]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
mm: memcg: per-priority per-zone hierarchy scan generations
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
b9e15baf 36#include <linux/export.h>
8c7c6e34 37#include <linux/mutex.h>
f64c3f54 38#include <linux/rbtree.h>
b6ac57d5 39#include <linux/slab.h>
66e1707b 40#include <linux/swap.h>
02491447 41#include <linux/swapops.h>
66e1707b 42#include <linux/spinlock.h>
2e72b634
KS
43#include <linux/eventfd.h>
44#include <linux/sort.h>
66e1707b 45#include <linux/fs.h>
d2ceb9b7 46#include <linux/seq_file.h>
33327948 47#include <linux/vmalloc.h>
b69408e8 48#include <linux/mm_inline.h>
52d4b9ac 49#include <linux/page_cgroup.h>
cdec2e42 50#include <linux/cpu.h>
158e0a2d 51#include <linux/oom.h>
08e552c6 52#include "internal.h"
d1a4c0b3
GC
53#include <net/sock.h>
54#include <net/tcp_memcontrol.h>
8cdea7c0 55
8697d331
BS
56#include <asm/uaccess.h>
57
cc8e970c
KM
58#include <trace/events/vmscan.h>
59
a181b0e8 60struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 61#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 62struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 63
c077719b 64#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 65/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 66int do_swap_account __read_mostly;
a42c390c
MH
67
68/* for remember boot option*/
69#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70static int really_do_swap_account __initdata = 1;
71#else
72static int really_do_swap_account __initdata = 0;
73#endif
74
c077719b
KH
75#else
76#define do_swap_account (0)
77#endif
78
79
d52aa412
KH
80/*
81 * Statistics for memory cgroup.
82 */
83enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
93 MEM_CGROUP_STAT_NSTATS,
94};
95
e9f8974f
JW
96enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
456f998e
YH
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
102 MEM_CGROUP_EVENTS_NSTATS,
103};
7a159cc9
JW
104/*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 113 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
114 MEM_CGROUP_NTARGETS,
115};
116#define THRESHOLDS_EVENTS_TARGET (128)
117#define SOFTLIMIT_EVENTS_TARGET (1024)
453a9bf3 118#define NUMAINFO_EVENTS_TARGET (1024)
e9f8974f 119
d52aa412 120struct mem_cgroup_stat_cpu {
7a159cc9 121 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 123 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
124};
125
527a5ec9
JW
126struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
128 int position;
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
131};
132
6d12e2d8
KH
133/*
134 * per-zone information in memory controller.
135 */
6d12e2d8 136struct mem_cgroup_per_zone {
072c56c1
KH
137 /*
138 * spin_lock to protect the per cgroup LRU
139 */
b69408e8
CL
140 struct list_head lists[NR_LRU_LISTS];
141 unsigned long count[NR_LRU_LISTS];
3e2f41f1 142
527a5ec9
JW
143 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
144
3e2f41f1 145 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
146 struct rb_node tree_node; /* RB tree node */
147 unsigned long long usage_in_excess;/* Set to the value by which */
148 /* the soft limit is exceeded*/
149 bool on_tree;
4e416953
BS
150 struct mem_cgroup *mem; /* Back pointer, we cannot */
151 /* use container_of */
6d12e2d8
KH
152};
153/* Macro for accessing counter */
154#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
155
156struct mem_cgroup_per_node {
157 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
158};
159
160struct mem_cgroup_lru_info {
161 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
162};
163
f64c3f54
BS
164/*
165 * Cgroups above their limits are maintained in a RB-Tree, independent of
166 * their hierarchy representation
167 */
168
169struct mem_cgroup_tree_per_zone {
170 struct rb_root rb_root;
171 spinlock_t lock;
172};
173
174struct mem_cgroup_tree_per_node {
175 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
176};
177
178struct mem_cgroup_tree {
179 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
180};
181
182static struct mem_cgroup_tree soft_limit_tree __read_mostly;
183
2e72b634
KS
184struct mem_cgroup_threshold {
185 struct eventfd_ctx *eventfd;
186 u64 threshold;
187};
188
9490ff27 189/* For threshold */
2e72b634
KS
190struct mem_cgroup_threshold_ary {
191 /* An array index points to threshold just below usage. */
5407a562 192 int current_threshold;
2e72b634
KS
193 /* Size of entries[] */
194 unsigned int size;
195 /* Array of thresholds */
196 struct mem_cgroup_threshold entries[0];
197};
2c488db2
KS
198
199struct mem_cgroup_thresholds {
200 /* Primary thresholds array */
201 struct mem_cgroup_threshold_ary *primary;
202 /*
203 * Spare threshold array.
204 * This is needed to make mem_cgroup_unregister_event() "never fail".
205 * It must be able to store at least primary->size - 1 entries.
206 */
207 struct mem_cgroup_threshold_ary *spare;
208};
209
9490ff27
KH
210/* for OOM */
211struct mem_cgroup_eventfd_list {
212 struct list_head list;
213 struct eventfd_ctx *eventfd;
214};
2e72b634 215
c0ff4b85
R
216static void mem_cgroup_threshold(struct mem_cgroup *memcg);
217static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 218
8cdea7c0
BS
219/*
220 * The memory controller data structure. The memory controller controls both
221 * page cache and RSS per cgroup. We would eventually like to provide
222 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
223 * to help the administrator determine what knobs to tune.
224 *
225 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
226 * we hit the water mark. May be even add a low water mark, such that
227 * no reclaim occurs from a cgroup at it's low water mark, this is
228 * a feature that will be implemented much later in the future.
8cdea7c0
BS
229 */
230struct mem_cgroup {
231 struct cgroup_subsys_state css;
232 /*
233 * the counter to account for memory usage
234 */
235 struct res_counter res;
8c7c6e34
KH
236 /*
237 * the counter to account for mem+swap usage.
238 */
239 struct res_counter memsw;
78fb7466
PE
240 /*
241 * Per cgroup active and inactive list, similar to the
242 * per zone LRU lists.
78fb7466 243 */
6d12e2d8 244 struct mem_cgroup_lru_info info;
889976db
YH
245 int last_scanned_node;
246#if MAX_NUMNODES > 1
247 nodemask_t scan_nodes;
453a9bf3
KH
248 atomic_t numainfo_events;
249 atomic_t numainfo_updating;
889976db 250#endif
18f59ea7
BS
251 /*
252 * Should the accounting and control be hierarchical, per subtree?
253 */
254 bool use_hierarchy;
79dfdacc
MH
255
256 bool oom_lock;
257 atomic_t under_oom;
258
8c7c6e34 259 atomic_t refcnt;
14797e23 260
1f4c025b 261 int swappiness;
3c11ecf4
KH
262 /* OOM-Killer disable */
263 int oom_kill_disable;
a7885eb8 264
22a668d7
KH
265 /* set when res.limit == memsw.limit */
266 bool memsw_is_minimum;
267
2e72b634
KS
268 /* protect arrays of thresholds */
269 struct mutex thresholds_lock;
270
271 /* thresholds for memory usage. RCU-protected */
2c488db2 272 struct mem_cgroup_thresholds thresholds;
907860ed 273
2e72b634 274 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 275 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 276
9490ff27
KH
277 /* For oom notifier event fd */
278 struct list_head oom_notify;
185efc0f 279
7dc74be0
DN
280 /*
281 * Should we move charges of a task when a task is moved into this
282 * mem_cgroup ? And what type of charges should we move ?
283 */
284 unsigned long move_charge_at_immigrate;
d52aa412 285 /*
c62b1a3b 286 * percpu counter.
d52aa412 287 */
c62b1a3b 288 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
289 /*
290 * used when a cpu is offlined or other synchronizations
291 * See mem_cgroup_read_stat().
292 */
293 struct mem_cgroup_stat_cpu nocpu_base;
294 spinlock_t pcp_counter_lock;
d1a4c0b3
GC
295
296#ifdef CONFIG_INET
297 struct tcp_memcontrol tcp_mem;
298#endif
8cdea7c0
BS
299};
300
7dc74be0
DN
301/* Stuffs for move charges at task migration. */
302/*
303 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
304 * left-shifted bitmap of these types.
305 */
306enum move_type {
4ffef5fe 307 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 308 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
309 NR_MOVE_TYPE,
310};
311
4ffef5fe
DN
312/* "mc" and its members are protected by cgroup_mutex */
313static struct move_charge_struct {
b1dd693e 314 spinlock_t lock; /* for from, to */
4ffef5fe
DN
315 struct mem_cgroup *from;
316 struct mem_cgroup *to;
317 unsigned long precharge;
854ffa8d 318 unsigned long moved_charge;
483c30b5 319 unsigned long moved_swap;
8033b97c
DN
320 struct task_struct *moving_task; /* a task moving charges */
321 wait_queue_head_t waitq; /* a waitq for other context */
322} mc = {
2bd9bb20 323 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
324 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
325};
4ffef5fe 326
90254a65
DN
327static bool move_anon(void)
328{
329 return test_bit(MOVE_CHARGE_TYPE_ANON,
330 &mc.to->move_charge_at_immigrate);
331}
332
87946a72
DN
333static bool move_file(void)
334{
335 return test_bit(MOVE_CHARGE_TYPE_FILE,
336 &mc.to->move_charge_at_immigrate);
337}
338
4e416953
BS
339/*
340 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
341 * limit reclaim to prevent infinite loops, if they ever occur.
342 */
343#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
344#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
345
217bc319
KH
346enum charge_type {
347 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
348 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 349 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 350 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 351 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 352 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
353 NR_CHARGE_TYPE,
354};
355
8c7c6e34 356/* for encoding cft->private value on file */
65c64ce8
GC
357#define _MEM (0)
358#define _MEMSWAP (1)
359#define _OOM_TYPE (2)
8c7c6e34
KH
360#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
361#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
362#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
363/* Used for OOM nofiier */
364#define OOM_CONTROL (0)
8c7c6e34 365
75822b44
BS
366/*
367 * Reclaim flags for mem_cgroup_hierarchical_reclaim
368 */
369#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
370#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
371#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
372#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
373#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
374#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 375
c0ff4b85
R
376static void mem_cgroup_get(struct mem_cgroup *memcg);
377static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161
GC
378
379/* Writing them here to avoid exposing memcg's inner layout */
380#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
381#ifdef CONFIG_INET
382#include <net/sock.h>
d1a4c0b3 383#include <net/ip.h>
e1aab161
GC
384
385static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
386void sock_update_memcg(struct sock *sk)
387{
e1aab161
GC
388 if (static_branch(&memcg_socket_limit_enabled)) {
389 struct mem_cgroup *memcg;
390
391 BUG_ON(!sk->sk_prot->proto_cgroup);
392
f3f511e1
GC
393 /* Socket cloning can throw us here with sk_cgrp already
394 * filled. It won't however, necessarily happen from
395 * process context. So the test for root memcg given
396 * the current task's memcg won't help us in this case.
397 *
398 * Respecting the original socket's memcg is a better
399 * decision in this case.
400 */
401 if (sk->sk_cgrp) {
402 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
403 mem_cgroup_get(sk->sk_cgrp->memcg);
404 return;
405 }
406
e1aab161
GC
407 rcu_read_lock();
408 memcg = mem_cgroup_from_task(current);
409 if (!mem_cgroup_is_root(memcg)) {
410 mem_cgroup_get(memcg);
411 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
412 }
413 rcu_read_unlock();
414 }
415}
416EXPORT_SYMBOL(sock_update_memcg);
417
418void sock_release_memcg(struct sock *sk)
419{
420 if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
421 struct mem_cgroup *memcg;
422 WARN_ON(!sk->sk_cgrp->memcg);
423 memcg = sk->sk_cgrp->memcg;
424 mem_cgroup_put(memcg);
425 }
426}
d1a4c0b3
GC
427
428struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
429{
430 if (!memcg || mem_cgroup_is_root(memcg))
431 return NULL;
432
433 return &memcg->tcp_mem.cg_proto;
434}
435EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161
GC
436#endif /* CONFIG_INET */
437#endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
438
c0ff4b85 439static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 440
f64c3f54 441static struct mem_cgroup_per_zone *
c0ff4b85 442mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 443{
c0ff4b85 444 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
445}
446
c0ff4b85 447struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 448{
c0ff4b85 449 return &memcg->css;
d324236b
WF
450}
451
f64c3f54 452static struct mem_cgroup_per_zone *
c0ff4b85 453page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 454{
97a6c37b
JW
455 int nid = page_to_nid(page);
456 int zid = page_zonenum(page);
f64c3f54 457
c0ff4b85 458 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
459}
460
461static struct mem_cgroup_tree_per_zone *
462soft_limit_tree_node_zone(int nid, int zid)
463{
464 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
465}
466
467static struct mem_cgroup_tree_per_zone *
468soft_limit_tree_from_page(struct page *page)
469{
470 int nid = page_to_nid(page);
471 int zid = page_zonenum(page);
472
473 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
474}
475
476static void
c0ff4b85 477__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 478 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
479 struct mem_cgroup_tree_per_zone *mctz,
480 unsigned long long new_usage_in_excess)
f64c3f54
BS
481{
482 struct rb_node **p = &mctz->rb_root.rb_node;
483 struct rb_node *parent = NULL;
484 struct mem_cgroup_per_zone *mz_node;
485
486 if (mz->on_tree)
487 return;
488
ef8745c1
KH
489 mz->usage_in_excess = new_usage_in_excess;
490 if (!mz->usage_in_excess)
491 return;
f64c3f54
BS
492 while (*p) {
493 parent = *p;
494 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
495 tree_node);
496 if (mz->usage_in_excess < mz_node->usage_in_excess)
497 p = &(*p)->rb_left;
498 /*
499 * We can't avoid mem cgroups that are over their soft
500 * limit by the same amount
501 */
502 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
503 p = &(*p)->rb_right;
504 }
505 rb_link_node(&mz->tree_node, parent, p);
506 rb_insert_color(&mz->tree_node, &mctz->rb_root);
507 mz->on_tree = true;
4e416953
BS
508}
509
510static void
c0ff4b85 511__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
512 struct mem_cgroup_per_zone *mz,
513 struct mem_cgroup_tree_per_zone *mctz)
514{
515 if (!mz->on_tree)
516 return;
517 rb_erase(&mz->tree_node, &mctz->rb_root);
518 mz->on_tree = false;
519}
520
f64c3f54 521static void
c0ff4b85 522mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
523 struct mem_cgroup_per_zone *mz,
524 struct mem_cgroup_tree_per_zone *mctz)
525{
526 spin_lock(&mctz->lock);
c0ff4b85 527 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
528 spin_unlock(&mctz->lock);
529}
530
f64c3f54 531
c0ff4b85 532static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 533{
ef8745c1 534 unsigned long long excess;
f64c3f54
BS
535 struct mem_cgroup_per_zone *mz;
536 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
537 int nid = page_to_nid(page);
538 int zid = page_zonenum(page);
f64c3f54
BS
539 mctz = soft_limit_tree_from_page(page);
540
541 /*
4e649152
KH
542 * Necessary to update all ancestors when hierarchy is used.
543 * because their event counter is not touched.
f64c3f54 544 */
c0ff4b85
R
545 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
546 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
547 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
548 /*
549 * We have to update the tree if mz is on RB-tree or
550 * mem is over its softlimit.
551 */
ef8745c1 552 if (excess || mz->on_tree) {
4e649152
KH
553 spin_lock(&mctz->lock);
554 /* if on-tree, remove it */
555 if (mz->on_tree)
c0ff4b85 556 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 557 /*
ef8745c1
KH
558 * Insert again. mz->usage_in_excess will be updated.
559 * If excess is 0, no tree ops.
4e649152 560 */
c0ff4b85 561 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
562 spin_unlock(&mctz->lock);
563 }
f64c3f54
BS
564 }
565}
566
c0ff4b85 567static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
568{
569 int node, zone;
570 struct mem_cgroup_per_zone *mz;
571 struct mem_cgroup_tree_per_zone *mctz;
572
573 for_each_node_state(node, N_POSSIBLE) {
574 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 575 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 576 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 577 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
578 }
579 }
580}
581
4e416953
BS
582static struct mem_cgroup_per_zone *
583__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
584{
585 struct rb_node *rightmost = NULL;
26251eaf 586 struct mem_cgroup_per_zone *mz;
4e416953
BS
587
588retry:
26251eaf 589 mz = NULL;
4e416953
BS
590 rightmost = rb_last(&mctz->rb_root);
591 if (!rightmost)
592 goto done; /* Nothing to reclaim from */
593
594 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
595 /*
596 * Remove the node now but someone else can add it back,
597 * we will to add it back at the end of reclaim to its correct
598 * position in the tree.
599 */
600 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
601 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
602 !css_tryget(&mz->mem->css))
603 goto retry;
604done:
605 return mz;
606}
607
608static struct mem_cgroup_per_zone *
609mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
610{
611 struct mem_cgroup_per_zone *mz;
612
613 spin_lock(&mctz->lock);
614 mz = __mem_cgroup_largest_soft_limit_node(mctz);
615 spin_unlock(&mctz->lock);
616 return mz;
617}
618
711d3d2c
KH
619/*
620 * Implementation Note: reading percpu statistics for memcg.
621 *
622 * Both of vmstat[] and percpu_counter has threshold and do periodic
623 * synchronization to implement "quick" read. There are trade-off between
624 * reading cost and precision of value. Then, we may have a chance to implement
625 * a periodic synchronizion of counter in memcg's counter.
626 *
627 * But this _read() function is used for user interface now. The user accounts
628 * memory usage by memory cgroup and he _always_ requires exact value because
629 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
630 * have to visit all online cpus and make sum. So, for now, unnecessary
631 * synchronization is not implemented. (just implemented for cpu hotplug)
632 *
633 * If there are kernel internal actions which can make use of some not-exact
634 * value, and reading all cpu value can be performance bottleneck in some
635 * common workload, threashold and synchonization as vmstat[] should be
636 * implemented.
637 */
c0ff4b85 638static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 639 enum mem_cgroup_stat_index idx)
c62b1a3b 640{
7a159cc9 641 long val = 0;
c62b1a3b 642 int cpu;
c62b1a3b 643
711d3d2c
KH
644 get_online_cpus();
645 for_each_online_cpu(cpu)
c0ff4b85 646 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 647#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
648 spin_lock(&memcg->pcp_counter_lock);
649 val += memcg->nocpu_base.count[idx];
650 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
651#endif
652 put_online_cpus();
c62b1a3b
KH
653 return val;
654}
655
c0ff4b85 656static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
657 bool charge)
658{
659 int val = (charge) ? 1 : -1;
c0ff4b85 660 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
661}
662
c0ff4b85 663void mem_cgroup_pgfault(struct mem_cgroup *memcg, int val)
456f998e 664{
c0ff4b85 665 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT], val);
456f998e
YH
666}
667
c0ff4b85 668void mem_cgroup_pgmajfault(struct mem_cgroup *memcg, int val)
456f998e 669{
c0ff4b85 670 this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT], val);
456f998e
YH
671}
672
c0ff4b85 673static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
674 enum mem_cgroup_events_index idx)
675{
676 unsigned long val = 0;
677 int cpu;
678
679 for_each_online_cpu(cpu)
c0ff4b85 680 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 681#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
682 spin_lock(&memcg->pcp_counter_lock);
683 val += memcg->nocpu_base.events[idx];
684 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
685#endif
686 return val;
687}
688
c0ff4b85 689static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
e401f176 690 bool file, int nr_pages)
d52aa412 691{
c62b1a3b
KH
692 preempt_disable();
693
e401f176 694 if (file)
c0ff4b85
R
695 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
696 nr_pages);
d52aa412 697 else
c0ff4b85
R
698 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
699 nr_pages);
55e462b0 700
e401f176
KH
701 /* pagein of a big page is an event. So, ignore page size */
702 if (nr_pages > 0)
c0ff4b85 703 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 704 else {
c0ff4b85 705 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
706 nr_pages = -nr_pages; /* for event */
707 }
e401f176 708
c0ff4b85 709 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 710
c62b1a3b 711 preempt_enable();
6d12e2d8
KH
712}
713
bb2a0de9 714unsigned long
c0ff4b85 715mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 716 unsigned int lru_mask)
889976db
YH
717{
718 struct mem_cgroup_per_zone *mz;
bb2a0de9
KH
719 enum lru_list l;
720 unsigned long ret = 0;
721
c0ff4b85 722 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9
KH
723
724 for_each_lru(l) {
725 if (BIT(l) & lru_mask)
726 ret += MEM_CGROUP_ZSTAT(mz, l);
727 }
728 return ret;
729}
730
731static unsigned long
c0ff4b85 732mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
733 int nid, unsigned int lru_mask)
734{
889976db
YH
735 u64 total = 0;
736 int zid;
737
bb2a0de9 738 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
739 total += mem_cgroup_zone_nr_lru_pages(memcg,
740 nid, zid, lru_mask);
bb2a0de9 741
889976db
YH
742 return total;
743}
bb2a0de9 744
c0ff4b85 745static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 746 unsigned int lru_mask)
6d12e2d8 747{
889976db 748 int nid;
6d12e2d8
KH
749 u64 total = 0;
750
bb2a0de9 751 for_each_node_state(nid, N_HIGH_MEMORY)
c0ff4b85 752 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 753 return total;
d52aa412
KH
754}
755
c0ff4b85 756static bool __memcg_event_check(struct mem_cgroup *memcg, int target)
7a159cc9
JW
757{
758 unsigned long val, next;
759
4799401f
SR
760 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
761 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9
JW
762 /* from time_after() in jiffies.h */
763 return ((long)next - (long)val < 0);
764}
765
c0ff4b85 766static void __mem_cgroup_target_update(struct mem_cgroup *memcg, int target)
d2265e6f 767{
7a159cc9 768 unsigned long val, next;
d2265e6f 769
4799401f 770 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
d2265e6f 771
7a159cc9
JW
772 switch (target) {
773 case MEM_CGROUP_TARGET_THRESH:
774 next = val + THRESHOLDS_EVENTS_TARGET;
775 break;
776 case MEM_CGROUP_TARGET_SOFTLIMIT:
777 next = val + SOFTLIMIT_EVENTS_TARGET;
778 break;
453a9bf3
KH
779 case MEM_CGROUP_TARGET_NUMAINFO:
780 next = val + NUMAINFO_EVENTS_TARGET;
781 break;
7a159cc9
JW
782 default:
783 return;
784 }
785
4799401f 786 __this_cpu_write(memcg->stat->targets[target], next);
d2265e6f
KH
787}
788
789/*
790 * Check events in order.
