]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
procfs: use N_MEMORY instead N_HIGH_MEMORY
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3 53#include <net/sock.h>
4bd2c1ee 54#include <net/ip.h>
d1a4c0b3 55#include <net/tcp_memcontrol.h>
8cdea7c0 56
8697d331
BS
57#include <asm/uaccess.h>
58
cc8e970c
KM
59#include <trace/events/vmscan.h>
60
a181b0e8 61struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 62#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 63static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 64
c255a458 65#ifdef CONFIG_MEMCG_SWAP
338c8431 66/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 67int do_swap_account __read_mostly;
a42c390c
MH
68
69/* for remember boot option*/
c255a458 70#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
71static int really_do_swap_account __initdata = 1;
72#else
73static int really_do_swap_account __initdata = 0;
74#endif
75
c077719b 76#else
a0db00fc 77#define do_swap_account 0
c077719b
KH
78#endif
79
80
d52aa412
KH
81/*
82 * Statistics for memory cgroup.
83 */
84enum mem_cgroup_stat_index {
85 /*
86 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
87 */
88 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 89 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 90 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 91 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
92 MEM_CGROUP_STAT_NSTATS,
93};
94
af7c4b0e
JW
95static const char * const mem_cgroup_stat_names[] = {
96 "cache",
97 "rss",
98 "mapped_file",
99 "swap",
100};
101
e9f8974f
JW
102enum mem_cgroup_events_index {
103 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
104 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
105 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
106 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
107 MEM_CGROUP_EVENTS_NSTATS,
108};
af7c4b0e
JW
109
110static const char * const mem_cgroup_events_names[] = {
111 "pgpgin",
112 "pgpgout",
113 "pgfault",
114 "pgmajfault",
115};
116
7a159cc9
JW
117/*
118 * Per memcg event counter is incremented at every pagein/pageout. With THP,
119 * it will be incremated by the number of pages. This counter is used for
120 * for trigger some periodic events. This is straightforward and better
121 * than using jiffies etc. to handle periodic memcg event.
122 */
123enum mem_cgroup_events_target {
124 MEM_CGROUP_TARGET_THRESH,
125 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 126 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
127 MEM_CGROUP_NTARGETS,
128};
a0db00fc
KS
129#define THRESHOLDS_EVENTS_TARGET 128
130#define SOFTLIMIT_EVENTS_TARGET 1024
131#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 132
d52aa412 133struct mem_cgroup_stat_cpu {
7a159cc9 134 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 135 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 136 unsigned long nr_page_events;
7a159cc9 137 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
138};
139
527a5ec9
JW
140struct mem_cgroup_reclaim_iter {
141 /* css_id of the last scanned hierarchy member */
142 int position;
143 /* scan generation, increased every round-trip */
144 unsigned int generation;
145};
146
6d12e2d8
KH
147/*
148 * per-zone information in memory controller.
149 */
6d12e2d8 150struct mem_cgroup_per_zone {
6290df54 151 struct lruvec lruvec;
1eb49272 152 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 153
527a5ec9
JW
154 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
155
f64c3f54
BS
156 struct rb_node tree_node; /* RB tree node */
157 unsigned long long usage_in_excess;/* Set to the value by which */
158 /* the soft limit is exceeded*/
159 bool on_tree;
d79154bb 160 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 161 /* use container_of */
6d12e2d8 162};
6d12e2d8
KH
163
164struct mem_cgroup_per_node {
165 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
166};
167
168struct mem_cgroup_lru_info {
169 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
170};
171
f64c3f54
BS
172/*
173 * Cgroups above their limits are maintained in a RB-Tree, independent of
174 * their hierarchy representation
175 */
176
177struct mem_cgroup_tree_per_zone {
178 struct rb_root rb_root;
179 spinlock_t lock;
180};
181
182struct mem_cgroup_tree_per_node {
183 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
184};
185
186struct mem_cgroup_tree {
187 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
188};
189
190static struct mem_cgroup_tree soft_limit_tree __read_mostly;
191
2e72b634
KS
192struct mem_cgroup_threshold {
193 struct eventfd_ctx *eventfd;
194 u64 threshold;
195};
196
9490ff27 197/* For threshold */
2e72b634 198struct mem_cgroup_threshold_ary {
748dad36 199 /* An array index points to threshold just below or equal to usage. */
5407a562 200 int current_threshold;
2e72b634
KS
201 /* Size of entries[] */
202 unsigned int size;
203 /* Array of thresholds */
204 struct mem_cgroup_threshold entries[0];
205};
2c488db2
KS
206
207struct mem_cgroup_thresholds {
208 /* Primary thresholds array */
209 struct mem_cgroup_threshold_ary *primary;
210 /*
211 * Spare threshold array.
212 * This is needed to make mem_cgroup_unregister_event() "never fail".
213 * It must be able to store at least primary->size - 1 entries.
214 */
215 struct mem_cgroup_threshold_ary *spare;
216};
217
9490ff27
KH
218/* for OOM */
219struct mem_cgroup_eventfd_list {
220 struct list_head list;
221 struct eventfd_ctx *eventfd;
222};
2e72b634 223
c0ff4b85
R
224static void mem_cgroup_threshold(struct mem_cgroup *memcg);
225static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 226
8cdea7c0
BS
227/*
228 * The memory controller data structure. The memory controller controls both
229 * page cache and RSS per cgroup. We would eventually like to provide
230 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
231 * to help the administrator determine what knobs to tune.
232 *
233 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
234 * we hit the water mark. May be even add a low water mark, such that
235 * no reclaim occurs from a cgroup at it's low water mark, this is
236 * a feature that will be implemented much later in the future.
8cdea7c0
BS
237 */
238struct mem_cgroup {
239 struct cgroup_subsys_state css;
240 /*
241 * the counter to account for memory usage
242 */
243 struct res_counter res;
59927fb9
HD
244
245 union {
246 /*
247 * the counter to account for mem+swap usage.
248 */
249 struct res_counter memsw;
250
251 /*
252 * rcu_freeing is used only when freeing struct mem_cgroup,
253 * so put it into a union to avoid wasting more memory.
254 * It must be disjoint from the css field. It could be
255 * in a union with the res field, but res plays a much
256 * larger part in mem_cgroup life than memsw, and might
257 * be of interest, even at time of free, when debugging.
258 * So share rcu_head with the less interesting memsw.
259 */
260 struct rcu_head rcu_freeing;
261 /*
3afe36b1
GC
262 * We also need some space for a worker in deferred freeing.
263 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
264 */
265 struct work_struct work_freeing;
266 };
267
78fb7466
PE
268 /*
269 * Per cgroup active and inactive list, similar to the
270 * per zone LRU lists.
78fb7466 271 */
6d12e2d8 272 struct mem_cgroup_lru_info info;
889976db
YH
273 int last_scanned_node;
274#if MAX_NUMNODES > 1
275 nodemask_t scan_nodes;
453a9bf3
KH
276 atomic_t numainfo_events;
277 atomic_t numainfo_updating;
889976db 278#endif
18f59ea7
BS
279 /*
280 * Should the accounting and control be hierarchical, per subtree?
281 */
282 bool use_hierarchy;
79dfdacc
MH
283
284 bool oom_lock;
285 atomic_t under_oom;
286
8c7c6e34 287 atomic_t refcnt;
14797e23 288
1f4c025b 289 int swappiness;
3c11ecf4
KH
290 /* OOM-Killer disable */
291 int oom_kill_disable;
a7885eb8 292
22a668d7
KH
293 /* set when res.limit == memsw.limit */
294 bool memsw_is_minimum;
295
2e72b634
KS
296 /* protect arrays of thresholds */
297 struct mutex thresholds_lock;
298
299 /* thresholds for memory usage. RCU-protected */
2c488db2 300 struct mem_cgroup_thresholds thresholds;
907860ed 301
2e72b634 302 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 303 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 304
9490ff27
KH
305 /* For oom notifier event fd */
306 struct list_head oom_notify;
185efc0f 307
7dc74be0
DN
308 /*
309 * Should we move charges of a task when a task is moved into this
310 * mem_cgroup ? And what type of charges should we move ?
311 */
312 unsigned long move_charge_at_immigrate;
619d094b
KH
313 /*
314 * set > 0 if pages under this cgroup are moving to other cgroup.
315 */
316 atomic_t moving_account;
312734c0
KH
317 /* taken only while moving_account > 0 */
318 spinlock_t move_lock;
d52aa412 319 /*
c62b1a3b 320 * percpu counter.
d52aa412 321 */
3a7951b4 322 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
323 /*
324 * used when a cpu is offlined or other synchronizations
325 * See mem_cgroup_read_stat().
326 */
327 struct mem_cgroup_stat_cpu nocpu_base;
328 spinlock_t pcp_counter_lock;
d1a4c0b3 329
4bd2c1ee 330#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
331 struct tcp_memcontrol tcp_mem;
332#endif
8cdea7c0
BS
333};
334
7dc74be0
DN
335/* Stuffs for move charges at task migration. */
336/*
337 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
338 * left-shifted bitmap of these types.
339 */
340enum move_type {
4ffef5fe 341 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 342 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
343 NR_MOVE_TYPE,
344};
345
4ffef5fe
DN
346/* "mc" and its members are protected by cgroup_mutex */
347static struct move_charge_struct {
b1dd693e 348 spinlock_t lock; /* for from, to */
4ffef5fe
DN
349 struct mem_cgroup *from;
350 struct mem_cgroup *to;
351 unsigned long precharge;
854ffa8d 352 unsigned long moved_charge;
483c30b5 353 unsigned long moved_swap;
8033b97c
DN
354 struct task_struct *moving_task; /* a task moving charges */
355 wait_queue_head_t waitq; /* a waitq for other context */
356} mc = {
2bd9bb20 357 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
358 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
359};
4ffef5fe 360
90254a65
DN
361static bool move_anon(void)
362{
363 return test_bit(MOVE_CHARGE_TYPE_ANON,
364 &mc.to->move_charge_at_immigrate);
365}
366
87946a72
DN
367static bool move_file(void)
368{
369 return test_bit(MOVE_CHARGE_TYPE_FILE,
370 &mc.to->move_charge_at_immigrate);
371}
372
4e416953
BS
373/*
374 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
375 * limit reclaim to prevent infinite loops, if they ever occur.
376 */
a0db00fc
KS
377#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
378#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 379
217bc319
KH
380enum charge_type {
381 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 382 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 383 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 384 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
385 NR_CHARGE_TYPE,
386};
387
8c7c6e34 388/* for encoding cft->private value on file */
65c64ce8
GC
389#define _MEM (0)
390#define _MEMSWAP (1)
391#define _OOM_TYPE (2)
a0db00fc
KS
392#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
393#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 394#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
395/* Used for OOM nofiier */
396#define OOM_CONTROL (0)
8c7c6e34 397
75822b44
BS
398/*
399 * Reclaim flags for mem_cgroup_hierarchical_reclaim
400 */
401#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
402#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
403#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
404#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
405
c0ff4b85
R
406static void mem_cgroup_get(struct mem_cgroup *memcg);
407static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 408
b2145145
WL
409static inline
410struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
411{
412 return container_of(s, struct mem_cgroup, css);
413}
414
7ffc0edc
MH
415static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
416{
417 return (memcg == root_mem_cgroup);
418}
419
e1aab161 420/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 421#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 422
e1aab161
GC
423void sock_update_memcg(struct sock *sk)
424{
376be5ff 425 if (mem_cgroup_sockets_enabled) {
e1aab161 426 struct mem_cgroup *memcg;
3f134619 427 struct cg_proto *cg_proto;
e1aab161
GC
428
429 BUG_ON(!sk->sk_prot->proto_cgroup);
430
f3f511e1
GC
431 /* Socket cloning can throw us here with sk_cgrp already
432 * filled. It won't however, necessarily happen from
433 * process context. So the test for root memcg given
434 * the current task's memcg won't help us in this case.
435 *
436 * Respecting the original socket's memcg is a better
437 * decision in this case.
438 */
439 if (sk->sk_cgrp) {
440 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
441 mem_cgroup_get(sk->sk_cgrp->memcg);
442 return;
443 }
444
e1aab161
GC
445 rcu_read_lock();
446 memcg = mem_cgroup_from_task(current);
3f134619
GC
447 cg_proto = sk->sk_prot->proto_cgroup(memcg);
448 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 449 mem_cgroup_get(memcg);
3f134619 450 sk->sk_cgrp = cg_proto;
e1aab161
GC
451 }
452 rcu_read_unlock();
453 }
454}
455EXPORT_SYMBOL(sock_update_memcg);
456
457void sock_release_memcg(struct sock *sk)
458{
376be5ff 459 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
460 struct mem_cgroup *memcg;
461 WARN_ON(!sk->sk_cgrp->memcg);
462 memcg = sk->sk_cgrp->memcg;
463 mem_cgroup_put(memcg);
464 }
465}
d1a4c0b3
GC
466
467struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
468{
469 if (!memcg || mem_cgroup_is_root(memcg))
470 return NULL;
471
472 return &memcg->tcp_mem.cg_proto;
473}
474EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 475
3f134619
GC
476static void disarm_sock_keys(struct mem_cgroup *memcg)
477{
478 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
479 return;
480 static_key_slow_dec(&memcg_socket_limit_enabled);
481}
482#else
483static void disarm_sock_keys(struct mem_cgroup *memcg)
484{
485}
486#endif
487
c0ff4b85 488static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 489
f64c3f54 490static struct mem_cgroup_per_zone *
c0ff4b85 491mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 492{
c0ff4b85 493 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
494}
495
c0ff4b85 496struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 497{
c0ff4b85 498 return &memcg->css;
d324236b
WF
499}
500
f64c3f54 501static struct mem_cgroup_per_zone *
c0ff4b85 502page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 503{
97a6c37b
JW
504 int nid = page_to_nid(page);
505 int zid = page_zonenum(page);
f64c3f54 506
c0ff4b85 507 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
508}
509
510static struct mem_cgroup_tree_per_zone *
511soft_limit_tree_node_zone(int nid, int zid)
512{
513 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
514}
515
516static struct mem_cgroup_tree_per_zone *
517soft_limit_tree_from_page(struct page *page)
518{
519 int nid = page_to_nid(page);
520 int zid = page_zonenum(page);
521
522 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
523}
524
525static void
c0ff4b85 526__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 527 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
528 struct mem_cgroup_tree_per_zone *mctz,
529 unsigned long long new_usage_in_excess)
f64c3f54
BS
530{
531 struct rb_node **p = &mctz->rb_root.rb_node;
532 struct rb_node *parent = NULL;
533 struct mem_cgroup_per_zone *mz_node;
534
535 if (mz->on_tree)
536 return;
537
ef8745c1
KH
538 mz->usage_in_excess = new_usage_in_excess;
539 if (!mz->usage_in_excess)
540 return;
f64c3f54
BS
541 while (*p) {
542 parent = *p;
543 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
544 tree_node);
545 if (mz->usage_in_excess < mz_node->usage_in_excess)
546 p = &(*p)->rb_left;
547 /*
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
550 */
551 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 p = &(*p)->rb_right;
553 }
554 rb_link_node(&mz->tree_node, parent, p);
555 rb_insert_color(&mz->tree_node, &mctz->rb_root);
556 mz->on_tree = true;
4e416953
BS
557}
558
559static void
c0ff4b85 560__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
561 struct mem_cgroup_per_zone *mz,
562 struct mem_cgroup_tree_per_zone *mctz)
563{
564 if (!mz->on_tree)
565 return;
566 rb_erase(&mz->tree_node, &mctz->rb_root);
567 mz->on_tree = false;
568}
569
f64c3f54 570static void
c0ff4b85 571mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
572 struct mem_cgroup_per_zone *mz,
573 struct mem_cgroup_tree_per_zone *mctz)
574{
575 spin_lock(&mctz->lock);
c0ff4b85 576 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
577 spin_unlock(&mctz->lock);
578}
579
f64c3f54 580
c0ff4b85 581static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 582{
ef8745c1 583 unsigned long long excess;
f64c3f54
BS
584 struct mem_cgroup_per_zone *mz;
585 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
586 int nid = page_to_nid(page);
587 int zid = page_zonenum(page);
f64c3f54
BS
588 mctz = soft_limit_tree_from_page(page);
589
590 /*
4e649152
KH
591 * Necessary to update all ancestors when hierarchy is used.
592 * because their event counter is not touched.
f64c3f54 593 */
c0ff4b85
R
594 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
595 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
596 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
597 /*
598 * We have to update the tree if mz is on RB-tree or
599 * mem is over its softlimit.
600 */
ef8745c1 601 if (excess || mz->on_tree) {
4e649152
KH
602 spin_lock(&mctz->lock);
603 /* if on-tree, remove it */
604 if (mz->on_tree)
c0ff4b85 605 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 606 /*
ef8745c1
KH
607 * Insert again. mz->usage_in_excess will be updated.
608 * If excess is 0, no tree ops.
4e649152 609 */
c0ff4b85 610 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
611 spin_unlock(&mctz->lock);
612 }
f64c3f54
BS
613 }
614}
615
c0ff4b85 616static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
617{
618 int node, zone;
619 struct mem_cgroup_per_zone *mz;
620 struct mem_cgroup_tree_per_zone *mctz;
621
3ed28fa1 622 for_each_node(node) {
f64c3f54 623 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 624 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 625 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 626 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
627 }
628 }
629}
630
4e416953
BS
631static struct mem_cgroup_per_zone *
632__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
633{
634 struct rb_node *rightmost = NULL;
26251eaf 635 struct mem_cgroup_per_zone *mz;
4e416953
BS
636
637retry:
26251eaf 638 mz = NULL;
4e416953
BS
639 rightmost = rb_last(&mctz->rb_root);
640 if (!rightmost)
641 goto done; /* Nothing to reclaim from */
642
643 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
644 /*
645 * Remove the node now but someone else can add it back,
646 * we will to add it back at the end of reclaim to its correct
647 * position in the tree.
648 */
d79154bb
HD
649 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
650 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
651 !css_tryget(&mz->memcg->css))
4e416953
BS
652 goto retry;
653done:
654 return mz;
655}
656
657static struct mem_cgroup_per_zone *
658mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
659{
660 struct mem_cgroup_per_zone *mz;
661
662 spin_lock(&mctz->lock);
663 mz = __mem_cgroup_largest_soft_limit_node(mctz);
664 spin_unlock(&mctz->lock);
665 return mz;
666}
667
711d3d2c
KH
668/*
669 * Implementation Note: reading percpu statistics for memcg.
670 *
671 * Both of vmstat[] and percpu_counter has threshold and do periodic
672 * synchronization to implement "quick" read. There are trade-off between
673 * reading cost and precision of value. Then, we may have a chance to implement
674 * a periodic synchronizion of counter in memcg's counter.
675 *
676 * But this _read() function is used for user interface now. The user accounts
677 * memory usage by memory cgroup and he _always_ requires exact value because
678 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
679 * have to visit all online cpus and make sum. So, for now, unnecessary
680 * synchronization is not implemented. (just implemented for cpu hotplug)
681 *
682 * If there are kernel internal actions which can make use of some not-exact
683 * value, and reading all cpu value can be performance bottleneck in some
684 * common workload, threashold and synchonization as vmstat[] should be
685 * implemented.
686 */
c0ff4b85 687static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 688 enum mem_cgroup_stat_index idx)
c62b1a3b 689{
7a159cc9 690 long val = 0;
c62b1a3b 691 int cpu;
c62b1a3b 692
711d3d2c
KH
693 get_online_cpus();
694 for_each_online_cpu(cpu)
c0ff4b85 695 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 696#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
697 spin_lock(&memcg->pcp_counter_lock);
698 val += memcg->nocpu_base.count[idx];
699 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
700#endif
701 put_online_cpus();
c62b1a3b
KH
702 return val;
703}
704
c0ff4b85 705static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
706 bool charge)
707{
708 int val = (charge) ? 1 : -1;
bff6bb83 709 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
710}
711
c0ff4b85 712static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
713 enum mem_cgroup_events_index idx)
714{
715 unsigned long val = 0;
716 int cpu;
717
718 for_each_online_cpu(cpu)
c0ff4b85 719 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 720#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
721 spin_lock(&memcg->pcp_counter_lock);
722 val += memcg->nocpu_base.events[idx];
723 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
724#endif
725 return val;
726}
727
c0ff4b85 728static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 729 bool anon, int nr_pages)
d52aa412 730{
c62b1a3b
KH
731 preempt_disable();
732
b2402857
KH
733 /*
734 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
735 * counted as CACHE even if it's on ANON LRU.
736 */
737 if (anon)
738 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 739 nr_pages);
d52aa412 740 else
b2402857 741 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 742 nr_pages);
55e462b0 743
e401f176
KH
744 /* pagein of a big page is an event. So, ignore page size */
745 if (nr_pages > 0)
c0ff4b85 746 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 747 else {
c0ff4b85 748 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
749 nr_pages = -nr_pages; /* for event */
750 }
e401f176 751
13114716 752 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 753
c62b1a3b 754 preempt_enable();
6d12e2d8
KH
755}
756
bb2a0de9 757unsigned long
4d7dcca2 758mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
759{
760 struct mem_cgroup_per_zone *mz;
761
762 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
763 return mz->lru_size[lru];
764}
765
766static unsigned long
c0ff4b85 767mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 768 unsigned int lru_mask)
889976db
YH
769{
770 struct mem_cgroup_per_zone *mz;
f156ab93 771 enum lru_list lru;
bb2a0de9
KH
772 unsigned long ret = 0;
773
c0ff4b85 774 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 775
f156ab93
HD
776 for_each_lru(lru) {
777 if (BIT(lru) & lru_mask)
778 ret += mz->lru_size[lru];
bb2a0de9
KH
779 }
780 return ret;
781}
782
783static unsigned long
c0ff4b85 784mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
785 int nid, unsigned int lru_mask)
786{
889976db
YH
787 u64 total = 0;
788 int zid;
789
bb2a0de9 790 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
791 total += mem_cgroup_zone_nr_lru_pages(memcg,
792 nid, zid, lru_mask);
bb2a0de9 793
889976db
YH
794 return total;
795}
bb2a0de9 796
c0ff4b85 797static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 798 unsigned int lru_mask)
6d12e2d8 799{
889976db 800 int nid;
6d12e2d8
KH
801 u64 total = 0;
802
bb2a0de9 803 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 804 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 805 return total;
d52aa412
KH
806}
807
f53d7ce3
JW
808static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
809 enum mem_cgroup_events_target target)
7a159cc9
JW
810{
811 unsigned long val, next;
812
13114716 813 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 814 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 815 /* from time_after() in jiffies.h */
f53d7ce3
JW
816 if ((long)next - (long)val < 0) {
817 switch (target) {
818 case MEM_CGROUP_TARGET_THRESH:
819 next = val + THRESHOLDS_EVENTS_TARGET;
820 break;
821 case MEM_CGROUP_TARGET_SOFTLIMIT:
822 next = val + SOFTLIMIT_EVENTS_TARGET;
823 break;
824 case MEM_CGROUP_TARGET_NUMAINFO:
825 next = val + NUMAINFO_EVENTS_TARGET;
826 break;
827 default:
828 break;
829 }
830 __this_cpu_write(memcg->stat->targets[target], next);
831 return true;
7a159cc9 832 }
f53d7ce3 833 return false;
d2265e6f
KH
834}
835
836/*
837 * Check events in order.
