]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
mm: memcg: enable memcg OOM killer only for user faults
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
b6ac57d5 42#include <linux/slab.h>
66e1707b 43#include <linux/swap.h>
02491447 44#include <linux/swapops.h>
66e1707b 45#include <linux/spinlock.h>
2e72b634
KS
46#include <linux/eventfd.h>
47#include <linux/sort.h>
66e1707b 48#include <linux/fs.h>
d2ceb9b7 49#include <linux/seq_file.h>
33327948 50#include <linux/vmalloc.h>
70ddf637 51#include <linux/vmpressure.h>
b69408e8 52#include <linux/mm_inline.h>
52d4b9ac 53#include <linux/page_cgroup.h>
cdec2e42 54#include <linux/cpu.h>
158e0a2d 55#include <linux/oom.h>
08e552c6 56#include "internal.h"
d1a4c0b3 57#include <net/sock.h>
4bd2c1ee 58#include <net/ip.h>
d1a4c0b3 59#include <net/tcp_memcontrol.h>
8cdea7c0 60
8697d331
BS
61#include <asm/uaccess.h>
62
cc8e970c
KM
63#include <trace/events/vmscan.h>
64
a181b0e8 65struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
66EXPORT_SYMBOL(mem_cgroup_subsys);
67
a181b0e8 68#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 69static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 70
c255a458 71#ifdef CONFIG_MEMCG_SWAP
338c8431 72/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 73int do_swap_account __read_mostly;
a42c390c
MH
74
75/* for remember boot option*/
c255a458 76#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
77static int really_do_swap_account __initdata = 1;
78#else
79static int really_do_swap_account __initdata = 0;
80#endif
81
c077719b 82#else
a0db00fc 83#define do_swap_account 0
c077719b
KH
84#endif
85
86
d52aa412
KH
87/*
88 * Statistics for memory cgroup.
89 */
90enum mem_cgroup_stat_index {
91 /*
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 */
b070e65c
DR
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
96 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
97 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
98 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
99 MEM_CGROUP_STAT_NSTATS,
100};
101
af7c4b0e
JW
102static const char * const mem_cgroup_stat_names[] = {
103 "cache",
104 "rss",
b070e65c 105 "rss_huge",
af7c4b0e
JW
106 "mapped_file",
107 "swap",
108};
109
e9f8974f
JW
110enum mem_cgroup_events_index {
111 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
112 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
113 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
114 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
115 MEM_CGROUP_EVENTS_NSTATS,
116};
af7c4b0e
JW
117
118static const char * const mem_cgroup_events_names[] = {
119 "pgpgin",
120 "pgpgout",
121 "pgfault",
122 "pgmajfault",
123};
124
58cf188e
SZ
125static const char * const mem_cgroup_lru_names[] = {
126 "inactive_anon",
127 "active_anon",
128 "inactive_file",
129 "active_file",
130 "unevictable",
131};
132
7a159cc9
JW
133/*
134 * Per memcg event counter is incremented at every pagein/pageout. With THP,
135 * it will be incremated by the number of pages. This counter is used for
136 * for trigger some periodic events. This is straightforward and better
137 * than using jiffies etc. to handle periodic memcg event.
138 */
139enum mem_cgroup_events_target {
140 MEM_CGROUP_TARGET_THRESH,
7d910c05 141 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 142 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
143 MEM_CGROUP_NTARGETS,
144};
a0db00fc
KS
145#define THRESHOLDS_EVENTS_TARGET 128
146#define SOFTLIMIT_EVENTS_TARGET 1024
147#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 148
d52aa412 149struct mem_cgroup_stat_cpu {
7a159cc9 150 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 151 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 152 unsigned long nr_page_events;
7a159cc9 153 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
154};
155
527a5ec9 156struct mem_cgroup_reclaim_iter {
5f578161
MH
157 /*
158 * last scanned hierarchy member. Valid only if last_dead_count
159 * matches memcg->dead_count of the hierarchy root group.
160 */
542f85f9 161 struct mem_cgroup *last_visited;
5f578161
MH
162 unsigned long last_dead_count;
163
527a5ec9
JW
164 /* scan generation, increased every round-trip */
165 unsigned int generation;
166};
167
6d12e2d8
KH
168/*
169 * per-zone information in memory controller.
170 */
6d12e2d8 171struct mem_cgroup_per_zone {
6290df54 172 struct lruvec lruvec;
1eb49272 173 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 174
527a5ec9
JW
175 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
176
d79154bb 177 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 178 /* use container_of */
6d12e2d8 179};
6d12e2d8
KH
180
181struct mem_cgroup_per_node {
182 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
183};
184
2e72b634
KS
185struct mem_cgroup_threshold {
186 struct eventfd_ctx *eventfd;
187 u64 threshold;
188};
189
9490ff27 190/* For threshold */
2e72b634 191struct mem_cgroup_threshold_ary {
748dad36 192 /* An array index points to threshold just below or equal to usage. */
5407a562 193 int current_threshold;
2e72b634
KS
194 /* Size of entries[] */
195 unsigned int size;
196 /* Array of thresholds */
197 struct mem_cgroup_threshold entries[0];
198};
2c488db2
KS
199
200struct mem_cgroup_thresholds {
201 /* Primary thresholds array */
202 struct mem_cgroup_threshold_ary *primary;
203 /*
204 * Spare threshold array.
205 * This is needed to make mem_cgroup_unregister_event() "never fail".
206 * It must be able to store at least primary->size - 1 entries.
207 */
208 struct mem_cgroup_threshold_ary *spare;
209};
210
9490ff27
KH
211/* for OOM */
212struct mem_cgroup_eventfd_list {
213 struct list_head list;
214 struct eventfd_ctx *eventfd;
215};
2e72b634 216
c0ff4b85
R
217static void mem_cgroup_threshold(struct mem_cgroup *memcg);
218static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 219
8cdea7c0
BS
220/*
221 * The memory controller data structure. The memory controller controls both
222 * page cache and RSS per cgroup. We would eventually like to provide
223 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
224 * to help the administrator determine what knobs to tune.
225 *
226 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
227 * we hit the water mark. May be even add a low water mark, such that
228 * no reclaim occurs from a cgroup at it's low water mark, this is
229 * a feature that will be implemented much later in the future.
8cdea7c0
BS
230 */
231struct mem_cgroup {
232 struct cgroup_subsys_state css;
233 /*
234 * the counter to account for memory usage
235 */
236 struct res_counter res;
59927fb9 237
70ddf637
AV
238 /* vmpressure notifications */
239 struct vmpressure vmpressure;
240
465939a1
LZ
241 /*
242 * the counter to account for mem+swap usage.
243 */
244 struct res_counter memsw;
59927fb9 245
510fc4e1
GC
246 /*
247 * the counter to account for kernel memory usage.
248 */
249 struct res_counter kmem;
18f59ea7
BS
250 /*
251 * Should the accounting and control be hierarchical, per subtree?
252 */
253 bool use_hierarchy;
510fc4e1 254 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
255
256 bool oom_lock;
257 atomic_t under_oom;
258
1f4c025b 259 int swappiness;
3c11ecf4
KH
260 /* OOM-Killer disable */
261 int oom_kill_disable;
a7885eb8 262
22a668d7
KH
263 /* set when res.limit == memsw.limit */
264 bool memsw_is_minimum;
265
2e72b634
KS
266 /* protect arrays of thresholds */
267 struct mutex thresholds_lock;
268
269 /* thresholds for memory usage. RCU-protected */
2c488db2 270 struct mem_cgroup_thresholds thresholds;
907860ed 271
2e72b634 272 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 273 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 274
9490ff27
KH
275 /* For oom notifier event fd */
276 struct list_head oom_notify;
185efc0f 277
7dc74be0
DN
278 /*
279 * Should we move charges of a task when a task is moved into this
280 * mem_cgroup ? And what type of charges should we move ?
281 */
f894ffa8 282 unsigned long move_charge_at_immigrate;
619d094b
KH
283 /*
284 * set > 0 if pages under this cgroup are moving to other cgroup.
285 */
286 atomic_t moving_account;
312734c0
KH
287 /* taken only while moving_account > 0 */
288 spinlock_t move_lock;
d52aa412 289 /*
c62b1a3b 290 * percpu counter.
d52aa412 291 */
3a7951b4 292 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
293 /*
294 * used when a cpu is offlined or other synchronizations
295 * See mem_cgroup_read_stat().
296 */
297 struct mem_cgroup_stat_cpu nocpu_base;
298 spinlock_t pcp_counter_lock;
d1a4c0b3 299
5f578161 300 atomic_t dead_count;
4bd2c1ee 301#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
302 struct tcp_memcontrol tcp_mem;
303#endif
2633d7a0
GC
304#if defined(CONFIG_MEMCG_KMEM)
305 /* analogous to slab_common's slab_caches list. per-memcg */
306 struct list_head memcg_slab_caches;
307 /* Not a spinlock, we can take a lot of time walking the list */
308 struct mutex slab_caches_mutex;
309 /* Index in the kmem_cache->memcg_params->memcg_caches array */
310 int kmemcg_id;
311#endif
45cf7ebd
GC
312
313 int last_scanned_node;
314#if MAX_NUMNODES > 1
315 nodemask_t scan_nodes;
316 atomic_t numainfo_events;
317 atomic_t numainfo_updating;
318#endif
7d910c05
MH
319 /*
320 * Protects soft_contributed transitions.
321 * See mem_cgroup_update_soft_limit
322 */
323 spinlock_t soft_lock;
324
325 /*
326 * If true then this group has increased parents' children_in_excess
f894ffa8 327 * when it got over the soft limit.
7d910c05
MH
328 * When a group falls bellow the soft limit, parents' children_in_excess
329 * is decreased and soft_contributed changed to false.
330 */
331 bool soft_contributed;
332
333 /* Number of children that are in soft limit excess */
334 atomic_t children_in_excess;
70ddf637 335
54f72fe0
JW
336 struct mem_cgroup_per_node *nodeinfo[0];
337 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
338};
339
45cf7ebd
GC
340static size_t memcg_size(void)
341{
342 return sizeof(struct mem_cgroup) +
343 nr_node_ids * sizeof(struct mem_cgroup_per_node);
344}
345
510fc4e1
GC
346/* internal only representation about the status of kmem accounting. */
347enum {
348 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 349 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 350 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
351};
352
a8964b9b
GC
353/* We account when limit is on, but only after call sites are patched */
354#define KMEM_ACCOUNTED_MASK \
355 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
356
357#ifdef CONFIG_MEMCG_KMEM
358static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
359{
360 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
361}
7de37682
GC
362
363static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
364{
365 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
366}
367
a8964b9b
GC
368static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
369{
370 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
371}
372
55007d84
GC
373static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
374{
375 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
376}
377
7de37682
GC
378static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
379{
10d5ebf4
LZ
380 /*
381 * Our caller must use css_get() first, because memcg_uncharge_kmem()
382 * will call css_put() if it sees the memcg is dead.
383 */
384 smp_wmb();
7de37682
GC
385 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
386 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
387}
388
389static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
390{
391 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
392 &memcg->kmem_account_flags);
393}
510fc4e1
GC
394#endif
395
7dc74be0
DN
396/* Stuffs for move charges at task migration. */
397/*
ee5e8472
GC
398 * Types of charges to be moved. "move_charge_at_immitgrate" and
399 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
400 */
401enum move_type {
4ffef5fe 402 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 403 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
404 NR_MOVE_TYPE,
405};
406
4ffef5fe
DN
407/* "mc" and its members are protected by cgroup_mutex */
408static struct move_charge_struct {
b1dd693e 409 spinlock_t lock; /* for from, to */
4ffef5fe
DN
410 struct mem_cgroup *from;
411 struct mem_cgroup *to;
ee5e8472 412 unsigned long immigrate_flags;
4ffef5fe 413 unsigned long precharge;
854ffa8d 414 unsigned long moved_charge;
483c30b5 415 unsigned long moved_swap;
8033b97c
DN
416 struct task_struct *moving_task; /* a task moving charges */
417 wait_queue_head_t waitq; /* a waitq for other context */
418} mc = {
2bd9bb20 419 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
420 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
421};
4ffef5fe 422
90254a65
DN
423static bool move_anon(void)
424{
ee5e8472 425 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
426}
427
87946a72
DN
428static bool move_file(void)
429{
ee5e8472 430 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
431}
432
4e416953
BS
433/*
434 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
435 * limit reclaim to prevent infinite loops, if they ever occur.
436 */
a0db00fc 437#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
4e416953 438
217bc319
KH
439enum charge_type {
440 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 441 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 442 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 443 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
444 NR_CHARGE_TYPE,
445};
446
8c7c6e34 447/* for encoding cft->private value on file */
86ae53e1
GC
448enum res_type {
449 _MEM,
450 _MEMSWAP,
451 _OOM_TYPE,
510fc4e1 452 _KMEM,
86ae53e1
GC
453};
454
a0db00fc
KS
455#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
456#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 457#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
458/* Used for OOM nofiier */
459#define OOM_CONTROL (0)
8c7c6e34 460
75822b44
BS
461/*
462 * Reclaim flags for mem_cgroup_hierarchical_reclaim
463 */
464#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
465#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
466#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
467#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
468
0999821b
GC
469/*
470 * The memcg_create_mutex will be held whenever a new cgroup is created.
471 * As a consequence, any change that needs to protect against new child cgroups
472 * appearing has to hold it as well.
473 */
474static DEFINE_MUTEX(memcg_create_mutex);
475
b2145145
WL
476struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
477{
a7c6d554 478 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
479}
480
70ddf637
AV
481/* Some nice accessors for the vmpressure. */
482struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
483{
484 if (!memcg)
485 memcg = root_mem_cgroup;
486 return &memcg->vmpressure;
487}
488
489struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
490{
491 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
492}
493
494struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
495{
496 return &mem_cgroup_from_css(css)->vmpressure;
497}
498
7ffc0edc
MH
499static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
500{
501 return (memcg == root_mem_cgroup);
502}
503
e1aab161 504/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 505#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 506
e1aab161
GC
507void sock_update_memcg(struct sock *sk)
508{
376be5ff 509 if (mem_cgroup_sockets_enabled) {
e1aab161 510 struct mem_cgroup *memcg;
3f134619 511 struct cg_proto *cg_proto;
e1aab161
GC
512
513 BUG_ON(!sk->sk_prot->proto_cgroup);
514
f3f511e1
GC
515 /* Socket cloning can throw us here with sk_cgrp already
516 * filled. It won't however, necessarily happen from
517 * process context. So the test for root memcg given
518 * the current task's memcg won't help us in this case.
519 *
520 * Respecting the original socket's memcg is a better
521 * decision in this case.
522 */
523 if (sk->sk_cgrp) {
524 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 525 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
526 return;
527 }
528
e1aab161
GC
529 rcu_read_lock();
530 memcg = mem_cgroup_from_task(current);
3f134619 531 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
532 if (!mem_cgroup_is_root(memcg) &&
533 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 534 sk->sk_cgrp = cg_proto;
e1aab161
GC
535 }
536 rcu_read_unlock();
537 }
538}
539EXPORT_SYMBOL(sock_update_memcg);
540
541void sock_release_memcg(struct sock *sk)
542{
376be5ff 543 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
544 struct mem_cgroup *memcg;
545 WARN_ON(!sk->sk_cgrp->memcg);
546 memcg = sk->sk_cgrp->memcg;
5347e5ae 547 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
548 }
549}
d1a4c0b3
GC
550
551struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
552{
553 if (!memcg || mem_cgroup_is_root(memcg))
554 return NULL;
555
556 return &memcg->tcp_mem.cg_proto;
557}
558EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 559
3f134619
GC
560static void disarm_sock_keys(struct mem_cgroup *memcg)
561{
562 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
563 return;
564 static_key_slow_dec(&memcg_socket_limit_enabled);
565}
566#else
567static void disarm_sock_keys(struct mem_cgroup *memcg)
568{
569}
570#endif
571
a8964b9b 572#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
573/*
574 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
575 * There are two main reasons for not using the css_id for this:
576 * 1) this works better in sparse environments, where we have a lot of memcgs,
577 * but only a few kmem-limited. Or also, if we have, for instance, 200
578 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
579 * 200 entry array for that.
580 *
581 * 2) In order not to violate the cgroup API, we would like to do all memory
582 * allocation in ->create(). At that point, we haven't yet allocated the
583 * css_id. Having a separate index prevents us from messing with the cgroup
584 * core for this
585 *
586 * The current size of the caches array is stored in
587 * memcg_limited_groups_array_size. It will double each time we have to
588 * increase it.
589 */
590static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
591int memcg_limited_groups_array_size;
592
55007d84
GC
593/*
594 * MIN_SIZE is different than 1, because we would like to avoid going through
595 * the alloc/free process all the time. In a small machine, 4 kmem-limited
596 * cgroups is a reasonable guess. In the future, it could be a parameter or
597 * tunable, but that is strictly not necessary.
598 *
599 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
600 * this constant directly from cgroup, but it is understandable that this is
601 * better kept as an internal representation in cgroup.c. In any case, the
602 * css_id space is not getting any smaller, and we don't have to necessarily
603 * increase ours as well if it increases.
604 */
605#define MEMCG_CACHES_MIN_SIZE 4
606#define MEMCG_CACHES_MAX_SIZE 65535
607
d7f25f8a
GC
608/*
609 * A lot of the calls to the cache allocation functions are expected to be
610 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
611 * conditional to this static branch, we'll have to allow modules that does
612 * kmem_cache_alloc and the such to see this symbol as well
613 */
a8964b9b 614struct static_key memcg_kmem_enabled_key;
d7f25f8a 615EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
616
617static void disarm_kmem_keys(struct mem_cgroup *memcg)
618{
55007d84 619 if (memcg_kmem_is_active(memcg)) {
a8964b9b 620 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
621 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
622 }
bea207c8
GC
623 /*
624 * This check can't live in kmem destruction function,
625 * since the charges will outlive the cgroup
626 */
627 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
628}
629#else
630static void disarm_kmem_keys(struct mem_cgroup *memcg)
631{
632}
633#endif /* CONFIG_MEMCG_KMEM */
634
635static void disarm_static_keys(struct mem_cgroup *memcg)
636{
637 disarm_sock_keys(memcg);
638 disarm_kmem_keys(memcg);
639}
640
c0ff4b85 641static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 642
f64c3f54 643static struct mem_cgroup_per_zone *
c0ff4b85 644mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 645{
45cf7ebd 646 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 647 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
648}
649
c0ff4b85 650struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 651{
c0ff4b85 652 return &memcg->css;
d324236b
WF
653}
654
f64c3f54 655static struct mem_cgroup_per_zone *
c0ff4b85 656page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 657{
97a6c37b
JW
658 int nid = page_to_nid(page);
659 int zid = page_zonenum(page);
f64c3f54 660
c0ff4b85 661 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
662}
663
711d3d2c
KH
664/*
665 * Implementation Note: reading percpu statistics for memcg.
666 *
667 * Both of vmstat[] and percpu_counter has threshold and do periodic
668 * synchronization to implement "quick" read. There are trade-off between
669 * reading cost and precision of value. Then, we may have a chance to implement
670 * a periodic synchronizion of counter in memcg's counter.
671 *
672 * But this _read() function is used for user interface now. The user accounts
673 * memory usage by memory cgroup and he _always_ requires exact value because
674 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
675 * have to visit all online cpus and make sum. So, for now, unnecessary
676 * synchronization is not implemented. (just implemented for cpu hotplug)
677 *
678 * If there are kernel internal actions which can make use of some not-exact
679 * value, and reading all cpu value can be performance bottleneck in some
680 * common workload, threashold and synchonization as vmstat[] should be
681 * implemented.
682 */
c0ff4b85 683static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 684 enum mem_cgroup_stat_index idx)
c62b1a3b 685{
7a159cc9 686 long val = 0;
c62b1a3b 687 int cpu;
c62b1a3b 688
711d3d2c
KH
689 get_online_cpus();
690 for_each_online_cpu(cpu)
c0ff4b85 691 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 692#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
693 spin_lock(&memcg->pcp_counter_lock);
694 val += memcg->nocpu_base.count[idx];
695 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
696#endif
697 put_online_cpus();
c62b1a3b
KH
698 return val;
699}
700
c0ff4b85 701static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
702 bool charge)
703{
704 int val = (charge) ? 1 : -1;
bff6bb83 705 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
706}
707
c0ff4b85 708static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
709 enum mem_cgroup_events_index idx)
710{
711 unsigned long val = 0;
712 int cpu;
713
714 for_each_online_cpu(cpu)
c0ff4b85 715 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 716#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
717 spin_lock(&memcg->pcp_counter_lock);
718 val += memcg->nocpu_base.events[idx];
719 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
720#endif
721 return val;
722}
723
c0ff4b85 724static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 725 struct page *page,
b2402857 726 bool anon, int nr_pages)
d52aa412 727{
c62b1a3b
KH
728 preempt_disable();
729
b2402857
KH
730 /*
731 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
732 * counted as CACHE even if it's on ANON LRU.
733 */
734 if (anon)
735 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 736 nr_pages);
d52aa412 737 else
b2402857 738 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 739 nr_pages);
55e462b0 740
b070e65c
DR
741 if (PageTransHuge(page))
742 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
743 nr_pages);
744
e401f176
KH
745 /* pagein of a big page is an event. So, ignore page size */
746 if (nr_pages > 0)
c0ff4b85 747 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 748 else {
c0ff4b85 749 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
750 nr_pages = -nr_pages; /* for event */
751 }
e401f176 752
13114716 753 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 754
c62b1a3b 755 preempt_enable();
6d12e2d8
KH
756}
757
bb2a0de9 758unsigned long
4d7dcca2 759mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
760{
761 struct mem_cgroup_per_zone *mz;
762
763 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
764 return mz->lru_size[lru];
765}
766
767static unsigned long
c0ff4b85 768mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 769 unsigned int lru_mask)
889976db
YH
770{
771 struct mem_cgroup_per_zone *mz;
f156ab93 772 enum lru_list lru;
bb2a0de9
KH
773 unsigned long ret = 0;
774
c0ff4b85 775 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 776
f156ab93
HD
777 for_each_lru(lru) {
778 if (BIT(lru) & lru_mask)
779 ret += mz->lru_size[lru];
bb2a0de9
KH
780 }
781 return ret;
782}
783
784static unsigned long
c0ff4b85 785mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
786 int nid, unsigned int lru_mask)
787{
889976db
YH
788 u64 total = 0;
789 int zid;
790
bb2a0de9 791 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
792 total += mem_cgroup_zone_nr_lru_pages(memcg,
793 nid, zid, lru_mask);
bb2a0de9 794
889976db
YH
795 return total;
796}
bb2a0de9 797
c0ff4b85 798static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 799 unsigned int lru_mask)
6d12e2d8 800{
889976db 801 int nid;
6d12e2d8
KH
802 u64 total = 0;
803
31aaea4a 804 for_each_node_state(nid, N_MEMORY)
c0ff4b85 805 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 806 return total;
d52aa412
KH
807}
808
f53d7ce3
JW
809static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
810 enum mem_cgroup_events_target target)
7a159cc9
JW
811{
812 unsigned long val, next;
813
13114716 814 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 815 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 816 /* from time_after() in jiffies.h */
f53d7ce3
JW
817 if ((long)next - (long)val < 0) {
818 switch (target) {
819 case MEM_CGROUP_TARGET_THRESH:
820 next = val + THRESHOLDS_EVENTS_TARGET;
821 break;
7d910c05
MH
822 case MEM_CGROUP_TARGET_SOFTLIMIT:
823 next = val + SOFTLIMIT_EVENTS_TARGET;
824 break;
f53d7ce3
JW
825 case MEM_CGROUP_TARGET_NUMAINFO:
826 next = val + NUMAINFO_EVENTS_TARGET;
827 break;
828 default:
829 break;
830 }
831 __this_cpu_write(memcg->stat->targets[target], next);
832 return true;
7a159cc9 833 }
f53d7ce3 834 return false;
d2265e6f
KH
835}
836
7d910c05 837/*
f894ffa8 838 * Called from rate-limited memcg_check_events when enough
7d910c05 839 * MEM_CGROUP_TARGET_SOFTLIMIT events are accumulated and it makes sure
f894ffa8 840 * that all the parents up the hierarchy will be notified that this group
7d910c05
MH
841 * is in excess or that it is not in excess anymore. mmecg->soft_contributed
842 * makes the transition a single action whenever the state flips from one to
f894ffa8 843 * the other.
7d910c05
MH
844 */
845static void mem_cgroup_update_soft_limit(struct mem_cgroup *memcg)
846{
847 unsigned long long excess = res_counter_soft_limit_excess(&memcg->res);
848 struct mem_cgroup *parent = memcg;
849 int delta = 0;
850
851 spin_lock(&memcg->soft_lock);
852 if (excess) {
853 if (!memcg->soft_contributed) {
854 delta = 1;
855 memcg->soft_contributed = true;
856 }
857 } else {
858 if (memcg->soft_contributed) {
859 delta = -1;
860 memcg->soft_contributed = false;
861 }
862 }
863
864 /*
865 * Necessary to update all ancestors when hierarchy is used
866 * because their event counter is not touched.
1be171d6
MH
867 * We track children even outside the hierarchy for the root
868 * cgroup because tree walk starting at root should visit
869 * all cgroups and we want to prevent from pointless tree
870 * walk if no children is below the limit.
7d910c05
MH
871 */
872 while (delta && (parent = parent_mem_cgroup(parent)))
873 atomic_add(delta, &parent->children_in_excess);
1be171d6
MH
874 if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
875 atomic_add(delta, &root_mem_cgroup->children_in_excess);
7d910c05
MH
876 spin_unlock(&memcg->soft_lock);
877}
878
d2265e6f
KH
879/*
880 * Check events in order.
881 *
882 */
c0ff4b85 883static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 884{
4799401f 885 preempt_disable();
d2265e6f 886 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
887 if (unlikely(mem_cgroup_event_ratelimit(memcg,
888 MEM_CGROUP_TARGET_THRESH))) {
7d910c05 889 bool do_softlimit;
82b3f2a7 890 bool do_numainfo __maybe_unused;
f53d7ce3 891
7d910c05
MH
892 do_softlimit = mem_cgroup_event_ratelimit(memcg,
893 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
894#if MAX_NUMNODES > 1
895 do_numainfo = mem_cgroup_event_ratelimit(memcg,
896 MEM_CGROUP_TARGET_NUMAINFO);
897#endif
898 preempt_enable();
899
c0ff4b85 900 mem_cgroup_threshold(memcg);
7d910c05
MH
901 if (unlikely(do_softlimit))
902 mem_cgroup_update_soft_limit(memcg);
453a9bf3 903#if MAX_NUMNODES > 1
f53d7ce3 904 if (unlikely(do_numainfo))
c0ff4b85 905 atomic_inc(&memcg->numainfo_events);
453a9bf3 906#endif
f53d7ce3
JW
907 } else
908 preempt_enable();
d2265e6f
KH
909}
910
cf475ad2 911struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 912{
31a78f23
BS
913 /*
914 * mm_update_next_owner() may clear mm->owner to NULL
915 * if it races with swapoff, page migration, etc.
916 * So this can be called with p == NULL.
