]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/memcontrol.c
mm: memcontrol: introduce CONFIG_MEMCG_LEGACY_KMEM
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
d1a4c0b3 69#include <net/tcp_memcontrol.h>
f35c3a8e 70#include "slab.h"
8cdea7c0 71
8697d331
BS
72#include <asm/uaccess.h>
73
cc8e970c
KM
74#include <trace/events/vmscan.h>
75
073219e9
TH
76struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 78
7d828602
JW
79struct mem_cgroup *root_mem_cgroup __read_mostly;
80
a181b0e8 81#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 82
f7e1cb6e
JW
83/* Socket memory accounting disabled? */
84static bool cgroup_memory_nosocket;
85
04823c83
VD
86/* Kernel memory accounting disabled? */
87static bool cgroup_memory_nokmem;
88
21afa38e 89/* Whether the swap controller is active */
c255a458 90#ifdef CONFIG_MEMCG_SWAP
c077719b 91int do_swap_account __read_mostly;
c077719b 92#else
a0db00fc 93#define do_swap_account 0
c077719b
KH
94#endif
95
7941d214
JW
96/* Whether legacy memory+swap accounting is active */
97static bool do_memsw_account(void)
98{
99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
100}
101
af7c4b0e
JW
102static const char * const mem_cgroup_stat_names[] = {
103 "cache",
104 "rss",
b070e65c 105 "rss_huge",
af7c4b0e 106 "mapped_file",
c4843a75 107 "dirty",
3ea67d06 108 "writeback",
af7c4b0e
JW
109 "swap",
110};
111
af7c4b0e
JW
112static const char * const mem_cgroup_events_names[] = {
113 "pgpgin",
114 "pgpgout",
115 "pgfault",
116 "pgmajfault",
117};
118
58cf188e
SZ
119static const char * const mem_cgroup_lru_names[] = {
120 "inactive_anon",
121 "active_anon",
122 "inactive_file",
123 "active_file",
124 "unevictable",
125};
126
a0db00fc
KS
127#define THRESHOLDS_EVENTS_TARGET 128
128#define SOFTLIMIT_EVENTS_TARGET 1024
129#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 130
bb4cc1a8
AM
131/*
132 * Cgroups above their limits are maintained in a RB-Tree, independent of
133 * their hierarchy representation
134 */
135
136struct mem_cgroup_tree_per_zone {
137 struct rb_root rb_root;
138 spinlock_t lock;
139};
140
141struct mem_cgroup_tree_per_node {
142 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
143};
144
145struct mem_cgroup_tree {
146 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
147};
148
149static struct mem_cgroup_tree soft_limit_tree __read_mostly;
150
9490ff27
KH
151/* for OOM */
152struct mem_cgroup_eventfd_list {
153 struct list_head list;
154 struct eventfd_ctx *eventfd;
155};
2e72b634 156
79bd9814
TH
157/*
158 * cgroup_event represents events which userspace want to receive.
159 */
3bc942f3 160struct mem_cgroup_event {
79bd9814 161 /*
59b6f873 162 * memcg which the event belongs to.
79bd9814 163 */
59b6f873 164 struct mem_cgroup *memcg;
79bd9814
TH
165 /*
166 * eventfd to signal userspace about the event.
167 */
168 struct eventfd_ctx *eventfd;
169 /*
170 * Each of these stored in a list by the cgroup.
171 */
172 struct list_head list;
fba94807
TH
173 /*
174 * register_event() callback will be used to add new userspace
175 * waiter for changes related to this event. Use eventfd_signal()
176 * on eventfd to send notification to userspace.
177 */
59b6f873 178 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 179 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
180 /*
181 * unregister_event() callback will be called when userspace closes
182 * the eventfd or on cgroup removing. This callback must be set,
183 * if you want provide notification functionality.
184 */
59b6f873 185 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 186 struct eventfd_ctx *eventfd);
79bd9814
TH
187 /*
188 * All fields below needed to unregister event when
189 * userspace closes eventfd.
190 */
191 poll_table pt;
192 wait_queue_head_t *wqh;
193 wait_queue_t wait;
194 struct work_struct remove;
195};
196
c0ff4b85
R
197static void mem_cgroup_threshold(struct mem_cgroup *memcg);
198static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 199
7dc74be0
DN
200/* Stuffs for move charges at task migration. */
201/*
1dfab5ab 202 * Types of charges to be moved.
7dc74be0 203 */
1dfab5ab
JW
204#define MOVE_ANON 0x1U
205#define MOVE_FILE 0x2U
206#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 207
4ffef5fe
DN
208/* "mc" and its members are protected by cgroup_mutex */
209static struct move_charge_struct {
b1dd693e 210 spinlock_t lock; /* for from, to */
4ffef5fe
DN
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
1dfab5ab 213 unsigned long flags;
4ffef5fe 214 unsigned long precharge;
854ffa8d 215 unsigned long moved_charge;
483c30b5 216 unsigned long moved_swap;
8033b97c
DN
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219} mc = {
2bd9bb20 220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222};
4ffef5fe 223
4e416953
BS
224/*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
a0db00fc 228#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 229#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 230
217bc319
KH
231enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 233 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
236 NR_CHARGE_TYPE,
237};
238
8c7c6e34 239/* for encoding cft->private value on file */
86ae53e1
GC
240enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
510fc4e1 244 _KMEM,
86ae53e1
GC
245};
246
a0db00fc
KS
247#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 249#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
250/* Used for OOM nofiier */
251#define OOM_CONTROL (0)
8c7c6e34 252
0999821b
GC
253/*
254 * The memcg_create_mutex will be held whenever a new cgroup is created.
255 * As a consequence, any change that needs to protect against new child cgroups
256 * appearing has to hold it as well.
257 */
258static DEFINE_MUTEX(memcg_create_mutex);
259
70ddf637
AV
260/* Some nice accessors for the vmpressure. */
261struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
262{
263 if (!memcg)
264 memcg = root_mem_cgroup;
265 return &memcg->vmpressure;
266}
267
268struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
269{
270 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
271}
272
7ffc0edc
MH
273static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
274{
275 return (memcg == root_mem_cgroup);
276}
277
4219b2da
LZ
278/*
279 * We restrict the id in the range of [1, 65535], so it can fit into
280 * an unsigned short.
281 */
282#define MEM_CGROUP_ID_MAX USHRT_MAX
283
34c00c31
LZ
284static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
285{
15a4c835 286 return memcg->css.id;
34c00c31
LZ
287}
288
adbe427b
VD
289/*
290 * A helper function to get mem_cgroup from ID. must be called under
291 * rcu_read_lock(). The caller is responsible for calling
292 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
293 * refcnt from swap can be called against removed memcg.)
294 */
34c00c31
LZ
295static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
296{
297 struct cgroup_subsys_state *css;
298
7d699ddb 299 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
300 return mem_cgroup_from_css(css);
301}
302
127424c8 303#ifndef CONFIG_SLOB
55007d84 304/*
f7ce3190 305 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
306 * The main reason for not using cgroup id for this:
307 * this works better in sparse environments, where we have a lot of memcgs,
308 * but only a few kmem-limited. Or also, if we have, for instance, 200
309 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
310 * 200 entry array for that.
55007d84 311 *
dbcf73e2
VD
312 * The current size of the caches array is stored in memcg_nr_cache_ids. It
313 * will double each time we have to increase it.
55007d84 314 */
dbcf73e2
VD
315static DEFINE_IDA(memcg_cache_ida);
316int memcg_nr_cache_ids;
749c5415 317
05257a1a
VD
318/* Protects memcg_nr_cache_ids */
319static DECLARE_RWSEM(memcg_cache_ids_sem);
320
321void memcg_get_cache_ids(void)
322{
323 down_read(&memcg_cache_ids_sem);
324}
325
326void memcg_put_cache_ids(void)
327{
328 up_read(&memcg_cache_ids_sem);
329}
330
55007d84
GC
331/*
332 * MIN_SIZE is different than 1, because we would like to avoid going through
333 * the alloc/free process all the time. In a small machine, 4 kmem-limited
334 * cgroups is a reasonable guess. In the future, it could be a parameter or
335 * tunable, but that is strictly not necessary.
336 *
b8627835 337 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
338 * this constant directly from cgroup, but it is understandable that this is
339 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 340 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
341 * increase ours as well if it increases.
342 */
343#define MEMCG_CACHES_MIN_SIZE 4
b8627835 344#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 345
d7f25f8a
GC
346/*
347 * A lot of the calls to the cache allocation functions are expected to be
348 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
349 * conditional to this static branch, we'll have to allow modules that does
350 * kmem_cache_alloc and the such to see this symbol as well
351 */
ef12947c 352DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 353EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 354
127424c8 355#endif /* !CONFIG_SLOB */
a8964b9b 356
f64c3f54 357static struct mem_cgroup_per_zone *
e231875b 358mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 359{
e231875b
JZ
360 int nid = zone_to_nid(zone);
361 int zid = zone_idx(zone);
362
54f72fe0 363 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
364}
365
ad7fa852
TH
366/**
367 * mem_cgroup_css_from_page - css of the memcg associated with a page
368 * @page: page of interest
369 *
370 * If memcg is bound to the default hierarchy, css of the memcg associated
371 * with @page is returned. The returned css remains associated with @page
372 * until it is released.
373 *
374 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
375 * is returned.
376 *
377 * XXX: The above description of behavior on the default hierarchy isn't
378 * strictly true yet as replace_page_cache_page() can modify the
379 * association before @page is released even on the default hierarchy;
380 * however, the current and planned usages don't mix the the two functions
381 * and replace_page_cache_page() will soon be updated to make the invariant
382 * actually true.
383 */
384struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
385{
386 struct mem_cgroup *memcg;
387
ad7fa852
TH
388 memcg = page->mem_cgroup;
389
9e10a130 390 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
391 memcg = root_mem_cgroup;
392
ad7fa852
TH
393 return &memcg->css;
394}
395
2fc04524
VD
396/**
397 * page_cgroup_ino - return inode number of the memcg a page is charged to
398 * @page: the page
399 *
400 * Look up the closest online ancestor of the memory cgroup @page is charged to
401 * and return its inode number or 0 if @page is not charged to any cgroup. It
402 * is safe to call this function without holding a reference to @page.
403 *
404 * Note, this function is inherently racy, because there is nothing to prevent
405 * the cgroup inode from getting torn down and potentially reallocated a moment
406 * after page_cgroup_ino() returns, so it only should be used by callers that
407 * do not care (such as procfs interfaces).
408 */
409ino_t page_cgroup_ino(struct page *page)
410{
411 struct mem_cgroup *memcg;
412 unsigned long ino = 0;
413
414 rcu_read_lock();
415 memcg = READ_ONCE(page->mem_cgroup);
416 while (memcg && !(memcg->css.flags & CSS_ONLINE))
417 memcg = parent_mem_cgroup(memcg);
418 if (memcg)
419 ino = cgroup_ino(memcg->css.cgroup);
420 rcu_read_unlock();
421 return ino;
422}
423
f64c3f54 424static struct mem_cgroup_per_zone *
e231875b 425mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 426{
97a6c37b
JW
427 int nid = page_to_nid(page);
428 int zid = page_zonenum(page);
f64c3f54 429
e231875b 430 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
431}
432
bb4cc1a8
AM
433static struct mem_cgroup_tree_per_zone *
434soft_limit_tree_node_zone(int nid, int zid)
435{
436 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
437}
438
439static struct mem_cgroup_tree_per_zone *
440soft_limit_tree_from_page(struct page *page)
441{
442 int nid = page_to_nid(page);
443 int zid = page_zonenum(page);
444
445 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
446}
447
cf2c8127
JW
448static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 450 unsigned long new_usage_in_excess)
bb4cc1a8
AM
451{
452 struct rb_node **p = &mctz->rb_root.rb_node;
453 struct rb_node *parent = NULL;
454 struct mem_cgroup_per_zone *mz_node;
455
456 if (mz->on_tree)
457 return;
458
459 mz->usage_in_excess = new_usage_in_excess;
460 if (!mz->usage_in_excess)
461 return;
462 while (*p) {
463 parent = *p;
464 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
465 tree_node);
466 if (mz->usage_in_excess < mz_node->usage_in_excess)
467 p = &(*p)->rb_left;
468 /*
469 * We can't avoid mem cgroups that are over their soft
470 * limit by the same amount
471 */
472 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
473 p = &(*p)->rb_right;
474 }
475 rb_link_node(&mz->tree_node, parent, p);
476 rb_insert_color(&mz->tree_node, &mctz->rb_root);
477 mz->on_tree = true;
478}
479
cf2c8127
JW
480static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
481 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
482{
483 if (!mz->on_tree)
484 return;
485 rb_erase(&mz->tree_node, &mctz->rb_root);
486 mz->on_tree = false;
487}
488
cf2c8127
JW
489static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
490 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 491{
0a31bc97
JW
492 unsigned long flags;
493
494 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 495 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 496 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
497}
498
3e32cb2e
JW
499static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
500{
501 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 502 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
503 unsigned long excess = 0;
504
505 if (nr_pages > soft_limit)
506 excess = nr_pages - soft_limit;
507
508 return excess;
509}
bb4cc1a8
AM
510
511static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
512{
3e32cb2e 513 unsigned long excess;
bb4cc1a8
AM
514 struct mem_cgroup_per_zone *mz;
515 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 516
e231875b 517 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
518 /*
519 * Necessary to update all ancestors when hierarchy is used.
520 * because their event counter is not touched.
521 */
522 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 523 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 524 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
525 /*
526 * We have to update the tree if mz is on RB-tree or
527 * mem is over its softlimit.
528 */
529 if (excess || mz->on_tree) {
0a31bc97
JW
530 unsigned long flags;
531
532 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
533 /* if on-tree, remove it */
534 if (mz->on_tree)
cf2c8127 535 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
536 /*
537 * Insert again. mz->usage_in_excess will be updated.
538 * If excess is 0, no tree ops.
539 */
cf2c8127 540 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 541 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
542 }
543 }
544}
545
546static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
547{
bb4cc1a8 548 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
549 struct mem_cgroup_per_zone *mz;
550 int nid, zid;
bb4cc1a8 551
e231875b
JZ
552 for_each_node(nid) {
553 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
554 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
555 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 556 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
557 }
558 }
559}
560
561static struct mem_cgroup_per_zone *
562__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
563{
564 struct rb_node *rightmost = NULL;
565 struct mem_cgroup_per_zone *mz;
566
567retry:
568 mz = NULL;
569 rightmost = rb_last(&mctz->rb_root);
570 if (!rightmost)
571 goto done; /* Nothing to reclaim from */
572
573 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
574 /*
575 * Remove the node now but someone else can add it back,
576 * we will to add it back at the end of reclaim to its correct
577 * position in the tree.
578 */
cf2c8127 579 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 580 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 581 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
582 goto retry;
583done:
584 return mz;
585}
586
587static struct mem_cgroup_per_zone *
588mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
589{
590 struct mem_cgroup_per_zone *mz;
591
0a31bc97 592 spin_lock_irq(&mctz->lock);
bb4cc1a8 593 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 594 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
595 return mz;
596}
597
711d3d2c 598/*
484ebb3b
GT
599 * Return page count for single (non recursive) @memcg.
600 *
711d3d2c
KH
601 * Implementation Note: reading percpu statistics for memcg.
602 *
603 * Both of vmstat[] and percpu_counter has threshold and do periodic
604 * synchronization to implement "quick" read. There are trade-off between
605 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 606 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
607 *
608 * But this _read() function is used for user interface now. The user accounts
609 * memory usage by memory cgroup and he _always_ requires exact value because
610 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
611 * have to visit all online cpus and make sum. So, for now, unnecessary
612 * synchronization is not implemented. (just implemented for cpu hotplug)
613 *
614 * If there are kernel internal actions which can make use of some not-exact
615 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 616 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
617 * implemented.
618 */
484ebb3b
GT
619static unsigned long
620mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 621{
7a159cc9 622 long val = 0;
c62b1a3b 623 int cpu;
c62b1a3b 624
484ebb3b 625 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 626 for_each_possible_cpu(cpu)
c0ff4b85 627 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
628 /*
629 * Summing races with updates, so val may be negative. Avoid exposing
630 * transient negative values.
631 */
632 if (val < 0)
633 val = 0;
c62b1a3b
KH
634 return val;
635}
636
c0ff4b85 637static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
638 enum mem_cgroup_events_index idx)
639{
640 unsigned long val = 0;
641 int cpu;
642
733a572e 643 for_each_possible_cpu(cpu)
c0ff4b85 644 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
645 return val;
646}
647
c0ff4b85 648static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 649 struct page *page,
f627c2f5 650 bool compound, int nr_pages)
d52aa412 651{
b2402857
KH
652 /*
653 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
654 * counted as CACHE even if it's on ANON LRU.
655 */
0a31bc97 656 if (PageAnon(page))
b2402857 657 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 658 nr_pages);
d52aa412 659 else
b2402857 660 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 661 nr_pages);
55e462b0 662
f627c2f5
KS
663 if (compound) {
664 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
665 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
666 nr_pages);
f627c2f5 667 }
b070e65c 668
e401f176
KH
669 /* pagein of a big page is an event. So, ignore page size */
670 if (nr_pages > 0)
c0ff4b85 671 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 672 else {
c0ff4b85 673 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
674 nr_pages = -nr_pages; /* for event */
675 }
e401f176 676
13114716 677 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
678}
679
e231875b
JZ
680static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
681 int nid,
682 unsigned int lru_mask)
bb2a0de9 683{
e231875b 684 unsigned long nr = 0;
889976db
YH
685 int zid;
686
e231875b 687 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 688
e231875b
JZ
689 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
690 struct mem_cgroup_per_zone *mz;
691 enum lru_list lru;
692
693 for_each_lru(lru) {
694 if (!(BIT(lru) & lru_mask))
695 continue;
696 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
697 nr += mz->lru_size[lru];
698 }
699 }
700 return nr;
889976db 701}
bb2a0de9 702
c0ff4b85 703static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 704 unsigned int lru_mask)
6d12e2d8 705{
e231875b 706 unsigned long nr = 0;
889976db 707 int nid;
6d12e2d8 708
31aaea4a 709 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
710 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
711 return nr;
d52aa412
KH
712}
713
f53d7ce3
JW
714static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
715 enum mem_cgroup_events_target target)
7a159cc9
JW
716{
717 unsigned long val, next;
718
13114716 719 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 720 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 721 /* from time_after() in jiffies.h */
f53d7ce3
JW
722 if ((long)next - (long)val < 0) {
723 switch (target) {
724 case MEM_CGROUP_TARGET_THRESH:
725 next = val + THRESHOLDS_EVENTS_TARGET;
726 break;
bb4cc1a8
AM
727 case MEM_CGROUP_TARGET_SOFTLIMIT:
728 next = val + SOFTLIMIT_EVENTS_TARGET;
729 break;
f53d7ce3
JW
730 case MEM_CGROUP_TARGET_NUMAINFO:
731 next = val + NUMAINFO_EVENTS_TARGET;
732 break;
733 default:
734 break;
735 }
736 __this_cpu_write(memcg->stat->targets[target], next);
737 return true;
7a159cc9 738 }
f53d7ce3 739 return false;
d2265e6f
KH
740}
741
742/*
743 * Check events in order.
744 *
745 */
c0ff4b85 746static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
747{
748 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
749 if (unlikely(mem_cgroup_event_ratelimit(memcg,
750 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 751 bool do_softlimit;
82b3f2a7 752 bool do_numainfo __maybe_unused;
f53d7ce3 753
bb4cc1a8
AM
754 do_softlimit = mem_cgroup_event_ratelimit(memcg,
755 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
756#if MAX_NUMNODES > 1
757 do_numainfo = mem_cgroup_event_ratelimit(memcg,
758 MEM_CGROUP_TARGET_NUMAINFO);
759#endif
c0ff4b85 760 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
761 if (unlikely(do_softlimit))
762 mem_cgroup_update_tree(memcg, page);
453a9bf3 763#if MAX_NUMNODES > 1
f53d7ce3 764 if (unlikely(do_numainfo))
c0ff4b85 765 atomic_inc(&memcg->numainfo_events);
453a9bf3 766#endif
0a31bc97 767 }
d2265e6f
KH
768}
769
cf475ad2 770struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 771{
31a78f23
BS
772 /*
773 * mm_update_next_owner() may clear mm->owner to NULL
774 * if it races with swapoff, page migration, etc.
775 * So this can be called with p == NULL.
776 */
777 if (unlikely(!p))
778 return NULL;
779
073219e9 780 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 781}
33398cf2 782EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 783
df381975 784static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 785{
c0ff4b85 786 struct mem_cgroup *memcg = NULL;
0b7f569e 787
54595fe2
KH
788 rcu_read_lock();
789 do {
6f6acb00
MH
790 /*
791 * Page cache insertions can happen withou an
792 * actual mm context, e.g. during disk probing
793 * on boot, loopback IO, acct() writes etc.
794 */
795 if (unlikely(!mm))
df381975 796 memcg = root_mem_cgroup;
6f6acb00
MH
797 else {
798 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
799 if (unlikely(!memcg))
800 memcg = root_mem_cgroup;
801 }
ec903c0c 802 } while (!css_tryget_online(&memcg->css));
54595fe2 803 rcu_read_unlock();
c0ff4b85 804 return memcg;
54595fe2
KH
805}
806
5660048c
JW
807/**
808 * mem_cgroup_iter - iterate over memory cgroup hierarchy
809 * @root: hierarchy root
810 * @prev: previously returned memcg, NULL on first invocation
811 * @reclaim: cookie for shared reclaim walks, NULL for full walks
812 *
813 * Returns references to children of the hierarchy below @root, or
814 * @root itself, or %NULL after a full round-trip.
815 *
816 * Caller must pass the return value in @prev on subsequent
817 * invocations for reference counting, or use mem_cgroup_iter_break()
818 * to cancel a hierarchy walk before the round-trip is complete.
819 *
820 * Reclaimers can specify a zone and a priority level in @reclaim to
821 * divide up the memcgs in the hierarchy among all concurrent
822 * reclaimers operating on the same zone and priority.