791 *
792 */
c0ff4b85 793static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 794{
4799401f 795 preempt_disable();
d2265e6f 796 /* threshold event is triggered in finer grain than soft limit */
c0ff4b85
R
797 if (unlikely(__memcg_event_check(memcg, MEM_CGROUP_TARGET_THRESH))) {
798 mem_cgroup_threshold(memcg);
799 __mem_cgroup_target_update(memcg, MEM_CGROUP_TARGET_THRESH);
800 if (unlikely(__memcg_event_check(memcg,
453a9bf3 801 MEM_CGROUP_TARGET_SOFTLIMIT))) {
c0ff4b85
R
802 mem_cgroup_update_tree(memcg, page);
803 __mem_cgroup_target_update(memcg,
453a9bf3
KH
804 MEM_CGROUP_TARGET_SOFTLIMIT);
805 }
806#if MAX_NUMNODES > 1
c0ff4b85 807 if (unlikely(__memcg_event_check(memcg,
453a9bf3 808 MEM_CGROUP_TARGET_NUMAINFO))) {
c0ff4b85
R
809 atomic_inc(&memcg->numainfo_events);
810 __mem_cgroup_target_update(memcg,
453a9bf3 811 MEM_CGROUP_TARGET_NUMAINFO);
7a159cc9 812 }
453a9bf3 813#endif
d2265e6f 814 }
4799401f 815 preempt_enable();
d2265e6f
KH
816}
817
d1a4c0b3 818struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
819{
820 return container_of(cgroup_subsys_state(cont,
821 mem_cgroup_subsys_id), struct mem_cgroup,
822 css);
823}
824
cf475ad2 825struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 826{
31a78f23
BS
827 /*
828 * mm_update_next_owner() may clear mm->owner to NULL
829 * if it races with swapoff, page migration, etc.
830 * So this can be called with p == NULL.
831 */
832 if (unlikely(!p))
833 return NULL;
834
78fb7466
PE
835 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
836 struct mem_cgroup, css);
837}
838
a433658c 839struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 840{
c0ff4b85 841 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
842
843 if (!mm)
844 return NULL;
54595fe2
KH
845 /*
846 * Because we have no locks, mm->owner's may be being moved to other
847 * cgroup. We use css_tryget() here even if this looks
848 * pessimistic (rather than adding locks here).
849 */
850 rcu_read_lock();
851 do {
c0ff4b85
R
852 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
853 if (unlikely(!memcg))
54595fe2 854 break;
c0ff4b85 855 } while (!css_tryget(&memcg->css));
54595fe2 856 rcu_read_unlock();
c0ff4b85 857 return memcg;
54595fe2
KH
858}
859
527a5ec9
JW
860struct mem_cgroup_reclaim_cookie {
861 struct zone *zone;
862 int priority;
863 unsigned int generation;
864};
865
866static struct mem_cgroup *
867mem_cgroup_iter(struct mem_cgroup *root,
868 struct mem_cgroup *prev,
869 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 870{
9f3a0d09
JW
871 struct mem_cgroup *memcg = NULL;
872 int id = 0;
711d3d2c 873
9f3a0d09
JW
874 if (!root)
875 root = root_mem_cgroup;
7d74b06f 876
9f3a0d09
JW
877 if (prev && !reclaim)
878 id = css_id(&prev->css);
14067bb3 879
9f3a0d09
JW
880 if (prev && prev != root)
881 css_put(&prev->css);
14067bb3 882
9f3a0d09
JW
883 if (!root->use_hierarchy && root != root_mem_cgroup) {
884 if (prev)
885 return NULL;
886 return root;
887 }
14067bb3 888
9f3a0d09 889 while (!memcg) {
527a5ec9 890 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 891 struct cgroup_subsys_state *css;
711d3d2c 892
527a5ec9
JW
893 if (reclaim) {
894 int nid = zone_to_nid(reclaim->zone);
895 int zid = zone_idx(reclaim->zone);
896 struct mem_cgroup_per_zone *mz;
897
898 mz = mem_cgroup_zoneinfo(root, nid, zid);
899 iter = &mz->reclaim_iter[reclaim->priority];
900 if (prev && reclaim->generation != iter->generation)
901 return NULL;
902 id = iter->position;
903 }
7d74b06f 904
9f3a0d09
JW
905 rcu_read_lock();
906 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
907 if (css) {
908 if (css == &root->css || css_tryget(css))
909 memcg = container_of(css,
910 struct mem_cgroup, css);
911 } else
912 id = 0;
14067bb3 913 rcu_read_unlock();
14067bb3 914
527a5ec9
JW
915 if (reclaim) {
916 iter->position = id;
917 if (!css)
918 iter->generation++;
919 else if (!prev && memcg)
920 reclaim->generation = iter->generation;
921 }
9f3a0d09
JW
922
923 if (prev && !css)
924 return NULL;
925 }
926 return memcg;
14067bb3 927}
7d74b06f 928
9f3a0d09
JW
929static void mem_cgroup_iter_break(struct mem_cgroup *root,
930 struct mem_cgroup *prev)
931{
932 if (!root)
933 root = root_mem_cgroup;
934 if (prev && prev != root)
935 css_put(&prev->css);
936}
7d74b06f 937
9f3a0d09
JW
938/*
939 * Iteration constructs for visiting all cgroups (under a tree). If
940 * loops are exited prematurely (break), mem_cgroup_iter_break() must
941 * be used for reference counting.
942 */
943#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 944 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 945 iter != NULL; \
527a5ec9 946 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 947
9f3a0d09 948#define for_each_mem_cgroup(iter) \
527a5ec9 949 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 950 iter != NULL; \
527a5ec9 951 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 952
c0ff4b85 953static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
4b3bde4c 954{
c0ff4b85 955 return (memcg == root_mem_cgroup);
4b3bde4c
BS
956}
957
456f998e
YH
958void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
959{
c0ff4b85 960 struct mem_cgroup *memcg;
456f998e
YH
961
962 if (!mm)
963 return;
964
965 rcu_read_lock();
c0ff4b85
R
966 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
967 if (unlikely(!memcg))
456f998e
YH
968 goto out;
969
970 switch (idx) {
971 case PGMAJFAULT:
c0ff4b85 972 mem_cgroup_pgmajfault(memcg, 1);
456f998e
YH
973 break;
974 case PGFAULT:
c0ff4b85 975 mem_cgroup_pgfault(memcg, 1);
456f998e
YH
976 break;
977 default:
978 BUG();
979 }
980out:
981 rcu_read_unlock();
982}
983EXPORT_SYMBOL(mem_cgroup_count_vm_event);
984
08e552c6
KH
985/*
986 * Following LRU functions are allowed to be used without PCG_LOCK.
987 * Operations are called by routine of global LRU independently from memcg.
988 * What we have to take care of here is validness of pc->mem_cgroup.
989 *
990 * Changes to pc->mem_cgroup happens when
991 * 1. charge
992 * 2. moving account
993 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
994 * It is added to LRU before charge.
995 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
996 * When moving account, the page is not on LRU. It's isolated.
997 */
4f98a2fe 998
08e552c6
KH
999void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
1000{
1001 struct page_cgroup *pc;
08e552c6 1002 struct mem_cgroup_per_zone *mz;
6d12e2d8 1003
f8d66542 1004 if (mem_cgroup_disabled())
08e552c6
KH
1005 return;
1006 pc = lookup_page_cgroup(page);
1007 /* can happen while we handle swapcache. */
4b3bde4c 1008 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 1009 return;
4b3bde4c 1010 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
1011 /*
1012 * We don't check PCG_USED bit. It's cleared when the "page" is finally
1013 * removed from global LRU.
1014 */
97a6c37b 1015 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
1016 /* huge page split is done under lru_lock. so, we have no races. */
1017 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
1018 if (mem_cgroup_is_root(pc->mem_cgroup))
1019 return;
1020 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 1021 list_del_init(&pc->lru);
6d12e2d8
KH
1022}
1023
08e552c6 1024void mem_cgroup_del_lru(struct page *page)
6d12e2d8 1025{
08e552c6
KH
1026 mem_cgroup_del_lru_list(page, page_lru(page));
1027}
b69408e8 1028
3f58a829
MK
1029/*
1030 * Writeback is about to end against a page which has been marked for immediate
1031 * reclaim. If it still appears to be reclaimable, move it to the tail of the
1032 * inactive list.
1033 */
1034void mem_cgroup_rotate_reclaimable_page(struct page *page)
1035{
1036 struct mem_cgroup_per_zone *mz;
1037 struct page_cgroup *pc;
1038 enum lru_list lru = page_lru(page);
1039
1040 if (mem_cgroup_disabled())
1041 return;
1042
1043 pc = lookup_page_cgroup(page);
1044 /* unused or root page is not rotated. */
1045 if (!PageCgroupUsed(pc))
1046 return;
1047 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1048 smp_rmb();
1049 if (mem_cgroup_is_root(pc->mem_cgroup))
1050 return;
97a6c37b 1051 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3f58a829
MK
1052 list_move_tail(&pc->lru, &mz->lists[lru]);
1053}
1054
08e552c6
KH
1055void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
1056{
1057 struct mem_cgroup_per_zone *mz;
1058 struct page_cgroup *pc;
b69408e8 1059
f8d66542 1060 if (mem_cgroup_disabled())
08e552c6 1061 return;
6d12e2d8 1062
08e552c6 1063 pc = lookup_page_cgroup(page);
4b3bde4c 1064 /* unused or root page is not rotated. */
713735b4
JW
1065 if (!PageCgroupUsed(pc))
1066 return;
1067 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1068 smp_rmb();
1069 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6 1070 return;
97a6c37b 1071 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
08e552c6 1072 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
1073}
1074
08e552c6 1075void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 1076{
08e552c6
KH
1077 struct page_cgroup *pc;
1078 struct mem_cgroup_per_zone *mz;
6d12e2d8 1079
f8d66542 1080 if (mem_cgroup_disabled())
08e552c6
KH
1081 return;
1082 pc = lookup_page_cgroup(page);
4b3bde4c 1083 VM_BUG_ON(PageCgroupAcctLRU(pc));
a61ed3ce
JW
1084 /*
1085 * putback: charge:
1086 * SetPageLRU SetPageCgroupUsed
1087 * smp_mb smp_mb
1088 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1089 *
1090 * Ensure that one of the two sides adds the page to the memcg
1091 * LRU during a race.
1092 */
1093 smp_mb();
08e552c6 1094 if (!PageCgroupUsed(pc))
894bc310 1095 return;
713735b4
JW
1096 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1097 smp_rmb();
97a6c37b 1098 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
1099 /* huge page split is done under lru_lock. so, we have no races. */
1100 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
1101 SetPageCgroupAcctLRU(pc);
1102 if (mem_cgroup_is_root(pc->mem_cgroup))
1103 return;
08e552c6
KH
1104 list_add(&pc->lru, &mz->lists[lru]);
1105}
544122e5 1106
08e552c6 1107/*
5a6475a4
KH
1108 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1109 * while it's linked to lru because the page may be reused after it's fully
1110 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1111 * It's done under lock_page and expected that zone->lru_lock isnever held.
08e552c6 1112 */
5a6475a4 1113static void mem_cgroup_lru_del_before_commit(struct page *page)
08e552c6 1114{
544122e5
KH
1115 unsigned long flags;
1116 struct zone *zone = page_zone(page);
1117 struct page_cgroup *pc = lookup_page_cgroup(page);
1118
5a6475a4
KH
1119 /*
1120 * Doing this check without taking ->lru_lock seems wrong but this
1121 * is safe. Because if page_cgroup's USED bit is unset, the page
1122 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1123 * set, the commit after this will fail, anyway.
1124 * This all charge/uncharge is done under some mutual execustion.
1125 * So, we don't need to taking care of changes in USED bit.
1126 */
1127 if (likely(!PageLRU(page)))
1128 return;
1129
544122e5
KH
1130 spin_lock_irqsave(&zone->lru_lock, flags);
1131 /*
1132 * Forget old LRU when this page_cgroup is *not* used. This Used bit
1133 * is guarded by lock_page() because the page is SwapCache.
1134 */
1135 if (!PageCgroupUsed(pc))
1136 mem_cgroup_del_lru_list(page, page_lru(page));
1137 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
1138}
1139
5a6475a4 1140static void mem_cgroup_lru_add_after_commit(struct page *page)
544122e5
KH
1141{
1142 unsigned long flags;
1143 struct zone *zone = page_zone(page);
1144 struct page_cgroup *pc = lookup_page_cgroup(page);
a61ed3ce
JW
1145 /*
1146 * putback: charge:
1147 * SetPageLRU SetPageCgroupUsed
1148 * smp_mb smp_mb
1149 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1150 *
1151 * Ensure that one of the two sides adds the page to the memcg
1152 * LRU during a race.
1153 */
1154 smp_mb();
5a6475a4
KH
1155 /* taking care of that the page is added to LRU while we commit it */
1156 if (likely(!PageLRU(page)))
1157 return;
544122e5
KH
1158 spin_lock_irqsave(&zone->lru_lock, flags);
1159 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 1160 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
1161 mem_cgroup_add_lru_list(page, page_lru(page));
1162 spin_unlock_irqrestore(&zone->lru_lock, flags);
1163}
1164
1165
08e552c6
KH
1166void mem_cgroup_move_lists(struct page *page,
1167 enum lru_list from, enum lru_list to)
1168{
f8d66542 1169 if (mem_cgroup_disabled())
08e552c6
KH
1170 return;
1171 mem_cgroup_del_lru_list(page, from);
1172 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
1173}
1174
3e92041d 1175/*
c0ff4b85 1176 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1177 * hierarchy subtree
1178 */
c0ff4b85
R
1179static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1180 struct mem_cgroup *memcg)
3e92041d 1181{
c0ff4b85
R
1182 if (root_memcg != memcg) {
1183 return (root_memcg->use_hierarchy &&
1184 css_is_ancestor(&memcg->css, &root_memcg->css));
3e92041d
MH
1185 }
1186
1187 return true;
1188}
1189
c0ff4b85 1190int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1191{
1192 int ret;
0b7f569e 1193 struct mem_cgroup *curr = NULL;
158e0a2d 1194 struct task_struct *p;
4c4a2214 1195
158e0a2d
KH
1196 p = find_lock_task_mm(task);
1197 if (!p)
1198 return 0;
1199 curr = try_get_mem_cgroup_from_mm(p->mm);
1200 task_unlock(p);
0b7f569e
KH
1201 if (!curr)
1202 return 0;
d31f56db 1203 /*
c0ff4b85 1204 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1205 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1206 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1207 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1208 */
c0ff4b85 1209 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1210 css_put(&curr->css);
4c4a2214
DR
1211 return ret;
1212}
1213
9b272977 1214int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
14797e23 1215{
9b272977
JW
1216 unsigned long inactive_ratio;
1217 int nid = zone_to_nid(zone);
1218 int zid = zone_idx(zone);
14797e23 1219 unsigned long inactive;
9b272977 1220 unsigned long active;
c772be93 1221 unsigned long gb;
14797e23 1222
9b272977
JW
1223 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1224 BIT(LRU_INACTIVE_ANON));
1225 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1226 BIT(LRU_ACTIVE_ANON));
14797e23 1227
c772be93
KM
1228 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1229 if (gb)
1230 inactive_ratio = int_sqrt(10 * gb);
1231 else
1232 inactive_ratio = 1;
1233
9b272977 1234 return inactive * inactive_ratio < active;
14797e23
KM
1235}
1236
9b272977 1237int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
56e49d21
RR
1238{
1239 unsigned long active;
1240 unsigned long inactive;
9b272977
JW
1241 int zid = zone_idx(zone);
1242 int nid = zone_to_nid(zone);
56e49d21 1243
9b272977
JW
1244 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1245 BIT(LRU_INACTIVE_FILE));
1246 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1247 BIT(LRU_ACTIVE_FILE));
56e49d21
RR
1248
1249 return (active > inactive);
1250}
1251
3e2f41f1
KM
1252struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1253 struct zone *zone)
1254{
13d7e3a2 1255 int nid = zone_to_nid(zone);
3e2f41f1
KM
1256 int zid = zone_idx(zone);
1257 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1258
1259 return &mz->reclaim_stat;
1260}
1261
1262struct zone_reclaim_stat *
1263mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1264{
1265 struct page_cgroup *pc;
1266 struct mem_cgroup_per_zone *mz;
1267
1268 if (mem_cgroup_disabled())
1269 return NULL;
1270
1271 pc = lookup_page_cgroup(page);
bd112db8
DN
1272 if (!PageCgroupUsed(pc))
1273 return NULL;
713735b4
JW
1274 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1275 smp_rmb();
97a6c37b 1276 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1277 return &mz->reclaim_stat;
1278}
1279
66e1707b
BS
1280unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1281 struct list_head *dst,
1282 unsigned long *scanned, int order,
4356f21d
MK
1283 isolate_mode_t mode,
1284 struct zone *z,
66e1707b 1285 struct mem_cgroup *mem_cont,
4f98a2fe 1286 int active, int file)
66e1707b
BS
1287{
1288 unsigned long nr_taken = 0;
1289 struct page *page;
1290 unsigned long scan;
1291 LIST_HEAD(pc_list);
1292 struct list_head *src;
ff7283fa 1293 struct page_cgroup *pc, *tmp;
13d7e3a2 1294 int nid = zone_to_nid(z);
1ecaab2b
KH
1295 int zid = zone_idx(z);
1296 struct mem_cgroup_per_zone *mz;
b7c46d15 1297 int lru = LRU_FILE * file + active;
2ffebca6 1298 int ret;
66e1707b 1299
cf475ad2 1300 BUG_ON(!mem_cont);
1ecaab2b 1301 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1302 src = &mz->lists[lru];
66e1707b 1303
ff7283fa
KH
1304 scan = 0;
1305 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1306 if (scan >= nr_to_scan)
ff7283fa 1307 break;
08e552c6 1308
52d4b9ac
KH
1309 if (unlikely(!PageCgroupUsed(pc)))
1310 continue;
5564e88b 1311
6b3ae58e 1312 page = lookup_cgroup_page(pc);
5564e88b 1313
436c6541 1314 if (unlikely(!PageLRU(page)))
ff7283fa 1315 continue;
ff7283fa 1316
436c6541 1317 scan++;
2ffebca6
KH
1318 ret = __isolate_lru_page(page, mode, file);
1319 switch (ret) {
1320 case 0:
66e1707b 1321 list_move(&page->lru, dst);
2ffebca6 1322 mem_cgroup_del_lru(page);
2c888cfb 1323 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1324 break;
1325 case -EBUSY:
1326 /* we don't affect global LRU but rotate in our LRU */
1327 mem_cgroup_rotate_lru_list(page, page_lru(page));
1328 break;
1329 default:
1330 break;
66e1707b
BS
1331 }
1332 }
1333
66e1707b 1334 *scanned = scan;
cc8e970c
KM
1335
1336 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1337 0, 0, 0, mode);
1338
66e1707b
BS
1339 return nr_taken;
1340}
1341
6d61ef40
BS
1342#define mem_cgroup_from_res_counter(counter, member) \
1343 container_of(counter, struct mem_cgroup, member)
1344
19942822 1345/**
9d11ea9f
JW
1346 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1347 * @mem: the memory cgroup
19942822 1348 *
9d11ea9f 1349 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1350 * pages.
19942822 1351 */
c0ff4b85 1352static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1353{
9d11ea9f
JW
1354 unsigned long long margin;
1355
c0ff4b85 1356 margin = res_counter_margin(&memcg->res);
9d11ea9f 1357 if (do_swap_account)
c0ff4b85 1358 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1359 return margin >> PAGE_SHIFT;
19942822
JW
1360}
1361
1f4c025b 1362int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1363{
1364 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1365
1366 /* root ? */
1367 if (cgrp->parent == NULL)
1368 return vm_swappiness;
1369
bf1ff263 1370 return memcg->swappiness;
a7885eb8
KM
1371}
1372
c0ff4b85 1373static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a
KH
1374{
1375 int cpu;
1489ebad
KH
1376
1377 get_online_cpus();
c0ff4b85 1378 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1379 for_each_online_cpu(cpu)
c0ff4b85
R
1380 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1381 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1382 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1383 put_online_cpus();
32047e2a
KH
1384
1385 synchronize_rcu();
1386}
1387
c0ff4b85 1388static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a
KH
1389{
1390 int cpu;
1391
c0ff4b85 1392 if (!memcg)
32047e2a 1393 return;
1489ebad 1394 get_online_cpus();
c0ff4b85 1395 spin_lock(&memcg->pcp_counter_lock);
1489ebad 1396 for_each_online_cpu(cpu)
c0ff4b85
R
1397 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1398 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1399 spin_unlock(&memcg->pcp_counter_lock);
1489ebad 1400 put_online_cpus();
32047e2a
KH
1401}
1402/*
1403 * 2 routines for checking "mem" is under move_account() or not.
1404 *
1405 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1406 * for avoiding race in accounting. If true,
1407 * pc->mem_cgroup may be overwritten.
1408 *
1409 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1410 * under hierarchy of moving cgroups. This is for
1411 * waiting at hith-memory prressure caused by "move".
1412 */
1413
c0ff4b85 1414static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
32047e2a
KH
1415{
1416 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85 1417 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
32047e2a 1418}
4b534334 1419
c0ff4b85 1420static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1421{
2bd9bb20
KH
1422 struct mem_cgroup *from;
1423 struct mem_cgroup *to;
4b534334 1424 bool ret = false;
2bd9bb20
KH
1425 /*
1426 * Unlike task_move routines, we access mc.to, mc.from not under
1427 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1428 */
1429 spin_lock(&mc.lock);
1430 from = mc.from;
1431 to = mc.to;
1432 if (!from)
1433 goto unlock;
3e92041d 1434
c0ff4b85
R
1435 ret = mem_cgroup_same_or_subtree(memcg, from)
1436 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1437unlock:
1438 spin_unlock(&mc.lock);
4b534334
KH
1439 return ret;
1440}
1441
c0ff4b85 1442static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1443{
1444 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1445 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1446 DEFINE_WAIT(wait);
1447 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1448 /* moving charge context might have finished. */
1449 if (mc.moving_task)
1450 schedule();
1451 finish_wait(&mc.waitq, &wait);
1452 return true;
1453 }
1454 }
1455 return false;
1456}
1457
e222432b 1458/**
6a6135b6 1459 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1460 * @memcg: The memory cgroup that went over limit
1461 * @p: Task that is going to be killed
1462 *
1463 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1464 * enabled
1465 */
1466void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1467{
1468 struct cgroup *task_cgrp;
1469 struct cgroup *mem_cgrp;
1470 /*
1471 * Need a buffer in BSS, can't rely on allocations. The code relies
1472 * on the assumption that OOM is serialized for memory controller.
1473 * If this assumption is broken, revisit this code.
1474 */
1475 static char memcg_name[PATH_MAX];
1476 int ret;
1477
d31f56db 1478 if (!memcg || !p)
e222432b
BS
1479 return;
1480
1481
1482 rcu_read_lock();
1483
1484 mem_cgrp = memcg->css.cgroup;
1485 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1486
1487 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1488 if (ret < 0) {
1489 /*
1490 * Unfortunately, we are unable to convert to a useful name
1491 * But we'll still print out the usage information
1492 */
1493 rcu_read_unlock();
1494 goto done;
1495 }
1496 rcu_read_unlock();
1497
1498 printk(KERN_INFO "Task in %s killed", memcg_name);
1499
1500 rcu_read_lock();
1501 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1502 if (ret < 0) {
1503 rcu_read_unlock();
1504 goto done;
1505 }
1506 rcu_read_unlock();
1507
1508 /*
1509 * Continues from above, so we don't need an KERN_ level
1510 */
1511 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1512done:
1513
1514 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1515 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1516 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1517 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1518 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1519 "failcnt %llu\n",
1520 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1521 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1522 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1523}
1524
81d39c20
KH
1525/*
1526 * This function returns the number of memcg under hierarchy tree. Returns
1527 * 1(self count) if no children.