917 */
918 if (unlikely(!p))
919 return NULL;
920
8af01f56 921 return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
78fb7466
PE
922}
923
a433658c 924struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 925{
c0ff4b85 926 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
927
928 if (!mm)
929 return NULL;
54595fe2
KH
930 /*
931 * Because we have no locks, mm->owner's may be being moved to other
932 * cgroup. We use css_tryget() here even if this looks
933 * pessimistic (rather than adding locks here).
934 */
935 rcu_read_lock();
936 do {
c0ff4b85
R
937 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
938 if (unlikely(!memcg))
54595fe2 939 break;
c0ff4b85 940 } while (!css_tryget(&memcg->css));
54595fe2 941 rcu_read_unlock();
c0ff4b85 942 return memcg;
54595fe2
KH
943}
944
de57780d
MH
945static enum mem_cgroup_filter_t
946mem_cgroup_filter(struct mem_cgroup *memcg, struct mem_cgroup *root,
947 mem_cgroup_iter_filter cond)
948{
949 if (!cond)
950 return VISIT;
951 return cond(memcg, root);
952}
953
16248d8f
MH
954/*
955 * Returns a next (in a pre-order walk) alive memcg (with elevated css
956 * ref. count) or NULL if the whole root's subtree has been visited.
957 *
958 * helper function to be used by mem_cgroup_iter
959 */
960static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
de57780d 961 struct mem_cgroup *last_visited, mem_cgroup_iter_filter cond)
16248d8f 962{
492eb21b 963 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 964
bd8815a6 965 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 966skip_node:
492eb21b 967 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
968
969 /*
970 * Even if we found a group we have to make sure it is
971 * alive. css && !memcg means that the groups should be
972 * skipped and we should continue the tree walk.
973 * last_visited css is safe to use because it is
974 * protected by css_get and the tree walk is rcu safe.
975 */
492eb21b
TH
976 if (next_css) {
977 struct mem_cgroup *mem = mem_cgroup_from_css(next_css);
978
de57780d
MH
979 switch (mem_cgroup_filter(mem, root, cond)) {
980 case SKIP:
492eb21b 981 prev_css = next_css;
16248d8f 982 goto skip_node;
de57780d
MH
983 case SKIP_TREE:
984 if (mem == root)
985 return NULL;
986 /*
987 * css_rightmost_descendant is not an optimal way to
988 * skip through a subtree (especially for imbalanced
989 * trees leaning to right) but that's what we have right
990 * now. More effective solution would be traversing
991 * right-up for first non-NULL without calling
992 * css_next_descendant_pre afterwards.
993 */
994 prev_css = css_rightmost_descendant(next_css);
995 goto skip_node;
996 case VISIT:
997 if (css_tryget(&mem->css))
998 return mem;
999 else {
1000 prev_css = next_css;
1001 goto skip_node;
1002 }
1003 break;
16248d8f
MH
1004 }
1005 }
1006
1007 return NULL;
1008}
1009
519ebea3
JW
1010static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1011{
1012 /*
1013 * When a group in the hierarchy below root is destroyed, the
1014 * hierarchy iterator can no longer be trusted since it might
1015 * have pointed to the destroyed group. Invalidate it.
1016 */
1017 atomic_inc(&root->dead_count);
1018}
1019
1020static struct mem_cgroup *
1021mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1022 struct mem_cgroup *root,
1023 int *sequence)
1024{
1025 struct mem_cgroup *position = NULL;
1026 /*
1027 * A cgroup destruction happens in two stages: offlining and
1028 * release. They are separated by a RCU grace period.
1029 *
1030 * If the iterator is valid, we may still race with an
1031 * offlining. The RCU lock ensures the object won't be
1032 * released, tryget will fail if we lost the race.
1033 */
1034 *sequence = atomic_read(&root->dead_count);
1035 if (iter->last_dead_count == *sequence) {
1036 smp_rmb();
1037 position = iter->last_visited;
1038 if (position && !css_tryget(&position->css))
1039 position = NULL;
1040 }
1041 return position;
1042}
1043
1044static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1045 struct mem_cgroup *last_visited,
1046 struct mem_cgroup *new_position,
1047 int sequence)
1048{
1049 if (last_visited)
1050 css_put(&last_visited->css);
1051 /*
1052 * We store the sequence count from the time @last_visited was
1053 * loaded successfully instead of rereading it here so that we
1054 * don't lose destruction events in between. We could have
1055 * raced with the destruction of @new_position after all.
1056 */
1057 iter->last_visited = new_position;
1058 smp_wmb();
1059 iter->last_dead_count = sequence;
1060}
1061
5660048c
JW
1062/**
1063 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1064 * @root: hierarchy root
1065 * @prev: previously returned memcg, NULL on first invocation
1066 * @reclaim: cookie for shared reclaim walks, NULL for full walks
de57780d 1067 * @cond: filter for visited nodes, NULL for no filter
5660048c
JW
1068 *
1069 * Returns references to children of the hierarchy below @root, or
1070 * @root itself, or %NULL after a full round-trip.
1071 *
1072 * Caller must pass the return value in @prev on subsequent
1073 * invocations for reference counting, or use mem_cgroup_iter_break()
1074 * to cancel a hierarchy walk before the round-trip is complete.
1075 *
1076 * Reclaimers can specify a zone and a priority level in @reclaim to
1077 * divide up the memcgs in the hierarchy among all concurrent
1078 * reclaimers operating on the same zone and priority.
1079 */
de57780d 1080struct mem_cgroup *mem_cgroup_iter_cond(struct mem_cgroup *root,
5660048c 1081 struct mem_cgroup *prev,
de57780d
MH
1082 struct mem_cgroup_reclaim_cookie *reclaim,
1083 mem_cgroup_iter_filter cond)
14067bb3 1084{
9f3a0d09 1085 struct mem_cgroup *memcg = NULL;
542f85f9 1086 struct mem_cgroup *last_visited = NULL;
711d3d2c 1087
de57780d
MH
1088 if (mem_cgroup_disabled()) {
1089 /* first call must return non-NULL, second return NULL */
1090 return (struct mem_cgroup *)(unsigned long)!prev;
1091 }
5660048c 1092
9f3a0d09
JW
1093 if (!root)
1094 root = root_mem_cgroup;
7d74b06f 1095
9f3a0d09 1096 if (prev && !reclaim)
542f85f9 1097 last_visited = prev;
14067bb3 1098
9f3a0d09
JW
1099 if (!root->use_hierarchy && root != root_mem_cgroup) {
1100 if (prev)
c40046f3 1101 goto out_css_put;
de57780d
MH
1102 if (mem_cgroup_filter(root, root, cond) == VISIT)
1103 return root;
1104 return NULL;
9f3a0d09 1105 }
14067bb3 1106
542f85f9 1107 rcu_read_lock();
9f3a0d09 1108 while (!memcg) {
527a5ec9 1109 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1110 int uninitialized_var(seq);
711d3d2c 1111
527a5ec9
JW
1112 if (reclaim) {
1113 int nid = zone_to_nid(reclaim->zone);
1114 int zid = zone_idx(reclaim->zone);
1115 struct mem_cgroup_per_zone *mz;
1116
1117 mz = mem_cgroup_zoneinfo(root, nid, zid);
1118 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1119 if (prev && reclaim->generation != iter->generation) {
5f578161 1120 iter->last_visited = NULL;
542f85f9
MH
1121 goto out_unlock;
1122 }
5f578161 1123
519ebea3 1124 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1125 }
7d74b06f 1126
de57780d 1127 memcg = __mem_cgroup_iter_next(root, last_visited, cond);
14067bb3 1128
527a5ec9 1129 if (reclaim) {
519ebea3 1130 mem_cgroup_iter_update(iter, last_visited, memcg, seq);
542f85f9 1131
19f39402 1132 if (!memcg)
527a5ec9
JW
1133 iter->generation++;
1134 else if (!prev && memcg)
1135 reclaim->generation = iter->generation;
1136 }
9f3a0d09 1137
de57780d
MH
1138 /*
1139 * We have finished the whole tree walk or no group has been
1140 * visited because filter told us to skip the root node.
1141 */
1142 if (!memcg && (prev || (cond && !last_visited)))
542f85f9 1143 goto out_unlock;
9f3a0d09 1144 }
542f85f9
MH
1145out_unlock:
1146 rcu_read_unlock();
c40046f3
MH
1147out_css_put:
1148 if (prev && prev != root)
1149 css_put(&prev->css);
1150
9f3a0d09 1151 return memcg;
14067bb3 1152}
7d74b06f 1153
5660048c
JW
1154/**
1155 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1156 * @root: hierarchy root
1157 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1158 */
1159void mem_cgroup_iter_break(struct mem_cgroup *root,
1160 struct mem_cgroup *prev)
9f3a0d09
JW
1161{
1162 if (!root)
1163 root = root_mem_cgroup;
1164 if (prev && prev != root)
1165 css_put(&prev->css);
1166}
7d74b06f 1167
9f3a0d09
JW
1168/*
1169 * Iteration constructs for visiting all cgroups (under a tree). If
1170 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1171 * be used for reference counting.
1172 */
1173#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1174 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1175 iter != NULL; \
527a5ec9 1176 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1177
9f3a0d09 1178#define for_each_mem_cgroup(iter) \
527a5ec9 1179 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1180 iter != NULL; \
527a5ec9 1181 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1182
68ae564b 1183void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1184{
c0ff4b85 1185 struct mem_cgroup *memcg;
456f998e 1186
456f998e 1187 rcu_read_lock();
c0ff4b85
R
1188 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1189 if (unlikely(!memcg))
456f998e
YH
1190 goto out;
1191
1192 switch (idx) {
456f998e 1193 case PGFAULT:
0e574a93
JW
1194 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1195 break;
1196 case PGMAJFAULT:
1197 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1198 break;
1199 default:
1200 BUG();
1201 }
1202out:
1203 rcu_read_unlock();
1204}
68ae564b 1205EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1206
925b7673
JW
1207/**
1208 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1209 * @zone: zone of the wanted lruvec
fa9add64 1210 * @memcg: memcg of the wanted lruvec
925b7673
JW
1211 *
1212 * Returns the lru list vector holding pages for the given @zone and
1213 * @mem. This can be the global zone lruvec, if the memory controller
1214 * is disabled.
1215 */
1216struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1217 struct mem_cgroup *memcg)
1218{
1219 struct mem_cgroup_per_zone *mz;
bea8c150 1220 struct lruvec *lruvec;
925b7673 1221
bea8c150
HD
1222 if (mem_cgroup_disabled()) {
1223 lruvec = &zone->lruvec;
1224 goto out;
1225 }
925b7673
JW
1226
1227 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1228 lruvec = &mz->lruvec;
1229out:
1230 /*
1231 * Since a node can be onlined after the mem_cgroup was created,
1232 * we have to be prepared to initialize lruvec->zone here;
1233 * and if offlined then reonlined, we need to reinitialize it.
1234 */
1235 if (unlikely(lruvec->zone != zone))
1236 lruvec->zone = zone;
1237 return lruvec;
925b7673
JW
1238}
1239
08e552c6
KH
1240/*
1241 * Following LRU functions are allowed to be used without PCG_LOCK.
1242 * Operations are called by routine of global LRU independently from memcg.
1243 * What we have to take care of here is validness of pc->mem_cgroup.
1244 *
1245 * Changes to pc->mem_cgroup happens when
1246 * 1. charge
1247 * 2. moving account
1248 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1249 * It is added to LRU before charge.
1250 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1251 * When moving account, the page is not on LRU. It's isolated.
1252 */
4f98a2fe 1253
925b7673 1254/**
fa9add64 1255 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1256 * @page: the page
fa9add64 1257 * @zone: zone of the page
925b7673 1258 */
fa9add64 1259struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1260{
08e552c6 1261 struct mem_cgroup_per_zone *mz;
925b7673
JW
1262 struct mem_cgroup *memcg;
1263 struct page_cgroup *pc;
bea8c150 1264 struct lruvec *lruvec;
6d12e2d8 1265
bea8c150
HD
1266 if (mem_cgroup_disabled()) {
1267 lruvec = &zone->lruvec;
1268 goto out;
1269 }
925b7673 1270
08e552c6 1271 pc = lookup_page_cgroup(page);
38c5d72f 1272 memcg = pc->mem_cgroup;
7512102c
HD
1273
1274 /*
fa9add64 1275 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1276 * an uncharged page off lru does nothing to secure
1277 * its former mem_cgroup from sudden removal.
1278 *
1279 * Our caller holds lru_lock, and PageCgroupUsed is updated
1280 * under page_cgroup lock: between them, they make all uses
1281 * of pc->mem_cgroup safe.
1282 */
fa9add64 1283 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1284 pc->mem_cgroup = memcg = root_mem_cgroup;
1285
925b7673 1286 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1287 lruvec = &mz->lruvec;
1288out:
1289 /*
1290 * Since a node can be onlined after the mem_cgroup was created,
1291 * we have to be prepared to initialize lruvec->zone here;
1292 * and if offlined then reonlined, we need to reinitialize it.
1293 */
1294 if (unlikely(lruvec->zone != zone))
1295 lruvec->zone = zone;
1296 return lruvec;
08e552c6 1297}
b69408e8 1298
925b7673 1299/**
fa9add64
HD
1300 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1301 * @lruvec: mem_cgroup per zone lru vector
1302 * @lru: index of lru list the page is sitting on
1303 * @nr_pages: positive when adding or negative when removing
925b7673 1304 *
fa9add64
HD
1305 * This function must be called when a page is added to or removed from an
1306 * lru list.
3f58a829 1307 */
fa9add64
HD
1308void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1309 int nr_pages)
3f58a829
MK
1310{
1311 struct mem_cgroup_per_zone *mz;
fa9add64 1312 unsigned long *lru_size;
3f58a829
MK
1313
1314 if (mem_cgroup_disabled())
1315 return;
1316
fa9add64
HD
1317 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1318 lru_size = mz->lru_size + lru;
1319 *lru_size += nr_pages;
1320 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1321}
544122e5 1322
3e92041d 1323/*
c0ff4b85 1324 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1325 * hierarchy subtree
1326 */
c3ac9a8a
JW
1327bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1328 struct mem_cgroup *memcg)
3e92041d 1329{
91c63734
JW
1330 if (root_memcg == memcg)
1331 return true;
3a981f48 1332 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1333 return false;
c3ac9a8a
JW
1334 return css_is_ancestor(&memcg->css, &root_memcg->css);
1335}
1336
1337static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1338 struct mem_cgroup *memcg)
1339{
1340 bool ret;
1341
91c63734 1342 rcu_read_lock();
c3ac9a8a 1343 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1344 rcu_read_unlock();
1345 return ret;
3e92041d
MH
1346}
1347
ffbdccf5
DR
1348bool task_in_mem_cgroup(struct task_struct *task,
1349 const struct mem_cgroup *memcg)
4c4a2214 1350{
0b7f569e 1351 struct mem_cgroup *curr = NULL;
158e0a2d 1352 struct task_struct *p;
ffbdccf5 1353 bool ret;
4c4a2214 1354
158e0a2d 1355 p = find_lock_task_mm(task);
de077d22
DR
1356 if (p) {
1357 curr = try_get_mem_cgroup_from_mm(p->mm);
1358 task_unlock(p);
1359 } else {
1360 /*
1361 * All threads may have already detached their mm's, but the oom
1362 * killer still needs to detect if they have already been oom
1363 * killed to prevent needlessly killing additional tasks.
1364 */
ffbdccf5 1365 rcu_read_lock();
de077d22
DR
1366 curr = mem_cgroup_from_task(task);
1367 if (curr)
1368 css_get(&curr->css);
ffbdccf5 1369 rcu_read_unlock();
de077d22 1370 }
0b7f569e 1371 if (!curr)
ffbdccf5 1372 return false;
d31f56db 1373 /*
c0ff4b85 1374 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1375 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1376 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1377 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1378 */
c0ff4b85 1379 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1380 css_put(&curr->css);
4c4a2214
DR
1381 return ret;
1382}
1383
c56d5c7d 1384int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1385{
9b272977 1386 unsigned long inactive_ratio;
14797e23 1387 unsigned long inactive;
9b272977 1388 unsigned long active;
c772be93 1389 unsigned long gb;
14797e23 1390
4d7dcca2
HD
1391 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1392 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1393
c772be93
KM
1394 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1395 if (gb)
1396 inactive_ratio = int_sqrt(10 * gb);
1397 else
1398 inactive_ratio = 1;
1399
9b272977 1400 return inactive * inactive_ratio < active;
14797e23
KM
1401}
1402
6d61ef40
BS
1403#define mem_cgroup_from_res_counter(counter, member) \
1404 container_of(counter, struct mem_cgroup, member)
1405
19942822 1406/**
9d11ea9f 1407 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1408 * @memcg: the memory cgroup
19942822 1409 *
9d11ea9f 1410 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1411 * pages.
19942822 1412 */
c0ff4b85 1413static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1414{
9d11ea9f
JW
1415 unsigned long long margin;
1416
c0ff4b85 1417 margin = res_counter_margin(&memcg->res);
9d11ea9f 1418 if (do_swap_account)
c0ff4b85 1419 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1420 return margin >> PAGE_SHIFT;
19942822
JW
1421}
1422
1f4c025b 1423int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1424{
a7885eb8 1425 /* root ? */
63876986 1426 if (!css_parent(&memcg->css))
a7885eb8
KM
1427 return vm_swappiness;
1428
bf1ff263 1429 return memcg->swappiness;
a7885eb8
KM
1430}
1431
619d094b
KH
1432/*
1433 * memcg->moving_account is used for checking possibility that some thread is
1434 * calling move_account(). When a thread on CPU-A starts moving pages under
1435 * a memcg, other threads should check memcg->moving_account under
1436 * rcu_read_lock(), like this:
1437 *
1438 * CPU-A CPU-B
1439 * rcu_read_lock()
1440 * memcg->moving_account+1 if (memcg->mocing_account)
1441 * take heavy locks.
1442 * synchronize_rcu() update something.
1443 * rcu_read_unlock()
1444 * start move here.
1445 */
4331f7d3
KH
1446
1447/* for quick checking without looking up memcg */
1448atomic_t memcg_moving __read_mostly;
1449
c0ff4b85 1450static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1451{
4331f7d3 1452 atomic_inc(&memcg_moving);
619d094b 1453 atomic_inc(&memcg->moving_account);
32047e2a
KH
1454 synchronize_rcu();
1455}
1456
c0ff4b85 1457static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1458{
619d094b
KH
1459 /*
1460 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1461 * We check NULL in callee rather than caller.
1462 */
4331f7d3
KH
1463 if (memcg) {
1464 atomic_dec(&memcg_moving);
619d094b 1465 atomic_dec(&memcg->moving_account);
4331f7d3 1466 }
32047e2a 1467}
619d094b 1468
32047e2a
KH
1469/*
1470 * 2 routines for checking "mem" is under move_account() or not.
1471 *
13fd1dd9
AM
1472 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1473 * is used for avoiding races in accounting. If true,
32047e2a
KH
1474 * pc->mem_cgroup may be overwritten.
1475 *
1476 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1477 * under hierarchy of moving cgroups. This is for
1478 * waiting at hith-memory prressure caused by "move".
1479 */
1480
13fd1dd9 1481static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1482{
1483 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1484 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1485}
4b534334 1486
c0ff4b85 1487static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1488{
2bd9bb20
KH
1489 struct mem_cgroup *from;
1490 struct mem_cgroup *to;
4b534334 1491 bool ret = false;
2bd9bb20
KH
1492 /*
1493 * Unlike task_move routines, we access mc.to, mc.from not under
1494 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1495 */
1496 spin_lock(&mc.lock);
1497 from = mc.from;
1498 to = mc.to;
1499 if (!from)
1500 goto unlock;
3e92041d 1501
c0ff4b85
R
1502 ret = mem_cgroup_same_or_subtree(memcg, from)
1503 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1504unlock:
1505 spin_unlock(&mc.lock);
4b534334
KH
1506 return ret;
1507}
1508
c0ff4b85 1509static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1510{
1511 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1512 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1513 DEFINE_WAIT(wait);
1514 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1515 /* moving charge context might have finished. */
1516 if (mc.moving_task)
1517 schedule();
1518 finish_wait(&mc.waitq, &wait);
1519 return true;
1520 }
1521 }
1522 return false;
1523}
1524
312734c0
KH
1525/*
1526 * Take this lock when
1527 * - a code tries to modify page's memcg while it's USED.
1528 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1529 * see mem_cgroup_stolen(), too.
312734c0
KH
1530 */
1531static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1532 unsigned long *flags)
1533{
1534 spin_lock_irqsave(&memcg->move_lock, *flags);
1535}
1536
1537static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1538 unsigned long *flags)
1539{
1540 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1541}
1542
58cf188e 1543#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1544/**
58cf188e 1545 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1546 * @memcg: The memory cgroup that went over limit
1547 * @p: Task that is going to be killed
1548 *
1549 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1550 * enabled
1551 */
1552void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1553{
1554 struct cgroup *task_cgrp;
1555 struct cgroup *mem_cgrp;
1556 /*
1557 * Need a buffer in BSS, can't rely on allocations. The code relies
1558 * on the assumption that OOM is serialized for memory controller.
1559 * If this assumption is broken, revisit this code.
1560 */
1561 static char memcg_name[PATH_MAX];
1562 int ret;
58cf188e
SZ
1563 struct mem_cgroup *iter;
1564 unsigned int i;
e222432b 1565
58cf188e 1566 if (!p)
e222432b
BS
1567 return;
1568
e222432b
BS
1569 rcu_read_lock();
1570
1571 mem_cgrp = memcg->css.cgroup;
1572 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1573
1574 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1575 if (ret < 0) {
1576 /*
1577 * Unfortunately, we are unable to convert to a useful name
1578 * But we'll still print out the usage information
1579 */
1580 rcu_read_unlock();
1581 goto done;
1582 }
1583 rcu_read_unlock();
1584
d045197f 1585 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1586
1587 rcu_read_lock();
1588 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1589 if (ret < 0) {
1590 rcu_read_unlock();
1591 goto done;
1592 }
1593 rcu_read_unlock();
1594
1595 /*
1596 * Continues from above, so we don't need an KERN_ level
1597 */
d045197f 1598 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1599done:
1600
d045197f 1601 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1602 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1603 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1604 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1605 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1606 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1607 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1608 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1609 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1610 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1611 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1612 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1613
1614 for_each_mem_cgroup_tree(iter, memcg) {
1615 pr_info("Memory cgroup stats");
1616
1617 rcu_read_lock();
1618 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1619 if (!ret)
1620 pr_cont(" for %s", memcg_name);
1621 rcu_read_unlock();
1622 pr_cont(":");
1623
1624 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1625 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1626 continue;
1627 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1628 K(mem_cgroup_read_stat(iter, i)));
1629 }
1630
1631 for (i = 0; i < NR_LRU_LISTS; i++)
1632 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1633 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1634
1635 pr_cont("\n");
1636 }
e222432b
BS
1637}
1638
81d39c20
KH
1639/*
1640 * This function returns the number of memcg under hierarchy tree. Returns
1641 * 1(self count) if no children.
1642 */
c0ff4b85 1643static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1644{
1645 int num = 0;
7d74b06f
KH
1646 struct mem_cgroup *iter;
1647
c0ff4b85 1648 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1649 num++;
81d39c20
KH
1650 return num;
1651}
1652
a63d83f4
DR
1653/*
1654 * Return the memory (and swap, if configured) limit for a memcg.
1655 */
9cbb78bb 1656static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1657{
1658 u64 limit;
a63d83f4 1659
f3e8eb70 1660 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1661
a63d83f4 1662 /*
9a5a8f19 1663 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1664 */
9a5a8f19
MH
1665 if (mem_cgroup_swappiness(memcg)) {
1666 u64 memsw;
1667
1668 limit += total_swap_pages << PAGE_SHIFT;
1669 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1670
1671 /*
1672 * If memsw is finite and limits the amount of swap space
1673 * available to this memcg, return that limit.
1674 */
1675 limit = min(limit, memsw);
1676 }
1677
1678 return limit;
a63d83f4
DR
1679}
1680
19965460
DR
1681static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1682 int order)
9cbb78bb
DR
1683{
1684 struct mem_cgroup *iter;
1685 unsigned long chosen_points = 0;
1686 unsigned long totalpages;
1687 unsigned int points = 0;
1688 struct task_struct *chosen = NULL;
1689
876aafbf 1690 /*
465adcf1
DR
1691 * If current has a pending SIGKILL or is exiting, then automatically
1692 * select it. The goal is to allow it to allocate so that it may
1693 * quickly exit and free its memory.
876aafbf 1694 */
465adcf1 1695 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1696 set_thread_flag(TIF_MEMDIE);
1697 return;
1698 }
1699
1700 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1701 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1702 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1703 struct css_task_iter it;
9cbb78bb
DR
1704 struct task_struct *task;
1705
72ec7029
TH
1706 css_task_iter_start(&iter->css, &it);
1707 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1708 switch (oom_scan_process_thread(task, totalpages, NULL,
1709 false)) {
1710 case OOM_SCAN_SELECT:
1711 if (chosen)
1712 put_task_struct(chosen);
1713 chosen = task;
1714 chosen_points = ULONG_MAX;
1715 get_task_struct(chosen);
1716 /* fall through */
1717 case OOM_SCAN_CONTINUE:
1718 continue;
1719 case OOM_SCAN_ABORT:
72ec7029 1720 css_task_iter_end(&it);
9cbb78bb
DR
1721 mem_cgroup_iter_break(memcg, iter);
1722 if (chosen)
1723 put_task_struct(chosen);
1724 return;
1725 case OOM_SCAN_OK:
1726 break;
1727 };
1728 points = oom_badness(task, memcg, NULL, totalpages);
1729 if (points > chosen_points) {
1730 if (chosen)
1731 put_task_struct(chosen);
1732 chosen = task;
1733 chosen_points = points;
1734 get_task_struct(chosen);
1735 }
1736 }
72ec7029 1737 css_task_iter_end(&it);
9cbb78bb
DR
1738 }
1739
1740 if (!chosen)
1741 return;
1742 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1743 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1744 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1745}
1746
5660048c
JW
1747static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1748 gfp_t gfp_mask,
1749 unsigned long flags)
1750{
1751 unsigned long total = 0;
1752 bool noswap = false;
1753 int loop;
1754
1755 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1756 noswap = true;
1757 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1758 noswap = true;
1759
1760 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1761 if (loop)
1762 drain_all_stock_async(memcg);
1763 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1764 /*
1765 * Allow limit shrinkers, which are triggered directly
1766 * by userspace, to catch signals and stop reclaim
1767 * after minimal progress, regardless of the margin.
1768 */
1769 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1770 break;
1771 if (mem_cgroup_margin(memcg))
1772 break;
1773 /*
1774 * If nothing was reclaimed after two attempts, there
1775 * may be no reclaimable pages in this hierarchy.
1776 */
1777 if (loop && !total)
1778 break;
1779 }
1780 return total;
1781}
1782
e883110a 1783#if MAX_NUMNODES > 1
4d0c066d
KH
1784/**
1785 * test_mem_cgroup_node_reclaimable
dad7557e 1786 * @memcg: the target memcg
4d0c066d
KH
1787 * @nid: the node ID to be checked.
