]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
mm: memcontrol: don't pass a NULL memcg to mem_cgroup_end_move()
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
5ac8fb31
JW
146struct reclaim_iter {
147 struct mem_cgroup *position;
527a5ec9
JW
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150};
151
6d12e2d8
KH
152/*
153 * per-zone information in memory controller.
154 */
6d12e2d8 155struct mem_cgroup_per_zone {
6290df54 156 struct lruvec lruvec;
1eb49272 157 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 158
5ac8fb31 159 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 160
bb4cc1a8 161 struct rb_node tree_node; /* RB tree node */
3e32cb2e 162 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
163 /* the soft limit is exceeded*/
164 bool on_tree;
d79154bb 165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 166 /* use container_of */
6d12e2d8 167};
6d12e2d8
KH
168
169struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171};
172
bb4cc1a8
AM
173/*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181};
182
183struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185};
186
187struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189};
190
191static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
2e72b634
KS
193struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
3e32cb2e 195 unsigned long threshold;
2e72b634
KS
196};
197
9490ff27 198/* For threshold */
2e72b634 199struct mem_cgroup_threshold_ary {
748dad36 200 /* An array index points to threshold just below or equal to usage. */
5407a562 201 int current_threshold;
2e72b634
KS
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206};
2c488db2
KS
207
208struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217};
218
9490ff27
KH
219/* for OOM */
220struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223};
2e72b634 224
79bd9814
TH
225/*
226 * cgroup_event represents events which userspace want to receive.
227 */
3bc942f3 228struct mem_cgroup_event {
79bd9814 229 /*
59b6f873 230 * memcg which the event belongs to.
79bd9814 231 */
59b6f873 232 struct mem_cgroup *memcg;
79bd9814
TH
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
fba94807
TH
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
59b6f873 246 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 247 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
59b6f873 253 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 254 struct eventfd_ctx *eventfd);
79bd9814
TH
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263};
264
c0ff4b85
R
265static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 267
8cdea7c0
BS
268/*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
8cdea7c0
BS
278 */
279struct mem_cgroup {
280 struct cgroup_subsys_state css;
3e32cb2e
JW
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
59927fb9 288
70ddf637
AV
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
2f7dd7a4
JW
292 /* css_online() has been completed */
293 int initialized;
294
18f59ea7
BS
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
510fc4e1 299 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
300
301 bool oom_lock;
302 atomic_t under_oom;
3812c8c8 303 atomic_t oom_wakeups;
79dfdacc 304
1f4c025b 305 int swappiness;
3c11ecf4
KH
306 /* OOM-Killer disable */
307 int oom_kill_disable;
a7885eb8 308
2e72b634
KS
309 /* protect arrays of thresholds */
310 struct mutex thresholds_lock;
311
312 /* thresholds for memory usage. RCU-protected */
2c488db2 313 struct mem_cgroup_thresholds thresholds;
907860ed 314
2e72b634 315 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 316 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 317
9490ff27
KH
318 /* For oom notifier event fd */
319 struct list_head oom_notify;
185efc0f 320
7dc74be0
DN
321 /*
322 * Should we move charges of a task when a task is moved into this
323 * mem_cgroup ? And what type of charges should we move ?
324 */
f894ffa8 325 unsigned long move_charge_at_immigrate;
619d094b
KH
326 /*
327 * set > 0 if pages under this cgroup are moving to other cgroup.
328 */
329 atomic_t moving_account;
312734c0
KH
330 /* taken only while moving_account > 0 */
331 spinlock_t move_lock;
d52aa412 332 /*
c62b1a3b 333 * percpu counter.
d52aa412 334 */
3a7951b4 335 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
336 /*
337 * used when a cpu is offlined or other synchronizations
338 * See mem_cgroup_read_stat().
339 */
340 struct mem_cgroup_stat_cpu nocpu_base;
341 spinlock_t pcp_counter_lock;
d1a4c0b3 342
4bd2c1ee 343#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 344 struct cg_proto tcp_mem;
d1a4c0b3 345#endif
2633d7a0 346#if defined(CONFIG_MEMCG_KMEM)
bd673145
VD
347 /* analogous to slab_common's slab_caches list, but per-memcg;
348 * protected by memcg_slab_mutex */
2633d7a0 349 struct list_head memcg_slab_caches;
2633d7a0
GC
350 /* Index in the kmem_cache->memcg_params->memcg_caches array */
351 int kmemcg_id;
352#endif
45cf7ebd
GC
353
354 int last_scanned_node;
355#if MAX_NUMNODES > 1
356 nodemask_t scan_nodes;
357 atomic_t numainfo_events;
358 atomic_t numainfo_updating;
359#endif
70ddf637 360
fba94807
TH
361 /* List of events which userspace want to receive */
362 struct list_head event_list;
363 spinlock_t event_list_lock;
364
54f72fe0
JW
365 struct mem_cgroup_per_node *nodeinfo[0];
366 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
367};
368
510fc4e1
GC
369/* internal only representation about the status of kmem accounting. */
370enum {
6de64beb 371 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
510fc4e1
GC
372};
373
510fc4e1
GC
374#ifdef CONFIG_MEMCG_KMEM
375static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
376{
377 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
378}
7de37682
GC
379
380static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
381{
382 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
383}
384
510fc4e1
GC
385#endif
386
7dc74be0
DN
387/* Stuffs for move charges at task migration. */
388/*
ee5e8472
GC
389 * Types of charges to be moved. "move_charge_at_immitgrate" and
390 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
391 */
392enum move_type {
4ffef5fe 393 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 394 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
395 NR_MOVE_TYPE,
396};
397
4ffef5fe
DN
398/* "mc" and its members are protected by cgroup_mutex */
399static struct move_charge_struct {
b1dd693e 400 spinlock_t lock; /* for from, to */
4ffef5fe
DN
401 struct mem_cgroup *from;
402 struct mem_cgroup *to;
ee5e8472 403 unsigned long immigrate_flags;
4ffef5fe 404 unsigned long precharge;
854ffa8d 405 unsigned long moved_charge;
483c30b5 406 unsigned long moved_swap;
8033b97c
DN
407 struct task_struct *moving_task; /* a task moving charges */
408 wait_queue_head_t waitq; /* a waitq for other context */
409} mc = {
2bd9bb20 410 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
411 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
412};
4ffef5fe 413
90254a65
DN
414static bool move_anon(void)
415{
ee5e8472 416 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
417}
418
87946a72
DN
419static bool move_file(void)
420{
ee5e8472 421 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
422}
423
4e416953
BS
424/*
425 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
426 * limit reclaim to prevent infinite loops, if they ever occur.
427 */
a0db00fc 428#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 429#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 430
217bc319
KH
431enum charge_type {
432 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 433 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 434 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 435 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
436 NR_CHARGE_TYPE,
437};
438
8c7c6e34 439/* for encoding cft->private value on file */
86ae53e1
GC
440enum res_type {
441 _MEM,
442 _MEMSWAP,
443 _OOM_TYPE,
510fc4e1 444 _KMEM,
86ae53e1
GC
445};
446
a0db00fc
KS
447#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
448#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 449#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
450/* Used for OOM nofiier */
451#define OOM_CONTROL (0)
8c7c6e34 452
0999821b
GC
453/*
454 * The memcg_create_mutex will be held whenever a new cgroup is created.
455 * As a consequence, any change that needs to protect against new child cgroups
456 * appearing has to hold it as well.
457 */
458static DEFINE_MUTEX(memcg_create_mutex);
459
b2145145
WL
460struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
461{
a7c6d554 462 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
463}
464
70ddf637
AV
465/* Some nice accessors for the vmpressure. */
466struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
467{
468 if (!memcg)
469 memcg = root_mem_cgroup;
470 return &memcg->vmpressure;
471}
472
473struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
474{
475 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
476}
477
7ffc0edc
MH
478static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
479{
480 return (memcg == root_mem_cgroup);
481}
482
4219b2da
LZ
483/*
484 * We restrict the id in the range of [1, 65535], so it can fit into
485 * an unsigned short.
486 */
487#define MEM_CGROUP_ID_MAX USHRT_MAX
488
34c00c31
LZ
489static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
490{
15a4c835 491 return memcg->css.id;
34c00c31
LZ
492}
493
494static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
495{
496 struct cgroup_subsys_state *css;
497
7d699ddb 498 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
499 return mem_cgroup_from_css(css);
500}
501
e1aab161 502/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 503#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 504
e1aab161
GC
505void sock_update_memcg(struct sock *sk)
506{
376be5ff 507 if (mem_cgroup_sockets_enabled) {
e1aab161 508 struct mem_cgroup *memcg;
3f134619 509 struct cg_proto *cg_proto;
e1aab161
GC
510
511 BUG_ON(!sk->sk_prot->proto_cgroup);
512
f3f511e1
GC
513 /* Socket cloning can throw us here with sk_cgrp already
514 * filled. It won't however, necessarily happen from
515 * process context. So the test for root memcg given
516 * the current task's memcg won't help us in this case.
517 *
518 * Respecting the original socket's memcg is a better
519 * decision in this case.
520 */
521 if (sk->sk_cgrp) {
522 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 523 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
524 return;
525 }
526
e1aab161
GC
527 rcu_read_lock();
528 memcg = mem_cgroup_from_task(current);
3f134619 529 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 530 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
531 memcg_proto_active(cg_proto) &&
532 css_tryget_online(&memcg->css)) {
3f134619 533 sk->sk_cgrp = cg_proto;
e1aab161
GC
534 }
535 rcu_read_unlock();
536 }
537}
538EXPORT_SYMBOL(sock_update_memcg);
539
540void sock_release_memcg(struct sock *sk)
541{
376be5ff 542 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
543 struct mem_cgroup *memcg;
544 WARN_ON(!sk->sk_cgrp->memcg);
545 memcg = sk->sk_cgrp->memcg;
5347e5ae 546 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
547 }
548}
d1a4c0b3
GC
549
550struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
551{
552 if (!memcg || mem_cgroup_is_root(memcg))
553 return NULL;
554
2e685cad 555 return &memcg->tcp_mem;
d1a4c0b3
GC
556}
557EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 558
3f134619
GC
559static void disarm_sock_keys(struct mem_cgroup *memcg)
560{
2e685cad 561 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
562 return;
563 static_key_slow_dec(&memcg_socket_limit_enabled);
564}
565#else
566static void disarm_sock_keys(struct mem_cgroup *memcg)
567{
568}
569#endif
570
a8964b9b 571#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
572/*
573 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
574 * The main reason for not using cgroup id for this:
575 * this works better in sparse environments, where we have a lot of memcgs,
576 * but only a few kmem-limited. Or also, if we have, for instance, 200
577 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
578 * 200 entry array for that.
55007d84
GC
579 *
580 * The current size of the caches array is stored in
581 * memcg_limited_groups_array_size. It will double each time we have to
582 * increase it.
583 */
584static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
585int memcg_limited_groups_array_size;
586
55007d84
GC
587/*
588 * MIN_SIZE is different than 1, because we would like to avoid going through
589 * the alloc/free process all the time. In a small machine, 4 kmem-limited
590 * cgroups is a reasonable guess. In the future, it could be a parameter or
591 * tunable, but that is strictly not necessary.
592 *
b8627835 593 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
594 * this constant directly from cgroup, but it is understandable that this is
595 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 596 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
597 * increase ours as well if it increases.
598 */
599#define MEMCG_CACHES_MIN_SIZE 4
b8627835 600#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 601
d7f25f8a
GC
602/*
603 * A lot of the calls to the cache allocation functions are expected to be
604 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
605 * conditional to this static branch, we'll have to allow modules that does
606 * kmem_cache_alloc and the such to see this symbol as well
607 */
a8964b9b 608struct static_key memcg_kmem_enabled_key;
d7f25f8a 609EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 610
f3bb3043
VD
611static void memcg_free_cache_id(int id);
612
a8964b9b
GC
613static void disarm_kmem_keys(struct mem_cgroup *memcg)
614{
55007d84 615 if (memcg_kmem_is_active(memcg)) {
a8964b9b 616 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 617 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 618 }
bea207c8
GC
619 /*
620 * This check can't live in kmem destruction function,
621 * since the charges will outlive the cgroup
622 */
3e32cb2e 623 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
624}
625#else
626static void disarm_kmem_keys(struct mem_cgroup *memcg)
627{
628}
629#endif /* CONFIG_MEMCG_KMEM */
630
631static void disarm_static_keys(struct mem_cgroup *memcg)
632{
633 disarm_sock_keys(memcg);
634 disarm_kmem_keys(memcg);
635}
636
f64c3f54 637static struct mem_cgroup_per_zone *
e231875b 638mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 639{
e231875b
JZ
640 int nid = zone_to_nid(zone);
641 int zid = zone_idx(zone);
642
54f72fe0 643 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
644}
645
c0ff4b85 646struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 647{
c0ff4b85 648 return &memcg->css;
d324236b
WF
649}
650
f64c3f54 651static struct mem_cgroup_per_zone *
e231875b 652mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 653{
97a6c37b
JW
654 int nid = page_to_nid(page);
655 int zid = page_zonenum(page);
f64c3f54 656
e231875b 657 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
658}
659
bb4cc1a8
AM
660static struct mem_cgroup_tree_per_zone *
661soft_limit_tree_node_zone(int nid, int zid)
662{
663 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
664}
665
666static struct mem_cgroup_tree_per_zone *
667soft_limit_tree_from_page(struct page *page)
668{
669 int nid = page_to_nid(page);
670 int zid = page_zonenum(page);
671
672 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
673}
674
cf2c8127
JW
675static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
676 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 677 unsigned long new_usage_in_excess)
bb4cc1a8
AM
678{
679 struct rb_node **p = &mctz->rb_root.rb_node;
680 struct rb_node *parent = NULL;
681 struct mem_cgroup_per_zone *mz_node;
682
683 if (mz->on_tree)
684 return;
685
686 mz->usage_in_excess = new_usage_in_excess;
687 if (!mz->usage_in_excess)
688 return;
689 while (*p) {
690 parent = *p;
691 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
692 tree_node);
693 if (mz->usage_in_excess < mz_node->usage_in_excess)
694 p = &(*p)->rb_left;
695 /*
696 * We can't avoid mem cgroups that are over their soft
697 * limit by the same amount
698 */
699 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
700 p = &(*p)->rb_right;
701 }
702 rb_link_node(&mz->tree_node, parent, p);
703 rb_insert_color(&mz->tree_node, &mctz->rb_root);
704 mz->on_tree = true;
705}
706
cf2c8127
JW
707static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
708 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
709{
710 if (!mz->on_tree)
711 return;
712 rb_erase(&mz->tree_node, &mctz->rb_root);
713 mz->on_tree = false;
714}
715
cf2c8127
JW
716static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
717 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 718{
0a31bc97
JW
719 unsigned long flags;
720
721 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 722 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 723 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
724}
725
3e32cb2e
JW
726static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
727{
728 unsigned long nr_pages = page_counter_read(&memcg->memory);
729 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
730 unsigned long excess = 0;
731
732 if (nr_pages > soft_limit)
733 excess = nr_pages - soft_limit;
734
735 return excess;
736}
bb4cc1a8
AM
737
738static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
739{
3e32cb2e 740 unsigned long excess;
bb4cc1a8
AM
741 struct mem_cgroup_per_zone *mz;
742 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 743
e231875b 744 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
745 /*
746 * Necessary to update all ancestors when hierarchy is used.
747 * because their event counter is not touched.
748 */
749 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 750 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 751 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
752 /*
753 * We have to update the tree if mz is on RB-tree or
754 * mem is over its softlimit.
755 */
756 if (excess || mz->on_tree) {
0a31bc97
JW
757 unsigned long flags;
758
759 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
760 /* if on-tree, remove it */
761 if (mz->on_tree)
cf2c8127 762 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
763 /*
764 * Insert again. mz->usage_in_excess will be updated.
765 * If excess is 0, no tree ops.
766 */
cf2c8127 767 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 768 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
769 }
770 }
771}
772
773static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
774{
bb4cc1a8 775 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
776 struct mem_cgroup_per_zone *mz;
777 int nid, zid;
bb4cc1a8 778
e231875b
JZ
779 for_each_node(nid) {
780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
781 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
782 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 783 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
784 }
785 }
786}
787
788static struct mem_cgroup_per_zone *
789__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
790{
791 struct rb_node *rightmost = NULL;
792 struct mem_cgroup_per_zone *mz;
793
794retry:
795 mz = NULL;
796 rightmost = rb_last(&mctz->rb_root);
797 if (!rightmost)
798 goto done; /* Nothing to reclaim from */
799
800 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
801 /*
802 * Remove the node now but someone else can add it back,
803 * we will to add it back at the end of reclaim to its correct
804 * position in the tree.
805 */
cf2c8127 806 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 807 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 808 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
809 goto retry;
810done:
811 return mz;
812}
813
814static struct mem_cgroup_per_zone *
815mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
816{
817 struct mem_cgroup_per_zone *mz;
818
0a31bc97 819 spin_lock_irq(&mctz->lock);
bb4cc1a8 820 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 821 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
822 return mz;
823}
824
711d3d2c
KH
825/*
826 * Implementation Note: reading percpu statistics for memcg.
827 *
828 * Both of vmstat[] and percpu_counter has threshold and do periodic
829 * synchronization to implement "quick" read. There are trade-off between
830 * reading cost and precision of value. Then, we may have a chance to implement
831 * a periodic synchronizion of counter in memcg's counter.
832 *
833 * But this _read() function is used for user interface now. The user accounts
834 * memory usage by memory cgroup and he _always_ requires exact value because
835 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
836 * have to visit all online cpus and make sum. So, for now, unnecessary
837 * synchronization is not implemented. (just implemented for cpu hotplug)
838 *
839 * If there are kernel internal actions which can make use of some not-exact
840 * value, and reading all cpu value can be performance bottleneck in some
841 * common workload, threashold and synchonization as vmstat[] should be
842 * implemented.
843 */
c0ff4b85 844static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 845 enum mem_cgroup_stat_index idx)
c62b1a3b 846{
7a159cc9 847 long val = 0;
c62b1a3b 848 int cpu;
c62b1a3b 849
711d3d2c
KH
850 get_online_cpus();
851 for_each_online_cpu(cpu)
c0ff4b85 852 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 853#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
854 spin_lock(&memcg->pcp_counter_lock);
855 val += memcg->nocpu_base.count[idx];
856 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
857#endif
858 put_online_cpus();
c62b1a3b
KH
859 return val;
860}
861
c0ff4b85 862static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
863 enum mem_cgroup_events_index idx)
864{
865 unsigned long val = 0;
866 int cpu;
867
9c567512 868 get_online_cpus();
e9f8974f 869 for_each_online_cpu(cpu)
c0ff4b85 870 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 871#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
872 spin_lock(&memcg->pcp_counter_lock);
873 val += memcg->nocpu_base.events[idx];
874 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 875#endif
9c567512 876 put_online_cpus();
e9f8974f
JW
877 return val;
878}
879
c0ff4b85 880static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 881 struct page *page,
0a31bc97 882 int nr_pages)
d52aa412 883{
b2402857
KH
884 /*
885 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
886 * counted as CACHE even if it's on ANON LRU.
887 */
0a31bc97 888 if (PageAnon(page))
b2402857 889 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 890 nr_pages);
d52aa412 891 else
b2402857 892 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 893 nr_pages);
55e462b0 894
b070e65c
DR
895 if (PageTransHuge(page))
896 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
897 nr_pages);
898
e401f176
KH
899 /* pagein of a big page is an event. So, ignore page size */
900 if (nr_pages > 0)
c0ff4b85 901 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 902 else {
c0ff4b85 903 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
904 nr_pages = -nr_pages; /* for event */
905 }
e401f176 906
13114716 907 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
908}
909
e231875b 910unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
911{
912 struct mem_cgroup_per_zone *mz;
913
914 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
915 return mz->lru_size[lru];
916}
917
e231875b
JZ
918static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
919 int nid,
920 unsigned int lru_mask)
bb2a0de9 921{
e231875b 922 unsigned long nr = 0;
889976db
YH
923 int zid;
924
e231875b 925 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 926
e231875b
JZ
927 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
928 struct mem_cgroup_per_zone *mz;
929 enum lru_list lru;
930
931 for_each_lru(lru) {
932 if (!(BIT(lru) & lru_mask))
933 continue;
934 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
935 nr += mz->lru_size[lru];
936 }
937 }
938 return nr;
889976db 939}
bb2a0de9 940
c0ff4b85 941static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 942 unsigned int lru_mask)
6d12e2d8 943{
e231875b 944 unsigned long nr = 0;
889976db 945 int nid;
6d12e2d8 946
31aaea4a 947 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
948 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
949 return nr;
d52aa412
KH
950}
951
f53d7ce3
JW
952static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
953 enum mem_cgroup_events_target target)
7a159cc9
JW
954{
955 unsigned long val, next;
956
13114716 957 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 958 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 959 /* from time_after() in jiffies.h */
f53d7ce3
JW
960 if ((long)next - (long)val < 0) {
961 switch (target) {
962 case MEM_CGROUP_TARGET_THRESH:
963 next = val + THRESHOLDS_EVENTS_TARGET;
964 break;
bb4cc1a8
AM
965 case MEM_CGROUP_TARGET_SOFTLIMIT:
966 next = val + SOFTLIMIT_EVENTS_TARGET;
967 break;
f53d7ce3
JW
968 case MEM_CGROUP_TARGET_NUMAINFO:
969 next = val + NUMAINFO_EVENTS_TARGET;
970 break;
971 default:
972 break;
973 }
974 __this_cpu_write(memcg->stat->targets[target], next);
975 return true;
7a159cc9 976 }
f53d7ce3 977 return false;
d2265e6f
KH
978}
979
980/*
981 * Check events in order.
982 *
983 */
c0ff4b85 984static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
985{
986 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
987 if (unlikely(mem_cgroup_event_ratelimit(memcg,
988 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 989 bool do_softlimit;
82b3f2a7 990 bool do_numainfo __maybe_unused;
f53d7ce3 991
bb4cc1a8
AM
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
994#if MAX_NUMNODES > 1
995 do_numainfo = mem_cgroup_event_ratelimit(memcg,
996 MEM_CGROUP_TARGET_NUMAINFO);
997#endif
c0ff4b85 998 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
999 if (unlikely(do_softlimit))
1000 mem_cgroup_update_tree(memcg, page);
453a9bf3 1001#if MAX_NUMNODES > 1
f53d7ce3 1002 if (unlikely(do_numainfo))
c0ff4b85 1003 atomic_inc(&memcg->numainfo_events);
453a9bf3 1004#endif
0a31bc97 1005 }
d2265e6f
KH
1006}
1007
cf475ad2 1008struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1009{
31a78f23
BS
1010 /*
1011 * mm_update_next_owner() may clear mm->owner to NULL
1012 * if it races with swapoff, page migration, etc.
1013 * So this can be called with p == NULL.
1014 */
1015 if (unlikely(!p))
1016 return NULL;
1017
073219e9 1018 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1019}
1020
df381975 1021static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1022{
c0ff4b85 1023 struct mem_cgroup *memcg = NULL;
0b7f569e 1024
54595fe2
KH
1025 rcu_read_lock();
1026 do {
6f6acb00
MH
1027 /*
1028 * Page cache insertions can happen withou an
1029 * actual mm context, e.g. during disk probing
1030 * on boot, loopback IO, acct() writes etc.
1031 */
1032 if (unlikely(!mm))
df381975 1033 memcg = root_mem_cgroup;
6f6acb00
MH
1034 else {
1035 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1036 if (unlikely(!memcg))
1037 memcg = root_mem_cgroup;
1038 }
ec903c0c 1039 } while (!css_tryget_online(&memcg->css));
54595fe2 1040 rcu_read_unlock();
c0ff4b85 1041 return memcg;
54595fe2
KH
1042}
1043
5660048c
JW
1044/**
1045 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1046 * @root: hierarchy root
1047 * @prev: previously returned memcg, NULL on first invocation
1048 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1049 *
1050 * Returns references to children of the hierarchy below @root, or
1051 * @root itself, or %NULL after a full round-trip.