823 */
694fbc0f 824struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 825 struct mem_cgroup *prev,
694fbc0f 826 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 827{
33398cf2 828 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 829 struct cgroup_subsys_state *css = NULL;
9f3a0d09 830 struct mem_cgroup *memcg = NULL;
5ac8fb31 831 struct mem_cgroup *pos = NULL;
711d3d2c 832
694fbc0f
AM
833 if (mem_cgroup_disabled())
834 return NULL;
5660048c 835
9f3a0d09
JW
836 if (!root)
837 root = root_mem_cgroup;
7d74b06f 838
9f3a0d09 839 if (prev && !reclaim)
5ac8fb31 840 pos = prev;
14067bb3 841
9f3a0d09
JW
842 if (!root->use_hierarchy && root != root_mem_cgroup) {
843 if (prev)
5ac8fb31 844 goto out;
694fbc0f 845 return root;
9f3a0d09 846 }
14067bb3 847
542f85f9 848 rcu_read_lock();
5f578161 849
5ac8fb31
JW
850 if (reclaim) {
851 struct mem_cgroup_per_zone *mz;
852
853 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
854 iter = &mz->iter[reclaim->priority];
855
856 if (prev && reclaim->generation != iter->generation)
857 goto out_unlock;
858
6df38689 859 while (1) {
4db0c3c2 860 pos = READ_ONCE(iter->position);
6df38689
VD
861 if (!pos || css_tryget(&pos->css))
862 break;
5ac8fb31 863 /*
6df38689
VD
864 * css reference reached zero, so iter->position will
865 * be cleared by ->css_released. However, we should not
866 * rely on this happening soon, because ->css_released
867 * is called from a work queue, and by busy-waiting we
868 * might block it. So we clear iter->position right
869 * away.
5ac8fb31 870 */
6df38689
VD
871 (void)cmpxchg(&iter->position, pos, NULL);
872 }
5ac8fb31
JW
873 }
874
875 if (pos)
876 css = &pos->css;
877
878 for (;;) {
879 css = css_next_descendant_pre(css, &root->css);
880 if (!css) {
881 /*
882 * Reclaimers share the hierarchy walk, and a
883 * new one might jump in right at the end of
884 * the hierarchy - make sure they see at least
885 * one group and restart from the beginning.
886 */
887 if (!prev)
888 continue;
889 break;
527a5ec9 890 }
7d74b06f 891
5ac8fb31
JW
892 /*
893 * Verify the css and acquire a reference. The root
894 * is provided by the caller, so we know it's alive
895 * and kicking, and don't take an extra reference.
896 */
897 memcg = mem_cgroup_from_css(css);
14067bb3 898
5ac8fb31
JW
899 if (css == &root->css)
900 break;
14067bb3 901
b2052564 902 if (css_tryget(css)) {
5ac8fb31
JW
903 /*
904 * Make sure the memcg is initialized:
905 * mem_cgroup_css_online() orders the the
906 * initialization against setting the flag.
907 */
908 if (smp_load_acquire(&memcg->initialized))
909 break;
542f85f9 910
5ac8fb31 911 css_put(css);
527a5ec9 912 }
9f3a0d09 913
5ac8fb31 914 memcg = NULL;
9f3a0d09 915 }
5ac8fb31
JW
916
917 if (reclaim) {
5ac8fb31 918 /*
6df38689
VD
919 * The position could have already been updated by a competing
920 * thread, so check that the value hasn't changed since we read
921 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 922 */
6df38689
VD
923 (void)cmpxchg(&iter->position, pos, memcg);
924
5ac8fb31
JW
925 if (pos)
926 css_put(&pos->css);
927
928 if (!memcg)
929 iter->generation++;
930 else if (!prev)
931 reclaim->generation = iter->generation;
9f3a0d09 932 }
5ac8fb31 933
542f85f9
MH
934out_unlock:
935 rcu_read_unlock();
5ac8fb31 936out:
c40046f3
MH
937 if (prev && prev != root)
938 css_put(&prev->css);
939
9f3a0d09 940 return memcg;
14067bb3 941}
7d74b06f 942
5660048c
JW
943/**
944 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
945 * @root: hierarchy root
946 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
947 */
948void mem_cgroup_iter_break(struct mem_cgroup *root,
949 struct mem_cgroup *prev)
9f3a0d09
JW
950{
951 if (!root)
952 root = root_mem_cgroup;
953 if (prev && prev != root)
954 css_put(&prev->css);
955}
7d74b06f 956
6df38689
VD
957static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
958{
959 struct mem_cgroup *memcg = dead_memcg;
960 struct mem_cgroup_reclaim_iter *iter;
961 struct mem_cgroup_per_zone *mz;
962 int nid, zid;
963 int i;
964
965 while ((memcg = parent_mem_cgroup(memcg))) {
966 for_each_node(nid) {
967 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
968 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
969 for (i = 0; i <= DEF_PRIORITY; i++) {
970 iter = &mz->iter[i];
971 cmpxchg(&iter->position,
972 dead_memcg, NULL);
973 }
974 }
975 }
976 }
977}
978
9f3a0d09
JW
979/*
980 * Iteration constructs for visiting all cgroups (under a tree). If
981 * loops are exited prematurely (break), mem_cgroup_iter_break() must
982 * be used for reference counting.
983 */
984#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 985 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 986 iter != NULL; \
527a5ec9 987 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 988
9f3a0d09 989#define for_each_mem_cgroup(iter) \
527a5ec9 990 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 991 iter != NULL; \
527a5ec9 992 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 993
925b7673
JW
994/**
995 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
996 * @zone: zone of the wanted lruvec
fa9add64 997 * @memcg: memcg of the wanted lruvec
925b7673
JW
998 *
999 * Returns the lru list vector holding pages for the given @zone and
1000 * @mem. This can be the global zone lruvec, if the memory controller
1001 * is disabled.
1002 */
1003struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1004 struct mem_cgroup *memcg)
1005{
1006 struct mem_cgroup_per_zone *mz;
bea8c150 1007 struct lruvec *lruvec;
925b7673 1008
bea8c150
HD
1009 if (mem_cgroup_disabled()) {
1010 lruvec = &zone->lruvec;
1011 goto out;
1012 }
925b7673 1013
e231875b 1014 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1015 lruvec = &mz->lruvec;
1016out:
1017 /*
1018 * Since a node can be onlined after the mem_cgroup was created,
1019 * we have to be prepared to initialize lruvec->zone here;
1020 * and if offlined then reonlined, we need to reinitialize it.
1021 */
1022 if (unlikely(lruvec->zone != zone))
1023 lruvec->zone = zone;
1024 return lruvec;
925b7673
JW
1025}
1026
925b7673 1027/**
dfe0e773 1028 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1029 * @page: the page
fa9add64 1030 * @zone: zone of the page
dfe0e773
JW
1031 *
1032 * This function is only safe when following the LRU page isolation
1033 * and putback protocol: the LRU lock must be held, and the page must
1034 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1035 */
fa9add64 1036struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1037{
08e552c6 1038 struct mem_cgroup_per_zone *mz;
925b7673 1039 struct mem_cgroup *memcg;
bea8c150 1040 struct lruvec *lruvec;
6d12e2d8 1041
bea8c150
HD
1042 if (mem_cgroup_disabled()) {
1043 lruvec = &zone->lruvec;
1044 goto out;
1045 }
925b7673 1046
1306a85a 1047 memcg = page->mem_cgroup;
7512102c 1048 /*
dfe0e773 1049 * Swapcache readahead pages are added to the LRU - and
29833315 1050 * possibly migrated - before they are charged.
7512102c 1051 */
29833315
JW
1052 if (!memcg)
1053 memcg = root_mem_cgroup;
7512102c 1054
e231875b 1055 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1056 lruvec = &mz->lruvec;
1057out:
1058 /*
1059 * Since a node can be onlined after the mem_cgroup was created,
1060 * we have to be prepared to initialize lruvec->zone here;
1061 * and if offlined then reonlined, we need to reinitialize it.
1062 */
1063 if (unlikely(lruvec->zone != zone))
1064 lruvec->zone = zone;
1065 return lruvec;
08e552c6 1066}
b69408e8 1067
925b7673 1068/**
fa9add64
HD
1069 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1070 * @lruvec: mem_cgroup per zone lru vector
1071 * @lru: index of lru list the page is sitting on
1072 * @nr_pages: positive when adding or negative when removing
925b7673 1073 *
fa9add64
HD
1074 * This function must be called when a page is added to or removed from an
1075 * lru list.
3f58a829 1076 */
fa9add64
HD
1077void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1078 int nr_pages)
3f58a829
MK
1079{
1080 struct mem_cgroup_per_zone *mz;
fa9add64 1081 unsigned long *lru_size;
3f58a829
MK
1082
1083 if (mem_cgroup_disabled())
1084 return;
1085
fa9add64
HD
1086 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1087 lru_size = mz->lru_size + lru;
1088 *lru_size += nr_pages;
1089 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1090}
544122e5 1091
2314b42d 1092bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1093{
2314b42d 1094 struct mem_cgroup *task_memcg;
158e0a2d 1095 struct task_struct *p;
ffbdccf5 1096 bool ret;
4c4a2214 1097
158e0a2d 1098 p = find_lock_task_mm(task);
de077d22 1099 if (p) {
2314b42d 1100 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1101 task_unlock(p);
1102 } else {
1103 /*
1104 * All threads may have already detached their mm's, but the oom
1105 * killer still needs to detect if they have already been oom
1106 * killed to prevent needlessly killing additional tasks.
1107 */
ffbdccf5 1108 rcu_read_lock();
2314b42d
JW
1109 task_memcg = mem_cgroup_from_task(task);
1110 css_get(&task_memcg->css);
ffbdccf5 1111 rcu_read_unlock();
de077d22 1112 }
2314b42d
JW
1113 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1114 css_put(&task_memcg->css);
4c4a2214
DR
1115 return ret;
1116}
1117
19942822 1118/**
9d11ea9f 1119 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1120 * @memcg: the memory cgroup
19942822 1121 *
9d11ea9f 1122 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1123 * pages.
19942822 1124 */
c0ff4b85 1125static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1126{
3e32cb2e
JW
1127 unsigned long margin = 0;
1128 unsigned long count;
1129 unsigned long limit;
9d11ea9f 1130
3e32cb2e 1131 count = page_counter_read(&memcg->memory);
4db0c3c2 1132 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1133 if (count < limit)
1134 margin = limit - count;
1135
7941d214 1136 if (do_memsw_account()) {
3e32cb2e 1137 count = page_counter_read(&memcg->memsw);
4db0c3c2 1138 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1139 if (count <= limit)
1140 margin = min(margin, limit - count);
1141 }
1142
1143 return margin;
19942822
JW
1144}
1145
32047e2a 1146/*
bdcbb659 1147 * A routine for checking "mem" is under move_account() or not.
32047e2a 1148 *
bdcbb659
QH
1149 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1150 * moving cgroups. This is for waiting at high-memory pressure
1151 * caused by "move".
32047e2a 1152 */
c0ff4b85 1153static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1154{
2bd9bb20
KH
1155 struct mem_cgroup *from;
1156 struct mem_cgroup *to;
4b534334 1157 bool ret = false;
2bd9bb20
KH
1158 /*
1159 * Unlike task_move routines, we access mc.to, mc.from not under
1160 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1161 */
1162 spin_lock(&mc.lock);
1163 from = mc.from;
1164 to = mc.to;
1165 if (!from)
1166 goto unlock;
3e92041d 1167
2314b42d
JW
1168 ret = mem_cgroup_is_descendant(from, memcg) ||
1169 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1170unlock:
1171 spin_unlock(&mc.lock);
4b534334
KH
1172 return ret;
1173}
1174
c0ff4b85 1175static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1176{
1177 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1178 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1179 DEFINE_WAIT(wait);
1180 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1181 /* moving charge context might have finished. */
1182 if (mc.moving_task)
1183 schedule();
1184 finish_wait(&mc.waitq, &wait);
1185 return true;
1186 }
1187 }
1188 return false;
1189}
1190
58cf188e 1191#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1192/**
58cf188e 1193 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1194 * @memcg: The memory cgroup that went over limit
1195 * @p: Task that is going to be killed
1196 *
1197 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1198 * enabled
1199 */
1200void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1201{
e61734c5 1202 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1203 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1204 struct mem_cgroup *iter;
1205 unsigned int i;
e222432b 1206
08088cb9 1207 mutex_lock(&oom_info_lock);
e222432b
BS
1208 rcu_read_lock();
1209
2415b9f5
BV
1210 if (p) {
1211 pr_info("Task in ");
1212 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1213 pr_cont(" killed as a result of limit of ");
1214 } else {
1215 pr_info("Memory limit reached of cgroup ");
1216 }
1217
e61734c5 1218 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1219 pr_cont("\n");
e222432b 1220
e222432b
BS
1221 rcu_read_unlock();
1222
3e32cb2e
JW
1223 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1224 K((u64)page_counter_read(&memcg->memory)),
1225 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1226 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1227 K((u64)page_counter_read(&memcg->memsw)),
1228 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1229 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1230 K((u64)page_counter_read(&memcg->kmem)),
1231 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1232
1233 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1234 pr_info("Memory cgroup stats for ");
1235 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1236 pr_cont(":");
1237
1238 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 1239 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
58cf188e 1240 continue;
484ebb3b 1241 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1242 K(mem_cgroup_read_stat(iter, i)));
1243 }
1244
1245 for (i = 0; i < NR_LRU_LISTS; i++)
1246 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1247 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1248
1249 pr_cont("\n");
1250 }
08088cb9 1251 mutex_unlock(&oom_info_lock);
e222432b
BS
1252}
1253
81d39c20
KH
1254/*
1255 * This function returns the number of memcg under hierarchy tree. Returns
1256 * 1(self count) if no children.
1257 */
c0ff4b85 1258static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1259{
1260 int num = 0;
7d74b06f
KH
1261 struct mem_cgroup *iter;
1262
c0ff4b85 1263 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1264 num++;
81d39c20
KH
1265 return num;
1266}
1267
a63d83f4
DR
1268/*
1269 * Return the memory (and swap, if configured) limit for a memcg.
1270 */
3e32cb2e 1271static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1272{
3e32cb2e 1273 unsigned long limit;
f3e8eb70 1274
3e32cb2e 1275 limit = memcg->memory.limit;
9a5a8f19 1276 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1277 unsigned long memsw_limit;
9a5a8f19 1278
3e32cb2e
JW
1279 memsw_limit = memcg->memsw.limit;
1280 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1281 }
9a5a8f19 1282 return limit;
a63d83f4
DR
1283}
1284
19965460
DR
1285static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1286 int order)
9cbb78bb 1287{
6e0fc46d
DR
1288 struct oom_control oc = {
1289 .zonelist = NULL,
1290 .nodemask = NULL,
1291 .gfp_mask = gfp_mask,
1292 .order = order,
6e0fc46d 1293 };
9cbb78bb
DR
1294 struct mem_cgroup *iter;
1295 unsigned long chosen_points = 0;
1296 unsigned long totalpages;
1297 unsigned int points = 0;
1298 struct task_struct *chosen = NULL;
1299
dc56401f
JW
1300 mutex_lock(&oom_lock);
1301
876aafbf 1302 /*
465adcf1
DR
1303 * If current has a pending SIGKILL or is exiting, then automatically
1304 * select it. The goal is to allow it to allocate so that it may
1305 * quickly exit and free its memory.
876aafbf 1306 */
d003f371 1307 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1308 mark_oom_victim(current);
dc56401f 1309 goto unlock;
876aafbf
DR
1310 }
1311
6e0fc46d 1312 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1313 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1314 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1315 struct css_task_iter it;
9cbb78bb
DR
1316 struct task_struct *task;
1317
72ec7029
TH
1318 css_task_iter_start(&iter->css, &it);
1319 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1320 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1321 case OOM_SCAN_SELECT:
1322 if (chosen)
1323 put_task_struct(chosen);
1324 chosen = task;
1325 chosen_points = ULONG_MAX;
1326 get_task_struct(chosen);
1327 /* fall through */
1328 case OOM_SCAN_CONTINUE:
1329 continue;
1330 case OOM_SCAN_ABORT:
72ec7029 1331 css_task_iter_end(&it);
9cbb78bb
DR
1332 mem_cgroup_iter_break(memcg, iter);
1333 if (chosen)
1334 put_task_struct(chosen);
dc56401f 1335 goto unlock;
9cbb78bb
DR
1336 case OOM_SCAN_OK:
1337 break;
1338 };
1339 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1340 if (!points || points < chosen_points)
1341 continue;
1342 /* Prefer thread group leaders for display purposes */
1343 if (points == chosen_points &&
1344 thread_group_leader(chosen))
1345 continue;
1346
1347 if (chosen)
1348 put_task_struct(chosen);
1349 chosen = task;
1350 chosen_points = points;
1351 get_task_struct(chosen);
9cbb78bb 1352 }
72ec7029 1353 css_task_iter_end(&it);
9cbb78bb
DR
1354 }
1355
dc56401f
JW
1356 if (chosen) {
1357 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1358 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1359 "Memory cgroup out of memory");
dc56401f
JW
1360 }
1361unlock:
1362 mutex_unlock(&oom_lock);
9cbb78bb
DR
1363}
1364
ae6e71d3
MC
1365#if MAX_NUMNODES > 1
1366
4d0c066d
KH
1367/**
1368 * test_mem_cgroup_node_reclaimable
dad7557e 1369 * @memcg: the target memcg
4d0c066d
KH
1370 * @nid: the node ID to be checked.
1371 * @noswap : specify true here if the user wants flle only information.
1372 *
1373 * This function returns whether the specified memcg contains any
1374 * reclaimable pages on a node. Returns true if there are any reclaimable
1375 * pages in the node.
1376 */
c0ff4b85 1377static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1378 int nid, bool noswap)
1379{
c0ff4b85 1380 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1381 return true;
1382 if (noswap || !total_swap_pages)
1383 return false;
c0ff4b85 1384 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1385 return true;
1386 return false;
1387
1388}
889976db
YH
1389
1390/*
1391 * Always updating the nodemask is not very good - even if we have an empty
1392 * list or the wrong list here, we can start from some node and traverse all
1393 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1394 *
1395 */
c0ff4b85 1396static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1397{
1398 int nid;
453a9bf3
KH
1399 /*
1400 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1401 * pagein/pageout changes since the last update.
1402 */
c0ff4b85 1403 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1404 return;
c0ff4b85 1405 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1406 return;
1407
889976db 1408 /* make a nodemask where this memcg uses memory from */
31aaea4a 1409 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1410
31aaea4a 1411 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1412
c0ff4b85
R
1413 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1414 node_clear(nid, memcg->scan_nodes);
889976db 1415 }
453a9bf3 1416
c0ff4b85
R
1417 atomic_set(&memcg->numainfo_events, 0);
1418 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1419}
1420
1421/*
1422 * Selecting a node where we start reclaim from. Because what we need is just
1423 * reducing usage counter, start from anywhere is O,K. Considering
1424 * memory reclaim from current node, there are pros. and cons.
1425 *
1426 * Freeing memory from current node means freeing memory from a node which
1427 * we'll use or we've used. So, it may make LRU bad. And if several threads
1428 * hit limits, it will see a contention on a node. But freeing from remote
1429 * node means more costs for memory reclaim because of memory latency.
1430 *
1431 * Now, we use round-robin. Better algorithm is welcomed.
1432 */
c0ff4b85 1433int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1434{
1435 int node;
1436
c0ff4b85
R
1437 mem_cgroup_may_update_nodemask(memcg);
1438 node = memcg->last_scanned_node;
889976db 1439
c0ff4b85 1440 node = next_node(node, memcg->scan_nodes);
889976db 1441 if (node == MAX_NUMNODES)
c0ff4b85 1442 node = first_node(memcg->scan_nodes);
889976db
YH
1443 /*
1444 * We call this when we hit limit, not when pages are added to LRU.
1445 * No LRU may hold pages because all pages are UNEVICTABLE or
1446 * memcg is too small and all pages are not on LRU. In that case,
1447 * we use curret node.
1448 */
1449 if (unlikely(node == MAX_NUMNODES))
1450 node = numa_node_id();
1451
c0ff4b85 1452 memcg->last_scanned_node = node;
889976db
YH
1453 return node;
1454}
889976db 1455#else
c0ff4b85 1456int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1457{
1458 return 0;
1459}
1460#endif
1461
0608f43d
AM
1462static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1463 struct zone *zone,
1464 gfp_t gfp_mask,
1465 unsigned long *total_scanned)
1466{
1467 struct mem_cgroup *victim = NULL;
1468 int total = 0;
1469 int loop = 0;
1470 unsigned long excess;
1471 unsigned long nr_scanned;
1472 struct mem_cgroup_reclaim_cookie reclaim = {
1473 .zone = zone,
1474 .priority = 0,
1475 };
1476
3e32cb2e 1477 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1478
1479 while (1) {
1480 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1481 if (!victim) {
1482 loop++;
1483 if (loop >= 2) {
1484 /*
1485 * If we have not been able to reclaim
1486 * anything, it might because there are
1487 * no reclaimable pages under this hierarchy
1488 */
1489 if (!total)
1490 break;
1491 /*
1492 * We want to do more targeted reclaim.
1493 * excess >> 2 is not to excessive so as to
1494 * reclaim too much, nor too less that we keep
1495 * coming back to reclaim from this cgroup
1496 */
1497 if (total >= (excess >> 2) ||
1498 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1499 break;
1500 }
1501 continue;
1502 }
0608f43d
AM
1503 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1504 zone, &nr_scanned);
1505 *total_scanned += nr_scanned;
3e32cb2e 1506 if (!soft_limit_excess(root_memcg))
0608f43d 1507 break;
6d61ef40 1508 }
0608f43d
AM
1509 mem_cgroup_iter_break(root_memcg, victim);
1510 return total;
6d61ef40
BS
1511}
1512
0056f4e6
JW
1513#ifdef CONFIG_LOCKDEP
1514static struct lockdep_map memcg_oom_lock_dep_map = {
1515 .name = "memcg_oom_lock",
1516};
1517#endif
1518
fb2a6fc5
JW
1519static DEFINE_SPINLOCK(memcg_oom_lock);
1520
867578cb
KH
1521/*
1522 * Check OOM-Killer is already running under our hierarchy.
1523 * If someone is running, return false.
1524 */
fb2a6fc5 1525static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1526{
79dfdacc 1527 struct mem_cgroup *iter, *failed = NULL;
a636b327 1528
fb2a6fc5
JW
1529 spin_lock(&memcg_oom_lock);
1530
9f3a0d09 1531 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1532 if (iter->oom_lock) {
79dfdacc
MH
1533 /*
1534 * this subtree of our hierarchy is already locked
1535 * so we cannot give a lock.