838 *
839 */
c0ff4b85 840static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 841{
4799401f 842 preempt_disable();
d2265e6f 843 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
844 if (unlikely(mem_cgroup_event_ratelimit(memcg,
845 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
846 bool do_softlimit;
847 bool do_numainfo __maybe_unused;
f53d7ce3
JW
848
849 do_softlimit = mem_cgroup_event_ratelimit(memcg,
850 MEM_CGROUP_TARGET_SOFTLIMIT);
851#if MAX_NUMNODES > 1
852 do_numainfo = mem_cgroup_event_ratelimit(memcg,
853 MEM_CGROUP_TARGET_NUMAINFO);
854#endif
855 preempt_enable();
856
c0ff4b85 857 mem_cgroup_threshold(memcg);
f53d7ce3 858 if (unlikely(do_softlimit))
c0ff4b85 859 mem_cgroup_update_tree(memcg, page);
453a9bf3 860#if MAX_NUMNODES > 1
f53d7ce3 861 if (unlikely(do_numainfo))
c0ff4b85 862 atomic_inc(&memcg->numainfo_events);
453a9bf3 863#endif
f53d7ce3
JW
864 } else
865 preempt_enable();
d2265e6f
KH
866}
867
d1a4c0b3 868struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 869{
b2145145
WL
870 return mem_cgroup_from_css(
871 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
872}
873
cf475ad2 874struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 875{
31a78f23
BS
876 /*
877 * mm_update_next_owner() may clear mm->owner to NULL
878 * if it races with swapoff, page migration, etc.
879 * So this can be called with p == NULL.
880 */
881 if (unlikely(!p))
882 return NULL;
883
b2145145 884 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
885}
886
a433658c 887struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 888{
c0ff4b85 889 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
890
891 if (!mm)
892 return NULL;
54595fe2
KH
893 /*
894 * Because we have no locks, mm->owner's may be being moved to other
895 * cgroup. We use css_tryget() here even if this looks
896 * pessimistic (rather than adding locks here).
897 */
898 rcu_read_lock();
899 do {
c0ff4b85
R
900 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
901 if (unlikely(!memcg))
54595fe2 902 break;
c0ff4b85 903 } while (!css_tryget(&memcg->css));
54595fe2 904 rcu_read_unlock();
c0ff4b85 905 return memcg;
54595fe2
KH
906}
907
5660048c
JW
908/**
909 * mem_cgroup_iter - iterate over memory cgroup hierarchy
910 * @root: hierarchy root
911 * @prev: previously returned memcg, NULL on first invocation
912 * @reclaim: cookie for shared reclaim walks, NULL for full walks
913 *
914 * Returns references to children of the hierarchy below @root, or
915 * @root itself, or %NULL after a full round-trip.
916 *
917 * Caller must pass the return value in @prev on subsequent
918 * invocations for reference counting, or use mem_cgroup_iter_break()
919 * to cancel a hierarchy walk before the round-trip is complete.
920 *
921 * Reclaimers can specify a zone and a priority level in @reclaim to
922 * divide up the memcgs in the hierarchy among all concurrent
923 * reclaimers operating on the same zone and priority.
924 */
925struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
926 struct mem_cgroup *prev,
927 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 928{
9f3a0d09
JW
929 struct mem_cgroup *memcg = NULL;
930 int id = 0;
711d3d2c 931
5660048c
JW
932 if (mem_cgroup_disabled())
933 return NULL;
934
9f3a0d09
JW
935 if (!root)
936 root = root_mem_cgroup;
7d74b06f 937
9f3a0d09
JW
938 if (prev && !reclaim)
939 id = css_id(&prev->css);
14067bb3 940
9f3a0d09
JW
941 if (prev && prev != root)
942 css_put(&prev->css);
14067bb3 943
9f3a0d09
JW
944 if (!root->use_hierarchy && root != root_mem_cgroup) {
945 if (prev)
946 return NULL;
947 return root;
948 }
14067bb3 949
9f3a0d09 950 while (!memcg) {
527a5ec9 951 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 952 struct cgroup_subsys_state *css;
711d3d2c 953
527a5ec9
JW
954 if (reclaim) {
955 int nid = zone_to_nid(reclaim->zone);
956 int zid = zone_idx(reclaim->zone);
957 struct mem_cgroup_per_zone *mz;
958
959 mz = mem_cgroup_zoneinfo(root, nid, zid);
960 iter = &mz->reclaim_iter[reclaim->priority];
961 if (prev && reclaim->generation != iter->generation)
962 return NULL;
963 id = iter->position;
964 }
7d74b06f 965
9f3a0d09
JW
966 rcu_read_lock();
967 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
968 if (css) {
969 if (css == &root->css || css_tryget(css))
b2145145 970 memcg = mem_cgroup_from_css(css);
9f3a0d09
JW
971 } else
972 id = 0;
14067bb3 973 rcu_read_unlock();
14067bb3 974
527a5ec9
JW
975 if (reclaim) {
976 iter->position = id;
977 if (!css)
978 iter->generation++;
979 else if (!prev && memcg)
980 reclaim->generation = iter->generation;
981 }
9f3a0d09
JW
982
983 if (prev && !css)
984 return NULL;
985 }
986 return memcg;
14067bb3 987}
7d74b06f 988
5660048c
JW
989/**
990 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
991 * @root: hierarchy root
992 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
993 */
994void mem_cgroup_iter_break(struct mem_cgroup *root,
995 struct mem_cgroup *prev)
9f3a0d09
JW
996{
997 if (!root)
998 root = root_mem_cgroup;
999 if (prev && prev != root)
1000 css_put(&prev->css);
1001}
7d74b06f 1002
9f3a0d09
JW
1003/*
1004 * Iteration constructs for visiting all cgroups (under a tree). If
1005 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1006 * be used for reference counting.
1007 */
1008#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1009 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1010 iter != NULL; \
527a5ec9 1011 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1012
9f3a0d09 1013#define for_each_mem_cgroup(iter) \
527a5ec9 1014 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1015 iter != NULL; \
527a5ec9 1016 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1017
456f998e
YH
1018void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1019{
c0ff4b85 1020 struct mem_cgroup *memcg;
456f998e
YH
1021
1022 if (!mm)
1023 return;
1024
1025 rcu_read_lock();
c0ff4b85
R
1026 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1027 if (unlikely(!memcg))
456f998e
YH
1028 goto out;
1029
1030 switch (idx) {
456f998e 1031 case PGFAULT:
0e574a93
JW
1032 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1033 break;
1034 case PGMAJFAULT:
1035 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1036 break;
1037 default:
1038 BUG();
1039 }
1040out:
1041 rcu_read_unlock();
1042}
1043EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1044
925b7673
JW
1045/**
1046 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1047 * @zone: zone of the wanted lruvec
fa9add64 1048 * @memcg: memcg of the wanted lruvec
925b7673
JW
1049 *
1050 * Returns the lru list vector holding pages for the given @zone and
1051 * @mem. This can be the global zone lruvec, if the memory controller
1052 * is disabled.
1053 */
1054struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1055 struct mem_cgroup *memcg)
1056{
1057 struct mem_cgroup_per_zone *mz;
bea8c150 1058 struct lruvec *lruvec;
925b7673 1059
bea8c150
HD
1060 if (mem_cgroup_disabled()) {
1061 lruvec = &zone->lruvec;
1062 goto out;
1063 }
925b7673
JW
1064
1065 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1066 lruvec = &mz->lruvec;
1067out:
1068 /*
1069 * Since a node can be onlined after the mem_cgroup was created,
1070 * we have to be prepared to initialize lruvec->zone here;
1071 * and if offlined then reonlined, we need to reinitialize it.
1072 */
1073 if (unlikely(lruvec->zone != zone))
1074 lruvec->zone = zone;
1075 return lruvec;
925b7673
JW
1076}
1077
08e552c6
KH
1078/*
1079 * Following LRU functions are allowed to be used without PCG_LOCK.
1080 * Operations are called by routine of global LRU independently from memcg.
1081 * What we have to take care of here is validness of pc->mem_cgroup.
1082 *
1083 * Changes to pc->mem_cgroup happens when
1084 * 1. charge
1085 * 2. moving account
1086 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1087 * It is added to LRU before charge.
1088 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1089 * When moving account, the page is not on LRU. It's isolated.
1090 */
4f98a2fe 1091
925b7673 1092/**
fa9add64 1093 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1094 * @page: the page
fa9add64 1095 * @zone: zone of the page
925b7673 1096 */
fa9add64 1097struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1098{
08e552c6 1099 struct mem_cgroup_per_zone *mz;
925b7673
JW
1100 struct mem_cgroup *memcg;
1101 struct page_cgroup *pc;
bea8c150 1102 struct lruvec *lruvec;
6d12e2d8 1103
bea8c150
HD
1104 if (mem_cgroup_disabled()) {
1105 lruvec = &zone->lruvec;
1106 goto out;
1107 }
925b7673 1108
08e552c6 1109 pc = lookup_page_cgroup(page);
38c5d72f 1110 memcg = pc->mem_cgroup;
7512102c
HD
1111
1112 /*
fa9add64 1113 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1114 * an uncharged page off lru does nothing to secure
1115 * its former mem_cgroup from sudden removal.
1116 *
1117 * Our caller holds lru_lock, and PageCgroupUsed is updated
1118 * under page_cgroup lock: between them, they make all uses
1119 * of pc->mem_cgroup safe.
1120 */
fa9add64 1121 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1122 pc->mem_cgroup = memcg = root_mem_cgroup;
1123
925b7673 1124 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1125 lruvec = &mz->lruvec;
1126out:
1127 /*
1128 * Since a node can be onlined after the mem_cgroup was created,
1129 * we have to be prepared to initialize lruvec->zone here;
1130 * and if offlined then reonlined, we need to reinitialize it.
1131 */
1132 if (unlikely(lruvec->zone != zone))
1133 lruvec->zone = zone;
1134 return lruvec;
08e552c6 1135}
b69408e8 1136
925b7673 1137/**
fa9add64
HD
1138 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1139 * @lruvec: mem_cgroup per zone lru vector
1140 * @lru: index of lru list the page is sitting on
1141 * @nr_pages: positive when adding or negative when removing
925b7673 1142 *
fa9add64
HD
1143 * This function must be called when a page is added to or removed from an
1144 * lru list.
3f58a829 1145 */
fa9add64
HD
1146void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1147 int nr_pages)
3f58a829
MK
1148{
1149 struct mem_cgroup_per_zone *mz;
fa9add64 1150 unsigned long *lru_size;
3f58a829
MK
1151
1152 if (mem_cgroup_disabled())
1153 return;
1154
fa9add64
HD
1155 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1156 lru_size = mz->lru_size + lru;
1157 *lru_size += nr_pages;
1158 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1159}
544122e5 1160
3e92041d 1161/*
c0ff4b85 1162 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1163 * hierarchy subtree
1164 */
c3ac9a8a
JW
1165bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1166 struct mem_cgroup *memcg)
3e92041d 1167{
91c63734
JW
1168 if (root_memcg == memcg)
1169 return true;
3a981f48 1170 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1171 return false;
c3ac9a8a
JW
1172 return css_is_ancestor(&memcg->css, &root_memcg->css);
1173}
1174
1175static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1176 struct mem_cgroup *memcg)
1177{
1178 bool ret;
1179
91c63734 1180 rcu_read_lock();
c3ac9a8a 1181 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1182 rcu_read_unlock();
1183 return ret;
3e92041d
MH
1184}
1185
c0ff4b85 1186int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1187{
1188 int ret;
0b7f569e 1189 struct mem_cgroup *curr = NULL;
158e0a2d 1190 struct task_struct *p;
4c4a2214 1191
158e0a2d 1192 p = find_lock_task_mm(task);
de077d22
DR
1193 if (p) {
1194 curr = try_get_mem_cgroup_from_mm(p->mm);
1195 task_unlock(p);
1196 } else {
1197 /*
1198 * All threads may have already detached their mm's, but the oom
1199 * killer still needs to detect if they have already been oom
1200 * killed to prevent needlessly killing additional tasks.
1201 */
1202 task_lock(task);
1203 curr = mem_cgroup_from_task(task);
1204 if (curr)
1205 css_get(&curr->css);
1206 task_unlock(task);
1207 }
0b7f569e
KH
1208 if (!curr)
1209 return 0;
d31f56db 1210 /*
c0ff4b85 1211 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1212 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1213 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1214 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1215 */
c0ff4b85 1216 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1217 css_put(&curr->css);
4c4a2214
DR
1218 return ret;
1219}
1220
c56d5c7d 1221int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1222{
9b272977 1223 unsigned long inactive_ratio;
14797e23 1224 unsigned long inactive;
9b272977 1225 unsigned long active;
c772be93 1226 unsigned long gb;
14797e23 1227
4d7dcca2
HD
1228 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1229 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1230
c772be93
KM
1231 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1232 if (gb)
1233 inactive_ratio = int_sqrt(10 * gb);
1234 else
1235 inactive_ratio = 1;
1236
9b272977 1237 return inactive * inactive_ratio < active;
14797e23
KM
1238}
1239
c56d5c7d 1240int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1241{
1242 unsigned long active;
1243 unsigned long inactive;
1244
4d7dcca2
HD
1245 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1246 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1247
1248 return (active > inactive);
1249}
1250
6d61ef40
BS
1251#define mem_cgroup_from_res_counter(counter, member) \
1252 container_of(counter, struct mem_cgroup, member)
1253
19942822 1254/**
9d11ea9f 1255 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1256 * @memcg: the memory cgroup
19942822 1257 *
9d11ea9f 1258 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1259 * pages.
19942822 1260 */
c0ff4b85 1261static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1262{
9d11ea9f
JW
1263 unsigned long long margin;
1264
c0ff4b85 1265 margin = res_counter_margin(&memcg->res);
9d11ea9f 1266 if (do_swap_account)
c0ff4b85 1267 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1268 return margin >> PAGE_SHIFT;
19942822
JW
1269}
1270
1f4c025b 1271int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1272{
1273 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1274
1275 /* root ? */
1276 if (cgrp->parent == NULL)
1277 return vm_swappiness;
1278
bf1ff263 1279 return memcg->swappiness;
a7885eb8
KM
1280}
1281
619d094b
KH
1282/*
1283 * memcg->moving_account is used for checking possibility that some thread is
1284 * calling move_account(). When a thread on CPU-A starts moving pages under
1285 * a memcg, other threads should check memcg->moving_account under
1286 * rcu_read_lock(), like this:
1287 *
1288 * CPU-A CPU-B
1289 * rcu_read_lock()
1290 * memcg->moving_account+1 if (memcg->mocing_account)
1291 * take heavy locks.
1292 * synchronize_rcu() update something.
1293 * rcu_read_unlock()
1294 * start move here.
1295 */
4331f7d3
KH
1296
1297/* for quick checking without looking up memcg */
1298atomic_t memcg_moving __read_mostly;
1299
c0ff4b85 1300static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1301{
4331f7d3 1302 atomic_inc(&memcg_moving);
619d094b 1303 atomic_inc(&memcg->moving_account);
32047e2a
KH
1304 synchronize_rcu();
1305}
1306
c0ff4b85 1307static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1308{
619d094b
KH
1309 /*
1310 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1311 * We check NULL in callee rather than caller.
1312 */
4331f7d3
KH
1313 if (memcg) {
1314 atomic_dec(&memcg_moving);
619d094b 1315 atomic_dec(&memcg->moving_account);
4331f7d3 1316 }
32047e2a 1317}
619d094b 1318
32047e2a
KH
1319/*
1320 * 2 routines for checking "mem" is under move_account() or not.
1321 *
13fd1dd9
AM
1322 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1323 * is used for avoiding races in accounting. If true,
32047e2a
KH
1324 * pc->mem_cgroup may be overwritten.
1325 *
1326 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1327 * under hierarchy of moving cgroups. This is for
1328 * waiting at hith-memory prressure caused by "move".
1329 */
1330
13fd1dd9 1331static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1332{
1333 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1334 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1335}
4b534334 1336
c0ff4b85 1337static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1338{
2bd9bb20
KH
1339 struct mem_cgroup *from;
1340 struct mem_cgroup *to;
4b534334 1341 bool ret = false;
2bd9bb20
KH
1342 /*
1343 * Unlike task_move routines, we access mc.to, mc.from not under
1344 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1345 */
1346 spin_lock(&mc.lock);
1347 from = mc.from;
1348 to = mc.to;
1349 if (!from)
1350 goto unlock;
3e92041d 1351
c0ff4b85
R
1352 ret = mem_cgroup_same_or_subtree(memcg, from)
1353 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1354unlock:
1355 spin_unlock(&mc.lock);
4b534334
KH
1356 return ret;
1357}
1358
c0ff4b85 1359static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1360{
1361 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1362 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1363 DEFINE_WAIT(wait);
1364 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1365 /* moving charge context might have finished. */
1366 if (mc.moving_task)
1367 schedule();
1368 finish_wait(&mc.waitq, &wait);
1369 return true;
1370 }
1371 }
1372 return false;
1373}
1374
312734c0
KH
1375/*
1376 * Take this lock when
1377 * - a code tries to modify page's memcg while it's USED.
1378 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1379 * see mem_cgroup_stolen(), too.
312734c0
KH
1380 */
1381static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1382 unsigned long *flags)
1383{
1384 spin_lock_irqsave(&memcg->move_lock, *flags);
1385}
1386
1387static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1388 unsigned long *flags)
1389{
1390 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1391}
1392
e222432b 1393/**
6a6135b6 1394 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1395 * @memcg: The memory cgroup that went over limit
1396 * @p: Task that is going to be killed
1397 *
1398 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1399 * enabled
1400 */
1401void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1402{
1403 struct cgroup *task_cgrp;
1404 struct cgroup *mem_cgrp;
1405 /*
1406 * Need a buffer in BSS, can't rely on allocations. The code relies
1407 * on the assumption that OOM is serialized for memory controller.
1408 * If this assumption is broken, revisit this code.
1409 */
1410 static char memcg_name[PATH_MAX];
1411 int ret;
1412
d31f56db 1413 if (!memcg || !p)
e222432b
BS
1414 return;
1415
e222432b
BS
1416 rcu_read_lock();
1417
1418 mem_cgrp = memcg->css.cgroup;
1419 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1420
1421 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1422 if (ret < 0) {
1423 /*
1424 * Unfortunately, we are unable to convert to a useful name
1425 * But we'll still print out the usage information
1426 */
1427 rcu_read_unlock();
1428 goto done;
1429 }
1430 rcu_read_unlock();
1431
1432 printk(KERN_INFO "Task in %s killed", memcg_name);
1433
1434 rcu_read_lock();
1435 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1436 if (ret < 0) {
1437 rcu_read_unlock();
1438 goto done;
1439 }
1440 rcu_read_unlock();
1441
1442 /*
1443 * Continues from above, so we don't need an KERN_ level
1444 */
1445 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1446done:
1447
1448 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1449 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1450 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1451 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1452 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1453 "failcnt %llu\n",
1454 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1455 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1456 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1457}
1458
81d39c20
KH
1459/*
1460 * This function returns the number of memcg under hierarchy tree. Returns
1461 * 1(self count) if no children.
1462 */
c0ff4b85 1463static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1464{
1465 int num = 0;
7d74b06f
KH
1466 struct mem_cgroup *iter;
1467
c0ff4b85 1468 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1469 num++;
81d39c20
KH
1470 return num;
1471}
1472
a63d83f4
DR
1473/*
1474 * Return the memory (and swap, if configured) limit for a memcg.
1475 */
9cbb78bb 1476static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1477{
1478 u64 limit;
a63d83f4 1479
f3e8eb70 1480 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1481
a63d83f4 1482 /*
9a5a8f19 1483 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1484 */
9a5a8f19
MH
1485 if (mem_cgroup_swappiness(memcg)) {
1486 u64 memsw;
1487
1488 limit += total_swap_pages << PAGE_SHIFT;
1489 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1490
1491 /*
1492 * If memsw is finite and limits the amount of swap space
1493 * available to this memcg, return that limit.
1494 */
1495 limit = min(limit, memsw);
1496 }
1497
1498 return limit;
a63d83f4
DR
1499}
1500
19965460
DR
1501static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1502 int order)
9cbb78bb
DR
1503{
1504 struct mem_cgroup *iter;
1505 unsigned long chosen_points = 0;
1506 unsigned long totalpages;
1507 unsigned int points = 0;
1508 struct task_struct *chosen = NULL;
1509
876aafbf
DR
1510 /*
1511 * If current has a pending SIGKILL, then automatically select it. The
1512 * goal is to allow it to allocate so that it may quickly exit and free
1513 * its memory.