1052 *
1053 * Caller must pass the return value in @prev on subsequent
1054 * invocations for reference counting, or use mem_cgroup_iter_break()
1055 * to cancel a hierarchy walk before the round-trip is complete.
1056 *
1057 * Reclaimers can specify a zone and a priority level in @reclaim to
1058 * divide up the memcgs in the hierarchy among all concurrent
1059 * reclaimers operating on the same zone and priority.
1060 */
694fbc0f 1061struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1062 struct mem_cgroup *prev,
694fbc0f 1063 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1064{
5ac8fb31
JW
1065 struct reclaim_iter *uninitialized_var(iter);
1066 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1067 struct mem_cgroup *memcg = NULL;
5ac8fb31 1068 struct mem_cgroup *pos = NULL;
711d3d2c 1069
694fbc0f
AM
1070 if (mem_cgroup_disabled())
1071 return NULL;
5660048c 1072
9f3a0d09
JW
1073 if (!root)
1074 root = root_mem_cgroup;
7d74b06f 1075
9f3a0d09 1076 if (prev && !reclaim)
5ac8fb31 1077 pos = prev;
14067bb3 1078
9f3a0d09
JW
1079 if (!root->use_hierarchy && root != root_mem_cgroup) {
1080 if (prev)
5ac8fb31 1081 goto out;
694fbc0f 1082 return root;
9f3a0d09 1083 }
14067bb3 1084
542f85f9 1085 rcu_read_lock();
5f578161 1086
5ac8fb31
JW
1087 if (reclaim) {
1088 struct mem_cgroup_per_zone *mz;
1089
1090 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1091 iter = &mz->iter[reclaim->priority];
1092
1093 if (prev && reclaim->generation != iter->generation)
1094 goto out_unlock;
1095
1096 do {
1097 pos = ACCESS_ONCE(iter->position);
1098 /*
1099 * A racing update may change the position and
1100 * put the last reference, hence css_tryget(),
1101 * or retry to see the updated position.
1102 */
1103 } while (pos && !css_tryget(&pos->css));
1104 }
1105
1106 if (pos)
1107 css = &pos->css;
1108
1109 for (;;) {
1110 css = css_next_descendant_pre(css, &root->css);
1111 if (!css) {
1112 /*
1113 * Reclaimers share the hierarchy walk, and a
1114 * new one might jump in right at the end of
1115 * the hierarchy - make sure they see at least
1116 * one group and restart from the beginning.
1117 */
1118 if (!prev)
1119 continue;
1120 break;
527a5ec9 1121 }
7d74b06f 1122
5ac8fb31
JW
1123 /*
1124 * Verify the css and acquire a reference. The root
1125 * is provided by the caller, so we know it's alive
1126 * and kicking, and don't take an extra reference.
1127 */
1128 memcg = mem_cgroup_from_css(css);
14067bb3 1129
5ac8fb31
JW
1130 if (css == &root->css)
1131 break;
542f85f9 1132
b2052564 1133 if (css_tryget(css)) {
5ac8fb31
JW
1134 /*
1135 * Make sure the memcg is initialized:
1136 * mem_cgroup_css_online() orders the the
1137 * initialization against setting the flag.
1138 */
1139 if (smp_load_acquire(&memcg->initialized))
1140 break;
1141
1142 css_put(css);
527a5ec9 1143 }
9f3a0d09 1144
5ac8fb31
JW
1145 memcg = NULL;
1146 }
1147
1148 if (reclaim) {
1149 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1150 if (memcg)
1151 css_get(&memcg->css);
1152 if (pos)
1153 css_put(&pos->css);
1154 }
1155
1156 /*
1157 * pairs with css_tryget when dereferencing iter->position
1158 * above.
1159 */
1160 if (pos)
1161 css_put(&pos->css);
1162
1163 if (!memcg)
1164 iter->generation++;
1165 else if (!prev)
1166 reclaim->generation = iter->generation;
9f3a0d09 1167 }
5ac8fb31 1168
542f85f9
MH
1169out_unlock:
1170 rcu_read_unlock();
5ac8fb31 1171out:
c40046f3
MH
1172 if (prev && prev != root)
1173 css_put(&prev->css);
1174
9f3a0d09 1175 return memcg;
14067bb3 1176}
7d74b06f 1177
5660048c
JW
1178/**
1179 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1180 * @root: hierarchy root
1181 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1182 */
1183void mem_cgroup_iter_break(struct mem_cgroup *root,
1184 struct mem_cgroup *prev)
9f3a0d09
JW
1185{
1186 if (!root)
1187 root = root_mem_cgroup;
1188 if (prev && prev != root)
1189 css_put(&prev->css);
1190}
7d74b06f 1191
9f3a0d09
JW
1192/*
1193 * Iteration constructs for visiting all cgroups (under a tree). If
1194 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1195 * be used for reference counting.
1196 */
1197#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1198 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1199 iter != NULL; \
527a5ec9 1200 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1201
9f3a0d09 1202#define for_each_mem_cgroup(iter) \
527a5ec9 1203 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1204 iter != NULL; \
527a5ec9 1205 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1206
68ae564b 1207void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1208{
c0ff4b85 1209 struct mem_cgroup *memcg;
456f998e 1210
456f998e 1211 rcu_read_lock();
c0ff4b85
R
1212 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1213 if (unlikely(!memcg))
456f998e
YH
1214 goto out;
1215
1216 switch (idx) {
456f998e 1217 case PGFAULT:
0e574a93
JW
1218 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1219 break;
1220 case PGMAJFAULT:
1221 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1222 break;
1223 default:
1224 BUG();
1225 }
1226out:
1227 rcu_read_unlock();
1228}
68ae564b 1229EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1230
925b7673
JW
1231/**
1232 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1233 * @zone: zone of the wanted lruvec
fa9add64 1234 * @memcg: memcg of the wanted lruvec
925b7673
JW
1235 *
1236 * Returns the lru list vector holding pages for the given @zone and
1237 * @mem. This can be the global zone lruvec, if the memory controller
1238 * is disabled.
1239 */
1240struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1241 struct mem_cgroup *memcg)
1242{
1243 struct mem_cgroup_per_zone *mz;
bea8c150 1244 struct lruvec *lruvec;
925b7673 1245
bea8c150
HD
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1249 }
925b7673 1250
e231875b 1251 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1252 lruvec = &mz->lruvec;
1253out:
1254 /*
1255 * Since a node can be onlined after the mem_cgroup was created,
1256 * we have to be prepared to initialize lruvec->zone here;
1257 * and if offlined then reonlined, we need to reinitialize it.
1258 */
1259 if (unlikely(lruvec->zone != zone))
1260 lruvec->zone = zone;
1261 return lruvec;
925b7673
JW
1262}
1263
925b7673 1264/**
dfe0e773 1265 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1266 * @page: the page
fa9add64 1267 * @zone: zone of the page
dfe0e773
JW
1268 *
1269 * This function is only safe when following the LRU page isolation
1270 * and putback protocol: the LRU lock must be held, and the page must
1271 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1272 */
fa9add64 1273struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1274{
08e552c6 1275 struct mem_cgroup_per_zone *mz;
925b7673
JW
1276 struct mem_cgroup *memcg;
1277 struct page_cgroup *pc;
bea8c150 1278 struct lruvec *lruvec;
6d12e2d8 1279
bea8c150
HD
1280 if (mem_cgroup_disabled()) {
1281 lruvec = &zone->lruvec;
1282 goto out;
1283 }
925b7673 1284
08e552c6 1285 pc = lookup_page_cgroup(page);
38c5d72f 1286 memcg = pc->mem_cgroup;
7512102c 1287 /*
dfe0e773 1288 * Swapcache readahead pages are added to the LRU - and
29833315 1289 * possibly migrated - before they are charged.
7512102c 1290 */
29833315
JW
1291 if (!memcg)
1292 memcg = root_mem_cgroup;
7512102c 1293
e231875b 1294 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1295 lruvec = &mz->lruvec;
1296out:
1297 /*
1298 * Since a node can be onlined after the mem_cgroup was created,
1299 * we have to be prepared to initialize lruvec->zone here;
1300 * and if offlined then reonlined, we need to reinitialize it.
1301 */
1302 if (unlikely(lruvec->zone != zone))
1303 lruvec->zone = zone;
1304 return lruvec;
08e552c6 1305}
b69408e8 1306
925b7673 1307/**
fa9add64
HD
1308 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1309 * @lruvec: mem_cgroup per zone lru vector
1310 * @lru: index of lru list the page is sitting on
1311 * @nr_pages: positive when adding or negative when removing
925b7673 1312 *
fa9add64
HD
1313 * This function must be called when a page is added to or removed from an
1314 * lru list.
3f58a829 1315 */
fa9add64
HD
1316void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1317 int nr_pages)
3f58a829
MK
1318{
1319 struct mem_cgroup_per_zone *mz;
fa9add64 1320 unsigned long *lru_size;
3f58a829
MK
1321
1322 if (mem_cgroup_disabled())
1323 return;
1324
fa9add64
HD
1325 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1326 lru_size = mz->lru_size + lru;
1327 *lru_size += nr_pages;
1328 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1329}
544122e5 1330
3e92041d 1331/*
c0ff4b85 1332 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1333 * hierarchy subtree
1334 */
c3ac9a8a
JW
1335bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1336 struct mem_cgroup *memcg)
3e92041d 1337{
91c63734
JW
1338 if (root_memcg == memcg)
1339 return true;
3a981f48 1340 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1341 return false;
b47f77b5 1342 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1343}
1344
1345static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1346 struct mem_cgroup *memcg)
1347{
1348 bool ret;
1349
91c63734 1350 rcu_read_lock();
c3ac9a8a 1351 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1352 rcu_read_unlock();
1353 return ret;
3e92041d
MH
1354}
1355
ffbdccf5
DR
1356bool task_in_mem_cgroup(struct task_struct *task,
1357 const struct mem_cgroup *memcg)
4c4a2214 1358{
0b7f569e 1359 struct mem_cgroup *curr = NULL;
158e0a2d 1360 struct task_struct *p;
ffbdccf5 1361 bool ret;
4c4a2214 1362
158e0a2d 1363 p = find_lock_task_mm(task);
de077d22 1364 if (p) {
df381975 1365 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1366 task_unlock(p);
1367 } else {
1368 /*
1369 * All threads may have already detached their mm's, but the oom
1370 * killer still needs to detect if they have already been oom
1371 * killed to prevent needlessly killing additional tasks.
1372 */
ffbdccf5 1373 rcu_read_lock();
de077d22
DR
1374 curr = mem_cgroup_from_task(task);
1375 if (curr)
1376 css_get(&curr->css);
ffbdccf5 1377 rcu_read_unlock();
de077d22 1378 }
d31f56db 1379 /*
c0ff4b85 1380 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1381 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1382 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1383 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1384 */
c0ff4b85 1385 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1386 css_put(&curr->css);
4c4a2214
DR
1387 return ret;
1388}
1389
c56d5c7d 1390int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1391{
9b272977 1392 unsigned long inactive_ratio;
14797e23 1393 unsigned long inactive;
9b272977 1394 unsigned long active;
c772be93 1395 unsigned long gb;
14797e23 1396
4d7dcca2
HD
1397 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1398 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1399
c772be93
KM
1400 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1401 if (gb)
1402 inactive_ratio = int_sqrt(10 * gb);
1403 else
1404 inactive_ratio = 1;
1405
9b272977 1406 return inactive * inactive_ratio < active;
14797e23
KM
1407}
1408
3e32cb2e 1409#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1410 container_of(counter, struct mem_cgroup, member)
1411
19942822 1412/**
9d11ea9f 1413 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1414 * @memcg: the memory cgroup
19942822 1415 *
9d11ea9f 1416 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1417 * pages.
19942822 1418 */
c0ff4b85 1419static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1420{
3e32cb2e
JW
1421 unsigned long margin = 0;
1422 unsigned long count;
1423 unsigned long limit;
9d11ea9f 1424
3e32cb2e
JW
1425 count = page_counter_read(&memcg->memory);
1426 limit = ACCESS_ONCE(memcg->memory.limit);
1427 if (count < limit)
1428 margin = limit - count;
1429
1430 if (do_swap_account) {
1431 count = page_counter_read(&memcg->memsw);
1432 limit = ACCESS_ONCE(memcg->memsw.limit);
1433 if (count <= limit)
1434 margin = min(margin, limit - count);
1435 }
1436
1437 return margin;
19942822
JW
1438}
1439
1f4c025b 1440int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1441{
a7885eb8 1442 /* root ? */
14208b0e 1443 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1444 return vm_swappiness;
1445
bf1ff263 1446 return memcg->swappiness;
a7885eb8
KM
1447}
1448
619d094b
KH
1449/*
1450 * memcg->moving_account is used for checking possibility that some thread is
1451 * calling move_account(). When a thread on CPU-A starts moving pages under
1452 * a memcg, other threads should check memcg->moving_account under
1453 * rcu_read_lock(), like this:
1454 *
1455 * CPU-A CPU-B
1456 * rcu_read_lock()
1457 * memcg->moving_account+1 if (memcg->mocing_account)
1458 * take heavy locks.
1459 * synchronize_rcu() update something.
1460 * rcu_read_unlock()
1461 * start move here.
1462 */
4331f7d3 1463
c0ff4b85 1464static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1465{
619d094b 1466 atomic_inc(&memcg->moving_account);
32047e2a
KH
1467 synchronize_rcu();
1468}
1469
c0ff4b85 1470static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1471{
4e2f245d 1472 atomic_dec(&memcg->moving_account);
32047e2a 1473}
619d094b 1474
32047e2a 1475/*
bdcbb659 1476 * A routine for checking "mem" is under move_account() or not.
32047e2a 1477 *
bdcbb659
QH
1478 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1479 * moving cgroups. This is for waiting at high-memory pressure
1480 * caused by "move".
32047e2a 1481 */
c0ff4b85 1482static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1483{
2bd9bb20
KH
1484 struct mem_cgroup *from;
1485 struct mem_cgroup *to;
4b534334 1486 bool ret = false;
2bd9bb20
KH
1487 /*
1488 * Unlike task_move routines, we access mc.to, mc.from not under
1489 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1490 */
1491 spin_lock(&mc.lock);
1492 from = mc.from;
1493 to = mc.to;
1494 if (!from)
1495 goto unlock;
3e92041d 1496
c0ff4b85
R
1497 ret = mem_cgroup_same_or_subtree(memcg, from)
1498 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1499unlock:
1500 spin_unlock(&mc.lock);
4b534334
KH
1501 return ret;
1502}
1503
c0ff4b85 1504static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1505{
1506 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1507 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1508 DEFINE_WAIT(wait);
1509 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1510 /* moving charge context might have finished. */
1511 if (mc.moving_task)
1512 schedule();
1513 finish_wait(&mc.waitq, &wait);
1514 return true;
1515 }
1516 }
1517 return false;
1518}
1519
58cf188e 1520#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1521/**
58cf188e 1522 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1523 * @memcg: The memory cgroup that went over limit
1524 * @p: Task that is going to be killed
1525 *
1526 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1527 * enabled
1528 */
1529void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1530{
e61734c5 1531 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1532 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1533 struct mem_cgroup *iter;
1534 unsigned int i;
e222432b 1535
58cf188e 1536 if (!p)
e222432b
BS
1537 return;
1538
08088cb9 1539 mutex_lock(&oom_info_lock);
e222432b
BS
1540 rcu_read_lock();
1541
e61734c5
TH
1542 pr_info("Task in ");
1543 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1544 pr_info(" killed as a result of limit of ");
1545 pr_cont_cgroup_path(memcg->css.cgroup);
1546 pr_info("\n");
e222432b 1547
e222432b
BS
1548 rcu_read_unlock();
1549
3e32cb2e
JW
1550 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1551 K((u64)page_counter_read(&memcg->memory)),
1552 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1553 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1554 K((u64)page_counter_read(&memcg->memsw)),
1555 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1556 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1557 K((u64)page_counter_read(&memcg->kmem)),
1558 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1559
1560 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1561 pr_info("Memory cgroup stats for ");
1562 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1563 pr_cont(":");
1564
1565 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1566 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1567 continue;
1568 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1569 K(mem_cgroup_read_stat(iter, i)));
1570 }
1571
1572 for (i = 0; i < NR_LRU_LISTS; i++)
1573 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1574 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1575
1576 pr_cont("\n");
1577 }
08088cb9 1578 mutex_unlock(&oom_info_lock);
e222432b
BS
1579}
1580
81d39c20
KH
1581/*
1582 * This function returns the number of memcg under hierarchy tree. Returns
1583 * 1(self count) if no children.
1584 */
c0ff4b85 1585static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1586{
1587 int num = 0;
7d74b06f
KH
1588 struct mem_cgroup *iter;
1589
c0ff4b85 1590 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1591 num++;
81d39c20
KH
1592 return num;
1593}
1594
a63d83f4
DR
1595/*
1596 * Return the memory (and swap, if configured) limit for a memcg.
1597 */
3e32cb2e 1598static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1599{
3e32cb2e 1600 unsigned long limit;
a63d83f4 1601
3e32cb2e 1602 limit = memcg->memory.limit;
9a5a8f19 1603 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1604 unsigned long memsw_limit;
9a5a8f19 1605
3e32cb2e
JW
1606 memsw_limit = memcg->memsw.limit;
1607 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1608 }
9a5a8f19 1609 return limit;
a63d83f4
DR
1610}
1611
19965460
DR
1612static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1613 int order)
9cbb78bb
DR
1614{
1615 struct mem_cgroup *iter;
1616 unsigned long chosen_points = 0;
1617 unsigned long totalpages;
1618 unsigned int points = 0;
1619 struct task_struct *chosen = NULL;
1620
876aafbf 1621 /*
465adcf1
DR
1622 * If current has a pending SIGKILL or is exiting, then automatically
1623 * select it. The goal is to allow it to allocate so that it may
1624 * quickly exit and free its memory.
876aafbf 1625 */
465adcf1 1626 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1627 set_thread_flag(TIF_MEMDIE);
1628 return;
1629 }
1630
1631 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1632 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1633 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1634 struct css_task_iter it;
9cbb78bb
DR
1635 struct task_struct *task;
1636
72ec7029
TH
1637 css_task_iter_start(&iter->css, &it);
1638 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1639 switch (oom_scan_process_thread(task, totalpages, NULL,
1640 false)) {
1641 case OOM_SCAN_SELECT:
1642 if (chosen)
1643 put_task_struct(chosen);
1644 chosen = task;
1645 chosen_points = ULONG_MAX;
1646 get_task_struct(chosen);
1647 /* fall through */
1648 case OOM_SCAN_CONTINUE:
1649 continue;
1650 case OOM_SCAN_ABORT:
72ec7029 1651 css_task_iter_end(&it);
9cbb78bb
DR
1652 mem_cgroup_iter_break(memcg, iter);
1653 if (chosen)
1654 put_task_struct(chosen);
1655 return;
1656 case OOM_SCAN_OK:
1657 break;
1658 };
1659 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1660 if (!points || points < chosen_points)
1661 continue;
1662 /* Prefer thread group leaders for display purposes */
1663 if (points == chosen_points &&
1664 thread_group_leader(chosen))
1665 continue;
1666
1667 if (chosen)
1668 put_task_struct(chosen);
1669 chosen = task;
1670 chosen_points = points;
1671 get_task_struct(chosen);
9cbb78bb 1672 }
72ec7029 1673 css_task_iter_end(&it);
9cbb78bb
DR
1674 }
1675
1676 if (!chosen)
1677 return;
1678 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1679 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1680 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1681}
1682
4d0c066d
KH
1683/**
1684 * test_mem_cgroup_node_reclaimable
dad7557e 1685 * @memcg: the target memcg
4d0c066d
KH
1686 * @nid: the node ID to be checked.
1687 * @noswap : specify true here if the user wants flle only information.
1688 *
1689 * This function returns whether the specified memcg contains any
1690 * reclaimable pages on a node. Returns true if there are any reclaimable
1691 * pages in the node.
1692 */
c0ff4b85 1693static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1694 int nid, bool noswap)
1695{
c0ff4b85 1696 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1697 return true;
1698 if (noswap || !total_swap_pages)
1699 return false;
c0ff4b85 1700 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1701 return true;
1702 return false;
1703
1704}
bb4cc1a8 1705#if MAX_NUMNODES > 1
889976db
YH
1706
1707/*
1708 * Always updating the nodemask is not very good - even if we have an empty
1709 * list or the wrong list here, we can start from some node and traverse all
1710 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1711 *
1712 */
c0ff4b85 1713static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1714{
1715 int nid;
453a9bf3
KH
1716 /*
1717 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1718 * pagein/pageout changes since the last update.
1719 */
c0ff4b85 1720 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1721 return;
c0ff4b85 1722 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1723 return;
1724
889976db 1725 /* make a nodemask where this memcg uses memory from */
31aaea4a 1726 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1727
31aaea4a 1728 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1729
c0ff4b85
R
1730 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1731 node_clear(nid, memcg->scan_nodes);
889976db 1732 }
453a9bf3 1733
c0ff4b85
R
1734 atomic_set(&memcg->numainfo_events, 0);
1735 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1736}
1737
1738/*
1739 * Selecting a node where we start reclaim from. Because what we need is just
1740 * reducing usage counter, start from anywhere is O,K. Considering
1741 * memory reclaim from current node, there are pros. and cons.
1742 *
1743 * Freeing memory from current node means freeing memory from a node which
1744 * we'll use or we've used. So, it may make LRU bad. And if several threads
1745 * hit limits, it will see a contention on a node. But freeing from remote
1746 * node means more costs for memory reclaim because of memory latency.
1747 *
1748 * Now, we use round-robin. Better algorithm is welcomed.
1749 */
c0ff4b85 1750int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1751{
1752 int node;
1753
c0ff4b85
R
1754 mem_cgroup_may_update_nodemask(memcg);
1755 node = memcg->last_scanned_node;
889976db 1756
c0ff4b85 1757 node = next_node(node, memcg->scan_nodes);
889976db 1758 if (node == MAX_NUMNODES)
c0ff4b85 1759 node = first_node(memcg->scan_nodes);
889976db
YH
1760 /*
1761 * We call this when we hit limit, not when pages are added to LRU.
1762 * No LRU may hold pages because all pages are UNEVICTABLE or
1763 * memcg is too small and all pages are not on LRU. In that case,
1764 * we use curret node.
1765 */
1766 if (unlikely(node == MAX_NUMNODES))
1767 node = numa_node_id();
1768
c0ff4b85 1769 memcg->last_scanned_node = node;
889976db
YH
1770 return node;
1771}
1772
bb4cc1a8
AM
1773/*
1774 * Check all nodes whether it contains reclaimable pages or not.
1775 * For quick scan, we make use of scan_nodes. This will allow us to skip
1776 * unused nodes. But scan_nodes is lazily updated and may not cotain
1777 * enough new information. We need to do double check.
1778 */
1779static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1780{
1781 int nid;
1782
1783 /*
1784 * quick check...making use of scan_node.
1785 * We can skip unused nodes.
1786 */
1787 if (!nodes_empty(memcg->scan_nodes)) {
1788 for (nid = first_node(memcg->scan_nodes);
1789 nid < MAX_NUMNODES;
1790 nid = next_node(nid, memcg->scan_nodes)) {
1791
1792 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1793 return true;
1794 }
1795 }
1796 /*
1797 * Check rest of nodes.