1528 */
c0ff4b85 1529static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1530{
1531 int num = 0;
7d74b06f
KH
1532 struct mem_cgroup *iter;
1533
c0ff4b85 1534 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1535 num++;
81d39c20
KH
1536 return num;
1537}
1538
a63d83f4
DR
1539/*
1540 * Return the memory (and swap, if configured) limit for a memcg.
1541 */
1542u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1543{
1544 u64 limit;
1545 u64 memsw;
1546
f3e8eb70
JW
1547 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1548 limit += total_swap_pages << PAGE_SHIFT;
1549
a63d83f4
DR
1550 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1551 /*
1552 * If memsw is finite and limits the amount of swap space available
1553 * to this memcg, return that limit.
1554 */
1555 return min(limit, memsw);
1556}
1557
4d0c066d
KH
1558/**
1559 * test_mem_cgroup_node_reclaimable
1560 * @mem: the target memcg
1561 * @nid: the node ID to be checked.
1562 * @noswap : specify true here if the user wants flle only information.
1563 *
1564 * This function returns whether the specified memcg contains any
1565 * reclaimable pages on a node. Returns true if there are any reclaimable
1566 * pages in the node.
1567 */
c0ff4b85 1568static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1569 int nid, bool noswap)
1570{
c0ff4b85 1571 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1572 return true;
1573 if (noswap || !total_swap_pages)
1574 return false;
c0ff4b85 1575 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1576 return true;
1577 return false;
1578
1579}
889976db
YH
1580#if MAX_NUMNODES > 1
1581
1582/*
1583 * Always updating the nodemask is not very good - even if we have an empty
1584 * list or the wrong list here, we can start from some node and traverse all
1585 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1586 *
1587 */
c0ff4b85 1588static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1589{
1590 int nid;
453a9bf3
KH
1591 /*
1592 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1593 * pagein/pageout changes since the last update.
1594 */
c0ff4b85 1595 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1596 return;
c0ff4b85 1597 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1598 return;
1599
889976db 1600 /* make a nodemask where this memcg uses memory from */
c0ff4b85 1601 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
889976db
YH
1602
1603 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1604
c0ff4b85
R
1605 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1606 node_clear(nid, memcg->scan_nodes);
889976db 1607 }
453a9bf3 1608
c0ff4b85
R
1609 atomic_set(&memcg->numainfo_events, 0);
1610 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1611}
1612
1613/*
1614 * Selecting a node where we start reclaim from. Because what we need is just
1615 * reducing usage counter, start from anywhere is O,K. Considering
1616 * memory reclaim from current node, there are pros. and cons.
1617 *
1618 * Freeing memory from current node means freeing memory from a node which
1619 * we'll use or we've used. So, it may make LRU bad. And if several threads
1620 * hit limits, it will see a contention on a node. But freeing from remote
1621 * node means more costs for memory reclaim because of memory latency.
1622 *
1623 * Now, we use round-robin. Better algorithm is welcomed.
1624 */
c0ff4b85 1625int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1626{
1627 int node;
1628
c0ff4b85
R
1629 mem_cgroup_may_update_nodemask(memcg);
1630 node = memcg->last_scanned_node;
889976db 1631
c0ff4b85 1632 node = next_node(node, memcg->scan_nodes);
889976db 1633 if (node == MAX_NUMNODES)
c0ff4b85 1634 node = first_node(memcg->scan_nodes);
889976db
YH
1635 /*
1636 * We call this when we hit limit, not when pages are added to LRU.
1637 * No LRU may hold pages because all pages are UNEVICTABLE or
1638 * memcg is too small and all pages are not on LRU. In that case,
1639 * we use curret node.
1640 */
1641 if (unlikely(node == MAX_NUMNODES))
1642 node = numa_node_id();
1643
c0ff4b85 1644 memcg->last_scanned_node = node;
889976db
YH
1645 return node;
1646}
1647
4d0c066d
KH
1648/*
1649 * Check all nodes whether it contains reclaimable pages or not.
1650 * For quick scan, we make use of scan_nodes. This will allow us to skip
1651 * unused nodes. But scan_nodes is lazily updated and may not cotain
1652 * enough new information. We need to do double check.
1653 */
c0ff4b85 1654bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1655{
1656 int nid;
1657
1658 /*
1659 * quick check...making use of scan_node.
1660 * We can skip unused nodes.
1661 */
c0ff4b85
R
1662 if (!nodes_empty(memcg->scan_nodes)) {
1663 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1664 nid < MAX_NUMNODES;
c0ff4b85 1665 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1666
c0ff4b85 1667 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1668 return true;
1669 }
1670 }
1671 /*
1672 * Check rest of nodes.
1673 */
1674 for_each_node_state(nid, N_HIGH_MEMORY) {
c0ff4b85 1675 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1676 continue;
c0ff4b85 1677 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1678 return true;
1679 }
1680 return false;
1681}
1682
889976db 1683#else
c0ff4b85 1684int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1685{
1686 return 0;
1687}
4d0c066d 1688
c0ff4b85 1689bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1690{
c0ff4b85 1691 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1692}
889976db
YH
1693#endif
1694
04046e1a
KH
1695/*
1696 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1697 * we reclaimed from, so that we don't end up penalizing one child extensively
1698 * based on its position in the children list.
6d61ef40 1699 *
c0ff4b85 1700 * root_memcg is the original ancestor that we've been reclaim from.
04046e1a 1701 *
c0ff4b85 1702 * We give up and return to the caller when we visit root_memcg twice.
04046e1a 1703 * (other groups can be removed while we're walking....)
81d39c20
KH
1704 *
1705 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40 1706 */
c0ff4b85 1707static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_memcg,
4e416953 1708 struct zone *zone,
75822b44 1709 gfp_t gfp_mask,
0ae5e89c
YH
1710 unsigned long reclaim_options,
1711 unsigned long *total_scanned)
6d61ef40 1712{
9f3a0d09 1713 struct mem_cgroup *victim = NULL;
04046e1a
KH
1714 int ret, total = 0;
1715 int loop = 0;
75822b44
BS
1716 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1717 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953 1718 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
9d11ea9f 1719 unsigned long excess;
185efc0f 1720 unsigned long nr_scanned;
527a5ec9
JW
1721 struct mem_cgroup_reclaim_cookie reclaim = {
1722 .zone = zone,
1723 .priority = 0,
1724 };
9d11ea9f 1725
c0ff4b85 1726 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1727
22a668d7 1728 /* If memsw_is_minimum==1, swap-out is of-no-use. */
c0ff4b85 1729 if (!check_soft && !shrink && root_memcg->memsw_is_minimum)
22a668d7
KH
1730 noswap = true;
1731
4e416953 1732 while (1) {
527a5ec9 1733 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1734 if (!victim) {
04046e1a 1735 loop++;
fbc29a25
KH
1736 /*
1737 * We are not draining per cpu cached charges during
1738 * soft limit reclaim because global reclaim doesn't
1739 * care about charges. It tries to free some memory and
1740 * charges will not give any.
1741 */
1742 if (!check_soft && loop >= 1)
c0ff4b85 1743 drain_all_stock_async(root_memcg);
4e416953
BS
1744 if (loop >= 2) {
1745 /*
1746 * If we have not been able to reclaim
1747 * anything, it might because there are
1748 * no reclaimable pages under this hierarchy
1749 */
9f3a0d09 1750 if (!check_soft || !total)
4e416953 1751 break;
4e416953 1752 /*
25985edc 1753 * We want to do more targeted reclaim.
4e416953
BS
1754 * excess >> 2 is not to excessive so as to
1755 * reclaim too much, nor too less that we keep
1756 * coming back to reclaim from this cgroup
1757 */
1758 if (total >= (excess >> 2) ||
9f3a0d09 1759 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1760 break;
4e416953 1761 }
9f3a0d09 1762 continue;
4e416953 1763 }
4d0c066d 1764 if (!mem_cgroup_reclaimable(victim, noswap)) {
04046e1a 1765 /* this cgroup's local usage == 0 */
6d61ef40
BS
1766 continue;
1767 }
04046e1a 1768 /* we use swappiness of local cgroup */
0ae5e89c 1769 if (check_soft) {
4e416953 1770 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
185efc0f
JW
1771 noswap, zone, &nr_scanned);
1772 *total_scanned += nr_scanned;
0ae5e89c 1773 } else
4e416953 1774 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
185efc0f 1775 noswap);
9f3a0d09 1776 total += ret;
81d39c20
KH
1777 /*
1778 * At shrinking usage, we can't check we should stop here or
1779 * reclaim more. It's depends on callers. last_scanned_child
1780 * will work enough for keeping fairness under tree.
1781 */
1782 if (shrink)
9f3a0d09 1783 break;
4e416953 1784 if (check_soft) {
c0ff4b85 1785 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1786 break;
c0ff4b85 1787 } else if (mem_cgroup_margin(root_memcg))
9f3a0d09 1788 break;
6d61ef40 1789 }
9f3a0d09 1790 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1791 return total;
6d61ef40
BS
1792}
1793
867578cb
KH
1794/*
1795 * Check OOM-Killer is already running under our hierarchy.
1796 * If someone is running, return false.
1af8efe9 1797 * Has to be called with memcg_oom_lock
867578cb 1798 */
c0ff4b85 1799static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1800{
79dfdacc 1801 struct mem_cgroup *iter, *failed = NULL;
a636b327 1802
9f3a0d09 1803 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1804 if (iter->oom_lock) {
79dfdacc
MH
1805 /*
1806 * this subtree of our hierarchy is already locked
1807 * so we cannot give a lock.
1808 */
79dfdacc 1809 failed = iter;
9f3a0d09
JW
1810 mem_cgroup_iter_break(memcg, iter);
1811 break;
23751be0
JW
1812 } else
1813 iter->oom_lock = true;
7d74b06f 1814 }
867578cb 1815
79dfdacc 1816 if (!failed)
23751be0 1817 return true;
79dfdacc
MH
1818
1819 /*
1820 * OK, we failed to lock the whole subtree so we have to clean up
1821 * what we set up to the failing subtree
1822 */
9f3a0d09 1823 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1824 if (iter == failed) {
9f3a0d09
JW
1825 mem_cgroup_iter_break(memcg, iter);
1826 break;
79dfdacc
MH
1827 }
1828 iter->oom_lock = false;
1829 }
23751be0 1830 return false;
a636b327 1831}
0b7f569e 1832
79dfdacc 1833/*
1af8efe9 1834 * Has to be called with memcg_oom_lock
79dfdacc 1835 */
c0ff4b85 1836static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1837{
7d74b06f
KH
1838 struct mem_cgroup *iter;
1839
c0ff4b85 1840 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1841 iter->oom_lock = false;
1842 return 0;
1843}
1844
c0ff4b85 1845static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1846{
1847 struct mem_cgroup *iter;
1848
c0ff4b85 1849 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1850 atomic_inc(&iter->under_oom);
1851}
1852
c0ff4b85 1853static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1854{
1855 struct mem_cgroup *iter;
1856
867578cb
KH
1857 /*
1858 * When a new child is created while the hierarchy is under oom,
1859 * mem_cgroup_oom_lock() may not be called. We have to use
1860 * atomic_add_unless() here.
1861 */
c0ff4b85 1862 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1863 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1864}
1865
1af8efe9 1866static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1867static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1868
dc98df5a
KH
1869struct oom_wait_info {
1870 struct mem_cgroup *mem;
1871 wait_queue_t wait;
1872};
1873
1874static int memcg_oom_wake_function(wait_queue_t *wait,
1875 unsigned mode, int sync, void *arg)
1876{
c0ff4b85
R
1877 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1878 *oom_wait_memcg;
dc98df5a
KH
1879 struct oom_wait_info *oom_wait_info;
1880
1881 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
c0ff4b85 1882 oom_wait_memcg = oom_wait_info->mem;
dc98df5a 1883
dc98df5a
KH
1884 /*
1885 * Both of oom_wait_info->mem and wake_mem are stable under us.
1886 * Then we can use css_is_ancestor without taking care of RCU.
1887 */
c0ff4b85
R
1888 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1889 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 1890 return 0;
dc98df5a
KH
1891 return autoremove_wake_function(wait, mode, sync, arg);
1892}
1893
c0ff4b85 1894static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1895{
c0ff4b85
R
1896 /* for filtering, pass "memcg" as argument. */
1897 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1898}
1899
c0ff4b85 1900static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1901{
c0ff4b85
R
1902 if (memcg && atomic_read(&memcg->under_oom))
1903 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1904}
1905
867578cb
KH
1906/*
1907 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1908 */
c0ff4b85 1909bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
0b7f569e 1910{
dc98df5a 1911 struct oom_wait_info owait;
3c11ecf4 1912 bool locked, need_to_kill;
867578cb 1913
c0ff4b85 1914 owait.mem = memcg;
dc98df5a
KH
1915 owait.wait.flags = 0;
1916 owait.wait.func = memcg_oom_wake_function;
1917 owait.wait.private = current;
1918 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1919 need_to_kill = true;
c0ff4b85 1920 mem_cgroup_mark_under_oom(memcg);
79dfdacc 1921
c0ff4b85 1922 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 1923 spin_lock(&memcg_oom_lock);
c0ff4b85 1924 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
1925 /*
1926 * Even if signal_pending(), we can't quit charge() loop without
1927 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1928 * under OOM is always welcomed, use TASK_KILLABLE here.
1929 */
3c11ecf4 1930 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 1931 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
1932 need_to_kill = false;
1933 if (locked)
c0ff4b85 1934 mem_cgroup_oom_notify(memcg);
1af8efe9 1935 spin_unlock(&memcg_oom_lock);
867578cb 1936
3c11ecf4
KH
1937 if (need_to_kill) {
1938 finish_wait(&memcg_oom_waitq, &owait.wait);
c0ff4b85 1939 mem_cgroup_out_of_memory(memcg, mask);
3c11ecf4 1940 } else {
867578cb 1941 schedule();
dc98df5a 1942 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1943 }
1af8efe9 1944 spin_lock(&memcg_oom_lock);
79dfdacc 1945 if (locked)
c0ff4b85
R
1946 mem_cgroup_oom_unlock(memcg);
1947 memcg_wakeup_oom(memcg);
1af8efe9 1948 spin_unlock(&memcg_oom_lock);
867578cb 1949
c0ff4b85 1950 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 1951
867578cb
KH
1952 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1953 return false;
1954 /* Give chance to dying process */
715a5ee8 1955 schedule_timeout_uninterruptible(1);
867578cb 1956 return true;
0b7f569e
KH
1957}
1958
d69b042f
BS
1959/*
1960 * Currently used to update mapped file statistics, but the routine can be
1961 * generalized to update other statistics as well.
32047e2a
KH
1962 *
1963 * Notes: Race condition
1964 *
1965 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1966 * it tends to be costly. But considering some conditions, we doesn't need
1967 * to do so _always_.
1968 *
1969 * Considering "charge", lock_page_cgroup() is not required because all
1970 * file-stat operations happen after a page is attached to radix-tree. There
1971 * are no race with "charge".
1972 *
1973 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1974 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1975 * if there are race with "uncharge". Statistics itself is properly handled
1976 * by flags.
1977 *
1978 * Considering "move", this is an only case we see a race. To make the race
1979 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1980 * possibility of race condition. If there is, we take a lock.
d69b042f 1981 */
26174efd 1982
2a7106f2
GT
1983void mem_cgroup_update_page_stat(struct page *page,
1984 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 1985{
c0ff4b85 1986 struct mem_cgroup *memcg;
32047e2a
KH
1987 struct page_cgroup *pc = lookup_page_cgroup(page);
1988 bool need_unlock = false;
dbd4ea78 1989 unsigned long uninitialized_var(flags);
d69b042f 1990
d69b042f
BS
1991 if (unlikely(!pc))
1992 return;
1993
32047e2a 1994 rcu_read_lock();
c0ff4b85
R
1995 memcg = pc->mem_cgroup;
1996 if (unlikely(!memcg || !PageCgroupUsed(pc)))
32047e2a
KH
1997 goto out;
1998 /* pc->mem_cgroup is unstable ? */
c0ff4b85 1999 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
32047e2a 2000 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 2001 move_lock_page_cgroup(pc, &flags);
32047e2a 2002 need_unlock = true;
c0ff4b85
R
2003 memcg = pc->mem_cgroup;
2004 if (!memcg || !PageCgroupUsed(pc))
32047e2a
KH
2005 goto out;
2006 }
26174efd 2007
26174efd 2008 switch (idx) {
2a7106f2 2009 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
2010 if (val > 0)
2011 SetPageCgroupFileMapped(pc);
2012 else if (!page_mapped(page))
0c270f8f 2013 ClearPageCgroupFileMapped(pc);
2a7106f2 2014 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2015 break;
2016 default:
2017 BUG();
8725d541 2018 }
d69b042f 2019
c0ff4b85 2020 this_cpu_add(memcg->stat->count[idx], val);
2a7106f2 2021
32047e2a
KH
2022out:
2023 if (unlikely(need_unlock))
dbd4ea78 2024 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
2025 rcu_read_unlock();
2026 return;
d69b042f 2027}
2a7106f2 2028EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 2029
cdec2e42
KH
2030/*
2031 * size of first charge trial. "32" comes from vmscan.c's magic value.
2032 * TODO: maybe necessary to use big numbers in big irons.
2033 */
7ec99d62 2034#define CHARGE_BATCH 32U
cdec2e42
KH
2035struct memcg_stock_pcp {
2036 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2037 unsigned int nr_pages;
cdec2e42 2038 struct work_struct work;
26fe6168
KH
2039 unsigned long flags;
2040#define FLUSHING_CACHED_CHARGE (0)
cdec2e42
KH
2041};
2042static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2043static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42
KH
2044
2045/*
11c9ea4e 2046 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
2047 * from local stock and true is returned. If the stock is 0 or charges from a
2048 * cgroup which is not current target, returns false. This stock will be
2049 * refilled.
2050 */
c0ff4b85 2051static bool consume_stock(struct mem_cgroup *memcg)
cdec2e42
KH
2052{
2053 struct memcg_stock_pcp *stock;
2054 bool ret = true;
2055
2056 stock = &get_cpu_var(memcg_stock);
c0ff4b85 2057 if (memcg == stock->cached && stock->nr_pages)
11c9ea4e 2058 stock->nr_pages--;
cdec2e42
KH
2059 else /* need to call res_counter_charge */
2060 ret = false;
2061 put_cpu_var(memcg_stock);
2062 return ret;
2063}
2064
2065/*
2066 * Returns stocks cached in percpu to res_counter and reset cached information.
2067 */
2068static void drain_stock(struct memcg_stock_pcp *stock)
2069{
2070 struct mem_cgroup *old = stock->cached;
2071
11c9ea4e
JW
2072 if (stock->nr_pages) {
2073 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2074
2075 res_counter_uncharge(&old->res, bytes);
cdec2e42 2076 if (do_swap_account)
11c9ea4e
JW
2077 res_counter_uncharge(&old->memsw, bytes);
2078 stock->nr_pages = 0;
cdec2e42
KH
2079 }
2080 stock->cached = NULL;
cdec2e42
KH
2081}
2082
2083/*
2084 * This must be called under preempt disabled or must be called by
2085 * a thread which is pinned to local cpu.
2086 */
2087static void drain_local_stock(struct work_struct *dummy)
2088{
2089 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2090 drain_stock(stock);
26fe6168 2091 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2092}
2093
2094/*
2095 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2096 * This will be consumed by consume_stock() function, later.
cdec2e42 2097 */
c0ff4b85 2098static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2099{
2100 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2101
c0ff4b85 2102 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2103 drain_stock(stock);
c0ff4b85 2104 stock->cached = memcg;
cdec2e42 2105 }
11c9ea4e 2106 stock->nr_pages += nr_pages;
cdec2e42
KH
2107 put_cpu_var(memcg_stock);
2108}
2109
2110/*
c0ff4b85 2111 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2112 * of the hierarchy under it. sync flag says whether we should block
2113 * until the work is done.
cdec2e42 2114 */
c0ff4b85 2115static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2116{
26fe6168 2117 int cpu, curcpu;
d38144b7 2118
cdec2e42 2119 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2120 get_online_cpus();
5af12d0e 2121 curcpu = get_cpu();
cdec2e42
KH
2122 for_each_online_cpu(cpu) {
2123 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2124 struct mem_cgroup *memcg;
26fe6168 2125
c0ff4b85
R
2126 memcg = stock->cached;
2127 if (!memcg || !stock->nr_pages)
26fe6168 2128 continue;
c0ff4b85 2129 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2130 continue;
d1a05b69
MH
2131 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2132 if (cpu == curcpu)
2133 drain_local_stock(&stock->work);
2134 else
2135 schedule_work_on(cpu, &stock->work);
2136 }
cdec2e42 2137 }
5af12d0e 2138 put_cpu();
d38144b7
MH
2139
2140 if (!sync)
2141 goto out;
2142
2143 for_each_online_cpu(cpu) {
2144 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2145 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2146 flush_work(&stock->work);
2147 }
2148out:
cdec2e42 2149 put_online_cpus();
d38144b7
MH
2150}
2151
2152/*
2153 * Tries to drain stocked charges in other cpus. This function is asynchronous
2154 * and just put a work per cpu for draining localy on each cpu. Caller can
2155 * expects some charges will be back to res_counter later but cannot wait for
2156 * it.
2157 */
c0ff4b85 2158static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2159{
9f50fad6
MH
2160 /*
2161 * If someone calls draining, avoid adding more kworker runs.
2162 */
2163 if (!mutex_trylock(&percpu_charge_mutex))
2164 return;
c0ff4b85 2165 drain_all_stock(root_memcg, false);
9f50fad6 2166 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2167}
2168
2169/* This is a synchronous drain interface. */
c0ff4b85 2170static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2171{
2172 /* called when force_empty is called */
9f50fad6 2173 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2174 drain_all_stock(root_memcg, true);
9f50fad6 2175 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2176}
2177
711d3d2c
KH
2178/*
2179 * This function drains percpu counter value from DEAD cpu and
2180 * move it to local cpu. Note that this function can be preempted.
