]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memcontrol.c
memcg: allocate memory for memcg caches whenever a new memcg appears
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
f64c3f54 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
b69408e8 52#include <linux/mm_inline.h>
52d4b9ac 53#include <linux/page_cgroup.h>
cdec2e42 54#include <linux/cpu.h>
158e0a2d 55#include <linux/oom.h>
08e552c6 56#include "internal.h"
d1a4c0b3 57#include <net/sock.h>
4bd2c1ee 58#include <net/ip.h>
d1a4c0b3 59#include <net/tcp_memcontrol.h>
8cdea7c0 60
8697d331
BS
61#include <asm/uaccess.h>
62
cc8e970c
KM
63#include <trace/events/vmscan.h>
64
a181b0e8 65struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
66EXPORT_SYMBOL(mem_cgroup_subsys);
67
a181b0e8 68#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 69static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 70
c255a458 71#ifdef CONFIG_MEMCG_SWAP
338c8431 72/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 73int do_swap_account __read_mostly;
a42c390c
MH
74
75/* for remember boot option*/
c255a458 76#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
77static int really_do_swap_account __initdata = 1;
78#else
79static int really_do_swap_account __initdata = 0;
80#endif
81
c077719b 82#else
a0db00fc 83#define do_swap_account 0
c077719b
KH
84#endif
85
86
d52aa412
KH
87/*
88 * Statistics for memory cgroup.
89 */
90enum mem_cgroup_stat_index {
91 /*
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 */
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 96 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 97 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
98 MEM_CGROUP_STAT_NSTATS,
99};
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "mapped_file",
105 "swap",
106};
107
e9f8974f
JW
108enum mem_cgroup_events_index {
109 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
110 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
111 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
112 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
113 MEM_CGROUP_EVENTS_NSTATS,
114};
af7c4b0e
JW
115
116static const char * const mem_cgroup_events_names[] = {
117 "pgpgin",
118 "pgpgout",
119 "pgfault",
120 "pgmajfault",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9
JW
146struct mem_cgroup_reclaim_iter {
147 /* css_id of the last scanned hierarchy member */
148 int position;
149 /* scan generation, increased every round-trip */
150 unsigned int generation;
151};
152
6d12e2d8
KH
153/*
154 * per-zone information in memory controller.
155 */
6d12e2d8 156struct mem_cgroup_per_zone {
6290df54 157 struct lruvec lruvec;
1eb49272 158 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 159
527a5ec9
JW
160 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
161
f64c3f54
BS
162 struct rb_node tree_node; /* RB tree node */
163 unsigned long long usage_in_excess;/* Set to the value by which */
164 /* the soft limit is exceeded*/
165 bool on_tree;
d79154bb 166 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 167 /* use container_of */
6d12e2d8 168};
6d12e2d8
KH
169
170struct mem_cgroup_per_node {
171 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
172};
173
174struct mem_cgroup_lru_info {
175 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
176};
177
f64c3f54
BS
178/*
179 * Cgroups above their limits are maintained in a RB-Tree, independent of
180 * their hierarchy representation
181 */
182
183struct mem_cgroup_tree_per_zone {
184 struct rb_root rb_root;
185 spinlock_t lock;
186};
187
188struct mem_cgroup_tree_per_node {
189 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
190};
191
192struct mem_cgroup_tree {
193 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
194};
195
196static struct mem_cgroup_tree soft_limit_tree __read_mostly;
197
2e72b634
KS
198struct mem_cgroup_threshold {
199 struct eventfd_ctx *eventfd;
200 u64 threshold;
201};
202
9490ff27 203/* For threshold */
2e72b634 204struct mem_cgroup_threshold_ary {
748dad36 205 /* An array index points to threshold just below or equal to usage. */
5407a562 206 int current_threshold;
2e72b634
KS
207 /* Size of entries[] */
208 unsigned int size;
209 /* Array of thresholds */
210 struct mem_cgroup_threshold entries[0];
211};
2c488db2
KS
212
213struct mem_cgroup_thresholds {
214 /* Primary thresholds array */
215 struct mem_cgroup_threshold_ary *primary;
216 /*
217 * Spare threshold array.
218 * This is needed to make mem_cgroup_unregister_event() "never fail".
219 * It must be able to store at least primary->size - 1 entries.
220 */
221 struct mem_cgroup_threshold_ary *spare;
222};
223
9490ff27
KH
224/* for OOM */
225struct mem_cgroup_eventfd_list {
226 struct list_head list;
227 struct eventfd_ctx *eventfd;
228};
2e72b634 229
c0ff4b85
R
230static void mem_cgroup_threshold(struct mem_cgroup *memcg);
231static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 232
8cdea7c0
BS
233/*
234 * The memory controller data structure. The memory controller controls both
235 * page cache and RSS per cgroup. We would eventually like to provide
236 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
237 * to help the administrator determine what knobs to tune.
238 *
239 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
240 * we hit the water mark. May be even add a low water mark, such that
241 * no reclaim occurs from a cgroup at it's low water mark, this is
242 * a feature that will be implemented much later in the future.
8cdea7c0
BS
243 */
244struct mem_cgroup {
245 struct cgroup_subsys_state css;
246 /*
247 * the counter to account for memory usage
248 */
249 struct res_counter res;
59927fb9
HD
250
251 union {
252 /*
253 * the counter to account for mem+swap usage.
254 */
255 struct res_counter memsw;
256
257 /*
258 * rcu_freeing is used only when freeing struct mem_cgroup,
259 * so put it into a union to avoid wasting more memory.
260 * It must be disjoint from the css field. It could be
261 * in a union with the res field, but res plays a much
262 * larger part in mem_cgroup life than memsw, and might
263 * be of interest, even at time of free, when debugging.
264 * So share rcu_head with the less interesting memsw.
265 */
266 struct rcu_head rcu_freeing;
267 /*
3afe36b1
GC
268 * We also need some space for a worker in deferred freeing.
269 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
270 */
271 struct work_struct work_freeing;
272 };
273
510fc4e1
GC
274 /*
275 * the counter to account for kernel memory usage.
276 */
277 struct res_counter kmem;
78fb7466
PE
278 /*
279 * Per cgroup active and inactive list, similar to the
280 * per zone LRU lists.
78fb7466 281 */
6d12e2d8 282 struct mem_cgroup_lru_info info;
889976db
YH
283 int last_scanned_node;
284#if MAX_NUMNODES > 1
285 nodemask_t scan_nodes;
453a9bf3
KH
286 atomic_t numainfo_events;
287 atomic_t numainfo_updating;
889976db 288#endif
18f59ea7
BS
289 /*
290 * Should the accounting and control be hierarchical, per subtree?
291 */
292 bool use_hierarchy;
510fc4e1 293 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
294
295 bool oom_lock;
296 atomic_t under_oom;
297
8c7c6e34 298 atomic_t refcnt;
14797e23 299
1f4c025b 300 int swappiness;
3c11ecf4
KH
301 /* OOM-Killer disable */
302 int oom_kill_disable;
a7885eb8 303
22a668d7
KH
304 /* set when res.limit == memsw.limit */
305 bool memsw_is_minimum;
306
2e72b634
KS
307 /* protect arrays of thresholds */
308 struct mutex thresholds_lock;
309
310 /* thresholds for memory usage. RCU-protected */
2c488db2 311 struct mem_cgroup_thresholds thresholds;
907860ed 312
2e72b634 313 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 314 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 315
9490ff27
KH
316 /* For oom notifier event fd */
317 struct list_head oom_notify;
185efc0f 318
7dc74be0
DN
319 /*
320 * Should we move charges of a task when a task is moved into this
321 * mem_cgroup ? And what type of charges should we move ?
322 */
323 unsigned long move_charge_at_immigrate;
619d094b
KH
324 /*
325 * set > 0 if pages under this cgroup are moving to other cgroup.
326 */
327 atomic_t moving_account;
312734c0
KH
328 /* taken only while moving_account > 0 */
329 spinlock_t move_lock;
d52aa412 330 /*
c62b1a3b 331 * percpu counter.
d52aa412 332 */
3a7951b4 333 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
334 /*
335 * used when a cpu is offlined or other synchronizations
336 * See mem_cgroup_read_stat().
337 */
338 struct mem_cgroup_stat_cpu nocpu_base;
339 spinlock_t pcp_counter_lock;
d1a4c0b3 340
4bd2c1ee 341#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
342 struct tcp_memcontrol tcp_mem;
343#endif
2633d7a0
GC
344#if defined(CONFIG_MEMCG_KMEM)
345 /* analogous to slab_common's slab_caches list. per-memcg */
346 struct list_head memcg_slab_caches;
347 /* Not a spinlock, we can take a lot of time walking the list */
348 struct mutex slab_caches_mutex;
349 /* Index in the kmem_cache->memcg_params->memcg_caches array */
350 int kmemcg_id;
351#endif
8cdea7c0
BS
352};
353
510fc4e1
GC
354/* internal only representation about the status of kmem accounting. */
355enum {
356 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 357 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 358 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
359};
360
a8964b9b
GC
361/* We account when limit is on, but only after call sites are patched */
362#define KMEM_ACCOUNTED_MASK \
363 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
364
365#ifdef CONFIG_MEMCG_KMEM
366static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
367{
368 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
369}
7de37682
GC
370
371static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
372{
373 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
374}
375
a8964b9b
GC
376static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
377{
378 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
379}
380
55007d84
GC
381static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
382{
383 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
384}
385
7de37682
GC
386static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
387{
388 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
389 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
390}
391
392static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
393{
394 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
395 &memcg->kmem_account_flags);
396}
510fc4e1
GC
397#endif
398
7dc74be0
DN
399/* Stuffs for move charges at task migration. */
400/*
401 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
402 * left-shifted bitmap of these types.
403 */
404enum move_type {
4ffef5fe 405 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 406 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
407 NR_MOVE_TYPE,
408};
409
4ffef5fe
DN
410/* "mc" and its members are protected by cgroup_mutex */
411static struct move_charge_struct {
b1dd693e 412 spinlock_t lock; /* for from, to */
4ffef5fe
DN
413 struct mem_cgroup *from;
414 struct mem_cgroup *to;
415 unsigned long precharge;
854ffa8d 416 unsigned long moved_charge;
483c30b5 417 unsigned long moved_swap;
8033b97c
DN
418 struct task_struct *moving_task; /* a task moving charges */
419 wait_queue_head_t waitq; /* a waitq for other context */
420} mc = {
2bd9bb20 421 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
422 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
423};
4ffef5fe 424
90254a65
DN
425static bool move_anon(void)
426{
427 return test_bit(MOVE_CHARGE_TYPE_ANON,
428 &mc.to->move_charge_at_immigrate);
429}
430
87946a72
DN
431static bool move_file(void)
432{
433 return test_bit(MOVE_CHARGE_TYPE_FILE,
434 &mc.to->move_charge_at_immigrate);
435}
436
4e416953
BS
437/*
438 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
439 * limit reclaim to prevent infinite loops, if they ever occur.
440 */
a0db00fc
KS
441#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
442#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 443
217bc319
KH
444enum charge_type {
445 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 446 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 447 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 448 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
449 NR_CHARGE_TYPE,
450};
451
8c7c6e34 452/* for encoding cft->private value on file */
86ae53e1
GC
453enum res_type {
454 _MEM,
455 _MEMSWAP,
456 _OOM_TYPE,
510fc4e1 457 _KMEM,
86ae53e1
GC
458};
459
a0db00fc
KS
460#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
461#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 462#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
463/* Used for OOM nofiier */
464#define OOM_CONTROL (0)
8c7c6e34 465
75822b44
BS
466/*
467 * Reclaim flags for mem_cgroup_hierarchical_reclaim
468 */
469#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
470#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
471#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
472#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
473
c0ff4b85
R
474static void mem_cgroup_get(struct mem_cgroup *memcg);
475static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 476
b2145145
WL
477static inline
478struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
479{
480 return container_of(s, struct mem_cgroup, css);
481}
482
7ffc0edc
MH
483static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
484{
485 return (memcg == root_mem_cgroup);
486}
487
e1aab161 488/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 489#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 490
e1aab161
GC
491void sock_update_memcg(struct sock *sk)
492{
376be5ff 493 if (mem_cgroup_sockets_enabled) {
e1aab161 494 struct mem_cgroup *memcg;
3f134619 495 struct cg_proto *cg_proto;
e1aab161
GC
496
497 BUG_ON(!sk->sk_prot->proto_cgroup);
498
f3f511e1
GC
499 /* Socket cloning can throw us here with sk_cgrp already
500 * filled. It won't however, necessarily happen from
501 * process context. So the test for root memcg given
502 * the current task's memcg won't help us in this case.
503 *
504 * Respecting the original socket's memcg is a better
505 * decision in this case.
506 */
507 if (sk->sk_cgrp) {
508 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
509 mem_cgroup_get(sk->sk_cgrp->memcg);
510 return;
511 }
512
e1aab161
GC
513 rcu_read_lock();
514 memcg = mem_cgroup_from_task(current);
3f134619
GC
515 cg_proto = sk->sk_prot->proto_cgroup(memcg);
516 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 517 mem_cgroup_get(memcg);
3f134619 518 sk->sk_cgrp = cg_proto;
e1aab161
GC
519 }
520 rcu_read_unlock();
521 }
522}
523EXPORT_SYMBOL(sock_update_memcg);
524
525void sock_release_memcg(struct sock *sk)
526{
376be5ff 527 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
528 struct mem_cgroup *memcg;
529 WARN_ON(!sk->sk_cgrp->memcg);
530 memcg = sk->sk_cgrp->memcg;
531 mem_cgroup_put(memcg);
532 }
533}
d1a4c0b3
GC
534
535struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
536{
537 if (!memcg || mem_cgroup_is_root(memcg))
538 return NULL;
539
540 return &memcg->tcp_mem.cg_proto;
541}
542EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 543
3f134619
GC
544static void disarm_sock_keys(struct mem_cgroup *memcg)
545{
546 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
547 return;
548 static_key_slow_dec(&memcg_socket_limit_enabled);
549}
550#else
551static void disarm_sock_keys(struct mem_cgroup *memcg)
552{
553}
554#endif
555
a8964b9b 556#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
557/*
558 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
559 * There are two main reasons for not using the css_id for this:
560 * 1) this works better in sparse environments, where we have a lot of memcgs,
561 * but only a few kmem-limited. Or also, if we have, for instance, 200
562 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
563 * 200 entry array for that.
564 *
565 * 2) In order not to violate the cgroup API, we would like to do all memory
566 * allocation in ->create(). At that point, we haven't yet allocated the
567 * css_id. Having a separate index prevents us from messing with the cgroup
568 * core for this
569 *
570 * The current size of the caches array is stored in
571 * memcg_limited_groups_array_size. It will double each time we have to
572 * increase it.
573 */
574static DEFINE_IDA(kmem_limited_groups);
575static int memcg_limited_groups_array_size;
576/*
577 * MIN_SIZE is different than 1, because we would like to avoid going through
578 * the alloc/free process all the time. In a small machine, 4 kmem-limited
579 * cgroups is a reasonable guess. In the future, it could be a parameter or
580 * tunable, but that is strictly not necessary.