1788 * @noswap : specify true here if the user wants flle only information.
1789 *
1790 * This function returns whether the specified memcg contains any
1791 * reclaimable pages on a node. Returns true if there are any reclaimable
1792 * pages in the node.
1793 */
c0ff4b85 1794static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1795 int nid, bool noswap)
1796{
c0ff4b85 1797 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1798 return true;
1799 if (noswap || !total_swap_pages)
1800 return false;
c0ff4b85 1801 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1802 return true;
1803 return false;
1804
1805}
889976db
YH
1806
1807/*
1808 * Always updating the nodemask is not very good - even if we have an empty
1809 * list or the wrong list here, we can start from some node and traverse all
1810 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1811 *
1812 */
c0ff4b85 1813static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1814{
1815 int nid;
453a9bf3
KH
1816 /*
1817 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1818 * pagein/pageout changes since the last update.
1819 */
c0ff4b85 1820 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1821 return;
c0ff4b85 1822 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1823 return;
1824
889976db 1825 /* make a nodemask where this memcg uses memory from */
31aaea4a 1826 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1827
31aaea4a 1828 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1829
c0ff4b85
R
1830 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1831 node_clear(nid, memcg->scan_nodes);
889976db 1832 }
453a9bf3 1833
c0ff4b85
R
1834 atomic_set(&memcg->numainfo_events, 0);
1835 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1836}
1837
1838/*
1839 * Selecting a node where we start reclaim from. Because what we need is just
1840 * reducing usage counter, start from anywhere is O,K. Considering
1841 * memory reclaim from current node, there are pros. and cons.
1842 *
1843 * Freeing memory from current node means freeing memory from a node which
1844 * we'll use or we've used. So, it may make LRU bad. And if several threads
1845 * hit limits, it will see a contention on a node. But freeing from remote
1846 * node means more costs for memory reclaim because of memory latency.
1847 *
1848 * Now, we use round-robin. Better algorithm is welcomed.
1849 */
c0ff4b85 1850int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1851{
1852 int node;
1853
c0ff4b85
R
1854 mem_cgroup_may_update_nodemask(memcg);
1855 node = memcg->last_scanned_node;
889976db 1856
c0ff4b85 1857 node = next_node(node, memcg->scan_nodes);
889976db 1858 if (node == MAX_NUMNODES)
c0ff4b85 1859 node = first_node(memcg->scan_nodes);
889976db
YH
1860 /*
1861 * We call this when we hit limit, not when pages are added to LRU.
1862 * No LRU may hold pages because all pages are UNEVICTABLE or
1863 * memcg is too small and all pages are not on LRU. In that case,
1864 * we use curret node.
1865 */
1866 if (unlikely(node == MAX_NUMNODES))
1867 node = numa_node_id();
1868
c0ff4b85 1869 memcg->last_scanned_node = node;
889976db
YH
1870 return node;
1871}
1872
1873#else
c0ff4b85 1874int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1875{
1876 return 0;
1877}
4d0c066d 1878
889976db
YH
1879#endif
1880
3b38722e 1881/*
a5b7c87f
MH
1882 * A group is eligible for the soft limit reclaim under the given root
1883 * hierarchy if
f894ffa8
AM
1884 * a) it is over its soft limit
1885 * b) any parent up the hierarchy is over its soft limit
7d910c05
MH
1886 *
1887 * If the given group doesn't have any children over the limit then it
1888 * doesn't make any sense to iterate its subtree.
3b38722e 1889 */
de57780d
MH
1890enum mem_cgroup_filter_t
1891mem_cgroup_soft_reclaim_eligible(struct mem_cgroup *memcg,
a5b7c87f 1892 struct mem_cgroup *root)
3b38722e 1893{
e839b6a1
MH
1894 struct mem_cgroup *parent;
1895
1896 if (!memcg)
1897 memcg = root_mem_cgroup;
1898 parent = memcg;
3b38722e
MH
1899
1900 if (res_counter_soft_limit_excess(&memcg->res))
de57780d 1901 return VISIT;
3b38722e
MH
1902
1903 /*
a5b7c87f
MH
1904 * If any parent up to the root in the hierarchy is over its soft limit
1905 * then we have to obey and reclaim from this group as well.
3b38722e 1906 */
f894ffa8 1907 while ((parent = parent_mem_cgroup(parent))) {
3b38722e 1908 if (res_counter_soft_limit_excess(&parent->res))
de57780d 1909 return VISIT;
a5b7c87f
MH
1910 if (parent == root)
1911 break;
6d61ef40 1912 }
3b38722e 1913
7d910c05
MH
1914 if (!atomic_read(&memcg->children_in_excess))
1915 return SKIP_TREE;
de57780d 1916 return SKIP;
6d61ef40
BS
1917}
1918
867578cb
KH
1919/*
1920 * Check OOM-Killer is already running under our hierarchy.
1921 * If someone is running, return false.
1af8efe9 1922 * Has to be called with memcg_oom_lock
867578cb 1923 */
c0ff4b85 1924static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1925{
79dfdacc 1926 struct mem_cgroup *iter, *failed = NULL;
a636b327 1927
9f3a0d09 1928 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1929 if (iter->oom_lock) {
79dfdacc
MH
1930 /*
1931 * this subtree of our hierarchy is already locked
1932 * so we cannot give a lock.
1933 */
79dfdacc 1934 failed = iter;
9f3a0d09
JW
1935 mem_cgroup_iter_break(memcg, iter);
1936 break;
23751be0
JW
1937 } else
1938 iter->oom_lock = true;
7d74b06f 1939 }
867578cb 1940
79dfdacc 1941 if (!failed)
23751be0 1942 return true;
79dfdacc
MH
1943
1944 /*
1945 * OK, we failed to lock the whole subtree so we have to clean up
1946 * what we set up to the failing subtree
1947 */
9f3a0d09 1948 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1949 if (iter == failed) {
9f3a0d09
JW
1950 mem_cgroup_iter_break(memcg, iter);
1951 break;
79dfdacc
MH
1952 }
1953 iter->oom_lock = false;
1954 }
23751be0 1955 return false;
a636b327 1956}
0b7f569e 1957
79dfdacc 1958/*
1af8efe9 1959 * Has to be called with memcg_oom_lock
79dfdacc 1960 */
c0ff4b85 1961static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1962{
7d74b06f
KH
1963 struct mem_cgroup *iter;
1964
c0ff4b85 1965 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1966 iter->oom_lock = false;
1967 return 0;
1968}
1969
c0ff4b85 1970static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1971{
1972 struct mem_cgroup *iter;
1973
c0ff4b85 1974 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1975 atomic_inc(&iter->under_oom);
1976}
1977
c0ff4b85 1978static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1979{
1980 struct mem_cgroup *iter;
1981
867578cb
KH
1982 /*
1983 * When a new child is created while the hierarchy is under oom,
1984 * mem_cgroup_oom_lock() may not be called. We have to use
1985 * atomic_add_unless() here.
1986 */
c0ff4b85 1987 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1988 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1989}
1990
1af8efe9 1991static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1992static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1993
dc98df5a 1994struct oom_wait_info {
d79154bb 1995 struct mem_cgroup *memcg;
dc98df5a
KH
1996 wait_queue_t wait;
1997};
1998
1999static int memcg_oom_wake_function(wait_queue_t *wait,
2000 unsigned mode, int sync, void *arg)
2001{
d79154bb
HD
2002 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2003 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2004 struct oom_wait_info *oom_wait_info;
2005
2006 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2007 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2008
dc98df5a 2009 /*
d79154bb 2010 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2011 * Then we can use css_is_ancestor without taking care of RCU.
2012 */
c0ff4b85
R
2013 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2014 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2015 return 0;
dc98df5a
KH
2016 return autoremove_wake_function(wait, mode, sync, arg);
2017}
2018
c0ff4b85 2019static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2020{
c0ff4b85
R
2021 /* for filtering, pass "memcg" as argument. */
2022 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2023}
2024
c0ff4b85 2025static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2026{
c0ff4b85
R
2027 if (memcg && atomic_read(&memcg->under_oom))
2028 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2029}
2030
867578cb
KH
2031/*
2032 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2033 */
6bbda35c
KS
2034static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2035 int order)
0b7f569e 2036{
dc98df5a 2037 struct oom_wait_info owait;
3c11ecf4 2038 bool locked, need_to_kill;
867578cb 2039
d79154bb 2040 owait.memcg = memcg;
dc98df5a
KH
2041 owait.wait.flags = 0;
2042 owait.wait.func = memcg_oom_wake_function;
2043 owait.wait.private = current;
2044 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 2045 need_to_kill = true;
c0ff4b85 2046 mem_cgroup_mark_under_oom(memcg);
79dfdacc 2047
c0ff4b85 2048 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 2049 spin_lock(&memcg_oom_lock);
c0ff4b85 2050 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
2051 /*
2052 * Even if signal_pending(), we can't quit charge() loop without
2053 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2054 * under OOM is always welcomed, use TASK_KILLABLE here.
2055 */
3c11ecf4 2056 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 2057 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
2058 need_to_kill = false;
2059 if (locked)
c0ff4b85 2060 mem_cgroup_oom_notify(memcg);
1af8efe9 2061 spin_unlock(&memcg_oom_lock);
867578cb 2062
3c11ecf4
KH
2063 if (need_to_kill) {
2064 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 2065 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 2066 } else {
867578cb 2067 schedule();
dc98df5a 2068 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 2069 }
1af8efe9 2070 spin_lock(&memcg_oom_lock);
79dfdacc 2071 if (locked)
c0ff4b85
R
2072 mem_cgroup_oom_unlock(memcg);
2073 memcg_wakeup_oom(memcg);
1af8efe9 2074 spin_unlock(&memcg_oom_lock);
867578cb 2075
c0ff4b85 2076 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 2077
867578cb
KH
2078 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2079 return false;
2080 /* Give chance to dying process */
715a5ee8 2081 schedule_timeout_uninterruptible(1);
867578cb 2082 return true;
0b7f569e
KH
2083}
2084
d69b042f
BS
2085/*
2086 * Currently used to update mapped file statistics, but the routine can be
2087 * generalized to update other statistics as well.
32047e2a
KH
2088 *
2089 * Notes: Race condition
2090 *
2091 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2092 * it tends to be costly. But considering some conditions, we doesn't need
2093 * to do so _always_.
2094 *
2095 * Considering "charge", lock_page_cgroup() is not required because all
2096 * file-stat operations happen after a page is attached to radix-tree. There
2097 * are no race with "charge".
2098 *
2099 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2100 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2101 * if there are race with "uncharge". Statistics itself is properly handled
2102 * by flags.
2103 *
2104 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2105 * small, we check mm->moving_account and detect there are possibility of race
2106 * If there is, we take a lock.
d69b042f 2107 */
26174efd 2108
89c06bd5
KH
2109void __mem_cgroup_begin_update_page_stat(struct page *page,
2110 bool *locked, unsigned long *flags)
2111{
2112 struct mem_cgroup *memcg;
2113 struct page_cgroup *pc;
2114
2115 pc = lookup_page_cgroup(page);
2116again:
2117 memcg = pc->mem_cgroup;
2118 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2119 return;
2120 /*
2121 * If this memory cgroup is not under account moving, we don't
da92c47d 2122 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2123 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2124 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2125 */
13fd1dd9 2126 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2127 return;
2128
2129 move_lock_mem_cgroup(memcg, flags);
2130 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2131 move_unlock_mem_cgroup(memcg, flags);
2132 goto again;
2133 }
2134 *locked = true;
2135}
2136
2137void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2138{
2139 struct page_cgroup *pc = lookup_page_cgroup(page);
2140
2141 /*
2142 * It's guaranteed that pc->mem_cgroup never changes while
2143 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2144 * should take move_lock_mem_cgroup().
89c06bd5
KH
2145 */
2146 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2147}
2148
2a7106f2
GT
2149void mem_cgroup_update_page_stat(struct page *page,
2150 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2151{
c0ff4b85 2152 struct mem_cgroup *memcg;
32047e2a 2153 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2154 unsigned long uninitialized_var(flags);
d69b042f 2155
cfa44946 2156 if (mem_cgroup_disabled())
d69b042f 2157 return;
89c06bd5 2158
c0ff4b85
R
2159 memcg = pc->mem_cgroup;
2160 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2161 return;
26174efd 2162
26174efd 2163 switch (idx) {
2a7106f2 2164 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2165 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2166 break;
2167 default:
2168 BUG();
8725d541 2169 }
d69b042f 2170
c0ff4b85 2171 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2172}
26174efd 2173
cdec2e42
KH
2174/*
2175 * size of first charge trial. "32" comes from vmscan.c's magic value.
2176 * TODO: maybe necessary to use big numbers in big irons.
2177 */
7ec99d62 2178#define CHARGE_BATCH 32U
cdec2e42
KH
2179struct memcg_stock_pcp {
2180 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2181 unsigned int nr_pages;
cdec2e42 2182 struct work_struct work;
26fe6168 2183 unsigned long flags;
a0db00fc 2184#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2185};
2186static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2187static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2188
a0956d54
SS
2189/**
2190 * consume_stock: Try to consume stocked charge on this cpu.
2191 * @memcg: memcg to consume from.
2192 * @nr_pages: how many pages to charge.
2193 *
2194 * The charges will only happen if @memcg matches the current cpu's memcg
2195 * stock, and at least @nr_pages are available in that stock. Failure to
2196 * service an allocation will refill the stock.
2197 *
2198 * returns true if successful, false otherwise.
cdec2e42 2199 */
a0956d54 2200static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2201{
2202 struct memcg_stock_pcp *stock;
2203 bool ret = true;
2204
a0956d54
SS
2205 if (nr_pages > CHARGE_BATCH)
2206 return false;
2207
cdec2e42 2208 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2209 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2210 stock->nr_pages -= nr_pages;
cdec2e42
KH
2211 else /* need to call res_counter_charge */
2212 ret = false;
2213 put_cpu_var(memcg_stock);
2214 return ret;
2215}
2216
2217/*
2218 * Returns stocks cached in percpu to res_counter and reset cached information.
2219 */
2220static void drain_stock(struct memcg_stock_pcp *stock)
2221{
2222 struct mem_cgroup *old = stock->cached;
2223
11c9ea4e
JW
2224 if (stock->nr_pages) {
2225 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2226
2227 res_counter_uncharge(&old->res, bytes);
cdec2e42 2228 if (do_swap_account)
11c9ea4e
JW
2229 res_counter_uncharge(&old->memsw, bytes);
2230 stock->nr_pages = 0;
cdec2e42
KH
2231 }
2232 stock->cached = NULL;
cdec2e42
KH
2233}
2234
2235/*
2236 * This must be called under preempt disabled or must be called by
2237 * a thread which is pinned to local cpu.
2238 */
2239static void drain_local_stock(struct work_struct *dummy)
2240{
2241 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2242 drain_stock(stock);
26fe6168 2243 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2244}
2245
e4777496
MH
2246static void __init memcg_stock_init(void)
2247{
2248 int cpu;
2249
2250 for_each_possible_cpu(cpu) {
2251 struct memcg_stock_pcp *stock =
2252 &per_cpu(memcg_stock, cpu);
2253 INIT_WORK(&stock->work, drain_local_stock);
2254 }
2255}
2256
cdec2e42
KH
2257/*
2258 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2259 * This will be consumed by consume_stock() function, later.
cdec2e42 2260 */
c0ff4b85 2261static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2262{
2263 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2264
c0ff4b85 2265 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2266 drain_stock(stock);
c0ff4b85 2267 stock->cached = memcg;
cdec2e42 2268 }
11c9ea4e 2269 stock->nr_pages += nr_pages;
cdec2e42
KH
2270 put_cpu_var(memcg_stock);
2271}
2272
2273/*
c0ff4b85 2274 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2275 * of the hierarchy under it. sync flag says whether we should block
2276 * until the work is done.
cdec2e42 2277 */
c0ff4b85 2278static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2279{
26fe6168 2280 int cpu, curcpu;
d38144b7 2281
cdec2e42 2282 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2283 get_online_cpus();
5af12d0e 2284 curcpu = get_cpu();
cdec2e42
KH
2285 for_each_online_cpu(cpu) {
2286 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2287 struct mem_cgroup *memcg;
26fe6168 2288
c0ff4b85
R
2289 memcg = stock->cached;
2290 if (!memcg || !stock->nr_pages)
26fe6168 2291 continue;
c0ff4b85 2292 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2293 continue;
d1a05b69
MH
2294 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2295 if (cpu == curcpu)
2296 drain_local_stock(&stock->work);
2297 else
2298 schedule_work_on(cpu, &stock->work);
2299 }
cdec2e42 2300 }
5af12d0e 2301 put_cpu();
d38144b7
MH
2302
2303 if (!sync)
2304 goto out;
2305
2306 for_each_online_cpu(cpu) {
2307 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2308 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2309 flush_work(&stock->work);
2310 }
2311out:
f894ffa8 2312 put_online_cpus();
d38144b7
MH
2313}
2314
2315/*
2316 * Tries to drain stocked charges in other cpus. This function is asynchronous
2317 * and just put a work per cpu for draining localy on each cpu. Caller can
2318 * expects some charges will be back to res_counter later but cannot wait for
2319 * it.
2320 */
c0ff4b85 2321static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2322{
9f50fad6
MH
2323 /*
2324 * If someone calls draining, avoid adding more kworker runs.
2325 */
2326 if (!mutex_trylock(&percpu_charge_mutex))
2327 return;
c0ff4b85 2328 drain_all_stock(root_memcg, false);
9f50fad6 2329 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2330}
2331
2332/* This is a synchronous drain interface. */
c0ff4b85 2333static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2334{
2335 /* called when force_empty is called */
9f50fad6 2336 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2337 drain_all_stock(root_memcg, true);
9f50fad6 2338 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2339}
2340
711d3d2c
KH
2341/*
2342 * This function drains percpu counter value from DEAD cpu and
2343 * move it to local cpu. Note that this function can be preempted.
2344 */
c0ff4b85 2345static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2346{
2347 int i;
2348
c0ff4b85 2349 spin_lock(&memcg->pcp_counter_lock);
6104621d 2350 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2351 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2352
c0ff4b85
R
2353 per_cpu(memcg->stat->count[i], cpu) = 0;
2354 memcg->nocpu_base.count[i] += x;
711d3d2c 2355 }
e9f8974f 2356 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2357 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2358
c0ff4b85
R
2359 per_cpu(memcg->stat->events[i], cpu) = 0;
2360 memcg->nocpu_base.events[i] += x;
e9f8974f 2361 }
c0ff4b85 2362 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2363}
2364
0db0628d 2365static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2366 unsigned long action,
2367 void *hcpu)
2368{
2369 int cpu = (unsigned long)hcpu;
2370 struct memcg_stock_pcp *stock;
711d3d2c 2371 struct mem_cgroup *iter;
cdec2e42 2372
619d094b 2373 if (action == CPU_ONLINE)
1489ebad 2374 return NOTIFY_OK;
1489ebad 2375
d833049b 2376 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2377 return NOTIFY_OK;
711d3d2c 2378
9f3a0d09 2379 for_each_mem_cgroup(iter)
711d3d2c
KH
2380 mem_cgroup_drain_pcp_counter(iter, cpu);
2381
cdec2e42
KH
2382 stock = &per_cpu(memcg_stock, cpu);
2383 drain_stock(stock);
2384 return NOTIFY_OK;
2385}
2386
4b534334
KH
2387
2388/* See __mem_cgroup_try_charge() for details */
2389enum {
2390 CHARGE_OK, /* success */
2391 CHARGE_RETRY, /* need to retry but retry is not bad */
2392 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2393 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2394 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2395};
2396
c0ff4b85 2397static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2398 unsigned int nr_pages, unsigned int min_pages,
2399 bool oom_check)
4b534334 2400{
7ec99d62 2401 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2402 struct mem_cgroup *mem_over_limit;
2403 struct res_counter *fail_res;
2404 unsigned long flags = 0;
2405 int ret;
2406
c0ff4b85 2407 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2408
2409 if (likely(!ret)) {
2410 if (!do_swap_account)
2411 return CHARGE_OK;
c0ff4b85 2412 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2413 if (likely(!ret))
2414 return CHARGE_OK;
2415
c0ff4b85 2416 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2417 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2418 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2419 } else
2420 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2421 /*
9221edb7
JW
2422 * Never reclaim on behalf of optional batching, retry with a
2423 * single page instead.
2424 */
4c9c5359 2425 if (nr_pages > min_pages)
4b534334
KH
2426 return CHARGE_RETRY;
2427
2428 if (!(gfp_mask & __GFP_WAIT))
2429 return CHARGE_WOULDBLOCK;
2430
4c9c5359
SS
2431 if (gfp_mask & __GFP_NORETRY)
2432 return CHARGE_NOMEM;
2433
5660048c 2434 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2435 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2436 return CHARGE_RETRY;
4b534334 2437 /*
19942822
JW
2438 * Even though the limit is exceeded at this point, reclaim
2439 * may have been able to free some pages. Retry the charge
2440 * before killing the task.
2441 *
2442 * Only for regular pages, though: huge pages are rather
2443 * unlikely to succeed so close to the limit, and we fall back
2444 * to regular pages anyway in case of failure.
4b534334 2445 */
4c9c5359 2446 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2447 return CHARGE_RETRY;
2448
2449 /*
2450 * At task move, charge accounts can be doubly counted. So, it's
2451 * better to wait until the end of task_move if something is going on.
2452 */
2453 if (mem_cgroup_wait_acct_move(mem_over_limit))
2454 return CHARGE_RETRY;
2455
2456 /* If we don't need to call oom-killer at el, return immediately */
519e5247 2457 if (!oom_check || !current->memcg_oom.may_oom)
4b534334
KH
2458 return CHARGE_NOMEM;
2459 /* check OOM */
e845e199 2460 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2461 return CHARGE_OOM_DIE;
2462
2463 return CHARGE_RETRY;
2464}
2465
f817ed48 2466/*
38c5d72f
KH
2467 * __mem_cgroup_try_charge() does
2468 * 1. detect memcg to be charged against from passed *mm and *ptr,
2469 * 2. update res_counter
2470 * 3. call memory reclaim if necessary.
2471 *
2472 * In some special case, if the task is fatal, fatal_signal_pending() or
2473 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2474 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2475 * as possible without any hazards. 2: all pages should have a valid
2476 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2477 * pointer, that is treated as a charge to root_mem_cgroup.
2478 *
2479 * So __mem_cgroup_try_charge() will return
2480 * 0 ... on success, filling *ptr with a valid memcg pointer.
2481 * -ENOMEM ... charge failure because of resource limits.
2482 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2483 *
2484 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2485 * the oom-killer can be invoked.
8a9f3ccd 2486 */
f817ed48 2487static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2488 gfp_t gfp_mask,
7ec99d62 2489 unsigned int nr_pages,
c0ff4b85 2490 struct mem_cgroup **ptr,
7ec99d62 2491 bool oom)
8a9f3ccd 2492{
7ec99d62 2493 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2494 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2495 struct mem_cgroup *memcg = NULL;
4b534334 2496 int ret;
a636b327 2497
867578cb
KH
2498 /*
2499 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2500 * in system level. So, allow to go ahead dying process in addition to
2501 * MEMDIE process.
2502 */
2503 if (unlikely(test_thread_flag(TIF_MEMDIE)
2504 || fatal_signal_pending(current)))
2505 goto bypass;
a636b327 2506
8a9f3ccd 2507 /*
3be91277
HD
2508 * We always charge the cgroup the mm_struct belongs to.
2509 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2510 * thread group leader migrates. It's possible that mm is not
24467cac 2511 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2512 */
c0ff4b85 2513 if (!*ptr && !mm)
38c5d72f 2514 *ptr = root_mem_cgroup;
f75ca962 2515again:
c0ff4b85
R
2516 if (*ptr) { /* css should be a valid one */
2517 memcg = *ptr;
c0ff4b85 2518 if (mem_cgroup_is_root(memcg))
f75ca962 2519 goto done;
a0956d54 2520 if (consume_stock(memcg, nr_pages))
f75ca962 2521 goto done;
c0ff4b85 2522 css_get(&memcg->css);
4b534334 2523 } else {
f75ca962 2524 struct task_struct *p;
54595fe2 2525
f75ca962
KH
2526 rcu_read_lock();
2527 p = rcu_dereference(mm->owner);
f75ca962 2528 /*
ebb76ce1 2529 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2530 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2531 * race with swapoff. Then, we have small risk of mis-accouning.
2532 * But such kind of mis-account by race always happens because
2533 * we don't have cgroup_mutex(). It's overkill and we allo that
2534 * small race, here.
2535 * (*) swapoff at el will charge against mm-struct not against
2536 * task-struct. So, mm->owner can be NULL.
f75ca962 2537 */
c0ff4b85 2538 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2539 if (!memcg)
2540 memcg = root_mem_cgroup;
2541 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2542 rcu_read_unlock();
2543 goto done;
2544 }
a0956d54 2545 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2546 /*
2547 * It seems dagerous to access memcg without css_get().
2548 * But considering how consume_stok works, it's not
2549 * necessary. If consume_stock success, some charges
2550 * from this memcg are cached on this cpu. So, we
2551 * don't need to call css_get()/css_tryget() before
2552 * calling consume_stock().
2553 */
2554 rcu_read_unlock();
2555 goto done;
2556 }
2557 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2558 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2559 rcu_read_unlock();
2560 goto again;
2561 }
2562 rcu_read_unlock();
2563 }
8a9f3ccd 2564
4b534334
KH
2565 do {
2566 bool oom_check;
7a81b88c 2567
4b534334 2568 /* If killed, bypass charge */
f75ca962 2569 if (fatal_signal_pending(current)) {
c0ff4b85 2570 css_put(&memcg->css);
4b534334 2571 goto bypass;
f75ca962 2572 }
6d61ef40 2573
4b534334
KH
2574 oom_check = false;
2575 if (oom && !nr_oom_retries) {
2576 oom_check = true;
2577 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2578 }
66e1707b 2579
4c9c5359
SS
2580 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2581 oom_check);
4b534334
KH
2582 switch (ret) {
2583 case CHARGE_OK:
2584 break;
2585 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2586 batch = nr_pages;
c0ff4b85
R
2587 css_put(&memcg->css);
2588 memcg = NULL;
f75ca962 2589 goto again;
4b534334 2590 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2591 css_put(&memcg->css);
4b534334
KH
2592 goto nomem;
2593 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2594 if (!oom) {
c0ff4b85 2595 css_put(&memcg->css);
867578cb 2596 goto nomem;
f75ca962 2597 }
4b534334
KH
2598 /* If oom, we never return -ENOMEM */
2599 nr_oom_retries--;
2600 break;
2601 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2602 css_put(&memcg->css);
867578cb 2603 goto bypass;
66e1707b 2604 }
4b534334
KH
2605 } while (ret != CHARGE_OK);
2606
7ec99d62 2607 if (batch > nr_pages)
c0ff4b85
R
2608 refill_stock(memcg, batch - nr_pages);
2609 css_put(&memcg->css);
0c3e73e8 2610done:
c0ff4b85 2611 *ptr = memcg;
7a81b88c
KH
2612 return 0;
2613nomem:
c0ff4b85 2614 *ptr = NULL;
7a81b88c 2615 return -ENOMEM;
867578cb 2616bypass:
38c5d72f
KH
2617 *ptr = root_mem_cgroup;
2618 return -EINTR;
7a81b88c 2619}
8a9f3ccd 2620
a3032a2c
DN
2621/*
2622 * Somemtimes we have to undo a charge we got by try_charge().