1798 */
1799 for_each_node_state(nid, N_MEMORY) {
1800 if (node_isset(nid, memcg->scan_nodes))
1801 continue;
1802 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1803 return true;
1804 }
1805 return false;
1806}
1807
889976db 1808#else
c0ff4b85 1809int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1810{
1811 return 0;
1812}
4d0c066d 1813
bb4cc1a8
AM
1814static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1815{
1816 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1817}
889976db
YH
1818#endif
1819
0608f43d
AM
1820static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1821 struct zone *zone,
1822 gfp_t gfp_mask,
1823 unsigned long *total_scanned)
1824{
1825 struct mem_cgroup *victim = NULL;
1826 int total = 0;
1827 int loop = 0;
1828 unsigned long excess;
1829 unsigned long nr_scanned;
1830 struct mem_cgroup_reclaim_cookie reclaim = {
1831 .zone = zone,
1832 .priority = 0,
1833 };
1834
3e32cb2e 1835 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1836
1837 while (1) {
1838 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1839 if (!victim) {
1840 loop++;
1841 if (loop >= 2) {
1842 /*
1843 * If we have not been able to reclaim
1844 * anything, it might because there are
1845 * no reclaimable pages under this hierarchy
1846 */
1847 if (!total)
1848 break;
1849 /*
1850 * We want to do more targeted reclaim.
1851 * excess >> 2 is not to excessive so as to
1852 * reclaim too much, nor too less that we keep
1853 * coming back to reclaim from this cgroup
1854 */
1855 if (total >= (excess >> 2) ||
1856 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1857 break;
1858 }
1859 continue;
1860 }
1861 if (!mem_cgroup_reclaimable(victim, false))
1862 continue;
1863 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1864 zone, &nr_scanned);
1865 *total_scanned += nr_scanned;
3e32cb2e 1866 if (!soft_limit_excess(root_memcg))
0608f43d 1867 break;
6d61ef40 1868 }
0608f43d
AM
1869 mem_cgroup_iter_break(root_memcg, victim);
1870 return total;
6d61ef40
BS
1871}
1872
0056f4e6
JW
1873#ifdef CONFIG_LOCKDEP
1874static struct lockdep_map memcg_oom_lock_dep_map = {
1875 .name = "memcg_oom_lock",
1876};
1877#endif
1878
fb2a6fc5
JW
1879static DEFINE_SPINLOCK(memcg_oom_lock);
1880
867578cb
KH
1881/*
1882 * Check OOM-Killer is already running under our hierarchy.
1883 * If someone is running, return false.
1884 */
fb2a6fc5 1885static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1886{
79dfdacc 1887 struct mem_cgroup *iter, *failed = NULL;
a636b327 1888
fb2a6fc5
JW
1889 spin_lock(&memcg_oom_lock);
1890
9f3a0d09 1891 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1892 if (iter->oom_lock) {
79dfdacc
MH
1893 /*
1894 * this subtree of our hierarchy is already locked
1895 * so we cannot give a lock.
1896 */
79dfdacc 1897 failed = iter;
9f3a0d09
JW
1898 mem_cgroup_iter_break(memcg, iter);
1899 break;
23751be0
JW
1900 } else
1901 iter->oom_lock = true;
7d74b06f 1902 }
867578cb 1903
fb2a6fc5
JW
1904 if (failed) {
1905 /*
1906 * OK, we failed to lock the whole subtree so we have
1907 * to clean up what we set up to the failing subtree
1908 */
1909 for_each_mem_cgroup_tree(iter, memcg) {
1910 if (iter == failed) {
1911 mem_cgroup_iter_break(memcg, iter);
1912 break;
1913 }
1914 iter->oom_lock = false;
79dfdacc 1915 }
0056f4e6
JW
1916 } else
1917 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1918
1919 spin_unlock(&memcg_oom_lock);
1920
1921 return !failed;
a636b327 1922}
0b7f569e 1923
fb2a6fc5 1924static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1925{
7d74b06f
KH
1926 struct mem_cgroup *iter;
1927
fb2a6fc5 1928 spin_lock(&memcg_oom_lock);
0056f4e6 1929 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1930 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1931 iter->oom_lock = false;
fb2a6fc5 1932 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1933}
1934
c0ff4b85 1935static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1936{
1937 struct mem_cgroup *iter;
1938
c0ff4b85 1939 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1940 atomic_inc(&iter->under_oom);
1941}
1942
c0ff4b85 1943static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1944{
1945 struct mem_cgroup *iter;
1946
867578cb
KH
1947 /*
1948 * When a new child is created while the hierarchy is under oom,
1949 * mem_cgroup_oom_lock() may not be called. We have to use
1950 * atomic_add_unless() here.
1951 */
c0ff4b85 1952 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1953 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1954}
1955
867578cb
KH
1956static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1957
dc98df5a 1958struct oom_wait_info {
d79154bb 1959 struct mem_cgroup *memcg;
dc98df5a
KH
1960 wait_queue_t wait;
1961};
1962
1963static int memcg_oom_wake_function(wait_queue_t *wait,
1964 unsigned mode, int sync, void *arg)
1965{
d79154bb
HD
1966 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1967 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1968 struct oom_wait_info *oom_wait_info;
1969
1970 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1971 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1972
dc98df5a 1973 /*
d79154bb 1974 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1975 * Then we can use css_is_ancestor without taking care of RCU.
1976 */
c0ff4b85
R
1977 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1978 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1979 return 0;
dc98df5a
KH
1980 return autoremove_wake_function(wait, mode, sync, arg);
1981}
1982
c0ff4b85 1983static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1984{
3812c8c8 1985 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1986 /* for filtering, pass "memcg" as argument. */
1987 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1988}
1989
c0ff4b85 1990static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1991{
c0ff4b85
R
1992 if (memcg && atomic_read(&memcg->under_oom))
1993 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1994}
1995
3812c8c8 1996static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1997{
3812c8c8
JW
1998 if (!current->memcg_oom.may_oom)
1999 return;
867578cb 2000 /*
49426420
JW
2001 * We are in the middle of the charge context here, so we
2002 * don't want to block when potentially sitting on a callstack
2003 * that holds all kinds of filesystem and mm locks.
2004 *
2005 * Also, the caller may handle a failed allocation gracefully
2006 * (like optional page cache readahead) and so an OOM killer
2007 * invocation might not even be necessary.
2008 *
2009 * That's why we don't do anything here except remember the
2010 * OOM context and then deal with it at the end of the page
2011 * fault when the stack is unwound, the locks are released,
2012 * and when we know whether the fault was overall successful.
867578cb 2013 */
49426420
JW
2014 css_get(&memcg->css);
2015 current->memcg_oom.memcg = memcg;
2016 current->memcg_oom.gfp_mask = mask;
2017 current->memcg_oom.order = order;
3812c8c8
JW
2018}
2019
2020/**
2021 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2022 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2023 *
49426420
JW
2024 * This has to be called at the end of a page fault if the memcg OOM
2025 * handler was enabled.
3812c8c8 2026 *
49426420 2027 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2028 * sleep on a waitqueue until the userspace task resolves the
2029 * situation. Sleeping directly in the charge context with all kinds
2030 * of locks held is not a good idea, instead we remember an OOM state
2031 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2032 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2033 *
2034 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2035 * completed, %false otherwise.
3812c8c8 2036 */
49426420 2037bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2038{
49426420 2039 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2040 struct oom_wait_info owait;
49426420 2041 bool locked;
3812c8c8
JW
2042
2043 /* OOM is global, do not handle */
3812c8c8 2044 if (!memcg)
49426420 2045 return false;
3812c8c8 2046
49426420
JW
2047 if (!handle)
2048 goto cleanup;
3812c8c8
JW
2049
2050 owait.memcg = memcg;
2051 owait.wait.flags = 0;
2052 owait.wait.func = memcg_oom_wake_function;
2053 owait.wait.private = current;
2054 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2055
3812c8c8 2056 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2057 mem_cgroup_mark_under_oom(memcg);
2058
2059 locked = mem_cgroup_oom_trylock(memcg);
2060
2061 if (locked)
2062 mem_cgroup_oom_notify(memcg);
2063
2064 if (locked && !memcg->oom_kill_disable) {
2065 mem_cgroup_unmark_under_oom(memcg);
2066 finish_wait(&memcg_oom_waitq, &owait.wait);
2067 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2068 current->memcg_oom.order);
2069 } else {
3812c8c8 2070 schedule();
49426420
JW
2071 mem_cgroup_unmark_under_oom(memcg);
2072 finish_wait(&memcg_oom_waitq, &owait.wait);
2073 }
2074
2075 if (locked) {
fb2a6fc5
JW
2076 mem_cgroup_oom_unlock(memcg);
2077 /*
2078 * There is no guarantee that an OOM-lock contender
2079 * sees the wakeups triggered by the OOM kill
2080 * uncharges. Wake any sleepers explicitely.
2081 */
2082 memcg_oom_recover(memcg);
2083 }
49426420
JW
2084cleanup:
2085 current->memcg_oom.memcg = NULL;
3812c8c8 2086 css_put(&memcg->css);
867578cb 2087 return true;
0b7f569e
KH
2088}
2089
d7365e78
JW
2090/**
2091 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
2092 * @page: page that is going to change accounted state
2093 * @locked: &memcg->move_lock slowpath was taken
2094 * @flags: IRQ-state flags for &memcg->move_lock
32047e2a 2095 *
d7365e78
JW
2096 * This function must mark the beginning of an accounted page state
2097 * change to prevent double accounting when the page is concurrently
2098 * being moved to another memcg:
32047e2a 2099 *
d7365e78
JW
2100 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
2101 * if (TestClearPageState(page))
2102 * mem_cgroup_update_page_stat(memcg, state, -1);
2103 * mem_cgroup_end_page_stat(memcg, locked, flags);
32047e2a 2104 *
d7365e78
JW
2105 * The RCU lock is held throughout the transaction. The fast path can
2106 * get away without acquiring the memcg->move_lock (@locked is false)
2107 * because page moving starts with an RCU grace period.
32047e2a 2108 *
d7365e78
JW
2109 * The RCU lock also protects the memcg from being freed when the page
2110 * state that is going to change is the only thing preventing the page
2111 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2112 * which allows migration to go ahead and uncharge the page before the
2113 * account transaction might be complete.
d69b042f 2114 */
d7365e78
JW
2115struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2116 bool *locked,
2117 unsigned long *flags)
89c06bd5
KH
2118{
2119 struct mem_cgroup *memcg;
2120 struct page_cgroup *pc;
2121
d7365e78
JW
2122 rcu_read_lock();
2123
2124 if (mem_cgroup_disabled())
2125 return NULL;
2126
89c06bd5
KH
2127 pc = lookup_page_cgroup(page);
2128again:
2129 memcg = pc->mem_cgroup;
29833315 2130 if (unlikely(!memcg))
d7365e78
JW
2131 return NULL;
2132
2133 *locked = false;
bdcbb659 2134 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2135 return memcg;
89c06bd5 2136
354a4783 2137 spin_lock_irqsave(&memcg->move_lock, *flags);
29833315 2138 if (memcg != pc->mem_cgroup) {
354a4783 2139 spin_unlock_irqrestore(&memcg->move_lock, *flags);
89c06bd5
KH
2140 goto again;
2141 }
2142 *locked = true;
d7365e78
JW
2143
2144 return memcg;
89c06bd5
KH
2145}
2146
d7365e78
JW
2147/**
2148 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2149 * @memcg: the memcg that was accounted against
2150 * @locked: value received from mem_cgroup_begin_page_stat()
2151 * @flags: value received from mem_cgroup_begin_page_stat()
2152 */
2153void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool locked,
2154 unsigned long flags)
89c06bd5 2155{
d7365e78 2156 if (memcg && locked)
354a4783 2157 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5 2158
d7365e78 2159 rcu_read_unlock();
89c06bd5
KH
2160}
2161
d7365e78
JW
2162/**
2163 * mem_cgroup_update_page_stat - update page state statistics
2164 * @memcg: memcg to account against
2165 * @idx: page state item to account
2166 * @val: number of pages (positive or negative)
2167 *
2168 * See mem_cgroup_begin_page_stat() for locking requirements.
2169 */
2170void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2171 enum mem_cgroup_stat_index idx, int val)
d69b042f 2172{
658b72c5 2173 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2174
d7365e78
JW
2175 if (memcg)
2176 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2177}
26174efd 2178
cdec2e42
KH
2179/*
2180 * size of first charge trial. "32" comes from vmscan.c's magic value.
2181 * TODO: maybe necessary to use big numbers in big irons.
2182 */
7ec99d62 2183#define CHARGE_BATCH 32U
cdec2e42
KH
2184struct memcg_stock_pcp {
2185 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2186 unsigned int nr_pages;
cdec2e42 2187 struct work_struct work;
26fe6168 2188 unsigned long flags;
a0db00fc 2189#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2190};
2191static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2192static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2193
a0956d54
SS
2194/**
2195 * consume_stock: Try to consume stocked charge on this cpu.
2196 * @memcg: memcg to consume from.
2197 * @nr_pages: how many pages to charge.
2198 *
2199 * The charges will only happen if @memcg matches the current cpu's memcg
2200 * stock, and at least @nr_pages are available in that stock. Failure to
2201 * service an allocation will refill the stock.
2202 *
2203 * returns true if successful, false otherwise.
cdec2e42 2204 */
a0956d54 2205static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2206{
2207 struct memcg_stock_pcp *stock;
3e32cb2e 2208 bool ret = false;
cdec2e42 2209
a0956d54 2210 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2211 return ret;
a0956d54 2212
cdec2e42 2213 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2214 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2215 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2216 ret = true;
2217 }
cdec2e42
KH
2218 put_cpu_var(memcg_stock);
2219 return ret;
2220}
2221
2222/*
3e32cb2e 2223 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2224 */
2225static void drain_stock(struct memcg_stock_pcp *stock)
2226{
2227 struct mem_cgroup *old = stock->cached;
2228
11c9ea4e 2229 if (stock->nr_pages) {
3e32cb2e 2230 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2231 if (do_swap_account)
3e32cb2e 2232 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2233 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2234 stock->nr_pages = 0;
cdec2e42
KH
2235 }
2236 stock->cached = NULL;
cdec2e42
KH
2237}
2238
2239/*
2240 * This must be called under preempt disabled or must be called by
2241 * a thread which is pinned to local cpu.
2242 */
2243static void drain_local_stock(struct work_struct *dummy)
2244{
7c8e0181 2245 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2246 drain_stock(stock);
26fe6168 2247 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2248}
2249
e4777496
MH
2250static void __init memcg_stock_init(void)
2251{
2252 int cpu;
2253
2254 for_each_possible_cpu(cpu) {
2255 struct memcg_stock_pcp *stock =
2256 &per_cpu(memcg_stock, cpu);
2257 INIT_WORK(&stock->work, drain_local_stock);
2258 }
2259}
2260
cdec2e42 2261/*
3e32cb2e 2262 * Cache charges(val) to local per_cpu area.
320cc51d 2263 * This will be consumed by consume_stock() function, later.
cdec2e42 2264 */
c0ff4b85 2265static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2266{
2267 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2268
c0ff4b85 2269 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2270 drain_stock(stock);
c0ff4b85 2271 stock->cached = memcg;
cdec2e42 2272 }
11c9ea4e 2273 stock->nr_pages += nr_pages;
cdec2e42
KH
2274 put_cpu_var(memcg_stock);
2275}
2276
2277/*
c0ff4b85 2278 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2279 * of the hierarchy under it.
cdec2e42 2280 */
6d3d6aa2 2281static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2282{
26fe6168 2283 int cpu, curcpu;
d38144b7 2284
6d3d6aa2
JW
2285 /* If someone's already draining, avoid adding running more workers. */
2286 if (!mutex_trylock(&percpu_charge_mutex))
2287 return;
cdec2e42 2288 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2289 get_online_cpus();
5af12d0e 2290 curcpu = get_cpu();
cdec2e42
KH
2291 for_each_online_cpu(cpu) {
2292 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2293 struct mem_cgroup *memcg;
26fe6168 2294
c0ff4b85
R
2295 memcg = stock->cached;
2296 if (!memcg || !stock->nr_pages)
26fe6168 2297 continue;
c0ff4b85 2298 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2299 continue;
d1a05b69
MH
2300 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2301 if (cpu == curcpu)
2302 drain_local_stock(&stock->work);
2303 else
2304 schedule_work_on(cpu, &stock->work);
2305 }
cdec2e42 2306 }
5af12d0e 2307 put_cpu();
f894ffa8 2308 put_online_cpus();
9f50fad6 2309 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2310}
2311
711d3d2c
KH
2312/*
2313 * This function drains percpu counter value from DEAD cpu and
2314 * move it to local cpu. Note that this function can be preempted.
2315 */
c0ff4b85 2316static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2317{
2318 int i;
2319
c0ff4b85 2320 spin_lock(&memcg->pcp_counter_lock);
6104621d 2321 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2322 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2323
c0ff4b85
R
2324 per_cpu(memcg->stat->count[i], cpu) = 0;
2325 memcg->nocpu_base.count[i] += x;
711d3d2c 2326 }
e9f8974f 2327 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2328 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2329
c0ff4b85
R
2330 per_cpu(memcg->stat->events[i], cpu) = 0;
2331 memcg->nocpu_base.events[i] += x;
e9f8974f 2332 }
c0ff4b85 2333 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2334}
2335
0db0628d 2336static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2337 unsigned long action,
2338 void *hcpu)
2339{
2340 int cpu = (unsigned long)hcpu;
2341 struct memcg_stock_pcp *stock;
711d3d2c 2342 struct mem_cgroup *iter;
cdec2e42 2343
619d094b 2344 if (action == CPU_ONLINE)
1489ebad 2345 return NOTIFY_OK;
1489ebad 2346
d833049b 2347 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2348 return NOTIFY_OK;
711d3d2c 2349
9f3a0d09 2350 for_each_mem_cgroup(iter)
711d3d2c
KH
2351 mem_cgroup_drain_pcp_counter(iter, cpu);
2352
cdec2e42
KH
2353 stock = &per_cpu(memcg_stock, cpu);
2354 drain_stock(stock);
2355 return NOTIFY_OK;
2356}
2357
00501b53
JW
2358static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2359 unsigned int nr_pages)
8a9f3ccd 2360{
7ec99d62 2361 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2362 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2363 struct mem_cgroup *mem_over_limit;
3e32cb2e 2364 struct page_counter *counter;
6539cc05 2365 unsigned long nr_reclaimed;
b70a2a21
JW
2366 bool may_swap = true;
2367 bool drained = false;
05b84301 2368 int ret = 0;
a636b327 2369
ce00a967
JW
2370 if (mem_cgroup_is_root(memcg))
2371 goto done;
6539cc05 2372retry:
b6b6cc72
MH
2373 if (consume_stock(memcg, nr_pages))
2374 goto done;
8a9f3ccd 2375
3fbe7244 2376 if (!do_swap_account ||
3e32cb2e
JW
2377 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2378 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2379 goto done_restock;
3fbe7244 2380 if (do_swap_account)
3e32cb2e
JW
2381 page_counter_uncharge(&memcg->memsw, batch);
2382 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2383 } else {
3e32cb2e 2384 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2385 may_swap = false;
3fbe7244 2386 }
7a81b88c 2387
6539cc05
JW
2388 if (batch > nr_pages) {
2389 batch = nr_pages;
2390 goto retry;
2391 }
6d61ef40 2392
06b078fc
JW
2393 /*
2394 * Unlike in global OOM situations, memcg is not in a physical
2395 * memory shortage. Allow dying and OOM-killed tasks to
2396 * bypass the last charges so that they can exit quickly and
2397 * free their memory.
2398 */
2399 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2400 fatal_signal_pending(current) ||
2401 current->flags & PF_EXITING))
2402 goto bypass;
2403
2404 if (unlikely(task_in_memcg_oom(current)))
2405 goto nomem;
2406
6539cc05
JW
2407 if (!(gfp_mask & __GFP_WAIT))
2408 goto nomem;
4b534334 2409
b70a2a21
JW
2410 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2411 gfp_mask, may_swap);
6539cc05 2412
61e02c74 2413 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2414 goto retry;
28c34c29 2415
b70a2a21 2416 if (!drained) {
6d3d6aa2 2417 drain_all_stock(mem_over_limit);
b70a2a21
JW
2418 drained = true;
2419 goto retry;
2420 }
2421
28c34c29
JW
2422 if (gfp_mask & __GFP_NORETRY)
2423 goto nomem;
6539cc05
JW
2424 /*
2425 * Even though the limit is exceeded at this point, reclaim
2426 * may have been able to free some pages. Retry the charge
2427 * before killing the task.
2428 *
2429 * Only for regular pages, though: huge pages are rather
2430 * unlikely to succeed so close to the limit, and we fall back
2431 * to regular pages anyway in case of failure.
2432 */
61e02c74 2433 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2434 goto retry;
2435 /*
2436 * At task move, charge accounts can be doubly counted. So, it's
2437 * better to wait until the end of task_move if something is going on.
2438 */
2439 if (mem_cgroup_wait_acct_move(mem_over_limit))
2440 goto retry;
2441
9b130619
JW
2442 if (nr_retries--)
2443 goto retry;
2444
06b078fc
JW
2445 if (gfp_mask & __GFP_NOFAIL)
2446 goto bypass;
2447
6539cc05
JW
2448 if (fatal_signal_pending(current))
2449 goto bypass;
2450
61e02c74 2451 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2452nomem:
6d1fdc48 2453 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2454 return -ENOMEM;
867578cb 2455bypass:
ce00a967 2456 return -EINTR;
6539cc05
JW
2457
2458done_restock:
e8ea14cc 2459 css_get_many(&memcg->css, batch);
6539cc05
JW
2460 if (batch > nr_pages)
2461 refill_stock(memcg, batch - nr_pages);
2462done:
05b84301 2463 return ret;
7a81b88c 2464}
8a9f3ccd 2465
00501b53 2466static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2467{
ce00a967
JW
2468 if (mem_cgroup_is_root(memcg))
2469 return;
2470
3e32cb2e 2471 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2472 if (do_swap_account)
3e32cb2e 2473 page_counter_uncharge(&memcg->memsw, nr_pages);
e8ea14cc
JW
2474
2475 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2476}
2477
a3b2d692
KH
2478/*
2479 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2480 * rcu_read_lock(). The caller is responsible for calling
2481 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2482 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2483 */
2484static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2485{
a3b2d692
KH
2486 /* ID 0 is unused ID */
2487 if (!id)
2488 return NULL;
34c00c31 2489 return mem_cgroup_from_id(id);
a3b2d692
KH
2490}
2491
0a31bc97
JW
2492/*
2493 * try_get_mem_cgroup_from_page - look up page's memcg association
2494 * @page: the page
2495 *
2496 * Look up, get a css reference, and return the memcg that owns @page.
2497 *
2498 * The page must be locked to prevent racing with swap-in and page
2499 * cache charges. If coming from an unlocked page table, the caller
2500 * must ensure the page is on the LRU or this can race with charging.