1514 */
1515 if (fatal_signal_pending(current)) {
1516 set_thread_flag(TIF_MEMDIE);
1517 return;
1518 }
1519
1520 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1521 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1522 for_each_mem_cgroup_tree(iter, memcg) {
1523 struct cgroup *cgroup = iter->css.cgroup;
1524 struct cgroup_iter it;
1525 struct task_struct *task;
1526
1527 cgroup_iter_start(cgroup, &it);
1528 while ((task = cgroup_iter_next(cgroup, &it))) {
1529 switch (oom_scan_process_thread(task, totalpages, NULL,
1530 false)) {
1531 case OOM_SCAN_SELECT:
1532 if (chosen)
1533 put_task_struct(chosen);
1534 chosen = task;
1535 chosen_points = ULONG_MAX;
1536 get_task_struct(chosen);
1537 /* fall through */
1538 case OOM_SCAN_CONTINUE:
1539 continue;
1540 case OOM_SCAN_ABORT:
1541 cgroup_iter_end(cgroup, &it);
1542 mem_cgroup_iter_break(memcg, iter);
1543 if (chosen)
1544 put_task_struct(chosen);
1545 return;
1546 case OOM_SCAN_OK:
1547 break;
1548 };
1549 points = oom_badness(task, memcg, NULL, totalpages);
1550 if (points > chosen_points) {
1551 if (chosen)
1552 put_task_struct(chosen);
1553 chosen = task;
1554 chosen_points = points;
1555 get_task_struct(chosen);
1556 }
1557 }
1558 cgroup_iter_end(cgroup, &it);
1559 }
1560
1561 if (!chosen)
1562 return;
1563 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1564 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1565 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1566}
1567
5660048c
JW
1568static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1569 gfp_t gfp_mask,
1570 unsigned long flags)
1571{
1572 unsigned long total = 0;
1573 bool noswap = false;
1574 int loop;
1575
1576 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1577 noswap = true;
1578 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1579 noswap = true;
1580
1581 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1582 if (loop)
1583 drain_all_stock_async(memcg);
1584 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1585 /*
1586 * Allow limit shrinkers, which are triggered directly
1587 * by userspace, to catch signals and stop reclaim
1588 * after minimal progress, regardless of the margin.
1589 */
1590 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1591 break;
1592 if (mem_cgroup_margin(memcg))
1593 break;
1594 /*
1595 * If nothing was reclaimed after two attempts, there
1596 * may be no reclaimable pages in this hierarchy.
1597 */
1598 if (loop && !total)
1599 break;
1600 }
1601 return total;
1602}
1603
4d0c066d
KH
1604/**
1605 * test_mem_cgroup_node_reclaimable
dad7557e 1606 * @memcg: the target memcg
4d0c066d
KH
1607 * @nid: the node ID to be checked.
1608 * @noswap : specify true here if the user wants flle only information.
1609 *
1610 * This function returns whether the specified memcg contains any
1611 * reclaimable pages on a node. Returns true if there are any reclaimable
1612 * pages in the node.
1613 */
c0ff4b85 1614static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1615 int nid, bool noswap)
1616{
c0ff4b85 1617 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1618 return true;
1619 if (noswap || !total_swap_pages)
1620 return false;
c0ff4b85 1621 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1622 return true;
1623 return false;
1624
1625}
889976db
YH
1626#if MAX_NUMNODES > 1
1627
1628/*
1629 * Always updating the nodemask is not very good - even if we have an empty
1630 * list or the wrong list here, we can start from some node and traverse all
1631 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1632 *
1633 */
c0ff4b85 1634static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1635{
1636 int nid;
453a9bf3
KH
1637 /*
1638 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1639 * pagein/pageout changes since the last update.
1640 */
c0ff4b85 1641 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1642 return;
c0ff4b85 1643 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1644 return;
1645
889976db 1646 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1647 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1648
1649 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1650
c0ff4b85
R
1651 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1652 node_clear(nid, memcg->scan_nodes);
889976db 1653 }
453a9bf3 1654
c0ff4b85
R
1655 atomic_set(&memcg->numainfo_events, 0);
1656 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1657}
1658
1659/*
1660 * Selecting a node where we start reclaim from. Because what we need is just
1661 * reducing usage counter, start from anywhere is O,K. Considering
1662 * memory reclaim from current node, there are pros. and cons.
1663 *
1664 * Freeing memory from current node means freeing memory from a node which
1665 * we'll use or we've used. So, it may make LRU bad. And if several threads
1666 * hit limits, it will see a contention on a node. But freeing from remote
1667 * node means more costs for memory reclaim because of memory latency.
1668 *
1669 * Now, we use round-robin. Better algorithm is welcomed.
1670 */
c0ff4b85 1671int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1672{
1673 int node;
1674
c0ff4b85
R
1675 mem_cgroup_may_update_nodemask(memcg);
1676 node = memcg->last_scanned_node;
889976db 1677
c0ff4b85 1678 node = next_node(node, memcg->scan_nodes);
889976db 1679 if (node == MAX_NUMNODES)
c0ff4b85 1680 node = first_node(memcg->scan_nodes);
889976db
YH
1681 /*
1682 * We call this when we hit limit, not when pages are added to LRU.
1683 * No LRU may hold pages because all pages are UNEVICTABLE or
1684 * memcg is too small and all pages are not on LRU. In that case,
1685 * we use curret node.
1686 */
1687 if (unlikely(node == MAX_NUMNODES))
1688 node = numa_node_id();
1689
c0ff4b85 1690 memcg->last_scanned_node = node;
889976db
YH
1691 return node;
1692}
1693
4d0c066d
KH
1694/*
1695 * Check all nodes whether it contains reclaimable pages or not.
1696 * For quick scan, we make use of scan_nodes. This will allow us to skip
1697 * unused nodes. But scan_nodes is lazily updated and may not cotain
1698 * enough new information. We need to do double check.
1699 */
6bbda35c 1700static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1701{
1702 int nid;
1703
1704 /*
1705 * quick check...making use of scan_node.
1706 * We can skip unused nodes.
1707 */
c0ff4b85
R
1708 if (!nodes_empty(memcg->scan_nodes)) {
1709 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1710 nid < MAX_NUMNODES;
c0ff4b85 1711 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1712
c0ff4b85 1713 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1714 return true;
1715 }
1716 }
1717 /*
1718 * Check rest of nodes.
1719 */
1720 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1721 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1722 continue;
c0ff4b85 1723 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1724 return true;
1725 }
1726 return false;
1727}
1728
889976db 1729#else
c0ff4b85 1730int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1731{
1732 return 0;
1733}
4d0c066d 1734
6bbda35c 1735static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1736{
c0ff4b85 1737 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1738}
889976db
YH
1739#endif
1740
5660048c
JW
1741static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1742 struct zone *zone,
1743 gfp_t gfp_mask,
1744 unsigned long *total_scanned)
6d61ef40 1745{
9f3a0d09 1746 struct mem_cgroup *victim = NULL;
5660048c 1747 int total = 0;
04046e1a 1748 int loop = 0;
9d11ea9f 1749 unsigned long excess;
185efc0f 1750 unsigned long nr_scanned;
527a5ec9
JW
1751 struct mem_cgroup_reclaim_cookie reclaim = {
1752 .zone = zone,
1753 .priority = 0,
1754 };
9d11ea9f 1755
c0ff4b85 1756 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1757
4e416953 1758 while (1) {
527a5ec9 1759 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1760 if (!victim) {
04046e1a 1761 loop++;
4e416953
BS
1762 if (loop >= 2) {
1763 /*
1764 * If we have not been able to reclaim
1765 * anything, it might because there are
1766 * no reclaimable pages under this hierarchy
1767 */
5660048c 1768 if (!total)
4e416953 1769 break;
4e416953 1770 /*
25985edc 1771 * We want to do more targeted reclaim.
4e416953
BS
1772 * excess >> 2 is not to excessive so as to
1773 * reclaim too much, nor too less that we keep
1774 * coming back to reclaim from this cgroup
1775 */
1776 if (total >= (excess >> 2) ||
9f3a0d09 1777 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1778 break;
4e416953 1779 }
9f3a0d09 1780 continue;
4e416953 1781 }
5660048c 1782 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1783 continue;
5660048c
JW
1784 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1785 zone, &nr_scanned);
1786 *total_scanned += nr_scanned;
1787 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1788 break;
6d61ef40 1789 }
9f3a0d09 1790 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1791 return total;
6d61ef40
BS
1792}
1793
867578cb
KH
1794/*
1795 * Check OOM-Killer is already running under our hierarchy.
1796 * If someone is running, return false.
1af8efe9 1797 * Has to be called with memcg_oom_lock
867578cb 1798 */
c0ff4b85 1799static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1800{
79dfdacc 1801 struct mem_cgroup *iter, *failed = NULL;
a636b327 1802
9f3a0d09 1803 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1804 if (iter->oom_lock) {
79dfdacc
MH
1805 /*
1806 * this subtree of our hierarchy is already locked
1807 * so we cannot give a lock.
1808 */
79dfdacc 1809 failed = iter;
9f3a0d09
JW
1810 mem_cgroup_iter_break(memcg, iter);
1811 break;
23751be0
JW
1812 } else
1813 iter->oom_lock = true;
7d74b06f 1814 }
867578cb 1815
79dfdacc 1816 if (!failed)
23751be0 1817 return true;
79dfdacc
MH
1818
1819 /*
1820 * OK, we failed to lock the whole subtree so we have to clean up
1821 * what we set up to the failing subtree
1822 */
9f3a0d09 1823 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1824 if (iter == failed) {
9f3a0d09
JW
1825 mem_cgroup_iter_break(memcg, iter);
1826 break;
79dfdacc
MH
1827 }
1828 iter->oom_lock = false;
1829 }
23751be0 1830 return false;
a636b327 1831}
0b7f569e 1832
79dfdacc 1833/*
1af8efe9 1834 * Has to be called with memcg_oom_lock
79dfdacc 1835 */
c0ff4b85 1836static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1837{
7d74b06f
KH
1838 struct mem_cgroup *iter;
1839
c0ff4b85 1840 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1841 iter->oom_lock = false;
1842 return 0;
1843}
1844
c0ff4b85 1845static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1846{
1847 struct mem_cgroup *iter;
1848
c0ff4b85 1849 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1850 atomic_inc(&iter->under_oom);
1851}
1852
c0ff4b85 1853static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1854{
1855 struct mem_cgroup *iter;
1856
867578cb
KH
1857 /*
1858 * When a new child is created while the hierarchy is under oom,
1859 * mem_cgroup_oom_lock() may not be called. We have to use
1860 * atomic_add_unless() here.
1861 */
c0ff4b85 1862 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1863 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1864}
1865
1af8efe9 1866static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1867static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1868
dc98df5a 1869struct oom_wait_info {
d79154bb 1870 struct mem_cgroup *memcg;
dc98df5a
KH
1871 wait_queue_t wait;
1872};
1873
1874static int memcg_oom_wake_function(wait_queue_t *wait,
1875 unsigned mode, int sync, void *arg)
1876{
d79154bb
HD
1877 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1878 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1879 struct oom_wait_info *oom_wait_info;
1880
1881 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1882 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1883
dc98df5a 1884 /*
d79154bb 1885 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
1886 * Then we can use css_is_ancestor without taking care of RCU.
1887 */
c0ff4b85
R
1888 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1889 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1890 return 0;
dc98df5a
KH
1891 return autoremove_wake_function(wait, mode, sync, arg);
1892}
1893
c0ff4b85 1894static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1895{
c0ff4b85
R
1896 /* for filtering, pass "memcg" as argument. */
1897 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1898}
1899
c0ff4b85 1900static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1901{
c0ff4b85
R
1902 if (memcg && atomic_read(&memcg->under_oom))
1903 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1904}
1905
867578cb
KH
1906/*
1907 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1908 */
6bbda35c
KS
1909static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
1910 int order)
0b7f569e 1911{
dc98df5a 1912 struct oom_wait_info owait;
3c11ecf4 1913 bool locked, need_to_kill;
867578cb 1914
d79154bb 1915 owait.memcg = memcg;
dc98df5a
KH
1916 owait.wait.flags = 0;
1917 owait.wait.func = memcg_oom_wake_function;
1918 owait.wait.private = current;
1919 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1920 need_to_kill = true;
c0ff4b85 1921 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1922
c0ff4b85 1923 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1924 spin_lock(&memcg_oom_lock);
c0ff4b85 1925 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1926 /*
1927 * Even if signal_pending(), we can't quit charge() loop without
1928 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1929 * under OOM is always welcomed, use TASK_KILLABLE here.
1930 */
3c11ecf4 1931 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1932 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1933 need_to_kill = false;
1934 if (locked)
c0ff4b85 1935 mem_cgroup_oom_notify(memcg);
1af8efe9 1936 spin_unlock(&memcg_oom_lock);
867578cb 1937
3c11ecf4
KH
1938 if (need_to_kill) {
1939 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 1940 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 1941 } else {
867578cb 1942 schedule();
dc98df5a 1943 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1944 }
1af8efe9 1945 spin_lock(&memcg_oom_lock);
79dfdacc 1946 if (locked)
c0ff4b85
R
1947 mem_cgroup_oom_unlock(memcg);
1948 memcg_wakeup_oom(memcg);
1af8efe9 1949 spin_unlock(&memcg_oom_lock);
867578cb 1950
c0ff4b85 1951 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1952
867578cb
KH
1953 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1954 return false;
1955 /* Give chance to dying process */
715a5ee8 1956 schedule_timeout_uninterruptible(1);
867578cb 1957 return true;
0b7f569e
KH
1958}
1959
d69b042f
BS
1960/*
1961 * Currently used to update mapped file statistics, but the routine can be
1962 * generalized to update other statistics as well.
32047e2a
KH
1963 *
1964 * Notes: Race condition
1965 *
1966 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1967 * it tends to be costly. But considering some conditions, we doesn't need
1968 * to do so _always_.
1969 *
1970 * Considering "charge", lock_page_cgroup() is not required because all
1971 * file-stat operations happen after a page is attached to radix-tree. There
1972 * are no race with "charge".
1973 *
1974 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1975 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1976 * if there are race with "uncharge". Statistics itself is properly handled
1977 * by flags.
1978 *
1979 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
1980 * small, we check mm->moving_account and detect there are possibility of race
1981 * If there is, we take a lock.
d69b042f 1982 */
26174efd 1983
89c06bd5
KH
1984void __mem_cgroup_begin_update_page_stat(struct page *page,
1985 bool *locked, unsigned long *flags)
1986{
1987 struct mem_cgroup *memcg;
1988 struct page_cgroup *pc;
1989
1990 pc = lookup_page_cgroup(page);
1991again:
1992 memcg = pc->mem_cgroup;
1993 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1994 return;
1995 /*
1996 * If this memory cgroup is not under account moving, we don't
da92c47d 1997 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 1998 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 1999 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2000 */
13fd1dd9 2001 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2002 return;
2003
2004 move_lock_mem_cgroup(memcg, flags);
2005 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2006 move_unlock_mem_cgroup(memcg, flags);
2007 goto again;
2008 }
2009 *locked = true;
2010}
2011
2012void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2013{
2014 struct page_cgroup *pc = lookup_page_cgroup(page);
2015
2016 /*
2017 * It's guaranteed that pc->mem_cgroup never changes while
2018 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2019 * should take move_lock_mem_cgroup().
89c06bd5
KH
2020 */
2021 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2022}
2023
2a7106f2
GT
2024void mem_cgroup_update_page_stat(struct page *page,
2025 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2026{
c0ff4b85 2027 struct mem_cgroup *memcg;
32047e2a 2028 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2029 unsigned long uninitialized_var(flags);
d69b042f 2030
cfa44946 2031 if (mem_cgroup_disabled())
d69b042f 2032 return;
89c06bd5 2033
c0ff4b85
R
2034 memcg = pc->mem_cgroup;
2035 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2036 return;
26174efd 2037
26174efd 2038 switch (idx) {
2a7106f2 2039 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2040 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2041 break;
2042 default:
2043 BUG();
8725d541 2044 }
d69b042f 2045
c0ff4b85 2046 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2047}
26174efd 2048
cdec2e42
KH
2049/*
2050 * size of first charge trial. "32" comes from vmscan.c's magic value.
2051 * TODO: maybe necessary to use big numbers in big irons.
2052 */
7ec99d62 2053#define CHARGE_BATCH 32U
cdec2e42
KH
2054struct memcg_stock_pcp {
2055 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2056 unsigned int nr_pages;
cdec2e42 2057 struct work_struct work;
26fe6168 2058 unsigned long flags;
a0db00fc 2059#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2060};
2061static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2062static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2063
2064/*
11c9ea4e 2065 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2066 * from local stock and true is returned. If the stock is 0 or charges from a
2067 * cgroup which is not current target, returns false. This stock will be
2068 * refilled.
2069 */
c0ff4b85 2070static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2071{
2072 struct memcg_stock_pcp *stock;
2073 bool ret = true;
2074
2075 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2076 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2077 stock->nr_pages--;
cdec2e42
KH
2078 else /* need to call res_counter_charge */
2079 ret = false;
2080 put_cpu_var(memcg_stock);
2081 return ret;
2082}
2083
2084/*
2085 * Returns stocks cached in percpu to res_counter and reset cached information.
2086 */
2087static void drain_stock(struct memcg_stock_pcp *stock)
2088{
2089 struct mem_cgroup *old = stock->cached;
2090
11c9ea4e
JW
2091 if (stock->nr_pages) {
2092 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2093
2094 res_counter_uncharge(&old->res, bytes);
cdec2e42 2095 if (do_swap_account)
11c9ea4e
JW
2096 res_counter_uncharge(&old->memsw, bytes);
2097 stock->nr_pages = 0;
cdec2e42
KH
2098 }
2099 stock->cached = NULL;
cdec2e42
KH
2100}
2101
2102/*
2103 * This must be called under preempt disabled or must be called by
2104 * a thread which is pinned to local cpu.
2105 */
2106static void drain_local_stock(struct work_struct *dummy)
2107{
2108 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2109 drain_stock(stock);
26fe6168 2110 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2111}
2112
2113/*
2114 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2115 * This will be consumed by consume_stock() function, later.
cdec2e42 2116 */
c0ff4b85 2117static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2118{
2119 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2120
c0ff4b85 2121 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2122 drain_stock(stock);
c0ff4b85 2123 stock->cached = memcg;
cdec2e42 2124 }
11c9ea4e 2125 stock->nr_pages += nr_pages;
cdec2e42
KH
2126 put_cpu_var(memcg_stock);
2127}
2128
2129/*
c0ff4b85 2130 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2131 * of the hierarchy under it. sync flag says whether we should block
2132 * until the work is done.
cdec2e42 2133 */
c0ff4b85 2134static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2135{
26fe6168 2136 int cpu, curcpu;
d38144b7 2137
cdec2e42 2138 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2139 get_online_cpus();
5af12d0e 2140 curcpu = get_cpu();
cdec2e42
KH
2141 for_each_online_cpu(cpu) {
2142 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2143 struct mem_cgroup *memcg;
26fe6168 2144
c0ff4b85
R
2145 memcg = stock->cached;
2146 if (!memcg || !stock->nr_pages)
26fe6168 2147 continue;
c0ff4b85 2148 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2149 continue;
d1a05b69
MH
2150 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2151 if (cpu == curcpu)
2152 drain_local_stock(&stock->work);
2153 else
2154 schedule_work_on(cpu, &stock->work);
2155 }
cdec2e42 2156 }
5af12d0e 2157 put_cpu();
d38144b7
MH
2158
2159 if (!sync)
2160 goto out;
2161
2162 for_each_online_cpu(cpu) {
2163 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2164 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2165 flush_work(&stock->work);
2166 }
2167out:
cdec2e42 2168 put_online_cpus();
d38144b7
MH
2169}
2170
2171/*
2172 * Tries to drain stocked charges in other cpus. This function is asynchronous
2173 * and just put a work per cpu for draining localy on each cpu. Caller can
2174 * expects some charges will be back to res_counter later but cannot wait for
2175 * it.
2176 */
c0ff4b85 2177static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2178{
9f50fad6
MH
2179 /*
2180 * If someone calls draining, avoid adding more kworker runs.
2181 */
2182 if (!mutex_trylock(&percpu_charge_mutex))
2183 return;
c0ff4b85 2184 drain_all_stock(root_memcg, false);
9f50fad6 2185 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2186}
2187
2188/* This is a synchronous drain interface. */
c0ff4b85 2189static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2190{
2191 /* called when force_empty is called */
9f50fad6 2192 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2193 drain_all_stock(root_memcg, true);
9f50fad6 2194 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2195}
2196
711d3d2c
KH
2197/*
2198 * This function drains percpu counter value from DEAD cpu and
2199 * move it to local cpu. Note that this function can be preempted.
2200 */
c0ff4b85 2201static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2202{
2203 int i;
2204
c0ff4b85 2205 spin_lock(&memcg->pcp_counter_lock);
6104621d 2206 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2207 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2208
c0ff4b85
R
2209 per_cpu(memcg->stat->count[i], cpu) = 0;
2210 memcg->nocpu_base.count[i] += x;
711d3d2c 2211 }
e9f8974f 2212 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2213 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2214
c0ff4b85
R
2215 per_cpu(memcg->stat->events[i], cpu) = 0;
2216 memcg->nocpu_base.events[i] += x;
e9f8974f 2217 }
c0ff4b85 2218 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2219}
2220
2221static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2222 unsigned long action,
2223 void *hcpu)
2224{
2225 int cpu = (unsigned long)hcpu;
2226 struct memcg_stock_pcp *stock;
711d3d2c 2227 struct mem_cgroup *iter;
cdec2e42 2228
619d094b 2229 if (action == CPU_ONLINE)
1489ebad 2230 return NOTIFY_OK;
1489ebad 2231
d833049b 2232 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2233 return NOTIFY_OK;
711d3d2c 2234
9f3a0d09 2235 for_each_mem_cgroup(iter)
711d3d2c
KH
2236 mem_cgroup_drain_pcp_counter(iter, cpu);
2237
cdec2e42
KH
2238 stock = &per_cpu(memcg_stock, cpu);
2239 drain_stock(stock);
2240 return NOTIFY_OK;
2241}
2242
4b534334
KH
2243
2244/* See __mem_cgroup_try_charge() for details */
2245enum {
2246 CHARGE_OK, /* success */
2247 CHARGE_RETRY, /* need to retry but retry is not bad */
2248 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2249 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2250 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2251};
2252
c0ff4b85 2253static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2254 unsigned int nr_pages, bool oom_check)
4b534334 2255{
7ec99d62 2256 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2257 struct mem_cgroup *mem_over_limit;
2258 struct res_counter *fail_res;
2259 unsigned long flags = 0;
2260 int ret;
2261
c0ff4b85 2262 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2263
2264 if (likely(!ret)) {
2265 if (!do_swap_account)
2266 return CHARGE_OK;
c0ff4b85 2267 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2268 if (likely(!ret))
2269 return CHARGE_OK;
2270
c0ff4b85 2271 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2272 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2273 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2274 } else
2275 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2276 /*
7ec99d62
JW
2277 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2278 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2279 *
2280 * Never reclaim on behalf of optional batching, retry with a
2281 * single page instead.
2282 */
7ec99d62 2283 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2284 return CHARGE_RETRY;
2285
2286 if (!(gfp_mask & __GFP_WAIT))
2287 return CHARGE_WOULDBLOCK;
2288
5660048c 2289 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2290 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2291 return CHARGE_RETRY;
4b534334 2292 /*
19942822
JW
2293 * Even though the limit is exceeded at this point, reclaim
2294 * may have been able to free some pages. Retry the charge
2295 * before killing the task.