1536 */
79dfdacc 1537 failed = iter;
9f3a0d09
JW
1538 mem_cgroup_iter_break(memcg, iter);
1539 break;
23751be0
JW
1540 } else
1541 iter->oom_lock = true;
7d74b06f 1542 }
867578cb 1543
fb2a6fc5
JW
1544 if (failed) {
1545 /*
1546 * OK, we failed to lock the whole subtree so we have
1547 * to clean up what we set up to the failing subtree
1548 */
1549 for_each_mem_cgroup_tree(iter, memcg) {
1550 if (iter == failed) {
1551 mem_cgroup_iter_break(memcg, iter);
1552 break;
1553 }
1554 iter->oom_lock = false;
79dfdacc 1555 }
0056f4e6
JW
1556 } else
1557 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1558
1559 spin_unlock(&memcg_oom_lock);
1560
1561 return !failed;
a636b327 1562}
0b7f569e 1563
fb2a6fc5 1564static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1565{
7d74b06f
KH
1566 struct mem_cgroup *iter;
1567
fb2a6fc5 1568 spin_lock(&memcg_oom_lock);
0056f4e6 1569 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1570 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1571 iter->oom_lock = false;
fb2a6fc5 1572 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1573}
1574
c0ff4b85 1575static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1576{
1577 struct mem_cgroup *iter;
1578
c2b42d3c 1579 spin_lock(&memcg_oom_lock);
c0ff4b85 1580 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1581 iter->under_oom++;
1582 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1583}
1584
c0ff4b85 1585static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1586{
1587 struct mem_cgroup *iter;
1588
867578cb
KH
1589 /*
1590 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1591 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1592 */
c2b42d3c 1593 spin_lock(&memcg_oom_lock);
c0ff4b85 1594 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1595 if (iter->under_oom > 0)
1596 iter->under_oom--;
1597 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1598}
1599
867578cb
KH
1600static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1601
dc98df5a 1602struct oom_wait_info {
d79154bb 1603 struct mem_cgroup *memcg;
dc98df5a
KH
1604 wait_queue_t wait;
1605};
1606
1607static int memcg_oom_wake_function(wait_queue_t *wait,
1608 unsigned mode, int sync, void *arg)
1609{
d79154bb
HD
1610 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1611 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1612 struct oom_wait_info *oom_wait_info;
1613
1614 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1615 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1616
2314b42d
JW
1617 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1618 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1619 return 0;
dc98df5a
KH
1620 return autoremove_wake_function(wait, mode, sync, arg);
1621}
1622
c0ff4b85 1623static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1624{
c2b42d3c
TH
1625 /*
1626 * For the following lockless ->under_oom test, the only required
1627 * guarantee is that it must see the state asserted by an OOM when
1628 * this function is called as a result of userland actions
1629 * triggered by the notification of the OOM. This is trivially
1630 * achieved by invoking mem_cgroup_mark_under_oom() before
1631 * triggering notification.
1632 */
1633 if (memcg && memcg->under_oom)
f4b90b70 1634 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1635}
1636
3812c8c8 1637static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1638{
626ebc41 1639 if (!current->memcg_may_oom)
3812c8c8 1640 return;
867578cb 1641 /*
49426420
JW
1642 * We are in the middle of the charge context here, so we
1643 * don't want to block when potentially sitting on a callstack
1644 * that holds all kinds of filesystem and mm locks.
1645 *
1646 * Also, the caller may handle a failed allocation gracefully
1647 * (like optional page cache readahead) and so an OOM killer
1648 * invocation might not even be necessary.
1649 *
1650 * That's why we don't do anything here except remember the
1651 * OOM context and then deal with it at the end of the page
1652 * fault when the stack is unwound, the locks are released,
1653 * and when we know whether the fault was overall successful.
867578cb 1654 */
49426420 1655 css_get(&memcg->css);
626ebc41
TH
1656 current->memcg_in_oom = memcg;
1657 current->memcg_oom_gfp_mask = mask;
1658 current->memcg_oom_order = order;
3812c8c8
JW
1659}
1660
1661/**
1662 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1663 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1664 *
49426420
JW
1665 * This has to be called at the end of a page fault if the memcg OOM
1666 * handler was enabled.
3812c8c8 1667 *
49426420 1668 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1669 * sleep on a waitqueue until the userspace task resolves the
1670 * situation. Sleeping directly in the charge context with all kinds
1671 * of locks held is not a good idea, instead we remember an OOM state
1672 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1673 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1674 *
1675 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1676 * completed, %false otherwise.
3812c8c8 1677 */
49426420 1678bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1679{
626ebc41 1680 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1681 struct oom_wait_info owait;
49426420 1682 bool locked;
3812c8c8
JW
1683
1684 /* OOM is global, do not handle */
3812c8c8 1685 if (!memcg)
49426420 1686 return false;
3812c8c8 1687
c32b3cbe 1688 if (!handle || oom_killer_disabled)
49426420 1689 goto cleanup;
3812c8c8
JW
1690
1691 owait.memcg = memcg;
1692 owait.wait.flags = 0;
1693 owait.wait.func = memcg_oom_wake_function;
1694 owait.wait.private = current;
1695 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1696
3812c8c8 1697 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1698 mem_cgroup_mark_under_oom(memcg);
1699
1700 locked = mem_cgroup_oom_trylock(memcg);
1701
1702 if (locked)
1703 mem_cgroup_oom_notify(memcg);
1704
1705 if (locked && !memcg->oom_kill_disable) {
1706 mem_cgroup_unmark_under_oom(memcg);
1707 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1708 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1709 current->memcg_oom_order);
49426420 1710 } else {
3812c8c8 1711 schedule();
49426420
JW
1712 mem_cgroup_unmark_under_oom(memcg);
1713 finish_wait(&memcg_oom_waitq, &owait.wait);
1714 }
1715
1716 if (locked) {
fb2a6fc5
JW
1717 mem_cgroup_oom_unlock(memcg);
1718 /*
1719 * There is no guarantee that an OOM-lock contender
1720 * sees the wakeups triggered by the OOM kill
1721 * uncharges. Wake any sleepers explicitely.
1722 */
1723 memcg_oom_recover(memcg);
1724 }
49426420 1725cleanup:
626ebc41 1726 current->memcg_in_oom = NULL;
3812c8c8 1727 css_put(&memcg->css);
867578cb 1728 return true;
0b7f569e
KH
1729}
1730
d7365e78
JW
1731/**
1732 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1733 * @page: page that is going to change accounted state
32047e2a 1734 *
d7365e78
JW
1735 * This function must mark the beginning of an accounted page state
1736 * change to prevent double accounting when the page is concurrently
1737 * being moved to another memcg:
32047e2a 1738 *
6de22619 1739 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1740 * if (TestClearPageState(page))
1741 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1742 * mem_cgroup_end_page_stat(memcg);
d69b042f 1743 */
6de22619 1744struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1745{
1746 struct mem_cgroup *memcg;
6de22619 1747 unsigned long flags;
89c06bd5 1748
6de22619
JW
1749 /*
1750 * The RCU lock is held throughout the transaction. The fast
1751 * path can get away without acquiring the memcg->move_lock
1752 * because page moving starts with an RCU grace period.
1753 *
1754 * The RCU lock also protects the memcg from being freed when
1755 * the page state that is going to change is the only thing
1756 * preventing the page from being uncharged.
1757 * E.g. end-writeback clearing PageWriteback(), which allows
1758 * migration to go ahead and uncharge the page before the
1759 * account transaction might be complete.
1760 */
d7365e78
JW
1761 rcu_read_lock();
1762
1763 if (mem_cgroup_disabled())
1764 return NULL;
89c06bd5 1765again:
1306a85a 1766 memcg = page->mem_cgroup;
29833315 1767 if (unlikely(!memcg))
d7365e78
JW
1768 return NULL;
1769
bdcbb659 1770 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 1771 return memcg;
89c06bd5 1772
6de22619 1773 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1774 if (memcg != page->mem_cgroup) {
6de22619 1775 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1776 goto again;
1777 }
6de22619
JW
1778
1779 /*
1780 * When charge migration first begins, we can have locked and
1781 * unlocked page stat updates happening concurrently. Track
1782 * the task who has the lock for mem_cgroup_end_page_stat().
1783 */
1784 memcg->move_lock_task = current;
1785 memcg->move_lock_flags = flags;
d7365e78
JW
1786
1787 return memcg;
89c06bd5 1788}
c4843a75 1789EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
89c06bd5 1790
d7365e78
JW
1791/**
1792 * mem_cgroup_end_page_stat - finish a page state statistics transaction
1793 * @memcg: the memcg that was accounted against
d7365e78 1794 */
6de22619 1795void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 1796{
6de22619
JW
1797 if (memcg && memcg->move_lock_task == current) {
1798 unsigned long flags = memcg->move_lock_flags;
1799
1800 memcg->move_lock_task = NULL;
1801 memcg->move_lock_flags = 0;
1802
1803 spin_unlock_irqrestore(&memcg->move_lock, flags);
1804 }
89c06bd5 1805
d7365e78 1806 rcu_read_unlock();
89c06bd5 1807}
c4843a75 1808EXPORT_SYMBOL(mem_cgroup_end_page_stat);
89c06bd5 1809
cdec2e42
KH
1810/*
1811 * size of first charge trial. "32" comes from vmscan.c's magic value.
1812 * TODO: maybe necessary to use big numbers in big irons.
1813 */
7ec99d62 1814#define CHARGE_BATCH 32U
cdec2e42
KH
1815struct memcg_stock_pcp {
1816 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1817 unsigned int nr_pages;
cdec2e42 1818 struct work_struct work;
26fe6168 1819 unsigned long flags;
a0db00fc 1820#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1821};
1822static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1823static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1824
a0956d54
SS
1825/**
1826 * consume_stock: Try to consume stocked charge on this cpu.
1827 * @memcg: memcg to consume from.
1828 * @nr_pages: how many pages to charge.
1829 *
1830 * The charges will only happen if @memcg matches the current cpu's memcg
1831 * stock, and at least @nr_pages are available in that stock. Failure to
1832 * service an allocation will refill the stock.
1833 *
1834 * returns true if successful, false otherwise.
cdec2e42 1835 */
a0956d54 1836static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1837{
1838 struct memcg_stock_pcp *stock;
3e32cb2e 1839 bool ret = false;
cdec2e42 1840
a0956d54 1841 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1842 return ret;
a0956d54 1843
cdec2e42 1844 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1845 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1846 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1847 ret = true;
1848 }
cdec2e42
KH
1849 put_cpu_var(memcg_stock);
1850 return ret;
1851}
1852
1853/*
3e32cb2e 1854 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1855 */
1856static void drain_stock(struct memcg_stock_pcp *stock)
1857{
1858 struct mem_cgroup *old = stock->cached;
1859
11c9ea4e 1860 if (stock->nr_pages) {
3e32cb2e 1861 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1862 if (do_memsw_account())
3e32cb2e 1863 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1864 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1865 stock->nr_pages = 0;
cdec2e42
KH
1866 }
1867 stock->cached = NULL;
cdec2e42
KH
1868}
1869
1870/*
1871 * This must be called under preempt disabled or must be called by
1872 * a thread which is pinned to local cpu.
1873 */
1874static void drain_local_stock(struct work_struct *dummy)
1875{
7c8e0181 1876 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1877 drain_stock(stock);
26fe6168 1878 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1879}
1880
1881/*
3e32cb2e 1882 * Cache charges(val) to local per_cpu area.
320cc51d 1883 * This will be consumed by consume_stock() function, later.
cdec2e42 1884 */
c0ff4b85 1885static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1886{
1887 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1888
c0ff4b85 1889 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1890 drain_stock(stock);
c0ff4b85 1891 stock->cached = memcg;
cdec2e42 1892 }
11c9ea4e 1893 stock->nr_pages += nr_pages;
cdec2e42
KH
1894 put_cpu_var(memcg_stock);
1895}
1896
1897/*
c0ff4b85 1898 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1899 * of the hierarchy under it.
cdec2e42 1900 */
6d3d6aa2 1901static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1902{
26fe6168 1903 int cpu, curcpu;
d38144b7 1904
6d3d6aa2
JW
1905 /* If someone's already draining, avoid adding running more workers. */
1906 if (!mutex_trylock(&percpu_charge_mutex))
1907 return;
cdec2e42 1908 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1909 get_online_cpus();
5af12d0e 1910 curcpu = get_cpu();
cdec2e42
KH
1911 for_each_online_cpu(cpu) {
1912 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1913 struct mem_cgroup *memcg;
26fe6168 1914
c0ff4b85
R
1915 memcg = stock->cached;
1916 if (!memcg || !stock->nr_pages)
26fe6168 1917 continue;
2314b42d 1918 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1919 continue;
d1a05b69
MH
1920 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1921 if (cpu == curcpu)
1922 drain_local_stock(&stock->work);
1923 else
1924 schedule_work_on(cpu, &stock->work);
1925 }
cdec2e42 1926 }
5af12d0e 1927 put_cpu();
f894ffa8 1928 put_online_cpus();
9f50fad6 1929 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1930}
1931
0db0628d 1932static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1933 unsigned long action,
1934 void *hcpu)
1935{
1936 int cpu = (unsigned long)hcpu;
1937 struct memcg_stock_pcp *stock;
1938
619d094b 1939 if (action == CPU_ONLINE)
1489ebad 1940 return NOTIFY_OK;
1489ebad 1941
d833049b 1942 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1943 return NOTIFY_OK;
711d3d2c 1944
cdec2e42
KH
1945 stock = &per_cpu(memcg_stock, cpu);
1946 drain_stock(stock);
1947 return NOTIFY_OK;
1948}
1949
f7e1cb6e
JW
1950static void reclaim_high(struct mem_cgroup *memcg,
1951 unsigned int nr_pages,
1952 gfp_t gfp_mask)
1953{
1954 do {
1955 if (page_counter_read(&memcg->memory) <= memcg->high)
1956 continue;
1957 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1958 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1959 } while ((memcg = parent_mem_cgroup(memcg)));
1960}
1961
1962static void high_work_func(struct work_struct *work)
1963{
1964 struct mem_cgroup *memcg;
1965
1966 memcg = container_of(work, struct mem_cgroup, high_work);
1967 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1968}
1969
b23afb93
TH
1970/*
1971 * Scheduled by try_charge() to be executed from the userland return path
1972 * and reclaims memory over the high limit.
1973 */
1974void mem_cgroup_handle_over_high(void)
1975{
1976 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1977 struct mem_cgroup *memcg;
b23afb93
TH
1978
1979 if (likely(!nr_pages))
1980 return;
1981
f7e1cb6e
JW
1982 memcg = get_mem_cgroup_from_mm(current->mm);
1983 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1984 css_put(&memcg->css);
1985 current->memcg_nr_pages_over_high = 0;
1986}
1987
00501b53
JW
1988static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1989 unsigned int nr_pages)
8a9f3ccd 1990{
7ec99d62 1991 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1992 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1993 struct mem_cgroup *mem_over_limit;
3e32cb2e 1994 struct page_counter *counter;
6539cc05 1995 unsigned long nr_reclaimed;
b70a2a21
JW
1996 bool may_swap = true;
1997 bool drained = false;
a636b327 1998
ce00a967 1999 if (mem_cgroup_is_root(memcg))
10d53c74 2000 return 0;
6539cc05 2001retry:
b6b6cc72 2002 if (consume_stock(memcg, nr_pages))
10d53c74 2003 return 0;
8a9f3ccd 2004
7941d214 2005 if (!do_memsw_account() ||
6071ca52
JW
2006 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2007 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2008 goto done_restock;
7941d214 2009 if (do_memsw_account())
3e32cb2e
JW
2010 page_counter_uncharge(&memcg->memsw, batch);
2011 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2012 } else {
3e32cb2e 2013 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2014 may_swap = false;
3fbe7244 2015 }
7a81b88c 2016
6539cc05
JW
2017 if (batch > nr_pages) {
2018 batch = nr_pages;
2019 goto retry;
2020 }
6d61ef40 2021
06b078fc
JW
2022 /*
2023 * Unlike in global OOM situations, memcg is not in a physical
2024 * memory shortage. Allow dying and OOM-killed tasks to
2025 * bypass the last charges so that they can exit quickly and
2026 * free their memory.
2027 */
2028 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2029 fatal_signal_pending(current) ||
2030 current->flags & PF_EXITING))
10d53c74 2031 goto force;
06b078fc
JW
2032
2033 if (unlikely(task_in_memcg_oom(current)))
2034 goto nomem;
2035
d0164adc 2036 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2037 goto nomem;
4b534334 2038
241994ed
JW
2039 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2040
b70a2a21
JW
2041 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2042 gfp_mask, may_swap);
6539cc05 2043
61e02c74 2044 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2045 goto retry;
28c34c29 2046
b70a2a21 2047 if (!drained) {
6d3d6aa2 2048 drain_all_stock(mem_over_limit);
b70a2a21
JW
2049 drained = true;
2050 goto retry;
2051 }
2052
28c34c29
JW
2053 if (gfp_mask & __GFP_NORETRY)
2054 goto nomem;
6539cc05
JW
2055 /*
2056 * Even though the limit is exceeded at this point, reclaim
2057 * may have been able to free some pages. Retry the charge
2058 * before killing the task.
2059 *
2060 * Only for regular pages, though: huge pages are rather
2061 * unlikely to succeed so close to the limit, and we fall back
2062 * to regular pages anyway in case of failure.
2063 */
61e02c74 2064 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2065 goto retry;
2066 /*
2067 * At task move, charge accounts can be doubly counted. So, it's
2068 * better to wait until the end of task_move if something is going on.
2069 */
2070 if (mem_cgroup_wait_acct_move(mem_over_limit))
2071 goto retry;
2072
9b130619
JW
2073 if (nr_retries--)
2074 goto retry;
2075
06b078fc 2076 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2077 goto force;
06b078fc 2078
6539cc05 2079 if (fatal_signal_pending(current))
10d53c74 2080 goto force;
6539cc05 2081
241994ed
JW
2082 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2083
3608de07
JM
2084 mem_cgroup_oom(mem_over_limit, gfp_mask,
2085 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2086nomem:
6d1fdc48 2087 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2088 return -ENOMEM;
10d53c74
TH
2089force:
2090 /*
2091 * The allocation either can't fail or will lead to more memory
2092 * being freed very soon. Allow memory usage go over the limit
2093 * temporarily by force charging it.
2094 */
2095 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2096 if (do_memsw_account())
10d53c74
TH
2097 page_counter_charge(&memcg->memsw, nr_pages);
2098 css_get_many(&memcg->css, nr_pages);
2099
2100 return 0;
6539cc05
JW
2101
2102done_restock:
e8ea14cc 2103 css_get_many(&memcg->css, batch);
6539cc05
JW
2104 if (batch > nr_pages)
2105 refill_stock(memcg, batch - nr_pages);
b23afb93 2106
241994ed 2107 /*
b23afb93
TH
2108 * If the hierarchy is above the normal consumption range, schedule
2109 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2110 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2111 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2112 * not recorded as it most likely matches current's and won't
2113 * change in the meantime. As high limit is checked again before
2114 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2115 */
2116 do {
b23afb93 2117 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2118 /* Don't bother a random interrupted task */
2119 if (in_interrupt()) {
2120 schedule_work(&memcg->high_work);
2121 break;
2122 }
9516a18a 2123 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2124 set_notify_resume(current);
2125 break;
2126 }
241994ed 2127 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2128
2129 return 0;
7a81b88c 2130}
8a9f3ccd 2131
00501b53 2132static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2133{
ce00a967
JW
2134 if (mem_cgroup_is_root(memcg))
2135 return;
2136
3e32cb2e 2137 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2138 if (do_memsw_account())
3e32cb2e 2139 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2140
e8ea14cc 2141 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2142}
2143
0a31bc97
JW
2144static void lock_page_lru(struct page *page, int *isolated)
2145{
2146 struct zone *zone = page_zone(page);
2147
2148 spin_lock_irq(&zone->lru_lock);
2149 if (PageLRU(page)) {
2150 struct lruvec *lruvec;
2151
2152 lruvec = mem_cgroup_page_lruvec(page, zone);
2153 ClearPageLRU(page);
2154 del_page_from_lru_list(page, lruvec, page_lru(page));
2155 *isolated = 1;
2156 } else
2157 *isolated = 0;
2158}
2159
2160static void unlock_page_lru(struct page *page, int isolated)
2161{
2162 struct zone *zone = page_zone(page);
2163
2164 if (isolated) {
2165 struct lruvec *lruvec;
2166
2167 lruvec = mem_cgroup_page_lruvec(page, zone);
2168 VM_BUG_ON_PAGE(PageLRU(page), page);
2169 SetPageLRU(page);
2170 add_page_to_lru_list(page, lruvec, page_lru(page));
2171 }
2172 spin_unlock_irq(&zone->lru_lock);
2173}
2174
00501b53 2175static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2176 bool lrucare)
7a81b88c 2177{
0a31bc97 2178 int isolated;
9ce70c02 2179
1306a85a 2180 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2181
2182 /*
2183 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2184 * may already be on some other mem_cgroup's LRU. Take care of it.
2185 */
0a31bc97
JW
2186 if (lrucare)
2187 lock_page_lru(page, &isolated);
9ce70c02 2188
0a31bc97
JW
2189 /*
2190 * Nobody should be changing or seriously looking at
1306a85a 2191 * page->mem_cgroup at this point:
0a31bc97
JW
2192 *
2193 * - the page is uncharged
2194 *
2195 * - the page is off-LRU
2196 *
2197 * - an anonymous fault has exclusive page access, except for
2198 * a locked page table
2199 *
2200 * - a page cache insertion, a swapin fault, or a migration
2201 * have the page locked
2202 */
1306a85a 2203 page->mem_cgroup = memcg;
9ce70c02 2204
0a31bc97
JW
2205 if (lrucare)
2206 unlock_page_lru(page, isolated);
7a81b88c 2207}
66e1707b 2208
127424c8 2209#ifndef CONFIG_SLOB
f3bb3043 2210static int memcg_alloc_cache_id(void)
55007d84 2211{
f3bb3043
VD
2212 int id, size;
2213 int err;
2214
dbcf73e2 2215 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2216 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2217 if (id < 0)
2218 return id;
55007d84 2219
dbcf73e2 2220 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2221 return id;
2222
2223 /*
2224 * There's no space for the new id in memcg_caches arrays,
2225 * so we have to grow them.