2501 */
e42d9d5d 2502struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2503{
29833315 2504 struct mem_cgroup *memcg;
3c776e64 2505 struct page_cgroup *pc;
a3b2d692 2506 unsigned short id;
b5a84319
KH
2507 swp_entry_t ent;
2508
309381fe 2509 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2510
3c776e64 2511 pc = lookup_page_cgroup(page);
29833315
JW
2512 memcg = pc->mem_cgroup;
2513
2514 if (memcg) {
2515 if (!css_tryget_online(&memcg->css))
c0ff4b85 2516 memcg = NULL;
e42d9d5d 2517 } else if (PageSwapCache(page)) {
3c776e64 2518 ent.val = page_private(page);
9fb4b7cc 2519 id = lookup_swap_cgroup_id(ent);
a3b2d692 2520 rcu_read_lock();
c0ff4b85 2521 memcg = mem_cgroup_lookup(id);
ec903c0c 2522 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2523 memcg = NULL;
a3b2d692 2524 rcu_read_unlock();
3c776e64 2525 }
c0ff4b85 2526 return memcg;
b5a84319
KH
2527}
2528
0a31bc97
JW
2529static void lock_page_lru(struct page *page, int *isolated)
2530{
2531 struct zone *zone = page_zone(page);
2532
2533 spin_lock_irq(&zone->lru_lock);
2534 if (PageLRU(page)) {
2535 struct lruvec *lruvec;
2536
2537 lruvec = mem_cgroup_page_lruvec(page, zone);
2538 ClearPageLRU(page);
2539 del_page_from_lru_list(page, lruvec, page_lru(page));
2540 *isolated = 1;
2541 } else
2542 *isolated = 0;
2543}
2544
2545static void unlock_page_lru(struct page *page, int isolated)
2546{
2547 struct zone *zone = page_zone(page);
2548
2549 if (isolated) {
2550 struct lruvec *lruvec;
2551
2552 lruvec = mem_cgroup_page_lruvec(page, zone);
2553 VM_BUG_ON_PAGE(PageLRU(page), page);
2554 SetPageLRU(page);
2555 add_page_to_lru_list(page, lruvec, page_lru(page));
2556 }
2557 spin_unlock_irq(&zone->lru_lock);
2558}
2559
00501b53 2560static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2561 bool lrucare)
7a81b88c 2562{
ce587e65 2563 struct page_cgroup *pc = lookup_page_cgroup(page);
0a31bc97 2564 int isolated;
9ce70c02 2565
29833315 2566 VM_BUG_ON_PAGE(pc->mem_cgroup, page);
ca3e0214
KH
2567 /*
2568 * we don't need page_cgroup_lock about tail pages, becase they are not
2569 * accessed by any other context at this point.
2570 */
9ce70c02
HD
2571
2572 /*
2573 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2574 * may already be on some other mem_cgroup's LRU. Take care of it.
2575 */
0a31bc97
JW
2576 if (lrucare)
2577 lock_page_lru(page, &isolated);
9ce70c02 2578
0a31bc97
JW
2579 /*
2580 * Nobody should be changing or seriously looking at
29833315 2581 * pc->mem_cgroup at this point:
0a31bc97
JW
2582 *
2583 * - the page is uncharged
2584 *
2585 * - the page is off-LRU
2586 *
2587 * - an anonymous fault has exclusive page access, except for
2588 * a locked page table
2589 *
2590 * - a page cache insertion, a swapin fault, or a migration
2591 * have the page locked
2592 */
c0ff4b85 2593 pc->mem_cgroup = memcg;
9ce70c02 2594
0a31bc97
JW
2595 if (lrucare)
2596 unlock_page_lru(page, isolated);
7a81b88c 2597}
66e1707b 2598
7ae1e1d0 2599#ifdef CONFIG_MEMCG_KMEM
bd673145
VD
2600/*
2601 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2602 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2603 */
2604static DEFINE_MUTEX(memcg_slab_mutex);
2605
1f458cbf
GC
2606/*
2607 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2608 * in the memcg_cache_params struct.
2609 */
2610static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2611{
2612 struct kmem_cache *cachep;
2613
2614 VM_BUG_ON(p->is_root_cache);
2615 cachep = p->root_cache;
7a67d7ab 2616 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2617}
2618
749c5415 2619#ifdef CONFIG_SLABINFO
2da8ca82 2620static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2621{
2da8ca82 2622 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2623 struct memcg_cache_params *params;
2624
cf2b8fbf 2625 if (!memcg_kmem_is_active(memcg))
749c5415
GC
2626 return -EIO;
2627
2628 print_slabinfo_header(m);
2629
bd673145 2630 mutex_lock(&memcg_slab_mutex);
749c5415
GC
2631 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2632 cache_show(memcg_params_to_cache(params), m);
bd673145 2633 mutex_unlock(&memcg_slab_mutex);
749c5415
GC
2634
2635 return 0;
2636}
2637#endif
2638
3e32cb2e
JW
2639static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2640 unsigned long nr_pages)
7ae1e1d0 2641{
3e32cb2e 2642 struct page_counter *counter;
7ae1e1d0 2643 int ret = 0;
7ae1e1d0 2644
3e32cb2e
JW
2645 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2646 if (ret < 0)
7ae1e1d0
GC
2647 return ret;
2648
3e32cb2e 2649 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2650 if (ret == -EINTR) {
2651 /*
00501b53
JW
2652 * try_charge() chose to bypass to root due to OOM kill or
2653 * fatal signal. Since our only options are to either fail
2654 * the allocation or charge it to this cgroup, do it as a
2655 * temporary condition. But we can't fail. From a kmem/slab
2656 * perspective, the cache has already been selected, by
2657 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2658 * our minds.
2659 *
2660 * This condition will only trigger if the task entered
00501b53
JW
2661 * memcg_charge_kmem in a sane state, but was OOM-killed
2662 * during try_charge() above. Tasks that were already dying
2663 * when the allocation triggers should have been already
7ae1e1d0
GC
2664 * directed to the root cgroup in memcontrol.h
2665 */
3e32cb2e 2666 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2667 if (do_swap_account)
3e32cb2e 2668 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2669 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2670 ret = 0;
2671 } else if (ret)
3e32cb2e 2672 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2673
2674 return ret;
2675}
2676
3e32cb2e
JW
2677static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2678 unsigned long nr_pages)
7ae1e1d0 2679{
3e32cb2e 2680 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2681 if (do_swap_account)
3e32cb2e 2682 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2683
64f21993 2684 page_counter_uncharge(&memcg->kmem, nr_pages);
e8ea14cc
JW
2685
2686 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2687}
2688
2633d7a0
GC
2689/*
2690 * helper for acessing a memcg's index. It will be used as an index in the
2691 * child cache array in kmem_cache, and also to derive its name. This function
2692 * will return -1 when this is not a kmem-limited memcg.
2693 */
2694int memcg_cache_id(struct mem_cgroup *memcg)
2695{
2696 return memcg ? memcg->kmemcg_id : -1;
2697}
2698
f3bb3043 2699static int memcg_alloc_cache_id(void)
55007d84 2700{
f3bb3043
VD
2701 int id, size;
2702 int err;
2703
2704 id = ida_simple_get(&kmem_limited_groups,
2705 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2706 if (id < 0)
2707 return id;
55007d84 2708
f3bb3043
VD
2709 if (id < memcg_limited_groups_array_size)
2710 return id;
2711
2712 /*
2713 * There's no space for the new id in memcg_caches arrays,
2714 * so we have to grow them.
2715 */
2716
2717 size = 2 * (id + 1);
55007d84
GC
2718 if (size < MEMCG_CACHES_MIN_SIZE)
2719 size = MEMCG_CACHES_MIN_SIZE;
2720 else if (size > MEMCG_CACHES_MAX_SIZE)
2721 size = MEMCG_CACHES_MAX_SIZE;
2722
f3bb3043
VD
2723 mutex_lock(&memcg_slab_mutex);
2724 err = memcg_update_all_caches(size);
2725 mutex_unlock(&memcg_slab_mutex);
2726
2727 if (err) {
2728 ida_simple_remove(&kmem_limited_groups, id);
2729 return err;
2730 }
2731 return id;
2732}
2733
2734static void memcg_free_cache_id(int id)
2735{
2736 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2737}
2738
2739/*
2740 * We should update the current array size iff all caches updates succeed. This
2741 * can only be done from the slab side. The slab mutex needs to be held when
2742 * calling this.
2743 */
2744void memcg_update_array_size(int num)
2745{
f3bb3043 2746 memcg_limited_groups_array_size = num;
55007d84
GC
2747}
2748
776ed0f0
VD
2749static void memcg_register_cache(struct mem_cgroup *memcg,
2750 struct kmem_cache *root_cache)
2633d7a0 2751{
93f39eea
VD
2752 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2753 memcg_slab_mutex */
bd673145 2754 struct kmem_cache *cachep;
d7f25f8a
GC
2755 int id;
2756
bd673145
VD
2757 lockdep_assert_held(&memcg_slab_mutex);
2758
2759 id = memcg_cache_id(memcg);
2760
2761 /*
2762 * Since per-memcg caches are created asynchronously on first
2763 * allocation (see memcg_kmem_get_cache()), several threads can try to
2764 * create the same cache, but only one of them may succeed.
2765 */
2766 if (cache_from_memcg_idx(root_cache, id))
1aa13254
VD
2767 return;
2768
073ee1c6 2769 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
776ed0f0 2770 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2edefe11 2771 /*
bd673145
VD
2772 * If we could not create a memcg cache, do not complain, because
2773 * that's not critical at all as we can always proceed with the root
2774 * cache.
2edefe11 2775 */
bd673145
VD
2776 if (!cachep)
2777 return;
2edefe11 2778
33a690c4 2779 css_get(&memcg->css);
bd673145 2780 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
1aa13254 2781
d7f25f8a 2782 /*
959c8963
VD
2783 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2784 * barrier here to ensure nobody will see the kmem_cache partially
2785 * initialized.
d7f25f8a 2786 */
959c8963
VD
2787 smp_wmb();
2788
bd673145
VD
2789 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2790 root_cache->memcg_params->memcg_caches[id] = cachep;
1aa13254 2791}
d7f25f8a 2792
776ed0f0 2793static void memcg_unregister_cache(struct kmem_cache *cachep)
1aa13254 2794{
bd673145 2795 struct kmem_cache *root_cache;
1aa13254
VD
2796 struct mem_cgroup *memcg;
2797 int id;
2798
bd673145 2799 lockdep_assert_held(&memcg_slab_mutex);
d7f25f8a 2800
bd673145 2801 BUG_ON(is_root_cache(cachep));
2edefe11 2802
bd673145
VD
2803 root_cache = cachep->memcg_params->root_cache;
2804 memcg = cachep->memcg_params->memcg;
96403da2 2805 id = memcg_cache_id(memcg);
d7f25f8a 2806
bd673145
VD
2807 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2808 root_cache->memcg_params->memcg_caches[id] = NULL;
d7f25f8a 2809
bd673145
VD
2810 list_del(&cachep->memcg_params->list);
2811
2812 kmem_cache_destroy(cachep);
33a690c4
VD
2813
2814 /* drop the reference taken in memcg_register_cache */
2815 css_put(&memcg->css);
2633d7a0
GC
2816}
2817
0e9d92f2
GC
2818/*
2819 * During the creation a new cache, we need to disable our accounting mechanism
2820 * altogether. This is true even if we are not creating, but rather just
2821 * enqueing new caches to be created.
2822 *
2823 * This is because that process will trigger allocations; some visible, like
2824 * explicit kmallocs to auxiliary data structures, name strings and internal
2825 * cache structures; some well concealed, like INIT_WORK() that can allocate
2826 * objects during debug.
2827 *
2828 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
2829 * to it. This may not be a bounded recursion: since the first cache creation
2830 * failed to complete (waiting on the allocation), we'll just try to create the
2831 * cache again, failing at the same point.
2832 *
2833 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
2834 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
2835 * inside the following two functions.
2836 */
2837static inline void memcg_stop_kmem_account(void)
2838{
2839 VM_BUG_ON(!current->mm);
2840 current->memcg_kmem_skip_account++;
2841}
2842
2843static inline void memcg_resume_kmem_account(void)
2844{
2845 VM_BUG_ON(!current->mm);
2846 current->memcg_kmem_skip_account--;
2847}
2848
776ed0f0 2849int __memcg_cleanup_cache_params(struct kmem_cache *s)
7cf27982
GC
2850{
2851 struct kmem_cache *c;
b8529907 2852 int i, failed = 0;
7cf27982 2853
bd673145 2854 mutex_lock(&memcg_slab_mutex);
7a67d7ab
QH
2855 for_each_memcg_cache_index(i) {
2856 c = cache_from_memcg_idx(s, i);
7cf27982
GC
2857 if (!c)
2858 continue;
2859
776ed0f0 2860 memcg_unregister_cache(c);
b8529907
VD
2861
2862 if (cache_from_memcg_idx(s, i))
2863 failed++;
7cf27982 2864 }
bd673145 2865 mutex_unlock(&memcg_slab_mutex);
b8529907 2866 return failed;
7cf27982
GC
2867}
2868
776ed0f0 2869static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
2870{
2871 struct kmem_cache *cachep;
bd673145 2872 struct memcg_cache_params *params, *tmp;
1f458cbf
GC
2873
2874 if (!memcg_kmem_is_active(memcg))
2875 return;
2876
bd673145
VD
2877 mutex_lock(&memcg_slab_mutex);
2878 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
1f458cbf 2879 cachep = memcg_params_to_cache(params);
bd673145
VD
2880 kmem_cache_shrink(cachep);
2881 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
776ed0f0 2882 memcg_unregister_cache(cachep);
1f458cbf 2883 }
bd673145 2884 mutex_unlock(&memcg_slab_mutex);
1f458cbf
GC
2885}
2886
776ed0f0 2887struct memcg_register_cache_work {
5722d094
VD
2888 struct mem_cgroup *memcg;
2889 struct kmem_cache *cachep;
2890 struct work_struct work;
2891};
2892
776ed0f0 2893static void memcg_register_cache_func(struct work_struct *w)
d7f25f8a 2894{
776ed0f0
VD
2895 struct memcg_register_cache_work *cw =
2896 container_of(w, struct memcg_register_cache_work, work);
5722d094
VD
2897 struct mem_cgroup *memcg = cw->memcg;
2898 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2899
bd673145 2900 mutex_lock(&memcg_slab_mutex);
776ed0f0 2901 memcg_register_cache(memcg, cachep);
bd673145
VD
2902 mutex_unlock(&memcg_slab_mutex);
2903
5722d094 2904 css_put(&memcg->css);
d7f25f8a
GC
2905 kfree(cw);
2906}
2907
2908/*
2909 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2910 */
776ed0f0
VD
2911static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2912 struct kmem_cache *cachep)
d7f25f8a 2913{
776ed0f0 2914 struct memcg_register_cache_work *cw;
d7f25f8a 2915
776ed0f0 2916 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
ca0dde97
LZ
2917 if (cw == NULL) {
2918 css_put(&memcg->css);
d7f25f8a
GC
2919 return;
2920 }
2921
2922 cw->memcg = memcg;
2923 cw->cachep = cachep;
2924
776ed0f0 2925 INIT_WORK(&cw->work, memcg_register_cache_func);
d7f25f8a
GC
2926 schedule_work(&cw->work);
2927}
2928
776ed0f0
VD
2929static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2930 struct kmem_cache *cachep)
0e9d92f2
GC
2931{
2932 /*
2933 * We need to stop accounting when we kmalloc, because if the
2934 * corresponding kmalloc cache is not yet created, the first allocation
776ed0f0 2935 * in __memcg_schedule_register_cache will recurse.
0e9d92f2
GC
2936 *
2937 * However, it is better to enclose the whole function. Depending on
2938 * the debugging options enabled, INIT_WORK(), for instance, can
2939 * trigger an allocation. This too, will make us recurse. Because at
2940 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2941 * the safest choice is to do it like this, wrapping the whole function.
2942 */
2943 memcg_stop_kmem_account();
776ed0f0 2944 __memcg_schedule_register_cache(memcg, cachep);
0e9d92f2
GC
2945 memcg_resume_kmem_account();
2946}
c67a8a68
VD
2947
2948int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2949{
3e32cb2e 2950 unsigned int nr_pages = 1 << order;
c67a8a68
VD
2951 int res;
2952
3e32cb2e 2953 res = memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
c67a8a68 2954 if (!res)
3e32cb2e 2955 atomic_add(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2956 return res;
2957}
2958
2959void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2960{
3e32cb2e
JW
2961 unsigned int nr_pages = 1 << order;
2962
2963 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2964 atomic_sub(nr_pages, &cachep->memcg_params->nr_pages);
c67a8a68
VD
2965}
2966
d7f25f8a
GC
2967/*
2968 * Return the kmem_cache we're supposed to use for a slab allocation.
2969 * We try to use the current memcg's version of the cache.
2970 *
2971 * If the cache does not exist yet, if we are the first user of it,
2972 * we either create it immediately, if possible, or create it asynchronously
2973 * in a workqueue.
2974 * In the latter case, we will let the current allocation go through with
2975 * the original cache.
2976 *
2977 * Can't be called in interrupt context or from kernel threads.
2978 * This function needs to be called with rcu_read_lock() held.
2979 */
2980struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
2981 gfp_t gfp)
2982{
2983 struct mem_cgroup *memcg;
959c8963 2984 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
2985
2986 VM_BUG_ON(!cachep->memcg_params);
2987 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2988
0e9d92f2
GC
2989 if (!current->mm || current->memcg_kmem_skip_account)
2990 return cachep;
2991
d7f25f8a
GC
2992 rcu_read_lock();
2993 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a 2994
cf2b8fbf 2995 if (!memcg_kmem_is_active(memcg))
ca0dde97 2996 goto out;
d7f25f8a 2997
959c8963
VD
2998 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2999 if (likely(memcg_cachep)) {
3000 cachep = memcg_cachep;
ca0dde97 3001 goto out;
d7f25f8a
GC
3002 }
3003
ca0dde97 3004 /* The corresponding put will be done in the workqueue. */
ec903c0c 3005 if (!css_tryget_online(&memcg->css))
ca0dde97
LZ
3006 goto out;
3007 rcu_read_unlock();
3008
3009 /*
3010 * If we are in a safe context (can wait, and not in interrupt
3011 * context), we could be be predictable and return right away.
3012 * This would guarantee that the allocation being performed
3013 * already belongs in the new cache.
3014 *
3015 * However, there are some clashes that can arrive from locking.
3016 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
3017 * memcg_create_kmem_cache, this means no further allocation
3018 * could happen with the slab_mutex held. So it's better to
3019 * defer everything.
ca0dde97 3020 */
776ed0f0 3021 memcg_schedule_register_cache(memcg, cachep);
ca0dde97
LZ
3022 return cachep;
3023out:
3024 rcu_read_unlock();
3025 return cachep;
d7f25f8a 3026}
d7f25f8a 3027
7ae1e1d0
GC
3028/*
3029 * We need to verify if the allocation against current->mm->owner's memcg is
3030 * possible for the given order. But the page is not allocated yet, so we'll
3031 * need a further commit step to do the final arrangements.
3032 *
3033 * It is possible for the task to switch cgroups in this mean time, so at
3034 * commit time, we can't rely on task conversion any longer. We'll then use
3035 * the handle argument to return to the caller which cgroup we should commit
3036 * against. We could also return the memcg directly and avoid the pointer
3037 * passing, but a boolean return value gives better semantics considering
3038 * the compiled-out case as well.
3039 *
3040 * Returning true means the allocation is possible.
3041 */
3042bool
3043__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3044{
3045 struct mem_cgroup *memcg;
3046 int ret;
3047
3048 *_memcg = NULL;
6d42c232
GC
3049
3050 /*
3051 * Disabling accounting is only relevant for some specific memcg
3052 * internal allocations. Therefore we would initially not have such
52383431
VD
3053 * check here, since direct calls to the page allocator that are
3054 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3055 * outside memcg core. We are mostly concerned with cache allocations,
3056 * and by having this test at memcg_kmem_get_cache, we are already able
3057 * to relay the allocation to the root cache and bypass the memcg cache
3058 * altogether.
6d42c232
GC
3059 *
3060 * There is one exception, though: the SLUB allocator does not create
3061 * large order caches, but rather service large kmallocs directly from
3062 * the page allocator. Therefore, the following sequence when backed by
3063 * the SLUB allocator:
3064 *
f894ffa8
AM
3065 * memcg_stop_kmem_account();
3066 * kmalloc(<large_number>)
3067 * memcg_resume_kmem_account();
6d42c232
GC
3068 *
3069 * would effectively ignore the fact that we should skip accounting,
3070 * since it will drive us directly to this function without passing
3071 * through the cache selector memcg_kmem_get_cache. Such large
3072 * allocations are extremely rare but can happen, for instance, for the
3073 * cache arrays. We bring this test here.
3074 */
3075 if (!current->mm || current->memcg_kmem_skip_account)
3076 return true;
3077
df381975 3078 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 3079
cf2b8fbf 3080 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
3081 css_put(&memcg->css);
3082 return true;
3083 }
3084
3e32cb2e 3085 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
3086 if (!ret)
3087 *_memcg = memcg;
7ae1e1d0
GC
3088
3089 css_put(&memcg->css);
3090 return (ret == 0);
3091}
3092
3093void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3094 int order)
3095{
3096 struct page_cgroup *pc;
3097
3098 VM_BUG_ON(mem_cgroup_is_root(memcg));
3099
3100 /* The page allocation failed. Revert */
3101 if (!page) {
3e32cb2e 3102 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
3103 return;
3104 }
7ae1e1d0 3105 pc = lookup_page_cgroup(page);
7ae1e1d0 3106 pc->mem_cgroup = memcg;
7ae1e1d0
GC
3107}
3108
3109void __memcg_kmem_uncharge_pages(struct page *page, int order)
3110{
29833315
JW
3111 struct page_cgroup *pc = lookup_page_cgroup(page);
3112 struct mem_cgroup *memcg = pc->mem_cgroup;
7ae1e1d0 3113
7ae1e1d0
GC
3114 if (!memcg)
3115 return;
3116
309381fe 3117 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 3118
3e32cb2e 3119 memcg_uncharge_kmem(memcg, 1 << order);
29833315 3120 pc->mem_cgroup = NULL;
7ae1e1d0 3121}
1f458cbf 3122#else
776ed0f0 3123static inline void memcg_unregister_all_caches(struct mem_cgroup *memcg)
1f458cbf
GC
3124{
3125}
7ae1e1d0
GC
3126#endif /* CONFIG_MEMCG_KMEM */
3127
ca3e0214
KH
3128#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3129
ca3e0214
KH
3130/*
3131 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3132 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3133 * charge/uncharge will be never happen and move_account() is done under
3134 * compound_lock(), so we don't have to take care of races.
ca3e0214 3135 */
e94c8a9c 3136void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3137{
29833315 3138 struct page_cgroup *pc = lookup_page_cgroup(head);
e94c8a9c 3139 int i;
ca3e0214 3140
3d37c4a9
KH
3141 if (mem_cgroup_disabled())
3142 return;
b070e65c 3143
29833315
JW
3144 for (i = 1; i < HPAGE_PMD_NR; i++)
3145 pc[i].mem_cgroup = pc[0].mem_cgroup;
b9982f8d 3146
29833315 3147 __this_cpu_sub(pc[0].mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 3148 HPAGE_PMD_NR);
ca3e0214 3149}
12d27107 3150#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3151
f817ed48 3152/**
de3638d9 3153 * mem_cgroup_move_account - move account of the page
5564e88b 3154 * @page: the page
7ec99d62 3155 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3156 * @pc: page_cgroup of the page.
3157 * @from: mem_cgroup which the page is moved from.
3158 * @to: mem_cgroup which the page is moved to. @from != @to.
3159 *
3160 * The caller must confirm following.
08e552c6 3161 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3162 * - compound_lock is held when nr_pages > 1
f817ed48 3163 *
2f3479b1
KH
3164 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3165 * from old cgroup.
f817ed48 3166 */
7ec99d62
JW
3167static int mem_cgroup_move_account(struct page *page,
3168 unsigned int nr_pages,
3169 struct page_cgroup *pc,
3170 struct mem_cgroup *from,
2f3479b1 3171 struct mem_cgroup *to)
f817ed48 3172{
de3638d9
JW
3173 unsigned long flags;
3174 int ret;
987eba66 3175
f817ed48 3176 VM_BUG_ON(from == to);
309381fe 3177 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3178 /*
3179 * The page is isolated from LRU. So, collapse function
3180 * will not handle this page. But page splitting can happen.