581 *
582 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
583 * this constant directly from cgroup, but it is understandable that this is
584 * better kept as an internal representation in cgroup.c. In any case, the
585 * css_id space is not getting any smaller, and we don't have to necessarily
586 * increase ours as well if it increases.
587 */
588#define MEMCG_CACHES_MIN_SIZE 4
589#define MEMCG_CACHES_MAX_SIZE 65535
590
a8964b9b
GC
591struct static_key memcg_kmem_enabled_key;
592
593static void disarm_kmem_keys(struct mem_cgroup *memcg)
594{
55007d84 595 if (memcg_kmem_is_active(memcg)) {
a8964b9b 596 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
597 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
598 }
bea207c8
GC
599 /*
600 * This check can't live in kmem destruction function,
601 * since the charges will outlive the cgroup
602 */
603 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
604}
605#else
606static void disarm_kmem_keys(struct mem_cgroup *memcg)
607{
608}
609#endif /* CONFIG_MEMCG_KMEM */
610
611static void disarm_static_keys(struct mem_cgroup *memcg)
612{
613 disarm_sock_keys(memcg);
614 disarm_kmem_keys(memcg);
615}
616
c0ff4b85 617static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 618
f64c3f54 619static struct mem_cgroup_per_zone *
c0ff4b85 620mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 621{
c0ff4b85 622 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
623}
624
c0ff4b85 625struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 626{
c0ff4b85 627 return &memcg->css;
d324236b
WF
628}
629
f64c3f54 630static struct mem_cgroup_per_zone *
c0ff4b85 631page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 632{
97a6c37b
JW
633 int nid = page_to_nid(page);
634 int zid = page_zonenum(page);
f64c3f54 635
c0ff4b85 636 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
637}
638
639static struct mem_cgroup_tree_per_zone *
640soft_limit_tree_node_zone(int nid, int zid)
641{
642 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
643}
644
645static struct mem_cgroup_tree_per_zone *
646soft_limit_tree_from_page(struct page *page)
647{
648 int nid = page_to_nid(page);
649 int zid = page_zonenum(page);
650
651 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
652}
653
654static void
c0ff4b85 655__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 656 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
657 struct mem_cgroup_tree_per_zone *mctz,
658 unsigned long long new_usage_in_excess)
f64c3f54
BS
659{
660 struct rb_node **p = &mctz->rb_root.rb_node;
661 struct rb_node *parent = NULL;
662 struct mem_cgroup_per_zone *mz_node;
663
664 if (mz->on_tree)
665 return;
666
ef8745c1
KH
667 mz->usage_in_excess = new_usage_in_excess;
668 if (!mz->usage_in_excess)
669 return;
f64c3f54
BS
670 while (*p) {
671 parent = *p;
672 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
673 tree_node);
674 if (mz->usage_in_excess < mz_node->usage_in_excess)
675 p = &(*p)->rb_left;
676 /*
677 * We can't avoid mem cgroups that are over their soft
678 * limit by the same amount
679 */
680 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
681 p = &(*p)->rb_right;
682 }
683 rb_link_node(&mz->tree_node, parent, p);
684 rb_insert_color(&mz->tree_node, &mctz->rb_root);
685 mz->on_tree = true;
4e416953
BS
686}
687
688static void
c0ff4b85 689__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
690 struct mem_cgroup_per_zone *mz,
691 struct mem_cgroup_tree_per_zone *mctz)
692{
693 if (!mz->on_tree)
694 return;
695 rb_erase(&mz->tree_node, &mctz->rb_root);
696 mz->on_tree = false;
697}
698
f64c3f54 699static void
c0ff4b85 700mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
701 struct mem_cgroup_per_zone *mz,
702 struct mem_cgroup_tree_per_zone *mctz)
703{
704 spin_lock(&mctz->lock);
c0ff4b85 705 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
706 spin_unlock(&mctz->lock);
707}
708
f64c3f54 709
c0ff4b85 710static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 711{
ef8745c1 712 unsigned long long excess;
f64c3f54
BS
713 struct mem_cgroup_per_zone *mz;
714 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
715 int nid = page_to_nid(page);
716 int zid = page_zonenum(page);
f64c3f54
BS
717 mctz = soft_limit_tree_from_page(page);
718
719 /*
4e649152
KH
720 * Necessary to update all ancestors when hierarchy is used.
721 * because their event counter is not touched.
f64c3f54 722 */
c0ff4b85
R
723 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
724 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
725 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
726 /*
727 * We have to update the tree if mz is on RB-tree or
728 * mem is over its softlimit.
729 */
ef8745c1 730 if (excess || mz->on_tree) {
4e649152
KH
731 spin_lock(&mctz->lock);
732 /* if on-tree, remove it */
733 if (mz->on_tree)
c0ff4b85 734 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 735 /*
ef8745c1
KH
736 * Insert again. mz->usage_in_excess will be updated.
737 * If excess is 0, no tree ops.
4e649152 738 */
c0ff4b85 739 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
740 spin_unlock(&mctz->lock);
741 }
f64c3f54
BS
742 }
743}
744
c0ff4b85 745static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
746{
747 int node, zone;
748 struct mem_cgroup_per_zone *mz;
749 struct mem_cgroup_tree_per_zone *mctz;
750
3ed28fa1 751 for_each_node(node) {
f64c3f54 752 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 753 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 754 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 755 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
756 }
757 }
758}
759
4e416953
BS
760static struct mem_cgroup_per_zone *
761__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
762{
763 struct rb_node *rightmost = NULL;
26251eaf 764 struct mem_cgroup_per_zone *mz;
4e416953
BS
765
766retry:
26251eaf 767 mz = NULL;
4e416953
BS
768 rightmost = rb_last(&mctz->rb_root);
769 if (!rightmost)
770 goto done; /* Nothing to reclaim from */
771
772 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
773 /*
774 * Remove the node now but someone else can add it back,
775 * we will to add it back at the end of reclaim to its correct
776 * position in the tree.
777 */
d79154bb
HD
778 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
779 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
780 !css_tryget(&mz->memcg->css))
4e416953
BS
781 goto retry;
782done:
783 return mz;
784}
785
786static struct mem_cgroup_per_zone *
787mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
788{
789 struct mem_cgroup_per_zone *mz;
790
791 spin_lock(&mctz->lock);
792 mz = __mem_cgroup_largest_soft_limit_node(mctz);
793 spin_unlock(&mctz->lock);
794 return mz;
795}
796
711d3d2c
KH
797/*
798 * Implementation Note: reading percpu statistics for memcg.
799 *
800 * Both of vmstat[] and percpu_counter has threshold and do periodic
801 * synchronization to implement "quick" read. There are trade-off between
802 * reading cost and precision of value. Then, we may have a chance to implement
803 * a periodic synchronizion of counter in memcg's counter.
804 *
805 * But this _read() function is used for user interface now. The user accounts
806 * memory usage by memory cgroup and he _always_ requires exact value because
807 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
808 * have to visit all online cpus and make sum. So, for now, unnecessary
809 * synchronization is not implemented. (just implemented for cpu hotplug)
810 *
811 * If there are kernel internal actions which can make use of some not-exact
812 * value, and reading all cpu value can be performance bottleneck in some
813 * common workload, threashold and synchonization as vmstat[] should be
814 * implemented.
815 */
c0ff4b85 816static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 817 enum mem_cgroup_stat_index idx)
c62b1a3b 818{
7a159cc9 819 long val = 0;
c62b1a3b 820 int cpu;
c62b1a3b 821
711d3d2c
KH
822 get_online_cpus();
823 for_each_online_cpu(cpu)
c0ff4b85 824 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 825#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
826 spin_lock(&memcg->pcp_counter_lock);
827 val += memcg->nocpu_base.count[idx];
828 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
829#endif
830 put_online_cpus();
c62b1a3b
KH
831 return val;
832}
833
c0ff4b85 834static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
835 bool charge)
836{
837 int val = (charge) ? 1 : -1;
bff6bb83 838 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
839}
840
c0ff4b85 841static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
842 enum mem_cgroup_events_index idx)
843{
844 unsigned long val = 0;
845 int cpu;
846
847 for_each_online_cpu(cpu)
c0ff4b85 848 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 849#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
850 spin_lock(&memcg->pcp_counter_lock);
851 val += memcg->nocpu_base.events[idx];
852 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
853#endif
854 return val;
855}
856
c0ff4b85 857static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 858 bool anon, int nr_pages)
d52aa412 859{
c62b1a3b
KH
860 preempt_disable();
861
b2402857
KH
862 /*
863 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
864 * counted as CACHE even if it's on ANON LRU.
865 */
866 if (anon)
867 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 868 nr_pages);
d52aa412 869 else
b2402857 870 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 871 nr_pages);
55e462b0 872
e401f176
KH
873 /* pagein of a big page is an event. So, ignore page size */
874 if (nr_pages > 0)
c0ff4b85 875 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 876 else {
c0ff4b85 877 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
878 nr_pages = -nr_pages; /* for event */
879 }
e401f176 880
13114716 881 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 882
c62b1a3b 883 preempt_enable();
6d12e2d8
KH
884}
885
bb2a0de9 886unsigned long
4d7dcca2 887mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
888{
889 struct mem_cgroup_per_zone *mz;
890
891 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
892 return mz->lru_size[lru];
893}
894
895static unsigned long
c0ff4b85 896mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 897 unsigned int lru_mask)
889976db
YH
898{
899 struct mem_cgroup_per_zone *mz;
f156ab93 900 enum lru_list lru;
bb2a0de9
KH
901 unsigned long ret = 0;
902
c0ff4b85 903 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 904
f156ab93
HD
905 for_each_lru(lru) {
906 if (BIT(lru) & lru_mask)
907 ret += mz->lru_size[lru];
bb2a0de9
KH
908 }
909 return ret;
910}
911
912static unsigned long
c0ff4b85 913mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
914 int nid, unsigned int lru_mask)
915{
889976db
YH
916 u64 total = 0;
917 int zid;
918
bb2a0de9 919 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
920 total += mem_cgroup_zone_nr_lru_pages(memcg,
921 nid, zid, lru_mask);
bb2a0de9 922
889976db
YH
923 return total;
924}
bb2a0de9 925
c0ff4b85 926static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 927 unsigned int lru_mask)
6d12e2d8 928{
889976db 929 int nid;
6d12e2d8
KH
930 u64 total = 0;
931
31aaea4a 932 for_each_node_state(nid, N_MEMORY)
c0ff4b85 933 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 934 return total;
d52aa412
KH
935}
936
f53d7ce3
JW
937static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
938 enum mem_cgroup_events_target target)
7a159cc9
JW
939{
940 unsigned long val, next;
941
13114716 942 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 943 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 944 /* from time_after() in jiffies.h */
f53d7ce3
JW
945 if ((long)next - (long)val < 0) {
946 switch (target) {
947 case MEM_CGROUP_TARGET_THRESH:
948 next = val + THRESHOLDS_EVENTS_TARGET;
949 break;
950 case MEM_CGROUP_TARGET_SOFTLIMIT:
951 next = val + SOFTLIMIT_EVENTS_TARGET;
952 break;
953 case MEM_CGROUP_TARGET_NUMAINFO:
954 next = val + NUMAINFO_EVENTS_TARGET;
955 break;
956 default:
957 break;
958 }
959 __this_cpu_write(memcg->stat->targets[target], next);
960 return true;
7a159cc9 961 }
f53d7ce3 962 return false;
d2265e6f
KH
963}
964
965/*
966 * Check events in order.
967 *
968 */
c0ff4b85 969static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 970{
4799401f 971 preempt_disable();
d2265e6f 972 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
973 if (unlikely(mem_cgroup_event_ratelimit(memcg,
974 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
975 bool do_softlimit;
976 bool do_numainfo __maybe_unused;
f53d7ce3
JW
977
978 do_softlimit = mem_cgroup_event_ratelimit(memcg,
979 MEM_CGROUP_TARGET_SOFTLIMIT);
980#if MAX_NUMNODES > 1
981 do_numainfo = mem_cgroup_event_ratelimit(memcg,
982 MEM_CGROUP_TARGET_NUMAINFO);
983#endif
984 preempt_enable();
985
c0ff4b85 986 mem_cgroup_threshold(memcg);
f53d7ce3 987 if (unlikely(do_softlimit))
c0ff4b85 988 mem_cgroup_update_tree(memcg, page);
453a9bf3 989#if MAX_NUMNODES > 1
f53d7ce3 990 if (unlikely(do_numainfo))
c0ff4b85 991 atomic_inc(&memcg->numainfo_events);
453a9bf3 992#endif
f53d7ce3
JW
993 } else
994 preempt_enable();
d2265e6f
KH
995}
996
d1a4c0b3 997struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 998{
b2145145
WL
999 return mem_cgroup_from_css(
1000 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
1001}
1002
cf475ad2 1003struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1004{
31a78f23
BS
1005 /*
1006 * mm_update_next_owner() may clear mm->owner to NULL
1007 * if it races with swapoff, page migration, etc.
1008 * So this can be called with p == NULL.
1009 */
1010 if (unlikely(!p))
1011 return NULL;
1012
b2145145 1013 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
1014}
1015
a433658c 1016struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1017{
c0ff4b85 1018 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1019
1020 if (!mm)
1021 return NULL;
54595fe2
KH
1022 /*
1023 * Because we have no locks, mm->owner's may be being moved to other
1024 * cgroup. We use css_tryget() here even if this looks
1025 * pessimistic (rather than adding locks here).
1026 */
1027 rcu_read_lock();
1028 do {
c0ff4b85
R
1029 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1030 if (unlikely(!memcg))
54595fe2 1031 break;
c0ff4b85 1032 } while (!css_tryget(&memcg->css));
54595fe2 1033 rcu_read_unlock();
c0ff4b85 1034 return memcg;
54595fe2
KH
1035}
1036
5660048c
JW
1037/**
1038 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1039 * @root: hierarchy root
1040 * @prev: previously returned memcg, NULL on first invocation
1041 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1042 *
1043 * Returns references to children of the hierarchy below @root, or
1044 * @root itself, or %NULL after a full round-trip.
1045 *
1046 * Caller must pass the return value in @prev on subsequent
1047 * invocations for reference counting, or use mem_cgroup_iter_break()
1048 * to cancel a hierarchy walk before the round-trip is complete.
1049 *
1050 * Reclaimers can specify a zone and a priority level in @reclaim to
1051 * divide up the memcgs in the hierarchy among all concurrent
1052 * reclaimers operating on the same zone and priority.