2296 *
2297 * Only for regular pages, though: huge pages are rather
2298 * unlikely to succeed so close to the limit, and we fall back
2299 * to regular pages anyway in case of failure.
4b534334 2300 */
7ec99d62 2301 if (nr_pages == 1 && ret)
4b534334
KH
2302 return CHARGE_RETRY;
2303
2304 /*
2305 * At task move, charge accounts can be doubly counted. So, it's
2306 * better to wait until the end of task_move if something is going on.
2307 */
2308 if (mem_cgroup_wait_acct_move(mem_over_limit))
2309 return CHARGE_RETRY;
2310
2311 /* If we don't need to call oom-killer at el, return immediately */
2312 if (!oom_check)
2313 return CHARGE_NOMEM;
2314 /* check OOM */
e845e199 2315 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2316 return CHARGE_OOM_DIE;
2317
2318 return CHARGE_RETRY;
2319}
2320
f817ed48 2321/*
38c5d72f
KH
2322 * __mem_cgroup_try_charge() does
2323 * 1. detect memcg to be charged against from passed *mm and *ptr,
2324 * 2. update res_counter
2325 * 3. call memory reclaim if necessary.
2326 *
2327 * In some special case, if the task is fatal, fatal_signal_pending() or
2328 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2329 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2330 * as possible without any hazards. 2: all pages should have a valid
2331 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2332 * pointer, that is treated as a charge to root_mem_cgroup.
2333 *
2334 * So __mem_cgroup_try_charge() will return
2335 * 0 ... on success, filling *ptr with a valid memcg pointer.
2336 * -ENOMEM ... charge failure because of resource limits.
2337 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2338 *
2339 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2340 * the oom-killer can be invoked.
8a9f3ccd 2341 */
f817ed48 2342static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2343 gfp_t gfp_mask,
7ec99d62 2344 unsigned int nr_pages,
c0ff4b85 2345 struct mem_cgroup **ptr,
7ec99d62 2346 bool oom)
8a9f3ccd 2347{
7ec99d62 2348 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2349 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2350 struct mem_cgroup *memcg = NULL;
4b534334 2351 int ret;
a636b327 2352
867578cb
KH
2353 /*
2354 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2355 * in system level. So, allow to go ahead dying process in addition to
2356 * MEMDIE process.
2357 */
2358 if (unlikely(test_thread_flag(TIF_MEMDIE)
2359 || fatal_signal_pending(current)))
2360 goto bypass;
a636b327 2361
8a9f3ccd 2362 /*
3be91277
HD
2363 * We always charge the cgroup the mm_struct belongs to.
2364 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2365 * thread group leader migrates. It's possible that mm is not
24467cac 2366 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2367 */
c0ff4b85 2368 if (!*ptr && !mm)
38c5d72f 2369 *ptr = root_mem_cgroup;
f75ca962 2370again:
c0ff4b85
R
2371 if (*ptr) { /* css should be a valid one */
2372 memcg = *ptr;
c0ff4b85 2373 if (mem_cgroup_is_root(memcg))
f75ca962 2374 goto done;
c0ff4b85 2375 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2376 goto done;
c0ff4b85 2377 css_get(&memcg->css);
4b534334 2378 } else {
f75ca962 2379 struct task_struct *p;
54595fe2 2380
f75ca962
KH
2381 rcu_read_lock();
2382 p = rcu_dereference(mm->owner);
f75ca962 2383 /*
ebb76ce1 2384 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2385 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2386 * race with swapoff. Then, we have small risk of mis-accouning.
2387 * But such kind of mis-account by race always happens because
2388 * we don't have cgroup_mutex(). It's overkill and we allo that
2389 * small race, here.
2390 * (*) swapoff at el will charge against mm-struct not against
2391 * task-struct. So, mm->owner can be NULL.
f75ca962 2392 */
c0ff4b85 2393 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2394 if (!memcg)
2395 memcg = root_mem_cgroup;
2396 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2397 rcu_read_unlock();
2398 goto done;
2399 }
c0ff4b85 2400 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2401 /*
2402 * It seems dagerous to access memcg without css_get().
2403 * But considering how consume_stok works, it's not
2404 * necessary. If consume_stock success, some charges
2405 * from this memcg are cached on this cpu. So, we
2406 * don't need to call css_get()/css_tryget() before
2407 * calling consume_stock().
2408 */
2409 rcu_read_unlock();
2410 goto done;
2411 }
2412 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2413 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2414 rcu_read_unlock();
2415 goto again;
2416 }
2417 rcu_read_unlock();
2418 }
8a9f3ccd 2419
4b534334
KH
2420 do {
2421 bool oom_check;
7a81b88c 2422
4b534334 2423 /* If killed, bypass charge */
f75ca962 2424 if (fatal_signal_pending(current)) {
c0ff4b85 2425 css_put(&memcg->css);
4b534334 2426 goto bypass;
f75ca962 2427 }
6d61ef40 2428
4b534334
KH
2429 oom_check = false;
2430 if (oom && !nr_oom_retries) {
2431 oom_check = true;
2432 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2433 }
66e1707b 2434
c0ff4b85 2435 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2436 switch (ret) {
2437 case CHARGE_OK:
2438 break;
2439 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2440 batch = nr_pages;
c0ff4b85
R
2441 css_put(&memcg->css);
2442 memcg = NULL;
f75ca962 2443 goto again;
4b534334 2444 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2445 css_put(&memcg->css);
4b534334
KH
2446 goto nomem;
2447 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2448 if (!oom) {
c0ff4b85 2449 css_put(&memcg->css);
867578cb 2450 goto nomem;
f75ca962 2451 }
4b534334
KH
2452 /* If oom, we never return -ENOMEM */
2453 nr_oom_retries--;
2454 break;
2455 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2456 css_put(&memcg->css);
867578cb 2457 goto bypass;
66e1707b 2458 }
4b534334
KH
2459 } while (ret != CHARGE_OK);
2460
7ec99d62 2461 if (batch > nr_pages)
c0ff4b85
R
2462 refill_stock(memcg, batch - nr_pages);
2463 css_put(&memcg->css);
0c3e73e8 2464done:
c0ff4b85 2465 *ptr = memcg;
7a81b88c
KH
2466 return 0;
2467nomem:
c0ff4b85 2468 *ptr = NULL;
7a81b88c 2469 return -ENOMEM;
867578cb 2470bypass:
38c5d72f
KH
2471 *ptr = root_mem_cgroup;
2472 return -EINTR;
7a81b88c 2473}
8a9f3ccd 2474
a3032a2c
DN
2475/*
2476 * Somemtimes we have to undo a charge we got by try_charge().
2477 * This function is for that and do uncharge, put css's refcnt.
2478 * gotten by try_charge().
2479 */
c0ff4b85 2480static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2481 unsigned int nr_pages)
a3032a2c 2482{
c0ff4b85 2483 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2484 unsigned long bytes = nr_pages * PAGE_SIZE;
2485
c0ff4b85 2486 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2487 if (do_swap_account)
c0ff4b85 2488 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2489 }
854ffa8d
DN
2490}
2491
d01dd17f
KH
2492/*
2493 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2494 * This is useful when moving usage to parent cgroup.
2495 */
2496static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2497 unsigned int nr_pages)
2498{
2499 unsigned long bytes = nr_pages * PAGE_SIZE;
2500
2501 if (mem_cgroup_is_root(memcg))
2502 return;
2503
2504 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2505 if (do_swap_account)
2506 res_counter_uncharge_until(&memcg->memsw,
2507 memcg->memsw.parent, bytes);
2508}
2509
a3b2d692
KH
2510/*
2511 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2512 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2513 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2514 * called against removed memcg.)
a3b2d692
KH
2515 */
2516static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2517{
2518 struct cgroup_subsys_state *css;
2519
2520 /* ID 0 is unused ID */
2521 if (!id)
2522 return NULL;
2523 css = css_lookup(&mem_cgroup_subsys, id);
2524 if (!css)
2525 return NULL;
b2145145 2526 return mem_cgroup_from_css(css);
a3b2d692
KH
2527}
2528
e42d9d5d 2529struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2530{
c0ff4b85 2531 struct mem_cgroup *memcg = NULL;
3c776e64 2532 struct page_cgroup *pc;
a3b2d692 2533 unsigned short id;
b5a84319
KH
2534 swp_entry_t ent;
2535
3c776e64
DN
2536 VM_BUG_ON(!PageLocked(page));
2537
3c776e64 2538 pc = lookup_page_cgroup(page);
c0bd3f63 2539 lock_page_cgroup(pc);
a3b2d692 2540 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2541 memcg = pc->mem_cgroup;
2542 if (memcg && !css_tryget(&memcg->css))
2543 memcg = NULL;
e42d9d5d 2544 } else if (PageSwapCache(page)) {
3c776e64 2545 ent.val = page_private(page);
9fb4b7cc 2546 id = lookup_swap_cgroup_id(ent);
a3b2d692 2547 rcu_read_lock();
c0ff4b85
R
2548 memcg = mem_cgroup_lookup(id);
2549 if (memcg && !css_tryget(&memcg->css))
2550 memcg = NULL;
a3b2d692 2551 rcu_read_unlock();
3c776e64 2552 }
c0bd3f63 2553 unlock_page_cgroup(pc);
c0ff4b85 2554 return memcg;
b5a84319
KH
2555}
2556
c0ff4b85 2557static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2558 struct page *page,
7ec99d62 2559 unsigned int nr_pages,
9ce70c02
HD
2560 enum charge_type ctype,
2561 bool lrucare)
7a81b88c 2562{
ce587e65 2563 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2564 struct zone *uninitialized_var(zone);
fa9add64 2565 struct lruvec *lruvec;
9ce70c02 2566 bool was_on_lru = false;
b2402857 2567 bool anon;
9ce70c02 2568
ca3e0214 2569 lock_page_cgroup(pc);
90deb788 2570 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2571 /*
2572 * we don't need page_cgroup_lock about tail pages, becase they are not
2573 * accessed by any other context at this point.
2574 */
9ce70c02
HD
2575
2576 /*
2577 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2578 * may already be on some other mem_cgroup's LRU. Take care of it.
2579 */
2580 if (lrucare) {
2581 zone = page_zone(page);
2582 spin_lock_irq(&zone->lru_lock);
2583 if (PageLRU(page)) {
fa9add64 2584 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2585 ClearPageLRU(page);
fa9add64 2586 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2587 was_on_lru = true;
2588 }
2589 }
2590
c0ff4b85 2591 pc->mem_cgroup = memcg;
261fb61a
KH
2592 /*
2593 * We access a page_cgroup asynchronously without lock_page_cgroup().
2594 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2595 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2596 * before USED bit, we need memory barrier here.
2597 * See mem_cgroup_add_lru_list(), etc.
2598 */
08e552c6 2599 smp_wmb();
b2402857 2600 SetPageCgroupUsed(pc);
3be91277 2601
9ce70c02
HD
2602 if (lrucare) {
2603 if (was_on_lru) {
fa9add64 2604 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2605 VM_BUG_ON(PageLRU(page));
2606 SetPageLRU(page);
fa9add64 2607 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2608 }
2609 spin_unlock_irq(&zone->lru_lock);
2610 }
2611
41326c17 2612 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2613 anon = true;
2614 else
2615 anon = false;
2616
2617 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2618 unlock_page_cgroup(pc);
9ce70c02 2619
430e4863
KH
2620 /*
2621 * "charge_statistics" updated event counter. Then, check it.
2622 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2623 * if they exceeds softlimit.
2624 */
c0ff4b85 2625 memcg_check_events(memcg, page);
7a81b88c 2626}
66e1707b 2627
ca3e0214
KH
2628#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2629
a0db00fc 2630#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
2631/*
2632 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2633 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2634 * charge/uncharge will be never happen and move_account() is done under
2635 * compound_lock(), so we don't have to take care of races.
ca3e0214 2636 */
e94c8a9c 2637void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
2638{
2639 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
2640 struct page_cgroup *pc;
2641 int i;
ca3e0214 2642
3d37c4a9
KH
2643 if (mem_cgroup_disabled())
2644 return;
e94c8a9c
KH
2645 for (i = 1; i < HPAGE_PMD_NR; i++) {
2646 pc = head_pc + i;
2647 pc->mem_cgroup = head_pc->mem_cgroup;
2648 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
2649 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2650 }
ca3e0214 2651}
12d27107 2652#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2653
f817ed48 2654/**
de3638d9 2655 * mem_cgroup_move_account - move account of the page
5564e88b 2656 * @page: the page
7ec99d62 2657 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2658 * @pc: page_cgroup of the page.
2659 * @from: mem_cgroup which the page is moved from.
2660 * @to: mem_cgroup which the page is moved to. @from != @to.
2661 *
2662 * The caller must confirm following.
08e552c6 2663 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2664 * - compound_lock is held when nr_pages > 1
f817ed48 2665 *
2f3479b1
KH
2666 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2667 * from old cgroup.
f817ed48 2668 */
7ec99d62
JW
2669static int mem_cgroup_move_account(struct page *page,
2670 unsigned int nr_pages,
2671 struct page_cgroup *pc,
2672 struct mem_cgroup *from,
2f3479b1 2673 struct mem_cgroup *to)
f817ed48 2674{
de3638d9
JW
2675 unsigned long flags;
2676 int ret;
b2402857 2677 bool anon = PageAnon(page);
987eba66 2678
f817ed48 2679 VM_BUG_ON(from == to);
5564e88b 2680 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2681 /*
2682 * The page is isolated from LRU. So, collapse function
2683 * will not handle this page. But page splitting can happen.
2684 * Do this check under compound_page_lock(). The caller should
2685 * hold it.
2686 */
2687 ret = -EBUSY;
7ec99d62 2688 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2689 goto out;
2690
2691 lock_page_cgroup(pc);
2692
2693 ret = -EINVAL;
2694 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2695 goto unlock;
2696
312734c0 2697 move_lock_mem_cgroup(from, &flags);
f817ed48 2698
2ff76f11 2699 if (!anon && page_mapped(page)) {
c62b1a3b
KH
2700 /* Update mapped_file data for mem_cgroup */
2701 preempt_disable();
2702 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2703 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2704 preempt_enable();
d69b042f 2705 }
b2402857 2706 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 2707
854ffa8d 2708 /* caller should have done css_get */
08e552c6 2709 pc->mem_cgroup = to;
b2402857 2710 mem_cgroup_charge_statistics(to, anon, nr_pages);
312734c0 2711 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
2712 ret = 0;
2713unlock:
57f9fd7d 2714 unlock_page_cgroup(pc);
d2265e6f
KH
2715 /*
2716 * check events
2717 */
5564e88b
JW
2718 memcg_check_events(to, page);
2719 memcg_check_events(from, page);
de3638d9 2720out:
f817ed48
KH
2721 return ret;
2722}
2723
2ef37d3f
MH
2724/**
2725 * mem_cgroup_move_parent - moves page to the parent group
2726 * @page: the page to move
2727 * @pc: page_cgroup of the page
2728 * @child: page's cgroup
2729 *
2730 * move charges to its parent or the root cgroup if the group has no
2731 * parent (aka use_hierarchy==0).
2732 * Although this might fail (get_page_unless_zero, isolate_lru_page or
2733 * mem_cgroup_move_account fails) the failure is always temporary and
2734 * it signals a race with a page removal/uncharge or migration. In the
2735 * first case the page is on the way out and it will vanish from the LRU
2736 * on the next attempt and the call should be retried later.
2737 * Isolation from the LRU fails only if page has been isolated from
2738 * the LRU since we looked at it and that usually means either global
2739 * reclaim or migration going on. The page will either get back to the
2740 * LRU or vanish.
2741 * Finaly mem_cgroup_move_account fails only if the page got uncharged
2742 * (!PageCgroupUsed) or moved to a different group. The page will
2743 * disappear in the next attempt.
f817ed48 2744 */
5564e88b
JW
2745static int mem_cgroup_move_parent(struct page *page,
2746 struct page_cgroup *pc,
6068bf01 2747 struct mem_cgroup *child)
f817ed48 2748{
f817ed48 2749 struct mem_cgroup *parent;
7ec99d62 2750 unsigned int nr_pages;
4be4489f 2751 unsigned long uninitialized_var(flags);
f817ed48
KH
2752 int ret;
2753
d8423011 2754 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 2755
57f9fd7d
DN
2756 ret = -EBUSY;
2757 if (!get_page_unless_zero(page))
2758 goto out;
2759 if (isolate_lru_page(page))
2760 goto put;
52dbb905 2761
7ec99d62 2762 nr_pages = hpage_nr_pages(page);
08e552c6 2763
cc926f78
KH
2764 parent = parent_mem_cgroup(child);
2765 /*
2766 * If no parent, move charges to root cgroup.
2767 */
2768 if (!parent)
2769 parent = root_mem_cgroup;
f817ed48 2770
2ef37d3f
MH
2771 if (nr_pages > 1) {
2772 VM_BUG_ON(!PageTransHuge(page));
987eba66 2773 flags = compound_lock_irqsave(page);
2ef37d3f 2774 }
987eba66 2775
cc926f78 2776 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 2777 pc, child, parent);
cc926f78
KH
2778 if (!ret)
2779 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 2780
7ec99d62 2781 if (nr_pages > 1)
987eba66 2782 compound_unlock_irqrestore(page, flags);
08e552c6 2783 putback_lru_page(page);
57f9fd7d 2784put:
40d58138 2785 put_page(page);
57f9fd7d 2786out:
f817ed48
KH
2787 return ret;
2788}
2789
7a81b88c
KH
2790/*
2791 * Charge the memory controller for page usage.
2792 * Return
2793 * 0 if the charge was successful
2794 * < 0 if the cgroup is over its limit
2795 */
2796static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2797 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2798{
c0ff4b85 2799 struct mem_cgroup *memcg = NULL;
7ec99d62 2800 unsigned int nr_pages = 1;
8493ae43 2801 bool oom = true;
7a81b88c 2802 int ret;
ec168510 2803
37c2ac78 2804 if (PageTransHuge(page)) {
7ec99d62 2805 nr_pages <<= compound_order(page);
37c2ac78 2806 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2807 /*
2808 * Never OOM-kill a process for a huge page. The
2809 * fault handler will fall back to regular pages.
2810 */
2811 oom = false;
37c2ac78 2812 }
7a81b88c 2813
c0ff4b85 2814 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 2815 if (ret == -ENOMEM)
7a81b88c 2816 return ret;
ce587e65 2817 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 2818 return 0;
8a9f3ccd
BS
2819}
2820
7a81b88c
KH
2821int mem_cgroup_newpage_charge(struct page *page,
2822 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2823{
f8d66542 2824 if (mem_cgroup_disabled())
cede86ac 2825 return 0;
7a0524cf
JW
2826 VM_BUG_ON(page_mapped(page));
2827 VM_BUG_ON(page->mapping && !PageAnon(page));
2828 VM_BUG_ON(!mm);
217bc319 2829 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 2830 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
2831}
2832
54595fe2
KH
2833/*
2834 * While swap-in, try_charge -> commit or cancel, the page is locked.
2835 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2836 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2837 * "commit()" or removed by "cancel()"
2838 */
0435a2fd
JW
2839static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2840 struct page *page,
2841 gfp_t mask,
2842 struct mem_cgroup **memcgp)
8c7c6e34 2843{
c0ff4b85 2844 struct mem_cgroup *memcg;
90deb788 2845 struct page_cgroup *pc;
54595fe2 2846 int ret;
8c7c6e34 2847
90deb788
JW
2848 pc = lookup_page_cgroup(page);
2849 /*
2850 * Every swap fault against a single page tries to charge the
2851 * page, bail as early as possible. shmem_unuse() encounters
2852 * already charged pages, too. The USED bit is protected by
2853 * the page lock, which serializes swap cache removal, which
2854 * in turn serializes uncharging.
2855 */
2856 if (PageCgroupUsed(pc))
2857 return 0;
8c7c6e34
KH
2858 if (!do_swap_account)
2859 goto charge_cur_mm;
c0ff4b85
R
2860 memcg = try_get_mem_cgroup_from_page(page);
2861 if (!memcg)
54595fe2 2862 goto charge_cur_mm;
72835c86
JW
2863 *memcgp = memcg;
2864 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 2865 css_put(&memcg->css);
38c5d72f
KH
2866 if (ret == -EINTR)
2867 ret = 0;
54595fe2 2868 return ret;
8c7c6e34 2869charge_cur_mm:
38c5d72f
KH
2870 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2871 if (ret == -EINTR)
2872 ret = 0;
2873 return ret;
8c7c6e34
KH
2874}
2875
0435a2fd
JW
2876int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
2877 gfp_t gfp_mask, struct mem_cgroup **memcgp)
2878{
2879 *memcgp = NULL;
2880 if (mem_cgroup_disabled())
2881 return 0;
bdf4f4d2
JW
2882 /*
2883 * A racing thread's fault, or swapoff, may have already
2884 * updated the pte, and even removed page from swap cache: in
2885 * those cases unuse_pte()'s pte_same() test will fail; but
2886 * there's also a KSM case which does need to charge the page.
2887 */
2888 if (!PageSwapCache(page)) {
2889 int ret;
2890
2891 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
2892 if (ret == -EINTR)
2893 ret = 0;
2894 return ret;
2895 }
0435a2fd
JW
2896 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
2897}
2898
827a03d2
JW
2899void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2900{
2901 if (mem_cgroup_disabled())
2902 return;
2903 if (!memcg)
2904 return;
2905 __mem_cgroup_cancel_charge(memcg, 1);
2906}
2907
83aae4c7 2908static void
72835c86 2909__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 2910 enum charge_type ctype)
7a81b88c 2911{
f8d66542 2912 if (mem_cgroup_disabled())
7a81b88c 2913 return;
72835c86 2914 if (!memcg)
7a81b88c 2915 return;
5a6475a4 2916
ce587e65 2917 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
2918 /*
2919 * Now swap is on-memory. This means this page may be
2920 * counted both as mem and swap....double count.
