]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
memcg: cleanup kmem tcp ifdefs
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3 53#include <net/sock.h>
4bd2c1ee 54#include <net/ip.h>
d1a4c0b3 55#include <net/tcp_memcontrol.h>
8cdea7c0 56
8697d331
BS
57#include <asm/uaccess.h>
58
cc8e970c
KM
59#include <trace/events/vmscan.h>
60
a181b0e8 61struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 62#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 63static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 64
c255a458 65#ifdef CONFIG_MEMCG_SWAP
338c8431 66/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 67int do_swap_account __read_mostly;
a42c390c
MH
68
69/* for remember boot option*/
c255a458 70#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
71static int really_do_swap_account __initdata = 1;
72#else
73static int really_do_swap_account __initdata = 0;
74#endif
75
c077719b 76#else
a0db00fc 77#define do_swap_account 0
c077719b
KH
78#endif
79
80
d52aa412
KH
81/*
82 * Statistics for memory cgroup.
83 */
84enum mem_cgroup_stat_index {
85 /*
86 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 */
88 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 89 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 90 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 91 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
92 MEM_CGROUP_STAT_NSTATS,
93};
94
af7c4b0e
JW
95static const char * const mem_cgroup_stat_names[] = {
96 "cache",
97 "rss",
98 "mapped_file",
99 "swap",
100};
101
e9f8974f
JW
102enum mem_cgroup_events_index {
103 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
104 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
105 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
106 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
107 MEM_CGROUP_EVENTS_NSTATS,
108};
af7c4b0e
JW
109
110static const char * const mem_cgroup_events_names[] = {
111 "pgpgin",
112 "pgpgout",
113 "pgfault",
114 "pgmajfault",
115};
116
7a159cc9
JW
117/*
118 * Per memcg event counter is incremented at every pagein/pageout. With THP,
119 * it will be incremated by the number of pages. This counter is used for
120 * for trigger some periodic events. This is straightforward and better
121 * than using jiffies etc. to handle periodic memcg event.
122 */
123enum mem_cgroup_events_target {
124 MEM_CGROUP_TARGET_THRESH,
125 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 126 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
127 MEM_CGROUP_NTARGETS,
128};
a0db00fc
KS
129#define THRESHOLDS_EVENTS_TARGET 128
130#define SOFTLIMIT_EVENTS_TARGET 1024
131#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 132
d52aa412 133struct mem_cgroup_stat_cpu {
7a159cc9 134 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 135 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 136 unsigned long nr_page_events;
7a159cc9 137 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
138};
139
527a5ec9
JW
140struct mem_cgroup_reclaim_iter {
141 /* css_id of the last scanned hierarchy member */
142 int position;
143 /* scan generation, increased every round-trip */
144 unsigned int generation;
145};
146
6d12e2d8
KH
147/*
148 * per-zone information in memory controller.
149 */
6d12e2d8 150struct mem_cgroup_per_zone {
6290df54 151 struct lruvec lruvec;
1eb49272 152 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 153
527a5ec9
JW
154 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
155
f64c3f54
BS
156 struct rb_node tree_node; /* RB tree node */
157 unsigned long long usage_in_excess;/* Set to the value by which */
158 /* the soft limit is exceeded*/
159 bool on_tree;
d79154bb 160 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 161 /* use container_of */
6d12e2d8 162};
6d12e2d8
KH
163
164struct mem_cgroup_per_node {
165 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
166};
167
168struct mem_cgroup_lru_info {
169 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
170};
171
f64c3f54
BS
172/*
173 * Cgroups above their limits are maintained in a RB-Tree, independent of
174 * their hierarchy representation
175 */
176
177struct mem_cgroup_tree_per_zone {
178 struct rb_root rb_root;
179 spinlock_t lock;
180};
181
182struct mem_cgroup_tree_per_node {
183 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
184};
185
186struct mem_cgroup_tree {
187 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
188};
189
190static struct mem_cgroup_tree soft_limit_tree __read_mostly;
191
2e72b634
KS
192struct mem_cgroup_threshold {
193 struct eventfd_ctx *eventfd;
194 u64 threshold;
195};
196
9490ff27 197/* For threshold */
2e72b634 198struct mem_cgroup_threshold_ary {
748dad36 199 /* An array index points to threshold just below or equal to usage. */
5407a562 200 int current_threshold;
2e72b634
KS
201 /* Size of entries[] */
202 unsigned int size;
203 /* Array of thresholds */
204 struct mem_cgroup_threshold entries[0];
205};
2c488db2
KS
206
207struct mem_cgroup_thresholds {
208 /* Primary thresholds array */
209 struct mem_cgroup_threshold_ary *primary;
210 /*
211 * Spare threshold array.
212 * This is needed to make mem_cgroup_unregister_event() "never fail".
213 * It must be able to store at least primary->size - 1 entries.
214 */
215 struct mem_cgroup_threshold_ary *spare;
216};
217
9490ff27
KH
218/* for OOM */
219struct mem_cgroup_eventfd_list {
220 struct list_head list;
221 struct eventfd_ctx *eventfd;
222};
2e72b634 223
c0ff4b85
R
224static void mem_cgroup_threshold(struct mem_cgroup *memcg);
225static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 226
8cdea7c0
BS
227/*
228 * The memory controller data structure. The memory controller controls both
229 * page cache and RSS per cgroup. We would eventually like to provide
230 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
231 * to help the administrator determine what knobs to tune.
232 *
233 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
234 * we hit the water mark. May be even add a low water mark, such that
235 * no reclaim occurs from a cgroup at it's low water mark, this is
236 * a feature that will be implemented much later in the future.
8cdea7c0
BS
237 */
238struct mem_cgroup {
239 struct cgroup_subsys_state css;
240 /*
241 * the counter to account for memory usage
242 */
243 struct res_counter res;
59927fb9
HD
244
245 union {
246 /*
247 * the counter to account for mem+swap usage.
248 */
249 struct res_counter memsw;
250
251 /*
252 * rcu_freeing is used only when freeing struct mem_cgroup,
253 * so put it into a union to avoid wasting more memory.
254 * It must be disjoint from the css field. It could be
255 * in a union with the res field, but res plays a much
256 * larger part in mem_cgroup life than memsw, and might
257 * be of interest, even at time of free, when debugging.
258 * So share rcu_head with the less interesting memsw.
259 */
260 struct rcu_head rcu_freeing;
261 /*
3afe36b1
GC
262 * We also need some space for a worker in deferred freeing.
263 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
264 */
265 struct work_struct work_freeing;
266 };
267
78fb7466
PE
268 /*
269 * Per cgroup active and inactive list, similar to the
270 * per zone LRU lists.
78fb7466 271 */
6d12e2d8 272 struct mem_cgroup_lru_info info;
889976db
YH
273 int last_scanned_node;
274#if MAX_NUMNODES > 1
275 nodemask_t scan_nodes;
453a9bf3
KH
276 atomic_t numainfo_events;
277 atomic_t numainfo_updating;
889976db 278#endif
18f59ea7
BS
279 /*
280 * Should the accounting and control be hierarchical, per subtree?
281 */
282 bool use_hierarchy;
79dfdacc
MH
283
284 bool oom_lock;
285 atomic_t under_oom;
286
8c7c6e34 287 atomic_t refcnt;
14797e23 288
1f4c025b 289 int swappiness;
3c11ecf4
KH
290 /* OOM-Killer disable */
291 int oom_kill_disable;
a7885eb8 292
22a668d7
KH
293 /* set when res.limit == memsw.limit */
294 bool memsw_is_minimum;
295
2e72b634
KS
296 /* protect arrays of thresholds */
297 struct mutex thresholds_lock;
298
299 /* thresholds for memory usage. RCU-protected */
2c488db2 300 struct mem_cgroup_thresholds thresholds;
907860ed 301
2e72b634 302 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 303 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 304
9490ff27
KH
305 /* For oom notifier event fd */
306 struct list_head oom_notify;
185efc0f 307
7dc74be0
DN
308 /*
309 * Should we move charges of a task when a task is moved into this
310 * mem_cgroup ? And what type of charges should we move ?
311 */
312 unsigned long move_charge_at_immigrate;
619d094b
KH
313 /*
314 * set > 0 if pages under this cgroup are moving to other cgroup.
315 */
316 atomic_t moving_account;
312734c0
KH
317 /* taken only while moving_account > 0 */
318 spinlock_t move_lock;
d52aa412 319 /*
c62b1a3b 320 * percpu counter.
d52aa412 321 */
3a7951b4 322 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
323 /*
324 * used when a cpu is offlined or other synchronizations
325 * See mem_cgroup_read_stat().
326 */
327 struct mem_cgroup_stat_cpu nocpu_base;
328 spinlock_t pcp_counter_lock;
d1a4c0b3 329
4bd2c1ee 330#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
331 struct tcp_memcontrol tcp_mem;
332#endif
8cdea7c0
BS
333};
334
7dc74be0
DN
335/* Stuffs for move charges at task migration. */
336/*
337 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338 * left-shifted bitmap of these types.
339 */
340enum move_type {
4ffef5fe 341 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 342 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
343 NR_MOVE_TYPE,
344};
345
4ffef5fe
DN
346/* "mc" and its members are protected by cgroup_mutex */
347static struct move_charge_struct {
b1dd693e 348 spinlock_t lock; /* for from, to */
4ffef5fe
DN
349 struct mem_cgroup *from;
350 struct mem_cgroup *to;
351 unsigned long precharge;
854ffa8d 352 unsigned long moved_charge;
483c30b5 353 unsigned long moved_swap;
8033b97c
DN
354 struct task_struct *moving_task; /* a task moving charges */
355 wait_queue_head_t waitq; /* a waitq for other context */
356} mc = {
2bd9bb20 357 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
358 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
359};
4ffef5fe 360
90254a65
DN
361static bool move_anon(void)
362{
363 return test_bit(MOVE_CHARGE_TYPE_ANON,
364 &mc.to->move_charge_at_immigrate);
365}
366
87946a72
DN
367static bool move_file(void)
368{
369 return test_bit(MOVE_CHARGE_TYPE_FILE,
370 &mc.to->move_charge_at_immigrate);
371}
372
4e416953
BS
373/*
374 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375 * limit reclaim to prevent infinite loops, if they ever occur.
376 */
a0db00fc
KS
377#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
378#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 379
217bc319
KH
380enum charge_type {
381 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 382 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
385 NR_CHARGE_TYPE,
386};
387
8c7c6e34 388/* for encoding cft->private value on file */
65c64ce8
GC
389#define _MEM (0)
390#define _MEMSWAP (1)
391#define _OOM_TYPE (2)
a0db00fc
KS
392#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
393#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 394#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
395/* Used for OOM nofiier */
396#define OOM_CONTROL (0)
8c7c6e34 397
75822b44
BS
398/*
399 * Reclaim flags for mem_cgroup_hierarchical_reclaim
400 */
401#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
402#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
404#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
405
c0ff4b85
R
406static void mem_cgroup_get(struct mem_cgroup *memcg);
407static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 408
b2145145
WL
409static inline
410struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
411{
412 return container_of(s, struct mem_cgroup, css);
413}
414
e1aab161 415/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 416#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161
GC
417
418static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
419void sock_update_memcg(struct sock *sk)
420{
376be5ff 421 if (mem_cgroup_sockets_enabled) {
e1aab161 422 struct mem_cgroup *memcg;
3f134619 423 struct cg_proto *cg_proto;
e1aab161
GC
424
425 BUG_ON(!sk->sk_prot->proto_cgroup);
426
f3f511e1
GC
427 /* Socket cloning can throw us here with sk_cgrp already
428 * filled. It won't however, necessarily happen from
429 * process context. So the test for root memcg given
430 * the current task's memcg won't help us in this case.
431 *
432 * Respecting the original socket's memcg is a better
433 * decision in this case.
434 */
435 if (sk->sk_cgrp) {
436 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
437 mem_cgroup_get(sk->sk_cgrp->memcg);
438 return;
439 }
440
e1aab161
GC
441 rcu_read_lock();
442 memcg = mem_cgroup_from_task(current);
3f134619
GC
443 cg_proto = sk->sk_prot->proto_cgroup(memcg);
444 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 445 mem_cgroup_get(memcg);
3f134619 446 sk->sk_cgrp = cg_proto;
e1aab161
GC
447 }
448 rcu_read_unlock();
449 }
450}
451EXPORT_SYMBOL(sock_update_memcg);
452
453void sock_release_memcg(struct sock *sk)
454{
376be5ff 455 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
456 struct mem_cgroup *memcg;
457 WARN_ON(!sk->sk_cgrp->memcg);
458 memcg = sk->sk_cgrp->memcg;
459 mem_cgroup_put(memcg);
460 }
461}
d1a4c0b3
GC
462
463struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
464{
465 if (!memcg || mem_cgroup_is_root(memcg))
466 return NULL;
467
468 return &memcg->tcp_mem.cg_proto;
469}
470EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 471
3f134619
GC
472static void disarm_sock_keys(struct mem_cgroup *memcg)
473{
474 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
475 return;
476 static_key_slow_dec(&memcg_socket_limit_enabled);
477}
478#else
479static void disarm_sock_keys(struct mem_cgroup *memcg)
480{
481}
482#endif
483
c0ff4b85 484static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 485
f64c3f54 486static struct mem_cgroup_per_zone *
c0ff4b85 487mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 488{
c0ff4b85 489 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
490}
491
c0ff4b85 492struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 493{
c0ff4b85 494 return &memcg->css;
d324236b
WF
495}
496
f64c3f54 497static struct mem_cgroup_per_zone *
c0ff4b85 498page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 499{
97a6c37b
JW
500 int nid = page_to_nid(page);
501 int zid = page_zonenum(page);
f64c3f54 502
c0ff4b85 503 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
504}
505
506static struct mem_cgroup_tree_per_zone *
507soft_limit_tree_node_zone(int nid, int zid)
508{
509 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
510}
511
512static struct mem_cgroup_tree_per_zone *
513soft_limit_tree_from_page(struct page *page)
514{
515 int nid = page_to_nid(page);
516 int zid = page_zonenum(page);
517
518 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
519}
520
521static void
c0ff4b85 522__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 523 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
524 struct mem_cgroup_tree_per_zone *mctz,
525 unsigned long long new_usage_in_excess)
f64c3f54
BS
526{
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
529 struct mem_cgroup_per_zone *mz_node;
530
531 if (mz->on_tree)
532 return;
533
ef8745c1
KH
534 mz->usage_in_excess = new_usage_in_excess;
535 if (!mz->usage_in_excess)
536 return;
f64c3f54
BS
537 while (*p) {
538 parent = *p;
539 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
540 tree_node);
541 if (mz->usage_in_excess < mz_node->usage_in_excess)
542 p = &(*p)->rb_left;
543 /*
544 * We can't avoid mem cgroups that are over their soft
545 * limit by the same amount
546 */
547 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
548 p = &(*p)->rb_right;
549 }
550 rb_link_node(&mz->tree_node, parent, p);
551 rb_insert_color(&mz->tree_node, &mctz->rb_root);
552 mz->on_tree = true;
4e416953
BS
553}
554
555static void
c0ff4b85 556__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
557 struct mem_cgroup_per_zone *mz,
558 struct mem_cgroup_tree_per_zone *mctz)
559{
560 if (!mz->on_tree)
561 return;
562 rb_erase(&mz->tree_node, &mctz->rb_root);
563 mz->on_tree = false;
564}
565
f64c3f54 566static void
c0ff4b85 567mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
568 struct mem_cgroup_per_zone *mz,
569 struct mem_cgroup_tree_per_zone *mctz)
570{
571 spin_lock(&mctz->lock);
c0ff4b85 572 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
573 spin_unlock(&mctz->lock);
574}
575
f64c3f54 576
c0ff4b85 577static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 578{
ef8745c1 579 unsigned long long excess;
f64c3f54
BS
580 struct mem_cgroup_per_zone *mz;
581 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
582 int nid = page_to_nid(page);
583 int zid = page_zonenum(page);
f64c3f54
BS
584 mctz = soft_limit_tree_from_page(page);
585
586 /*
4e649152
KH
587 * Necessary to update all ancestors when hierarchy is used.
588 * because their event counter is not touched.
f64c3f54 589 */
c0ff4b85
R
590 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
591 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
592 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
593 /*
594 * We have to update the tree if mz is on RB-tree or
595 * mem is over its softlimit.
596 */
ef8745c1 597 if (excess || mz->on_tree) {
4e649152
KH
598 spin_lock(&mctz->lock);
599 /* if on-tree, remove it */
600 if (mz->on_tree)
c0ff4b85 601 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 602 /*
ef8745c1
KH
603 * Insert again. mz->usage_in_excess will be updated.
604 * If excess is 0, no tree ops.
4e649152 605 */
c0ff4b85 606 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
607 spin_unlock(&mctz->lock);
608 }
f64c3f54
BS
609 }
610}
611
c0ff4b85 612static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
613{
614 int node, zone;
615 struct mem_cgroup_per_zone *mz;
616 struct mem_cgroup_tree_per_zone *mctz;
617
3ed28fa1 618 for_each_node(node) {
f64c3f54 619 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 620 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 621 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 622 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
623 }
624 }
625}
626
4e416953
BS
627static struct mem_cgroup_per_zone *
628__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
629{
630 struct rb_node *rightmost = NULL;
26251eaf 631 struct mem_cgroup_per_zone *mz;
4e416953
BS
632
633retry:
26251eaf 634 mz = NULL;
4e416953
BS
635 rightmost = rb_last(&mctz->rb_root);
636 if (!rightmost)
637 goto done; /* Nothing to reclaim from */
638
639 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
640 /*
641 * Remove the node now but someone else can add it back,
642 * we will to add it back at the end of reclaim to its correct
643 * position in the tree.
644 */
d79154bb
HD
645 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
646 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
647 !css_tryget(&mz->memcg->css))
4e416953
BS
648 goto retry;
649done:
650 return mz;
651}
652
653static struct mem_cgroup_per_zone *
654mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
655{
656 struct mem_cgroup_per_zone *mz;
657
658 spin_lock(&mctz->lock);
659 mz = __mem_cgroup_largest_soft_limit_node(mctz);
660 spin_unlock(&mctz->lock);
661 return mz;
662}
663
711d3d2c
KH
664/*
665 * Implementation Note: reading percpu statistics for memcg.
666 *
667 * Both of vmstat[] and percpu_counter has threshold and do periodic
668 * synchronization to implement "quick" read. There are trade-off between
669 * reading cost and precision of value. Then, we may have a chance to implement
670 * a periodic synchronizion of counter in memcg's counter.
671 *
672 * But this _read() function is used for user interface now. The user accounts
673 * memory usage by memory cgroup and he _always_ requires exact value because
674 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
675 * have to visit all online cpus and make sum. So, for now, unnecessary
676 * synchronization is not implemented. (just implemented for cpu hotplug)
677 *
678 * If there are kernel internal actions which can make use of some not-exact
679 * value, and reading all cpu value can be performance bottleneck in some
680 * common workload, threashold and synchonization as vmstat[] should be
681 * implemented.
682 */
c0ff4b85 683static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 684 enum mem_cgroup_stat_index idx)
c62b1a3b 685{
7a159cc9 686 long val = 0;
c62b1a3b 687 int cpu;
c62b1a3b 688
711d3d2c
KH
689 get_online_cpus();
690 for_each_online_cpu(cpu)
c0ff4b85 691 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 692#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
693 spin_lock(&memcg->pcp_counter_lock);
694 val += memcg->nocpu_base.count[idx];
695 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
696#endif
697 put_online_cpus();
c62b1a3b
KH
698 return val;
699}
700
c0ff4b85 701static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
702 bool charge)
703{
704 int val = (charge) ? 1 : -1;
bff6bb83 705 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
706}
707
c0ff4b85 708static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
709 enum mem_cgroup_events_index idx)
710{
711 unsigned long val = 0;
712 int cpu;
713
714 for_each_online_cpu(cpu)
c0ff4b85 715 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 716#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
717 spin_lock(&memcg->pcp_counter_lock);
718 val += memcg->nocpu_base.events[idx];
719 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
720#endif
721 return val;
722}
723
c0ff4b85 724static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 725 bool anon, int nr_pages)
d52aa412 726{
c62b1a3b
KH
727 preempt_disable();
728
b2402857
KH
729 /*
730 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
731 * counted as CACHE even if it's on ANON LRU.
732 */
733 if (anon)
734 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 735 nr_pages);
d52aa412 736 else
b2402857 737 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 738 nr_pages);
55e462b0 739
e401f176
KH
740 /* pagein of a big page is an event. So, ignore page size */
741 if (nr_pages > 0)
c0ff4b85 742 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 743 else {
c0ff4b85 744 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
745 nr_pages = -nr_pages; /* for event */
746 }
e401f176 747
13114716 748 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 749
c62b1a3b 750 preempt_enable();
6d12e2d8
KH
751}
752
bb2a0de9 753unsigned long
4d7dcca2 754mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
755{
756 struct mem_cgroup_per_zone *mz;
757
758 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
759 return mz->lru_size[lru];
760}
761
762static unsigned long
c0ff4b85 763mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 764 unsigned int lru_mask)
889976db
YH
765{
766 struct mem_cgroup_per_zone *mz;
f156ab93 767 enum lru_list lru;
bb2a0de9
KH
768 unsigned long ret = 0;
769
c0ff4b85 770 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 771
f156ab93
HD
772 for_each_lru(lru) {
773 if (BIT(lru) & lru_mask)
774 ret += mz->lru_size[lru];
bb2a0de9
KH
775 }
776 return ret;
777}
778
779static unsigned long
c0ff4b85 780mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
781 int nid, unsigned int lru_mask)
782{
889976db
YH
783 u64 total = 0;
784 int zid;
785
bb2a0de9 786 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
787 total += mem_cgroup_zone_nr_lru_pages(memcg,
788 nid, zid, lru_mask);
bb2a0de9 789
889976db
YH
790 return total;
791}
bb2a0de9 792
c0ff4b85 793static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 794 unsigned int lru_mask)
6d12e2d8 795{
889976db 796 int nid;
6d12e2d8
KH
797 u64 total = 0;
798
bb2a0de9 799 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 800 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 801 return total;
d52aa412
KH
802}
803
f53d7ce3
JW
804static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
805 enum mem_cgroup_events_target target)
7a159cc9
JW
806{
807 unsigned long val, next;
808
13114716 809 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 810 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 811 /* from time_after() in jiffies.h */
f53d7ce3
JW
812 if ((long)next - (long)val < 0) {
813 switch (target) {
814 case MEM_CGROUP_TARGET_THRESH:
815 next = val + THRESHOLDS_EVENTS_TARGET;
816 break;
817 case MEM_CGROUP_TARGET_SOFTLIMIT:
818 next = val + SOFTLIMIT_EVENTS_TARGET;
819 break;
820 case MEM_CGROUP_TARGET_NUMAINFO:
821 next = val + NUMAINFO_EVENTS_TARGET;
822 break;
823 default:
824 break;
825 }
826 __this_cpu_write(memcg->stat->targets[target], next);
827 return true;
7a159cc9 828 }
f53d7ce3 829 return false;
d2265e6f
KH
830}
831
832/*
833 * Check events in order.