1053 */
1054struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1055 struct mem_cgroup *prev,
1056 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1057{
9f3a0d09
JW
1058 struct mem_cgroup *memcg = NULL;
1059 int id = 0;
711d3d2c 1060
5660048c
JW
1061 if (mem_cgroup_disabled())
1062 return NULL;
1063
9f3a0d09
JW
1064 if (!root)
1065 root = root_mem_cgroup;
7d74b06f 1066
9f3a0d09
JW
1067 if (prev && !reclaim)
1068 id = css_id(&prev->css);
14067bb3 1069
9f3a0d09
JW
1070 if (prev && prev != root)
1071 css_put(&prev->css);
14067bb3 1072
9f3a0d09
JW
1073 if (!root->use_hierarchy && root != root_mem_cgroup) {
1074 if (prev)
1075 return NULL;
1076 return root;
1077 }
14067bb3 1078
9f3a0d09 1079 while (!memcg) {
527a5ec9 1080 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 1081 struct cgroup_subsys_state *css;
711d3d2c 1082
527a5ec9
JW
1083 if (reclaim) {
1084 int nid = zone_to_nid(reclaim->zone);
1085 int zid = zone_idx(reclaim->zone);
1086 struct mem_cgroup_per_zone *mz;
1087
1088 mz = mem_cgroup_zoneinfo(root, nid, zid);
1089 iter = &mz->reclaim_iter[reclaim->priority];
1090 if (prev && reclaim->generation != iter->generation)
1091 return NULL;
1092 id = iter->position;
1093 }
7d74b06f 1094
9f3a0d09
JW
1095 rcu_read_lock();
1096 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
1097 if (css) {
1098 if (css == &root->css || css_tryget(css))
b2145145 1099 memcg = mem_cgroup_from_css(css);
9f3a0d09
JW
1100 } else
1101 id = 0;
14067bb3 1102 rcu_read_unlock();
14067bb3 1103
527a5ec9
JW
1104 if (reclaim) {
1105 iter->position = id;
1106 if (!css)
1107 iter->generation++;
1108 else if (!prev && memcg)
1109 reclaim->generation = iter->generation;
1110 }
9f3a0d09
JW
1111
1112 if (prev && !css)
1113 return NULL;
1114 }
1115 return memcg;
14067bb3 1116}
7d74b06f 1117
5660048c
JW
1118/**
1119 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1120 * @root: hierarchy root
1121 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1122 */
1123void mem_cgroup_iter_break(struct mem_cgroup *root,
1124 struct mem_cgroup *prev)
9f3a0d09
JW
1125{
1126 if (!root)
1127 root = root_mem_cgroup;
1128 if (prev && prev != root)
1129 css_put(&prev->css);
1130}
7d74b06f 1131
9f3a0d09
JW
1132/*
1133 * Iteration constructs for visiting all cgroups (under a tree). If
1134 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1135 * be used for reference counting.
1136 */
1137#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1138 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1139 iter != NULL; \
527a5ec9 1140 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1141
9f3a0d09 1142#define for_each_mem_cgroup(iter) \
527a5ec9 1143 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1144 iter != NULL; \
527a5ec9 1145 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1146
68ae564b 1147void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1148{
c0ff4b85 1149 struct mem_cgroup *memcg;
456f998e 1150
456f998e 1151 rcu_read_lock();
c0ff4b85
R
1152 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1153 if (unlikely(!memcg))
456f998e
YH
1154 goto out;
1155
1156 switch (idx) {
456f998e 1157 case PGFAULT:
0e574a93
JW
1158 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1159 break;
1160 case PGMAJFAULT:
1161 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1162 break;
1163 default:
1164 BUG();
1165 }
1166out:
1167 rcu_read_unlock();
1168}
68ae564b 1169EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1170
925b7673
JW
1171/**
1172 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1173 * @zone: zone of the wanted lruvec
fa9add64 1174 * @memcg: memcg of the wanted lruvec
925b7673
JW
1175 *
1176 * Returns the lru list vector holding pages for the given @zone and
1177 * @mem. This can be the global zone lruvec, if the memory controller
1178 * is disabled.
1179 */
1180struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1181 struct mem_cgroup *memcg)
1182{
1183 struct mem_cgroup_per_zone *mz;
bea8c150 1184 struct lruvec *lruvec;
925b7673 1185
bea8c150
HD
1186 if (mem_cgroup_disabled()) {
1187 lruvec = &zone->lruvec;
1188 goto out;
1189 }
925b7673
JW
1190
1191 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1192 lruvec = &mz->lruvec;
1193out:
1194 /*
1195 * Since a node can be onlined after the mem_cgroup was created,
1196 * we have to be prepared to initialize lruvec->zone here;
1197 * and if offlined then reonlined, we need to reinitialize it.
1198 */
1199 if (unlikely(lruvec->zone != zone))
1200 lruvec->zone = zone;
1201 return lruvec;
925b7673
JW
1202}
1203
08e552c6
KH
1204/*
1205 * Following LRU functions are allowed to be used without PCG_LOCK.
1206 * Operations are called by routine of global LRU independently from memcg.
1207 * What we have to take care of here is validness of pc->mem_cgroup.
1208 *
1209 * Changes to pc->mem_cgroup happens when
1210 * 1. charge
1211 * 2. moving account
1212 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1213 * It is added to LRU before charge.
1214 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1215 * When moving account, the page is not on LRU. It's isolated.
1216 */
4f98a2fe 1217
925b7673 1218/**
fa9add64 1219 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1220 * @page: the page
fa9add64 1221 * @zone: zone of the page
925b7673 1222 */
fa9add64 1223struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1224{
08e552c6 1225 struct mem_cgroup_per_zone *mz;
925b7673
JW
1226 struct mem_cgroup *memcg;
1227 struct page_cgroup *pc;
bea8c150 1228 struct lruvec *lruvec;
6d12e2d8 1229
bea8c150
HD
1230 if (mem_cgroup_disabled()) {
1231 lruvec = &zone->lruvec;
1232 goto out;
1233 }
925b7673 1234
08e552c6 1235 pc = lookup_page_cgroup(page);
38c5d72f 1236 memcg = pc->mem_cgroup;
7512102c
HD
1237
1238 /*
fa9add64 1239 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1240 * an uncharged page off lru does nothing to secure
1241 * its former mem_cgroup from sudden removal.
1242 *
1243 * Our caller holds lru_lock, and PageCgroupUsed is updated
1244 * under page_cgroup lock: between them, they make all uses
1245 * of pc->mem_cgroup safe.
1246 */
fa9add64 1247 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1248 pc->mem_cgroup = memcg = root_mem_cgroup;
1249
925b7673 1250 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1251 lruvec = &mz->lruvec;
1252out:
1253 /*
1254 * Since a node can be onlined after the mem_cgroup was created,
1255 * we have to be prepared to initialize lruvec->zone here;
1256 * and if offlined then reonlined, we need to reinitialize it.
1257 */
1258 if (unlikely(lruvec->zone != zone))
1259 lruvec->zone = zone;
1260 return lruvec;
08e552c6 1261}
b69408e8 1262
925b7673 1263/**
fa9add64
HD
1264 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1265 * @lruvec: mem_cgroup per zone lru vector
1266 * @lru: index of lru list the page is sitting on
1267 * @nr_pages: positive when adding or negative when removing
925b7673 1268 *
fa9add64
HD
1269 * This function must be called when a page is added to or removed from an
1270 * lru list.
3f58a829 1271 */
fa9add64
HD
1272void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1273 int nr_pages)
3f58a829
MK
1274{
1275 struct mem_cgroup_per_zone *mz;
fa9add64 1276 unsigned long *lru_size;
3f58a829
MK
1277
1278 if (mem_cgroup_disabled())
1279 return;
1280
fa9add64
HD
1281 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1282 lru_size = mz->lru_size + lru;
1283 *lru_size += nr_pages;
1284 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1285}
544122e5 1286
3e92041d 1287/*
c0ff4b85 1288 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1289 * hierarchy subtree
1290 */
c3ac9a8a
JW
1291bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1292 struct mem_cgroup *memcg)
3e92041d 1293{
91c63734
JW
1294 if (root_memcg == memcg)
1295 return true;
3a981f48 1296 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1297 return false;
c3ac9a8a
JW
1298 return css_is_ancestor(&memcg->css, &root_memcg->css);
1299}
1300
1301static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1302 struct mem_cgroup *memcg)
1303{
1304 bool ret;
1305
91c63734 1306 rcu_read_lock();
c3ac9a8a 1307 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1308 rcu_read_unlock();
1309 return ret;
3e92041d
MH
1310}
1311
c0ff4b85 1312int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1313{
1314 int ret;
0b7f569e 1315 struct mem_cgroup *curr = NULL;
158e0a2d 1316 struct task_struct *p;
4c4a2214 1317
158e0a2d 1318 p = find_lock_task_mm(task);
de077d22
DR
1319 if (p) {
1320 curr = try_get_mem_cgroup_from_mm(p->mm);
1321 task_unlock(p);
1322 } else {
1323 /*
1324 * All threads may have already detached their mm's, but the oom
1325 * killer still needs to detect if they have already been oom
1326 * killed to prevent needlessly killing additional tasks.
1327 */
1328 task_lock(task);
1329 curr = mem_cgroup_from_task(task);
1330 if (curr)
1331 css_get(&curr->css);
1332 task_unlock(task);
1333 }
0b7f569e
KH
1334 if (!curr)
1335 return 0;
d31f56db 1336 /*
c0ff4b85 1337 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1338 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1339 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1340 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1341 */
c0ff4b85 1342 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1343 css_put(&curr->css);
4c4a2214
DR
1344 return ret;
1345}
1346
c56d5c7d 1347int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1348{
9b272977 1349 unsigned long inactive_ratio;
14797e23 1350 unsigned long inactive;
9b272977 1351 unsigned long active;
c772be93 1352 unsigned long gb;
14797e23 1353
4d7dcca2
HD
1354 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1355 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1356
c772be93
KM
1357 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1358 if (gb)
1359 inactive_ratio = int_sqrt(10 * gb);
1360 else
1361 inactive_ratio = 1;
1362
9b272977 1363 return inactive * inactive_ratio < active;
14797e23
KM
1364}
1365
c56d5c7d 1366int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1367{
1368 unsigned long active;
1369 unsigned long inactive;
1370
4d7dcca2
HD
1371 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1372 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1373
1374 return (active > inactive);
1375}
1376
6d61ef40
BS
1377#define mem_cgroup_from_res_counter(counter, member) \
1378 container_of(counter, struct mem_cgroup, member)
1379
19942822 1380/**
9d11ea9f 1381 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1382 * @memcg: the memory cgroup
19942822 1383 *
9d11ea9f 1384 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1385 * pages.
19942822 1386 */
c0ff4b85 1387static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1388{
9d11ea9f
JW
1389 unsigned long long margin;
1390
c0ff4b85 1391 margin = res_counter_margin(&memcg->res);
9d11ea9f 1392 if (do_swap_account)
c0ff4b85 1393 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1394 return margin >> PAGE_SHIFT;
19942822
JW
1395}
1396
1f4c025b 1397int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1398{
1399 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1400
1401 /* root ? */
1402 if (cgrp->parent == NULL)
1403 return vm_swappiness;
1404
bf1ff263 1405 return memcg->swappiness;
a7885eb8
KM
1406}
1407
619d094b
KH
1408/*
1409 * memcg->moving_account is used for checking possibility that some thread is
1410 * calling move_account(). When a thread on CPU-A starts moving pages under
1411 * a memcg, other threads should check memcg->moving_account under
1412 * rcu_read_lock(), like this:
1413 *
1414 * CPU-A CPU-B
1415 * rcu_read_lock()
1416 * memcg->moving_account+1 if (memcg->mocing_account)
1417 * take heavy locks.
1418 * synchronize_rcu() update something.
1419 * rcu_read_unlock()
1420 * start move here.
1421 */
4331f7d3
KH
1422
1423/* for quick checking without looking up memcg */
1424atomic_t memcg_moving __read_mostly;
1425
c0ff4b85 1426static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1427{
4331f7d3 1428 atomic_inc(&memcg_moving);
619d094b 1429 atomic_inc(&memcg->moving_account);
32047e2a
KH
1430 synchronize_rcu();
1431}
1432
c0ff4b85 1433static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1434{
619d094b
KH
1435 /*
1436 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1437 * We check NULL in callee rather than caller.
1438 */
4331f7d3
KH
1439 if (memcg) {
1440 atomic_dec(&memcg_moving);
619d094b 1441 atomic_dec(&memcg->moving_account);
4331f7d3 1442 }
32047e2a 1443}
619d094b 1444
32047e2a
KH
1445/*
1446 * 2 routines for checking "mem" is under move_account() or not.
1447 *
13fd1dd9
AM
1448 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1449 * is used for avoiding races in accounting. If true,
32047e2a
KH
1450 * pc->mem_cgroup may be overwritten.
1451 *
1452 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1453 * under hierarchy of moving cgroups. This is for
1454 * waiting at hith-memory prressure caused by "move".
1455 */
1456
13fd1dd9 1457static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1458{
1459 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1460 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1461}
4b534334 1462
c0ff4b85 1463static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1464{
2bd9bb20
KH
1465 struct mem_cgroup *from;
1466 struct mem_cgroup *to;
4b534334 1467 bool ret = false;
2bd9bb20
KH
1468 /*
1469 * Unlike task_move routines, we access mc.to, mc.from not under
1470 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1471 */
1472 spin_lock(&mc.lock);
1473 from = mc.from;
1474 to = mc.to;
1475 if (!from)
1476 goto unlock;
3e92041d 1477
c0ff4b85
R
1478 ret = mem_cgroup_same_or_subtree(memcg, from)
1479 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1480unlock:
1481 spin_unlock(&mc.lock);
4b534334
KH
1482 return ret;
1483}
1484
c0ff4b85 1485static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1486{
1487 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1488 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1489 DEFINE_WAIT(wait);
1490 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1491 /* moving charge context might have finished. */
1492 if (mc.moving_task)
1493 schedule();
1494 finish_wait(&mc.waitq, &wait);
1495 return true;
1496 }
1497 }
1498 return false;
1499}
1500
312734c0
KH
1501/*
1502 * Take this lock when
1503 * - a code tries to modify page's memcg while it's USED.
1504 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1505 * see mem_cgroup_stolen(), too.
312734c0
KH
1506 */
1507static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1508 unsigned long *flags)
1509{
1510 spin_lock_irqsave(&memcg->move_lock, *flags);
1511}
1512
1513static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1514 unsigned long *flags)
1515{
1516 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1517}
1518
e222432b 1519/**
6a6135b6 1520 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1521 * @memcg: The memory cgroup that went over limit
1522 * @p: Task that is going to be killed
1523 *
1524 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1525 * enabled
1526 */
1527void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1528{
1529 struct cgroup *task_cgrp;
1530 struct cgroup *mem_cgrp;
1531 /*
1532 * Need a buffer in BSS, can't rely on allocations. The code relies
1533 * on the assumption that OOM is serialized for memory controller.
1534 * If this assumption is broken, revisit this code.