03f3c433
KH
2921 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2922 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2923 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2924 */
03f3c433 2925 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2926 swp_entry_t ent = {.val = page_private(page)};
86493009 2927 mem_cgroup_uncharge_swap(ent);
8c7c6e34 2928 }
7a81b88c
KH
2929}
2930
72835c86
JW
2931void mem_cgroup_commit_charge_swapin(struct page *page,
2932 struct mem_cgroup *memcg)
83aae4c7 2933{
72835c86 2934 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 2935 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
2936}
2937
827a03d2
JW
2938int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2939 gfp_t gfp_mask)
7a81b88c 2940{
827a03d2
JW
2941 struct mem_cgroup *memcg = NULL;
2942 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2943 int ret;
2944
f8d66542 2945 if (mem_cgroup_disabled())
827a03d2
JW
2946 return 0;
2947 if (PageCompound(page))
2948 return 0;
2949
827a03d2
JW
2950 if (!PageSwapCache(page))
2951 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2952 else { /* page is swapcache/shmem */
0435a2fd
JW
2953 ret = __mem_cgroup_try_charge_swapin(mm, page,
2954 gfp_mask, &memcg);
827a03d2
JW
2955 if (!ret)
2956 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2957 }
2958 return ret;
7a81b88c
KH
2959}
2960
c0ff4b85 2961static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2962 unsigned int nr_pages,
2963 const enum charge_type ctype)
569b846d
KH
2964{
2965 struct memcg_batch_info *batch = NULL;
2966 bool uncharge_memsw = true;
7ec99d62 2967
569b846d
KH
2968 /* If swapout, usage of swap doesn't decrease */
2969 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2970 uncharge_memsw = false;
569b846d
KH
2971
2972 batch = &current->memcg_batch;
2973 /*
2974 * In usual, we do css_get() when we remember memcg pointer.
2975 * But in this case, we keep res->usage until end of a series of
2976 * uncharges. Then, it's ok to ignore memcg's refcnt.
2977 */
2978 if (!batch->memcg)
c0ff4b85 2979 batch->memcg = memcg;
3c11ecf4
KH
2980 /*
2981 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2982 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2983 * the same cgroup and we have chance to coalesce uncharges.
2984 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2985 * because we want to do uncharge as soon as possible.
2986 */
2987
2988 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2989 goto direct_uncharge;
2990
7ec99d62 2991 if (nr_pages > 1)
ec168510
AA
2992 goto direct_uncharge;
2993
569b846d
KH
2994 /*
2995 * In typical case, batch->memcg == mem. This means we can
2996 * merge a series of uncharges to an uncharge of res_counter.
2997 * If not, we uncharge res_counter ony by one.
2998 */
c0ff4b85 2999 if (batch->memcg != memcg)
569b846d
KH
3000 goto direct_uncharge;
3001 /* remember freed charge and uncharge it later */
7ffd4ca7 3002 batch->nr_pages++;
569b846d 3003 if (uncharge_memsw)
7ffd4ca7 3004 batch->memsw_nr_pages++;
569b846d
KH
3005 return;
3006direct_uncharge:
c0ff4b85 3007 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3008 if (uncharge_memsw)
c0ff4b85
R
3009 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3010 if (unlikely(batch->memcg != memcg))
3011 memcg_oom_recover(memcg);
569b846d 3012}
7a81b88c 3013
8a9f3ccd 3014/*
69029cd5 3015 * uncharge if !page_mapped(page)
8a9f3ccd 3016 */
8c7c6e34 3017static struct mem_cgroup *
0030f535
JW
3018__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3019 bool end_migration)
8a9f3ccd 3020{
c0ff4b85 3021 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3022 unsigned int nr_pages = 1;
3023 struct page_cgroup *pc;
b2402857 3024 bool anon;
8a9f3ccd 3025
f8d66542 3026 if (mem_cgroup_disabled())
8c7c6e34 3027 return NULL;
4077960e 3028
0c59b89c 3029 VM_BUG_ON(PageSwapCache(page));
d13d1443 3030
37c2ac78 3031 if (PageTransHuge(page)) {
7ec99d62 3032 nr_pages <<= compound_order(page);
37c2ac78
AA
3033 VM_BUG_ON(!PageTransHuge(page));
3034 }
8697d331 3035 /*
3c541e14 3036 * Check if our page_cgroup is valid
8697d331 3037 */
52d4b9ac 3038 pc = lookup_page_cgroup(page);
cfa44946 3039 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3040 return NULL;
b9c565d5 3041
52d4b9ac 3042 lock_page_cgroup(pc);
d13d1443 3043
c0ff4b85 3044 memcg = pc->mem_cgroup;
8c7c6e34 3045
d13d1443
KH
3046 if (!PageCgroupUsed(pc))
3047 goto unlock_out;
3048
b2402857
KH
3049 anon = PageAnon(page);
3050
d13d1443 3051 switch (ctype) {
41326c17 3052 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3053 /*
3054 * Generally PageAnon tells if it's the anon statistics to be
3055 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3056 * used before page reached the stage of being marked PageAnon.
3057 */
b2402857
KH
3058 anon = true;
3059 /* fallthrough */
8a9478ca 3060 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3061 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3062 if (page_mapped(page))
3063 goto unlock_out;
3064 /*
3065 * Pages under migration may not be uncharged. But
3066 * end_migration() /must/ be the one uncharging the
3067 * unused post-migration page and so it has to call
3068 * here with the migration bit still set. See the
3069 * res_counter handling below.
3070 */
3071 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3072 goto unlock_out;
3073 break;
3074 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3075 if (!PageAnon(page)) { /* Shared memory */
3076 if (page->mapping && !page_is_file_cache(page))
3077 goto unlock_out;
3078 } else if (page_mapped(page)) /* Anon */
3079 goto unlock_out;
3080 break;
3081 default:
3082 break;
52d4b9ac 3083 }
d13d1443 3084
b2402857 3085 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3086
52d4b9ac 3087 ClearPageCgroupUsed(pc);
544122e5
KH
3088 /*
3089 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3090 * freed from LRU. This is safe because uncharged page is expected not
3091 * to be reused (freed soon). Exception is SwapCache, it's handled by
3092 * special functions.
3093 */
b9c565d5 3094
52d4b9ac 3095 unlock_page_cgroup(pc);
f75ca962 3096 /*
c0ff4b85 3097 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3098 * will never be freed.
3099 */
c0ff4b85 3100 memcg_check_events(memcg, page);
f75ca962 3101 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3102 mem_cgroup_swap_statistics(memcg, true);
3103 mem_cgroup_get(memcg);
f75ca962 3104 }
0030f535
JW
3105 /*
3106 * Migration does not charge the res_counter for the
3107 * replacement page, so leave it alone when phasing out the
3108 * page that is unused after the migration.
3109 */
3110 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 3111 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3112
c0ff4b85 3113 return memcg;
d13d1443
KH
3114
3115unlock_out:
3116 unlock_page_cgroup(pc);
8c7c6e34 3117 return NULL;
3c541e14
BS
3118}
3119
69029cd5
KH
3120void mem_cgroup_uncharge_page(struct page *page)
3121{
52d4b9ac
KH
3122 /* early check. */
3123 if (page_mapped(page))
3124 return;
40f23a21 3125 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
3126 if (PageSwapCache(page))
3127 return;
0030f535 3128 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
3129}
3130
3131void mem_cgroup_uncharge_cache_page(struct page *page)
3132{
3133 VM_BUG_ON(page_mapped(page));
b7abea96 3134 VM_BUG_ON(page->mapping);
0030f535 3135 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
3136}
3137
569b846d
KH
3138/*
3139 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3140 * In that cases, pages are freed continuously and we can expect pages
3141 * are in the same memcg. All these calls itself limits the number of
3142 * pages freed at once, then uncharge_start/end() is called properly.
3143 * This may be called prural(2) times in a context,
3144 */
3145
3146void mem_cgroup_uncharge_start(void)
3147{
3148 current->memcg_batch.do_batch++;
3149 /* We can do nest. */
3150 if (current->memcg_batch.do_batch == 1) {
3151 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3152 current->memcg_batch.nr_pages = 0;
3153 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3154 }
3155}
3156
3157void mem_cgroup_uncharge_end(void)
3158{
3159 struct memcg_batch_info *batch = &current->memcg_batch;
3160
3161 if (!batch->do_batch)
3162 return;
3163
3164 batch->do_batch--;
3165 if (batch->do_batch) /* If stacked, do nothing. */
3166 return;
3167
3168 if (!batch->memcg)
3169 return;
3170 /*
3171 * This "batch->memcg" is valid without any css_get/put etc...
3172 * bacause we hide charges behind us.
3173 */
7ffd4ca7
JW
3174 if (batch->nr_pages)
3175 res_counter_uncharge(&batch->memcg->res,
3176 batch->nr_pages * PAGE_SIZE);
3177 if (batch->memsw_nr_pages)
3178 res_counter_uncharge(&batch->memcg->memsw,
3179 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3180 memcg_oom_recover(batch->memcg);
569b846d
KH
3181 /* forget this pointer (for sanity check) */
3182 batch->memcg = NULL;
3183}
3184
e767e056 3185#ifdef CONFIG_SWAP
8c7c6e34 3186/*
e767e056 3187 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3188 * memcg information is recorded to swap_cgroup of "ent"
3189 */
8a9478ca
KH
3190void
3191mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3192{
3193 struct mem_cgroup *memcg;
8a9478ca
KH
3194 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3195
3196 if (!swapout) /* this was a swap cache but the swap is unused ! */
3197 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3198
0030f535 3199 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 3200
f75ca962
KH
3201 /*
3202 * record memcg information, if swapout && memcg != NULL,
3203 * mem_cgroup_get() was called in uncharge().
3204 */
3205 if (do_swap_account && swapout && memcg)
a3b2d692 3206 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3207}
e767e056 3208#endif
8c7c6e34 3209
c255a458 3210#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
3211/*
3212 * called from swap_entry_free(). remove record in swap_cgroup and
3213 * uncharge "memsw" account.
3214 */
3215void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3216{
8c7c6e34 3217 struct mem_cgroup *memcg;
a3b2d692 3218 unsigned short id;
8c7c6e34
KH
3219
3220 if (!do_swap_account)
3221 return;
3222
a3b2d692
KH
3223 id = swap_cgroup_record(ent, 0);
3224 rcu_read_lock();
3225 memcg = mem_cgroup_lookup(id);
8c7c6e34 3226 if (memcg) {
a3b2d692
KH
3227 /*
3228 * We uncharge this because swap is freed.
3229 * This memcg can be obsolete one. We avoid calling css_tryget
3230 */
0c3e73e8 3231 if (!mem_cgroup_is_root(memcg))
4e649152 3232 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3233 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3234 mem_cgroup_put(memcg);
3235 }
a3b2d692 3236 rcu_read_unlock();
d13d1443 3237}
02491447
DN
3238
3239/**
3240 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3241 * @entry: swap entry to be moved
3242 * @from: mem_cgroup which the entry is moved from
3243 * @to: mem_cgroup which the entry is moved to
3244 *
3245 * It succeeds only when the swap_cgroup's record for this entry is the same
3246 * as the mem_cgroup's id of @from.
3247 *
3248 * Returns 0 on success, -EINVAL on failure.
3249 *
3250 * The caller must have charged to @to, IOW, called res_counter_charge() about
3251 * both res and memsw, and called css_get().
3252 */
3253static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3254 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3255{
3256 unsigned short old_id, new_id;
3257
3258 old_id = css_id(&from->css);
3259 new_id = css_id(&to->css);
3260
3261 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3262 mem_cgroup_swap_statistics(from, false);
483c30b5 3263 mem_cgroup_swap_statistics(to, true);
02491447 3264 /*
483c30b5
DN
3265 * This function is only called from task migration context now.
3266 * It postpones res_counter and refcount handling till the end
3267 * of task migration(mem_cgroup_clear_mc()) for performance
3268 * improvement. But we cannot postpone mem_cgroup_get(to)
3269 * because if the process that has been moved to @to does
3270 * swap-in, the refcount of @to might be decreased to 0.
02491447 3271 */
02491447 3272 mem_cgroup_get(to);
02491447
DN
3273 return 0;
3274 }
3275 return -EINVAL;
3276}
3277#else
3278static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3279 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3280{
3281 return -EINVAL;
3282}
8c7c6e34 3283#endif
d13d1443 3284
ae41be37 3285/*
01b1ae63
KH
3286 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3287 * page belongs to.
ae41be37 3288 */
0030f535
JW
3289void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3290 struct mem_cgroup **memcgp)
ae41be37 3291{
c0ff4b85 3292 struct mem_cgroup *memcg = NULL;
7ec99d62 3293 struct page_cgroup *pc;
ac39cf8c 3294 enum charge_type ctype;
8869b8f6 3295
72835c86 3296 *memcgp = NULL;
56039efa 3297
ec168510 3298 VM_BUG_ON(PageTransHuge(page));
f8d66542 3299 if (mem_cgroup_disabled())
0030f535 3300 return;
4077960e 3301
52d4b9ac
KH
3302 pc = lookup_page_cgroup(page);
3303 lock_page_cgroup(pc);
3304 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3305 memcg = pc->mem_cgroup;
3306 css_get(&memcg->css);
ac39cf8c
AM
3307 /*
3308 * At migrating an anonymous page, its mapcount goes down
3309 * to 0 and uncharge() will be called. But, even if it's fully
3310 * unmapped, migration may fail and this page has to be
3311 * charged again. We set MIGRATION flag here and delay uncharge
3312 * until end_migration() is called
3313 *
3314 * Corner Case Thinking
3315 * A)
3316 * When the old page was mapped as Anon and it's unmap-and-freed
3317 * while migration was ongoing.
3318 * If unmap finds the old page, uncharge() of it will be delayed
3319 * until end_migration(). If unmap finds a new page, it's
3320 * uncharged when it make mapcount to be 1->0. If unmap code
3321 * finds swap_migration_entry, the new page will not be mapped
3322 * and end_migration() will find it(mapcount==0).
3323 *
3324 * B)
3325 * When the old page was mapped but migraion fails, the kernel
3326 * remaps it. A charge for it is kept by MIGRATION flag even
3327 * if mapcount goes down to 0. We can do remap successfully
3328 * without charging it again.
3329 *
3330 * C)
3331 * The "old" page is under lock_page() until the end of
3332 * migration, so, the old page itself will not be swapped-out.
3333 * If the new page is swapped out before end_migraton, our
3334 * hook to usual swap-out path will catch the event.
3335 */
3336 if (PageAnon(page))
3337 SetPageCgroupMigration(pc);
e8589cc1 3338 }
52d4b9ac 3339 unlock_page_cgroup(pc);
ac39cf8c
AM
3340 /*
3341 * If the page is not charged at this point,
3342 * we return here.
3343 */
c0ff4b85 3344 if (!memcg)
0030f535 3345 return;
01b1ae63 3346
72835c86 3347 *memcgp = memcg;
ac39cf8c
AM
3348 /*
3349 * We charge new page before it's used/mapped. So, even if unlock_page()
3350 * is called before end_migration, we can catch all events on this new
3351 * page. In the case new page is migrated but not remapped, new page's
3352 * mapcount will be finally 0 and we call uncharge in end_migration().
3353 */
ac39cf8c 3354 if (PageAnon(page))
41326c17 3355 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 3356 else
62ba7442 3357 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
3358 /*
3359 * The page is committed to the memcg, but it's not actually
3360 * charged to the res_counter since we plan on replacing the
3361 * old one and only one page is going to be left afterwards.
3362 */
ce587e65 3363 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
ae41be37 3364}
8869b8f6 3365
69029cd5 3366/* remove redundant charge if migration failed*/
c0ff4b85 3367void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3368 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3369{
ac39cf8c 3370 struct page *used, *unused;
01b1ae63 3371 struct page_cgroup *pc;
b2402857 3372 bool anon;
01b1ae63 3373
c0ff4b85 3374 if (!memcg)
01b1ae63 3375 return;
b25ed609 3376
50de1dd9 3377 if (!migration_ok) {
ac39cf8c
AM
3378 used = oldpage;
3379 unused = newpage;
01b1ae63 3380 } else {
ac39cf8c 3381 used = newpage;
01b1ae63
KH
3382 unused = oldpage;
3383 }
0030f535 3384 anon = PageAnon(used);
7d188958
JW
3385 __mem_cgroup_uncharge_common(unused,
3386 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3387 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3388 true);
0030f535 3389 css_put(&memcg->css);
69029cd5 3390 /*
ac39cf8c
AM
3391 * We disallowed uncharge of pages under migration because mapcount
3392 * of the page goes down to zero, temporarly.
3393 * Clear the flag and check the page should be charged.
01b1ae63 3394 */
ac39cf8c
AM
3395 pc = lookup_page_cgroup(oldpage);
3396 lock_page_cgroup(pc);
3397 ClearPageCgroupMigration(pc);
3398 unlock_page_cgroup(pc);
ac39cf8c 3399
01b1ae63 3400 /*
ac39cf8c
AM
3401 * If a page is a file cache, radix-tree replacement is very atomic
3402 * and we can skip this check. When it was an Anon page, its mapcount
3403 * goes down to 0. But because we added MIGRATION flage, it's not
3404 * uncharged yet. There are several case but page->mapcount check
3405 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3406 * check. (see prepare_charge() also)
69029cd5 3407 */
b2402857 3408 if (anon)
ac39cf8c 3409 mem_cgroup_uncharge_page(used);
ae41be37 3410}
78fb7466 3411
ab936cbc
KH
3412/*
3413 * At replace page cache, newpage is not under any memcg but it's on
3414 * LRU. So, this function doesn't touch res_counter but handles LRU
3415 * in correct way. Both pages are locked so we cannot race with uncharge.
3416 */
3417void mem_cgroup_replace_page_cache(struct page *oldpage,
3418 struct page *newpage)
3419{
bde05d1c 3420 struct mem_cgroup *memcg = NULL;
ab936cbc 3421 struct page_cgroup *pc;
ab936cbc 3422 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3423
3424 if (mem_cgroup_disabled())
3425 return;
3426
3427 pc = lookup_page_cgroup(oldpage);
3428 /* fix accounting on old pages */
3429 lock_page_cgroup(pc);
bde05d1c
HD
3430 if (PageCgroupUsed(pc)) {
3431 memcg = pc->mem_cgroup;
3432 mem_cgroup_charge_statistics(memcg, false, -1);
3433 ClearPageCgroupUsed(pc);
3434 }
ab936cbc
KH
3435 unlock_page_cgroup(pc);
3436
bde05d1c
HD
3437 /*
3438 * When called from shmem_replace_page(), in some cases the
3439 * oldpage has already been charged, and in some cases not.
3440 */
3441 if (!memcg)
3442 return;
ab936cbc
KH
3443 /*
3444 * Even if newpage->mapping was NULL before starting replacement,
3445 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3446 * LRU while we overwrite pc->mem_cgroup.
3447 */
ce587e65 3448 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3449}
3450
f212ad7c
DN
3451#ifdef CONFIG_DEBUG_VM
3452static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3453{
3454 struct page_cgroup *pc;
3455
3456 pc = lookup_page_cgroup(page);
cfa44946
JW
3457 /*
3458 * Can be NULL while feeding pages into the page allocator for
3459 * the first time, i.e. during boot or memory hotplug;
3460 * or when mem_cgroup_disabled().
3461 */
f212ad7c
DN
3462 if (likely(pc) && PageCgroupUsed(pc))
3463 return pc;
3464 return NULL;
3465}
3466
3467bool mem_cgroup_bad_page_check(struct page *page)
3468{
3469 if (mem_cgroup_disabled())
3470 return false;
3471
3472 return lookup_page_cgroup_used(page) != NULL;
3473}
3474
3475void mem_cgroup_print_bad_page(struct page *page)
3476{
3477 struct page_cgroup *pc;
3478
3479 pc = lookup_page_cgroup_used(page);
3480 if (pc) {
90b3feae 3481 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3482 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3483 }
3484}
3485#endif
3486
8c7c6e34
KH
3487static DEFINE_MUTEX(set_limit_mutex);
3488
d38d2a75 3489static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3490 unsigned long long val)
628f4235 3491{
81d39c20 3492 int retry_count;
3c11ecf4 3493 u64 memswlimit, memlimit;
628f4235 3494 int ret = 0;
81d39c20
KH
3495 int children = mem_cgroup_count_children(memcg);
3496 u64 curusage, oldusage;
3c11ecf4 3497 int enlarge;
81d39c20
KH
3498
3499 /*
3500 * For keeping hierarchical_reclaim simple, how long we should retry
3501 * is depends on callers. We set our retry-count to be function
3502 * of # of children which we should visit in this loop.