3181 * Do this check under compound_page_lock(). The caller should
3182 * hold it.
3183 */
3184 ret = -EBUSY;
7ec99d62 3185 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3186 goto out;
3187
0a31bc97
JW
3188 /*
3189 * Prevent mem_cgroup_migrate() from looking at pc->mem_cgroup
3190 * of its source page while we change it: page migration takes
3191 * both pages off the LRU, but page cache replacement doesn't.
3192 */
3193 if (!trylock_page(page))
3194 goto out;
de3638d9
JW
3195
3196 ret = -EINVAL;
29833315 3197 if (pc->mem_cgroup != from)
0a31bc97 3198 goto out_unlock;
de3638d9 3199
354a4783 3200 spin_lock_irqsave(&from->move_lock, flags);
f817ed48 3201
0a31bc97 3202 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
3203 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3204 nr_pages);
3205 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3206 nr_pages);
3207 }
3ea67d06 3208
59d1d256
JW
3209 if (PageWriteback(page)) {
3210 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3211 nr_pages);
3212 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3213 nr_pages);
3214 }
3ea67d06 3215
0a31bc97
JW
3216 /*
3217 * It is safe to change pc->mem_cgroup here because the page
3218 * is referenced, charged, and isolated - we can't race with
3219 * uncharging, charging, migration, or LRU putback.
3220 */
d69b042f 3221
854ffa8d 3222 /* caller should have done css_get */
08e552c6 3223 pc->mem_cgroup = to;
354a4783
JW
3224 spin_unlock_irqrestore(&from->move_lock, flags);
3225
de3638d9 3226 ret = 0;
0a31bc97
JW
3227
3228 local_irq_disable();
3229 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 3230 memcg_check_events(to, page);
0a31bc97 3231 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 3232 memcg_check_events(from, page);
0a31bc97
JW
3233 local_irq_enable();
3234out_unlock:
3235 unlock_page(page);
de3638d9 3236out:
f817ed48
KH
3237 return ret;
3238}
3239
c255a458 3240#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
3241static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3242 bool charge)
d13d1443 3243{
0a31bc97
JW
3244 int val = (charge) ? 1 : -1;
3245 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 3246}
02491447
DN
3247
3248/**
3249 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3250 * @entry: swap entry to be moved
3251 * @from: mem_cgroup which the entry is moved from
3252 * @to: mem_cgroup which the entry is moved to
3253 *
3254 * It succeeds only when the swap_cgroup's record for this entry is the same
3255 * as the mem_cgroup's id of @from.
3256 *
3257 * Returns 0 on success, -EINVAL on failure.
3258 *
3e32cb2e 3259 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3260 * both res and memsw, and called css_get().
3261 */
3262static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3263 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3264{
3265 unsigned short old_id, new_id;
3266
34c00c31
LZ
3267 old_id = mem_cgroup_id(from);
3268 new_id = mem_cgroup_id(to);
02491447
DN
3269
3270 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3271 mem_cgroup_swap_statistics(from, false);
483c30b5 3272 mem_cgroup_swap_statistics(to, true);
02491447 3273 /*
483c30b5 3274 * This function is only called from task migration context now.
3e32cb2e 3275 * It postpones page_counter and refcount handling till the end
483c30b5 3276 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
3277 * improvement. But we cannot postpone css_get(to) because if
3278 * the process that has been moved to @to does swap-in, the
3279 * refcount of @to might be decreased to 0.
3280 *
3281 * We are in attach() phase, so the cgroup is guaranteed to be
3282 * alive, so we can just call css_get().
02491447 3283 */
4050377b 3284 css_get(&to->css);
02491447
DN
3285 return 0;
3286 }
3287 return -EINVAL;
3288}
3289#else
3290static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3291 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3292{
3293 return -EINVAL;
3294}
8c7c6e34 3295#endif
d13d1443 3296
f212ad7c
DN
3297#ifdef CONFIG_DEBUG_VM
3298static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3299{
3300 struct page_cgroup *pc;
3301
3302 pc = lookup_page_cgroup(page);
cfa44946
JW
3303 /*
3304 * Can be NULL while feeding pages into the page allocator for
3305 * the first time, i.e. during boot or memory hotplug;
3306 * or when mem_cgroup_disabled().
3307 */
29833315 3308 if (likely(pc) && pc->mem_cgroup)
f212ad7c
DN
3309 return pc;
3310 return NULL;
3311}
3312
3313bool mem_cgroup_bad_page_check(struct page *page)
3314{
3315 if (mem_cgroup_disabled())
3316 return false;
3317
3318 return lookup_page_cgroup_used(page) != NULL;
3319}
3320
3321void mem_cgroup_print_bad_page(struct page *page)
3322{
3323 struct page_cgroup *pc;
3324
3325 pc = lookup_page_cgroup_used(page);
29833315
JW
3326 if (pc)
3327 pr_alert("pc:%p pc->mem_cgroup:%p\n", pc, pc->mem_cgroup);
f212ad7c
DN
3328}
3329#endif
3330
3e32cb2e
JW
3331static DEFINE_MUTEX(memcg_limit_mutex);
3332
d38d2a75 3333static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 3334 unsigned long limit)
628f4235 3335{
3e32cb2e
JW
3336 unsigned long curusage;
3337 unsigned long oldusage;
3338 bool enlarge = false;
81d39c20 3339 int retry_count;
3e32cb2e 3340 int ret;
81d39c20
KH
3341
3342 /*
3343 * For keeping hierarchical_reclaim simple, how long we should retry
3344 * is depends on callers. We set our retry-count to be function
3345 * of # of children which we should visit in this loop.
3346 */
3e32cb2e
JW
3347 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3348 mem_cgroup_count_children(memcg);
81d39c20 3349
3e32cb2e 3350 oldusage = page_counter_read(&memcg->memory);
628f4235 3351
3e32cb2e 3352 do {
628f4235
KH
3353 if (signal_pending(current)) {
3354 ret = -EINTR;
3355 break;
3356 }
3e32cb2e
JW
3357
3358 mutex_lock(&memcg_limit_mutex);
3359 if (limit > memcg->memsw.limit) {
3360 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3361 ret = -EINVAL;
628f4235
KH
3362 break;
3363 }
3e32cb2e
JW
3364 if (limit > memcg->memory.limit)
3365 enlarge = true;
3366 ret = page_counter_limit(&memcg->memory, limit);
3367 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3368
3369 if (!ret)
3370 break;
3371
b70a2a21
JW
3372 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3373
3e32cb2e 3374 curusage = page_counter_read(&memcg->memory);
81d39c20 3375 /* Usage is reduced ? */
f894ffa8 3376 if (curusage >= oldusage)
81d39c20
KH
3377 retry_count--;
3378 else
3379 oldusage = curusage;
3e32cb2e
JW
3380 } while (retry_count);
3381
3c11ecf4
KH
3382 if (!ret && enlarge)
3383 memcg_oom_recover(memcg);
14797e23 3384
8c7c6e34
KH
3385 return ret;
3386}
3387
338c8431 3388static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 3389 unsigned long limit)
8c7c6e34 3390{
3e32cb2e
JW
3391 unsigned long curusage;
3392 unsigned long oldusage;
3393 bool enlarge = false;
81d39c20 3394 int retry_count;
3e32cb2e 3395 int ret;
8c7c6e34 3396
81d39c20 3397 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3398 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3399 mem_cgroup_count_children(memcg);
3400
3401 oldusage = page_counter_read(&memcg->memsw);
3402
3403 do {
8c7c6e34
KH
3404 if (signal_pending(current)) {
3405 ret = -EINTR;
3406 break;
3407 }
3e32cb2e
JW
3408
3409 mutex_lock(&memcg_limit_mutex);
3410 if (limit < memcg->memory.limit) {
3411 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3412 ret = -EINVAL;
8c7c6e34
KH
3413 break;
3414 }
3e32cb2e
JW
3415 if (limit > memcg->memsw.limit)
3416 enlarge = true;
3417 ret = page_counter_limit(&memcg->memsw, limit);
3418 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3419
3420 if (!ret)
3421 break;
3422
b70a2a21
JW
3423 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3424
3e32cb2e 3425 curusage = page_counter_read(&memcg->memsw);
81d39c20 3426 /* Usage is reduced ? */
8c7c6e34 3427 if (curusage >= oldusage)
628f4235 3428 retry_count--;
81d39c20
KH
3429 else
3430 oldusage = curusage;
3e32cb2e
JW
3431 } while (retry_count);
3432
3c11ecf4
KH
3433 if (!ret && enlarge)
3434 memcg_oom_recover(memcg);
3e32cb2e 3435
628f4235
KH
3436 return ret;
3437}
3438
0608f43d
AM
3439unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3440 gfp_t gfp_mask,
3441 unsigned long *total_scanned)
3442{
3443 unsigned long nr_reclaimed = 0;
3444 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3445 unsigned long reclaimed;
3446 int loop = 0;
3447 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3448 unsigned long excess;
0608f43d
AM
3449 unsigned long nr_scanned;
3450
3451 if (order > 0)
3452 return 0;
3453
3454 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3455 /*
3456 * This loop can run a while, specially if mem_cgroup's continuously
3457 * keep exceeding their soft limit and putting the system under
3458 * pressure
3459 */
3460 do {
3461 if (next_mz)
3462 mz = next_mz;
3463 else
3464 mz = mem_cgroup_largest_soft_limit_node(mctz);
3465 if (!mz)
3466 break;
3467
3468 nr_scanned = 0;
3469 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3470 gfp_mask, &nr_scanned);
3471 nr_reclaimed += reclaimed;
3472 *total_scanned += nr_scanned;
0a31bc97 3473 spin_lock_irq(&mctz->lock);
bc2f2e7f 3474 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3475
3476 /*
3477 * If we failed to reclaim anything from this memory cgroup
3478 * it is time to move on to the next cgroup
3479 */
3480 next_mz = NULL;
bc2f2e7f
VD
3481 if (!reclaimed)
3482 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3483
3e32cb2e 3484 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3485 /*
3486 * One school of thought says that we should not add
3487 * back the node to the tree if reclaim returns 0.
3488 * But our reclaim could return 0, simply because due
3489 * to priority we are exposing a smaller subset of
3490 * memory to reclaim from. Consider this as a longer
3491 * term TODO.
3492 */
3493 /* If excess == 0, no tree ops */
cf2c8127 3494 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3495 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3496 css_put(&mz->memcg->css);
3497 loop++;
3498 /*
3499 * Could not reclaim anything and there are no more
3500 * mem cgroups to try or we seem to be looping without
3501 * reclaiming anything.
3502 */
3503 if (!nr_reclaimed &&
3504 (next_mz == NULL ||
3505 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3506 break;
3507 } while (!nr_reclaimed);
3508 if (next_mz)
3509 css_put(&next_mz->memcg->css);
3510 return nr_reclaimed;
3511}
3512
ea280e7b
TH
3513/*
3514 * Test whether @memcg has children, dead or alive. Note that this
3515 * function doesn't care whether @memcg has use_hierarchy enabled and
3516 * returns %true if there are child csses according to the cgroup
3517 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3518 */
b5f99b53
GC
3519static inline bool memcg_has_children(struct mem_cgroup *memcg)
3520{
ea280e7b
TH
3521 bool ret;
3522
696ac172 3523 /*
ea280e7b
TH
3524 * The lock does not prevent addition or deletion of children, but
3525 * it prevents a new child from being initialized based on this
3526 * parent in css_online(), so it's enough to decide whether
3527 * hierarchically inherited attributes can still be changed or not.
696ac172 3528 */
ea280e7b
TH
3529 lockdep_assert_held(&memcg_create_mutex);
3530
3531 rcu_read_lock();
3532 ret = css_next_child(NULL, &memcg->css);
3533 rcu_read_unlock();
3534 return ret;
b5f99b53
GC
3535}
3536
c26251f9
MH
3537/*
3538 * Reclaims as many pages from the given memcg as possible and moves
3539 * the rest to the parent.
3540 *
3541 * Caller is responsible for holding css reference for memcg.
3542 */
3543static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3544{
3545 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3546
c1e862c1
KH
3547 /* we call try-to-free pages for make this cgroup empty */
3548 lru_add_drain_all();
f817ed48 3549 /* try to free all pages in this cgroup */
3e32cb2e 3550 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3551 int progress;
c1e862c1 3552
c26251f9
MH
3553 if (signal_pending(current))
3554 return -EINTR;
3555
b70a2a21
JW
3556 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3557 GFP_KERNEL, true);
c1e862c1 3558 if (!progress) {
f817ed48 3559 nr_retries--;
c1e862c1 3560 /* maybe some writeback is necessary */
8aa7e847 3561 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3562 }
f817ed48
KH
3563
3564 }
ab5196c2
MH
3565
3566 return 0;
cc847582
KH
3567}
3568
6770c64e
TH
3569static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3570 char *buf, size_t nbytes,
3571 loff_t off)
c1e862c1 3572{
6770c64e 3573 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3574
d8423011
MH
3575 if (mem_cgroup_is_root(memcg))
3576 return -EINVAL;
6770c64e 3577 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3578}
3579
182446d0
TH
3580static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3581 struct cftype *cft)
18f59ea7 3582{
182446d0 3583 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3584}
3585
182446d0
TH
3586static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3587 struct cftype *cft, u64 val)
18f59ea7
BS
3588{
3589 int retval = 0;
182446d0 3590 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3591 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3592
0999821b 3593 mutex_lock(&memcg_create_mutex);
567fb435
GC
3594
3595 if (memcg->use_hierarchy == val)
3596 goto out;
3597
18f59ea7 3598 /*
af901ca1 3599 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3600 * in the child subtrees. If it is unset, then the change can
3601 * occur, provided the current cgroup has no children.
3602 *
3603 * For the root cgroup, parent_mem is NULL, we allow value to be
3604 * set if there are no children.
3605 */
c0ff4b85 3606 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3607 (val == 1 || val == 0)) {
ea280e7b 3608 if (!memcg_has_children(memcg))
c0ff4b85 3609 memcg->use_hierarchy = val;
18f59ea7
BS
3610 else
3611 retval = -EBUSY;
3612 } else
3613 retval = -EINVAL;
567fb435
GC
3614
3615out:
0999821b 3616 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3617
3618 return retval;
3619}
3620
3e32cb2e
JW
3621static unsigned long tree_stat(struct mem_cgroup *memcg,
3622 enum mem_cgroup_stat_index idx)
ce00a967
JW
3623{
3624 struct mem_cgroup *iter;
3625 long val = 0;
3626
3627 /* Per-cpu values can be negative, use a signed accumulator */
3628 for_each_mem_cgroup_tree(iter, memcg)
3629 val += mem_cgroup_read_stat(iter, idx);
3630
3631 if (val < 0) /* race ? */
3632 val = 0;
3633 return val;
3634}
3635
3636static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3637{
3638 u64 val;
3639
3e32cb2e
JW
3640 if (mem_cgroup_is_root(memcg)) {
3641 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3642 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3643 if (swap)
3644 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3645 } else {
ce00a967 3646 if (!swap)
3e32cb2e 3647 val = page_counter_read(&memcg->memory);
ce00a967 3648 else
3e32cb2e 3649 val = page_counter_read(&memcg->memsw);
ce00a967 3650 }
ce00a967
JW
3651 return val << PAGE_SHIFT;
3652}
3653
3e32cb2e
JW
3654enum {
3655 RES_USAGE,
3656 RES_LIMIT,
3657 RES_MAX_USAGE,
3658 RES_FAILCNT,
3659 RES_SOFT_LIMIT,
3660};
ce00a967 3661
791badbd 3662static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3663 struct cftype *cft)
8cdea7c0 3664{
182446d0 3665 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3666 struct page_counter *counter;
af36f906 3667
3e32cb2e 3668 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3669 case _MEM:
3e32cb2e
JW
3670 counter = &memcg->memory;
3671 break;
8c7c6e34 3672 case _MEMSWAP:
3e32cb2e
JW
3673 counter = &memcg->memsw;
3674 break;
510fc4e1 3675 case _KMEM:
3e32cb2e 3676 counter = &memcg->kmem;
510fc4e1 3677 break;
8c7c6e34
KH
3678 default:
3679 BUG();
8c7c6e34 3680 }
3e32cb2e
JW
3681
3682 switch (MEMFILE_ATTR(cft->private)) {
3683 case RES_USAGE:
3684 if (counter == &memcg->memory)
3685 return mem_cgroup_usage(memcg, false);
3686 if (counter == &memcg->memsw)
3687 return mem_cgroup_usage(memcg, true);
3688 return (u64)page_counter_read(counter) * PAGE_SIZE;
3689 case RES_LIMIT:
3690 return (u64)counter->limit * PAGE_SIZE;
3691 case RES_MAX_USAGE:
3692 return (u64)counter->watermark * PAGE_SIZE;
3693 case RES_FAILCNT:
3694 return counter->failcnt;
3695 case RES_SOFT_LIMIT:
3696 return (u64)memcg->soft_limit * PAGE_SIZE;
3697 default:
3698 BUG();
3699 }
8cdea7c0 3700}
510fc4e1 3701
510fc4e1 3702#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3703static int memcg_activate_kmem(struct mem_cgroup *memcg,
3704 unsigned long nr_pages)
d6441637
VD
3705{
3706 int err = 0;
3707 int memcg_id;
3708
3709 if (memcg_kmem_is_active(memcg))
3710 return 0;
3711
3712 /*
3713 * We are going to allocate memory for data shared by all memory
3714 * cgroups so let's stop accounting here.
3715 */
3716 memcg_stop_kmem_account();
3717
510fc4e1
GC
3718 /*
3719 * For simplicity, we won't allow this to be disabled. It also can't
3720 * be changed if the cgroup has children already, or if tasks had
3721 * already joined.
3722 *
3723 * If tasks join before we set the limit, a person looking at
3724 * kmem.usage_in_bytes will have no way to determine when it took
3725 * place, which makes the value quite meaningless.
3726 *
3727 * After it first became limited, changes in the value of the limit are
3728 * of course permitted.
510fc4e1 3729 */
0999821b 3730 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3731 if (cgroup_has_tasks(memcg->css.cgroup) ||
3732 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3733 err = -EBUSY;
3734 mutex_unlock(&memcg_create_mutex);
3735 if (err)
3736 goto out;
510fc4e1 3737
f3bb3043 3738 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3739 if (memcg_id < 0) {
3740 err = memcg_id;
3741 goto out;
3742 }
3743
d6441637
VD
3744 memcg->kmemcg_id = memcg_id;
3745 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
d6441637
VD
3746
3747 /*
3748 * We couldn't have accounted to this cgroup, because it hasn't got the
3749 * active bit set yet, so this should succeed.
3750 */
3e32cb2e 3751 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3752 VM_BUG_ON(err);
3753
3754 static_key_slow_inc(&memcg_kmem_enabled_key);
3755 /*
3756 * Setting the active bit after enabling static branching will
3757 * guarantee no one starts accounting before all call sites are
3758 * patched.
3759 */
3760 memcg_kmem_set_active(memcg);
510fc4e1 3761out:
d6441637
VD
3762 memcg_resume_kmem_account();
3763 return err;
d6441637
VD
3764}
3765
d6441637 3766static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3767 unsigned long limit)
d6441637
VD
3768{
3769 int ret;
3770
3e32cb2e 3771 mutex_lock(&memcg_limit_mutex);
d6441637 3772 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3773 ret = memcg_activate_kmem(memcg, limit);
d6441637 3774 else
3e32cb2e
JW
3775 ret = page_counter_limit(&memcg->kmem, limit);
3776 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3777 return ret;
3778}
3779
55007d84 3780static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3781{
55007d84 3782 int ret = 0;
510fc4e1 3783 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3784
d6441637
VD
3785 if (!parent)
3786 return 0;
55007d84 3787
8c0145b6 3788 mutex_lock(&memcg_limit_mutex);
55007d84 3789 /*
d6441637
VD
3790 * If the parent cgroup is not kmem-active now, it cannot be activated
3791 * after this point, because it has at least one child already.
55007d84 3792 */
d6441637 3793 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3794 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3795 mutex_unlock(&memcg_limit_mutex);
55007d84 3796 return ret;
510fc4e1 3797}
d6441637
VD
3798#else
3799static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3800 unsigned long limit)
d6441637
VD
3801{
3802 return -EINVAL;
3803}
6d043990 3804#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3805
628f4235
KH
3806/*
3807 * The user of this function is...
3808 * RES_LIMIT.
3809 */
451af504
TH
3810static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3811 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3812{
451af504 3813 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3814 unsigned long nr_pages;
628f4235
KH
3815 int ret;
3816
451af504 3817 buf = strstrip(buf);
3e32cb2e
JW
3818 ret = page_counter_memparse(buf, &nr_pages);
3819 if (ret)
3820 return ret;
af36f906 3821
3e32cb2e 3822 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3823 case RES_LIMIT:
4b3bde4c
BS
3824 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3825 ret = -EINVAL;
3826 break;
3827 }
3e32cb2e
JW
3828 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3829 case _MEM:
3830 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3831 break;
3e32cb2e
JW
3832 case _MEMSWAP:
3833 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3834 break;
3e32cb2e
JW
3835 case _KMEM:
3836 ret = memcg_update_kmem_limit(memcg, nr_pages);
3837 break;
3838 }
296c81d8 3839 break;
3e32cb2e
JW
3840 case RES_SOFT_LIMIT:
3841 memcg->soft_limit = nr_pages;
3842 ret = 0;
628f4235
KH
3843 break;
3844 }
451af504 3845 return ret ?: nbytes;
8cdea7c0
BS
3846}
3847
6770c64e
TH
3848static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3849 size_t nbytes, loff_t off)
c84872e1 3850{
6770c64e 3851 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3852 struct page_counter *counter;
c84872e1 3853
3e32cb2e
JW
3854 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3855 case _MEM:
3856 counter = &memcg->memory;
3857 break;
3858 case _MEMSWAP:
3859 counter = &memcg->memsw;
3860 break;
3861 case _KMEM:
3862 counter = &memcg->kmem;
3863 break;
3864 default:
3865 BUG();
3866 }
af36f906 3867
3e32cb2e 3868 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3869 case RES_MAX_USAGE:
3e32cb2e 3870 page_counter_reset_watermark(counter);
29f2a4da
PE
3871 break;
3872 case RES_FAILCNT:
3e32cb2e 3873 counter->failcnt = 0;
29f2a4da 3874 break;
3e32cb2e
JW
3875 default:
3876 BUG();
29f2a4da 3877 }
f64c3f54 3878
6770c64e 3879 return nbytes;
c84872e1
PE
3880}
3881
182446d0 3882static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3883 struct cftype *cft)
3884{
182446d0 3885 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3886}
3887
02491447 3888#ifdef CONFIG_MMU
182446d0 3889static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3890 struct cftype *cft, u64 val)
3891{
182446d0 3892 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
3893
3894 if (val >= (1 << NR_MOVE_TYPE))
3895 return -EINVAL;
ee5e8472 3896
7dc74be0 3897 /*
ee5e8472
GC
3898 * No kind of locking is needed in here, because ->can_attach() will
3899 * check this value once in the beginning of the process, and then carry
3900 * on with stale data. This means that changes to this value will only
3901 * affect task migrations starting after the change.
