]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/memcontrol.c
mm: memcontrol: avoid workload stalls when lowering memory.high
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
8cdea7c0
BS
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
2e72b634
KS
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
7ae1e1d0
GC
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
1575e68b
JW
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
8cdea7c0
BS
23 */
24
3e32cb2e 25#include <linux/page_counter.h>
8cdea7c0
BS
26#include <linux/memcontrol.h>
27#include <linux/cgroup.h>
a520110e 28#include <linux/pagewalk.h>
6e84f315 29#include <linux/sched/mm.h>
3a4f8a0b 30#include <linux/shmem_fs.h>
4ffef5fe 31#include <linux/hugetlb.h>
d13d1443 32#include <linux/pagemap.h>
1ff9e6e1 33#include <linux/vm_event_item.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
b23afb93 59#include <linux/tracehook.h>
0e4b01df 60#include <linux/psi.h>
c8713d0b 61#include <linux/seq_buf.h>
08e552c6 62#include "internal.h"
d1a4c0b3 63#include <net/sock.h>
4bd2c1ee 64#include <net/ip.h>
f35c3a8e 65#include "slab.h"
8cdea7c0 66
7c0f6ba6 67#include <linux/uaccess.h>
8697d331 68
cc8e970c
KM
69#include <trace/events/vmscan.h>
70
073219e9
TH
71struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 73
7d828602
JW
74struct mem_cgroup *root_mem_cgroup __read_mostly;
75
a181b0e8 76#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 77
f7e1cb6e
JW
78/* Socket memory accounting disabled? */
79static bool cgroup_memory_nosocket;
80
04823c83
VD
81/* Kernel memory accounting disabled? */
82static bool cgroup_memory_nokmem;
83
21afa38e 84/* Whether the swap controller is active */
c255a458 85#ifdef CONFIG_MEMCG_SWAP
eccb52e7 86bool cgroup_memory_noswap __read_mostly;
c077719b 87#else
eccb52e7 88#define cgroup_memory_noswap 1
2d1c4980 89#endif
c077719b 90
97b27821
TH
91#ifdef CONFIG_CGROUP_WRITEBACK
92static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
eccb52e7 98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
7941d214
JW
99}
100
a0db00fc
KS
101#define THRESHOLDS_EVENTS_TARGET 128
102#define SOFTLIMIT_EVENTS_TARGET 1024
e9f8974f 103
bb4cc1a8
AM
104/*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
ef8f2327 109struct mem_cgroup_tree_per_node {
bb4cc1a8 110 struct rb_root rb_root;
fa90b2fd 111 struct rb_node *rb_rightmost;
bb4cc1a8
AM
112 spinlock_t lock;
113};
114
bb4cc1a8
AM
115struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117};
118
119static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
9490ff27
KH
121/* for OOM */
122struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125};
2e72b634 126
79bd9814
TH
127/*
128 * cgroup_event represents events which userspace want to receive.
129 */
3bc942f3 130struct mem_cgroup_event {
79bd9814 131 /*
59b6f873 132 * memcg which the event belongs to.
79bd9814 133 */
59b6f873 134 struct mem_cgroup *memcg;
79bd9814
TH
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
fba94807
TH
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
59b6f873 148 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 149 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
59b6f873 155 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 156 struct eventfd_ctx *eventfd);
79bd9814
TH
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
ac6424b9 163 wait_queue_entry_t wait;
79bd9814
TH
164 struct work_struct remove;
165};
166
c0ff4b85
R
167static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 169
7dc74be0
DN
170/* Stuffs for move charges at task migration. */
171/*
1dfab5ab 172 * Types of charges to be moved.
7dc74be0 173 */
1dfab5ab
JW
174#define MOVE_ANON 0x1U
175#define MOVE_FILE 0x2U
176#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 177
4ffef5fe
DN
178/* "mc" and its members are protected by cgroup_mutex */
179static struct move_charge_struct {
b1dd693e 180 spinlock_t lock; /* for from, to */
264a0ae1 181 struct mm_struct *mm;
4ffef5fe
DN
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
1dfab5ab 184 unsigned long flags;
4ffef5fe 185 unsigned long precharge;
854ffa8d 186 unsigned long moved_charge;
483c30b5 187 unsigned long moved_swap;
8033b97c
DN
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190} mc = {
2bd9bb20 191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193};
4ffef5fe 194
4e416953
BS
195/*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
a0db00fc 199#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 200#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 201
217bc319
KH
202enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 204 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
207 NR_CHARGE_TYPE,
208};
209
8c7c6e34 210/* for encoding cft->private value on file */
86ae53e1
GC
211enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
510fc4e1 215 _KMEM,
d55f90bf 216 _TCP,
86ae53e1
GC
217};
218
a0db00fc
KS
219#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 221#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
222/* Used for OOM nofiier */
223#define OOM_CONTROL (0)
8c7c6e34 224
b05706f1
KT
225/*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230#define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235#define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
7775face
TH
240static inline bool should_force_charge(void)
241{
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244}
245
70ddf637
AV
246/* Some nice accessors for the vmpressure. */
247struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248{
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252}
253
254struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255{
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257}
258
84c07d11 259#ifdef CONFIG_MEMCG_KMEM
bf4f0599
RG
260extern spinlock_t css_set_lock;
261
262static void obj_cgroup_release(struct percpu_ref *ref)
263{
264 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
265 struct mem_cgroup *memcg;
266 unsigned int nr_bytes;
267 unsigned int nr_pages;
268 unsigned long flags;
269
270 /*
271 * At this point all allocated objects are freed, and
272 * objcg->nr_charged_bytes can't have an arbitrary byte value.
273 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 *
275 * The following sequence can lead to it:
276 * 1) CPU0: objcg == stock->cached_objcg
277 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278 * PAGE_SIZE bytes are charged
279 * 3) CPU1: a process from another memcg is allocating something,
280 * the stock if flushed,
281 * objcg->nr_charged_bytes = PAGE_SIZE - 92
282 * 5) CPU0: we do release this object,
283 * 92 bytes are added to stock->nr_bytes
284 * 6) CPU0: stock is flushed,
285 * 92 bytes are added to objcg->nr_charged_bytes
286 *
287 * In the result, nr_charged_bytes == PAGE_SIZE.
288 * This page will be uncharged in obj_cgroup_release().
289 */
290 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292 nr_pages = nr_bytes >> PAGE_SHIFT;
293
294 spin_lock_irqsave(&css_set_lock, flags);
295 memcg = obj_cgroup_memcg(objcg);
296 if (nr_pages)
297 __memcg_kmem_uncharge(memcg, nr_pages);
298 list_del(&objcg->list);
299 mem_cgroup_put(memcg);
300 spin_unlock_irqrestore(&css_set_lock, flags);
301
302 percpu_ref_exit(ref);
303 kfree_rcu(objcg, rcu);
304}
305
306static struct obj_cgroup *obj_cgroup_alloc(void)
307{
308 struct obj_cgroup *objcg;
309 int ret;
310
311 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
312 if (!objcg)
313 return NULL;
314
315 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
316 GFP_KERNEL);
317 if (ret) {
318 kfree(objcg);
319 return NULL;
320 }
321 INIT_LIST_HEAD(&objcg->list);
322 return objcg;
323}
324
325static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
326 struct mem_cgroup *parent)
327{
328 struct obj_cgroup *objcg, *iter;
329
330 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
331
332 spin_lock_irq(&css_set_lock);
333
334 /* Move active objcg to the parent's list */
335 xchg(&objcg->memcg, parent);
336 css_get(&parent->css);
337 list_add(&objcg->list, &parent->objcg_list);
338
339 /* Move already reparented objcgs to the parent's list */
340 list_for_each_entry(iter, &memcg->objcg_list, list) {
341 css_get(&parent->css);
342 xchg(&iter->memcg, parent);
343 css_put(&memcg->css);
344 }
345 list_splice(&memcg->objcg_list, &parent->objcg_list);
346
347 spin_unlock_irq(&css_set_lock);
348
349 percpu_ref_kill(&objcg->refcnt);
350}
351
55007d84 352/*
9855609b 353 * This will be used as a shrinker list's index.
b8627835
LZ
354 * The main reason for not using cgroup id for this:
355 * this works better in sparse environments, where we have a lot of memcgs,
356 * but only a few kmem-limited. Or also, if we have, for instance, 200
357 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
358 * 200 entry array for that.
55007d84 359 *
dbcf73e2
VD
360 * The current size of the caches array is stored in memcg_nr_cache_ids. It
361 * will double each time we have to increase it.
55007d84 362 */
dbcf73e2
VD
363static DEFINE_IDA(memcg_cache_ida);
364int memcg_nr_cache_ids;
749c5415 365
05257a1a
VD
366/* Protects memcg_nr_cache_ids */
367static DECLARE_RWSEM(memcg_cache_ids_sem);
368
369void memcg_get_cache_ids(void)
370{
371 down_read(&memcg_cache_ids_sem);
372}
373
374void memcg_put_cache_ids(void)
375{
376 up_read(&memcg_cache_ids_sem);
377}
378
55007d84
GC
379/*
380 * MIN_SIZE is different than 1, because we would like to avoid going through
381 * the alloc/free process all the time. In a small machine, 4 kmem-limited
382 * cgroups is a reasonable guess. In the future, it could be a parameter or
383 * tunable, but that is strictly not necessary.
384 *
b8627835 385 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
386 * this constant directly from cgroup, but it is understandable that this is
387 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 388 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
389 * increase ours as well if it increases.
390 */
391#define MEMCG_CACHES_MIN_SIZE 4
b8627835 392#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 393
d7f25f8a
GC
394/*
395 * A lot of the calls to the cache allocation functions are expected to be
272911a4 396 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
d7f25f8a
GC
397 * conditional to this static branch, we'll have to allow modules that does
398 * kmem_cache_alloc and the such to see this symbol as well
399 */
ef12947c 400DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 401EXPORT_SYMBOL(memcg_kmem_enabled_key);
0a432dcb 402#endif
17cc4dfe 403
0a4465d3
KT
404static int memcg_shrinker_map_size;
405static DEFINE_MUTEX(memcg_shrinker_map_mutex);
406
407static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
408{
409 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
410}
411
412static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
413 int size, int old_size)
414{
415 struct memcg_shrinker_map *new, *old;
416 int nid;
417
418 lockdep_assert_held(&memcg_shrinker_map_mutex);
419
420 for_each_node(nid) {
421 old = rcu_dereference_protected(
422 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
423 /* Not yet online memcg */
424 if (!old)
425 return 0;
426
86daf94e 427 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
0a4465d3
KT
428 if (!new)
429 return -ENOMEM;
430
431 /* Set all old bits, clear all new bits */
432 memset(new->map, (int)0xff, old_size);
433 memset((void *)new->map + old_size, 0, size - old_size);
434
435 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
436 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
437 }
438
439 return 0;
440}
441
442static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
443{
444 struct mem_cgroup_per_node *pn;
445 struct memcg_shrinker_map *map;
446 int nid;
447
448 if (mem_cgroup_is_root(memcg))
449 return;
450
451 for_each_node(nid) {
452 pn = mem_cgroup_nodeinfo(memcg, nid);
453 map = rcu_dereference_protected(pn->shrinker_map, true);
454 if (map)
455 kvfree(map);
456 rcu_assign_pointer(pn->shrinker_map, NULL);
457 }
458}
459
460static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
461{
462 struct memcg_shrinker_map *map;
463 int nid, size, ret = 0;
464
465 if (mem_cgroup_is_root(memcg))
466 return 0;
467
468 mutex_lock(&memcg_shrinker_map_mutex);
469 size = memcg_shrinker_map_size;
470 for_each_node(nid) {
86daf94e 471 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
0a4465d3
KT
472 if (!map) {
473 memcg_free_shrinker_maps(memcg);
474 ret = -ENOMEM;
475 break;
476 }
477 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
478 }
479 mutex_unlock(&memcg_shrinker_map_mutex);
480
481 return ret;
482}
483
484int memcg_expand_shrinker_maps(int new_id)
485{
486 int size, old_size, ret = 0;
487 struct mem_cgroup *memcg;
488
489 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
490 old_size = memcg_shrinker_map_size;
491 if (size <= old_size)
492 return 0;
493
494 mutex_lock(&memcg_shrinker_map_mutex);
495 if (!root_mem_cgroup)
496 goto unlock;
497
498 for_each_mem_cgroup(memcg) {
499 if (mem_cgroup_is_root(memcg))
500 continue;
501 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
75866af6
VA
502 if (ret) {
503 mem_cgroup_iter_break(NULL, memcg);
0a4465d3 504 goto unlock;
75866af6 505 }
0a4465d3
KT
506 }
507unlock:
508 if (!ret)
509 memcg_shrinker_map_size = size;
510 mutex_unlock(&memcg_shrinker_map_mutex);
511 return ret;
512}
fae91d6d
KT
513
514void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
515{
516 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
517 struct memcg_shrinker_map *map;
518
519 rcu_read_lock();
520 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
521 /* Pairs with smp mb in shrink_slab() */
522 smp_mb__before_atomic();
fae91d6d
KT
523 set_bit(shrinker_id, map->map);
524 rcu_read_unlock();
525 }
526}
527
ad7fa852
TH
528/**
529 * mem_cgroup_css_from_page - css of the memcg associated with a page
530 * @page: page of interest
531 *
532 * If memcg is bound to the default hierarchy, css of the memcg associated
533 * with @page is returned. The returned css remains associated with @page
534 * until it is released.
535 *
536 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
537 * is returned.
ad7fa852
TH
538 */
539struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
540{
541 struct mem_cgroup *memcg;
542
ad7fa852
TH
543 memcg = page->mem_cgroup;
544
9e10a130 545 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
546 memcg = root_mem_cgroup;
547
ad7fa852
TH
548 return &memcg->css;
549}
550
2fc04524
VD
551/**
552 * page_cgroup_ino - return inode number of the memcg a page is charged to
553 * @page: the page
554 *
555 * Look up the closest online ancestor of the memory cgroup @page is charged to
556 * and return its inode number or 0 if @page is not charged to any cgroup. It
557 * is safe to call this function without holding a reference to @page.
558 *
559 * Note, this function is inherently racy, because there is nothing to prevent
560 * the cgroup inode from getting torn down and potentially reallocated a moment
561 * after page_cgroup_ino() returns, so it only should be used by callers that
562 * do not care (such as procfs interfaces).
563 */
564ino_t page_cgroup_ino(struct page *page)
565{
566 struct mem_cgroup *memcg;
567 unsigned long ino = 0;
568
569 rcu_read_lock();
9855609b 570 memcg = page->mem_cgroup;
286e04b8 571
9855609b
RG
572 /*
573 * The lowest bit set means that memcg isn't a valid
574 * memcg pointer, but a obj_cgroups pointer.
575 * In this case the page is shared and doesn't belong
576 * to any specific memory cgroup.
577 */
578 if ((unsigned long) memcg & 0x1UL)
579 memcg = NULL;
286e04b8 580
2fc04524
VD
581 while (memcg && !(memcg->css.flags & CSS_ONLINE))
582 memcg = parent_mem_cgroup(memcg);
583 if (memcg)
584 ino = cgroup_ino(memcg->css.cgroup);
585 rcu_read_unlock();
586 return ino;
587}
588
ef8f2327
MG
589static struct mem_cgroup_per_node *
590mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 591{
97a6c37b 592 int nid = page_to_nid(page);
f64c3f54 593
ef8f2327 594 return memcg->nodeinfo[nid];
f64c3f54
BS
595}
596
ef8f2327
MG
597static struct mem_cgroup_tree_per_node *
598soft_limit_tree_node(int nid)
bb4cc1a8 599{
ef8f2327 600 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
601}
602
ef8f2327 603static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
604soft_limit_tree_from_page(struct page *page)
605{
606 int nid = page_to_nid(page);
bb4cc1a8 607
ef8f2327 608 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
609}
610
ef8f2327
MG
611static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
612 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 613 unsigned long new_usage_in_excess)
bb4cc1a8
AM
614{
615 struct rb_node **p = &mctz->rb_root.rb_node;
616 struct rb_node *parent = NULL;
ef8f2327 617 struct mem_cgroup_per_node *mz_node;
fa90b2fd 618 bool rightmost = true;
bb4cc1a8
AM
619
620 if (mz->on_tree)
621 return;
622
623 mz->usage_in_excess = new_usage_in_excess;
624 if (!mz->usage_in_excess)
625 return;
626 while (*p) {
627 parent = *p;
ef8f2327 628 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 629 tree_node);
fa90b2fd 630 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 631 p = &(*p)->rb_left;
fa90b2fd
DB
632 rightmost = false;
633 }
634
bb4cc1a8
AM
635 /*
636 * We can't avoid mem cgroups that are over their soft
637 * limit by the same amount
638 */
639 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
640 p = &(*p)->rb_right;
641 }
fa90b2fd
DB
642
643 if (rightmost)
644 mctz->rb_rightmost = &mz->tree_node;
645
bb4cc1a8
AM
646 rb_link_node(&mz->tree_node, parent, p);
647 rb_insert_color(&mz->tree_node, &mctz->rb_root);
648 mz->on_tree = true;
649}
650
ef8f2327
MG
651static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
652 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
653{
654 if (!mz->on_tree)
655 return;
fa90b2fd
DB
656
657 if (&mz->tree_node == mctz->rb_rightmost)
658 mctz->rb_rightmost = rb_prev(&mz->tree_node);
659
bb4cc1a8
AM
660 rb_erase(&mz->tree_node, &mctz->rb_root);
661 mz->on_tree = false;
662}
663
ef8f2327
MG
664static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
665 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 666{
0a31bc97
JW
667 unsigned long flags;
668
669 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 670 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 671 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
672}
673
3e32cb2e
JW
674static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
675{
676 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 677 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
678 unsigned long excess = 0;
679
680 if (nr_pages > soft_limit)
681 excess = nr_pages - soft_limit;
682
683 return excess;
684}
bb4cc1a8
AM
685
686static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
687{
3e32cb2e 688 unsigned long excess;
ef8f2327
MG
689 struct mem_cgroup_per_node *mz;
690 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 691
e231875b 692 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
693 if (!mctz)
694 return;
bb4cc1a8
AM
695 /*
696 * Necessary to update all ancestors when hierarchy is used.
697 * because their event counter is not touched.
698 */
699 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 700 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 701 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
702 /*
703 * We have to update the tree if mz is on RB-tree or
704 * mem is over its softlimit.
705 */
706 if (excess || mz->on_tree) {
0a31bc97
JW
707 unsigned long flags;
708
709 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
710 /* if on-tree, remove it */
711 if (mz->on_tree)
cf2c8127 712 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
713 /*
714 * Insert again. mz->usage_in_excess will be updated.
715 * If excess is 0, no tree ops.
716 */
cf2c8127 717 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 718 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
719 }
720 }
721}
722
723static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
724{
ef8f2327
MG
725 struct mem_cgroup_tree_per_node *mctz;
726 struct mem_cgroup_per_node *mz;
727 int nid;
bb4cc1a8 728
e231875b 729 for_each_node(nid) {
ef8f2327
MG
730 mz = mem_cgroup_nodeinfo(memcg, nid);
731 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
732 if (mctz)
733 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
734 }
735}
736
ef8f2327
MG
737static struct mem_cgroup_per_node *
738__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 739{
ef8f2327 740 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
741
742retry:
743 mz = NULL;
fa90b2fd 744 if (!mctz->rb_rightmost)
bb4cc1a8
AM
745 goto done; /* Nothing to reclaim from */
746
fa90b2fd
DB
747 mz = rb_entry(mctz->rb_rightmost,
748 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
749 /*
750 * Remove the node now but someone else can add it back,
751 * we will to add it back at the end of reclaim to its correct
752 * position in the tree.
753 */
cf2c8127 754 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 755 if (!soft_limit_excess(mz->memcg) ||
8965aa28 756 !css_tryget(&mz->memcg->css))
bb4cc1a8
AM
757 goto retry;
758done:
759 return mz;
760}
761
ef8f2327
MG
762static struct mem_cgroup_per_node *
763mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 764{
ef8f2327 765 struct mem_cgroup_per_node *mz;
bb4cc1a8 766
0a31bc97 767 spin_lock_irq(&mctz->lock);
bb4cc1a8 768 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 769 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
770 return mz;
771}
772
db9adbcb
JW
773/**
774 * __mod_memcg_state - update cgroup memory statistics
775 * @memcg: the memory cgroup
776 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
777 * @val: delta to add to the counter, can be negative
778 */
779void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
780{
ea426c2a 781 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb
JW
782
783 if (mem_cgroup_disabled())
784 return;
785
ea426c2a
RG
786 if (vmstat_item_in_bytes(idx))
787 threshold <<= PAGE_SHIFT;
788
db9adbcb 789 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
ea426c2a 790 if (unlikely(abs(x) > threshold)) {
42a30035
JW
791 struct mem_cgroup *mi;
792
766a4c19
YS
793 /*
794 * Batch local counters to keep them in sync with
795 * the hierarchical ones.
796 */
797 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
42a30035
JW
798 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
799 atomic_long_add(x, &mi->vmstats[idx]);
db9adbcb
JW
800 x = 0;
801 }
802 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
803}
804
42a30035
JW
805static struct mem_cgroup_per_node *
806parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
807{
808 struct mem_cgroup *parent;
809
810 parent = parent_mem_cgroup(pn->memcg);
811 if (!parent)
812 return NULL;
813 return mem_cgroup_nodeinfo(parent, nid);
814}
815
eedc4e5a
RG
816void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
817 int val)
db9adbcb
JW
818{
819 struct mem_cgroup_per_node *pn;
42a30035 820 struct mem_cgroup *memcg;
ea426c2a 821 long x, threshold = MEMCG_CHARGE_BATCH;
db9adbcb 822
db9adbcb 823 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
42a30035 824 memcg = pn->memcg;
db9adbcb
JW
825
826 /* Update memcg */
42a30035 827 __mod_memcg_state(memcg, idx, val);
db9adbcb 828
b4c46484
RG
829 /* Update lruvec */
830 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
831
ea426c2a
RG
832 if (vmstat_item_in_bytes(idx))
833 threshold <<= PAGE_SHIFT;
834
db9adbcb 835 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
ea426c2a 836 if (unlikely(abs(x) > threshold)) {
eedc4e5a 837 pg_data_t *pgdat = lruvec_pgdat(lruvec);
42a30035
JW
838 struct mem_cgroup_per_node *pi;
839
42a30035
JW
840 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
841 atomic_long_add(x, &pi->lruvec_stat[idx]);
db9adbcb
JW
842 x = 0;
843 }
844 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
845}
846
eedc4e5a
RG
847/**
848 * __mod_lruvec_state - update lruvec memory statistics
849 * @lruvec: the lruvec
850 * @idx: the stat item
851 * @val: delta to add to the counter, can be negative
852 *
853 * The lruvec is the intersection of the NUMA node and a cgroup. This
854 * function updates the all three counters that are affected by a
855 * change of state at this level: per-node, per-cgroup, per-lruvec.
856 */
857void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
858 int val)
859{
860 /* Update node */
861 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
862
863 /* Update memcg and lruvec */
864 if (!mem_cgroup_disabled())
865 __mod_memcg_lruvec_state(lruvec, idx, val);
866}
867
ec9f0238
RG
868void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
869{
4f103c63 870 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
ec9f0238
RG
871 struct mem_cgroup *memcg;
872 struct lruvec *lruvec;
873
874 rcu_read_lock();
4f103c63 875 memcg = mem_cgroup_from_obj(p);
ec9f0238
RG
876
877 /* Untracked pages have no memcg, no lruvec. Update only the node */
878 if (!memcg || memcg == root_mem_cgroup) {
879 __mod_node_page_state(pgdat, idx, val);
880 } else {
867e5e1d 881 lruvec = mem_cgroup_lruvec(memcg, pgdat);
ec9f0238
RG
882 __mod_lruvec_state(lruvec, idx, val);
883 }
884 rcu_read_unlock();
885}
886
8380ce47
RG
887void mod_memcg_obj_state(void *p, int idx, int val)
888{
889 struct mem_cgroup *memcg;
890
891 rcu_read_lock();
892 memcg = mem_cgroup_from_obj(p);
893 if (memcg)
894 mod_memcg_state(memcg, idx, val);
895 rcu_read_unlock();
896}
897
db9adbcb
JW
898/**
899 * __count_memcg_events - account VM events in a cgroup
900 * @memcg: the memory cgroup
901 * @idx: the event item
902 * @count: the number of events that occured
903 */
904void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
905 unsigned long count)
906{
907 unsigned long x;
908
909 if (mem_cgroup_disabled())
910 return;
911
912 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
913 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
42a30035
JW
914 struct mem_cgroup *mi;
915
766a4c19
YS
916 /*
917 * Batch local counters to keep them in sync with
918 * the hierarchical ones.
919 */
920 __this_cpu_add(memcg->vmstats_local->events[idx], x);
42a30035
JW
921 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
922 atomic_long_add(x, &mi->vmevents[idx]);
db9adbcb
JW
923 x = 0;
924 }
925 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
926}
927
42a30035 928static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
e9f8974f 929{
871789d4 930 return atomic_long_read(&memcg->vmevents[event]);
e9f8974f
JW
931}
932
42a30035
JW
933static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
934{
815744d7
JW
935 long x = 0;
936 int cpu;
937
938 for_each_possible_cpu(cpu)
939 x += per_cpu(memcg->vmstats_local->events[event], cpu);
940 return x;
42a30035
JW
941}
942
c0ff4b85 943static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 944 struct page *page,
3fba69a5 945 int nr_pages)
d52aa412 946{
e401f176
KH
947 /* pagein of a big page is an event. So, ignore page size */
948 if (nr_pages > 0)
c9019e9b 949 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 950 else {
c9019e9b 951 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
952 nr_pages = -nr_pages; /* for event */
953 }
e401f176 954
871789d4 955 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
6d12e2d8
KH
956}
957
f53d7ce3
JW
958static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
959 enum mem_cgroup_events_target target)
7a159cc9
JW
960{
961 unsigned long val, next;
962
871789d4
CD
963 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
964 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
7a159cc9 965 /* from time_after() in jiffies.h */
6a1a8b80 966 if ((long)(next - val) < 0) {
f53d7ce3
JW
967 switch (target) {
968 case MEM_CGROUP_TARGET_THRESH:
969 next = val + THRESHOLDS_EVENTS_TARGET;
970 break;
bb4cc1a8
AM
971 case MEM_CGROUP_TARGET_SOFTLIMIT:
972 next = val + SOFTLIMIT_EVENTS_TARGET;
973 break;
f53d7ce3
JW
974 default:
975 break;
976 }
871789d4 977 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
f53d7ce3 978 return true;
7a159cc9 979 }
f53d7ce3 980 return false;
d2265e6f
KH
981}
982
983/*
984 * Check events in order.
985 *
986 */
c0ff4b85 987static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
988{
989 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
990 if (unlikely(mem_cgroup_event_ratelimit(memcg,
991 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 992 bool do_softlimit;
f53d7ce3 993
bb4cc1a8
AM
994 do_softlimit = mem_cgroup_event_ratelimit(memcg,
995 MEM_CGROUP_TARGET_SOFTLIMIT);
c0ff4b85 996 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
997 if (unlikely(do_softlimit))
998 mem_cgroup_update_tree(memcg, page);
0a31bc97 999 }
d2265e6f
KH
1000}
1001
cf475ad2 1002struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1003{
31a78f23
BS
1004 /*
1005 * mm_update_next_owner() may clear mm->owner to NULL
1006 * if it races with swapoff, page migration, etc.
1007 * So this can be called with p == NULL.
1008 */
1009 if (unlikely(!p))
1010 return NULL;
1011
073219e9 1012 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 1013}
33398cf2 1014EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 1015
d46eb14b
SB
1016/**
1017 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1018 * @mm: mm from which memcg should be extracted. It can be NULL.
1019 *
1020 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1021 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1022 * returned.
1023 */
1024struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1025{
d46eb14b
SB
1026 struct mem_cgroup *memcg;
1027
1028 if (mem_cgroup_disabled())
1029 return NULL;
0b7f569e 1030
54595fe2
KH
1031 rcu_read_lock();
1032 do {
6f6acb00
MH
1033 /*
1034 * Page cache insertions can happen withou an
1035 * actual mm context, e.g. during disk probing
1036 * on boot, loopback IO, acct() writes etc.
1037 */
1038 if (unlikely(!mm))
df381975 1039 memcg = root_mem_cgroup;
6f6acb00
MH
1040 else {
1041 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1042 if (unlikely(!memcg))
1043 memcg = root_mem_cgroup;
1044 }
00d484f3 1045 } while (!css_tryget(&memcg->css));
54595fe2 1046 rcu_read_unlock();
c0ff4b85 1047 return memcg;
54595fe2 1048}
d46eb14b
SB
1049EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1050
f745c6f5
SB
1051/**
1052 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1053 * @page: page from which memcg should be extracted.
1054 *
1055 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1056 * root_mem_cgroup is returned.
1057 */
1058struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1059{
1060 struct mem_cgroup *memcg = page->mem_cgroup;
1061
1062 if (mem_cgroup_disabled())
1063 return NULL;
1064
1065 rcu_read_lock();
8965aa28
SB
1066 /* Page should not get uncharged and freed memcg under us. */
1067 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
f745c6f5
SB
1068 memcg = root_mem_cgroup;
1069 rcu_read_unlock();
1070 return memcg;
1071}
1072EXPORT_SYMBOL(get_mem_cgroup_from_page);
1073
d46eb14b
SB
1074/**
1075 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1076 */
1077static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1078{
1079 if (unlikely(current->active_memcg)) {
8965aa28 1080 struct mem_cgroup *memcg;
d46eb14b
SB
1081
1082 rcu_read_lock();
8965aa28
SB
1083 /* current->active_memcg must hold a ref. */
1084 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
1085 memcg = root_mem_cgroup;
1086 else
d46eb14b
SB
1087 memcg = current->active_memcg;
1088 rcu_read_unlock();
1089 return memcg;
1090 }
1091 return get_mem_cgroup_from_mm(current->mm);
1092}
54595fe2 1093
5660048c
JW
1094/**
1095 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1096 * @root: hierarchy root
1097 * @prev: previously returned memcg, NULL on first invocation
1098 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1099 *
1100 * Returns references to children of the hierarchy below @root, or
1101 * @root itself, or %NULL after a full round-trip.