3503 */
3504 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3505
3506 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3507
3c11ecf4 3508 enlarge = 0;
8c7c6e34 3509 while (retry_count) {
628f4235
KH
3510 if (signal_pending(current)) {
3511 ret = -EINTR;
3512 break;
3513 }
8c7c6e34
KH
3514 /*
3515 * Rather than hide all in some function, I do this in
3516 * open coded manner. You see what this really does.
aaad153e 3517 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3518 */
3519 mutex_lock(&set_limit_mutex);
3520 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3521 if (memswlimit < val) {
3522 ret = -EINVAL;
3523 mutex_unlock(&set_limit_mutex);
628f4235
KH
3524 break;
3525 }
3c11ecf4
KH
3526
3527 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3528 if (memlimit < val)
3529 enlarge = 1;
3530
8c7c6e34 3531 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3532 if (!ret) {
3533 if (memswlimit == val)
3534 memcg->memsw_is_minimum = true;
3535 else
3536 memcg->memsw_is_minimum = false;
3537 }
8c7c6e34
KH
3538 mutex_unlock(&set_limit_mutex);
3539
3540 if (!ret)
3541 break;
3542
5660048c
JW
3543 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3544 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3545 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3546 /* Usage is reduced ? */
3547 if (curusage >= oldusage)
3548 retry_count--;
3549 else
3550 oldusage = curusage;
8c7c6e34 3551 }
3c11ecf4
KH
3552 if (!ret && enlarge)
3553 memcg_oom_recover(memcg);
14797e23 3554
8c7c6e34
KH
3555 return ret;
3556}
3557
338c8431
LZ
3558static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3559 unsigned long long val)
8c7c6e34 3560{
81d39c20 3561 int retry_count;
3c11ecf4 3562 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3563 int children = mem_cgroup_count_children(memcg);
3564 int ret = -EBUSY;
3c11ecf4 3565 int enlarge = 0;
8c7c6e34 3566
81d39c20
KH
3567 /* see mem_cgroup_resize_res_limit */
3568 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3569 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3570 while (retry_count) {
3571 if (signal_pending(current)) {
3572 ret = -EINTR;
3573 break;
3574 }
3575 /*
3576 * Rather than hide all in some function, I do this in
3577 * open coded manner. You see what this really does.
aaad153e 3578 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3579 */
3580 mutex_lock(&set_limit_mutex);
3581 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3582 if (memlimit > val) {
3583 ret = -EINVAL;
3584 mutex_unlock(&set_limit_mutex);
3585 break;
3586 }
3c11ecf4
KH
3587 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3588 if (memswlimit < val)
3589 enlarge = 1;
8c7c6e34 3590 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3591 if (!ret) {
3592 if (memlimit == val)
3593 memcg->memsw_is_minimum = true;
3594 else
3595 memcg->memsw_is_minimum = false;
3596 }
8c7c6e34
KH
3597 mutex_unlock(&set_limit_mutex);
3598
3599 if (!ret)
3600 break;
3601
5660048c
JW
3602 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3603 MEM_CGROUP_RECLAIM_NOSWAP |
3604 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3605 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3606 /* Usage is reduced ? */
8c7c6e34 3607 if (curusage >= oldusage)
628f4235 3608 retry_count--;
81d39c20
KH
3609 else
3610 oldusage = curusage;
628f4235 3611 }
3c11ecf4
KH
3612 if (!ret && enlarge)
3613 memcg_oom_recover(memcg);
628f4235
KH
3614 return ret;
3615}
3616
4e416953 3617unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3618 gfp_t gfp_mask,
3619 unsigned long *total_scanned)
4e416953
BS
3620{
3621 unsigned long nr_reclaimed = 0;
3622 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3623 unsigned long reclaimed;
3624 int loop = 0;
3625 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3626 unsigned long long excess;
0ae5e89c 3627 unsigned long nr_scanned;
4e416953
BS
3628
3629 if (order > 0)
3630 return 0;
3631
00918b6a 3632 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3633 /*
3634 * This loop can run a while, specially if mem_cgroup's continuously
3635 * keep exceeding their soft limit and putting the system under
3636 * pressure
3637 */
3638 do {
3639 if (next_mz)
3640 mz = next_mz;
3641 else
3642 mz = mem_cgroup_largest_soft_limit_node(mctz);
3643 if (!mz)
3644 break;
3645
0ae5e89c 3646 nr_scanned = 0;
d79154bb 3647 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 3648 gfp_mask, &nr_scanned);
4e416953 3649 nr_reclaimed += reclaimed;
0ae5e89c 3650 *total_scanned += nr_scanned;
4e416953
BS
3651 spin_lock(&mctz->lock);
3652
3653 /*
3654 * If we failed to reclaim anything from this memory cgroup
3655 * it is time to move on to the next cgroup
3656 */
3657 next_mz = NULL;
3658 if (!reclaimed) {
3659 do {
3660 /*
3661 * Loop until we find yet another one.
3662 *
3663 * By the time we get the soft_limit lock
3664 * again, someone might have aded the
3665 * group back on the RB tree. Iterate to
3666 * make sure we get a different mem.
3667 * mem_cgroup_largest_soft_limit_node returns
3668 * NULL if no other cgroup is present on
3669 * the tree
3670 */
3671 next_mz =
3672 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3673 if (next_mz == mz)
d79154bb 3674 css_put(&next_mz->memcg->css);
39cc98f1 3675 else /* next_mz == NULL or other memcg */
4e416953
BS
3676 break;
3677 } while (1);
3678 }
d79154bb
HD
3679 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3680 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
3681 /*
3682 * One school of thought says that we should not add
3683 * back the node to the tree if reclaim returns 0.
3684 * But our reclaim could return 0, simply because due
3685 * to priority we are exposing a smaller subset of
3686 * memory to reclaim from. Consider this as a longer
3687 * term TODO.
3688 */
ef8745c1 3689 /* If excess == 0, no tree ops */
d79154bb 3690 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 3691 spin_unlock(&mctz->lock);
d79154bb 3692 css_put(&mz->memcg->css);
4e416953
BS
3693 loop++;
3694 /*
3695 * Could not reclaim anything and there are no more
3696 * mem cgroups to try or we seem to be looping without
3697 * reclaiming anything.
3698 */
3699 if (!nr_reclaimed &&
3700 (next_mz == NULL ||
3701 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3702 break;
3703 } while (!nr_reclaimed);
3704 if (next_mz)
d79154bb 3705 css_put(&next_mz->memcg->css);
4e416953
BS
3706 return nr_reclaimed;
3707}
3708
2ef37d3f
MH
3709/**
3710 * mem_cgroup_force_empty_list - clears LRU of a group
3711 * @memcg: group to clear
3712 * @node: NUMA node
3713 * @zid: zone id
3714 * @lru: lru to to clear
3715 *
3c935d18 3716 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
3717 * reclaim the pages page themselves - pages are moved to the parent (or root)
3718 * group.
cc847582 3719 */
2ef37d3f 3720static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3721 int node, int zid, enum lru_list lru)
cc847582 3722{
bea8c150 3723 struct lruvec *lruvec;
2ef37d3f 3724 unsigned long flags;
072c56c1 3725 struct list_head *list;
925b7673
JW
3726 struct page *busy;
3727 struct zone *zone;
072c56c1 3728
08e552c6 3729 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
3730 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
3731 list = &lruvec->lists[lru];
cc847582 3732
f817ed48 3733 busy = NULL;
2ef37d3f 3734 do {
925b7673 3735 struct page_cgroup *pc;
5564e88b
JW
3736 struct page *page;
3737
08e552c6 3738 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3739 if (list_empty(list)) {
08e552c6 3740 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3741 break;
f817ed48 3742 }
925b7673
JW
3743 page = list_entry(list->prev, struct page, lru);
3744 if (busy == page) {
3745 list_move(&page->lru, list);
648bcc77 3746 busy = NULL;
08e552c6 3747 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3748 continue;
3749 }
08e552c6 3750 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3751
925b7673 3752 pc = lookup_page_cgroup(page);
5564e88b 3753
3c935d18 3754 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 3755 /* found lock contention or "pc" is obsolete. */
925b7673 3756 busy = page;
f817ed48
KH
3757 cond_resched();
3758 } else
3759 busy = NULL;
2ef37d3f 3760 } while (!list_empty(list));
cc847582
KH
3761}
3762
3763/*
c26251f9
MH
3764 * make mem_cgroup's charge to be 0 if there is no task by moving
3765 * all the charges and pages to the parent.
cc847582 3766 * This enables deleting this mem_cgroup.
c26251f9
MH
3767 *
3768 * Caller is responsible for holding css reference on the memcg.
cc847582 3769 */
ab5196c2 3770static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 3771{
c26251f9 3772 int node, zid;
f817ed48 3773
fce66477 3774 do {
52d4b9ac
KH
3775 /* This is for making all *used* pages to be on LRU. */
3776 lru_add_drain_all();
c0ff4b85 3777 drain_all_stock_sync(memcg);
c0ff4b85 3778 mem_cgroup_start_move(memcg);
299b4eaa 3779 for_each_node_state(node, N_HIGH_MEMORY) {
2ef37d3f 3780 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
3781 enum lru_list lru;
3782 for_each_lru(lru) {
2ef37d3f 3783 mem_cgroup_force_empty_list(memcg,
f156ab93 3784 node, zid, lru);
f817ed48 3785 }
1ecaab2b 3786 }
f817ed48 3787 }
c0ff4b85
R
3788 mem_cgroup_end_move(memcg);
3789 memcg_oom_recover(memcg);
52d4b9ac 3790 cond_resched();
f817ed48 3791
2ef37d3f
MH
3792 /*
3793 * This is a safety check because mem_cgroup_force_empty_list
3794 * could have raced with mem_cgroup_replace_page_cache callers
3795 * so the lru seemed empty but the page could have been added
3796 * right after the check. RES_USAGE should be safe as we always
3797 * charge before adding to the LRU.
3798 */
3799 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0);
c26251f9
MH
3800}
3801
3802/*
3803 * Reclaims as many pages from the given memcg as possible and moves
3804 * the rest to the parent.
3805 *
3806 * Caller is responsible for holding css reference for memcg.
3807 */
3808static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3809{
3810 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3811 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 3812
c1e862c1 3813 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
3814 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3815 return -EBUSY;
3816
c1e862c1
KH
3817 /* we call try-to-free pages for make this cgroup empty */
3818 lru_add_drain_all();
f817ed48 3819 /* try to free all pages in this cgroup */
569530fb 3820 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 3821 int progress;
c1e862c1 3822
c26251f9
MH
3823 if (signal_pending(current))
3824 return -EINTR;
3825
c0ff4b85 3826 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3827 false);
c1e862c1 3828 if (!progress) {
f817ed48 3829 nr_retries--;
c1e862c1 3830 /* maybe some writeback is necessary */
8aa7e847 3831 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3832 }
f817ed48
KH
3833
3834 }
08e552c6 3835 lru_add_drain();
ab5196c2
MH
3836 mem_cgroup_reparent_charges(memcg);
3837
3838 return 0;
cc847582
KH
3839}
3840
6bbda35c 3841static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 3842{
c26251f9
MH
3843 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3844 int ret;
3845
d8423011
MH
3846 if (mem_cgroup_is_root(memcg))
3847 return -EINVAL;
c26251f9
MH
3848 css_get(&memcg->css);
3849 ret = mem_cgroup_force_empty(memcg);
3850 css_put(&memcg->css);
3851
3852 return ret;
c1e862c1
KH
3853}
3854
3855
18f59ea7
BS
3856static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3857{
3858 return mem_cgroup_from_cont(cont)->use_hierarchy;
3859}
3860
3861static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3862 u64 val)
3863{
3864 int retval = 0;
c0ff4b85 3865 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3866 struct cgroup *parent = cont->parent;
c0ff4b85 3867 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3868
3869 if (parent)
c0ff4b85 3870 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3871
3872 cgroup_lock();
567fb435
GC
3873
3874 if (memcg->use_hierarchy == val)
3875 goto out;
3876
18f59ea7 3877 /*
af901ca1 3878 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3879 * in the child subtrees. If it is unset, then the change can
3880 * occur, provided the current cgroup has no children.
3881 *
3882 * For the root cgroup, parent_mem is NULL, we allow value to be
3883 * set if there are no children.
3884 */
c0ff4b85 3885 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3886 (val == 1 || val == 0)) {
3887 if (list_empty(&cont->children))
c0ff4b85 3888 memcg->use_hierarchy = val;
18f59ea7
BS
3889 else
3890 retval = -EBUSY;
3891 } else
3892 retval = -EINVAL;
567fb435
GC
3893
3894out:
18f59ea7
BS
3895 cgroup_unlock();
3896
3897 return retval;
3898}
3899
0c3e73e8 3900
c0ff4b85 3901static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3902 enum mem_cgroup_stat_index idx)
0c3e73e8 3903{
7d74b06f 3904 struct mem_cgroup *iter;
7a159cc9 3905 long val = 0;
0c3e73e8 3906
7a159cc9 3907 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3908 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3909 val += mem_cgroup_read_stat(iter, idx);
3910
3911 if (val < 0) /* race ? */
3912 val = 0;
3913 return val;
0c3e73e8
BS
3914}
3915
c0ff4b85 3916static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3917{
7d74b06f 3918 u64 val;
104f3928 3919
c0ff4b85 3920 if (!mem_cgroup_is_root(memcg)) {
104f3928 3921 if (!swap)
65c64ce8 3922 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3923 else
65c64ce8 3924 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3925 }
3926
c0ff4b85
R
3927 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3928 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3929
7d74b06f 3930 if (swap)
bff6bb83 3931 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
3932
3933 return val << PAGE_SHIFT;
3934}
3935
af36f906
TH
3936static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3937 struct file *file, char __user *buf,
3938 size_t nbytes, loff_t *ppos)
8cdea7c0 3939{
c0ff4b85 3940 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 3941 char str[64];
104f3928 3942 u64 val;
af36f906 3943 int type, name, len;
8c7c6e34
KH
3944
3945 type = MEMFILE_TYPE(cft->private);
3946 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3947
3948 if (!do_swap_account && type == _MEMSWAP)
3949 return -EOPNOTSUPP;
3950
8c7c6e34
KH
3951 switch (type) {
3952 case _MEM:
104f3928 3953 if (name == RES_USAGE)
c0ff4b85 3954 val = mem_cgroup_usage(memcg, false);
104f3928 3955 else
c0ff4b85 3956 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3957 break;
3958 case _MEMSWAP:
104f3928 3959 if (name == RES_USAGE)
c0ff4b85 3960 val = mem_cgroup_usage(memcg, true);
104f3928 3961 else
c0ff4b85 3962 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3963 break;
3964 default:
3965 BUG();
8c7c6e34 3966 }
af36f906
TH
3967
3968 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3969 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 3970}
628f4235
KH
3971/*
3972 * The user of this function is...
3973 * RES_LIMIT.
3974 */
856c13aa
PM
3975static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3976 const char *buffer)
8cdea7c0 3977{
628f4235 3978 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3979 int type, name;
628f4235
KH
3980 unsigned long long val;
3981 int ret;
3982
8c7c6e34
KH
3983 type = MEMFILE_TYPE(cft->private);
3984 name = MEMFILE_ATTR(cft->private);
af36f906
TH
3985
3986 if (!do_swap_account && type == _MEMSWAP)
3987 return -EOPNOTSUPP;
3988
8c7c6e34 3989 switch (name) {
628f4235 3990 case RES_LIMIT:
4b3bde4c
BS
3991 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3992 ret = -EINVAL;
3993 break;
3994 }
628f4235
KH
3995 /* This function does all necessary parse...reuse it */
3996 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3997 if (ret)
3998 break;
3999 if (type == _MEM)
628f4235 4000 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
4001 else
4002 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 4003 break;
296c81d8
BS
4004 case RES_SOFT_LIMIT:
4005 ret = res_counter_memparse_write_strategy(buffer, &val);
4006 if (ret)
4007 break;
4008 /*
4009 * For memsw, soft limits are hard to implement in terms
4010 * of semantics, for now, we support soft limits for
4011 * control without swap
4012 */
4013 if (type == _MEM)
4014 ret = res_counter_set_soft_limit(&memcg->res, val);
4015 else
4016 ret = -EINVAL;
4017 break;
628f4235
KH
4018 default:
4019 ret = -EINVAL; /* should be BUG() ? */
4020 break;
4021 }
4022 return ret;
8cdea7c0
BS
4023}
4024
fee7b548
KH
4025static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4026 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4027{
4028 struct cgroup *cgroup;
4029 unsigned long long min_limit, min_memsw_limit, tmp;
4030
4031 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4032 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4033 cgroup = memcg->css.cgroup;
4034 if (!memcg->use_hierarchy)
4035 goto out;
4036
4037 while (cgroup->parent) {
4038 cgroup = cgroup->parent;
4039 memcg = mem_cgroup_from_cont(cgroup);
4040 if (!memcg->use_hierarchy)
4041 break;
4042 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4043 min_limit = min(min_limit, tmp);
4044 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4045 min_memsw_limit = min(min_memsw_limit, tmp);
4046 }
4047out:
4048 *mem_limit = min_limit;
4049 *memsw_limit = min_memsw_limit;
fee7b548
KH
4050}
4051
29f2a4da 4052static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4053{
af36f906 4054 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 4055 int type, name;
c84872e1 4056
8c7c6e34
KH
4057 type = MEMFILE_TYPE(event);
4058 name = MEMFILE_ATTR(event);
af36f906
TH
4059
4060 if (!do_swap_account && type == _MEMSWAP)
4061 return -EOPNOTSUPP;
4062
8c7c6e34 4063 switch (name) {
29f2a4da 4064 case RES_MAX_USAGE:
8c7c6e34 4065 if (type == _MEM)
c0ff4b85 4066 res_counter_reset_max(&memcg->res);
8c7c6e34 4067 else
c0ff4b85 4068 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4069 break;
4070 case RES_FAILCNT:
8c7c6e34 4071 if (type == _MEM)
c0ff4b85 4072 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4073 else
c0ff4b85 4074 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4075 break;
4076 }
f64c3f54 4077
85cc59db 4078 return 0;
c84872e1
PE
4079}
4080
7dc74be0
DN
4081static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4082 struct cftype *cft)
4083{
4084 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4085}
4086
02491447 4087#ifdef CONFIG_MMU
7dc74be0
DN
4088static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4089 struct cftype *cft, u64 val)
4090{
c0ff4b85 4091 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4092
4093 if (val >= (1 << NR_MOVE_TYPE))
4094 return -EINVAL;
4095 /*
4096 * We check this value several times in both in can_attach() and
4097 * attach(), so we need cgroup lock to prevent this value from being
4098 * inconsistent.
4099 */
4100 cgroup_lock();
c0ff4b85 4101 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4102 cgroup_unlock();
4103
4104 return 0;
4105}
02491447
DN
4106#else
4107static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4108 struct cftype *cft, u64 val)
4109{
4110 return -ENOSYS;
4111}
4112#endif
7dc74be0 4113
406eb0c9 4114#ifdef CONFIG_NUMA
ab215884 4115static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 4116 struct seq_file *m)
406eb0c9
YH
4117{
4118 int nid;
4119 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4120 unsigned long node_nr;
d79154bb 4121 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4122
d79154bb 4123 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9
YH
4124 seq_printf(m, "total=%lu", total_nr);
4125 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4126 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4127 seq_printf(m, " N%d=%lu", nid, node_nr);
4128 }
4129 seq_putc(m, '\n');
4130
d79154bb 4131 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9
YH
4132 seq_printf(m, "file=%lu", file_nr);
4133 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4134 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4135 LRU_ALL_FILE);
406eb0c9
YH
4136 seq_printf(m, " N%d=%lu", nid, node_nr);
4137 }
4138 seq_putc(m, '\n');
4139
d79154bb 4140 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9
YH
4141 seq_printf(m, "anon=%lu", anon_nr);
4142 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4143 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4144 LRU_ALL_ANON);
406eb0c9
YH
4145 seq_printf(m, " N%d=%lu", nid, node_nr);
4146 }
4147 seq_putc(m, '\n');
4148
d79154bb 4149 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4150 seq_printf(m, "unevictable=%lu", unevictable_nr);
4151 for_each_node_state(nid, N_HIGH_MEMORY) {
d79154bb 4152 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4153 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4154 seq_printf(m, " N%d=%lu", nid, node_nr);
4155 }
4156 seq_putc(m, '\n');
4157 return 0;
4158}
4159#endif /* CONFIG_NUMA */
4160
af7c4b0e
JW
4161static const char * const mem_cgroup_lru_names[] = {
4162 "inactive_anon",
4163 "active_anon",
4164 "inactive_file",
4165 "active_file",
4166 "unevictable",
4167};
4168
4169static inline void mem_cgroup_lru_names_not_uptodate(void)
4170{
4171 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4172}
4173
ab215884 4174static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 4175 struct seq_file *m)
d2ceb9b7 4176{
d79154bb 4177 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
4178 struct mem_cgroup *mi;
4179 unsigned int i;
406eb0c9 4180
af7c4b0e 4181 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4182 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4183 continue;
af7c4b0e
JW
4184 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4185 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4186 }
7b854121 4187
af7c4b0e
JW
4188 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4189 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4190 mem_cgroup_read_events(memcg, i));
4191
4192 for (i = 0; i < NR_LRU_LISTS; i++)
4193 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4194 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4195
14067bb3 4196 /* Hierarchical information */
fee7b548
KH
4197 {
4198 unsigned long long limit, memsw_limit;
d79154bb 4199 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4200 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4201 if (do_swap_account)
78ccf5b5
JW
4202 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4203 memsw_limit);
fee7b548 4204 }
7f016ee8 4205
af7c4b0e
JW
4206 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4207 long long val = 0;
4208
bff6bb83 4209 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4210 continue;
af7c4b0e
JW
4211 for_each_mem_cgroup_tree(mi, memcg)
4212 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4213 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4214 }
4215
4216 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4217 unsigned long long val = 0;
4218
4219 for_each_mem_cgroup_tree(mi, memcg)
4220 val += mem_cgroup_read_events(mi, i);
4221 seq_printf(m, "total_%s %llu\n",
4222 mem_cgroup_events_names[i], val);
4223 }
4224
4225 for (i = 0; i < NR_LRU_LISTS; i++) {
4226 unsigned long long val = 0;
4227
4228 for_each_mem_cgroup_tree(mi, memcg)
4229 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4230 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4231 }
14067bb3 4232
7f016ee8 4233#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4234 {
4235 int nid, zid;
4236 struct mem_cgroup_per_zone *mz;
89abfab1 4237 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4238 unsigned long recent_rotated[2] = {0, 0};
4239 unsigned long recent_scanned[2] = {0, 0};
4240
4241 for_each_online_node(nid)
4242 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4243 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4244 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4245
89abfab1
HD
4246 recent_rotated[0] += rstat->recent_rotated[0];
4247 recent_rotated[1] += rstat->recent_rotated[1];
4248 recent_scanned[0] += rstat->recent_scanned[0];
4249 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4250 }
78ccf5b5
JW
4251 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4252 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4253 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4254 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4255 }
4256#endif
4257
d2ceb9b7
KH
4258 return 0;
4259}
4260
a7885eb8
KM
4261static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4262{
4263 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4264
1f4c025b 4265 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4266}
4267
4268static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4269 u64 val)
4270{
4271 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4272 struct mem_cgroup *parent;
068b38c1 4273
a7885eb8
KM
4274 if (val > 100)
4275 return -EINVAL;
4276
4277 if (cgrp->parent == NULL)
4278 return -EINVAL;
4279
4280 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4281
4282 cgroup_lock();
4283
a7885eb8
KM
4284 /* If under hierarchy, only empty-root can set this value */
4285 if ((parent->use_hierarchy) ||
068b38c1
LZ
4286 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4287 cgroup_unlock();
a7885eb8 4288 return -EINVAL;
068b38c1 4289 }
a7885eb8 4290
a7885eb8 4291 memcg->swappiness = val;
a7885eb8 4292
068b38c1
LZ
4293 cgroup_unlock();
4294
a7885eb8
KM
4295 return 0;
4296}
4297
2e72b634
KS
4298static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4299{
4300 struct mem_cgroup_threshold_ary *t;
4301 u64 usage;
4302 int i;
4303
4304 rcu_read_lock();
4305 if (!swap)
2c488db2 4306 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4307 else
2c488db2 4308 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4309
4310 if (!t)
4311 goto unlock;
4312
4313 usage = mem_cgroup_usage(memcg, swap);
4314
4315 /*
748dad36 4316 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4317 * If it's not true, a threshold was crossed after last
4318 * call of __mem_cgroup_threshold().