834 *
835 */
c0ff4b85 836static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 837{
4799401f 838 preempt_disable();
d2265e6f 839 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
840 if (unlikely(mem_cgroup_event_ratelimit(memcg,
841 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
842 bool do_softlimit;
843 bool do_numainfo __maybe_unused;
f53d7ce3
JW
844
845 do_softlimit = mem_cgroup_event_ratelimit(memcg,
846 MEM_CGROUP_TARGET_SOFTLIMIT);
847#if MAX_NUMNODES > 1
848 do_numainfo = mem_cgroup_event_ratelimit(memcg,
849 MEM_CGROUP_TARGET_NUMAINFO);
850#endif
851 preempt_enable();
852
c0ff4b85 853 mem_cgroup_threshold(memcg);
f53d7ce3 854 if (unlikely(do_softlimit))
c0ff4b85 855 mem_cgroup_update_tree(memcg, page);
453a9bf3 856#if MAX_NUMNODES > 1
f53d7ce3 857 if (unlikely(do_numainfo))
c0ff4b85 858 atomic_inc(&memcg->numainfo_events);
453a9bf3 859#endif
f53d7ce3
JW
860 } else
861 preempt_enable();
d2265e6f
KH
862}
863
d1a4c0b3 864struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 865{
b2145145
WL
866 return mem_cgroup_from_css(
867 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
868}
869
cf475ad2 870struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 871{
31a78f23
BS
872 /*
873 * mm_update_next_owner() may clear mm->owner to NULL
874 * if it races with swapoff, page migration, etc.
875 * So this can be called with p == NULL.
876 */
877 if (unlikely(!p))
878 return NULL;
879
b2145145 880 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
881}
882
a433658c 883struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 884{
c0ff4b85 885 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
886
887 if (!mm)
888 return NULL;
54595fe2
KH
889 /*
890 * Because we have no locks, mm->owner's may be being moved to other
891 * cgroup. We use css_tryget() here even if this looks
892 * pessimistic (rather than adding locks here).
893 */
894 rcu_read_lock();
895 do {
c0ff4b85
R
896 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
897 if (unlikely(!memcg))
54595fe2 898 break;
c0ff4b85 899 } while (!css_tryget(&memcg->css));
54595fe2 900 rcu_read_unlock();
c0ff4b85 901 return memcg;
54595fe2
KH
902}
903
5660048c
JW
904/**
905 * mem_cgroup_iter - iterate over memory cgroup hierarchy
906 * @root: hierarchy root
907 * @prev: previously returned memcg, NULL on first invocation
908 * @reclaim: cookie for shared reclaim walks, NULL for full walks
909 *
910 * Returns references to children of the hierarchy below @root, or
911 * @root itself, or %NULL after a full round-trip.
912 *
913 * Caller must pass the return value in @prev on subsequent
914 * invocations for reference counting, or use mem_cgroup_iter_break()
915 * to cancel a hierarchy walk before the round-trip is complete.
916 *
917 * Reclaimers can specify a zone and a priority level in @reclaim to
918 * divide up the memcgs in the hierarchy among all concurrent
919 * reclaimers operating on the same zone and priority.
920 */
921struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
922 struct mem_cgroup *prev,
923 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 924{
9f3a0d09
JW
925 struct mem_cgroup *memcg = NULL;
926 int id = 0;
711d3d2c 927
5660048c
JW
928 if (mem_cgroup_disabled())
929 return NULL;
930
9f3a0d09
JW
931 if (!root)
932 root = root_mem_cgroup;
7d74b06f 933
9f3a0d09
JW
934 if (prev && !reclaim)
935 id = css_id(&prev->css);
14067bb3 936
9f3a0d09
JW
937 if (prev && prev != root)
938 css_put(&prev->css);
14067bb3 939
9f3a0d09
JW
940 if (!root->use_hierarchy && root != root_mem_cgroup) {
941 if (prev)
942 return NULL;
943 return root;
944 }
14067bb3 945
9f3a0d09 946 while (!memcg) {
527a5ec9 947 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 948 struct cgroup_subsys_state *css;
711d3d2c 949
527a5ec9
JW
950 if (reclaim) {
951 int nid = zone_to_nid(reclaim->zone);
952 int zid = zone_idx(reclaim->zone);
953 struct mem_cgroup_per_zone *mz;
954
955 mz = mem_cgroup_zoneinfo(root, nid, zid);
956 iter = &mz->reclaim_iter[reclaim->priority];
957 if (prev && reclaim->generation != iter->generation)
958 return NULL;
959 id = iter->position;
960 }
7d74b06f 961
9f3a0d09
JW
962 rcu_read_lock();
963 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
964 if (css) {
965 if (css == &root->css || css_tryget(css))
b2145145 966 memcg = mem_cgroup_from_css(css);
9f3a0d09
JW
967 } else
968 id = 0;
14067bb3 969 rcu_read_unlock();
14067bb3 970
527a5ec9
JW
971 if (reclaim) {
972 iter->position = id;
973 if (!css)
974 iter->generation++;
975 else if (!prev && memcg)
976 reclaim->generation = iter->generation;
977 }
9f3a0d09
JW
978
979 if (prev && !css)
980 return NULL;
981 }
982 return memcg;
14067bb3 983}
7d74b06f 984
5660048c
JW
985/**
986 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
987 * @root: hierarchy root
988 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
989 */
990void mem_cgroup_iter_break(struct mem_cgroup *root,
991 struct mem_cgroup *prev)
9f3a0d09
JW
992{
993 if (!root)
994 root = root_mem_cgroup;
995 if (prev && prev != root)
996 css_put(&prev->css);
997}
7d74b06f 998
9f3a0d09
JW
999/*
1000 * Iteration constructs for visiting all cgroups (under a tree). If
1001 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1002 * be used for reference counting.
1003 */
1004#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1005 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1006 iter != NULL; \
527a5ec9 1007 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1008
9f3a0d09 1009#define for_each_mem_cgroup(iter) \
527a5ec9 1010 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1011 iter != NULL; \
527a5ec9 1012 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1013
c0ff4b85 1014static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 1015{
c0ff4b85 1016 return (memcg == root_mem_cgroup);
4b3bde4c
BS
1017}
1018
456f998e
YH
1019void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1020{
c0ff4b85 1021 struct mem_cgroup *memcg;
456f998e
YH
1022
1023 if (!mm)
1024 return;
1025
1026 rcu_read_lock();
c0ff4b85
R
1027 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1028 if (unlikely(!memcg))
456f998e
YH
1029 goto out;
1030
1031 switch (idx) {
456f998e 1032 case PGFAULT:
0e574a93
JW
1033 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1034 break;
1035 case PGMAJFAULT:
1036 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1037 break;
1038 default:
1039 BUG();
1040 }
1041out:
1042 rcu_read_unlock();
1043}
1044EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1045
925b7673
JW
1046/**
1047 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1048 * @zone: zone of the wanted lruvec
fa9add64 1049 * @memcg: memcg of the wanted lruvec
925b7673
JW
1050 *
1051 * Returns the lru list vector holding pages for the given @zone and
1052 * @mem. This can be the global zone lruvec, if the memory controller
1053 * is disabled.
1054 */
1055struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1056 struct mem_cgroup *memcg)
1057{
1058 struct mem_cgroup_per_zone *mz;
1059
1060 if (mem_cgroup_disabled())
1061 return &zone->lruvec;
1062
1063 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1064 return &mz->lruvec;
1065}
1066
08e552c6
KH
1067/*
1068 * Following LRU functions are allowed to be used without PCG_LOCK.
1069 * Operations are called by routine of global LRU independently from memcg.
1070 * What we have to take care of here is validness of pc->mem_cgroup.
1071 *
1072 * Changes to pc->mem_cgroup happens when
1073 * 1. charge
1074 * 2. moving account
1075 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1076 * It is added to LRU before charge.
1077 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1078 * When moving account, the page is not on LRU. It's isolated.
1079 */
4f98a2fe 1080
925b7673 1081/**
fa9add64 1082 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1083 * @page: the page
fa9add64 1084 * @zone: zone of the page
925b7673 1085 */
fa9add64 1086struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1087{
08e552c6 1088 struct mem_cgroup_per_zone *mz;
925b7673
JW
1089 struct mem_cgroup *memcg;
1090 struct page_cgroup *pc;
6d12e2d8 1091
f8d66542 1092 if (mem_cgroup_disabled())
925b7673
JW
1093 return &zone->lruvec;
1094
08e552c6 1095 pc = lookup_page_cgroup(page);
38c5d72f 1096 memcg = pc->mem_cgroup;
7512102c
HD
1097
1098 /*
fa9add64 1099 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1100 * an uncharged page off lru does nothing to secure
1101 * its former mem_cgroup from sudden removal.
1102 *
1103 * Our caller holds lru_lock, and PageCgroupUsed is updated
1104 * under page_cgroup lock: between them, they make all uses
1105 * of pc->mem_cgroup safe.
1106 */
fa9add64 1107 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1108 pc->mem_cgroup = memcg = root_mem_cgroup;
1109
925b7673 1110 mz = page_cgroup_zoneinfo(memcg, page);
925b7673 1111 return &mz->lruvec;
08e552c6 1112}
b69408e8 1113
925b7673 1114/**
fa9add64
HD
1115 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1116 * @lruvec: mem_cgroup per zone lru vector
1117 * @lru: index of lru list the page is sitting on
1118 * @nr_pages: positive when adding or negative when removing
925b7673 1119 *
fa9add64
HD
1120 * This function must be called when a page is added to or removed from an
1121 * lru list.
3f58a829 1122 */
fa9add64
HD
1123void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1124 int nr_pages)
3f58a829
MK
1125{
1126 struct mem_cgroup_per_zone *mz;
fa9add64 1127 unsigned long *lru_size;
3f58a829
MK
1128
1129 if (mem_cgroup_disabled())
1130 return;
1131
fa9add64
HD
1132 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1133 lru_size = mz->lru_size + lru;
1134 *lru_size += nr_pages;
1135 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1136}
544122e5 1137
3e92041d 1138/*
c0ff4b85 1139 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1140 * hierarchy subtree
1141 */
c3ac9a8a
JW
1142bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1143 struct mem_cgroup *memcg)
3e92041d 1144{
91c63734
JW
1145 if (root_memcg == memcg)
1146 return true;
3a981f48 1147 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1148 return false;
c3ac9a8a
JW
1149 return css_is_ancestor(&memcg->css, &root_memcg->css);
1150}
1151
1152static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1153 struct mem_cgroup *memcg)
1154{
1155 bool ret;
1156
91c63734 1157 rcu_read_lock();
c3ac9a8a 1158 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1159 rcu_read_unlock();
1160 return ret;
3e92041d
MH
1161}
1162
c0ff4b85 1163int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1164{
1165 int ret;
0b7f569e 1166 struct mem_cgroup *curr = NULL;
158e0a2d 1167 struct task_struct *p;
4c4a2214 1168
158e0a2d 1169 p = find_lock_task_mm(task);
de077d22
DR
1170 if (p) {
1171 curr = try_get_mem_cgroup_from_mm(p->mm);
1172 task_unlock(p);
1173 } else {
1174 /*
1175 * All threads may have already detached their mm's, but the oom
1176 * killer still needs to detect if they have already been oom
1177 * killed to prevent needlessly killing additional tasks.
1178 */
1179 task_lock(task);
1180 curr = mem_cgroup_from_task(task);
1181 if (curr)
1182 css_get(&curr->css);
1183 task_unlock(task);
1184 }
0b7f569e
KH
1185 if (!curr)
1186 return 0;
d31f56db 1187 /*
c0ff4b85 1188 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1189 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1190 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1191 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1192 */
c0ff4b85 1193 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1194 css_put(&curr->css);
4c4a2214
DR
1195 return ret;
1196}
1197
c56d5c7d 1198int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1199{
9b272977 1200 unsigned long inactive_ratio;
14797e23 1201 unsigned long inactive;
9b272977 1202 unsigned long active;
c772be93 1203 unsigned long gb;
14797e23 1204
4d7dcca2
HD
1205 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1206 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1207
c772be93
KM
1208 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1209 if (gb)
1210 inactive_ratio = int_sqrt(10 * gb);
1211 else
1212 inactive_ratio = 1;
1213
9b272977 1214 return inactive * inactive_ratio < active;
14797e23
KM
1215}
1216
c56d5c7d 1217int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1218{
1219 unsigned long active;
1220 unsigned long inactive;
1221
4d7dcca2
HD
1222 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1223 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1224
1225 return (active > inactive);
1226}
1227
6d61ef40
BS
1228#define mem_cgroup_from_res_counter(counter, member) \
1229 container_of(counter, struct mem_cgroup, member)
1230
19942822 1231/**
9d11ea9f 1232 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1233 * @memcg: the memory cgroup
19942822 1234 *
9d11ea9f 1235 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1236 * pages.
19942822 1237 */
c0ff4b85 1238static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1239{
9d11ea9f
JW
1240 unsigned long long margin;
1241
c0ff4b85 1242 margin = res_counter_margin(&memcg->res);
9d11ea9f 1243 if (do_swap_account)
c0ff4b85 1244 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1245 return margin >> PAGE_SHIFT;
19942822
JW
1246}
1247
1f4c025b 1248int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1249{
1250 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1251
1252 /* root ? */
1253 if (cgrp->parent == NULL)
1254 return vm_swappiness;
1255
bf1ff263 1256 return memcg->swappiness;
a7885eb8
KM
1257}
1258
619d094b
KH
1259/*
1260 * memcg->moving_account is used for checking possibility that some thread is
1261 * calling move_account(). When a thread on CPU-A starts moving pages under
1262 * a memcg, other threads should check memcg->moving_account under
1263 * rcu_read_lock(), like this:
1264 *
1265 * CPU-A CPU-B
1266 * rcu_read_lock()
1267 * memcg->moving_account+1 if (memcg->mocing_account)
1268 * take heavy locks.
1269 * synchronize_rcu() update something.
1270 * rcu_read_unlock()
1271 * start move here.
1272 */
4331f7d3
KH
1273
1274/* for quick checking without looking up memcg */
1275atomic_t memcg_moving __read_mostly;
1276
c0ff4b85 1277static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1278{
4331f7d3 1279 atomic_inc(&memcg_moving);
619d094b 1280 atomic_inc(&memcg->moving_account);
32047e2a
KH
1281 synchronize_rcu();
1282}
1283
c0ff4b85 1284static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1285{
619d094b
KH
1286 /*
1287 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1288 * We check NULL in callee rather than caller.
1289 */
4331f7d3
KH
1290 if (memcg) {
1291 atomic_dec(&memcg_moving);
619d094b 1292 atomic_dec(&memcg->moving_account);
4331f7d3 1293 }
32047e2a 1294}
619d094b 1295
32047e2a
KH
1296/*
1297 * 2 routines for checking "mem" is under move_account() or not.
1298 *
13fd1dd9
AM
1299 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1300 * is used for avoiding races in accounting. If true,
32047e2a
KH
1301 * pc->mem_cgroup may be overwritten.
1302 *
1303 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1304 * under hierarchy of moving cgroups. This is for
1305 * waiting at hith-memory prressure caused by "move".
1306 */
1307
13fd1dd9 1308static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1309{
1310 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1311 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1312}
4b534334 1313
c0ff4b85 1314static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1315{
2bd9bb20
KH
1316 struct mem_cgroup *from;
1317 struct mem_cgroup *to;
4b534334 1318 bool ret = false;
2bd9bb20
KH
1319 /*
1320 * Unlike task_move routines, we access mc.to, mc.from not under
1321 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1322 */
1323 spin_lock(&mc.lock);
1324 from = mc.from;
1325 to = mc.to;
1326 if (!from)
1327 goto unlock;
3e92041d 1328
c0ff4b85
R
1329 ret = mem_cgroup_same_or_subtree(memcg, from)
1330 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1331unlock:
1332 spin_unlock(&mc.lock);
4b534334
KH
1333 return ret;
1334}
1335
c0ff4b85 1336static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1337{
1338 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1339 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1340 DEFINE_WAIT(wait);
1341 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1342 /* moving charge context might have finished. */
1343 if (mc.moving_task)
1344 schedule();
1345 finish_wait(&mc.waitq, &wait);
1346 return true;
1347 }
1348 }
1349 return false;
1350}
1351
312734c0
KH
1352/*
1353 * Take this lock when
1354 * - a code tries to modify page's memcg while it's USED.
1355 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1356 * see mem_cgroup_stolen(), too.
312734c0
KH
1357 */
1358static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1359 unsigned long *flags)
1360{
1361 spin_lock_irqsave(&memcg->move_lock, *flags);
1362}
1363
1364static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1365 unsigned long *flags)
1366{
1367 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1368}
1369
e222432b 1370/**
6a6135b6 1371 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1372 * @memcg: The memory cgroup that went over limit
1373 * @p: Task that is going to be killed
1374 *
1375 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1376 * enabled
1377 */
1378void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1379{
1380 struct cgroup *task_cgrp;
1381 struct cgroup *mem_cgrp;
1382 /*
1383 * Need a buffer in BSS, can't rely on allocations. The code relies
1384 * on the assumption that OOM is serialized for memory controller.
1385 * If this assumption is broken, revisit this code.
1386 */
1387 static char memcg_name[PATH_MAX];
1388 int ret;
1389
d31f56db 1390 if (!memcg || !p)
e222432b
BS
1391 return;
1392
e222432b
BS
1393 rcu_read_lock();
1394
1395 mem_cgrp = memcg->css.cgroup;
1396 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1397
1398 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1399 if (ret < 0) {
1400 /*
1401 * Unfortunately, we are unable to convert to a useful name
1402 * But we'll still print out the usage information
1403 */
1404 rcu_read_unlock();
1405 goto done;
1406 }
1407 rcu_read_unlock();
1408
1409 printk(KERN_INFO "Task in %s killed", memcg_name);
1410
1411 rcu_read_lock();
1412 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1413 if (ret < 0) {
1414 rcu_read_unlock();
1415 goto done;
1416 }
1417 rcu_read_unlock();
1418
1419 /*
1420 * Continues from above, so we don't need an KERN_ level
1421 */
1422 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1423done:
1424
1425 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1426 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1427 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1428 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1429 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1430 "failcnt %llu\n",
1431 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1432 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1433 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1434}
1435
81d39c20
KH
1436/*
1437 * This function returns the number of memcg under hierarchy tree. Returns
1438 * 1(self count) if no children.
1439 */
c0ff4b85 1440static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1441{
1442 int num = 0;
7d74b06f
KH
1443 struct mem_cgroup *iter;
1444
c0ff4b85 1445 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1446 num++;
81d39c20
KH
1447 return num;
1448}
1449
a63d83f4
DR
1450/*
1451 * Return the memory (and swap, if configured) limit for a memcg.
1452 */
9cbb78bb 1453static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1454{
1455 u64 limit;
1456 u64 memsw;
1457
f3e8eb70
JW
1458 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1459 limit += total_swap_pages << PAGE_SHIFT;
1460
a63d83f4
DR
1461 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1462 /*
1463 * If memsw is finite and limits the amount of swap space available
1464 * to this memcg, return that limit.
1465 */
1466 return min(limit, memsw);
1467}
1468
876aafbf
DR
1469void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1470 int order)
9cbb78bb
DR
1471{
1472 struct mem_cgroup *iter;
1473 unsigned long chosen_points = 0;
1474 unsigned long totalpages;
1475 unsigned int points = 0;
1476 struct task_struct *chosen = NULL;
1477
876aafbf
DR
1478 /*
1479 * If current has a pending SIGKILL, then automatically select it. The
1480 * goal is to allow it to allocate so that it may quickly exit and free
1481 * its memory.
1482 */
1483 if (fatal_signal_pending(current)) {
1484 set_thread_flag(TIF_MEMDIE);
1485 return;
1486 }
1487
1488 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1489 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1490 for_each_mem_cgroup_tree(iter, memcg) {
1491 struct cgroup *cgroup = iter->css.cgroup;
1492 struct cgroup_iter it;
1493 struct task_struct *task;
1494
1495 cgroup_iter_start(cgroup, &it);
1496 while ((task = cgroup_iter_next(cgroup, &it))) {
1497 switch (oom_scan_process_thread(task, totalpages, NULL,
1498 false)) {
1499 case OOM_SCAN_SELECT:
1500 if (chosen)
1501 put_task_struct(chosen);
1502 chosen = task;
1503 chosen_points = ULONG_MAX;
1504 get_task_struct(chosen);
1505 /* fall through */
1506 case OOM_SCAN_CONTINUE:
1507 continue;
1508 case OOM_SCAN_ABORT:
1509 cgroup_iter_end(cgroup, &it);
1510 mem_cgroup_iter_break(memcg, iter);
1511 if (chosen)
1512 put_task_struct(chosen);
1513 return;
1514 case OOM_SCAN_OK:
1515 break;
1516 };
1517 points = oom_badness(task, memcg, NULL, totalpages);
1518 if (points > chosen_points) {
1519 if (chosen)
1520 put_task_struct(chosen);
1521 chosen = task;
1522 chosen_points = points;
1523 get_task_struct(chosen);
1524 }
1525 }
1526 cgroup_iter_end(cgroup, &it);
1527 }
1528
1529 if (!chosen)
1530 return;
1531 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1532 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1533 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1534}
1535
5660048c
JW
1536static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1537 gfp_t gfp_mask,
1538 unsigned long flags)
1539{
1540 unsigned long total = 0;
1541 bool noswap = false;
1542 int loop;
1543
1544 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1545 noswap = true;
1546 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1547 noswap = true;
1548
1549 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1550 if (loop)
1551 drain_all_stock_async(memcg);
1552 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1553 /*
1554 * Allow limit shrinkers, which are triggered directly
1555 * by userspace, to catch signals and stop reclaim
1556 * after minimal progress, regardless of the margin.