2226 */
05257a1a 2227 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2228
2229 size = 2 * (id + 1);
55007d84
GC
2230 if (size < MEMCG_CACHES_MIN_SIZE)
2231 size = MEMCG_CACHES_MIN_SIZE;
2232 else if (size > MEMCG_CACHES_MAX_SIZE)
2233 size = MEMCG_CACHES_MAX_SIZE;
2234
f3bb3043 2235 err = memcg_update_all_caches(size);
60d3fd32
VD
2236 if (!err)
2237 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2238 if (!err)
2239 memcg_nr_cache_ids = size;
2240
2241 up_write(&memcg_cache_ids_sem);
2242
f3bb3043 2243 if (err) {
dbcf73e2 2244 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2245 return err;
2246 }
2247 return id;
2248}
2249
2250static void memcg_free_cache_id(int id)
2251{
dbcf73e2 2252 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2253}
2254
d5b3cf71 2255struct memcg_kmem_cache_create_work {
5722d094
VD
2256 struct mem_cgroup *memcg;
2257 struct kmem_cache *cachep;
2258 struct work_struct work;
2259};
2260
d5b3cf71 2261static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2262{
d5b3cf71
VD
2263 struct memcg_kmem_cache_create_work *cw =
2264 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2265 struct mem_cgroup *memcg = cw->memcg;
2266 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2267
d5b3cf71 2268 memcg_create_kmem_cache(memcg, cachep);
bd673145 2269
5722d094 2270 css_put(&memcg->css);
d7f25f8a
GC
2271 kfree(cw);
2272}
2273
2274/*
2275 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2276 */
d5b3cf71
VD
2277static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2278 struct kmem_cache *cachep)
d7f25f8a 2279{
d5b3cf71 2280 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2281
776ed0f0 2282 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2283 if (!cw)
d7f25f8a 2284 return;
8135be5a
VD
2285
2286 css_get(&memcg->css);
d7f25f8a
GC
2287
2288 cw->memcg = memcg;
2289 cw->cachep = cachep;
d5b3cf71 2290 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2291
d7f25f8a
GC
2292 schedule_work(&cw->work);
2293}
2294
d5b3cf71
VD
2295static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2296 struct kmem_cache *cachep)
0e9d92f2
GC
2297{
2298 /*
2299 * We need to stop accounting when we kmalloc, because if the
2300 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2301 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2302 *
2303 * However, it is better to enclose the whole function. Depending on
2304 * the debugging options enabled, INIT_WORK(), for instance, can
2305 * trigger an allocation. This too, will make us recurse. Because at
2306 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2307 * the safest choice is to do it like this, wrapping the whole function.
2308 */
6f185c29 2309 current->memcg_kmem_skip_account = 1;
d5b3cf71 2310 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2311 current->memcg_kmem_skip_account = 0;
0e9d92f2 2312}
c67a8a68 2313
d7f25f8a
GC
2314/*
2315 * Return the kmem_cache we're supposed to use for a slab allocation.
2316 * We try to use the current memcg's version of the cache.
2317 *
2318 * If the cache does not exist yet, if we are the first user of it,
2319 * we either create it immediately, if possible, or create it asynchronously
2320 * in a workqueue.
2321 * In the latter case, we will let the current allocation go through with
2322 * the original cache.
2323 *
2324 * Can't be called in interrupt context or from kernel threads.
2325 * This function needs to be called with rcu_read_lock() held.
2326 */
230e9fc2 2327struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2328{
2329 struct mem_cgroup *memcg;
959c8963 2330 struct kmem_cache *memcg_cachep;
2a4db7eb 2331 int kmemcg_id;
d7f25f8a 2332
f7ce3190 2333 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2334
230e9fc2
VD
2335 if (cachep->flags & SLAB_ACCOUNT)
2336 gfp |= __GFP_ACCOUNT;
2337
2338 if (!(gfp & __GFP_ACCOUNT))
2339 return cachep;
2340
9d100c5e 2341 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2342 return cachep;
2343
8135be5a 2344 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2345 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2346 if (kmemcg_id < 0)
ca0dde97 2347 goto out;
d7f25f8a 2348
2a4db7eb 2349 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2350 if (likely(memcg_cachep))
2351 return memcg_cachep;
ca0dde97
LZ
2352
2353 /*
2354 * If we are in a safe context (can wait, and not in interrupt
2355 * context), we could be be predictable and return right away.
2356 * This would guarantee that the allocation being performed
2357 * already belongs in the new cache.
2358 *
2359 * However, there are some clashes that can arrive from locking.
2360 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2361 * memcg_create_kmem_cache, this means no further allocation
2362 * could happen with the slab_mutex held. So it's better to
2363 * defer everything.
ca0dde97 2364 */
d5b3cf71 2365 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2366out:
8135be5a 2367 css_put(&memcg->css);
ca0dde97 2368 return cachep;
d7f25f8a 2369}
d7f25f8a 2370
8135be5a
VD
2371void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2372{
2373 if (!is_root_cache(cachep))
f7ce3190 2374 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2375}
2376
f3ccb2c4
VD
2377int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2378 struct mem_cgroup *memcg)
7ae1e1d0 2379{
f3ccb2c4
VD
2380 unsigned int nr_pages = 1 << order;
2381 struct page_counter *counter;
7ae1e1d0
GC
2382 int ret;
2383
567e9ab2 2384 if (!memcg_kmem_online(memcg))
d05e83a6 2385 return 0;
6d42c232 2386
f3ccb2c4 2387 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2388 if (ret)
f3ccb2c4 2389 return ret;
52c29b04
JW
2390
2391 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2392 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2393 cancel_charge(memcg, nr_pages);
2394 return -ENOMEM;
7ae1e1d0
GC
2395 }
2396
f3ccb2c4 2397 page->mem_cgroup = memcg;
7ae1e1d0 2398
f3ccb2c4 2399 return 0;
7ae1e1d0
GC
2400}
2401
f3ccb2c4 2402int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2403{
f3ccb2c4
VD
2404 struct mem_cgroup *memcg;
2405 int ret;
7ae1e1d0 2406
f3ccb2c4
VD
2407 memcg = get_mem_cgroup_from_mm(current->mm);
2408 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2409 css_put(&memcg->css);
d05e83a6 2410 return ret;
7ae1e1d0
GC
2411}
2412
d05e83a6 2413void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2414{
1306a85a 2415 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2416 unsigned int nr_pages = 1 << order;
7ae1e1d0 2417
7ae1e1d0
GC
2418 if (!memcg)
2419 return;
2420
309381fe 2421 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2422
52c29b04
JW
2423 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2424 page_counter_uncharge(&memcg->kmem, nr_pages);
2425
f3ccb2c4 2426 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2427 if (do_memsw_account())
f3ccb2c4 2428 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2429
1306a85a 2430 page->mem_cgroup = NULL;
f3ccb2c4 2431 css_put_many(&memcg->css, nr_pages);
60d3fd32 2432}
127424c8 2433#endif /* !CONFIG_SLOB */
7ae1e1d0 2434
ca3e0214
KH
2435#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2436
ca3e0214
KH
2437/*
2438 * Because tail pages are not marked as "used", set it. We're under
3ac808fd 2439 * zone->lru_lock and migration entries setup in all page mappings.
ca3e0214 2440 */
e94c8a9c 2441void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2442{
e94c8a9c 2443 int i;
ca3e0214 2444
3d37c4a9
KH
2445 if (mem_cgroup_disabled())
2446 return;
b070e65c 2447
29833315 2448 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2449 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2450
1306a85a 2451 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2452 HPAGE_PMD_NR);
ca3e0214 2453}
12d27107 2454#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2455
c255a458 2456#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2457static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2458 bool charge)
d13d1443 2459{
0a31bc97
JW
2460 int val = (charge) ? 1 : -1;
2461 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2462}
02491447
DN
2463
2464/**
2465 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2466 * @entry: swap entry to be moved
2467 * @from: mem_cgroup which the entry is moved from
2468 * @to: mem_cgroup which the entry is moved to
2469 *
2470 * It succeeds only when the swap_cgroup's record for this entry is the same
2471 * as the mem_cgroup's id of @from.
2472 *
2473 * Returns 0 on success, -EINVAL on failure.
2474 *
3e32cb2e 2475 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2476 * both res and memsw, and called css_get().
2477 */
2478static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2479 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2480{
2481 unsigned short old_id, new_id;
2482
34c00c31
LZ
2483 old_id = mem_cgroup_id(from);
2484 new_id = mem_cgroup_id(to);
02491447
DN
2485
2486 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2487 mem_cgroup_swap_statistics(from, false);
483c30b5 2488 mem_cgroup_swap_statistics(to, true);
02491447
DN
2489 return 0;
2490 }
2491 return -EINVAL;
2492}
2493#else
2494static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2495 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2496{
2497 return -EINVAL;
2498}
8c7c6e34 2499#endif
d13d1443 2500
3e32cb2e 2501static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2502
d38d2a75 2503static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2504 unsigned long limit)
628f4235 2505{
3e32cb2e
JW
2506 unsigned long curusage;
2507 unsigned long oldusage;
2508 bool enlarge = false;
81d39c20 2509 int retry_count;
3e32cb2e 2510 int ret;
81d39c20
KH
2511
2512 /*
2513 * For keeping hierarchical_reclaim simple, how long we should retry
2514 * is depends on callers. We set our retry-count to be function
2515 * of # of children which we should visit in this loop.
2516 */
3e32cb2e
JW
2517 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2518 mem_cgroup_count_children(memcg);
81d39c20 2519
3e32cb2e 2520 oldusage = page_counter_read(&memcg->memory);
628f4235 2521
3e32cb2e 2522 do {
628f4235
KH
2523 if (signal_pending(current)) {
2524 ret = -EINTR;
2525 break;
2526 }
3e32cb2e
JW
2527
2528 mutex_lock(&memcg_limit_mutex);
2529 if (limit > memcg->memsw.limit) {
2530 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2531 ret = -EINVAL;
628f4235
KH
2532 break;
2533 }
3e32cb2e
JW
2534 if (limit > memcg->memory.limit)
2535 enlarge = true;
2536 ret = page_counter_limit(&memcg->memory, limit);
2537 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2538
2539 if (!ret)
2540 break;
2541
b70a2a21
JW
2542 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2543
3e32cb2e 2544 curusage = page_counter_read(&memcg->memory);
81d39c20 2545 /* Usage is reduced ? */
f894ffa8 2546 if (curusage >= oldusage)
81d39c20
KH
2547 retry_count--;
2548 else
2549 oldusage = curusage;
3e32cb2e
JW
2550 } while (retry_count);
2551
3c11ecf4
KH
2552 if (!ret && enlarge)
2553 memcg_oom_recover(memcg);
14797e23 2554
8c7c6e34
KH
2555 return ret;
2556}
2557
338c8431 2558static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2559 unsigned long limit)
8c7c6e34 2560{
3e32cb2e
JW
2561 unsigned long curusage;
2562 unsigned long oldusage;
2563 bool enlarge = false;
81d39c20 2564 int retry_count;
3e32cb2e 2565 int ret;
8c7c6e34 2566
81d39c20 2567 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2568 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2569 mem_cgroup_count_children(memcg);
2570
2571 oldusage = page_counter_read(&memcg->memsw);
2572
2573 do {
8c7c6e34
KH
2574 if (signal_pending(current)) {
2575 ret = -EINTR;
2576 break;
2577 }
3e32cb2e
JW
2578
2579 mutex_lock(&memcg_limit_mutex);
2580 if (limit < memcg->memory.limit) {
2581 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2582 ret = -EINVAL;
8c7c6e34
KH
2583 break;
2584 }
3e32cb2e
JW
2585 if (limit > memcg->memsw.limit)
2586 enlarge = true;
2587 ret = page_counter_limit(&memcg->memsw, limit);
2588 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2589
2590 if (!ret)
2591 break;
2592
b70a2a21
JW
2593 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2594
3e32cb2e 2595 curusage = page_counter_read(&memcg->memsw);
81d39c20 2596 /* Usage is reduced ? */
8c7c6e34 2597 if (curusage >= oldusage)
628f4235 2598 retry_count--;
81d39c20
KH
2599 else
2600 oldusage = curusage;
3e32cb2e
JW
2601 } while (retry_count);
2602
3c11ecf4
KH
2603 if (!ret && enlarge)
2604 memcg_oom_recover(memcg);
3e32cb2e 2605
628f4235
KH
2606 return ret;
2607}
2608
0608f43d
AM
2609unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2610 gfp_t gfp_mask,
2611 unsigned long *total_scanned)
2612{
2613 unsigned long nr_reclaimed = 0;
2614 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2615 unsigned long reclaimed;
2616 int loop = 0;
2617 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2618 unsigned long excess;
0608f43d
AM
2619 unsigned long nr_scanned;
2620
2621 if (order > 0)
2622 return 0;
2623
2624 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2625 /*
2626 * This loop can run a while, specially if mem_cgroup's continuously
2627 * keep exceeding their soft limit and putting the system under
2628 * pressure
2629 */
2630 do {
2631 if (next_mz)
2632 mz = next_mz;
2633 else
2634 mz = mem_cgroup_largest_soft_limit_node(mctz);
2635 if (!mz)
2636 break;
2637
2638 nr_scanned = 0;
2639 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2640 gfp_mask, &nr_scanned);
2641 nr_reclaimed += reclaimed;
2642 *total_scanned += nr_scanned;
0a31bc97 2643 spin_lock_irq(&mctz->lock);
bc2f2e7f 2644 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2645
2646 /*
2647 * If we failed to reclaim anything from this memory cgroup
2648 * it is time to move on to the next cgroup
2649 */
2650 next_mz = NULL;
bc2f2e7f
VD
2651 if (!reclaimed)
2652 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2653
3e32cb2e 2654 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2655 /*
2656 * One school of thought says that we should not add
2657 * back the node to the tree if reclaim returns 0.
2658 * But our reclaim could return 0, simply because due
2659 * to priority we are exposing a smaller subset of
2660 * memory to reclaim from. Consider this as a longer
2661 * term TODO.
2662 */
2663 /* If excess == 0, no tree ops */
cf2c8127 2664 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2665 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2666 css_put(&mz->memcg->css);
2667 loop++;
2668 /*
2669 * Could not reclaim anything and there are no more
2670 * mem cgroups to try or we seem to be looping without
2671 * reclaiming anything.
2672 */
2673 if (!nr_reclaimed &&
2674 (next_mz == NULL ||
2675 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2676 break;
2677 } while (!nr_reclaimed);
2678 if (next_mz)
2679 css_put(&next_mz->memcg->css);
2680 return nr_reclaimed;
2681}
2682
ea280e7b
TH
2683/*
2684 * Test whether @memcg has children, dead or alive. Note that this
2685 * function doesn't care whether @memcg has use_hierarchy enabled and
2686 * returns %true if there are child csses according to the cgroup
2687 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2688 */
b5f99b53
GC
2689static inline bool memcg_has_children(struct mem_cgroup *memcg)
2690{
ea280e7b
TH
2691 bool ret;
2692
696ac172 2693 /*
ea280e7b
TH
2694 * The lock does not prevent addition or deletion of children, but
2695 * it prevents a new child from being initialized based on this
2696 * parent in css_online(), so it's enough to decide whether
2697 * hierarchically inherited attributes can still be changed or not.
696ac172 2698 */
ea280e7b
TH
2699 lockdep_assert_held(&memcg_create_mutex);
2700
2701 rcu_read_lock();
2702 ret = css_next_child(NULL, &memcg->css);
2703 rcu_read_unlock();
2704 return ret;
b5f99b53
GC
2705}
2706
c26251f9
MH
2707/*
2708 * Reclaims as many pages from the given memcg as possible and moves
2709 * the rest to the parent.
2710 *
2711 * Caller is responsible for holding css reference for memcg.
2712 */
2713static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2714{
2715 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2716
c1e862c1
KH
2717 /* we call try-to-free pages for make this cgroup empty */
2718 lru_add_drain_all();
f817ed48 2719 /* try to free all pages in this cgroup */
3e32cb2e 2720 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2721 int progress;
c1e862c1 2722
c26251f9
MH
2723 if (signal_pending(current))
2724 return -EINTR;
2725
b70a2a21
JW
2726 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2727 GFP_KERNEL, true);
c1e862c1 2728 if (!progress) {
f817ed48 2729 nr_retries--;
c1e862c1 2730 /* maybe some writeback is necessary */
8aa7e847 2731 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2732 }
f817ed48
KH
2733
2734 }
ab5196c2
MH
2735
2736 return 0;
cc847582
KH
2737}
2738
6770c64e
TH
2739static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2740 char *buf, size_t nbytes,
2741 loff_t off)
c1e862c1 2742{
6770c64e 2743 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2744
d8423011
MH
2745 if (mem_cgroup_is_root(memcg))
2746 return -EINVAL;
6770c64e 2747 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2748}
2749
182446d0
TH
2750static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2751 struct cftype *cft)
18f59ea7 2752{
182446d0 2753 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2754}
2755
182446d0
TH
2756static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2757 struct cftype *cft, u64 val)
18f59ea7
BS
2758{
2759 int retval = 0;
182446d0 2760 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2761 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2762
0999821b 2763 mutex_lock(&memcg_create_mutex);
567fb435
GC
2764
2765 if (memcg->use_hierarchy == val)
2766 goto out;
2767
18f59ea7 2768 /*
af901ca1 2769 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2770 * in the child subtrees. If it is unset, then the change can
2771 * occur, provided the current cgroup has no children.
2772 *
2773 * For the root cgroup, parent_mem is NULL, we allow value to be
2774 * set if there are no children.
2775 */
c0ff4b85 2776 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2777 (val == 1 || val == 0)) {
ea280e7b 2778 if (!memcg_has_children(memcg))
c0ff4b85 2779 memcg->use_hierarchy = val;
18f59ea7
BS
2780 else
2781 retval = -EBUSY;
2782 } else
2783 retval = -EINVAL;
567fb435
GC
2784
2785out:
0999821b 2786 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
2787
2788 return retval;
2789}
2790
3e32cb2e
JW
2791static unsigned long tree_stat(struct mem_cgroup *memcg,
2792 enum mem_cgroup_stat_index idx)
ce00a967
JW
2793{
2794 struct mem_cgroup *iter;
484ebb3b 2795 unsigned long val = 0;
ce00a967 2796
ce00a967
JW
2797 for_each_mem_cgroup_tree(iter, memcg)
2798 val += mem_cgroup_read_stat(iter, idx);
2799
ce00a967
JW
2800 return val;
2801}
2802
6f646156 2803static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2804{
c12176d3 2805 unsigned long val;
ce00a967 2806
3e32cb2e
JW
2807 if (mem_cgroup_is_root(memcg)) {
2808 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
2809 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
2810 if (swap)
2811 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
2812 } else {
ce00a967 2813 if (!swap)
3e32cb2e 2814 val = page_counter_read(&memcg->memory);
ce00a967 2815 else
3e32cb2e 2816 val = page_counter_read(&memcg->memsw);
ce00a967 2817 }
c12176d3 2818 return val;
ce00a967
JW
2819}
2820
3e32cb2e
JW
2821enum {
2822 RES_USAGE,
2823 RES_LIMIT,
2824 RES_MAX_USAGE,
2825 RES_FAILCNT,
2826 RES_SOFT_LIMIT,
2827};
ce00a967 2828
791badbd 2829static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2830 struct cftype *cft)
8cdea7c0 2831{
182446d0 2832 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2833 struct page_counter *counter;
af36f906 2834
3e32cb2e 2835 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2836 case _MEM:
3e32cb2e
JW
2837 counter = &memcg->memory;
2838 break;
8c7c6e34 2839 case _MEMSWAP:
3e32cb2e
JW
2840 counter = &memcg->memsw;
2841 break;
510fc4e1 2842 case _KMEM:
3e32cb2e 2843 counter = &memcg->kmem;
510fc4e1 2844 break;
8c7c6e34
KH
2845 default:
2846 BUG();
8c7c6e34 2847 }
3e32cb2e
JW
2848
2849 switch (MEMFILE_ATTR(cft->private)) {
2850 case RES_USAGE:
2851 if (counter == &memcg->memory)
c12176d3 2852 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2853 if (counter == &memcg->memsw)
c12176d3 2854 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2855 return (u64)page_counter_read(counter) * PAGE_SIZE;
2856 case RES_LIMIT:
2857 return (u64)counter->limit * PAGE_SIZE;
2858 case RES_MAX_USAGE:
2859 return (u64)counter->watermark * PAGE_SIZE;
2860 case RES_FAILCNT:
2861 return counter->failcnt;
2862 case RES_SOFT_LIMIT:
2863 return (u64)memcg->soft_limit * PAGE_SIZE;
2864 default:
2865 BUG();
2866 }
8cdea7c0 2867}
510fc4e1 2868
127424c8 2869#ifndef CONFIG_SLOB
567e9ab2 2870static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637
VD
2871{
2872 int err = 0;
2873 int memcg_id;
2874
2a4db7eb 2875 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2876 BUG_ON(memcg->kmem_state);
d6441637 2877
510fc4e1
GC
2878 /*
2879 * For simplicity, we won't allow this to be disabled. It also can't
2880 * be changed if the cgroup has children already, or if tasks had
2881 * already joined.
2882 *
2883 * If tasks join before we set the limit, a person looking at
2884 * kmem.usage_in_bytes will have no way to determine when it took
2885 * place, which makes the value quite meaningless.
2886 *
2887 * After it first became limited, changes in the value of the limit are
2888 * of course permitted.
510fc4e1 2889 */
0999821b 2890 mutex_lock(&memcg_create_mutex);
27bd4dbb 2891 if (cgroup_is_populated(memcg->css.cgroup) ||
ea280e7b 2892 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
2893 err = -EBUSY;
2894 mutex_unlock(&memcg_create_mutex);
2895 if (err)
2896 goto out;
510fc4e1 2897
f3bb3043 2898 memcg_id = memcg_alloc_cache_id();
d6441637
VD
2899 if (memcg_id < 0) {
2900 err = memcg_id;
2901 goto out;
2902 }
2903
ef12947c 2904 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2905 /*
567e9ab2 2906 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2907 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2908 * guarantee no one starts accounting before all call sites are
2909 * patched.
2910 */
900a38f0 2911 memcg->kmemcg_id = memcg_id;
567e9ab2 2912 memcg->kmem_state = KMEM_ONLINE;
510fc4e1 2913out:
d6441637 2914 return err;
d6441637
VD
2915}
2916
55007d84 2917static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 2918{
55007d84 2919 int ret = 0;
510fc4e1 2920 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 2921
d6441637
VD
2922 if (!parent)
2923 return 0;
55007d84 2924
8c0145b6 2925 mutex_lock(&memcg_limit_mutex);
55007d84 2926 /*
567e9ab2
JW
2927 * If the parent cgroup is not kmem-online now, it cannot be
2928 * onlined after this point, because it has at least one child
2929 * already.
55007d84 2930 */
04823c83
VD
2931 if (memcg_kmem_online(parent) ||
2932 (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nokmem))
567e9ab2 2933 ret = memcg_online_kmem(memcg);
8c0145b6 2934 mutex_unlock(&memcg_limit_mutex);
55007d84 2935 return ret;
510fc4e1 2936}
8e0a8912 2937
8e0a8912
JW
2938static void memcg_offline_kmem(struct mem_cgroup *memcg)
2939{
2940 struct cgroup_subsys_state *css;
2941 struct mem_cgroup *parent, *child;
2942 int kmemcg_id;
2943
2944 if (memcg->kmem_state != KMEM_ONLINE)
2945 return;
2946 /*
2947 * Clear the online state before clearing memcg_caches array
2948 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2949 * guarantees that no cache will be created for this cgroup
2950 * after we are done (see memcg_create_kmem_cache()).