4319 */
5407a562 4320 i = t->current_threshold;
2e72b634
KS
4321
4322 /*
4323 * Iterate backward over array of thresholds starting from
4324 * current_threshold and check if a threshold is crossed.
4325 * If none of thresholds below usage is crossed, we read
4326 * only one element of the array here.
4327 */
4328 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4329 eventfd_signal(t->entries[i].eventfd, 1);
4330
4331 /* i = current_threshold + 1 */
4332 i++;
4333
4334 /*
4335 * Iterate forward over array of thresholds starting from
4336 * current_threshold+1 and check if a threshold is crossed.
4337 * If none of thresholds above usage is crossed, we read
4338 * only one element of the array here.
4339 */
4340 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4341 eventfd_signal(t->entries[i].eventfd, 1);
4342
4343 /* Update current_threshold */
5407a562 4344 t->current_threshold = i - 1;
2e72b634
KS
4345unlock:
4346 rcu_read_unlock();
4347}
4348
4349static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4350{
ad4ca5f4
KS
4351 while (memcg) {
4352 __mem_cgroup_threshold(memcg, false);
4353 if (do_swap_account)
4354 __mem_cgroup_threshold(memcg, true);
4355
4356 memcg = parent_mem_cgroup(memcg);
4357 }
2e72b634
KS
4358}
4359
4360static int compare_thresholds(const void *a, const void *b)
4361{
4362 const struct mem_cgroup_threshold *_a = a;
4363 const struct mem_cgroup_threshold *_b = b;
4364
4365 return _a->threshold - _b->threshold;
4366}
4367
c0ff4b85 4368static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4369{
4370 struct mem_cgroup_eventfd_list *ev;
4371
c0ff4b85 4372 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4373 eventfd_signal(ev->eventfd, 1);
4374 return 0;
4375}
4376
c0ff4b85 4377static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4378{
7d74b06f
KH
4379 struct mem_cgroup *iter;
4380
c0ff4b85 4381 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4382 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4383}
4384
4385static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4386 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4387{
4388 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4389 struct mem_cgroup_thresholds *thresholds;
4390 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4391 int type = MEMFILE_TYPE(cft->private);
4392 u64 threshold, usage;
2c488db2 4393 int i, size, ret;
2e72b634
KS
4394
4395 ret = res_counter_memparse_write_strategy(args, &threshold);
4396 if (ret)
4397 return ret;
4398
4399 mutex_lock(&memcg->thresholds_lock);
2c488db2 4400
2e72b634 4401 if (type == _MEM)
2c488db2 4402 thresholds = &memcg->thresholds;
2e72b634 4403 else if (type == _MEMSWAP)
2c488db2 4404 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4405 else
4406 BUG();
4407
4408 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4409
4410 /* Check if a threshold crossed before adding a new one */
2c488db2 4411 if (thresholds->primary)
2e72b634
KS
4412 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4413
2c488db2 4414 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4415
4416 /* Allocate memory for new array of thresholds */
2c488db2 4417 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4418 GFP_KERNEL);
2c488db2 4419 if (!new) {
2e72b634
KS
4420 ret = -ENOMEM;
4421 goto unlock;
4422 }
2c488db2 4423 new->size = size;
2e72b634
KS
4424
4425 /* Copy thresholds (if any) to new array */
2c488db2
KS
4426 if (thresholds->primary) {
4427 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4428 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4429 }
4430
2e72b634 4431 /* Add new threshold */
2c488db2
KS
4432 new->entries[size - 1].eventfd = eventfd;
4433 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4434
4435 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4436 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4437 compare_thresholds, NULL);
4438
4439 /* Find current threshold */
2c488db2 4440 new->current_threshold = -1;
2e72b634 4441 for (i = 0; i < size; i++) {
748dad36 4442 if (new->entries[i].threshold <= usage) {
2e72b634 4443 /*
2c488db2
KS
4444 * new->current_threshold will not be used until
4445 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4446 * it here.
4447 */
2c488db2 4448 ++new->current_threshold;
748dad36
SZ
4449 } else
4450 break;
2e72b634
KS
4451 }
4452
2c488db2
KS
4453 /* Free old spare buffer and save old primary buffer as spare */
4454 kfree(thresholds->spare);
4455 thresholds->spare = thresholds->primary;
4456
4457 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4458
907860ed 4459 /* To be sure that nobody uses thresholds */
2e72b634
KS
4460 synchronize_rcu();
4461
2e72b634
KS
4462unlock:
4463 mutex_unlock(&memcg->thresholds_lock);
4464
4465 return ret;
4466}
4467
907860ed 4468static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4469 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4470{
4471 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4472 struct mem_cgroup_thresholds *thresholds;
4473 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4474 int type = MEMFILE_TYPE(cft->private);
4475 u64 usage;
2c488db2 4476 int i, j, size;
2e72b634
KS
4477
4478 mutex_lock(&memcg->thresholds_lock);
4479 if (type == _MEM)
2c488db2 4480 thresholds = &memcg->thresholds;
2e72b634 4481 else if (type == _MEMSWAP)
2c488db2 4482 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4483 else
4484 BUG();
4485
371528ca
AV
4486 if (!thresholds->primary)
4487 goto unlock;
4488
2e72b634
KS
4489 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4490
4491 /* Check if a threshold crossed before removing */
4492 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4493
4494 /* Calculate new number of threshold */
2c488db2
KS
4495 size = 0;
4496 for (i = 0; i < thresholds->primary->size; i++) {
4497 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4498 size++;
4499 }
4500
2c488db2 4501 new = thresholds->spare;
907860ed 4502
2e72b634
KS
4503 /* Set thresholds array to NULL if we don't have thresholds */
4504 if (!size) {
2c488db2
KS
4505 kfree(new);
4506 new = NULL;
907860ed 4507 goto swap_buffers;
2e72b634
KS
4508 }
4509
2c488db2 4510 new->size = size;
2e72b634
KS
4511
4512 /* Copy thresholds and find current threshold */
2c488db2
KS
4513 new->current_threshold = -1;
4514 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4515 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4516 continue;
4517
2c488db2 4518 new->entries[j] = thresholds->primary->entries[i];
748dad36 4519 if (new->entries[j].threshold <= usage) {
2e72b634 4520 /*
2c488db2 4521 * new->current_threshold will not be used
2e72b634
KS
4522 * until rcu_assign_pointer(), so it's safe to increment
4523 * it here.
4524 */
2c488db2 4525 ++new->current_threshold;
2e72b634
KS
4526 }
4527 j++;
4528 }
4529
907860ed 4530swap_buffers:
2c488db2
KS
4531 /* Swap primary and spare array */
4532 thresholds->spare = thresholds->primary;
8c757763
SZ
4533 /* If all events are unregistered, free the spare array */
4534 if (!new) {
4535 kfree(thresholds->spare);
4536 thresholds->spare = NULL;
4537 }
4538
2c488db2 4539 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4540
907860ed 4541 /* To be sure that nobody uses thresholds */
2e72b634 4542 synchronize_rcu();
371528ca 4543unlock:
2e72b634 4544 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4545}
c1e862c1 4546
9490ff27
KH
4547static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4548 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4549{
4550 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4551 struct mem_cgroup_eventfd_list *event;
4552 int type = MEMFILE_TYPE(cft->private);
4553
4554 BUG_ON(type != _OOM_TYPE);
4555 event = kmalloc(sizeof(*event), GFP_KERNEL);
4556 if (!event)
4557 return -ENOMEM;
4558
1af8efe9 4559 spin_lock(&memcg_oom_lock);
9490ff27
KH
4560
4561 event->eventfd = eventfd;
4562 list_add(&event->list, &memcg->oom_notify);
4563
4564 /* already in OOM ? */
79dfdacc 4565 if (atomic_read(&memcg->under_oom))
9490ff27 4566 eventfd_signal(eventfd, 1);
1af8efe9 4567 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4568
4569 return 0;
4570}
4571
907860ed 4572static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4573 struct cftype *cft, struct eventfd_ctx *eventfd)
4574{
c0ff4b85 4575 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4576 struct mem_cgroup_eventfd_list *ev, *tmp;
4577 int type = MEMFILE_TYPE(cft->private);
4578
4579 BUG_ON(type != _OOM_TYPE);
4580
1af8efe9 4581 spin_lock(&memcg_oom_lock);
9490ff27 4582
c0ff4b85 4583 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4584 if (ev->eventfd == eventfd) {
4585 list_del(&ev->list);
4586 kfree(ev);
4587 }
4588 }
4589
1af8efe9 4590 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4591}
4592
3c11ecf4
KH
4593static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4594 struct cftype *cft, struct cgroup_map_cb *cb)
4595{
c0ff4b85 4596 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4597
c0ff4b85 4598 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4599
c0ff4b85 4600 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4601 cb->fill(cb, "under_oom", 1);
4602 else
4603 cb->fill(cb, "under_oom", 0);
4604 return 0;
4605}
4606
3c11ecf4
KH
4607static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4608 struct cftype *cft, u64 val)
4609{
c0ff4b85 4610 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4611 struct mem_cgroup *parent;
4612
4613 /* cannot set to root cgroup and only 0 and 1 are allowed */
4614 if (!cgrp->parent || !((val == 0) || (val == 1)))
4615 return -EINVAL;
4616
4617 parent = mem_cgroup_from_cont(cgrp->parent);
4618
4619 cgroup_lock();
4620 /* oom-kill-disable is a flag for subhierarchy. */
4621 if ((parent->use_hierarchy) ||
c0ff4b85 4622 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4623 cgroup_unlock();
4624 return -EINVAL;
4625 }
c0ff4b85 4626 memcg->oom_kill_disable = val;
4d845ebf 4627 if (!val)
c0ff4b85 4628 memcg_oom_recover(memcg);
3c11ecf4
KH
4629 cgroup_unlock();
4630 return 0;
4631}
4632
c255a458 4633#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4634static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4635{
1d62e436 4636 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
4637};
4638
1d62e436 4639static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 4640{
1d62e436 4641 mem_cgroup_sockets_destroy(memcg);
d1a4c0b3 4642}
e5671dfa 4643#else
cbe128e3 4644static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4645{
4646 return 0;
4647}
d1a4c0b3 4648
1d62e436 4649static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
4650{
4651}
e5671dfa
GC
4652#endif
4653
8cdea7c0
BS
4654static struct cftype mem_cgroup_files[] = {
4655 {
0eea1030 4656 .name = "usage_in_bytes",
8c7c6e34 4657 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 4658 .read = mem_cgroup_read,
9490ff27
KH
4659 .register_event = mem_cgroup_usage_register_event,
4660 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4661 },
c84872e1
PE
4662 {
4663 .name = "max_usage_in_bytes",
8c7c6e34 4664 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4665 .trigger = mem_cgroup_reset,
af36f906 4666 .read = mem_cgroup_read,
c84872e1 4667 },
8cdea7c0 4668 {
0eea1030 4669 .name = "limit_in_bytes",
8c7c6e34 4670 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4671 .write_string = mem_cgroup_write,
af36f906 4672 .read = mem_cgroup_read,
8cdea7c0 4673 },
296c81d8
BS
4674 {
4675 .name = "soft_limit_in_bytes",
4676 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4677 .write_string = mem_cgroup_write,
af36f906 4678 .read = mem_cgroup_read,
296c81d8 4679 },
8cdea7c0
BS
4680 {
4681 .name = "failcnt",
8c7c6e34 4682 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4683 .trigger = mem_cgroup_reset,
af36f906 4684 .read = mem_cgroup_read,
8cdea7c0 4685 },
d2ceb9b7
KH
4686 {
4687 .name = "stat",
ab215884 4688 .read_seq_string = memcg_stat_show,
d2ceb9b7 4689 },
c1e862c1
KH
4690 {
4691 .name = "force_empty",
4692 .trigger = mem_cgroup_force_empty_write,
4693 },
18f59ea7
BS
4694 {
4695 .name = "use_hierarchy",
4696 .write_u64 = mem_cgroup_hierarchy_write,
4697 .read_u64 = mem_cgroup_hierarchy_read,
4698 },
a7885eb8
KM
4699 {
4700 .name = "swappiness",
4701 .read_u64 = mem_cgroup_swappiness_read,
4702 .write_u64 = mem_cgroup_swappiness_write,
4703 },
7dc74be0
DN
4704 {
4705 .name = "move_charge_at_immigrate",
4706 .read_u64 = mem_cgroup_move_charge_read,
4707 .write_u64 = mem_cgroup_move_charge_write,
4708 },
9490ff27
KH
4709 {
4710 .name = "oom_control",
3c11ecf4
KH
4711 .read_map = mem_cgroup_oom_control_read,
4712 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4713 .register_event = mem_cgroup_oom_register_event,
4714 .unregister_event = mem_cgroup_oom_unregister_event,
4715 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4716 },
406eb0c9
YH
4717#ifdef CONFIG_NUMA
4718 {
4719 .name = "numa_stat",
ab215884 4720 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
4721 },
4722#endif
c255a458 4723#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4724 {
4725 .name = "memsw.usage_in_bytes",
4726 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 4727 .read = mem_cgroup_read,
9490ff27
KH
4728 .register_event = mem_cgroup_usage_register_event,
4729 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4730 },
4731 {
4732 .name = "memsw.max_usage_in_bytes",
4733 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4734 .trigger = mem_cgroup_reset,
af36f906 4735 .read = mem_cgroup_read,
8c7c6e34
KH
4736 },
4737 {
4738 .name = "memsw.limit_in_bytes",
4739 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4740 .write_string = mem_cgroup_write,
af36f906 4741 .read = mem_cgroup_read,
8c7c6e34
KH
4742 },
4743 {
4744 .name = "memsw.failcnt",
4745 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4746 .trigger = mem_cgroup_reset,
af36f906 4747 .read = mem_cgroup_read,
8c7c6e34 4748 },
8c7c6e34 4749#endif
6bc10349 4750 { }, /* terminate */
af36f906 4751};
8c7c6e34 4752
c0ff4b85 4753static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4754{
4755 struct mem_cgroup_per_node *pn;
1ecaab2b 4756 struct mem_cgroup_per_zone *mz;
41e3355d 4757 int zone, tmp = node;
1ecaab2b
KH
4758 /*
4759 * This routine is called against possible nodes.
4760 * But it's BUG to call kmalloc() against offline node.
4761 *
4762 * TODO: this routine can waste much memory for nodes which will
4763 * never be onlined. It's better to use memory hotplug callback
4764 * function.
4765 */
41e3355d
KH
4766 if (!node_state(node, N_NORMAL_MEMORY))
4767 tmp = -1;
17295c88 4768 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4769 if (!pn)
4770 return 1;
1ecaab2b 4771
1ecaab2b
KH
4772 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4773 mz = &pn->zoneinfo[zone];
bea8c150 4774 lruvec_init(&mz->lruvec);
f64c3f54 4775 mz->usage_in_excess = 0;
4e416953 4776 mz->on_tree = false;
d79154bb 4777 mz->memcg = memcg;
1ecaab2b 4778 }
0a619e58 4779 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4780 return 0;
4781}
4782
c0ff4b85 4783static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4784{
c0ff4b85 4785 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4786}
4787
33327948
KH
4788static struct mem_cgroup *mem_cgroup_alloc(void)
4789{
d79154bb 4790 struct mem_cgroup *memcg;
c62b1a3b 4791 int size = sizeof(struct mem_cgroup);
33327948 4792
c62b1a3b 4793 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4794 if (size < PAGE_SIZE)
d79154bb 4795 memcg = kzalloc(size, GFP_KERNEL);
33327948 4796 else
d79154bb 4797 memcg = vzalloc(size);
33327948 4798
d79154bb 4799 if (!memcg)
e7bbcdf3
DC
4800 return NULL;
4801
d79154bb
HD
4802 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4803 if (!memcg->stat)
d2e61b8d 4804 goto out_free;
d79154bb
HD
4805 spin_lock_init(&memcg->pcp_counter_lock);
4806 return memcg;
d2e61b8d
DC
4807
4808out_free:
4809 if (size < PAGE_SIZE)
d79154bb 4810 kfree(memcg);
d2e61b8d 4811 else
d79154bb 4812 vfree(memcg);
d2e61b8d 4813 return NULL;
33327948
KH
4814}
4815
59927fb9 4816/*
3afe36b1 4817 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
59927fb9
HD
4818 * but in process context. The work_freeing structure is overlaid
4819 * on the rcu_freeing structure, which itself is overlaid on memsw.
4820 */
3afe36b1 4821static void free_work(struct work_struct *work)
59927fb9
HD
4822{
4823 struct mem_cgroup *memcg;
3afe36b1 4824 int size = sizeof(struct mem_cgroup);
59927fb9
HD
4825
4826 memcg = container_of(work, struct mem_cgroup, work_freeing);
3f134619
GC
4827 /*
4828 * We need to make sure that (at least for now), the jump label
4829 * destruction code runs outside of the cgroup lock. This is because
4830 * get_online_cpus(), which is called from the static_branch update,
4831 * can't be called inside the cgroup_lock. cpusets are the ones
4832 * enforcing this dependency, so if they ever change, we might as well.
4833 *
4834 * schedule_work() will guarantee this happens. Be careful if you need
4835 * to move this code around, and make sure it is outside
4836 * the cgroup_lock.
4837 */
4838 disarm_sock_keys(memcg);
3afe36b1
GC
4839 if (size < PAGE_SIZE)
4840 kfree(memcg);
4841 else
4842 vfree(memcg);
59927fb9 4843}
3afe36b1
GC
4844
4845static void free_rcu(struct rcu_head *rcu_head)
59927fb9
HD
4846{
4847 struct mem_cgroup *memcg;
4848
4849 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
3afe36b1 4850 INIT_WORK(&memcg->work_freeing, free_work);
59927fb9
HD
4851 schedule_work(&memcg->work_freeing);
4852}
4853
8c7c6e34
KH
4854/*
4855 * At destroying mem_cgroup, references from swap_cgroup can remain.
4856 * (scanning all at force_empty is too costly...)
4857 *
4858 * Instead of clearing all references at force_empty, we remember
4859 * the number of reference from swap_cgroup and free mem_cgroup when
4860 * it goes down to 0.
4861 *
8c7c6e34
KH
4862 * Removal of cgroup itself succeeds regardless of refs from swap.
4863 */
4864
c0ff4b85 4865static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4866{
08e552c6
KH
4867 int node;
4868
c0ff4b85
R
4869 mem_cgroup_remove_from_trees(memcg);
4870 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4871
3ed28fa1 4872 for_each_node(node)
c0ff4b85 4873 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4874
c0ff4b85 4875 free_percpu(memcg->stat);
3afe36b1 4876 call_rcu(&memcg->rcu_freeing, free_rcu);
33327948
KH
4877}
4878
c0ff4b85 4879static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4880{
c0ff4b85 4881 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4882}
4883
c0ff4b85 4884static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4885{
c0ff4b85
R
4886 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4887 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4888 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4889 if (parent)
4890 mem_cgroup_put(parent);
4891 }
8c7c6e34
KH
4892}
4893
c0ff4b85 4894static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4895{
c0ff4b85 4896 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4897}
4898
7bcc1bb1
DN
4899/*
4900 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4901 */
e1aab161 4902struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4903{
c0ff4b85 4904 if (!memcg->res.parent)
7bcc1bb1 4905 return NULL;
c0ff4b85 4906 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4907}
e1aab161 4908EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4909
c255a458 4910#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
4911static void __init enable_swap_cgroup(void)
4912{
f8d66542 4913 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4914 do_swap_account = 1;
4915}
4916#else
4917static void __init enable_swap_cgroup(void)
4918{
4919}
4920#endif
4921
f64c3f54
BS
4922static int mem_cgroup_soft_limit_tree_init(void)
4923{
4924 struct mem_cgroup_tree_per_node *rtpn;
4925 struct mem_cgroup_tree_per_zone *rtpz;
4926 int tmp, node, zone;
4927
3ed28fa1 4928 for_each_node(node) {
f64c3f54
BS
4929 tmp = node;
4930 if (!node_state(node, N_NORMAL_MEMORY))
4931 tmp = -1;
4932 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4933 if (!rtpn)
c3cecc68 4934 goto err_cleanup;
f64c3f54
BS
4935
4936 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4937
4938 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4939 rtpz = &rtpn->rb_tree_per_zone[zone];
4940 rtpz->rb_root = RB_ROOT;
4941 spin_lock_init(&rtpz->lock);
4942 }
4943 }
4944 return 0;
c3cecc68
MH
4945
4946err_cleanup:
3ed28fa1 4947 for_each_node(node) {
c3cecc68
MH
4948 if (!soft_limit_tree.rb_tree_per_node[node])
4949 break;
4950 kfree(soft_limit_tree.rb_tree_per_node[node]);
4951 soft_limit_tree.rb_tree_per_node[node] = NULL;
4952 }
4953 return 1;
4954
f64c3f54
BS
4955}
4956
0eb253e2 4957static struct cgroup_subsys_state * __ref
92fb9748 4958mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 4959{
c0ff4b85 4960 struct mem_cgroup *memcg, *parent;
04046e1a 4961 long error = -ENOMEM;
6d12e2d8 4962 int node;
8cdea7c0 4963
c0ff4b85
R
4964 memcg = mem_cgroup_alloc();
4965 if (!memcg)
04046e1a 4966 return ERR_PTR(error);
78fb7466 4967
3ed28fa1 4968 for_each_node(node)
c0ff4b85 4969 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4970 goto free_out;
f64c3f54 4971
c077719b 4972 /* root ? */
28dbc4b6 4973 if (cont->parent == NULL) {
cdec2e42 4974 int cpu;
c077719b 4975 enable_swap_cgroup();
28dbc4b6 4976 parent = NULL;
f64c3f54
BS
4977 if (mem_cgroup_soft_limit_tree_init())
4978 goto free_out;
a41c58a6 4979 root_mem_cgroup = memcg;
cdec2e42
KH
4980 for_each_possible_cpu(cpu) {
4981 struct memcg_stock_pcp *stock =
4982 &per_cpu(memcg_stock, cpu);
4983 INIT_WORK(&stock->work, drain_local_stock);
4984 }
711d3d2c 4985 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4986 } else {
28dbc4b6 4987 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
4988 memcg->use_hierarchy = parent->use_hierarchy;
4989 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4990 }
28dbc4b6 4991
18f59ea7 4992 if (parent && parent->use_hierarchy) {
c0ff4b85
R
4993 res_counter_init(&memcg->res, &parent->res);
4994 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
4995 /*
4996 * We increment refcnt of the parent to ensure that we can
4997 * safely access it on res_counter_charge/uncharge.