1102 *
1103 * Caller must pass the return value in @prev on subsequent
1104 * invocations for reference counting, or use mem_cgroup_iter_break()
1105 * to cancel a hierarchy walk before the round-trip is complete.
1106 *
b213b54f 1107 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 1108 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 1109 * reclaimers operating on the same node and priority.
5660048c 1110 */
694fbc0f 1111struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1112 struct mem_cgroup *prev,
694fbc0f 1113 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1114{
3f649ab7 1115 struct mem_cgroup_reclaim_iter *iter;
5ac8fb31 1116 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1117 struct mem_cgroup *memcg = NULL;
5ac8fb31 1118 struct mem_cgroup *pos = NULL;
711d3d2c 1119
694fbc0f
AM
1120 if (mem_cgroup_disabled())
1121 return NULL;
5660048c 1122
9f3a0d09
JW
1123 if (!root)
1124 root = root_mem_cgroup;
7d74b06f 1125
9f3a0d09 1126 if (prev && !reclaim)
5ac8fb31 1127 pos = prev;
14067bb3 1128
9f3a0d09
JW
1129 if (!root->use_hierarchy && root != root_mem_cgroup) {
1130 if (prev)
5ac8fb31 1131 goto out;
694fbc0f 1132 return root;
9f3a0d09 1133 }
14067bb3 1134
542f85f9 1135 rcu_read_lock();
5f578161 1136
5ac8fb31 1137 if (reclaim) {
ef8f2327 1138 struct mem_cgroup_per_node *mz;
5ac8fb31 1139
ef8f2327 1140 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
9da83f3f 1141 iter = &mz->iter;
5ac8fb31
JW
1142
1143 if (prev && reclaim->generation != iter->generation)
1144 goto out_unlock;
1145
6df38689 1146 while (1) {
4db0c3c2 1147 pos = READ_ONCE(iter->position);
6df38689
VD
1148 if (!pos || css_tryget(&pos->css))
1149 break;
5ac8fb31 1150 /*
6df38689
VD
1151 * css reference reached zero, so iter->position will
1152 * be cleared by ->css_released. However, we should not
1153 * rely on this happening soon, because ->css_released
1154 * is called from a work queue, and by busy-waiting we
1155 * might block it. So we clear iter->position right
1156 * away.
5ac8fb31 1157 */
6df38689
VD
1158 (void)cmpxchg(&iter->position, pos, NULL);
1159 }
5ac8fb31
JW
1160 }
1161
1162 if (pos)
1163 css = &pos->css;
1164
1165 for (;;) {
1166 css = css_next_descendant_pre(css, &root->css);
1167 if (!css) {
1168 /*
1169 * Reclaimers share the hierarchy walk, and a
1170 * new one might jump in right at the end of
1171 * the hierarchy - make sure they see at least
1172 * one group and restart from the beginning.
1173 */
1174 if (!prev)
1175 continue;
1176 break;
527a5ec9 1177 }
7d74b06f 1178
5ac8fb31
JW
1179 /*
1180 * Verify the css and acquire a reference. The root
1181 * is provided by the caller, so we know it's alive
1182 * and kicking, and don't take an extra reference.
1183 */
1184 memcg = mem_cgroup_from_css(css);
14067bb3 1185
5ac8fb31
JW
1186 if (css == &root->css)
1187 break;
14067bb3 1188
0b8f73e1
JW
1189 if (css_tryget(css))
1190 break;
9f3a0d09 1191
5ac8fb31 1192 memcg = NULL;
9f3a0d09 1193 }
5ac8fb31
JW
1194
1195 if (reclaim) {
5ac8fb31 1196 /*
6df38689
VD
1197 * The position could have already been updated by a competing
1198 * thread, so check that the value hasn't changed since we read
1199 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 1200 */
6df38689
VD
1201 (void)cmpxchg(&iter->position, pos, memcg);
1202
5ac8fb31
JW
1203 if (pos)
1204 css_put(&pos->css);
1205
1206 if (!memcg)
1207 iter->generation++;
1208 else if (!prev)
1209 reclaim->generation = iter->generation;
9f3a0d09 1210 }
5ac8fb31 1211
542f85f9
MH
1212out_unlock:
1213 rcu_read_unlock();
5ac8fb31 1214out:
c40046f3
MH
1215 if (prev && prev != root)
1216 css_put(&prev->css);
1217
9f3a0d09 1218 return memcg;
14067bb3 1219}
7d74b06f 1220
5660048c
JW
1221/**
1222 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1223 * @root: hierarchy root
1224 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1225 */
1226void mem_cgroup_iter_break(struct mem_cgroup *root,
1227 struct mem_cgroup *prev)
9f3a0d09
JW
1228{
1229 if (!root)
1230 root = root_mem_cgroup;
1231 if (prev && prev != root)
1232 css_put(&prev->css);
1233}
7d74b06f 1234
54a83d6b
MC
1235static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1236 struct mem_cgroup *dead_memcg)
6df38689 1237{
6df38689 1238 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1239 struct mem_cgroup_per_node *mz;
1240 int nid;
6df38689 1241
54a83d6b
MC
1242 for_each_node(nid) {
1243 mz = mem_cgroup_nodeinfo(from, nid);
9da83f3f
YS
1244 iter = &mz->iter;
1245 cmpxchg(&iter->position, dead_memcg, NULL);
6df38689
VD
1246 }
1247}
1248
54a83d6b
MC
1249static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1250{
1251 struct mem_cgroup *memcg = dead_memcg;
1252 struct mem_cgroup *last;
1253
1254 do {
1255 __invalidate_reclaim_iterators(memcg, dead_memcg);
1256 last = memcg;
1257 } while ((memcg = parent_mem_cgroup(memcg)));
1258
1259 /*
1260 * When cgruop1 non-hierarchy mode is used,
1261 * parent_mem_cgroup() does not walk all the way up to the
1262 * cgroup root (root_mem_cgroup). So we have to handle
1263 * dead_memcg from cgroup root separately.
1264 */
1265 if (last != root_mem_cgroup)
1266 __invalidate_reclaim_iterators(root_mem_cgroup,
1267 dead_memcg);
1268}
1269
7c5f64f8
VD
1270/**
1271 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1272 * @memcg: hierarchy root
1273 * @fn: function to call for each task
1274 * @arg: argument passed to @fn
1275 *
1276 * This function iterates over tasks attached to @memcg or to any of its
1277 * descendants and calls @fn for each task. If @fn returns a non-zero
1278 * value, the function breaks the iteration loop and returns the value.
1279 * Otherwise, it will iterate over all tasks and return 0.
1280 *
1281 * This function must not be called for the root memory cgroup.
1282 */
1283int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1284 int (*fn)(struct task_struct *, void *), void *arg)
1285{
1286 struct mem_cgroup *iter;
1287 int ret = 0;
1288
1289 BUG_ON(memcg == root_mem_cgroup);
1290
1291 for_each_mem_cgroup_tree(iter, memcg) {
1292 struct css_task_iter it;
1293 struct task_struct *task;
1294
f168a9a5 1295 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
7c5f64f8
VD
1296 while (!ret && (task = css_task_iter_next(&it)))
1297 ret = fn(task, arg);
1298 css_task_iter_end(&it);
1299 if (ret) {
1300 mem_cgroup_iter_break(memcg, iter);
1301 break;
1302 }
1303 }
1304 return ret;
1305}
1306
925b7673 1307/**
dfe0e773 1308 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1309 * @page: the page
f144c390 1310 * @pgdat: pgdat of the page
dfe0e773 1311 *
a0b5b414
JW
1312 * This function relies on page->mem_cgroup being stable - see the
1313 * access rules in commit_charge().
925b7673 1314 */
599d0c95 1315struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1316{
ef8f2327 1317 struct mem_cgroup_per_node *mz;
925b7673 1318 struct mem_cgroup *memcg;
bea8c150 1319 struct lruvec *lruvec;
6d12e2d8 1320
bea8c150 1321 if (mem_cgroup_disabled()) {
867e5e1d 1322 lruvec = &pgdat->__lruvec;
bea8c150
HD
1323 goto out;
1324 }
925b7673 1325
1306a85a 1326 memcg = page->mem_cgroup;
7512102c 1327 /*
dfe0e773 1328 * Swapcache readahead pages are added to the LRU - and
29833315 1329 * possibly migrated - before they are charged.
7512102c 1330 */
29833315
JW
1331 if (!memcg)
1332 memcg = root_mem_cgroup;
7512102c 1333
ef8f2327 1334 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1335 lruvec = &mz->lruvec;
1336out:
1337 /*
1338 * Since a node can be onlined after the mem_cgroup was created,
1339 * we have to be prepared to initialize lruvec->zone here;
1340 * and if offlined then reonlined, we need to reinitialize it.
1341 */
599d0c95
MG
1342 if (unlikely(lruvec->pgdat != pgdat))
1343 lruvec->pgdat = pgdat;
bea8c150 1344 return lruvec;
08e552c6 1345}
b69408e8 1346
925b7673 1347/**
fa9add64
HD
1348 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1349 * @lruvec: mem_cgroup per zone lru vector
1350 * @lru: index of lru list the page is sitting on
b4536f0c 1351 * @zid: zone id of the accounted pages
fa9add64 1352 * @nr_pages: positive when adding or negative when removing
925b7673 1353 *
ca707239
HD
1354 * This function must be called under lru_lock, just before a page is added
1355 * to or just after a page is removed from an lru list (that ordering being
1356 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1357 */
fa9add64 1358void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1359 int zid, int nr_pages)
3f58a829 1360{
ef8f2327 1361 struct mem_cgroup_per_node *mz;
fa9add64 1362 unsigned long *lru_size;
ca707239 1363 long size;
3f58a829
MK
1364
1365 if (mem_cgroup_disabled())
1366 return;
1367
ef8f2327 1368 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1369 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1370
1371 if (nr_pages < 0)
1372 *lru_size += nr_pages;
1373
1374 size = *lru_size;
b4536f0c
MH
1375 if (WARN_ONCE(size < 0,
1376 "%s(%p, %d, %d): lru_size %ld\n",
1377 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1378 VM_BUG_ON(1);
1379 *lru_size = 0;
1380 }
1381
1382 if (nr_pages > 0)
1383 *lru_size += nr_pages;
08e552c6 1384}
544122e5 1385
19942822 1386/**
9d11ea9f 1387 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1388 * @memcg: the memory cgroup
19942822 1389 *
9d11ea9f 1390 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1391 * pages.
19942822 1392 */
c0ff4b85 1393static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1394{
3e32cb2e
JW
1395 unsigned long margin = 0;
1396 unsigned long count;
1397 unsigned long limit;
9d11ea9f 1398
3e32cb2e 1399 count = page_counter_read(&memcg->memory);
bbec2e15 1400 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1401 if (count < limit)
1402 margin = limit - count;
1403
7941d214 1404 if (do_memsw_account()) {
3e32cb2e 1405 count = page_counter_read(&memcg->memsw);
bbec2e15 1406 limit = READ_ONCE(memcg->memsw.max);
1c4448ed 1407 if (count < limit)
3e32cb2e 1408 margin = min(margin, limit - count);
cbedbac3
LR
1409 else
1410 margin = 0;
3e32cb2e
JW
1411 }
1412
1413 return margin;
19942822
JW
1414}
1415
32047e2a 1416/*
bdcbb659 1417 * A routine for checking "mem" is under move_account() or not.
32047e2a 1418 *
bdcbb659
QH
1419 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1420 * moving cgroups. This is for waiting at high-memory pressure
1421 * caused by "move".
32047e2a 1422 */
c0ff4b85 1423static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1424{
2bd9bb20
KH
1425 struct mem_cgroup *from;
1426 struct mem_cgroup *to;
4b534334 1427 bool ret = false;
2bd9bb20
KH
1428 /*
1429 * Unlike task_move routines, we access mc.to, mc.from not under
1430 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1431 */
1432 spin_lock(&mc.lock);
1433 from = mc.from;
1434 to = mc.to;
1435 if (!from)
1436 goto unlock;
3e92041d 1437
2314b42d
JW
1438 ret = mem_cgroup_is_descendant(from, memcg) ||
1439 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1440unlock:
1441 spin_unlock(&mc.lock);
4b534334
KH
1442 return ret;
1443}
1444
c0ff4b85 1445static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1446{
1447 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1448 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1449 DEFINE_WAIT(wait);
1450 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1451 /* moving charge context might have finished. */
1452 if (mc.moving_task)
1453 schedule();
1454 finish_wait(&mc.waitq, &wait);
1455 return true;
1456 }
1457 }
1458 return false;
1459}
1460
c8713d0b
JW
1461static char *memory_stat_format(struct mem_cgroup *memcg)
1462{
1463 struct seq_buf s;
1464 int i;
71cd3113 1465
c8713d0b
JW
1466 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1467 if (!s.buffer)
1468 return NULL;
1469
1470 /*
1471 * Provide statistics on the state of the memory subsystem as
1472 * well as cumulative event counters that show past behavior.
1473 *
1474 * This list is ordered following a combination of these gradients:
1475 * 1) generic big picture -> specifics and details
1476 * 2) reflecting userspace activity -> reflecting kernel heuristics
1477 *
1478 * Current memory state:
1479 */
1480
1481 seq_buf_printf(&s, "anon %llu\n",
be5d0a74 1482 (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
c8713d0b
JW
1483 PAGE_SIZE);
1484 seq_buf_printf(&s, "file %llu\n",
0d1c2072 1485 (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
c8713d0b
JW
1486 PAGE_SIZE);
1487 seq_buf_printf(&s, "kernel_stack %llu\n",
991e7673 1488 (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
c8713d0b
JW
1489 1024);
1490 seq_buf_printf(&s, "slab %llu\n",
d42f3245
RG
1491 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1492 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
c8713d0b
JW
1493 seq_buf_printf(&s, "sock %llu\n",
1494 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1495 PAGE_SIZE);
1496
1497 seq_buf_printf(&s, "shmem %llu\n",
1498 (u64)memcg_page_state(memcg, NR_SHMEM) *
1499 PAGE_SIZE);
1500 seq_buf_printf(&s, "file_mapped %llu\n",
1501 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1502 PAGE_SIZE);
1503 seq_buf_printf(&s, "file_dirty %llu\n",
1504 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1505 PAGE_SIZE);
1506 seq_buf_printf(&s, "file_writeback %llu\n",
1507 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1508 PAGE_SIZE);
1509
468c3982 1510#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 1511 seq_buf_printf(&s, "anon_thp %llu\n",
468c3982
JW
1512 (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1513 HPAGE_PMD_SIZE);
1514#endif
c8713d0b
JW
1515
1516 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 1517 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
c8713d0b
JW
1518 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1519 PAGE_SIZE);
1520
1521 seq_buf_printf(&s, "slab_reclaimable %llu\n",
d42f3245 1522 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
c8713d0b 1523 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
d42f3245 1524 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
c8713d0b
JW
1525
1526 /* Accumulated memory events */
1527
ebc5d83d
KK
1528 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1529 memcg_events(memcg, PGFAULT));
1530 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1531 memcg_events(memcg, PGMAJFAULT));
c8713d0b
JW
1532
1533 seq_buf_printf(&s, "workingset_refault %lu\n",
1534 memcg_page_state(memcg, WORKINGSET_REFAULT));
1535 seq_buf_printf(&s, "workingset_activate %lu\n",
1536 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
a6f5576b
YS
1537 seq_buf_printf(&s, "workingset_restore %lu\n",
1538 memcg_page_state(memcg, WORKINGSET_RESTORE));
c8713d0b
JW
1539 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1540 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1541
ebc5d83d
KK
1542 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1543 memcg_events(memcg, PGREFILL));
c8713d0b
JW
1544 seq_buf_printf(&s, "pgscan %lu\n",
1545 memcg_events(memcg, PGSCAN_KSWAPD) +
1546 memcg_events(memcg, PGSCAN_DIRECT));
1547 seq_buf_printf(&s, "pgsteal %lu\n",
1548 memcg_events(memcg, PGSTEAL_KSWAPD) +
1549 memcg_events(memcg, PGSTEAL_DIRECT));
ebc5d83d
KK
1550 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1551 memcg_events(memcg, PGACTIVATE));
1552 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1553 memcg_events(memcg, PGDEACTIVATE));
1554 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1555 memcg_events(memcg, PGLAZYFREE));
1556 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1557 memcg_events(memcg, PGLAZYFREED));
c8713d0b
JW
1558
1559#ifdef CONFIG_TRANSPARENT_HUGEPAGE
ebc5d83d 1560 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
c8713d0b 1561 memcg_events(memcg, THP_FAULT_ALLOC));
ebc5d83d 1562 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
c8713d0b
JW
1563 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1564#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1565
1566 /* The above should easily fit into one page */
1567 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1568
1569 return s.buffer;
1570}
71cd3113 1571
58cf188e 1572#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1573/**
f0c867d9 1574 * mem_cgroup_print_oom_context: Print OOM information relevant to
1575 * memory controller.
e222432b
BS
1576 * @memcg: The memory cgroup that went over limit
1577 * @p: Task that is going to be killed
1578 *
1579 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1580 * enabled
1581 */
f0c867d9 1582void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
e222432b 1583{
e222432b
BS
1584 rcu_read_lock();
1585
f0c867d9 1586 if (memcg) {
1587 pr_cont(",oom_memcg=");
1588 pr_cont_cgroup_path(memcg->css.cgroup);
1589 } else
1590 pr_cont(",global_oom");
2415b9f5 1591 if (p) {
f0c867d9 1592 pr_cont(",task_memcg=");
2415b9f5 1593 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
2415b9f5 1594 }
e222432b 1595 rcu_read_unlock();
f0c867d9 1596}
1597
1598/**
1599 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1600 * memory controller.
1601 * @memcg: The memory cgroup that went over limit
1602 */
1603void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1604{
c8713d0b 1605 char *buf;
e222432b 1606
3e32cb2e
JW
1607 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1608 K((u64)page_counter_read(&memcg->memory)),
15b42562 1609 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
c8713d0b
JW
1610 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1611 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1612 K((u64)page_counter_read(&memcg->swap)),
32d087cd 1613 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
c8713d0b
JW
1614 else {
1615 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1616 K((u64)page_counter_read(&memcg->memsw)),
1617 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1618 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1619 K((u64)page_counter_read(&memcg->kmem)),
1620 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e 1621 }
c8713d0b
JW
1622
1623 pr_info("Memory cgroup stats for ");
1624 pr_cont_cgroup_path(memcg->css.cgroup);
1625 pr_cont(":");
1626 buf = memory_stat_format(memcg);
1627 if (!buf)
1628 return;
1629 pr_info("%s", buf);
1630 kfree(buf);
e222432b
BS
1631}
1632
a63d83f4
DR
1633/*
1634 * Return the memory (and swap, if configured) limit for a memcg.
1635 */
bbec2e15 1636unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1637{
bbec2e15 1638 unsigned long max;
f3e8eb70 1639
15b42562 1640 max = READ_ONCE(memcg->memory.max);
9a5a8f19 1641 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1642 unsigned long memsw_max;
1643 unsigned long swap_max;
9a5a8f19 1644
bbec2e15 1645 memsw_max = memcg->memsw.max;
32d087cd 1646 swap_max = READ_ONCE(memcg->swap.max);
bbec2e15
RG
1647 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1648 max = min(max + swap_max, memsw_max);
9a5a8f19 1649 }
bbec2e15 1650 return max;
a63d83f4
DR
1651}
1652
9783aa99
CD
1653unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1654{
1655 return page_counter_read(&memcg->memory);
1656}
1657
b6e6edcf 1658static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1659 int order)
9cbb78bb 1660{
6e0fc46d
DR
1661 struct oom_control oc = {
1662 .zonelist = NULL,
1663 .nodemask = NULL,
2a966b77 1664 .memcg = memcg,
6e0fc46d
DR
1665 .gfp_mask = gfp_mask,
1666 .order = order,
6e0fc46d 1667 };
7c5f64f8 1668 bool ret;
9cbb78bb 1669
7775face
TH
1670 if (mutex_lock_killable(&oom_lock))
1671 return true;
1672 /*
1673 * A few threads which were not waiting at mutex_lock_killable() can
1674 * fail to bail out. Therefore, check again after holding oom_lock.
1675 */
1676 ret = should_force_charge() || out_of_memory(&oc);
dc56401f 1677 mutex_unlock(&oom_lock);
7c5f64f8 1678 return ret;
9cbb78bb
DR
1679}
1680
0608f43d 1681static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1682 pg_data_t *pgdat,
0608f43d
AM
1683 gfp_t gfp_mask,
1684 unsigned long *total_scanned)
1685{
1686 struct mem_cgroup *victim = NULL;
1687 int total = 0;
1688 int loop = 0;
1689 unsigned long excess;
1690 unsigned long nr_scanned;
1691 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1692 .pgdat = pgdat,
0608f43d
AM
1693 };
1694
3e32cb2e 1695 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1696
1697 while (1) {
1698 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1699 if (!victim) {
1700 loop++;
1701 if (loop >= 2) {
1702 /*
1703 * If we have not been able to reclaim
1704 * anything, it might because there are
1705 * no reclaimable pages under this hierarchy
1706 */
1707 if (!total)
1708 break;
1709 /*
1710 * We want to do more targeted reclaim.
1711 * excess >> 2 is not to excessive so as to
1712 * reclaim too much, nor too less that we keep
1713 * coming back to reclaim from this cgroup
1714 */
1715 if (total >= (excess >> 2) ||
1716 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1717 break;
1718 }
1719 continue;
1720 }
a9dd0a83 1721 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1722 pgdat, &nr_scanned);
0608f43d 1723 *total_scanned += nr_scanned;
3e32cb2e 1724 if (!soft_limit_excess(root_memcg))
0608f43d 1725 break;
6d61ef40 1726 }
0608f43d
AM
1727 mem_cgroup_iter_break(root_memcg, victim);
1728 return total;
6d61ef40
BS
1729}
1730
0056f4e6
JW
1731#ifdef CONFIG_LOCKDEP
1732static struct lockdep_map memcg_oom_lock_dep_map = {
1733 .name = "memcg_oom_lock",
1734};
1735#endif
1736
fb2a6fc5
JW
1737static DEFINE_SPINLOCK(memcg_oom_lock);
1738
867578cb
KH
1739/*
1740 * Check OOM-Killer is already running under our hierarchy.
1741 * If someone is running, return false.
1742 */
fb2a6fc5 1743static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1744{
79dfdacc 1745 struct mem_cgroup *iter, *failed = NULL;
a636b327 1746
fb2a6fc5
JW
1747 spin_lock(&memcg_oom_lock);
1748
9f3a0d09 1749 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1750 if (iter->oom_lock) {
79dfdacc
MH
1751 /*
1752 * this subtree of our hierarchy is already locked
1753 * so we cannot give a lock.
1754 */
79dfdacc 1755 failed = iter;
9f3a0d09
JW
1756 mem_cgroup_iter_break(memcg, iter);
1757 break;
23751be0
JW
1758 } else
1759 iter->oom_lock = true;
7d74b06f 1760 }
867578cb 1761
fb2a6fc5
JW
1762 if (failed) {
1763 /*
1764 * OK, we failed to lock the whole subtree so we have
1765 * to clean up what we set up to the failing subtree
1766 */
1767 for_each_mem_cgroup_tree(iter, memcg) {
1768 if (iter == failed) {
1769 mem_cgroup_iter_break(memcg, iter);
1770 break;
1771 }
1772 iter->oom_lock = false;
79dfdacc 1773 }
0056f4e6
JW
1774 } else
1775 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1776
1777 spin_unlock(&memcg_oom_lock);
1778
1779 return !failed;
a636b327 1780}
0b7f569e 1781
fb2a6fc5 1782static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1783{
7d74b06f
KH
1784 struct mem_cgroup *iter;
1785
fb2a6fc5 1786 spin_lock(&memcg_oom_lock);
5facae4f 1787 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
c0ff4b85 1788 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1789 iter->oom_lock = false;
fb2a6fc5 1790 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1791}
1792
c0ff4b85 1793static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1794{
1795 struct mem_cgroup *iter;
1796
c2b42d3c 1797 spin_lock(&memcg_oom_lock);
c0ff4b85 1798 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1799 iter->under_oom++;
1800 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1801}
1802
c0ff4b85 1803static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1804{
1805 struct mem_cgroup *iter;
1806
867578cb
KH
1807 /*
1808 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1809 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1810 */
c2b42d3c 1811 spin_lock(&memcg_oom_lock);
c0ff4b85 1812 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1813 if (iter->under_oom > 0)
1814 iter->under_oom--;
1815 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1816}
1817
867578cb
KH
1818static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1819
dc98df5a 1820struct oom_wait_info {
d79154bb 1821 struct mem_cgroup *memcg;
ac6424b9 1822 wait_queue_entry_t wait;
dc98df5a
KH
1823};
1824
ac6424b9 1825static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1826 unsigned mode, int sync, void *arg)
1827{
d79154bb
HD
1828 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1829 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1830 struct oom_wait_info *oom_wait_info;
1831
1832 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1833 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1834
2314b42d
JW
1835 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1836 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1837 return 0;
dc98df5a
KH
1838 return autoremove_wake_function(wait, mode, sync, arg);
1839}
1840
c0ff4b85 1841static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1842{
c2b42d3c
TH
1843 /*
1844 * For the following lockless ->under_oom test, the only required
1845 * guarantee is that it must see the state asserted by an OOM when
1846 * this function is called as a result of userland actions
1847 * triggered by the notification of the OOM. This is trivially
1848 * achieved by invoking mem_cgroup_mark_under_oom() before
1849 * triggering notification.
1850 */
1851 if (memcg && memcg->under_oom)
f4b90b70 1852 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1853}
1854
29ef680a
MH
1855enum oom_status {
1856 OOM_SUCCESS,
1857 OOM_FAILED,
1858 OOM_ASYNC,
1859 OOM_SKIPPED
1860};
1861
1862static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1863{
7056d3a3
MH
1864 enum oom_status ret;
1865 bool locked;
1866
29ef680a
MH
1867 if (order > PAGE_ALLOC_COSTLY_ORDER)
1868 return OOM_SKIPPED;
1869
7a1adfdd
RG
1870 memcg_memory_event(memcg, MEMCG_OOM);
1871
867578cb 1872 /*
49426420
JW
1873 * We are in the middle of the charge context here, so we
1874 * don't want to block when potentially sitting on a callstack
1875 * that holds all kinds of filesystem and mm locks.
1876 *
29ef680a
MH
1877 * cgroup1 allows disabling the OOM killer and waiting for outside
1878 * handling until the charge can succeed; remember the context and put
1879 * the task to sleep at the end of the page fault when all locks are
1880 * released.
49426420 1881 *
29ef680a
MH
1882 * On the other hand, in-kernel OOM killer allows for an async victim
1883 * memory reclaim (oom_reaper) and that means that we are not solely
1884 * relying on the oom victim to make a forward progress and we can
1885 * invoke the oom killer here.
1886 *
1887 * Please note that mem_cgroup_out_of_memory might fail to find a
1888 * victim and then we have to bail out from the charge path.
867578cb 1889 */
29ef680a
MH
1890 if (memcg->oom_kill_disable) {
1891 if (!current->in_user_fault)
1892 return OOM_SKIPPED;
1893 css_get(&memcg->css);
1894 current->memcg_in_oom = memcg;
1895 current->memcg_oom_gfp_mask = mask;
1896 current->memcg_oom_order = order;
1897
1898 return OOM_ASYNC;
1899 }
1900
7056d3a3
MH
1901 mem_cgroup_mark_under_oom(memcg);
1902
1903 locked = mem_cgroup_oom_trylock(memcg);
1904
1905 if (locked)
1906 mem_cgroup_oom_notify(memcg);
1907
1908 mem_cgroup_unmark_under_oom(memcg);
29ef680a 1909 if (mem_cgroup_out_of_memory(memcg, mask, order))
7056d3a3
MH
1910 ret = OOM_SUCCESS;
1911 else
1912 ret = OOM_FAILED;
1913
1914 if (locked)
1915 mem_cgroup_oom_unlock(memcg);
29ef680a 1916
7056d3a3 1917 return ret;
3812c8c8
JW
1918}
1919
1920/**
1921 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1922 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1923 *
49426420
JW
1924 * This has to be called at the end of a page fault if the memcg OOM
1925 * handler was enabled.
3812c8c8 1926 *
49426420 1927 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1928 * sleep on a waitqueue until the userspace task resolves the
1929 * situation. Sleeping directly in the charge context with all kinds
1930 * of locks held is not a good idea, instead we remember an OOM state
1931 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1932 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1933 *
1934 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1935 * completed, %false otherwise.