2623 * This function is for that and do uncharge, put css's refcnt.
2624 * gotten by try_charge().
2625 */
c0ff4b85 2626static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2627 unsigned int nr_pages)
a3032a2c 2628{
c0ff4b85 2629 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2630 unsigned long bytes = nr_pages * PAGE_SIZE;
2631
c0ff4b85 2632 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2633 if (do_swap_account)
c0ff4b85 2634 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2635 }
854ffa8d
DN
2636}
2637
d01dd17f
KH
2638/*
2639 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2640 * This is useful when moving usage to parent cgroup.
2641 */
2642static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2643 unsigned int nr_pages)
2644{
2645 unsigned long bytes = nr_pages * PAGE_SIZE;
2646
2647 if (mem_cgroup_is_root(memcg))
2648 return;
2649
2650 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2651 if (do_swap_account)
2652 res_counter_uncharge_until(&memcg->memsw,
2653 memcg->memsw.parent, bytes);
2654}
2655
a3b2d692
KH
2656/*
2657 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2658 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2659 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2660 * called against removed memcg.)
a3b2d692
KH
2661 */
2662static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2663{
2664 struct cgroup_subsys_state *css;
2665
2666 /* ID 0 is unused ID */
2667 if (!id)
2668 return NULL;
2669 css = css_lookup(&mem_cgroup_subsys, id);
2670 if (!css)
2671 return NULL;
b2145145 2672 return mem_cgroup_from_css(css);
a3b2d692
KH
2673}
2674
e42d9d5d 2675struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2676{
c0ff4b85 2677 struct mem_cgroup *memcg = NULL;
3c776e64 2678 struct page_cgroup *pc;
a3b2d692 2679 unsigned short id;
b5a84319
KH
2680 swp_entry_t ent;
2681
3c776e64
DN
2682 VM_BUG_ON(!PageLocked(page));
2683
3c776e64 2684 pc = lookup_page_cgroup(page);
c0bd3f63 2685 lock_page_cgroup(pc);
a3b2d692 2686 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2687 memcg = pc->mem_cgroup;
2688 if (memcg && !css_tryget(&memcg->css))
2689 memcg = NULL;
e42d9d5d 2690 } else if (PageSwapCache(page)) {
3c776e64 2691 ent.val = page_private(page);
9fb4b7cc 2692 id = lookup_swap_cgroup_id(ent);
a3b2d692 2693 rcu_read_lock();
c0ff4b85
R
2694 memcg = mem_cgroup_lookup(id);
2695 if (memcg && !css_tryget(&memcg->css))
2696 memcg = NULL;
a3b2d692 2697 rcu_read_unlock();
3c776e64 2698 }
c0bd3f63 2699 unlock_page_cgroup(pc);
c0ff4b85 2700 return memcg;
b5a84319
KH
2701}
2702
c0ff4b85 2703static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2704 struct page *page,
7ec99d62 2705 unsigned int nr_pages,
9ce70c02
HD
2706 enum charge_type ctype,
2707 bool lrucare)
7a81b88c 2708{
ce587e65 2709 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2710 struct zone *uninitialized_var(zone);
fa9add64 2711 struct lruvec *lruvec;
9ce70c02 2712 bool was_on_lru = false;
b2402857 2713 bool anon;
9ce70c02 2714
ca3e0214 2715 lock_page_cgroup(pc);
90deb788 2716 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2717 /*
2718 * we don't need page_cgroup_lock about tail pages, becase they are not
2719 * accessed by any other context at this point.
2720 */
9ce70c02
HD
2721
2722 /*
2723 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2724 * may already be on some other mem_cgroup's LRU. Take care of it.
2725 */
2726 if (lrucare) {
2727 zone = page_zone(page);
2728 spin_lock_irq(&zone->lru_lock);
2729 if (PageLRU(page)) {
fa9add64 2730 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2731 ClearPageLRU(page);
fa9add64 2732 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2733 was_on_lru = true;
2734 }
2735 }
2736
c0ff4b85 2737 pc->mem_cgroup = memcg;
261fb61a
KH
2738 /*
2739 * We access a page_cgroup asynchronously without lock_page_cgroup().
2740 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2741 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2742 * before USED bit, we need memory barrier here.
2743 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2744 */
08e552c6 2745 smp_wmb();
b2402857 2746 SetPageCgroupUsed(pc);
3be91277 2747
9ce70c02
HD
2748 if (lrucare) {
2749 if (was_on_lru) {
fa9add64 2750 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2751 VM_BUG_ON(PageLRU(page));
2752 SetPageLRU(page);
fa9add64 2753 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2754 }
2755 spin_unlock_irq(&zone->lru_lock);
2756 }
2757
41326c17 2758 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2759 anon = true;
2760 else
2761 anon = false;
2762
b070e65c 2763 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2764 unlock_page_cgroup(pc);
9ce70c02 2765
430e4863 2766 /*
e883110a 2767 * "charge_statistics" updated event counter.
430e4863 2768 */
c0ff4b85 2769 memcg_check_events(memcg, page);
7a81b88c 2770}
66e1707b 2771
7cf27982
GC
2772static DEFINE_MUTEX(set_limit_mutex);
2773
7ae1e1d0
GC
2774#ifdef CONFIG_MEMCG_KMEM
2775static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2776{
2777 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2778 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2779}
2780
1f458cbf
GC
2781/*
2782 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2783 * in the memcg_cache_params struct.
2784 */
2785static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2786{
2787 struct kmem_cache *cachep;
2788
2789 VM_BUG_ON(p->is_root_cache);
2790 cachep = p->root_cache;
2791 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2792}
2793
749c5415 2794#ifdef CONFIG_SLABINFO
182446d0
TH
2795static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
2796 struct cftype *cft, struct seq_file *m)
749c5415 2797{
182446d0 2798 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
749c5415
GC
2799 struct memcg_cache_params *params;
2800
2801 if (!memcg_can_account_kmem(memcg))
2802 return -EIO;
2803
2804 print_slabinfo_header(m);
2805
2806 mutex_lock(&memcg->slab_caches_mutex);
2807 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2808 cache_show(memcg_params_to_cache(params), m);
2809 mutex_unlock(&memcg->slab_caches_mutex);
2810
2811 return 0;
2812}
2813#endif
2814
7ae1e1d0
GC
2815static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2816{
2817 struct res_counter *fail_res;
2818 struct mem_cgroup *_memcg;
2819 int ret = 0;
2820 bool may_oom;
2821
2822 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2823 if (ret)
2824 return ret;
2825
2826 /*
2827 * Conditions under which we can wait for the oom_killer. Those are
2828 * the same conditions tested by the core page allocator
2829 */
2830 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2831
2832 _memcg = memcg;
2833 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2834 &_memcg, may_oom);
2835
2836 if (ret == -EINTR) {
2837 /*
2838 * __mem_cgroup_try_charge() chosed to bypass to root due to
2839 * OOM kill or fatal signal. Since our only options are to
2840 * either fail the allocation or charge it to this cgroup, do
2841 * it as a temporary condition. But we can't fail. From a
2842 * kmem/slab perspective, the cache has already been selected,
2843 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2844 * our minds.
2845 *
2846 * This condition will only trigger if the task entered
2847 * memcg_charge_kmem in a sane state, but was OOM-killed during
2848 * __mem_cgroup_try_charge() above. Tasks that were already
2849 * dying when the allocation triggers should have been already
2850 * directed to the root cgroup in memcontrol.h
2851 */
2852 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2853 if (do_swap_account)
2854 res_counter_charge_nofail(&memcg->memsw, size,
2855 &fail_res);
2856 ret = 0;
2857 } else if (ret)
2858 res_counter_uncharge(&memcg->kmem, size);
2859
2860 return ret;
2861}
2862
2863static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2864{
7ae1e1d0
GC
2865 res_counter_uncharge(&memcg->res, size);
2866 if (do_swap_account)
2867 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2868
2869 /* Not down to 0 */
2870 if (res_counter_uncharge(&memcg->kmem, size))
2871 return;
2872
10d5ebf4
LZ
2873 /*
2874 * Releases a reference taken in kmem_cgroup_css_offline in case
2875 * this last uncharge is racing with the offlining code or it is
2876 * outliving the memcg existence.
2877 *
2878 * The memory barrier imposed by test&clear is paired with the
2879 * explicit one in memcg_kmem_mark_dead().
2880 */
7de37682 2881 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 2882 css_put(&memcg->css);
7ae1e1d0
GC
2883}
2884
2633d7a0
GC
2885void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2886{
2887 if (!memcg)
2888 return;
2889
2890 mutex_lock(&memcg->slab_caches_mutex);
2891 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2892 mutex_unlock(&memcg->slab_caches_mutex);
2893}
2894
2895/*
2896 * helper for acessing a memcg's index. It will be used as an index in the
2897 * child cache array in kmem_cache, and also to derive its name. This function
2898 * will return -1 when this is not a kmem-limited memcg.
2899 */
2900int memcg_cache_id(struct mem_cgroup *memcg)
2901{
2902 return memcg ? memcg->kmemcg_id : -1;
2903}
2904
55007d84
GC
2905/*
2906 * This ends up being protected by the set_limit mutex, during normal
2907 * operation, because that is its main call site.
2908 *
2909 * But when we create a new cache, we can call this as well if its parent
2910 * is kmem-limited. That will have to hold set_limit_mutex as well.
2911 */
2912int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2913{
2914 int num, ret;
2915
2916 num = ida_simple_get(&kmem_limited_groups,
2917 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2918 if (num < 0)
2919 return num;
2920 /*
2921 * After this point, kmem_accounted (that we test atomically in
2922 * the beginning of this conditional), is no longer 0. This
2923 * guarantees only one process will set the following boolean
2924 * to true. We don't need test_and_set because we're protected
2925 * by the set_limit_mutex anyway.
2926 */
2927 memcg_kmem_set_activated(memcg);
2928
2929 ret = memcg_update_all_caches(num+1);
2930 if (ret) {
2931 ida_simple_remove(&kmem_limited_groups, num);
2932 memcg_kmem_clear_activated(memcg);
2933 return ret;
2934 }
2935
2936 memcg->kmemcg_id = num;
2937 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2938 mutex_init(&memcg->slab_caches_mutex);
2939 return 0;
2940}
2941
2942static size_t memcg_caches_array_size(int num_groups)
2943{
2944 ssize_t size;
2945 if (num_groups <= 0)
2946 return 0;
2947
2948 size = 2 * num_groups;
2949 if (size < MEMCG_CACHES_MIN_SIZE)
2950 size = MEMCG_CACHES_MIN_SIZE;
2951 else if (size > MEMCG_CACHES_MAX_SIZE)
2952 size = MEMCG_CACHES_MAX_SIZE;
2953
2954 return size;
2955}
2956
2957/*
2958 * We should update the current array size iff all caches updates succeed. This
2959 * can only be done from the slab side. The slab mutex needs to be held when
2960 * calling this.
2961 */
2962void memcg_update_array_size(int num)
2963{
2964 if (num > memcg_limited_groups_array_size)
2965 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2966}
2967
15cf17d2
KK
2968static void kmem_cache_destroy_work_func(struct work_struct *w);
2969
55007d84
GC
2970int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2971{
2972 struct memcg_cache_params *cur_params = s->memcg_params;
2973
2974 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
2975
2976 if (num_groups > memcg_limited_groups_array_size) {
2977 int i;
2978 ssize_t size = memcg_caches_array_size(num_groups);
2979
2980 size *= sizeof(void *);
90c7a79c 2981 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84
GC
2982
2983 s->memcg_params = kzalloc(size, GFP_KERNEL);
2984 if (!s->memcg_params) {
2985 s->memcg_params = cur_params;
2986 return -ENOMEM;
2987 }
2988
2989 s->memcg_params->is_root_cache = true;
2990
2991 /*
2992 * There is the chance it will be bigger than
2993 * memcg_limited_groups_array_size, if we failed an allocation
2994 * in a cache, in which case all caches updated before it, will
2995 * have a bigger array.
2996 *
2997 * But if that is the case, the data after
2998 * memcg_limited_groups_array_size is certainly unused
2999 */
3000 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3001 if (!cur_params->memcg_caches[i])
3002 continue;
3003 s->memcg_params->memcg_caches[i] =
3004 cur_params->memcg_caches[i];
3005 }
3006
3007 /*
3008 * Ideally, we would wait until all caches succeed, and only
3009 * then free the old one. But this is not worth the extra
3010 * pointer per-cache we'd have to have for this.
3011 *
3012 * It is not a big deal if some caches are left with a size
3013 * bigger than the others. And all updates will reset this
3014 * anyway.
3015 */
3016 kfree(cur_params);
3017 }
3018 return 0;
3019}
3020
943a451a
GC
3021int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3022 struct kmem_cache *root_cache)
2633d7a0 3023{
90c7a79c 3024 size_t size;
2633d7a0
GC
3025
3026 if (!memcg_kmem_enabled())
3027 return 0;
3028
90c7a79c
AV
3029 if (!memcg) {
3030 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3031 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3032 } else
3033 size = sizeof(struct memcg_cache_params);
55007d84 3034
2633d7a0
GC
3035 s->memcg_params = kzalloc(size, GFP_KERNEL);
3036 if (!s->memcg_params)
3037 return -ENOMEM;
3038
943a451a 3039 if (memcg) {
2633d7a0 3040 s->memcg_params->memcg = memcg;
943a451a 3041 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3042 INIT_WORK(&s->memcg_params->destroy,
3043 kmem_cache_destroy_work_func);
4ba902b5
GC
3044 } else
3045 s->memcg_params->is_root_cache = true;
3046
2633d7a0
GC
3047 return 0;
3048}
3049
3050void memcg_release_cache(struct kmem_cache *s)
3051{
d7f25f8a
GC
3052 struct kmem_cache *root;
3053 struct mem_cgroup *memcg;
3054 int id;
3055
3056 /*
3057 * This happens, for instance, when a root cache goes away before we
3058 * add any memcg.
3059 */
3060 if (!s->memcg_params)
3061 return;
3062
3063 if (s->memcg_params->is_root_cache)
3064 goto out;
3065
3066 memcg = s->memcg_params->memcg;
3067 id = memcg_cache_id(memcg);
3068
3069 root = s->memcg_params->root_cache;
3070 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3071
3072 mutex_lock(&memcg->slab_caches_mutex);
3073 list_del(&s->memcg_params->list);
3074 mutex_unlock(&memcg->slab_caches_mutex);
3075
20f05310 3076 css_put(&memcg->css);
d7f25f8a 3077out:
2633d7a0
GC
3078 kfree(s->memcg_params);
3079}
3080
0e9d92f2
GC
3081/*
3082 * During the creation a new cache, we need to disable our accounting mechanism
3083 * altogether. This is true even if we are not creating, but rather just
3084 * enqueing new caches to be created.
3085 *
3086 * This is because that process will trigger allocations; some visible, like
3087 * explicit kmallocs to auxiliary data structures, name strings and internal
3088 * cache structures; some well concealed, like INIT_WORK() that can allocate
3089 * objects during debug.
3090 *
3091 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3092 * to it. This may not be a bounded recursion: since the first cache creation
3093 * failed to complete (waiting on the allocation), we'll just try to create the
3094 * cache again, failing at the same point.
3095 *
3096 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3097 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3098 * inside the following two functions.
3099 */
3100static inline void memcg_stop_kmem_account(void)
3101{
3102 VM_BUG_ON(!current->mm);
3103 current->memcg_kmem_skip_account++;
3104}
3105
3106static inline void memcg_resume_kmem_account(void)
3107{
3108 VM_BUG_ON(!current->mm);
3109 current->memcg_kmem_skip_account--;
3110}
3111
1f458cbf
GC
3112static void kmem_cache_destroy_work_func(struct work_struct *w)
3113{
3114 struct kmem_cache *cachep;
3115 struct memcg_cache_params *p;
3116
3117 p = container_of(w, struct memcg_cache_params, destroy);
3118
3119 cachep = memcg_params_to_cache(p);
3120
22933152
GC
3121 /*
3122 * If we get down to 0 after shrink, we could delete right away.
3123 * However, memcg_release_pages() already puts us back in the workqueue
3124 * in that case. If we proceed deleting, we'll get a dangling
3125 * reference, and removing the object from the workqueue in that case
3126 * is unnecessary complication. We are not a fast path.
3127 *
3128 * Note that this case is fundamentally different from racing with
3129 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3130 * kmem_cache_shrink, not only we would be reinserting a dead cache
3131 * into the queue, but doing so from inside the worker racing to
3132 * destroy it.
3133 *
3134 * So if we aren't down to zero, we'll just schedule a worker and try
3135 * again
3136 */
3137 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3138 kmem_cache_shrink(cachep);
3139 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3140 return;
3141 } else
1f458cbf
GC
3142 kmem_cache_destroy(cachep);
3143}
3144
3145void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3146{
3147 if (!cachep->memcg_params->dead)
3148 return;
3149
22933152
GC
3150 /*
3151 * There are many ways in which we can get here.
3152 *
3153 * We can get to a memory-pressure situation while the delayed work is
3154 * still pending to run. The vmscan shrinkers can then release all
3155 * cache memory and get us to destruction. If this is the case, we'll
3156 * be executed twice, which is a bug (the second time will execute over
3157 * bogus data). In this case, cancelling the work should be fine.
3158 *
3159 * But we can also get here from the worker itself, if
3160 * kmem_cache_shrink is enough to shake all the remaining objects and
3161 * get the page count to 0. In this case, we'll deadlock if we try to
3162 * cancel the work (the worker runs with an internal lock held, which
3163 * is the same lock we would hold for cancel_work_sync().)
3164 *
3165 * Since we can't possibly know who got us here, just refrain from
3166 * running if there is already work pending
3167 */
3168 if (work_pending(&cachep->memcg_params->destroy))
3169 return;
1f458cbf
GC
3170 /*
3171 * We have to defer the actual destroying to a workqueue, because
3172 * we might currently be in a context that cannot sleep.
3173 */
3174 schedule_work(&cachep->memcg_params->destroy);
3175}
3176
d9c10ddd
MH
3177/*
3178 * This lock protects updaters, not readers. We want readers to be as fast as
3179 * they can, and they will either see NULL or a valid cache value. Our model
3180 * allow them to see NULL, in which case the root memcg will be selected.
3181 *
3182 * We need this lock because multiple allocations to the same cache from a non
3183 * will span more than one worker. Only one of them can create the cache.
3184 */
3185static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3186
d9c10ddd
MH
3187/*
3188 * Called with memcg_cache_mutex held
3189 */
d7f25f8a
GC
3190static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3191 struct kmem_cache *s)
3192{
d7f25f8a 3193 struct kmem_cache *new;
d9c10ddd 3194 static char *tmp_name = NULL;
d7f25f8a 3195
d9c10ddd
MH
3196 lockdep_assert_held(&memcg_cache_mutex);
3197
3198 /*
3199 * kmem_cache_create_memcg duplicates the given name and
3200 * cgroup_name for this name requires RCU context.
3201 * This static temporary buffer is used to prevent from
3202 * pointless shortliving allocation.
3203 */
3204 if (!tmp_name) {
3205 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3206 if (!tmp_name)
3207 return NULL;
3208 }
3209
3210 rcu_read_lock();
3211 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3212 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3213 rcu_read_unlock();
d7f25f8a 3214
d9c10ddd 3215 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3216 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3217
d79923fa
GC
3218 if (new)
3219 new->allocflags |= __GFP_KMEMCG;
3220
d7f25f8a
GC
3221 return new;
3222}
3223
d7f25f8a
GC
3224static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3225 struct kmem_cache *cachep)
3226{
3227 struct kmem_cache *new_cachep;
3228 int idx;
3229
3230 BUG_ON(!memcg_can_account_kmem(memcg));
3231
3232 idx = memcg_cache_id(memcg);
3233
3234 mutex_lock(&memcg_cache_mutex);
3235 new_cachep = cachep->memcg_params->memcg_caches[idx];
20f05310
LZ
3236 if (new_cachep) {
3237 css_put(&memcg->css);
d7f25f8a 3238 goto out;
20f05310 3239 }
d7f25f8a
GC
3240
3241 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3242 if (new_cachep == NULL) {
3243 new_cachep = cachep;
20f05310 3244 css_put(&memcg->css);
d7f25f8a
GC
3245 goto out;
3246 }
3247
1f458cbf 3248 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3249
3250 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3251 /*
3252 * the readers won't lock, make sure everybody sees the updated value,
3253 * so they won't put stuff in the queue again for no reason
3254 */
3255 wmb();
3256out:
3257 mutex_unlock(&memcg_cache_mutex);
3258 return new_cachep;
3259}
3260
7cf27982
GC
3261void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3262{
3263 struct kmem_cache *c;
3264 int i;
3265
3266 if (!s->memcg_params)
3267 return;
3268 if (!s->memcg_params->is_root_cache)
3269 return;
3270
3271 /*
3272 * If the cache is being destroyed, we trust that there is no one else
3273 * requesting objects from it. Even if there are, the sanity checks in
3274 * kmem_cache_destroy should caught this ill-case.
3275 *
3276 * Still, we don't want anyone else freeing memcg_caches under our
3277 * noses, which can happen if a new memcg comes to life. As usual,
3278 * we'll take the set_limit_mutex to protect ourselves against this.
3279 */
3280 mutex_lock(&set_limit_mutex);
3281 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3282 c = s->memcg_params->memcg_caches[i];
3283 if (!c)
3284 continue;
3285
3286 /*
3287 * We will now manually delete the caches, so to avoid races
3288 * we need to cancel all pending destruction workers and
3289 * proceed with destruction ourselves.
3290 *
3291 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3292 * and that could spawn the workers again: it is likely that
3293 * the cache still have active pages until this very moment.
3294 * This would lead us back to mem_cgroup_destroy_cache.
3295 *
3296 * But that will not execute at all if the "dead" flag is not
3297 * set, so flip it down to guarantee we are in control.
3298 */
3299 c->memcg_params->dead = false;
22933152 3300 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3301 kmem_cache_destroy(c);
3302 }
3303 mutex_unlock(&set_limit_mutex);
3304}
3305
d7f25f8a
GC
3306struct create_work {
3307 struct mem_cgroup *memcg;
3308 struct kmem_cache *cachep;
3309 struct work_struct work;
3310};
3311
1f458cbf
GC
3312static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3313{
3314 struct kmem_cache *cachep;
3315 struct memcg_cache_params *params;
3316
3317 if (!memcg_kmem_is_active(memcg))
3318 return;
3319
3320 mutex_lock(&memcg->slab_caches_mutex);
3321 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3322 cachep = memcg_params_to_cache(params);
3323 cachep->memcg_params->dead = true;
1f458cbf
GC
3324 schedule_work(&cachep->memcg_params->destroy);
3325 }
3326 mutex_unlock(&memcg->slab_caches_mutex);
3327}
3328
d7f25f8a
GC
3329static void memcg_create_cache_work_func(struct work_struct *w)
3330{
3331 struct create_work *cw;
3332
3333 cw = container_of(w, struct create_work, work);
3334 memcg_create_kmem_cache(cw->memcg, cw->cachep);
d7f25f8a
GC
3335 kfree(cw);
3336}
3337
3338/*
3339 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3340 */
0e9d92f2
GC
3341static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3342 struct kmem_cache *cachep)
d7f25f8a
GC
3343{
3344 struct create_work *cw;
3345
3346 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3347 if (cw == NULL) {
3348 css_put(&memcg->css);
d7f25f8a
GC
3349 return;
3350 }
3351
3352 cw->memcg = memcg;
3353 cw->cachep = cachep;
3354
3355 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3356 schedule_work(&cw->work);
3357}
3358
0e9d92f2
GC
3359static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3360 struct kmem_cache *cachep)
3361{
3362 /*
3363 * We need to stop accounting when we kmalloc, because if the
3364 * corresponding kmalloc cache is not yet created, the first allocation
3365 * in __memcg_create_cache_enqueue will recurse.
3366 *
3367 * However, it is better to enclose the whole function. Depending on
3368 * the debugging options enabled, INIT_WORK(), for instance, can
3369 * trigger an allocation. This too, will make us recurse. Because at
3370 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3371 * the safest choice is to do it like this, wrapping the whole function.
3372 */
3373 memcg_stop_kmem_account();
3374 __memcg_create_cache_enqueue(memcg, cachep);
3375 memcg_resume_kmem_account();
3376}
d7f25f8a
GC
3377/*
3378 * Return the kmem_cache we're supposed to use for a slab allocation.
3379 * We try to use the current memcg's version of the cache.
3380 *
3381 * If the cache does not exist yet, if we are the first user of it,
3382 * we either create it immediately, if possible, or create it asynchronously
3383 * in a workqueue.
3384 * In the latter case, we will let the current allocation go through with
3385 * the original cache.
3386 *
3387 * Can't be called in interrupt context or from kernel threads.
3388 * This function needs to be called with rcu_read_lock() held.
3389 */
3390struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3391 gfp_t gfp)
3392{
3393 struct mem_cgroup *memcg;
3394 int idx;
3395
3396 VM_BUG_ON(!cachep->memcg_params);
3397 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3398
0e9d92f2
GC
3399 if (!current->mm || current->memcg_kmem_skip_account)
3400 return cachep;
3401
d7f25f8a
GC
3402 rcu_read_lock();
3403 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3404
3405 if (!memcg_can_account_kmem(memcg))
ca0dde97 3406 goto out;
d7f25f8a
GC
3407
3408 idx = memcg_cache_id(memcg);
3409
3410 /*
3411 * barrier to mare sure we're always seeing the up to date value. The
3412 * code updating memcg_caches will issue a write barrier to match this.
3413 */
3414 read_barrier_depends();
ca0dde97
LZ
3415 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3416 cachep = cachep->memcg_params->memcg_caches[idx];
3417 goto out;
d7f25f8a
GC
3418 }
3419
ca0dde97
LZ
3420 /* The corresponding put will be done in the workqueue. */
3421 if (!css_tryget(&memcg->css))
3422 goto out;
3423 rcu_read_unlock();
3424
3425 /*
3426 * If we are in a safe context (can wait, and not in interrupt
3427 * context), we could be be predictable and return right away.
3428 * This would guarantee that the allocation being performed
3429 * already belongs in the new cache.
3430 *
3431 * However, there are some clashes that can arrive from locking.
3432 * For instance, because we acquire the slab_mutex while doing
3433 * kmem_cache_dup, this means no further allocation could happen
3434 * with the slab_mutex held.
3435 *
3436 * Also, because cache creation issue get_online_cpus(), this
3437 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3438 * that ends up reversed during cpu hotplug. (cpuset allocates
3439 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3440 * better to defer everything.
3441 */
3442 memcg_create_cache_enqueue(memcg, cachep);
3443 return cachep;
3444out:
3445 rcu_read_unlock();
3446 return cachep;
d7f25f8a
GC
3447}
3448EXPORT_SYMBOL(__memcg_kmem_get_cache);
3449
7ae1e1d0
GC
3450/*
3451 * We need to verify if the allocation against current->mm->owner's memcg is
3452 * possible for the given order. But the page is not allocated yet, so we'll
3453 * need a further commit step to do the final arrangements.
