NUMA_NO_NODE);
6924
ef8f2327 6925 rtpn->rb_root = RB_ROOT;
fa90b2fd 6926 rtpn->rb_rightmost = NULL;
ef8f2327 6927 spin_lock_init(&rtpn->lock);
95a045f6
JW
6928 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6929 }
6930
2d11085e
MH
6931 return 0;
6932}
6933subsys_initcall(mem_cgroup_init);
21afa38e
JW
6934
6935#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6936static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6937{
1c2d479a 6938 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
6939 /*
6940 * The root cgroup cannot be destroyed, so it's refcount must
6941 * always be >= 1.
6942 */
6943 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6944 VM_BUG_ON(1);
6945 break;
6946 }
6947 memcg = parent_mem_cgroup(memcg);
6948 if (!memcg)
6949 memcg = root_mem_cgroup;
6950 }
6951 return memcg;
6952}
6953
21afa38e
JW
6954/**
6955 * mem_cgroup_swapout - transfer a memsw charge to swap
6956 * @page: page whose memsw charge to transfer
6957 * @entry: swap entry to move the charge to
6958 *
6959 * Transfer the memsw charge of @page to @entry.
6960 */
6961void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6962{
1f47b61f 6963 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6964 unsigned int nr_entries;
21afa38e
JW
6965 unsigned short oldid;
6966
6967 VM_BUG_ON_PAGE(PageLRU(page), page);
6968 VM_BUG_ON_PAGE(page_count(page), page);
6969
7941d214 6970 if (!do_memsw_account())
21afa38e
JW
6971 return;
6972
6973 memcg = page->mem_cgroup;
6974
6975 /* Readahead page, never charged */
6976 if (!memcg)
6977 return;
6978
1f47b61f
VD
6979 /*
6980 * In case the memcg owning these pages has been offlined and doesn't
6981 * have an ID allocated to it anymore, charge the closest online
6982 * ancestor for the swap instead and transfer the memory+swap charge.
6983 */
6984 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6985 nr_entries = hpage_nr_pages(page);
6986 /* Get references for the tail pages, too */
6987 if (nr_entries > 1)
6988 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6989 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6990 nr_entries);
21afa38e 6991 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6992 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6993
6994 page->mem_cgroup = NULL;
6995
6996 if (!mem_cgroup_is_root(memcg))
d6810d73 6997 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6998
1f47b61f
VD
6999 if (memcg != swap_memcg) {
7000 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7001 page_counter_charge(&swap_memcg->memsw, nr_entries);
7002 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7003 }
7004
ce9ce665
SAS
7005 /*
7006 * Interrupts should be disabled here because the caller holds the
b93b0163 7007 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7008 * important here to have the interrupts disabled because it is the
b93b0163 7009 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7010 */
7011 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
7012 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
7013 -nr_entries);
21afa38e 7014 memcg_check_events(memcg, page);
73f576c0
JW
7015
7016 if (!mem_cgroup_is_root(memcg))
d08afa14 7017 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
7018}
7019
38d8b4e6
HY
7020/**
7021 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7022 * @page: page being added to swap
7023 * @entry: swap entry to charge
7024 *
38d8b4e6 7025 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7026 *
7027 * Returns 0 on success, -ENOMEM on failure.
7028 */
7029int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7030{
38d8b4e6 7031 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 7032 struct page_counter *counter;
38d8b4e6 7033 struct mem_cgroup *memcg;
37e84351
VD
7034 unsigned short oldid;
7035
7036 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
7037 return 0;
7038
7039 memcg = page->mem_cgroup;
7040
7041 /* Readahead page, never charged */
7042 if (!memcg)
7043 return 0;
7044
f3a53a3a
TH
7045 if (!entry.val) {
7046 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7047 return 0;
f3a53a3a 7048 }
bb98f2c5 7049
1f47b61f
VD
7050 memcg = mem_cgroup_id_get_online(memcg);
7051
37e84351 7052 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 7053 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7054 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7055 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7056 mem_cgroup_id_put(memcg);
37e84351 7057 return -ENOMEM;
1f47b61f 7058 }
37e84351 7059
38d8b4e6
HY
7060 /* Get references for the tail pages, too */
7061 if (nr_pages > 1)
7062 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7063 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7064 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7065 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7066
37e84351
VD
7067 return 0;
7068}
7069
21afa38e 7070/**
38d8b4e6 7071 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7072 * @entry: swap entry to uncharge
38d8b4e6 7073 * @nr_pages: the amount of swap space to uncharge
21afa38e 7074 */
38d8b4e6 7075void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7076{