3812c8c8 1936 */
49426420 1937bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1938{
626ebc41 1939 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1940 struct oom_wait_info owait;
49426420 1941 bool locked;
3812c8c8
JW
1942
1943 /* OOM is global, do not handle */
3812c8c8 1944 if (!memcg)
49426420 1945 return false;
3812c8c8 1946
7c5f64f8 1947 if (!handle)
49426420 1948 goto cleanup;
3812c8c8
JW
1949
1950 owait.memcg = memcg;
1951 owait.wait.flags = 0;
1952 owait.wait.func = memcg_oom_wake_function;
1953 owait.wait.private = current;
2055da97 1954 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1955
3812c8c8 1956 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1957 mem_cgroup_mark_under_oom(memcg);
1958
1959 locked = mem_cgroup_oom_trylock(memcg);
1960
1961 if (locked)
1962 mem_cgroup_oom_notify(memcg);
1963
1964 if (locked && !memcg->oom_kill_disable) {
1965 mem_cgroup_unmark_under_oom(memcg);
1966 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1967 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1968 current->memcg_oom_order);
49426420 1969 } else {
3812c8c8 1970 schedule();
49426420
JW
1971 mem_cgroup_unmark_under_oom(memcg);
1972 finish_wait(&memcg_oom_waitq, &owait.wait);
1973 }
1974
1975 if (locked) {
fb2a6fc5
JW
1976 mem_cgroup_oom_unlock(memcg);
1977 /*
1978 * There is no guarantee that an OOM-lock contender
1979 * sees the wakeups triggered by the OOM kill
1980 * uncharges. Wake any sleepers explicitely.
1981 */
1982 memcg_oom_recover(memcg);
1983 }
49426420 1984cleanup:
626ebc41 1985 current->memcg_in_oom = NULL;
3812c8c8 1986 css_put(&memcg->css);
867578cb 1987 return true;
0b7f569e
KH
1988}
1989
3d8b38eb
RG
1990/**
1991 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1992 * @victim: task to be killed by the OOM killer
1993 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1994 *
1995 * Returns a pointer to a memory cgroup, which has to be cleaned up
1996 * by killing all belonging OOM-killable tasks.
1997 *
1998 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1999 */
2000struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2001 struct mem_cgroup *oom_domain)
2002{
2003 struct mem_cgroup *oom_group = NULL;
2004 struct mem_cgroup *memcg;
2005
2006 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2007 return NULL;
2008
2009 if (!oom_domain)
2010 oom_domain = root_mem_cgroup;
2011
2012 rcu_read_lock();
2013
2014 memcg = mem_cgroup_from_task(victim);
2015 if (memcg == root_mem_cgroup)
2016 goto out;
2017
48fe267c
RG
2018 /*
2019 * If the victim task has been asynchronously moved to a different
2020 * memory cgroup, we might end up killing tasks outside oom_domain.
2021 * In this case it's better to ignore memory.group.oom.
2022 */
2023 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2024 goto out;
2025
3d8b38eb
RG
2026 /*
2027 * Traverse the memory cgroup hierarchy from the victim task's
2028 * cgroup up to the OOMing cgroup (or root) to find the
2029 * highest-level memory cgroup with oom.group set.
2030 */
2031 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2032 if (memcg->oom_group)
2033 oom_group = memcg;
2034
2035 if (memcg == oom_domain)
2036 break;
2037 }
2038
2039 if (oom_group)
2040 css_get(&oom_group->css);
2041out:
2042 rcu_read_unlock();
2043
2044 return oom_group;
2045}
2046
2047void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2048{
2049 pr_info("Tasks in ");
2050 pr_cont_cgroup_path(memcg->css.cgroup);
2051 pr_cont(" are going to be killed due to memory.oom.group set\n");
2052}
2053
d7365e78 2054/**
81f8c3a4
JW
2055 * lock_page_memcg - lock a page->mem_cgroup binding
2056 * @page: the page
32047e2a 2057 *
81f8c3a4 2058 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
2059 * another cgroup.
2060 *
2061 * It ensures lifetime of the returned memcg. Caller is responsible
2062 * for the lifetime of the page; __unlock_page_memcg() is available
2063 * when @page might get freed inside the locked section.
d69b042f 2064 */
739f79fc 2065struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5 2066{
9da7b521 2067 struct page *head = compound_head(page); /* rmap on tail pages */
89c06bd5 2068 struct mem_cgroup *memcg;
6de22619 2069 unsigned long flags;
89c06bd5 2070
6de22619
JW
2071 /*
2072 * The RCU lock is held throughout the transaction. The fast
2073 * path can get away without acquiring the memcg->move_lock
2074 * because page moving starts with an RCU grace period.
739f79fc
JW
2075 *
2076 * The RCU lock also protects the memcg from being freed when
2077 * the page state that is going to change is the only thing
2078 * preventing the page itself from being freed. E.g. writeback
2079 * doesn't hold a page reference and relies on PG_writeback to
2080 * keep off truncation, migration and so forth.
2081 */
d7365e78
JW
2082 rcu_read_lock();
2083
2084 if (mem_cgroup_disabled())
739f79fc 2085 return NULL;
89c06bd5 2086again:
9da7b521 2087 memcg = head->mem_cgroup;
29833315 2088 if (unlikely(!memcg))
739f79fc 2089 return NULL;
d7365e78 2090
bdcbb659 2091 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 2092 return memcg;
89c06bd5 2093
6de22619 2094 spin_lock_irqsave(&memcg->move_lock, flags);
9da7b521 2095 if (memcg != head->mem_cgroup) {
6de22619 2096 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2097 goto again;
2098 }
6de22619
JW
2099
2100 /*
2101 * When charge migration first begins, we can have locked and
2102 * unlocked page stat updates happening concurrently. Track
81f8c3a4 2103 * the task who has the lock for unlock_page_memcg().
6de22619
JW
2104 */
2105 memcg->move_lock_task = current;
2106 memcg->move_lock_flags = flags;
d7365e78 2107
739f79fc 2108 return memcg;
89c06bd5 2109}
81f8c3a4 2110EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 2111
d7365e78 2112/**
739f79fc
JW
2113 * __unlock_page_memcg - unlock and unpin a memcg
2114 * @memcg: the memcg
2115 *
2116 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 2117 */
739f79fc 2118void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 2119{
6de22619
JW
2120 if (memcg && memcg->move_lock_task == current) {
2121 unsigned long flags = memcg->move_lock_flags;
2122
2123 memcg->move_lock_task = NULL;
2124 memcg->move_lock_flags = 0;
2125
2126 spin_unlock_irqrestore(&memcg->move_lock, flags);
2127 }
89c06bd5 2128
d7365e78 2129 rcu_read_unlock();
89c06bd5 2130}
739f79fc
JW
2131
2132/**
2133 * unlock_page_memcg - unlock a page->mem_cgroup binding
2134 * @page: the page
2135 */
2136void unlock_page_memcg(struct page *page)
2137{
9da7b521
JW
2138 struct page *head = compound_head(page);
2139
2140 __unlock_page_memcg(head->mem_cgroup);
739f79fc 2141}
81f8c3a4 2142EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 2143
cdec2e42
KH
2144struct memcg_stock_pcp {
2145 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2146 unsigned int nr_pages;
bf4f0599
RG
2147
2148#ifdef CONFIG_MEMCG_KMEM
2149 struct obj_cgroup *cached_objcg;
2150 unsigned int nr_bytes;
2151#endif
2152
cdec2e42 2153 struct work_struct work;
26fe6168 2154 unsigned long flags;
a0db00fc 2155#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2156};
2157static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2158static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2159
bf4f0599
RG
2160#ifdef CONFIG_MEMCG_KMEM
2161static void drain_obj_stock(struct memcg_stock_pcp *stock);
2162static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2163 struct mem_cgroup *root_memcg);
2164
2165#else
2166static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2167{
2168}
2169static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2170 struct mem_cgroup *root_memcg)
2171{
2172 return false;
2173}
2174#endif
2175
a0956d54
SS
2176/**
2177 * consume_stock: Try to consume stocked charge on this cpu.
2178 * @memcg: memcg to consume from.
2179 * @nr_pages: how many pages to charge.
2180 *
2181 * The charges will only happen if @memcg matches the current cpu's memcg
2182 * stock, and at least @nr_pages are available in that stock. Failure to
2183 * service an allocation will refill the stock.
2184 *
2185 * returns true if successful, false otherwise.
cdec2e42 2186 */
a0956d54 2187static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2188{
2189 struct memcg_stock_pcp *stock;
db2ba40c 2190 unsigned long flags;
3e32cb2e 2191 bool ret = false;
cdec2e42 2192
a983b5eb 2193 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 2194 return ret;
a0956d54 2195
db2ba40c
JW
2196 local_irq_save(flags);
2197
2198 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 2199 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2200 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2201 ret = true;
2202 }
db2ba40c
JW
2203
2204 local_irq_restore(flags);
2205
cdec2e42
KH
2206 return ret;
2207}
2208
2209/*
3e32cb2e 2210 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2211 */
2212static void drain_stock(struct memcg_stock_pcp *stock)
2213{
2214 struct mem_cgroup *old = stock->cached;
2215
1a3e1f40
JW
2216 if (!old)
2217 return;
2218
11c9ea4e 2219 if (stock->nr_pages) {
3e32cb2e 2220 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 2221 if (do_memsw_account())
3e32cb2e 2222 page_counter_uncharge(&old->memsw, stock->nr_pages);
11c9ea4e 2223 stock->nr_pages = 0;
cdec2e42 2224 }
1a3e1f40
JW
2225
2226 css_put(&old->css);
cdec2e42 2227 stock->cached = NULL;
cdec2e42
KH
2228}
2229
cdec2e42
KH
2230static void drain_local_stock(struct work_struct *dummy)
2231{
db2ba40c
JW
2232 struct memcg_stock_pcp *stock;
2233 unsigned long flags;
2234
72f0184c
MH
2235 /*
2236 * The only protection from memory hotplug vs. drain_stock races is
2237 * that we always operate on local CPU stock here with IRQ disabled
2238 */
db2ba40c
JW
2239 local_irq_save(flags);
2240
2241 stock = this_cpu_ptr(&memcg_stock);
bf4f0599 2242 drain_obj_stock(stock);
cdec2e42 2243 drain_stock(stock);
26fe6168 2244 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
2245
2246 local_irq_restore(flags);
cdec2e42
KH
2247}
2248
2249/*
3e32cb2e 2250 * Cache charges(val) to local per_cpu area.
320cc51d 2251 * This will be consumed by consume_stock() function, later.
cdec2e42 2252 */
c0ff4b85 2253static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 2254{
db2ba40c
JW
2255 struct memcg_stock_pcp *stock;
2256 unsigned long flags;
2257
2258 local_irq_save(flags);
cdec2e42 2259
db2ba40c 2260 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 2261 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2262 drain_stock(stock);
1a3e1f40 2263 css_get(&memcg->css);
c0ff4b85 2264 stock->cached = memcg;
cdec2e42 2265 }
11c9ea4e 2266 stock->nr_pages += nr_pages;
db2ba40c 2267
a983b5eb 2268 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
2269 drain_stock(stock);
2270
db2ba40c 2271 local_irq_restore(flags);
cdec2e42
KH
2272}
2273
2274/*
c0ff4b85 2275 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2276 * of the hierarchy under it.
cdec2e42 2277 */
6d3d6aa2 2278static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2279{
26fe6168 2280 int cpu, curcpu;
d38144b7 2281
6d3d6aa2
JW
2282 /* If someone's already draining, avoid adding running more workers. */
2283 if (!mutex_trylock(&percpu_charge_mutex))
2284 return;
72f0184c
MH
2285 /*
2286 * Notify other cpus that system-wide "drain" is running
2287 * We do not care about races with the cpu hotplug because cpu down
2288 * as well as workers from this path always operate on the local
2289 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2290 */
5af12d0e 2291 curcpu = get_cpu();
cdec2e42
KH
2292 for_each_online_cpu(cpu) {
2293 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2294 struct mem_cgroup *memcg;
e1a366be 2295 bool flush = false;
26fe6168 2296
e1a366be 2297 rcu_read_lock();
c0ff4b85 2298 memcg = stock->cached;
e1a366be
RG
2299 if (memcg && stock->nr_pages &&
2300 mem_cgroup_is_descendant(memcg, root_memcg))
2301 flush = true;
bf4f0599
RG
2302 if (obj_stock_flush_required(stock, root_memcg))
2303 flush = true;
e1a366be
RG
2304 rcu_read_unlock();
2305
2306 if (flush &&
2307 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
d1a05b69
MH
2308 if (cpu == curcpu)
2309 drain_local_stock(&stock->work);
2310 else
2311 schedule_work_on(cpu, &stock->work);
2312 }
cdec2e42 2313 }
5af12d0e 2314 put_cpu();
9f50fad6 2315 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2316}
2317
308167fc 2318static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2319{
cdec2e42 2320 struct memcg_stock_pcp *stock;
42a30035 2321 struct mem_cgroup *memcg, *mi;
cdec2e42 2322
cdec2e42
KH
2323 stock = &per_cpu(memcg_stock, cpu);
2324 drain_stock(stock);
a983b5eb
JW
2325
2326 for_each_mem_cgroup(memcg) {
2327 int i;
2328
2329 for (i = 0; i < MEMCG_NR_STAT; i++) {
2330 int nid;
2331 long x;
2332
871789d4 2333 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
815744d7 2334 if (x)
42a30035
JW
2335 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2336 atomic_long_add(x, &memcg->vmstats[i]);
a983b5eb
JW
2337
2338 if (i >= NR_VM_NODE_STAT_ITEMS)
2339 continue;
2340
2341 for_each_node(nid) {
2342 struct mem_cgroup_per_node *pn;
2343
2344 pn = mem_cgroup_nodeinfo(memcg, nid);
2345 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
815744d7 2346 if (x)
42a30035
JW
2347 do {
2348 atomic_long_add(x, &pn->lruvec_stat[i]);
2349 } while ((pn = parent_nodeinfo(pn, nid)));
a983b5eb
JW
2350 }
2351 }
2352
e27be240 2353 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2354 long x;
2355
871789d4 2356 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
815744d7 2357 if (x)
42a30035
JW
2358 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2359 atomic_long_add(x, &memcg->vmevents[i]);
a983b5eb
JW
2360 }
2361 }
2362
308167fc 2363 return 0;
cdec2e42
KH
2364}
2365
f7e1cb6e
JW
2366static void reclaim_high(struct mem_cgroup *memcg,
2367 unsigned int nr_pages,
2368 gfp_t gfp_mask)
2369{
2370 do {
d1663a90
JK
2371 if (page_counter_read(&memcg->memory) <=
2372 READ_ONCE(memcg->memory.high))
f7e1cb6e 2373 continue;
e27be240 2374 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e 2375 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
4bf17307
CD
2376 } while ((memcg = parent_mem_cgroup(memcg)) &&
2377 !mem_cgroup_is_root(memcg));
f7e1cb6e
JW
2378}
2379
2380static void high_work_func(struct work_struct *work)
2381{
2382 struct mem_cgroup *memcg;
2383
2384 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2385 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2386}
2387
0e4b01df
CD
2388/*
2389 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2390 * enough to still cause a significant slowdown in most cases, while still
2391 * allowing diagnostics and tracing to proceed without becoming stuck.
2392 */
2393#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2394
2395/*
2396 * When calculating the delay, we use these either side of the exponentiation to
2397 * maintain precision and scale to a reasonable number of jiffies (see the table
2398 * below.
2399 *
2400 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2401 * overage ratio to a delay.
2402 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2403 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2404 * to produce a reasonable delay curve.
2405 *
2406 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2407 * reasonable delay curve compared to precision-adjusted overage, not
2408 * penalising heavily at first, but still making sure that growth beyond the
2409 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2410 * example, with a high of 100 megabytes:
2411 *
2412 * +-------+------------------------+
2413 * | usage | time to allocate in ms |
2414 * +-------+------------------------+
2415 * | 100M | 0 |
2416 * | 101M | 6 |
2417 * | 102M | 25 |
2418 * | 103M | 57 |
2419 * | 104M | 102 |
2420 * | 105M | 159 |
2421 * | 106M | 230 |
2422 * | 107M | 313 |
2423 * | 108M | 409 |
2424 * | 109M | 518 |
2425 * | 110M | 639 |
2426 * | 111M | 774 |
2427 * | 112M | 921 |
2428 * | 113M | 1081 |
2429 * | 114M | 1254 |
2430 * | 115M | 1439 |
2431 * | 116M | 1638 |
2432 * | 117M | 1849 |
2433 * | 118M | 2000 |
2434 * | 119M | 2000 |
2435 * | 120M | 2000 |
2436 * +-------+------------------------+
2437 */
2438 #define MEMCG_DELAY_PRECISION_SHIFT 20
2439 #define MEMCG_DELAY_SCALING_SHIFT 14
2440
8a5dbc65 2441static u64 calculate_overage(unsigned long usage, unsigned long high)
b23afb93 2442{
8a5dbc65 2443 u64 overage;
b23afb93 2444
8a5dbc65
JK
2445 if (usage <= high)
2446 return 0;
e26733e0 2447
8a5dbc65
JK
2448 /*
2449 * Prevent division by 0 in overage calculation by acting as if
2450 * it was a threshold of 1 page
2451 */
2452 high = max(high, 1UL);
9b8b1754 2453
8a5dbc65
JK
2454 overage = usage - high;
2455 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2456 return div64_u64(overage, high);
2457}
e26733e0 2458
8a5dbc65
JK
2459static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2460{
2461 u64 overage, max_overage = 0;
e26733e0 2462
8a5dbc65
JK
2463 do {
2464 overage = calculate_overage(page_counter_read(&memcg->memory),
d1663a90 2465 READ_ONCE(memcg->memory.high));
8a5dbc65 2466 max_overage = max(overage, max_overage);
e26733e0
CD
2467 } while ((memcg = parent_mem_cgroup(memcg)) &&
2468 !mem_cgroup_is_root(memcg));
2469
8a5dbc65
JK
2470 return max_overage;
2471}
2472
4b82ab4f
JK
2473static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2474{
2475 u64 overage, max_overage = 0;
2476
2477 do {
2478 overage = calculate_overage(page_counter_read(&memcg->swap),
2479 READ_ONCE(memcg->swap.high));
2480 if (overage)
2481 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2482 max_overage = max(overage, max_overage);
2483 } while ((memcg = parent_mem_cgroup(memcg)) &&
2484 !mem_cgroup_is_root(memcg));
2485
2486 return max_overage;
2487}
2488
8a5dbc65
JK
2489/*
2490 * Get the number of jiffies that we should penalise a mischievous cgroup which
2491 * is exceeding its memory.high by checking both it and its ancestors.
2492 */
2493static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2494 unsigned int nr_pages,
2495 u64 max_overage)
2496{
2497 unsigned long penalty_jiffies;
2498
e26733e0
CD
2499 if (!max_overage)
2500 return 0;
0e4b01df
CD
2501
2502 /*
0e4b01df
CD
2503 * We use overage compared to memory.high to calculate the number of
2504 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2505 * fairly lenient on small overages, and increasingly harsh when the
2506 * memcg in question makes it clear that it has no intention of stopping
2507 * its crazy behaviour, so we exponentially increase the delay based on
2508 * overage amount.
2509 */
e26733e0
CD
2510 penalty_jiffies = max_overage * max_overage * HZ;
2511 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2512 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
0e4b01df
CD
2513
2514 /*
2515 * Factor in the task's own contribution to the overage, such that four
2516 * N-sized allocations are throttled approximately the same as one
2517 * 4N-sized allocation.
2518 *
2519 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2520 * larger the current charge patch is than that.
2521 */
ff144e69 2522 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
e26733e0
CD
2523}
2524
2525/*
2526 * Scheduled by try_charge() to be executed from the userland return path
2527 * and reclaims memory over the high limit.
2528 */
2529void mem_cgroup_handle_over_high(void)
2530{
2531 unsigned long penalty_jiffies;
2532 unsigned long pflags;
2533 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2534 struct mem_cgroup *memcg;
2535
2536 if (likely(!nr_pages))
2537 return;
2538
2539 memcg = get_mem_cgroup_from_mm(current->mm);
2540 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2541 current->memcg_nr_pages_over_high = 0;
2542
2543 /*
2544 * memory.high is breached and reclaim is unable to keep up. Throttle
2545 * allocators proactively to slow down excessive growth.
2546 */
8a5dbc65
JK
2547 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2548 mem_find_max_overage(memcg));
0e4b01df 2549
4b82ab4f
JK
2550 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2551 swap_find_max_overage(memcg));
2552
ff144e69
JK
2553 /*
2554 * Clamp the max delay per usermode return so as to still keep the
2555 * application moving forwards and also permit diagnostics, albeit
2556 * extremely slowly.
2557 */
2558 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2559
0e4b01df
CD
2560 /*
2561 * Don't sleep if the amount of jiffies this memcg owes us is so low
2562 * that it's not even worth doing, in an attempt to be nice to those who
2563 * go only a small amount over their memory.high value and maybe haven't
2564 * been aggressively reclaimed enough yet.
2565 */
2566 if (penalty_jiffies <= HZ / 100)
2567 goto out;
2568
2569 /*
2570 * If we exit early, we're guaranteed to die (since
2571 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2572 * need to account for any ill-begotten jiffies to pay them off later.
2573 */
2574 psi_memstall_enter(&pflags);
2575 schedule_timeout_killable(penalty_jiffies);
2576 psi_memstall_leave(&pflags);
2577
2578out:
2579 css_put(&memcg->css);
b23afb93
TH
2580}
2581
00501b53
JW
2582static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2583 unsigned int nr_pages)
8a9f3ccd 2584{
a983b5eb 2585 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2586 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2587 struct mem_cgroup *mem_over_limit;
3e32cb2e 2588 struct page_counter *counter;
6539cc05 2589 unsigned long nr_reclaimed;
b70a2a21
JW
2590 bool may_swap = true;
2591 bool drained = false;
29ef680a 2592 enum oom_status oom_status;
a636b327 2593
ce00a967 2594 if (mem_cgroup_is_root(memcg))
10d53c74 2595 return 0;
6539cc05 2596retry:
b6b6cc72 2597 if (consume_stock(memcg, nr_pages))
10d53c74 2598 return 0;
8a9f3ccd 2599
7941d214 2600 if (!do_memsw_account() ||
6071ca52
JW
2601 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2602 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2603 goto done_restock;
7941d214 2604 if (do_memsw_account())
3e32cb2e
JW
2605 page_counter_uncharge(&memcg->memsw, batch);
2606 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2607 } else {
3e32cb2e 2608 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2609 may_swap = false;
3fbe7244 2610 }
7a81b88c 2611
6539cc05
JW
2612 if (batch > nr_pages) {
2613 batch = nr_pages;
2614 goto retry;
2615 }
6d61ef40 2616
869712fd
JW
2617 /*
2618 * Memcg doesn't have a dedicated reserve for atomic
2619 * allocations. But like the global atomic pool, we need to
2620 * put the burden of reclaim on regular allocation requests
2621 * and let these go through as privileged allocations.
2622 */
2623 if (gfp_mask & __GFP_ATOMIC)
2624 goto force;
2625
06b078fc
JW
2626 /*
2627 * Unlike in global OOM situations, memcg is not in a physical
2628 * memory shortage. Allow dying and OOM-killed tasks to
2629 * bypass the last charges so that they can exit quickly and
2630 * free their memory.
2631 */
7775face 2632 if (unlikely(should_force_charge()))
10d53c74 2633 goto force;
06b078fc 2634
89a28483
JW
2635 /*
2636 * Prevent unbounded recursion when reclaim operations need to
2637 * allocate memory. This might exceed the limits temporarily,
2638 * but we prefer facilitating memory reclaim and getting back
2639 * under the limit over triggering OOM kills in these cases.
2640 */
2641 if (unlikely(current->flags & PF_MEMALLOC))
2642 goto force;
2643
06b078fc
JW
2644 if (unlikely(task_in_memcg_oom(current)))
2645 goto nomem;
2646
d0164adc 2647 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2648 goto nomem;
4b534334 2649
e27be240 2650 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2651
b70a2a21
JW
2652 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2653 gfp_mask, may_swap);
6539cc05 2654
61e02c74 2655 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2656 goto retry;
28c34c29 2657
b70a2a21 2658 if (!drained) {
6d3d6aa2 2659 drain_all_stock(mem_over_limit);
b70a2a21
JW
2660 drained = true;
2661 goto retry;
2662 }
2663
28c34c29
JW
2664 if (gfp_mask & __GFP_NORETRY)
2665 goto nomem;
6539cc05
JW
2666 /*
2667 * Even though the limit is exceeded at this point, reclaim
2668 * may have been able to free some pages. Retry the charge
2669 * before killing the task.
2670 *
2671 * Only for regular pages, though: huge pages are rather
2672 * unlikely to succeed so close to the limit, and we fall back
2673 * to regular pages anyway in case of failure.
2674 */
61e02c74 2675 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2676 goto retry;
2677 /*
2678 * At task move, charge accounts can be doubly counted. So, it's
2679 * better to wait until the end of task_move if something is going on.
2680 */
2681 if (mem_cgroup_wait_acct_move(mem_over_limit))
2682 goto retry;
2683
9b130619
JW
2684 if (nr_retries--)
2685 goto retry;
2686
38d38493 2687 if (gfp_mask & __GFP_RETRY_MAYFAIL)
29ef680a
MH
2688 goto nomem;
2689
06b078fc 2690 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2691 goto force;
06b078fc 2692
6539cc05 2693 if (fatal_signal_pending(current))
10d53c74 2694 goto force;
6539cc05 2695
29ef680a
MH
2696 /*
2697 * keep retrying as long as the memcg oom killer is able to make
2698 * a forward progress or bypass the charge if the oom killer
2699 * couldn't make any progress.
2700 */
2701 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2702 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2703 switch (oom_status) {
2704 case OOM_SUCCESS:
2705 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
29ef680a
MH
2706 goto retry;
2707 case OOM_FAILED:
2708 goto force;
2709 default:
2710 goto nomem;
2711 }
7a81b88c 2712nomem:
6d1fdc48 2713 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2714 return -ENOMEM;
10d53c74
TH
2715force:
2716 /*
2717 * The allocation either can't fail or will lead to more memory
2718 * being freed very soon. Allow memory usage go over the limit
2719 * temporarily by force charging it.
2720 */
2721 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2722 if (do_memsw_account())
10d53c74 2723 page_counter_charge(&memcg->memsw, nr_pages);
10d53c74
TH
2724
2725 return 0;
6539cc05
JW
2726
2727done_restock:
2728 if (batch > nr_pages)
2729 refill_stock(memcg, batch - nr_pages);
b23afb93 2730
241994ed 2731 /*
b23afb93
TH
2732 * If the hierarchy is above the normal consumption range, schedule
2733 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2734 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2735 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2736 * not recorded as it most likely matches current's and won't
2737 * change in the meantime. As high limit is checked again before
2738 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2739 */
2740 do {
4b82ab4f
JK
2741 bool mem_high, swap_high;
2742
2743 mem_high = page_counter_read(&memcg->memory) >
2744 READ_ONCE(memcg->memory.high);
2745 swap_high = page_counter_read(&memcg->swap) >
2746 READ_ONCE(memcg->swap.high);
2747
2748 /* Don't bother a random interrupted task */
2749 if (in_interrupt()) {
2750 if (mem_high) {
f7e1cb6e
JW
2751 schedule_work(&memcg->high_work);
2752 break;
2753 }
4b82ab4f
JK
2754 continue;
2755 }
2756
2757 if (mem_high || swap_high) {
2758 /*
2759 * The allocating tasks in this cgroup will need to do
2760 * reclaim or be throttled to prevent further growth
2761 * of the memory or swap footprints.
2762 *
2763 * Target some best-effort fairness between the tasks,
2764 * and distribute reclaim work and delay penalties
2765 * based on how much each task is actually allocating.
2766 */
9516a18a 2767 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2768 set_notify_resume(current);
2769 break;
2770 }
241994ed 2771 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2772
2773 return 0;
7a81b88c 2774}
8a9f3ccd 2775
f0e45fb4 2776#if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
00501b53 2777static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2778{
ce00a967
JW
2779 if (mem_cgroup_is_root(memcg))
2780 return;
2781
3e32cb2e 2782 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2783 if (do_memsw_account())
3e32cb2e 2784 page_counter_uncharge(&memcg->memsw, nr_pages);
d01dd17f 2785}
f0e45fb4 2786#endif
d01dd17f 2787
d9eb1ea2 2788static void commit_charge(struct page *page, struct mem_cgroup *memcg)
0a31bc97 2789{
1306a85a 2790 VM_BUG_ON_PAGE(page->mem_cgroup, page);
0a31bc97 2791 /*
a0b5b414 2792 * Any of the following ensures page->mem_cgroup stability:
0a31bc97 2793 *
a0b5b414
JW
2794 * - the page lock
2795 * - LRU isolation
2796 * - lock_page_memcg()
2797 * - exclusive reference
0a31bc97 2798 */
1306a85a 2799 page->mem_cgroup = memcg;
7a81b88c 2800}
66e1707b 2801
84c07d11 2802#ifdef CONFIG_MEMCG_KMEM
10befea9
RG
2803int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2804 gfp_t gfp)
2805{
2806 unsigned int objects = objs_per_slab_page(s, page);
2807 void *vec;
2808
2809 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2810 page_to_nid(page));
2811 if (!vec)
2812 return -ENOMEM;
2813
2814 if (cmpxchg(&page->obj_cgroups, NULL,
2815 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2816 kfree(vec);
2817 else
2818 kmemleak_not_leak(vec);
2819
2820 return 0;
2821}
2822
8380ce47
RG
2823/*
2824 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2825 *
2826 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2827 * cgroup_mutex, etc.
2828 */
2829struct mem_cgroup *mem_cgroup_from_obj(void *p)
2830{
2831 struct page *page;
2832
2833 if (mem_cgroup_disabled())
2834 return NULL;
2835
2836 page = virt_to_head_page(p);
2837
2838 /*
9855609b
RG
2839 * Slab objects are accounted individually, not per-page.
2840 * Memcg membership data for each individual object is saved in
2841 * the page->obj_cgroups.