3454 *
3455 * It is possible for the task to switch cgroups in this mean time, so at
3456 * commit time, we can't rely on task conversion any longer. We'll then use
3457 * the handle argument to return to the caller which cgroup we should commit
3458 * against. We could also return the memcg directly and avoid the pointer
3459 * passing, but a boolean return value gives better semantics considering
3460 * the compiled-out case as well.
3461 *
3462 * Returning true means the allocation is possible.
3463 */
3464bool
3465__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3466{
3467 struct mem_cgroup *memcg;
3468 int ret;
3469
3470 *_memcg = NULL;
6d42c232
GC
3471
3472 /*
3473 * Disabling accounting is only relevant for some specific memcg
3474 * internal allocations. Therefore we would initially not have such
3475 * check here, since direct calls to the page allocator that are marked
3476 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3477 * concerned with cache allocations, and by having this test at
3478 * memcg_kmem_get_cache, we are already able to relay the allocation to
3479 * the root cache and bypass the memcg cache altogether.
3480 *
3481 * There is one exception, though: the SLUB allocator does not create
3482 * large order caches, but rather service large kmallocs directly from
3483 * the page allocator. Therefore, the following sequence when backed by
3484 * the SLUB allocator:
3485 *
f894ffa8
AM
3486 * memcg_stop_kmem_account();
3487 * kmalloc(<large_number>)
3488 * memcg_resume_kmem_account();
6d42c232
GC
3489 *
3490 * would effectively ignore the fact that we should skip accounting,
3491 * since it will drive us directly to this function without passing
3492 * through the cache selector memcg_kmem_get_cache. Such large
3493 * allocations are extremely rare but can happen, for instance, for the
3494 * cache arrays. We bring this test here.
3495 */
3496 if (!current->mm || current->memcg_kmem_skip_account)
3497 return true;
3498
7ae1e1d0
GC
3499 memcg = try_get_mem_cgroup_from_mm(current->mm);
3500
3501 /*
3502 * very rare case described in mem_cgroup_from_task. Unfortunately there
3503 * isn't much we can do without complicating this too much, and it would
3504 * be gfp-dependent anyway. Just let it go
3505 */
3506 if (unlikely(!memcg))
3507 return true;
3508
3509 if (!memcg_can_account_kmem(memcg)) {
3510 css_put(&memcg->css);
3511 return true;
3512 }
3513
7ae1e1d0
GC
3514 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3515 if (!ret)
3516 *_memcg = memcg;
7ae1e1d0
GC
3517
3518 css_put(&memcg->css);
3519 return (ret == 0);
3520}
3521
3522void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3523 int order)
3524{
3525 struct page_cgroup *pc;
3526
3527 VM_BUG_ON(mem_cgroup_is_root(memcg));
3528
3529 /* The page allocation failed. Revert */
3530 if (!page) {
3531 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3532 return;
3533 }
3534
3535 pc = lookup_page_cgroup(page);
3536 lock_page_cgroup(pc);
3537 pc->mem_cgroup = memcg;
3538 SetPageCgroupUsed(pc);
3539 unlock_page_cgroup(pc);
3540}
3541
3542void __memcg_kmem_uncharge_pages(struct page *page, int order)
3543{
3544 struct mem_cgroup *memcg = NULL;
3545 struct page_cgroup *pc;
3546
3547
3548 pc = lookup_page_cgroup(page);
3549 /*
3550 * Fast unlocked return. Theoretically might have changed, have to
3551 * check again after locking.
3552 */
3553 if (!PageCgroupUsed(pc))
3554 return;
3555
3556 lock_page_cgroup(pc);
3557 if (PageCgroupUsed(pc)) {
3558 memcg = pc->mem_cgroup;
3559 ClearPageCgroupUsed(pc);
3560 }
3561 unlock_page_cgroup(pc);
3562
3563 /*
3564 * We trust that only if there is a memcg associated with the page, it
3565 * is a valid allocation
3566 */
3567 if (!memcg)
3568 return;
3569
3570 VM_BUG_ON(mem_cgroup_is_root(memcg));
3571 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3572}
1f458cbf
GC
3573#else
3574static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3575{
3576}
7ae1e1d0
GC
3577#endif /* CONFIG_MEMCG_KMEM */
3578
ca3e0214
KH
3579#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3580
a0db00fc 3581#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3582/*
3583 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3584 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3585 * charge/uncharge will be never happen and move_account() is done under
3586 * compound_lock(), so we don't have to take care of races.
ca3e0214 3587 */
e94c8a9c 3588void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3589{
3590 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3591 struct page_cgroup *pc;
b070e65c 3592 struct mem_cgroup *memcg;
e94c8a9c 3593 int i;
ca3e0214 3594
3d37c4a9
KH
3595 if (mem_cgroup_disabled())
3596 return;
b070e65c
DR
3597
3598 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3599 for (i = 1; i < HPAGE_PMD_NR; i++) {
3600 pc = head_pc + i;
b070e65c 3601 pc->mem_cgroup = memcg;
e94c8a9c 3602 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3603 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3604 }
b070e65c
DR
3605 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3606 HPAGE_PMD_NR);
ca3e0214 3607}
12d27107 3608#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3609
f817ed48 3610/**
de3638d9 3611 * mem_cgroup_move_account - move account of the page
5564e88b 3612 * @page: the page
7ec99d62 3613 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3614 * @pc: page_cgroup of the page.
3615 * @from: mem_cgroup which the page is moved from.
3616 * @to: mem_cgroup which the page is moved to. @from != @to.
3617 *
3618 * The caller must confirm following.
08e552c6 3619 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3620 * - compound_lock is held when nr_pages > 1
f817ed48 3621 *
2f3479b1
KH
3622 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3623 * from old cgroup.
f817ed48 3624 */
7ec99d62
JW
3625static int mem_cgroup_move_account(struct page *page,
3626 unsigned int nr_pages,
3627 struct page_cgroup *pc,
3628 struct mem_cgroup *from,
2f3479b1 3629 struct mem_cgroup *to)
f817ed48 3630{
de3638d9
JW
3631 unsigned long flags;
3632 int ret;
b2402857 3633 bool anon = PageAnon(page);
987eba66 3634
f817ed48 3635 VM_BUG_ON(from == to);
5564e88b 3636 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3637 /*
3638 * The page is isolated from LRU. So, collapse function
3639 * will not handle this page. But page splitting can happen.
3640 * Do this check under compound_page_lock(). The caller should
3641 * hold it.
3642 */
3643 ret = -EBUSY;
7ec99d62 3644 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3645 goto out;
3646
3647 lock_page_cgroup(pc);
3648
3649 ret = -EINVAL;
3650 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3651 goto unlock;
3652
312734c0 3653 move_lock_mem_cgroup(from, &flags);
f817ed48 3654
2ff76f11 3655 if (!anon && page_mapped(page)) {
c62b1a3b
KH
3656 /* Update mapped_file data for mem_cgroup */
3657 preempt_disable();
3658 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3659 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3660 preempt_enable();
d69b042f 3661 }
b070e65c 3662 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3663
854ffa8d 3664 /* caller should have done css_get */
08e552c6 3665 pc->mem_cgroup = to;
b070e65c 3666 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3667 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3668 ret = 0;
3669unlock:
57f9fd7d 3670 unlock_page_cgroup(pc);
d2265e6f
KH
3671 /*
3672 * check events
3673 */
5564e88b
JW
3674 memcg_check_events(to, page);
3675 memcg_check_events(from, page);
de3638d9 3676out:
f817ed48
KH
3677 return ret;
3678}
3679
2ef37d3f
MH
3680/**
3681 * mem_cgroup_move_parent - moves page to the parent group
3682 * @page: the page to move
3683 * @pc: page_cgroup of the page
3684 * @child: page's cgroup
3685 *
3686 * move charges to its parent or the root cgroup if the group has no
3687 * parent (aka use_hierarchy==0).
3688 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3689 * mem_cgroup_move_account fails) the failure is always temporary and
3690 * it signals a race with a page removal/uncharge or migration. In the
3691 * first case the page is on the way out and it will vanish from the LRU
3692 * on the next attempt and the call should be retried later.
3693 * Isolation from the LRU fails only if page has been isolated from
3694 * the LRU since we looked at it and that usually means either global
3695 * reclaim or migration going on. The page will either get back to the
3696 * LRU or vanish.
3697 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3698 * (!PageCgroupUsed) or moved to a different group. The page will
3699 * disappear in the next attempt.
f817ed48 3700 */
5564e88b
JW
3701static int mem_cgroup_move_parent(struct page *page,
3702 struct page_cgroup *pc,
6068bf01 3703 struct mem_cgroup *child)
f817ed48 3704{
f817ed48 3705 struct mem_cgroup *parent;
7ec99d62 3706 unsigned int nr_pages;
4be4489f 3707 unsigned long uninitialized_var(flags);
f817ed48
KH
3708 int ret;
3709
d8423011 3710 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3711
57f9fd7d
DN
3712 ret = -EBUSY;
3713 if (!get_page_unless_zero(page))
3714 goto out;
3715 if (isolate_lru_page(page))
3716 goto put;
52dbb905 3717
7ec99d62 3718 nr_pages = hpage_nr_pages(page);
08e552c6 3719
cc926f78
KH
3720 parent = parent_mem_cgroup(child);
3721 /*
3722 * If no parent, move charges to root cgroup.
3723 */
3724 if (!parent)
3725 parent = root_mem_cgroup;
f817ed48 3726
2ef37d3f
MH
3727 if (nr_pages > 1) {
3728 VM_BUG_ON(!PageTransHuge(page));
987eba66 3729 flags = compound_lock_irqsave(page);
2ef37d3f 3730 }
987eba66 3731
cc926f78 3732 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3733 pc, child, parent);
cc926f78
KH
3734 if (!ret)
3735 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3736
7ec99d62 3737 if (nr_pages > 1)
987eba66 3738 compound_unlock_irqrestore(page, flags);
08e552c6 3739 putback_lru_page(page);
57f9fd7d 3740put:
40d58138 3741 put_page(page);
57f9fd7d 3742out:
f817ed48
KH
3743 return ret;
3744}
3745
7a81b88c
KH
3746/*
3747 * Charge the memory controller for page usage.
3748 * Return
3749 * 0 if the charge was successful
3750 * < 0 if the cgroup is over its limit
3751 */
3752static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3753 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3754{
c0ff4b85 3755 struct mem_cgroup *memcg = NULL;
7ec99d62 3756 unsigned int nr_pages = 1;
8493ae43 3757 bool oom = true;
7a81b88c 3758 int ret;
ec168510 3759
37c2ac78 3760 if (PageTransHuge(page)) {
7ec99d62 3761 nr_pages <<= compound_order(page);
37c2ac78 3762 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3763 /*
3764 * Never OOM-kill a process for a huge page. The
3765 * fault handler will fall back to regular pages.
3766 */
3767 oom = false;
37c2ac78 3768 }
7a81b88c 3769
c0ff4b85 3770 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3771 if (ret == -ENOMEM)
7a81b88c 3772 return ret;
ce587e65 3773 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3774 return 0;
8a9f3ccd
BS
3775}
3776
7a81b88c
KH
3777int mem_cgroup_newpage_charge(struct page *page,
3778 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3779{
f8d66542 3780 if (mem_cgroup_disabled())
cede86ac 3781 return 0;
7a0524cf
JW
3782 VM_BUG_ON(page_mapped(page));
3783 VM_BUG_ON(page->mapping && !PageAnon(page));
3784 VM_BUG_ON(!mm);
217bc319 3785 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3786 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3787}
3788
54595fe2
KH
3789/*
3790 * While swap-in, try_charge -> commit or cancel, the page is locked.
3791 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3792 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3793 * "commit()" or removed by "cancel()"
3794 */
0435a2fd
JW
3795static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3796 struct page *page,
3797 gfp_t mask,
3798 struct mem_cgroup **memcgp)
8c7c6e34 3799{
c0ff4b85 3800 struct mem_cgroup *memcg;
90deb788 3801 struct page_cgroup *pc;
54595fe2 3802 int ret;
8c7c6e34 3803
90deb788
JW
3804 pc = lookup_page_cgroup(page);
3805 /*
3806 * Every swap fault against a single page tries to charge the
3807 * page, bail as early as possible. shmem_unuse() encounters
3808 * already charged pages, too. The USED bit is protected by
3809 * the page lock, which serializes swap cache removal, which
3810 * in turn serializes uncharging.
3811 */
3812 if (PageCgroupUsed(pc))
3813 return 0;
8c7c6e34
KH
3814 if (!do_swap_account)
3815 goto charge_cur_mm;
c0ff4b85
R
3816 memcg = try_get_mem_cgroup_from_page(page);
3817 if (!memcg)
54595fe2 3818 goto charge_cur_mm;
72835c86
JW
3819 *memcgp = memcg;
3820 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3821 css_put(&memcg->css);
38c5d72f
KH
3822 if (ret == -EINTR)
3823 ret = 0;
54595fe2 3824 return ret;
8c7c6e34 3825charge_cur_mm:
38c5d72f
KH
3826 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3827 if (ret == -EINTR)
3828 ret = 0;
3829 return ret;
8c7c6e34
KH
3830}
3831
0435a2fd
JW
3832int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3833 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3834{
3835 *memcgp = NULL;
3836 if (mem_cgroup_disabled())
3837 return 0;
bdf4f4d2
JW
3838 /*
3839 * A racing thread's fault, or swapoff, may have already
3840 * updated the pte, and even removed page from swap cache: in
3841 * those cases unuse_pte()'s pte_same() test will fail; but
3842 * there's also a KSM case which does need to charge the page.
3843 */
3844 if (!PageSwapCache(page)) {
3845 int ret;
3846
3847 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3848 if (ret == -EINTR)
3849 ret = 0;
3850 return ret;
3851 }
0435a2fd
JW
3852 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3853}
3854
827a03d2
JW
3855void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3856{
3857 if (mem_cgroup_disabled())
3858 return;
3859 if (!memcg)
3860 return;
3861 __mem_cgroup_cancel_charge(memcg, 1);
3862}
3863
83aae4c7 3864static void
72835c86 3865__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3866 enum charge_type ctype)
7a81b88c 3867{
f8d66542 3868 if (mem_cgroup_disabled())
7a81b88c 3869 return;
72835c86 3870 if (!memcg)
7a81b88c 3871 return;
5a6475a4 3872
ce587e65 3873 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3874 /*
3875 * Now swap is on-memory. This means this page may be
3876 * counted both as mem and swap....double count.
03f3c433
KH
3877 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3878 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3879 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3880 */
03f3c433 3881 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3882 swp_entry_t ent = {.val = page_private(page)};
86493009 3883 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3884 }
7a81b88c
KH
3885}
3886
72835c86
JW
3887void mem_cgroup_commit_charge_swapin(struct page *page,
3888 struct mem_cgroup *memcg)
83aae4c7 3889{
72835c86 3890 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3891 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3892}
3893
827a03d2
JW
3894int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3895 gfp_t gfp_mask)
7a81b88c 3896{
827a03d2
JW
3897 struct mem_cgroup *memcg = NULL;
3898 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3899 int ret;
3900
f8d66542 3901 if (mem_cgroup_disabled())
827a03d2
JW
3902 return 0;
3903 if (PageCompound(page))
3904 return 0;
3905
827a03d2
JW
3906 if (!PageSwapCache(page))
3907 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3908 else { /* page is swapcache/shmem */
0435a2fd
JW
3909 ret = __mem_cgroup_try_charge_swapin(mm, page,
3910 gfp_mask, &memcg);
827a03d2
JW
3911 if (!ret)
3912 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3913 }
3914 return ret;
7a81b88c
KH
3915}
3916
c0ff4b85 3917static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3918 unsigned int nr_pages,
3919 const enum charge_type ctype)
569b846d
KH
3920{
3921 struct memcg_batch_info *batch = NULL;
3922 bool uncharge_memsw = true;
7ec99d62 3923
569b846d
KH
3924 /* If swapout, usage of swap doesn't decrease */
3925 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3926 uncharge_memsw = false;
569b846d
KH
3927
3928 batch = &current->memcg_batch;
3929 /*
3930 * In usual, we do css_get() when we remember memcg pointer.
3931 * But in this case, we keep res->usage until end of a series of
3932 * uncharges. Then, it's ok to ignore memcg's refcnt.
3933 */
3934 if (!batch->memcg)
c0ff4b85 3935 batch->memcg = memcg;
3c11ecf4
KH
3936 /*
3937 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3938 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3939 * the same cgroup and we have chance to coalesce uncharges.
3940 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3941 * because we want to do uncharge as soon as possible.
3942 */
3943
3944 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3945 goto direct_uncharge;
3946
7ec99d62 3947 if (nr_pages > 1)
ec168510
AA
3948 goto direct_uncharge;
3949
569b846d
KH
3950 /*
3951 * In typical case, batch->memcg == mem. This means we can
3952 * merge a series of uncharges to an uncharge of res_counter.
3953 * If not, we uncharge res_counter ony by one.
3954 */
c0ff4b85 3955 if (batch->memcg != memcg)
569b846d
KH
3956 goto direct_uncharge;
3957 /* remember freed charge and uncharge it later */
7ffd4ca7 3958 batch->nr_pages++;
569b846d 3959 if (uncharge_memsw)
7ffd4ca7 3960 batch->memsw_nr_pages++;
569b846d
KH
3961 return;
3962direct_uncharge:
c0ff4b85 3963 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3964 if (uncharge_memsw)
c0ff4b85
R
3965 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3966 if (unlikely(batch->memcg != memcg))
3967 memcg_oom_recover(memcg);
569b846d 3968}
7a81b88c 3969
8a9f3ccd 3970/*
69029cd5 3971 * uncharge if !page_mapped(page)
8a9f3ccd 3972 */
8c7c6e34 3973static struct mem_cgroup *
0030f535
JW
3974__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3975 bool end_migration)
8a9f3ccd 3976{
c0ff4b85 3977 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3978 unsigned int nr_pages = 1;
3979 struct page_cgroup *pc;
b2402857 3980 bool anon;
8a9f3ccd 3981
f8d66542 3982 if (mem_cgroup_disabled())
8c7c6e34 3983 return NULL;
4077960e 3984
37c2ac78 3985 if (PageTransHuge(page)) {
7ec99d62 3986 nr_pages <<= compound_order(page);
37c2ac78
AA
3987 VM_BUG_ON(!PageTransHuge(page));
3988 }
8697d331 3989 /*
3c541e14 3990 * Check if our page_cgroup is valid
8697d331 3991 */
52d4b9ac 3992 pc = lookup_page_cgroup(page);
cfa44946 3993 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3994 return NULL;
b9c565d5 3995
52d4b9ac 3996 lock_page_cgroup(pc);
d13d1443 3997
c0ff4b85 3998 memcg = pc->mem_cgroup;
8c7c6e34 3999
d13d1443
KH
4000 if (!PageCgroupUsed(pc))
4001 goto unlock_out;
4002
b2402857
KH
4003 anon = PageAnon(page);
4004
d13d1443 4005 switch (ctype) {
41326c17 4006 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4007 /*
4008 * Generally PageAnon tells if it's the anon statistics to be
4009 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4010 * used before page reached the stage of being marked PageAnon.
4011 */
b2402857
KH
4012 anon = true;
4013 /* fallthrough */
8a9478ca 4014 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4015 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4016 if (page_mapped(page))
4017 goto unlock_out;
4018 /*
4019 * Pages under migration may not be uncharged. But
4020 * end_migration() /must/ be the one uncharging the
4021 * unused post-migration page and so it has to call
4022 * here with the migration bit still set. See the
4023 * res_counter handling below.
4024 */
4025 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4026 goto unlock_out;
4027 break;
4028 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4029 if (!PageAnon(page)) { /* Shared memory */
4030 if (page->mapping && !page_is_file_cache(page))
4031 goto unlock_out;
4032 } else if (page_mapped(page)) /* Anon */
4033 goto unlock_out;
4034 break;
4035 default:
4036 break;
52d4b9ac 4037 }
d13d1443 4038
b070e65c 4039 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4040
52d4b9ac 4041 ClearPageCgroupUsed(pc);
544122e5
KH
4042 /*
4043 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4044 * freed from LRU. This is safe because uncharged page is expected not
4045 * to be reused (freed soon). Exception is SwapCache, it's handled by
4046 * special functions.
4047 */
b9c565d5 4048
52d4b9ac 4049 unlock_page_cgroup(pc);
f75ca962 4050 /*
c0ff4b85 4051 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4052 * will never be freed, so it's safe to call css_get().
f75ca962 4053 */
c0ff4b85 4054 memcg_check_events(memcg, page);
f75ca962 4055 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4056 mem_cgroup_swap_statistics(memcg, true);
4050377b 4057 css_get(&memcg->css);
f75ca962 4058 }
0030f535
JW
4059 /*
4060 * Migration does not charge the res_counter for the
4061 * replacement page, so leave it alone when phasing out the
4062 * page that is unused after the migration.
4063 */
4064 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4065 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4066
c0ff4b85 4067 return memcg;
d13d1443
KH
4068
4069unlock_out:
4070 unlock_page_cgroup(pc);
8c7c6e34 4071 return NULL;
3c541e14
BS
4072}
4073
69029cd5
KH
4074void mem_cgroup_uncharge_page(struct page *page)
4075{
52d4b9ac
KH
4076 /* early check. */
4077 if (page_mapped(page))
4078 return;
40f23a21 4079 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4080 /*
4081 * If the page is in swap cache, uncharge should be deferred
4082 * to the swap path, which also properly accounts swap usage
4083 * and handles memcg lifetime.
4084 *
4085 * Note that this check is not stable and reclaim may add the
4086 * page to swap cache at any time after this. However, if the
4087 * page is not in swap cache by the time page->mapcount hits
4088 * 0, there won't be any page table references to the swap
4089 * slot, and reclaim will free it and not actually write the
4090 * page to disk.
4091 */
0c59b89c
JW
4092 if (PageSwapCache(page))
4093 return;
0030f535 4094 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4095}
4096
4097void mem_cgroup_uncharge_cache_page(struct page *page)
4098{
4099 VM_BUG_ON(page_mapped(page));
b7abea96 4100 VM_BUG_ON(page->mapping);
0030f535 4101 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4102}
4103
569b846d
KH
4104/*
4105 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4106 * In that cases, pages are freed continuously and we can expect pages
4107 * are in the same memcg. All these calls itself limits the number of
4108 * pages freed at once, then uncharge_start/end() is called properly.
4109 * This may be called prural(2) times in a context,
4110 */
4111
4112void mem_cgroup_uncharge_start(void)
4113{
4114 current->memcg_batch.do_batch++;
4115 /* We can do nest. */
4116 if (current->memcg_batch.do_batch == 1) {
4117 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4118 current->memcg_batch.nr_pages = 0;
4119 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4120 }
4121}
4122
4123void mem_cgroup_uncharge_end(void)
4124{
4125 struct memcg_batch_info *batch = &current->memcg_batch;
4126
4127 if (!batch->do_batch)
4128 return;
4129
4130 batch->do_batch--;
4131 if (batch->do_batch) /* If stacked, do nothing. */
4132 return;
4133
4134 if (!batch->memcg)
4135 return;
4136 /*
4137 * This "batch->memcg" is valid without any css_get/put etc...
4138 * bacause we hide charges behind us.
4139 */
7ffd4ca7
JW
4140 if (batch->nr_pages)
4141 res_counter_uncharge(&batch->memcg->res,
4142 batch->nr_pages * PAGE_SIZE);
4143 if (batch->memsw_nr_pages)
4144 res_counter_uncharge(&batch->memcg->memsw,
4145 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4146 memcg_oom_recover(batch->memcg);
569b846d
KH
4147 /* forget this pointer (for sanity check) */
4148 batch->memcg = NULL;
4149}
4150
e767e056 4151#ifdef CONFIG_SWAP
8c7c6e34 4152/*
e767e056 4153 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4154 * memcg information is recorded to swap_cgroup of "ent"
4155 */
8a9478ca
KH
4156void
4157mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4158{
4159 struct mem_cgroup *memcg;
8a9478ca
KH
4160 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4161
4162 if (!swapout) /* this was a swap cache but the swap is unused ! */
4163 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4164
0030f535 4165 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4166
f75ca962
KH
4167 /*
4168 * record memcg information, if swapout && memcg != NULL,
4050377b 4169 * css_get() was called in uncharge().
f75ca962
KH
4170 */
4171 if (do_swap_account && swapout && memcg)
a3b2d692 4172 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4173}
e767e056 4174#endif
8c7c6e34 4175
c255a458 4176#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4177/*
4178 * called from swap_entry_free(). remove record in swap_cgroup and
4179 * uncharge "memsw" account.
4180 */
4181void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4182{
8c7c6e34 4183 struct mem_cgroup *memcg;
a3b2d692 4184 unsigned short id;
8c7c6e34
KH
4185
4186 if (!do_swap_account)
4187 return;
4188
a3b2d692
KH
4189 id = swap_cgroup_record(ent, 0);
4190 rcu_read_lock();
4191 memcg = mem_cgroup_lookup(id);
8c7c6e34 4192 if (memcg) {
a3b2d692
KH
4193 /*
4194 * We uncharge this because swap is freed.
4195 * This memcg can be obsolete one. We avoid calling css_tryget
4196 */
0c3e73e8 4197 if (!mem_cgroup_is_root(memcg))
4e649152 4198 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4199 mem_cgroup_swap_statistics(memcg, false);
4050377b 4200 css_put(&memcg->css);
8c7c6e34 4201 }
a3b2d692 4202 rcu_read_unlock();
d13d1443 4203}
02491447
DN
4204
4205/**
4206 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4207 * @entry: swap entry to be moved
4208 * @from: mem_cgroup which the entry is moved from
4209 * @to: mem_cgroup which the entry is moved to
4210 *
4211 * It succeeds only when the swap_cgroup's record for this entry is the same
4212 * as the mem_cgroup's id of @from.
4213 *
4214 * Returns 0 on success, -EINVAL on failure.
4215 *
4216 * The caller must have charged to @to, IOW, called res_counter_charge() about
4217 * both res and memsw, and called css_get().
4218 */
4219static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4220 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4221{
4222 unsigned short old_id, new_id;
4223
4224 old_id = css_id(&from->css);
4225 new_id = css_id(&to->css);
4226
4227 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4228 mem_cgroup_swap_statistics(from, false);
483c30b5 4229 mem_cgroup_swap_statistics(to, true);
02491447 4230 /*
483c30b5
DN
4231 * This function is only called from task migration context now.
4232 * It postpones res_counter and refcount handling till the end
4233 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4234 * improvement. But we cannot postpone css_get(to) because if
4235 * the process that has been moved to @to does swap-in, the
4236 * refcount of @to might be decreased to 0.
4237 *
4238 * We are in attach() phase, so the cgroup is guaranteed to be
4239 * alive, so we can just call css_get().