2181 */
c0ff4b85 2182static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2183{
2184 int i;
2185
c0ff4b85 2186 spin_lock(&memcg->pcp_counter_lock);
711d3d2c 2187 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
c0ff4b85 2188 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2189
c0ff4b85
R
2190 per_cpu(memcg->stat->count[i], cpu) = 0;
2191 memcg->nocpu_base.count[i] += x;
711d3d2c 2192 }
e9f8974f 2193 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2194 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2195
c0ff4b85
R
2196 per_cpu(memcg->stat->events[i], cpu) = 0;
2197 memcg->nocpu_base.events[i] += x;
e9f8974f 2198 }
1489ebad 2199 /* need to clear ON_MOVE value, works as a kind of lock. */
c0ff4b85
R
2200 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2201 spin_unlock(&memcg->pcp_counter_lock);
1489ebad
KH
2202}
2203
c0ff4b85 2204static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
1489ebad
KH
2205{
2206 int idx = MEM_CGROUP_ON_MOVE;
2207
c0ff4b85
R
2208 spin_lock(&memcg->pcp_counter_lock);
2209 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2210 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2211}
2212
2213static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2214 unsigned long action,
2215 void *hcpu)
2216{
2217 int cpu = (unsigned long)hcpu;
2218 struct memcg_stock_pcp *stock;
711d3d2c 2219 struct mem_cgroup *iter;
cdec2e42 2220
1489ebad 2221 if ((action == CPU_ONLINE)) {
9f3a0d09 2222 for_each_mem_cgroup(iter)
1489ebad
KH
2223 synchronize_mem_cgroup_on_move(iter, cpu);
2224 return NOTIFY_OK;
2225 }
2226
711d3d2c 2227 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 2228 return NOTIFY_OK;
711d3d2c 2229
9f3a0d09 2230 for_each_mem_cgroup(iter)
711d3d2c
KH
2231 mem_cgroup_drain_pcp_counter(iter, cpu);
2232
cdec2e42
KH
2233 stock = &per_cpu(memcg_stock, cpu);
2234 drain_stock(stock);
2235 return NOTIFY_OK;
2236}
2237
4b534334
KH
2238
2239/* See __mem_cgroup_try_charge() for details */
2240enum {
2241 CHARGE_OK, /* success */
2242 CHARGE_RETRY, /* need to retry but retry is not bad */
2243 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2244 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2245 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2246};
2247
c0ff4b85 2248static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
7ec99d62 2249 unsigned int nr_pages, bool oom_check)
4b534334 2250{
7ec99d62 2251 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2252 struct mem_cgroup *mem_over_limit;
2253 struct res_counter *fail_res;
2254 unsigned long flags = 0;
2255 int ret;
2256
c0ff4b85 2257 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2258
2259 if (likely(!ret)) {
2260 if (!do_swap_account)
2261 return CHARGE_OK;
c0ff4b85 2262 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2263 if (likely(!ret))
2264 return CHARGE_OK;
2265
c0ff4b85 2266 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2267 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2268 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2269 } else
2270 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2271 /*
7ec99d62
JW
2272 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2273 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
2274 *
2275 * Never reclaim on behalf of optional batching, retry with a
2276 * single page instead.
2277 */
7ec99d62 2278 if (nr_pages == CHARGE_BATCH)
4b534334
KH
2279 return CHARGE_RETRY;
2280
2281 if (!(gfp_mask & __GFP_WAIT))
2282 return CHARGE_WOULDBLOCK;
2283
2284 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
0ae5e89c 2285 gfp_mask, flags, NULL);
7ec99d62 2286 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2287 return CHARGE_RETRY;
4b534334 2288 /*
19942822
JW
2289 * Even though the limit is exceeded at this point, reclaim
2290 * may have been able to free some pages. Retry the charge
2291 * before killing the task.
2292 *
2293 * Only for regular pages, though: huge pages are rather
2294 * unlikely to succeed so close to the limit, and we fall back
2295 * to regular pages anyway in case of failure.
4b534334 2296 */
7ec99d62 2297 if (nr_pages == 1 && ret)
4b534334
KH
2298 return CHARGE_RETRY;
2299
2300 /*
2301 * At task move, charge accounts can be doubly counted. So, it's
2302 * better to wait until the end of task_move if something is going on.
2303 */
2304 if (mem_cgroup_wait_acct_move(mem_over_limit))
2305 return CHARGE_RETRY;
2306
2307 /* If we don't need to call oom-killer at el, return immediately */
2308 if (!oom_check)
2309 return CHARGE_NOMEM;
2310 /* check OOM */
2311 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2312 return CHARGE_OOM_DIE;
2313
2314 return CHARGE_RETRY;
2315}
2316
f817ed48
KH
2317/*
2318 * Unlike exported interface, "oom" parameter is added. if oom==true,
2319 * oom-killer can be invoked.
8a9f3ccd 2320 */
f817ed48 2321static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2322 gfp_t gfp_mask,
7ec99d62 2323 unsigned int nr_pages,
c0ff4b85 2324 struct mem_cgroup **ptr,
7ec99d62 2325 bool oom)
8a9f3ccd 2326{
7ec99d62 2327 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2328 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2329 struct mem_cgroup *memcg = NULL;
4b534334 2330 int ret;
a636b327 2331
867578cb
KH
2332 /*
2333 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2334 * in system level. So, allow to go ahead dying process in addition to
2335 * MEMDIE process.
2336 */
2337 if (unlikely(test_thread_flag(TIF_MEMDIE)
2338 || fatal_signal_pending(current)))
2339 goto bypass;
a636b327 2340
8a9f3ccd 2341 /*
3be91277
HD
2342 * We always charge the cgroup the mm_struct belongs to.
2343 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
2344 * thread group leader migrates. It's possible that mm is not
2345 * set, if so charge the init_mm (happens for pagecache usage).
2346 */
c0ff4b85 2347 if (!*ptr && !mm)
f75ca962
KH
2348 goto bypass;
2349again:
c0ff4b85
R
2350 if (*ptr) { /* css should be a valid one */
2351 memcg = *ptr;
2352 VM_BUG_ON(css_is_removed(&memcg->css));
2353 if (mem_cgroup_is_root(memcg))
f75ca962 2354 goto done;
c0ff4b85 2355 if (nr_pages == 1 && consume_stock(memcg))
f75ca962 2356 goto done;
c0ff4b85 2357 css_get(&memcg->css);
4b534334 2358 } else {
f75ca962 2359 struct task_struct *p;
54595fe2 2360
f75ca962
KH
2361 rcu_read_lock();
2362 p = rcu_dereference(mm->owner);
f75ca962 2363 /*
ebb76ce1 2364 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2365 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2366 * race with swapoff. Then, we have small risk of mis-accouning.
2367 * But such kind of mis-account by race always happens because
2368 * we don't have cgroup_mutex(). It's overkill and we allo that
2369 * small race, here.
2370 * (*) swapoff at el will charge against mm-struct not against
2371 * task-struct. So, mm->owner can be NULL.
f75ca962 2372 */
c0ff4b85
R
2373 memcg = mem_cgroup_from_task(p);
2374 if (!memcg || mem_cgroup_is_root(memcg)) {
f75ca962
KH
2375 rcu_read_unlock();
2376 goto done;
2377 }
c0ff4b85 2378 if (nr_pages == 1 && consume_stock(memcg)) {
f75ca962
KH
2379 /*
2380 * It seems dagerous to access memcg without css_get().
2381 * But considering how consume_stok works, it's not
2382 * necessary. If consume_stock success, some charges
2383 * from this memcg are cached on this cpu. So, we
2384 * don't need to call css_get()/css_tryget() before
2385 * calling consume_stock().
2386 */
2387 rcu_read_unlock();
2388 goto done;
2389 }
2390 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2391 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2392 rcu_read_unlock();
2393 goto again;
2394 }
2395 rcu_read_unlock();
2396 }
8a9f3ccd 2397
4b534334
KH
2398 do {
2399 bool oom_check;
7a81b88c 2400
4b534334 2401 /* If killed, bypass charge */
f75ca962 2402 if (fatal_signal_pending(current)) {
c0ff4b85 2403 css_put(&memcg->css);
4b534334 2404 goto bypass;
f75ca962 2405 }
6d61ef40 2406
4b534334
KH
2407 oom_check = false;
2408 if (oom && !nr_oom_retries) {
2409 oom_check = true;
2410 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2411 }
66e1707b 2412
c0ff4b85 2413 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
4b534334
KH
2414 switch (ret) {
2415 case CHARGE_OK:
2416 break;
2417 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2418 batch = nr_pages;
c0ff4b85
R
2419 css_put(&memcg->css);
2420 memcg = NULL;
f75ca962 2421 goto again;
4b534334 2422 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2423 css_put(&memcg->css);
4b534334
KH
2424 goto nomem;
2425 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2426 if (!oom) {
c0ff4b85 2427 css_put(&memcg->css);
867578cb 2428 goto nomem;
f75ca962 2429 }
4b534334
KH
2430 /* If oom, we never return -ENOMEM */
2431 nr_oom_retries--;
2432 break;
2433 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2434 css_put(&memcg->css);
867578cb 2435 goto bypass;
66e1707b 2436 }
4b534334
KH
2437 } while (ret != CHARGE_OK);
2438
7ec99d62 2439 if (batch > nr_pages)
c0ff4b85
R
2440 refill_stock(memcg, batch - nr_pages);
2441 css_put(&memcg->css);
0c3e73e8 2442done:
c0ff4b85 2443 *ptr = memcg;
7a81b88c
KH
2444 return 0;
2445nomem:
c0ff4b85 2446 *ptr = NULL;
7a81b88c 2447 return -ENOMEM;
867578cb 2448bypass:
c0ff4b85 2449 *ptr = NULL;
867578cb 2450 return 0;
7a81b88c 2451}
8a9f3ccd 2452
a3032a2c
DN
2453/*
2454 * Somemtimes we have to undo a charge we got by try_charge().
2455 * This function is for that and do uncharge, put css's refcnt.
2456 * gotten by try_charge().
2457 */
c0ff4b85 2458static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2459 unsigned int nr_pages)
a3032a2c 2460{
c0ff4b85 2461 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2462 unsigned long bytes = nr_pages * PAGE_SIZE;
2463
c0ff4b85 2464 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2465 if (do_swap_account)
c0ff4b85 2466 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2467 }
854ffa8d
DN
2468}
2469
a3b2d692
KH
2470/*
2471 * A helper function to get mem_cgroup from ID. must be called under
2472 * rcu_read_lock(). The caller must check css_is_removed() or some if
2473 * it's concern. (dropping refcnt from swap can be called against removed
2474 * memcg.)
2475 */
2476static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2477{
2478 struct cgroup_subsys_state *css;
2479
2480 /* ID 0 is unused ID */
2481 if (!id)
2482 return NULL;
2483 css = css_lookup(&mem_cgroup_subsys, id);
2484 if (!css)
2485 return NULL;
2486 return container_of(css, struct mem_cgroup, css);
2487}
2488
e42d9d5d 2489struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2490{
c0ff4b85 2491 struct mem_cgroup *memcg = NULL;
3c776e64 2492 struct page_cgroup *pc;
a3b2d692 2493 unsigned short id;
b5a84319
KH
2494 swp_entry_t ent;
2495
3c776e64
DN
2496 VM_BUG_ON(!PageLocked(page));
2497
3c776e64 2498 pc = lookup_page_cgroup(page);
c0bd3f63 2499 lock_page_cgroup(pc);
a3b2d692 2500 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2501 memcg = pc->mem_cgroup;
2502 if (memcg && !css_tryget(&memcg->css))
2503 memcg = NULL;
e42d9d5d 2504 } else if (PageSwapCache(page)) {
3c776e64 2505 ent.val = page_private(page);
a3b2d692
KH
2506 id = lookup_swap_cgroup(ent);
2507 rcu_read_lock();
c0ff4b85
R
2508 memcg = mem_cgroup_lookup(id);
2509 if (memcg && !css_tryget(&memcg->css))
2510 memcg = NULL;
a3b2d692 2511 rcu_read_unlock();
3c776e64 2512 }
c0bd3f63 2513 unlock_page_cgroup(pc);
c0ff4b85 2514 return memcg;
b5a84319
KH
2515}
2516
c0ff4b85 2517static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2518 struct page *page,
7ec99d62 2519 unsigned int nr_pages,
ca3e0214 2520 struct page_cgroup *pc,
7ec99d62 2521 enum charge_type ctype)
7a81b88c 2522{
ca3e0214
KH
2523 lock_page_cgroup(pc);
2524 if (unlikely(PageCgroupUsed(pc))) {
2525 unlock_page_cgroup(pc);
c0ff4b85 2526 __mem_cgroup_cancel_charge(memcg, nr_pages);
ca3e0214
KH
2527 return;
2528 }
2529 /*
2530 * we don't need page_cgroup_lock about tail pages, becase they are not
2531 * accessed by any other context at this point.
2532 */
c0ff4b85 2533 pc->mem_cgroup = memcg;
261fb61a
KH
2534 /*
2535 * We access a page_cgroup asynchronously without lock_page_cgroup().
2536 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2537 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2538 * before USED bit, we need memory barrier here.
2539 * See mem_cgroup_add_lru_list(), etc.
2540 */
08e552c6 2541 smp_wmb();
4b3bde4c
BS
2542 switch (ctype) {
2543 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2544 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2545 SetPageCgroupCache(pc);
2546 SetPageCgroupUsed(pc);
2547 break;
2548 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2549 ClearPageCgroupCache(pc);
2550 SetPageCgroupUsed(pc);
2551 break;
2552 default:
2553 break;
2554 }
3be91277 2555
c0ff4b85 2556 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
52d4b9ac 2557 unlock_page_cgroup(pc);
430e4863
KH
2558 /*
2559 * "charge_statistics" updated event counter. Then, check it.
2560 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2561 * if they exceeds softlimit.
2562 */
c0ff4b85 2563 memcg_check_events(memcg, page);
7a81b88c 2564}
66e1707b 2565
ca3e0214
KH
2566#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2567
2568#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2569 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2570/*
2571 * Because tail pages are not marked as "used", set it. We're under
2572 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2573 */
2574void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2575{
2576 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2577 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2578 unsigned long flags;
2579
3d37c4a9
KH
2580 if (mem_cgroup_disabled())
2581 return;
ca3e0214 2582 /*
ece35ca8 2583 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2584 * page state accounting.
2585 */
2586 move_lock_page_cgroup(head_pc, &flags);
2587
2588 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2589 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2590 if (PageCgroupAcctLRU(head_pc)) {
2591 enum lru_list lru;
2592 struct mem_cgroup_per_zone *mz;
2593
2594 /*
2595 * LRU flags cannot be copied because we need to add tail
2596 *.page to LRU by generic call and our hook will be called.
2597 * We hold lru_lock, then, reduce counter directly.
2598 */
2599 lru = page_lru(head);
97a6c37b 2600 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
ece35ca8
KH
2601 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2602 }
ca3e0214
KH
2603 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2604 move_unlock_page_cgroup(head_pc, &flags);
2605}
2606#endif
2607
f817ed48 2608/**
de3638d9 2609 * mem_cgroup_move_account - move account of the page
5564e88b 2610 * @page: the page
7ec99d62 2611 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2612 * @pc: page_cgroup of the page.
2613 * @from: mem_cgroup which the page is moved from.
2614 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2615 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2616 *
2617 * The caller must confirm following.
08e552c6 2618 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2619 * - compound_lock is held when nr_pages > 1
f817ed48 2620 *
854ffa8d 2621 * This function doesn't do "charge" nor css_get to new cgroup. It should be
25985edc 2622 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
854ffa8d
DN
2623 * true, this function does "uncharge" from old cgroup, but it doesn't if
2624 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2625 */
7ec99d62
JW
2626static int mem_cgroup_move_account(struct page *page,
2627 unsigned int nr_pages,
2628 struct page_cgroup *pc,
2629 struct mem_cgroup *from,
2630 struct mem_cgroup *to,
2631 bool uncharge)
f817ed48 2632{
de3638d9
JW
2633 unsigned long flags;
2634 int ret;
987eba66 2635
f817ed48 2636 VM_BUG_ON(from == to);
5564e88b 2637 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2638 /*
2639 * The page is isolated from LRU. So, collapse function
2640 * will not handle this page. But page splitting can happen.
2641 * Do this check under compound_page_lock(). The caller should
2642 * hold it.
2643 */
2644 ret = -EBUSY;
7ec99d62 2645 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2646 goto out;
2647
2648 lock_page_cgroup(pc);
2649
2650 ret = -EINVAL;
2651 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2652 goto unlock;
2653
2654 move_lock_page_cgroup(pc, &flags);
f817ed48 2655
8725d541 2656 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2657 /* Update mapped_file data for mem_cgroup */
2658 preempt_disable();
2659 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2660 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2661 preempt_enable();
d69b042f 2662 }
987eba66 2663 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2664 if (uncharge)
2665 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2666 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2667
854ffa8d 2668 /* caller should have done css_get */
08e552c6 2669 pc->mem_cgroup = to;
987eba66 2670 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2671 /*
2672 * We charges against "to" which may not have any tasks. Then, "to"
2673 * can be under rmdir(). But in current implementation, caller of
4ffef5fe 2674 * this function is just force_empty() and move charge, so it's
25985edc 2675 * guaranteed that "to" is never removed. So, we don't check rmdir
4ffef5fe 2676 * status here.
88703267 2677 */
de3638d9
JW
2678 move_unlock_page_cgroup(pc, &flags);
2679 ret = 0;
2680unlock:
57f9fd7d 2681 unlock_page_cgroup(pc);
d2265e6f
KH
2682 /*
2683 * check events
2684 */
5564e88b
JW
2685 memcg_check_events(to, page);
2686 memcg_check_events(from, page);
de3638d9 2687out:
f817ed48
KH
2688 return ret;
2689}
2690
2691/*
2692 * move charges to its parent.
2693 */
2694
5564e88b
JW
2695static int mem_cgroup_move_parent(struct page *page,
2696 struct page_cgroup *pc,
f817ed48
KH
2697 struct mem_cgroup *child,
2698 gfp_t gfp_mask)
2699{
2700 struct cgroup *cg = child->css.cgroup;
2701 struct cgroup *pcg = cg->parent;
2702 struct mem_cgroup *parent;
7ec99d62 2703 unsigned int nr_pages;
4be4489f 2704 unsigned long uninitialized_var(flags);
f817ed48
KH
2705 int ret;
2706
2707 /* Is ROOT ? */
2708 if (!pcg)
2709 return -EINVAL;
2710
57f9fd7d
DN
2711 ret = -EBUSY;
2712 if (!get_page_unless_zero(page))
2713 goto out;
2714 if (isolate_lru_page(page))
2715 goto put;
52dbb905 2716
7ec99d62 2717 nr_pages = hpage_nr_pages(page);
08e552c6 2718
f817ed48 2719 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2720 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
a636b327 2721 if (ret || !parent)
57f9fd7d 2722 goto put_back;
f817ed48 2723
7ec99d62 2724 if (nr_pages > 1)
987eba66
KH
2725 flags = compound_lock_irqsave(page);
2726
7ec99d62 2727 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2728 if (ret)
7ec99d62 2729 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2730
7ec99d62 2731 if (nr_pages > 1)
987eba66 2732 compound_unlock_irqrestore(page, flags);
8dba474f 2733put_back:
08e552c6 2734 putback_lru_page(page);
57f9fd7d 2735put:
40d58138 2736 put_page(page);
57f9fd7d 2737out:
f817ed48
KH
2738 return ret;
2739}
2740
7a81b88c
KH
2741/*
2742 * Charge the memory controller for page usage.
2743 * Return
2744 * 0 if the charge was successful
2745 * < 0 if the cgroup is over its limit
2746 */
2747static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2748 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2749{
c0ff4b85 2750 struct mem_cgroup *memcg = NULL;
7ec99d62 2751 unsigned int nr_pages = 1;
7a81b88c 2752 struct page_cgroup *pc;
8493ae43 2753 bool oom = true;
7a81b88c 2754 int ret;
ec168510 2755
37c2ac78 2756 if (PageTransHuge(page)) {
7ec99d62 2757 nr_pages <<= compound_order(page);
37c2ac78 2758 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2759 /*
2760 * Never OOM-kill a process for a huge page. The
2761 * fault handler will fall back to regular pages.
2762 */
2763 oom = false;
37c2ac78 2764 }
7a81b88c
KH
2765
2766 pc = lookup_page_cgroup(page);
af4a6621 2767 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
7a81b88c 2768
c0ff4b85
R
2769 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2770 if (ret || !memcg)
7a81b88c
KH
2771 return ret;
2772
c0ff4b85 2773 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
8a9f3ccd 2774 return 0;
8a9f3ccd
BS
2775}
2776
7a81b88c
KH
2777int mem_cgroup_newpage_charge(struct page *page,
2778 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2779{
f8d66542 2780 if (mem_cgroup_disabled())
cede86ac 2781 return 0;
69029cd5
KH
2782 /*
2783 * If already mapped, we don't have to account.
2784 * If page cache, page->mapping has address_space.
2785 * But page->mapping may have out-of-use anon_vma pointer,
2786 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2787 * is NULL.
2788 */
2789 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2790 return 0;
2791 if (unlikely(!mm))
2792 mm = &init_mm;
217bc319 2793 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2794 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2795}
2796
83aae4c7
DN
2797static void
2798__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2799 enum charge_type ctype);
2800
5a6475a4 2801static void
c0ff4b85 2802__mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
5a6475a4
KH
2803 enum charge_type ctype)
2804{
2805 struct page_cgroup *pc = lookup_page_cgroup(page);
2806 /*
2807 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2808 * is already on LRU. It means the page may on some other page_cgroup's
2809 * LRU. Take care of it.
2810 */
2811 mem_cgroup_lru_del_before_commit(page);
c0ff4b85 2812 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
5a6475a4
KH
2813 mem_cgroup_lru_add_after_commit(page);
2814 return;
2815}
2816
e1a1cd59
BS
2817int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2818 gfp_t gfp_mask)
8697d331 2819{
c0ff4b85 2820 struct mem_cgroup *memcg = NULL;
b5a84319
KH
2821 int ret;
2822
f8d66542 2823 if (mem_cgroup_disabled())
cede86ac 2824 return 0;
52d4b9ac
KH
2825 if (PageCompound(page))
2826 return 0;
accf163e 2827
73045c47 2828 if (unlikely(!mm))
8697d331 2829 mm = &init_mm;
accf163e 2830
5a6475a4 2831 if (page_is_file_cache(page)) {
c0ff4b85
R
2832 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2833 if (ret || !memcg)
5a6475a4 2834 return ret;
b5a84319 2835
5a6475a4
KH
2836 /*
2837 * FUSE reuses pages without going through the final
2838 * put that would remove them from the LRU list, make
2839 * sure that they get relinked properly.
2840 */
c0ff4b85 2841 __mem_cgroup_commit_charge_lrucare(page, memcg,
5a6475a4
KH
2842 MEM_CGROUP_CHARGE_TYPE_CACHE);
2843 return ret;
2844 }
83aae4c7
DN
2845 /* shmem */
2846 if (PageSwapCache(page)) {
c0ff4b85 2847 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
83aae4c7 2848 if (!ret)
c0ff4b85 2849 __mem_cgroup_commit_charge_swapin(page, memcg,
83aae4c7
DN
2850 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2851 } else
2852 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2853 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2854
b5a84319 2855 return ret;
e8589cc1
KH
2856}
2857
54595fe2
KH
2858/*
2859 * While swap-in, try_charge -> commit or cancel, the page is locked.
2860 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2861 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2862 * "commit()" or removed by "cancel()"
2863 */
8c7c6e34
KH
2864int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2865 struct page *page,
2866 gfp_t mask, struct mem_cgroup **ptr)
2867{
c0ff4b85 2868 struct mem_cgroup *memcg;
54595fe2 2869 int ret;
8c7c6e34 2870
56039efa
KH
2871 *ptr = NULL;
2872
f8d66542 2873 if (mem_cgroup_disabled())
8c7c6e34
KH
2874 return 0;
2875
2876 if (!do_swap_account)
2877 goto charge_cur_mm;
8c7c6e34
KH
2878 /*
2879 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2880 * the pte, and even removed page from swap cache: in those cases
2881 * do_swap_page()'s pte_same() test will fail; but there's also a
2882 * KSM case which does need to charge the page.