7dc74be0 3902 */
c0ff4b85 3903 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3904 return 0;
3905}
02491447 3906#else
182446d0 3907static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3908 struct cftype *cft, u64 val)
3909{
3910 return -ENOSYS;
3911}
3912#endif
7dc74be0 3913
406eb0c9 3914#ifdef CONFIG_NUMA
2da8ca82 3915static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3916{
25485de6
GT
3917 struct numa_stat {
3918 const char *name;
3919 unsigned int lru_mask;
3920 };
3921
3922 static const struct numa_stat stats[] = {
3923 { "total", LRU_ALL },
3924 { "file", LRU_ALL_FILE },
3925 { "anon", LRU_ALL_ANON },
3926 { "unevictable", BIT(LRU_UNEVICTABLE) },
3927 };
3928 const struct numa_stat *stat;
406eb0c9 3929 int nid;
25485de6 3930 unsigned long nr;
2da8ca82 3931 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3932
25485de6
GT
3933 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3934 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3935 seq_printf(m, "%s=%lu", stat->name, nr);
3936 for_each_node_state(nid, N_MEMORY) {
3937 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3938 stat->lru_mask);
3939 seq_printf(m, " N%d=%lu", nid, nr);
3940 }
3941 seq_putc(m, '\n');
406eb0c9 3942 }
406eb0c9 3943
071aee13
YH
3944 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3945 struct mem_cgroup *iter;
3946
3947 nr = 0;
3948 for_each_mem_cgroup_tree(iter, memcg)
3949 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3950 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3951 for_each_node_state(nid, N_MEMORY) {
3952 nr = 0;
3953 for_each_mem_cgroup_tree(iter, memcg)
3954 nr += mem_cgroup_node_nr_lru_pages(
3955 iter, nid, stat->lru_mask);
3956 seq_printf(m, " N%d=%lu", nid, nr);
3957 }
3958 seq_putc(m, '\n');
406eb0c9 3959 }
406eb0c9 3960
406eb0c9
YH
3961 return 0;
3962}
3963#endif /* CONFIG_NUMA */
3964
af7c4b0e
JW
3965static inline void mem_cgroup_lru_names_not_uptodate(void)
3966{
3967 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3968}
3969
2da8ca82 3970static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3971{
2da8ca82 3972 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3973 unsigned long memory, memsw;
af7c4b0e
JW
3974 struct mem_cgroup *mi;
3975 unsigned int i;
406eb0c9 3976
af7c4b0e 3977 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3978 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3979 continue;
af7c4b0e
JW
3980 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3981 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3982 }
7b854121 3983
af7c4b0e
JW
3984 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3985 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3986 mem_cgroup_read_events(memcg, i));
3987
3988 for (i = 0; i < NR_LRU_LISTS; i++)
3989 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3990 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3991
14067bb3 3992 /* Hierarchical information */
3e32cb2e
JW
3993 memory = memsw = PAGE_COUNTER_MAX;
3994 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3995 memory = min(memory, mi->memory.limit);
3996 memsw = min(memsw, mi->memsw.limit);
fee7b548 3997 }
3e32cb2e
JW
3998 seq_printf(m, "hierarchical_memory_limit %llu\n",
3999 (u64)memory * PAGE_SIZE);
4000 if (do_swap_account)
4001 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4002 (u64)memsw * PAGE_SIZE);
7f016ee8 4003
af7c4b0e
JW
4004 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4005 long long val = 0;
4006
bff6bb83 4007 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4008 continue;
af7c4b0e
JW
4009 for_each_mem_cgroup_tree(mi, memcg)
4010 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4011 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4012 }
4013
4014 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4015 unsigned long long val = 0;
4016
4017 for_each_mem_cgroup_tree(mi, memcg)
4018 val += mem_cgroup_read_events(mi, i);
4019 seq_printf(m, "total_%s %llu\n",
4020 mem_cgroup_events_names[i], val);
4021 }
4022
4023 for (i = 0; i < NR_LRU_LISTS; i++) {
4024 unsigned long long val = 0;
4025
4026 for_each_mem_cgroup_tree(mi, memcg)
4027 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4028 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4029 }
14067bb3 4030
7f016ee8 4031#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4032 {
4033 int nid, zid;
4034 struct mem_cgroup_per_zone *mz;
89abfab1 4035 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4036 unsigned long recent_rotated[2] = {0, 0};
4037 unsigned long recent_scanned[2] = {0, 0};
4038
4039 for_each_online_node(nid)
4040 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 4041 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 4042 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4043
89abfab1
HD
4044 recent_rotated[0] += rstat->recent_rotated[0];
4045 recent_rotated[1] += rstat->recent_rotated[1];
4046 recent_scanned[0] += rstat->recent_scanned[0];
4047 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4048 }
78ccf5b5
JW
4049 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4050 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4051 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4052 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4053 }
4054#endif
4055
d2ceb9b7
KH
4056 return 0;
4057}
4058
182446d0
TH
4059static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4060 struct cftype *cft)
a7885eb8 4061{
182446d0 4062 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4063
1f4c025b 4064 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4065}
4066
182446d0
TH
4067static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4068 struct cftype *cft, u64 val)
a7885eb8 4069{
182446d0 4070 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4071
3dae7fec 4072 if (val > 100)
a7885eb8
KM
4073 return -EINVAL;
4074
14208b0e 4075 if (css->parent)
3dae7fec
JW
4076 memcg->swappiness = val;
4077 else
4078 vm_swappiness = val;
068b38c1 4079
a7885eb8
KM
4080 return 0;
4081}
4082
2e72b634
KS
4083static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4084{
4085 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4086 unsigned long usage;
2e72b634
KS
4087 int i;
4088
4089 rcu_read_lock();
4090 if (!swap)
2c488db2 4091 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4092 else
2c488db2 4093 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4094
4095 if (!t)
4096 goto unlock;
4097
ce00a967 4098 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4099
4100 /*
748dad36 4101 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4102 * If it's not true, a threshold was crossed after last
4103 * call of __mem_cgroup_threshold().
4104 */
5407a562 4105 i = t->current_threshold;
2e72b634
KS
4106
4107 /*
4108 * Iterate backward over array of thresholds starting from
4109 * current_threshold and check if a threshold is crossed.
4110 * If none of thresholds below usage is crossed, we read
4111 * only one element of the array here.
4112 */
4113 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4114 eventfd_signal(t->entries[i].eventfd, 1);
4115
4116 /* i = current_threshold + 1 */
4117 i++;
4118
4119 /*
4120 * Iterate forward over array of thresholds starting from
4121 * current_threshold+1 and check if a threshold is crossed.
4122 * If none of thresholds above usage is crossed, we read
4123 * only one element of the array here.
4124 */
4125 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4126 eventfd_signal(t->entries[i].eventfd, 1);
4127
4128 /* Update current_threshold */
5407a562 4129 t->current_threshold = i - 1;
2e72b634
KS
4130unlock:
4131 rcu_read_unlock();
4132}
4133
4134static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4135{
ad4ca5f4
KS
4136 while (memcg) {
4137 __mem_cgroup_threshold(memcg, false);
4138 if (do_swap_account)
4139 __mem_cgroup_threshold(memcg, true);
4140
4141 memcg = parent_mem_cgroup(memcg);
4142 }
2e72b634
KS
4143}
4144
4145static int compare_thresholds(const void *a, const void *b)
4146{
4147 const struct mem_cgroup_threshold *_a = a;
4148 const struct mem_cgroup_threshold *_b = b;
4149
2bff24a3
GT
4150 if (_a->threshold > _b->threshold)
4151 return 1;
4152
4153 if (_a->threshold < _b->threshold)
4154 return -1;
4155
4156 return 0;
2e72b634
KS
4157}
4158
c0ff4b85 4159static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4160{
4161 struct mem_cgroup_eventfd_list *ev;
4162
2bcf2e92
MH
4163 spin_lock(&memcg_oom_lock);
4164
c0ff4b85 4165 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4166 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4167
4168 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4169 return 0;
4170}
4171
c0ff4b85 4172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4173{
7d74b06f
KH
4174 struct mem_cgroup *iter;
4175
c0ff4b85 4176 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4177 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4178}
4179
59b6f873 4180static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4181 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4182{
2c488db2
KS
4183 struct mem_cgroup_thresholds *thresholds;
4184 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4185 unsigned long threshold;
4186 unsigned long usage;
2c488db2 4187 int i, size, ret;
2e72b634 4188
3e32cb2e 4189 ret = page_counter_memparse(args, &threshold);
2e72b634
KS
4190 if (ret)
4191 return ret;
4192
4193 mutex_lock(&memcg->thresholds_lock);
2c488db2 4194
05b84301 4195 if (type == _MEM) {
2c488db2 4196 thresholds = &memcg->thresholds;
ce00a967 4197 usage = mem_cgroup_usage(memcg, false);
05b84301 4198 } else if (type == _MEMSWAP) {
2c488db2 4199 thresholds = &memcg->memsw_thresholds;
ce00a967 4200 usage = mem_cgroup_usage(memcg, true);
05b84301 4201 } else
2e72b634
KS
4202 BUG();
4203
2e72b634 4204 /* Check if a threshold crossed before adding a new one */
2c488db2 4205 if (thresholds->primary)
2e72b634
KS
4206 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4207
2c488db2 4208 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4209
4210 /* Allocate memory for new array of thresholds */
2c488db2 4211 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4212 GFP_KERNEL);
2c488db2 4213 if (!new) {
2e72b634
KS
4214 ret = -ENOMEM;
4215 goto unlock;
4216 }
2c488db2 4217 new->size = size;
2e72b634
KS
4218
4219 /* Copy thresholds (if any) to new array */
2c488db2
KS
4220 if (thresholds->primary) {
4221 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4222 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4223 }
4224
2e72b634 4225 /* Add new threshold */
2c488db2
KS
4226 new->entries[size - 1].eventfd = eventfd;
4227 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4228
4229 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4230 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4231 compare_thresholds, NULL);
4232
4233 /* Find current threshold */
2c488db2 4234 new->current_threshold = -1;
2e72b634 4235 for (i = 0; i < size; i++) {
748dad36 4236 if (new->entries[i].threshold <= usage) {
2e72b634 4237 /*
2c488db2
KS
4238 * new->current_threshold will not be used until
4239 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4240 * it here.
4241 */
2c488db2 4242 ++new->current_threshold;
748dad36
SZ
4243 } else
4244 break;
2e72b634
KS
4245 }
4246
2c488db2
KS
4247 /* Free old spare buffer and save old primary buffer as spare */
4248 kfree(thresholds->spare);
4249 thresholds->spare = thresholds->primary;
4250
4251 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4252
907860ed 4253 /* To be sure that nobody uses thresholds */
2e72b634
KS
4254 synchronize_rcu();
4255
2e72b634
KS
4256unlock:
4257 mutex_unlock(&memcg->thresholds_lock);
4258
4259 return ret;
4260}
4261
59b6f873 4262static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4263 struct eventfd_ctx *eventfd, const char *args)
4264{
59b6f873 4265 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4266}
4267
59b6f873 4268static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4269 struct eventfd_ctx *eventfd, const char *args)
4270{
59b6f873 4271 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4272}
4273
59b6f873 4274static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4275 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4276{
2c488db2
KS
4277 struct mem_cgroup_thresholds *thresholds;
4278 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4279 unsigned long usage;
2c488db2 4280 int i, j, size;
2e72b634
KS
4281
4282 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4283
4284 if (type == _MEM) {
2c488db2 4285 thresholds = &memcg->thresholds;
ce00a967 4286 usage = mem_cgroup_usage(memcg, false);
05b84301 4287 } else if (type == _MEMSWAP) {
2c488db2 4288 thresholds = &memcg->memsw_thresholds;
ce00a967 4289 usage = mem_cgroup_usage(memcg, true);
05b84301 4290 } else
2e72b634
KS
4291 BUG();
4292
371528ca
AV
4293 if (!thresholds->primary)
4294 goto unlock;
4295
2e72b634
KS
4296 /* Check if a threshold crossed before removing */
4297 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4298
4299 /* Calculate new number of threshold */
2c488db2
KS
4300 size = 0;
4301 for (i = 0; i < thresholds->primary->size; i++) {
4302 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4303 size++;
4304 }
4305
2c488db2 4306 new = thresholds->spare;
907860ed 4307
2e72b634
KS
4308 /* Set thresholds array to NULL if we don't have thresholds */
4309 if (!size) {
2c488db2
KS
4310 kfree(new);
4311 new = NULL;
907860ed 4312 goto swap_buffers;
2e72b634
KS
4313 }
4314
2c488db2 4315 new->size = size;
2e72b634
KS
4316
4317 /* Copy thresholds and find current threshold */
2c488db2
KS
4318 new->current_threshold = -1;
4319 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4320 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4321 continue;
4322
2c488db2 4323 new->entries[j] = thresholds->primary->entries[i];
748dad36 4324 if (new->entries[j].threshold <= usage) {
2e72b634 4325 /*
2c488db2 4326 * new->current_threshold will not be used
2e72b634
KS
4327 * until rcu_assign_pointer(), so it's safe to increment
4328 * it here.
4329 */
2c488db2 4330 ++new->current_threshold;
2e72b634
KS
4331 }
4332 j++;
4333 }
4334
907860ed 4335swap_buffers:
2c488db2
KS
4336 /* Swap primary and spare array */
4337 thresholds->spare = thresholds->primary;
8c757763
SZ
4338 /* If all events are unregistered, free the spare array */
4339 if (!new) {
4340 kfree(thresholds->spare);
4341 thresholds->spare = NULL;
4342 }
4343
2c488db2 4344 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4345
907860ed 4346 /* To be sure that nobody uses thresholds */
2e72b634 4347 synchronize_rcu();
371528ca 4348unlock:
2e72b634 4349 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4350}
c1e862c1 4351
59b6f873 4352static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4353 struct eventfd_ctx *eventfd)
4354{
59b6f873 4355 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4356}
4357
59b6f873 4358static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4359 struct eventfd_ctx *eventfd)
4360{
59b6f873 4361 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4362}
4363
59b6f873 4364static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4365 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4366{
9490ff27 4367 struct mem_cgroup_eventfd_list *event;
9490ff27 4368
9490ff27
KH
4369 event = kmalloc(sizeof(*event), GFP_KERNEL);
4370 if (!event)
4371 return -ENOMEM;
4372
1af8efe9 4373 spin_lock(&memcg_oom_lock);
9490ff27
KH
4374
4375 event->eventfd = eventfd;
4376 list_add(&event->list, &memcg->oom_notify);
4377
4378 /* already in OOM ? */
79dfdacc 4379 if (atomic_read(&memcg->under_oom))
9490ff27 4380 eventfd_signal(eventfd, 1);
1af8efe9 4381 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4382
4383 return 0;
4384}
4385
59b6f873 4386static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4387 struct eventfd_ctx *eventfd)
9490ff27 4388{
9490ff27 4389 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4390
1af8efe9 4391 spin_lock(&memcg_oom_lock);
9490ff27 4392
c0ff4b85 4393 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4394 if (ev->eventfd == eventfd) {
4395 list_del(&ev->list);
4396 kfree(ev);
4397 }
4398 }
4399
1af8efe9 4400 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4401}
4402
2da8ca82 4403static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4404{
2da8ca82 4405 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4406
791badbd
TH
4407 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4408 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4409 return 0;
4410}
4411
182446d0 4412static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4413 struct cftype *cft, u64 val)
4414{
182446d0 4415 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4416
4417 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4418 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4419 return -EINVAL;
4420
c0ff4b85 4421 memcg->oom_kill_disable = val;
4d845ebf 4422 if (!val)
c0ff4b85 4423 memcg_oom_recover(memcg);
3dae7fec 4424
3c11ecf4
KH
4425 return 0;
4426}
4427
c255a458 4428#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4429static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4430{
55007d84
GC
4431 int ret;
4432
2633d7a0 4433 memcg->kmemcg_id = -1;
55007d84
GC
4434 ret = memcg_propagate_kmem(memcg);
4435 if (ret)
4436 return ret;
2633d7a0 4437
1d62e436 4438 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4439}
e5671dfa 4440
10d5ebf4 4441static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4442{
1d62e436 4443 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4444}
e5671dfa 4445#else
cbe128e3 4446static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4447{
4448 return 0;
4449}
d1a4c0b3 4450
10d5ebf4
LZ
4451static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4452{
4453}
e5671dfa
GC
4454#endif
4455
3bc942f3
TH
4456/*
4457 * DO NOT USE IN NEW FILES.
4458 *
4459 * "cgroup.event_control" implementation.
4460 *
4461 * This is way over-engineered. It tries to support fully configurable
4462 * events for each user. Such level of flexibility is completely
4463 * unnecessary especially in the light of the planned unified hierarchy.
4464 *
4465 * Please deprecate this and replace with something simpler if at all
4466 * possible.
4467 */
4468
79bd9814
TH
4469/*
4470 * Unregister event and free resources.
4471 *
4472 * Gets called from workqueue.
4473 */
3bc942f3 4474static void memcg_event_remove(struct work_struct *work)
79bd9814 4475{
3bc942f3
TH
4476 struct mem_cgroup_event *event =
4477 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4478 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4479
4480 remove_wait_queue(event->wqh, &event->wait);
4481
59b6f873 4482 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4483
4484 /* Notify userspace the event is going away. */
4485 eventfd_signal(event->eventfd, 1);
4486
4487 eventfd_ctx_put(event->eventfd);
4488 kfree(event);
59b6f873 4489 css_put(&memcg->css);
79bd9814
TH
4490}
4491
4492/*
4493 * Gets called on POLLHUP on eventfd when user closes it.
4494 *
4495 * Called with wqh->lock held and interrupts disabled.
4496 */
3bc942f3
TH
4497static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4498 int sync, void *key)
79bd9814 4499{
3bc942f3
TH
4500 struct mem_cgroup_event *event =
4501 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4502 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4503 unsigned long flags = (unsigned long)key;
4504
4505 if (flags & POLLHUP) {
4506 /*
4507 * If the event has been detached at cgroup removal, we
4508 * can simply return knowing the other side will cleanup
4509 * for us.
4510 *
4511 * We can't race against event freeing since the other
4512 * side will require wqh->lock via remove_wait_queue(),
4513 * which we hold.
4514 */
fba94807 4515 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4516 if (!list_empty(&event->list)) {
4517 list_del_init(&event->list);
4518 /*
4519 * We are in atomic context, but cgroup_event_remove()
4520 * may sleep, so we have to call it in workqueue.
4521 */
4522 schedule_work(&event->remove);
4523 }
fba94807 4524 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4525 }
4526
4527 return 0;
4528}
4529
3bc942f3 4530static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4531 wait_queue_head_t *wqh, poll_table *pt)
4532{
3bc942f3
TH
4533 struct mem_cgroup_event *event =
4534 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4535
4536 event->wqh = wqh;
4537 add_wait_queue(wqh, &event->wait);
4538}
4539
4540/*
3bc942f3
TH
4541 * DO NOT USE IN NEW FILES.
4542 *
79bd9814
TH
4543 * Parse input and register new cgroup event handler.
4544 *
4545 * Input must be in format '<event_fd> <control_fd> <args>'.
4546 * Interpretation of args is defined by control file implementation.
4547 */
451af504
TH
4548static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4549 char *buf, size_t nbytes, loff_t off)
79bd9814 4550{
451af504 4551 struct cgroup_subsys_state *css = of_css(of);
fba94807 4552 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4553 struct mem_cgroup_event *event;
79bd9814
TH
4554 struct cgroup_subsys_state *cfile_css;
4555 unsigned int efd, cfd;
4556 struct fd efile;
4557 struct fd cfile;
fba94807 4558 const char *name;
79bd9814
TH
4559 char *endp;
4560 int ret;
4561
451af504
TH
4562 buf = strstrip(buf);
4563
4564 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4565 if (*endp != ' ')
4566 return -EINVAL;
451af504 4567 buf = endp + 1;
79bd9814 4568
451af504 4569 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4570 if ((*endp != ' ') && (*endp != '\0'))
4571 return -EINVAL;
451af504 4572 buf = endp + 1;
79bd9814
TH
4573
4574 event = kzalloc(sizeof(*event), GFP_KERNEL);
4575 if (!event)
4576 return -ENOMEM;
4577
59b6f873 4578 event->memcg = memcg;
79bd9814 4579 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4580 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4581 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4582 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4583
4584 efile = fdget(efd);
4585 if (!efile.file) {
4586 ret = -EBADF;
4587 goto out_kfree;
4588 }
4589
4590 event->eventfd = eventfd_ctx_fileget(efile.file);
4591 if (IS_ERR(event->eventfd)) {
4592 ret = PTR_ERR(event->eventfd);
4593 goto out_put_efile;
4594 }
4595
4596 cfile = fdget(cfd);
4597 if (!cfile.file) {
4598 ret = -EBADF;
4599 goto out_put_eventfd;
4600 }
4601
4602 /* the process need read permission on control file */
4603 /* AV: shouldn't we check that it's been opened for read instead? */
4604 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4605 if (ret < 0)
4606 goto out_put_cfile;
4607
fba94807
TH
4608 /*
4609 * Determine the event callbacks and set them in @event. This used
4610 * to be done via struct cftype but cgroup core no longer knows
4611 * about these events. The following is crude but the whole thing
4612 * is for compatibility anyway.
3bc942f3
TH
4613 *
4614 * DO NOT ADD NEW FILES.
fba94807
TH
4615 */
4616 name = cfile.file->f_dentry->d_name.name;
4617
4618 if (!strcmp(name, "memory.usage_in_bytes")) {
4619 event->register_event = mem_cgroup_usage_register_event;
4620 event->unregister_event = mem_cgroup_usage_unregister_event;
4621 } else if (!strcmp(name, "memory.oom_control")) {
4622 event->register_event = mem_cgroup_oom_register_event;
4623 event->unregister_event = mem_cgroup_oom_unregister_event;
4624 } else if (!strcmp(name, "memory.pressure_level")) {
4625 event->register_event = vmpressure_register_event;
4626 event->unregister_event = vmpressure_unregister_event;
4627 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4628 event->register_event = memsw_cgroup_usage_register_event;
4629 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4630 } else {
4631 ret = -EINVAL;
4632 goto out_put_cfile;
4633 }
4634
79bd9814 4635 /*
b5557c4c
TH
4636 * Verify @cfile should belong to @css. Also, remaining events are
4637 * automatically removed on cgroup destruction but the removal is
4638 * asynchronous, so take an extra ref on @css.