1557 */
1558 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1559 break;
1560 if (mem_cgroup_margin(memcg))
1561 break;
1562 /*
1563 * If nothing was reclaimed after two attempts, there
1564 * may be no reclaimable pages in this hierarchy.
1565 */
1566 if (loop && !total)
1567 break;
1568 }
1569 return total;
1570}
1571
4d0c066d
KH
1572/**
1573 * test_mem_cgroup_node_reclaimable
dad7557e 1574 * @memcg: the target memcg
4d0c066d
KH
1575 * @nid: the node ID to be checked.
1576 * @noswap : specify true here if the user wants flle only information.
1577 *
1578 * This function returns whether the specified memcg contains any
1579 * reclaimable pages on a node. Returns true if there are any reclaimable
1580 * pages in the node.
1581 */
c0ff4b85 1582static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1583 int nid, bool noswap)
1584{
c0ff4b85 1585 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1586 return true;
1587 if (noswap || !total_swap_pages)
1588 return false;
c0ff4b85 1589 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1590 return true;
1591 return false;
1592
1593}
889976db
YH
1594#if MAX_NUMNODES > 1
1595
1596/*
1597 * Always updating the nodemask is not very good - even if we have an empty
1598 * list or the wrong list here, we can start from some node and traverse all
1599 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1600 *
1601 */
c0ff4b85 1602static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1603{
1604 int nid;
453a9bf3
KH
1605 /*
1606 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1607 * pagein/pageout changes since the last update.
1608 */
c0ff4b85 1609 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1610 return;
c0ff4b85 1611 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1612 return;
1613
889976db 1614 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1615 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1616
1617 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1618
c0ff4b85
R
1619 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1620 node_clear(nid, memcg->scan_nodes);
889976db 1621 }
453a9bf3 1622
c0ff4b85
R
1623 atomic_set(&memcg->numainfo_events, 0);
1624 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1625}
1626
1627/*
1628 * Selecting a node where we start reclaim from. Because what we need is just
1629 * reducing usage counter, start from anywhere is O,K. Considering
1630 * memory reclaim from current node, there are pros. and cons.
1631 *
1632 * Freeing memory from current node means freeing memory from a node which
1633 * we'll use or we've used. So, it may make LRU bad. And if several threads
1634 * hit limits, it will see a contention on a node. But freeing from remote
1635 * node means more costs for memory reclaim because of memory latency.
1636 *
1637 * Now, we use round-robin. Better algorithm is welcomed.
1638 */
c0ff4b85 1639int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1640{
1641 int node;
1642
c0ff4b85
R
1643 mem_cgroup_may_update_nodemask(memcg);
1644 node = memcg->last_scanned_node;
889976db 1645
c0ff4b85 1646 node = next_node(node, memcg->scan_nodes);
889976db 1647 if (node == MAX_NUMNODES)
c0ff4b85 1648 node = first_node(memcg->scan_nodes);
889976db
YH
1649 /*
1650 * We call this when we hit limit, not when pages are added to LRU.
1651 * No LRU may hold pages because all pages are UNEVICTABLE or
1652 * memcg is too small and all pages are not on LRU. In that case,
1653 * we use curret node.
1654 */
1655 if (unlikely(node == MAX_NUMNODES))
1656 node = numa_node_id();
1657
c0ff4b85 1658 memcg->last_scanned_node = node;
889976db
YH
1659 return node;
1660}
1661
4d0c066d
KH
1662/*
1663 * Check all nodes whether it contains reclaimable pages or not.
1664 * For quick scan, we make use of scan_nodes. This will allow us to skip
1665 * unused nodes. But scan_nodes is lazily updated and may not cotain
1666 * enough new information. We need to do double check.
1667 */
6bbda35c 1668static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1669{
1670 int nid;
1671
1672 /*
1673 * quick check...making use of scan_node.
1674 * We can skip unused nodes.
1675 */
c0ff4b85
R
1676 if (!nodes_empty(memcg->scan_nodes)) {
1677 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1678 nid < MAX_NUMNODES;
c0ff4b85 1679 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1680
c0ff4b85 1681 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1682 return true;
1683 }
1684 }
1685 /*
1686 * Check rest of nodes.
1687 */
1688 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1689 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1690 continue;
c0ff4b85 1691 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1692 return true;
1693 }
1694 return false;
1695}
1696
889976db 1697#else
c0ff4b85 1698int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1699{
1700 return 0;
1701}
4d0c066d 1702
6bbda35c 1703static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1704{
c0ff4b85 1705 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1706}
889976db
YH
1707#endif
1708
5660048c
JW
1709static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1710 struct zone *zone,
1711 gfp_t gfp_mask,
1712 unsigned long *total_scanned)
6d61ef40 1713{
9f3a0d09 1714 struct mem_cgroup *victim = NULL;
5660048c 1715 int total = 0;
04046e1a 1716 int loop = 0;
9d11ea9f 1717 unsigned long excess;
185efc0f 1718 unsigned long nr_scanned;
527a5ec9
JW
1719 struct mem_cgroup_reclaim_cookie reclaim = {
1720 .zone = zone,
1721 .priority = 0,
1722 };
9d11ea9f 1723
c0ff4b85 1724 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1725
4e416953 1726 while (1) {
527a5ec9 1727 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1728 if (!victim) {
04046e1a 1729 loop++;
4e416953
BS
1730 if (loop >= 2) {
1731 /*
1732 * If we have not been able to reclaim
1733 * anything, it might because there are
1734 * no reclaimable pages under this hierarchy
1735 */
5660048c 1736 if (!total)
4e416953 1737 break;
4e416953 1738 /*
25985edc 1739 * We want to do more targeted reclaim.
4e416953
BS
1740 * excess >> 2 is not to excessive so as to
1741 * reclaim too much, nor too less that we keep
1742 * coming back to reclaim from this cgroup
1743 */
1744 if (total >= (excess >> 2) ||
9f3a0d09 1745 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1746 break;
4e416953 1747 }
9f3a0d09 1748 continue;
4e416953 1749 }
5660048c 1750 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1751 continue;
5660048c
JW
1752 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1753 zone, &nr_scanned);
1754 *total_scanned += nr_scanned;
1755 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1756 break;
6d61ef40 1757 }
9f3a0d09 1758 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1759 return total;
6d61ef40
BS
1760}
1761
867578cb
KH
1762/*
1763 * Check OOM-Killer is already running under our hierarchy.
1764 * If someone is running, return false.
1af8efe9 1765 * Has to be called with memcg_oom_lock
867578cb 1766 */
c0ff4b85 1767static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1768{
79dfdacc 1769 struct mem_cgroup *iter, *failed = NULL;
a636b327 1770
9f3a0d09 1771 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1772 if (iter->oom_lock) {
79dfdacc
MH
1773 /*
1774 * this subtree of our hierarchy is already locked
1775 * so we cannot give a lock.
1776 */
79dfdacc 1777 failed = iter;
9f3a0d09
JW
1778 mem_cgroup_iter_break(memcg, iter);
1779 break;
23751be0
JW
1780 } else
1781 iter->oom_lock = true;
7d74b06f 1782 }
867578cb 1783
79dfdacc 1784 if (!failed)
23751be0 1785 return true;
79dfdacc
MH
1786
1787 /*
1788 * OK, we failed to lock the whole subtree so we have to clean up
1789 * what we set up to the failing subtree
1790 */
9f3a0d09 1791 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1792 if (iter == failed) {
9f3a0d09
JW
1793 mem_cgroup_iter_break(memcg, iter);
1794 break;
79dfdacc
MH
1795 }
1796 iter->oom_lock = false;
1797 }
23751be0 1798 return false;
a636b327 1799}
0b7f569e 1800
79dfdacc 1801/*
1af8efe9 1802 * Has to be called with memcg_oom_lock
79dfdacc 1803 */
c0ff4b85 1804static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1805{
7d74b06f
KH
1806 struct mem_cgroup *iter;
1807
c0ff4b85 1808 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1809 iter->oom_lock = false;
1810 return 0;
1811}
1812
c0ff4b85 1813static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1814{
1815 struct mem_cgroup *iter;
1816
c0ff4b85 1817 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1818 atomic_inc(&iter->under_oom);
1819}
1820
c0ff4b85 1821static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1822{
1823 struct mem_cgroup *iter;
1824
867578cb
KH
1825 /*
1826 * When a new child is created while the hierarchy is under oom,
1827 * mem_cgroup_oom_lock() may not be called. We have to use
1828 * atomic_add_unless() here.
1829 */
c0ff4b85 1830 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1831 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1832}
1833
1af8efe9 1834static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1835static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1836
dc98df5a 1837struct oom_wait_info {
d79154bb 1838 struct mem_cgroup *memcg;
dc98df5a
KH
1839 wait_queue_t wait;
1840};
1841
1842static int memcg_oom_wake_function(wait_queue_t *wait,
1843 unsigned mode, int sync, void *arg)
1844{
d79154bb
HD
1845 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1846 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1847 struct oom_wait_info *oom_wait_info;
1848
1849 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1850 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1851
dc98df5a 1852 /*
d79154bb 1853 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1854 * Then we can use css_is_ancestor without taking care of RCU.
1855 */
c0ff4b85
R
1856 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1857 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1858 return 0;
dc98df5a
KH
1859 return autoremove_wake_function(wait, mode, sync, arg);
1860}
1861
c0ff4b85 1862static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1863{
c0ff4b85
R
1864 /* for filtering, pass "memcg" as argument. */
1865 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1866}
1867
c0ff4b85 1868static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1869{
c0ff4b85
R
1870 if (memcg && atomic_read(&memcg->under_oom))
1871 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1872}
1873
867578cb
KH
1874/*
1875 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1876 */
6bbda35c
KS
1877static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1878 int order)
0b7f569e 1879{
dc98df5a 1880 struct oom_wait_info owait;
3c11ecf4 1881 bool locked, need_to_kill;
867578cb 1882
d79154bb 1883 owait.memcg = memcg;
dc98df5a
KH
1884 owait.wait.flags = 0;
1885 owait.wait.func = memcg_oom_wake_function;
1886 owait.wait.private = current;
1887 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1888 need_to_kill = true;
c0ff4b85 1889 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1890
c0ff4b85 1891 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1892 spin_lock(&memcg_oom_lock);
c0ff4b85 1893 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1894 /*
1895 * Even if signal_pending(), we can't quit charge() loop without
1896 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1897 * under OOM is always welcomed, use TASK_KILLABLE here.
1898 */
3c11ecf4 1899 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1900 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1901 need_to_kill = false;
1902 if (locked)
c0ff4b85 1903 mem_cgroup_oom_notify(memcg);
1af8efe9 1904 spin_unlock(&memcg_oom_lock);
867578cb 1905
3c11ecf4
KH
1906 if (need_to_kill) {
1907 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1908 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1909 } else {
867578cb 1910 schedule();
dc98df5a 1911 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1912 }
1af8efe9 1913 spin_lock(&memcg_oom_lock);
79dfdacc 1914 if (locked)
c0ff4b85
R
1915 mem_cgroup_oom_unlock(memcg);
1916 memcg_wakeup_oom(memcg);
1af8efe9 1917 spin_unlock(&memcg_oom_lock);
867578cb 1918
c0ff4b85 1919 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1920
867578cb
KH
1921 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1922 return false;
1923 /* Give chance to dying process */
715a5ee8 1924 schedule_timeout_uninterruptible(1);
867578cb 1925 return true;
0b7f569e
KH
1926}
1927
d69b042f
BS
1928/*
1929 * Currently used to update mapped file statistics, but the routine can be
1930 * generalized to update other statistics as well.
32047e2a
KH
1931 *
1932 * Notes: Race condition
1933 *
1934 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1935 * it tends to be costly. But considering some conditions, we doesn't need
1936 * to do so _always_.
1937 *
1938 * Considering "charge", lock_page_cgroup() is not required because all
1939 * file-stat operations happen after a page is attached to radix-tree. There
1940 * are no race with "charge".
1941 *
1942 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1943 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1944 * if there are race with "uncharge". Statistics itself is properly handled
1945 * by flags.
1946 *
1947 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1948 * small, we check mm->moving_account and detect there are possibility of race
1949 * If there is, we take a lock.
d69b042f 1950 */
26174efd 1951
89c06bd5
KH
1952void __mem_cgroup_begin_update_page_stat(struct page *page,
1953 bool *locked, unsigned long *flags)
1954{
1955 struct mem_cgroup *memcg;
1956 struct page_cgroup *pc;
1957
1958 pc = lookup_page_cgroup(page);
1959again:
1960 memcg = pc->mem_cgroup;
1961 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1962 return;
1963 /*
1964 * If this memory cgroup is not under account moving, we don't
da92c47d 1965 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 1966 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1967 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 1968 */
13fd1dd9 1969 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
1970 return;
1971
1972 move_lock_mem_cgroup(memcg, flags);
1973 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1974 move_unlock_mem_cgroup(memcg, flags);
1975 goto again;
1976 }
1977 *locked = true;
1978}
1979
1980void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1981{
1982 struct page_cgroup *pc = lookup_page_cgroup(page);
1983
1984 /*
1985 * It's guaranteed that pc->mem_cgroup never changes while
1986 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 1987 * should take move_lock_mem_cgroup().
89c06bd5
KH
1988 */
1989 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1990}
1991
2a7106f2
GT
1992void mem_cgroup_update_page_stat(struct page *page,
1993 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1994{
c0ff4b85 1995 struct mem_cgroup *memcg;
32047e2a 1996 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 1997 unsigned long uninitialized_var(flags);
d69b042f 1998
cfa44946 1999 if (mem_cgroup_disabled())
d69b042f 2000 return;
89c06bd5 2001
c0ff4b85
R
2002 memcg = pc->mem_cgroup;
2003 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2004 return;
26174efd 2005
26174efd 2006 switch (idx) {
2a7106f2 2007 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2008 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2009 break;
2010 default:
2011 BUG();
8725d541 2012 }
d69b042f 2013
c0ff4b85 2014 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2015}
26174efd 2016
cdec2e42
KH
2017/*
2018 * size of first charge trial. "32" comes from vmscan.c's magic value.
2019 * TODO: maybe necessary to use big numbers in big irons.
2020 */
7ec99d62 2021#define CHARGE_BATCH 32U
cdec2e42
KH
2022struct memcg_stock_pcp {
2023 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2024 unsigned int nr_pages;
cdec2e42 2025 struct work_struct work;
26fe6168 2026 unsigned long flags;
a0db00fc 2027#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2028};
2029static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2030static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2031
2032/*
11c9ea4e 2033 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2034 * from local stock and true is returned. If the stock is 0 or charges from a
2035 * cgroup which is not current target, returns false. This stock will be
2036 * refilled.
2037 */
c0ff4b85 2038static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2039{
2040 struct memcg_stock_pcp *stock;
2041 bool ret = true;
2042
2043 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2044 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2045 stock->nr_pages--;
cdec2e42
KH
2046 else /* need to call res_counter_charge */
2047 ret = false;
2048 put_cpu_var(memcg_stock);
2049 return ret;
2050}
2051
2052/*
2053 * Returns stocks cached in percpu to res_counter and reset cached information.
2054 */
2055static void drain_stock(struct memcg_stock_pcp *stock)
2056{
2057 struct mem_cgroup *old = stock->cached;
2058
11c9ea4e
JW
2059 if (stock->nr_pages) {
2060 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2061
2062 res_counter_uncharge(&old->res, bytes);
cdec2e42 2063 if (do_swap_account)
11c9ea4e
JW
2064 res_counter_uncharge(&old->memsw, bytes);
2065 stock->nr_pages = 0;
cdec2e42
KH
2066 }
2067 stock->cached = NULL;
cdec2e42
KH
2068}
2069
2070/*
2071 * This must be called under preempt disabled or must be called by
2072 * a thread which is pinned to local cpu.
2073 */
2074static void drain_local_stock(struct work_struct *dummy)
2075{
2076 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2077 drain_stock(stock);
26fe6168 2078 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2079}
2080
2081/*
2082 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2083 * This will be consumed by consume_stock() function, later.
cdec2e42 2084 */
c0ff4b85 2085static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2086{
2087 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2088
c0ff4b85 2089 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2090 drain_stock(stock);
c0ff4b85 2091 stock->cached = memcg;
cdec2e42 2092 }
11c9ea4e 2093 stock->nr_pages += nr_pages;
cdec2e42
KH
2094 put_cpu_var(memcg_stock);
2095}
2096
2097/*
c0ff4b85 2098 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2099 * of the hierarchy under it. sync flag says whether we should block
2100 * until the work is done.
cdec2e42 2101 */
c0ff4b85 2102static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2103{
26fe6168 2104 int cpu, curcpu;
d38144b7 2105
cdec2e42 2106 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2107 get_online_cpus();
5af12d0e 2108 curcpu = get_cpu();
cdec2e42
KH
2109 for_each_online_cpu(cpu) {
2110 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2111 struct mem_cgroup *memcg;
26fe6168 2112
c0ff4b85
R
2113 memcg = stock->cached;
2114 if (!memcg || !stock->nr_pages)
26fe6168 2115 continue;
c0ff4b85 2116 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2117 continue;
d1a05b69
MH
2118 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2119 if (cpu == curcpu)
2120 drain_local_stock(&stock->work);
2121 else
2122 schedule_work_on(cpu, &stock->work);
2123 }
cdec2e42 2124 }
5af12d0e 2125 put_cpu();
d38144b7
MH
2126
2127 if (!sync)
2128 goto out;
2129
2130 for_each_online_cpu(cpu) {
2131 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2132 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2133 flush_work(&stock->work);
2134 }
2135out:
cdec2e42 2136 put_online_cpus();
d38144b7
MH
2137}
2138
2139/*
2140 * Tries to drain stocked charges in other cpus. This function is asynchronous
2141 * and just put a work per cpu for draining localy on each cpu. Caller can
2142 * expects some charges will be back to res_counter later but cannot wait for
2143 * it.
2144 */
c0ff4b85 2145static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2146{
9f50fad6
MH
2147 /*
2148 * If someone calls draining, avoid adding more kworker runs.
2149 */
2150 if (!mutex_trylock(&percpu_charge_mutex))
2151 return;
c0ff4b85 2152 drain_all_stock(root_memcg, false);
9f50fad6 2153 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2154}
2155
2156/* This is a synchronous drain interface. */
c0ff4b85 2157static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2158{
2159 /* called when force_empty is called */
9f50fad6 2160 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2161 drain_all_stock(root_memcg, true);
9f50fad6 2162 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2163}
2164
711d3d2c
KH
2165/*
2166 * This function drains percpu counter value from DEAD cpu and
2167 * move it to local cpu. Note that this function can be preempted.
2168 */
c0ff4b85 2169static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2170{
2171 int i;
2172
c0ff4b85 2173 spin_lock(&memcg->pcp_counter_lock);
6104621d 2174 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2175 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2176
c0ff4b85
R
2177 per_cpu(memcg->stat->count[i], cpu) = 0;
2178 memcg->nocpu_base.count[i] += x;
711d3d2c 2179 }
e9f8974f 2180 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2181 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2182
c0ff4b85
R
2183 per_cpu(memcg->stat->events[i], cpu) = 0;
2184 memcg->nocpu_base.events[i] += x;
e9f8974f 2185 }
c0ff4b85 2186 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2187}
2188
2189static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2190 unsigned long action,
2191 void *hcpu)
2192{
2193 int cpu = (unsigned long)hcpu;
2194 struct memcg_stock_pcp *stock;
711d3d2c 2195 struct mem_cgroup *iter;
cdec2e42 2196
619d094b 2197 if (action == CPU_ONLINE)
1489ebad 2198 return NOTIFY_OK;
1489ebad 2199
d833049b 2200 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2201 return NOTIFY_OK;
711d3d2c 2202
9f3a0d09 2203 for_each_mem_cgroup(iter)
711d3d2c
KH
2204 mem_cgroup_drain_pcp_counter(iter, cpu);
2205
cdec2e42
KH
2206 stock = &per_cpu(memcg_stock, cpu);
2207 drain_stock(stock);
2208 return NOTIFY_OK;
2209}
2210
4b534334
KH
2211
2212/* See __mem_cgroup_try_charge() for details */
2213enum {
2214 CHARGE_OK, /* success */
2215 CHARGE_RETRY, /* need to retry but retry is not bad */
2216 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2217 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2218 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2219};
2220
c0ff4b85 2221static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2222 unsigned int nr_pages, bool oom_check)
4b534334 2223{
7ec99d62 2224 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2225 struct mem_cgroup *mem_over_limit;
2226 struct res_counter *fail_res;
2227 unsigned long flags = 0;
2228 int ret;
2229
c0ff4b85 2230 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2231
2232 if (likely(!ret)) {
2233 if (!do_swap_account)
2234 return CHARGE_OK;
c0ff4b85 2235 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2236 if (likely(!ret))
2237 return CHARGE_OK;
2238
c0ff4b85 2239 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2240 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2241 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2242 } else
2243 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2244 /*
7ec99d62
JW
2245 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2246 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2247 *
2248 * Never reclaim on behalf of optional batching, retry with a
2249 * single page instead.
2250 */
7ec99d62 2251 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2252 return CHARGE_RETRY;
2253
2254 if (!(gfp_mask & __GFP_WAIT))
2255 return CHARGE_WOULDBLOCK;
2256
5660048c 2257 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2258 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2259 return CHARGE_RETRY;
4b534334 2260 /*
19942822
JW
2261 * Even though the limit is exceeded at this point, reclaim
2262 * may have been able to free some pages. Retry the charge
2263 * before killing the task.
2264 *
2265 * Only for regular pages, though: huge pages are rather
2266 * unlikely to succeed so close to the limit, and we fall back
2267 * to regular pages anyway in case of failure.
4b534334 2268 */
7ec99d62 2269 if (nr_pages == 1 && ret)
4b534334
KH
2270 return CHARGE_RETRY;
2271
2272 /*
2273 * At task move, charge accounts can be doubly counted. So, it's
2274 * better to wait until the end of task_move if something is going on.