1535 */
1536 static char memcg_name[PATH_MAX];
1537 int ret;
1538
d31f56db 1539 if (!memcg || !p)
e222432b
BS
1540 return;
1541
e222432b
BS
1542 rcu_read_lock();
1543
1544 mem_cgrp = memcg->css.cgroup;
1545 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1546
1547 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1548 if (ret < 0) {
1549 /*
1550 * Unfortunately, we are unable to convert to a useful name
1551 * But we'll still print out the usage information
1552 */
1553 rcu_read_unlock();
1554 goto done;
1555 }
1556 rcu_read_unlock();
1557
1558 printk(KERN_INFO "Task in %s killed", memcg_name);
1559
1560 rcu_read_lock();
1561 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1562 if (ret < 0) {
1563 rcu_read_unlock();
1564 goto done;
1565 }
1566 rcu_read_unlock();
1567
1568 /*
1569 * Continues from above, so we don't need an KERN_ level
1570 */
1571 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1572done:
1573
1574 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1575 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1576 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1577 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1578 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1579 "failcnt %llu\n",
1580 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1581 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1582 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
510fc4e1
GC
1583 printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1584 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1585 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1586 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
e222432b
BS
1587}
1588
81d39c20
KH
1589/*
1590 * This function returns the number of memcg under hierarchy tree. Returns
1591 * 1(self count) if no children.
1592 */
c0ff4b85 1593static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1594{
1595 int num = 0;
7d74b06f
KH
1596 struct mem_cgroup *iter;
1597
c0ff4b85 1598 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1599 num++;
81d39c20
KH
1600 return num;
1601}
1602
a63d83f4
DR
1603/*
1604 * Return the memory (and swap, if configured) limit for a memcg.
1605 */
9cbb78bb 1606static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1607{
1608 u64 limit;
a63d83f4 1609
f3e8eb70 1610 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1611
a63d83f4 1612 /*
9a5a8f19 1613 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1614 */
9a5a8f19
MH
1615 if (mem_cgroup_swappiness(memcg)) {
1616 u64 memsw;
1617
1618 limit += total_swap_pages << PAGE_SHIFT;
1619 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1620
1621 /*
1622 * If memsw is finite and limits the amount of swap space
1623 * available to this memcg, return that limit.
1624 */
1625 limit = min(limit, memsw);
1626 }
1627
1628 return limit;
a63d83f4
DR
1629}
1630
19965460
DR
1631static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1632 int order)
9cbb78bb
DR
1633{
1634 struct mem_cgroup *iter;
1635 unsigned long chosen_points = 0;
1636 unsigned long totalpages;
1637 unsigned int points = 0;
1638 struct task_struct *chosen = NULL;
1639
876aafbf
DR
1640 /*
1641 * If current has a pending SIGKILL, then automatically select it. The
1642 * goal is to allow it to allocate so that it may quickly exit and free
1643 * its memory.
1644 */
1645 if (fatal_signal_pending(current)) {
1646 set_thread_flag(TIF_MEMDIE);
1647 return;
1648 }
1649
1650 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1651 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1652 for_each_mem_cgroup_tree(iter, memcg) {
1653 struct cgroup *cgroup = iter->css.cgroup;
1654 struct cgroup_iter it;
1655 struct task_struct *task;
1656
1657 cgroup_iter_start(cgroup, &it);
1658 while ((task = cgroup_iter_next(cgroup, &it))) {
1659 switch (oom_scan_process_thread(task, totalpages, NULL,
1660 false)) {
1661 case OOM_SCAN_SELECT:
1662 if (chosen)
1663 put_task_struct(chosen);
1664 chosen = task;
1665 chosen_points = ULONG_MAX;
1666 get_task_struct(chosen);
1667 /* fall through */
1668 case OOM_SCAN_CONTINUE:
1669 continue;
1670 case OOM_SCAN_ABORT:
1671 cgroup_iter_end(cgroup, &it);
1672 mem_cgroup_iter_break(memcg, iter);
1673 if (chosen)
1674 put_task_struct(chosen);
1675 return;
1676 case OOM_SCAN_OK:
1677 break;
1678 };
1679 points = oom_badness(task, memcg, NULL, totalpages);
1680 if (points > chosen_points) {
1681 if (chosen)
1682 put_task_struct(chosen);
1683 chosen = task;
1684 chosen_points = points;
1685 get_task_struct(chosen);
1686 }
1687 }
1688 cgroup_iter_end(cgroup, &it);
1689 }
1690
1691 if (!chosen)
1692 return;
1693 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1694 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1695 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1696}
1697
5660048c
JW
1698static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1699 gfp_t gfp_mask,
1700 unsigned long flags)
1701{
1702 unsigned long total = 0;
1703 bool noswap = false;
1704 int loop;
1705
1706 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1707 noswap = true;
1708 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1709 noswap = true;
1710
1711 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1712 if (loop)
1713 drain_all_stock_async(memcg);
1714 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1715 /*
1716 * Allow limit shrinkers, which are triggered directly
1717 * by userspace, to catch signals and stop reclaim
1718 * after minimal progress, regardless of the margin.
1719 */
1720 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1721 break;
1722 if (mem_cgroup_margin(memcg))
1723 break;
1724 /*
1725 * If nothing was reclaimed after two attempts, there
1726 * may be no reclaimable pages in this hierarchy.
1727 */
1728 if (loop && !total)
1729 break;
1730 }
1731 return total;
1732}
1733
4d0c066d
KH
1734/**
1735 * test_mem_cgroup_node_reclaimable
dad7557e 1736 * @memcg: the target memcg
4d0c066d
KH
1737 * @nid: the node ID to be checked.
1738 * @noswap : specify true here if the user wants flle only information.
1739 *
1740 * This function returns whether the specified memcg contains any
1741 * reclaimable pages on a node. Returns true if there are any reclaimable
1742 * pages in the node.
1743 */
c0ff4b85 1744static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1745 int nid, bool noswap)
1746{
c0ff4b85 1747 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1748 return true;
1749 if (noswap || !total_swap_pages)
1750 return false;
c0ff4b85 1751 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1752 return true;
1753 return false;
1754
1755}
889976db
YH
1756#if MAX_NUMNODES > 1
1757
1758/*
1759 * Always updating the nodemask is not very good - even if we have an empty
1760 * list or the wrong list here, we can start from some node and traverse all
1761 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1762 *
1763 */
c0ff4b85 1764static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1765{
1766 int nid;
453a9bf3
KH
1767 /*
1768 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1769 * pagein/pageout changes since the last update.
1770 */
c0ff4b85 1771 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1772 return;
c0ff4b85 1773 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1774 return;
1775
889976db 1776 /* make a nodemask where this memcg uses memory from */
31aaea4a 1777 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1778
31aaea4a 1779 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1780
c0ff4b85
R
1781 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1782 node_clear(nid, memcg->scan_nodes);
889976db 1783 }
453a9bf3 1784
c0ff4b85
R
1785 atomic_set(&memcg->numainfo_events, 0);
1786 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1787}
1788
1789/*
1790 * Selecting a node where we start reclaim from. Because what we need is just
1791 * reducing usage counter, start from anywhere is O,K. Considering
1792 * memory reclaim from current node, there are pros. and cons.
1793 *
1794 * Freeing memory from current node means freeing memory from a node which
1795 * we'll use or we've used. So, it may make LRU bad. And if several threads
1796 * hit limits, it will see a contention on a node. But freeing from remote
1797 * node means more costs for memory reclaim because of memory latency.
1798 *
1799 * Now, we use round-robin. Better algorithm is welcomed.
1800 */
c0ff4b85 1801int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1802{
1803 int node;
1804
c0ff4b85
R
1805 mem_cgroup_may_update_nodemask(memcg);
1806 node = memcg->last_scanned_node;
889976db 1807
c0ff4b85 1808 node = next_node(node, memcg->scan_nodes);
889976db 1809 if (node == MAX_NUMNODES)
c0ff4b85 1810 node = first_node(memcg->scan_nodes);
889976db
YH
1811 /*
1812 * We call this when we hit limit, not when pages are added to LRU.
1813 * No LRU may hold pages because all pages are UNEVICTABLE or
1814 * memcg is too small and all pages are not on LRU. In that case,
1815 * we use curret node.
1816 */
1817 if (unlikely(node == MAX_NUMNODES))
1818 node = numa_node_id();
1819
c0ff4b85 1820 memcg->last_scanned_node = node;
889976db
YH
1821 return node;
1822}
1823
4d0c066d
KH
1824/*
1825 * Check all nodes whether it contains reclaimable pages or not.
1826 * For quick scan, we make use of scan_nodes. This will allow us to skip
1827 * unused nodes. But scan_nodes is lazily updated and may not cotain
1828 * enough new information. We need to do double check.
1829 */
6bbda35c 1830static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1831{
1832 int nid;
1833
1834 /*
1835 * quick check...making use of scan_node.
1836 * We can skip unused nodes.
1837 */
c0ff4b85
R
1838 if (!nodes_empty(memcg->scan_nodes)) {
1839 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1840 nid < MAX_NUMNODES;
c0ff4b85 1841 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1842
c0ff4b85 1843 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1844 return true;
1845 }
1846 }
1847 /*
1848 * Check rest of nodes.
1849 */
31aaea4a 1850 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 1851 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1852 continue;
c0ff4b85 1853 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1854 return true;
1855 }
1856 return false;
1857}
1858
889976db 1859#else
c0ff4b85 1860int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1861{
1862 return 0;
1863}
4d0c066d 1864
6bbda35c 1865static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1866{
c0ff4b85 1867 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1868}
889976db
YH
1869#endif
1870
5660048c
JW
1871static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1872 struct zone *zone,
1873 gfp_t gfp_mask,
1874 unsigned long *total_scanned)
6d61ef40 1875{
9f3a0d09 1876 struct mem_cgroup *victim = NULL;
5660048c 1877 int total = 0;
04046e1a 1878 int loop = 0;
9d11ea9f 1879 unsigned long excess;
185efc0f 1880 unsigned long nr_scanned;
527a5ec9
JW
1881 struct mem_cgroup_reclaim_cookie reclaim = {
1882 .zone = zone,
1883 .priority = 0,
1884 };
9d11ea9f 1885
c0ff4b85 1886 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1887
4e416953 1888 while (1) {
527a5ec9 1889 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1890 if (!victim) {
04046e1a 1891 loop++;
4e416953
BS
1892 if (loop >= 2) {
1893 /*
1894 * If we have not been able to reclaim
1895 * anything, it might because there are
1896 * no reclaimable pages under this hierarchy
1897 */
5660048c 1898 if (!total)
4e416953 1899 break;
4e416953 1900 /*
25985edc 1901 * We want to do more targeted reclaim.
4e416953
BS
1902 * excess >> 2 is not to excessive so as to
1903 * reclaim too much, nor too less that we keep
1904 * coming back to reclaim from this cgroup
1905 */
1906 if (total >= (excess >> 2) ||
9f3a0d09 1907 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1908 break;
4e416953 1909 }
9f3a0d09 1910 continue;
4e416953 1911 }
5660048c 1912 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1913 continue;
5660048c
JW
1914 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1915 zone, &nr_scanned);
1916 *total_scanned += nr_scanned;
1917 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1918 break;
6d61ef40 1919 }
9f3a0d09 1920 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1921 return total;
6d61ef40
BS
1922}
1923
867578cb
KH
1924/*
1925 * Check OOM-Killer is already running under our hierarchy.
1926 * If someone is running, return false.
1af8efe9 1927 * Has to be called with memcg_oom_lock
867578cb 1928 */
c0ff4b85 1929static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1930{
79dfdacc 1931 struct mem_cgroup *iter, *failed = NULL;
a636b327 1932
9f3a0d09 1933 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1934 if (iter->oom_lock) {
79dfdacc
MH
1935 /*
1936 * this subtree of our hierarchy is already locked
1937 * so we cannot give a lock.
1938 */
79dfdacc 1939 failed = iter;
9f3a0d09
JW
1940 mem_cgroup_iter_break(memcg, iter);
1941 break;
23751be0
JW
1942 } else
1943 iter->oom_lock = true;
7d74b06f 1944 }
867578cb 1945
79dfdacc 1946 if (!failed)
23751be0 1947 return true;
79dfdacc
MH
1948
1949 /*
1950 * OK, we failed to lock the whole subtree so we have to clean up
1951 * what we set up to the failing subtree
1952 */
9f3a0d09 1953 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1954 if (iter == failed) {
9f3a0d09
JW
1955 mem_cgroup_iter_break(memcg, iter);
1956 break;
79dfdacc
MH
1957 }
1958 iter->oom_lock = false;
1959 }
23751be0 1960 return false;
a636b327 1961}
0b7f569e 1962
79dfdacc 1963/*
1af8efe9 1964 * Has to be called with memcg_oom_lock
79dfdacc 1965 */
c0ff4b85 1966static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1967{
7d74b06f
KH
1968 struct mem_cgroup *iter;
1969
c0ff4b85 1970 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1971 iter->oom_lock = false;
1972 return 0;
1973}
1974
c0ff4b85 1975static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1976{
1977 struct mem_cgroup *iter;
1978
c0ff4b85 1979 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1980 atomic_inc(&iter->under_oom);
1981}
1982
c0ff4b85 1983static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1984{
1985 struct mem_cgroup *iter;
1986
867578cb
KH
1987 /*
1988 * When a new child is created while the hierarchy is under oom,
1989 * mem_cgroup_oom_lock() may not be called. We have to use
1990 * atomic_add_unless() here.
1991 */
c0ff4b85 1992 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1993 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1994}
1995
1af8efe9 1996static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
1997static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1998
dc98df5a 1999struct oom_wait_info {
d79154bb 2000 struct mem_cgroup *memcg;
dc98df5a
KH
2001 wait_queue_t wait;
2002};
2003
2004static int memcg_oom_wake_function(wait_queue_t *wait,
2005 unsigned mode, int sync, void *arg)
2006{
d79154bb
HD
2007 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2008 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2009 struct oom_wait_info *oom_wait_info;
2010
2011 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2012 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2013
dc98df5a 2014 /*
d79154bb 2015 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2016 * Then we can use css_is_ancestor without taking care of RCU.
2017 */
c0ff4b85
R
2018 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2019 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2020 return 0;
dc98df5a
KH
2021 return autoremove_wake_function(wait, mode, sync, arg);
2022}
2023
c0ff4b85 2024static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2025{
c0ff4b85
R
2026 /* for filtering, pass "memcg" as argument. */
2027 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2028}
2029
c0ff4b85 2030static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2031{
c0ff4b85
R
2032 if (memcg && atomic_read(&memcg->under_oom))
2033 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2034}
2035
867578cb
KH
2036/*
2037 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2038 */
6bbda35c
KS
2039static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2040 int order)
0b7f569e 2041{
dc98df5a 2042 struct oom_wait_info owait;
3c11ecf4 2043 bool locked, need_to_kill;
867578cb 2044
d79154bb 2045 owait.memcg = memcg;
dc98df5a
KH
2046 owait.wait.flags = 0;
2047 owait.wait.func = memcg_oom_wake_function;
2048 owait.wait.private = current;
2049 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 2050 need_to_kill = true;
c0ff4b85 2051 mem_cgroup_mark_under_oom(memcg);
79dfdacc 2052
c0ff4b85 2053 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 2054 spin_lock(&memcg_oom_lock);
c0ff4b85 2055 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
2056 /*
2057 * Even if signal_pending(), we can't quit charge() loop without
2058 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2059 * under OOM is always welcomed, use TASK_KILLABLE here.