02491447 4240 */
4050377b 4241 css_get(&to->css);
02491447
DN
4242 return 0;
4243 }
4244 return -EINVAL;
4245}
4246#else
4247static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4248 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4249{
4250 return -EINVAL;
4251}
8c7c6e34 4252#endif
d13d1443 4253
ae41be37 4254/*
01b1ae63
KH
4255 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4256 * page belongs to.
ae41be37 4257 */
0030f535
JW
4258void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4259 struct mem_cgroup **memcgp)
ae41be37 4260{
c0ff4b85 4261 struct mem_cgroup *memcg = NULL;
b32967ff 4262 unsigned int nr_pages = 1;
7ec99d62 4263 struct page_cgroup *pc;
ac39cf8c 4264 enum charge_type ctype;
8869b8f6 4265
72835c86 4266 *memcgp = NULL;
56039efa 4267
f8d66542 4268 if (mem_cgroup_disabled())
0030f535 4269 return;
4077960e 4270
b32967ff
MG
4271 if (PageTransHuge(page))
4272 nr_pages <<= compound_order(page);
4273
52d4b9ac
KH
4274 pc = lookup_page_cgroup(page);
4275 lock_page_cgroup(pc);
4276 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4277 memcg = pc->mem_cgroup;
4278 css_get(&memcg->css);
ac39cf8c
AM
4279 /*
4280 * At migrating an anonymous page, its mapcount goes down
4281 * to 0 and uncharge() will be called. But, even if it's fully
4282 * unmapped, migration may fail and this page has to be
4283 * charged again. We set MIGRATION flag here and delay uncharge
4284 * until end_migration() is called
4285 *
4286 * Corner Case Thinking
4287 * A)
4288 * When the old page was mapped as Anon and it's unmap-and-freed
4289 * while migration was ongoing.
4290 * If unmap finds the old page, uncharge() of it will be delayed
4291 * until end_migration(). If unmap finds a new page, it's
4292 * uncharged when it make mapcount to be 1->0. If unmap code
4293 * finds swap_migration_entry, the new page will not be mapped
4294 * and end_migration() will find it(mapcount==0).
4295 *
4296 * B)
4297 * When the old page was mapped but migraion fails, the kernel
4298 * remaps it. A charge for it is kept by MIGRATION flag even
4299 * if mapcount goes down to 0. We can do remap successfully
4300 * without charging it again.
4301 *
4302 * C)
4303 * The "old" page is under lock_page() until the end of
4304 * migration, so, the old page itself will not be swapped-out.
4305 * If the new page is swapped out before end_migraton, our
4306 * hook to usual swap-out path will catch the event.
4307 */
4308 if (PageAnon(page))
4309 SetPageCgroupMigration(pc);
e8589cc1 4310 }
52d4b9ac 4311 unlock_page_cgroup(pc);
ac39cf8c
AM
4312 /*
4313 * If the page is not charged at this point,
4314 * we return here.
4315 */
c0ff4b85 4316 if (!memcg)
0030f535 4317 return;
01b1ae63 4318
72835c86 4319 *memcgp = memcg;
ac39cf8c
AM
4320 /*
4321 * We charge new page before it's used/mapped. So, even if unlock_page()
4322 * is called before end_migration, we can catch all events on this new
4323 * page. In the case new page is migrated but not remapped, new page's
4324 * mapcount will be finally 0 and we call uncharge in end_migration().
4325 */
ac39cf8c 4326 if (PageAnon(page))
41326c17 4327 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4328 else
62ba7442 4329 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4330 /*
4331 * The page is committed to the memcg, but it's not actually
4332 * charged to the res_counter since we plan on replacing the
4333 * old one and only one page is going to be left afterwards.
4334 */
b32967ff 4335 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4336}
8869b8f6 4337
69029cd5 4338/* remove redundant charge if migration failed*/
c0ff4b85 4339void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4340 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4341{
ac39cf8c 4342 struct page *used, *unused;
01b1ae63 4343 struct page_cgroup *pc;
b2402857 4344 bool anon;
01b1ae63 4345
c0ff4b85 4346 if (!memcg)
01b1ae63 4347 return;
b25ed609 4348
50de1dd9 4349 if (!migration_ok) {
ac39cf8c
AM
4350 used = oldpage;
4351 unused = newpage;
01b1ae63 4352 } else {
ac39cf8c 4353 used = newpage;
01b1ae63
KH
4354 unused = oldpage;
4355 }
0030f535 4356 anon = PageAnon(used);
7d188958
JW
4357 __mem_cgroup_uncharge_common(unused,
4358 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4359 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4360 true);
0030f535 4361 css_put(&memcg->css);
69029cd5 4362 /*
ac39cf8c
AM
4363 * We disallowed uncharge of pages under migration because mapcount
4364 * of the page goes down to zero, temporarly.
4365 * Clear the flag and check the page should be charged.
01b1ae63 4366 */
ac39cf8c
AM
4367 pc = lookup_page_cgroup(oldpage);
4368 lock_page_cgroup(pc);
4369 ClearPageCgroupMigration(pc);
4370 unlock_page_cgroup(pc);
ac39cf8c 4371
01b1ae63 4372 /*
ac39cf8c
AM
4373 * If a page is a file cache, radix-tree replacement is very atomic
4374 * and we can skip this check. When it was an Anon page, its mapcount
4375 * goes down to 0. But because we added MIGRATION flage, it's not
4376 * uncharged yet. There are several case but page->mapcount check
4377 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4378 * check. (see prepare_charge() also)
69029cd5 4379 */
b2402857 4380 if (anon)
ac39cf8c 4381 mem_cgroup_uncharge_page(used);
ae41be37 4382}
78fb7466 4383
ab936cbc
KH
4384/*
4385 * At replace page cache, newpage is not under any memcg but it's on
4386 * LRU. So, this function doesn't touch res_counter but handles LRU
4387 * in correct way. Both pages are locked so we cannot race with uncharge.
4388 */
4389void mem_cgroup_replace_page_cache(struct page *oldpage,
4390 struct page *newpage)
4391{
bde05d1c 4392 struct mem_cgroup *memcg = NULL;
ab936cbc 4393 struct page_cgroup *pc;
ab936cbc 4394 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4395
4396 if (mem_cgroup_disabled())
4397 return;
4398
4399 pc = lookup_page_cgroup(oldpage);
4400 /* fix accounting on old pages */
4401 lock_page_cgroup(pc);
bde05d1c
HD
4402 if (PageCgroupUsed(pc)) {
4403 memcg = pc->mem_cgroup;
b070e65c 4404 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4405 ClearPageCgroupUsed(pc);
4406 }
ab936cbc
KH
4407 unlock_page_cgroup(pc);
4408
bde05d1c
HD
4409 /*
4410 * When called from shmem_replace_page(), in some cases the
4411 * oldpage has already been charged, and in some cases not.
4412 */
4413 if (!memcg)
4414 return;
ab936cbc
KH
4415 /*
4416 * Even if newpage->mapping was NULL before starting replacement,
4417 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4418 * LRU while we overwrite pc->mem_cgroup.
4419 */
ce587e65 4420 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4421}
4422
f212ad7c
DN
4423#ifdef CONFIG_DEBUG_VM
4424static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4425{
4426 struct page_cgroup *pc;
4427
4428 pc = lookup_page_cgroup(page);
cfa44946
JW
4429 /*
4430 * Can be NULL while feeding pages into the page allocator for
4431 * the first time, i.e. during boot or memory hotplug;
4432 * or when mem_cgroup_disabled().
4433 */
f212ad7c
DN
4434 if (likely(pc) && PageCgroupUsed(pc))
4435 return pc;
4436 return NULL;
4437}
4438
4439bool mem_cgroup_bad_page_check(struct page *page)
4440{
4441 if (mem_cgroup_disabled())
4442 return false;
4443
4444 return lookup_page_cgroup_used(page) != NULL;
4445}
4446
4447void mem_cgroup_print_bad_page(struct page *page)
4448{
4449 struct page_cgroup *pc;
4450
4451 pc = lookup_page_cgroup_used(page);
4452 if (pc) {
d045197f
AM
4453 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4454 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4455 }
4456}
4457#endif
4458
d38d2a75 4459static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4460 unsigned long long val)
628f4235 4461{
81d39c20 4462 int retry_count;
3c11ecf4 4463 u64 memswlimit, memlimit;
628f4235 4464 int ret = 0;
81d39c20
KH
4465 int children = mem_cgroup_count_children(memcg);
4466 u64 curusage, oldusage;
3c11ecf4 4467 int enlarge;
81d39c20
KH
4468
4469 /*
4470 * For keeping hierarchical_reclaim simple, how long we should retry
4471 * is depends on callers. We set our retry-count to be function
4472 * of # of children which we should visit in this loop.
4473 */
4474 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4475
4476 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4477
3c11ecf4 4478 enlarge = 0;
8c7c6e34 4479 while (retry_count) {
628f4235
KH
4480 if (signal_pending(current)) {
4481 ret = -EINTR;
4482 break;
4483 }
8c7c6e34
KH
4484 /*
4485 * Rather than hide all in some function, I do this in
4486 * open coded manner. You see what this really does.
aaad153e 4487 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4488 */
4489 mutex_lock(&set_limit_mutex);
4490 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4491 if (memswlimit < val) {
4492 ret = -EINVAL;
4493 mutex_unlock(&set_limit_mutex);
628f4235
KH
4494 break;
4495 }
3c11ecf4
KH
4496
4497 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4498 if (memlimit < val)
4499 enlarge = 1;
4500
8c7c6e34 4501 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4502 if (!ret) {
4503 if (memswlimit == val)
4504 memcg->memsw_is_minimum = true;
4505 else
4506 memcg->memsw_is_minimum = false;
4507 }
8c7c6e34
KH
4508 mutex_unlock(&set_limit_mutex);
4509
4510 if (!ret)
4511 break;
4512
5660048c
JW
4513 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4514 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4515 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4516 /* Usage is reduced ? */
f894ffa8 4517 if (curusage >= oldusage)
81d39c20
KH
4518 retry_count--;
4519 else
4520 oldusage = curusage;
8c7c6e34 4521 }
3c11ecf4
KH
4522 if (!ret && enlarge)
4523 memcg_oom_recover(memcg);
14797e23 4524
8c7c6e34
KH
4525 return ret;
4526}
4527
338c8431
LZ
4528static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4529 unsigned long long val)
8c7c6e34 4530{
81d39c20 4531 int retry_count;
3c11ecf4 4532 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4533 int children = mem_cgroup_count_children(memcg);
4534 int ret = -EBUSY;
3c11ecf4 4535 int enlarge = 0;
8c7c6e34 4536
81d39c20 4537 /* see mem_cgroup_resize_res_limit */
f894ffa8 4538 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4539 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4540 while (retry_count) {
4541 if (signal_pending(current)) {
4542 ret = -EINTR;
4543 break;
4544 }
4545 /*
4546 * Rather than hide all in some function, I do this in
4547 * open coded manner. You see what this really does.
aaad153e 4548 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4549 */
4550 mutex_lock(&set_limit_mutex);
4551 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4552 if (memlimit > val) {
4553 ret = -EINVAL;
4554 mutex_unlock(&set_limit_mutex);
4555 break;
4556 }
3c11ecf4
KH
4557 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4558 if (memswlimit < val)
4559 enlarge = 1;
8c7c6e34 4560 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4561 if (!ret) {
4562 if (memlimit == val)
4563 memcg->memsw_is_minimum = true;
4564 else
4565 memcg->memsw_is_minimum = false;
4566 }
8c7c6e34
KH
4567 mutex_unlock(&set_limit_mutex);
4568
4569 if (!ret)
4570 break;
4571
5660048c
JW
4572 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4573 MEM_CGROUP_RECLAIM_NOSWAP |
4574 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4575 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4576 /* Usage is reduced ? */
8c7c6e34 4577 if (curusage >= oldusage)
628f4235 4578 retry_count--;
81d39c20
KH
4579 else
4580 oldusage = curusage;
628f4235 4581 }
3c11ecf4
KH
4582 if (!ret && enlarge)
4583 memcg_oom_recover(memcg);
628f4235
KH
4584 return ret;
4585}
4586
2ef37d3f
MH
4587/**
4588 * mem_cgroup_force_empty_list - clears LRU of a group
4589 * @memcg: group to clear
4590 * @node: NUMA node
4591 * @zid: zone id
4592 * @lru: lru to to clear
4593 *
3c935d18 4594 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4595 * reclaim the pages page themselves - pages are moved to the parent (or root)
4596 * group.
cc847582 4597 */
2ef37d3f 4598static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4599 int node, int zid, enum lru_list lru)
cc847582 4600{
bea8c150 4601 struct lruvec *lruvec;
2ef37d3f 4602 unsigned long flags;
072c56c1 4603 struct list_head *list;
925b7673
JW
4604 struct page *busy;
4605 struct zone *zone;
072c56c1 4606
08e552c6 4607 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4608 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4609 list = &lruvec->lists[lru];
cc847582 4610
f817ed48 4611 busy = NULL;
2ef37d3f 4612 do {
925b7673 4613 struct page_cgroup *pc;
5564e88b
JW
4614 struct page *page;
4615
08e552c6 4616 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4617 if (list_empty(list)) {
08e552c6 4618 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4619 break;
f817ed48 4620 }
925b7673
JW
4621 page = list_entry(list->prev, struct page, lru);
4622 if (busy == page) {
4623 list_move(&page->lru, list);
648bcc77 4624 busy = NULL;
08e552c6 4625 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4626 continue;
4627 }
08e552c6 4628 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4629
925b7673 4630 pc = lookup_page_cgroup(page);
5564e88b 4631
3c935d18 4632 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4633 /* found lock contention or "pc" is obsolete. */
925b7673 4634 busy = page;
f817ed48
KH
4635 cond_resched();
4636 } else
4637 busy = NULL;
2ef37d3f 4638 } while (!list_empty(list));
cc847582
KH
4639}
4640
4641/*
c26251f9
MH
4642 * make mem_cgroup's charge to be 0 if there is no task by moving
4643 * all the charges and pages to the parent.
cc847582 4644 * This enables deleting this mem_cgroup.
c26251f9
MH
4645 *
4646 * Caller is responsible for holding css reference on the memcg.
cc847582 4647 */
ab5196c2 4648static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4649{
c26251f9 4650 int node, zid;
bea207c8 4651 u64 usage;
f817ed48 4652
fce66477 4653 do {
52d4b9ac
KH
4654 /* This is for making all *used* pages to be on LRU. */
4655 lru_add_drain_all();
c0ff4b85 4656 drain_all_stock_sync(memcg);
c0ff4b85 4657 mem_cgroup_start_move(memcg);
31aaea4a 4658 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4659 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4660 enum lru_list lru;
4661 for_each_lru(lru) {
2ef37d3f 4662 mem_cgroup_force_empty_list(memcg,
f156ab93 4663 node, zid, lru);
f817ed48 4664 }
1ecaab2b 4665 }
f817ed48 4666 }
c0ff4b85
R
4667 mem_cgroup_end_move(memcg);
4668 memcg_oom_recover(memcg);
52d4b9ac 4669 cond_resched();
f817ed48 4670
2ef37d3f 4671 /*
bea207c8
GC
4672 * Kernel memory may not necessarily be trackable to a specific
4673 * process. So they are not migrated, and therefore we can't
4674 * expect their value to drop to 0 here.
4675 * Having res filled up with kmem only is enough.
4676 *
2ef37d3f
MH
4677 * This is a safety check because mem_cgroup_force_empty_list
4678 * could have raced with mem_cgroup_replace_page_cache callers
4679 * so the lru seemed empty but the page could have been added
4680 * right after the check. RES_USAGE should be safe as we always
4681 * charge before adding to the LRU.
4682 */
bea207c8
GC
4683 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4684 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4685 } while (usage > 0);
c26251f9
MH
4686}
4687
b5f99b53
GC
4688/*
4689 * This mainly exists for tests during the setting of set of use_hierarchy.
4690 * Since this is the very setting we are changing, the current hierarchy value
4691 * is meaningless
4692 */
4693static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4694{
492eb21b 4695 struct cgroup_subsys_state *pos;
b5f99b53
GC
4696
4697 /* bounce at first found */
492eb21b 4698 css_for_each_child(pos, &memcg->css)
b5f99b53
GC
4699 return true;
4700 return false;
4701}
4702
4703/*
0999821b
GC
4704 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4705 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4706 * from mem_cgroup_count_children(), in the sense that we don't really care how
4707 * many children we have; we only need to know if we have any. It also counts
4708 * any memcg without hierarchy as infertile.
4709 */
4710static inline bool memcg_has_children(struct mem_cgroup *memcg)
4711{
4712 return memcg->use_hierarchy && __memcg_has_children(memcg);
4713}
4714
c26251f9
MH
4715/*
4716 * Reclaims as many pages from the given memcg as possible and moves
4717 * the rest to the parent.
4718 *
4719 * Caller is responsible for holding css reference for memcg.
4720 */
4721static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4722{
4723 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4724 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4725
c1e862c1 4726 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4727 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4728 return -EBUSY;
4729
c1e862c1
KH
4730 /* we call try-to-free pages for make this cgroup empty */
4731 lru_add_drain_all();
f817ed48 4732 /* try to free all pages in this cgroup */
569530fb 4733 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4734 int progress;
c1e862c1 4735
c26251f9
MH
4736 if (signal_pending(current))
4737 return -EINTR;
4738
c0ff4b85 4739 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4740 false);
c1e862c1 4741 if (!progress) {
f817ed48 4742 nr_retries--;
c1e862c1 4743 /* maybe some writeback is necessary */
8aa7e847 4744 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4745 }
f817ed48
KH
4746
4747 }
08e552c6 4748 lru_add_drain();
ab5196c2
MH
4749 mem_cgroup_reparent_charges(memcg);
4750
4751 return 0;
cc847582
KH
4752}
4753
182446d0
TH
4754static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4755 unsigned int event)
c1e862c1 4756{
182446d0 4757 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 4758
d8423011
MH
4759 if (mem_cgroup_is_root(memcg))
4760 return -EINVAL;
c33bd835 4761 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
4762}
4763
182446d0
TH
4764static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4765 struct cftype *cft)
18f59ea7 4766{
182446d0 4767 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4768}
4769
182446d0
TH
4770static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4771 struct cftype *cft, u64 val)
18f59ea7
BS
4772{
4773 int retval = 0;
182446d0 4774 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 4775 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 4776
0999821b 4777 mutex_lock(&memcg_create_mutex);
567fb435
GC
4778
4779 if (memcg->use_hierarchy == val)
4780 goto out;
4781
18f59ea7 4782 /*
af901ca1 4783 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4784 * in the child subtrees. If it is unset, then the change can
4785 * occur, provided the current cgroup has no children.
4786 *
4787 * For the root cgroup, parent_mem is NULL, we allow value to be
4788 * set if there are no children.
4789 */
c0ff4b85 4790 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4791 (val == 1 || val == 0)) {
b5f99b53 4792 if (!__memcg_has_children(memcg))
c0ff4b85 4793 memcg->use_hierarchy = val;
18f59ea7
BS
4794 else
4795 retval = -EBUSY;
4796 } else
4797 retval = -EINVAL;
567fb435
GC
4798
4799out:
0999821b 4800 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4801
4802 return retval;
4803}
4804
0c3e73e8 4805
c0ff4b85 4806static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4807 enum mem_cgroup_stat_index idx)
0c3e73e8 4808{
7d74b06f 4809 struct mem_cgroup *iter;
7a159cc9 4810 long val = 0;
0c3e73e8 4811
7a159cc9 4812 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4813 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4814 val += mem_cgroup_read_stat(iter, idx);
4815
4816 if (val < 0) /* race ? */
4817 val = 0;
4818 return val;
0c3e73e8
BS
4819}
4820
c0ff4b85 4821static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4822{
7d74b06f 4823 u64 val;
104f3928 4824
c0ff4b85 4825 if (!mem_cgroup_is_root(memcg)) {
104f3928 4826 if (!swap)
65c64ce8 4827 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4828 else
65c64ce8 4829 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4830 }
4831
b070e65c
DR
4832 /*
4833 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4834 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4835 */
c0ff4b85
R
4836 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4837 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4838
7d74b06f 4839 if (swap)
bff6bb83 4840 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4841
4842 return val << PAGE_SHIFT;
4843}
4844
182446d0
TH
4845static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
4846 struct cftype *cft, struct file *file,
4847 char __user *buf, size_t nbytes, loff_t *ppos)
8cdea7c0 4848{
182446d0 4849 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af36f906 4850 char str[64];
104f3928 4851 u64 val;
86ae53e1
GC
4852 int name, len;
4853 enum res_type type;
8c7c6e34
KH
4854
4855 type = MEMFILE_TYPE(cft->private);
4856 name = MEMFILE_ATTR(cft->private);
af36f906 4857
8c7c6e34
KH
4858 switch (type) {
4859 case _MEM:
104f3928 4860 if (name == RES_USAGE)
c0ff4b85 4861 val = mem_cgroup_usage(memcg, false);
104f3928 4862 else
c0ff4b85 4863 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
4864 break;
4865 case _MEMSWAP:
104f3928 4866 if (name == RES_USAGE)
c0ff4b85 4867 val = mem_cgroup_usage(memcg, true);
104f3928 4868 else
c0ff4b85 4869 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 4870 break;
510fc4e1
GC
4871 case _KMEM:
4872 val = res_counter_read_u64(&memcg->kmem, name);
4873 break;
8c7c6e34
KH
4874 default:
4875 BUG();
8c7c6e34 4876 }
af36f906
TH
4877
4878 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4879 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 4880}
510fc4e1 4881
182446d0 4882static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
510fc4e1
GC
4883{
4884 int ret = -EINVAL;
4885#ifdef CONFIG_MEMCG_KMEM
182446d0 4886 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
510fc4e1
GC
4887 /*
4888 * For simplicity, we won't allow this to be disabled. It also can't
4889 * be changed if the cgroup has children already, or if tasks had
4890 * already joined.
4891 *
4892 * If tasks join before we set the limit, a person looking at
4893 * kmem.usage_in_bytes will have no way to determine when it took
4894 * place, which makes the value quite meaningless.
4895 *
4896 * After it first became limited, changes in the value of the limit are
4897 * of course permitted.
510fc4e1 4898 */
0999821b 4899 mutex_lock(&memcg_create_mutex);
510fc4e1
GC
4900 mutex_lock(&set_limit_mutex);
4901 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
182446d0 4902 if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
510fc4e1
GC
4903 ret = -EBUSY;
4904 goto out;
4905 }
4906 ret = res_counter_set_limit(&memcg->kmem, val);
4907 VM_BUG_ON(ret);
4908
55007d84
GC
4909 ret = memcg_update_cache_sizes(memcg);
4910 if (ret) {
4911 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
4912 goto out;
4913 }
692e89ab
GC
4914 static_key_slow_inc(&memcg_kmem_enabled_key);
4915 /*
4916 * setting the active bit after the inc will guarantee no one
4917 * starts accounting before all call sites are patched
4918 */
4919 memcg_kmem_set_active(memcg);
510fc4e1
GC
4920 } else
4921 ret = res_counter_set_limit(&memcg->kmem, val);
4922out:
4923 mutex_unlock(&set_limit_mutex);
0999821b 4924 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
4925#endif
4926 return ret;
4927}
4928
6d043990 4929#ifdef CONFIG_MEMCG_KMEM
55007d84 4930static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 4931{
55007d84 4932 int ret = 0;
510fc4e1
GC
4933 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4934 if (!parent)
55007d84
GC
4935 goto out;
4936
510fc4e1 4937 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
4938 /*
4939 * When that happen, we need to disable the static branch only on those
4940 * memcgs that enabled it. To achieve this, we would be forced to
4941 * complicate the code by keeping track of which memcgs were the ones
4942 * that actually enabled limits, and which ones got it from its
4943 * parents.
4944 *
4945 * It is a lot simpler just to do static_key_slow_inc() on every child
4946 * that is accounted.
4947 */
55007d84
GC
4948 if (!memcg_kmem_is_active(memcg))
4949 goto out;
4950
4951 /*
10d5ebf4
LZ
4952 * __mem_cgroup_free() will issue static_key_slow_dec() because this
4953 * memcg is active already. If the later initialization fails then the
4954 * cgroup core triggers the cleanup so we do not have to do it here.
55007d84 4955 */
55007d84
GC
4956 static_key_slow_inc(&memcg_kmem_enabled_key);
4957
4958 mutex_lock(&set_limit_mutex);
425c598d 4959 memcg_stop_kmem_account();
55007d84 4960 ret = memcg_update_cache_sizes(memcg);
425c598d 4961 memcg_resume_kmem_account();
55007d84 4962 mutex_unlock(&set_limit_mutex);
55007d84
GC
4963out:
4964 return ret;
510fc4e1 4965}
6d043990 4966#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 4967
628f4235
KH
4968/*
4969 * The user of this function is...
4970 * RES_LIMIT.
4971 */
182446d0 4972static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
856c13aa 4973 const char *buffer)
8cdea7c0 4974{
182446d0 4975 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
4976 enum res_type type;
4977 int name;
628f4235
KH
4978 unsigned long long val;
4979 int ret;
4980
8c7c6e34
KH
4981 type = MEMFILE_TYPE(cft->private);
4982 name = MEMFILE_ATTR(cft->private);
af36f906 4983
8c7c6e34 4984 switch (name) {
628f4235 4985 case RES_LIMIT:
4b3bde4c
BS
4986 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4987 ret = -EINVAL;
4988 break;
4989 }
628f4235
KH
4990 /* This function does all necessary parse...reuse it */
4991 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
4992 if (ret)
4993 break;
4994 if (type == _MEM)
628f4235 4995 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 4996 else if (type == _MEMSWAP)
8c7c6e34 4997 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 4998 else if (type == _KMEM)
182446d0 4999 ret = memcg_update_kmem_limit(css, val);
510fc4e1
GC
5000 else
5001 return -EINVAL;
628f4235 5002 break;
296c81d8
BS
5003 case RES_SOFT_LIMIT:
5004 ret = res_counter_memparse_write_strategy(buffer, &val);
5005 if (ret)
5006 break;
5007 /*
5008 * For memsw, soft limits are hard to implement in terms
5009 * of semantics, for now, we support soft limits for
5010 * control without swap
5011 */
5012 if (type == _MEM)
5013 ret = res_counter_set_soft_limit(&memcg->res, val);
5014 else
5015 ret = -EINVAL;
5016 break;
628f4235
KH
5017 default:
5018 ret = -EINVAL; /* should be BUG() ? */
5019 break;
5020 }
5021 return ret;
8cdea7c0
BS
5022}
5023
fee7b548
KH
5024static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5025 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5026{
fee7b548
KH
5027 unsigned long long min_limit, min_memsw_limit, tmp;
5028
5029 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5030 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5031 if (!memcg->use_hierarchy)
5032 goto out;
5033
63876986
TH
5034 while (css_parent(&memcg->css)) {
5035 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5036 if (!memcg->use_hierarchy)
5037 break;
5038 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5039 min_limit = min(min_limit, tmp);
5040 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5041 min_memsw_limit = min(min_memsw_limit, tmp);
5042 }
5043out:
5044 *mem_limit = min_limit;
5045 *memsw_limit = min_memsw_limit;
fee7b548
KH
5046}
5047
182446d0 5048static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5049{
182446d0 5050 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5051 int name;
5052 enum res_type type;
c84872e1 5053
8c7c6e34
KH
5054 type = MEMFILE_TYPE(event);
5055 name = MEMFILE_ATTR(event);
af36f906 5056
8c7c6e34 5057 switch (name) {
29f2a4da 5058 case RES_MAX_USAGE:
8c7c6e34 5059 if (type == _MEM)
c0ff4b85 5060 res_counter_reset_max(&memcg->res);
510fc4e1 5061 else if (type == _MEMSWAP)
c0ff4b85 5062 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5063 else if (type == _KMEM)
5064 res_counter_reset_max(&memcg->kmem);
5065 else
5066 return -EINVAL;
29f2a4da
PE
5067 break;
5068 case RES_FAILCNT:
8c7c6e34 5069 if (type == _MEM)
c0ff4b85 5070 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5071 else if (type == _MEMSWAP)
c0ff4b85 5072 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5073 else if (type == _KMEM)
5074 res_counter_reset_failcnt(&memcg->kmem);
5075 else
5076 return -EINVAL;
29f2a4da
PE
5077 break;
5078 }
f64c3f54 5079
85cc59db 5080 return 0;
c84872e1
PE
5081}
5082
182446d0 5083static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5084 struct cftype *cft)
5085{
182446d0 5086 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5087}
5088
02491447 5089#ifdef CONFIG_MMU
182446d0 5090static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5091 struct cftype *cft, u64 val)
5092{
182446d0 5093 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5094
5095 if (val >= (1 << NR_MOVE_TYPE))
5096 return -EINVAL;
ee5e8472 5097
7dc74be0 5098 /*
ee5e8472
GC
5099 * No kind of locking is needed in here, because ->can_attach() will
5100 * check this value once in the beginning of the process, and then carry
5101 * on with stale data. This means that changes to this value will only
5102 * affect task migrations starting after the change.