2275 */
2276 if (mem_cgroup_wait_acct_move(mem_over_limit))
2277 return CHARGE_RETRY;
2278
2279 /* If we don't need to call oom-killer at el, return immediately */
2280 if (!oom_check)
2281 return CHARGE_NOMEM;
2282 /* check OOM */
e845e199 2283 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2284 return CHARGE_OOM_DIE;
2285
2286 return CHARGE_RETRY;
2287}
2288
f817ed48 2289/*
38c5d72f
KH
2290 * __mem_cgroup_try_charge() does
2291 * 1. detect memcg to be charged against from passed *mm and *ptr,
2292 * 2. update res_counter
2293 * 3. call memory reclaim if necessary.
2294 *
2295 * In some special case, if the task is fatal, fatal_signal_pending() or
2296 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2297 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2298 * as possible without any hazards. 2: all pages should have a valid
2299 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2300 * pointer, that is treated as a charge to root_mem_cgroup.
2301 *
2302 * So __mem_cgroup_try_charge() will return
2303 * 0 ... on success, filling *ptr with a valid memcg pointer.
2304 * -ENOMEM ... charge failure because of resource limits.
2305 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2306 *
2307 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2308 * the oom-killer can be invoked.
8a9f3ccd 2309 */
f817ed48 2310static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2311 gfp_t gfp_mask,
7ec99d62 2312 unsigned int nr_pages,
c0ff4b85 2313 struct mem_cgroup **ptr,
7ec99d62 2314 bool oom)
8a9f3ccd 2315{
7ec99d62 2316 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2317 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2318 struct mem_cgroup *memcg = NULL;
4b534334 2319 int ret;
a636b327 2320
867578cb
KH
2321 /*
2322 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2323 * in system level. So, allow to go ahead dying process in addition to
2324 * MEMDIE process.
2325 */
2326 if (unlikely(test_thread_flag(TIF_MEMDIE)
2327 || fatal_signal_pending(current)))
2328 goto bypass;
a636b327 2329
8a9f3ccd 2330 /*
3be91277
HD
2331 * We always charge the cgroup the mm_struct belongs to.
2332 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2333 * thread group leader migrates. It's possible that mm is not
24467cac 2334 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2335 */
c0ff4b85 2336 if (!*ptr && !mm)
38c5d72f 2337 *ptr = root_mem_cgroup;
f75ca962 2338again:
c0ff4b85
R
2339 if (*ptr) { /* css should be a valid one */
2340 memcg = *ptr;
2341 VM_BUG_ON(css_is_removed(&memcg->css));
2342 if (mem_cgroup_is_root(memcg))
f75ca962 2343 goto done;
c0ff4b85 2344 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2345 goto done;
c0ff4b85 2346 css_get(&memcg->css);
4b534334 2347 } else {
f75ca962 2348 struct task_struct *p;
54595fe2 2349
f75ca962
KH
2350 rcu_read_lock();
2351 p = rcu_dereference(mm->owner);
f75ca962 2352 /*
ebb76ce1 2353 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2354 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2355 * race with swapoff. Then, we have small risk of mis-accouning.
2356 * But such kind of mis-account by race always happens because
2357 * we don't have cgroup_mutex(). It's overkill and we allo that
2358 * small race, here.
2359 * (*) swapoff at el will charge against mm-struct not against
2360 * task-struct. So, mm->owner can be NULL.
f75ca962 2361 */
c0ff4b85 2362 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2363 if (!memcg)
2364 memcg = root_mem_cgroup;
2365 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2366 rcu_read_unlock();
2367 goto done;
2368 }
c0ff4b85 2369 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2370 /*
2371 * It seems dagerous to access memcg without css_get().
2372 * But considering how consume_stok works, it's not
2373 * necessary. If consume_stock success, some charges
2374 * from this memcg are cached on this cpu. So, we
2375 * don't need to call css_get()/css_tryget() before
2376 * calling consume_stock().
2377 */
2378 rcu_read_unlock();
2379 goto done;
2380 }
2381 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2382 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2383 rcu_read_unlock();
2384 goto again;
2385 }
2386 rcu_read_unlock();
2387 }
8a9f3ccd 2388
4b534334
KH
2389 do {
2390 bool oom_check;
7a81b88c 2391
4b534334 2392 /* If killed, bypass charge */
f75ca962 2393 if (fatal_signal_pending(current)) {
c0ff4b85 2394 css_put(&memcg->css);
4b534334 2395 goto bypass;
f75ca962 2396 }
6d61ef40 2397
4b534334
KH
2398 oom_check = false;
2399 if (oom && !nr_oom_retries) {
2400 oom_check = true;
2401 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2402 }
66e1707b 2403
c0ff4b85 2404 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2405 switch (ret) {
2406 case CHARGE_OK:
2407 break;
2408 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2409 batch = nr_pages;
c0ff4b85
R
2410 css_put(&memcg->css);
2411 memcg = NULL;
f75ca962 2412 goto again;
4b534334 2413 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2414 css_put(&memcg->css);
4b534334
KH
2415 goto nomem;
2416 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2417 if (!oom) {
c0ff4b85 2418 css_put(&memcg->css);
867578cb 2419 goto nomem;
f75ca962 2420 }
4b534334
KH
2421 /* If oom, we never return -ENOMEM */
2422 nr_oom_retries--;
2423 break;
2424 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2425 css_put(&memcg->css);
867578cb 2426 goto bypass;
66e1707b 2427 }
4b534334
KH
2428 } while (ret != CHARGE_OK);
2429
7ec99d62 2430 if (batch > nr_pages)
c0ff4b85
R
2431 refill_stock(memcg, batch - nr_pages);
2432 css_put(&memcg->css);
0c3e73e8 2433done:
c0ff4b85 2434 *ptr = memcg;
7a81b88c
KH
2435 return 0;
2436nomem:
c0ff4b85 2437 *ptr = NULL;
7a81b88c 2438 return -ENOMEM;
867578cb 2439bypass:
38c5d72f
KH
2440 *ptr = root_mem_cgroup;
2441 return -EINTR;
7a81b88c 2442}
8a9f3ccd 2443
a3032a2c
DN
2444/*
2445 * Somemtimes we have to undo a charge we got by try_charge().
2446 * This function is for that and do uncharge, put css's refcnt.
2447 * gotten by try_charge().
2448 */
c0ff4b85 2449static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2450 unsigned int nr_pages)
a3032a2c 2451{
c0ff4b85 2452 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2453 unsigned long bytes = nr_pages * PAGE_SIZE;
2454
c0ff4b85 2455 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2456 if (do_swap_account)
c0ff4b85 2457 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2458 }
854ffa8d
DN
2459}
2460
d01dd17f
KH
2461/*
2462 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2463 * This is useful when moving usage to parent cgroup.
2464 */
2465static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2466 unsigned int nr_pages)
2467{
2468 unsigned long bytes = nr_pages * PAGE_SIZE;
2469
2470 if (mem_cgroup_is_root(memcg))
2471 return;
2472
2473 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2474 if (do_swap_account)
2475 res_counter_uncharge_until(&memcg->memsw,
2476 memcg->memsw.parent, bytes);
2477}
2478
a3b2d692
KH
2479/*
2480 * A helper function to get mem_cgroup from ID. must be called under
2481 * rcu_read_lock(). The caller must check css_is_removed() or some if
2482 * it's concern. (dropping refcnt from swap can be called against removed
2483 * memcg.)
2484 */
2485static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2486{
2487 struct cgroup_subsys_state *css;
2488
2489 /* ID 0 is unused ID */
2490 if (!id)
2491 return NULL;
2492 css = css_lookup(&mem_cgroup_subsys, id);
2493 if (!css)
2494 return NULL;
b2145145 2495 return mem_cgroup_from_css(css);
a3b2d692
KH
2496}
2497
e42d9d5d 2498struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2499{
c0ff4b85 2500 struct mem_cgroup *memcg = NULL;
3c776e64 2501 struct page_cgroup *pc;
a3b2d692 2502 unsigned short id;
b5a84319
KH
2503 swp_entry_t ent;
2504
3c776e64
DN
2505 VM_BUG_ON(!PageLocked(page));
2506
3c776e64 2507 pc = lookup_page_cgroup(page);
c0bd3f63 2508 lock_page_cgroup(pc);
a3b2d692 2509 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2510 memcg = pc->mem_cgroup;
2511 if (memcg && !css_tryget(&memcg->css))
2512 memcg = NULL;
e42d9d5d 2513 } else if (PageSwapCache(page)) {
3c776e64 2514 ent.val = page_private(page);
9fb4b7cc 2515 id = lookup_swap_cgroup_id(ent);
a3b2d692 2516 rcu_read_lock();
c0ff4b85
R
2517 memcg = mem_cgroup_lookup(id);
2518 if (memcg && !css_tryget(&memcg->css))
2519 memcg = NULL;
a3b2d692 2520 rcu_read_unlock();
3c776e64 2521 }
c0bd3f63 2522 unlock_page_cgroup(pc);
c0ff4b85 2523 return memcg;
b5a84319
KH
2524}
2525
c0ff4b85 2526static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2527 struct page *page,
7ec99d62 2528 unsigned int nr_pages,
9ce70c02
HD
2529 enum charge_type ctype,
2530 bool lrucare)
7a81b88c 2531{
ce587e65 2532 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2533 struct zone *uninitialized_var(zone);
fa9add64 2534 struct lruvec *lruvec;
9ce70c02 2535 bool was_on_lru = false;
b2402857 2536 bool anon;
9ce70c02 2537
ca3e0214 2538 lock_page_cgroup(pc);
90deb788 2539 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2540 /*
2541 * we don't need page_cgroup_lock about tail pages, becase they are not
2542 * accessed by any other context at this point.
2543 */
9ce70c02
HD
2544
2545 /*
2546 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2547 * may already be on some other mem_cgroup's LRU. Take care of it.
2548 */
2549 if (lrucare) {
2550 zone = page_zone(page);
2551 spin_lock_irq(&zone->lru_lock);
2552 if (PageLRU(page)) {
fa9add64 2553 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2554 ClearPageLRU(page);
fa9add64 2555 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2556 was_on_lru = true;
2557 }
2558 }
2559
c0ff4b85 2560 pc->mem_cgroup = memcg;
261fb61a
KH
2561 /*
2562 * We access a page_cgroup asynchronously without lock_page_cgroup().
2563 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2564 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2565 * before USED bit, we need memory barrier here.
2566 * See mem_cgroup_add_lru_list(), etc.
2567 */
08e552c6 2568 smp_wmb();
b2402857 2569 SetPageCgroupUsed(pc);
3be91277 2570
9ce70c02
HD
2571 if (lrucare) {
2572 if (was_on_lru) {
fa9add64 2573 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2574 VM_BUG_ON(PageLRU(page));
2575 SetPageLRU(page);
fa9add64 2576 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2577 }
2578 spin_unlock_irq(&zone->lru_lock);
2579 }
2580
41326c17 2581 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2582 anon = true;
2583 else
2584 anon = false;
2585
2586 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2587 unlock_page_cgroup(pc);
9ce70c02 2588
430e4863
KH
2589 /*
2590 * "charge_statistics" updated event counter. Then, check it.
2591 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2592 * if they exceeds softlimit.
2593 */
c0ff4b85 2594 memcg_check_events(memcg, page);
7a81b88c 2595}
66e1707b 2596
ca3e0214
KH
2597#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2598
a0db00fc 2599#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
2600/*
2601 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2602 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2603 * charge/uncharge will be never happen and move_account() is done under
2604 * compound_lock(), so we don't have to take care of races.
ca3e0214 2605 */
e94c8a9c 2606void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2607{
2608 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2609 struct page_cgroup *pc;
2610 int i;
ca3e0214 2611
3d37c4a9
KH
2612 if (mem_cgroup_disabled())
2613 return;
e94c8a9c
KH
2614 for (i = 1; i < HPAGE_PMD_NR; i++) {
2615 pc = head_pc + i;
2616 pc->mem_cgroup = head_pc->mem_cgroup;
2617 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2618 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2619 }
ca3e0214 2620}
12d27107 2621#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2622
f817ed48 2623/**
de3638d9 2624 * mem_cgroup_move_account - move account of the page
5564e88b 2625 * @page: the page
7ec99d62 2626 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2627 * @pc: page_cgroup of the page.
2628 * @from: mem_cgroup which the page is moved from.
2629 * @to: mem_cgroup which the page is moved to. @from != @to.
2630 *
2631 * The caller must confirm following.
08e552c6 2632 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2633 * - compound_lock is held when nr_pages > 1
f817ed48 2634 *
2f3479b1
KH
2635 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2636 * from old cgroup.
f817ed48 2637 */
7ec99d62
JW
2638static int mem_cgroup_move_account(struct page *page,
2639 unsigned int nr_pages,
2640 struct page_cgroup *pc,
2641 struct mem_cgroup *from,
2f3479b1 2642 struct mem_cgroup *to)
f817ed48 2643{
de3638d9
JW
2644 unsigned long flags;
2645 int ret;
b2402857 2646 bool anon = PageAnon(page);
987eba66 2647
f817ed48 2648 VM_BUG_ON(from == to);
5564e88b 2649 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2650 /*
2651 * The page is isolated from LRU. So, collapse function
2652 * will not handle this page. But page splitting can happen.
2653 * Do this check under compound_page_lock(). The caller should
2654 * hold it.
2655 */
2656 ret = -EBUSY;
7ec99d62 2657 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2658 goto out;
2659
2660 lock_page_cgroup(pc);
2661
2662 ret = -EINVAL;
2663 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2664 goto unlock;
2665
312734c0 2666 move_lock_mem_cgroup(from, &flags);
f817ed48 2667
2ff76f11 2668 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2669 /* Update mapped_file data for mem_cgroup */
2670 preempt_disable();
2671 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2672 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2673 preempt_enable();
d69b042f 2674 }
b2402857 2675 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 2676
854ffa8d 2677 /* caller should have done css_get */
08e552c6 2678 pc->mem_cgroup = to;
b2402857 2679 mem_cgroup_charge_statistics(to, anon, nr_pages);
88703267
KH
2680 /*
2681 * We charges against "to" which may not have any tasks. Then, "to"
2682 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2683 * this function is just force_empty() and move charge, so it's
25985edc 2684 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2685 * status here.
88703267 2686 */
312734c0 2687 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2688 ret = 0;
2689unlock:
57f9fd7d 2690 unlock_page_cgroup(pc);
d2265e6f
KH
2691 /*
2692 * check events
2693 */
5564e88b
JW
2694 memcg_check_events(to, page);
2695 memcg_check_events(from, page);
de3638d9 2696out:
f817ed48
KH
2697 return ret;
2698}
2699
2700/*
2701 * move charges to its parent.
2702 */
2703
5564e88b
JW
2704static int mem_cgroup_move_parent(struct page *page,
2705 struct page_cgroup *pc,
6068bf01 2706 struct mem_cgroup *child)
f817ed48 2707{
f817ed48 2708 struct mem_cgroup *parent;
7ec99d62 2709 unsigned int nr_pages;
4be4489f 2710 unsigned long uninitialized_var(flags);
f817ed48
KH
2711 int ret;
2712
2713 /* Is ROOT ? */
cc926f78 2714 if (mem_cgroup_is_root(child))
f817ed48
KH
2715 return -EINVAL;
2716
57f9fd7d
DN
2717 ret = -EBUSY;
2718 if (!get_page_unless_zero(page))
2719 goto out;
2720 if (isolate_lru_page(page))
2721 goto put;
52dbb905 2722
7ec99d62 2723 nr_pages = hpage_nr_pages(page);
08e552c6 2724
cc926f78
KH
2725 parent = parent_mem_cgroup(child);
2726 /*
2727 * If no parent, move charges to root cgroup.
2728 */
2729 if (!parent)
2730 parent = root_mem_cgroup;
f817ed48 2731
7ec99d62 2732 if (nr_pages > 1)
987eba66
KH
2733 flags = compound_lock_irqsave(page);
2734
cc926f78 2735 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 2736 pc, child, parent);
cc926f78
KH
2737 if (!ret)
2738 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 2739
7ec99d62 2740 if (nr_pages > 1)
987eba66 2741 compound_unlock_irqrestore(page, flags);
08e552c6 2742 putback_lru_page(page);
57f9fd7d 2743put:
40d58138 2744 put_page(page);
57f9fd7d 2745out:
f817ed48
KH
2746 return ret;
2747}
2748
7a81b88c
KH
2749/*
2750 * Charge the memory controller for page usage.
2751 * Return
2752 * 0 if the charge was successful
2753 * < 0 if the cgroup is over its limit
2754 */
2755static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2756 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2757{
c0ff4b85 2758 struct mem_cgroup *memcg = NULL;
7ec99d62 2759 unsigned int nr_pages = 1;
8493ae43 2760 bool oom = true;
7a81b88c 2761 int ret;
ec168510 2762
37c2ac78 2763 if (PageTransHuge(page)) {
7ec99d62 2764 nr_pages <<= compound_order(page);
37c2ac78 2765 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2766 /*
2767 * Never OOM-kill a process for a huge page. The
2768 * fault handler will fall back to regular pages.
2769 */
2770 oom = false;
37c2ac78 2771 }
7a81b88c 2772
c0ff4b85 2773 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2774 if (ret == -ENOMEM)
7a81b88c 2775 return ret;
ce587e65 2776 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2777 return 0;
8a9f3ccd
BS
2778}
2779
7a81b88c
KH
2780int mem_cgroup_newpage_charge(struct page *page,
2781 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2782{
f8d66542 2783 if (mem_cgroup_disabled())
cede86ac 2784 return 0;
7a0524cf
JW
2785 VM_BUG_ON(page_mapped(page));
2786 VM_BUG_ON(page->mapping && !PageAnon(page));
2787 VM_BUG_ON(!mm);
217bc319 2788 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 2789 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
2790}
2791
54595fe2
KH
2792/*
2793 * While swap-in, try_charge -> commit or cancel, the page is locked.
2794 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2795 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2796 * "commit()" or removed by "cancel()"
2797 */
0435a2fd
JW
2798static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2799 struct page *page,
2800 gfp_t mask,
2801 struct mem_cgroup **memcgp)
8c7c6e34 2802{
c0ff4b85 2803 struct mem_cgroup *memcg;
90deb788 2804 struct page_cgroup *pc;
54595fe2 2805 int ret;
8c7c6e34 2806
90deb788
JW
2807 pc = lookup_page_cgroup(page);
2808 /*
2809 * Every swap fault against a single page tries to charge the
2810 * page, bail as early as possible. shmem_unuse() encounters
2811 * already charged pages, too. The USED bit is protected by
2812 * the page lock, which serializes swap cache removal, which
2813 * in turn serializes uncharging.
2814 */
2815 if (PageCgroupUsed(pc))
2816 return 0;
8c7c6e34
KH
2817 if (!do_swap_account)
2818 goto charge_cur_mm;
c0ff4b85
R
2819 memcg = try_get_mem_cgroup_from_page(page);
2820 if (!memcg)
54595fe2 2821 goto charge_cur_mm;
72835c86
JW
2822 *memcgp = memcg;
2823 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2824 css_put(&memcg->css);
38c5d72f
KH
2825 if (ret == -EINTR)
2826 ret = 0;
54595fe2 2827 return ret;
8c7c6e34 2828charge_cur_mm:
38c5d72f
KH
2829 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2830 if (ret == -EINTR)
2831 ret = 0;
2832 return ret;
8c7c6e34
KH
2833}
2834
0435a2fd
JW
2835int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2836 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2837{
2838 *memcgp = NULL;
2839 if (mem_cgroup_disabled())
2840 return 0;
bdf4f4d2
JW
2841 /*
2842 * A racing thread's fault, or swapoff, may have already
2843 * updated the pte, and even removed page from swap cache: in
2844 * those cases unuse_pte()'s pte_same() test will fail; but
2845 * there's also a KSM case which does need to charge the page.
2846 */
2847 if (!PageSwapCache(page)) {
2848 int ret;
2849
2850 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2851 if (ret == -EINTR)
2852 ret = 0;
2853 return ret;
2854 }
0435a2fd
JW
2855 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2856}
2857
827a03d2
JW
2858void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2859{
2860 if (mem_cgroup_disabled())
2861 return;
2862 if (!memcg)
2863 return;
2864 __mem_cgroup_cancel_charge(memcg, 1);
2865}
2866
83aae4c7 2867static void
72835c86 2868__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2869 enum charge_type ctype)
7a81b88c 2870{
f8d66542 2871 if (mem_cgroup_disabled())
7a81b88c 2872 return;
72835c86 2873 if (!memcg)
7a81b88c 2874 return;
72835c86 2875 cgroup_exclude_rmdir(&memcg->css);
5a6475a4 2876
ce587e65 2877 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2878 /*
2879 * Now swap is on-memory. This means this page may be
2880 * counted both as mem and swap....double count.
03f3c433
KH
2881 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2882 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2883 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2884 */
03f3c433 2885 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2886 swp_entry_t ent = {.val = page_private(page)};
86493009 2887 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2888 }
88703267
KH
2889 /*
2890 * At swapin, we may charge account against cgroup which has no tasks.
2891 * So, rmdir()->pre_destroy() can be called while we do this charge.
2892 * In that case, we need to call pre_destroy() again. check it here.
2893 */
72835c86 2894 cgroup_release_and_wakeup_rmdir(&memcg->css);
7a81b88c
KH
2895}
2896
72835c86
JW
2897void mem_cgroup_commit_charge_swapin(struct page *page,
2898 struct mem_cgroup *memcg)
83aae4c7 2899{
72835c86 2900 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 2901 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
2902}
2903
827a03d2
JW
2904int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2905 gfp_t gfp_mask)
7a81b88c 2906{
827a03d2
JW
2907 struct mem_cgroup *memcg = NULL;
2908 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2909 int ret;
2910
f8d66542 2911 if (mem_cgroup_disabled())
827a03d2
JW
2912 return 0;
2913 if (PageCompound(page))
2914 return 0;
2915
827a03d2
JW
2916 if (!PageSwapCache(page))
2917 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2918 else { /* page is swapcache/shmem */
0435a2fd
JW
2919 ret = __mem_cgroup_try_charge_swapin(mm, page,
2920 gfp_mask, &memcg);
827a03d2
JW
2921 if (!ret)
2922 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2923 }
2924 return ret;
7a81b88c
KH
2925}
2926
c0ff4b85 2927static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2928 unsigned int nr_pages,
2929 const enum charge_type ctype)
569b846d
KH
2930{
2931 struct memcg_batch_info *batch = NULL;
2932 bool uncharge_memsw = true;
7ec99d62 2933
569b846d
KH
2934 /* If swapout, usage of swap doesn't decrease */
2935 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2936 uncharge_memsw = false;
569b846d
KH
2937
2938 batch = &current->memcg_batch;
2939 /*
2940 * In usual, we do css_get() when we remember memcg pointer.