2060 */
3c11ecf4 2061 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 2062 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
2063 need_to_kill = false;
2064 if (locked)
c0ff4b85 2065 mem_cgroup_oom_notify(memcg);
1af8efe9 2066 spin_unlock(&memcg_oom_lock);
867578cb 2067
3c11ecf4
KH
2068 if (need_to_kill) {
2069 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 2070 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 2071 } else {
867578cb 2072 schedule();
dc98df5a 2073 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 2074 }
1af8efe9 2075 spin_lock(&memcg_oom_lock);
79dfdacc 2076 if (locked)
c0ff4b85
R
2077 mem_cgroup_oom_unlock(memcg);
2078 memcg_wakeup_oom(memcg);
1af8efe9 2079 spin_unlock(&memcg_oom_lock);
867578cb 2080
c0ff4b85 2081 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 2082
867578cb
KH
2083 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2084 return false;
2085 /* Give chance to dying process */
715a5ee8 2086 schedule_timeout_uninterruptible(1);
867578cb 2087 return true;
0b7f569e
KH
2088}
2089
d69b042f
BS
2090/*
2091 * Currently used to update mapped file statistics, but the routine can be
2092 * generalized to update other statistics as well.
32047e2a
KH
2093 *
2094 * Notes: Race condition
2095 *
2096 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2097 * it tends to be costly. But considering some conditions, we doesn't need
2098 * to do so _always_.
2099 *
2100 * Considering "charge", lock_page_cgroup() is not required because all
2101 * file-stat operations happen after a page is attached to radix-tree. There
2102 * are no race with "charge".
2103 *
2104 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2105 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2106 * if there are race with "uncharge". Statistics itself is properly handled
2107 * by flags.
2108 *
2109 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2110 * small, we check mm->moving_account and detect there are possibility of race
2111 * If there is, we take a lock.
d69b042f 2112 */
26174efd 2113
89c06bd5
KH
2114void __mem_cgroup_begin_update_page_stat(struct page *page,
2115 bool *locked, unsigned long *flags)
2116{
2117 struct mem_cgroup *memcg;
2118 struct page_cgroup *pc;
2119
2120 pc = lookup_page_cgroup(page);
2121again:
2122 memcg = pc->mem_cgroup;
2123 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2124 return;
2125 /*
2126 * If this memory cgroup is not under account moving, we don't
da92c47d 2127 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2128 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2129 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2130 */
13fd1dd9 2131 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2132 return;
2133
2134 move_lock_mem_cgroup(memcg, flags);
2135 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2136 move_unlock_mem_cgroup(memcg, flags);
2137 goto again;
2138 }
2139 *locked = true;
2140}
2141
2142void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2143{
2144 struct page_cgroup *pc = lookup_page_cgroup(page);
2145
2146 /*
2147 * It's guaranteed that pc->mem_cgroup never changes while
2148 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2149 * should take move_lock_mem_cgroup().
89c06bd5
KH
2150 */
2151 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2152}
2153
2a7106f2
GT
2154void mem_cgroup_update_page_stat(struct page *page,
2155 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2156{
c0ff4b85 2157 struct mem_cgroup *memcg;
32047e2a 2158 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2159 unsigned long uninitialized_var(flags);
d69b042f 2160
cfa44946 2161 if (mem_cgroup_disabled())
d69b042f 2162 return;
89c06bd5 2163
c0ff4b85
R
2164 memcg = pc->mem_cgroup;
2165 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2166 return;
26174efd 2167
26174efd 2168 switch (idx) {
2a7106f2 2169 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2170 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2171 break;
2172 default:
2173 BUG();
8725d541 2174 }
d69b042f 2175
c0ff4b85 2176 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2177}
26174efd 2178
cdec2e42
KH
2179/*
2180 * size of first charge trial. "32" comes from vmscan.c's magic value.
2181 * TODO: maybe necessary to use big numbers in big irons.
2182 */
7ec99d62 2183#define CHARGE_BATCH 32U
cdec2e42
KH
2184struct memcg_stock_pcp {
2185 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2186 unsigned int nr_pages;
cdec2e42 2187 struct work_struct work;
26fe6168 2188 unsigned long flags;
a0db00fc 2189#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2190};
2191static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2192static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2193
a0956d54
SS
2194/**
2195 * consume_stock: Try to consume stocked charge on this cpu.
2196 * @memcg: memcg to consume from.
2197 * @nr_pages: how many pages to charge.
2198 *
2199 * The charges will only happen if @memcg matches the current cpu's memcg
2200 * stock, and at least @nr_pages are available in that stock. Failure to
2201 * service an allocation will refill the stock.
2202 *
2203 * returns true if successful, false otherwise.
cdec2e42 2204 */
a0956d54 2205static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2206{
2207 struct memcg_stock_pcp *stock;
2208 bool ret = true;
2209
a0956d54
SS
2210 if (nr_pages > CHARGE_BATCH)
2211 return false;
2212
cdec2e42 2213 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2214 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2215 stock->nr_pages -= nr_pages;
cdec2e42
KH
2216 else /* need to call res_counter_charge */
2217 ret = false;
2218 put_cpu_var(memcg_stock);
2219 return ret;
2220}
2221
2222/*
2223 * Returns stocks cached in percpu to res_counter and reset cached information.
2224 */
2225static void drain_stock(struct memcg_stock_pcp *stock)
2226{
2227 struct mem_cgroup *old = stock->cached;
2228
11c9ea4e
JW
2229 if (stock->nr_pages) {
2230 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2231
2232 res_counter_uncharge(&old->res, bytes);
cdec2e42 2233 if (do_swap_account)
11c9ea4e
JW
2234 res_counter_uncharge(&old->memsw, bytes);
2235 stock->nr_pages = 0;
cdec2e42
KH
2236 }
2237 stock->cached = NULL;
cdec2e42
KH
2238}
2239
2240/*
2241 * This must be called under preempt disabled or must be called by
2242 * a thread which is pinned to local cpu.
2243 */
2244static void drain_local_stock(struct work_struct *dummy)
2245{
2246 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2247 drain_stock(stock);
26fe6168 2248 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2249}
2250
2251/*
2252 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2253 * This will be consumed by consume_stock() function, later.
cdec2e42 2254 */
c0ff4b85 2255static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2256{
2257 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2258
c0ff4b85 2259 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2260 drain_stock(stock);
c0ff4b85 2261 stock->cached = memcg;
cdec2e42 2262 }
11c9ea4e 2263 stock->nr_pages += nr_pages;
cdec2e42
KH
2264 put_cpu_var(memcg_stock);
2265}
2266
2267/*
c0ff4b85 2268 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2269 * of the hierarchy under it. sync flag says whether we should block
2270 * until the work is done.
cdec2e42 2271 */
c0ff4b85 2272static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2273{
26fe6168 2274 int cpu, curcpu;
d38144b7 2275
cdec2e42 2276 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2277 get_online_cpus();
5af12d0e 2278 curcpu = get_cpu();
cdec2e42
KH
2279 for_each_online_cpu(cpu) {
2280 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2281 struct mem_cgroup *memcg;
26fe6168 2282
c0ff4b85
R
2283 memcg = stock->cached;
2284 if (!memcg || !stock->nr_pages)
26fe6168 2285 continue;
c0ff4b85 2286 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2287 continue;
d1a05b69
MH
2288 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2289 if (cpu == curcpu)
2290 drain_local_stock(&stock->work);
2291 else
2292 schedule_work_on(cpu, &stock->work);
2293 }
cdec2e42 2294 }
5af12d0e 2295 put_cpu();
d38144b7
MH
2296
2297 if (!sync)
2298 goto out;
2299
2300 for_each_online_cpu(cpu) {
2301 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2302 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2303 flush_work(&stock->work);
2304 }
2305out:
cdec2e42 2306 put_online_cpus();
d38144b7
MH
2307}
2308
2309/*
2310 * Tries to drain stocked charges in other cpus. This function is asynchronous
2311 * and just put a work per cpu for draining localy on each cpu. Caller can
2312 * expects some charges will be back to res_counter later but cannot wait for
2313 * it.
2314 */
c0ff4b85 2315static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2316{
9f50fad6
MH
2317 /*
2318 * If someone calls draining, avoid adding more kworker runs.
2319 */
2320 if (!mutex_trylock(&percpu_charge_mutex))
2321 return;
c0ff4b85 2322 drain_all_stock(root_memcg, false);
9f50fad6 2323 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2324}
2325
2326/* This is a synchronous drain interface. */
c0ff4b85 2327static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2328{
2329 /* called when force_empty is called */
9f50fad6 2330 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2331 drain_all_stock(root_memcg, true);
9f50fad6 2332 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2333}
2334
711d3d2c
KH
2335/*
2336 * This function drains percpu counter value from DEAD cpu and
2337 * move it to local cpu. Note that this function can be preempted.
2338 */
c0ff4b85 2339static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2340{
2341 int i;
2342
c0ff4b85 2343 spin_lock(&memcg->pcp_counter_lock);
6104621d 2344 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2345 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2346
c0ff4b85
R
2347 per_cpu(memcg->stat->count[i], cpu) = 0;
2348 memcg->nocpu_base.count[i] += x;
711d3d2c 2349 }
e9f8974f 2350 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2351 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2352
c0ff4b85
R
2353 per_cpu(memcg->stat->events[i], cpu) = 0;
2354 memcg->nocpu_base.events[i] += x;
e9f8974f 2355 }
c0ff4b85 2356 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2357}
2358
2359static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2360 unsigned long action,
2361 void *hcpu)
2362{
2363 int cpu = (unsigned long)hcpu;
2364 struct memcg_stock_pcp *stock;
711d3d2c 2365 struct mem_cgroup *iter;
cdec2e42 2366
619d094b 2367 if (action == CPU_ONLINE)
1489ebad 2368 return NOTIFY_OK;
1489ebad 2369
d833049b 2370 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2371 return NOTIFY_OK;
711d3d2c 2372
9f3a0d09 2373 for_each_mem_cgroup(iter)
711d3d2c
KH
2374 mem_cgroup_drain_pcp_counter(iter, cpu);
2375
cdec2e42
KH
2376 stock = &per_cpu(memcg_stock, cpu);
2377 drain_stock(stock);
2378 return NOTIFY_OK;
2379}
2380
4b534334
KH
2381
2382/* See __mem_cgroup_try_charge() for details */
2383enum {
2384 CHARGE_OK, /* success */
2385 CHARGE_RETRY, /* need to retry but retry is not bad */
2386 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2387 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2388 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2389};
2390
c0ff4b85 2391static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2392 unsigned int nr_pages, unsigned int min_pages,
2393 bool oom_check)
4b534334 2394{
7ec99d62 2395 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2396 struct mem_cgroup *mem_over_limit;
2397 struct res_counter *fail_res;
2398 unsigned long flags = 0;
2399 int ret;
2400
c0ff4b85 2401 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2402
2403 if (likely(!ret)) {
2404 if (!do_swap_account)
2405 return CHARGE_OK;
c0ff4b85 2406 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2407 if (likely(!ret))
2408 return CHARGE_OK;
2409
c0ff4b85 2410 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2411 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2412 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2413 } else
2414 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2415 /*
9221edb7
JW
2416 * Never reclaim on behalf of optional batching, retry with a
2417 * single page instead.
2418 */
4c9c5359 2419 if (nr_pages > min_pages)
4b534334
KH
2420 return CHARGE_RETRY;
2421
2422 if (!(gfp_mask & __GFP_WAIT))
2423 return CHARGE_WOULDBLOCK;
2424
4c9c5359
SS
2425 if (gfp_mask & __GFP_NORETRY)
2426 return CHARGE_NOMEM;
2427
5660048c 2428 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2429 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2430 return CHARGE_RETRY;
4b534334 2431 /*
19942822
JW
2432 * Even though the limit is exceeded at this point, reclaim
2433 * may have been able to free some pages. Retry the charge
2434 * before killing the task.
2435 *
2436 * Only for regular pages, though: huge pages are rather
2437 * unlikely to succeed so close to the limit, and we fall back
2438 * to regular pages anyway in case of failure.
4b534334 2439 */
4c9c5359 2440 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2441 return CHARGE_RETRY;
2442
2443 /*
2444 * At task move, charge accounts can be doubly counted. So, it's
2445 * better to wait until the end of task_move if something is going on.
2446 */
2447 if (mem_cgroup_wait_acct_move(mem_over_limit))
2448 return CHARGE_RETRY;
2449
2450 /* If we don't need to call oom-killer at el, return immediately */
2451 if (!oom_check)
2452 return CHARGE_NOMEM;
2453 /* check OOM */
e845e199 2454 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2455 return CHARGE_OOM_DIE;
2456
2457 return CHARGE_RETRY;
2458}
2459
f817ed48 2460/*
38c5d72f
KH
2461 * __mem_cgroup_try_charge() does
2462 * 1. detect memcg to be charged against from passed *mm and *ptr,
2463 * 2. update res_counter
2464 * 3. call memory reclaim if necessary.
2465 *
2466 * In some special case, if the task is fatal, fatal_signal_pending() or
2467 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2468 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2469 * as possible without any hazards. 2: all pages should have a valid
2470 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2471 * pointer, that is treated as a charge to root_mem_cgroup.
2472 *
2473 * So __mem_cgroup_try_charge() will return
2474 * 0 ... on success, filling *ptr with a valid memcg pointer.
2475 * -ENOMEM ... charge failure because of resource limits.
2476 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2477 *
2478 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2479 * the oom-killer can be invoked.
8a9f3ccd 2480 */
f817ed48 2481static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2482 gfp_t gfp_mask,
7ec99d62 2483 unsigned int nr_pages,
c0ff4b85 2484 struct mem_cgroup **ptr,
7ec99d62 2485 bool oom)
8a9f3ccd 2486{
7ec99d62 2487 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2488 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2489 struct mem_cgroup *memcg = NULL;
4b534334 2490 int ret;
a636b327 2491
867578cb
KH
2492 /*
2493 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2494 * in system level. So, allow to go ahead dying process in addition to
2495 * MEMDIE process.
2496 */
2497 if (unlikely(test_thread_flag(TIF_MEMDIE)
2498 || fatal_signal_pending(current)))
2499 goto bypass;
a636b327 2500
8a9f3ccd 2501 /*
3be91277
HD
2502 * We always charge the cgroup the mm_struct belongs to.