2951 */
2952 memcg->kmem_state = KMEM_ALLOCATED;
2953
2954 memcg_deactivate_kmem_caches(memcg);
2955
2956 kmemcg_id = memcg->kmemcg_id;
2957 BUG_ON(kmemcg_id < 0);
2958
2959 parent = parent_mem_cgroup(memcg);
2960 if (!parent)
2961 parent = root_mem_cgroup;
2962
2963 /*
2964 * Change kmemcg_id of this cgroup and all its descendants to the
2965 * parent's id, and then move all entries from this cgroup's list_lrus
2966 * to ones of the parent. After we have finished, all list_lrus
2967 * corresponding to this cgroup are guaranteed to remain empty. The
2968 * ordering is imposed by list_lru_node->lock taken by
2969 * memcg_drain_all_list_lrus().
2970 */
2971 css_for_each_descendant_pre(css, &memcg->css) {
2972 child = mem_cgroup_from_css(css);
2973 BUG_ON(child->kmemcg_id != kmemcg_id);
2974 child->kmemcg_id = parent->kmemcg_id;
2975 if (!memcg->use_hierarchy)
2976 break;
2977 }
2978 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2979
2980 memcg_free_cache_id(kmemcg_id);
2981}
2982
2983static void memcg_free_kmem(struct mem_cgroup *memcg)
2984{
2985 if (memcg->kmem_state == KMEM_ALLOCATED) {
2986 memcg_destroy_kmem_caches(memcg);
2987 static_branch_dec(&memcg_kmem_enabled_key);
2988 WARN_ON(page_counter_read(&memcg->kmem));
2989 }
8e0a8912 2990}
d6441637 2991#else
127424c8
JW
2992static int memcg_propagate_kmem(struct mem_cgroup *memcg)
2993{
2994 return 0;
2995}
2996static void memcg_offline_kmem(struct mem_cgroup *memcg)
2997{
2998}
2999static void memcg_free_kmem(struct mem_cgroup *memcg)
3000{
3001}
3002#endif /* !CONFIG_SLOB */
3003
489c2a20 3004#ifdef CONFIG_MEMCG_LEGACY_KMEM
d6441637 3005static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3006 unsigned long limit)
d6441637 3007{
127424c8
JW
3008 int ret;
3009
3010 mutex_lock(&memcg_limit_mutex);
3011 /* Top-level cgroup doesn't propagate from root */
3012 if (!memcg_kmem_online(memcg)) {
3013 ret = memcg_online_kmem(memcg);
3014 if (ret)
3015 goto out;
3016 }
3017 ret = page_counter_limit(&memcg->kmem, limit);
3018out:
3019 mutex_unlock(&memcg_limit_mutex);
3020 return ret;
d6441637 3021}
127424c8
JW
3022#else
3023static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3024 unsigned long limit)
8e0a8912 3025{
127424c8 3026 return -EINVAL;
8e0a8912 3027}
489c2a20 3028#endif /* CONFIG_MEMCG_LEGACY_KMEM */
510fc4e1 3029
127424c8 3030
628f4235
KH
3031/*
3032 * The user of this function is...
3033 * RES_LIMIT.
3034 */
451af504
TH
3035static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3036 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3037{
451af504 3038 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3039 unsigned long nr_pages;
628f4235
KH
3040 int ret;
3041
451af504 3042 buf = strstrip(buf);
650c5e56 3043 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3044 if (ret)
3045 return ret;
af36f906 3046
3e32cb2e 3047 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3048 case RES_LIMIT:
4b3bde4c
BS
3049 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3050 ret = -EINVAL;
3051 break;
3052 }
3e32cb2e
JW
3053 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3054 case _MEM:
3055 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3056 break;
3e32cb2e
JW
3057 case _MEMSWAP:
3058 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3059 break;
3e32cb2e
JW
3060 case _KMEM:
3061 ret = memcg_update_kmem_limit(memcg, nr_pages);
3062 break;
3063 }
296c81d8 3064 break;
3e32cb2e
JW
3065 case RES_SOFT_LIMIT:
3066 memcg->soft_limit = nr_pages;
3067 ret = 0;
628f4235
KH
3068 break;
3069 }
451af504 3070 return ret ?: nbytes;
8cdea7c0
BS
3071}
3072
6770c64e
TH
3073static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3074 size_t nbytes, loff_t off)
c84872e1 3075{
6770c64e 3076 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3077 struct page_counter *counter;
c84872e1 3078
3e32cb2e
JW
3079 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3080 case _MEM:
3081 counter = &memcg->memory;
3082 break;
3083 case _MEMSWAP:
3084 counter = &memcg->memsw;
3085 break;
3086 case _KMEM:
3087 counter = &memcg->kmem;
3088 break;
3089 default:
3090 BUG();
3091 }
af36f906 3092
3e32cb2e 3093 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3094 case RES_MAX_USAGE:
3e32cb2e 3095 page_counter_reset_watermark(counter);
29f2a4da
PE
3096 break;
3097 case RES_FAILCNT:
3e32cb2e 3098 counter->failcnt = 0;
29f2a4da 3099 break;
3e32cb2e
JW
3100 default:
3101 BUG();
29f2a4da 3102 }
f64c3f54 3103
6770c64e 3104 return nbytes;
c84872e1
PE
3105}
3106
182446d0 3107static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3108 struct cftype *cft)
3109{
182446d0 3110 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3111}
3112
02491447 3113#ifdef CONFIG_MMU
182446d0 3114static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3115 struct cftype *cft, u64 val)
3116{
182446d0 3117 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3118
1dfab5ab 3119 if (val & ~MOVE_MASK)
7dc74be0 3120 return -EINVAL;
ee5e8472 3121
7dc74be0 3122 /*
ee5e8472
GC
3123 * No kind of locking is needed in here, because ->can_attach() will
3124 * check this value once in the beginning of the process, and then carry
3125 * on with stale data. This means that changes to this value will only
3126 * affect task migrations starting after the change.
7dc74be0 3127 */
c0ff4b85 3128 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3129 return 0;
3130}
02491447 3131#else
182446d0 3132static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3133 struct cftype *cft, u64 val)
3134{
3135 return -ENOSYS;
3136}
3137#endif
7dc74be0 3138
406eb0c9 3139#ifdef CONFIG_NUMA
2da8ca82 3140static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3141{
25485de6
GT
3142 struct numa_stat {
3143 const char *name;
3144 unsigned int lru_mask;
3145 };
3146
3147 static const struct numa_stat stats[] = {
3148 { "total", LRU_ALL },
3149 { "file", LRU_ALL_FILE },
3150 { "anon", LRU_ALL_ANON },
3151 { "unevictable", BIT(LRU_UNEVICTABLE) },
3152 };
3153 const struct numa_stat *stat;
406eb0c9 3154 int nid;
25485de6 3155 unsigned long nr;
2da8ca82 3156 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3157
25485de6
GT
3158 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3159 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3160 seq_printf(m, "%s=%lu", stat->name, nr);
3161 for_each_node_state(nid, N_MEMORY) {
3162 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3163 stat->lru_mask);
3164 seq_printf(m, " N%d=%lu", nid, nr);
3165 }
3166 seq_putc(m, '\n');
406eb0c9 3167 }
406eb0c9 3168
071aee13
YH
3169 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3170 struct mem_cgroup *iter;
3171
3172 nr = 0;
3173 for_each_mem_cgroup_tree(iter, memcg)
3174 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3175 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3176 for_each_node_state(nid, N_MEMORY) {
3177 nr = 0;
3178 for_each_mem_cgroup_tree(iter, memcg)
3179 nr += mem_cgroup_node_nr_lru_pages(
3180 iter, nid, stat->lru_mask);
3181 seq_printf(m, " N%d=%lu", nid, nr);
3182 }
3183 seq_putc(m, '\n');
406eb0c9 3184 }
406eb0c9 3185
406eb0c9
YH
3186 return 0;
3187}
3188#endif /* CONFIG_NUMA */
3189
2da8ca82 3190static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3191{
2da8ca82 3192 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3193 unsigned long memory, memsw;
af7c4b0e
JW
3194 struct mem_cgroup *mi;
3195 unsigned int i;
406eb0c9 3196
0ca44b14
GT
3197 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3198 MEM_CGROUP_STAT_NSTATS);
3199 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3200 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3201 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3202
af7c4b0e 3203 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3204 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3205 continue;
484ebb3b 3206 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3207 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3208 }
7b854121 3209
af7c4b0e
JW
3210 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3211 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3212 mem_cgroup_read_events(memcg, i));
3213
3214 for (i = 0; i < NR_LRU_LISTS; i++)
3215 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3216 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3217
14067bb3 3218 /* Hierarchical information */
3e32cb2e
JW
3219 memory = memsw = PAGE_COUNTER_MAX;
3220 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3221 memory = min(memory, mi->memory.limit);
3222 memsw = min(memsw, mi->memsw.limit);
fee7b548 3223 }
3e32cb2e
JW
3224 seq_printf(m, "hierarchical_memory_limit %llu\n",
3225 (u64)memory * PAGE_SIZE);
7941d214 3226 if (do_memsw_account())
3e32cb2e
JW
3227 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3228 (u64)memsw * PAGE_SIZE);
7f016ee8 3229
af7c4b0e 3230 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3231 unsigned long long val = 0;
af7c4b0e 3232
7941d214 3233 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3234 continue;
af7c4b0e
JW
3235 for_each_mem_cgroup_tree(mi, memcg)
3236 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3237 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3238 }
3239
3240 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3241 unsigned long long val = 0;
3242
3243 for_each_mem_cgroup_tree(mi, memcg)
3244 val += mem_cgroup_read_events(mi, i);
3245 seq_printf(m, "total_%s %llu\n",
3246 mem_cgroup_events_names[i], val);
3247 }
3248
3249 for (i = 0; i < NR_LRU_LISTS; i++) {
3250 unsigned long long val = 0;
3251
3252 for_each_mem_cgroup_tree(mi, memcg)
3253 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3254 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3255 }
14067bb3 3256
7f016ee8 3257#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3258 {
3259 int nid, zid;
3260 struct mem_cgroup_per_zone *mz;
89abfab1 3261 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3262 unsigned long recent_rotated[2] = {0, 0};
3263 unsigned long recent_scanned[2] = {0, 0};
3264
3265 for_each_online_node(nid)
3266 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3267 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3268 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3269
89abfab1
HD
3270 recent_rotated[0] += rstat->recent_rotated[0];
3271 recent_rotated[1] += rstat->recent_rotated[1];
3272 recent_scanned[0] += rstat->recent_scanned[0];
3273 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3274 }
78ccf5b5
JW
3275 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3276 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3277 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3278 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3279 }
3280#endif
3281
d2ceb9b7
KH
3282 return 0;
3283}
3284
182446d0
TH
3285static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3286 struct cftype *cft)
a7885eb8 3287{
182446d0 3288 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3289
1f4c025b 3290 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3291}
3292
182446d0
TH
3293static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3294 struct cftype *cft, u64 val)
a7885eb8 3295{
182446d0 3296 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3297
3dae7fec 3298 if (val > 100)
a7885eb8
KM
3299 return -EINVAL;
3300
14208b0e 3301 if (css->parent)
3dae7fec
JW
3302 memcg->swappiness = val;
3303 else
3304 vm_swappiness = val;
068b38c1 3305
a7885eb8
KM
3306 return 0;
3307}
3308
2e72b634
KS
3309static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3310{
3311 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3312 unsigned long usage;
2e72b634
KS
3313 int i;
3314
3315 rcu_read_lock();
3316 if (!swap)
2c488db2 3317 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3318 else
2c488db2 3319 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3320
3321 if (!t)
3322 goto unlock;
3323
ce00a967 3324 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3325
3326 /*
748dad36 3327 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3328 * If it's not true, a threshold was crossed after last
3329 * call of __mem_cgroup_threshold().
3330 */
5407a562 3331 i = t->current_threshold;
2e72b634
KS
3332
3333 /*
3334 * Iterate backward over array of thresholds starting from
3335 * current_threshold and check if a threshold is crossed.
3336 * If none of thresholds below usage is crossed, we read
3337 * only one element of the array here.
3338 */
3339 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3340 eventfd_signal(t->entries[i].eventfd, 1);
3341
3342 /* i = current_threshold + 1 */
3343 i++;
3344
3345 /*
3346 * Iterate forward over array of thresholds starting from
3347 * current_threshold+1 and check if a threshold is crossed.
3348 * If none of thresholds above usage is crossed, we read
3349 * only one element of the array here.
3350 */
3351 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3352 eventfd_signal(t->entries[i].eventfd, 1);
3353
3354 /* Update current_threshold */
5407a562 3355 t->current_threshold = i - 1;
2e72b634
KS
3356unlock:
3357 rcu_read_unlock();
3358}
3359
3360static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3361{
ad4ca5f4
KS
3362 while (memcg) {
3363 __mem_cgroup_threshold(memcg, false);
7941d214 3364 if (do_memsw_account())
ad4ca5f4
KS
3365 __mem_cgroup_threshold(memcg, true);
3366
3367 memcg = parent_mem_cgroup(memcg);
3368 }
2e72b634
KS
3369}
3370
3371static int compare_thresholds(const void *a, const void *b)
3372{
3373 const struct mem_cgroup_threshold *_a = a;
3374 const struct mem_cgroup_threshold *_b = b;
3375
2bff24a3
GT
3376 if (_a->threshold > _b->threshold)
3377 return 1;
3378
3379 if (_a->threshold < _b->threshold)
3380 return -1;
3381
3382 return 0;
2e72b634
KS
3383}
3384
c0ff4b85 3385static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3386{
3387 struct mem_cgroup_eventfd_list *ev;
3388
2bcf2e92
MH
3389 spin_lock(&memcg_oom_lock);
3390
c0ff4b85 3391 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3392 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3393
3394 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3395 return 0;
3396}
3397
c0ff4b85 3398static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3399{
7d74b06f
KH
3400 struct mem_cgroup *iter;
3401
c0ff4b85 3402 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3403 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3404}
3405
59b6f873 3406static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3407 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3408{
2c488db2
KS
3409 struct mem_cgroup_thresholds *thresholds;
3410 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3411 unsigned long threshold;
3412 unsigned long usage;
2c488db2 3413 int i, size, ret;
2e72b634 3414
650c5e56 3415 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3416 if (ret)
3417 return ret;
3418
3419 mutex_lock(&memcg->thresholds_lock);
2c488db2 3420
05b84301 3421 if (type == _MEM) {
2c488db2 3422 thresholds = &memcg->thresholds;
ce00a967 3423 usage = mem_cgroup_usage(memcg, false);
05b84301 3424 } else if (type == _MEMSWAP) {
2c488db2 3425 thresholds = &memcg->memsw_thresholds;
ce00a967 3426 usage = mem_cgroup_usage(memcg, true);
05b84301 3427 } else
2e72b634
KS
3428 BUG();
3429
2e72b634 3430 /* Check if a threshold crossed before adding a new one */
2c488db2 3431 if (thresholds->primary)
2e72b634
KS
3432 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3433
2c488db2 3434 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3435
3436 /* Allocate memory for new array of thresholds */
2c488db2 3437 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3438 GFP_KERNEL);
2c488db2 3439 if (!new) {
2e72b634
KS
3440 ret = -ENOMEM;
3441 goto unlock;
3442 }
2c488db2 3443 new->size = size;
2e72b634
KS
3444
3445 /* Copy thresholds (if any) to new array */
2c488db2
KS
3446 if (thresholds->primary) {
3447 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3448 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3449 }
3450
2e72b634 3451 /* Add new threshold */
2c488db2
KS
3452 new->entries[size - 1].eventfd = eventfd;
3453 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3454
3455 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3456 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3457 compare_thresholds, NULL);
3458
3459 /* Find current threshold */
2c488db2 3460 new->current_threshold = -1;
2e72b634 3461 for (i = 0; i < size; i++) {
748dad36 3462 if (new->entries[i].threshold <= usage) {
2e72b634 3463 /*
2c488db2
KS
3464 * new->current_threshold will not be used until
3465 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3466 * it here.
3467 */
2c488db2 3468 ++new->current_threshold;
748dad36
SZ
3469 } else
3470 break;
2e72b634
KS
3471 }
3472
2c488db2
KS
3473 /* Free old spare buffer and save old primary buffer as spare */
3474 kfree(thresholds->spare);
3475 thresholds->spare = thresholds->primary;
3476
3477 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3478
907860ed 3479 /* To be sure that nobody uses thresholds */
2e72b634
KS
3480 synchronize_rcu();
3481
2e72b634
KS
3482unlock:
3483 mutex_unlock(&memcg->thresholds_lock);
3484
3485 return ret;
3486}
3487
59b6f873 3488static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3489 struct eventfd_ctx *eventfd, const char *args)
3490{
59b6f873 3491 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3492}
3493
59b6f873 3494static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3495 struct eventfd_ctx *eventfd, const char *args)
3496{
59b6f873 3497 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3498}
3499
59b6f873 3500static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3501 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3502{
2c488db2
KS
3503 struct mem_cgroup_thresholds *thresholds;
3504 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3505 unsigned long usage;
2c488db2 3506 int i, j, size;
2e72b634
KS
3507
3508 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3509
3510 if (type == _MEM) {
2c488db2 3511 thresholds = &memcg->thresholds;
ce00a967 3512 usage = mem_cgroup_usage(memcg, false);
05b84301 3513 } else if (type == _MEMSWAP) {
2c488db2 3514 thresholds = &memcg->memsw_thresholds;
ce00a967 3515 usage = mem_cgroup_usage(memcg, true);
05b84301 3516 } else
2e72b634
KS
3517 BUG();
3518
371528ca
AV
3519 if (!thresholds->primary)
3520 goto unlock;
3521
2e72b634
KS
3522 /* Check if a threshold crossed before removing */
3523 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3524
3525 /* Calculate new number of threshold */
2c488db2
KS
3526 size = 0;
3527 for (i = 0; i < thresholds->primary->size; i++) {
3528 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3529 size++;
3530 }
3531
2c488db2 3532 new = thresholds->spare;
907860ed 3533
2e72b634
KS
3534 /* Set thresholds array to NULL if we don't have thresholds */
3535 if (!size) {
2c488db2
KS
3536 kfree(new);
3537 new = NULL;
907860ed 3538 goto swap_buffers;
2e72b634
KS
3539 }
3540
2c488db2 3541 new->size = size;
2e72b634
KS
3542
3543 /* Copy thresholds and find current threshold */
2c488db2
KS
3544 new->current_threshold = -1;
3545 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3546 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3547 continue;
3548
2c488db2 3549 new->entries[j] = thresholds->primary->entries[i];
748dad36 3550 if (new->entries[j].threshold <= usage) {
2e72b634 3551 /*
2c488db2 3552 * new->current_threshold will not be used
2e72b634
KS
3553 * until rcu_assign_pointer(), so it's safe to increment
3554 * it here.
3555 */
2c488db2 3556 ++new->current_threshold;
2e72b634
KS
3557 }
3558 j++;
3559 }
3560
907860ed 3561swap_buffers:
2c488db2
KS
3562 /* Swap primary and spare array */
3563 thresholds->spare = thresholds->primary;
8c757763 3564
2c488db2 3565 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3566
907860ed 3567 /* To be sure that nobody uses thresholds */
2e72b634 3568 synchronize_rcu();
6611d8d7
MC
3569
3570 /* If all events are unregistered, free the spare array */
3571 if (!new) {
3572 kfree(thresholds->spare);
3573 thresholds->spare = NULL;
3574 }
371528ca 3575unlock:
2e72b634 3576 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3577}
c1e862c1 3578
59b6f873 3579static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3580 struct eventfd_ctx *eventfd)
3581{
59b6f873 3582 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3583}
3584
59b6f873 3585static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3586 struct eventfd_ctx *eventfd)
3587{
59b6f873 3588 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3589}
3590
59b6f873 3591static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3592 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3593{
9490ff27 3594 struct mem_cgroup_eventfd_list *event;
9490ff27 3595
9490ff27
KH
3596 event = kmalloc(sizeof(*event), GFP_KERNEL);
3597 if (!event)
3598 return -ENOMEM;
3599
1af8efe9 3600 spin_lock(&memcg_oom_lock);
9490ff27
KH
3601
3602 event->eventfd = eventfd;
3603 list_add(&event->list, &memcg->oom_notify);
3604
3605 /* already in OOM ? */
c2b42d3c 3606 if (memcg->under_oom)
9490ff27 3607 eventfd_signal(eventfd, 1);
1af8efe9 3608 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3609
3610 return 0;
3611}
3612
59b6f873 3613static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3614 struct eventfd_ctx *eventfd)
9490ff27 3615{
9490ff27 3616 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3617
1af8efe9 3618 spin_lock(&memcg_oom_lock);
9490ff27 3619
c0ff4b85 3620 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3621 if (ev->eventfd == eventfd) {
3622 list_del(&ev->list);
3623 kfree(ev);
3624 }
3625 }
3626
1af8efe9 3627 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3628}
3629
2da8ca82 3630static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3631{
2da8ca82 3632 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3633
791badbd 3634 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3635 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3636 return 0;
3637}
3638
182446d0 3639static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3640 struct cftype *cft, u64 val)
3641{
182446d0 3642 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3643
3644 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3645 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3646 return -EINVAL;
3647
c0ff4b85 3648 memcg->oom_kill_disable = val;
4d845ebf 3649 if (!val)
c0ff4b85 3650 memcg_oom_recover(memcg);
3dae7fec 3651
3c11ecf4
KH
3652 return 0;
3653}
3654
52ebea74
TH
3655#ifdef CONFIG_CGROUP_WRITEBACK
3656
3657struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3658{
3659 return &memcg->cgwb_list;
3660}
3661
841710aa
TH
3662static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3663{
3664 return wb_domain_init(&memcg->cgwb_domain, gfp);
3665}
3666
3667static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3668{
3669 wb_domain_exit(&memcg->cgwb_domain);
3670}
3671
2529bb3a
TH
3672static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3673{
3674 wb_domain_size_changed(&memcg->cgwb_domain);
3675}
3676
841710aa
TH
3677struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3678{
3679 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3680
3681 if (!memcg->css.parent)
3682 return NULL;
3683
3684 return &memcg->cgwb_domain;
3685}
3686
c2aa723a
TH
3687/**
3688 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3689 * @wb: bdi_writeback in question
c5edf9cd
TH
3690 * @pfilepages: out parameter for number of file pages
3691 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3692 * @pdirty: out parameter for number of dirty pages
3693 * @pwriteback: out parameter for number of pages under writeback
3694 *
c5edf9cd
TH
3695 * Determine the numbers of file, headroom, dirty, and writeback pages in
3696 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3697 * is a bit more involved.
c2aa723a 3698 *
c5edf9cd
TH
3699 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3700 * headroom is calculated as the lowest headroom of itself and the
3701 * ancestors. Note that this doesn't consider the actual amount of
3702 * available memory in the system. The caller should further cap
3703 * *@pheadroom accordingly.
c2aa723a 3704 */
c5edf9cd
TH
3705void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3706 unsigned long *pheadroom, unsigned long *pdirty,
3707 unsigned long *pwriteback)
c2aa723a
TH
3708{
3709 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3710 struct mem_cgroup *parent;
c2aa723a
TH
3711
3712 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3713
3714 /* this should eventually include NR_UNSTABLE_NFS */
3715 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3716 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3717 (1 << LRU_ACTIVE_FILE));
3718 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3719
c2aa723a
TH
3720 while ((parent = parent_mem_cgroup(memcg))) {
3721 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3722 unsigned long used = page_counter_read(&memcg->memory);
3723
c5edf9cd 3724 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3725 memcg = parent;
3726 }
c2aa723a
TH
3727}
3728
841710aa
TH
3729#else /* CONFIG_CGROUP_WRITEBACK */
3730
3731static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3732{
3733 return 0;
3734}
3735
3736static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3737{
3738}
3739
2529bb3a
TH
3740static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3741{
3742}
3743
52ebea74
TH
3744#endif /* CONFIG_CGROUP_WRITEBACK */
3745
3bc942f3
TH
3746/*
3747 * DO NOT USE IN NEW FILES.