79bd9814 4639 */
ec903c0c
TH
4640 cfile_css = css_tryget_online_from_dir(cfile.file->f_dentry->d_parent,
4641 &memory_cgrp_subsys);
79bd9814 4642 ret = -EINVAL;
5a17f543 4643 if (IS_ERR(cfile_css))
79bd9814 4644 goto out_put_cfile;
5a17f543
TH
4645 if (cfile_css != css) {
4646 css_put(cfile_css);
79bd9814 4647 goto out_put_cfile;
5a17f543 4648 }
79bd9814 4649
451af504 4650 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4651 if (ret)
4652 goto out_put_css;
4653
4654 efile.file->f_op->poll(efile.file, &event->pt);
4655
fba94807
TH
4656 spin_lock(&memcg->event_list_lock);
4657 list_add(&event->list, &memcg->event_list);
4658 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4659
4660 fdput(cfile);
4661 fdput(efile);
4662
451af504 4663 return nbytes;
79bd9814
TH
4664
4665out_put_css:
b5557c4c 4666 css_put(css);
79bd9814
TH
4667out_put_cfile:
4668 fdput(cfile);
4669out_put_eventfd:
4670 eventfd_ctx_put(event->eventfd);
4671out_put_efile:
4672 fdput(efile);
4673out_kfree:
4674 kfree(event);
4675
4676 return ret;
4677}
4678
8cdea7c0
BS
4679static struct cftype mem_cgroup_files[] = {
4680 {
0eea1030 4681 .name = "usage_in_bytes",
8c7c6e34 4682 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4683 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4684 },
c84872e1
PE
4685 {
4686 .name = "max_usage_in_bytes",
8c7c6e34 4687 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4688 .write = mem_cgroup_reset,
791badbd 4689 .read_u64 = mem_cgroup_read_u64,
c84872e1 4690 },
8cdea7c0 4691 {
0eea1030 4692 .name = "limit_in_bytes",
8c7c6e34 4693 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4694 .write = mem_cgroup_write,
791badbd 4695 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4696 },
296c81d8
BS
4697 {
4698 .name = "soft_limit_in_bytes",
4699 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4700 .write = mem_cgroup_write,
791badbd 4701 .read_u64 = mem_cgroup_read_u64,
296c81d8 4702 },
8cdea7c0
BS
4703 {
4704 .name = "failcnt",
8c7c6e34 4705 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4706 .write = mem_cgroup_reset,
791badbd 4707 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4708 },
d2ceb9b7
KH
4709 {
4710 .name = "stat",
2da8ca82 4711 .seq_show = memcg_stat_show,
d2ceb9b7 4712 },
c1e862c1
KH
4713 {
4714 .name = "force_empty",
6770c64e 4715 .write = mem_cgroup_force_empty_write,
c1e862c1 4716 },
18f59ea7
BS
4717 {
4718 .name = "use_hierarchy",
4719 .write_u64 = mem_cgroup_hierarchy_write,
4720 .read_u64 = mem_cgroup_hierarchy_read,
4721 },
79bd9814 4722 {
3bc942f3 4723 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4724 .write = memcg_write_event_control,
79bd9814
TH
4725 .flags = CFTYPE_NO_PREFIX,
4726 .mode = S_IWUGO,
4727 },
a7885eb8
KM
4728 {
4729 .name = "swappiness",
4730 .read_u64 = mem_cgroup_swappiness_read,
4731 .write_u64 = mem_cgroup_swappiness_write,
4732 },
7dc74be0
DN
4733 {
4734 .name = "move_charge_at_immigrate",
4735 .read_u64 = mem_cgroup_move_charge_read,
4736 .write_u64 = mem_cgroup_move_charge_write,
4737 },
9490ff27
KH
4738 {
4739 .name = "oom_control",
2da8ca82 4740 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4741 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4742 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4743 },
70ddf637
AV
4744 {
4745 .name = "pressure_level",
70ddf637 4746 },
406eb0c9
YH
4747#ifdef CONFIG_NUMA
4748 {
4749 .name = "numa_stat",
2da8ca82 4750 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4751 },
4752#endif
510fc4e1
GC
4753#ifdef CONFIG_MEMCG_KMEM
4754 {
4755 .name = "kmem.limit_in_bytes",
4756 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4757 .write = mem_cgroup_write,
791badbd 4758 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4759 },
4760 {
4761 .name = "kmem.usage_in_bytes",
4762 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4763 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4764 },
4765 {
4766 .name = "kmem.failcnt",
4767 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4768 .write = mem_cgroup_reset,
791badbd 4769 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4770 },
4771 {
4772 .name = "kmem.max_usage_in_bytes",
4773 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4774 .write = mem_cgroup_reset,
791badbd 4775 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4776 },
749c5415
GC
4777#ifdef CONFIG_SLABINFO
4778 {
4779 .name = "kmem.slabinfo",
2da8ca82 4780 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
4781 },
4782#endif
8c7c6e34 4783#endif
6bc10349 4784 { }, /* terminate */
af36f906 4785};
8c7c6e34 4786
2d11085e
MH
4787#ifdef CONFIG_MEMCG_SWAP
4788static struct cftype memsw_cgroup_files[] = {
4789 {
4790 .name = "memsw.usage_in_bytes",
4791 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 4792 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4793 },
4794 {
4795 .name = "memsw.max_usage_in_bytes",
4796 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 4797 .write = mem_cgroup_reset,
791badbd 4798 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4799 },
4800 {
4801 .name = "memsw.limit_in_bytes",
4802 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 4803 .write = mem_cgroup_write,
791badbd 4804 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4805 },
4806 {
4807 .name = "memsw.failcnt",
4808 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 4809 .write = mem_cgroup_reset,
791badbd 4810 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4811 },
4812 { }, /* terminate */
4813};
4814#endif
c0ff4b85 4815static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4816{
4817 struct mem_cgroup_per_node *pn;
1ecaab2b 4818 struct mem_cgroup_per_zone *mz;
41e3355d 4819 int zone, tmp = node;
1ecaab2b
KH
4820 /*
4821 * This routine is called against possible nodes.
4822 * But it's BUG to call kmalloc() against offline node.
4823 *
4824 * TODO: this routine can waste much memory for nodes which will
4825 * never be onlined. It's better to use memory hotplug callback
4826 * function.
4827 */
41e3355d
KH
4828 if (!node_state(node, N_NORMAL_MEMORY))
4829 tmp = -1;
17295c88 4830 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4831 if (!pn)
4832 return 1;
1ecaab2b 4833
1ecaab2b
KH
4834 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4835 mz = &pn->zoneinfo[zone];
bea8c150 4836 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4837 mz->usage_in_excess = 0;
4838 mz->on_tree = false;
d79154bb 4839 mz->memcg = memcg;
1ecaab2b 4840 }
54f72fe0 4841 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4842 return 0;
4843}
4844
c0ff4b85 4845static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4846{
54f72fe0 4847 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4848}
4849
33327948
KH
4850static struct mem_cgroup *mem_cgroup_alloc(void)
4851{
d79154bb 4852 struct mem_cgroup *memcg;
8ff69e2c 4853 size_t size;
33327948 4854
8ff69e2c
VD
4855 size = sizeof(struct mem_cgroup);
4856 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4857
8ff69e2c 4858 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4859 if (!memcg)
e7bbcdf3
DC
4860 return NULL;
4861
d79154bb
HD
4862 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4863 if (!memcg->stat)
d2e61b8d 4864 goto out_free;
d79154bb
HD
4865 spin_lock_init(&memcg->pcp_counter_lock);
4866 return memcg;
d2e61b8d
DC
4867
4868out_free:
8ff69e2c 4869 kfree(memcg);
d2e61b8d 4870 return NULL;
33327948
KH
4871}
4872
59927fb9 4873/*
c8b2a36f
GC
4874 * At destroying mem_cgroup, references from swap_cgroup can remain.
4875 * (scanning all at force_empty is too costly...)
4876 *
4877 * Instead of clearing all references at force_empty, we remember
4878 * the number of reference from swap_cgroup and free mem_cgroup when
4879 * it goes down to 0.
4880 *
4881 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4882 */
c8b2a36f
GC
4883
4884static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4885{
c8b2a36f 4886 int node;
59927fb9 4887
bb4cc1a8 4888 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4889
4890 for_each_node(node)
4891 free_mem_cgroup_per_zone_info(memcg, node);
4892
4893 free_percpu(memcg->stat);
4894
3f134619
GC
4895 /*
4896 * We need to make sure that (at least for now), the jump label
4897 * destruction code runs outside of the cgroup lock. This is because
4898 * get_online_cpus(), which is called from the static_branch update,
4899 * can't be called inside the cgroup_lock. cpusets are the ones
4900 * enforcing this dependency, so if they ever change, we might as well.
4901 *
4902 * schedule_work() will guarantee this happens. Be careful if you need
4903 * to move this code around, and make sure it is outside
4904 * the cgroup_lock.
4905 */
a8964b9b 4906 disarm_static_keys(memcg);
8ff69e2c 4907 kfree(memcg);
59927fb9 4908}
3afe36b1 4909
7bcc1bb1
DN
4910/*
4911 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4912 */
e1aab161 4913struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4914{
3e32cb2e 4915 if (!memcg->memory.parent)
7bcc1bb1 4916 return NULL;
3e32cb2e 4917 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4918}
e1aab161 4919EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4920
bb4cc1a8
AM
4921static void __init mem_cgroup_soft_limit_tree_init(void)
4922{
4923 struct mem_cgroup_tree_per_node *rtpn;
4924 struct mem_cgroup_tree_per_zone *rtpz;
4925 int tmp, node, zone;
4926
4927 for_each_node(node) {
4928 tmp = node;
4929 if (!node_state(node, N_NORMAL_MEMORY))
4930 tmp = -1;
4931 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4932 BUG_ON(!rtpn);
4933
4934 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4935
4936 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4937 rtpz = &rtpn->rb_tree_per_zone[zone];
4938 rtpz->rb_root = RB_ROOT;
4939 spin_lock_init(&rtpz->lock);
4940 }
4941 }
4942}
4943
0eb253e2 4944static struct cgroup_subsys_state * __ref
eb95419b 4945mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4946{
d142e3e6 4947 struct mem_cgroup *memcg;
04046e1a 4948 long error = -ENOMEM;
6d12e2d8 4949 int node;
8cdea7c0 4950
c0ff4b85
R
4951 memcg = mem_cgroup_alloc();
4952 if (!memcg)
04046e1a 4953 return ERR_PTR(error);
78fb7466 4954
3ed28fa1 4955 for_each_node(node)
c0ff4b85 4956 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4957 goto free_out;
f64c3f54 4958
c077719b 4959 /* root ? */
eb95419b 4960 if (parent_css == NULL) {
a41c58a6 4961 root_mem_cgroup = memcg;
3e32cb2e
JW
4962 page_counter_init(&memcg->memory, NULL);
4963 page_counter_init(&memcg->memsw, NULL);
4964 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4965 }
28dbc4b6 4966
d142e3e6
GC
4967 memcg->last_scanned_node = MAX_NUMNODES;
4968 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4969 memcg->move_charge_at_immigrate = 0;
4970 mutex_init(&memcg->thresholds_lock);
4971 spin_lock_init(&memcg->move_lock);
70ddf637 4972 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4973 INIT_LIST_HEAD(&memcg->event_list);
4974 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
4975
4976 return &memcg->css;
4977
4978free_out:
4979 __mem_cgroup_free(memcg);
4980 return ERR_PTR(error);
4981}
4982
4983static int
eb95419b 4984mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4985{
eb95419b 4986 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4987 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4988 int ret;
d142e3e6 4989
15a4c835 4990 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4991 return -ENOSPC;
4992
63876986 4993 if (!parent)
d142e3e6
GC
4994 return 0;
4995
0999821b 4996 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4997
4998 memcg->use_hierarchy = parent->use_hierarchy;
4999 memcg->oom_kill_disable = parent->oom_kill_disable;
5000 memcg->swappiness = mem_cgroup_swappiness(parent);
5001
5002 if (parent->use_hierarchy) {
3e32cb2e
JW
5003 page_counter_init(&memcg->memory, &parent->memory);
5004 page_counter_init(&memcg->memsw, &parent->memsw);
5005 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 5006
7bcc1bb1 5007 /*
8d76a979
LZ
5008 * No need to take a reference to the parent because cgroup
5009 * core guarantees its existence.
7bcc1bb1 5010 */
18f59ea7 5011 } else {
3e32cb2e
JW
5012 page_counter_init(&memcg->memory, NULL);
5013 page_counter_init(&memcg->memsw, NULL);
5014 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
5015 /*
5016 * Deeper hierachy with use_hierarchy == false doesn't make
5017 * much sense so let cgroup subsystem know about this
5018 * unfortunate state in our controller.
5019 */
d142e3e6 5020 if (parent != root_mem_cgroup)
073219e9 5021 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5022 }
0999821b 5023 mutex_unlock(&memcg_create_mutex);
d6441637 5024
2f7dd7a4
JW
5025 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
5026 if (ret)
5027 return ret;
5028
5029 /*
5030 * Make sure the memcg is initialized: mem_cgroup_iter()
5031 * orders reading memcg->initialized against its callers
5032 * reading the memcg members.
5033 */
5034 smp_store_release(&memcg->initialized, 1);
5035
5036 return 0;
8cdea7c0
BS
5037}
5038
eb95419b 5039static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5040{
eb95419b 5041 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5042 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5043
5044 /*
5045 * Unregister events and notify userspace.
5046 * Notify userspace about cgroup removing only after rmdir of cgroup
5047 * directory to avoid race between userspace and kernelspace.
5048 */
fba94807
TH
5049 spin_lock(&memcg->event_list_lock);
5050 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5051 list_del_init(&event->list);
5052 schedule_work(&event->remove);
5053 }
fba94807 5054 spin_unlock(&memcg->event_list_lock);
ec64f515 5055
776ed0f0 5056 memcg_unregister_all_caches(memcg);
33cb876e 5057 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
5058}
5059
eb95419b 5060static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5061{
eb95419b 5062 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 5063
10d5ebf4 5064 memcg_destroy_kmem(memcg);
465939a1 5065 __mem_cgroup_free(memcg);
8cdea7c0
BS
5066}
5067
1ced953b
TH
5068/**
5069 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5070 * @css: the target css
5071 *
5072 * Reset the states of the mem_cgroup associated with @css. This is
5073 * invoked when the userland requests disabling on the default hierarchy
5074 * but the memcg is pinned through dependency. The memcg should stop
5075 * applying policies and should revert to the vanilla state as it may be
5076 * made visible again.
5077 *
5078 * The current implementation only resets the essential configurations.
5079 * This needs to be expanded to cover all the visible parts.
5080 */
5081static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5082{
5083 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5084
3e32cb2e
JW
5085 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
5086 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
5087 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
5088 memcg->soft_limit = 0;
1ced953b
TH
5089}
5090
02491447 5091#ifdef CONFIG_MMU
7dc74be0 5092/* Handlers for move charge at task migration. */
854ffa8d 5093static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5094{
05b84301 5095 int ret;
9476db97
JW
5096
5097 /* Try a single bulk charge without reclaim first */
00501b53 5098 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 5099 if (!ret) {
854ffa8d 5100 mc.precharge += count;
854ffa8d
DN
5101 return ret;
5102 }
692e7c45 5103 if (ret == -EINTR) {
00501b53 5104 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
5105 return ret;
5106 }
9476db97
JW
5107
5108 /* Try charges one by one with reclaim */
854ffa8d 5109 while (count--) {
00501b53 5110 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
5111 /*
5112 * In case of failure, any residual charges against
5113 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
5114 * later on. However, cancel any charges that are
5115 * bypassed to root right away or they'll be lost.
9476db97 5116 */
692e7c45 5117 if (ret == -EINTR)
00501b53 5118 cancel_charge(root_mem_cgroup, 1);
38c5d72f 5119 if (ret)
38c5d72f 5120 return ret;
854ffa8d 5121 mc.precharge++;
9476db97 5122 cond_resched();
854ffa8d 5123 }
9476db97 5124 return 0;
4ffef5fe
DN
5125}
5126
5127/**
8d32ff84 5128 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5129 * @vma: the vma the pte to be checked belongs
5130 * @addr: the address corresponding to the pte to be checked
5131 * @ptent: the pte to be checked
02491447 5132 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5133 *
5134 * Returns
5135 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5136 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5137 * move charge. if @target is not NULL, the page is stored in target->page
5138 * with extra refcnt got(Callers should handle it).
02491447
DN
5139 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5140 * target for charge migration. if @target is not NULL, the entry is stored
5141 * in target->ent.
4ffef5fe
DN
5142 *
5143 * Called with pte lock held.
5144 */
4ffef5fe
DN
5145union mc_target {
5146 struct page *page;
02491447 5147 swp_entry_t ent;
4ffef5fe
DN
5148};
5149
4ffef5fe 5150enum mc_target_type {
8d32ff84 5151 MC_TARGET_NONE = 0,
4ffef5fe 5152 MC_TARGET_PAGE,
02491447 5153 MC_TARGET_SWAP,
4ffef5fe
DN
5154};
5155
90254a65
DN
5156static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5157 unsigned long addr, pte_t ptent)
4ffef5fe 5158{
90254a65 5159 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5160
90254a65
DN
5161 if (!page || !page_mapped(page))
5162 return NULL;
5163 if (PageAnon(page)) {
5164 /* we don't move shared anon */
4b91355e 5165 if (!move_anon())
90254a65 5166 return NULL;
87946a72
DN
5167 } else if (!move_file())
5168 /* we ignore mapcount for file pages */
90254a65
DN
5169 return NULL;
5170 if (!get_page_unless_zero(page))
5171 return NULL;
5172
5173 return page;
5174}
5175
4b91355e 5176#ifdef CONFIG_SWAP
90254a65
DN
5177static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5178 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5179{
90254a65
DN
5180 struct page *page = NULL;
5181 swp_entry_t ent = pte_to_swp_entry(ptent);
5182
5183 if (!move_anon() || non_swap_entry(ent))
5184 return NULL;
4b91355e
KH
5185 /*
5186 * Because lookup_swap_cache() updates some statistics counter,
5187 * we call find_get_page() with swapper_space directly.
5188 */
33806f06 5189 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
5190 if (do_swap_account)
5191 entry->val = ent.val;
5192
5193 return page;
5194}
4b91355e
KH
5195#else
5196static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5197 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5198{
5199 return NULL;
5200}
5201#endif
90254a65 5202
87946a72
DN
5203static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5204 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5205{
5206 struct page *page = NULL;
87946a72
DN
5207 struct address_space *mapping;
5208 pgoff_t pgoff;
5209
5210 if (!vma->vm_file) /* anonymous vma */
5211 return NULL;
5212 if (!move_file())
5213 return NULL;
5214
87946a72
DN
5215 mapping = vma->vm_file->f_mapping;
5216 if (pte_none(ptent))
5217 pgoff = linear_page_index(vma, addr);
5218 else /* pte_file(ptent) is true */
5219 pgoff = pte_to_pgoff(ptent);
5220
5221 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5222#ifdef CONFIG_SWAP
5223 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5224 if (shmem_mapping(mapping)) {
5225 page = find_get_entry(mapping, pgoff);
5226 if (radix_tree_exceptional_entry(page)) {
5227 swp_entry_t swp = radix_to_swp_entry(page);
5228 if (do_swap_account)
5229 *entry = swp;
5230 page = find_get_page(swap_address_space(swp), swp.val);
5231 }
5232 } else
5233 page = find_get_page(mapping, pgoff);
5234#else
5235 page = find_get_page(mapping, pgoff);
aa3b1895 5236#endif
87946a72
DN
5237 return page;
5238}
5239
8d32ff84 5240static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5241 unsigned long addr, pte_t ptent, union mc_target *target)
5242{
5243 struct page *page = NULL;
5244 struct page_cgroup *pc;
8d32ff84 5245 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5246 swp_entry_t ent = { .val = 0 };
5247
5248 if (pte_present(ptent))
5249 page = mc_handle_present_pte(vma, addr, ptent);
5250 else if (is_swap_pte(ptent))
5251 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5252 else if (pte_none(ptent) || pte_file(ptent))
5253 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5254
5255 if (!page && !ent.val)
8d32ff84 5256 return ret;
02491447
DN
5257 if (page) {
5258 pc = lookup_page_cgroup(page);
5259 /*
0a31bc97
JW
5260 * Do only loose check w/o serialization.
5261 * mem_cgroup_move_account() checks the pc is valid or
5262 * not under LRU exclusion.
02491447 5263 */
29833315 5264 if (pc->mem_cgroup == mc.from) {
02491447
DN
5265 ret = MC_TARGET_PAGE;
5266 if (target)
5267 target->page = page;
5268 }
5269 if (!ret || !target)
5270 put_page(page);
5271 }
90254a65
DN
5272 /* There is a swap entry and a page doesn't exist or isn't charged */
5273 if (ent.val && !ret &&
34c00c31 5274 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5275 ret = MC_TARGET_SWAP;
5276 if (target)
5277 target->ent = ent;
4ffef5fe 5278 }
4ffef5fe
DN
5279 return ret;
5280}
5281
12724850
NH
5282#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5283/*
5284 * We don't consider swapping or file mapped pages because THP does not
5285 * support them for now.
5286 * Caller should make sure that pmd_trans_huge(pmd) is true.
5287 */
5288static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5289 unsigned long addr, pmd_t pmd, union mc_target *target)
5290{
5291 struct page *page = NULL;
5292 struct page_cgroup *pc;
5293 enum mc_target_type ret = MC_TARGET_NONE;
5294
5295 page = pmd_page(pmd);
309381fe 5296 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
5297 if (!move_anon())
5298 return ret;
5299 pc = lookup_page_cgroup(page);
29833315 5300 if (pc->mem_cgroup == mc.from) {
12724850
NH
5301 ret = MC_TARGET_PAGE;
5302 if (target) {
5303 get_page(page);
5304 target->page = page;
5305 }
5306 }
5307 return ret;
5308}
5309#else
5310static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5311 unsigned long addr, pmd_t pmd, union mc_target *target)
5312{
5313 return MC_TARGET_NONE;
5314}
5315#endif
5316
4ffef5fe
DN
5317static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5318 unsigned long addr, unsigned long end,
5319 struct mm_walk *walk)
5320{
5321 struct vm_area_struct *vma = walk->private;
5322 pte_t *pte;
5323 spinlock_t *ptl;
5324
bf929152 5325 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
5326 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5327 mc.precharge += HPAGE_PMD_NR;
bf929152 5328 spin_unlock(ptl);
1a5a9906 5329 return 0;
12724850 5330 }
03319327 5331
45f83cef
AA
5332 if (pmd_trans_unstable(pmd))
5333 return 0;
4ffef5fe
DN
5334 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5335 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5336 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5337 mc.precharge++; /* increment precharge temporarily */
5338 pte_unmap_unlock(pte - 1, ptl);
5339 cond_resched();
5340
7dc74be0
DN
5341 return 0;
5342}
5343
4ffef5fe
DN
5344static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5345{
5346 unsigned long precharge;
5347 struct vm_area_struct *vma;
5348
dfe076b0 5349 down_read(&mm->mmap_sem);
4ffef5fe
DN
5350 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5351 struct mm_walk mem_cgroup_count_precharge_walk = {
5352 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5353 .mm = mm,
5354 .private = vma,
5355 };
5356 if (is_vm_hugetlb_page(vma))
5357 continue;
4ffef5fe
DN
5358 walk_page_range(vma->vm_start, vma->vm_end,
5359 &mem_cgroup_count_precharge_walk);
5360 }
dfe076b0 5361 up_read(&mm->mmap_sem);
4ffef5fe
DN
5362
5363 precharge = mc.precharge;
5364 mc.precharge = 0;
5365
5366 return precharge;
5367}
5368
4ffef5fe
DN
5369static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5370{
dfe076b0
DN
5371 unsigned long precharge = mem_cgroup_count_precharge(mm);
5372
5373 VM_BUG_ON(mc.moving_task);
5374 mc.moving_task = current;
5375 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5376}
5377
dfe076b0
DN
5378/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5379static void __mem_cgroup_clear_mc(void)
4ffef5fe 5380{
2bd9bb20
KH
5381 struct mem_cgroup *from = mc.from;
5382 struct mem_cgroup *to = mc.to;
5383
4ffef5fe 5384 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5385 if (mc.precharge) {
00501b53 5386 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5387 mc.precharge = 0;
5388 }
5389 /*
5390 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5391 * we must uncharge here.
5392 */
5393 if (mc.moved_charge) {
00501b53 5394 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5395 mc.moved_charge = 0;
4ffef5fe 5396 }
483c30b5
DN
5397 /* we must fixup refcnts and charges */
5398 if (mc.moved_swap) {
483c30b5 5399 /* uncharge swap account from the old cgroup */
ce00a967 5400 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5401 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5402
05b84301 5403 /*
3e32cb2e
JW
5404 * we charged both to->memory and to->memsw, so we
5405 * should uncharge to->memory.
05b84301 5406 */
ce00a967 5407 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5408 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5409
e8ea14cc 5410 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5411
4050377b 5412 /* we've already done css_get(mc.to) */
483c30b5
DN
5413 mc.moved_swap = 0;
5414 }
dfe076b0
DN
5415 memcg_oom_recover(from);
5416 memcg_oom_recover(to);
5417 wake_up_all(&mc.waitq);
5418}
5419
5420static void mem_cgroup_clear_mc(void)
5421{
5422 struct mem_cgroup *from = mc.from;
5423
5424 /*
5425 * we must clear moving_task before waking up waiters at the end of
5426 * task migration.