2503 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2504 * thread group leader migrates. It's possible that mm is not
24467cac 2505 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2506 */
c0ff4b85 2507 if (!*ptr && !mm)
38c5d72f 2508 *ptr = root_mem_cgroup;
f75ca962 2509again:
c0ff4b85
R
2510 if (*ptr) { /* css should be a valid one */
2511 memcg = *ptr;
c0ff4b85 2512 if (mem_cgroup_is_root(memcg))
f75ca962 2513 goto done;
a0956d54 2514 if (consume_stock(memcg, nr_pages))
f75ca962 2515 goto done;
c0ff4b85 2516 css_get(&memcg->css);
4b534334 2517 } else {
f75ca962 2518 struct task_struct *p;
54595fe2 2519
f75ca962
KH
2520 rcu_read_lock();
2521 p = rcu_dereference(mm->owner);
f75ca962 2522 /*
ebb76ce1 2523 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2524 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2525 * race with swapoff. Then, we have small risk of mis-accouning.
2526 * But such kind of mis-account by race always happens because
2527 * we don't have cgroup_mutex(). It's overkill and we allo that
2528 * small race, here.
2529 * (*) swapoff at el will charge against mm-struct not against
2530 * task-struct. So, mm->owner can be NULL.
f75ca962 2531 */
c0ff4b85 2532 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2533 if (!memcg)
2534 memcg = root_mem_cgroup;
2535 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2536 rcu_read_unlock();
2537 goto done;
2538 }
a0956d54 2539 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2540 /*
2541 * It seems dagerous to access memcg without css_get().
2542 * But considering how consume_stok works, it's not
2543 * necessary. If consume_stock success, some charges
2544 * from this memcg are cached on this cpu. So, we
2545 * don't need to call css_get()/css_tryget() before
2546 * calling consume_stock().
2547 */
2548 rcu_read_unlock();
2549 goto done;
2550 }
2551 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2552 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2553 rcu_read_unlock();
2554 goto again;
2555 }
2556 rcu_read_unlock();
2557 }
8a9f3ccd 2558
4b534334
KH
2559 do {
2560 bool oom_check;
7a81b88c 2561
4b534334 2562 /* If killed, bypass charge */
f75ca962 2563 if (fatal_signal_pending(current)) {
c0ff4b85 2564 css_put(&memcg->css);
4b534334 2565 goto bypass;
f75ca962 2566 }
6d61ef40 2567
4b534334
KH
2568 oom_check = false;
2569 if (oom && !nr_oom_retries) {
2570 oom_check = true;
2571 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2572 }
66e1707b 2573
4c9c5359
SS
2574 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2575 oom_check);
4b534334
KH
2576 switch (ret) {
2577 case CHARGE_OK:
2578 break;
2579 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2580 batch = nr_pages;
c0ff4b85
R
2581 css_put(&memcg->css);
2582 memcg = NULL;
f75ca962 2583 goto again;
4b534334 2584 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2585 css_put(&memcg->css);
4b534334
KH
2586 goto nomem;
2587 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2588 if (!oom) {
c0ff4b85 2589 css_put(&memcg->css);
867578cb 2590 goto nomem;
f75ca962 2591 }
4b534334
KH
2592 /* If oom, we never return -ENOMEM */
2593 nr_oom_retries--;
2594 break;
2595 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2596 css_put(&memcg->css);
867578cb 2597 goto bypass;
66e1707b 2598 }
4b534334
KH
2599 } while (ret != CHARGE_OK);
2600
7ec99d62 2601 if (batch > nr_pages)
c0ff4b85
R
2602 refill_stock(memcg, batch - nr_pages);
2603 css_put(&memcg->css);
0c3e73e8 2604done:
c0ff4b85 2605 *ptr = memcg;
7a81b88c
KH
2606 return 0;
2607nomem:
c0ff4b85 2608 *ptr = NULL;
7a81b88c 2609 return -ENOMEM;
867578cb 2610bypass:
38c5d72f
KH
2611 *ptr = root_mem_cgroup;
2612 return -EINTR;
7a81b88c 2613}
8a9f3ccd 2614
a3032a2c
DN
2615/*
2616 * Somemtimes we have to undo a charge we got by try_charge().
2617 * This function is for that and do uncharge, put css's refcnt.
2618 * gotten by try_charge().
2619 */
c0ff4b85 2620static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2621 unsigned int nr_pages)
a3032a2c 2622{
c0ff4b85 2623 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2624 unsigned long bytes = nr_pages * PAGE_SIZE;
2625
c0ff4b85 2626 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2627 if (do_swap_account)
c0ff4b85 2628 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2629 }
854ffa8d
DN
2630}
2631
d01dd17f
KH
2632/*
2633 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2634 * This is useful when moving usage to parent cgroup.
2635 */
2636static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2637 unsigned int nr_pages)
2638{
2639 unsigned long bytes = nr_pages * PAGE_SIZE;
2640
2641 if (mem_cgroup_is_root(memcg))
2642 return;
2643
2644 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2645 if (do_swap_account)
2646 res_counter_uncharge_until(&memcg->memsw,
2647 memcg->memsw.parent, bytes);
2648}
2649
a3b2d692
KH
2650/*
2651 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2652 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2653 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2654 * called against removed memcg.)
a3b2d692
KH
2655 */
2656static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2657{
2658 struct cgroup_subsys_state *css;
2659
2660 /* ID 0 is unused ID */
2661 if (!id)
2662 return NULL;
2663 css = css_lookup(&mem_cgroup_subsys, id);
2664 if (!css)
2665 return NULL;
b2145145 2666 return mem_cgroup_from_css(css);
a3b2d692
KH
2667}
2668
e42d9d5d 2669struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2670{
c0ff4b85 2671 struct mem_cgroup *memcg = NULL;
3c776e64 2672 struct page_cgroup *pc;
a3b2d692 2673 unsigned short id;
b5a84319
KH
2674 swp_entry_t ent;
2675
3c776e64
DN
2676 VM_BUG_ON(!PageLocked(page));
2677
3c776e64 2678 pc = lookup_page_cgroup(page);
c0bd3f63 2679 lock_page_cgroup(pc);
a3b2d692 2680 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2681 memcg = pc->mem_cgroup;
2682 if (memcg && !css_tryget(&memcg->css))
2683 memcg = NULL;
e42d9d5d 2684 } else if (PageSwapCache(page)) {
3c776e64 2685 ent.val = page_private(page);
9fb4b7cc 2686 id = lookup_swap_cgroup_id(ent);
a3b2d692 2687 rcu_read_lock();
c0ff4b85
R
2688 memcg = mem_cgroup_lookup(id);
2689 if (memcg && !css_tryget(&memcg->css))
2690 memcg = NULL;
a3b2d692 2691 rcu_read_unlock();
3c776e64 2692 }
c0bd3f63 2693 unlock_page_cgroup(pc);
c0ff4b85 2694 return memcg;
b5a84319
KH
2695}
2696
c0ff4b85 2697static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2698 struct page *page,
7ec99d62 2699 unsigned int nr_pages,
9ce70c02
HD
2700 enum charge_type ctype,
2701 bool lrucare)
7a81b88c 2702{
ce587e65 2703 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2704 struct zone *uninitialized_var(zone);
fa9add64 2705 struct lruvec *lruvec;
9ce70c02 2706 bool was_on_lru = false;
b2402857 2707 bool anon;
9ce70c02 2708
ca3e0214 2709 lock_page_cgroup(pc);
90deb788 2710 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2711 /*
2712 * we don't need page_cgroup_lock about tail pages, becase they are not
2713 * accessed by any other context at this point.
2714 */
9ce70c02
HD
2715
2716 /*
2717 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2718 * may already be on some other mem_cgroup's LRU. Take care of it.
2719 */
2720 if (lrucare) {
2721 zone = page_zone(page);
2722 spin_lock_irq(&zone->lru_lock);
2723 if (PageLRU(page)) {
fa9add64 2724 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2725 ClearPageLRU(page);
fa9add64 2726 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2727 was_on_lru = true;
2728 }
2729 }
2730
c0ff4b85 2731 pc->mem_cgroup = memcg;
261fb61a
KH
2732 /*
2733 * We access a page_cgroup asynchronously without lock_page_cgroup().
2734 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2735 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2736 * before USED bit, we need memory barrier here.
2737 * See mem_cgroup_add_lru_list(), etc.
2738 */
08e552c6 2739 smp_wmb();
b2402857 2740 SetPageCgroupUsed(pc);
3be91277 2741
9ce70c02
HD
2742 if (lrucare) {
2743 if (was_on_lru) {
fa9add64 2744 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2745 VM_BUG_ON(PageLRU(page));
2746 SetPageLRU(page);
fa9add64 2747 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2748 }
2749 spin_unlock_irq(&zone->lru_lock);
2750 }
2751
41326c17 2752 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2753 anon = true;
2754 else
2755 anon = false;
2756
2757 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2758 unlock_page_cgroup(pc);
9ce70c02 2759
430e4863
KH
2760 /*
2761 * "charge_statistics" updated event counter. Then, check it.
2762 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2763 * if they exceeds softlimit.
2764 */
c0ff4b85 2765 memcg_check_events(memcg, page);
7a81b88c 2766}
66e1707b 2767
7ae1e1d0
GC
2768#ifdef CONFIG_MEMCG_KMEM
2769static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2770{
2771 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2772 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2773}
2774
2775static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2776{
2777 struct res_counter *fail_res;
2778 struct mem_cgroup *_memcg;
2779 int ret = 0;
2780 bool may_oom;
2781
2782 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2783 if (ret)
2784 return ret;
2785
2786 /*
2787 * Conditions under which we can wait for the oom_killer. Those are
2788 * the same conditions tested by the core page allocator
2789 */
2790 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2791
2792 _memcg = memcg;
2793 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2794 &_memcg, may_oom);
2795
2796 if (ret == -EINTR) {
2797 /*
2798 * __mem_cgroup_try_charge() chosed to bypass to root due to
2799 * OOM kill or fatal signal. Since our only options are to
2800 * either fail the allocation or charge it to this cgroup, do
2801 * it as a temporary condition. But we can't fail. From a
2802 * kmem/slab perspective, the cache has already been selected,
2803 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2804 * our minds.
2805 *
2806 * This condition will only trigger if the task entered
2807 * memcg_charge_kmem in a sane state, but was OOM-killed during
2808 * __mem_cgroup_try_charge() above. Tasks that were already
2809 * dying when the allocation triggers should have been already
2810 * directed to the root cgroup in memcontrol.h
2811 */
2812 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2813 if (do_swap_account)
2814 res_counter_charge_nofail(&memcg->memsw, size,
2815 &fail_res);
2816 ret = 0;
2817 } else if (ret)
2818 res_counter_uncharge(&memcg->kmem, size);
2819
2820 return ret;
2821}
2822
2823static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2824{
7ae1e1d0
GC
2825 res_counter_uncharge(&memcg->res, size);
2826 if (do_swap_account)
2827 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2828
2829 /* Not down to 0 */
2830 if (res_counter_uncharge(&memcg->kmem, size))
2831 return;
2832
2833 if (memcg_kmem_test_and_clear_dead(memcg))
2834 mem_cgroup_put(memcg);
7ae1e1d0
GC
2835}
2836
2633d7a0
GC
2837void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2838{
2839 if (!memcg)
2840 return;
2841
2842 mutex_lock(&memcg->slab_caches_mutex);
2843 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2844 mutex_unlock(&memcg->slab_caches_mutex);
2845}
2846
2847/*
2848 * helper for acessing a memcg's index. It will be used as an index in the
2849 * child cache array in kmem_cache, and also to derive its name. This function
2850 * will return -1 when this is not a kmem-limited memcg.
2851 */
2852int memcg_cache_id(struct mem_cgroup *memcg)
2853{
2854 return memcg ? memcg->kmemcg_id : -1;
2855}
2856
55007d84
GC
2857/*
2858 * This ends up being protected by the set_limit mutex, during normal
2859 * operation, because that is its main call site.
2860 *
2861 * But when we create a new cache, we can call this as well if its parent
2862 * is kmem-limited. That will have to hold set_limit_mutex as well.
2863 */
2864int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2865{
2866 int num, ret;
2867
2868 num = ida_simple_get(&kmem_limited_groups,
2869 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2870 if (num < 0)
2871 return num;
2872 /*
2873 * After this point, kmem_accounted (that we test atomically in
2874 * the beginning of this conditional), is no longer 0. This
2875 * guarantees only one process will set the following boolean
2876 * to true. We don't need test_and_set because we're protected
2877 * by the set_limit_mutex anyway.
2878 */
2879 memcg_kmem_set_activated(memcg);
2880
2881 ret = memcg_update_all_caches(num+1);
2882 if (ret) {
2883 ida_simple_remove(&kmem_limited_groups, num);
2884 memcg_kmem_clear_activated(memcg);
2885 return ret;
2886 }
2887
2888 memcg->kmemcg_id = num;
2889 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2890 mutex_init(&memcg->slab_caches_mutex);
2891 return 0;
2892}
2893
2894static size_t memcg_caches_array_size(int num_groups)
2895{
2896 ssize_t size;
2897 if (num_groups <= 0)
2898 return 0;
2899
2900 size = 2 * num_groups;
2901 if (size < MEMCG_CACHES_MIN_SIZE)
2902 size = MEMCG_CACHES_MIN_SIZE;
2903 else if (size > MEMCG_CACHES_MAX_SIZE)
2904 size = MEMCG_CACHES_MAX_SIZE;
2905
2906 return size;
2907}
2908
2909/*
2910 * We should update the current array size iff all caches updates succeed. This
2911 * can only be done from the slab side. The slab mutex needs to be held when
2912 * calling this.
2913 */
2914void memcg_update_array_size(int num)
2915{
2916 if (num > memcg_limited_groups_array_size)
2917 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2918}
2919
2920int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
2921{
2922 struct memcg_cache_params *cur_params = s->memcg_params;
2923
2924 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
2925
2926 if (num_groups > memcg_limited_groups_array_size) {
2927 int i;
2928 ssize_t size = memcg_caches_array_size(num_groups);
2929
2930 size *= sizeof(void *);
2931 size += sizeof(struct memcg_cache_params);
2932
2933 s->memcg_params = kzalloc(size, GFP_KERNEL);
2934 if (!s->memcg_params) {
2935 s->memcg_params = cur_params;
2936 return -ENOMEM;
2937 }
2938
2939 s->memcg_params->is_root_cache = true;
2940
2941 /*
2942 * There is the chance it will be bigger than
2943 * memcg_limited_groups_array_size, if we failed an allocation
2944 * in a cache, in which case all caches updated before it, will
2945 * have a bigger array.
2946 *
2947 * But if that is the case, the data after
2948 * memcg_limited_groups_array_size is certainly unused
2949 */
2950 for (i = 0; i < memcg_limited_groups_array_size; i++) {
2951 if (!cur_params->memcg_caches[i])
2952 continue;
2953 s->memcg_params->memcg_caches[i] =
2954 cur_params->memcg_caches[i];
2955 }
2956
2957 /*
2958 * Ideally, we would wait until all caches succeed, and only
2959 * then free the old one. But this is not worth the extra
2960 * pointer per-cache we'd have to have for this.