7077 struct mem_cgroup *memcg;
7078 unsigned short id;
7079
37e84351 7080 if (!do_swap_account)
21afa38e
JW
7081 return;
7082
38d8b4e6 7083 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7084 rcu_read_lock();
adbe427b 7085 memcg = mem_cgroup_from_id(id);
21afa38e 7086 if (memcg) {
37e84351
VD
7087 if (!mem_cgroup_is_root(memcg)) {
7088 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7089 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7090 else
38d8b4e6 7091 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7092 }
c9019e9b 7093 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7094 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7095 }
7096 rcu_read_unlock();
7097}
7098
d8b38438
VD
7099long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7100{
7101 long nr_swap_pages = get_nr_swap_pages();
7102
7103 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7104 return nr_swap_pages;
7105 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7106 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7107 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7108 page_counter_read(&memcg->swap));
7109 return nr_swap_pages;
7110}
7111
5ccc5aba
VD
7112bool mem_cgroup_swap_full(struct page *page)
7113{
7114 struct mem_cgroup *memcg;
7115
7116 VM_BUG_ON_PAGE(!PageLocked(page), page);
7117
7118 if (vm_swap_full())
7119 return true;
7120 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7121 return false;
7122
7123 memcg = page->mem_cgroup;
7124 if (!memcg)
7125 return false;
7126
7127 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
32d087cd
CD
7128 if (page_counter_read(&memcg->swap) * 2 >=
7129 READ_ONCE(memcg->swap.max))
5ccc5aba
VD
7130 return true;
7131
7132 return false;
7133}
7134
21afa38e
JW
7135/* for remember boot option*/
7136#ifdef CONFIG_MEMCG_SWAP_ENABLED
7137static int really_do_swap_account __initdata = 1;
7138#else
7139static int really_do_swap_account __initdata;
7140#endif
7141
7142static int __init enable_swap_account(char *s)
7143{
7144 if (!strcmp(s, "1"))
7145 really_do_swap_account = 1;
7146 else if (!strcmp(s, "0"))
7147 really_do_swap_account = 0;
7148 return 1;
7149}
7150__setup("swapaccount=", enable_swap_account);
7151
37e84351
VD
7152static u64 swap_current_read(struct cgroup_subsys_state *css,
7153 struct cftype *cft)
7154{
7155 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7156
7157 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7158}
7159
7160static int swap_max_show(struct seq_file *m, void *v)
7161{
677dc973
CD
7162 return seq_puts_memcg_tunable(m,
7163 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7164}
7165
7166static ssize_t swap_max_write(struct kernfs_open_file *of,
7167 char *buf, size_t nbytes, loff_t off)
7168{
7169 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7170 unsigned long max;
7171 int err;
7172
7173 buf = strstrip(buf);
7174 err = page_counter_memparse(buf, "max", &max);
7175 if (err)
7176 return err;
7177
be09102b 7178 xchg(&memcg->swap.max, max);
37e84351
VD
7179
7180 return nbytes;
7181}
7182
f3a53a3a
TH
7183static int swap_events_show(struct seq_file *m, void *v)
7184{
aa9694bb 7185 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a
TH
7186
7187 seq_printf(m, "max %lu\n",
7188 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7189 seq_printf(m, "fail %lu\n",
7190 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7191
7192 return 0;
7193}
7194
37e84351
VD
7195static struct cftype swap_files[] = {
7196 {
7197 .name = "swap.current",
7198 .flags = CFTYPE_NOT_ON_ROOT,
7199 .read_u64 = swap_current_read,
7200 },
7201 {
7202 .name = "swap.max",
7203 .flags = CFTYPE_NOT_ON_ROOT,
7204 .seq_show = swap_max_show,
7205 .write = swap_max_write,
7206 },
f3a53a3a
TH
7207 {
7208 .name = "swap.events",
7209 .flags = CFTYPE_NOT_ON_ROOT,
7210 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7211 .seq_show = swap_events_show,
7212 },
37e84351
VD
7213 { } /* terminate */
7214};
7215
21afa38e
JW
7216static struct cftype memsw_cgroup_files[] = {
7217 {
7218 .name = "memsw.usage_in_bytes",
7219 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7220 .read_u64 = mem_cgroup_read_u64,
7221 },
7222 {
7223 .name = "memsw.max_usage_in_bytes",
7224 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7225 .write = mem_cgroup_reset,
7226 .read_u64 = mem_cgroup_read_u64,
7227 },
7228 {
7229 .name = "memsw.limit_in_bytes",
7230 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7231 .write = mem_cgroup_write,
7232 .read_u64 = mem_cgroup_read_u64,
7233 },
7234 {
7235 .name = "memsw.failcnt",
7236 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7237 .write = mem_cgroup_reset,
7238 .read_u64 = mem_cgroup_read_u64,
7239 },
7240 { }, /* terminate */
7241};
7242
7243static int __init mem_cgroup_swap_init(void)
7244{
7245 if (!mem_cgroup_disabled() && really_do_swap_account) {
7246 do_swap_account = 1;
37e84351
VD
7247 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7248 swap_files));
21afa38e
JW
7249 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7250 memsw_cgroup_files));
7251 }
7252 return 0;
7253}
7254subsys_initcall(mem_cgroup_swap_init);
7255
7256#endif /* CONFIG_MEMCG_SWAP */