2941 * But in this case, we keep res->usage until end of a series of
2942 * uncharges. Then, it's ok to ignore memcg's refcnt.
2943 */
2944 if (!batch->memcg)
c0ff4b85 2945 batch->memcg = memcg;
3c11ecf4
KH
2946 /*
2947 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2948 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2949 * the same cgroup and we have chance to coalesce uncharges.
2950 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2951 * because we want to do uncharge as soon as possible.
2952 */
2953
2954 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2955 goto direct_uncharge;
2956
7ec99d62 2957 if (nr_pages > 1)
ec168510
AA
2958 goto direct_uncharge;
2959
569b846d
KH
2960 /*
2961 * In typical case, batch->memcg == mem. This means we can
2962 * merge a series of uncharges to an uncharge of res_counter.
2963 * If not, we uncharge res_counter ony by one.
2964 */
c0ff4b85 2965 if (batch->memcg != memcg)
569b846d
KH
2966 goto direct_uncharge;
2967 /* remember freed charge and uncharge it later */
7ffd4ca7 2968 batch->nr_pages++;
569b846d 2969 if (uncharge_memsw)
7ffd4ca7 2970 batch->memsw_nr_pages++;
569b846d
KH
2971 return;
2972direct_uncharge:
c0ff4b85 2973 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 2974 if (uncharge_memsw)
c0ff4b85
R
2975 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2976 if (unlikely(batch->memcg != memcg))
2977 memcg_oom_recover(memcg);
569b846d 2978}
7a81b88c 2979
8a9f3ccd 2980/*
69029cd5 2981 * uncharge if !page_mapped(page)
8a9f3ccd 2982 */
8c7c6e34 2983static struct mem_cgroup *
0030f535
JW
2984__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
2985 bool end_migration)
8a9f3ccd 2986{
c0ff4b85 2987 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
2988 unsigned int nr_pages = 1;
2989 struct page_cgroup *pc;
b2402857 2990 bool anon;
8a9f3ccd 2991
f8d66542 2992 if (mem_cgroup_disabled())
8c7c6e34 2993 return NULL;
4077960e 2994
0c59b89c 2995 VM_BUG_ON(PageSwapCache(page));
d13d1443 2996
37c2ac78 2997 if (PageTransHuge(page)) {
7ec99d62 2998 nr_pages <<= compound_order(page);
37c2ac78
AA
2999 VM_BUG_ON(!PageTransHuge(page));
3000 }
8697d331 3001 /*
3c541e14 3002 * Check if our page_cgroup is valid
8697d331 3003 */
52d4b9ac 3004 pc = lookup_page_cgroup(page);
cfa44946 3005 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3006 return NULL;
b9c565d5 3007
52d4b9ac 3008 lock_page_cgroup(pc);
d13d1443 3009
c0ff4b85 3010 memcg = pc->mem_cgroup;
8c7c6e34 3011
d13d1443
KH
3012 if (!PageCgroupUsed(pc))
3013 goto unlock_out;
3014
b2402857
KH
3015 anon = PageAnon(page);
3016
d13d1443 3017 switch (ctype) {
41326c17 3018 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3019 /*
3020 * Generally PageAnon tells if it's the anon statistics to be
3021 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3022 * used before page reached the stage of being marked PageAnon.
3023 */
b2402857
KH
3024 anon = true;
3025 /* fallthrough */
8a9478ca 3026 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3027 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3028 if (page_mapped(page))
3029 goto unlock_out;
3030 /*
3031 * Pages under migration may not be uncharged. But
3032 * end_migration() /must/ be the one uncharging the
3033 * unused post-migration page and so it has to call
3034 * here with the migration bit still set. See the
3035 * res_counter handling below.
3036 */
3037 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3038 goto unlock_out;
3039 break;
3040 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3041 if (!PageAnon(page)) { /* Shared memory */
3042 if (page->mapping && !page_is_file_cache(page))
3043 goto unlock_out;
3044 } else if (page_mapped(page)) /* Anon */
3045 goto unlock_out;
3046 break;
3047 default:
3048 break;
52d4b9ac 3049 }
d13d1443 3050
b2402857 3051 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3052
52d4b9ac 3053 ClearPageCgroupUsed(pc);
544122e5
KH
3054 /*
3055 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3056 * freed from LRU. This is safe because uncharged page is expected not
3057 * to be reused (freed soon). Exception is SwapCache, it's handled by
3058 * special functions.
3059 */
b9c565d5 3060
52d4b9ac 3061 unlock_page_cgroup(pc);
f75ca962 3062 /*
c0ff4b85 3063 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3064 * will never be freed.
3065 */
c0ff4b85 3066 memcg_check_events(memcg, page);
f75ca962 3067 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3068 mem_cgroup_swap_statistics(memcg, true);
3069 mem_cgroup_get(memcg);
f75ca962 3070 }
0030f535
JW
3071 /*
3072 * Migration does not charge the res_counter for the
3073 * replacement page, so leave it alone when phasing out the
3074 * page that is unused after the migration.
3075 */
3076 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 3077 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3078
c0ff4b85 3079 return memcg;
d13d1443
KH
3080
3081unlock_out:
3082 unlock_page_cgroup(pc);
8c7c6e34 3083 return NULL;
3c541e14
BS
3084}
3085
69029cd5
KH
3086void mem_cgroup_uncharge_page(struct page *page)
3087{
52d4b9ac
KH
3088 /* early check. */
3089 if (page_mapped(page))
3090 return;
40f23a21 3091 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
3092 if (PageSwapCache(page))
3093 return;
0030f535 3094 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
3095}
3096
3097void mem_cgroup_uncharge_cache_page(struct page *page)
3098{
3099 VM_BUG_ON(page_mapped(page));
b7abea96 3100 VM_BUG_ON(page->mapping);
0030f535 3101 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
3102}
3103
569b846d
KH
3104/*
3105 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3106 * In that cases, pages are freed continuously and we can expect pages
3107 * are in the same memcg. All these calls itself limits the number of
3108 * pages freed at once, then uncharge_start/end() is called properly.
3109 * This may be called prural(2) times in a context,
3110 */
3111
3112void mem_cgroup_uncharge_start(void)
3113{
3114 current->memcg_batch.do_batch++;
3115 /* We can do nest. */
3116 if (current->memcg_batch.do_batch == 1) {
3117 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3118 current->memcg_batch.nr_pages = 0;
3119 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3120 }
3121}
3122
3123void mem_cgroup_uncharge_end(void)
3124{
3125 struct memcg_batch_info *batch = &current->memcg_batch;
3126
3127 if (!batch->do_batch)
3128 return;
3129
3130 batch->do_batch--;
3131 if (batch->do_batch) /* If stacked, do nothing. */
3132 return;
3133
3134 if (!batch->memcg)
3135 return;
3136 /*
3137 * This "batch->memcg" is valid without any css_get/put etc...
3138 * bacause we hide charges behind us.
3139 */
7ffd4ca7
JW
3140 if (batch->nr_pages)
3141 res_counter_uncharge(&batch->memcg->res,
3142 batch->nr_pages * PAGE_SIZE);
3143 if (batch->memsw_nr_pages)
3144 res_counter_uncharge(&batch->memcg->memsw,
3145 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3146 memcg_oom_recover(batch->memcg);
569b846d
KH
3147 /* forget this pointer (for sanity check) */
3148 batch->memcg = NULL;
3149}
3150
e767e056 3151#ifdef CONFIG_SWAP
8c7c6e34 3152/*
e767e056 3153 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3154 * memcg information is recorded to swap_cgroup of "ent"
3155 */
8a9478ca
KH
3156void
3157mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3158{
3159 struct mem_cgroup *memcg;
8a9478ca
KH
3160 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3161
3162 if (!swapout) /* this was a swap cache but the swap is unused ! */
3163 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3164
0030f535 3165 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 3166
f75ca962
KH
3167 /*
3168 * record memcg information, if swapout && memcg != NULL,
3169 * mem_cgroup_get() was called in uncharge().
3170 */
3171 if (do_swap_account && swapout && memcg)
a3b2d692 3172 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3173}
e767e056 3174#endif
8c7c6e34 3175
c255a458 3176#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
3177/*
3178 * called from swap_entry_free(). remove record in swap_cgroup and
3179 * uncharge "memsw" account.
3180 */
3181void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3182{
8c7c6e34 3183 struct mem_cgroup *memcg;
a3b2d692 3184 unsigned short id;
8c7c6e34
KH
3185
3186 if (!do_swap_account)
3187 return;
3188
a3b2d692
KH
3189 id = swap_cgroup_record(ent, 0);
3190 rcu_read_lock();
3191 memcg = mem_cgroup_lookup(id);
8c7c6e34 3192 if (memcg) {
a3b2d692
KH
3193 /*
3194 * We uncharge this because swap is freed.
3195 * This memcg can be obsolete one. We avoid calling css_tryget
3196 */
0c3e73e8 3197 if (!mem_cgroup_is_root(memcg))
4e649152 3198 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3199 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3200 mem_cgroup_put(memcg);
3201 }
a3b2d692 3202 rcu_read_unlock();
d13d1443 3203}
02491447
DN
3204
3205/**
3206 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3207 * @entry: swap entry to be moved
3208 * @from: mem_cgroup which the entry is moved from
3209 * @to: mem_cgroup which the entry is moved to
3210 *
3211 * It succeeds only when the swap_cgroup's record for this entry is the same
3212 * as the mem_cgroup's id of @from.
3213 *
3214 * Returns 0 on success, -EINVAL on failure.
3215 *
3216 * The caller must have charged to @to, IOW, called res_counter_charge() about
3217 * both res and memsw, and called css_get().
3218 */
3219static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3220 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3221{
3222 unsigned short old_id, new_id;
3223
3224 old_id = css_id(&from->css);
3225 new_id = css_id(&to->css);
3226
3227 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3228 mem_cgroup_swap_statistics(from, false);
483c30b5 3229 mem_cgroup_swap_statistics(to, true);
02491447 3230 /*
483c30b5
DN
3231 * This function is only called from task migration context now.
3232 * It postpones res_counter and refcount handling till the end
3233 * of task migration(mem_cgroup_clear_mc()) for performance
3234 * improvement. But we cannot postpone mem_cgroup_get(to)
3235 * because if the process that has been moved to @to does
3236 * swap-in, the refcount of @to might be decreased to 0.
02491447 3237 */
02491447 3238 mem_cgroup_get(to);
02491447
DN
3239 return 0;
3240 }
3241 return -EINVAL;
3242}
3243#else
3244static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3245 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3246{
3247 return -EINVAL;
3248}
8c7c6e34 3249#endif
d13d1443 3250
ae41be37 3251/*
01b1ae63
KH
3252 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3253 * page belongs to.
ae41be37 3254 */
0030f535
JW
3255void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3256 struct mem_cgroup **memcgp)
ae41be37 3257{
c0ff4b85 3258 struct mem_cgroup *memcg = NULL;
7ec99d62 3259 struct page_cgroup *pc;
ac39cf8c 3260 enum charge_type ctype;
8869b8f6 3261
72835c86 3262 *memcgp = NULL;
56039efa 3263
ec168510 3264 VM_BUG_ON(PageTransHuge(page));
f8d66542 3265 if (mem_cgroup_disabled())
0030f535 3266 return;
4077960e 3267
52d4b9ac
KH
3268 pc = lookup_page_cgroup(page);
3269 lock_page_cgroup(pc);
3270 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3271 memcg = pc->mem_cgroup;
3272 css_get(&memcg->css);
ac39cf8c
AM
3273 /*
3274 * At migrating an anonymous page, its mapcount goes down
3275 * to 0 and uncharge() will be called. But, even if it's fully
3276 * unmapped, migration may fail and this page has to be
3277 * charged again. We set MIGRATION flag here and delay uncharge
3278 * until end_migration() is called
3279 *
3280 * Corner Case Thinking
3281 * A)
3282 * When the old page was mapped as Anon and it's unmap-and-freed
3283 * while migration was ongoing.
3284 * If unmap finds the old page, uncharge() of it will be delayed
3285 * until end_migration(). If unmap finds a new page, it's
3286 * uncharged when it make mapcount to be 1->0. If unmap code
3287 * finds swap_migration_entry, the new page will not be mapped
3288 * and end_migration() will find it(mapcount==0).
3289 *
3290 * B)
3291 * When the old page was mapped but migraion fails, the kernel
3292 * remaps it. A charge for it is kept by MIGRATION flag even
3293 * if mapcount goes down to 0. We can do remap successfully
3294 * without charging it again.
3295 *
3296 * C)
3297 * The "old" page is under lock_page() until the end of
3298 * migration, so, the old page itself will not be swapped-out.
3299 * If the new page is swapped out before end_migraton, our
3300 * hook to usual swap-out path will catch the event.
3301 */
3302 if (PageAnon(page))
3303 SetPageCgroupMigration(pc);
e8589cc1 3304 }
52d4b9ac 3305 unlock_page_cgroup(pc);
ac39cf8c
AM
3306 /*
3307 * If the page is not charged at this point,
3308 * we return here.
3309 */
c0ff4b85 3310 if (!memcg)
0030f535 3311 return;
01b1ae63 3312
72835c86 3313 *memcgp = memcg;
ac39cf8c
AM
3314 /*
3315 * We charge new page before it's used/mapped. So, even if unlock_page()
3316 * is called before end_migration, we can catch all events on this new
3317 * page. In the case new page is migrated but not remapped, new page's
3318 * mapcount will be finally 0 and we call uncharge in end_migration().
3319 */
ac39cf8c 3320 if (PageAnon(page))
41326c17 3321 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 3322 else
62ba7442 3323 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
3324 /*
3325 * The page is committed to the memcg, but it's not actually
3326 * charged to the res_counter since we plan on replacing the
3327 * old one and only one page is going to be left afterwards.
3328 */
ce587e65 3329 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
ae41be37 3330}
8869b8f6 3331
69029cd5 3332/* remove redundant charge if migration failed*/
c0ff4b85 3333void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3334 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3335{
ac39cf8c 3336 struct page *used, *unused;
01b1ae63 3337 struct page_cgroup *pc;
b2402857 3338 bool anon;
01b1ae63 3339
c0ff4b85 3340 if (!memcg)
01b1ae63 3341 return;
ac39cf8c 3342 /* blocks rmdir() */
c0ff4b85 3343 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3344 if (!migration_ok) {
ac39cf8c
AM
3345 used = oldpage;
3346 unused = newpage;
01b1ae63 3347 } else {
ac39cf8c 3348 used = newpage;
01b1ae63
KH
3349 unused = oldpage;
3350 }
0030f535 3351 anon = PageAnon(used);
7d188958
JW
3352 __mem_cgroup_uncharge_common(unused,
3353 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3354 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3355 true);
0030f535 3356 css_put(&memcg->css);
69029cd5 3357 /*
ac39cf8c
AM
3358 * We disallowed uncharge of pages under migration because mapcount
3359 * of the page goes down to zero, temporarly.
3360 * Clear the flag and check the page should be charged.
01b1ae63 3361 */
ac39cf8c
AM
3362 pc = lookup_page_cgroup(oldpage);
3363 lock_page_cgroup(pc);
3364 ClearPageCgroupMigration(pc);
3365 unlock_page_cgroup(pc);
ac39cf8c 3366
01b1ae63 3367 /*
ac39cf8c
AM
3368 * If a page is a file cache, radix-tree replacement is very atomic
3369 * and we can skip this check. When it was an Anon page, its mapcount
3370 * goes down to 0. But because we added MIGRATION flage, it's not
3371 * uncharged yet. There are several case but page->mapcount check
3372 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3373 * check. (see prepare_charge() also)
69029cd5 3374 */
b2402857 3375 if (anon)
ac39cf8c 3376 mem_cgroup_uncharge_page(used);
88703267 3377 /*
ac39cf8c
AM
3378 * At migration, we may charge account against cgroup which has no
3379 * tasks.
88703267
KH
3380 * So, rmdir()->pre_destroy() can be called while we do this charge.
3381 * In that case, we need to call pre_destroy() again. check it here.
3382 */
c0ff4b85 3383 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3384}
78fb7466 3385
ab936cbc
KH
3386/*
3387 * At replace page cache, newpage is not under any memcg but it's on
3388 * LRU. So, this function doesn't touch res_counter but handles LRU
3389 * in correct way. Both pages are locked so we cannot race with uncharge.
3390 */
3391void mem_cgroup_replace_page_cache(struct page *oldpage,
3392 struct page *newpage)
3393{
bde05d1c 3394 struct mem_cgroup *memcg = NULL;
ab936cbc 3395 struct page_cgroup *pc;
ab936cbc 3396 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3397
3398 if (mem_cgroup_disabled())
3399 return;
3400
3401 pc = lookup_page_cgroup(oldpage);
3402 /* fix accounting on old pages */
3403 lock_page_cgroup(pc);
bde05d1c
HD
3404 if (PageCgroupUsed(pc)) {
3405 memcg = pc->mem_cgroup;
3406 mem_cgroup_charge_statistics(memcg, false, -1);
3407 ClearPageCgroupUsed(pc);
3408 }
ab936cbc
KH
3409 unlock_page_cgroup(pc);
3410
bde05d1c
HD
3411 /*
3412 * When called from shmem_replace_page(), in some cases the
3413 * oldpage has already been charged, and in some cases not.
3414 */
3415 if (!memcg)
3416 return;
ab936cbc
KH
3417 /*
3418 * Even if newpage->mapping was NULL before starting replacement,
3419 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3420 * LRU while we overwrite pc->mem_cgroup.
3421 */
ce587e65 3422 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3423}
3424
f212ad7c
DN
3425#ifdef CONFIG_DEBUG_VM
3426static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3427{
3428 struct page_cgroup *pc;
3429
3430 pc = lookup_page_cgroup(page);
cfa44946
JW
3431 /*
3432 * Can be NULL while feeding pages into the page allocator for
3433 * the first time, i.e. during boot or memory hotplug;
3434 * or when mem_cgroup_disabled().
3435 */
f212ad7c
DN
3436 if (likely(pc) && PageCgroupUsed(pc))
3437 return pc;
3438 return NULL;
3439}
3440
3441bool mem_cgroup_bad_page_check(struct page *page)
3442{
3443 if (mem_cgroup_disabled())
3444 return false;
3445
3446 return lookup_page_cgroup_used(page) != NULL;
3447}
3448
3449void mem_cgroup_print_bad_page(struct page *page)
3450{
3451 struct page_cgroup *pc;
3452
3453 pc = lookup_page_cgroup_used(page);
3454 if (pc) {
90b3feae 3455 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3456 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3457 }
3458}
3459#endif
3460
8c7c6e34
KH
3461static DEFINE_MUTEX(set_limit_mutex);
3462
d38d2a75 3463static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3464 unsigned long long val)
628f4235 3465{
81d39c20 3466 int retry_count;
3c11ecf4 3467 u64 memswlimit, memlimit;
628f4235 3468 int ret = 0;
81d39c20
KH
3469 int children = mem_cgroup_count_children(memcg);
3470 u64 curusage, oldusage;
3c11ecf4 3471 int enlarge;
81d39c20
KH
3472
3473 /*
3474 * For keeping hierarchical_reclaim simple, how long we should retry
3475 * is depends on callers. We set our retry-count to be function
3476 * of # of children which we should visit in this loop.