3748 *
3749 * "cgroup.event_control" implementation.
3750 *
3751 * This is way over-engineered. It tries to support fully configurable
3752 * events for each user. Such level of flexibility is completely
3753 * unnecessary especially in the light of the planned unified hierarchy.
3754 *
3755 * Please deprecate this and replace with something simpler if at all
3756 * possible.
3757 */
3758
79bd9814
TH
3759/*
3760 * Unregister event and free resources.
3761 *
3762 * Gets called from workqueue.
3763 */
3bc942f3 3764static void memcg_event_remove(struct work_struct *work)
79bd9814 3765{
3bc942f3
TH
3766 struct mem_cgroup_event *event =
3767 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3768 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3769
3770 remove_wait_queue(event->wqh, &event->wait);
3771
59b6f873 3772 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3773
3774 /* Notify userspace the event is going away. */
3775 eventfd_signal(event->eventfd, 1);
3776
3777 eventfd_ctx_put(event->eventfd);
3778 kfree(event);
59b6f873 3779 css_put(&memcg->css);
79bd9814
TH
3780}
3781
3782/*
3783 * Gets called on POLLHUP on eventfd when user closes it.
3784 *
3785 * Called with wqh->lock held and interrupts disabled.
3786 */
3bc942f3
TH
3787static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3788 int sync, void *key)
79bd9814 3789{
3bc942f3
TH
3790 struct mem_cgroup_event *event =
3791 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3792 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3793 unsigned long flags = (unsigned long)key;
3794
3795 if (flags & POLLHUP) {
3796 /*
3797 * If the event has been detached at cgroup removal, we
3798 * can simply return knowing the other side will cleanup
3799 * for us.
3800 *
3801 * We can't race against event freeing since the other
3802 * side will require wqh->lock via remove_wait_queue(),
3803 * which we hold.
3804 */
fba94807 3805 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3806 if (!list_empty(&event->list)) {
3807 list_del_init(&event->list);
3808 /*
3809 * We are in atomic context, but cgroup_event_remove()
3810 * may sleep, so we have to call it in workqueue.
3811 */
3812 schedule_work(&event->remove);
3813 }
fba94807 3814 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3815 }
3816
3817 return 0;
3818}
3819
3bc942f3 3820static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3821 wait_queue_head_t *wqh, poll_table *pt)
3822{
3bc942f3
TH
3823 struct mem_cgroup_event *event =
3824 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3825
3826 event->wqh = wqh;
3827 add_wait_queue(wqh, &event->wait);
3828}
3829
3830/*
3bc942f3
TH
3831 * DO NOT USE IN NEW FILES.
3832 *
79bd9814
TH
3833 * Parse input and register new cgroup event handler.
3834 *
3835 * Input must be in format '<event_fd> <control_fd> <args>'.
3836 * Interpretation of args is defined by control file implementation.
3837 */
451af504
TH
3838static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3839 char *buf, size_t nbytes, loff_t off)
79bd9814 3840{
451af504 3841 struct cgroup_subsys_state *css = of_css(of);
fba94807 3842 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3843 struct mem_cgroup_event *event;
79bd9814
TH
3844 struct cgroup_subsys_state *cfile_css;
3845 unsigned int efd, cfd;
3846 struct fd efile;
3847 struct fd cfile;
fba94807 3848 const char *name;
79bd9814
TH
3849 char *endp;
3850 int ret;
3851
451af504
TH
3852 buf = strstrip(buf);
3853
3854 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3855 if (*endp != ' ')
3856 return -EINVAL;
451af504 3857 buf = endp + 1;
79bd9814 3858
451af504 3859 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3860 if ((*endp != ' ') && (*endp != '\0'))
3861 return -EINVAL;
451af504 3862 buf = endp + 1;
79bd9814
TH
3863
3864 event = kzalloc(sizeof(*event), GFP_KERNEL);
3865 if (!event)
3866 return -ENOMEM;
3867
59b6f873 3868 event->memcg = memcg;
79bd9814 3869 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3870 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3871 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3872 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3873
3874 efile = fdget(efd);
3875 if (!efile.file) {
3876 ret = -EBADF;
3877 goto out_kfree;
3878 }
3879
3880 event->eventfd = eventfd_ctx_fileget(efile.file);
3881 if (IS_ERR(event->eventfd)) {
3882 ret = PTR_ERR(event->eventfd);
3883 goto out_put_efile;
3884 }
3885
3886 cfile = fdget(cfd);
3887 if (!cfile.file) {
3888 ret = -EBADF;
3889 goto out_put_eventfd;
3890 }
3891
3892 /* the process need read permission on control file */
3893 /* AV: shouldn't we check that it's been opened for read instead? */
3894 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3895 if (ret < 0)
3896 goto out_put_cfile;
3897
fba94807
TH
3898 /*
3899 * Determine the event callbacks and set them in @event. This used
3900 * to be done via struct cftype but cgroup core no longer knows
3901 * about these events. The following is crude but the whole thing
3902 * is for compatibility anyway.
3bc942f3
TH
3903 *
3904 * DO NOT ADD NEW FILES.
fba94807 3905 */
b583043e 3906 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3907
3908 if (!strcmp(name, "memory.usage_in_bytes")) {
3909 event->register_event = mem_cgroup_usage_register_event;
3910 event->unregister_event = mem_cgroup_usage_unregister_event;
3911 } else if (!strcmp(name, "memory.oom_control")) {
3912 event->register_event = mem_cgroup_oom_register_event;
3913 event->unregister_event = mem_cgroup_oom_unregister_event;
3914 } else if (!strcmp(name, "memory.pressure_level")) {
3915 event->register_event = vmpressure_register_event;
3916 event->unregister_event = vmpressure_unregister_event;
3917 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3918 event->register_event = memsw_cgroup_usage_register_event;
3919 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3920 } else {
3921 ret = -EINVAL;
3922 goto out_put_cfile;
3923 }
3924
79bd9814 3925 /*
b5557c4c
TH
3926 * Verify @cfile should belong to @css. Also, remaining events are
3927 * automatically removed on cgroup destruction but the removal is
3928 * asynchronous, so take an extra ref on @css.
79bd9814 3929 */
b583043e 3930 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3931 &memory_cgrp_subsys);
79bd9814 3932 ret = -EINVAL;
5a17f543 3933 if (IS_ERR(cfile_css))
79bd9814 3934 goto out_put_cfile;
5a17f543
TH
3935 if (cfile_css != css) {
3936 css_put(cfile_css);
79bd9814 3937 goto out_put_cfile;
5a17f543 3938 }
79bd9814 3939
451af504 3940 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3941 if (ret)
3942 goto out_put_css;
3943
3944 efile.file->f_op->poll(efile.file, &event->pt);
3945
fba94807
TH
3946 spin_lock(&memcg->event_list_lock);
3947 list_add(&event->list, &memcg->event_list);
3948 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3949
3950 fdput(cfile);
3951 fdput(efile);
3952
451af504 3953 return nbytes;
79bd9814
TH
3954
3955out_put_css:
b5557c4c 3956 css_put(css);
79bd9814
TH
3957out_put_cfile:
3958 fdput(cfile);
3959out_put_eventfd:
3960 eventfd_ctx_put(event->eventfd);
3961out_put_efile:
3962 fdput(efile);
3963out_kfree:
3964 kfree(event);
3965
3966 return ret;
3967}
3968
241994ed 3969static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3970 {
0eea1030 3971 .name = "usage_in_bytes",
8c7c6e34 3972 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3973 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3974 },
c84872e1
PE
3975 {
3976 .name = "max_usage_in_bytes",
8c7c6e34 3977 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3978 .write = mem_cgroup_reset,
791badbd 3979 .read_u64 = mem_cgroup_read_u64,
c84872e1 3980 },
8cdea7c0 3981 {
0eea1030 3982 .name = "limit_in_bytes",
8c7c6e34 3983 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3984 .write = mem_cgroup_write,
791badbd 3985 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3986 },
296c81d8
BS
3987 {
3988 .name = "soft_limit_in_bytes",
3989 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3990 .write = mem_cgroup_write,
791badbd 3991 .read_u64 = mem_cgroup_read_u64,
296c81d8 3992 },
8cdea7c0
BS
3993 {
3994 .name = "failcnt",
8c7c6e34 3995 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3996 .write = mem_cgroup_reset,
791badbd 3997 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3998 },
d2ceb9b7
KH
3999 {
4000 .name = "stat",
2da8ca82 4001 .seq_show = memcg_stat_show,
d2ceb9b7 4002 },
c1e862c1
KH
4003 {
4004 .name = "force_empty",
6770c64e 4005 .write = mem_cgroup_force_empty_write,
c1e862c1 4006 },
18f59ea7
BS
4007 {
4008 .name = "use_hierarchy",
4009 .write_u64 = mem_cgroup_hierarchy_write,
4010 .read_u64 = mem_cgroup_hierarchy_read,
4011 },
79bd9814 4012 {
3bc942f3 4013 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4014 .write = memcg_write_event_control,
7dbdb199 4015 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4016 },
a7885eb8
KM
4017 {
4018 .name = "swappiness",
4019 .read_u64 = mem_cgroup_swappiness_read,
4020 .write_u64 = mem_cgroup_swappiness_write,
4021 },
7dc74be0
DN
4022 {
4023 .name = "move_charge_at_immigrate",
4024 .read_u64 = mem_cgroup_move_charge_read,
4025 .write_u64 = mem_cgroup_move_charge_write,
4026 },
9490ff27
KH
4027 {
4028 .name = "oom_control",
2da8ca82 4029 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4030 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4031 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4032 },
70ddf637
AV
4033 {
4034 .name = "pressure_level",
70ddf637 4035 },
406eb0c9
YH
4036#ifdef CONFIG_NUMA
4037 {
4038 .name = "numa_stat",
2da8ca82 4039 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4040 },
4041#endif
489c2a20 4042#ifdef CONFIG_MEMCG_LEGACY_KMEM
510fc4e1
GC
4043 {
4044 .name = "kmem.limit_in_bytes",
4045 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4046 .write = mem_cgroup_write,
791badbd 4047 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4048 },
4049 {
4050 .name = "kmem.usage_in_bytes",
4051 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4052 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4053 },
4054 {
4055 .name = "kmem.failcnt",
4056 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4057 .write = mem_cgroup_reset,
791badbd 4058 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4059 },
4060 {
4061 .name = "kmem.max_usage_in_bytes",
4062 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4063 .write = mem_cgroup_reset,
791badbd 4064 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4065 },
749c5415
GC
4066#ifdef CONFIG_SLABINFO
4067 {
4068 .name = "kmem.slabinfo",
b047501c
VD
4069 .seq_start = slab_start,
4070 .seq_next = slab_next,
4071 .seq_stop = slab_stop,
4072 .seq_show = memcg_slab_show,
749c5415
GC
4073 },
4074#endif
8c7c6e34 4075#endif
6bc10349 4076 { }, /* terminate */
af36f906 4077};
8c7c6e34 4078
c0ff4b85 4079static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4080{
4081 struct mem_cgroup_per_node *pn;
1ecaab2b 4082 struct mem_cgroup_per_zone *mz;
41e3355d 4083 int zone, tmp = node;
1ecaab2b
KH
4084 /*
4085 * This routine is called against possible nodes.
4086 * But it's BUG to call kmalloc() against offline node.
4087 *
4088 * TODO: this routine can waste much memory for nodes which will
4089 * never be onlined. It's better to use memory hotplug callback
4090 * function.
4091 */
41e3355d
KH
4092 if (!node_state(node, N_NORMAL_MEMORY))
4093 tmp = -1;
17295c88 4094 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4095 if (!pn)
4096 return 1;
1ecaab2b 4097
1ecaab2b
KH
4098 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4099 mz = &pn->zoneinfo[zone];
bea8c150 4100 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4101 mz->usage_in_excess = 0;
4102 mz->on_tree = false;
d79154bb 4103 mz->memcg = memcg;
1ecaab2b 4104 }
54f72fe0 4105 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4106 return 0;
4107}
4108
c0ff4b85 4109static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4110{
54f72fe0 4111 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4112}
4113
33327948
KH
4114static struct mem_cgroup *mem_cgroup_alloc(void)
4115{
d79154bb 4116 struct mem_cgroup *memcg;
8ff69e2c 4117 size_t size;
33327948 4118
8ff69e2c
VD
4119 size = sizeof(struct mem_cgroup);
4120 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4121
8ff69e2c 4122 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4123 if (!memcg)
e7bbcdf3
DC
4124 return NULL;
4125
d79154bb
HD
4126 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4127 if (!memcg->stat)
d2e61b8d 4128 goto out_free;
841710aa
TH
4129
4130 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4131 goto out_free_stat;
4132
d79154bb 4133 return memcg;
d2e61b8d 4134
841710aa
TH
4135out_free_stat:
4136 free_percpu(memcg->stat);
d2e61b8d 4137out_free:
8ff69e2c 4138 kfree(memcg);
d2e61b8d 4139 return NULL;
33327948
KH
4140}
4141
59927fb9 4142/*
c8b2a36f
GC
4143 * At destroying mem_cgroup, references from swap_cgroup can remain.
4144 * (scanning all at force_empty is too costly...)
4145 *
4146 * Instead of clearing all references at force_empty, we remember
4147 * the number of reference from swap_cgroup and free mem_cgroup when
4148 * it goes down to 0.
4149 *
4150 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4151 */
c8b2a36f
GC
4152
4153static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4154{
c8b2a36f 4155 int node;
59927fb9 4156
f7e1cb6e
JW
4157 cancel_work_sync(&memcg->high_work);
4158
bb4cc1a8 4159 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4160
4161 for_each_node(node)
4162 free_mem_cgroup_per_zone_info(memcg, node);
4163
4164 free_percpu(memcg->stat);
841710aa 4165 memcg_wb_domain_exit(memcg);
8ff69e2c 4166 kfree(memcg);
59927fb9 4167}
3afe36b1 4168
0eb253e2 4169static struct cgroup_subsys_state * __ref
eb95419b 4170mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4171{
d142e3e6 4172 struct mem_cgroup *memcg;
04046e1a 4173 long error = -ENOMEM;
6d12e2d8 4174 int node;
8cdea7c0 4175
c0ff4b85
R
4176 memcg = mem_cgroup_alloc();
4177 if (!memcg)
04046e1a 4178 return ERR_PTR(error);
78fb7466 4179
3ed28fa1 4180 for_each_node(node)
c0ff4b85 4181 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4182 goto free_out;
f64c3f54 4183
c077719b 4184 /* root ? */
eb95419b 4185 if (parent_css == NULL) {
a41c58a6 4186 root_mem_cgroup = memcg;
3e32cb2e 4187 page_counter_init(&memcg->memory, NULL);
241994ed 4188 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4189 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4190 page_counter_init(&memcg->memsw, NULL);
4191 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4192 }
28dbc4b6 4193
f7e1cb6e 4194 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4195 memcg->last_scanned_node = MAX_NUMNODES;
4196 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4197 memcg->move_charge_at_immigrate = 0;
4198 mutex_init(&memcg->thresholds_lock);
4199 spin_lock_init(&memcg->move_lock);
70ddf637 4200 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4201 INIT_LIST_HEAD(&memcg->event_list);
4202 spin_lock_init(&memcg->event_list_lock);
127424c8 4203#ifndef CONFIG_SLOB
900a38f0 4204 memcg->kmemcg_id = -1;
900a38f0 4205#endif
52ebea74
TH
4206#ifdef CONFIG_CGROUP_WRITEBACK
4207 INIT_LIST_HEAD(&memcg->cgwb_list);
8e8ae645
JW
4208#endif
4209#ifdef CONFIG_INET
4210 memcg->socket_pressure = jiffies;
52ebea74 4211#endif
d142e3e6
GC
4212 return &memcg->css;
4213
4214free_out:
4215 __mem_cgroup_free(memcg);
4216 return ERR_PTR(error);
4217}
4218
4219static int
eb95419b 4220mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4221{
eb95419b 4222 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4223 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4224 int ret;
d142e3e6 4225
15a4c835 4226 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4227 return -ENOSPC;
4228
63876986 4229 if (!parent)
d142e3e6
GC
4230 return 0;
4231
0999821b 4232 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4233
4234 memcg->use_hierarchy = parent->use_hierarchy;
4235 memcg->oom_kill_disable = parent->oom_kill_disable;
4236 memcg->swappiness = mem_cgroup_swappiness(parent);
4237
4238 if (parent->use_hierarchy) {
3e32cb2e 4239 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4240 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4241 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4242 page_counter_init(&memcg->memsw, &parent->memsw);
4243 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4244
7bcc1bb1 4245 /*
8d76a979
LZ
4246 * No need to take a reference to the parent because cgroup
4247 * core guarantees its existence.
7bcc1bb1 4248 */
18f59ea7 4249 } else {
3e32cb2e 4250 page_counter_init(&memcg->memory, NULL);
241994ed 4251 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4252 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4253 page_counter_init(&memcg->memsw, NULL);
4254 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4255 /*
4256 * Deeper hierachy with use_hierarchy == false doesn't make
4257 * much sense so let cgroup subsystem know about this
4258 * unfortunate state in our controller.
4259 */
d142e3e6 4260 if (parent != root_mem_cgroup)
073219e9 4261 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4262 }
0999821b 4263 mutex_unlock(&memcg_create_mutex);
d6441637 4264
3893e302 4265 ret = memcg_propagate_kmem(memcg);
2f7dd7a4
JW
4266 if (ret)
4267 return ret;
127424c8 4268
489c2a20
JW
4269#ifdef CONFIG_INET
4270#ifdef CONFIG_MEMCG_LEGACY_KMEM
3893e302
JW
4271 ret = tcp_init_cgroup(memcg);
4272 if (ret)
4273 return ret;
4274#endif
2f7dd7a4 4275
f7e1cb6e 4276 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4277 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e
JW
4278#endif
4279
2f7dd7a4
JW
4280 /*
4281 * Make sure the memcg is initialized: mem_cgroup_iter()
4282 * orders reading memcg->initialized against its callers
4283 * reading the memcg members.
4284 */
4285 smp_store_release(&memcg->initialized, 1);
4286
4287 return 0;
8cdea7c0
BS
4288}
4289
eb95419b 4290static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4291{
eb95419b 4292 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4293 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4294
4295 /*
4296 * Unregister events and notify userspace.
4297 * Notify userspace about cgroup removing only after rmdir of cgroup
4298 * directory to avoid race between userspace and kernelspace.
4299 */
fba94807
TH
4300 spin_lock(&memcg->event_list_lock);
4301 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4302 list_del_init(&event->list);
4303 schedule_work(&event->remove);
4304 }
fba94807 4305 spin_unlock(&memcg->event_list_lock);
ec64f515 4306
33cb876e 4307 vmpressure_cleanup(&memcg->vmpressure);
2a4db7eb 4308
567e9ab2 4309 memcg_offline_kmem(memcg);
52ebea74
TH
4310
4311 wb_memcg_offline(memcg);
df878fb0
KH
4312}
4313
6df38689
VD
4314static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4315{
4316 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4317
4318 invalidate_reclaim_iterators(memcg);
4319}
4320
eb95419b 4321static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4322{
eb95419b 4323 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4324
f7e1cb6e
JW
4325#ifdef CONFIG_INET
4326 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4327 static_branch_dec(&memcg_sockets_enabled_key);
f7e1cb6e 4328#endif
3893e302 4329
3893e302 4330 memcg_free_kmem(memcg);
127424c8 4331
489c2a20 4332#if defined(CONFIG_MEMCG_LEGACY_KMEM) && defined(CONFIG_INET)
3893e302
JW
4333 tcp_destroy_cgroup(memcg);
4334#endif
4335
465939a1 4336 __mem_cgroup_free(memcg);
8cdea7c0
BS
4337}
4338
1ced953b
TH
4339/**
4340 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4341 * @css: the target css
4342 *
4343 * Reset the states of the mem_cgroup associated with @css. This is
4344 * invoked when the userland requests disabling on the default hierarchy
4345 * but the memcg is pinned through dependency. The memcg should stop
4346 * applying policies and should revert to the vanilla state as it may be
4347 * made visible again.
4348 *
4349 * The current implementation only resets the essential configurations.
4350 * This needs to be expanded to cover all the visible parts.