7dc74be0 5103 */
c0ff4b85 5104 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5105 return 0;
5106}
02491447 5107#else
182446d0 5108static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5109 struct cftype *cft, u64 val)
5110{
5111 return -ENOSYS;
5112}
5113#endif
7dc74be0 5114
406eb0c9 5115#ifdef CONFIG_NUMA
182446d0
TH
5116static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
5117 struct cftype *cft, struct seq_file *m)
406eb0c9
YH
5118{
5119 int nid;
5120 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5121 unsigned long node_nr;
182446d0 5122 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
406eb0c9 5123
d79154bb 5124 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5125 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5126 for_each_node_state(nid, N_MEMORY) {
d79154bb 5127 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5128 seq_printf(m, " N%d=%lu", nid, node_nr);
5129 }
5130 seq_putc(m, '\n');
5131
d79154bb 5132 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5133 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5134 for_each_node_state(nid, N_MEMORY) {
d79154bb 5135 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5136 LRU_ALL_FILE);
406eb0c9
YH
5137 seq_printf(m, " N%d=%lu", nid, node_nr);
5138 }
5139 seq_putc(m, '\n');
5140
d79154bb 5141 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5142 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5143 for_each_node_state(nid, N_MEMORY) {
d79154bb 5144 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5145 LRU_ALL_ANON);
406eb0c9
YH
5146 seq_printf(m, " N%d=%lu", nid, node_nr);
5147 }
5148 seq_putc(m, '\n');
5149
d79154bb 5150 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5151 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5152 for_each_node_state(nid, N_MEMORY) {
d79154bb 5153 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5154 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5155 seq_printf(m, " N%d=%lu", nid, node_nr);
5156 }
5157 seq_putc(m, '\n');
5158 return 0;
5159}
5160#endif /* CONFIG_NUMA */
5161
af7c4b0e
JW
5162static inline void mem_cgroup_lru_names_not_uptodate(void)
5163{
5164 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5165}
5166
182446d0 5167static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
78ccf5b5 5168 struct seq_file *m)
d2ceb9b7 5169{
182446d0 5170 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
af7c4b0e
JW
5171 struct mem_cgroup *mi;
5172 unsigned int i;
406eb0c9 5173
af7c4b0e 5174 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5175 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5176 continue;
af7c4b0e
JW
5177 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5178 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5179 }
7b854121 5180
af7c4b0e
JW
5181 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5182 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5183 mem_cgroup_read_events(memcg, i));
5184
5185 for (i = 0; i < NR_LRU_LISTS; i++)
5186 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5187 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5188
14067bb3 5189 /* Hierarchical information */
fee7b548
KH
5190 {
5191 unsigned long long limit, memsw_limit;
d79154bb 5192 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5193 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5194 if (do_swap_account)
78ccf5b5
JW
5195 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5196 memsw_limit);
fee7b548 5197 }
7f016ee8 5198
af7c4b0e
JW
5199 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5200 long long val = 0;
5201
bff6bb83 5202 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5203 continue;
af7c4b0e
JW
5204 for_each_mem_cgroup_tree(mi, memcg)
5205 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5206 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5207 }
5208
5209 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5210 unsigned long long val = 0;
5211
5212 for_each_mem_cgroup_tree(mi, memcg)
5213 val += mem_cgroup_read_events(mi, i);
5214 seq_printf(m, "total_%s %llu\n",
5215 mem_cgroup_events_names[i], val);
5216 }
5217
5218 for (i = 0; i < NR_LRU_LISTS; i++) {
5219 unsigned long long val = 0;
5220
5221 for_each_mem_cgroup_tree(mi, memcg)
5222 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5223 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5224 }
14067bb3 5225
7f016ee8 5226#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5227 {
5228 int nid, zid;
5229 struct mem_cgroup_per_zone *mz;
89abfab1 5230 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5231 unsigned long recent_rotated[2] = {0, 0};
5232 unsigned long recent_scanned[2] = {0, 0};
5233
5234 for_each_online_node(nid)
5235 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5236 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5237 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5238
89abfab1
HD
5239 recent_rotated[0] += rstat->recent_rotated[0];
5240 recent_rotated[1] += rstat->recent_rotated[1];
5241 recent_scanned[0] += rstat->recent_scanned[0];
5242 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5243 }
78ccf5b5
JW
5244 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5245 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5246 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5247 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5248 }
5249#endif
5250
d2ceb9b7
KH
5251 return 0;
5252}
5253
182446d0
TH
5254static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5255 struct cftype *cft)
a7885eb8 5256{
182446d0 5257 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5258
1f4c025b 5259 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5260}
5261
182446d0
TH
5262static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5263 struct cftype *cft, u64 val)
a7885eb8 5264{
182446d0 5265 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5266 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
a7885eb8 5267
63876986 5268 if (val > 100 || !parent)
a7885eb8
KM
5269 return -EINVAL;
5270
0999821b 5271 mutex_lock(&memcg_create_mutex);
068b38c1 5272
a7885eb8 5273 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5274 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5275 mutex_unlock(&memcg_create_mutex);
a7885eb8 5276 return -EINVAL;
068b38c1 5277 }
a7885eb8 5278
a7885eb8 5279 memcg->swappiness = val;
a7885eb8 5280
0999821b 5281 mutex_unlock(&memcg_create_mutex);
068b38c1 5282
a7885eb8
KM
5283 return 0;
5284}
5285
2e72b634
KS
5286static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5287{
5288 struct mem_cgroup_threshold_ary *t;
5289 u64 usage;
5290 int i;
5291
5292 rcu_read_lock();
5293 if (!swap)
2c488db2 5294 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5295 else
2c488db2 5296 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5297
5298 if (!t)
5299 goto unlock;
5300
5301 usage = mem_cgroup_usage(memcg, swap);
5302
5303 /*
748dad36 5304 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5305 * If it's not true, a threshold was crossed after last
5306 * call of __mem_cgroup_threshold().
5307 */
5407a562 5308 i = t->current_threshold;
2e72b634
KS
5309
5310 /*
5311 * Iterate backward over array of thresholds starting from
5312 * current_threshold and check if a threshold is crossed.
5313 * If none of thresholds below usage is crossed, we read
5314 * only one element of the array here.
5315 */
5316 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5317 eventfd_signal(t->entries[i].eventfd, 1);
5318
5319 /* i = current_threshold + 1 */
5320 i++;
5321
5322 /*
5323 * Iterate forward over array of thresholds starting from
5324 * current_threshold+1 and check if a threshold is crossed.
5325 * If none of thresholds above usage is crossed, we read
5326 * only one element of the array here.
5327 */
5328 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5329 eventfd_signal(t->entries[i].eventfd, 1);
5330
5331 /* Update current_threshold */
5407a562 5332 t->current_threshold = i - 1;
2e72b634
KS
5333unlock:
5334 rcu_read_unlock();
5335}
5336
5337static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5338{
ad4ca5f4
KS
5339 while (memcg) {
5340 __mem_cgroup_threshold(memcg, false);
5341 if (do_swap_account)
5342 __mem_cgroup_threshold(memcg, true);
5343
5344 memcg = parent_mem_cgroup(memcg);
5345 }
2e72b634
KS
5346}
5347
5348static int compare_thresholds(const void *a, const void *b)
5349{
5350 const struct mem_cgroup_threshold *_a = a;
5351 const struct mem_cgroup_threshold *_b = b;
5352
2bff24a3
GT
5353 if (_a->threshold > _b->threshold)
5354 return 1;
5355
5356 if (_a->threshold < _b->threshold)
5357 return -1;
5358
5359 return 0;
2e72b634
KS
5360}
5361
c0ff4b85 5362static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5363{
5364 struct mem_cgroup_eventfd_list *ev;
5365
c0ff4b85 5366 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5367 eventfd_signal(ev->eventfd, 1);
5368 return 0;
5369}
5370
c0ff4b85 5371static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5372{
7d74b06f
KH
5373 struct mem_cgroup *iter;
5374
c0ff4b85 5375 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5376 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5377}
5378
81eeaf04 5379static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
9490ff27 5380 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634 5381{
81eeaf04 5382 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5383 struct mem_cgroup_thresholds *thresholds;
5384 struct mem_cgroup_threshold_ary *new;
86ae53e1 5385 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5386 u64 threshold, usage;
2c488db2 5387 int i, size, ret;
2e72b634
KS
5388
5389 ret = res_counter_memparse_write_strategy(args, &threshold);
5390 if (ret)
5391 return ret;
5392
5393 mutex_lock(&memcg->thresholds_lock);
2c488db2 5394
2e72b634 5395 if (type == _MEM)
2c488db2 5396 thresholds = &memcg->thresholds;
2e72b634 5397 else if (type == _MEMSWAP)
2c488db2 5398 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5399 else
5400 BUG();
5401
5402 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5403
5404 /* Check if a threshold crossed before adding a new one */
2c488db2 5405 if (thresholds->primary)
2e72b634
KS
5406 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5407
2c488db2 5408 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5409
5410 /* Allocate memory for new array of thresholds */
2c488db2 5411 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5412 GFP_KERNEL);
2c488db2 5413 if (!new) {
2e72b634
KS
5414 ret = -ENOMEM;
5415 goto unlock;
5416 }
2c488db2 5417 new->size = size;
2e72b634
KS
5418
5419 /* Copy thresholds (if any) to new array */
2c488db2
KS
5420 if (thresholds->primary) {
5421 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5422 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5423 }
5424
2e72b634 5425 /* Add new threshold */
2c488db2
KS
5426 new->entries[size - 1].eventfd = eventfd;
5427 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5428
5429 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5430 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5431 compare_thresholds, NULL);
5432
5433 /* Find current threshold */
2c488db2 5434 new->current_threshold = -1;
2e72b634 5435 for (i = 0; i < size; i++) {
748dad36 5436 if (new->entries[i].threshold <= usage) {
2e72b634 5437 /*
2c488db2
KS
5438 * new->current_threshold will not be used until
5439 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5440 * it here.
5441 */
2c488db2 5442 ++new->current_threshold;
748dad36
SZ
5443 } else
5444 break;
2e72b634
KS
5445 }
5446
2c488db2
KS
5447 /* Free old spare buffer and save old primary buffer as spare */
5448 kfree(thresholds->spare);
5449 thresholds->spare = thresholds->primary;
5450
5451 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5452
907860ed 5453 /* To be sure that nobody uses thresholds */
2e72b634
KS
5454 synchronize_rcu();
5455
2e72b634
KS
5456unlock:
5457 mutex_unlock(&memcg->thresholds_lock);
5458
5459 return ret;
5460}
5461
81eeaf04 5462static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
9490ff27 5463 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634 5464{
81eeaf04 5465 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2c488db2
KS
5466 struct mem_cgroup_thresholds *thresholds;
5467 struct mem_cgroup_threshold_ary *new;
86ae53e1 5468 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5469 u64 usage;
2c488db2 5470 int i, j, size;
2e72b634
KS
5471
5472 mutex_lock(&memcg->thresholds_lock);
5473 if (type == _MEM)
2c488db2 5474 thresholds = &memcg->thresholds;
2e72b634 5475 else if (type == _MEMSWAP)
2c488db2 5476 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5477 else
5478 BUG();
5479
371528ca
AV
5480 if (!thresholds->primary)
5481 goto unlock;
5482
2e72b634
KS
5483 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5484
5485 /* Check if a threshold crossed before removing */
5486 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5487
5488 /* Calculate new number of threshold */
2c488db2
KS
5489 size = 0;
5490 for (i = 0; i < thresholds->primary->size; i++) {
5491 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5492 size++;
5493 }
5494
2c488db2 5495 new = thresholds->spare;
907860ed 5496
2e72b634
KS
5497 /* Set thresholds array to NULL if we don't have thresholds */
5498 if (!size) {
2c488db2
KS
5499 kfree(new);
5500 new = NULL;
907860ed 5501 goto swap_buffers;
2e72b634
KS
5502 }
5503
2c488db2 5504 new->size = size;
2e72b634
KS
5505
5506 /* Copy thresholds and find current threshold */
2c488db2
KS
5507 new->current_threshold = -1;
5508 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5509 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5510 continue;
5511
2c488db2 5512 new->entries[j] = thresholds->primary->entries[i];
748dad36 5513 if (new->entries[j].threshold <= usage) {
2e72b634 5514 /*
2c488db2 5515 * new->current_threshold will not be used
2e72b634
KS
5516 * until rcu_assign_pointer(), so it's safe to increment
5517 * it here.
5518 */
2c488db2 5519 ++new->current_threshold;
2e72b634
KS
5520 }
5521 j++;
5522 }
5523
907860ed 5524swap_buffers:
2c488db2
KS
5525 /* Swap primary and spare array */
5526 thresholds->spare = thresholds->primary;
8c757763
SZ
5527 /* If all events are unregistered, free the spare array */
5528 if (!new) {
5529 kfree(thresholds->spare);
5530 thresholds->spare = NULL;
5531 }
5532
2c488db2 5533 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5534
907860ed 5535 /* To be sure that nobody uses thresholds */
2e72b634 5536 synchronize_rcu();
371528ca 5537unlock:
2e72b634 5538 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5539}
c1e862c1 5540
81eeaf04 5541static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
9490ff27
KH
5542 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5543{
81eeaf04 5544 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5545 struct mem_cgroup_eventfd_list *event;
86ae53e1 5546 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5547
5548 BUG_ON(type != _OOM_TYPE);
5549 event = kmalloc(sizeof(*event), GFP_KERNEL);
5550 if (!event)
5551 return -ENOMEM;
5552
1af8efe9 5553 spin_lock(&memcg_oom_lock);
9490ff27
KH
5554
5555 event->eventfd = eventfd;
5556 list_add(&event->list, &memcg->oom_notify);
5557
5558 /* already in OOM ? */
79dfdacc 5559 if (atomic_read(&memcg->under_oom))
9490ff27 5560 eventfd_signal(eventfd, 1);
1af8efe9 5561 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5562
5563 return 0;
5564}
5565
81eeaf04 5566static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
9490ff27
KH
5567 struct cftype *cft, struct eventfd_ctx *eventfd)
5568{
81eeaf04 5569 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
9490ff27 5570 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5571 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5572
5573 BUG_ON(type != _OOM_TYPE);
5574
1af8efe9 5575 spin_lock(&memcg_oom_lock);
9490ff27 5576
c0ff4b85 5577 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5578 if (ev->eventfd == eventfd) {
5579 list_del(&ev->list);
5580 kfree(ev);
5581 }
5582 }
5583
1af8efe9 5584 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5585}
5586
182446d0 5587static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
3c11ecf4
KH
5588 struct cftype *cft, struct cgroup_map_cb *cb)
5589{
182446d0 5590 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4 5591
c0ff4b85 5592 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5593
c0ff4b85 5594 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5595 cb->fill(cb, "under_oom", 1);
5596 else
5597 cb->fill(cb, "under_oom", 0);
5598 return 0;
5599}
5600
182446d0 5601static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5602 struct cftype *cft, u64 val)
5603{
182446d0 5604 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 5605 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
3c11ecf4
KH
5606
5607 /* cannot set to root cgroup and only 0 and 1 are allowed */
63876986 5608 if (!parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
5609 return -EINVAL;
5610
0999821b 5611 mutex_lock(&memcg_create_mutex);
3c11ecf4 5612 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5613 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5614 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5615 return -EINVAL;
5616 }
c0ff4b85 5617 memcg->oom_kill_disable = val;
4d845ebf 5618 if (!val)
c0ff4b85 5619 memcg_oom_recover(memcg);
0999821b 5620 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5621 return 0;
5622}
5623
c255a458 5624#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5625static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5626{
55007d84
GC
5627 int ret;
5628
2633d7a0 5629 memcg->kmemcg_id = -1;
55007d84
GC
5630 ret = memcg_propagate_kmem(memcg);
5631 if (ret)
5632 return ret;
2633d7a0 5633
1d62e436 5634 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5635}
e5671dfa 5636
10d5ebf4 5637static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5638{
1d62e436 5639 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5640}
5641
5642static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5643{
5644 if (!memcg_kmem_is_active(memcg))
5645 return;
5646
5647 /*
5648 * kmem charges can outlive the cgroup. In the case of slab
5649 * pages, for instance, a page contain objects from various
5650 * processes. As we prevent from taking a reference for every
5651 * such allocation we have to be careful when doing uncharge
5652 * (see memcg_uncharge_kmem) and here during offlining.
5653 *
5654 * The idea is that that only the _last_ uncharge which sees
5655 * the dead memcg will drop the last reference. An additional
5656 * reference is taken here before the group is marked dead
5657 * which is then paired with css_put during uncharge resp. here.
5658 *
5659 * Although this might sound strange as this path is called from
5660 * css_offline() when the referencemight have dropped down to 0
5661 * and shouldn't be incremented anymore (css_tryget would fail)
5662 * we do not have other options because of the kmem allocations
5663 * lifetime.
5664 */
5665 css_get(&memcg->css);
7de37682
GC
5666
5667 memcg_kmem_mark_dead(memcg);
5668
5669 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5670 return;
5671
7de37682 5672 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5673 css_put(&memcg->css);
d1a4c0b3 5674}
e5671dfa 5675#else
cbe128e3 5676static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5677{
5678 return 0;
5679}
d1a4c0b3 5680
10d5ebf4
LZ
5681static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5682{
5683}
5684
5685static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5686{
5687}
e5671dfa
GC
5688#endif
5689
8cdea7c0
BS
5690static struct cftype mem_cgroup_files[] = {
5691 {
0eea1030 5692 .name = "usage_in_bytes",
8c7c6e34 5693 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5694 .read = mem_cgroup_read,
9490ff27
KH
5695 .register_event = mem_cgroup_usage_register_event,
5696 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5697 },
c84872e1
PE
5698 {
5699 .name = "max_usage_in_bytes",
8c7c6e34 5700 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5701 .trigger = mem_cgroup_reset,
af36f906 5702 .read = mem_cgroup_read,
c84872e1 5703 },
8cdea7c0 5704 {
0eea1030 5705 .name = "limit_in_bytes",
8c7c6e34 5706 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5707 .write_string = mem_cgroup_write,
af36f906 5708 .read = mem_cgroup_read,
8cdea7c0 5709 },
296c81d8
BS
5710 {
5711 .name = "soft_limit_in_bytes",
5712 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5713 .write_string = mem_cgroup_write,
af36f906 5714 .read = mem_cgroup_read,
296c81d8 5715 },
8cdea7c0
BS
5716 {
5717 .name = "failcnt",
8c7c6e34 5718 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5719 .trigger = mem_cgroup_reset,
af36f906 5720 .read = mem_cgroup_read,
8cdea7c0 5721 },
d2ceb9b7
KH
5722 {
5723 .name = "stat",
ab215884 5724 .read_seq_string = memcg_stat_show,
d2ceb9b7 5725 },
c1e862c1
KH
5726 {
5727 .name = "force_empty",
5728 .trigger = mem_cgroup_force_empty_write,
5729 },
18f59ea7
BS
5730 {
5731 .name = "use_hierarchy",
f00baae7 5732 .flags = CFTYPE_INSANE,
18f59ea7
BS
5733 .write_u64 = mem_cgroup_hierarchy_write,
5734 .read_u64 = mem_cgroup_hierarchy_read,
5735 },
a7885eb8
KM
5736 {
5737 .name = "swappiness",
5738 .read_u64 = mem_cgroup_swappiness_read,
5739 .write_u64 = mem_cgroup_swappiness_write,
5740 },
7dc74be0
DN
5741 {
5742 .name = "move_charge_at_immigrate",
5743 .read_u64 = mem_cgroup_move_charge_read,
5744 .write_u64 = mem_cgroup_move_charge_write,
5745 },
9490ff27
KH
5746 {
5747 .name = "oom_control",
3c11ecf4
KH
5748 .read_map = mem_cgroup_oom_control_read,
5749 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5750 .register_event = mem_cgroup_oom_register_event,
5751 .unregister_event = mem_cgroup_oom_unregister_event,
5752 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5753 },
70ddf637
AV
5754 {
5755 .name = "pressure_level",
5756 .register_event = vmpressure_register_event,
5757 .unregister_event = vmpressure_unregister_event,
5758 },
406eb0c9
YH
5759#ifdef CONFIG_NUMA
5760 {
5761 .name = "numa_stat",
ab215884 5762 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
5763 },
5764#endif
510fc4e1
GC
5765#ifdef CONFIG_MEMCG_KMEM
5766 {
5767 .name = "kmem.limit_in_bytes",
5768 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5769 .write_string = mem_cgroup_write,
5770 .read = mem_cgroup_read,
5771 },
5772 {
5773 .name = "kmem.usage_in_bytes",
5774 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5775 .read = mem_cgroup_read,
5776 },
5777 {
5778 .name = "kmem.failcnt",
5779 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5780 .trigger = mem_cgroup_reset,
5781 .read = mem_cgroup_read,
5782 },
5783 {
5784 .name = "kmem.max_usage_in_bytes",
5785 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5786 .trigger = mem_cgroup_reset,
5787 .read = mem_cgroup_read,
5788 },
749c5415
GC
5789#ifdef CONFIG_SLABINFO
5790 {
5791 .name = "kmem.slabinfo",
5792 .read_seq_string = mem_cgroup_slabinfo_read,
5793 },
5794#endif
8c7c6e34 5795#endif
6bc10349 5796 { }, /* terminate */
af36f906 5797};
8c7c6e34 5798
2d11085e
MH
5799#ifdef CONFIG_MEMCG_SWAP
5800static struct cftype memsw_cgroup_files[] = {
5801 {
5802 .name = "memsw.usage_in_bytes",
5803 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5804 .read = mem_cgroup_read,
5805 .register_event = mem_cgroup_usage_register_event,
5806 .unregister_event = mem_cgroup_usage_unregister_event,
5807 },
5808 {
5809 .name = "memsw.max_usage_in_bytes",
5810 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5811 .trigger = mem_cgroup_reset,
5812 .read = mem_cgroup_read,
5813 },
5814 {
5815 .name = "memsw.limit_in_bytes",
5816 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5817 .write_string = mem_cgroup_write,
5818 .read = mem_cgroup_read,
5819 },
5820 {
5821 .name = "memsw.failcnt",
5822 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5823 .trigger = mem_cgroup_reset,
5824 .read = mem_cgroup_read,
5825 },
5826 { }, /* terminate */
5827};
5828#endif
c0ff4b85 5829static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5830{
5831 struct mem_cgroup_per_node *pn;
1ecaab2b 5832 struct mem_cgroup_per_zone *mz;
41e3355d 5833 int zone, tmp = node;
1ecaab2b
KH
5834 /*
5835 * This routine is called against possible nodes.
5836 * But it's BUG to call kmalloc() against offline node.
5837 *
5838 * TODO: this routine can waste much memory for nodes which will
5839 * never be onlined. It's better to use memory hotplug callback
5840 * function.
5841 */
41e3355d
KH
5842 if (!node_state(node, N_NORMAL_MEMORY))
5843 tmp = -1;
17295c88 5844 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5845 if (!pn)
5846 return 1;
1ecaab2b 5847
1ecaab2b
KH
5848 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5849 mz = &pn->zoneinfo[zone];
bea8c150 5850 lruvec_init(&mz->lruvec);
d79154bb 5851 mz->memcg = memcg;
1ecaab2b 5852 }
54f72fe0 5853 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5854 return 0;
5855}
5856
c0ff4b85 5857static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5858{
54f72fe0 5859 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
5860}
5861
33327948
KH
5862static struct mem_cgroup *mem_cgroup_alloc(void)
5863{
d79154bb 5864 struct mem_cgroup *memcg;
45cf7ebd 5865 size_t size = memcg_size();
33327948 5866
45cf7ebd 5867 /* Can be very big if nr_node_ids is very big */
c8dad2bb 5868 if (size < PAGE_SIZE)
d79154bb 5869 memcg = kzalloc(size, GFP_KERNEL);
33327948 5870 else
d79154bb 5871 memcg = vzalloc(size);
33327948 5872
d79154bb 5873 if (!memcg)
e7bbcdf3
DC
5874 return NULL;
5875
d79154bb
HD
5876 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5877 if (!memcg->stat)
d2e61b8d 5878 goto out_free;
d79154bb
HD
5879 spin_lock_init(&memcg->pcp_counter_lock);
5880 return memcg;
d2e61b8d
DC
5881
5882out_free:
5883 if (size < PAGE_SIZE)
d79154bb 5884 kfree(memcg);
d2e61b8d 5885 else
d79154bb 5886 vfree(memcg);
d2e61b8d 5887 return NULL;
33327948
KH
5888}
5889
59927fb9 5890/*
c8b2a36f
GC
5891 * At destroying mem_cgroup, references from swap_cgroup can remain.
5892 * (scanning all at force_empty is too costly...)
5893 *
5894 * Instead of clearing all references at force_empty, we remember
5895 * the number of reference from swap_cgroup and free mem_cgroup when
5896 * it goes down to 0.
5897 *
5898 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 5899 */
c8b2a36f
GC
5900
5901static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5902{
c8b2a36f 5903 int node;
45cf7ebd 5904 size_t size = memcg_size();
59927fb9 5905
c8b2a36f
GC
5906 free_css_id(&mem_cgroup_subsys, &memcg->css);
5907
5908 for_each_node(node)
5909 free_mem_cgroup_per_zone_info(memcg, node);
5910
5911 free_percpu(memcg->stat);
5912
3f134619
GC
5913 /*
5914 * We need to make sure that (at least for now), the jump label
5915 * destruction code runs outside of the cgroup lock. This is because
5916 * get_online_cpus(), which is called from the static_branch update,
5917 * can't be called inside the cgroup_lock. cpusets are the ones
5918 * enforcing this dependency, so if they ever change, we might as well.