8380ce47 2842 */
9855609b
RG
2843 if (page_has_obj_cgroups(page)) {
2844 struct obj_cgroup *objcg;
2845 unsigned int off;
2846
2847 off = obj_to_index(page->slab_cache, page, p);
2848 objcg = page_obj_cgroups(page)[off];
10befea9
RG
2849 if (objcg)
2850 return obj_cgroup_memcg(objcg);
2851
2852 return NULL;
9855609b 2853 }
8380ce47
RG
2854
2855 /* All other pages use page->mem_cgroup */
2856 return page->mem_cgroup;
2857}
2858
bf4f0599
RG
2859__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2860{
2861 struct obj_cgroup *objcg = NULL;
2862 struct mem_cgroup *memcg;
2863
2864 if (unlikely(!current->mm && !current->active_memcg))
2865 return NULL;
2866
2867 rcu_read_lock();
2868 if (unlikely(current->active_memcg))
2869 memcg = rcu_dereference(current->active_memcg);
2870 else
2871 memcg = mem_cgroup_from_task(current);
2872
2873 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2874 objcg = rcu_dereference(memcg->objcg);
2875 if (objcg && obj_cgroup_tryget(objcg))
2876 break;
2877 }
2878 rcu_read_unlock();
2879
2880 return objcg;
2881}
2882
f3bb3043 2883static int memcg_alloc_cache_id(void)
55007d84 2884{
f3bb3043
VD
2885 int id, size;
2886 int err;
2887
dbcf73e2 2888 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2889 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2890 if (id < 0)
2891 return id;
55007d84 2892
dbcf73e2 2893 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2894 return id;
2895
2896 /*
2897 * There's no space for the new id in memcg_caches arrays,
2898 * so we have to grow them.
2899 */
05257a1a 2900 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2901
2902 size = 2 * (id + 1);
55007d84
GC
2903 if (size < MEMCG_CACHES_MIN_SIZE)
2904 size = MEMCG_CACHES_MIN_SIZE;
2905 else if (size > MEMCG_CACHES_MAX_SIZE)
2906 size = MEMCG_CACHES_MAX_SIZE;
2907
9855609b 2908 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2909 if (!err)
2910 memcg_nr_cache_ids = size;
2911
2912 up_write(&memcg_cache_ids_sem);
2913
f3bb3043 2914 if (err) {
dbcf73e2 2915 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2916 return err;
2917 }
2918 return id;
2919}
2920
2921static void memcg_free_cache_id(int id)
2922{
dbcf73e2 2923 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2924}
2925
45264778 2926/**
4b13f64d 2927 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
10eaec2f 2928 * @memcg: memory cgroup to charge
45264778 2929 * @gfp: reclaim mode
92d0510c 2930 * @nr_pages: number of pages to charge
45264778
VD
2931 *
2932 * Returns 0 on success, an error code on failure.
2933 */
4b13f64d
RG
2934int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2935 unsigned int nr_pages)
7ae1e1d0 2936{
f3ccb2c4 2937 struct page_counter *counter;
7ae1e1d0
GC
2938 int ret;
2939
f3ccb2c4 2940 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2941 if (ret)
f3ccb2c4 2942 return ret;
52c29b04
JW
2943
2944 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2945 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
e55d9d9b
MH
2946
2947 /*
2948 * Enforce __GFP_NOFAIL allocation because callers are not
2949 * prepared to see failures and likely do not have any failure
2950 * handling code.
2951 */
2952 if (gfp & __GFP_NOFAIL) {
2953 page_counter_charge(&memcg->kmem, nr_pages);
2954 return 0;
2955 }
52c29b04
JW
2956 cancel_charge(memcg, nr_pages);
2957 return -ENOMEM;
7ae1e1d0 2958 }
f3ccb2c4 2959 return 0;
7ae1e1d0
GC
2960}
2961
4b13f64d
RG
2962/**
2963 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2964 * @memcg: memcg to uncharge
2965 * @nr_pages: number of pages to uncharge
2966 */
2967void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2968{
2969 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2970 page_counter_uncharge(&memcg->kmem, nr_pages);
2971
2972 page_counter_uncharge(&memcg->memory, nr_pages);
2973 if (do_memsw_account())
2974 page_counter_uncharge(&memcg->memsw, nr_pages);
2975}
2976
45264778 2977/**
f4b00eab 2978 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
45264778
VD
2979 * @page: page to charge
2980 * @gfp: reclaim mode
2981 * @order: allocation order
2982 *
2983 * Returns 0 on success, an error code on failure.
2984 */
f4b00eab 2985int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2986{
f3ccb2c4 2987 struct mem_cgroup *memcg;
fcff7d7e 2988 int ret = 0;
7ae1e1d0 2989
60cd4bcd 2990 if (memcg_kmem_bypass())
45264778
VD
2991 return 0;
2992
d46eb14b 2993 memcg = get_mem_cgroup_from_current();
c4159a75 2994 if (!mem_cgroup_is_root(memcg)) {
4b13f64d 2995 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
4d96ba35
RG
2996 if (!ret) {
2997 page->mem_cgroup = memcg;
c4159a75 2998 __SetPageKmemcg(page);
1a3e1f40 2999 return 0;
4d96ba35 3000 }
c4159a75 3001 }
7ae1e1d0 3002 css_put(&memcg->css);
d05e83a6 3003 return ret;
7ae1e1d0 3004}
49a18eae 3005
45264778 3006/**
f4b00eab 3007 * __memcg_kmem_uncharge_page: uncharge a kmem page
45264778
VD
3008 * @page: page to uncharge
3009 * @order: allocation order
3010 */
f4b00eab 3011void __memcg_kmem_uncharge_page(struct page *page, int order)
7ae1e1d0 3012{
1306a85a 3013 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 3014 unsigned int nr_pages = 1 << order;
7ae1e1d0 3015
7ae1e1d0
GC
3016 if (!memcg)
3017 return;
3018
309381fe 3019 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
4b13f64d 3020 __memcg_kmem_uncharge(memcg, nr_pages);
1306a85a 3021 page->mem_cgroup = NULL;
1a3e1f40 3022 css_put(&memcg->css);
c4159a75
VD
3023
3024 /* slab pages do not have PageKmemcg flag set */
3025 if (PageKmemcg(page))
3026 __ClearPageKmemcg(page);
60d3fd32 3027}
bf4f0599
RG
3028
3029static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3030{
3031 struct memcg_stock_pcp *stock;
3032 unsigned long flags;
3033 bool ret = false;
3034
3035 local_irq_save(flags);
3036
3037 stock = this_cpu_ptr(&memcg_stock);
3038 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3039 stock->nr_bytes -= nr_bytes;
3040 ret = true;
3041 }
3042
3043 local_irq_restore(flags);
3044
3045 return ret;
3046}
3047
3048static void drain_obj_stock(struct memcg_stock_pcp *stock)
3049{
3050 struct obj_cgroup *old = stock->cached_objcg;
3051
3052 if (!old)
3053 return;
3054
3055 if (stock->nr_bytes) {
3056 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3057 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3058
3059 if (nr_pages) {
3060 rcu_read_lock();
3061 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3062 rcu_read_unlock();
3063 }
3064
3065 /*
3066 * The leftover is flushed to the centralized per-memcg value.
3067 * On the next attempt to refill obj stock it will be moved
3068 * to a per-cpu stock (probably, on an other CPU), see
3069 * refill_obj_stock().
3070 *
3071 * How often it's flushed is a trade-off between the memory
3072 * limit enforcement accuracy and potential CPU contention,
3073 * so it might be changed in the future.
3074 */
3075 atomic_add(nr_bytes, &old->nr_charged_bytes);
3076 stock->nr_bytes = 0;
3077 }
3078
3079 obj_cgroup_put(old);
3080 stock->cached_objcg = NULL;
3081}
3082
3083static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3084 struct mem_cgroup *root_memcg)
3085{
3086 struct mem_cgroup *memcg;
3087
3088 if (stock->cached_objcg) {
3089 memcg = obj_cgroup_memcg(stock->cached_objcg);
3090 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3091 return true;
3092 }
3093
3094 return false;
3095}
3096
3097static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3098{
3099 struct memcg_stock_pcp *stock;
3100 unsigned long flags;
3101
3102 local_irq_save(flags);
3103
3104 stock = this_cpu_ptr(&memcg_stock);
3105 if (stock->cached_objcg != objcg) { /* reset if necessary */
3106 drain_obj_stock(stock);
3107 obj_cgroup_get(objcg);
3108 stock->cached_objcg = objcg;
3109 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3110 }
3111 stock->nr_bytes += nr_bytes;
3112
3113 if (stock->nr_bytes > PAGE_SIZE)
3114 drain_obj_stock(stock);
3115
3116 local_irq_restore(flags);
3117}
3118
3119int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3120{
3121 struct mem_cgroup *memcg;
3122 unsigned int nr_pages, nr_bytes;
3123 int ret;
3124
3125 if (consume_obj_stock(objcg, size))
3126 return 0;
3127
3128 /*
3129 * In theory, memcg->nr_charged_bytes can have enough
3130 * pre-charged bytes to satisfy the allocation. However,
3131 * flushing memcg->nr_charged_bytes requires two atomic
3132 * operations, and memcg->nr_charged_bytes can't be big,
3133 * so it's better to ignore it and try grab some new pages.
3134 * memcg->nr_charged_bytes will be flushed in
3135 * refill_obj_stock(), called from this function or
3136 * independently later.
3137 */
3138 rcu_read_lock();
3139 memcg = obj_cgroup_memcg(objcg);
3140 css_get(&memcg->css);
3141 rcu_read_unlock();
3142
3143 nr_pages = size >> PAGE_SHIFT;
3144 nr_bytes = size & (PAGE_SIZE - 1);
3145
3146 if (nr_bytes)
3147 nr_pages += 1;
3148
3149 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3150 if (!ret && nr_bytes)
3151 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3152
3153 css_put(&memcg->css);
3154 return ret;
3155}
3156
3157void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3158{
3159 refill_obj_stock(objcg, size);
3160}
3161
84c07d11 3162#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 3163
ca3e0214
KH
3164#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3165
ca3e0214
KH
3166/*
3167 * Because tail pages are not marked as "used", set it. We're under
f4b7e272 3168 * pgdat->lru_lock and migration entries setup in all page mappings.
ca3e0214 3169 */
e94c8a9c 3170void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 3171{
1a3e1f40 3172 struct mem_cgroup *memcg = head->mem_cgroup;
e94c8a9c 3173 int i;
ca3e0214 3174
3d37c4a9
KH
3175 if (mem_cgroup_disabled())
3176 return;
b070e65c 3177
1a3e1f40
JW
3178 for (i = 1; i < HPAGE_PMD_NR; i++) {
3179 css_get(&memcg->css);
3180 head[i].mem_cgroup = memcg;
3181 }
ca3e0214 3182}
12d27107 3183#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3184
c255a458 3185#ifdef CONFIG_MEMCG_SWAP
02491447
DN
3186/**
3187 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3188 * @entry: swap entry to be moved
3189 * @from: mem_cgroup which the entry is moved from
3190 * @to: mem_cgroup which the entry is moved to
3191 *
3192 * It succeeds only when the swap_cgroup's record for this entry is the same
3193 * as the mem_cgroup's id of @from.
3194 *
3195 * Returns 0 on success, -EINVAL on failure.
3196 *
3e32cb2e 3197 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
3198 * both res and memsw, and called css_get().
3199 */
3200static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3201 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3202{
3203 unsigned short old_id, new_id;
3204
34c00c31
LZ
3205 old_id = mem_cgroup_id(from);
3206 new_id = mem_cgroup_id(to);
02491447
DN
3207
3208 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
3209 mod_memcg_state(from, MEMCG_SWAP, -1);
3210 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
3211 return 0;
3212 }
3213 return -EINVAL;
3214}
3215#else
3216static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3217 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3218{
3219 return -EINVAL;
3220}
8c7c6e34 3221#endif
d13d1443 3222
bbec2e15 3223static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 3224
bbec2e15
RG
3225static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3226 unsigned long max, bool memsw)
628f4235 3227{
3e32cb2e 3228 bool enlarge = false;
bb4a7ea2 3229 bool drained = false;
3e32cb2e 3230 int ret;
c054a78c
YZ
3231 bool limits_invariant;
3232 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 3233
3e32cb2e 3234 do {
628f4235
KH
3235 if (signal_pending(current)) {
3236 ret = -EINTR;
3237 break;
3238 }
3e32cb2e 3239
bbec2e15 3240 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
3241 /*
3242 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 3243 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 3244 */
15b42562 3245 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
bbec2e15 3246 max <= memcg->memsw.max;
c054a78c 3247 if (!limits_invariant) {
bbec2e15 3248 mutex_unlock(&memcg_max_mutex);
8c7c6e34 3249 ret = -EINVAL;
8c7c6e34
KH
3250 break;
3251 }
bbec2e15 3252 if (max > counter->max)
3e32cb2e 3253 enlarge = true;
bbec2e15
RG
3254 ret = page_counter_set_max(counter, max);
3255 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
3256
3257 if (!ret)
3258 break;
3259
bb4a7ea2
SB
3260 if (!drained) {
3261 drain_all_stock(memcg);
3262 drained = true;
3263 continue;
3264 }
3265
1ab5c056
AR
3266 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3267 GFP_KERNEL, !memsw)) {
3268 ret = -EBUSY;
3269 break;
3270 }
3271 } while (true);
3e32cb2e 3272
3c11ecf4
KH
3273 if (!ret && enlarge)
3274 memcg_oom_recover(memcg);
3e32cb2e 3275
628f4235
KH
3276 return ret;
3277}
3278
ef8f2327 3279unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
3280 gfp_t gfp_mask,
3281 unsigned long *total_scanned)
3282{
3283 unsigned long nr_reclaimed = 0;
ef8f2327 3284 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
3285 unsigned long reclaimed;
3286 int loop = 0;
ef8f2327 3287 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 3288 unsigned long excess;
0608f43d
AM
3289 unsigned long nr_scanned;
3290
3291 if (order > 0)
3292 return 0;
3293
ef8f2327 3294 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
3295
3296 /*
3297 * Do not even bother to check the largest node if the root
3298 * is empty. Do it lockless to prevent lock bouncing. Races
3299 * are acceptable as soft limit is best effort anyway.
3300 */
bfc7228b 3301 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
3302 return 0;
3303
0608f43d
AM
3304 /*
3305 * This loop can run a while, specially if mem_cgroup's continuously
3306 * keep exceeding their soft limit and putting the system under
3307 * pressure
3308 */
3309 do {
3310 if (next_mz)
3311 mz = next_mz;
3312 else
3313 mz = mem_cgroup_largest_soft_limit_node(mctz);
3314 if (!mz)
3315 break;
3316
3317 nr_scanned = 0;
ef8f2327 3318 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
3319 gfp_mask, &nr_scanned);
3320 nr_reclaimed += reclaimed;
3321 *total_scanned += nr_scanned;
0a31bc97 3322 spin_lock_irq(&mctz->lock);
bc2f2e7f 3323 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3324
3325 /*
3326 * If we failed to reclaim anything from this memory cgroup
3327 * it is time to move on to the next cgroup
3328 */
3329 next_mz = NULL;
bc2f2e7f
VD
3330 if (!reclaimed)
3331 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3332
3e32cb2e 3333 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3334 /*
3335 * One school of thought says that we should not add
3336 * back the node to the tree if reclaim returns 0.
3337 * But our reclaim could return 0, simply because due
3338 * to priority we are exposing a smaller subset of
3339 * memory to reclaim from. Consider this as a longer
3340 * term TODO.
3341 */
3342 /* If excess == 0, no tree ops */
cf2c8127 3343 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3344 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3345 css_put(&mz->memcg->css);
3346 loop++;
3347 /*
3348 * Could not reclaim anything and there are no more
3349 * mem cgroups to try or we seem to be looping without
3350 * reclaiming anything.
3351 */
3352 if (!nr_reclaimed &&
3353 (next_mz == NULL ||
3354 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3355 break;
3356 } while (!nr_reclaimed);
3357 if (next_mz)
3358 css_put(&next_mz->memcg->css);
3359 return nr_reclaimed;
3360}
3361
ea280e7b
TH
3362/*
3363 * Test whether @memcg has children, dead or alive. Note that this
3364 * function doesn't care whether @memcg has use_hierarchy enabled and
3365 * returns %true if there are child csses according to the cgroup
b8f2935f 3366 * hierarchy. Testing use_hierarchy is the caller's responsibility.
ea280e7b 3367 */
b5f99b53
GC
3368static inline bool memcg_has_children(struct mem_cgroup *memcg)
3369{
ea280e7b
TH
3370 bool ret;
3371
ea280e7b
TH
3372 rcu_read_lock();
3373 ret = css_next_child(NULL, &memcg->css);
3374 rcu_read_unlock();
3375 return ret;
b5f99b53
GC
3376}
3377
c26251f9 3378/*
51038171 3379 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
3380 *
3381 * Caller is responsible for holding css reference for memcg.
3382 */
3383static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3384{
3385 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3386
c1e862c1
KH
3387 /* we call try-to-free pages for make this cgroup empty */
3388 lru_add_drain_all();
d12c60f6
JS
3389
3390 drain_all_stock(memcg);
3391
f817ed48 3392 /* try to free all pages in this cgroup */
3e32cb2e 3393 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3394 int progress;
c1e862c1 3395
c26251f9
MH
3396 if (signal_pending(current))
3397 return -EINTR;
3398
b70a2a21
JW
3399 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3400 GFP_KERNEL, true);
c1e862c1 3401 if (!progress) {
f817ed48 3402 nr_retries--;
c1e862c1 3403 /* maybe some writeback is necessary */
8aa7e847 3404 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3405 }
f817ed48
KH
3406
3407 }
ab5196c2
MH
3408
3409 return 0;
cc847582
KH
3410}
3411
6770c64e
TH
3412static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3413 char *buf, size_t nbytes,
3414 loff_t off)
c1e862c1 3415{
6770c64e 3416 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3417
d8423011
MH
3418 if (mem_cgroup_is_root(memcg))
3419 return -EINVAL;
6770c64e 3420 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3421}
3422
182446d0
TH
3423static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3424 struct cftype *cft)
18f59ea7 3425{
182446d0 3426 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3427}
3428
182446d0
TH
3429static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3430 struct cftype *cft, u64 val)
18f59ea7
BS
3431{
3432 int retval = 0;
182446d0 3433 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3434 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3435
567fb435 3436 if (memcg->use_hierarchy == val)
0b8f73e1 3437 return 0;
567fb435 3438
18f59ea7 3439 /*
af901ca1 3440 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3441 * in the child subtrees. If it is unset, then the change can
3442 * occur, provided the current cgroup has no children.
3443 *
3444 * For the root cgroup, parent_mem is NULL, we allow value to be
3445 * set if there are no children.
3446 */
c0ff4b85 3447 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3448 (val == 1 || val == 0)) {
ea280e7b 3449 if (!memcg_has_children(memcg))
c0ff4b85 3450 memcg->use_hierarchy = val;
18f59ea7
BS
3451 else
3452 retval = -EBUSY;
3453 } else
3454 retval = -EINVAL;
567fb435 3455
18f59ea7
BS
3456 return retval;
3457}
3458
6f646156 3459static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 3460{
42a30035 3461 unsigned long val;
ce00a967 3462
3e32cb2e 3463 if (mem_cgroup_is_root(memcg)) {
0d1c2072 3464 val = memcg_page_state(memcg, NR_FILE_PAGES) +
be5d0a74 3465 memcg_page_state(memcg, NR_ANON_MAPPED);
42a30035
JW
3466 if (swap)
3467 val += memcg_page_state(memcg, MEMCG_SWAP);
3e32cb2e 3468 } else {
ce00a967 3469 if (!swap)
3e32cb2e 3470 val = page_counter_read(&memcg->memory);
ce00a967 3471 else
3e32cb2e 3472 val = page_counter_read(&memcg->memsw);
ce00a967 3473 }
c12176d3 3474 return val;
ce00a967
JW
3475}
3476
3e32cb2e
JW
3477enum {
3478 RES_USAGE,
3479 RES_LIMIT,
3480 RES_MAX_USAGE,
3481 RES_FAILCNT,
3482 RES_SOFT_LIMIT,
3483};
ce00a967 3484
791badbd 3485static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3486 struct cftype *cft)
8cdea7c0 3487{
182446d0 3488 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3489 struct page_counter *counter;
af36f906 3490
3e32cb2e 3491 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3492 case _MEM:
3e32cb2e
JW
3493 counter = &memcg->memory;
3494 break;
8c7c6e34 3495 case _MEMSWAP:
3e32cb2e
JW
3496 counter = &memcg->memsw;
3497 break;
510fc4e1 3498 case _KMEM:
3e32cb2e 3499 counter = &memcg->kmem;
510fc4e1 3500 break;
d55f90bf 3501 case _TCP:
0db15298 3502 counter = &memcg->tcpmem;
d55f90bf 3503 break;
8c7c6e34
KH
3504 default:
3505 BUG();
8c7c6e34 3506 }
3e32cb2e
JW
3507
3508 switch (MEMFILE_ATTR(cft->private)) {
3509 case RES_USAGE:
3510 if (counter == &memcg->memory)
c12176d3 3511 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 3512 if (counter == &memcg->memsw)
c12176d3 3513 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
3514 return (u64)page_counter_read(counter) * PAGE_SIZE;
3515 case RES_LIMIT:
bbec2e15 3516 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
3517 case RES_MAX_USAGE:
3518 return (u64)counter->watermark * PAGE_SIZE;
3519 case RES_FAILCNT:
3520 return counter->failcnt;
3521 case RES_SOFT_LIMIT:
3522 return (u64)memcg->soft_limit * PAGE_SIZE;
3523 default:
3524 BUG();
3525 }
8cdea7c0 3526}
510fc4e1 3527
4a87e2a2 3528static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
c350a99e 3529{
4a87e2a2 3530 unsigned long stat[MEMCG_NR_STAT] = {0};
c350a99e
RG
3531 struct mem_cgroup *mi;
3532 int node, cpu, i;
c350a99e
RG
3533
3534 for_each_online_cpu(cpu)
4a87e2a2 3535 for (i = 0; i < MEMCG_NR_STAT; i++)
6c1c2808 3536 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
c350a99e
RG
3537
3538 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
4a87e2a2 3539 for (i = 0; i < MEMCG_NR_STAT; i++)
c350a99e
RG
3540 atomic_long_add(stat[i], &mi->vmstats[i]);
3541
3542 for_each_node(node) {
3543 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3544 struct mem_cgroup_per_node *pi;
3545
4a87e2a2 3546 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3547 stat[i] = 0;
3548
3549 for_each_online_cpu(cpu)
4a87e2a2 3550 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
6c1c2808
SB
3551 stat[i] += per_cpu(
3552 pn->lruvec_stat_cpu->count[i], cpu);
c350a99e
RG
3553
3554 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
4a87e2a2 3555 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
c350a99e
RG
3556 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3557 }
3558}
3559
bb65f89b
RG
3560static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3561{
3562 unsigned long events[NR_VM_EVENT_ITEMS];
3563 struct mem_cgroup *mi;
3564 int cpu, i;
3565
3566 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3567 events[i] = 0;
3568
3569 for_each_online_cpu(cpu)
3570 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
6c1c2808
SB
3571 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3572 cpu);
bb65f89b
RG
3573
3574 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3575 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3576 atomic_long_add(events[i], &mi->vmevents[i]);
3577}
3578
84c07d11 3579#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3580static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3581{
bf4f0599 3582 struct obj_cgroup *objcg;
d6441637
VD
3583 int memcg_id;
3584
b313aeee
VD
3585 if (cgroup_memory_nokmem)
3586 return 0;
3587
2a4db7eb 3588 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3589 BUG_ON(memcg->kmem_state);
d6441637 3590
f3bb3043 3591 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3592 if (memcg_id < 0)
3593 return memcg_id;
d6441637 3594
bf4f0599
RG
3595 objcg = obj_cgroup_alloc();
3596 if (!objcg) {
3597 memcg_free_cache_id(memcg_id);
3598 return -ENOMEM;
3599 }
3600 objcg->memcg = memcg;
3601 rcu_assign_pointer(memcg->objcg, objcg);
3602
d648bcc7
RG
3603 static_branch_enable(&memcg_kmem_enabled_key);
3604
d6441637 3605 /*
567e9ab2 3606 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3607 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3608 * guarantee no one starts accounting before all call sites are
3609 * patched.
3610 */
900a38f0 3611 memcg->kmemcg_id = memcg_id;
567e9ab2 3612 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
3613
3614 return 0;
d6441637
VD
3615}
3616
8e0a8912
JW
3617static void memcg_offline_kmem(struct mem_cgroup *memcg)
3618{
3619 struct cgroup_subsys_state *css;
3620 struct mem_cgroup *parent, *child;
3621 int kmemcg_id;
3622
3623 if (memcg->kmem_state != KMEM_ONLINE)
3624 return;
9855609b 3625
8e0a8912
JW
3626 memcg->kmem_state = KMEM_ALLOCATED;
3627
8e0a8912
JW
3628 parent = parent_mem_cgroup(memcg);
3629 if (!parent)
3630 parent = root_mem_cgroup;
3631
bf4f0599 3632 memcg_reparent_objcgs(memcg, parent);
fb2f2b0a
RG
3633
3634 kmemcg_id = memcg->kmemcg_id;
3635 BUG_ON(kmemcg_id < 0);
3636
8e0a8912
JW
3637 /*
3638 * Change kmemcg_id of this cgroup and all its descendants to the
3639 * parent's id, and then move all entries from this cgroup's list_lrus
3640 * to ones of the parent. After we have finished, all list_lrus
3641 * corresponding to this cgroup are guaranteed to remain empty. The
3642 * ordering is imposed by list_lru_node->lock taken by
3643 * memcg_drain_all_list_lrus().
3644 */
3a06bb78 3645 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3646 css_for_each_descendant_pre(css, &memcg->css) {
3647 child = mem_cgroup_from_css(css);
3648 BUG_ON(child->kmemcg_id != kmemcg_id);
3649 child->kmemcg_id = parent->kmemcg_id;
3650 if (!memcg->use_hierarchy)
3651 break;
3652 }
3a06bb78
TH
3653 rcu_read_unlock();
3654
9bec5c35 3655 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3656
3657 memcg_free_cache_id(kmemcg_id);
3658}
3659
3660static void memcg_free_kmem(struct mem_cgroup *memcg)
3661{
0b8f73e1
JW
3662 /* css_alloc() failed, offlining didn't happen */
3663 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3664 memcg_offline_kmem(memcg);
8e0a8912 3665}
d6441637 3666#else
0b8f73e1 3667static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3668{
3669 return 0;
3670}
3671static void memcg_offline_kmem(struct mem_cgroup *memcg)
3672{
3673}
3674static void memcg_free_kmem(struct mem_cgroup *memcg)
3675{
3676}
84c07d11 3677#endif /* CONFIG_MEMCG_KMEM */
127424c8 3678
bbec2e15
RG
3679static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3680 unsigned long max)
d6441637 3681{
b313aeee 3682 int ret;
127424c8 3683
bbec2e15
RG
3684 mutex_lock(&memcg_max_mutex);
3685 ret = page_counter_set_max(&memcg->kmem, max);
3686 mutex_unlock(&memcg_max_mutex);
127424c8 3687 return ret;
d6441637 3688}
510fc4e1 3689
bbec2e15 3690static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3691{
3692 int ret;
3693
bbec2e15 3694 mutex_lock(&memcg_max_mutex);
d55f90bf 3695
bbec2e15 3696 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3697 if (ret)
3698 goto out;
3699
0db15298 3700 if (!memcg->tcpmem_active) {
d55f90bf
VD
3701 /*
3702 * The active flag needs to be written after the static_key
3703 * update. This is what guarantees that the socket activation
2d758073
JW
3704 * function is the last one to run. See mem_cgroup_sk_alloc()
3705 * for details, and note that we don't mark any socket as
3706 * belonging to this memcg until that flag is up.
d55f90bf
VD
3707 *
3708 * We need to do this, because static_keys will span multiple
3709 * sites, but we can't control their order. If we mark a socket
3710 * as accounted, but the accounting functions are not patched in
3711 * yet, we'll lose accounting.
3712 *
2d758073 3713 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3714 * because when this value change, the code to process it is not
3715 * patched in yet.
3716 */
3717 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3718 memcg->tcpmem_active = true;
d55f90bf
VD
3719 }
3720out:
bbec2e15 3721 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3722 return ret;
3723}
d55f90bf 3724
628f4235
KH
3725/*
3726 * The user of this function is...
3727 * RES_LIMIT.