4351 */
4352static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4353{
4354 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4355
3e32cb2e
JW
4356 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4357 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4358 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4359 memcg->low = 0;
4360 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4361 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4362 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4363}
4364
02491447 4365#ifdef CONFIG_MMU
7dc74be0 4366/* Handlers for move charge at task migration. */
854ffa8d 4367static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4368{
05b84301 4369 int ret;
9476db97 4370
d0164adc
MG
4371 /* Try a single bulk charge without reclaim first, kswapd may wake */
4372 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4373 if (!ret) {
854ffa8d 4374 mc.precharge += count;
854ffa8d
DN
4375 return ret;
4376 }
9476db97
JW
4377
4378 /* Try charges one by one with reclaim */
854ffa8d 4379 while (count--) {
00501b53 4380 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4381 if (ret)
38c5d72f 4382 return ret;
854ffa8d 4383 mc.precharge++;
9476db97 4384 cond_resched();
854ffa8d 4385 }
9476db97 4386 return 0;
4ffef5fe
DN
4387}
4388
4389/**
8d32ff84 4390 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4391 * @vma: the vma the pte to be checked belongs
4392 * @addr: the address corresponding to the pte to be checked
4393 * @ptent: the pte to be checked
02491447 4394 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4395 *
4396 * Returns
4397 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4398 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4399 * move charge. if @target is not NULL, the page is stored in target->page
4400 * with extra refcnt got(Callers should handle it).
02491447
DN
4401 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4402 * target for charge migration. if @target is not NULL, the entry is stored
4403 * in target->ent.
4ffef5fe
DN
4404 *
4405 * Called with pte lock held.
4406 */
4ffef5fe
DN
4407union mc_target {
4408 struct page *page;
02491447 4409 swp_entry_t ent;
4ffef5fe
DN
4410};
4411
4ffef5fe 4412enum mc_target_type {
8d32ff84 4413 MC_TARGET_NONE = 0,
4ffef5fe 4414 MC_TARGET_PAGE,
02491447 4415 MC_TARGET_SWAP,
4ffef5fe
DN
4416};
4417
90254a65
DN
4418static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4419 unsigned long addr, pte_t ptent)
4ffef5fe 4420{
90254a65 4421 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4422
90254a65
DN
4423 if (!page || !page_mapped(page))
4424 return NULL;
4425 if (PageAnon(page)) {
1dfab5ab 4426 if (!(mc.flags & MOVE_ANON))
90254a65 4427 return NULL;
1dfab5ab
JW
4428 } else {
4429 if (!(mc.flags & MOVE_FILE))
4430 return NULL;
4431 }
90254a65
DN
4432 if (!get_page_unless_zero(page))
4433 return NULL;
4434
4435 return page;
4436}
4437
4b91355e 4438#ifdef CONFIG_SWAP
90254a65
DN
4439static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4440 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4441{
90254a65
DN
4442 struct page *page = NULL;
4443 swp_entry_t ent = pte_to_swp_entry(ptent);
4444
1dfab5ab 4445 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4446 return NULL;
4b91355e
KH
4447 /*
4448 * Because lookup_swap_cache() updates some statistics counter,
4449 * we call find_get_page() with swapper_space directly.
4450 */
33806f06 4451 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4452 if (do_memsw_account())
90254a65
DN
4453 entry->val = ent.val;
4454
4455 return page;
4456}
4b91355e
KH
4457#else
4458static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4459 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4460{
4461 return NULL;
4462}
4463#endif
90254a65 4464
87946a72
DN
4465static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4466 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4467{
4468 struct page *page = NULL;
87946a72
DN
4469 struct address_space *mapping;
4470 pgoff_t pgoff;
4471
4472 if (!vma->vm_file) /* anonymous vma */
4473 return NULL;
1dfab5ab 4474 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4475 return NULL;
4476
87946a72 4477 mapping = vma->vm_file->f_mapping;
0661a336 4478 pgoff = linear_page_index(vma, addr);
87946a72
DN
4479
4480 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4481#ifdef CONFIG_SWAP
4482 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4483 if (shmem_mapping(mapping)) {
4484 page = find_get_entry(mapping, pgoff);
4485 if (radix_tree_exceptional_entry(page)) {
4486 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4487 if (do_memsw_account())
139b6a6f
JW
4488 *entry = swp;
4489 page = find_get_page(swap_address_space(swp), swp.val);
4490 }
4491 } else
4492 page = find_get_page(mapping, pgoff);
4493#else
4494 page = find_get_page(mapping, pgoff);
aa3b1895 4495#endif
87946a72
DN
4496 return page;
4497}
4498
b1b0deab
CG
4499/**
4500 * mem_cgroup_move_account - move account of the page
4501 * @page: the page
4502 * @nr_pages: number of regular pages (>1 for huge pages)
4503 * @from: mem_cgroup which the page is moved from.
4504 * @to: mem_cgroup which the page is moved to. @from != @to.
4505 *
3ac808fd 4506 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4507 *
4508 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4509 * from old cgroup.
4510 */
4511static int mem_cgroup_move_account(struct page *page,
f627c2f5 4512 bool compound,
b1b0deab
CG
4513 struct mem_cgroup *from,
4514 struct mem_cgroup *to)
4515{
4516 unsigned long flags;
f627c2f5 4517 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4518 int ret;
c4843a75 4519 bool anon;
b1b0deab
CG
4520
4521 VM_BUG_ON(from == to);
4522 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4523 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4524
4525 /*
45637bab
HD
4526 * Prevent mem_cgroup_replace_page() from looking at
4527 * page->mem_cgroup of its source page while we change it.
b1b0deab 4528 */
f627c2f5 4529 ret = -EBUSY;
b1b0deab
CG
4530 if (!trylock_page(page))
4531 goto out;
4532
4533 ret = -EINVAL;
4534 if (page->mem_cgroup != from)
4535 goto out_unlock;
4536
c4843a75
GT
4537 anon = PageAnon(page);
4538
b1b0deab
CG
4539 spin_lock_irqsave(&from->move_lock, flags);
4540
c4843a75 4541 if (!anon && page_mapped(page)) {
b1b0deab
CG
4542 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4543 nr_pages);
4544 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4545 nr_pages);
4546 }
4547
c4843a75
GT
4548 /*
4549 * move_lock grabbed above and caller set from->moving_account, so
4550 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4551 * So mapping should be stable for dirty pages.
4552 */
4553 if (!anon && PageDirty(page)) {
4554 struct address_space *mapping = page_mapping(page);
4555
4556 if (mapping_cap_account_dirty(mapping)) {
4557 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4558 nr_pages);
4559 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4560 nr_pages);
4561 }
4562 }
4563
b1b0deab
CG
4564 if (PageWriteback(page)) {
4565 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4566 nr_pages);
4567 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4568 nr_pages);
4569 }
4570
4571 /*
4572 * It is safe to change page->mem_cgroup here because the page
4573 * is referenced, charged, and isolated - we can't race with
4574 * uncharging, charging, migration, or LRU putback.
4575 */
4576
4577 /* caller should have done css_get */
4578 page->mem_cgroup = to;
4579 spin_unlock_irqrestore(&from->move_lock, flags);
4580
4581 ret = 0;
4582
4583 local_irq_disable();
f627c2f5 4584 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4585 memcg_check_events(to, page);
f627c2f5 4586 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4587 memcg_check_events(from, page);
4588 local_irq_enable();
4589out_unlock:
4590 unlock_page(page);
4591out:
4592 return ret;
4593}
4594
8d32ff84 4595static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4596 unsigned long addr, pte_t ptent, union mc_target *target)
4597{
4598 struct page *page = NULL;
8d32ff84 4599 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4600 swp_entry_t ent = { .val = 0 };
4601
4602 if (pte_present(ptent))
4603 page = mc_handle_present_pte(vma, addr, ptent);
4604 else if (is_swap_pte(ptent))
4605 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4606 else if (pte_none(ptent))
87946a72 4607 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4608
4609 if (!page && !ent.val)
8d32ff84 4610 return ret;
02491447 4611 if (page) {
02491447 4612 /*
0a31bc97 4613 * Do only loose check w/o serialization.
1306a85a 4614 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4615 * not under LRU exclusion.
02491447 4616 */
1306a85a 4617 if (page->mem_cgroup == mc.from) {
02491447
DN
4618 ret = MC_TARGET_PAGE;
4619 if (target)
4620 target->page = page;
4621 }
4622 if (!ret || !target)
4623 put_page(page);
4624 }
90254a65
DN
4625 /* There is a swap entry and a page doesn't exist or isn't charged */
4626 if (ent.val && !ret &&
34c00c31 4627 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4628 ret = MC_TARGET_SWAP;
4629 if (target)
4630 target->ent = ent;
4ffef5fe 4631 }
4ffef5fe
DN
4632 return ret;
4633}
4634
12724850
NH
4635#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4636/*
4637 * We don't consider swapping or file mapped pages because THP does not
4638 * support them for now.
4639 * Caller should make sure that pmd_trans_huge(pmd) is true.
4640 */
4641static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4642 unsigned long addr, pmd_t pmd, union mc_target *target)
4643{
4644 struct page *page = NULL;
12724850
NH
4645 enum mc_target_type ret = MC_TARGET_NONE;
4646
4647 page = pmd_page(pmd);
309381fe 4648 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4649 if (!(mc.flags & MOVE_ANON))
12724850 4650 return ret;
1306a85a 4651 if (page->mem_cgroup == mc.from) {
12724850
NH
4652 ret = MC_TARGET_PAGE;
4653 if (target) {
4654 get_page(page);
4655 target->page = page;
4656 }
4657 }
4658 return ret;
4659}
4660#else
4661static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4662 unsigned long addr, pmd_t pmd, union mc_target *target)
4663{
4664 return MC_TARGET_NONE;
4665}
4666#endif
4667
4ffef5fe
DN
4668static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4669 unsigned long addr, unsigned long end,
4670 struct mm_walk *walk)
4671{
26bcd64a 4672 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4673 pte_t *pte;
4674 spinlock_t *ptl;
4675
4b471e88 4676 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
12724850
NH
4677 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4678 mc.precharge += HPAGE_PMD_NR;
bf929152 4679 spin_unlock(ptl);
1a5a9906 4680 return 0;
12724850 4681 }
03319327 4682
45f83cef
AA
4683 if (pmd_trans_unstable(pmd))
4684 return 0;
4ffef5fe
DN
4685 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4686 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4687 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4688 mc.precharge++; /* increment precharge temporarily */
4689 pte_unmap_unlock(pte - 1, ptl);
4690 cond_resched();
4691
7dc74be0
DN
4692 return 0;
4693}
4694
4ffef5fe
DN
4695static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4696{
4697 unsigned long precharge;
4ffef5fe 4698
26bcd64a
NH
4699 struct mm_walk mem_cgroup_count_precharge_walk = {
4700 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4701 .mm = mm,
4702 };
dfe076b0 4703 down_read(&mm->mmap_sem);
26bcd64a 4704 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4705 up_read(&mm->mmap_sem);
4ffef5fe
DN
4706
4707 precharge = mc.precharge;
4708 mc.precharge = 0;
4709
4710 return precharge;
4711}
4712
4ffef5fe
DN
4713static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4714{
dfe076b0
DN
4715 unsigned long precharge = mem_cgroup_count_precharge(mm);
4716
4717 VM_BUG_ON(mc.moving_task);
4718 mc.moving_task = current;
4719 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4720}
4721
dfe076b0
DN
4722/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4723static void __mem_cgroup_clear_mc(void)
4ffef5fe 4724{
2bd9bb20
KH
4725 struct mem_cgroup *from = mc.from;
4726 struct mem_cgroup *to = mc.to;
4727
4ffef5fe 4728 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4729 if (mc.precharge) {
00501b53 4730 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4731 mc.precharge = 0;
4732 }
4733 /*
4734 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4735 * we must uncharge here.
4736 */
4737 if (mc.moved_charge) {
00501b53 4738 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4739 mc.moved_charge = 0;
4ffef5fe 4740 }
483c30b5
DN
4741 /* we must fixup refcnts and charges */
4742 if (mc.moved_swap) {
483c30b5 4743 /* uncharge swap account from the old cgroup */
ce00a967 4744 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4745 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4746
05b84301 4747 /*
3e32cb2e
JW
4748 * we charged both to->memory and to->memsw, so we
4749 * should uncharge to->memory.
05b84301 4750 */
ce00a967 4751 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4752 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4753
e8ea14cc 4754 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4755
4050377b 4756 /* we've already done css_get(mc.to) */
483c30b5
DN
4757 mc.moved_swap = 0;
4758 }
dfe076b0
DN
4759 memcg_oom_recover(from);
4760 memcg_oom_recover(to);
4761 wake_up_all(&mc.waitq);
4762}
4763
4764static void mem_cgroup_clear_mc(void)
4765{
dfe076b0
DN
4766 /*
4767 * we must clear moving_task before waking up waiters at the end of
4768 * task migration.
4769 */
4770 mc.moving_task = NULL;
4771 __mem_cgroup_clear_mc();
2bd9bb20 4772 spin_lock(&mc.lock);
4ffef5fe
DN
4773 mc.from = NULL;
4774 mc.to = NULL;
2bd9bb20 4775 spin_unlock(&mc.lock);
4ffef5fe
DN
4776}
4777
1f7dd3e5 4778static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4779{
1f7dd3e5 4780 struct cgroup_subsys_state *css;
eed67d75 4781 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4782 struct mem_cgroup *from;
4530eddb 4783 struct task_struct *leader, *p;
9f2115f9 4784 struct mm_struct *mm;
1dfab5ab 4785 unsigned long move_flags;
9f2115f9 4786 int ret = 0;
7dc74be0 4787
1f7dd3e5
TH
4788 /* charge immigration isn't supported on the default hierarchy */
4789 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4790 return 0;
4791
4530eddb
TH
4792 /*
4793 * Multi-process migrations only happen on the default hierarchy
4794 * where charge immigration is not used. Perform charge
4795 * immigration if @tset contains a leader and whine if there are
4796 * multiple.
4797 */
4798 p = NULL;
1f7dd3e5 4799 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4800 WARN_ON_ONCE(p);
4801 p = leader;
1f7dd3e5 4802 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4803 }
4804 if (!p)
4805 return 0;
4806
1f7dd3e5
TH
4807 /*
4808 * We are now commited to this value whatever it is. Changes in this
4809 * tunable will only affect upcoming migrations, not the current one.
4810 * So we need to save it, and keep it going.
4811 */
4812 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4813 if (!move_flags)
4814 return 0;
4815
9f2115f9
TH
4816 from = mem_cgroup_from_task(p);
4817
4818 VM_BUG_ON(from == memcg);
4819
4820 mm = get_task_mm(p);
4821 if (!mm)
4822 return 0;
4823 /* We move charges only when we move a owner of the mm */
4824 if (mm->owner == p) {
4825 VM_BUG_ON(mc.from);
4826 VM_BUG_ON(mc.to);
4827 VM_BUG_ON(mc.precharge);
4828 VM_BUG_ON(mc.moved_charge);
4829 VM_BUG_ON(mc.moved_swap);
4830
4831 spin_lock(&mc.lock);
4832 mc.from = from;
4833 mc.to = memcg;
4834 mc.flags = move_flags;
4835 spin_unlock(&mc.lock);
4836 /* We set mc.moving_task later */
4837
4838 ret = mem_cgroup_precharge_mc(mm);
4839 if (ret)
4840 mem_cgroup_clear_mc();
7dc74be0 4841 }
9f2115f9 4842 mmput(mm);
7dc74be0
DN
4843 return ret;
4844}
4845
1f7dd3e5 4846static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4847{
4e2f245d
JW
4848 if (mc.to)
4849 mem_cgroup_clear_mc();
7dc74be0
DN
4850}
4851
4ffef5fe
DN
4852static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4853 unsigned long addr, unsigned long end,
4854 struct mm_walk *walk)
7dc74be0 4855{
4ffef5fe 4856 int ret = 0;
26bcd64a 4857 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4858 pte_t *pte;
4859 spinlock_t *ptl;
12724850
NH
4860 enum mc_target_type target_type;
4861 union mc_target target;
4862 struct page *page;
4ffef5fe 4863
4b471e88 4864 if (pmd_trans_huge_lock(pmd, vma, &ptl)) {
62ade86a 4865 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4866 spin_unlock(ptl);
12724850
NH
4867 return 0;
4868 }
4869 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4870 if (target_type == MC_TARGET_PAGE) {
4871 page = target.page;
4872 if (!isolate_lru_page(page)) {
f627c2f5 4873 if (!mem_cgroup_move_account(page, true,
1306a85a 4874 mc.from, mc.to)) {
12724850
NH
4875 mc.precharge -= HPAGE_PMD_NR;
4876 mc.moved_charge += HPAGE_PMD_NR;
4877 }
4878 putback_lru_page(page);
4879 }
4880 put_page(page);
4881 }
bf929152 4882 spin_unlock(ptl);
1a5a9906 4883 return 0;
12724850
NH
4884 }
4885
45f83cef
AA
4886 if (pmd_trans_unstable(pmd))
4887 return 0;
4ffef5fe
DN
4888retry:
4889 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4890 for (; addr != end; addr += PAGE_SIZE) {
4891 pte_t ptent = *(pte++);
02491447 4892 swp_entry_t ent;
4ffef5fe
DN
4893
4894 if (!mc.precharge)
4895 break;
4896
8d32ff84 4897 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4898 case MC_TARGET_PAGE:
4899 page = target.page;
53f9263b
KS
4900 /*
4901 * We can have a part of the split pmd here. Moving it
4902 * can be done but it would be too convoluted so simply
4903 * ignore such a partial THP and keep it in original
4904 * memcg. There should be somebody mapping the head.
4905 */
4906 if (PageTransCompound(page))
4907 goto put;
4ffef5fe
DN
4908 if (isolate_lru_page(page))
4909 goto put;
f627c2f5
KS
4910 if (!mem_cgroup_move_account(page, false,
4911 mc.from, mc.to)) {
4ffef5fe 4912 mc.precharge--;
854ffa8d
DN
4913 /* we uncharge from mc.from later. */
4914 mc.moved_charge++;
4ffef5fe
DN
4915 }
4916 putback_lru_page(page);
8d32ff84 4917put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4918 put_page(page);
4919 break;
02491447
DN
4920 case MC_TARGET_SWAP:
4921 ent = target.ent;
e91cbb42 4922 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4923 mc.precharge--;
483c30b5
DN
4924 /* we fixup refcnts and charges later. */
4925 mc.moved_swap++;
4926 }
02491447 4927 break;
4ffef5fe
DN
4928 default:
4929 break;
4930 }
4931 }
4932 pte_unmap_unlock(pte - 1, ptl);
4933 cond_resched();
4934
4935 if (addr != end) {
4936 /*
4937 * We have consumed all precharges we got in can_attach().
4938 * We try charge one by one, but don't do any additional
4939 * charges to mc.to if we have failed in charge once in attach()
4940 * phase.
4941 */
854ffa8d 4942 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4943 if (!ret)
4944 goto retry;
4945 }
4946
4947 return ret;
4948}
4949
4950static void mem_cgroup_move_charge(struct mm_struct *mm)
4951{
26bcd64a
NH
4952 struct mm_walk mem_cgroup_move_charge_walk = {
4953 .pmd_entry = mem_cgroup_move_charge_pte_range,
4954 .mm = mm,
4955 };
4ffef5fe
DN
4956
4957 lru_add_drain_all();
312722cb
JW
4958 /*
4959 * Signal mem_cgroup_begin_page_stat() to take the memcg's
4960 * move_lock while we're moving its pages to another memcg.
4961 * Then wait for already started RCU-only updates to finish.
4962 */
4963 atomic_inc(&mc.from->moving_account);
4964 synchronize_rcu();
dfe076b0
DN
4965retry:
4966 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4967 /*
4968 * Someone who are holding the mmap_sem might be waiting in
4969 * waitq. So we cancel all extra charges, wake up all waiters,
4970 * and retry. Because we cancel precharges, we might not be able
4971 * to move enough charges, but moving charge is a best-effort
4972 * feature anyway, so it wouldn't be a big problem.
4973 */
4974 __mem_cgroup_clear_mc();
4975 cond_resched();
4976 goto retry;
4977 }
26bcd64a
NH
4978 /*
4979 * When we have consumed all precharges and failed in doing
4980 * additional charge, the page walk just aborts.
4981 */
4982 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 4983 up_read(&mm->mmap_sem);
312722cb 4984 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4985}
4986
1f7dd3e5 4987static void mem_cgroup_move_task(struct cgroup_taskset *tset)
67e465a7 4988{
1f7dd3e5
TH
4989 struct cgroup_subsys_state *css;
4990 struct task_struct *p = cgroup_taskset_first(tset, &css);
a433658c 4991 struct mm_struct *mm = get_task_mm(p);
dfe076b0 4992
dfe076b0 4993 if (mm) {
a433658c
KM
4994 if (mc.to)
4995 mem_cgroup_move_charge(mm);
dfe076b0
DN
4996 mmput(mm);
4997 }
a433658c
KM
4998 if (mc.to)
4999 mem_cgroup_clear_mc();
67e465a7 5000}
5cfb80a7 5001#else /* !CONFIG_MMU */
1f7dd3e5 5002static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5003{
5004 return 0;
5005}
1f7dd3e5 5006static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5007{
5008}
1f7dd3e5 5009static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5cfb80a7
DN
5010{
5011}
5012#endif
67e465a7 5013
f00baae7
TH
5014/*
5015 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5016 * to verify whether we're attached to the default hierarchy on each mount
5017 * attempt.
f00baae7 5018 */
eb95419b 5019static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5020{
5021 /*
aa6ec29b 5022 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5023 * guarantees that @root doesn't have any children, so turning it
5024 * on for the root memcg is enough.