5919 *
5920 * schedule_work() will guarantee this happens. Be careful if you need
5921 * to move this code around, and make sure it is outside
5922 * the cgroup_lock.
5923 */
a8964b9b 5924 disarm_static_keys(memcg);
3afe36b1
GC
5925 if (size < PAGE_SIZE)
5926 kfree(memcg);
5927 else
5928 vfree(memcg);
59927fb9 5929}
3afe36b1 5930
7bcc1bb1
DN
5931/*
5932 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5933 */
e1aab161 5934struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 5935{
c0ff4b85 5936 if (!memcg->res.parent)
7bcc1bb1 5937 return NULL;
c0ff4b85 5938 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 5939}
e1aab161 5940EXPORT_SYMBOL(parent_mem_cgroup);
33327948 5941
0eb253e2 5942static struct cgroup_subsys_state * __ref
eb95419b 5943mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 5944{
d142e3e6 5945 struct mem_cgroup *memcg;
04046e1a 5946 long error = -ENOMEM;
6d12e2d8 5947 int node;
8cdea7c0 5948
c0ff4b85
R
5949 memcg = mem_cgroup_alloc();
5950 if (!memcg)
04046e1a 5951 return ERR_PTR(error);
78fb7466 5952
3ed28fa1 5953 for_each_node(node)
c0ff4b85 5954 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5955 goto free_out;
f64c3f54 5956
c077719b 5957 /* root ? */
eb95419b 5958 if (parent_css == NULL) {
a41c58a6 5959 root_mem_cgroup = memcg;
d142e3e6
GC
5960 res_counter_init(&memcg->res, NULL);
5961 res_counter_init(&memcg->memsw, NULL);
5962 res_counter_init(&memcg->kmem, NULL);
18f59ea7 5963 }
28dbc4b6 5964
d142e3e6
GC
5965 memcg->last_scanned_node = MAX_NUMNODES;
5966 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5967 memcg->move_charge_at_immigrate = 0;
5968 mutex_init(&memcg->thresholds_lock);
5969 spin_lock_init(&memcg->move_lock);
70ddf637 5970 vmpressure_init(&memcg->vmpressure);
7d910c05 5971 spin_lock_init(&memcg->soft_lock);
d142e3e6
GC
5972
5973 return &memcg->css;
5974
5975free_out:
5976 __mem_cgroup_free(memcg);
5977 return ERR_PTR(error);
5978}
5979
5980static int
eb95419b 5981mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 5982{
eb95419b
TH
5983 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5984 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6
GC
5985 int error = 0;
5986
63876986 5987 if (!parent)
d142e3e6
GC
5988 return 0;
5989
0999821b 5990 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
5991
5992 memcg->use_hierarchy = parent->use_hierarchy;
5993 memcg->oom_kill_disable = parent->oom_kill_disable;
5994 memcg->swappiness = mem_cgroup_swappiness(parent);
5995
5996 if (parent->use_hierarchy) {
c0ff4b85
R
5997 res_counter_init(&memcg->res, &parent->res);
5998 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 5999 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6000
7bcc1bb1 6001 /*
8d76a979
LZ
6002 * No need to take a reference to the parent because cgroup
6003 * core guarantees its existence.
7bcc1bb1 6004 */
18f59ea7 6005 } else {
c0ff4b85
R
6006 res_counter_init(&memcg->res, NULL);
6007 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6008 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6009 /*
6010 * Deeper hierachy with use_hierarchy == false doesn't make
6011 * much sense so let cgroup subsystem know about this
6012 * unfortunate state in our controller.
6013 */
d142e3e6 6014 if (parent != root_mem_cgroup)
8c7f6edb 6015 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6016 }
cbe128e3
GC
6017
6018 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6019 mutex_unlock(&memcg_create_mutex);
d142e3e6 6020 return error;
8cdea7c0
BS
6021}
6022
5f578161
MH
6023/*
6024 * Announce all parents that a group from their hierarchy is gone.
6025 */
6026static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6027{
6028 struct mem_cgroup *parent = memcg;
6029
6030 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6031 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6032
6033 /*
6034 * if the root memcg is not hierarchical we have to check it
6035 * explicitely.
6036 */
6037 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6038 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6039}
6040
eb95419b 6041static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6042{
eb95419b 6043 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ec64f515 6044
10d5ebf4
LZ
6045 kmem_cgroup_css_offline(memcg);
6046
5f578161 6047 mem_cgroup_invalidate_reclaim_iterators(memcg);
ab5196c2 6048 mem_cgroup_reparent_charges(memcg);
7d910c05
MH
6049 if (memcg->soft_contributed) {
6050 while ((memcg = parent_mem_cgroup(memcg)))
6051 atomic_dec(&memcg->children_in_excess);
1be171d6
MH
6052
6053 if (memcg != root_mem_cgroup && !root_mem_cgroup->use_hierarchy)
6054 atomic_dec(&root_mem_cgroup->children_in_excess);
7d910c05 6055 }
1f458cbf 6056 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6057 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6058}
6059
eb95419b 6060static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6061{
eb95419b 6062 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 6063
10d5ebf4 6064 memcg_destroy_kmem(memcg);
465939a1 6065 __mem_cgroup_free(memcg);
8cdea7c0
BS
6066}
6067
02491447 6068#ifdef CONFIG_MMU
7dc74be0 6069/* Handlers for move charge at task migration. */
854ffa8d
DN
6070#define PRECHARGE_COUNT_AT_ONCE 256
6071static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6072{
854ffa8d
DN
6073 int ret = 0;
6074 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6075 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6076
c0ff4b85 6077 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6078 mc.precharge += count;
6079 /* we don't need css_get for root */
6080 return ret;
6081 }
6082 /* try to charge at once */
6083 if (count > 1) {
6084 struct res_counter *dummy;
6085 /*
c0ff4b85 6086 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6087 * by cgroup_lock_live_cgroup() that it is not removed and we
6088 * are still under the same cgroup_mutex. So we can postpone
6089 * css_get().
6090 */
c0ff4b85 6091 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6092 goto one_by_one;
c0ff4b85 6093 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6094 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6095 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6096 goto one_by_one;
6097 }
6098 mc.precharge += count;
854ffa8d
DN
6099 return ret;
6100 }
6101one_by_one:
6102 /* fall back to one by one charge */
6103 while (count--) {
6104 if (signal_pending(current)) {
6105 ret = -EINTR;
6106 break;
6107 }
6108 if (!batch_count--) {
6109 batch_count = PRECHARGE_COUNT_AT_ONCE;
6110 cond_resched();
6111 }
c0ff4b85
R
6112 ret = __mem_cgroup_try_charge(NULL,
6113 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6114 if (ret)
854ffa8d 6115 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6116 return ret;
854ffa8d
DN
6117 mc.precharge++;
6118 }
4ffef5fe
DN
6119 return ret;
6120}
6121
6122/**
8d32ff84 6123 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6124 * @vma: the vma the pte to be checked belongs
6125 * @addr: the address corresponding to the pte to be checked
6126 * @ptent: the pte to be checked
02491447 6127 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6128 *
6129 * Returns
6130 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6131 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6132 * move charge. if @target is not NULL, the page is stored in target->page
6133 * with extra refcnt got(Callers should handle it).
02491447
DN
6134 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6135 * target for charge migration. if @target is not NULL, the entry is stored
6136 * in target->ent.
4ffef5fe
DN
6137 *
6138 * Called with pte lock held.
6139 */
4ffef5fe
DN
6140union mc_target {
6141 struct page *page;
02491447 6142 swp_entry_t ent;
4ffef5fe
DN
6143};
6144
4ffef5fe 6145enum mc_target_type {
8d32ff84 6146 MC_TARGET_NONE = 0,
4ffef5fe 6147 MC_TARGET_PAGE,
02491447 6148 MC_TARGET_SWAP,
4ffef5fe
DN
6149};
6150
90254a65
DN
6151static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6152 unsigned long addr, pte_t ptent)
4ffef5fe 6153{
90254a65 6154 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6155
90254a65
DN
6156 if (!page || !page_mapped(page))
6157 return NULL;
6158 if (PageAnon(page)) {
6159 /* we don't move shared anon */
4b91355e 6160 if (!move_anon())
90254a65 6161 return NULL;
87946a72
DN
6162 } else if (!move_file())
6163 /* we ignore mapcount for file pages */
90254a65
DN
6164 return NULL;
6165 if (!get_page_unless_zero(page))
6166 return NULL;
6167
6168 return page;
6169}
6170
4b91355e 6171#ifdef CONFIG_SWAP
90254a65
DN
6172static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6173 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6174{
90254a65
DN
6175 struct page *page = NULL;
6176 swp_entry_t ent = pte_to_swp_entry(ptent);
6177
6178 if (!move_anon() || non_swap_entry(ent))
6179 return NULL;
4b91355e
KH
6180 /*
6181 * Because lookup_swap_cache() updates some statistics counter,
6182 * we call find_get_page() with swapper_space directly.
6183 */
33806f06 6184 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6185 if (do_swap_account)
6186 entry->val = ent.val;
6187
6188 return page;
6189}
4b91355e
KH
6190#else
6191static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6192 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6193{
6194 return NULL;
6195}
6196#endif
90254a65 6197
87946a72
DN
6198static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6199 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6200{
6201 struct page *page = NULL;
87946a72
DN
6202 struct address_space *mapping;
6203 pgoff_t pgoff;
6204
6205 if (!vma->vm_file) /* anonymous vma */
6206 return NULL;
6207 if (!move_file())
6208 return NULL;
6209
87946a72
DN
6210 mapping = vma->vm_file->f_mapping;
6211 if (pte_none(ptent))
6212 pgoff = linear_page_index(vma, addr);
6213 else /* pte_file(ptent) is true */
6214 pgoff = pte_to_pgoff(ptent);
6215
6216 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6217 page = find_get_page(mapping, pgoff);
6218
6219#ifdef CONFIG_SWAP
6220 /* shmem/tmpfs may report page out on swap: account for that too. */
6221 if (radix_tree_exceptional_entry(page)) {
6222 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6223 if (do_swap_account)
aa3b1895 6224 *entry = swap;
33806f06 6225 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6226 }
aa3b1895 6227#endif
87946a72
DN
6228 return page;
6229}
6230
8d32ff84 6231static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6232 unsigned long addr, pte_t ptent, union mc_target *target)
6233{
6234 struct page *page = NULL;
6235 struct page_cgroup *pc;
8d32ff84 6236 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6237 swp_entry_t ent = { .val = 0 };
6238
6239 if (pte_present(ptent))
6240 page = mc_handle_present_pte(vma, addr, ptent);
6241 else if (is_swap_pte(ptent))
6242 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6243 else if (pte_none(ptent) || pte_file(ptent))
6244 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6245
6246 if (!page && !ent.val)
8d32ff84 6247 return ret;
02491447
DN
6248 if (page) {
6249 pc = lookup_page_cgroup(page);
6250 /*
6251 * Do only loose check w/o page_cgroup lock.
6252 * mem_cgroup_move_account() checks the pc is valid or not under
6253 * the lock.
6254 */
6255 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6256 ret = MC_TARGET_PAGE;
6257 if (target)
6258 target->page = page;
6259 }
6260 if (!ret || !target)
6261 put_page(page);
6262 }
90254a65
DN
6263 /* There is a swap entry and a page doesn't exist or isn't charged */
6264 if (ent.val && !ret &&
9fb4b7cc 6265 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6266 ret = MC_TARGET_SWAP;
6267 if (target)
6268 target->ent = ent;
4ffef5fe 6269 }
4ffef5fe
DN
6270 return ret;
6271}
6272
12724850
NH
6273#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6274/*
6275 * We don't consider swapping or file mapped pages because THP does not
6276 * support them for now.
6277 * Caller should make sure that pmd_trans_huge(pmd) is true.
6278 */
6279static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6280 unsigned long addr, pmd_t pmd, union mc_target *target)
6281{
6282 struct page *page = NULL;
6283 struct page_cgroup *pc;
6284 enum mc_target_type ret = MC_TARGET_NONE;
6285
6286 page = pmd_page(pmd);
6287 VM_BUG_ON(!page || !PageHead(page));
6288 if (!move_anon())
6289 return ret;
6290 pc = lookup_page_cgroup(page);
6291 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6292 ret = MC_TARGET_PAGE;
6293 if (target) {
6294 get_page(page);
6295 target->page = page;
6296 }
6297 }
6298 return ret;
6299}
6300#else
6301static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6302 unsigned long addr, pmd_t pmd, union mc_target *target)
6303{
6304 return MC_TARGET_NONE;
6305}
6306#endif
6307
4ffef5fe
DN
6308static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6309 unsigned long addr, unsigned long end,
6310 struct mm_walk *walk)
6311{
6312 struct vm_area_struct *vma = walk->private;
6313 pte_t *pte;
6314 spinlock_t *ptl;
6315
12724850
NH
6316 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6317 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6318 mc.precharge += HPAGE_PMD_NR;
6319 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6320 return 0;
12724850 6321 }
03319327 6322
45f83cef
AA
6323 if (pmd_trans_unstable(pmd))
6324 return 0;
4ffef5fe
DN
6325 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6326 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6327 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6328 mc.precharge++; /* increment precharge temporarily */
6329 pte_unmap_unlock(pte - 1, ptl);
6330 cond_resched();
6331
7dc74be0
DN
6332 return 0;
6333}
6334
4ffef5fe
DN
6335static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6336{
6337 unsigned long precharge;
6338 struct vm_area_struct *vma;
6339
dfe076b0 6340 down_read(&mm->mmap_sem);
4ffef5fe
DN
6341 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6342 struct mm_walk mem_cgroup_count_precharge_walk = {
6343 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6344 .mm = mm,
6345 .private = vma,
6346 };
6347 if (is_vm_hugetlb_page(vma))
6348 continue;
4ffef5fe
DN
6349 walk_page_range(vma->vm_start, vma->vm_end,
6350 &mem_cgroup_count_precharge_walk);
6351 }
dfe076b0 6352 up_read(&mm->mmap_sem);
4ffef5fe
DN
6353
6354 precharge = mc.precharge;
6355 mc.precharge = 0;
6356
6357 return precharge;
6358}
6359
4ffef5fe
DN
6360static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6361{
dfe076b0
DN
6362 unsigned long precharge = mem_cgroup_count_precharge(mm);
6363
6364 VM_BUG_ON(mc.moving_task);
6365 mc.moving_task = current;
6366 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6367}
6368
dfe076b0
DN
6369/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6370static void __mem_cgroup_clear_mc(void)
4ffef5fe 6371{
2bd9bb20
KH
6372 struct mem_cgroup *from = mc.from;
6373 struct mem_cgroup *to = mc.to;
4050377b 6374 int i;
2bd9bb20 6375
4ffef5fe 6376 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6377 if (mc.precharge) {
6378 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6379 mc.precharge = 0;
6380 }
6381 /*
6382 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6383 * we must uncharge here.
6384 */
6385 if (mc.moved_charge) {
6386 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6387 mc.moved_charge = 0;
4ffef5fe 6388 }
483c30b5
DN
6389 /* we must fixup refcnts and charges */
6390 if (mc.moved_swap) {
483c30b5
DN
6391 /* uncharge swap account from the old cgroup */
6392 if (!mem_cgroup_is_root(mc.from))
6393 res_counter_uncharge(&mc.from->memsw,
6394 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6395
6396 for (i = 0; i < mc.moved_swap; i++)
6397 css_put(&mc.from->css);
483c30b5
DN
6398
6399 if (!mem_cgroup_is_root(mc.to)) {
6400 /*
6401 * we charged both to->res and to->memsw, so we should
6402 * uncharge to->res.
6403 */
6404 res_counter_uncharge(&mc.to->res,
6405 PAGE_SIZE * mc.moved_swap);
483c30b5 6406 }
4050377b 6407 /* we've already done css_get(mc.to) */
483c30b5
DN
6408 mc.moved_swap = 0;
6409 }
dfe076b0
DN
6410 memcg_oom_recover(from);
6411 memcg_oom_recover(to);
6412 wake_up_all(&mc.waitq);
6413}
6414
6415static void mem_cgroup_clear_mc(void)
6416{
6417 struct mem_cgroup *from = mc.from;
6418
6419 /*
6420 * we must clear moving_task before waking up waiters at the end of
6421 * task migration.
6422 */
6423 mc.moving_task = NULL;
6424 __mem_cgroup_clear_mc();
2bd9bb20 6425 spin_lock(&mc.lock);
4ffef5fe
DN
6426 mc.from = NULL;
6427 mc.to = NULL;
2bd9bb20 6428 spin_unlock(&mc.lock);
32047e2a 6429 mem_cgroup_end_move(from);
4ffef5fe
DN
6430}
6431
eb95419b 6432static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6433 struct cgroup_taskset *tset)
7dc74be0 6434{
2f7ee569 6435 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6436 int ret = 0;
eb95419b 6437 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6438 unsigned long move_charge_at_immigrate;
7dc74be0 6439
ee5e8472
GC
6440 /*
6441 * We are now commited to this value whatever it is. Changes in this
6442 * tunable will only affect upcoming migrations, not the current one.
6443 * So we need to save it, and keep it going.
6444 */
6445 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6446 if (move_charge_at_immigrate) {
7dc74be0
DN
6447 struct mm_struct *mm;
6448 struct mem_cgroup *from = mem_cgroup_from_task(p);
6449
c0ff4b85 6450 VM_BUG_ON(from == memcg);
7dc74be0
DN
6451
6452 mm = get_task_mm(p);
6453 if (!mm)
6454 return 0;
7dc74be0 6455 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6456 if (mm->owner == p) {
6457 VM_BUG_ON(mc.from);
6458 VM_BUG_ON(mc.to);
6459 VM_BUG_ON(mc.precharge);
854ffa8d 6460 VM_BUG_ON(mc.moved_charge);
483c30b5 6461 VM_BUG_ON(mc.moved_swap);
32047e2a 6462 mem_cgroup_start_move(from);
2bd9bb20 6463 spin_lock(&mc.lock);
4ffef5fe 6464 mc.from = from;
c0ff4b85 6465 mc.to = memcg;
ee5e8472 6466 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6467 spin_unlock(&mc.lock);
dfe076b0 6468 /* We set mc.moving_task later */
4ffef5fe
DN
6469
6470 ret = mem_cgroup_precharge_mc(mm);
6471 if (ret)
6472 mem_cgroup_clear_mc();
dfe076b0
DN
6473 }
6474 mmput(mm);
7dc74be0
DN
6475 }
6476 return ret;
6477}
6478
eb95419b 6479static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6480 struct cgroup_taskset *tset)
7dc74be0 6481{
4ffef5fe 6482 mem_cgroup_clear_mc();
7dc74be0
DN
6483}
6484
4ffef5fe
DN
6485static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6486 unsigned long addr, unsigned long end,
6487 struct mm_walk *walk)
7dc74be0 6488{
4ffef5fe
DN
6489 int ret = 0;
6490 struct vm_area_struct *vma = walk->private;
6491 pte_t *pte;
6492 spinlock_t *ptl;
12724850
NH
6493 enum mc_target_type target_type;
6494 union mc_target target;
6495 struct page *page;
6496 struct page_cgroup *pc;
4ffef5fe 6497
12724850
NH
6498 /*
6499 * We don't take compound_lock() here but no race with splitting thp
6500 * happens because:
6501 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6502 * under splitting, which means there's no concurrent thp split,
6503 * - if another thread runs into split_huge_page() just after we
6504 * entered this if-block, the thread must wait for page table lock
6505 * to be unlocked in __split_huge_page_splitting(), where the main
6506 * part of thp split is not executed yet.
6507 */
6508 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6509 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6510 spin_unlock(&vma->vm_mm->page_table_lock);
6511 return 0;
6512 }
6513 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6514 if (target_type == MC_TARGET_PAGE) {
6515 page = target.page;
6516 if (!isolate_lru_page(page)) {
6517 pc = lookup_page_cgroup(page);
6518 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6519 pc, mc.from, mc.to)) {
12724850
NH
6520 mc.precharge -= HPAGE_PMD_NR;
6521 mc.moved_charge += HPAGE_PMD_NR;
6522 }
6523 putback_lru_page(page);
6524 }
6525 put_page(page);
6526 }
6527 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6528 return 0;
12724850
NH
6529 }
6530
45f83cef
AA
6531 if (pmd_trans_unstable(pmd))
6532 return 0;
4ffef5fe
DN
6533retry:
6534 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6535 for (; addr != end; addr += PAGE_SIZE) {
6536 pte_t ptent = *(pte++);
02491447 6537 swp_entry_t ent;
4ffef5fe
DN
6538
6539 if (!mc.precharge)
6540 break;
6541
8d32ff84 6542 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6543 case MC_TARGET_PAGE:
6544 page = target.page;
6545 if (isolate_lru_page(page))
6546 goto put;
6547 pc = lookup_page_cgroup(page);
7ec99d62 6548 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6549 mc.from, mc.to)) {
4ffef5fe 6550 mc.precharge--;
854ffa8d
DN
6551 /* we uncharge from mc.from later. */
6552 mc.moved_charge++;
4ffef5fe
DN
6553 }
6554 putback_lru_page(page);
8d32ff84 6555put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6556 put_page(page);
6557 break;
02491447
DN
6558 case MC_TARGET_SWAP:
6559 ent = target.ent;
e91cbb42 6560 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6561 mc.precharge--;
483c30b5
DN
6562 /* we fixup refcnts and charges later. */
6563 mc.moved_swap++;
6564 }
02491447 6565 break;
4ffef5fe
DN
6566 default:
6567 break;
6568 }
6569 }
6570 pte_unmap_unlock(pte - 1, ptl);
6571 cond_resched();
6572
6573 if (addr != end) {
6574 /*
6575 * We have consumed all precharges we got in can_attach().
6576 * We try charge one by one, but don't do any additional
6577 * charges to mc.to if we have failed in charge once in attach()
6578 * phase.
6579 */
854ffa8d 6580 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6581 if (!ret)
6582 goto retry;
6583 }
6584
6585 return ret;
6586}
6587
6588static void mem_cgroup_move_charge(struct mm_struct *mm)
6589{
6590 struct vm_area_struct *vma;
6591
6592 lru_add_drain_all();
dfe076b0
DN
6593retry:
6594 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6595 /*
6596 * Someone who are holding the mmap_sem might be waiting in
6597 * waitq. So we cancel all extra charges, wake up all waiters,
6598 * and retry. Because we cancel precharges, we might not be able
6599 * to move enough charges, but moving charge is a best-effort
6600 * feature anyway, so it wouldn't be a big problem.
6601 */
6602 __mem_cgroup_clear_mc();
6603 cond_resched();
6604 goto retry;
6605 }
4ffef5fe
DN
6606 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6607 int ret;
6608 struct mm_walk mem_cgroup_move_charge_walk = {
6609 .pmd_entry = mem_cgroup_move_charge_pte_range,
6610 .mm = mm,
6611 .private = vma,
6612 };
6613 if (is_vm_hugetlb_page(vma))
6614 continue;
4ffef5fe
DN
6615 ret = walk_page_range(vma->vm_start, vma->vm_end,
6616 &mem_cgroup_move_charge_walk);
6617 if (ret)
6618 /*
6619 * means we have consumed all precharges and failed in
6620 * doing additional charge. Just abandon here.
6621 */
6622 break;
6623 }
dfe076b0 6624 up_read(&mm->mmap_sem);
7dc74be0
DN
6625}
6626
eb95419b 6627static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6628 struct cgroup_taskset *tset)
67e465a7 6629{
2f7ee569 6630 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6631 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6632
dfe076b0 6633 if (mm) {
a433658c
KM
6634 if (mc.to)
6635 mem_cgroup_move_charge(mm);
dfe076b0
DN
6636 mmput(mm);
6637 }
a433658c
KM
6638 if (mc.to)
6639 mem_cgroup_clear_mc();
67e465a7 6640}
5cfb80a7 6641#else /* !CONFIG_MMU */
eb95419b 6642static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6643 struct cgroup_taskset *tset)
5cfb80a7
DN
6644{
6645 return 0;
6646}
eb95419b 6647static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6648 struct cgroup_taskset *tset)
5cfb80a7
DN
6649{
6650}
eb95419b 6651static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 6652 struct cgroup_taskset *tset)
5cfb80a7
DN
6653{
6654}
6655#endif
67e465a7 6656
f00baae7
TH
6657/*
6658 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6659 * to verify sane_behavior flag on each mount attempt.
6660 */
eb95419b 6661static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6662{
6663 /*
6664 * use_hierarchy is forced with sane_behavior. cgroup core
6665 * guarantees that @root doesn't have any children, so turning it
6666 * on for the root memcg is enough.
6667 */
eb95419b
TH
6668 if (cgroup_sane_behavior(root_css->cgroup))
6669 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
6670}
6671
8cdea7c0
BS
6672struct cgroup_subsys mem_cgroup_subsys = {
6673 .name = "memory",
6674 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6675 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6676 .css_online = mem_cgroup_css_online,
92fb9748
TH
6677 .css_offline = mem_cgroup_css_offline,
6678 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6679 .can_attach = mem_cgroup_can_attach,
6680 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6681 .attach = mem_cgroup_move_task,
f00baae7 6682 .bind = mem_cgroup_bind,
6bc10349 6683 .base_cftypes = mem_cgroup_files,
6d12e2d8 6684 .early_init = 0,
04046e1a 6685 .use_id = 1,
8cdea7c0 6686};
c077719b 6687
c255a458 6688#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6689static int __init enable_swap_account(char *s)
6690{
a2c8990a 6691 if (!strcmp(s, "1"))
a42c390c 6692 really_do_swap_account = 1;
a2c8990a 6693 else if (!strcmp(s, "0"))
a42c390c
MH
6694 really_do_swap_account = 0;
6695 return 1;
6696}
a2c8990a 6697__setup("swapaccount=", enable_swap_account);
c077719b 6698
2d11085e
MH
6699static void __init memsw_file_init(void)
6700{
6acc8b02
MH
6701 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
6702}
6703
6704static void __init enable_swap_cgroup(void)
6705{
6706 if (!mem_cgroup_disabled() && really_do_swap_account) {
6707 do_swap_account = 1;
6708 memsw_file_init();
6709 }
2d11085e 6710}
6acc8b02 6711
2d11085e 6712#else
6acc8b02 6713static void __init enable_swap_cgroup(void)
2d11085e
MH
6714{
6715}
c077719b 6716#endif
2d11085e
MH
6717
6718/*
1081312f
MH
6719 * subsys_initcall() for memory controller.
6720 *
6721 * Some parts like hotcpu_notifier() have to be initialized from this context
6722 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
6723 * everything that doesn't depend on a specific mem_cgroup structure should
6724 * be initialized from here.
2d11085e
MH
6725 */
6726static int __init mem_cgroup_init(void)
6727{
6728 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 6729 enable_swap_cgroup();
e4777496 6730 memcg_stock_init();
2d11085e
MH
6731 return 0;
6732}
6733subsys_initcall(mem_cgroup_init);