3728 */
451af504
TH
3729static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3730 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3731{
451af504 3732 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3733 unsigned long nr_pages;
628f4235
KH
3734 int ret;
3735
451af504 3736 buf = strstrip(buf);
650c5e56 3737 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3738 if (ret)
3739 return ret;
af36f906 3740
3e32cb2e 3741 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3742 case RES_LIMIT:
4b3bde4c
BS
3743 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3744 ret = -EINVAL;
3745 break;
3746 }
3e32cb2e
JW
3747 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3748 case _MEM:
bbec2e15 3749 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3750 break;
3e32cb2e 3751 case _MEMSWAP:
bbec2e15 3752 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3753 break;
3e32cb2e 3754 case _KMEM:
0158115f
MH
3755 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3756 "Please report your usecase to linux-mm@kvack.org if you "
3757 "depend on this functionality.\n");
bbec2e15 3758 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3759 break;
d55f90bf 3760 case _TCP:
bbec2e15 3761 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3762 break;
3e32cb2e 3763 }
296c81d8 3764 break;
3e32cb2e
JW
3765 case RES_SOFT_LIMIT:
3766 memcg->soft_limit = nr_pages;
3767 ret = 0;
628f4235
KH
3768 break;
3769 }
451af504 3770 return ret ?: nbytes;
8cdea7c0
BS
3771}
3772
6770c64e
TH
3773static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3774 size_t nbytes, loff_t off)
c84872e1 3775{
6770c64e 3776 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3777 struct page_counter *counter;
c84872e1 3778
3e32cb2e
JW
3779 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3780 case _MEM:
3781 counter = &memcg->memory;
3782 break;
3783 case _MEMSWAP:
3784 counter = &memcg->memsw;
3785 break;
3786 case _KMEM:
3787 counter = &memcg->kmem;
3788 break;
d55f90bf 3789 case _TCP:
0db15298 3790 counter = &memcg->tcpmem;
d55f90bf 3791 break;
3e32cb2e
JW
3792 default:
3793 BUG();
3794 }
af36f906 3795
3e32cb2e 3796 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3797 case RES_MAX_USAGE:
3e32cb2e 3798 page_counter_reset_watermark(counter);
29f2a4da
PE
3799 break;
3800 case RES_FAILCNT:
3e32cb2e 3801 counter->failcnt = 0;
29f2a4da 3802 break;
3e32cb2e
JW
3803 default:
3804 BUG();
29f2a4da 3805 }
f64c3f54 3806
6770c64e 3807 return nbytes;
c84872e1
PE
3808}
3809
182446d0 3810static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3811 struct cftype *cft)
3812{
182446d0 3813 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3814}
3815
02491447 3816#ifdef CONFIG_MMU
182446d0 3817static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3818 struct cftype *cft, u64 val)
3819{
182446d0 3820 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3821
1dfab5ab 3822 if (val & ~MOVE_MASK)
7dc74be0 3823 return -EINVAL;
ee5e8472 3824
7dc74be0 3825 /*
ee5e8472
GC
3826 * No kind of locking is needed in here, because ->can_attach() will
3827 * check this value once in the beginning of the process, and then carry
3828 * on with stale data. This means that changes to this value will only
3829 * affect task migrations starting after the change.
7dc74be0 3830 */
c0ff4b85 3831 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3832 return 0;
3833}
02491447 3834#else
182446d0 3835static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3836 struct cftype *cft, u64 val)
3837{
3838 return -ENOSYS;
3839}
3840#endif
7dc74be0 3841
406eb0c9 3842#ifdef CONFIG_NUMA
113b7dfd
JW
3843
3844#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3845#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3846#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3847
3848static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6 3849 int nid, unsigned int lru_mask, bool tree)
113b7dfd 3850{
867e5e1d 3851 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
113b7dfd
JW
3852 unsigned long nr = 0;
3853 enum lru_list lru;
3854
3855 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3856
3857 for_each_lru(lru) {
3858 if (!(BIT(lru) & lru_mask))
3859 continue;
dd8657b6
SB
3860 if (tree)
3861 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3862 else
3863 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
113b7dfd
JW
3864 }
3865 return nr;
3866}
3867
3868static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
dd8657b6
SB
3869 unsigned int lru_mask,
3870 bool tree)
113b7dfd
JW
3871{
3872 unsigned long nr = 0;
3873 enum lru_list lru;
3874
3875 for_each_lru(lru) {
3876 if (!(BIT(lru) & lru_mask))
3877 continue;
dd8657b6
SB
3878 if (tree)
3879 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3880 else
3881 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
113b7dfd
JW
3882 }
3883 return nr;
3884}
3885
2da8ca82 3886static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3887{
25485de6
GT
3888 struct numa_stat {
3889 const char *name;
3890 unsigned int lru_mask;
3891 };
3892
3893 static const struct numa_stat stats[] = {
3894 { "total", LRU_ALL },
3895 { "file", LRU_ALL_FILE },
3896 { "anon", LRU_ALL_ANON },
3897 { "unevictable", BIT(LRU_UNEVICTABLE) },
3898 };
3899 const struct numa_stat *stat;
406eb0c9 3900 int nid;
aa9694bb 3901 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
406eb0c9 3902
25485de6 3903 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3904 seq_printf(m, "%s=%lu", stat->name,
3905 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3906 false));
3907 for_each_node_state(nid, N_MEMORY)
3908 seq_printf(m, " N%d=%lu", nid,
3909 mem_cgroup_node_nr_lru_pages(memcg, nid,
3910 stat->lru_mask, false));
25485de6 3911 seq_putc(m, '\n');
406eb0c9 3912 }
406eb0c9 3913
071aee13 3914 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
dd8657b6
SB
3915
3916 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3917 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3918 true));
3919 for_each_node_state(nid, N_MEMORY)
3920 seq_printf(m, " N%d=%lu", nid,
3921 mem_cgroup_node_nr_lru_pages(memcg, nid,
3922 stat->lru_mask, true));
071aee13 3923 seq_putc(m, '\n');
406eb0c9 3924 }
406eb0c9 3925
406eb0c9
YH
3926 return 0;
3927}
3928#endif /* CONFIG_NUMA */
3929
c8713d0b 3930static const unsigned int memcg1_stats[] = {
0d1c2072 3931 NR_FILE_PAGES,
be5d0a74 3932 NR_ANON_MAPPED,
468c3982
JW
3933#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3934 NR_ANON_THPS,
3935#endif
c8713d0b
JW
3936 NR_SHMEM,
3937 NR_FILE_MAPPED,
3938 NR_FILE_DIRTY,
3939 NR_WRITEBACK,
3940 MEMCG_SWAP,
3941};
3942
3943static const char *const memcg1_stat_names[] = {
3944 "cache",
3945 "rss",
468c3982 3946#ifdef CONFIG_TRANSPARENT_HUGEPAGE
c8713d0b 3947 "rss_huge",
468c3982 3948#endif
c8713d0b
JW
3949 "shmem",
3950 "mapped_file",
3951 "dirty",
3952 "writeback",
3953 "swap",
3954};
3955
df0e53d0 3956/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3957static const unsigned int memcg1_events[] = {
df0e53d0
JW
3958 PGPGIN,
3959 PGPGOUT,
3960 PGFAULT,
3961 PGMAJFAULT,
3962};
3963
2da8ca82 3964static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3965{
aa9694bb 3966 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3e32cb2e 3967 unsigned long memory, memsw;
af7c4b0e
JW
3968 struct mem_cgroup *mi;
3969 unsigned int i;
406eb0c9 3970
71cd3113 3971 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c 3972
71cd3113 3973 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
468c3982
JW
3974 unsigned long nr;
3975
71cd3113 3976 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3977 continue;
468c3982
JW
3978 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3979#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3980 if (memcg1_stats[i] == NR_ANON_THPS)
3981 nr *= HPAGE_PMD_NR;
3982#endif
3983 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
1dd3a273 3984 }
7b854121 3985
df0e53d0 3986 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d 3987 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
205b20cc 3988 memcg_events_local(memcg, memcg1_events[i]));
af7c4b0e
JW
3989
3990 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 3991 seq_printf(m, "%s %lu\n", lru_list_name(i),
205b20cc 3992 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
21d89d15 3993 PAGE_SIZE);
af7c4b0e 3994
14067bb3 3995 /* Hierarchical information */
3e32cb2e
JW
3996 memory = memsw = PAGE_COUNTER_MAX;
3997 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
15b42562
CD
3998 memory = min(memory, READ_ONCE(mi->memory.max));
3999 memsw = min(memsw, READ_ONCE(mi->memsw.max));
fee7b548 4000 }
3e32cb2e
JW
4001 seq_printf(m, "hierarchical_memory_limit %llu\n",
4002 (u64)memory * PAGE_SIZE);
7941d214 4003 if (do_memsw_account())
3e32cb2e
JW
4004 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4005 (u64)memsw * PAGE_SIZE);
7f016ee8 4006
8de7ecc6 4007 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 4008 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 4009 continue;
8de7ecc6 4010 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
dd923990
YS
4011 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
4012 PAGE_SIZE);
af7c4b0e
JW
4013 }
4014
8de7ecc6 4015 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
ebc5d83d
KK
4016 seq_printf(m, "total_%s %llu\n",
4017 vm_event_name(memcg1_events[i]),
dd923990 4018 (u64)memcg_events(memcg, memcg1_events[i]));
af7c4b0e 4019
8de7ecc6 4020 for (i = 0; i < NR_LRU_LISTS; i++)
ebc5d83d 4021 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
42a30035
JW
4022 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4023 PAGE_SIZE);
14067bb3 4024
7f016ee8 4025#ifdef CONFIG_DEBUG_VM
7f016ee8 4026 {
ef8f2327
MG
4027 pg_data_t *pgdat;
4028 struct mem_cgroup_per_node *mz;
1431d4d1
JW
4029 unsigned long anon_cost = 0;
4030 unsigned long file_cost = 0;
7f016ee8 4031
ef8f2327
MG
4032 for_each_online_pgdat(pgdat) {
4033 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
7f016ee8 4034
1431d4d1
JW
4035 anon_cost += mz->lruvec.anon_cost;
4036 file_cost += mz->lruvec.file_cost;
ef8f2327 4037 }
1431d4d1
JW
4038 seq_printf(m, "anon_cost %lu\n", anon_cost);
4039 seq_printf(m, "file_cost %lu\n", file_cost);
7f016ee8
KM
4040 }
4041#endif
4042
d2ceb9b7
KH
4043 return 0;
4044}
4045
182446d0
TH
4046static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4047 struct cftype *cft)
a7885eb8 4048{
182446d0 4049 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4050
1f4c025b 4051 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4052}
4053
182446d0
TH
4054static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4055 struct cftype *cft, u64 val)
a7885eb8 4056{
182446d0 4057 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 4058
3dae7fec 4059 if (val > 100)
a7885eb8
KM
4060 return -EINVAL;
4061
14208b0e 4062 if (css->parent)
3dae7fec
JW
4063 memcg->swappiness = val;
4064 else
4065 vm_swappiness = val;
068b38c1 4066
a7885eb8
KM
4067 return 0;
4068}
4069
2e72b634
KS
4070static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4071{
4072 struct mem_cgroup_threshold_ary *t;
3e32cb2e 4073 unsigned long usage;
2e72b634
KS
4074 int i;
4075
4076 rcu_read_lock();
4077 if (!swap)
2c488db2 4078 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4079 else
2c488db2 4080 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4081
4082 if (!t)
4083 goto unlock;
4084
ce00a967 4085 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
4086
4087 /*
748dad36 4088 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4089 * If it's not true, a threshold was crossed after last
4090 * call of __mem_cgroup_threshold().
4091 */
5407a562 4092 i = t->current_threshold;
2e72b634
KS
4093
4094 /*
4095 * Iterate backward over array of thresholds starting from
4096 * current_threshold and check if a threshold is crossed.
4097 * If none of thresholds below usage is crossed, we read
4098 * only one element of the array here.
4099 */
4100 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4101 eventfd_signal(t->entries[i].eventfd, 1);
4102
4103 /* i = current_threshold + 1 */
4104 i++;
4105
4106 /*
4107 * Iterate forward over array of thresholds starting from
4108 * current_threshold+1 and check if a threshold is crossed.
4109 * If none of thresholds above usage is crossed, we read
4110 * only one element of the array here.
4111 */
4112 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4113 eventfd_signal(t->entries[i].eventfd, 1);
4114
4115 /* Update current_threshold */
5407a562 4116 t->current_threshold = i - 1;
2e72b634
KS
4117unlock:
4118 rcu_read_unlock();
4119}
4120
4121static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4122{
ad4ca5f4
KS
4123 while (memcg) {
4124 __mem_cgroup_threshold(memcg, false);
7941d214 4125 if (do_memsw_account())
ad4ca5f4
KS
4126 __mem_cgroup_threshold(memcg, true);
4127
4128 memcg = parent_mem_cgroup(memcg);
4129 }
2e72b634
KS
4130}
4131
4132static int compare_thresholds(const void *a, const void *b)
4133{
4134 const struct mem_cgroup_threshold *_a = a;
4135 const struct mem_cgroup_threshold *_b = b;
4136
2bff24a3
GT
4137 if (_a->threshold > _b->threshold)
4138 return 1;
4139
4140 if (_a->threshold < _b->threshold)
4141 return -1;
4142
4143 return 0;
2e72b634
KS
4144}
4145
c0ff4b85 4146static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4147{
4148 struct mem_cgroup_eventfd_list *ev;
4149
2bcf2e92
MH
4150 spin_lock(&memcg_oom_lock);
4151
c0ff4b85 4152 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 4153 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
4154
4155 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4156 return 0;
4157}
4158
c0ff4b85 4159static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4160{
7d74b06f
KH
4161 struct mem_cgroup *iter;
4162
c0ff4b85 4163 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4164 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4165}
4166
59b6f873 4167static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 4168 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 4169{
2c488db2
KS
4170 struct mem_cgroup_thresholds *thresholds;
4171 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
4172 unsigned long threshold;
4173 unsigned long usage;
2c488db2 4174 int i, size, ret;
2e72b634 4175
650c5e56 4176 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
4177 if (ret)
4178 return ret;
4179
4180 mutex_lock(&memcg->thresholds_lock);
2c488db2 4181
05b84301 4182 if (type == _MEM) {
2c488db2 4183 thresholds = &memcg->thresholds;
ce00a967 4184 usage = mem_cgroup_usage(memcg, false);
05b84301 4185 } else if (type == _MEMSWAP) {
2c488db2 4186 thresholds = &memcg->memsw_thresholds;
ce00a967 4187 usage = mem_cgroup_usage(memcg, true);
05b84301 4188 } else
2e72b634
KS
4189 BUG();
4190
2e72b634 4191 /* Check if a threshold crossed before adding a new one */
2c488db2 4192 if (thresholds->primary)
2e72b634
KS
4193 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4194
2c488db2 4195 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4196
4197 /* Allocate memory for new array of thresholds */
67b8046f 4198 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
2c488db2 4199 if (!new) {
2e72b634
KS
4200 ret = -ENOMEM;
4201 goto unlock;
4202 }
2c488db2 4203 new->size = size;
2e72b634
KS
4204
4205 /* Copy thresholds (if any) to new array */
2c488db2
KS
4206 if (thresholds->primary) {
4207 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4208 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4209 }
4210
2e72b634 4211 /* Add new threshold */
2c488db2
KS
4212 new->entries[size - 1].eventfd = eventfd;
4213 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4214
4215 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4216 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4217 compare_thresholds, NULL);
4218
4219 /* Find current threshold */
2c488db2 4220 new->current_threshold = -1;
2e72b634 4221 for (i = 0; i < size; i++) {
748dad36 4222 if (new->entries[i].threshold <= usage) {
2e72b634 4223 /*
2c488db2
KS
4224 * new->current_threshold will not be used until
4225 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4226 * it here.
4227 */
2c488db2 4228 ++new->current_threshold;
748dad36
SZ
4229 } else
4230 break;
2e72b634
KS
4231 }
4232
2c488db2
KS
4233 /* Free old spare buffer and save old primary buffer as spare */
4234 kfree(thresholds->spare);
4235 thresholds->spare = thresholds->primary;
4236
4237 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4238
907860ed 4239 /* To be sure that nobody uses thresholds */
2e72b634
KS
4240 synchronize_rcu();
4241
2e72b634
KS
4242unlock:
4243 mutex_unlock(&memcg->thresholds_lock);
4244
4245 return ret;
4246}
4247
59b6f873 4248static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4249 struct eventfd_ctx *eventfd, const char *args)
4250{
59b6f873 4251 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
4252}
4253
59b6f873 4254static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
4255 struct eventfd_ctx *eventfd, const char *args)
4256{
59b6f873 4257 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
4258}
4259
59b6f873 4260static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 4261 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 4262{
2c488db2
KS
4263 struct mem_cgroup_thresholds *thresholds;
4264 struct mem_cgroup_threshold_ary *new;
3e32cb2e 4265 unsigned long usage;
7d36665a 4266 int i, j, size, entries;
2e72b634
KS
4267
4268 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
4269
4270 if (type == _MEM) {
2c488db2 4271 thresholds = &memcg->thresholds;
ce00a967 4272 usage = mem_cgroup_usage(memcg, false);
05b84301 4273 } else if (type == _MEMSWAP) {
2c488db2 4274 thresholds = &memcg->memsw_thresholds;
ce00a967 4275 usage = mem_cgroup_usage(memcg, true);
05b84301 4276 } else
2e72b634
KS
4277 BUG();
4278
371528ca
AV
4279 if (!thresholds->primary)
4280 goto unlock;
4281
2e72b634
KS
4282 /* Check if a threshold crossed before removing */
4283 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4284
4285 /* Calculate new number of threshold */
7d36665a 4286 size = entries = 0;
2c488db2
KS
4287 for (i = 0; i < thresholds->primary->size; i++) {
4288 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634 4289 size++;
7d36665a
CX
4290 else
4291 entries++;
2e72b634
KS
4292 }
4293
2c488db2 4294 new = thresholds->spare;
907860ed 4295
7d36665a
CX
4296 /* If no items related to eventfd have been cleared, nothing to do */
4297 if (!entries)
4298 goto unlock;
4299
2e72b634
KS
4300 /* Set thresholds array to NULL if we don't have thresholds */
4301 if (!size) {
2c488db2
KS
4302 kfree(new);
4303 new = NULL;
907860ed 4304 goto swap_buffers;
2e72b634
KS
4305 }
4306
2c488db2 4307 new->size = size;
2e72b634
KS
4308
4309 /* Copy thresholds and find current threshold */
2c488db2
KS
4310 new->current_threshold = -1;
4311 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4312 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4313 continue;
4314
2c488db2 4315 new->entries[j] = thresholds->primary->entries[i];
748dad36 4316 if (new->entries[j].threshold <= usage) {
2e72b634 4317 /*
2c488db2 4318 * new->current_threshold will not be used
2e72b634
KS
4319 * until rcu_assign_pointer(), so it's safe to increment
4320 * it here.
4321 */
2c488db2 4322 ++new->current_threshold;
2e72b634
KS
4323 }
4324 j++;
4325 }
4326
907860ed 4327swap_buffers:
2c488db2
KS
4328 /* Swap primary and spare array */
4329 thresholds->spare = thresholds->primary;
8c757763 4330
2c488db2 4331 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4332
907860ed 4333 /* To be sure that nobody uses thresholds */
2e72b634 4334 synchronize_rcu();
6611d8d7
MC
4335
4336 /* If all events are unregistered, free the spare array */
4337 if (!new) {
4338 kfree(thresholds->spare);
4339 thresholds->spare = NULL;
4340 }
371528ca 4341unlock:
2e72b634 4342 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4343}
c1e862c1 4344
59b6f873 4345static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4346 struct eventfd_ctx *eventfd)
4347{
59b6f873 4348 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
4349}
4350
59b6f873 4351static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
4352 struct eventfd_ctx *eventfd)
4353{
59b6f873 4354 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
4355}
4356
59b6f873 4357static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 4358 struct eventfd_ctx *eventfd, const char *args)
9490ff27 4359{
9490ff27 4360 struct mem_cgroup_eventfd_list *event;
9490ff27 4361
9490ff27
KH
4362 event = kmalloc(sizeof(*event), GFP_KERNEL);
4363 if (!event)
4364 return -ENOMEM;
4365
1af8efe9 4366 spin_lock(&memcg_oom_lock);
9490ff27
KH
4367
4368 event->eventfd = eventfd;
4369 list_add(&event->list, &memcg->oom_notify);
4370
4371 /* already in OOM ? */
c2b42d3c 4372 if (memcg->under_oom)
9490ff27 4373 eventfd_signal(eventfd, 1);
1af8efe9 4374 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4375
4376 return 0;
4377}
4378
59b6f873 4379static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 4380 struct eventfd_ctx *eventfd)
9490ff27 4381{
9490ff27 4382 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 4383
1af8efe9 4384 spin_lock(&memcg_oom_lock);
9490ff27 4385
c0ff4b85 4386 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
4387 if (ev->eventfd == eventfd) {
4388 list_del(&ev->list);
4389 kfree(ev);
4390 }
4391 }
4392
1af8efe9 4393 spin_unlock(&memcg_oom_lock);
9490ff27
KH
4394}
4395
2da8ca82 4396static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4397{
aa9694bb 4398 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
3c11ecf4 4399
791badbd 4400 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 4401 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
4402 seq_printf(sf, "oom_kill %lu\n",
4403 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
4404 return 0;
4405}
4406
182446d0 4407static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4408 struct cftype *cft, u64 val)
4409{
182446d0 4410 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4411
4412 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4413 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4414 return -EINVAL;
4415
c0ff4b85 4416 memcg->oom_kill_disable = val;
4d845ebf 4417 if (!val)
c0ff4b85 4418 memcg_oom_recover(memcg);
3dae7fec 4419
3c11ecf4
KH
4420 return 0;
4421}
4422
52ebea74
TH
4423#ifdef CONFIG_CGROUP_WRITEBACK
4424
3a8e9ac8
TH
4425#include <trace/events/writeback.h>
4426
841710aa
TH
4427static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4428{
4429 return wb_domain_init(&memcg->cgwb_domain, gfp);
4430}
4431
4432static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4433{
4434 wb_domain_exit(&memcg->cgwb_domain);
4435}
4436
2529bb3a
TH
4437static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4438{
4439 wb_domain_size_changed(&memcg->cgwb_domain);
4440}
4441
841710aa
TH
4442struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4443{
4444 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4445
4446 if (!memcg->css.parent)
4447 return NULL;
4448
4449 return &memcg->cgwb_domain;
4450}
4451
0b3d6e6f
GT
4452/*
4453 * idx can be of type enum memcg_stat_item or node_stat_item.
4454 * Keep in sync with memcg_exact_page().
4455 */
4456static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4457{
871789d4 4458 long x = atomic_long_read(&memcg->vmstats[idx]);
0b3d6e6f
GT
4459 int cpu;
4460
4461 for_each_online_cpu(cpu)
871789d4 4462 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
0b3d6e6f
GT
4463 if (x < 0)
4464 x = 0;
4465 return x;
4466}
4467
c2aa723a
TH
4468/**
4469 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4470 * @wb: bdi_writeback in question
c5edf9cd
TH
4471 * @pfilepages: out parameter for number of file pages
4472 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
4473 * @pdirty: out parameter for number of dirty pages
4474 * @pwriteback: out parameter for number of pages under writeback
4475 *
c5edf9cd
TH
4476 * Determine the numbers of file, headroom, dirty, and writeback pages in
4477 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4478 * is a bit more involved.
c2aa723a 4479 *
c5edf9cd
TH
4480 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4481 * headroom is calculated as the lowest headroom of itself and the
4482 * ancestors. Note that this doesn't consider the actual amount of
4483 * available memory in the system. The caller should further cap
4484 * *@pheadroom accordingly.
c2aa723a 4485 */
c5edf9cd
TH
4486void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4487 unsigned long *pheadroom, unsigned long *pdirty,
4488 unsigned long *pwriteback)
c2aa723a
TH
4489{
4490 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4491 struct mem_cgroup *parent;
c2aa723a 4492
0b3d6e6f 4493 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
c2aa723a 4494
0b3d6e6f 4495 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
21d89d15
JW
4496 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4497 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
c5edf9cd 4498 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 4499
c2aa723a 4500 while ((parent = parent_mem_cgroup(memcg))) {
15b42562 4501 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
d1663a90 4502 READ_ONCE(memcg->memory.high));
c2aa723a
TH
4503 unsigned long used = page_counter_read(&memcg->memory);
4504
c5edf9cd 4505 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
4506 memcg = parent;
4507 }
c2aa723a
TH
4508}
4509
97b27821
TH
4510/*
4511 * Foreign dirty flushing
4512 *
4513 * There's an inherent mismatch between memcg and writeback. The former
4514 * trackes ownership per-page while the latter per-inode. This was a
4515 * deliberate design decision because honoring per-page ownership in the
4516 * writeback path is complicated, may lead to higher CPU and IO overheads
4517 * and deemed unnecessary given that write-sharing an inode across
4518 * different cgroups isn't a common use-case.
4519 *
4520 * Combined with inode majority-writer ownership switching, this works well
4521 * enough in most cases but there are some pathological cases. For
4522 * example, let's say there are two cgroups A and B which keep writing to
4523 * different but confined parts of the same inode. B owns the inode and
4524 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4525 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4526 * triggering background writeback. A will be slowed down without a way to
4527 * make writeback of the dirty pages happen.
4528 *
4529 * Conditions like the above can lead to a cgroup getting repatedly and
4530 * severely throttled after making some progress after each
4531 * dirty_expire_interval while the underyling IO device is almost
4532 * completely idle.
4533 *
4534 * Solving this problem completely requires matching the ownership tracking
4535 * granularities between memcg and writeback in either direction. However,
4536 * the more egregious behaviors can be avoided by simply remembering the
4537 * most recent foreign dirtying events and initiating remote flushes on
4538 * them when local writeback isn't enough to keep the memory clean enough.
4539 *
4540 * The following two functions implement such mechanism. When a foreign
4541 * page - a page whose memcg and writeback ownerships don't match - is
4542 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4543 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4544 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4545 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4546 * foreign bdi_writebacks which haven't expired. Both the numbers of
4547 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4548 * limited to MEMCG_CGWB_FRN_CNT.
4549 *
4550 * The mechanism only remembers IDs and doesn't hold any object references.
4551 * As being wrong occasionally doesn't matter, updates and accesses to the
4552 * records are lockless and racy.
4553 */
4554void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4555 struct bdi_writeback *wb)
4556{
4557 struct mem_cgroup *memcg = page->mem_cgroup;
4558 struct memcg_cgwb_frn *frn;
4559 u64 now = get_jiffies_64();
4560 u64 oldest_at = now;
4561 int oldest = -1;
4562 int i;
4563
3a8e9ac8
TH
4564 trace_track_foreign_dirty(page, wb);
4565
97b27821
TH
4566 /*
4567 * Pick the slot to use. If there is already a slot for @wb, keep
4568 * using it. If not replace the oldest one which isn't being
4569 * written out.
4570 */
4571 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4572 frn = &memcg->cgwb_frn[i];
4573 if (frn->bdi_id == wb->bdi->id &&
4574 frn->memcg_id == wb->memcg_css->id)
4575 break;
4576 if (time_before64(frn->at, oldest_at) &&
4577 atomic_read(&frn->done.cnt) == 1) {
4578 oldest = i;
4579 oldest_at = frn->at;
4580 }
4581 }
4582
4583 if (i < MEMCG_CGWB_FRN_CNT) {
4584 /*
4585 * Re-using an existing one. Update timestamp lazily to
4586 * avoid making the cacheline hot. We want them to be
4587 * reasonably up-to-date and significantly shorter than
4588 * dirty_expire_interval as that's what expires the record.
4589 * Use the shorter of 1s and dirty_expire_interval / 8.
4590 */
4591 unsigned long update_intv =
4592 min_t(unsigned long, HZ,
4593 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4594
4595 if (time_before64(frn->at, now - update_intv))
4596 frn->at = now;
4597 } else if (oldest >= 0) {
4598 /* replace the oldest free one */
4599 frn = &memcg->cgwb_frn[oldest];
4600 frn->bdi_id = wb->bdi->id;
4601 frn->memcg_id = wb->memcg_css->id;
4602 frn->at = now;
4603 }
4604}
4605
4606/* issue foreign writeback flushes for recorded foreign dirtying events */
4607void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4608{
4609 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4610 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4611 u64 now = jiffies_64;
4612 int i;
4613
4614 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4615 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4616
4617 /*
4618 * If the record is older than dirty_expire_interval,
4619 * writeback on it has already started. No need to kick it
4620 * off again. Also, don't start a new one if there's
4621 * already one in flight.
4622 */
4623 if (time_after64(frn->at, now - intv) &&
4624 atomic_read(&frn->done.cnt) == 1) {
4625 frn->at = 0;
3a8e9ac8 4626 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
97b27821
TH
4627 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4628 WB_REASON_FOREIGN_FLUSH,
4629 &frn->done);
4630 }
4631 }
4632}
4633
841710aa
TH
4634#else /* CONFIG_CGROUP_WRITEBACK */
4635
4636static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4637{
4638 return 0;
4639}
4640
4641static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4642{
4643}
4644
2529bb3a
TH
4645static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4646{
4647}
4648
52ebea74
TH
4649#endif /* CONFIG_CGROUP_WRITEBACK */
4650
3bc942f3
TH
4651/*
4652 * DO NOT USE IN NEW FILES.
4653 *
4654 * "cgroup.event_control" implementation.
4655 *
4656 * This is way over-engineered. It tries to support fully configurable
4657 * events for each user. Such level of flexibility is completely
4658 * unnecessary especially in the light of the planned unified hierarchy.
4659 *
4660 * Please deprecate this and replace with something simpler if at all
4661 * possible.
4662 */
4663
79bd9814
TH
4664/*
4665 * Unregister event and free resources.
4666 *
4667 * Gets called from workqueue.
4668 */
3bc942f3 4669static void memcg_event_remove(struct work_struct *work)
79bd9814 4670{
3bc942f3
TH
4671 struct mem_cgroup_event *event =
4672 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4673 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4674
4675 remove_wait_queue(event->wqh, &event->wait);
4676
59b6f873 4677 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4678
4679 /* Notify userspace the event is going away. */
4680 eventfd_signal(event->eventfd, 1);
4681
4682 eventfd_ctx_put(event->eventfd);
4683 kfree(event);
59b6f873 4684 css_put(&memcg->css);
79bd9814
TH
4685}
4686
4687/*
a9a08845 4688 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
4689 *
4690 * Called with wqh->lock held and interrupts disabled.
4691 */
ac6424b9 4692static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 4693 int sync, void *key)
79bd9814 4694{
3bc942f3
TH
4695 struct mem_cgroup_event *event =
4696 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4697 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 4698 __poll_t flags = key_to_poll(key);
79bd9814 4699
a9a08845 4700 if (flags & EPOLLHUP) {
79bd9814
TH
4701 /*
4702 * If the event has been detached at cgroup removal, we
4703 * can simply return knowing the other side will cleanup
4704 * for us.