8c7c6e34
KH
2883 */
2884 if (!PageSwapCache(page))
407f9c8b 2885 goto charge_cur_mm;
c0ff4b85
R
2886 memcg = try_get_mem_cgroup_from_page(page);
2887 if (!memcg)
54595fe2 2888 goto charge_cur_mm;
c0ff4b85 2889 *ptr = memcg;
7ec99d62 2890 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
c0ff4b85 2891 css_put(&memcg->css);
54595fe2 2892 return ret;
8c7c6e34
KH
2893charge_cur_mm:
2894 if (unlikely(!mm))
2895 mm = &init_mm;
7ec99d62 2896 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
8c7c6e34
KH
2897}
2898
83aae4c7
DN
2899static void
2900__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2901 enum charge_type ctype)
7a81b88c 2902{
f8d66542 2903 if (mem_cgroup_disabled())
7a81b88c
KH
2904 return;
2905 if (!ptr)
2906 return;
88703267 2907 cgroup_exclude_rmdir(&ptr->css);
5a6475a4
KH
2908
2909 __mem_cgroup_commit_charge_lrucare(page, ptr, ctype);
8c7c6e34
KH
2910 /*
2911 * Now swap is on-memory. This means this page may be
2912 * counted both as mem and swap....double count.
03f3c433
KH
2913 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2914 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2915 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2916 */
03f3c433 2917 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2918 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2919 unsigned short id;
8c7c6e34 2920 struct mem_cgroup *memcg;
a3b2d692
KH
2921
2922 id = swap_cgroup_record(ent, 0);
2923 rcu_read_lock();
2924 memcg = mem_cgroup_lookup(id);
8c7c6e34 2925 if (memcg) {
a3b2d692
KH
2926 /*
2927 * This recorded memcg can be obsolete one. So, avoid
2928 * calling css_tryget
2929 */
0c3e73e8 2930 if (!mem_cgroup_is_root(memcg))
4e649152 2931 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2932 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2933 mem_cgroup_put(memcg);
2934 }
a3b2d692 2935 rcu_read_unlock();
8c7c6e34 2936 }
88703267
KH
2937 /*
2938 * At swapin, we may charge account against cgroup which has no tasks.
2939 * So, rmdir()->pre_destroy() can be called while we do this charge.
2940 * In that case, we need to call pre_destroy() again. check it here.
2941 */
2942 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2943}
2944
83aae4c7
DN
2945void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2946{
2947 __mem_cgroup_commit_charge_swapin(page, ptr,
2948 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2949}
2950
c0ff4b85 2951void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
7a81b88c 2952{
f8d66542 2953 if (mem_cgroup_disabled())
7a81b88c 2954 return;
c0ff4b85 2955 if (!memcg)
7a81b88c 2956 return;
c0ff4b85 2957 __mem_cgroup_cancel_charge(memcg, 1);
7a81b88c
KH
2958}
2959
c0ff4b85 2960static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
2961 unsigned int nr_pages,
2962 const enum charge_type ctype)
569b846d
KH
2963{
2964 struct memcg_batch_info *batch = NULL;
2965 bool uncharge_memsw = true;
7ec99d62 2966
569b846d
KH
2967 /* If swapout, usage of swap doesn't decrease */
2968 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2969 uncharge_memsw = false;
569b846d
KH
2970
2971 batch = &current->memcg_batch;
2972 /*
2973 * In usual, we do css_get() when we remember memcg pointer.
2974 * But in this case, we keep res->usage until end of a series of
2975 * uncharges. Then, it's ok to ignore memcg's refcnt.
2976 */
2977 if (!batch->memcg)
c0ff4b85 2978 batch->memcg = memcg;
3c11ecf4
KH
2979 /*
2980 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 2981 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
2982 * the same cgroup and we have chance to coalesce uncharges.
2983 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2984 * because we want to do uncharge as soon as possible.
2985 */
2986
2987 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2988 goto direct_uncharge;
2989
7ec99d62 2990 if (nr_pages > 1)
ec168510
AA
2991 goto direct_uncharge;
2992
569b846d
KH
2993 /*
2994 * In typical case, batch->memcg == mem. This means we can
2995 * merge a series of uncharges to an uncharge of res_counter.
2996 * If not, we uncharge res_counter ony by one.
2997 */
c0ff4b85 2998 if (batch->memcg != memcg)
569b846d
KH
2999 goto direct_uncharge;
3000 /* remember freed charge and uncharge it later */
7ffd4ca7 3001 batch->nr_pages++;
569b846d 3002 if (uncharge_memsw)
7ffd4ca7 3003 batch->memsw_nr_pages++;
569b846d
KH
3004 return;
3005direct_uncharge:
c0ff4b85 3006 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3007 if (uncharge_memsw)
c0ff4b85
R
3008 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3009 if (unlikely(batch->memcg != memcg))
3010 memcg_oom_recover(memcg);
569b846d
KH
3011 return;
3012}
7a81b88c 3013
8a9f3ccd 3014/*
69029cd5 3015 * uncharge if !page_mapped(page)
8a9f3ccd 3016 */
8c7c6e34 3017static struct mem_cgroup *
69029cd5 3018__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 3019{
c0ff4b85 3020 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3021 unsigned int nr_pages = 1;
3022 struct page_cgroup *pc;
8a9f3ccd 3023
f8d66542 3024 if (mem_cgroup_disabled())
8c7c6e34 3025 return NULL;
4077960e 3026
d13d1443 3027 if (PageSwapCache(page))
8c7c6e34 3028 return NULL;
d13d1443 3029
37c2ac78 3030 if (PageTransHuge(page)) {
7ec99d62 3031 nr_pages <<= compound_order(page);
37c2ac78
AA
3032 VM_BUG_ON(!PageTransHuge(page));
3033 }
8697d331 3034 /*
3c541e14 3035 * Check if our page_cgroup is valid
8697d331 3036 */
52d4b9ac
KH
3037 pc = lookup_page_cgroup(page);
3038 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 3039 return NULL;
b9c565d5 3040
52d4b9ac 3041 lock_page_cgroup(pc);
d13d1443 3042
c0ff4b85 3043 memcg = pc->mem_cgroup;
8c7c6e34 3044
d13d1443
KH
3045 if (!PageCgroupUsed(pc))
3046 goto unlock_out;
3047
3048 switch (ctype) {
3049 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 3050 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
3051 /* See mem_cgroup_prepare_migration() */
3052 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
3053 goto unlock_out;
3054 break;
3055 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3056 if (!PageAnon(page)) { /* Shared memory */
3057 if (page->mapping && !page_is_file_cache(page))
3058 goto unlock_out;
3059 } else if (page_mapped(page)) /* Anon */
3060 goto unlock_out;
3061 break;
3062 default:
3063 break;
52d4b9ac 3064 }
d13d1443 3065
c0ff4b85 3066 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
04046e1a 3067
52d4b9ac 3068 ClearPageCgroupUsed(pc);
544122e5
KH
3069 /*
3070 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3071 * freed from LRU. This is safe because uncharged page is expected not
3072 * to be reused (freed soon). Exception is SwapCache, it's handled by
3073 * special functions.
3074 */
b9c565d5 3075
52d4b9ac 3076 unlock_page_cgroup(pc);
f75ca962 3077 /*
c0ff4b85 3078 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3079 * will never be freed.
3080 */
c0ff4b85 3081 memcg_check_events(memcg, page);
f75ca962 3082 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3083 mem_cgroup_swap_statistics(memcg, true);
3084 mem_cgroup_get(memcg);
f75ca962 3085 }
c0ff4b85
R
3086 if (!mem_cgroup_is_root(memcg))
3087 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3088
c0ff4b85 3089 return memcg;
d13d1443
KH
3090
3091unlock_out:
3092 unlock_page_cgroup(pc);
8c7c6e34 3093 return NULL;
3c541e14
BS
3094}
3095
69029cd5
KH
3096void mem_cgroup_uncharge_page(struct page *page)
3097{
52d4b9ac
KH
3098 /* early check. */
3099 if (page_mapped(page))
3100 return;
3101 if (page->mapping && !PageAnon(page))
3102 return;
69029cd5
KH
3103 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3104}
3105
3106void mem_cgroup_uncharge_cache_page(struct page *page)
3107{
3108 VM_BUG_ON(page_mapped(page));
b7abea96 3109 VM_BUG_ON(page->mapping);
69029cd5
KH
3110 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3111}
3112
569b846d
KH
3113/*
3114 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3115 * In that cases, pages are freed continuously and we can expect pages
3116 * are in the same memcg. All these calls itself limits the number of
3117 * pages freed at once, then uncharge_start/end() is called properly.
3118 * This may be called prural(2) times in a context,
3119 */
3120
3121void mem_cgroup_uncharge_start(void)
3122{
3123 current->memcg_batch.do_batch++;
3124 /* We can do nest. */
3125 if (current->memcg_batch.do_batch == 1) {
3126 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3127 current->memcg_batch.nr_pages = 0;
3128 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3129 }
3130}
3131
3132void mem_cgroup_uncharge_end(void)
3133{
3134 struct memcg_batch_info *batch = &current->memcg_batch;
3135
3136 if (!batch->do_batch)
3137 return;
3138
3139 batch->do_batch--;
3140 if (batch->do_batch) /* If stacked, do nothing. */
3141 return;
3142
3143 if (!batch->memcg)
3144 return;
3145 /*
3146 * This "batch->memcg" is valid without any css_get/put etc...
3147 * bacause we hide charges behind us.
3148 */
7ffd4ca7
JW
3149 if (batch->nr_pages)
3150 res_counter_uncharge(&batch->memcg->res,
3151 batch->nr_pages * PAGE_SIZE);
3152 if (batch->memsw_nr_pages)
3153 res_counter_uncharge(&batch->memcg->memsw,
3154 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3155 memcg_oom_recover(batch->memcg);
569b846d
KH
3156 /* forget this pointer (for sanity check) */
3157 batch->memcg = NULL;
3158}
3159
e767e056 3160#ifdef CONFIG_SWAP
8c7c6e34 3161/*
e767e056 3162 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3163 * memcg information is recorded to swap_cgroup of "ent"
3164 */
8a9478ca
KH
3165void
3166mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3167{
3168 struct mem_cgroup *memcg;
8a9478ca
KH
3169 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3170
3171 if (!swapout) /* this was a swap cache but the swap is unused ! */
3172 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3173
3174 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 3175
f75ca962
KH
3176 /*
3177 * record memcg information, if swapout && memcg != NULL,
3178 * mem_cgroup_get() was called in uncharge().
3179 */
3180 if (do_swap_account && swapout && memcg)
a3b2d692 3181 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3182}
e767e056 3183#endif
8c7c6e34
KH
3184
3185#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3186/*
3187 * called from swap_entry_free(). remove record in swap_cgroup and
3188 * uncharge "memsw" account.
3189 */
3190void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3191{
8c7c6e34 3192 struct mem_cgroup *memcg;
a3b2d692 3193 unsigned short id;
8c7c6e34
KH
3194
3195 if (!do_swap_account)
3196 return;
3197
a3b2d692
KH
3198 id = swap_cgroup_record(ent, 0);
3199 rcu_read_lock();
3200 memcg = mem_cgroup_lookup(id);
8c7c6e34 3201 if (memcg) {
a3b2d692
KH
3202 /*
3203 * We uncharge this because swap is freed.
3204 * This memcg can be obsolete one. We avoid calling css_tryget
3205 */
0c3e73e8 3206 if (!mem_cgroup_is_root(memcg))
4e649152 3207 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3208 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3209 mem_cgroup_put(memcg);
3210 }
a3b2d692 3211 rcu_read_unlock();
d13d1443 3212}
02491447
DN
3213
3214/**
3215 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3216 * @entry: swap entry to be moved
3217 * @from: mem_cgroup which the entry is moved from
3218 * @to: mem_cgroup which the entry is moved to
483c30b5 3219 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
3220 *
3221 * It succeeds only when the swap_cgroup's record for this entry is the same
3222 * as the mem_cgroup's id of @from.
3223 *
3224 * Returns 0 on success, -EINVAL on failure.
3225 *
3226 * The caller must have charged to @to, IOW, called res_counter_charge() about
3227 * both res and memsw, and called css_get().
3228 */
3229static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3230 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3231{
3232 unsigned short old_id, new_id;
3233
3234 old_id = css_id(&from->css);
3235 new_id = css_id(&to->css);
3236
3237 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3238 mem_cgroup_swap_statistics(from, false);
483c30b5 3239 mem_cgroup_swap_statistics(to, true);
02491447 3240 /*
483c30b5
DN
3241 * This function is only called from task migration context now.
3242 * It postpones res_counter and refcount handling till the end
3243 * of task migration(mem_cgroup_clear_mc()) for performance
3244 * improvement. But we cannot postpone mem_cgroup_get(to)
3245 * because if the process that has been moved to @to does
3246 * swap-in, the refcount of @to might be decreased to 0.
02491447 3247 */
02491447 3248 mem_cgroup_get(to);
483c30b5
DN
3249 if (need_fixup) {
3250 if (!mem_cgroup_is_root(from))
3251 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3252 mem_cgroup_put(from);
3253 /*
3254 * we charged both to->res and to->memsw, so we should
3255 * uncharge to->res.
3256 */
3257 if (!mem_cgroup_is_root(to))
3258 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 3259 }
02491447
DN
3260 return 0;
3261 }
3262 return -EINVAL;
3263}
3264#else
3265static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 3266 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
3267{
3268 return -EINVAL;
3269}
8c7c6e34 3270#endif
d13d1443 3271
ae41be37 3272/*
01b1ae63
KH
3273 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3274 * page belongs to.
ae41be37 3275 */
ac39cf8c 3276int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 3277 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37 3278{
c0ff4b85 3279 struct mem_cgroup *memcg = NULL;
7ec99d62 3280 struct page_cgroup *pc;
ac39cf8c 3281 enum charge_type ctype;
e8589cc1 3282 int ret = 0;
8869b8f6 3283
56039efa
KH
3284 *ptr = NULL;
3285
ec168510 3286 VM_BUG_ON(PageTransHuge(page));
f8d66542 3287 if (mem_cgroup_disabled())
4077960e
BS
3288 return 0;
3289
52d4b9ac
KH
3290 pc = lookup_page_cgroup(page);
3291 lock_page_cgroup(pc);
3292 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3293 memcg = pc->mem_cgroup;
3294 css_get(&memcg->css);
ac39cf8c
AM
3295 /*
3296 * At migrating an anonymous page, its mapcount goes down
3297 * to 0 and uncharge() will be called. But, even if it's fully
3298 * unmapped, migration may fail and this page has to be
3299 * charged again. We set MIGRATION flag here and delay uncharge
3300 * until end_migration() is called
3301 *
3302 * Corner Case Thinking
3303 * A)
3304 * When the old page was mapped as Anon and it's unmap-and-freed
3305 * while migration was ongoing.
3306 * If unmap finds the old page, uncharge() of it will be delayed
3307 * until end_migration(). If unmap finds a new page, it's
3308 * uncharged when it make mapcount to be 1->0. If unmap code
3309 * finds swap_migration_entry, the new page will not be mapped
3310 * and end_migration() will find it(mapcount==0).
3311 *
3312 * B)
3313 * When the old page was mapped but migraion fails, the kernel
3314 * remaps it. A charge for it is kept by MIGRATION flag even
3315 * if mapcount goes down to 0. We can do remap successfully
3316 * without charging it again.
3317 *
3318 * C)
3319 * The "old" page is under lock_page() until the end of
3320 * migration, so, the old page itself will not be swapped-out.
3321 * If the new page is swapped out before end_migraton, our
3322 * hook to usual swap-out path will catch the event.
3323 */
3324 if (PageAnon(page))
3325 SetPageCgroupMigration(pc);
e8589cc1 3326 }
52d4b9ac 3327 unlock_page_cgroup(pc);
ac39cf8c
AM
3328 /*
3329 * If the page is not charged at this point,
3330 * we return here.
3331 */
c0ff4b85 3332 if (!memcg)
ac39cf8c 3333 return 0;
01b1ae63 3334
c0ff4b85 3335 *ptr = memcg;
7ec99d62 3336 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
c0ff4b85 3337 css_put(&memcg->css);/* drop extra refcnt */
ac39cf8c
AM
3338 if (ret || *ptr == NULL) {
3339 if (PageAnon(page)) {
3340 lock_page_cgroup(pc);
3341 ClearPageCgroupMigration(pc);
3342 unlock_page_cgroup(pc);
3343 /*
3344 * The old page may be fully unmapped while we kept it.
3345 */
3346 mem_cgroup_uncharge_page(page);
3347 }
3348 return -ENOMEM;
e8589cc1 3349 }
ac39cf8c
AM
3350 /*
3351 * We charge new page before it's used/mapped. So, even if unlock_page()
3352 * is called before end_migration, we can catch all events on this new
3353 * page. In the case new page is migrated but not remapped, new page's
3354 * mapcount will be finally 0 and we call uncharge in end_migration().
3355 */
3356 pc = lookup_page_cgroup(newpage);
3357 if (PageAnon(page))
3358 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3359 else if (page_is_file_cache(page))
3360 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3361 else
3362 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
c0ff4b85 3363 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
e8589cc1 3364 return ret;
ae41be37 3365}
8869b8f6 3366
69029cd5 3367/* remove redundant charge if migration failed*/
c0ff4b85 3368void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3369 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3370{
ac39cf8c 3371 struct page *used, *unused;
01b1ae63 3372 struct page_cgroup *pc;
01b1ae63 3373
c0ff4b85 3374 if (!memcg)
01b1ae63 3375 return;
ac39cf8c 3376 /* blocks rmdir() */
c0ff4b85 3377 cgroup_exclude_rmdir(&memcg->css);
50de1dd9 3378 if (!migration_ok) {
ac39cf8c
AM
3379 used = oldpage;
3380 unused = newpage;
01b1ae63 3381 } else {
ac39cf8c 3382 used = newpage;
01b1ae63
KH
3383 unused = oldpage;
3384 }
69029cd5 3385 /*
ac39cf8c
AM
3386 * We disallowed uncharge of pages under migration because mapcount
3387 * of the page goes down to zero, temporarly.
3388 * Clear the flag and check the page should be charged.
01b1ae63 3389 */
ac39cf8c
AM
3390 pc = lookup_page_cgroup(oldpage);
3391 lock_page_cgroup(pc);
3392 ClearPageCgroupMigration(pc);
3393 unlock_page_cgroup(pc);
01b1ae63 3394
ac39cf8c
AM
3395 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3396
01b1ae63 3397 /*
ac39cf8c
AM
3398 * If a page is a file cache, radix-tree replacement is very atomic
3399 * and we can skip this check. When it was an Anon page, its mapcount
3400 * goes down to 0. But because we added MIGRATION flage, it's not
3401 * uncharged yet. There are several case but page->mapcount check
3402 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3403 * check. (see prepare_charge() also)
69029cd5 3404 */
ac39cf8c
AM
3405 if (PageAnon(used))
3406 mem_cgroup_uncharge_page(used);
88703267 3407 /*
ac39cf8c
AM
3408 * At migration, we may charge account against cgroup which has no
3409 * tasks.
88703267
KH
3410 * So, rmdir()->pre_destroy() can be called while we do this charge.
3411 * In that case, we need to call pre_destroy() again. check it here.
3412 */
c0ff4b85 3413 cgroup_release_and_wakeup_rmdir(&memcg->css);
ae41be37 3414}
78fb7466 3415
ab936cbc
KH
3416/*
3417 * At replace page cache, newpage is not under any memcg but it's on
3418 * LRU. So, this function doesn't touch res_counter but handles LRU
3419 * in correct way. Both pages are locked so we cannot race with uncharge.
3420 */
3421void mem_cgroup_replace_page_cache(struct page *oldpage,
3422 struct page *newpage)
3423{
3424 struct mem_cgroup *memcg;
3425 struct page_cgroup *pc;
3426 struct zone *zone;
3427 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3428 unsigned long flags;
3429
3430 if (mem_cgroup_disabled())
3431 return;
3432
3433 pc = lookup_page_cgroup(oldpage);
3434 /* fix accounting on old pages */
3435 lock_page_cgroup(pc);
3436 memcg = pc->mem_cgroup;
3437 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3438 ClearPageCgroupUsed(pc);
3439 unlock_page_cgroup(pc);
3440
3441 if (PageSwapBacked(oldpage))
3442 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3443
3444 zone = page_zone(newpage);
3445 pc = lookup_page_cgroup(newpage);
3446 /*
3447 * Even if newpage->mapping was NULL before starting replacement,
3448 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3449 * LRU while we overwrite pc->mem_cgroup.
3450 */
3451 spin_lock_irqsave(&zone->lru_lock, flags);
3452 if (PageLRU(newpage))
3453 del_page_from_lru_list(zone, newpage, page_lru(newpage));
3454 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
3455 if (PageLRU(newpage))
3456 add_page_to_lru_list(zone, newpage, page_lru(newpage));
3457 spin_unlock_irqrestore(&zone->lru_lock, flags);
3458}
3459
f212ad7c
DN
3460#ifdef CONFIG_DEBUG_VM
3461static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3462{
3463 struct page_cgroup *pc;
3464
3465 pc = lookup_page_cgroup(page);
3466 if (likely(pc) && PageCgroupUsed(pc))
3467 return pc;
3468 return NULL;
3469}
3470
3471bool mem_cgroup_bad_page_check(struct page *page)
3472{
3473 if (mem_cgroup_disabled())
3474 return false;
3475
3476 return lookup_page_cgroup_used(page) != NULL;
3477}
3478
3479void mem_cgroup_print_bad_page(struct page *page)
3480{
3481 struct page_cgroup *pc;
3482
3483 pc = lookup_page_cgroup_used(page);
3484 if (pc) {
3485 int ret = -1;
3486 char *path;
3487
3488 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3489 pc, pc->flags, pc->mem_cgroup);
3490
3491 path = kmalloc(PATH_MAX, GFP_KERNEL);
3492 if (path) {
3493 rcu_read_lock();
3494 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3495 path, PATH_MAX);
3496 rcu_read_unlock();
3497 }
3498
3499 printk(KERN_CONT "(%s)\n",
3500 (ret < 0) ? "cannot get the path" : path);
3501 kfree(path);
3502 }
3503}
3504#endif
3505
8c7c6e34
KH
3506static DEFINE_MUTEX(set_limit_mutex);
3507
d38d2a75 3508static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3509 unsigned long long val)
628f4235 3510{
81d39c20 3511 int retry_count;
3c11ecf4 3512 u64 memswlimit, memlimit;
628f4235 3513 int ret = 0;
81d39c20
KH
3514 int children = mem_cgroup_count_children(memcg);
3515 u64 curusage, oldusage;
3c11ecf4 3516 int enlarge;
81d39c20
KH
3517
3518 /*
3519 * For keeping hierarchical_reclaim simple, how long we should retry
3520 * is depends on callers. We set our retry-count to be function
3521 * of # of children which we should visit in this loop.