2961 *
2962 * It is not a big deal if some caches are left with a size
2963 * bigger than the others. And all updates will reset this
2964 * anyway.
2965 */
2966 kfree(cur_params);
2967 }
2968 return 0;
2969}
2970
2633d7a0
GC
2971int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s)
2972{
2973 size_t size = sizeof(struct memcg_cache_params);
2974
2975 if (!memcg_kmem_enabled())
2976 return 0;
2977
55007d84
GC
2978 if (!memcg)
2979 size += memcg_limited_groups_array_size * sizeof(void *);
2980
2633d7a0
GC
2981 s->memcg_params = kzalloc(size, GFP_KERNEL);
2982 if (!s->memcg_params)
2983 return -ENOMEM;
2984
2985 if (memcg)
2986 s->memcg_params->memcg = memcg;
2987 return 0;
2988}
2989
2990void memcg_release_cache(struct kmem_cache *s)
2991{
2992 kfree(s->memcg_params);
2993}
2994
7ae1e1d0
GC
2995/*
2996 * We need to verify if the allocation against current->mm->owner's memcg is
2997 * possible for the given order. But the page is not allocated yet, so we'll
2998 * need a further commit step to do the final arrangements.
2999 *
3000 * It is possible for the task to switch cgroups in this mean time, so at
3001 * commit time, we can't rely on task conversion any longer. We'll then use
3002 * the handle argument to return to the caller which cgroup we should commit
3003 * against. We could also return the memcg directly and avoid the pointer
3004 * passing, but a boolean return value gives better semantics considering
3005 * the compiled-out case as well.
3006 *
3007 * Returning true means the allocation is possible.
3008 */
3009bool
3010__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3011{
3012 struct mem_cgroup *memcg;
3013 int ret;
3014
3015 *_memcg = NULL;
3016 memcg = try_get_mem_cgroup_from_mm(current->mm);
3017
3018 /*
3019 * very rare case described in mem_cgroup_from_task. Unfortunately there
3020 * isn't much we can do without complicating this too much, and it would
3021 * be gfp-dependent anyway. Just let it go
3022 */
3023 if (unlikely(!memcg))
3024 return true;
3025
3026 if (!memcg_can_account_kmem(memcg)) {
3027 css_put(&memcg->css);
3028 return true;
3029 }
3030
7ae1e1d0
GC
3031 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3032 if (!ret)
3033 *_memcg = memcg;
7ae1e1d0
GC
3034
3035 css_put(&memcg->css);
3036 return (ret == 0);
3037}
3038
3039void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3040 int order)
3041{
3042 struct page_cgroup *pc;
3043
3044 VM_BUG_ON(mem_cgroup_is_root(memcg));
3045
3046 /* The page allocation failed. Revert */
3047 if (!page) {
3048 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3049 return;
3050 }
3051
3052 pc = lookup_page_cgroup(page);
3053 lock_page_cgroup(pc);
3054 pc->mem_cgroup = memcg;
3055 SetPageCgroupUsed(pc);
3056 unlock_page_cgroup(pc);
3057}
3058
3059void __memcg_kmem_uncharge_pages(struct page *page, int order)
3060{
3061 struct mem_cgroup *memcg = NULL;
3062 struct page_cgroup *pc;
3063
3064
3065 pc = lookup_page_cgroup(page);
3066 /*
3067 * Fast unlocked return. Theoretically might have changed, have to
3068 * check again after locking.
3069 */
3070 if (!PageCgroupUsed(pc))
3071 return;
3072
3073 lock_page_cgroup(pc);
3074 if (PageCgroupUsed(pc)) {
3075 memcg = pc->mem_cgroup;
3076 ClearPageCgroupUsed(pc);
3077 }
3078 unlock_page_cgroup(pc);
3079
3080 /*
3081 * We trust that only if there is a memcg associated with the page, it
3082 * is a valid allocation
3083 */
3084 if (!memcg)
3085 return;
3086
3087 VM_BUG_ON(mem_cgroup_is_root(memcg));
3088 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3089}
3090#endif /* CONFIG_MEMCG_KMEM */
3091
ca3e0214
KH
3092#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3093
a0db00fc 3094#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3095/*
3096 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3097 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3098 * charge/uncharge will be never happen and move_account() is done under
3099 * compound_lock(), so we don't have to take care of races.
ca3e0214 3100 */
e94c8a9c 3101void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3102{
3103 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
3104 struct page_cgroup *pc;
3105 int i;
ca3e0214 3106
3d37c4a9
KH
3107 if (mem_cgroup_disabled())
3108 return;
e94c8a9c
KH
3109 for (i = 1; i < HPAGE_PMD_NR; i++) {
3110 pc = head_pc + i;
3111 pc->mem_cgroup = head_pc->mem_cgroup;
3112 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3113 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3114 }
ca3e0214 3115}
12d27107 3116#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3117
f817ed48 3118/**
de3638d9 3119 * mem_cgroup_move_account - move account of the page
5564e88b 3120 * @page: the page
7ec99d62 3121 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3122 * @pc: page_cgroup of the page.
3123 * @from: mem_cgroup which the page is moved from.
3124 * @to: mem_cgroup which the page is moved to. @from != @to.
3125 *
3126 * The caller must confirm following.
08e552c6 3127 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3128 * - compound_lock is held when nr_pages > 1
f817ed48 3129 *
2f3479b1
KH
3130 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3131 * from old cgroup.
f817ed48 3132 */
7ec99d62
JW
3133static int mem_cgroup_move_account(struct page *page,
3134 unsigned int nr_pages,
3135 struct page_cgroup *pc,
3136 struct mem_cgroup *from,
2f3479b1 3137 struct mem_cgroup *to)
f817ed48 3138{
de3638d9
JW
3139 unsigned long flags;
3140 int ret;
b2402857 3141 bool anon = PageAnon(page);
987eba66 3142
f817ed48 3143 VM_BUG_ON(from == to);
5564e88b 3144 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3145 /*
3146 * The page is isolated from LRU. So, collapse function
3147 * will not handle this page. But page splitting can happen.
3148 * Do this check under compound_page_lock(). The caller should
3149 * hold it.
3150 */
3151 ret = -EBUSY;
7ec99d62 3152 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3153 goto out;
3154
3155 lock_page_cgroup(pc);
3156
3157 ret = -EINVAL;
3158 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3159 goto unlock;
3160
312734c0 3161 move_lock_mem_cgroup(from, &flags);
f817ed48 3162
2ff76f11 3163 if (!anon && page_mapped(page)) {
c62b1a3b
KH
3164 /* Update mapped_file data for mem_cgroup */
3165 preempt_disable();
3166 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3167 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3168 preempt_enable();
d69b042f 3169 }
b2402857 3170 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 3171
854ffa8d 3172 /* caller should have done css_get */
08e552c6 3173 pc->mem_cgroup = to;
b2402857 3174 mem_cgroup_charge_statistics(to, anon, nr_pages);
312734c0 3175 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3176 ret = 0;
3177unlock:
57f9fd7d 3178 unlock_page_cgroup(pc);
d2265e6f
KH
3179 /*
3180 * check events
3181 */
5564e88b
JW
3182 memcg_check_events(to, page);
3183 memcg_check_events(from, page);
de3638d9 3184out:
f817ed48
KH
3185 return ret;
3186}
3187
2ef37d3f
MH
3188/**
3189 * mem_cgroup_move_parent - moves page to the parent group
3190 * @page: the page to move
3191 * @pc: page_cgroup of the page
3192 * @child: page's cgroup
3193 *
3194 * move charges to its parent or the root cgroup if the group has no
3195 * parent (aka use_hierarchy==0).
3196 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3197 * mem_cgroup_move_account fails) the failure is always temporary and
3198 * it signals a race with a page removal/uncharge or migration. In the
3199 * first case the page is on the way out and it will vanish from the LRU
3200 * on the next attempt and the call should be retried later.
3201 * Isolation from the LRU fails only if page has been isolated from
3202 * the LRU since we looked at it and that usually means either global
3203 * reclaim or migration going on. The page will either get back to the
3204 * LRU or vanish.
3205 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3206 * (!PageCgroupUsed) or moved to a different group. The page will
3207 * disappear in the next attempt.
f817ed48 3208 */
5564e88b
JW
3209static int mem_cgroup_move_parent(struct page *page,
3210 struct page_cgroup *pc,
6068bf01 3211 struct mem_cgroup *child)
f817ed48 3212{
f817ed48 3213 struct mem_cgroup *parent;
7ec99d62 3214 unsigned int nr_pages;
4be4489f 3215 unsigned long uninitialized_var(flags);
f817ed48
KH
3216 int ret;
3217
d8423011 3218 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3219
57f9fd7d
DN
3220 ret = -EBUSY;
3221 if (!get_page_unless_zero(page))
3222 goto out;
3223 if (isolate_lru_page(page))
3224 goto put;
52dbb905 3225
7ec99d62 3226 nr_pages = hpage_nr_pages(page);
08e552c6 3227
cc926f78
KH
3228 parent = parent_mem_cgroup(child);
3229 /*
3230 * If no parent, move charges to root cgroup.
3231 */
3232 if (!parent)
3233 parent = root_mem_cgroup;
f817ed48 3234
2ef37d3f
MH
3235 if (nr_pages > 1) {
3236 VM_BUG_ON(!PageTransHuge(page));
987eba66 3237 flags = compound_lock_irqsave(page);
2ef37d3f 3238 }
987eba66 3239
cc926f78 3240 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3241 pc, child, parent);
cc926f78
KH
3242 if (!ret)
3243 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3244
7ec99d62 3245 if (nr_pages > 1)
987eba66 3246 compound_unlock_irqrestore(page, flags);
08e552c6 3247 putback_lru_page(page);
57f9fd7d 3248put:
40d58138 3249 put_page(page);
57f9fd7d 3250out:
f817ed48
KH
3251 return ret;
3252}
3253
7a81b88c
KH
3254/*
3255 * Charge the memory controller for page usage.
3256 * Return
3257 * 0 if the charge was successful
3258 * < 0 if the cgroup is over its limit
3259 */
3260static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3261 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3262{
c0ff4b85 3263 struct mem_cgroup *memcg = NULL;
7ec99d62 3264 unsigned int nr_pages = 1;
8493ae43 3265 bool oom = true;
7a81b88c 3266 int ret;
ec168510 3267
37c2ac78 3268 if (PageTransHuge(page)) {
7ec99d62 3269 nr_pages <<= compound_order(page);
37c2ac78 3270 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3271 /*
3272 * Never OOM-kill a process for a huge page. The
3273 * fault handler will fall back to regular pages.
3274 */
3275 oom = false;
37c2ac78 3276 }
7a81b88c 3277
c0ff4b85 3278 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3279 if (ret == -ENOMEM)
7a81b88c 3280 return ret;
ce587e65 3281 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3282 return 0;
8a9f3ccd
BS
3283}
3284
7a81b88c
KH
3285int mem_cgroup_newpage_charge(struct page *page,
3286 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3287{
f8d66542 3288 if (mem_cgroup_disabled())
cede86ac 3289 return 0;
7a0524cf
JW
3290 VM_BUG_ON(page_mapped(page));
3291 VM_BUG_ON(page->mapping && !PageAnon(page));
3292 VM_BUG_ON(!mm);
217bc319 3293 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3294 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3295}
3296
54595fe2
KH
3297/*
3298 * While swap-in, try_charge -> commit or cancel, the page is locked.
3299 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3300 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3301 * "commit()" or removed by "cancel()"
3302 */
0435a2fd
JW
3303static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3304 struct page *page,
3305 gfp_t mask,
3306 struct mem_cgroup **memcgp)
8c7c6e34 3307{
c0ff4b85 3308 struct mem_cgroup *memcg;
90deb788 3309 struct page_cgroup *pc;
54595fe2 3310 int ret;
8c7c6e34 3311
90deb788
JW
3312 pc = lookup_page_cgroup(page);
3313 /*
3314 * Every swap fault against a single page tries to charge the
3315 * page, bail as early as possible. shmem_unuse() encounters
3316 * already charged pages, too. The USED bit is protected by
3317 * the page lock, which serializes swap cache removal, which
3318 * in turn serializes uncharging.
3319 */
3320 if (PageCgroupUsed(pc))
3321 return 0;
8c7c6e34
KH
3322 if (!do_swap_account)
3323 goto charge_cur_mm;
c0ff4b85
R
3324 memcg = try_get_mem_cgroup_from_page(page);
3325 if (!memcg)
54595fe2 3326 goto charge_cur_mm;
72835c86
JW
3327 *memcgp = memcg;
3328 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3329 css_put(&memcg->css);
38c5d72f
KH
3330 if (ret == -EINTR)
3331 ret = 0;
54595fe2 3332 return ret;
8c7c6e34 3333charge_cur_mm:
38c5d72f
KH
3334 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3335 if (ret == -EINTR)
3336 ret = 0;
3337 return ret;
8c7c6e34
KH
3338}
3339
0435a2fd
JW
3340int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3341 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3342{
3343 *memcgp = NULL;
3344 if (mem_cgroup_disabled())
3345 return 0;
bdf4f4d2
JW
3346 /*
3347 * A racing thread's fault, or swapoff, may have already
3348 * updated the pte, and even removed page from swap cache: in
3349 * those cases unuse_pte()'s pte_same() test will fail; but
3350 * there's also a KSM case which does need to charge the page.
3351 */
3352 if (!PageSwapCache(page)) {
3353 int ret;
3354
3355 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3356 if (ret == -EINTR)
3357 ret = 0;
3358 return ret;
3359 }
0435a2fd
JW
3360 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3361}
3362
827a03d2
JW
3363void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3364{
3365 if (mem_cgroup_disabled())
3366 return;
3367 if (!memcg)
3368 return;
3369 __mem_cgroup_cancel_charge(memcg, 1);
3370}
3371
83aae4c7 3372static void
72835c86 3373__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3374 enum charge_type ctype)
7a81b88c 3375{
f8d66542 3376 if (mem_cgroup_disabled())
7a81b88c 3377 return;
72835c86 3378 if (!memcg)
7a81b88c 3379 return;
5a6475a4 3380
ce587e65 3381 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3382 /*
3383 * Now swap is on-memory. This means this page may be
3384 * counted both as mem and swap....double count.