4705 *
4706 * We can't race against event freeing since the other
4707 * side will require wqh->lock via remove_wait_queue(),
4708 * which we hold.
4709 */
fba94807 4710 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4711 if (!list_empty(&event->list)) {
4712 list_del_init(&event->list);
4713 /*
4714 * We are in atomic context, but cgroup_event_remove()
4715 * may sleep, so we have to call it in workqueue.
4716 */
4717 schedule_work(&event->remove);
4718 }
fba94807 4719 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4720 }
4721
4722 return 0;
4723}
4724
3bc942f3 4725static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4726 wait_queue_head_t *wqh, poll_table *pt)
4727{
3bc942f3
TH
4728 struct mem_cgroup_event *event =
4729 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4730
4731 event->wqh = wqh;
4732 add_wait_queue(wqh, &event->wait);
4733}
4734
4735/*
3bc942f3
TH
4736 * DO NOT USE IN NEW FILES.
4737 *
79bd9814
TH
4738 * Parse input and register new cgroup event handler.
4739 *
4740 * Input must be in format '<event_fd> <control_fd> <args>'.
4741 * Interpretation of args is defined by control file implementation.
4742 */
451af504
TH
4743static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4744 char *buf, size_t nbytes, loff_t off)
79bd9814 4745{
451af504 4746 struct cgroup_subsys_state *css = of_css(of);
fba94807 4747 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4748 struct mem_cgroup_event *event;
79bd9814
TH
4749 struct cgroup_subsys_state *cfile_css;
4750 unsigned int efd, cfd;
4751 struct fd efile;
4752 struct fd cfile;
fba94807 4753 const char *name;
79bd9814
TH
4754 char *endp;
4755 int ret;
4756
451af504
TH
4757 buf = strstrip(buf);
4758
4759 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4760 if (*endp != ' ')
4761 return -EINVAL;
451af504 4762 buf = endp + 1;
79bd9814 4763
451af504 4764 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4765 if ((*endp != ' ') && (*endp != '\0'))
4766 return -EINVAL;
451af504 4767 buf = endp + 1;
79bd9814
TH
4768
4769 event = kzalloc(sizeof(*event), GFP_KERNEL);
4770 if (!event)
4771 return -ENOMEM;
4772
59b6f873 4773 event->memcg = memcg;
79bd9814 4774 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4775 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4776 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4777 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4778
4779 efile = fdget(efd);
4780 if (!efile.file) {
4781 ret = -EBADF;
4782 goto out_kfree;
4783 }
4784
4785 event->eventfd = eventfd_ctx_fileget(efile.file);
4786 if (IS_ERR(event->eventfd)) {
4787 ret = PTR_ERR(event->eventfd);
4788 goto out_put_efile;
4789 }
4790
4791 cfile = fdget(cfd);
4792 if (!cfile.file) {
4793 ret = -EBADF;
4794 goto out_put_eventfd;
4795 }
4796
4797 /* the process need read permission on control file */
4798 /* AV: shouldn't we check that it's been opened for read instead? */
4799 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4800 if (ret < 0)
4801 goto out_put_cfile;
4802
fba94807
TH
4803 /*
4804 * Determine the event callbacks and set them in @event. This used
4805 * to be done via struct cftype but cgroup core no longer knows
4806 * about these events. The following is crude but the whole thing
4807 * is for compatibility anyway.
3bc942f3
TH
4808 *
4809 * DO NOT ADD NEW FILES.
fba94807 4810 */
b583043e 4811 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4812
4813 if (!strcmp(name, "memory.usage_in_bytes")) {
4814 event->register_event = mem_cgroup_usage_register_event;
4815 event->unregister_event = mem_cgroup_usage_unregister_event;
4816 } else if (!strcmp(name, "memory.oom_control")) {
4817 event->register_event = mem_cgroup_oom_register_event;
4818 event->unregister_event = mem_cgroup_oom_unregister_event;
4819 } else if (!strcmp(name, "memory.pressure_level")) {
4820 event->register_event = vmpressure_register_event;
4821 event->unregister_event = vmpressure_unregister_event;
4822 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4823 event->register_event = memsw_cgroup_usage_register_event;
4824 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4825 } else {
4826 ret = -EINVAL;
4827 goto out_put_cfile;
4828 }
4829
79bd9814 4830 /*
b5557c4c
TH
4831 * Verify @cfile should belong to @css. Also, remaining events are
4832 * automatically removed on cgroup destruction but the removal is
4833 * asynchronous, so take an extra ref on @css.
79bd9814 4834 */
b583043e 4835 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4836 &memory_cgrp_subsys);
79bd9814 4837 ret = -EINVAL;
5a17f543 4838 if (IS_ERR(cfile_css))
79bd9814 4839 goto out_put_cfile;
5a17f543
TH
4840 if (cfile_css != css) {
4841 css_put(cfile_css);
79bd9814 4842 goto out_put_cfile;
5a17f543 4843 }
79bd9814 4844
451af504 4845 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4846 if (ret)
4847 goto out_put_css;
4848
9965ed17 4849 vfs_poll(efile.file, &event->pt);
79bd9814 4850
fba94807
TH
4851 spin_lock(&memcg->event_list_lock);
4852 list_add(&event->list, &memcg->event_list);
4853 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4854
4855 fdput(cfile);
4856 fdput(efile);
4857
451af504 4858 return nbytes;
79bd9814
TH
4859
4860out_put_css:
b5557c4c 4861 css_put(css);
79bd9814
TH
4862out_put_cfile:
4863 fdput(cfile);
4864out_put_eventfd:
4865 eventfd_ctx_put(event->eventfd);
4866out_put_efile:
4867 fdput(efile);
4868out_kfree:
4869 kfree(event);
4870
4871 return ret;
4872}
4873
241994ed 4874static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4875 {
0eea1030 4876 .name = "usage_in_bytes",
8c7c6e34 4877 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4878 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4879 },
c84872e1
PE
4880 {
4881 .name = "max_usage_in_bytes",
8c7c6e34 4882 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4883 .write = mem_cgroup_reset,
791badbd 4884 .read_u64 = mem_cgroup_read_u64,
c84872e1 4885 },
8cdea7c0 4886 {
0eea1030 4887 .name = "limit_in_bytes",
8c7c6e34 4888 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4889 .write = mem_cgroup_write,
791badbd 4890 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4891 },
296c81d8
BS
4892 {
4893 .name = "soft_limit_in_bytes",
4894 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4895 .write = mem_cgroup_write,
791badbd 4896 .read_u64 = mem_cgroup_read_u64,
296c81d8 4897 },
8cdea7c0
BS
4898 {
4899 .name = "failcnt",
8c7c6e34 4900 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4901 .write = mem_cgroup_reset,
791badbd 4902 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4903 },
d2ceb9b7
KH
4904 {
4905 .name = "stat",
2da8ca82 4906 .seq_show = memcg_stat_show,
d2ceb9b7 4907 },
c1e862c1
KH
4908 {
4909 .name = "force_empty",
6770c64e 4910 .write = mem_cgroup_force_empty_write,
c1e862c1 4911 },
18f59ea7
BS
4912 {
4913 .name = "use_hierarchy",
4914 .write_u64 = mem_cgroup_hierarchy_write,
4915 .read_u64 = mem_cgroup_hierarchy_read,
4916 },
79bd9814 4917 {
3bc942f3 4918 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4919 .write = memcg_write_event_control,
7dbdb199 4920 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4921 },
a7885eb8
KM
4922 {
4923 .name = "swappiness",
4924 .read_u64 = mem_cgroup_swappiness_read,
4925 .write_u64 = mem_cgroup_swappiness_write,
4926 },
7dc74be0
DN
4927 {
4928 .name = "move_charge_at_immigrate",
4929 .read_u64 = mem_cgroup_move_charge_read,
4930 .write_u64 = mem_cgroup_move_charge_write,
4931 },
9490ff27
KH
4932 {
4933 .name = "oom_control",
2da8ca82 4934 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4935 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4936 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4937 },
70ddf637
AV
4938 {
4939 .name = "pressure_level",
70ddf637 4940 },
406eb0c9
YH
4941#ifdef CONFIG_NUMA
4942 {
4943 .name = "numa_stat",
2da8ca82 4944 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4945 },
4946#endif
510fc4e1
GC
4947 {
4948 .name = "kmem.limit_in_bytes",
4949 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4950 .write = mem_cgroup_write,
791badbd 4951 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4952 },
4953 {
4954 .name = "kmem.usage_in_bytes",
4955 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4956 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4957 },
4958 {
4959 .name = "kmem.failcnt",
4960 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4961 .write = mem_cgroup_reset,
791badbd 4962 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4963 },
4964 {
4965 .name = "kmem.max_usage_in_bytes",
4966 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4967 .write = mem_cgroup_reset,
791badbd 4968 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4969 },
a87425a3
YS
4970#if defined(CONFIG_MEMCG_KMEM) && \
4971 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
749c5415
GC
4972 {
4973 .name = "kmem.slabinfo",
b047501c 4974 .seq_show = memcg_slab_show,
749c5415
GC
4975 },
4976#endif
d55f90bf
VD
4977 {
4978 .name = "kmem.tcp.limit_in_bytes",
4979 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4980 .write = mem_cgroup_write,
4981 .read_u64 = mem_cgroup_read_u64,
4982 },
4983 {
4984 .name = "kmem.tcp.usage_in_bytes",
4985 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4986 .read_u64 = mem_cgroup_read_u64,
4987 },
4988 {
4989 .name = "kmem.tcp.failcnt",
4990 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4991 .write = mem_cgroup_reset,
4992 .read_u64 = mem_cgroup_read_u64,
4993 },
4994 {
4995 .name = "kmem.tcp.max_usage_in_bytes",
4996 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4997 .write = mem_cgroup_reset,
4998 .read_u64 = mem_cgroup_read_u64,
4999 },
6bc10349 5000 { }, /* terminate */
af36f906 5001};
8c7c6e34 5002
73f576c0
JW
5003/*
5004 * Private memory cgroup IDR
5005 *
5006 * Swap-out records and page cache shadow entries need to store memcg
5007 * references in constrained space, so we maintain an ID space that is
5008 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5009 * memory-controlled cgroups to 64k.
5010 *
b8f2935f 5011 * However, there usually are many references to the offline CSS after
73f576c0
JW
5012 * the cgroup has been destroyed, such as page cache or reclaimable
5013 * slab objects, that don't need to hang on to the ID. We want to keep
5014 * those dead CSS from occupying IDs, or we might quickly exhaust the
5015 * relatively small ID space and prevent the creation of new cgroups
5016 * even when there are much fewer than 64k cgroups - possibly none.
5017 *
5018 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5019 * be freed and recycled when it's no longer needed, which is usually
5020 * when the CSS is offlined.
5021 *
5022 * The only exception to that are records of swapped out tmpfs/shmem
5023 * pages that need to be attributed to live ancestors on swapin. But
5024 * those references are manageable from userspace.
5025 */
5026
5027static DEFINE_IDR(mem_cgroup_idr);
5028
7e97de0b
KT
5029static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5030{
5031 if (memcg->id.id > 0) {
5032 idr_remove(&mem_cgroup_idr, memcg->id.id);
5033 memcg->id.id = 0;
5034 }
5035}
5036
c1514c0a
VF
5037static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5038 unsigned int n)
73f576c0 5039{
1c2d479a 5040 refcount_add(n, &memcg->id.ref);
73f576c0
JW
5041}
5042
615d66c3 5043static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 5044{
1c2d479a 5045 if (refcount_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 5046 mem_cgroup_id_remove(memcg);
73f576c0
JW
5047
5048 /* Memcg ID pins CSS */
5049 css_put(&memcg->css);
5050 }
5051}
5052
615d66c3
VD
5053static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5054{
5055 mem_cgroup_id_put_many(memcg, 1);
5056}
5057
73f576c0
JW
5058/**
5059 * mem_cgroup_from_id - look up a memcg from a memcg id
5060 * @id: the memcg id to look up
5061 *
5062 * Caller must hold rcu_read_lock().
5063 */
5064struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5065{
5066 WARN_ON_ONCE(!rcu_read_lock_held());
5067 return idr_find(&mem_cgroup_idr, id);
5068}
5069
ef8f2327 5070static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5071{
5072 struct mem_cgroup_per_node *pn;
ef8f2327 5073 int tmp = node;
1ecaab2b
KH
5074 /*
5075 * This routine is called against possible nodes.
5076 * But it's BUG to call kmalloc() against offline node.
5077 *
5078 * TODO: this routine can waste much memory for nodes which will
5079 * never be onlined. It's better to use memory hotplug callback
5080 * function.
5081 */
41e3355d
KH
5082 if (!node_state(node, N_NORMAL_MEMORY))
5083 tmp = -1;
17295c88 5084 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5085 if (!pn)
5086 return 1;
1ecaab2b 5087
815744d7
JW
5088 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
5089 if (!pn->lruvec_stat_local) {
5090 kfree(pn);
5091 return 1;
5092 }
5093
a983b5eb
JW
5094 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
5095 if (!pn->lruvec_stat_cpu) {
815744d7 5096 free_percpu(pn->lruvec_stat_local);
00f3ca2c
JW
5097 kfree(pn);
5098 return 1;
5099 }
5100
ef8f2327
MG
5101 lruvec_init(&pn->lruvec);
5102 pn->usage_in_excess = 0;
5103 pn->on_tree = false;
5104 pn->memcg = memcg;
5105
54f72fe0 5106 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
5107 return 0;
5108}
5109
ef8f2327 5110static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5111{
00f3ca2c
JW
5112 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5113
4eaf431f
MH
5114 if (!pn)
5115 return;
5116
a983b5eb 5117 free_percpu(pn->lruvec_stat_cpu);
815744d7 5118 free_percpu(pn->lruvec_stat_local);
00f3ca2c 5119 kfree(pn);
1ecaab2b
KH
5120}
5121
40e952f9 5122static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5123{
c8b2a36f 5124 int node;
59927fb9 5125
c8b2a36f 5126 for_each_node(node)
ef8f2327 5127 free_mem_cgroup_per_node_info(memcg, node);
871789d4 5128 free_percpu(memcg->vmstats_percpu);
815744d7 5129 free_percpu(memcg->vmstats_local);
8ff69e2c 5130 kfree(memcg);
59927fb9 5131}
3afe36b1 5132
40e952f9
TE
5133static void mem_cgroup_free(struct mem_cgroup *memcg)
5134{
5135 memcg_wb_domain_exit(memcg);
7961eee3
SB
5136 /*
5137 * Flush percpu vmstats and vmevents to guarantee the value correctness
5138 * on parent's and all ancestor levels.
5139 */
4a87e2a2 5140 memcg_flush_percpu_vmstats(memcg);
7961eee3 5141 memcg_flush_percpu_vmevents(memcg);
40e952f9
TE
5142 __mem_cgroup_free(memcg);
5143}
5144
0b8f73e1 5145static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 5146{
d142e3e6 5147 struct mem_cgroup *memcg;
b9726c26 5148 unsigned int size;
6d12e2d8 5149 int node;
97b27821 5150 int __maybe_unused i;
11d67612 5151 long error = -ENOMEM;
8cdea7c0 5152
0b8f73e1
JW
5153 size = sizeof(struct mem_cgroup);
5154 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5155
5156 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 5157 if (!memcg)
11d67612 5158 return ERR_PTR(error);
0b8f73e1 5159
73f576c0
JW
5160 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5161 1, MEM_CGROUP_ID_MAX,
5162 GFP_KERNEL);
11d67612
YS
5163 if (memcg->id.id < 0) {
5164 error = memcg->id.id;
73f576c0 5165 goto fail;
11d67612 5166 }
73f576c0 5167
815744d7
JW
5168 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5169 if (!memcg->vmstats_local)
5170 goto fail;
5171
871789d4
CD
5172 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5173 if (!memcg->vmstats_percpu)
0b8f73e1 5174 goto fail;
78fb7466 5175
3ed28fa1 5176 for_each_node(node)
ef8f2327 5177 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 5178 goto fail;
f64c3f54 5179
0b8f73e1
JW
5180 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5181 goto fail;
28dbc4b6 5182
f7e1cb6e 5183 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6 5184 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
5185 mutex_init(&memcg->thresholds_lock);
5186 spin_lock_init(&memcg->move_lock);
70ddf637 5187 vmpressure_init(&memcg->vmpressure);
fba94807
TH
5188 INIT_LIST_HEAD(&memcg->event_list);
5189 spin_lock_init(&memcg->event_list_lock);
d886f4e4 5190 memcg->socket_pressure = jiffies;
84c07d11 5191#ifdef CONFIG_MEMCG_KMEM
900a38f0 5192 memcg->kmemcg_id = -1;
bf4f0599 5193 INIT_LIST_HEAD(&memcg->objcg_list);
900a38f0 5194#endif
52ebea74
TH
5195#ifdef CONFIG_CGROUP_WRITEBACK
5196 INIT_LIST_HEAD(&memcg->cgwb_list);
97b27821
TH
5197 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5198 memcg->cgwb_frn[i].done =
5199 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
87eaceb3
YS
5200#endif
5201#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5202 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5203 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5204 memcg->deferred_split_queue.split_queue_len = 0;
52ebea74 5205#endif
73f576c0 5206 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
5207 return memcg;
5208fail:
7e97de0b 5209 mem_cgroup_id_remove(memcg);
40e952f9 5210 __mem_cgroup_free(memcg);
11d67612 5211 return ERR_PTR(error);
d142e3e6
GC
5212}
5213
0b8f73e1
JW
5214static struct cgroup_subsys_state * __ref
5215mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 5216{
0b8f73e1
JW
5217 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5218 struct mem_cgroup *memcg;
5219 long error = -ENOMEM;
d142e3e6 5220
0b8f73e1 5221 memcg = mem_cgroup_alloc();
11d67612
YS
5222 if (IS_ERR(memcg))
5223 return ERR_CAST(memcg);
d142e3e6 5224
d1663a90 5225 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
0b8f73e1 5226 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5227 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
0b8f73e1
JW
5228 if (parent) {
5229 memcg->swappiness = mem_cgroup_swappiness(parent);
5230 memcg->oom_kill_disable = parent->oom_kill_disable;
5231 }
5232 if (parent && parent->use_hierarchy) {
5233 memcg->use_hierarchy = true;
3e32cb2e 5234 page_counter_init(&memcg->memory, &parent->memory);
37e84351 5235 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
5236 page_counter_init(&memcg->memsw, &parent->memsw);
5237 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 5238 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 5239 } else {
3e32cb2e 5240 page_counter_init(&memcg->memory, NULL);
37e84351 5241 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
5242 page_counter_init(&memcg->memsw, NULL);
5243 page_counter_init(&memcg->kmem, NULL);
0db15298 5244 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
5245 /*
5246 * Deeper hierachy with use_hierarchy == false doesn't make
5247 * much sense so let cgroup subsystem know about this
5248 * unfortunate state in our controller.
5249 */
d142e3e6 5250 if (parent != root_mem_cgroup)
073219e9 5251 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 5252 }
d6441637 5253
0b8f73e1
JW
5254 /* The following stuff does not apply to the root */
5255 if (!parent) {
5256 root_mem_cgroup = memcg;
5257 return &memcg->css;
5258 }
5259
b313aeee 5260 error = memcg_online_kmem(memcg);
0b8f73e1
JW
5261 if (error)
5262 goto fail;
127424c8 5263
f7e1cb6e 5264 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5265 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 5266
0b8f73e1
JW
5267 return &memcg->css;
5268fail:
7e97de0b 5269 mem_cgroup_id_remove(memcg);
0b8f73e1 5270 mem_cgroup_free(memcg);
11d67612 5271 return ERR_PTR(error);
0b8f73e1
JW
5272}
5273
73f576c0 5274static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 5275{
58fa2a55
VD
5276 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5277
0a4465d3
KT
5278 /*
5279 * A memcg must be visible for memcg_expand_shrinker_maps()
5280 * by the time the maps are allocated. So, we allocate maps
5281 * here, when for_each_mem_cgroup() can't skip it.
5282 */
5283 if (memcg_alloc_shrinker_maps(memcg)) {
5284 mem_cgroup_id_remove(memcg);
5285 return -ENOMEM;
5286 }
5287
73f576c0 5288 /* Online state pins memcg ID, memcg ID pins CSS */
1c2d479a 5289 refcount_set(&memcg->id.ref, 1);
73f576c0 5290 css_get(css);
2f7dd7a4 5291 return 0;
8cdea7c0
BS
5292}
5293
eb95419b 5294static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 5295{
eb95419b 5296 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5297 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
5298
5299 /*
5300 * Unregister events and notify userspace.
5301 * Notify userspace about cgroup removing only after rmdir of cgroup
5302 * directory to avoid race between userspace and kernelspace.
5303 */
fba94807
TH
5304 spin_lock(&memcg->event_list_lock);
5305 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
5306 list_del_init(&event->list);
5307 schedule_work(&event->remove);
5308 }
fba94807 5309 spin_unlock(&memcg->event_list_lock);
ec64f515 5310
bf8d5d52 5311 page_counter_set_min(&memcg->memory, 0);
23067153 5312 page_counter_set_low(&memcg->memory, 0);
63677c74 5313
567e9ab2 5314 memcg_offline_kmem(memcg);
52ebea74 5315 wb_memcg_offline(memcg);
73f576c0 5316
591edfb1
RG
5317 drain_all_stock(memcg);
5318
73f576c0 5319 mem_cgroup_id_put(memcg);
df878fb0
KH
5320}
5321
6df38689
VD
5322static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5323{
5324 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5325
5326 invalidate_reclaim_iterators(memcg);
5327}
5328
eb95419b 5329static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 5330{
eb95419b 5331 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
97b27821 5332 int __maybe_unused i;
c268e994 5333
97b27821
TH
5334#ifdef CONFIG_CGROUP_WRITEBACK
5335 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5336 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5337#endif
f7e1cb6e 5338 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 5339 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 5340
0db15298 5341 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 5342 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 5343
0b8f73e1
JW
5344 vmpressure_cleanup(&memcg->vmpressure);
5345 cancel_work_sync(&memcg->high_work);
5346 mem_cgroup_remove_from_trees(memcg);
0a4465d3 5347 memcg_free_shrinker_maps(memcg);
d886f4e4 5348 memcg_free_kmem(memcg);
0b8f73e1 5349 mem_cgroup_free(memcg);
8cdea7c0
BS
5350}
5351
1ced953b
TH
5352/**
5353 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5354 * @css: the target css
5355 *
5356 * Reset the states of the mem_cgroup associated with @css. This is
5357 * invoked when the userland requests disabling on the default hierarchy
5358 * but the memcg is pinned through dependency. The memcg should stop
5359 * applying policies and should revert to the vanilla state as it may be
5360 * made visible again.
5361 *
5362 * The current implementation only resets the essential configurations.
5363 * This needs to be expanded to cover all the visible parts.
5364 */
5365static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5366{
5367 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5368
bbec2e15
RG
5369 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5370 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5371 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5372 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5373 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 5374 page_counter_set_min(&memcg->memory, 0);
23067153 5375 page_counter_set_low(&memcg->memory, 0);
d1663a90 5376 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
24d404dc 5377 memcg->soft_limit = PAGE_COUNTER_MAX;
4b82ab4f 5378 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
2529bb3a 5379 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
5380}
5381
02491447 5382#ifdef CONFIG_MMU
7dc74be0 5383/* Handlers for move charge at task migration. */
854ffa8d 5384static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5385{
05b84301 5386 int ret;
9476db97 5387
d0164adc
MG
5388 /* Try a single bulk charge without reclaim first, kswapd may wake */
5389 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 5390 if (!ret) {
854ffa8d 5391 mc.precharge += count;
854ffa8d
DN
5392 return ret;
5393 }
9476db97 5394
3674534b 5395 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 5396 while (count--) {
3674534b 5397 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 5398 if (ret)
38c5d72f 5399 return ret;
854ffa8d 5400 mc.precharge++;
9476db97 5401 cond_resched();
854ffa8d 5402 }
9476db97 5403 return 0;
4ffef5fe
DN
5404}
5405
4ffef5fe
DN
5406union mc_target {
5407 struct page *page;
02491447 5408 swp_entry_t ent;
4ffef5fe
DN
5409};
5410
4ffef5fe 5411enum mc_target_type {
8d32ff84 5412 MC_TARGET_NONE = 0,
4ffef5fe 5413 MC_TARGET_PAGE,
02491447 5414 MC_TARGET_SWAP,
c733a828 5415 MC_TARGET_DEVICE,
4ffef5fe
DN
5416};
5417
90254a65
DN
5418static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5419 unsigned long addr, pte_t ptent)
4ffef5fe 5420{
25b2995a 5421 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5422
90254a65
DN
5423 if (!page || !page_mapped(page))
5424 return NULL;
5425 if (PageAnon(page)) {
1dfab5ab 5426 if (!(mc.flags & MOVE_ANON))
90254a65 5427 return NULL;
1dfab5ab
JW
5428 } else {
5429 if (!(mc.flags & MOVE_FILE))
5430 return NULL;
5431 }
90254a65
DN
5432 if (!get_page_unless_zero(page))
5433 return NULL;
5434
5435 return page;
5436}
5437
c733a828 5438#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 5439static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5440 pte_t ptent, swp_entry_t *entry)
90254a65 5441{
90254a65
DN
5442 struct page *page = NULL;
5443 swp_entry_t ent = pte_to_swp_entry(ptent);
5444
1dfab5ab 5445 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 5446 return NULL;
c733a828
JG
5447
5448 /*
5449 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5450 * a device and because they are not accessible by CPU they are store
5451 * as special swap entry in the CPU page table.
5452 */
5453 if (is_device_private_entry(ent)) {
5454 page = device_private_entry_to_page(ent);
5455 /*
5456 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5457 * a refcount of 1 when free (unlike normal page)
5458 */
5459 if (!page_ref_add_unless(page, 1, 1))
5460 return NULL;
5461 return page;
5462 }
5463
4b91355e
KH
5464 /*
5465 * Because lookup_swap_cache() updates some statistics counter,
5466 * we call find_get_page() with swapper_space directly.
5467 */
f6ab1f7f 5468 page = find_get_page(swap_address_space(ent), swp_offset(ent));
2d1c4980 5469 entry->val = ent.val;
90254a65
DN
5470
5471 return page;
5472}
4b91355e
KH
5473#else
5474static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 5475 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
5476{
5477 return NULL;
5478}
5479#endif
90254a65 5480
87946a72
DN
5481static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5482 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5483{
5484 struct page *page = NULL;
87946a72
DN
5485 struct address_space *mapping;
5486 pgoff_t pgoff;
5487
5488 if (!vma->vm_file) /* anonymous vma */
5489 return NULL;
1dfab5ab 5490 if (!(mc.flags & MOVE_FILE))
87946a72
DN
5491 return NULL;
5492
87946a72 5493 mapping = vma->vm_file->f_mapping;
0661a336 5494 pgoff = linear_page_index(vma, addr);
87946a72
DN
5495
5496 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5497#ifdef CONFIG_SWAP
5498 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
5499 if (shmem_mapping(mapping)) {
5500 page = find_get_entry(mapping, pgoff);
3159f943 5501 if (xa_is_value(page)) {
139b6a6f 5502 swp_entry_t swp = radix_to_swp_entry(page);
2d1c4980 5503 *entry = swp;
f6ab1f7f
HY
5504 page = find_get_page(swap_address_space(swp),
5505 swp_offset(swp));
139b6a6f
JW
5506 }
5507 } else
5508 page = find_get_page(mapping, pgoff);
5509#else
5510 page = find_get_page(mapping, pgoff);
aa3b1895 5511#endif
87946a72
DN
5512 return page;
5513}
5514
b1b0deab
CG
5515/**
5516 * mem_cgroup_move_account - move account of the page
5517 * @page: the page
25843c2b 5518 * @compound: charge the page as compound or small page
b1b0deab
CG
5519 * @from: mem_cgroup which the page is moved from.
5520 * @to: mem_cgroup which the page is moved to. @from != @to.
5521 *
3ac808fd 5522 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
5523 *
5524 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5525 * from old cgroup.
5526 */
5527static int mem_cgroup_move_account(struct page *page,
f627c2f5 5528 bool compound,
b1b0deab
CG
5529 struct mem_cgroup *from,
5530 struct mem_cgroup *to)
5531{
ae8af438
KK
5532 struct lruvec *from_vec, *to_vec;
5533 struct pglist_data *pgdat;
f627c2f5 5534 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab
CG
5535 int ret;
5536
5537 VM_BUG_ON(from == to);
5538 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 5539 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
5540
5541 /*
6a93ca8f 5542 * Prevent mem_cgroup_migrate() from looking at
45637bab 5543 * page->mem_cgroup of its source page while we change it.
b1b0deab 5544 */
f627c2f5 5545 ret = -EBUSY;
b1b0deab
CG
5546 if (!trylock_page(page))
5547 goto out;
5548
5549 ret = -EINVAL;
5550 if (page->mem_cgroup != from)
5551 goto out_unlock;
5552
ae8af438 5553 pgdat = page_pgdat(page);
867e5e1d
JW
5554 from_vec = mem_cgroup_lruvec(from, pgdat);
5555 to_vec = mem_cgroup_lruvec(to, pgdat);
ae8af438 5556
abb242f5 5557 lock_page_memcg(page);
b1b0deab 5558
be5d0a74
JW
5559 if (PageAnon(page)) {
5560 if (page_mapped(page)) {
5561 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5562 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
468c3982
JW
5563 if (PageTransHuge(page)) {
5564 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5565 -nr_pages);
5566 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5567 nr_pages);
5568 }
5569
be5d0a74
JW
5570 }
5571 } else {
0d1c2072
JW
5572 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5573 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5574
5575 if (PageSwapBacked(page)) {
5576 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5577 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5578 }
5579
49e50d27
JW
5580 if (page_mapped(page)) {
5581 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5582 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5583 }
b1b0deab 5584
49e50d27
JW
5585 if (PageDirty(page)) {
5586 struct address_space *mapping = page_mapping(page);
c4843a75 5587
49e50d27
JW
5588 if (mapping_cap_account_dirty(mapping)) {
5589 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5590 -nr_pages);
5591 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5592 nr_pages);
5593 }
c4843a75
GT
5594 }
5595 }
5596
b1b0deab 5597 if (PageWriteback(page)) {
ae8af438
KK
5598 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5599 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
b1b0deab
CG
5600 }
5601
5602 /*
abb242f5
JW
5603 * All state has been migrated, let's switch to the new memcg.