3477 */
3478 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3479
3480 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3481
3c11ecf4 3482 enlarge = 0;
8c7c6e34 3483 while (retry_count) {
628f4235
KH
3484 if (signal_pending(current)) {
3485 ret = -EINTR;
3486 break;
3487 }
8c7c6e34
KH
3488 /*
3489 * Rather than hide all in some function, I do this in
3490 * open coded manner. You see what this really does.
aaad153e 3491 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3492 */
3493 mutex_lock(&set_limit_mutex);
3494 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3495 if (memswlimit < val) {
3496 ret = -EINVAL;
3497 mutex_unlock(&set_limit_mutex);
628f4235
KH
3498 break;
3499 }
3c11ecf4
KH
3500
3501 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3502 if (memlimit < val)
3503 enlarge = 1;
3504
8c7c6e34 3505 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3506 if (!ret) {
3507 if (memswlimit == val)
3508 memcg->memsw_is_minimum = true;
3509 else
3510 memcg->memsw_is_minimum = false;
3511 }
8c7c6e34
KH
3512 mutex_unlock(&set_limit_mutex);
3513
3514 if (!ret)
3515 break;
3516
5660048c
JW
3517 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3518 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3519 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3520 /* Usage is reduced ? */
3521 if (curusage >= oldusage)
3522 retry_count--;
3523 else
3524 oldusage = curusage;
8c7c6e34 3525 }
3c11ecf4
KH
3526 if (!ret && enlarge)
3527 memcg_oom_recover(memcg);
14797e23 3528
8c7c6e34
KH
3529 return ret;
3530}
3531
338c8431
LZ
3532static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3533 unsigned long long val)
8c7c6e34 3534{
81d39c20 3535 int retry_count;
3c11ecf4 3536 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3537 int children = mem_cgroup_count_children(memcg);
3538 int ret = -EBUSY;
3c11ecf4 3539 int enlarge = 0;
8c7c6e34 3540
81d39c20
KH
3541 /* see mem_cgroup_resize_res_limit */
3542 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3543 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3544 while (retry_count) {
3545 if (signal_pending(current)) {
3546 ret = -EINTR;
3547 break;
3548 }
3549 /*
3550 * Rather than hide all in some function, I do this in
3551 * open coded manner. You see what this really does.
aaad153e 3552 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3553 */
3554 mutex_lock(&set_limit_mutex);
3555 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3556 if (memlimit > val) {
3557 ret = -EINVAL;
3558 mutex_unlock(&set_limit_mutex);
3559 break;
3560 }
3c11ecf4
KH
3561 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3562 if (memswlimit < val)
3563 enlarge = 1;
8c7c6e34 3564 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3565 if (!ret) {
3566 if (memlimit == val)
3567 memcg->memsw_is_minimum = true;
3568 else
3569 memcg->memsw_is_minimum = false;
3570 }
8c7c6e34
KH
3571 mutex_unlock(&set_limit_mutex);
3572
3573 if (!ret)
3574 break;
3575
5660048c
JW
3576 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3577 MEM_CGROUP_RECLAIM_NOSWAP |
3578 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3579 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3580 /* Usage is reduced ? */
8c7c6e34 3581 if (curusage >= oldusage)
628f4235 3582 retry_count--;
81d39c20
KH
3583 else
3584 oldusage = curusage;
628f4235 3585 }
3c11ecf4
KH
3586 if (!ret && enlarge)
3587 memcg_oom_recover(memcg);
628f4235
KH
3588 return ret;
3589}
3590
4e416953 3591unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3592 gfp_t gfp_mask,
3593 unsigned long *total_scanned)
4e416953
BS
3594{
3595 unsigned long nr_reclaimed = 0;
3596 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3597 unsigned long reclaimed;
3598 int loop = 0;
3599 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3600 unsigned long long excess;
0ae5e89c 3601 unsigned long nr_scanned;
4e416953
BS
3602
3603 if (order > 0)
3604 return 0;
3605
00918b6a 3606 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3607 /*
3608 * This loop can run a while, specially if mem_cgroup's continuously
3609 * keep exceeding their soft limit and putting the system under
3610 * pressure
3611 */
3612 do {
3613 if (next_mz)
3614 mz = next_mz;
3615 else
3616 mz = mem_cgroup_largest_soft_limit_node(mctz);
3617 if (!mz)
3618 break;
3619
0ae5e89c 3620 nr_scanned = 0;
d79154bb 3621 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3622 gfp_mask, &nr_scanned);
4e416953 3623 nr_reclaimed += reclaimed;
0ae5e89c 3624 *total_scanned += nr_scanned;
4e416953
BS
3625 spin_lock(&mctz->lock);
3626
3627 /*
3628 * If we failed to reclaim anything from this memory cgroup
3629 * it is time to move on to the next cgroup
3630 */
3631 next_mz = NULL;
3632 if (!reclaimed) {
3633 do {
3634 /*
3635 * Loop until we find yet another one.
3636 *
3637 * By the time we get the soft_limit lock
3638 * again, someone might have aded the
3639 * group back on the RB tree. Iterate to
3640 * make sure we get a different mem.
3641 * mem_cgroup_largest_soft_limit_node returns
3642 * NULL if no other cgroup is present on
3643 * the tree
3644 */
3645 next_mz =
3646 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3647 if (next_mz == mz)
d79154bb 3648 css_put(&next_mz->memcg->css);
39cc98f1 3649 else /* next_mz == NULL or other memcg */
4e416953
BS
3650 break;
3651 } while (1);
3652 }
d79154bb
HD
3653 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3654 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3655 /*
3656 * One school of thought says that we should not add
3657 * back the node to the tree if reclaim returns 0.
3658 * But our reclaim could return 0, simply because due
3659 * to priority we are exposing a smaller subset of
3660 * memory to reclaim from. Consider this as a longer
3661 * term TODO.
3662 */
ef8745c1 3663 /* If excess == 0, no tree ops */
d79154bb 3664 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3665 spin_unlock(&mctz->lock);
d79154bb 3666 css_put(&mz->memcg->css);
4e416953
BS
3667 loop++;
3668 /*
3669 * Could not reclaim anything and there are no more
3670 * mem cgroups to try or we seem to be looping without
3671 * reclaiming anything.
3672 */
3673 if (!nr_reclaimed &&
3674 (next_mz == NULL ||
3675 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3676 break;
3677 } while (!nr_reclaimed);
3678 if (next_mz)
d79154bb 3679 css_put(&next_mz->memcg->css);
4e416953
BS
3680 return nr_reclaimed;
3681}
3682
cc847582 3683/*
3c935d18
KH
3684 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
3685 * reclaim the pages page themselves - it just removes the page_cgroups.
3686 * Returns true if some page_cgroups were not freed, indicating that the caller
3687 * must retry this operation.
cc847582 3688 */
3c935d18 3689static bool mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3690 int node, int zid, enum lru_list lru)
cc847582 3691{
08e552c6 3692 struct mem_cgroup_per_zone *mz;
08e552c6 3693 unsigned long flags, loop;
072c56c1 3694 struct list_head *list;
925b7673
JW
3695 struct page *busy;
3696 struct zone *zone;
072c56c1 3697
08e552c6 3698 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3699 mz = mem_cgroup_zoneinfo(memcg, node, zid);
6290df54 3700 list = &mz->lruvec.lists[lru];
cc847582 3701
1eb49272 3702 loop = mz->lru_size[lru];
f817ed48
KH
3703 /* give some margin against EBUSY etc...*/
3704 loop += 256;
3705 busy = NULL;
3706 while (loop--) {
925b7673 3707 struct page_cgroup *pc;
5564e88b
JW
3708 struct page *page;
3709
08e552c6 3710 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3711 if (list_empty(list)) {
08e552c6 3712 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3713 break;
f817ed48 3714 }
925b7673
JW
3715 page = list_entry(list->prev, struct page, lru);
3716 if (busy == page) {
3717 list_move(&page->lru, list);
648bcc77 3718 busy = NULL;
08e552c6 3719 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3720 continue;
3721 }
08e552c6 3722 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3723
925b7673 3724 pc = lookup_page_cgroup(page);
5564e88b 3725
3c935d18 3726 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3727 /* found lock contention or "pc" is obsolete. */
925b7673 3728 busy = page;
f817ed48
KH
3729 cond_resched();
3730 } else
3731 busy = NULL;
cc847582 3732 }
3c935d18 3733 return !list_empty(list);
cc847582
KH
3734}
3735
3736/*
3737 * make mem_cgroup's charge to be 0 if there is no task.
3738 * This enables deleting this mem_cgroup.
3739 */
c0ff4b85 3740static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3741{
f817ed48
KH
3742 int ret;
3743 int node, zid, shrink;
3744 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3745 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3746
c0ff4b85 3747 css_get(&memcg->css);
f817ed48
KH
3748
3749 shrink = 0;
c1e862c1
KH
3750 /* should free all ? */
3751 if (free_all)
3752 goto try_to_free;
f817ed48 3753move_account:
fce66477 3754 do {
f817ed48 3755 ret = -EBUSY;
c1e862c1
KH
3756 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3757 goto out;
52d4b9ac
KH
3758 /* This is for making all *used* pages to be on LRU. */
3759 lru_add_drain_all();
c0ff4b85 3760 drain_all_stock_sync(memcg);
f817ed48 3761 ret = 0;
c0ff4b85 3762 mem_cgroup_start_move(memcg);
299b4eaa 3763 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3764 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3765 enum lru_list lru;
3766 for_each_lru(lru) {
c0ff4b85 3767 ret = mem_cgroup_force_empty_list(memcg,
f156ab93 3768 node, zid, lru);
f817ed48
KH
3769 if (ret)
3770 break;
3771 }
1ecaab2b 3772 }
f817ed48
KH
3773 if (ret)
3774 break;
3775 }
c0ff4b85
R
3776 mem_cgroup_end_move(memcg);
3777 memcg_oom_recover(memcg);
52d4b9ac 3778 cond_resched();
fce66477 3779 /* "ret" should also be checked to ensure all lists are empty. */
569530fb 3780 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
cc847582 3781out:
c0ff4b85 3782 css_put(&memcg->css);
cc847582 3783 return ret;
f817ed48
KH
3784
3785try_to_free:
c1e862c1
KH
3786 /* returns EBUSY if there is a task or if we come here twice. */
3787 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3788 ret = -EBUSY;
3789 goto out;
3790 }
c1e862c1
KH
3791 /* we call try-to-free pages for make this cgroup empty */
3792 lru_add_drain_all();
f817ed48
KH
3793 /* try to free all pages in this cgroup */
3794 shrink = 1;
569530fb 3795 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3796 int progress;
c1e862c1
KH
3797
3798 if (signal_pending(current)) {
3799 ret = -EINTR;
3800 goto out;
3801 }
c0ff4b85 3802 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3803 false);
c1e862c1 3804 if (!progress) {
f817ed48 3805 nr_retries--;
c1e862c1 3806 /* maybe some writeback is necessary */
8aa7e847 3807 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3808 }
f817ed48
KH
3809
3810 }
08e552c6 3811 lru_add_drain();
f817ed48 3812 /* try move_account...there may be some *locked* pages. */
fce66477 3813 goto move_account;
cc847582
KH
3814}
3815
6bbda35c 3816static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1
KH
3817{
3818 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3819}
3820
3821
18f59ea7
BS
3822static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3823{
3824 return mem_cgroup_from_cont(cont)->use_hierarchy;
3825}
3826
3827static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3828 u64 val)
3829{
3830 int retval = 0;
c0ff4b85 3831 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3832 struct cgroup *parent = cont->parent;
c0ff4b85 3833 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3834
3835 if (parent)
c0ff4b85 3836 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3837
3838 cgroup_lock();
567fb435
GC
3839
3840 if (memcg->use_hierarchy == val)
3841 goto out;
3842
18f59ea7 3843 /*
af901ca1 3844 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3845 * in the child subtrees. If it is unset, then the change can
3846 * occur, provided the current cgroup has no children.
3847 *
3848 * For the root cgroup, parent_mem is NULL, we allow value to be
3849 * set if there are no children.
3850 */
c0ff4b85 3851 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3852 (val == 1 || val == 0)) {
3853 if (list_empty(&cont->children))
c0ff4b85 3854 memcg->use_hierarchy = val;
18f59ea7
BS
3855 else
3856 retval = -EBUSY;
3857 } else
3858 retval = -EINVAL;
567fb435
GC
3859
3860out:
18f59ea7
BS
3861 cgroup_unlock();
3862
3863 return retval;
3864}
3865
0c3e73e8 3866
c0ff4b85 3867static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3868 enum mem_cgroup_stat_index idx)
0c3e73e8 3869{
7d74b06f 3870 struct mem_cgroup *iter;
7a159cc9 3871 long val = 0;
0c3e73e8 3872
7a159cc9 3873 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3874 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3875 val += mem_cgroup_read_stat(iter, idx);
3876
3877 if (val < 0) /* race ? */
3878 val = 0;
3879 return val;
0c3e73e8
BS
3880}
3881
c0ff4b85 3882static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3883{
7d74b06f 3884 u64 val;
104f3928 3885
c0ff4b85 3886 if (!mem_cgroup_is_root(memcg)) {
104f3928 3887 if (!swap)
65c64ce8 3888 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3889 else
65c64ce8 3890 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3891 }
3892
c0ff4b85
R
3893 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3894 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3895
7d74b06f 3896 if (swap)
bff6bb83 3897 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
3898
3899 return val << PAGE_SHIFT;
3900}
3901
af36f906
TH
3902static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3903 struct file *file, char __user *buf,
3904 size_t nbytes, loff_t *ppos)
8cdea7c0 3905{
c0ff4b85 3906 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3907 char str[64];
104f3928 3908 u64 val;
af36f906 3909 int type, name, len;
8c7c6e34
KH
3910
3911 type = MEMFILE_TYPE(cft->private);
3912 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3913
3914 if (!do_swap_account && type == _MEMSWAP)
3915 return -EOPNOTSUPP;
3916
8c7c6e34
KH
3917 switch (type) {
3918 case _MEM:
104f3928 3919 if (name == RES_USAGE)
c0ff4b85 3920 val = mem_cgroup_usage(memcg, false);
104f3928 3921 else
c0ff4b85 3922 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3923 break;
3924 case _MEMSWAP:
104f3928 3925 if (name == RES_USAGE)
c0ff4b85 3926 val = mem_cgroup_usage(memcg, true);
104f3928 3927 else
c0ff4b85 3928 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3929 break;
3930 default:
3931 BUG();
8c7c6e34 3932 }
af36f906
TH
3933
3934 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3935 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3936}
628f4235
KH
3937/*
3938 * The user of this function is...
3939 * RES_LIMIT.
3940 */
856c13aa
PM
3941static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3942 const char *buffer)
8cdea7c0 3943{
628f4235 3944 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3945 int type, name;
628f4235
KH
3946 unsigned long long val;
3947 int ret;
3948
8c7c6e34
KH
3949 type = MEMFILE_TYPE(cft->private);
3950 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3951
3952 if (!do_swap_account && type == _MEMSWAP)
3953 return -EOPNOTSUPP;
3954
8c7c6e34 3955 switch (name) {
628f4235 3956 case RES_LIMIT:
4b3bde4c
BS
3957 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3958 ret = -EINVAL;
3959 break;
3960 }
628f4235
KH
3961 /* This function does all necessary parse...reuse it */
3962 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3963 if (ret)
3964 break;
3965 if (type == _MEM)
628f4235 3966 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3967 else
3968 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3969 break;
296c81d8
BS
3970 case RES_SOFT_LIMIT:
3971 ret = res_counter_memparse_write_strategy(buffer, &val);
3972 if (ret)
3973 break;
3974 /*
3975 * For memsw, soft limits are hard to implement in terms
3976 * of semantics, for now, we support soft limits for
3977 * control without swap
3978 */
3979 if (type == _MEM)
3980 ret = res_counter_set_soft_limit(&memcg->res, val);
3981 else
3982 ret = -EINVAL;
3983 break;
628f4235
KH
3984 default:
3985 ret = -EINVAL; /* should be BUG() ? */
3986 break;
3987 }
3988 return ret;
8cdea7c0
BS
3989}
3990
fee7b548
KH
3991static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3992 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3993{
3994 struct cgroup *cgroup;
3995 unsigned long long min_limit, min_memsw_limit, tmp;
3996
3997 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3998 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3999 cgroup = memcg->css.cgroup;
4000 if (!memcg->use_hierarchy)
4001 goto out;
4002
4003 while (cgroup->parent) {
4004 cgroup = cgroup->parent;
4005 memcg = mem_cgroup_from_cont(cgroup);
4006 if (!memcg->use_hierarchy)
4007 break;
4008 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4009 min_limit = min(min_limit, tmp);
4010 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4011 min_memsw_limit = min(min_memsw_limit, tmp);
4012 }
4013out:
4014 *mem_limit = min_limit;
4015 *memsw_limit = min_memsw_limit;
fee7b548
KH
4016}
4017
29f2a4da 4018static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4019{
af36f906 4020 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 4021 int type, name;
c84872e1 4022
8c7c6e34
KH
4023 type = MEMFILE_TYPE(event);
4024 name = MEMFILE_ATTR(event);
af36f906
TH
4025
4026 if (!do_swap_account && type == _MEMSWAP)
4027 return -EOPNOTSUPP;
4028
8c7c6e34 4029 switch (name) {
29f2a4da 4030 case RES_MAX_USAGE:
8c7c6e34 4031 if (type == _MEM)
c0ff4b85 4032 res_counter_reset_max(&memcg->res);
8c7c6e34 4033 else
c0ff4b85 4034 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4035 break;
4036 case RES_FAILCNT:
8c7c6e34 4037 if (type == _MEM)
c0ff4b85 4038 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4039 else
c0ff4b85 4040 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4041 break;
4042 }
f64c3f54 4043
85cc59db 4044 return 0;
c84872e1
PE
4045}
4046
7dc74be0
DN
4047static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4048 struct cftype *cft)
4049{
4050 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4051}
4052
02491447 4053#ifdef CONFIG_MMU
7dc74be0
DN
4054static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4055 struct cftype *cft, u64 val)
4056{
c0ff4b85 4057 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4058
4059 if (val >= (1 << NR_MOVE_TYPE))
4060 return -EINVAL;
4061 /*
4062 * We check this value several times in both in can_attach() and
4063 * attach(), so we need cgroup lock to prevent this value from being
4064 * inconsistent.
4065 */
4066 cgroup_lock();
c0ff4b85 4067 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4068 cgroup_unlock();
4069
4070 return 0;
4071}
02491447
DN
4072#else
4073static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4074 struct cftype *cft, u64 val)
4075{
4076 return -ENOSYS;
4077}
4078#endif
7dc74be0 4079
406eb0c9 4080#ifdef CONFIG_NUMA
ab215884 4081static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 4082 struct seq_file *m)
406eb0c9
YH
4083{
4084 int nid;
4085 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4086 unsigned long node_nr;
d79154bb 4087 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4088
d79154bb 4089 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4090 seq_printf(m, "total=%lu", total_nr);
4091 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4092 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4093 seq_printf(m, " N%d=%lu", nid, node_nr);
4094 }
4095 seq_putc(m, '\n');
4096
d79154bb 4097 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4098 seq_printf(m, "file=%lu", file_nr);
4099 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4100 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4101 LRU_ALL_FILE);
406eb0c9
YH
4102 seq_printf(m, " N%d=%lu", nid, node_nr);
4103 }
4104 seq_putc(m, '\n');
4105
d79154bb 4106 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4107 seq_printf(m, "anon=%lu", anon_nr);
4108 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4109 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4110 LRU_ALL_ANON);
406eb0c9
YH
4111 seq_printf(m, " N%d=%lu", nid, node_nr);
4112 }
4113 seq_putc(m, '\n');
4114
d79154bb 4115 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4116 seq_printf(m, "unevictable=%lu", unevictable_nr);
4117 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4118 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4119 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4120 seq_printf(m, " N%d=%lu", nid, node_nr);
4121 }
4122 seq_putc(m, '\n');
4123 return 0;
4124}
4125#endif /* CONFIG_NUMA */
4126
af7c4b0e
JW
4127static const char * const mem_cgroup_lru_names[] = {
4128 "inactive_anon",
4129 "active_anon",
4130 "inactive_file",
4131 "active_file",
4132 "unevictable",
4133};
4134
4135static inline void mem_cgroup_lru_names_not_uptodate(void)
4136{
4137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4138}
4139
ab215884 4140static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 4141 struct seq_file *m)
d2ceb9b7 4142{
d79154bb 4143 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
4144 struct mem_cgroup *mi;
4145 unsigned int i;
406eb0c9 4146
af7c4b0e 4147 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4148 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4149 continue;
af7c4b0e
JW
4150 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4151 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4152 }
7b854121 4153
af7c4b0e
JW
4154 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4155 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4156 mem_cgroup_read_events(memcg, i));
4157
4158 for (i = 0; i < NR_LRU_LISTS; i++)
4159 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4160 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4161
14067bb3 4162 /* Hierarchical information */
fee7b548
KH
4163 {
4164 unsigned long long limit, memsw_limit;
d79154bb 4165 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4166 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4167 if (do_swap_account)
78ccf5b5
JW
4168 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4169 memsw_limit);
fee7b548 4170 }
7f016ee8 4171
af7c4b0e
JW
4172 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4173 long long val = 0;
4174
bff6bb83 4175 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4176 continue;
af7c4b0e
JW
4177 for_each_mem_cgroup_tree(mi, memcg)
4178 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4179 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4180 }
4181
4182 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4183 unsigned long long val = 0;
4184
4185 for_each_mem_cgroup_tree(mi, memcg)
4186 val += mem_cgroup_read_events(mi, i);
4187 seq_printf(m, "total_%s %llu\n",
4188 mem_cgroup_events_names[i], val);
4189 }
4190
4191 for (i = 0; i < NR_LRU_LISTS; i++) {
4192 unsigned long long val = 0;
4193
4194 for_each_mem_cgroup_tree(mi, memcg)
4195 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4196 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4197 }
14067bb3 4198
7f016ee8 4199#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4200 {
4201 int nid, zid;
4202 struct mem_cgroup_per_zone *mz;
89abfab1 4203 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4204 unsigned long recent_rotated[2] = {0, 0};
4205 unsigned long recent_scanned[2] = {0, 0};
4206
4207 for_each_online_node(nid)
4208 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4209 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4210 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4211
89abfab1
HD
4212 recent_rotated[0] += rstat->recent_rotated[0];
4213 recent_rotated[1] += rstat->recent_rotated[1];
4214 recent_scanned[0] += rstat->recent_scanned[0];
4215 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4216 }
78ccf5b5
JW
4217 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4218 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4219 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4220 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4221 }
4222#endif
4223
d2ceb9b7
KH
4224 return 0;
4225}
4226
a7885eb8
KM
4227static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4228{
4229 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4230
1f4c025b 4231 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4232}
4233
4234static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4235 u64 val)
4236{
4237 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4238 struct mem_cgroup *parent;
068b38c1 4239
a7885eb8
KM
4240 if (val > 100)
4241 return -EINVAL;
4242
4243 if (cgrp->parent == NULL)
4244 return -EINVAL;
4245
4246 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4247
4248 cgroup_lock();
4249
a7885eb8
KM
4250 /* If under hierarchy, only empty-root can set this value */
4251 if ((parent->use_hierarchy) ||
068b38c1
LZ
4252 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4253 cgroup_unlock();
a7885eb8 4254 return -EINVAL;
068b38c1 4255 }
a7885eb8 4256
a7885eb8 4257 memcg->swappiness = val;
a7885eb8 4258
068b38c1
LZ
4259 cgroup_unlock();
4260
a7885eb8
KM
4261 return 0;
4262}
4263
2e72b634
KS
4264static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4265{
4266 struct mem_cgroup_threshold_ary *t;
4267 u64 usage;
4268 int i;
4269
4270 rcu_read_lock();
4271 if (!swap)
2c488db2 4272 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4273 else
2c488db2 4274 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4275
4276 if (!t)
4277 goto unlock;
4278
4279 usage = mem_cgroup_usage(memcg, swap);
4280
4281 /*
748dad36 4282 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4283 * If it's not true, a threshold was crossed after last
4284 * call of __mem_cgroup_threshold().
4285 */
5407a562 4286 i = t->current_threshold;
2e72b634
KS
4287
4288 /*
4289 * Iterate backward over array of thresholds starting from
4290 * current_threshold and check if a threshold is crossed.
4291 * If none of thresholds below usage is crossed, we read
4292 * only one element of the array here.