3522 */
3523 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3524
3525 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3526
3c11ecf4 3527 enlarge = 0;
8c7c6e34 3528 while (retry_count) {
628f4235
KH
3529 if (signal_pending(current)) {
3530 ret = -EINTR;
3531 break;
3532 }
8c7c6e34
KH
3533 /*
3534 * Rather than hide all in some function, I do this in
3535 * open coded manner. You see what this really does.
c0ff4b85 3536 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3537 */
3538 mutex_lock(&set_limit_mutex);
3539 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3540 if (memswlimit < val) {
3541 ret = -EINVAL;
3542 mutex_unlock(&set_limit_mutex);
628f4235
KH
3543 break;
3544 }
3c11ecf4
KH
3545
3546 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3547 if (memlimit < val)
3548 enlarge = 1;
3549
8c7c6e34 3550 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3551 if (!ret) {
3552 if (memswlimit == val)
3553 memcg->memsw_is_minimum = true;
3554 else
3555 memcg->memsw_is_minimum = false;
3556 }
8c7c6e34
KH
3557 mutex_unlock(&set_limit_mutex);
3558
3559 if (!ret)
3560 break;
3561
aa20d489 3562 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
0ae5e89c
YH
3563 MEM_CGROUP_RECLAIM_SHRINK,
3564 NULL);
81d39c20
KH
3565 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3566 /* Usage is reduced ? */
3567 if (curusage >= oldusage)
3568 retry_count--;
3569 else
3570 oldusage = curusage;
8c7c6e34 3571 }
3c11ecf4
KH
3572 if (!ret && enlarge)
3573 memcg_oom_recover(memcg);
14797e23 3574
8c7c6e34
KH
3575 return ret;
3576}
3577
338c8431
LZ
3578static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3579 unsigned long long val)
8c7c6e34 3580{
81d39c20 3581 int retry_count;
3c11ecf4 3582 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3583 int children = mem_cgroup_count_children(memcg);
3584 int ret = -EBUSY;
3c11ecf4 3585 int enlarge = 0;
8c7c6e34 3586
81d39c20
KH
3587 /* see mem_cgroup_resize_res_limit */
3588 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3589 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3590 while (retry_count) {
3591 if (signal_pending(current)) {
3592 ret = -EINTR;
3593 break;
3594 }
3595 /*
3596 * Rather than hide all in some function, I do this in
3597 * open coded manner. You see what this really does.
c0ff4b85 3598 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
8c7c6e34
KH
3599 */
3600 mutex_lock(&set_limit_mutex);
3601 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3602 if (memlimit > val) {
3603 ret = -EINVAL;
3604 mutex_unlock(&set_limit_mutex);
3605 break;
3606 }
3c11ecf4
KH
3607 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3608 if (memswlimit < val)
3609 enlarge = 1;
8c7c6e34 3610 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3611 if (!ret) {
3612 if (memlimit == val)
3613 memcg->memsw_is_minimum = true;
3614 else
3615 memcg->memsw_is_minimum = false;
3616 }
8c7c6e34
KH
3617 mutex_unlock(&set_limit_mutex);
3618
3619 if (!ret)
3620 break;
3621
4e416953 3622 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44 3623 MEM_CGROUP_RECLAIM_NOSWAP |
0ae5e89c
YH
3624 MEM_CGROUP_RECLAIM_SHRINK,
3625 NULL);
8c7c6e34 3626 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3627 /* Usage is reduced ? */
8c7c6e34 3628 if (curusage >= oldusage)
628f4235 3629 retry_count--;
81d39c20
KH
3630 else
3631 oldusage = curusage;
628f4235 3632 }
3c11ecf4
KH
3633 if (!ret && enlarge)
3634 memcg_oom_recover(memcg);
628f4235
KH
3635 return ret;
3636}
3637
4e416953 3638unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
3639 gfp_t gfp_mask,
3640 unsigned long *total_scanned)
4e416953
BS
3641{
3642 unsigned long nr_reclaimed = 0;
3643 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3644 unsigned long reclaimed;
3645 int loop = 0;
3646 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3647 unsigned long long excess;
0ae5e89c 3648 unsigned long nr_scanned;
4e416953
BS
3649
3650 if (order > 0)
3651 return 0;
3652
00918b6a 3653 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3654 /*
3655 * This loop can run a while, specially if mem_cgroup's continuously
3656 * keep exceeding their soft limit and putting the system under
3657 * pressure
3658 */
3659 do {
3660 if (next_mz)
3661 mz = next_mz;
3662 else
3663 mz = mem_cgroup_largest_soft_limit_node(mctz);
3664 if (!mz)
3665 break;
3666
0ae5e89c 3667 nr_scanned = 0;
4e416953
BS
3668 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3669 gfp_mask,
0ae5e89c
YH
3670 MEM_CGROUP_RECLAIM_SOFT,
3671 &nr_scanned);
4e416953 3672 nr_reclaimed += reclaimed;
0ae5e89c 3673 *total_scanned += nr_scanned;
4e416953
BS
3674 spin_lock(&mctz->lock);
3675
3676 /*
3677 * If we failed to reclaim anything from this memory cgroup
3678 * it is time to move on to the next cgroup
3679 */
3680 next_mz = NULL;
3681 if (!reclaimed) {
3682 do {
3683 /*
3684 * Loop until we find yet another one.
3685 *
3686 * By the time we get the soft_limit lock
3687 * again, someone might have aded the
3688 * group back on the RB tree. Iterate to
3689 * make sure we get a different mem.
3690 * mem_cgroup_largest_soft_limit_node returns
3691 * NULL if no other cgroup is present on
3692 * the tree
3693 */
3694 next_mz =
3695 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 3696 if (next_mz == mz)
4e416953 3697 css_put(&next_mz->mem->css);
39cc98f1 3698 else /* next_mz == NULL or other memcg */
4e416953
BS
3699 break;
3700 } while (1);
3701 }
4e416953 3702 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3703 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3704 /*
3705 * One school of thought says that we should not add
3706 * back the node to the tree if reclaim returns 0.
3707 * But our reclaim could return 0, simply because due
3708 * to priority we are exposing a smaller subset of
3709 * memory to reclaim from. Consider this as a longer
3710 * term TODO.
3711 */
ef8745c1
KH
3712 /* If excess == 0, no tree ops */
3713 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3714 spin_unlock(&mctz->lock);
3715 css_put(&mz->mem->css);
3716 loop++;
3717 /*
3718 * Could not reclaim anything and there are no more
3719 * mem cgroups to try or we seem to be looping without
3720 * reclaiming anything.
3721 */
3722 if (!nr_reclaimed &&
3723 (next_mz == NULL ||
3724 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3725 break;
3726 } while (!nr_reclaimed);
3727 if (next_mz)
3728 css_put(&next_mz->mem->css);
3729 return nr_reclaimed;
3730}
3731
cc847582
KH
3732/*
3733 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3734 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3735 */
c0ff4b85 3736static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 3737 int node, int zid, enum lru_list lru)
cc847582 3738{
08e552c6
KH
3739 struct zone *zone;
3740 struct mem_cgroup_per_zone *mz;
f817ed48 3741 struct page_cgroup *pc, *busy;
08e552c6 3742 unsigned long flags, loop;
072c56c1 3743 struct list_head *list;
f817ed48 3744 int ret = 0;
072c56c1 3745
08e552c6 3746 zone = &NODE_DATA(node)->node_zones[zid];
c0ff4b85 3747 mz = mem_cgroup_zoneinfo(memcg, node, zid);
b69408e8 3748 list = &mz->lists[lru];
cc847582 3749
f817ed48
KH
3750 loop = MEM_CGROUP_ZSTAT(mz, lru);
3751 /* give some margin against EBUSY etc...*/
3752 loop += 256;
3753 busy = NULL;
3754 while (loop--) {
5564e88b
JW
3755 struct page *page;
3756
f817ed48 3757 ret = 0;
08e552c6 3758 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3759 if (list_empty(list)) {
08e552c6 3760 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3761 break;
f817ed48
KH
3762 }
3763 pc = list_entry(list->prev, struct page_cgroup, lru);
3764 if (busy == pc) {
3765 list_move(&pc->lru, list);
648bcc77 3766 busy = NULL;
08e552c6 3767 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3768 continue;
3769 }
08e552c6 3770 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3771
6b3ae58e 3772 page = lookup_cgroup_page(pc);
5564e88b 3773
c0ff4b85 3774 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
f817ed48 3775 if (ret == -ENOMEM)
52d4b9ac 3776 break;
f817ed48
KH
3777
3778 if (ret == -EBUSY || ret == -EINVAL) {
3779 /* found lock contention or "pc" is obsolete. */
3780 busy = pc;
3781 cond_resched();
3782 } else
3783 busy = NULL;
cc847582 3784 }
08e552c6 3785
f817ed48
KH
3786 if (!ret && !list_empty(list))
3787 return -EBUSY;
3788 return ret;
cc847582
KH
3789}
3790
3791/*
3792 * make mem_cgroup's charge to be 0 if there is no task.
3793 * This enables deleting this mem_cgroup.
3794 */
c0ff4b85 3795static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
cc847582 3796{
f817ed48
KH
3797 int ret;
3798 int node, zid, shrink;
3799 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 3800 struct cgroup *cgrp = memcg->css.cgroup;
8869b8f6 3801
c0ff4b85 3802 css_get(&memcg->css);
f817ed48
KH
3803
3804 shrink = 0;
c1e862c1
KH
3805 /* should free all ? */
3806 if (free_all)
3807 goto try_to_free;
f817ed48 3808move_account:
fce66477 3809 do {
f817ed48 3810 ret = -EBUSY;
c1e862c1
KH
3811 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3812 goto out;
3813 ret = -EINTR;
3814 if (signal_pending(current))
cc847582 3815 goto out;
52d4b9ac
KH
3816 /* This is for making all *used* pages to be on LRU. */
3817 lru_add_drain_all();
c0ff4b85 3818 drain_all_stock_sync(memcg);
f817ed48 3819 ret = 0;
c0ff4b85 3820 mem_cgroup_start_move(memcg);
299b4eaa 3821 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3822 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3823 enum lru_list l;
f817ed48 3824 for_each_lru(l) {
c0ff4b85 3825 ret = mem_cgroup_force_empty_list(memcg,
08e552c6 3826 node, zid, l);
f817ed48
KH
3827 if (ret)
3828 break;
3829 }
1ecaab2b 3830 }
f817ed48
KH
3831 if (ret)
3832 break;
3833 }
c0ff4b85
R
3834 mem_cgroup_end_move(memcg);
3835 memcg_oom_recover(memcg);
f817ed48
KH
3836 /* it seems parent cgroup doesn't have enough mem */
3837 if (ret == -ENOMEM)
3838 goto try_to_free;
52d4b9ac 3839 cond_resched();
fce66477 3840 /* "ret" should also be checked to ensure all lists are empty. */
c0ff4b85 3841 } while (memcg->res.usage > 0 || ret);
cc847582 3842out:
c0ff4b85 3843 css_put(&memcg->css);
cc847582 3844 return ret;
f817ed48
KH
3845
3846try_to_free:
c1e862c1
KH
3847 /* returns EBUSY if there is a task or if we come here twice. */
3848 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3849 ret = -EBUSY;
3850 goto out;
3851 }
c1e862c1
KH
3852 /* we call try-to-free pages for make this cgroup empty */
3853 lru_add_drain_all();
f817ed48
KH
3854 /* try to free all pages in this cgroup */
3855 shrink = 1;
c0ff4b85 3856 while (nr_retries && memcg->res.usage > 0) {
f817ed48 3857 int progress;
c1e862c1
KH
3858
3859 if (signal_pending(current)) {
3860 ret = -EINTR;
3861 goto out;
3862 }
c0ff4b85 3863 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 3864 false);
c1e862c1 3865 if (!progress) {
f817ed48 3866 nr_retries--;
c1e862c1 3867 /* maybe some writeback is necessary */
8aa7e847 3868 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3869 }
f817ed48
KH
3870
3871 }
08e552c6 3872 lru_add_drain();
f817ed48 3873 /* try move_account...there may be some *locked* pages. */
fce66477 3874 goto move_account;
cc847582
KH
3875}
3876
c1e862c1
KH
3877int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3878{
3879 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3880}
3881
3882
18f59ea7
BS
3883static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3884{
3885 return mem_cgroup_from_cont(cont)->use_hierarchy;
3886}
3887
3888static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3889 u64 val)
3890{
3891 int retval = 0;
c0ff4b85 3892 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 3893 struct cgroup *parent = cont->parent;
c0ff4b85 3894 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
3895
3896 if (parent)
c0ff4b85 3897 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
3898
3899 cgroup_lock();
3900 /*
af901ca1 3901 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3902 * in the child subtrees. If it is unset, then the change can
3903 * occur, provided the current cgroup has no children.
3904 *
3905 * For the root cgroup, parent_mem is NULL, we allow value to be
3906 * set if there are no children.
3907 */
c0ff4b85 3908 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
3909 (val == 1 || val == 0)) {
3910 if (list_empty(&cont->children))
c0ff4b85 3911 memcg->use_hierarchy = val;
18f59ea7
BS
3912 else
3913 retval = -EBUSY;
3914 } else
3915 retval = -EINVAL;
3916 cgroup_unlock();
3917
3918 return retval;
3919}
3920
0c3e73e8 3921
c0ff4b85 3922static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 3923 enum mem_cgroup_stat_index idx)
0c3e73e8 3924{
7d74b06f 3925 struct mem_cgroup *iter;
7a159cc9 3926 long val = 0;
0c3e73e8 3927
7a159cc9 3928 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 3929 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
3930 val += mem_cgroup_read_stat(iter, idx);
3931
3932 if (val < 0) /* race ? */
3933 val = 0;
3934 return val;
0c3e73e8
BS
3935}
3936
c0ff4b85 3937static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 3938{
7d74b06f 3939 u64 val;
104f3928 3940
c0ff4b85 3941 if (!mem_cgroup_is_root(memcg)) {
104f3928 3942 if (!swap)
65c64ce8 3943 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 3944 else
65c64ce8 3945 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
3946 }
3947
c0ff4b85
R
3948 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3949 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 3950
7d74b06f 3951 if (swap)
c0ff4b85 3952 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3953
3954 return val << PAGE_SHIFT;
3955}
3956
2c3daa72 3957static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3958{
c0ff4b85 3959 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
104f3928 3960 u64 val;
8c7c6e34
KH
3961 int type, name;
3962
3963 type = MEMFILE_TYPE(cft->private);
3964 name = MEMFILE_ATTR(cft->private);
3965 switch (type) {
3966 case _MEM:
104f3928 3967 if (name == RES_USAGE)
c0ff4b85 3968 val = mem_cgroup_usage(memcg, false);
104f3928 3969 else
c0ff4b85 3970 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
3971 break;
3972 case _MEMSWAP:
104f3928 3973 if (name == RES_USAGE)
c0ff4b85 3974 val = mem_cgroup_usage(memcg, true);
104f3928 3975 else
c0ff4b85 3976 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34
KH
3977 break;
3978 default:
3979 BUG();
3980 break;
3981 }
3982 return val;
8cdea7c0 3983}
628f4235
KH
3984/*
3985 * The user of this function is...
3986 * RES_LIMIT.
3987 */
856c13aa
PM
3988static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3989 const char *buffer)
8cdea7c0 3990{
628f4235 3991 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3992 int type, name;
628f4235
KH
3993 unsigned long long val;
3994 int ret;
3995
8c7c6e34
KH
3996 type = MEMFILE_TYPE(cft->private);
3997 name = MEMFILE_ATTR(cft->private);
3998 switch (name) {
628f4235 3999 case RES_LIMIT:
4b3bde4c
BS
4000 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4001 ret = -EINVAL;
4002 break;
4003 }
628f4235
KH
4004 /* This function does all necessary parse...reuse it */
4005 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
4006 if (ret)
4007 break;
4008 if (type == _MEM)
628f4235 4009 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
4010 else
4011 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 4012 break;
296c81d8
BS
4013 case RES_SOFT_LIMIT:
4014 ret = res_counter_memparse_write_strategy(buffer, &val);
4015 if (ret)
4016 break;
4017 /*
4018 * For memsw, soft limits are hard to implement in terms
4019 * of semantics, for now, we support soft limits for
4020 * control without swap
4021 */
4022 if (type == _MEM)
4023 ret = res_counter_set_soft_limit(&memcg->res, val);
4024 else
4025 ret = -EINVAL;
4026 break;
628f4235
KH
4027 default:
4028 ret = -EINVAL; /* should be BUG() ? */
4029 break;
4030 }
4031 return ret;
8cdea7c0
BS
4032}
4033
fee7b548
KH
4034static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4035 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4036{
4037 struct cgroup *cgroup;
4038 unsigned long long min_limit, min_memsw_limit, tmp;
4039
4040 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4041 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4042 cgroup = memcg->css.cgroup;
4043 if (!memcg->use_hierarchy)
4044 goto out;
4045
4046 while (cgroup->parent) {
4047 cgroup = cgroup->parent;
4048 memcg = mem_cgroup_from_cont(cgroup);
4049 if (!memcg->use_hierarchy)
4050 break;
4051 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4052 min_limit = min(min_limit, tmp);
4053 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4054 min_memsw_limit = min(min_memsw_limit, tmp);
4055 }
4056out:
4057 *mem_limit = min_limit;
4058 *memsw_limit = min_memsw_limit;
4059 return;
4060}
4061
29f2a4da 4062static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4063{
c0ff4b85 4064 struct mem_cgroup *memcg;
8c7c6e34 4065 int type, name;
c84872e1 4066
c0ff4b85 4067 memcg = mem_cgroup_from_cont(cont);
8c7c6e34
KH
4068 type = MEMFILE_TYPE(event);
4069 name = MEMFILE_ATTR(event);
4070 switch (name) {
29f2a4da 4071 case RES_MAX_USAGE:
8c7c6e34 4072 if (type == _MEM)
c0ff4b85 4073 res_counter_reset_max(&memcg->res);
8c7c6e34 4074 else
c0ff4b85 4075 res_counter_reset_max(&memcg->memsw);
29f2a4da
PE
4076 break;
4077 case RES_FAILCNT:
8c7c6e34 4078 if (type == _MEM)
c0ff4b85 4079 res_counter_reset_failcnt(&memcg->res);
8c7c6e34 4080 else
c0ff4b85 4081 res_counter_reset_failcnt(&memcg->memsw);
29f2a4da
PE
4082 break;
4083 }
f64c3f54 4084
85cc59db 4085 return 0;
c84872e1
PE
4086}
4087
7dc74be0
DN
4088static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4089 struct cftype *cft)
4090{
4091 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4092}
4093
02491447 4094#ifdef CONFIG_MMU
7dc74be0
DN
4095static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4096 struct cftype *cft, u64 val)
4097{
c0ff4b85 4098 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4099
4100 if (val >= (1 << NR_MOVE_TYPE))
4101 return -EINVAL;
4102 /*
4103 * We check this value several times in both in can_attach() and
4104 * attach(), so we need cgroup lock to prevent this value from being
4105 * inconsistent.
4106 */
4107 cgroup_lock();
c0ff4b85 4108 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4109 cgroup_unlock();
4110
4111 return 0;
4112}
02491447
DN
4113#else
4114static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4115 struct cftype *cft, u64 val)
4116{
4117 return -ENOSYS;
4118}
4119#endif
7dc74be0 4120
14067bb3
KH
4121
4122/* For read statistics */
4123enum {
4124 MCS_CACHE,
4125 MCS_RSS,
d8046582 4126 MCS_FILE_MAPPED,
14067bb3
KH
4127 MCS_PGPGIN,
4128 MCS_PGPGOUT,
1dd3a273 4129 MCS_SWAP,
456f998e
YH
4130 MCS_PGFAULT,
4131 MCS_PGMAJFAULT,
14067bb3
KH
4132 MCS_INACTIVE_ANON,
4133 MCS_ACTIVE_ANON,
4134 MCS_INACTIVE_FILE,
4135 MCS_ACTIVE_FILE,
4136 MCS_UNEVICTABLE,
4137 NR_MCS_STAT,
4138};
4139
4140struct mcs_total_stat {
4141 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
4142};
4143
14067bb3
KH
4144struct {
4145 char *local_name;
4146 char *total_name;
4147} memcg_stat_strings[NR_MCS_STAT] = {
4148 {"cache", "total_cache"},
4149 {"rss", "total_rss"},
d69b042f 4150 {"mapped_file", "total_mapped_file"},
14067bb3
KH
4151 {"pgpgin", "total_pgpgin"},
4152 {"pgpgout", "total_pgpgout"},
1dd3a273 4153 {"swap", "total_swap"},
456f998e
YH
4154 {"pgfault", "total_pgfault"},
4155 {"pgmajfault", "total_pgmajfault"},
14067bb3
KH
4156 {"inactive_anon", "total_inactive_anon"},
4157 {"active_anon", "total_active_anon"},
4158 {"inactive_file", "total_inactive_file"},
4159 {"active_file", "total_active_file"},
4160 {"unevictable", "total_unevictable"}
4161};
4162
4163
7d74b06f 4164static void
c0ff4b85 4165mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4166{
14067bb3
KH
4167 s64 val;
4168
4169 /* per cpu stat */
c0ff4b85 4170 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
14067bb3 4171 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c0ff4b85 4172 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
14067bb3 4173 s->stat[MCS_RSS] += val * PAGE_SIZE;
c0ff4b85 4174 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 4175 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
c0ff4b85 4176 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 4177 s->stat[MCS_PGPGIN] += val;
c0ff4b85 4178 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 4179 s->stat[MCS_PGPGOUT] += val;
1dd3a273 4180 if (do_swap_account) {
c0ff4b85 4181 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
4182 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4183 }
c0ff4b85 4184 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
456f998e 4185 s->stat[MCS_PGFAULT] += val;
c0ff4b85 4186 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
456f998e 4187 s->stat[MCS_PGMAJFAULT] += val;
14067bb3
KH
4188
4189 /* per zone stat */
c0ff4b85 4190 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
14067bb3 4191 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4192 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
14067bb3 4193 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
c0ff4b85 4194 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
14067bb3 4195 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4196 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
14067bb3 4197 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
c0ff4b85 4198 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
14067bb3 4199 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
4200}
4201
4202static void
c0ff4b85 4203mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
14067bb3 4204{
7d74b06f
KH
4205 struct mem_cgroup *iter;
4206
c0ff4b85 4207 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4208 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
4209}
4210
406eb0c9
YH
4211#ifdef CONFIG_NUMA
4212static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4213{
4214 int nid;
4215 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4216 unsigned long node_nr;
4217 struct cgroup *cont = m->private;
4218 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4219
bb2a0de9 4220 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
406eb0c9
YH
4221 seq_printf(m, "total=%lu", total_nr);
4222 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9 4223 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
406eb0c9
YH
4224 seq_printf(m, " N%d=%lu", nid, node_nr);
4225 }
4226 seq_putc(m, '\n');
4227
bb2a0de9 4228 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
406eb0c9
YH
4229 seq_printf(m, "file=%lu", file_nr);
4230 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4231 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4232 LRU_ALL_FILE);
406eb0c9
YH
4233 seq_printf(m, " N%d=%lu", nid, node_nr);
4234 }
4235 seq_putc(m, '\n');
4236
bb2a0de9 4237 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
406eb0c9
YH
4238 seq_printf(m, "anon=%lu", anon_nr);
4239 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4240 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4241 LRU_ALL_ANON);
406eb0c9
YH
4242 seq_printf(m, " N%d=%lu", nid, node_nr);
4243 }
4244 seq_putc(m, '\n');
4245
bb2a0de9 4246 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4247 seq_printf(m, "unevictable=%lu", unevictable_nr);
4248 for_each_node_state(nid, N_HIGH_MEMORY) {
bb2a0de9
KH
4249 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4250 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4251 seq_printf(m, " N%d=%lu", nid, node_nr);
4252 }
4253 seq_putc(m, '\n');
4254 return 0;
4255}
4256#endif /* CONFIG_NUMA */
4257
c64745cf
PM
4258static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4259 struct cgroup_map_cb *cb)
d2ceb9b7 4260{
d2ceb9b7 4261 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 4262 struct mcs_total_stat mystat;
d2ceb9b7
KH
4263 int i;
4264
14067bb3
KH
4265 memset(&mystat, 0, sizeof(mystat));
4266 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 4267
406eb0c9 4268
1dd3a273
DN
4269 for (i = 0; i < NR_MCS_STAT; i++) {
4270 if (i == MCS_SWAP && !do_swap_account)
4271 continue;
14067bb3 4272 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 4273 }
7b854121 4274
14067bb3 4275 /* Hierarchical information */
fee7b548
KH
4276 {
4277 unsigned long long limit, memsw_limit;
4278 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4279 cb->fill(cb, "hierarchical_memory_limit", limit);
4280 if (do_swap_account)
4281 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4282 }
7f016ee8 4283
14067bb3
KH
4284 memset(&mystat, 0, sizeof(mystat));
4285 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
4286 for (i = 0; i < NR_MCS_STAT; i++) {
4287 if (i == MCS_SWAP && !do_swap_account)
4288 continue;
14067bb3 4289 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 4290 }
14067bb3 4291
7f016ee8 4292#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4293 {
4294 int nid, zid;
4295 struct mem_cgroup_per_zone *mz;
4296 unsigned long recent_rotated[2] = {0, 0};
4297 unsigned long recent_scanned[2] = {0, 0};
4298
4299 for_each_online_node(nid)
4300 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4301 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4302
4303 recent_rotated[0] +=
4304 mz->reclaim_stat.recent_rotated[0];
4305 recent_rotated[1] +=
4306 mz->reclaim_stat.recent_rotated[1];
4307 recent_scanned[0] +=
4308 mz->reclaim_stat.recent_scanned[0];
4309 recent_scanned[1] +=
4310 mz->reclaim_stat.recent_scanned[1];
4311 }
4312 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4313 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4314 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4315 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4316 }
4317#endif
4318
d2ceb9b7
KH
4319 return 0;
4320}
4321
a7885eb8
KM
4322static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4323{
4324 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4325
1f4c025b 4326 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4327}
4328
4329static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4330 u64 val)
4331{
4332 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4333 struct mem_cgroup *parent;
068b38c1 4334
a7885eb8
KM
4335 if (val > 100)
4336 return -EINVAL;
4337
4338 if (cgrp->parent == NULL)
4339 return -EINVAL;
4340
4341 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4342
4343 cgroup_lock();
4344
a7885eb8
KM
4345 /* If under hierarchy, only empty-root can set this value */
4346 if ((parent->use_hierarchy) ||
068b38c1
LZ
4347 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4348 cgroup_unlock();
a7885eb8 4349 return -EINVAL;
068b38c1 4350 }
a7885eb8 4351
a7885eb8 4352 memcg->swappiness = val;
a7885eb8 4353
068b38c1
LZ
4354 cgroup_unlock();
4355
a7885eb8
KM
4356 return 0;
4357}
4358
2e72b634
KS
4359static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4360{
4361 struct mem_cgroup_threshold_ary *t;
4362 u64 usage;
4363 int i;
4364
4365 rcu_read_lock();
4366 if (!swap)
2c488db2 4367 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4368 else
2c488db2 4369 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4370
4371 if (!t)
4372 goto unlock;
4373
4374 usage = mem_cgroup_usage(memcg, swap);
4375
4376 /*
4377 * current_threshold points to threshold just below usage.