5604 *
b1b0deab 5605 * It is safe to change page->mem_cgroup here because the page
abb242f5
JW
5606 * is referenced, charged, isolated, and locked: we can't race
5607 * with (un)charging, migration, LRU putback, or anything else
5608 * that would rely on a stable page->mem_cgroup.
5609 *
5610 * Note that lock_page_memcg is a memcg lock, not a page lock,
5611 * to save space. As soon as we switch page->mem_cgroup to a
5612 * new memcg that isn't locked, the above state can change
5613 * concurrently again. Make sure we're truly done with it.
b1b0deab 5614 */
abb242f5 5615 smp_mb();
b1b0deab 5616
1a3e1f40
JW
5617 css_get(&to->css);
5618 css_put(&from->css);
5619
5620 page->mem_cgroup = to;
87eaceb3 5621
abb242f5 5622 __unlock_page_memcg(from);
b1b0deab
CG
5623
5624 ret = 0;
5625
5626 local_irq_disable();
3fba69a5 5627 mem_cgroup_charge_statistics(to, page, nr_pages);
b1b0deab 5628 memcg_check_events(to, page);
3fba69a5 5629 mem_cgroup_charge_statistics(from, page, -nr_pages);
b1b0deab
CG
5630 memcg_check_events(from, page);
5631 local_irq_enable();
5632out_unlock:
5633 unlock_page(page);
5634out:
5635 return ret;
5636}
5637
7cf7806c
LR
5638/**
5639 * get_mctgt_type - get target type of moving charge
5640 * @vma: the vma the pte to be checked belongs
5641 * @addr: the address corresponding to the pte to be checked
5642 * @ptent: the pte to be checked
5643 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5644 *
5645 * Returns
5646 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5647 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5648 * move charge. if @target is not NULL, the page is stored in target->page
5649 * with extra refcnt got(Callers should handle it).
5650 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5651 * target for charge migration. if @target is not NULL, the entry is stored
5652 * in target->ent.
25b2995a
CH
5653 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5654 * (so ZONE_DEVICE page and thus not on the lru).
df6ad698
JG
5655 * For now we such page is charge like a regular page would be as for all
5656 * intent and purposes it is just special memory taking the place of a
5657 * regular page.
c733a828
JG
5658 *
5659 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
5660 *
5661 * Called with pte lock held.
5662 */
5663
8d32ff84 5664static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5665 unsigned long addr, pte_t ptent, union mc_target *target)
5666{
5667 struct page *page = NULL;
8d32ff84 5668 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5669 swp_entry_t ent = { .val = 0 };
5670
5671 if (pte_present(ptent))
5672 page = mc_handle_present_pte(vma, addr, ptent);
5673 else if (is_swap_pte(ptent))
48406ef8 5674 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 5675 else if (pte_none(ptent))
87946a72 5676 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5677
5678 if (!page && !ent.val)
8d32ff84 5679 return ret;
02491447 5680 if (page) {
02491447 5681 /*
0a31bc97 5682 * Do only loose check w/o serialization.
1306a85a 5683 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 5684 * not under LRU exclusion.
02491447 5685 */
1306a85a 5686 if (page->mem_cgroup == mc.from) {
02491447 5687 ret = MC_TARGET_PAGE;
25b2995a 5688 if (is_device_private_page(page))
c733a828 5689 ret = MC_TARGET_DEVICE;
02491447
DN
5690 if (target)
5691 target->page = page;
5692 }
5693 if (!ret || !target)
5694 put_page(page);
5695 }
3e14a57b
HY
5696 /*
5697 * There is a swap entry and a page doesn't exist or isn't charged.
5698 * But we cannot move a tail-page in a THP.
5699 */
5700 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 5701 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5702 ret = MC_TARGET_SWAP;
5703 if (target)
5704 target->ent = ent;
4ffef5fe 5705 }
4ffef5fe
DN
5706 return ret;
5707}
5708
12724850
NH
5709#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5710/*
d6810d73
HY
5711 * We don't consider PMD mapped swapping or file mapped pages because THP does
5712 * not support them for now.
12724850
NH
5713 * Caller should make sure that pmd_trans_huge(pmd) is true.
5714 */
5715static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5716 unsigned long addr, pmd_t pmd, union mc_target *target)
5717{
5718 struct page *page = NULL;
12724850
NH
5719 enum mc_target_type ret = MC_TARGET_NONE;
5720
84c3fc4e
ZY
5721 if (unlikely(is_swap_pmd(pmd))) {
5722 VM_BUG_ON(thp_migration_supported() &&
5723 !is_pmd_migration_entry(pmd));
5724 return ret;
5725 }
12724850 5726 page = pmd_page(pmd);
309381fe 5727 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 5728 if (!(mc.flags & MOVE_ANON))
12724850 5729 return ret;
1306a85a 5730 if (page->mem_cgroup == mc.from) {
12724850
NH
5731 ret = MC_TARGET_PAGE;
5732 if (target) {
5733 get_page(page);
5734 target->page = page;
5735 }
5736 }
5737 return ret;
5738}
5739#else
5740static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5741 unsigned long addr, pmd_t pmd, union mc_target *target)
5742{
5743 return MC_TARGET_NONE;
5744}
5745#endif
5746
4ffef5fe
DN
5747static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5748 unsigned long addr, unsigned long end,
5749 struct mm_walk *walk)
5750{
26bcd64a 5751 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5752 pte_t *pte;
5753 spinlock_t *ptl;
5754
b6ec57f4
KS
5755 ptl = pmd_trans_huge_lock(pmd, vma);
5756 if (ptl) {
c733a828
JG
5757 /*
5758 * Note their can not be MC_TARGET_DEVICE for now as we do not
25b2995a
CH
5759 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5760 * this might change.
c733a828 5761 */
12724850
NH
5762 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5763 mc.precharge += HPAGE_PMD_NR;
bf929152 5764 spin_unlock(ptl);
1a5a9906 5765 return 0;
12724850 5766 }
03319327 5767
45f83cef
AA
5768 if (pmd_trans_unstable(pmd))
5769 return 0;
4ffef5fe
DN
5770 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5771 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5772 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5773 mc.precharge++; /* increment precharge temporarily */
5774 pte_unmap_unlock(pte - 1, ptl);
5775 cond_resched();
5776
7dc74be0
DN
5777 return 0;
5778}
5779
7b86ac33
CH
5780static const struct mm_walk_ops precharge_walk_ops = {
5781 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5782};
5783
4ffef5fe
DN
5784static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5785{
5786 unsigned long precharge;
4ffef5fe 5787
d8ed45c5 5788 mmap_read_lock(mm);
7b86ac33 5789 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
d8ed45c5 5790 mmap_read_unlock(mm);
4ffef5fe
DN
5791
5792 precharge = mc.precharge;
5793 mc.precharge = 0;
5794
5795 return precharge;
5796}
5797
4ffef5fe
DN
5798static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5799{
dfe076b0
DN
5800 unsigned long precharge = mem_cgroup_count_precharge(mm);
5801
5802 VM_BUG_ON(mc.moving_task);
5803 mc.moving_task = current;
5804 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
5805}
5806
dfe076b0
DN
5807/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5808static void __mem_cgroup_clear_mc(void)
4ffef5fe 5809{
2bd9bb20
KH
5810 struct mem_cgroup *from = mc.from;
5811 struct mem_cgroup *to = mc.to;
5812
4ffef5fe 5813 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 5814 if (mc.precharge) {
00501b53 5815 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
5816 mc.precharge = 0;
5817 }
5818 /*
5819 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5820 * we must uncharge here.
5821 */
5822 if (mc.moved_charge) {
00501b53 5823 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 5824 mc.moved_charge = 0;
4ffef5fe 5825 }
483c30b5
DN
5826 /* we must fixup refcnts and charges */
5827 if (mc.moved_swap) {
483c30b5 5828 /* uncharge swap account from the old cgroup */
ce00a967 5829 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 5830 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 5831
615d66c3
VD
5832 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5833
05b84301 5834 /*
3e32cb2e
JW
5835 * we charged both to->memory and to->memsw, so we
5836 * should uncharge to->memory.
05b84301 5837 */
ce00a967 5838 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5839 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5840
483c30b5
DN
5841 mc.moved_swap = 0;
5842 }
dfe076b0
DN
5843 memcg_oom_recover(from);
5844 memcg_oom_recover(to);
5845 wake_up_all(&mc.waitq);
5846}
5847
5848static void mem_cgroup_clear_mc(void)
5849{
264a0ae1
TH
5850 struct mm_struct *mm = mc.mm;
5851
dfe076b0
DN
5852 /*
5853 * we must clear moving_task before waking up waiters at the end of
5854 * task migration.
5855 */
5856 mc.moving_task = NULL;
5857 __mem_cgroup_clear_mc();
2bd9bb20 5858 spin_lock(&mc.lock);
4ffef5fe
DN
5859 mc.from = NULL;
5860 mc.to = NULL;
264a0ae1 5861 mc.mm = NULL;
2bd9bb20 5862 spin_unlock(&mc.lock);
264a0ae1
TH
5863
5864 mmput(mm);
4ffef5fe
DN
5865}
5866
1f7dd3e5 5867static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5868{
1f7dd3e5 5869 struct cgroup_subsys_state *css;
eed67d75 5870 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5871 struct mem_cgroup *from;
4530eddb 5872 struct task_struct *leader, *p;
9f2115f9 5873 struct mm_struct *mm;
1dfab5ab 5874 unsigned long move_flags;
9f2115f9 5875 int ret = 0;
7dc74be0 5876
1f7dd3e5
TH
5877 /* charge immigration isn't supported on the default hierarchy */
5878 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5879 return 0;
5880
4530eddb
TH
5881 /*
5882 * Multi-process migrations only happen on the default hierarchy
5883 * where charge immigration is not used. Perform charge
5884 * immigration if @tset contains a leader and whine if there are
5885 * multiple.
5886 */
5887 p = NULL;
1f7dd3e5 5888 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5889 WARN_ON_ONCE(p);
5890 p = leader;
1f7dd3e5 5891 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5892 }
5893 if (!p)
5894 return 0;
5895
1f7dd3e5
TH
5896 /*
5897 * We are now commited to this value whatever it is. Changes in this
5898 * tunable will only affect upcoming migrations, not the current one.
5899 * So we need to save it, and keep it going.
5900 */
5901 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5902 if (!move_flags)
5903 return 0;
5904
9f2115f9
TH
5905 from = mem_cgroup_from_task(p);
5906
5907 VM_BUG_ON(from == memcg);
5908
5909 mm = get_task_mm(p);
5910 if (!mm)
5911 return 0;
5912 /* We move charges only when we move a owner of the mm */
5913 if (mm->owner == p) {
5914 VM_BUG_ON(mc.from);
5915 VM_BUG_ON(mc.to);
5916 VM_BUG_ON(mc.precharge);
5917 VM_BUG_ON(mc.moved_charge);
5918 VM_BUG_ON(mc.moved_swap);
5919
5920 spin_lock(&mc.lock);
264a0ae1 5921 mc.mm = mm;
9f2115f9
TH
5922 mc.from = from;
5923 mc.to = memcg;
5924 mc.flags = move_flags;
5925 spin_unlock(&mc.lock);
5926 /* We set mc.moving_task later */
5927
5928 ret = mem_cgroup_precharge_mc(mm);
5929 if (ret)
5930 mem_cgroup_clear_mc();
264a0ae1
TH
5931 } else {
5932 mmput(mm);
7dc74be0
DN
5933 }
5934 return ret;
5935}
5936
1f7dd3e5 5937static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5938{
4e2f245d
JW
5939 if (mc.to)
5940 mem_cgroup_clear_mc();
7dc74be0
DN
5941}
5942
4ffef5fe
DN
5943static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5944 unsigned long addr, unsigned long end,
5945 struct mm_walk *walk)
7dc74be0 5946{
4ffef5fe 5947 int ret = 0;
26bcd64a 5948 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5949 pte_t *pte;
5950 spinlock_t *ptl;
12724850
NH
5951 enum mc_target_type target_type;
5952 union mc_target target;
5953 struct page *page;
4ffef5fe 5954
b6ec57f4
KS
5955 ptl = pmd_trans_huge_lock(pmd, vma);
5956 if (ptl) {
62ade86a 5957 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5958 spin_unlock(ptl);
12724850
NH
5959 return 0;
5960 }
5961 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5962 if (target_type == MC_TARGET_PAGE) {
5963 page = target.page;
5964 if (!isolate_lru_page(page)) {
f627c2f5 5965 if (!mem_cgroup_move_account(page, true,
1306a85a 5966 mc.from, mc.to)) {
12724850
NH
5967 mc.precharge -= HPAGE_PMD_NR;
5968 mc.moved_charge += HPAGE_PMD_NR;
5969 }
5970 putback_lru_page(page);
5971 }
5972 put_page(page);
c733a828
JG
5973 } else if (target_type == MC_TARGET_DEVICE) {
5974 page = target.page;
5975 if (!mem_cgroup_move_account(page, true,
5976 mc.from, mc.to)) {
5977 mc.precharge -= HPAGE_PMD_NR;
5978 mc.moved_charge += HPAGE_PMD_NR;
5979 }
5980 put_page(page);
12724850 5981 }
bf929152 5982 spin_unlock(ptl);
1a5a9906 5983 return 0;
12724850
NH
5984 }
5985
45f83cef
AA
5986 if (pmd_trans_unstable(pmd))
5987 return 0;
4ffef5fe
DN
5988retry:
5989 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5990 for (; addr != end; addr += PAGE_SIZE) {
5991 pte_t ptent = *(pte++);
c733a828 5992 bool device = false;
02491447 5993 swp_entry_t ent;
4ffef5fe
DN
5994
5995 if (!mc.precharge)
5996 break;
5997
8d32ff84 5998 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5999 case MC_TARGET_DEVICE:
6000 device = true;
e4a9bc58 6001 fallthrough;
4ffef5fe
DN
6002 case MC_TARGET_PAGE:
6003 page = target.page;
53f9263b
KS
6004 /*
6005 * We can have a part of the split pmd here. Moving it
6006 * can be done but it would be too convoluted so simply
6007 * ignore such a partial THP and keep it in original
6008 * memcg. There should be somebody mapping the head.
6009 */
6010 if (PageTransCompound(page))
6011 goto put;
c733a828 6012 if (!device && isolate_lru_page(page))
4ffef5fe 6013 goto put;
f627c2f5
KS
6014 if (!mem_cgroup_move_account(page, false,
6015 mc.from, mc.to)) {
4ffef5fe 6016 mc.precharge--;
854ffa8d
DN
6017 /* we uncharge from mc.from later. */
6018 mc.moved_charge++;
4ffef5fe 6019 }
c733a828
JG
6020 if (!device)
6021 putback_lru_page(page);
8d32ff84 6022put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6023 put_page(page);
6024 break;
02491447
DN
6025 case MC_TARGET_SWAP:
6026 ent = target.ent;
e91cbb42 6027 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6028 mc.precharge--;
8d22a935
HD
6029 mem_cgroup_id_get_many(mc.to, 1);
6030 /* we fixup other refcnts and charges later. */
483c30b5
DN
6031 mc.moved_swap++;
6032 }
02491447 6033 break;
4ffef5fe
DN
6034 default:
6035 break;
6036 }
6037 }
6038 pte_unmap_unlock(pte - 1, ptl);
6039 cond_resched();
6040
6041 if (addr != end) {
6042 /*
6043 * We have consumed all precharges we got in can_attach().
6044 * We try charge one by one, but don't do any additional
6045 * charges to mc.to if we have failed in charge once in attach()
6046 * phase.
6047 */
854ffa8d 6048 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6049 if (!ret)
6050 goto retry;
6051 }
6052
6053 return ret;
6054}
6055
7b86ac33
CH
6056static const struct mm_walk_ops charge_walk_ops = {
6057 .pmd_entry = mem_cgroup_move_charge_pte_range,
6058};
6059
264a0ae1 6060static void mem_cgroup_move_charge(void)
4ffef5fe 6061{
4ffef5fe 6062 lru_add_drain_all();
312722cb 6063 /*
81f8c3a4
JW
6064 * Signal lock_page_memcg() to take the memcg's move_lock
6065 * while we're moving its pages to another memcg. Then wait
6066 * for already started RCU-only updates to finish.
312722cb
JW
6067 */
6068 atomic_inc(&mc.from->moving_account);
6069 synchronize_rcu();
dfe076b0 6070retry:
d8ed45c5 6071 if (unlikely(!mmap_read_trylock(mc.mm))) {
dfe076b0 6072 /*
c1e8d7c6 6073 * Someone who are holding the mmap_lock might be waiting in
dfe076b0
DN
6074 * waitq. So we cancel all extra charges, wake up all waiters,
6075 * and retry. Because we cancel precharges, we might not be able
6076 * to move enough charges, but moving charge is a best-effort
6077 * feature anyway, so it wouldn't be a big problem.
6078 */
6079 __mem_cgroup_clear_mc();
6080 cond_resched();
6081 goto retry;
6082 }
26bcd64a
NH
6083 /*
6084 * When we have consumed all precharges and failed in doing
6085 * additional charge, the page walk just aborts.
6086 */
7b86ac33
CH
6087 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6088 NULL);
0247f3f4 6089
d8ed45c5 6090 mmap_read_unlock(mc.mm);
312722cb 6091 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
6092}
6093
264a0ae1 6094static void mem_cgroup_move_task(void)
67e465a7 6095{
264a0ae1
TH
6096 if (mc.to) {
6097 mem_cgroup_move_charge();
a433658c 6098 mem_cgroup_clear_mc();
264a0ae1 6099 }
67e465a7 6100}
5cfb80a7 6101#else /* !CONFIG_MMU */
1f7dd3e5 6102static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6103{
6104 return 0;
6105}
1f7dd3e5 6106static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
6107{
6108}
264a0ae1 6109static void mem_cgroup_move_task(void)
5cfb80a7
DN
6110{
6111}
6112#endif
67e465a7 6113
f00baae7
TH
6114/*
6115 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
6116 * to verify whether we're attached to the default hierarchy on each mount
6117 * attempt.
f00baae7 6118 */
eb95419b 6119static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
6120{
6121 /*
aa6ec29b 6122 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
6123 * guarantees that @root doesn't have any children, so turning it
6124 * on for the root memcg is enough.
6125 */
9e10a130 6126 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
6127 root_mem_cgroup->use_hierarchy = true;
6128 else
6129 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
6130}
6131
677dc973
CD
6132static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6133{
6134 if (value == PAGE_COUNTER_MAX)
6135 seq_puts(m, "max\n");
6136 else
6137 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6138
6139 return 0;
6140}
6141
241994ed
JW
6142static u64 memory_current_read(struct cgroup_subsys_state *css,
6143 struct cftype *cft)
6144{
f5fc3c5d
JW
6145 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6146
6147 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
6148}
6149
bf8d5d52
RG
6150static int memory_min_show(struct seq_file *m, void *v)
6151{
677dc973
CD
6152 return seq_puts_memcg_tunable(m,
6153 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
bf8d5d52
RG
6154}
6155
6156static ssize_t memory_min_write(struct kernfs_open_file *of,
6157 char *buf, size_t nbytes, loff_t off)
6158{
6159 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6160 unsigned long min;
6161 int err;
6162
6163 buf = strstrip(buf);
6164 err = page_counter_memparse(buf, "max", &min);
6165 if (err)
6166 return err;
6167
6168 page_counter_set_min(&memcg->memory, min);
6169
6170 return nbytes;
6171}
6172
241994ed
JW
6173static int memory_low_show(struct seq_file *m, void *v)
6174{
677dc973
CD
6175 return seq_puts_memcg_tunable(m,
6176 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
241994ed
JW
6177}
6178
6179static ssize_t memory_low_write(struct kernfs_open_file *of,
6180 char *buf, size_t nbytes, loff_t off)
6181{
6182 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6183 unsigned long low;
6184 int err;
6185
6186 buf = strstrip(buf);
d2973697 6187 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
6188 if (err)
6189 return err;
6190
23067153 6191 page_counter_set_low(&memcg->memory, low);
241994ed
JW
6192
6193 return nbytes;
6194}
6195
6196static int memory_high_show(struct seq_file *m, void *v)
6197{
d1663a90
JK
6198 return seq_puts_memcg_tunable(m,
6199 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
241994ed
JW
6200}
6201
6202static ssize_t memory_high_write(struct kernfs_open_file *of,
6203 char *buf, size_t nbytes, loff_t off)
6204{
6205 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
8c8c383c
JW
6206 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6207 bool drained = false;
241994ed
JW
6208 unsigned long high;
6209 int err;
6210
6211 buf = strstrip(buf);
d2973697 6212 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
6213 if (err)
6214 return err;
6215
8c8c383c
JW
6216 for (;;) {
6217 unsigned long nr_pages = page_counter_read(&memcg->memory);
6218 unsigned long reclaimed;
6219
6220 if (nr_pages <= high)
6221 break;
6222
6223 if (signal_pending(current))
6224 break;
6225
6226 if (!drained) {
6227 drain_all_stock(memcg);
6228 drained = true;
6229 continue;
6230 }
6231
6232 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6233 GFP_KERNEL, true);
6234
6235 if (!reclaimed && !nr_retries--)
6236 break;
6237 }
588083bb 6238
536d3bf2
RG
6239 page_counter_set_high(&memcg->memory, high);
6240
241994ed
JW
6241 return nbytes;
6242}
6243
6244static int memory_max_show(struct seq_file *m, void *v)
6245{
677dc973
CD
6246 return seq_puts_memcg_tunable(m,
6247 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
241994ed
JW
6248}
6249
6250static ssize_t memory_max_write(struct kernfs_open_file *of,
6251 char *buf, size_t nbytes, loff_t off)
6252{
6253 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
6254 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6255 bool drained = false;
241994ed
JW
6256 unsigned long max;
6257 int err;
6258
6259 buf = strstrip(buf);
d2973697 6260 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
6261 if (err)
6262 return err;
6263
bbec2e15 6264 xchg(&memcg->memory.max, max);
b6e6edcf
JW
6265
6266 for (;;) {
6267 unsigned long nr_pages = page_counter_read(&memcg->memory);
6268
6269 if (nr_pages <= max)
6270 break;
6271
7249c9f0 6272 if (signal_pending(current))
b6e6edcf 6273 break;
b6e6edcf
JW
6274
6275 if (!drained) {
6276 drain_all_stock(memcg);
6277 drained = true;
6278 continue;
6279 }
6280
6281 if (nr_reclaims) {
6282 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6283 GFP_KERNEL, true))
6284 nr_reclaims--;
6285 continue;
6286 }
6287
e27be240 6288 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
6289 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6290 break;
6291 }
241994ed 6292
2529bb3a 6293 memcg_wb_domain_size_changed(memcg);
241994ed
JW
6294 return nbytes;
6295}
6296
1e577f97
SB
6297static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6298{
6299 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6300 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6301 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6302 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6303 seq_printf(m, "oom_kill %lu\n",
6304 atomic_long_read(&events[MEMCG_OOM_KILL]));
6305}
6306
241994ed
JW
6307static int memory_events_show(struct seq_file *m, void *v)
6308{
aa9694bb 6309 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6310
1e577f97
SB
6311 __memory_events_show(m, memcg->memory_events);
6312 return 0;
6313}
6314
6315static int memory_events_local_show(struct seq_file *m, void *v)
6316{
6317 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
241994ed 6318
1e577f97 6319 __memory_events_show(m, memcg->memory_events_local);
241994ed
JW
6320 return 0;
6321}
6322
587d9f72
JW
6323static int memory_stat_show(struct seq_file *m, void *v)
6324{
aa9694bb 6325 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
c8713d0b 6326 char *buf;
1ff9e6e1 6327
c8713d0b
JW
6328 buf = memory_stat_format(memcg);
6329 if (!buf)
6330 return -ENOMEM;
6331 seq_puts(m, buf);
6332 kfree(buf);
587d9f72
JW
6333 return 0;
6334}
6335
3d8b38eb
RG
6336static int memory_oom_group_show(struct seq_file *m, void *v)
6337{
aa9694bb 6338 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3d8b38eb
RG
6339
6340 seq_printf(m, "%d\n", memcg->oom_group);
6341
6342 return 0;
6343}
6344
6345static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6346 char *buf, size_t nbytes, loff_t off)
6347{
6348 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6349 int ret, oom_group;
6350
6351 buf = strstrip(buf);
6352 if (!buf)
6353 return -EINVAL;
6354
6355 ret = kstrtoint(buf, 0, &oom_group);
6356 if (ret)
6357 return ret;
6358
6359 if (oom_group != 0 && oom_group != 1)
6360 return -EINVAL;
6361
6362 memcg->oom_group = oom_group;
6363
6364 return nbytes;
6365}
6366
241994ed
JW
6367static struct cftype memory_files[] = {
6368 {
6369 .name = "current",
f5fc3c5d 6370 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
6371 .read_u64 = memory_current_read,
6372 },
bf8d5d52
RG
6373 {
6374 .name = "min",
6375 .flags = CFTYPE_NOT_ON_ROOT,
6376 .seq_show = memory_min_show,
6377 .write = memory_min_write,
6378 },
241994ed
JW
6379 {
6380 .name = "low",
6381 .flags = CFTYPE_NOT_ON_ROOT,
6382 .seq_show = memory_low_show,
6383 .write = memory_low_write,
6384 },
6385 {
6386 .name = "high",
6387 .flags = CFTYPE_NOT_ON_ROOT,
6388 .seq_show = memory_high_show,
6389 .write = memory_high_write,
6390 },
6391 {
6392 .name = "max",
6393 .flags = CFTYPE_NOT_ON_ROOT,
6394 .seq_show = memory_max_show,
6395 .write = memory_max_write,
6396 },
6397 {
6398 .name = "events",
6399 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 6400 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
6401 .seq_show = memory_events_show,
6402 },
1e577f97
SB
6403 {
6404 .name = "events.local",
6405 .flags = CFTYPE_NOT_ON_ROOT,
6406 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6407 .seq_show = memory_events_local_show,
6408 },
587d9f72
JW
6409 {
6410 .name = "stat",
587d9f72
JW
6411 .seq_show = memory_stat_show,
6412 },
3d8b38eb
RG
6413 {
6414 .name = "oom.group",
6415 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6416 .seq_show = memory_oom_group_show,
6417 .write = memory_oom_group_write,
6418 },
241994ed
JW
6419 { } /* terminate */
6420};
6421
073219e9 6422struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 6423 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6424 .css_online = mem_cgroup_css_online,
92fb9748 6425 .css_offline = mem_cgroup_css_offline,
6df38689 6426 .css_released = mem_cgroup_css_released,
92fb9748 6427 .css_free = mem_cgroup_css_free,
1ced953b 6428 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
6429 .can_attach = mem_cgroup_can_attach,
6430 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 6431 .post_attach = mem_cgroup_move_task,
f00baae7 6432 .bind = mem_cgroup_bind,
241994ed
JW
6433 .dfl_cftypes = memory_files,
6434 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 6435 .early_init = 0,
8cdea7c0 6436};
c077719b 6437
bc50bcc6
JW
6438/*
6439 * This function calculates an individual cgroup's effective
6440 * protection which is derived from its own memory.min/low, its
6441 * parent's and siblings' settings, as well as the actual memory
6442 * distribution in the tree.
6443 *
6444 * The following rules apply to the effective protection values:
6445 *
6446 * 1. At the first level of reclaim, effective protection is equal to
6447 * the declared protection in memory.min and memory.low.
6448 *
6449 * 2. To enable safe delegation of the protection configuration, at
6450 * subsequent levels the effective protection is capped to the
6451 * parent's effective protection.
6452 *
6453 * 3. To make complex and dynamic subtrees easier to configure, the
6454 * user is allowed to overcommit the declared protection at a given
6455 * level. If that is the case, the parent's effective protection is
6456 * distributed to the children in proportion to how much protection
6457 * they have declared and how much of it they are utilizing.
6458 *
6459 * This makes distribution proportional, but also work-conserving:
6460 * if one cgroup claims much more protection than it uses memory,
6461 * the unused remainder is available to its siblings.
6462 *
6463 * 4. Conversely, when the declared protection is undercommitted at a
6464 * given level, the distribution of the larger parental protection
6465 * budget is NOT proportional. A cgroup's protection from a sibling
6466 * is capped to its own memory.min/low setting.
6467 *
8a931f80
JW
6468 * 5. However, to allow protecting recursive subtrees from each other
6469 * without having to declare each individual cgroup's fixed share
6470 * of the ancestor's claim to protection, any unutilized -
6471 * "floating" - protection from up the tree is distributed in
6472 * proportion to each cgroup's *usage*. This makes the protection
6473 * neutral wrt sibling cgroups and lets them compete freely over
6474 * the shared parental protection budget, but it protects the
6475 * subtree as a whole from neighboring subtrees.