5427 */
5428 mc.moving_task = NULL;
5429 __mem_cgroup_clear_mc();
2bd9bb20 5430 spin_lock(&mc.lock);
4ffef5fe
DN
5431 mc.from = NULL;
5432 mc.to = NULL;
2bd9bb20 5433 spin_unlock(&mc.lock);
32047e2a 5434 mem_cgroup_end_move(from);
4ffef5fe
DN
5435}
5436
eb95419b 5437static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5438 struct cgroup_taskset *tset)
7dc74be0 5439{
2f7ee569 5440 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5441 int ret = 0;
eb95419b 5442 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 5443 unsigned long move_charge_at_immigrate;
7dc74be0 5444
ee5e8472
GC
5445 /*
5446 * We are now commited to this value whatever it is. Changes in this
5447 * tunable will only affect upcoming migrations, not the current one.
5448 * So we need to save it, and keep it going.
5449 */
5450 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5451 if (move_charge_at_immigrate) {
7dc74be0
DN
5452 struct mm_struct *mm;
5453 struct mem_cgroup *from = mem_cgroup_from_task(p);
5454
c0ff4b85 5455 VM_BUG_ON(from == memcg);
7dc74be0
DN
5456
5457 mm = get_task_mm(p);
5458 if (!mm)
5459 return 0;
7dc74be0 5460 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5461 if (mm->owner == p) {
5462 VM_BUG_ON(mc.from);
5463 VM_BUG_ON(mc.to);
5464 VM_BUG_ON(mc.precharge);
854ffa8d 5465 VM_BUG_ON(mc.moved_charge);
483c30b5 5466 VM_BUG_ON(mc.moved_swap);
32047e2a 5467 mem_cgroup_start_move(from);
2bd9bb20 5468 spin_lock(&mc.lock);
4ffef5fe 5469 mc.from = from;
c0ff4b85 5470 mc.to = memcg;
ee5e8472 5471 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 5472 spin_unlock(&mc.lock);
dfe076b0 5473 /* We set mc.moving_task later */
4ffef5fe
DN
5474
5475 ret = mem_cgroup_precharge_mc(mm);
5476 if (ret)
5477 mem_cgroup_clear_mc();
dfe076b0
DN
5478 }
5479 mmput(mm);
7dc74be0
DN
5480 }
5481 return ret;
5482}
5483
eb95419b 5484static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5485 struct cgroup_taskset *tset)
7dc74be0 5486{
4e2f245d
JW
5487 if (mc.to)
5488 mem_cgroup_clear_mc();
7dc74be0
DN
5489}
5490
4ffef5fe
DN
5491static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5492 unsigned long addr, unsigned long end,
5493 struct mm_walk *walk)
7dc74be0 5494{
4ffef5fe
DN
5495 int ret = 0;
5496 struct vm_area_struct *vma = walk->private;
5497 pte_t *pte;
5498 spinlock_t *ptl;
12724850
NH
5499 enum mc_target_type target_type;
5500 union mc_target target;
5501 struct page *page;
5502 struct page_cgroup *pc;
4ffef5fe 5503
12724850
NH
5504 /*
5505 * We don't take compound_lock() here but no race with splitting thp
5506 * happens because:
5507 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5508 * under splitting, which means there's no concurrent thp split,
5509 * - if another thread runs into split_huge_page() just after we
5510 * entered this if-block, the thread must wait for page table lock
5511 * to be unlocked in __split_huge_page_splitting(), where the main
5512 * part of thp split is not executed yet.
5513 */
bf929152 5514 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5515 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5516 spin_unlock(ptl);
12724850
NH
5517 return 0;
5518 }
5519 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5520 if (target_type == MC_TARGET_PAGE) {
5521 page = target.page;
5522 if (!isolate_lru_page(page)) {
5523 pc = lookup_page_cgroup(page);
5524 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5525 pc, mc.from, mc.to)) {
12724850
NH
5526 mc.precharge -= HPAGE_PMD_NR;
5527 mc.moved_charge += HPAGE_PMD_NR;
5528 }
5529 putback_lru_page(page);
5530 }
5531 put_page(page);
5532 }
bf929152 5533 spin_unlock(ptl);
1a5a9906 5534 return 0;
12724850
NH
5535 }
5536
45f83cef
AA
5537 if (pmd_trans_unstable(pmd))
5538 return 0;
4ffef5fe
DN
5539retry:
5540 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5541 for (; addr != end; addr += PAGE_SIZE) {
5542 pte_t ptent = *(pte++);
02491447 5543 swp_entry_t ent;
4ffef5fe
DN
5544
5545 if (!mc.precharge)
5546 break;
5547
8d32ff84 5548 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5549 case MC_TARGET_PAGE:
5550 page = target.page;
5551 if (isolate_lru_page(page))
5552 goto put;
5553 pc = lookup_page_cgroup(page);
7ec99d62 5554 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5555 mc.from, mc.to)) {
4ffef5fe 5556 mc.precharge--;
854ffa8d
DN
5557 /* we uncharge from mc.from later. */
5558 mc.moved_charge++;
4ffef5fe
DN
5559 }
5560 putback_lru_page(page);
8d32ff84 5561put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5562 put_page(page);
5563 break;
02491447
DN
5564 case MC_TARGET_SWAP:
5565 ent = target.ent;
e91cbb42 5566 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5567 mc.precharge--;
483c30b5
DN
5568 /* we fixup refcnts and charges later. */
5569 mc.moved_swap++;
5570 }
02491447 5571 break;
4ffef5fe
DN
5572 default:
5573 break;
5574 }
5575 }
5576 pte_unmap_unlock(pte - 1, ptl);
5577 cond_resched();
5578
5579 if (addr != end) {
5580 /*
5581 * We have consumed all precharges we got in can_attach().
5582 * We try charge one by one, but don't do any additional
5583 * charges to mc.to if we have failed in charge once in attach()
5584 * phase.
5585 */
854ffa8d 5586 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5587 if (!ret)
5588 goto retry;
5589 }
5590
5591 return ret;
5592}
5593
5594static void mem_cgroup_move_charge(struct mm_struct *mm)
5595{
5596 struct vm_area_struct *vma;
5597
5598 lru_add_drain_all();
dfe076b0
DN
5599retry:
5600 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5601 /*
5602 * Someone who are holding the mmap_sem might be waiting in
5603 * waitq. So we cancel all extra charges, wake up all waiters,
5604 * and retry. Because we cancel precharges, we might not be able
5605 * to move enough charges, but moving charge is a best-effort
5606 * feature anyway, so it wouldn't be a big problem.
5607 */
5608 __mem_cgroup_clear_mc();
5609 cond_resched();
5610 goto retry;
5611 }
4ffef5fe
DN
5612 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5613 int ret;
5614 struct mm_walk mem_cgroup_move_charge_walk = {
5615 .pmd_entry = mem_cgroup_move_charge_pte_range,
5616 .mm = mm,
5617 .private = vma,
5618 };
5619 if (is_vm_hugetlb_page(vma))
5620 continue;
4ffef5fe
DN
5621 ret = walk_page_range(vma->vm_start, vma->vm_end,
5622 &mem_cgroup_move_charge_walk);
5623 if (ret)
5624 /*
5625 * means we have consumed all precharges and failed in
5626 * doing additional charge. Just abandon here.
5627 */
5628 break;
5629 }
dfe076b0 5630 up_read(&mm->mmap_sem);
7dc74be0
DN
5631}
5632
eb95419b 5633static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5634 struct cgroup_taskset *tset)
67e465a7 5635{
2f7ee569 5636 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5637 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5638
dfe076b0 5639 if (mm) {
a433658c
KM
5640 if (mc.to)
5641 mem_cgroup_move_charge(mm);
dfe076b0
DN
5642 mmput(mm);
5643 }
a433658c
KM
5644 if (mc.to)
5645 mem_cgroup_clear_mc();
67e465a7 5646}
5cfb80a7 5647#else /* !CONFIG_MMU */
eb95419b 5648static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5649 struct cgroup_taskset *tset)
5cfb80a7
DN
5650{
5651 return 0;
5652}
eb95419b 5653static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5654 struct cgroup_taskset *tset)
5cfb80a7
DN
5655{
5656}
eb95419b 5657static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5658 struct cgroup_taskset *tset)
5cfb80a7
DN
5659{
5660}
5661#endif
67e465a7 5662
f00baae7
TH
5663/*
5664 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5665 * to verify whether we're attached to the default hierarchy on each mount
5666 * attempt.
f00baae7 5667 */
eb95419b 5668static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5669{
5670 /*
aa6ec29b 5671 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5672 * guarantees that @root doesn't have any children, so turning it
5673 * on for the root memcg is enough.
5674 */
aa6ec29b 5675 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5676 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5677}
5678
073219e9 5679struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5680 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5681 .css_online = mem_cgroup_css_online,
92fb9748
TH
5682 .css_offline = mem_cgroup_css_offline,
5683 .css_free = mem_cgroup_css_free,
1ced953b 5684 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5685 .can_attach = mem_cgroup_can_attach,
5686 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5687 .attach = mem_cgroup_move_task,
f00baae7 5688 .bind = mem_cgroup_bind,
5577964e 5689 .legacy_cftypes = mem_cgroup_files,
6d12e2d8 5690 .early_init = 0,
8cdea7c0 5691};
c077719b 5692
c255a458 5693#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5694static int __init enable_swap_account(char *s)
5695{
a2c8990a 5696 if (!strcmp(s, "1"))
a42c390c 5697 really_do_swap_account = 1;
a2c8990a 5698 else if (!strcmp(s, "0"))
a42c390c
MH
5699 really_do_swap_account = 0;
5700 return 1;
5701}
a2c8990a 5702__setup("swapaccount=", enable_swap_account);
c077719b 5703
2d11085e
MH
5704static void __init memsw_file_init(void)
5705{
2cf669a5
TH
5706 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5707 memsw_cgroup_files));
6acc8b02
MH
5708}
5709
5710static void __init enable_swap_cgroup(void)
5711{
5712 if (!mem_cgroup_disabled() && really_do_swap_account) {
5713 do_swap_account = 1;
5714 memsw_file_init();
5715 }
2d11085e 5716}
6acc8b02 5717
2d11085e 5718#else
6acc8b02 5719static void __init enable_swap_cgroup(void)
2d11085e
MH
5720{
5721}
c077719b 5722#endif
2d11085e 5723
0a31bc97
JW
5724#ifdef CONFIG_MEMCG_SWAP
5725/**
5726 * mem_cgroup_swapout - transfer a memsw charge to swap
5727 * @page: page whose memsw charge to transfer
5728 * @entry: swap entry to move the charge to
5729 *
5730 * Transfer the memsw charge of @page to @entry.
5731 */
5732void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5733{
7bdd143c 5734 struct mem_cgroup *memcg;
0a31bc97
JW
5735 struct page_cgroup *pc;
5736 unsigned short oldid;
5737
5738 VM_BUG_ON_PAGE(PageLRU(page), page);
5739 VM_BUG_ON_PAGE(page_count(page), page);
5740
5741 if (!do_swap_account)
5742 return;
5743
5744 pc = lookup_page_cgroup(page);
29833315 5745 memcg = pc->mem_cgroup;
0a31bc97
JW
5746
5747 /* Readahead page, never charged */
29833315 5748 if (!memcg)
0a31bc97
JW
5749 return;
5750
7bdd143c 5751 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
0a31bc97 5752 VM_BUG_ON_PAGE(oldid, page);
7bdd143c
JW
5753 mem_cgroup_swap_statistics(memcg, true);
5754
29833315 5755 pc->mem_cgroup = NULL;
7bdd143c
JW
5756
5757 if (!mem_cgroup_is_root(memcg))
5758 page_counter_uncharge(&memcg->memory, 1);
5759
5760 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5761 VM_BUG_ON(!irqs_disabled());
0a31bc97 5762
7bdd143c
JW
5763 mem_cgroup_charge_statistics(memcg, page, -1);
5764 memcg_check_events(memcg, page);
0a31bc97
JW
5765}
5766
5767/**
5768 * mem_cgroup_uncharge_swap - uncharge a swap entry
5769 * @entry: swap entry to uncharge
5770 *
5771 * Drop the memsw charge associated with @entry.
5772 */
5773void mem_cgroup_uncharge_swap(swp_entry_t entry)
5774{
5775 struct mem_cgroup *memcg;
5776 unsigned short id;
5777
5778 if (!do_swap_account)
5779 return;
5780
5781 id = swap_cgroup_record(entry, 0);
5782 rcu_read_lock();
5783 memcg = mem_cgroup_lookup(id);
5784 if (memcg) {
ce00a967 5785 if (!mem_cgroup_is_root(memcg))
3e32cb2e 5786 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
5787 mem_cgroup_swap_statistics(memcg, false);
5788 css_put(&memcg->css);
5789 }
5790 rcu_read_unlock();
5791}
5792#endif
5793
00501b53
JW
5794/**
5795 * mem_cgroup_try_charge - try charging a page
5796 * @page: page to charge
5797 * @mm: mm context of the victim
5798 * @gfp_mask: reclaim mode
5799 * @memcgp: charged memcg return
5800 *
5801 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5802 * pages according to @gfp_mask if necessary.
5803 *
5804 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5805 * Otherwise, an error code is returned.
5806 *
5807 * After page->mapping has been set up, the caller must finalize the
5808 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5809 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5810 */
5811int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5812 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5813{
5814 struct mem_cgroup *memcg = NULL;
5815 unsigned int nr_pages = 1;
5816 int ret = 0;
5817
5818 if (mem_cgroup_disabled())
5819 goto out;
5820
5821 if (PageSwapCache(page)) {
5822 struct page_cgroup *pc = lookup_page_cgroup(page);
5823 /*
5824 * Every swap fault against a single page tries to charge the
5825 * page, bail as early as possible. shmem_unuse() encounters
5826 * already charged pages, too. The USED bit is protected by
5827 * the page lock, which serializes swap cache removal, which
5828 * in turn serializes uncharging.
5829 */
29833315 5830 if (pc->mem_cgroup)
00501b53
JW
5831 goto out;
5832 }
5833
5834 if (PageTransHuge(page)) {
5835 nr_pages <<= compound_order(page);
5836 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5837 }
5838
5839 if (do_swap_account && PageSwapCache(page))
5840 memcg = try_get_mem_cgroup_from_page(page);
5841 if (!memcg)
5842 memcg = get_mem_cgroup_from_mm(mm);
5843
5844 ret = try_charge(memcg, gfp_mask, nr_pages);
5845
5846 css_put(&memcg->css);
5847
5848 if (ret == -EINTR) {
5849 memcg = root_mem_cgroup;
5850 ret = 0;
5851 }
5852out:
5853 *memcgp = memcg;
5854 return ret;
5855}
5856
5857/**
5858 * mem_cgroup_commit_charge - commit a page charge
5859 * @page: page to charge
5860 * @memcg: memcg to charge the page to
5861 * @lrucare: page might be on LRU already
5862 *
5863 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5864 * after page->mapping has been set up. This must happen atomically
5865 * as part of the page instantiation, i.e. under the page table lock
5866 * for anonymous pages, under the page lock for page and swap cache.
5867 *
5868 * In addition, the page must not be on the LRU during the commit, to
5869 * prevent racing with task migration. If it might be, use @lrucare.
5870 *
5871 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5872 */
5873void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5874 bool lrucare)
5875{
5876 unsigned int nr_pages = 1;
5877
5878 VM_BUG_ON_PAGE(!page->mapping, page);
5879 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5880
5881 if (mem_cgroup_disabled())
5882 return;
5883 /*
5884 * Swap faults will attempt to charge the same page multiple
5885 * times. But reuse_swap_page() might have removed the page
5886 * from swapcache already, so we can't check PageSwapCache().
5887 */
5888 if (!memcg)
5889 return;
5890
6abb5a86
JW
5891 commit_charge(page, memcg, lrucare);
5892
00501b53
JW
5893 if (PageTransHuge(page)) {
5894 nr_pages <<= compound_order(page);
5895 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5896 }
5897
6abb5a86
JW
5898 local_irq_disable();
5899 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5900 memcg_check_events(memcg, page);
5901 local_irq_enable();
00501b53
JW
5902
5903 if (do_swap_account && PageSwapCache(page)) {
5904 swp_entry_t entry = { .val = page_private(page) };
5905 /*
5906 * The swap entry might not get freed for a long time,
5907 * let's not wait for it. The page already received a
5908 * memory+swap charge, drop the swap entry duplicate.
5909 */
5910 mem_cgroup_uncharge_swap(entry);
5911 }
5912}
5913
5914/**
5915 * mem_cgroup_cancel_charge - cancel a page charge
5916 * @page: page to charge
5917 * @memcg: memcg to charge the page to
5918 *
5919 * Cancel a charge transaction started by mem_cgroup_try_charge().
5920 */
5921void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5922{
5923 unsigned int nr_pages = 1;
5924
5925 if (mem_cgroup_disabled())
5926 return;
5927 /*
5928 * Swap faults will attempt to charge the same page multiple
5929 * times. But reuse_swap_page() might have removed the page
5930 * from swapcache already, so we can't check PageSwapCache().
5931 */
5932 if (!memcg)
5933 return;
5934
5935 if (PageTransHuge(page)) {
5936 nr_pages <<= compound_order(page);
5937 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5938 }
5939
5940 cancel_charge(memcg, nr_pages);
5941}
5942
747db954 5943static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5944 unsigned long nr_anon, unsigned long nr_file,
5945 unsigned long nr_huge, struct page *dummy_page)
5946{
18eca2e6 5947 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5948 unsigned long flags;
5949
ce00a967 5950 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5951 page_counter_uncharge(&memcg->memory, nr_pages);
5952 if (do_swap_account)
5953 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5954 memcg_oom_recover(memcg);
5955 }
747db954
JW
5956
5957 local_irq_save(flags);
5958 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5959 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5960 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5961 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5962 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5963 memcg_check_events(memcg, dummy_page);
5964 local_irq_restore(flags);
e8ea14cc
JW
5965
5966 if (!mem_cgroup_is_root(memcg))
18eca2e6 5967 css_put_many(&memcg->css, nr_pages);
747db954
JW
5968}
5969
5970static void uncharge_list(struct list_head *page_list)
5971{
5972 struct mem_cgroup *memcg = NULL;
747db954
JW
5973 unsigned long nr_anon = 0;
5974 unsigned long nr_file = 0;
5975 unsigned long nr_huge = 0;
5976 unsigned long pgpgout = 0;
747db954
JW
5977 struct list_head *next;
5978 struct page *page;
5979
5980 next = page_list->next;
5981 do {
5982 unsigned int nr_pages = 1;
5983 struct page_cgroup *pc;
5984
5985 page = list_entry(next, struct page, lru);
5986 next = page->lru.next;
5987
5988 VM_BUG_ON_PAGE(PageLRU(page), page);
5989 VM_BUG_ON_PAGE(page_count(page), page);
5990
5991 pc = lookup_page_cgroup(page);
29833315 5992 if (!pc->mem_cgroup)
747db954
JW
5993 continue;
5994
5995 /*
5996 * Nobody should be changing or seriously looking at
29833315
JW
5997 * pc->mem_cgroup at this point, we have fully
5998 * exclusive access to the page.
747db954
JW
5999 */
6000
6001 if (memcg != pc->mem_cgroup) {
6002 if (memcg) {
18eca2e6
JW
6003 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
6004 nr_huge, page);
6005 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954
JW
6006 }
6007 memcg = pc->mem_cgroup;
6008 }
6009
6010 if (PageTransHuge(page)) {
6011 nr_pages <<= compound_order(page);
6012 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
6013 nr_huge += nr_pages;
6014 }
6015
6016 if (PageAnon(page))
6017 nr_anon += nr_pages;
6018 else
6019 nr_file += nr_pages;
6020
29833315 6021 pc->mem_cgroup = NULL;
747db954
JW
6022
6023 pgpgout++;
6024 } while (next != page_list);
6025
6026 if (memcg)
18eca2e6
JW
6027 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
6028 nr_huge, page);
747db954
JW
6029}
6030
0a31bc97
JW
6031/**
6032 * mem_cgroup_uncharge - uncharge a page
6033 * @page: page to uncharge
6034 *
6035 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6036 * mem_cgroup_commit_charge().
6037 */
6038void mem_cgroup_uncharge(struct page *page)
6039{
0a31bc97 6040 struct page_cgroup *pc;
0a31bc97
JW
6041
6042 if (mem_cgroup_disabled())
6043 return;
6044
747db954 6045 /* Don't touch page->lru of any random page, pre-check: */
0a31bc97 6046 pc = lookup_page_cgroup(page);
29833315 6047 if (!pc->mem_cgroup)
0a31bc97
JW
6048 return;
6049
747db954
JW
6050 INIT_LIST_HEAD(&page->lru);
6051 uncharge_list(&page->lru);
6052}
0a31bc97 6053
747db954
JW
6054/**
6055 * mem_cgroup_uncharge_list - uncharge a list of page
6056 * @page_list: list of pages to uncharge
6057 *
6058 * Uncharge a list of pages previously charged with
6059 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6060 */
6061void mem_cgroup_uncharge_list(struct list_head *page_list)
6062{
6063 if (mem_cgroup_disabled())
6064 return;
0a31bc97 6065
747db954
JW
6066 if (!list_empty(page_list))
6067 uncharge_list(page_list);
0a31bc97
JW
6068}
6069
6070/**
6071 * mem_cgroup_migrate - migrate a charge to another page
6072 * @oldpage: currently charged page
6073 * @newpage: page to transfer the charge to
6074 * @lrucare: both pages might be on the LRU already
6075 *
6076 * Migrate the charge from @oldpage to @newpage.
6077 *
6078 * Both pages must be locked, @newpage->mapping must be set up.
6079 */
6080void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
6081 bool lrucare)
6082{
29833315 6083 struct mem_cgroup *memcg;
0a31bc97
JW
6084 struct page_cgroup *pc;
6085 int isolated;
6086
6087 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6088 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6089 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
6090 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
6091 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6092 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6093 newpage);
0a31bc97
JW
6094
6095 if (mem_cgroup_disabled())
6096 return;
6097
6098 /* Page cache replacement: new page already charged? */
6099 pc = lookup_page_cgroup(newpage);
29833315 6100 if (pc->mem_cgroup)
0a31bc97
JW
6101 return;
6102
7d5e3245
JW
6103 /*
6104 * Swapcache readahead pages can get migrated before being
6105 * charged, and migration from compaction can happen to an
6106 * uncharged page when the PFN walker finds a page that
6107 * reclaim just put back on the LRU but has not released yet.
6108 */
0a31bc97 6109 pc = lookup_page_cgroup(oldpage);
29833315
JW
6110 memcg = pc->mem_cgroup;
6111 if (!memcg)
0a31bc97
JW
6112 return;
6113
0a31bc97
JW
6114 if (lrucare)
6115 lock_page_lru(oldpage, &isolated);
6116
29833315 6117 pc->mem_cgroup = NULL;
0a31bc97
JW
6118
6119 if (lrucare)
6120 unlock_page_lru(oldpage, isolated);
6121
29833315 6122 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
6123}
6124
2d11085e 6125/*
1081312f
MH
6126 * subsys_initcall() for memory controller.
6127 *
6128 * Some parts like hotcpu_notifier() have to be initialized from this context
6129 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6130 * everything that doesn't depend on a specific mem_cgroup structure should
6131 * be initialized from here.
2d11085e
MH
6132 */
6133static int __init mem_cgroup_init(void)
6134{
6135 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6136 enable_swap_cgroup();
bb4cc1a8 6137 mem_cgroup_soft_limit_tree_init();
e4777496 6138 memcg_stock_init();
2d11085e
MH
6139 return 0;
6140}
6141subsys_initcall(mem_cgroup_init);