4378 * If it's not true, a threshold was crossed after last
4379 * call of __mem_cgroup_threshold().
4380 */
5407a562 4381 i = t->current_threshold;
2e72b634
KS
4382
4383 /*
4384 * Iterate backward over array of thresholds starting from
4385 * current_threshold and check if a threshold is crossed.
4386 * If none of thresholds below usage is crossed, we read
4387 * only one element of the array here.
4388 */
4389 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4390 eventfd_signal(t->entries[i].eventfd, 1);
4391
4392 /* i = current_threshold + 1 */
4393 i++;
4394
4395 /*
4396 * Iterate forward over array of thresholds starting from
4397 * current_threshold+1 and check if a threshold is crossed.
4398 * If none of thresholds above usage is crossed, we read
4399 * only one element of the array here.
4400 */
4401 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4402 eventfd_signal(t->entries[i].eventfd, 1);
4403
4404 /* Update current_threshold */
5407a562 4405 t->current_threshold = i - 1;
2e72b634
KS
4406unlock:
4407 rcu_read_unlock();
4408}
4409
4410static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4411{
ad4ca5f4
KS
4412 while (memcg) {
4413 __mem_cgroup_threshold(memcg, false);
4414 if (do_swap_account)
4415 __mem_cgroup_threshold(memcg, true);
4416
4417 memcg = parent_mem_cgroup(memcg);
4418 }
2e72b634
KS
4419}
4420
4421static int compare_thresholds(const void *a, const void *b)
4422{
4423 const struct mem_cgroup_threshold *_a = a;
4424 const struct mem_cgroup_threshold *_b = b;
4425
4426 return _a->threshold - _b->threshold;
4427}
4428
c0ff4b85 4429static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4430{
4431 struct mem_cgroup_eventfd_list *ev;
4432
c0ff4b85 4433 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4434 eventfd_signal(ev->eventfd, 1);
4435 return 0;
4436}
4437
c0ff4b85 4438static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4439{
7d74b06f
KH
4440 struct mem_cgroup *iter;
4441
c0ff4b85 4442 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4443 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4444}
4445
4446static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4447 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4448{
4449 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4450 struct mem_cgroup_thresholds *thresholds;
4451 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4452 int type = MEMFILE_TYPE(cft->private);
4453 u64 threshold, usage;
2c488db2 4454 int i, size, ret;
2e72b634
KS
4455
4456 ret = res_counter_memparse_write_strategy(args, &threshold);
4457 if (ret)
4458 return ret;
4459
4460 mutex_lock(&memcg->thresholds_lock);
2c488db2 4461
2e72b634 4462 if (type == _MEM)
2c488db2 4463 thresholds = &memcg->thresholds;
2e72b634 4464 else if (type == _MEMSWAP)
2c488db2 4465 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4466 else
4467 BUG();
4468
4469 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4470
4471 /* Check if a threshold crossed before adding a new one */
2c488db2 4472 if (thresholds->primary)
2e72b634
KS
4473 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4474
2c488db2 4475 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4476
4477 /* Allocate memory for new array of thresholds */
2c488db2 4478 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4479 GFP_KERNEL);
2c488db2 4480 if (!new) {
2e72b634
KS
4481 ret = -ENOMEM;
4482 goto unlock;
4483 }
2c488db2 4484 new->size = size;
2e72b634
KS
4485
4486 /* Copy thresholds (if any) to new array */
2c488db2
KS
4487 if (thresholds->primary) {
4488 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4489 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4490 }
4491
2e72b634 4492 /* Add new threshold */
2c488db2
KS
4493 new->entries[size - 1].eventfd = eventfd;
4494 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4495
4496 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4497 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4498 compare_thresholds, NULL);
4499
4500 /* Find current threshold */
2c488db2 4501 new->current_threshold = -1;
2e72b634 4502 for (i = 0; i < size; i++) {
2c488db2 4503 if (new->entries[i].threshold < usage) {
2e72b634 4504 /*
2c488db2
KS
4505 * new->current_threshold will not be used until
4506 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4507 * it here.
4508 */
2c488db2 4509 ++new->current_threshold;
2e72b634
KS
4510 }
4511 }
4512
2c488db2
KS
4513 /* Free old spare buffer and save old primary buffer as spare */
4514 kfree(thresholds->spare);
4515 thresholds->spare = thresholds->primary;
4516
4517 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4518
907860ed 4519 /* To be sure that nobody uses thresholds */
2e72b634
KS
4520 synchronize_rcu();
4521
2e72b634
KS
4522unlock:
4523 mutex_unlock(&memcg->thresholds_lock);
4524
4525 return ret;
4526}
4527
907860ed 4528static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4529 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4530{
4531 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4532 struct mem_cgroup_thresholds *thresholds;
4533 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4534 int type = MEMFILE_TYPE(cft->private);
4535 u64 usage;
2c488db2 4536 int i, j, size;
2e72b634
KS
4537
4538 mutex_lock(&memcg->thresholds_lock);
4539 if (type == _MEM)
2c488db2 4540 thresholds = &memcg->thresholds;
2e72b634 4541 else if (type == _MEMSWAP)
2c488db2 4542 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4543 else
4544 BUG();
4545
4546 /*
4547 * Something went wrong if we trying to unregister a threshold
4548 * if we don't have thresholds
4549 */
4550 BUG_ON(!thresholds);
4551
4552 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4553
4554 /* Check if a threshold crossed before removing */
4555 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4556
4557 /* Calculate new number of threshold */
2c488db2
KS
4558 size = 0;
4559 for (i = 0; i < thresholds->primary->size; i++) {
4560 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4561 size++;
4562 }
4563
2c488db2 4564 new = thresholds->spare;
907860ed 4565
2e72b634
KS
4566 /* Set thresholds array to NULL if we don't have thresholds */
4567 if (!size) {
2c488db2
KS
4568 kfree(new);
4569 new = NULL;
907860ed 4570 goto swap_buffers;
2e72b634
KS
4571 }
4572
2c488db2 4573 new->size = size;
2e72b634
KS
4574
4575 /* Copy thresholds and find current threshold */
2c488db2
KS
4576 new->current_threshold = -1;
4577 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4578 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4579 continue;
4580
2c488db2
KS
4581 new->entries[j] = thresholds->primary->entries[i];
4582 if (new->entries[j].threshold < usage) {
2e72b634 4583 /*
2c488db2 4584 * new->current_threshold will not be used
2e72b634
KS
4585 * until rcu_assign_pointer(), so it's safe to increment
4586 * it here.
4587 */
2c488db2 4588 ++new->current_threshold;
2e72b634
KS
4589 }
4590 j++;
4591 }
4592
907860ed 4593swap_buffers:
2c488db2
KS
4594 /* Swap primary and spare array */
4595 thresholds->spare = thresholds->primary;
4596 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4597
907860ed 4598 /* To be sure that nobody uses thresholds */
2e72b634
KS
4599 synchronize_rcu();
4600
2e72b634 4601 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4602}
c1e862c1 4603
9490ff27
KH
4604static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4605 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4606{
4607 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4608 struct mem_cgroup_eventfd_list *event;
4609 int type = MEMFILE_TYPE(cft->private);
4610
4611 BUG_ON(type != _OOM_TYPE);
4612 event = kmalloc(sizeof(*event), GFP_KERNEL);
4613 if (!event)
4614 return -ENOMEM;
4615
1af8efe9 4616 spin_lock(&memcg_oom_lock);
9490ff27
KH
4617
4618 event->eventfd = eventfd;
4619 list_add(&event->list, &memcg->oom_notify);
4620
4621 /* already in OOM ? */
79dfdacc 4622 if (atomic_read(&memcg->under_oom))
9490ff27 4623 eventfd_signal(eventfd, 1);
1af8efe9 4624 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4625
4626 return 0;
4627}
4628
907860ed 4629static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4630 struct cftype *cft, struct eventfd_ctx *eventfd)
4631{
c0ff4b85 4632 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27
KH
4633 struct mem_cgroup_eventfd_list *ev, *tmp;
4634 int type = MEMFILE_TYPE(cft->private);
4635
4636 BUG_ON(type != _OOM_TYPE);
4637
1af8efe9 4638 spin_lock(&memcg_oom_lock);
9490ff27 4639
c0ff4b85 4640 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4641 if (ev->eventfd == eventfd) {
4642 list_del(&ev->list);
4643 kfree(ev);
4644 }
4645 }
4646
1af8efe9 4647 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4648}
4649
3c11ecf4
KH
4650static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4651 struct cftype *cft, struct cgroup_map_cb *cb)
4652{
c0ff4b85 4653 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 4654
c0ff4b85 4655 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 4656
c0ff4b85 4657 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
4658 cb->fill(cb, "under_oom", 1);
4659 else
4660 cb->fill(cb, "under_oom", 0);
4661 return 0;
4662}
4663
3c11ecf4
KH
4664static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4665 struct cftype *cft, u64 val)
4666{
c0ff4b85 4667 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
4668 struct mem_cgroup *parent;
4669
4670 /* cannot set to root cgroup and only 0 and 1 are allowed */
4671 if (!cgrp->parent || !((val == 0) || (val == 1)))
4672 return -EINVAL;
4673
4674 parent = mem_cgroup_from_cont(cgrp->parent);
4675
4676 cgroup_lock();
4677 /* oom-kill-disable is a flag for subhierarchy. */
4678 if ((parent->use_hierarchy) ||
c0ff4b85 4679 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
4680 cgroup_unlock();
4681 return -EINVAL;
4682 }
c0ff4b85 4683 memcg->oom_kill_disable = val;
4d845ebf 4684 if (!val)
c0ff4b85 4685 memcg_oom_recover(memcg);
3c11ecf4
KH
4686 cgroup_unlock();
4687 return 0;
4688}
4689
406eb0c9
YH
4690#ifdef CONFIG_NUMA
4691static const struct file_operations mem_control_numa_stat_file_operations = {
4692 .read = seq_read,
4693 .llseek = seq_lseek,
4694 .release = single_release,
4695};
4696
4697static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4698{
4699 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4700
4701 file->f_op = &mem_control_numa_stat_file_operations;
4702 return single_open(file, mem_control_numa_stat_show, cont);
4703}
4704#endif /* CONFIG_NUMA */
4705
e5671dfa 4706#ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
e5671dfa
GC
4707static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4708{
d1a4c0b3
GC
4709 /*
4710 * Part of this would be better living in a separate allocation
4711 * function, leaving us with just the cgroup tree population work.
4712 * We, however, depend on state such as network's proto_list that
4713 * is only initialized after cgroup creation. I found the less
4714 * cumbersome way to deal with it to defer it all to populate time
4715 */
65c64ce8 4716 return mem_cgroup_sockets_init(cont, ss);
e5671dfa
GC
4717};
4718
d1a4c0b3
GC
4719static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4720 struct cgroup *cont)
4721{
4722 mem_cgroup_sockets_destroy(cont, ss);
4723}
e5671dfa
GC
4724#else
4725static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4726{
4727 return 0;
4728}
d1a4c0b3
GC
4729
4730static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4731 struct cgroup *cont)
4732{
4733}
e5671dfa
GC
4734#endif
4735
8cdea7c0
BS
4736static struct cftype mem_cgroup_files[] = {
4737 {
0eea1030 4738 .name = "usage_in_bytes",
8c7c6e34 4739 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4740 .read_u64 = mem_cgroup_read,
9490ff27
KH
4741 .register_event = mem_cgroup_usage_register_event,
4742 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4743 },
c84872e1
PE
4744 {
4745 .name = "max_usage_in_bytes",
8c7c6e34 4746 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4747 .trigger = mem_cgroup_reset,
c84872e1
PE
4748 .read_u64 = mem_cgroup_read,
4749 },
8cdea7c0 4750 {
0eea1030 4751 .name = "limit_in_bytes",
8c7c6e34 4752 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4753 .write_string = mem_cgroup_write,
2c3daa72 4754 .read_u64 = mem_cgroup_read,
8cdea7c0 4755 },
296c81d8
BS
4756 {
4757 .name = "soft_limit_in_bytes",
4758 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4759 .write_string = mem_cgroup_write,
4760 .read_u64 = mem_cgroup_read,
4761 },
8cdea7c0
BS
4762 {
4763 .name = "failcnt",
8c7c6e34 4764 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4765 .trigger = mem_cgroup_reset,
2c3daa72 4766 .read_u64 = mem_cgroup_read,
8cdea7c0 4767 },
d2ceb9b7
KH
4768 {
4769 .name = "stat",
c64745cf 4770 .read_map = mem_control_stat_show,
d2ceb9b7 4771 },
c1e862c1
KH
4772 {
4773 .name = "force_empty",
4774 .trigger = mem_cgroup_force_empty_write,
4775 },
18f59ea7
BS
4776 {
4777 .name = "use_hierarchy",
4778 .write_u64 = mem_cgroup_hierarchy_write,
4779 .read_u64 = mem_cgroup_hierarchy_read,
4780 },
a7885eb8
KM
4781 {
4782 .name = "swappiness",
4783 .read_u64 = mem_cgroup_swappiness_read,
4784 .write_u64 = mem_cgroup_swappiness_write,
4785 },
7dc74be0
DN
4786 {
4787 .name = "move_charge_at_immigrate",
4788 .read_u64 = mem_cgroup_move_charge_read,
4789 .write_u64 = mem_cgroup_move_charge_write,
4790 },
9490ff27
KH
4791 {
4792 .name = "oom_control",
3c11ecf4
KH
4793 .read_map = mem_cgroup_oom_control_read,
4794 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4795 .register_event = mem_cgroup_oom_register_event,
4796 .unregister_event = mem_cgroup_oom_unregister_event,
4797 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4798 },
406eb0c9
YH
4799#ifdef CONFIG_NUMA
4800 {
4801 .name = "numa_stat",
4802 .open = mem_control_numa_stat_open,
89577127 4803 .mode = S_IRUGO,
406eb0c9
YH
4804 },
4805#endif
8cdea7c0
BS
4806};
4807
8c7c6e34
KH
4808#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4809static struct cftype memsw_cgroup_files[] = {
4810 {
4811 .name = "memsw.usage_in_bytes",
4812 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4813 .read_u64 = mem_cgroup_read,
9490ff27
KH
4814 .register_event = mem_cgroup_usage_register_event,
4815 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4816 },
4817 {
4818 .name = "memsw.max_usage_in_bytes",
4819 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4820 .trigger = mem_cgroup_reset,
4821 .read_u64 = mem_cgroup_read,
4822 },
4823 {
4824 .name = "memsw.limit_in_bytes",
4825 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4826 .write_string = mem_cgroup_write,
4827 .read_u64 = mem_cgroup_read,
4828 },
4829 {
4830 .name = "memsw.failcnt",
4831 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4832 .trigger = mem_cgroup_reset,
4833 .read_u64 = mem_cgroup_read,
4834 },
4835};
4836
4837static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4838{
4839 if (!do_swap_account)
4840 return 0;
4841 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4842 ARRAY_SIZE(memsw_cgroup_files));
4843};
4844#else
4845static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4846{
4847 return 0;
4848}
4849#endif
4850
c0ff4b85 4851static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4852{
4853 struct mem_cgroup_per_node *pn;
1ecaab2b 4854 struct mem_cgroup_per_zone *mz;
b69408e8 4855 enum lru_list l;
41e3355d 4856 int zone, tmp = node;
1ecaab2b
KH
4857 /*
4858 * This routine is called against possible nodes.
4859 * But it's BUG to call kmalloc() against offline node.
4860 *
4861 * TODO: this routine can waste much memory for nodes which will
4862 * never be onlined. It's better to use memory hotplug callback
4863 * function.
4864 */
41e3355d
KH
4865 if (!node_state(node, N_NORMAL_MEMORY))
4866 tmp = -1;
17295c88 4867 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4868 if (!pn)
4869 return 1;
1ecaab2b 4870
1ecaab2b
KH
4871 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4872 mz = &pn->zoneinfo[zone];
b69408e8
CL
4873 for_each_lru(l)
4874 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4875 mz->usage_in_excess = 0;
4e416953 4876 mz->on_tree = false;
c0ff4b85 4877 mz->mem = memcg;
1ecaab2b 4878 }
0a619e58 4879 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
4880 return 0;
4881}
4882
c0ff4b85 4883static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4884{
c0ff4b85 4885 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
4886}
4887
33327948
KH
4888static struct mem_cgroup *mem_cgroup_alloc(void)
4889{
4890 struct mem_cgroup *mem;
c62b1a3b 4891 int size = sizeof(struct mem_cgroup);
33327948 4892
c62b1a3b 4893 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4894 if (size < PAGE_SIZE)
17295c88 4895 mem = kzalloc(size, GFP_KERNEL);
33327948 4896 else
17295c88 4897 mem = vzalloc(size);
33327948 4898
e7bbcdf3
DC
4899 if (!mem)
4900 return NULL;
4901
c62b1a3b 4902 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4903 if (!mem->stat)
4904 goto out_free;
711d3d2c 4905 spin_lock_init(&mem->pcp_counter_lock);
33327948 4906 return mem;
d2e61b8d
DC
4907
4908out_free:
4909 if (size < PAGE_SIZE)
4910 kfree(mem);
4911 else
4912 vfree(mem);
4913 return NULL;
33327948
KH
4914}
4915
8c7c6e34
KH
4916/*
4917 * At destroying mem_cgroup, references from swap_cgroup can remain.
4918 * (scanning all at force_empty is too costly...)
4919 *
4920 * Instead of clearing all references at force_empty, we remember
4921 * the number of reference from swap_cgroup and free mem_cgroup when
4922 * it goes down to 0.
4923 *
8c7c6e34
KH
4924 * Removal of cgroup itself succeeds regardless of refs from swap.