4998 * This refcnt will be decremented when freeing this
4999 * mem_cgroup(see mem_cgroup_put).
5000 */
5001 mem_cgroup_get(parent);
18f59ea7 5002 } else {
c0ff4b85
R
5003 res_counter_init(&memcg->res, NULL);
5004 res_counter_init(&memcg->memsw, NULL);
8c7f6edb
TH
5005 /*
5006 * Deeper hierachy with use_hierarchy == false doesn't make
5007 * much sense so let cgroup subsystem know about this
5008 * unfortunate state in our controller.
5009 */
5010 if (parent && parent != root_mem_cgroup)
5011 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 5012 }
c0ff4b85
R
5013 memcg->last_scanned_node = MAX_NUMNODES;
5014 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 5015
a7885eb8 5016 if (parent)
c0ff4b85
R
5017 memcg->swappiness = mem_cgroup_swappiness(parent);
5018 atomic_set(&memcg->refcnt, 1);
5019 memcg->move_charge_at_immigrate = 0;
5020 mutex_init(&memcg->thresholds_lock);
312734c0 5021 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
5022
5023 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5024 if (error) {
5025 /*
5026 * We call put now because our (and parent's) refcnts
5027 * are already in place. mem_cgroup_put() will internally
5028 * call __mem_cgroup_free, so return directly
5029 */
5030 mem_cgroup_put(memcg);
5031 return ERR_PTR(error);
5032 }
c0ff4b85 5033 return &memcg->css;
6d12e2d8 5034free_out:
c0ff4b85 5035 __mem_cgroup_free(memcg);
04046e1a 5036 return ERR_PTR(error);
8cdea7c0
BS
5037}
5038
92fb9748 5039static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 5040{
c0ff4b85 5041 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5042
ab5196c2 5043 mem_cgroup_reparent_charges(memcg);
df878fb0
KH
5044}
5045
92fb9748 5046static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 5047{
c0ff4b85 5048 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5049
1d62e436 5050 kmem_cgroup_destroy(memcg);
d1a4c0b3 5051
c0ff4b85 5052 mem_cgroup_put(memcg);
8cdea7c0
BS
5053}
5054
02491447 5055#ifdef CONFIG_MMU
7dc74be0 5056/* Handlers for move charge at task migration. */
854ffa8d
DN
5057#define PRECHARGE_COUNT_AT_ONCE 256
5058static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5059{
854ffa8d
DN
5060 int ret = 0;
5061 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5062 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5063
c0ff4b85 5064 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5065 mc.precharge += count;
5066 /* we don't need css_get for root */
5067 return ret;
5068 }
5069 /* try to charge at once */
5070 if (count > 1) {
5071 struct res_counter *dummy;
5072 /*
c0ff4b85 5073 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5074 * by cgroup_lock_live_cgroup() that it is not removed and we
5075 * are still under the same cgroup_mutex. So we can postpone
5076 * css_get().
5077 */
c0ff4b85 5078 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5079 goto one_by_one;
c0ff4b85 5080 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5081 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5082 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5083 goto one_by_one;
5084 }
5085 mc.precharge += count;
854ffa8d
DN
5086 return ret;
5087 }
5088one_by_one:
5089 /* fall back to one by one charge */
5090 while (count--) {
5091 if (signal_pending(current)) {
5092 ret = -EINTR;
5093 break;
5094 }
5095 if (!batch_count--) {
5096 batch_count = PRECHARGE_COUNT_AT_ONCE;
5097 cond_resched();
5098 }
c0ff4b85
R
5099 ret = __mem_cgroup_try_charge(NULL,
5100 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5101 if (ret)
854ffa8d 5102 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5103 return ret;
854ffa8d
DN
5104 mc.precharge++;
5105 }
4ffef5fe
DN
5106 return ret;
5107}
5108
5109/**
8d32ff84 5110 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5111 * @vma: the vma the pte to be checked belongs
5112 * @addr: the address corresponding to the pte to be checked
5113 * @ptent: the pte to be checked
02491447 5114 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5115 *
5116 * Returns
5117 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5118 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5119 * move charge. if @target is not NULL, the page is stored in target->page
5120 * with extra refcnt got(Callers should handle it).
02491447
DN
5121 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5122 * target for charge migration. if @target is not NULL, the entry is stored
5123 * in target->ent.
4ffef5fe
DN
5124 *
5125 * Called with pte lock held.
5126 */
4ffef5fe
DN
5127union mc_target {
5128 struct page *page;
02491447 5129 swp_entry_t ent;
4ffef5fe
DN
5130};
5131
4ffef5fe 5132enum mc_target_type {
8d32ff84 5133 MC_TARGET_NONE = 0,
4ffef5fe 5134 MC_TARGET_PAGE,
02491447 5135 MC_TARGET_SWAP,
4ffef5fe
DN
5136};
5137
90254a65
DN
5138static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5139 unsigned long addr, pte_t ptent)
4ffef5fe 5140{
90254a65 5141 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5142
90254a65
DN
5143 if (!page || !page_mapped(page))
5144 return NULL;
5145 if (PageAnon(page)) {
5146 /* we don't move shared anon */
4b91355e 5147 if (!move_anon())
90254a65 5148 return NULL;
87946a72
DN
5149 } else if (!move_file())
5150 /* we ignore mapcount for file pages */
90254a65
DN
5151 return NULL;
5152 if (!get_page_unless_zero(page))
5153 return NULL;
5154
5155 return page;
5156}
5157
4b91355e 5158#ifdef CONFIG_SWAP
90254a65
DN
5159static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5160 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5161{
90254a65
DN
5162 struct page *page = NULL;
5163 swp_entry_t ent = pte_to_swp_entry(ptent);
5164
5165 if (!move_anon() || non_swap_entry(ent))
5166 return NULL;
4b91355e
KH
5167 /*
5168 * Because lookup_swap_cache() updates some statistics counter,
5169 * we call find_get_page() with swapper_space directly.
5170 */
5171 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5172 if (do_swap_account)
5173 entry->val = ent.val;
5174
5175 return page;
5176}
4b91355e
KH
5177#else
5178static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5179 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5180{
5181 return NULL;
5182}
5183#endif
90254a65 5184
87946a72
DN
5185static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5186 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5187{
5188 struct page *page = NULL;
87946a72
DN
5189 struct address_space *mapping;
5190 pgoff_t pgoff;
5191
5192 if (!vma->vm_file) /* anonymous vma */
5193 return NULL;
5194 if (!move_file())
5195 return NULL;
5196
87946a72
DN
5197 mapping = vma->vm_file->f_mapping;
5198 if (pte_none(ptent))
5199 pgoff = linear_page_index(vma, addr);
5200 else /* pte_file(ptent) is true */
5201 pgoff = pte_to_pgoff(ptent);
5202
5203 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5204 page = find_get_page(mapping, pgoff);
5205
5206#ifdef CONFIG_SWAP
5207 /* shmem/tmpfs may report page out on swap: account for that too. */
5208 if (radix_tree_exceptional_entry(page)) {
5209 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5210 if (do_swap_account)
aa3b1895
HD
5211 *entry = swap;
5212 page = find_get_page(&swapper_space, swap.val);
87946a72 5213 }
aa3b1895 5214#endif
87946a72
DN
5215 return page;
5216}
5217
8d32ff84 5218static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5219 unsigned long addr, pte_t ptent, union mc_target *target)
5220{
5221 struct page *page = NULL;
5222 struct page_cgroup *pc;
8d32ff84 5223 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5224 swp_entry_t ent = { .val = 0 };
5225
5226 if (pte_present(ptent))
5227 page = mc_handle_present_pte(vma, addr, ptent);
5228 else if (is_swap_pte(ptent))
5229 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5230 else if (pte_none(ptent) || pte_file(ptent))
5231 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5232
5233 if (!page && !ent.val)
8d32ff84 5234 return ret;
02491447
DN
5235 if (page) {
5236 pc = lookup_page_cgroup(page);
5237 /*
5238 * Do only loose check w/o page_cgroup lock.
5239 * mem_cgroup_move_account() checks the pc is valid or not under
5240 * the lock.
5241 */
5242 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5243 ret = MC_TARGET_PAGE;
5244 if (target)
5245 target->page = page;
5246 }
5247 if (!ret || !target)
5248 put_page(page);
5249 }
90254a65
DN
5250 /* There is a swap entry and a page doesn't exist or isn't charged */
5251 if (ent.val && !ret &&
9fb4b7cc 5252 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5253 ret = MC_TARGET_SWAP;
5254 if (target)
5255 target->ent = ent;
4ffef5fe 5256 }
4ffef5fe
DN
5257 return ret;
5258}
5259
12724850
NH
5260#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5261/*
5262 * We don't consider swapping or file mapped pages because THP does not
5263 * support them for now.
5264 * Caller should make sure that pmd_trans_huge(pmd) is true.
5265 */
5266static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5267 unsigned long addr, pmd_t pmd, union mc_target *target)
5268{
5269 struct page *page = NULL;
5270 struct page_cgroup *pc;
5271 enum mc_target_type ret = MC_TARGET_NONE;
5272
5273 page = pmd_page(pmd);
5274 VM_BUG_ON(!page || !PageHead(page));
5275 if (!move_anon())
5276 return ret;
5277 pc = lookup_page_cgroup(page);
5278 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5279 ret = MC_TARGET_PAGE;
5280 if (target) {
5281 get_page(page);
5282 target->page = page;
5283 }
5284 }
5285 return ret;
5286}
5287#else
5288static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5289 unsigned long addr, pmd_t pmd, union mc_target *target)
5290{
5291 return MC_TARGET_NONE;
5292}
5293#endif
5294
4ffef5fe
DN
5295static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5296 unsigned long addr, unsigned long end,
5297 struct mm_walk *walk)
5298{
5299 struct vm_area_struct *vma = walk->private;
5300 pte_t *pte;
5301 spinlock_t *ptl;
5302
12724850
NH
5303 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5304 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5305 mc.precharge += HPAGE_PMD_NR;
5306 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5307 return 0;
12724850 5308 }
03319327 5309
45f83cef
AA
5310 if (pmd_trans_unstable(pmd))
5311 return 0;
4ffef5fe
DN
5312 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5313 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5314 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5315 mc.precharge++; /* increment precharge temporarily */
5316 pte_unmap_unlock(pte - 1, ptl);
5317 cond_resched();
5318
7dc74be0
DN
5319 return 0;
5320}
5321
4ffef5fe
DN
5322static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5323{
5324 unsigned long precharge;
5325 struct vm_area_struct *vma;
5326
dfe076b0 5327 down_read(&mm->mmap_sem);
4ffef5fe
DN
5328 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5329 struct mm_walk mem_cgroup_count_precharge_walk = {
5330 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5331 .mm = mm,
5332 .private = vma,
5333 };
5334 if (is_vm_hugetlb_page(vma))
5335 continue;
4ffef5fe
DN
5336 walk_page_range(vma->vm_start, vma->vm_end,
5337 &mem_cgroup_count_precharge_walk);
5338 }
dfe076b0 5339 up_read(&mm->mmap_sem);
4ffef5fe
DN
5340
5341 precharge = mc.precharge;
5342 mc.precharge = 0;
5343
5344 return precharge;
5345}
5346
4ffef5fe
DN
5347static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5348{
dfe076b0
DN
5349 unsigned long precharge = mem_cgroup_count_precharge(mm);
5350
5351 VM_BUG_ON(mc.moving_task);
5352 mc.moving_task = current;
5353 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5354}
5355
dfe076b0
DN
5356/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5357static void __mem_cgroup_clear_mc(void)
4ffef5fe 5358{
2bd9bb20
KH
5359 struct mem_cgroup *from = mc.from;
5360 struct mem_cgroup *to = mc.to;
5361
4ffef5fe 5362 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5363 if (mc.precharge) {
5364 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5365 mc.precharge = 0;
5366 }
5367 /*
5368 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5369 * we must uncharge here.
5370 */
5371 if (mc.moved_charge) {
5372 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5373 mc.moved_charge = 0;
4ffef5fe 5374 }
483c30b5
DN
5375 /* we must fixup refcnts and charges */
5376 if (mc.moved_swap) {
483c30b5
DN
5377 /* uncharge swap account from the old cgroup */
5378 if (!mem_cgroup_is_root(mc.from))
5379 res_counter_uncharge(&mc.from->memsw,
5380 PAGE_SIZE * mc.moved_swap);
5381 __mem_cgroup_put(mc.from, mc.moved_swap);
5382
5383 if (!mem_cgroup_is_root(mc.to)) {
5384 /*
5385 * we charged both to->res and to->memsw, so we should
5386 * uncharge to->res.
5387 */
5388 res_counter_uncharge(&mc.to->res,
5389 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5390 }
5391 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5392 mc.moved_swap = 0;
5393 }
dfe076b0
DN
5394 memcg_oom_recover(from);
5395 memcg_oom_recover(to);
5396 wake_up_all(&mc.waitq);
5397}
5398
5399static void mem_cgroup_clear_mc(void)
5400{
5401 struct mem_cgroup *from = mc.from;
5402
5403 /*
5404 * we must clear moving_task before waking up waiters at the end of
5405 * task migration.
5406 */
5407 mc.moving_task = NULL;
5408 __mem_cgroup_clear_mc();
2bd9bb20 5409 spin_lock(&mc.lock);
4ffef5fe
DN
5410 mc.from = NULL;
5411 mc.to = NULL;
2bd9bb20 5412 spin_unlock(&mc.lock);
32047e2a 5413 mem_cgroup_end_move(from);
4ffef5fe
DN
5414}
5415
761b3ef5
LZ
5416static int mem_cgroup_can_attach(struct cgroup *cgroup,
5417 struct cgroup_taskset *tset)
7dc74be0 5418{
2f7ee569 5419 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5420 int ret = 0;
c0ff4b85 5421 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5422
c0ff4b85 5423 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5424 struct mm_struct *mm;
5425 struct mem_cgroup *from = mem_cgroup_from_task(p);
5426
c0ff4b85 5427 VM_BUG_ON(from == memcg);
7dc74be0
DN
5428
5429 mm = get_task_mm(p);
5430 if (!mm)
5431 return 0;
7dc74be0 5432 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5433 if (mm->owner == p) {
5434 VM_BUG_ON(mc.from);
5435 VM_BUG_ON(mc.to);
5436 VM_BUG_ON(mc.precharge);
854ffa8d 5437 VM_BUG_ON(mc.moved_charge);
483c30b5 5438 VM_BUG_ON(mc.moved_swap);
32047e2a 5439 mem_cgroup_start_move(from);
2bd9bb20 5440 spin_lock(&mc.lock);
4ffef5fe 5441 mc.from = from;
c0ff4b85 5442 mc.to = memcg;
2bd9bb20 5443 spin_unlock(&mc.lock);
dfe076b0 5444 /* We set mc.moving_task later */
4ffef5fe
DN
5445
5446 ret = mem_cgroup_precharge_mc(mm);
5447 if (ret)
5448 mem_cgroup_clear_mc();
dfe076b0
DN
5449 }
5450 mmput(mm);
7dc74be0
DN
5451 }
5452 return ret;
5453}
5454
761b3ef5
LZ
5455static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5456 struct cgroup_taskset *tset)
7dc74be0 5457{
4ffef5fe 5458 mem_cgroup_clear_mc();
7dc74be0
DN
5459}
5460
4ffef5fe
DN
5461static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5462 unsigned long addr, unsigned long end,
5463 struct mm_walk *walk)
7dc74be0 5464{
4ffef5fe
DN
5465 int ret = 0;
5466 struct vm_area_struct *vma = walk->private;
5467 pte_t *pte;
5468 spinlock_t *ptl;
12724850
NH
5469 enum mc_target_type target_type;
5470 union mc_target target;
5471 struct page *page;
5472 struct page_cgroup *pc;
4ffef5fe 5473
12724850
NH
5474 /*
5475 * We don't take compound_lock() here but no race with splitting thp
5476 * happens because:
5477 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5478 * under splitting, which means there's no concurrent thp split,
5479 * - if another thread runs into split_huge_page() just after we
5480 * entered this if-block, the thread must wait for page table lock
5481 * to be unlocked in __split_huge_page_splitting(), where the main
5482 * part of thp split is not executed yet.
5483 */
5484 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 5485 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
5486 spin_unlock(&vma->vm_mm->page_table_lock);
5487 return 0;
5488 }
5489 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5490 if (target_type == MC_TARGET_PAGE) {
5491 page = target.page;
5492 if (!isolate_lru_page(page)) {
5493 pc = lookup_page_cgroup(page);
5494 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 5495 pc, mc.from, mc.to)) {
12724850
NH
5496 mc.precharge -= HPAGE_PMD_NR;
5497 mc.moved_charge += HPAGE_PMD_NR;
5498 }
5499 putback_lru_page(page);
5500 }
5501 put_page(page);
5502 }
5503 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5504 return 0;
12724850
NH
5505 }
5506
45f83cef
AA
5507 if (pmd_trans_unstable(pmd))
5508 return 0;
4ffef5fe
DN
5509retry:
5510 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5511 for (; addr != end; addr += PAGE_SIZE) {
5512 pte_t ptent = *(pte++);
02491447 5513 swp_entry_t ent;
4ffef5fe
DN
5514
5515 if (!mc.precharge)
5516 break;
5517
8d32ff84 5518 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5519 case MC_TARGET_PAGE:
5520 page = target.page;
5521 if (isolate_lru_page(page))
5522 goto put;
5523 pc = lookup_page_cgroup(page);
7ec99d62 5524 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 5525 mc.from, mc.to)) {
4ffef5fe 5526 mc.precharge--;
854ffa8d
DN
5527 /* we uncharge from mc.from later. */
5528 mc.moved_charge++;
4ffef5fe
DN
5529 }
5530 putback_lru_page(page);
8d32ff84 5531put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5532 put_page(page);
5533 break;
02491447
DN
5534 case MC_TARGET_SWAP:
5535 ent = target.ent;
e91cbb42 5536 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5537 mc.precharge--;
483c30b5
DN
5538 /* we fixup refcnts and charges later. */
5539 mc.moved_swap++;
5540 }
02491447 5541 break;
4ffef5fe
DN
5542 default:
5543 break;
5544 }
5545 }
5546 pte_unmap_unlock(pte - 1, ptl);
5547 cond_resched();
5548
5549 if (addr != end) {
5550 /*
5551 * We have consumed all precharges we got in can_attach().
5552 * We try charge one by one, but don't do any additional
5553 * charges to mc.to if we have failed in charge once in attach()
5554 * phase.
5555 */
854ffa8d 5556 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5557 if (!ret)
5558 goto retry;
5559 }
5560
5561 return ret;
5562}
5563
5564static void mem_cgroup_move_charge(struct mm_struct *mm)
5565{
5566 struct vm_area_struct *vma;
5567
5568 lru_add_drain_all();
dfe076b0
DN
5569retry:
5570 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5571 /*
5572 * Someone who are holding the mmap_sem might be waiting in
5573 * waitq. So we cancel all extra charges, wake up all waiters,
5574 * and retry. Because we cancel precharges, we might not be able
5575 * to move enough charges, but moving charge is a best-effort
5576 * feature anyway, so it wouldn't be a big problem.
5577 */
5578 __mem_cgroup_clear_mc();
5579 cond_resched();
5580 goto retry;
5581 }
4ffef5fe
DN
5582 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5583 int ret;
5584 struct mm_walk mem_cgroup_move_charge_walk = {
5585 .pmd_entry = mem_cgroup_move_charge_pte_range,
5586 .mm = mm,
5587 .private = vma,
5588 };
5589 if (is_vm_hugetlb_page(vma))
5590 continue;
4ffef5fe
DN
5591 ret = walk_page_range(vma->vm_start, vma->vm_end,
5592 &mem_cgroup_move_charge_walk);
5593 if (ret)
5594 /*
5595 * means we have consumed all precharges and failed in
5596 * doing additional charge. Just abandon here.
5597 */
5598 break;
5599 }
dfe076b0 5600 up_read(&mm->mmap_sem);
7dc74be0
DN
5601}
5602
761b3ef5
LZ
5603static void mem_cgroup_move_task(struct cgroup *cont,
5604 struct cgroup_taskset *tset)
67e465a7 5605{
2f7ee569 5606 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5607 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5608
dfe076b0 5609 if (mm) {
a433658c
KM
5610 if (mc.to)
5611 mem_cgroup_move_charge(mm);
dfe076b0
DN
5612 mmput(mm);
5613 }
a433658c
KM
5614 if (mc.to)
5615 mem_cgroup_clear_mc();
67e465a7 5616}
5cfb80a7 5617#else /* !CONFIG_MMU */
761b3ef5
LZ
5618static int mem_cgroup_can_attach(struct cgroup *cgroup,
5619 struct cgroup_taskset *tset)
5cfb80a7
DN
5620{
5621 return 0;
5622}
761b3ef5
LZ
5623static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5624 struct cgroup_taskset *tset)
5cfb80a7
DN
5625{
5626}
761b3ef5
LZ
5627static void mem_cgroup_move_task(struct cgroup *cont,
5628 struct cgroup_taskset *tset)
5cfb80a7
DN
5629{
5630}
5631#endif
67e465a7 5632
8cdea7c0
BS
5633struct cgroup_subsys mem_cgroup_subsys = {
5634 .name = "memory",
5635 .subsys_id = mem_cgroup_subsys_id,
92fb9748
TH
5636 .css_alloc = mem_cgroup_css_alloc,
5637 .css_offline = mem_cgroup_css_offline,
5638 .css_free = mem_cgroup_css_free,
7dc74be0
DN
5639 .can_attach = mem_cgroup_can_attach,
5640 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5641 .attach = mem_cgroup_move_task,
6bc10349 5642 .base_cftypes = mem_cgroup_files,
6d12e2d8 5643 .early_init = 0,
04046e1a 5644 .use_id = 1,
8cdea7c0 5645};
c077719b 5646
c255a458 5647#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5648static int __init enable_swap_account(char *s)
5649{
5650 /* consider enabled if no parameter or 1 is given */
a2c8990a 5651 if (!strcmp(s, "1"))
a42c390c 5652 really_do_swap_account = 1;
a2c8990a 5653 else if (!strcmp(s, "0"))
a42c390c
MH
5654 really_do_swap_account = 0;
5655 return 1;
5656}
a2c8990a 5657__setup("swapaccount=", enable_swap_account);
c077719b 5658
c077719b 5659#endif