4293 */
4294 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4295 eventfd_signal(t->entries[i].eventfd, 1);
4296
4297 /* i = current_threshold + 1 */
4298 i++;
4299
4300 /*
4301 * Iterate forward over array of thresholds starting from
4302 * current_threshold+1 and check if a threshold is crossed.
4303 * If none of thresholds above usage is crossed, we read
4304 * only one element of the array here.
4305 */
4306 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4307 eventfd_signal(t->entries[i].eventfd, 1);
4308
4309 /* Update current_threshold */
5407a562 4310 t->current_threshold = i - 1;
2e72b634
KS
4311unlock:
4312 rcu_read_unlock();
4313}
4314
4315static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4316{
ad4ca5f4
KS
4317 while (memcg) {
4318 __mem_cgroup_threshold(memcg, false);
4319 if (do_swap_account)
4320 __mem_cgroup_threshold(memcg, true);
4321
4322 memcg = parent_mem_cgroup(memcg);
4323 }
2e72b634
KS
4324}
4325
4326static int compare_thresholds(const void *a, const void *b)
4327{
4328 const struct mem_cgroup_threshold *_a = a;
4329 const struct mem_cgroup_threshold *_b = b;
4330
4331 return _a->threshold - _b->threshold;
4332}
4333
c0ff4b85 4334static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4335{
4336 struct mem_cgroup_eventfd_list *ev;
4337
c0ff4b85 4338 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4339 eventfd_signal(ev->eventfd, 1);
4340 return 0;
4341}
4342
c0ff4b85 4343static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4344{
7d74b06f
KH
4345 struct mem_cgroup *iter;
4346
c0ff4b85 4347 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4348 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4349}
4350
4351static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4352 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4353{
4354 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4355 struct mem_cgroup_thresholds *thresholds;
4356 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4357 int type = MEMFILE_TYPE(cft->private);
4358 u64 threshold, usage;
2c488db2 4359 int i, size, ret;
2e72b634
KS
4360
4361 ret = res_counter_memparse_write_strategy(args, &threshold);
4362 if (ret)
4363 return ret;
4364
4365 mutex_lock(&memcg->thresholds_lock);
2c488db2 4366
2e72b634 4367 if (type == _MEM)
2c488db2 4368 thresholds = &memcg->thresholds;
2e72b634 4369 else if (type == _MEMSWAP)
2c488db2 4370 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4371 else
4372 BUG();
4373
4374 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4375
4376 /* Check if a threshold crossed before adding a new one */
2c488db2 4377 if (thresholds->primary)
2e72b634
KS
4378 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4379
2c488db2 4380 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4381
4382 /* Allocate memory for new array of thresholds */
2c488db2 4383 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4384 GFP_KERNEL);
2c488db2 4385 if (!new) {
2e72b634
KS
4386 ret = -ENOMEM;
4387 goto unlock;
4388 }
2c488db2 4389 new->size = size;
2e72b634
KS
4390
4391 /* Copy thresholds (if any) to new array */
2c488db2
KS
4392 if (thresholds->primary) {
4393 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4394 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4395 }
4396
2e72b634 4397 /* Add new threshold */
2c488db2
KS
4398 new->entries[size - 1].eventfd = eventfd;
4399 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4400
4401 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4402 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4403 compare_thresholds, NULL);
4404
4405 /* Find current threshold */
2c488db2 4406 new->current_threshold = -1;
2e72b634 4407 for (i = 0; i < size; i++) {
748dad36 4408 if (new->entries[i].threshold <= usage) {
2e72b634 4409 /*
2c488db2
KS
4410 * new->current_threshold will not be used until
4411 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4412 * it here.
4413 */
2c488db2 4414 ++new->current_threshold;
748dad36
SZ
4415 } else
4416 break;
2e72b634
KS
4417 }
4418
2c488db2
KS
4419 /* Free old spare buffer and save old primary buffer as spare */
4420 kfree(thresholds->spare);
4421 thresholds->spare = thresholds->primary;
4422
4423 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4424
907860ed 4425 /* To be sure that nobody uses thresholds */
2e72b634
KS
4426 synchronize_rcu();
4427
2e72b634
KS
4428unlock:
4429 mutex_unlock(&memcg->thresholds_lock);
4430
4431 return ret;
4432}
4433
907860ed 4434static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4435 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4436{
4437 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4438 struct mem_cgroup_thresholds *thresholds;
4439 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4440 int type = MEMFILE_TYPE(cft->private);
4441 u64 usage;
2c488db2 4442 int i, j, size;
2e72b634
KS
4443
4444 mutex_lock(&memcg->thresholds_lock);
4445 if (type == _MEM)
2c488db2 4446 thresholds = &memcg->thresholds;
2e72b634 4447 else if (type == _MEMSWAP)
2c488db2 4448 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4449 else
4450 BUG();
4451
371528ca
AV
4452 if (!thresholds->primary)
4453 goto unlock;
4454
2e72b634
KS
4455 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4456
4457 /* Check if a threshold crossed before removing */
4458 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4459
4460 /* Calculate new number of threshold */
2c488db2
KS
4461 size = 0;
4462 for (i = 0; i < thresholds->primary->size; i++) {
4463 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4464 size++;
4465 }
4466
2c488db2 4467 new = thresholds->spare;
907860ed 4468
2e72b634
KS
4469 /* Set thresholds array to NULL if we don't have thresholds */
4470 if (!size) {
2c488db2
KS
4471 kfree(new);
4472 new = NULL;
907860ed 4473 goto swap_buffers;
2e72b634
KS
4474 }
4475
2c488db2 4476 new->size = size;
2e72b634
KS
4477
4478 /* Copy thresholds and find current threshold */
2c488db2
KS
4479 new->current_threshold = -1;
4480 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4481 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4482 continue;
4483
2c488db2 4484 new->entries[j] = thresholds->primary->entries[i];
748dad36 4485 if (new->entries[j].threshold <= usage) {
2e72b634 4486 /*
2c488db2 4487 * new->current_threshold will not be used
2e72b634
KS
4488 * until rcu_assign_pointer(), so it's safe to increment
4489 * it here.
4490 */
2c488db2 4491 ++new->current_threshold;
2e72b634
KS
4492 }
4493 j++;
4494 }
4495
907860ed 4496swap_buffers:
2c488db2
KS
4497 /* Swap primary and spare array */
4498 thresholds->spare = thresholds->primary;
8c757763
SZ
4499 /* If all events are unregistered, free the spare array */
4500 if (!new) {
4501 kfree(thresholds->spare);
4502 thresholds->spare = NULL;
4503 }
4504
2c488db2 4505 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4506
907860ed 4507 /* To be sure that nobody uses thresholds */
2e72b634 4508 synchronize_rcu();
371528ca 4509unlock:
2e72b634 4510 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4511}
c1e862c1 4512
9490ff27
KH
4513static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4514 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4515{
4516 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4517 struct mem_cgroup_eventfd_list *event;
4518 int type = MEMFILE_TYPE(cft->private);
4519
4520 BUG_ON(type != _OOM_TYPE);
4521 event = kmalloc(sizeof(*event), GFP_KERNEL);
4522 if (!event)
4523 return -ENOMEM;
4524
1af8efe9 4525 spin_lock(&memcg_oom_lock);
9490ff27
KH
4526
4527 event->eventfd = eventfd;
4528 list_add(&event->list, &memcg->oom_notify);
4529
4530 /* already in OOM ? */
79dfdacc 4531 if (atomic_read(&memcg->under_oom))
9490ff27 4532 eventfd_signal(eventfd, 1);
1af8efe9 4533 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4534
4535 return 0;
4536}
4537
907860ed 4538static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4539 struct cftype *cft, struct eventfd_ctx *eventfd)
4540{
c0ff4b85 4541 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4542 struct mem_cgroup_eventfd_list *ev, *tmp;
4543 int type = MEMFILE_TYPE(cft->private);
4544
4545 BUG_ON(type != _OOM_TYPE);
4546
1af8efe9 4547 spin_lock(&memcg_oom_lock);
9490ff27 4548
c0ff4b85 4549 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4550 if (ev->eventfd == eventfd) {
4551 list_del(&ev->list);
4552 kfree(ev);
4553 }
4554 }
4555
1af8efe9 4556 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4557}
4558
3c11ecf4
KH
4559static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4560 struct cftype *cft, struct cgroup_map_cb *cb)
4561{
c0ff4b85 4562 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4563
c0ff4b85 4564 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4565
c0ff4b85 4566 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4567 cb->fill(cb, "under_oom", 1);
4568 else
4569 cb->fill(cb, "under_oom", 0);
4570 return 0;
4571}
4572
3c11ecf4
KH
4573static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4574 struct cftype *cft, u64 val)
4575{
c0ff4b85 4576 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4577 struct mem_cgroup *parent;
4578
4579 /* cannot set to root cgroup and only 0 and 1 are allowed */
4580 if (!cgrp->parent || !((val == 0) || (val == 1)))
4581 return -EINVAL;
4582
4583 parent = mem_cgroup_from_cont(cgrp->parent);
4584
4585 cgroup_lock();
4586 /* oom-kill-disable is a flag for subhierarchy. */
4587 if ((parent->use_hierarchy) ||
c0ff4b85 4588 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4589 cgroup_unlock();
4590 return -EINVAL;
4591 }
c0ff4b85 4592 memcg->oom_kill_disable = val;
4d845ebf 4593 if (!val)
c0ff4b85 4594 memcg_oom_recover(memcg);
3c11ecf4
KH
4595 cgroup_unlock();
4596 return 0;
4597}
4598
c255a458 4599#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4600static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4601{
1d62e436 4602 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4603};
4604
1d62e436 4605static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4606{
1d62e436 4607 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4608}
e5671dfa 4609#else
cbe128e3 4610static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4611{
4612 return 0;
4613}
d1a4c0b3 4614
1d62e436 4615static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4616{
4617}
e5671dfa
GC
4618#endif
4619
8cdea7c0
BS
4620static struct cftype mem_cgroup_files[] = {
4621 {
0eea1030 4622 .name = "usage_in_bytes",
8c7c6e34 4623 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4624 .read = mem_cgroup_read,
9490ff27
KH
4625 .register_event = mem_cgroup_usage_register_event,
4626 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4627 },
c84872e1
PE
4628 {
4629 .name = "max_usage_in_bytes",
8c7c6e34 4630 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4631 .trigger = mem_cgroup_reset,
af36f906 4632 .read = mem_cgroup_read,
c84872e1 4633 },
8cdea7c0 4634 {
0eea1030 4635 .name = "limit_in_bytes",
8c7c6e34 4636 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4637 .write_string = mem_cgroup_write,
af36f906 4638 .read = mem_cgroup_read,
8cdea7c0 4639 },
296c81d8
BS
4640 {
4641 .name = "soft_limit_in_bytes",
4642 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4643 .write_string = mem_cgroup_write,
af36f906 4644 .read = mem_cgroup_read,
296c81d8 4645 },
8cdea7c0
BS
4646 {
4647 .name = "failcnt",
8c7c6e34 4648 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4649 .trigger = mem_cgroup_reset,
af36f906 4650 .read = mem_cgroup_read,
8cdea7c0 4651 },
d2ceb9b7
KH
4652 {
4653 .name = "stat",
ab215884 4654 .read_seq_string = memcg_stat_show,
d2ceb9b7 4655 },
c1e862c1
KH
4656 {
4657 .name = "force_empty",
4658 .trigger = mem_cgroup_force_empty_write,
4659 },
18f59ea7
BS
4660 {
4661 .name = "use_hierarchy",
4662 .write_u64 = mem_cgroup_hierarchy_write,
4663 .read_u64 = mem_cgroup_hierarchy_read,
4664 },
a7885eb8
KM
4665 {
4666 .name = "swappiness",
4667 .read_u64 = mem_cgroup_swappiness_read,
4668 .write_u64 = mem_cgroup_swappiness_write,
4669 },
7dc74be0
DN
4670 {
4671 .name = "move_charge_at_immigrate",
4672 .read_u64 = mem_cgroup_move_charge_read,
4673 .write_u64 = mem_cgroup_move_charge_write,
4674 },
9490ff27
KH
4675 {
4676 .name = "oom_control",
3c11ecf4
KH
4677 .read_map = mem_cgroup_oom_control_read,
4678 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4679 .register_event = mem_cgroup_oom_register_event,
4680 .unregister_event = mem_cgroup_oom_unregister_event,
4681 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4682 },
406eb0c9
YH
4683#ifdef CONFIG_NUMA
4684 {
4685 .name = "numa_stat",
ab215884 4686 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
4687 },
4688#endif
c255a458 4689#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4690 {
4691 .name = "memsw.usage_in_bytes",
4692 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4693 .read = mem_cgroup_read,
9490ff27
KH
4694 .register_event = mem_cgroup_usage_register_event,
4695 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4696 },
4697 {
4698 .name = "memsw.max_usage_in_bytes",
4699 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4700 .trigger = mem_cgroup_reset,
af36f906 4701 .read = mem_cgroup_read,
8c7c6e34
KH
4702 },
4703 {
4704 .name = "memsw.limit_in_bytes",
4705 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4706 .write_string = mem_cgroup_write,
af36f906 4707 .read = mem_cgroup_read,
8c7c6e34
KH
4708 },
4709 {
4710 .name = "memsw.failcnt",
4711 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4712 .trigger = mem_cgroup_reset,
af36f906 4713 .read = mem_cgroup_read,
8c7c6e34 4714 },
8c7c6e34 4715#endif
6bc10349 4716 { }, /* terminate */
af36f906 4717};
8c7c6e34 4718
c0ff4b85 4719static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4720{
4721 struct mem_cgroup_per_node *pn;
1ecaab2b 4722 struct mem_cgroup_per_zone *mz;
41e3355d 4723 int zone, tmp = node;
1ecaab2b
KH
4724 /*
4725 * This routine is called against possible nodes.
4726 * But it's BUG to call kmalloc() against offline node.
4727 *
4728 * TODO: this routine can waste much memory for nodes which will
4729 * never be onlined. It's better to use memory hotplug callback
4730 * function.
4731 */
41e3355d
KH
4732 if (!node_state(node, N_NORMAL_MEMORY))
4733 tmp = -1;
17295c88 4734 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4735 if (!pn)
4736 return 1;
1ecaab2b 4737
1ecaab2b
KH
4738 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4739 mz = &pn->zoneinfo[zone];
7f5e86c2 4740 lruvec_init(&mz->lruvec, &NODE_DATA(node)->node_zones[zone]);
f64c3f54 4741 mz->usage_in_excess = 0;
4e416953 4742 mz->on_tree = false;
d79154bb 4743 mz->memcg = memcg;
1ecaab2b 4744 }
0a619e58 4745 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4746 return 0;
4747}
4748
c0ff4b85 4749static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4750{
c0ff4b85 4751 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4752}
4753
33327948
KH
4754static struct mem_cgroup *mem_cgroup_alloc(void)
4755{
d79154bb 4756 struct mem_cgroup *memcg;
c62b1a3b 4757 int size = sizeof(struct mem_cgroup);
33327948 4758
c62b1a3b 4759 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4760 if (size < PAGE_SIZE)
d79154bb 4761 memcg = kzalloc(size, GFP_KERNEL);
33327948 4762 else
d79154bb 4763 memcg = vzalloc(size);
33327948 4764
d79154bb 4765 if (!memcg)
e7bbcdf3
DC
4766 return NULL;
4767
d79154bb
HD
4768 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4769 if (!memcg->stat)
d2e61b8d 4770 goto out_free;
d79154bb
HD
4771 spin_lock_init(&memcg->pcp_counter_lock);
4772 return memcg;
d2e61b8d
DC
4773
4774out_free:
4775 if (size < PAGE_SIZE)
d79154bb 4776 kfree(memcg);
d2e61b8d 4777 else
d79154bb 4778 vfree(memcg);
d2e61b8d 4779 return NULL;
33327948
KH
4780}
4781
59927fb9 4782/*
3afe36b1 4783 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
59927fb9
HD
4784 * but in process context. The work_freeing structure is overlaid
4785 * on the rcu_freeing structure, which itself is overlaid on memsw.
4786 */
3afe36b1 4787static void free_work(struct work_struct *work)
59927fb9
HD
4788{
4789 struct mem_cgroup *memcg;
3afe36b1 4790 int size = sizeof(struct mem_cgroup);
59927fb9
HD
4791
4792 memcg = container_of(work, struct mem_cgroup, work_freeing);
3f134619
GC
4793 /*
4794 * We need to make sure that (at least for now), the jump label
4795 * destruction code runs outside of the cgroup lock. This is because
4796 * get_online_cpus(), which is called from the static_branch update,
4797 * can't be called inside the cgroup_lock. cpusets are the ones
4798 * enforcing this dependency, so if they ever change, we might as well.
4799 *
4800 * schedule_work() will guarantee this happens. Be careful if you need
4801 * to move this code around, and make sure it is outside
4802 * the cgroup_lock.
4803 */
4804 disarm_sock_keys(memcg);
3afe36b1
GC
4805 if (size < PAGE_SIZE)
4806 kfree(memcg);
4807 else
4808 vfree(memcg);
59927fb9 4809}
3afe36b1
GC
4810
4811static void free_rcu(struct rcu_head *rcu_head)
59927fb9
HD
4812{
4813 struct mem_cgroup *memcg;
4814
4815 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
3afe36b1 4816 INIT_WORK(&memcg->work_freeing, free_work);
59927fb9
HD
4817 schedule_work(&memcg->work_freeing);
4818}
4819
8c7c6e34
KH
4820/*
4821 * At destroying mem_cgroup, references from swap_cgroup can remain.
4822 * (scanning all at force_empty is too costly...)
4823 *
4824 * Instead of clearing all references at force_empty, we remember
4825 * the number of reference from swap_cgroup and free mem_cgroup when
4826 * it goes down to 0.
4827 *
8c7c6e34
KH
4828 * Removal of cgroup itself succeeds regardless of refs from swap.
4829 */
4830
c0ff4b85 4831static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4832{
08e552c6
KH
4833 int node;
4834
c0ff4b85
R
4835 mem_cgroup_remove_from_trees(memcg);
4836 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4837
3ed28fa1 4838 for_each_node(node)
c0ff4b85 4839 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4840
c0ff4b85 4841 free_percpu(memcg->stat);
3afe36b1 4842 call_rcu(&memcg->rcu_freeing, free_rcu);
33327948
KH
4843}
4844
c0ff4b85 4845static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4846{
c0ff4b85 4847 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4848}
4849
c0ff4b85 4850static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4851{
c0ff4b85
R
4852 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4853 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4854 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4855 if (parent)
4856 mem_cgroup_put(parent);
4857 }
8c7c6e34
KH
4858}
4859
c0ff4b85 4860static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4861{
c0ff4b85 4862 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4863}
4864
7bcc1bb1
DN
4865/*
4866 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4867 */
e1aab161 4868struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4869{
c0ff4b85 4870 if (!memcg->res.parent)
7bcc1bb1 4871 return NULL;
c0ff4b85 4872 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4873}
e1aab161 4874EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4875
c255a458 4876#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
4877static void __init enable_swap_cgroup(void)
4878{
f8d66542 4879 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4880 do_swap_account = 1;
4881}
4882#else
4883static void __init enable_swap_cgroup(void)
4884{
4885}
4886#endif
4887
f64c3f54
BS
4888static int mem_cgroup_soft_limit_tree_init(void)
4889{
4890 struct mem_cgroup_tree_per_node *rtpn;
4891 struct mem_cgroup_tree_per_zone *rtpz;
4892 int tmp, node, zone;
4893
3ed28fa1 4894 for_each_node(node) {
f64c3f54
BS
4895 tmp = node;
4896 if (!node_state(node, N_NORMAL_MEMORY))
4897 tmp = -1;
4898 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4899 if (!rtpn)
c3cecc68 4900 goto err_cleanup;
f64c3f54
BS
4901
4902 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4903
4904 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4905 rtpz = &rtpn->rb_tree_per_zone[zone];
4906 rtpz->rb_root = RB_ROOT;
4907 spin_lock_init(&rtpz->lock);
4908 }
4909 }
4910 return 0;
c3cecc68
MH
4911
4912err_cleanup:
3ed28fa1 4913 for_each_node(node) {
c3cecc68
MH
4914 if (!soft_limit_tree.rb_tree_per_node[node])
4915 break;
4916 kfree(soft_limit_tree.rb_tree_per_node[node]);
4917 soft_limit_tree.rb_tree_per_node[node] = NULL;
4918 }
4919 return 1;
4920
f64c3f54
BS
4921}
4922
0eb253e2 4923static struct cgroup_subsys_state * __ref
761b3ef5 4924mem_cgroup_create(struct cgroup *cont)
8cdea7c0 4925{
c0ff4b85 4926 struct mem_cgroup *memcg, *parent;
04046e1a 4927 long error = -ENOMEM;
6d12e2d8 4928 int node;
8cdea7c0 4929
c0ff4b85
R
4930 memcg = mem_cgroup_alloc();
4931 if (!memcg)
04046e1a 4932 return ERR_PTR(error);
78fb7466 4933
3ed28fa1 4934 for_each_node(node)
c0ff4b85 4935 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4936 goto free_out;
f64c3f54 4937
c077719b 4938 /* root ? */
28dbc4b6 4939 if (cont->parent == NULL) {
cdec2e42 4940 int cpu;
c077719b 4941 enable_swap_cgroup();
28dbc4b6 4942 parent = NULL;
f64c3f54
BS
4943 if (mem_cgroup_soft_limit_tree_init())
4944 goto free_out;
a41c58a6 4945 root_mem_cgroup = memcg;
cdec2e42
KH
4946 for_each_possible_cpu(cpu) {
4947 struct memcg_stock_pcp *stock =
4948 &per_cpu(memcg_stock, cpu);
4949 INIT_WORK(&stock->work, drain_local_stock);
4950 }
711d3d2c 4951 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4952 } else {
28dbc4b6 4953 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4954 memcg->use_hierarchy = parent->use_hierarchy;
4955 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4956 }
28dbc4b6 4957
18f59ea7 4958 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4959 res_counter_init(&memcg->res, &parent->res);
4960 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4961 /*
4962 * We increment refcnt of the parent to ensure that we can
4963 * safely access it on res_counter_charge/uncharge.
4964 * This refcnt will be decremented when freeing this
4965 * mem_cgroup(see mem_cgroup_put).