4925 */
4926
c0ff4b85 4927static void __mem_cgroup_free(struct mem_cgroup *memcg)
33327948 4928{
08e552c6
KH
4929 int node;
4930
c0ff4b85
R
4931 mem_cgroup_remove_from_trees(memcg);
4932 free_css_id(&mem_cgroup_subsys, &memcg->css);
04046e1a 4933
08e552c6 4934 for_each_node_state(node, N_POSSIBLE)
c0ff4b85 4935 free_mem_cgroup_per_zone_info(memcg, node);
08e552c6 4936
c0ff4b85 4937 free_percpu(memcg->stat);
c62b1a3b 4938 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
c0ff4b85 4939 kfree(memcg);
33327948 4940 else
c0ff4b85 4941 vfree(memcg);
33327948
KH
4942}
4943
c0ff4b85 4944static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 4945{
c0ff4b85 4946 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
4947}
4948
c0ff4b85 4949static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 4950{
c0ff4b85
R
4951 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4952 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4953 __mem_cgroup_free(memcg);
7bcc1bb1
DN
4954 if (parent)
4955 mem_cgroup_put(parent);
4956 }
8c7c6e34
KH
4957}
4958
c0ff4b85 4959static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 4960{
c0ff4b85 4961 __mem_cgroup_put(memcg, 1);
483c30b5
DN
4962}
4963
7bcc1bb1
DN
4964/*
4965 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4966 */
e1aab161 4967struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4968{
c0ff4b85 4969 if (!memcg->res.parent)
7bcc1bb1 4970 return NULL;
c0ff4b85 4971 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 4972}
e1aab161 4973EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4974
c077719b
KH
4975#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4976static void __init enable_swap_cgroup(void)
4977{
f8d66542 4978 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4979 do_swap_account = 1;
4980}
4981#else
4982static void __init enable_swap_cgroup(void)
4983{
4984}
4985#endif
4986
f64c3f54
BS
4987static int mem_cgroup_soft_limit_tree_init(void)
4988{
4989 struct mem_cgroup_tree_per_node *rtpn;
4990 struct mem_cgroup_tree_per_zone *rtpz;
4991 int tmp, node, zone;
4992
4993 for_each_node_state(node, N_POSSIBLE) {
4994 tmp = node;
4995 if (!node_state(node, N_NORMAL_MEMORY))
4996 tmp = -1;
4997 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4998 if (!rtpn)
4999 return 1;
5000
5001 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5002
5003 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5004 rtpz = &rtpn->rb_tree_per_zone[zone];
5005 rtpz->rb_root = RB_ROOT;
5006 spin_lock_init(&rtpz->lock);
5007 }
5008 }
5009 return 0;
5010}
5011
0eb253e2 5012static struct cgroup_subsys_state * __ref
8cdea7c0
BS
5013mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
5014{
c0ff4b85 5015 struct mem_cgroup *memcg, *parent;
04046e1a 5016 long error = -ENOMEM;
6d12e2d8 5017 int node;
8cdea7c0 5018
c0ff4b85
R
5019 memcg = mem_cgroup_alloc();
5020 if (!memcg)
04046e1a 5021 return ERR_PTR(error);
78fb7466 5022
6d12e2d8 5023 for_each_node_state(node, N_POSSIBLE)
c0ff4b85 5024 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5025 goto free_out;
f64c3f54 5026
c077719b 5027 /* root ? */
28dbc4b6 5028 if (cont->parent == NULL) {
cdec2e42 5029 int cpu;
c077719b 5030 enable_swap_cgroup();
28dbc4b6 5031 parent = NULL;
f64c3f54
BS
5032 if (mem_cgroup_soft_limit_tree_init())
5033 goto free_out;
a41c58a6 5034 root_mem_cgroup = memcg;
cdec2e42
KH
5035 for_each_possible_cpu(cpu) {
5036 struct memcg_stock_pcp *stock =
5037 &per_cpu(memcg_stock, cpu);
5038 INIT_WORK(&stock->work, drain_local_stock);
5039 }
711d3d2c 5040 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 5041 } else {
28dbc4b6 5042 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
5043 memcg->use_hierarchy = parent->use_hierarchy;
5044 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 5045 }
28dbc4b6 5046
18f59ea7 5047 if (parent && parent->use_hierarchy) {
c0ff4b85
R
5048 res_counter_init(&memcg->res, &parent->res);
5049 res_counter_init(&memcg->memsw, &parent->memsw);
7bcc1bb1
DN
5050 /*
5051 * We increment refcnt of the parent to ensure that we can
5052 * safely access it on res_counter_charge/uncharge.
5053 * This refcnt will be decremented when freeing this
5054 * mem_cgroup(see mem_cgroup_put).
5055 */
5056 mem_cgroup_get(parent);
18f59ea7 5057 } else {
c0ff4b85
R
5058 res_counter_init(&memcg->res, NULL);
5059 res_counter_init(&memcg->memsw, NULL);
18f59ea7 5060 }
c0ff4b85
R
5061 memcg->last_scanned_node = MAX_NUMNODES;
5062 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 5063
a7885eb8 5064 if (parent)
c0ff4b85
R
5065 memcg->swappiness = mem_cgroup_swappiness(parent);
5066 atomic_set(&memcg->refcnt, 1);
5067 memcg->move_charge_at_immigrate = 0;
5068 mutex_init(&memcg->thresholds_lock);
5069 return &memcg->css;
6d12e2d8 5070free_out:
c0ff4b85 5071 __mem_cgroup_free(memcg);
04046e1a 5072 return ERR_PTR(error);
8cdea7c0
BS
5073}
5074
ec64f515 5075static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
5076 struct cgroup *cont)
5077{
c0ff4b85 5078 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5079
c0ff4b85 5080 return mem_cgroup_force_empty(memcg, false);
df878fb0
KH
5081}
5082
8cdea7c0
BS
5083static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5084 struct cgroup *cont)
5085{
c0ff4b85 5086 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5087
d1a4c0b3
GC
5088 kmem_cgroup_destroy(ss, cont);
5089
c0ff4b85 5090 mem_cgroup_put(memcg);
8cdea7c0
BS
5091}
5092
5093static int mem_cgroup_populate(struct cgroup_subsys *ss,
5094 struct cgroup *cont)
5095{
8c7c6e34
KH
5096 int ret;
5097
5098 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5099 ARRAY_SIZE(mem_cgroup_files));
5100
5101 if (!ret)
5102 ret = register_memsw_files(cont, ss);
e5671dfa
GC
5103
5104 if (!ret)
5105 ret = register_kmem_files(cont, ss);
5106
8c7c6e34 5107 return ret;
8cdea7c0
BS
5108}
5109
02491447 5110#ifdef CONFIG_MMU
7dc74be0 5111/* Handlers for move charge at task migration. */
854ffa8d
DN
5112#define PRECHARGE_COUNT_AT_ONCE 256
5113static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5114{
854ffa8d
DN
5115 int ret = 0;
5116 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5117 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5118
c0ff4b85 5119 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5120 mc.precharge += count;
5121 /* we don't need css_get for root */
5122 return ret;
5123 }
5124 /* try to charge at once */
5125 if (count > 1) {
5126 struct res_counter *dummy;
5127 /*
c0ff4b85 5128 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5129 * by cgroup_lock_live_cgroup() that it is not removed and we
5130 * are still under the same cgroup_mutex. So we can postpone
5131 * css_get().
5132 */
c0ff4b85 5133 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5134 goto one_by_one;
c0ff4b85 5135 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5136 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5137 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5138 goto one_by_one;
5139 }
5140 mc.precharge += count;
854ffa8d
DN
5141 return ret;
5142 }
5143one_by_one:
5144 /* fall back to one by one charge */
5145 while (count--) {
5146 if (signal_pending(current)) {
5147 ret = -EINTR;
5148 break;
5149 }
5150 if (!batch_count--) {
5151 batch_count = PRECHARGE_COUNT_AT_ONCE;
5152 cond_resched();
5153 }
c0ff4b85
R
5154 ret = __mem_cgroup_try_charge(NULL,
5155 GFP_KERNEL, 1, &memcg, false);
5156 if (ret || !memcg)
854ffa8d
DN
5157 /* mem_cgroup_clear_mc() will do uncharge later */
5158 return -ENOMEM;
5159 mc.precharge++;
5160 }
4ffef5fe
DN
5161 return ret;
5162}
5163
5164/**
5165 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5166 * @vma: the vma the pte to be checked belongs
5167 * @addr: the address corresponding to the pte to be checked
5168 * @ptent: the pte to be checked
02491447 5169 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5170 *
5171 * Returns
5172 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5173 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5174 * move charge. if @target is not NULL, the page is stored in target->page
5175 * with extra refcnt got(Callers should handle it).
02491447
DN
5176 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5177 * target for charge migration. if @target is not NULL, the entry is stored
5178 * in target->ent.
4ffef5fe
DN
5179 *
5180 * Called with pte lock held.
5181 */
4ffef5fe
DN
5182union mc_target {
5183 struct page *page;
02491447 5184 swp_entry_t ent;
4ffef5fe
DN
5185};
5186
4ffef5fe
DN
5187enum mc_target_type {
5188 MC_TARGET_NONE, /* not used */
5189 MC_TARGET_PAGE,
02491447 5190 MC_TARGET_SWAP,
4ffef5fe
DN
5191};
5192
90254a65
DN
5193static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5194 unsigned long addr, pte_t ptent)
4ffef5fe 5195{
90254a65 5196 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5197
90254a65
DN
5198 if (!page || !page_mapped(page))
5199 return NULL;
5200 if (PageAnon(page)) {
5201 /* we don't move shared anon */
5202 if (!move_anon() || page_mapcount(page) > 2)
5203 return NULL;
87946a72
DN
5204 } else if (!move_file())
5205 /* we ignore mapcount for file pages */
90254a65
DN
5206 return NULL;
5207 if (!get_page_unless_zero(page))
5208 return NULL;
5209
5210 return page;
5211}
5212
5213static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5214 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5215{
5216 int usage_count;
5217 struct page *page = NULL;
5218 swp_entry_t ent = pte_to_swp_entry(ptent);
5219
5220 if (!move_anon() || non_swap_entry(ent))
5221 return NULL;
5222 usage_count = mem_cgroup_count_swap_user(ent, &page);
5223 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
5224 if (page)
5225 put_page(page);
90254a65 5226 return NULL;
02491447 5227 }
90254a65
DN
5228 if (do_swap_account)
5229 entry->val = ent.val;
5230
5231 return page;
5232}
5233
87946a72
DN
5234static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5235 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5236{
5237 struct page *page = NULL;
5238 struct inode *inode;
5239 struct address_space *mapping;
5240 pgoff_t pgoff;
5241
5242 if (!vma->vm_file) /* anonymous vma */
5243 return NULL;
5244 if (!move_file())
5245 return NULL;
5246
5247 inode = vma->vm_file->f_path.dentry->d_inode;
5248 mapping = vma->vm_file->f_mapping;
5249 if (pte_none(ptent))
5250 pgoff = linear_page_index(vma, addr);
5251 else /* pte_file(ptent) is true */
5252 pgoff = pte_to_pgoff(ptent);
5253
5254 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5255 page = find_get_page(mapping, pgoff);
5256
5257#ifdef CONFIG_SWAP
5258 /* shmem/tmpfs may report page out on swap: account for that too. */
5259 if (radix_tree_exceptional_entry(page)) {
5260 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5261 if (do_swap_account)
aa3b1895
HD
5262 *entry = swap;
5263 page = find_get_page(&swapper_space, swap.val);
87946a72 5264 }
aa3b1895 5265#endif
87946a72
DN
5266 return page;
5267}
5268
90254a65
DN
5269static int is_target_pte_for_mc(struct vm_area_struct *vma,
5270 unsigned long addr, pte_t ptent, union mc_target *target)
5271{
5272 struct page *page = NULL;
5273 struct page_cgroup *pc;
5274 int ret = 0;
5275 swp_entry_t ent = { .val = 0 };
5276
5277 if (pte_present(ptent))
5278 page = mc_handle_present_pte(vma, addr, ptent);
5279 else if (is_swap_pte(ptent))
5280 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5281 else if (pte_none(ptent) || pte_file(ptent))
5282 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5283
5284 if (!page && !ent.val)
5285 return 0;
02491447
DN
5286 if (page) {
5287 pc = lookup_page_cgroup(page);
5288 /*
5289 * Do only loose check w/o page_cgroup lock.
5290 * mem_cgroup_move_account() checks the pc is valid or not under
5291 * the lock.
5292 */
5293 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5294 ret = MC_TARGET_PAGE;
5295 if (target)
5296 target->page = page;
5297 }
5298 if (!ret || !target)
5299 put_page(page);
5300 }
90254a65
DN
5301 /* There is a swap entry and a page doesn't exist or isn't charged */
5302 if (ent.val && !ret &&
7f0f1546
KH
5303 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
5304 ret = MC_TARGET_SWAP;
5305 if (target)
5306 target->ent = ent;
4ffef5fe 5307 }
4ffef5fe
DN
5308 return ret;
5309}
5310
5311static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5312 unsigned long addr, unsigned long end,
5313 struct mm_walk *walk)
5314{
5315 struct vm_area_struct *vma = walk->private;
5316 pte_t *pte;
5317 spinlock_t *ptl;
5318
03319327
DH
5319 split_huge_page_pmd(walk->mm, pmd);
5320
4ffef5fe
DN
5321 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5322 for (; addr != end; pte++, addr += PAGE_SIZE)
5323 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5324 mc.precharge++; /* increment precharge temporarily */
5325 pte_unmap_unlock(pte - 1, ptl);
5326 cond_resched();
5327
7dc74be0
DN
5328 return 0;
5329}
5330
4ffef5fe
DN
5331static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5332{
5333 unsigned long precharge;
5334 struct vm_area_struct *vma;
5335
dfe076b0 5336 down_read(&mm->mmap_sem);
4ffef5fe
DN
5337 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5338 struct mm_walk mem_cgroup_count_precharge_walk = {
5339 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5340 .mm = mm,
5341 .private = vma,
5342 };
5343 if (is_vm_hugetlb_page(vma))
5344 continue;
4ffef5fe
DN
5345 walk_page_range(vma->vm_start, vma->vm_end,
5346 &mem_cgroup_count_precharge_walk);
5347 }
dfe076b0 5348 up_read(&mm->mmap_sem);
4ffef5fe
DN
5349
5350 precharge = mc.precharge;
5351 mc.precharge = 0;
5352
5353 return precharge;
5354}
5355
4ffef5fe
DN
5356static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5357{
dfe076b0
DN
5358 unsigned long precharge = mem_cgroup_count_precharge(mm);
5359
5360 VM_BUG_ON(mc.moving_task);
5361 mc.moving_task = current;
5362 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5363}
5364
dfe076b0
DN
5365/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5366static void __mem_cgroup_clear_mc(void)
4ffef5fe 5367{
2bd9bb20
KH
5368 struct mem_cgroup *from = mc.from;
5369 struct mem_cgroup *to = mc.to;
5370
4ffef5fe 5371 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
5372 if (mc.precharge) {
5373 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5374 mc.precharge = 0;
5375 }
5376 /*
5377 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5378 * we must uncharge here.
5379 */
5380 if (mc.moved_charge) {
5381 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5382 mc.moved_charge = 0;
4ffef5fe 5383 }
483c30b5
DN
5384 /* we must fixup refcnts and charges */
5385 if (mc.moved_swap) {
483c30b5
DN
5386 /* uncharge swap account from the old cgroup */
5387 if (!mem_cgroup_is_root(mc.from))
5388 res_counter_uncharge(&mc.from->memsw,
5389 PAGE_SIZE * mc.moved_swap);
5390 __mem_cgroup_put(mc.from, mc.moved_swap);
5391
5392 if (!mem_cgroup_is_root(mc.to)) {
5393 /*
5394 * we charged both to->res and to->memsw, so we should
5395 * uncharge to->res.
5396 */
5397 res_counter_uncharge(&mc.to->res,
5398 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
5399 }
5400 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
5401 mc.moved_swap = 0;
5402 }
dfe076b0
DN
5403 memcg_oom_recover(from);
5404 memcg_oom_recover(to);
5405 wake_up_all(&mc.waitq);
5406}
5407
5408static void mem_cgroup_clear_mc(void)
5409{
5410 struct mem_cgroup *from = mc.from;
5411
5412 /*
5413 * we must clear moving_task before waking up waiters at the end of
5414 * task migration.
5415 */
5416 mc.moving_task = NULL;
5417 __mem_cgroup_clear_mc();
2bd9bb20 5418 spin_lock(&mc.lock);
4ffef5fe
DN
5419 mc.from = NULL;
5420 mc.to = NULL;
2bd9bb20 5421 spin_unlock(&mc.lock);
32047e2a 5422 mem_cgroup_end_move(from);
4ffef5fe
DN
5423}
5424
7dc74be0
DN
5425static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5426 struct cgroup *cgroup,
2f7ee569 5427 struct cgroup_taskset *tset)
7dc74be0 5428{
2f7ee569 5429 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5430 int ret = 0;
c0ff4b85 5431 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 5432
c0ff4b85 5433 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
5434 struct mm_struct *mm;
5435 struct mem_cgroup *from = mem_cgroup_from_task(p);
5436
c0ff4b85 5437 VM_BUG_ON(from == memcg);
7dc74be0
DN
5438
5439 mm = get_task_mm(p);
5440 if (!mm)
5441 return 0;
7dc74be0 5442 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5443 if (mm->owner == p) {
5444 VM_BUG_ON(mc.from);
5445 VM_BUG_ON(mc.to);
5446 VM_BUG_ON(mc.precharge);
854ffa8d 5447 VM_BUG_ON(mc.moved_charge);
483c30b5 5448 VM_BUG_ON(mc.moved_swap);
32047e2a 5449 mem_cgroup_start_move(from);
2bd9bb20 5450 spin_lock(&mc.lock);
4ffef5fe 5451 mc.from = from;
c0ff4b85 5452 mc.to = memcg;
2bd9bb20 5453 spin_unlock(&mc.lock);
dfe076b0 5454 /* We set mc.moving_task later */
4ffef5fe
DN
5455
5456 ret = mem_cgroup_precharge_mc(mm);
5457 if (ret)
5458 mem_cgroup_clear_mc();
dfe076b0
DN
5459 }
5460 mmput(mm);
7dc74be0
DN
5461 }
5462 return ret;
5463}
5464
5465static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5466 struct cgroup *cgroup,
2f7ee569 5467 struct cgroup_taskset *tset)
7dc74be0 5468{
4ffef5fe 5469 mem_cgroup_clear_mc();
7dc74be0
DN
5470}
5471
4ffef5fe
DN
5472static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5473 unsigned long addr, unsigned long end,
5474 struct mm_walk *walk)
7dc74be0 5475{
4ffef5fe
DN
5476 int ret = 0;
5477 struct vm_area_struct *vma = walk->private;
5478 pte_t *pte;
5479 spinlock_t *ptl;
5480
03319327 5481 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
5482retry:
5483 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5484 for (; addr != end; addr += PAGE_SIZE) {
5485 pte_t ptent = *(pte++);
5486 union mc_target target;
5487 int type;
5488 struct page *page;
5489 struct page_cgroup *pc;
02491447 5490 swp_entry_t ent;
4ffef5fe
DN
5491
5492 if (!mc.precharge)
5493 break;
5494
5495 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5496 switch (type) {
5497 case MC_TARGET_PAGE:
5498 page = target.page;
5499 if (isolate_lru_page(page))
5500 goto put;
5501 pc = lookup_page_cgroup(page);
7ec99d62
JW
5502 if (!mem_cgroup_move_account(page, 1, pc,
5503 mc.from, mc.to, false)) {
4ffef5fe 5504 mc.precharge--;
854ffa8d
DN
5505 /* we uncharge from mc.from later. */
5506 mc.moved_charge++;
4ffef5fe
DN
5507 }
5508 putback_lru_page(page);
5509put: /* is_target_pte_for_mc() gets the page */
5510 put_page(page);
5511 break;
02491447
DN
5512 case MC_TARGET_SWAP:
5513 ent = target.ent;
483c30b5
DN
5514 if (!mem_cgroup_move_swap_account(ent,
5515 mc.from, mc.to, false)) {
02491447 5516 mc.precharge--;
483c30b5
DN
5517 /* we fixup refcnts and charges later. */
5518 mc.moved_swap++;
5519 }
02491447 5520 break;
4ffef5fe
DN
5521 default:
5522 break;
5523 }
5524 }
5525 pte_unmap_unlock(pte - 1, ptl);
5526 cond_resched();
5527
5528 if (addr != end) {
5529 /*
5530 * We have consumed all precharges we got in can_attach().
5531 * We try charge one by one, but don't do any additional
5532 * charges to mc.to if we have failed in charge once in attach()
5533 * phase.
5534 */
854ffa8d 5535 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5536 if (!ret)
5537 goto retry;
5538 }
5539
5540 return ret;
5541}
5542
5543static void mem_cgroup_move_charge(struct mm_struct *mm)
5544{
5545 struct vm_area_struct *vma;
5546
5547 lru_add_drain_all();
dfe076b0
DN
5548retry:
5549 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5550 /*
5551 * Someone who are holding the mmap_sem might be waiting in
5552 * waitq. So we cancel all extra charges, wake up all waiters,
5553 * and retry. Because we cancel precharges, we might not be able
5554 * to move enough charges, but moving charge is a best-effort
5555 * feature anyway, so it wouldn't be a big problem.
5556 */
5557 __mem_cgroup_clear_mc();
5558 cond_resched();
5559 goto retry;
5560 }
4ffef5fe
DN
5561 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5562 int ret;
5563 struct mm_walk mem_cgroup_move_charge_walk = {
5564 .pmd_entry = mem_cgroup_move_charge_pte_range,
5565 .mm = mm,
5566 .private = vma,
5567 };
5568 if (is_vm_hugetlb_page(vma))
5569 continue;
4ffef5fe
DN
5570 ret = walk_page_range(vma->vm_start, vma->vm_end,
5571 &mem_cgroup_move_charge_walk);
5572 if (ret)
5573 /*
5574 * means we have consumed all precharges and failed in
5575 * doing additional charge. Just abandon here.
5576 */
5577 break;
5578 }
dfe076b0 5579 up_read(&mm->mmap_sem);
7dc74be0
DN
5580}
5581
67e465a7
BS
5582static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5583 struct cgroup *cont,
2f7ee569 5584 struct cgroup_taskset *tset)
67e465a7 5585{
2f7ee569 5586 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5587 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5588
dfe076b0 5589 if (mm) {
a433658c
KM
5590 if (mc.to)
5591 mem_cgroup_move_charge(mm);
5592 put_swap_token(mm);
dfe076b0
DN
5593 mmput(mm);
5594 }
a433658c
KM
5595 if (mc.to)
5596 mem_cgroup_clear_mc();
67e465a7 5597}
5cfb80a7
DN
5598#else /* !CONFIG_MMU */
5599static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5600 struct cgroup *cgroup,
2f7ee569 5601 struct cgroup_taskset *tset)
5cfb80a7
DN
5602{
5603 return 0;
5604}
5605static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5606 struct cgroup *cgroup,
2f7ee569 5607 struct cgroup_taskset *tset)
5cfb80a7
DN
5608{
5609}
5610static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5611 struct cgroup *cont,
2f7ee569 5612 struct cgroup_taskset *tset)
5cfb80a7
DN
5613{
5614}
5615#endif
67e465a7 5616
8cdea7c0
BS
5617struct cgroup_subsys mem_cgroup_subsys = {
5618 .name = "memory",
5619 .subsys_id = mem_cgroup_subsys_id,
5620 .create = mem_cgroup_create,
df878fb0 5621 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5622 .destroy = mem_cgroup_destroy,
5623 .populate = mem_cgroup_populate,
7dc74be0
DN
5624 .can_attach = mem_cgroup_can_attach,
5625 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5626 .attach = mem_cgroup_move_task,
6d12e2d8 5627 .early_init = 0,
04046e1a 5628 .use_id = 1,
8cdea7c0 5629};
c077719b
KH
5630
5631#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5632static int __init enable_swap_account(char *s)
5633{
5634 /* consider enabled if no parameter or 1 is given */
a2c8990a 5635 if (!strcmp(s, "1"))
a42c390c 5636 really_do_swap_account = 1;
a2c8990a 5637 else if (!strcmp(s, "0"))
a42c390c
MH
5638 really_do_swap_account = 0;
5639 return 1;
5640}
a2c8990a 5641__setup("swapaccount=", enable_swap_account);
c077719b 5642
c077719b 5643#endif