6476 *
6477 * Note that 4. and 5. are not in conflict: 4. is about protecting
6478 * against immediate siblings whereas 5. is about protecting against
6479 * neighboring subtrees.
bc50bcc6
JW
6480 */
6481static unsigned long effective_protection(unsigned long usage,
8a931f80 6482 unsigned long parent_usage,
bc50bcc6
JW
6483 unsigned long setting,
6484 unsigned long parent_effective,
6485 unsigned long siblings_protected)
6486{
6487 unsigned long protected;
8a931f80 6488 unsigned long ep;
bc50bcc6
JW
6489
6490 protected = min(usage, setting);
6491 /*
6492 * If all cgroups at this level combined claim and use more
6493 * protection then what the parent affords them, distribute
6494 * shares in proportion to utilization.
6495 *
6496 * We are using actual utilization rather than the statically
6497 * claimed protection in order to be work-conserving: claimed
6498 * but unused protection is available to siblings that would
6499 * otherwise get a smaller chunk than what they claimed.
6500 */
6501 if (siblings_protected > parent_effective)
6502 return protected * parent_effective / siblings_protected;
6503
6504 /*
6505 * Ok, utilized protection of all children is within what the
6506 * parent affords them, so we know whatever this child claims
6507 * and utilizes is effectively protected.
6508 *
6509 * If there is unprotected usage beyond this value, reclaim
6510 * will apply pressure in proportion to that amount.
6511 *
6512 * If there is unutilized protection, the cgroup will be fully
6513 * shielded from reclaim, but we do return a smaller value for
6514 * protection than what the group could enjoy in theory. This
6515 * is okay. With the overcommit distribution above, effective
6516 * protection is always dependent on how memory is actually
6517 * consumed among the siblings anyway.
6518 */
8a931f80
JW
6519 ep = protected;
6520
6521 /*
6522 * If the children aren't claiming (all of) the protection
6523 * afforded to them by the parent, distribute the remainder in
6524 * proportion to the (unprotected) memory of each cgroup. That
6525 * way, cgroups that aren't explicitly prioritized wrt each
6526 * other compete freely over the allowance, but they are
6527 * collectively protected from neighboring trees.
6528 *
6529 * We're using unprotected memory for the weight so that if
6530 * some cgroups DO claim explicit protection, we don't protect
6531 * the same bytes twice.
cd324edc
JW
6532 *
6533 * Check both usage and parent_usage against the respective
6534 * protected values. One should imply the other, but they
6535 * aren't read atomically - make sure the division is sane.
8a931f80
JW
6536 */
6537 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6538 return ep;
cd324edc
JW
6539 if (parent_effective > siblings_protected &&
6540 parent_usage > siblings_protected &&
6541 usage > protected) {
8a931f80
JW
6542 unsigned long unclaimed;
6543
6544 unclaimed = parent_effective - siblings_protected;
6545 unclaimed *= usage - protected;
6546 unclaimed /= parent_usage - siblings_protected;
6547
6548 ep += unclaimed;
6549 }
6550
6551 return ep;
bc50bcc6
JW
6552}
6553
241994ed 6554/**
bf8d5d52 6555 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 6556 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
6557 * @memcg: the memory cgroup to check
6558 *
23067153
RG
6559 * WARNING: This function is not stateless! It can only be used as part
6560 * of a top-down tree iteration, not for isolated queries.
34c81057 6561 *
bf8d5d52
RG
6562 * Returns one of the following:
6563 * MEMCG_PROT_NONE: cgroup memory is not protected
6564 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6565 * an unprotected supply of reclaimable memory from other cgroups.
6566 * MEMCG_PROT_MIN: cgroup memory is protected
241994ed 6567 */
bf8d5d52
RG
6568enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6569 struct mem_cgroup *memcg)
241994ed 6570{
8a931f80 6571 unsigned long usage, parent_usage;
23067153
RG
6572 struct mem_cgroup *parent;
6573
241994ed 6574 if (mem_cgroup_disabled())
bf8d5d52 6575 return MEMCG_PROT_NONE;
241994ed 6576
34c81057
SC
6577 if (!root)
6578 root = root_mem_cgroup;
6579 if (memcg == root)
bf8d5d52 6580 return MEMCG_PROT_NONE;
241994ed 6581
23067153 6582 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
6583 if (!usage)
6584 return MEMCG_PROT_NONE;
6585
bf8d5d52 6586 parent = parent_mem_cgroup(memcg);
df2a4196
RG
6587 /* No parent means a non-hierarchical mode on v1 memcg */
6588 if (!parent)
6589 return MEMCG_PROT_NONE;
6590
bc50bcc6 6591 if (parent == root) {
c3d53200 6592 memcg->memory.emin = READ_ONCE(memcg->memory.min);
03960e33 6593 memcg->memory.elow = READ_ONCE(memcg->memory.low);
bc50bcc6 6594 goto out;
bf8d5d52
RG
6595 }
6596
8a931f80
JW
6597 parent_usage = page_counter_read(&parent->memory);
6598
b3a7822e 6599 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
c3d53200
CD
6600 READ_ONCE(memcg->memory.min),
6601 READ_ONCE(parent->memory.emin),
b3a7822e 6602 atomic_long_read(&parent->memory.children_min_usage)));
23067153 6603
b3a7822e 6604 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
03960e33
CD
6605 READ_ONCE(memcg->memory.low),
6606 READ_ONCE(parent->memory.elow),
b3a7822e 6607 atomic_long_read(&parent->memory.children_low_usage)));
23067153 6608
bc50bcc6
JW
6609out:
6610 if (usage <= memcg->memory.emin)
bf8d5d52 6611 return MEMCG_PROT_MIN;
bc50bcc6 6612 else if (usage <= memcg->memory.elow)
bf8d5d52
RG
6613 return MEMCG_PROT_LOW;
6614 else
6615 return MEMCG_PROT_NONE;
241994ed
JW
6616}
6617
00501b53 6618/**
f0e45fb4 6619 * mem_cgroup_charge - charge a newly allocated page to a cgroup
00501b53
JW
6620 * @page: page to charge
6621 * @mm: mm context of the victim
6622 * @gfp_mask: reclaim mode
00501b53
JW
6623 *
6624 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6625 * pages according to @gfp_mask if necessary.
6626 *
f0e45fb4 6627 * Returns 0 on success. Otherwise, an error code is returned.
00501b53 6628 */
d9eb1ea2 6629int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
00501b53 6630{
3fba69a5 6631 unsigned int nr_pages = hpage_nr_pages(page);
00501b53 6632 struct mem_cgroup *memcg = NULL;
00501b53
JW
6633 int ret = 0;
6634
6635 if (mem_cgroup_disabled())
6636 goto out;
6637
6638 if (PageSwapCache(page)) {
2d1c4980
JW
6639 swp_entry_t ent = { .val = page_private(page), };
6640 unsigned short id;
6641
00501b53
JW
6642 /*
6643 * Every swap fault against a single page tries to charge the
6644 * page, bail as early as possible. shmem_unuse() encounters
eccb52e7
JW
6645 * already charged pages, too. page->mem_cgroup is protected
6646 * by the page lock, which serializes swap cache removal, which
00501b53
JW
6647 * in turn serializes uncharging.
6648 */
e993d905 6649 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 6650 if (compound_head(page)->mem_cgroup)
00501b53 6651 goto out;
e993d905 6652
2d1c4980
JW
6653 id = lookup_swap_cgroup_id(ent);
6654 rcu_read_lock();
6655 memcg = mem_cgroup_from_id(id);
6656 if (memcg && !css_tryget_online(&memcg->css))
6657 memcg = NULL;
6658 rcu_read_unlock();
00501b53
JW
6659 }
6660
00501b53
JW
6661 if (!memcg)
6662 memcg = get_mem_cgroup_from_mm(mm);
6663
6664 ret = try_charge(memcg, gfp_mask, nr_pages);
f0e45fb4
JW
6665 if (ret)
6666 goto out_put;
00501b53 6667
1a3e1f40 6668 css_get(&memcg->css);
d9eb1ea2 6669 commit_charge(page, memcg);
6abb5a86 6670
6abb5a86 6671 local_irq_disable();
3fba69a5 6672 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6abb5a86
JW
6673 memcg_check_events(memcg, page);
6674 local_irq_enable();
00501b53 6675
2d1c4980 6676 if (PageSwapCache(page)) {
00501b53
JW
6677 swp_entry_t entry = { .val = page_private(page) };
6678 /*
6679 * The swap entry might not get freed for a long time,
6680 * let's not wait for it. The page already received a
6681 * memory+swap charge, drop the swap entry duplicate.
6682 */
38d8b4e6 6683 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53 6684 }
00501b53 6685
f0e45fb4
JW
6686out_put:
6687 css_put(&memcg->css);
6688out:
6689 return ret;
3fea5a49
JW
6690}
6691
a9d5adee
JG
6692struct uncharge_gather {
6693 struct mem_cgroup *memcg;
9f762dbe 6694 unsigned long nr_pages;
a9d5adee 6695 unsigned long pgpgout;
a9d5adee 6696 unsigned long nr_kmem;
a9d5adee
JG
6697 struct page *dummy_page;
6698};
6699
6700static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 6701{
a9d5adee
JG
6702 memset(ug, 0, sizeof(*ug));
6703}
6704
6705static void uncharge_batch(const struct uncharge_gather *ug)
6706{
747db954
JW
6707 unsigned long flags;
6708
a9d5adee 6709 if (!mem_cgroup_is_root(ug->memcg)) {
9f762dbe 6710 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
7941d214 6711 if (do_memsw_account())
9f762dbe 6712 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
a9d5adee
JG
6713 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6714 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6715 memcg_oom_recover(ug->memcg);
ce00a967 6716 }
747db954
JW
6717
6718 local_irq_save(flags);
c9019e9b 6719 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
9f762dbe 6720 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
a9d5adee 6721 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 6722 local_irq_restore(flags);
a9d5adee
JG
6723}
6724
6725static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6726{
9f762dbe
JW
6727 unsigned long nr_pages;
6728
a9d5adee 6729 VM_BUG_ON_PAGE(PageLRU(page), page);
a9d5adee
JG
6730
6731 if (!page->mem_cgroup)
6732 return;
6733
6734 /*
6735 * Nobody should be changing or seriously looking at
6736 * page->mem_cgroup at this point, we have fully
6737 * exclusive access to the page.
6738 */
6739
6740 if (ug->memcg != page->mem_cgroup) {
6741 if (ug->memcg) {
6742 uncharge_batch(ug);
6743 uncharge_gather_clear(ug);
6744 }
6745 ug->memcg = page->mem_cgroup;
6746 }
6747
9f762dbe
JW
6748 nr_pages = compound_nr(page);
6749 ug->nr_pages += nr_pages;
a9d5adee 6750
9f762dbe 6751 if (!PageKmemcg(page)) {
a9d5adee
JG
6752 ug->pgpgout++;
6753 } else {
9f762dbe 6754 ug->nr_kmem += nr_pages;
a9d5adee
JG
6755 __ClearPageKmemcg(page);
6756 }
6757
6758 ug->dummy_page = page;
6759 page->mem_cgroup = NULL;
1a3e1f40 6760 css_put(&ug->memcg->css);
747db954
JW
6761}
6762
6763static void uncharge_list(struct list_head *page_list)
6764{
a9d5adee 6765 struct uncharge_gather ug;
747db954 6766 struct list_head *next;
a9d5adee
JG
6767
6768 uncharge_gather_clear(&ug);
747db954 6769
8b592656
JW
6770 /*
6771 * Note that the list can be a single page->lru; hence the
6772 * do-while loop instead of a simple list_for_each_entry().
6773 */
747db954
JW
6774 next = page_list->next;
6775 do {
a9d5adee
JG
6776 struct page *page;
6777
747db954
JW
6778 page = list_entry(next, struct page, lru);
6779 next = page->lru.next;
6780
a9d5adee 6781 uncharge_page(page, &ug);
747db954
JW
6782 } while (next != page_list);
6783
a9d5adee
JG
6784 if (ug.memcg)
6785 uncharge_batch(&ug);
747db954
JW
6786}
6787
0a31bc97
JW
6788/**
6789 * mem_cgroup_uncharge - uncharge a page
6790 * @page: page to uncharge
6791 *
f0e45fb4 6792 * Uncharge a page previously charged with mem_cgroup_charge().
0a31bc97
JW
6793 */
6794void mem_cgroup_uncharge(struct page *page)
6795{
a9d5adee
JG
6796 struct uncharge_gather ug;
6797
0a31bc97
JW
6798 if (mem_cgroup_disabled())
6799 return;
6800
747db954 6801 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6802 if (!page->mem_cgroup)
0a31bc97
JW
6803 return;
6804
a9d5adee
JG
6805 uncharge_gather_clear(&ug);
6806 uncharge_page(page, &ug);
6807 uncharge_batch(&ug);
747db954 6808}
0a31bc97 6809
747db954
JW
6810/**
6811 * mem_cgroup_uncharge_list - uncharge a list of page
6812 * @page_list: list of pages to uncharge
6813 *
6814 * Uncharge a list of pages previously charged with
f0e45fb4 6815 * mem_cgroup_charge().
747db954
JW
6816 */
6817void mem_cgroup_uncharge_list(struct list_head *page_list)
6818{
6819 if (mem_cgroup_disabled())
6820 return;
0a31bc97 6821
747db954
JW
6822 if (!list_empty(page_list))
6823 uncharge_list(page_list);
0a31bc97
JW
6824}
6825
6826/**
6a93ca8f
JW
6827 * mem_cgroup_migrate - charge a page's replacement
6828 * @oldpage: currently circulating page
6829 * @newpage: replacement page
0a31bc97 6830 *
6a93ca8f
JW
6831 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6832 * be uncharged upon free.
0a31bc97
JW
6833 *
6834 * Both pages must be locked, @newpage->mapping must be set up.
6835 */
6a93ca8f 6836void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6837{
29833315 6838 struct mem_cgroup *memcg;
44b7a8d3 6839 unsigned int nr_pages;
d93c4130 6840 unsigned long flags;
0a31bc97
JW
6841
6842 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6843 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6844 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6845 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6846 newpage);
0a31bc97
JW
6847
6848 if (mem_cgroup_disabled())
6849 return;
6850
6851 /* Page cache replacement: new page already charged? */
1306a85a 6852 if (newpage->mem_cgroup)
0a31bc97
JW
6853 return;
6854
45637bab 6855 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6856 memcg = oldpage->mem_cgroup;
29833315 6857 if (!memcg)
0a31bc97
JW
6858 return;
6859
44b7a8d3 6860 /* Force-charge the new page. The old one will be freed soon */
92855270 6861 nr_pages = hpage_nr_pages(newpage);
44b7a8d3
JW
6862
6863 page_counter_charge(&memcg->memory, nr_pages);
6864 if (do_memsw_account())
6865 page_counter_charge(&memcg->memsw, nr_pages);
0a31bc97 6866
1a3e1f40 6867 css_get(&memcg->css);
d9eb1ea2 6868 commit_charge(newpage, memcg);
44b7a8d3 6869
d93c4130 6870 local_irq_save(flags);
3fba69a5 6871 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
44b7a8d3 6872 memcg_check_events(memcg, newpage);
d93c4130 6873 local_irq_restore(flags);
0a31bc97
JW
6874}
6875
ef12947c 6876DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6877EXPORT_SYMBOL(memcg_sockets_enabled_key);
6878
2d758073 6879void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6880{
6881 struct mem_cgroup *memcg;
6882
2d758073
JW
6883 if (!mem_cgroup_sockets_enabled)
6884 return;
6885
e876ecc6
SB
6886 /* Do not associate the sock with unrelated interrupted task's memcg. */
6887 if (in_interrupt())
6888 return;
6889
11092087
JW
6890 rcu_read_lock();
6891 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6892 if (memcg == root_mem_cgroup)
6893 goto out;
0db15298 6894 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6895 goto out;
8965aa28 6896 if (css_tryget(&memcg->css))
11092087 6897 sk->sk_memcg = memcg;
f7e1cb6e 6898out:
11092087
JW
6899 rcu_read_unlock();
6900}
11092087 6901
2d758073 6902void mem_cgroup_sk_free(struct sock *sk)
11092087 6903{
2d758073
JW
6904 if (sk->sk_memcg)
6905 css_put(&sk->sk_memcg->css);
11092087
JW
6906}
6907
6908/**
6909 * mem_cgroup_charge_skmem - charge socket memory
6910 * @memcg: memcg to charge
6911 * @nr_pages: number of pages to charge
6912 *
6913 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6914 * @memcg's configured limit, %false if the charge had to be forced.
6915 */
6916bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6917{
f7e1cb6e 6918 gfp_t gfp_mask = GFP_KERNEL;
11092087 6919
f7e1cb6e 6920 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6921 struct page_counter *fail;
f7e1cb6e 6922
0db15298
JW
6923 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6924 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6925 return true;
6926 }
0db15298
JW
6927 page_counter_charge(&memcg->tcpmem, nr_pages);
6928 memcg->tcpmem_pressure = 1;
f7e1cb6e 6929 return false;
11092087 6930 }
d886f4e4 6931
f7e1cb6e
JW
6932 /* Don't block in the packet receive path */
6933 if (in_softirq())
6934 gfp_mask = GFP_NOWAIT;
6935
c9019e9b 6936 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6937
f7e1cb6e
JW
6938 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6939 return true;
6940
6941 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6942 return false;
6943}
6944
6945/**
6946 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6947 * @memcg: memcg to uncharge
6948 * @nr_pages: number of pages to uncharge
11092087
JW
6949 */
6950void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6951{
f7e1cb6e 6952 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6953 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6954 return;
6955 }
d886f4e4 6956
c9019e9b 6957 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6958
475d0487 6959 refill_stock(memcg, nr_pages);
11092087
JW
6960}
6961
f7e1cb6e
JW
6962static int __init cgroup_memory(char *s)
6963{
6964 char *token;
6965
6966 while ((token = strsep(&s, ",")) != NULL) {
6967 if (!*token)
6968 continue;
6969 if (!strcmp(token, "nosocket"))
6970 cgroup_memory_nosocket = true;
04823c83
VD
6971 if (!strcmp(token, "nokmem"))
6972 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6973 }
6974 return 0;
6975}
6976__setup("cgroup.memory=", cgroup_memory);
11092087 6977
2d11085e 6978/*
1081312f
MH
6979 * subsys_initcall() for memory controller.
6980 *
308167fc
SAS
6981 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6982 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6983 * basically everything that doesn't depend on a specific mem_cgroup structure
6984 * should be initialized from here.
2d11085e
MH
6985 */
6986static int __init mem_cgroup_init(void)
6987{
95a045f6
JW
6988 int cpu, node;
6989
308167fc
SAS
6990 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6991 memcg_hotplug_cpu_dead);
95a045f6
JW
6992
6993 for_each_possible_cpu(cpu)
6994 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6995 drain_local_stock);
6996
6997 for_each_node(node) {
6998 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6999
7000 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7001 node_online(node) ? node : NUMA_NO_NODE);
7002
ef8f2327 7003 rtpn->rb_root = RB_ROOT;
fa90b2fd 7004 rtpn->rb_rightmost = NULL;
ef8f2327 7005 spin_lock_init(&rtpn->lock);
95a045f6
JW
7006 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7007 }
7008
2d11085e
MH
7009 return 0;
7010}
7011subsys_initcall(mem_cgroup_init);
21afa38e
JW
7012
7013#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
7014static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7015{
1c2d479a 7016 while (!refcount_inc_not_zero(&memcg->id.ref)) {
358c07fc
AB
7017 /*
7018 * The root cgroup cannot be destroyed, so it's refcount must
7019 * always be >= 1.
7020 */
7021 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7022 VM_BUG_ON(1);
7023 break;
7024 }
7025 memcg = parent_mem_cgroup(memcg);
7026 if (!memcg)
7027 memcg = root_mem_cgroup;
7028 }
7029 return memcg;
7030}
7031
21afa38e
JW
7032/**
7033 * mem_cgroup_swapout - transfer a memsw charge to swap
7034 * @page: page whose memsw charge to transfer
7035 * @entry: swap entry to move the charge to
7036 *
7037 * Transfer the memsw charge of @page to @entry.
7038 */
7039void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7040{
1f47b61f 7041 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 7042 unsigned int nr_entries;
21afa38e
JW
7043 unsigned short oldid;
7044
7045 VM_BUG_ON_PAGE(PageLRU(page), page);
7046 VM_BUG_ON_PAGE(page_count(page), page);
7047
2d1c4980 7048 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
21afa38e
JW
7049 return;
7050
7051 memcg = page->mem_cgroup;
7052
7053 /* Readahead page, never charged */
7054 if (!memcg)
7055 return;
7056
1f47b61f
VD
7057 /*
7058 * In case the memcg owning these pages has been offlined and doesn't
7059 * have an ID allocated to it anymore, charge the closest online
7060 * ancestor for the swap instead and transfer the memory+swap charge.
7061 */
7062 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
7063 nr_entries = hpage_nr_pages(page);
7064 /* Get references for the tail pages, too */
7065 if (nr_entries > 1)
7066 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7067 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7068 nr_entries);
21afa38e 7069 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7070 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
7071
7072 page->mem_cgroup = NULL;
7073
7074 if (!mem_cgroup_is_root(memcg))
d6810d73 7075 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 7076
2d1c4980 7077 if (!cgroup_memory_noswap && memcg != swap_memcg) {
1f47b61f 7078 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
7079 page_counter_charge(&swap_memcg->memsw, nr_entries);
7080 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
7081 }
7082
ce9ce665
SAS
7083 /*
7084 * Interrupts should be disabled here because the caller holds the
b93b0163 7085 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 7086 * important here to have the interrupts disabled because it is the
b93b0163 7087 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
7088 */
7089 VM_BUG_ON(!irqs_disabled());
3fba69a5 7090 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
21afa38e 7091 memcg_check_events(memcg, page);
73f576c0 7092
1a3e1f40 7093 css_put(&memcg->css);
21afa38e
JW
7094}
7095
38d8b4e6
HY
7096/**
7097 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
7098 * @page: page being added to swap
7099 * @entry: swap entry to charge
7100 *
38d8b4e6 7101 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
7102 *
7103 * Returns 0 on success, -ENOMEM on failure.
7104 */
7105int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7106{
38d8b4e6 7107 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 7108 struct page_counter *counter;
38d8b4e6 7109 struct mem_cgroup *memcg;
37e84351
VD
7110 unsigned short oldid;
7111
2d1c4980 7112 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
37e84351
VD
7113 return 0;
7114
7115 memcg = page->mem_cgroup;
7116
7117 /* Readahead page, never charged */
7118 if (!memcg)
7119 return 0;
7120
f3a53a3a
TH
7121 if (!entry.val) {
7122 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 7123 return 0;
f3a53a3a 7124 }
bb98f2c5 7125
1f47b61f
VD
7126 memcg = mem_cgroup_id_get_online(memcg);
7127
2d1c4980 7128 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
38d8b4e6 7129 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
7130 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7131 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 7132 mem_cgroup_id_put(memcg);
37e84351 7133 return -ENOMEM;
1f47b61f 7134 }
37e84351 7135
38d8b4e6
HY
7136 /* Get references for the tail pages, too */
7137 if (nr_pages > 1)
7138 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7139 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 7140 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 7141 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 7142
37e84351
VD
7143 return 0;
7144}
7145
21afa38e 7146/**
38d8b4e6 7147 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 7148 * @entry: swap entry to uncharge
38d8b4e6 7149 * @nr_pages: the amount of swap space to uncharge
21afa38e 7150 */
38d8b4e6 7151void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
7152{
7153 struct mem_cgroup *memcg;
7154 unsigned short id;
7155
38d8b4e6 7156 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 7157 rcu_read_lock();
adbe427b 7158 memcg = mem_cgroup_from_id(id);
21afa38e 7159 if (memcg) {
2d1c4980 7160 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
37e84351 7161 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 7162 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 7163 else
38d8b4e6 7164 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 7165 }
c9019e9b 7166 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 7167 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
7168 }
7169 rcu_read_unlock();
7170}
7171
d8b38438
VD
7172long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7173{
7174 long nr_swap_pages = get_nr_swap_pages();
7175
eccb52e7 7176 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
d8b38438
VD
7177 return nr_swap_pages;
7178 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7179 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 7180 READ_ONCE(memcg->swap.max) -
d8b38438
VD
7181 page_counter_read(&memcg->swap));
7182 return nr_swap_pages;
7183}
7184
5ccc5aba
VD
7185bool mem_cgroup_swap_full(struct page *page)
7186{
7187 struct mem_cgroup *memcg;
7188
7189 VM_BUG_ON_PAGE(!PageLocked(page), page);
7190
7191 if (vm_swap_full())
7192 return true;
eccb52e7 7193 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5ccc5aba
VD
7194 return false;
7195
7196 memcg = page->mem_cgroup;
7197 if (!memcg)
7198 return false;
7199
4b82ab4f
JK
7200 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7201 unsigned long usage = page_counter_read(&memcg->swap);
7202
7203 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7204 usage * 2 >= READ_ONCE(memcg->swap.max))
5ccc5aba 7205 return true;
4b82ab4f 7206 }
5ccc5aba
VD
7207
7208 return false;
7209}
7210
eccb52e7 7211static int __init setup_swap_account(char *s)
21afa38e
JW
7212{
7213 if (!strcmp(s, "1"))
eccb52e7 7214 cgroup_memory_noswap = 0;
21afa38e 7215 else if (!strcmp(s, "0"))
eccb52e7 7216 cgroup_memory_noswap = 1;
21afa38e
JW
7217 return 1;
7218}
eccb52e7 7219__setup("swapaccount=", setup_swap_account);
21afa38e 7220
37e84351
VD
7221static u64 swap_current_read(struct cgroup_subsys_state *css,
7222 struct cftype *cft)
7223{
7224 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7225
7226 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7227}
7228
4b82ab4f
JK
7229static int swap_high_show(struct seq_file *m, void *v)
7230{
7231 return seq_puts_memcg_tunable(m,
7232 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7233}
7234
7235static ssize_t swap_high_write(struct kernfs_open_file *of,
7236 char *buf, size_t nbytes, loff_t off)
7237{
7238 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7239 unsigned long high;
7240 int err;
7241
7242 buf = strstrip(buf);
7243 err = page_counter_memparse(buf, "max", &high);
7244 if (err)
7245 return err;
7246
7247 page_counter_set_high(&memcg->swap, high);
7248
7249 return nbytes;
7250}
7251
37e84351
VD
7252static int swap_max_show(struct seq_file *m, void *v)
7253{
677dc973
CD
7254 return seq_puts_memcg_tunable(m,
7255 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
37e84351
VD
7256}
7257
7258static ssize_t swap_max_write(struct kernfs_open_file *of,
7259 char *buf, size_t nbytes, loff_t off)
7260{
7261 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7262 unsigned long max;
7263 int err;
7264
7265 buf = strstrip(buf);
7266 err = page_counter_memparse(buf, "max", &max);
7267 if (err)
7268 return err;
7269
be09102b 7270 xchg(&memcg->swap.max, max);
37e84351
VD
7271
7272 return nbytes;
7273}
7274
f3a53a3a
TH
7275static int swap_events_show(struct seq_file *m, void *v)
7276{
aa9694bb 7277 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
f3a53a3a 7278
4b82ab4f
JK
7279 seq_printf(m, "high %lu\n",
7280 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
f3a53a3a
TH
7281 seq_printf(m, "max %lu\n",
7282 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7283 seq_printf(m, "fail %lu\n",
7284 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7285
7286 return 0;
7287}
7288
37e84351
VD
7289static struct cftype swap_files[] = {
7290 {
7291 .name = "swap.current",
7292 .flags = CFTYPE_NOT_ON_ROOT,
7293 .read_u64 = swap_current_read,
7294 },
4b82ab4f
JK
7295 {
7296 .name = "swap.high",
7297 .flags = CFTYPE_NOT_ON_ROOT,
7298 .seq_show = swap_high_show,
7299 .write = swap_high_write,
7300 },
37e84351
VD
7301 {
7302 .name = "swap.max",
7303 .flags = CFTYPE_NOT_ON_ROOT,
7304 .seq_show = swap_max_show,
7305 .write = swap_max_write,
7306 },
f3a53a3a
TH
7307 {
7308 .name = "swap.events",
7309 .flags = CFTYPE_NOT_ON_ROOT,
7310 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7311 .seq_show = swap_events_show,
7312 },
37e84351
VD
7313 { } /* terminate */
7314};
7315
eccb52e7 7316static struct cftype memsw_files[] = {
21afa38e
JW
7317 {
7318 .name = "memsw.usage_in_bytes",
7319 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7320 .read_u64 = mem_cgroup_read_u64,
7321 },
7322 {
7323 .name = "memsw.max_usage_in_bytes",
7324 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7325 .write = mem_cgroup_reset,
7326 .read_u64 = mem_cgroup_read_u64,
7327 },
7328 {
7329 .name = "memsw.limit_in_bytes",
7330 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7331 .write = mem_cgroup_write,
7332 .read_u64 = mem_cgroup_read_u64,
7333 },
7334 {
7335 .name = "memsw.failcnt",
7336 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7337 .write = mem_cgroup_reset,
7338 .read_u64 = mem_cgroup_read_u64,
7339 },
7340 { }, /* terminate */
7341};
7342
82ff165c
BS
7343/*
7344 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7345 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7346 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7347 * boot parameter. This may result in premature OOPS inside
7348 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7349 */
21afa38e
JW
7350static int __init mem_cgroup_swap_init(void)
7351{
2d1c4980
JW
7352 /* No memory control -> no swap control */
7353 if (mem_cgroup_disabled())
7354 cgroup_memory_noswap = true;
7355
7356 if (cgroup_memory_noswap)
eccb52e7
JW
7357 return 0;
7358
7359 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7360 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7361
21afa38e
JW
7362 return 0;
7363}
82ff165c 7364core_initcall(mem_cgroup_swap_init);
21afa38e
JW
7365
7366#endif /* CONFIG_MEMCG_SWAP */