4966 */
4967 mem_cgroup_get(parent);
18f59ea7 4968 } else {
c0ff4b85
R
4969 res_counter_init(&memcg->res, NULL);
4970 res_counter_init(&memcg->memsw, NULL);
8c7f6edb
TH
4971 /*
4972 * Deeper hierachy with use_hierarchy == false doesn't make
4973 * much sense so let cgroup subsystem know about this
4974 * unfortunate state in our controller.
4975 */
4976 if (parent && parent != root_mem_cgroup)
4977 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 4978 }
c0ff4b85
R
4979 memcg->last_scanned_node = MAX_NUMNODES;
4980 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 4981
a7885eb8 4982 if (parent)
c0ff4b85
R
4983 memcg->swappiness = mem_cgroup_swappiness(parent);
4984 atomic_set(&memcg->refcnt, 1);
4985 memcg->move_charge_at_immigrate = 0;
4986 mutex_init(&memcg->thresholds_lock);
312734c0 4987 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
4988
4989 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
4990 if (error) {
4991 /*
4992 * We call put now because our (and parent's) refcnts
4993 * are already in place. mem_cgroup_put() will internally
4994 * call __mem_cgroup_free, so return directly
4995 */
4996 mem_cgroup_put(memcg);
4997 return ERR_PTR(error);
4998 }
c0ff4b85 4999 return &memcg->css;
6d12e2d8 5000free_out:
c0ff4b85 5001 __mem_cgroup_free(memcg);
04046e1a 5002 return ERR_PTR(error);
8cdea7c0
BS
5003}
5004
761b3ef5 5005static int mem_cgroup_pre_destroy(struct cgroup *cont)
df878fb0 5006{
c0ff4b85 5007 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5008
c0ff4b85 5009 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5010}
5011
761b3ef5 5012static void mem_cgroup_destroy(struct cgroup *cont)
8cdea7c0 5013{
c0ff4b85 5014 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5015
1d62e436 5016 kmem_cgroup_destroy(memcg);
d1a4c0b3 5017
c0ff4b85 5018 mem_cgroup_put(memcg);
8cdea7c0
BS
5019}
5020
02491447 5021#ifdef CONFIG_MMU
7dc74be0 5022/* Handlers for move charge at task migration. */
854ffa8d
DN
5023#define PRECHARGE_COUNT_AT_ONCE 256
5024static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5025{
854ffa8d
DN
5026 int ret = 0;
5027 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5028 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5029
c0ff4b85 5030 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5031 mc.precharge += count;
5032 /* we don't need css_get for root */
5033 return ret;
5034 }
5035 /* try to charge at once */
5036 if (count > 1) {
5037 struct res_counter *dummy;
5038 /*
c0ff4b85 5039 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5040 * by cgroup_lock_live_cgroup() that it is not removed and we
5041 * are still under the same cgroup_mutex. So we can postpone
5042 * css_get().
5043 */
c0ff4b85 5044 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5045 goto one_by_one;
c0ff4b85 5046 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5047 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5048 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5049 goto one_by_one;
5050 }
5051 mc.precharge += count;
854ffa8d
DN
5052 return ret;
5053 }
5054one_by_one:
5055 /* fall back to one by one charge */
5056 while (count--) {
5057 if (signal_pending(current)) {
5058 ret = -EINTR;
5059 break;
5060 }
5061 if (!batch_count--) {
5062 batch_count = PRECHARGE_COUNT_AT_ONCE;
5063 cond_resched();
5064 }
c0ff4b85
R
5065 ret = __mem_cgroup_try_charge(NULL,
5066 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5067 if (ret)
854ffa8d 5068 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5069 return ret;
854ffa8d
DN
5070 mc.precharge++;
5071 }
4ffef5fe
DN
5072 return ret;
5073}
5074
5075/**
8d32ff84 5076 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5077 * @vma: the vma the pte to be checked belongs
5078 * @addr: the address corresponding to the pte to be checked
5079 * @ptent: the pte to be checked
02491447 5080 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5081 *
5082 * Returns
5083 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5084 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5085 * move charge. if @target is not NULL, the page is stored in target->page
5086 * with extra refcnt got(Callers should handle it).
02491447
DN
5087 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5088 * target for charge migration. if @target is not NULL, the entry is stored
5089 * in target->ent.
4ffef5fe
DN
5090 *
5091 * Called with pte lock held.
5092 */
4ffef5fe
DN
5093union mc_target {
5094 struct page *page;
02491447 5095 swp_entry_t ent;
4ffef5fe
DN
5096};
5097
4ffef5fe 5098enum mc_target_type {
8d32ff84 5099 MC_TARGET_NONE = 0,
4ffef5fe 5100 MC_TARGET_PAGE,
02491447 5101 MC_TARGET_SWAP,
4ffef5fe
DN
5102};
5103
90254a65
DN
5104static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5105 unsigned long addr, pte_t ptent)
4ffef5fe 5106{
90254a65 5107 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5108
90254a65
DN
5109 if (!page || !page_mapped(page))
5110 return NULL;
5111 if (PageAnon(page)) {
5112 /* we don't move shared anon */
4b91355e 5113 if (!move_anon())
90254a65 5114 return NULL;
87946a72
DN
5115 } else if (!move_file())
5116 /* we ignore mapcount for file pages */
90254a65
DN
5117 return NULL;
5118 if (!get_page_unless_zero(page))
5119 return NULL;
5120
5121 return page;
5122}
5123
4b91355e 5124#ifdef CONFIG_SWAP
90254a65
DN
5125static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5126 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5127{
90254a65
DN
5128 struct page *page = NULL;
5129 swp_entry_t ent = pte_to_swp_entry(ptent);
5130
5131 if (!move_anon() || non_swap_entry(ent))
5132 return NULL;
4b91355e
KH
5133 /*
5134 * Because lookup_swap_cache() updates some statistics counter,
5135 * we call find_get_page() with swapper_space directly.
5136 */
5137 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5138 if (do_swap_account)
5139 entry->val = ent.val;
5140
5141 return page;
5142}
4b91355e
KH
5143#else
5144static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5145 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5146{
5147 return NULL;
5148}
5149#endif
90254a65 5150
87946a72
DN
5151static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5152 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5153{
5154 struct page *page = NULL;
87946a72
DN
5155 struct address_space *mapping;
5156 pgoff_t pgoff;
5157
5158 if (!vma->vm_file) /* anonymous vma */
5159 return NULL;
5160 if (!move_file())
5161 return NULL;
5162
87946a72
DN
5163 mapping = vma->vm_file->f_mapping;
5164 if (pte_none(ptent))
5165 pgoff = linear_page_index(vma, addr);
5166 else /* pte_file(ptent) is true */
5167 pgoff = pte_to_pgoff(ptent);
5168
5169 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5170 page = find_get_page(mapping, pgoff);
5171
5172#ifdef CONFIG_SWAP
5173 /* shmem/tmpfs may report page out on swap: account for that too. */
5174 if (radix_tree_exceptional_entry(page)) {
5175 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5176 if (do_swap_account)
aa3b1895
HD
5177 *entry = swap;
5178 page = find_get_page(&swapper_space, swap.val);
87946a72 5179 }
aa3b1895 5180#endif
87946a72
DN
5181 return page;
5182}
5183
8d32ff84 5184static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5185 unsigned long addr, pte_t ptent, union mc_target *target)
5186{
5187 struct page *page = NULL;
5188 struct page_cgroup *pc;
8d32ff84 5189 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5190 swp_entry_t ent = { .val = 0 };
5191
5192 if (pte_present(ptent))
5193 page = mc_handle_present_pte(vma, addr, ptent);
5194 else if (is_swap_pte(ptent))
5195 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5196 else if (pte_none(ptent) || pte_file(ptent))
5197 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5198
5199 if (!page && !ent.val)
8d32ff84 5200 return ret;
02491447
DN
5201 if (page) {
5202 pc = lookup_page_cgroup(page);
5203 /*
5204 * Do only loose check w/o page_cgroup lock.
5205 * mem_cgroup_move_account() checks the pc is valid or not under
5206 * the lock.
5207 */
5208 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5209 ret = MC_TARGET_PAGE;
5210 if (target)
5211 target->page = page;
5212 }
5213 if (!ret || !target)
5214 put_page(page);
5215 }
90254a65
DN
5216 /* There is a swap entry and a page doesn't exist or isn't charged */
5217 if (ent.val && !ret &&
9fb4b7cc 5218 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5219 ret = MC_TARGET_SWAP;
5220 if (target)
5221 target->ent = ent;
4ffef5fe 5222 }
4ffef5fe
DN
5223 return ret;
5224}
5225
12724850
NH
5226#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5227/*
5228 * We don't consider swapping or file mapped pages because THP does not
5229 * support them for now.
5230 * Caller should make sure that pmd_trans_huge(pmd) is true.
5231 */
5232static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5233 unsigned long addr, pmd_t pmd, union mc_target *target)
5234{
5235 struct page *page = NULL;
5236 struct page_cgroup *pc;
5237 enum mc_target_type ret = MC_TARGET_NONE;
5238
5239 page = pmd_page(pmd);
5240 VM_BUG_ON(!page || !PageHead(page));
5241 if (!move_anon())
5242 return ret;
5243 pc = lookup_page_cgroup(page);
5244 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5245 ret = MC_TARGET_PAGE;
5246 if (target) {
5247 get_page(page);
5248 target->page = page;
5249 }
5250 }
5251 return ret;
5252}
5253#else
5254static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5255 unsigned long addr, pmd_t pmd, union mc_target *target)
5256{
5257 return MC_TARGET_NONE;
5258}
5259#endif
5260
4ffef5fe
DN
5261static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5262 unsigned long addr, unsigned long end,
5263 struct mm_walk *walk)
5264{
5265 struct vm_area_struct *vma = walk->private;
5266 pte_t *pte;
5267 spinlock_t *ptl;
5268
12724850
NH
5269 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5270 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5271 mc.precharge += HPAGE_PMD_NR;
5272 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5273 return 0;
12724850 5274 }
03319327 5275
45f83cef
AA
5276 if (pmd_trans_unstable(pmd))
5277 return 0;
4ffef5fe
DN
5278 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5279 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5280 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5281 mc.precharge++; /* increment precharge temporarily */
5282 pte_unmap_unlock(pte - 1, ptl);
5283 cond_resched();
5284
7dc74be0
DN
5285 return 0;
5286}
5287
4ffef5fe
DN
5288static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5289{
5290 unsigned long precharge;
5291 struct vm_area_struct *vma;
5292
dfe076b0 5293 down_read(&mm->mmap_sem);
4ffef5fe
DN
5294 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5295 struct mm_walk mem_cgroup_count_precharge_walk = {
5296 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5297 .mm = mm,
5298 .private = vma,
5299 };
5300 if (is_vm_hugetlb_page(vma))
5301 continue;
4ffef5fe
DN
5302 walk_page_range(vma->vm_start, vma->vm_end,
5303 &mem_cgroup_count_precharge_walk);
5304 }
dfe076b0 5305 up_read(&mm->mmap_sem);
4ffef5fe
DN
5306
5307 precharge = mc.precharge;
5308 mc.precharge = 0;
5309
5310 return precharge;
5311}
5312
4ffef5fe
DN
5313static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5314{
dfe076b0
DN
5315 unsigned long precharge = mem_cgroup_count_precharge(mm);
5316
5317 VM_BUG_ON(mc.moving_task);
5318 mc.moving_task = current;
5319 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5320}
5321
dfe076b0
DN
5322/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5323static void __mem_cgroup_clear_mc(void)
4ffef5fe 5324{
2bd9bb20
KH
5325 struct mem_cgroup *from = mc.from;
5326 struct mem_cgroup *to = mc.to;
5327
4ffef5fe 5328 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5329 if (mc.precharge) {
5330 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5331 mc.precharge = 0;
5332 }
5333 /*
5334 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5335 * we must uncharge here.
5336 */
5337 if (mc.moved_charge) {
5338 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5339 mc.moved_charge = 0;
4ffef5fe 5340 }
483c30b5
DN
5341 /* we must fixup refcnts and charges */
5342 if (mc.moved_swap) {
483c30b5
DN
5343 /* uncharge swap account from the old cgroup */
5344 if (!mem_cgroup_is_root(mc.from))
5345 res_counter_uncharge(&mc.from->memsw,
5346 PAGE_SIZE * mc.moved_swap);
5347 __mem_cgroup_put(mc.from, mc.moved_swap);
5348
5349 if (!mem_cgroup_is_root(mc.to)) {
5350 /*
5351 * we charged both to->res and to->memsw, so we should
5352 * uncharge to->res.
5353 */
5354 res_counter_uncharge(&mc.to->res,
5355 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5356 }
5357 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5358 mc.moved_swap = 0;
5359 }
dfe076b0
DN
5360 memcg_oom_recover(from);
5361 memcg_oom_recover(to);
5362 wake_up_all(&mc.waitq);
5363}
5364
5365static void mem_cgroup_clear_mc(void)
5366{
5367 struct mem_cgroup *from = mc.from;
5368
5369 /*
5370 * we must clear moving_task before waking up waiters at the end of
5371 * task migration.
5372 */
5373 mc.moving_task = NULL;
5374 __mem_cgroup_clear_mc();
2bd9bb20 5375 spin_lock(&mc.lock);
4ffef5fe
DN
5376 mc.from = NULL;
5377 mc.to = NULL;
2bd9bb20 5378 spin_unlock(&mc.lock);
32047e2a 5379 mem_cgroup_end_move(from);
4ffef5fe
DN
5380}
5381
761b3ef5
LZ
5382static int mem_cgroup_can_attach(struct cgroup *cgroup,
5383 struct cgroup_taskset *tset)
7dc74be0 5384{
2f7ee569 5385 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5386 int ret = 0;
c0ff4b85 5387 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5388
c0ff4b85 5389 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5390 struct mm_struct *mm;
5391 struct mem_cgroup *from = mem_cgroup_from_task(p);
5392
c0ff4b85 5393 VM_BUG_ON(from == memcg);
7dc74be0
DN
5394
5395 mm = get_task_mm(p);
5396 if (!mm)
5397 return 0;
7dc74be0 5398 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5399 if (mm->owner == p) {
5400 VM_BUG_ON(mc.from);
5401 VM_BUG_ON(mc.to);
5402 VM_BUG_ON(mc.precharge);
854ffa8d 5403 VM_BUG_ON(mc.moved_charge);
483c30b5 5404 VM_BUG_ON(mc.moved_swap);
32047e2a 5405 mem_cgroup_start_move(from);
2bd9bb20 5406 spin_lock(&mc.lock);
4ffef5fe 5407 mc.from = from;
c0ff4b85 5408 mc.to = memcg;
2bd9bb20 5409 spin_unlock(&mc.lock);
dfe076b0 5410 /* We set mc.moving_task later */
4ffef5fe
DN
5411
5412 ret = mem_cgroup_precharge_mc(mm);
5413 if (ret)
5414 mem_cgroup_clear_mc();
dfe076b0
DN
5415 }
5416 mmput(mm);
7dc74be0
DN
5417 }
5418 return ret;
5419}
5420
761b3ef5
LZ
5421static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5422 struct cgroup_taskset *tset)
7dc74be0 5423{
4ffef5fe 5424 mem_cgroup_clear_mc();
7dc74be0
DN
5425}
5426
4ffef5fe
DN
5427static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5428 unsigned long addr, unsigned long end,
5429 struct mm_walk *walk)
7dc74be0 5430{
4ffef5fe
DN
5431 int ret = 0;
5432 struct vm_area_struct *vma = walk->private;
5433 pte_t *pte;
5434 spinlock_t *ptl;
12724850
NH
5435 enum mc_target_type target_type;
5436 union mc_target target;
5437 struct page *page;
5438 struct page_cgroup *pc;
4ffef5fe 5439
12724850
NH
5440 /*
5441 * We don't take compound_lock() here but no race with splitting thp
5442 * happens because:
5443 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5444 * under splitting, which means there's no concurrent thp split,
5445 * - if another thread runs into split_huge_page() just after we
5446 * entered this if-block, the thread must wait for page table lock
5447 * to be unlocked in __split_huge_page_splitting(), where the main
5448 * part of thp split is not executed yet.
5449 */
5450 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5451 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5452 spin_unlock(&vma->vm_mm->page_table_lock);
5453 return 0;
5454 }
5455 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5456 if (target_type == MC_TARGET_PAGE) {
5457 page = target.page;
5458 if (!isolate_lru_page(page)) {
5459 pc = lookup_page_cgroup(page);
5460 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5461 pc, mc.from, mc.to)) {
12724850
NH
5462 mc.precharge -= HPAGE_PMD_NR;
5463 mc.moved_charge += HPAGE_PMD_NR;
5464 }
5465 putback_lru_page(page);
5466 }
5467 put_page(page);
5468 }
5469 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5470 return 0;
12724850
NH
5471 }
5472
45f83cef
AA
5473 if (pmd_trans_unstable(pmd))
5474 return 0;
4ffef5fe
DN
5475retry:
5476 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5477 for (; addr != end; addr += PAGE_SIZE) {
5478 pte_t ptent = *(pte++);
02491447 5479 swp_entry_t ent;
4ffef5fe
DN
5480
5481 if (!mc.precharge)
5482 break;
5483
8d32ff84 5484 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5485 case MC_TARGET_PAGE:
5486 page = target.page;
5487 if (isolate_lru_page(page))
5488 goto put;
5489 pc = lookup_page_cgroup(page);
7ec99d62 5490 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5491 mc.from, mc.to)) {
4ffef5fe 5492 mc.precharge--;
854ffa8d
DN
5493 /* we uncharge from mc.from later. */
5494 mc.moved_charge++;
4ffef5fe
DN
5495 }
5496 putback_lru_page(page);
8d32ff84 5497put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5498 put_page(page);
5499 break;
02491447
DN
5500 case MC_TARGET_SWAP:
5501 ent = target.ent;
e91cbb42 5502 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5503 mc.precharge--;
483c30b5
DN
5504 /* we fixup refcnts and charges later. */
5505 mc.moved_swap++;
5506 }
02491447 5507 break;
4ffef5fe
DN
5508 default:
5509 break;
5510 }
5511 }
5512 pte_unmap_unlock(pte - 1, ptl);
5513 cond_resched();
5514
5515 if (addr != end) {
5516 /*
5517 * We have consumed all precharges we got in can_attach().
5518 * We try charge one by one, but don't do any additional
5519 * charges to mc.to if we have failed in charge once in attach()
5520 * phase.
5521 */
854ffa8d 5522 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5523 if (!ret)
5524 goto retry;
5525 }
5526
5527 return ret;
5528}
5529
5530static void mem_cgroup_move_charge(struct mm_struct *mm)
5531{
5532 struct vm_area_struct *vma;
5533
5534 lru_add_drain_all();
dfe076b0
DN
5535retry:
5536 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5537 /*
5538 * Someone who are holding the mmap_sem might be waiting in
5539 * waitq. So we cancel all extra charges, wake up all waiters,
5540 * and retry. Because we cancel precharges, we might not be able
5541 * to move enough charges, but moving charge is a best-effort
5542 * feature anyway, so it wouldn't be a big problem.
5543 */
5544 __mem_cgroup_clear_mc();
5545 cond_resched();
5546 goto retry;
5547 }
4ffef5fe
DN
5548 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5549 int ret;
5550 struct mm_walk mem_cgroup_move_charge_walk = {
5551 .pmd_entry = mem_cgroup_move_charge_pte_range,
5552 .mm = mm,
5553 .private = vma,
5554 };
5555 if (is_vm_hugetlb_page(vma))
5556 continue;
4ffef5fe
DN
5557 ret = walk_page_range(vma->vm_start, vma->vm_end,
5558 &mem_cgroup_move_charge_walk);
5559 if (ret)
5560 /*
5561 * means we have consumed all precharges and failed in
5562 * doing additional charge. Just abandon here.
5563 */
5564 break;
5565 }
dfe076b0 5566 up_read(&mm->mmap_sem);
7dc74be0
DN
5567}
5568
761b3ef5
LZ
5569static void mem_cgroup_move_task(struct cgroup *cont,
5570 struct cgroup_taskset *tset)
67e465a7 5571{
2f7ee569 5572 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5573 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5574
dfe076b0 5575 if (mm) {
a433658c
KM
5576 if (mc.to)
5577 mem_cgroup_move_charge(mm);
dfe076b0
DN
5578 mmput(mm);
5579 }
a433658c
KM
5580 if (mc.to)
5581 mem_cgroup_clear_mc();
67e465a7 5582}
5cfb80a7 5583#else /* !CONFIG_MMU */
761b3ef5
LZ
5584static int mem_cgroup_can_attach(struct cgroup *cgroup,
5585 struct cgroup_taskset *tset)
5cfb80a7
DN
5586{
5587 return 0;
5588}
761b3ef5
LZ
5589static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5590 struct cgroup_taskset *tset)
5cfb80a7
DN
5591{
5592}
761b3ef5
LZ
5593static void mem_cgroup_move_task(struct cgroup *cont,
5594 struct cgroup_taskset *tset)
5cfb80a7
DN
5595{
5596}
5597#endif
67e465a7 5598
8cdea7c0
BS
5599struct cgroup_subsys mem_cgroup_subsys = {
5600 .name = "memory",
5601 .subsys_id = mem_cgroup_subsys_id,
5602 .create = mem_cgroup_create,
df878fb0 5603 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0 5604 .destroy = mem_cgroup_destroy,
7dc74be0
DN
5605 .can_attach = mem_cgroup_can_attach,
5606 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5607 .attach = mem_cgroup_move_task,
6bc10349 5608 .base_cftypes = mem_cgroup_files,
6d12e2d8 5609 .early_init = 0,
04046e1a 5610 .use_id = 1,
48ddbe19 5611 .__DEPRECATED_clear_css_refs = true,
8cdea7c0 5612};
c077719b 5613
c255a458 5614#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5615static int __init enable_swap_account(char *s)
5616{
5617 /* consider enabled if no parameter or 1 is given */
a2c8990a 5618 if (!strcmp(s, "1"))
a42c390c 5619 really_do_swap_account = 1;
a2c8990a 5620 else if (!strcmp(s, "0"))
a42c390c
MH
5621 really_do_swap_account = 0;
5622 return 1;
5623}
a2c8990a 5624__setup("swapaccount=", enable_swap_account);
c077719b 5625
c077719b 5626#endif