5025 */
9e10a130 5026 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5027 root_mem_cgroup->use_hierarchy = true;
5028 else
5029 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5030}
5031
241994ed
JW
5032static u64 memory_current_read(struct cgroup_subsys_state *css,
5033 struct cftype *cft)
5034{
f5fc3c5d
JW
5035 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5036
5037 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5038}
5039
5040static int memory_low_show(struct seq_file *m, void *v)
5041{
5042 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5043 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5044
5045 if (low == PAGE_COUNTER_MAX)
d2973697 5046 seq_puts(m, "max\n");
241994ed
JW
5047 else
5048 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5049
5050 return 0;
5051}
5052
5053static ssize_t memory_low_write(struct kernfs_open_file *of,
5054 char *buf, size_t nbytes, loff_t off)
5055{
5056 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5057 unsigned long low;
5058 int err;
5059
5060 buf = strstrip(buf);
d2973697 5061 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5062 if (err)
5063 return err;
5064
5065 memcg->low = low;
5066
5067 return nbytes;
5068}
5069
5070static int memory_high_show(struct seq_file *m, void *v)
5071{
5072 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5073 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5074
5075 if (high == PAGE_COUNTER_MAX)
d2973697 5076 seq_puts(m, "max\n");
241994ed
JW
5077 else
5078 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5079
5080 return 0;
5081}
5082
5083static ssize_t memory_high_write(struct kernfs_open_file *of,
5084 char *buf, size_t nbytes, loff_t off)
5085{
5086 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5087 unsigned long high;
5088 int err;
5089
5090 buf = strstrip(buf);
d2973697 5091 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5092 if (err)
5093 return err;
5094
5095 memcg->high = high;
5096
2529bb3a 5097 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5098 return nbytes;
5099}
5100
5101static int memory_max_show(struct seq_file *m, void *v)
5102{
5103 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5104 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5105
5106 if (max == PAGE_COUNTER_MAX)
d2973697 5107 seq_puts(m, "max\n");
241994ed
JW
5108 else
5109 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5110
5111 return 0;
5112}
5113
5114static ssize_t memory_max_write(struct kernfs_open_file *of,
5115 char *buf, size_t nbytes, loff_t off)
5116{
5117 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5118 unsigned long max;
5119 int err;
5120
5121 buf = strstrip(buf);
d2973697 5122 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5123 if (err)
5124 return err;
5125
5126 err = mem_cgroup_resize_limit(memcg, max);
5127 if (err)
5128 return err;
5129
2529bb3a 5130 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5131 return nbytes;
5132}
5133
5134static int memory_events_show(struct seq_file *m, void *v)
5135{
5136 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5137
5138 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5139 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5140 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5141 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5142
5143 return 0;
5144}
5145
5146static struct cftype memory_files[] = {
5147 {
5148 .name = "current",
f5fc3c5d 5149 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5150 .read_u64 = memory_current_read,
5151 },
5152 {
5153 .name = "low",
5154 .flags = CFTYPE_NOT_ON_ROOT,
5155 .seq_show = memory_low_show,
5156 .write = memory_low_write,
5157 },
5158 {
5159 .name = "high",
5160 .flags = CFTYPE_NOT_ON_ROOT,
5161 .seq_show = memory_high_show,
5162 .write = memory_high_write,
5163 },
5164 {
5165 .name = "max",
5166 .flags = CFTYPE_NOT_ON_ROOT,
5167 .seq_show = memory_max_show,
5168 .write = memory_max_write,
5169 },
5170 {
5171 .name = "events",
5172 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5173 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5174 .seq_show = memory_events_show,
5175 },
5176 { } /* terminate */
5177};
5178
073219e9 5179struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5180 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5181 .css_online = mem_cgroup_css_online,
92fb9748 5182 .css_offline = mem_cgroup_css_offline,
6df38689 5183 .css_released = mem_cgroup_css_released,
92fb9748 5184 .css_free = mem_cgroup_css_free,
1ced953b 5185 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5186 .can_attach = mem_cgroup_can_attach,
5187 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5188 .attach = mem_cgroup_move_task,
f00baae7 5189 .bind = mem_cgroup_bind,
241994ed
JW
5190 .dfl_cftypes = memory_files,
5191 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5192 .early_init = 0,
8cdea7c0 5193};
c077719b 5194
241994ed
JW
5195/**
5196 * mem_cgroup_low - check if memory consumption is below the normal range
5197 * @root: the highest ancestor to consider
5198 * @memcg: the memory cgroup to check
5199 *
5200 * Returns %true if memory consumption of @memcg, and that of all
5201 * configurable ancestors up to @root, is below the normal range.
5202 */
5203bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5204{
5205 if (mem_cgroup_disabled())
5206 return false;
5207
5208 /*
5209 * The toplevel group doesn't have a configurable range, so
5210 * it's never low when looked at directly, and it is not
5211 * considered an ancestor when assessing the hierarchy.
5212 */
5213
5214 if (memcg == root_mem_cgroup)
5215 return false;
5216
4e54dede 5217 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5218 return false;
5219
5220 while (memcg != root) {
5221 memcg = parent_mem_cgroup(memcg);
5222
5223 if (memcg == root_mem_cgroup)
5224 break;
5225
4e54dede 5226 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5227 return false;
5228 }
5229 return true;
5230}
5231
00501b53
JW
5232/**
5233 * mem_cgroup_try_charge - try charging a page
5234 * @page: page to charge
5235 * @mm: mm context of the victim
5236 * @gfp_mask: reclaim mode
5237 * @memcgp: charged memcg return
5238 *
5239 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5240 * pages according to @gfp_mask if necessary.
5241 *
5242 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5243 * Otherwise, an error code is returned.
5244 *
5245 * After page->mapping has been set up, the caller must finalize the
5246 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5247 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5248 */
5249int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5250 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5251 bool compound)
00501b53
JW
5252{
5253 struct mem_cgroup *memcg = NULL;
f627c2f5 5254 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5255 int ret = 0;
5256
5257 if (mem_cgroup_disabled())
5258 goto out;
5259
5260 if (PageSwapCache(page)) {
00501b53
JW
5261 /*
5262 * Every swap fault against a single page tries to charge the
5263 * page, bail as early as possible. shmem_unuse() encounters
5264 * already charged pages, too. The USED bit is protected by
5265 * the page lock, which serializes swap cache removal, which
5266 * in turn serializes uncharging.
5267 */
e993d905 5268 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5269 if (page->mem_cgroup)
00501b53 5270 goto out;
e993d905 5271
7941d214 5272 if (do_memsw_account()) {
e993d905
VD
5273 swp_entry_t ent = { .val = page_private(page), };
5274 unsigned short id = lookup_swap_cgroup_id(ent);
5275
5276 rcu_read_lock();
5277 memcg = mem_cgroup_from_id(id);
5278 if (memcg && !css_tryget_online(&memcg->css))
5279 memcg = NULL;
5280 rcu_read_unlock();
5281 }
00501b53
JW
5282 }
5283
00501b53
JW
5284 if (!memcg)
5285 memcg = get_mem_cgroup_from_mm(mm);
5286
5287 ret = try_charge(memcg, gfp_mask, nr_pages);
5288
5289 css_put(&memcg->css);
00501b53
JW
5290out:
5291 *memcgp = memcg;
5292 return ret;
5293}
5294
5295/**
5296 * mem_cgroup_commit_charge - commit a page charge
5297 * @page: page to charge
5298 * @memcg: memcg to charge the page to
5299 * @lrucare: page might be on LRU already
5300 *
5301 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5302 * after page->mapping has been set up. This must happen atomically
5303 * as part of the page instantiation, i.e. under the page table lock
5304 * for anonymous pages, under the page lock for page and swap cache.
5305 *
5306 * In addition, the page must not be on the LRU during the commit, to
5307 * prevent racing with task migration. If it might be, use @lrucare.
5308 *
5309 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5310 */
5311void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5312 bool lrucare, bool compound)
00501b53 5313{
f627c2f5 5314 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5315
5316 VM_BUG_ON_PAGE(!page->mapping, page);
5317 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5318
5319 if (mem_cgroup_disabled())
5320 return;
5321 /*
5322 * Swap faults will attempt to charge the same page multiple
5323 * times. But reuse_swap_page() might have removed the page
5324 * from swapcache already, so we can't check PageSwapCache().
5325 */
5326 if (!memcg)
5327 return;
5328
6abb5a86
JW
5329 commit_charge(page, memcg, lrucare);
5330
6abb5a86 5331 local_irq_disable();
f627c2f5 5332 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5333 memcg_check_events(memcg, page);
5334 local_irq_enable();
00501b53 5335
7941d214 5336 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5337 swp_entry_t entry = { .val = page_private(page) };
5338 /*
5339 * The swap entry might not get freed for a long time,
5340 * let's not wait for it. The page already received a
5341 * memory+swap charge, drop the swap entry duplicate.
5342 */
5343 mem_cgroup_uncharge_swap(entry);
5344 }
5345}
5346
5347/**
5348 * mem_cgroup_cancel_charge - cancel a page charge
5349 * @page: page to charge
5350 * @memcg: memcg to charge the page to
5351 *
5352 * Cancel a charge transaction started by mem_cgroup_try_charge().
5353 */
f627c2f5
KS
5354void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5355 bool compound)
00501b53 5356{
f627c2f5 5357 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5358
5359 if (mem_cgroup_disabled())
5360 return;
5361 /*
5362 * Swap faults will attempt to charge the same page multiple
5363 * times. But reuse_swap_page() might have removed the page
5364 * from swapcache already, so we can't check PageSwapCache().
5365 */
5366 if (!memcg)
5367 return;
5368
00501b53
JW
5369 cancel_charge(memcg, nr_pages);
5370}
5371
747db954 5372static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5373 unsigned long nr_anon, unsigned long nr_file,
5374 unsigned long nr_huge, struct page *dummy_page)
5375{
18eca2e6 5376 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5377 unsigned long flags;
5378
ce00a967 5379 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5380 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5381 if (do_memsw_account())
18eca2e6 5382 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5383 memcg_oom_recover(memcg);
5384 }
747db954
JW
5385
5386 local_irq_save(flags);
5387 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5388 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5389 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5390 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5391 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5392 memcg_check_events(memcg, dummy_page);
5393 local_irq_restore(flags);
e8ea14cc
JW
5394
5395 if (!mem_cgroup_is_root(memcg))
18eca2e6 5396 css_put_many(&memcg->css, nr_pages);
747db954
JW
5397}
5398
5399static void uncharge_list(struct list_head *page_list)
5400{
5401 struct mem_cgroup *memcg = NULL;
747db954
JW
5402 unsigned long nr_anon = 0;
5403 unsigned long nr_file = 0;
5404 unsigned long nr_huge = 0;
5405 unsigned long pgpgout = 0;
747db954
JW
5406 struct list_head *next;
5407 struct page *page;
5408
5409 next = page_list->next;
5410 do {
5411 unsigned int nr_pages = 1;
747db954
JW
5412
5413 page = list_entry(next, struct page, lru);
5414 next = page->lru.next;
5415
5416 VM_BUG_ON_PAGE(PageLRU(page), page);
5417 VM_BUG_ON_PAGE(page_count(page), page);
5418
1306a85a 5419 if (!page->mem_cgroup)
747db954
JW
5420 continue;
5421
5422 /*
5423 * Nobody should be changing or seriously looking at
1306a85a 5424 * page->mem_cgroup at this point, we have fully
29833315 5425 * exclusive access to the page.
747db954
JW
5426 */
5427
1306a85a 5428 if (memcg != page->mem_cgroup) {
747db954 5429 if (memcg) {
18eca2e6
JW
5430 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5431 nr_huge, page);
5432 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5433 }
1306a85a 5434 memcg = page->mem_cgroup;
747db954
JW
5435 }
5436
5437 if (PageTransHuge(page)) {
5438 nr_pages <<= compound_order(page);
5439 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5440 nr_huge += nr_pages;
5441 }
5442
5443 if (PageAnon(page))
5444 nr_anon += nr_pages;
5445 else
5446 nr_file += nr_pages;
5447
1306a85a 5448 page->mem_cgroup = NULL;
747db954
JW
5449
5450 pgpgout++;
5451 } while (next != page_list);
5452
5453 if (memcg)
18eca2e6
JW
5454 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5455 nr_huge, page);
747db954
JW
5456}
5457
0a31bc97
JW
5458/**
5459 * mem_cgroup_uncharge - uncharge a page
5460 * @page: page to uncharge
5461 *
5462 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5463 * mem_cgroup_commit_charge().
5464 */
5465void mem_cgroup_uncharge(struct page *page)
5466{
0a31bc97
JW
5467 if (mem_cgroup_disabled())
5468 return;
5469
747db954 5470 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5471 if (!page->mem_cgroup)
0a31bc97
JW
5472 return;
5473
747db954
JW
5474 INIT_LIST_HEAD(&page->lru);
5475 uncharge_list(&page->lru);
5476}
0a31bc97 5477
747db954
JW
5478/**
5479 * mem_cgroup_uncharge_list - uncharge a list of page
5480 * @page_list: list of pages to uncharge
5481 *
5482 * Uncharge a list of pages previously charged with
5483 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5484 */
5485void mem_cgroup_uncharge_list(struct list_head *page_list)
5486{
5487 if (mem_cgroup_disabled())
5488 return;
0a31bc97 5489
747db954
JW
5490 if (!list_empty(page_list))
5491 uncharge_list(page_list);
0a31bc97
JW
5492}
5493
5494/**
45637bab 5495 * mem_cgroup_replace_page - migrate a charge to another page
0a31bc97
JW
5496 * @oldpage: currently charged page
5497 * @newpage: page to transfer the charge to
0a31bc97
JW
5498 *
5499 * Migrate the charge from @oldpage to @newpage.
5500 *
5501 * Both pages must be locked, @newpage->mapping must be set up.
25be6a65 5502 * Either or both pages might be on the LRU already.
0a31bc97 5503 */
45637bab 5504void mem_cgroup_replace_page(struct page *oldpage, struct page *newpage)
0a31bc97 5505{
29833315 5506 struct mem_cgroup *memcg;
0a31bc97
JW
5507 int isolated;
5508
5509 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5510 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5511 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5512 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5513 newpage);
0a31bc97
JW
5514
5515 if (mem_cgroup_disabled())
5516 return;
5517
5518 /* Page cache replacement: new page already charged? */
1306a85a 5519 if (newpage->mem_cgroup)
0a31bc97
JW
5520 return;
5521
45637bab 5522 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5523 memcg = oldpage->mem_cgroup;
29833315 5524 if (!memcg)
0a31bc97
JW
5525 return;
5526
45637bab 5527 lock_page_lru(oldpage, &isolated);
1306a85a 5528 oldpage->mem_cgroup = NULL;
45637bab 5529 unlock_page_lru(oldpage, isolated);
0a31bc97 5530
45637bab 5531 commit_charge(newpage, memcg, true);
0a31bc97
JW
5532}
5533
f7e1cb6e 5534#ifdef CONFIG_INET
11092087 5535
ef12947c 5536DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5537EXPORT_SYMBOL(memcg_sockets_enabled_key);
5538
5539void sock_update_memcg(struct sock *sk)
5540{
5541 struct mem_cgroup *memcg;
5542
5543 /* Socket cloning can throw us here with sk_cgrp already
5544 * filled. It won't however, necessarily happen from
5545 * process context. So the test for root memcg given
5546 * the current task's memcg won't help us in this case.
5547 *
5548 * Respecting the original socket's memcg is a better
5549 * decision in this case.
5550 */
5551 if (sk->sk_memcg) {
5552 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5553 css_get(&sk->sk_memcg->css);
5554 return;
5555 }
5556
5557 rcu_read_lock();
5558 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5559 if (memcg == root_mem_cgroup)
5560 goto out;
489c2a20 5561#ifdef CONFIG_MEMCG_LEGACY_KMEM
f7e1cb6e
JW
5562 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcp_mem.active)
5563 goto out;
5564#endif
5565 if (css_tryget_online(&memcg->css))
11092087 5566 sk->sk_memcg = memcg;
f7e1cb6e 5567out:
11092087
JW
5568 rcu_read_unlock();
5569}
5570EXPORT_SYMBOL(sock_update_memcg);
5571
5572void sock_release_memcg(struct sock *sk)
5573{
5574 WARN_ON(!sk->sk_memcg);
5575 css_put(&sk->sk_memcg->css);
5576}
5577
5578/**
5579 * mem_cgroup_charge_skmem - charge socket memory
5580 * @memcg: memcg to charge
5581 * @nr_pages: number of pages to charge
5582 *
5583 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5584 * @memcg's configured limit, %false if the charge had to be forced.
5585 */
5586bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5587{
f7e1cb6e 5588 gfp_t gfp_mask = GFP_KERNEL;
11092087 5589
489c2a20 5590#ifdef CONFIG_MEMCG_LEGACY_KMEM
f7e1cb6e
JW
5591 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5592 struct page_counter *counter;
5593
5594 if (page_counter_try_charge(&memcg->tcp_mem.memory_allocated,
5595 nr_pages, &counter)) {
5596 memcg->tcp_mem.memory_pressure = 0;
5597 return true;
5598 }
5599 page_counter_charge(&memcg->tcp_mem.memory_allocated, nr_pages);
5600 memcg->tcp_mem.memory_pressure = 1;
5601 return false;
11092087 5602 }
f7e1cb6e
JW
5603#endif
5604 /* Don't block in the packet receive path */
5605 if (in_softirq())
5606 gfp_mask = GFP_NOWAIT;
5607
5608 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5609 return true;
5610
5611 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5612 return false;
5613}
5614
5615/**
5616 * mem_cgroup_uncharge_skmem - uncharge socket memory
5617 * @memcg - memcg to uncharge
5618 * @nr_pages - number of pages to uncharge
5619 */
5620void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5621{
489c2a20 5622#ifdef CONFIG_MEMCG_LEGACY_KMEM
f7e1cb6e
JW
5623 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5624 page_counter_uncharge(&memcg->tcp_mem.memory_allocated,
5625 nr_pages);
5626 return;
5627 }
5628#endif
5629 page_counter_uncharge(&memcg->memory, nr_pages);
5630 css_put_many(&memcg->css, nr_pages);
11092087
JW
5631}
5632
f7e1cb6e
JW
5633#endif /* CONFIG_INET */
5634
5635static int __init cgroup_memory(char *s)
5636{
5637 char *token;
5638
5639 while ((token = strsep(&s, ",")) != NULL) {
5640 if (!*token)
5641 continue;
5642 if (!strcmp(token, "nosocket"))
5643 cgroup_memory_nosocket = true;
04823c83
VD
5644 if (!strcmp(token, "nokmem"))
5645 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5646 }
5647 return 0;
5648}
5649__setup("cgroup.memory=", cgroup_memory);
11092087 5650
2d11085e 5651/*
1081312f
MH
5652 * subsys_initcall() for memory controller.
5653 *
5654 * Some parts like hotcpu_notifier() have to be initialized from this context
5655 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5656 * everything that doesn't depend on a specific mem_cgroup structure should
5657 * be initialized from here.
2d11085e
MH
5658 */
5659static int __init mem_cgroup_init(void)
5660{
95a045f6
JW
5661 int cpu, node;
5662
2d11085e 5663 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5664
5665 for_each_possible_cpu(cpu)
5666 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5667 drain_local_stock);
5668
5669 for_each_node(node) {
5670 struct mem_cgroup_tree_per_node *rtpn;
5671 int zone;
5672
5673 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5674 node_online(node) ? node : NUMA_NO_NODE);
5675
5676 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5677 struct mem_cgroup_tree_per_zone *rtpz;
5678
5679 rtpz = &rtpn->rb_tree_per_zone[zone];
5680 rtpz->rb_root = RB_ROOT;
5681 spin_lock_init(&rtpz->lock);
5682 }
5683 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5684 }
5685
2d11085e
MH
5686 return 0;
5687}
5688subsys_initcall(mem_cgroup_init);
21afa38e
JW
5689
5690#ifdef CONFIG_MEMCG_SWAP
5691/**
5692 * mem_cgroup_swapout - transfer a memsw charge to swap
5693 * @page: page whose memsw charge to transfer
5694 * @entry: swap entry to move the charge to
5695 *
5696 * Transfer the memsw charge of @page to @entry.
5697 */
5698void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5699{
5700 struct mem_cgroup *memcg;
5701 unsigned short oldid;
5702
5703 VM_BUG_ON_PAGE(PageLRU(page), page);
5704 VM_BUG_ON_PAGE(page_count(page), page);
5705
7941d214 5706 if (!do_memsw_account())
21afa38e
JW
5707 return;
5708
5709 memcg = page->mem_cgroup;
5710
5711 /* Readahead page, never charged */
5712 if (!memcg)
5713 return;
5714
5715 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5716 VM_BUG_ON_PAGE(oldid, page);
5717 mem_cgroup_swap_statistics(memcg, true);
5718
5719 page->mem_cgroup = NULL;
5720
5721 if (!mem_cgroup_is_root(memcg))
5722 page_counter_uncharge(&memcg->memory, 1);
5723
ce9ce665
SAS
5724 /*
5725 * Interrupts should be disabled here because the caller holds the
5726 * mapping->tree_lock lock which is taken with interrupts-off. It is
5727 * important here to have the interrupts disabled because it is the
5728 * only synchronisation we have for udpating the per-CPU variables.
5729 */
5730 VM_BUG_ON(!irqs_disabled());
f627c2f5 5731 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e
JW
5732 memcg_check_events(memcg, page);
5733}
5734
5735/**
5736 * mem_cgroup_uncharge_swap - uncharge a swap entry
5737 * @entry: swap entry to uncharge
5738 *
5739 * Drop the memsw charge associated with @entry.
5740 */
5741void mem_cgroup_uncharge_swap(swp_entry_t entry)
5742{
5743 struct mem_cgroup *memcg;
5744 unsigned short id;
5745
7941d214 5746 if (!do_memsw_account())
21afa38e
JW
5747 return;
5748
5749 id = swap_cgroup_record(entry, 0);
5750 rcu_read_lock();
adbe427b 5751 memcg = mem_cgroup_from_id(id);
21afa38e
JW
5752 if (memcg) {
5753 if (!mem_cgroup_is_root(memcg))
5754 page_counter_uncharge(&memcg->memsw, 1);
5755 mem_cgroup_swap_statistics(memcg, false);
5756 css_put(&memcg->css);
5757 }
5758 rcu_read_unlock();
5759}
5760
5761/* for remember boot option*/
5762#ifdef CONFIG_MEMCG_SWAP_ENABLED
5763static int really_do_swap_account __initdata = 1;
5764#else
5765static int really_do_swap_account __initdata;
5766#endif
5767
5768static int __init enable_swap_account(char *s)
5769{
5770 if (!strcmp(s, "1"))
5771 really_do_swap_account = 1;
5772 else if (!strcmp(s, "0"))
5773 really_do_swap_account = 0;
5774 return 1;
5775}
5776__setup("swapaccount=", enable_swap_account);
5777
5778static struct cftype memsw_cgroup_files[] = {
5779 {
5780 .name = "memsw.usage_in_bytes",
5781 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5782 .read_u64 = mem_cgroup_read_u64,
5783 },
5784 {
5785 .name = "memsw.max_usage_in_bytes",
5786 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5787 .write = mem_cgroup_reset,
5788 .read_u64 = mem_cgroup_read_u64,
5789 },
5790 {
5791 .name = "memsw.limit_in_bytes",
5792 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5793 .write = mem_cgroup_write,
5794 .read_u64 = mem_cgroup_read_u64,
5795 },
5796 {
5797 .name = "memsw.failcnt",
5798 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5799 .write = mem_cgroup_reset,
5800 .read_u64 = mem_cgroup_read_u64,
5801 },
5802 { }, /* terminate */
5803};
5804
5805static int __init mem_cgroup_swap_init(void)
5806{
5807 if (!mem_cgroup_disabled() && really_do_swap_account) {
5808 do_swap_account = 1;
5809 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5810 memsw_cgroup_files));
5811 }
5812 return 0;
5813}
5814subsys_initcall(mem_cgroup_swap_init);
5815
5816#endif /* CONFIG_MEMCG_SWAP */