03f3c433
KH
3385 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3386 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3387 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3388 */
03f3c433 3389 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3390 swp_entry_t ent = {.val = page_private(page)};
86493009 3391 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3392 }
7a81b88c
KH
3393}
3394
72835c86
JW
3395void mem_cgroup_commit_charge_swapin(struct page *page,
3396 struct mem_cgroup *memcg)
83aae4c7 3397{
72835c86 3398 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3399 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3400}
3401
827a03d2
JW
3402int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3403 gfp_t gfp_mask)
7a81b88c 3404{
827a03d2
JW
3405 struct mem_cgroup *memcg = NULL;
3406 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3407 int ret;
3408
f8d66542 3409 if (mem_cgroup_disabled())
827a03d2
JW
3410 return 0;
3411 if (PageCompound(page))
3412 return 0;
3413
827a03d2
JW
3414 if (!PageSwapCache(page))
3415 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3416 else { /* page is swapcache/shmem */
0435a2fd
JW
3417 ret = __mem_cgroup_try_charge_swapin(mm, page,
3418 gfp_mask, &memcg);
827a03d2
JW
3419 if (!ret)
3420 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3421 }
3422 return ret;
7a81b88c
KH
3423}
3424
c0ff4b85 3425static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3426 unsigned int nr_pages,
3427 const enum charge_type ctype)
569b846d
KH
3428{
3429 struct memcg_batch_info *batch = NULL;
3430 bool uncharge_memsw = true;
7ec99d62 3431
569b846d
KH
3432 /* If swapout, usage of swap doesn't decrease */
3433 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3434 uncharge_memsw = false;
569b846d
KH
3435
3436 batch = &current->memcg_batch;
3437 /*
3438 * In usual, we do css_get() when we remember memcg pointer.
3439 * But in this case, we keep res->usage until end of a series of
3440 * uncharges. Then, it's ok to ignore memcg's refcnt.
3441 */
3442 if (!batch->memcg)
c0ff4b85 3443 batch->memcg = memcg;
3c11ecf4
KH
3444 /*
3445 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3446 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3447 * the same cgroup and we have chance to coalesce uncharges.
3448 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3449 * because we want to do uncharge as soon as possible.
3450 */
3451
3452 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3453 goto direct_uncharge;
3454
7ec99d62 3455 if (nr_pages > 1)
ec168510
AA
3456 goto direct_uncharge;
3457
569b846d
KH
3458 /*
3459 * In typical case, batch->memcg == mem. This means we can
3460 * merge a series of uncharges to an uncharge of res_counter.
3461 * If not, we uncharge res_counter ony by one.
3462 */
c0ff4b85 3463 if (batch->memcg != memcg)
569b846d
KH
3464 goto direct_uncharge;
3465 /* remember freed charge and uncharge it later */
7ffd4ca7 3466 batch->nr_pages++;
569b846d 3467 if (uncharge_memsw)
7ffd4ca7 3468 batch->memsw_nr_pages++;
569b846d
KH
3469 return;
3470direct_uncharge:
c0ff4b85 3471 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3472 if (uncharge_memsw)
c0ff4b85
R
3473 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3474 if (unlikely(batch->memcg != memcg))
3475 memcg_oom_recover(memcg);
569b846d 3476}
7a81b88c 3477
8a9f3ccd 3478/*
69029cd5 3479 * uncharge if !page_mapped(page)
8a9f3ccd 3480 */
8c7c6e34 3481static struct mem_cgroup *
0030f535
JW
3482__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3483 bool end_migration)
8a9f3ccd 3484{
c0ff4b85 3485 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3486 unsigned int nr_pages = 1;
3487 struct page_cgroup *pc;
b2402857 3488 bool anon;
8a9f3ccd 3489
f8d66542 3490 if (mem_cgroup_disabled())
8c7c6e34 3491 return NULL;
4077960e 3492
0c59b89c 3493 VM_BUG_ON(PageSwapCache(page));
d13d1443 3494
37c2ac78 3495 if (PageTransHuge(page)) {
7ec99d62 3496 nr_pages <<= compound_order(page);
37c2ac78
AA
3497 VM_BUG_ON(!PageTransHuge(page));
3498 }
8697d331 3499 /*
3c541e14 3500 * Check if our page_cgroup is valid
8697d331 3501 */
52d4b9ac 3502 pc = lookup_page_cgroup(page);
cfa44946 3503 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3504 return NULL;
b9c565d5 3505
52d4b9ac 3506 lock_page_cgroup(pc);
d13d1443 3507
c0ff4b85 3508 memcg = pc->mem_cgroup;
8c7c6e34 3509
d13d1443
KH
3510 if (!PageCgroupUsed(pc))
3511 goto unlock_out;
3512
b2402857
KH
3513 anon = PageAnon(page);
3514
d13d1443 3515 switch (ctype) {
41326c17 3516 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3517 /*
3518 * Generally PageAnon tells if it's the anon statistics to be
3519 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
3520 * used before page reached the stage of being marked PageAnon.
3521 */
b2402857
KH
3522 anon = true;
3523 /* fallthrough */
8a9478ca 3524 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 3525 /* See mem_cgroup_prepare_migration() */
0030f535
JW
3526 if (page_mapped(page))
3527 goto unlock_out;
3528 /*
3529 * Pages under migration may not be uncharged. But
3530 * end_migration() /must/ be the one uncharging the
3531 * unused post-migration page and so it has to call
3532 * here with the migration bit still set. See the
3533 * res_counter handling below.
3534 */
3535 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
3536 goto unlock_out;
3537 break;
3538 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3539 if (!PageAnon(page)) { /* Shared memory */
3540 if (page->mapping && !page_is_file_cache(page))
3541 goto unlock_out;
3542 } else if (page_mapped(page)) /* Anon */
3543 goto unlock_out;
3544 break;
3545 default:
3546 break;
52d4b9ac 3547 }
d13d1443 3548
b2402857 3549 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 3550
52d4b9ac 3551 ClearPageCgroupUsed(pc);
544122e5
KH
3552 /*
3553 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3554 * freed from LRU. This is safe because uncharged page is expected not
3555 * to be reused (freed soon). Exception is SwapCache, it's handled by
3556 * special functions.
3557 */
b9c565d5 3558
52d4b9ac 3559 unlock_page_cgroup(pc);
f75ca962 3560 /*
c0ff4b85 3561 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
3562 * will never be freed.
3563 */
c0ff4b85 3564 memcg_check_events(memcg, page);
f75ca962 3565 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
3566 mem_cgroup_swap_statistics(memcg, true);
3567 mem_cgroup_get(memcg);
f75ca962 3568 }
0030f535
JW
3569 /*
3570 * Migration does not charge the res_counter for the
3571 * replacement page, so leave it alone when phasing out the
3572 * page that is unused after the migration.
3573 */
3574 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 3575 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 3576
c0ff4b85 3577 return memcg;
d13d1443
KH
3578
3579unlock_out:
3580 unlock_page_cgroup(pc);
8c7c6e34 3581 return NULL;
3c541e14
BS
3582}
3583
69029cd5
KH
3584void mem_cgroup_uncharge_page(struct page *page)
3585{
52d4b9ac
KH
3586 /* early check. */
3587 if (page_mapped(page))
3588 return;
40f23a21 3589 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
3590 if (PageSwapCache(page))
3591 return;
0030f535 3592 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
3593}
3594
3595void mem_cgroup_uncharge_cache_page(struct page *page)
3596{
3597 VM_BUG_ON(page_mapped(page));
b7abea96 3598 VM_BUG_ON(page->mapping);
0030f535 3599 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
3600}
3601
569b846d
KH
3602/*
3603 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3604 * In that cases, pages are freed continuously and we can expect pages
3605 * are in the same memcg. All these calls itself limits the number of
3606 * pages freed at once, then uncharge_start/end() is called properly.
3607 * This may be called prural(2) times in a context,
3608 */
3609
3610void mem_cgroup_uncharge_start(void)
3611{
3612 current->memcg_batch.do_batch++;
3613 /* We can do nest. */
3614 if (current->memcg_batch.do_batch == 1) {
3615 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
3616 current->memcg_batch.nr_pages = 0;
3617 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
3618 }
3619}
3620
3621void mem_cgroup_uncharge_end(void)
3622{
3623 struct memcg_batch_info *batch = &current->memcg_batch;
3624
3625 if (!batch->do_batch)
3626 return;
3627
3628 batch->do_batch--;
3629 if (batch->do_batch) /* If stacked, do nothing. */
3630 return;
3631
3632 if (!batch->memcg)
3633 return;
3634 /*
3635 * This "batch->memcg" is valid without any css_get/put etc...
3636 * bacause we hide charges behind us.
3637 */
7ffd4ca7
JW
3638 if (batch->nr_pages)
3639 res_counter_uncharge(&batch->memcg->res,
3640 batch->nr_pages * PAGE_SIZE);
3641 if (batch->memsw_nr_pages)
3642 res_counter_uncharge(&batch->memcg->memsw,
3643 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 3644 memcg_oom_recover(batch->memcg);
569b846d
KH
3645 /* forget this pointer (for sanity check) */
3646 batch->memcg = NULL;
3647}
3648
e767e056 3649#ifdef CONFIG_SWAP
8c7c6e34 3650/*
e767e056 3651 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
3652 * memcg information is recorded to swap_cgroup of "ent"
3653 */
8a9478ca
KH
3654void
3655mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
3656{
3657 struct mem_cgroup *memcg;
8a9478ca
KH
3658 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3659
3660 if (!swapout) /* this was a swap cache but the swap is unused ! */
3661 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3662
0030f535 3663 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 3664
f75ca962
KH
3665 /*
3666 * record memcg information, if swapout && memcg != NULL,
3667 * mem_cgroup_get() was called in uncharge().
3668 */
3669 if (do_swap_account && swapout && memcg)
a3b2d692 3670 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 3671}
e767e056 3672#endif
8c7c6e34 3673
c255a458 3674#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
3675/*
3676 * called from swap_entry_free(). remove record in swap_cgroup and
3677 * uncharge "memsw" account.
3678 */
3679void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 3680{
8c7c6e34 3681 struct mem_cgroup *memcg;
a3b2d692 3682 unsigned short id;
8c7c6e34
KH
3683
3684 if (!do_swap_account)
3685 return;
3686
a3b2d692
KH
3687 id = swap_cgroup_record(ent, 0);
3688 rcu_read_lock();
3689 memcg = mem_cgroup_lookup(id);
8c7c6e34 3690 if (memcg) {
a3b2d692
KH
3691 /*
3692 * We uncharge this because swap is freed.
3693 * This memcg can be obsolete one. We avoid calling css_tryget
3694 */
0c3e73e8 3695 if (!mem_cgroup_is_root(memcg))
4e649152 3696 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 3697 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
3698 mem_cgroup_put(memcg);
3699 }
a3b2d692 3700 rcu_read_unlock();
d13d1443 3701}
02491447
DN
3702
3703/**
3704 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3705 * @entry: swap entry to be moved
3706 * @from: mem_cgroup which the entry is moved from
3707 * @to: mem_cgroup which the entry is moved to
3708 *
3709 * It succeeds only when the swap_cgroup's record for this entry is the same
3710 * as the mem_cgroup's id of @from.
3711 *
3712 * Returns 0 on success, -EINVAL on failure.
3713 *
3714 * The caller must have charged to @to, IOW, called res_counter_charge() about
3715 * both res and memsw, and called css_get().
3716 */
3717static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3718 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3719{
3720 unsigned short old_id, new_id;
3721
3722 old_id = css_id(&from->css);
3723 new_id = css_id(&to->css);
3724
3725 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 3726 mem_cgroup_swap_statistics(from, false);
483c30b5 3727 mem_cgroup_swap_statistics(to, true);
02491447 3728 /*
483c30b5
DN
3729 * This function is only called from task migration context now.
3730 * It postpones res_counter and refcount handling till the end
3731 * of task migration(mem_cgroup_clear_mc()) for performance
3732 * improvement. But we cannot postpone mem_cgroup_get(to)
3733 * because if the process that has been moved to @to does
3734 * swap-in, the refcount of @to might be decreased to 0.
02491447 3735 */
02491447 3736 mem_cgroup_get(to);
02491447
DN
3737 return 0;
3738 }
3739 return -EINVAL;
3740}
3741#else
3742static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 3743 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
3744{
3745 return -EINVAL;
3746}
8c7c6e34 3747#endif
d13d1443 3748
ae41be37 3749/*
01b1ae63
KH
3750 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3751 * page belongs to.
ae41be37 3752 */
0030f535
JW
3753void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
3754 struct mem_cgroup **memcgp)
ae41be37 3755{
c0ff4b85 3756 struct mem_cgroup *memcg = NULL;
b32967ff 3757 unsigned int nr_pages = 1;
7ec99d62 3758 struct page_cgroup *pc;
ac39cf8c 3759 enum charge_type ctype;
8869b8f6 3760
72835c86 3761 *memcgp = NULL;
56039efa 3762
f8d66542 3763 if (mem_cgroup_disabled())
0030f535 3764 return;
4077960e 3765
b32967ff
MG
3766 if (PageTransHuge(page))
3767 nr_pages <<= compound_order(page);
3768
52d4b9ac
KH
3769 pc = lookup_page_cgroup(page);
3770 lock_page_cgroup(pc);
3771 if (PageCgroupUsed(pc)) {
c0ff4b85
R
3772 memcg = pc->mem_cgroup;
3773 css_get(&memcg->css);
ac39cf8c
AM
3774 /*
3775 * At migrating an anonymous page, its mapcount goes down
3776 * to 0 and uncharge() will be called. But, even if it's fully
3777 * unmapped, migration may fail and this page has to be
3778 * charged again. We set MIGRATION flag here and delay uncharge
3779 * until end_migration() is called
3780 *
3781 * Corner Case Thinking
3782 * A)
3783 * When the old page was mapped as Anon and it's unmap-and-freed
3784 * while migration was ongoing.
3785 * If unmap finds the old page, uncharge() of it will be delayed
3786 * until end_migration(). If unmap finds a new page, it's
3787 * uncharged when it make mapcount to be 1->0. If unmap code
3788 * finds swap_migration_entry, the new page will not be mapped
3789 * and end_migration() will find it(mapcount==0).
3790 *
3791 * B)
3792 * When the old page was mapped but migraion fails, the kernel
3793 * remaps it. A charge for it is kept by MIGRATION flag even
3794 * if mapcount goes down to 0. We can do remap successfully
3795 * without charging it again.
3796 *
3797 * C)
3798 * The "old" page is under lock_page() until the end of
3799 * migration, so, the old page itself will not be swapped-out.
3800 * If the new page is swapped out before end_migraton, our
3801 * hook to usual swap-out path will catch the event.
3802 */
3803 if (PageAnon(page))
3804 SetPageCgroupMigration(pc);
e8589cc1 3805 }
52d4b9ac 3806 unlock_page_cgroup(pc);
ac39cf8c
AM
3807 /*
3808 * If the page is not charged at this point,
3809 * we return here.
3810 */
c0ff4b85 3811 if (!memcg)
0030f535 3812 return;
01b1ae63 3813
72835c86 3814 *memcgp = memcg;
ac39cf8c
AM
3815 /*
3816 * We charge new page before it's used/mapped. So, even if unlock_page()
3817 * is called before end_migration, we can catch all events on this new
3818 * page. In the case new page is migrated but not remapped, new page's
3819 * mapcount will be finally 0 and we call uncharge in end_migration().
3820 */
ac39cf8c 3821 if (PageAnon(page))
41326c17 3822 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 3823 else
62ba7442 3824 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
3825 /*
3826 * The page is committed to the memcg, but it's not actually
3827 * charged to the res_counter since we plan on replacing the
3828 * old one and only one page is going to be left afterwards.
3829 */
b32967ff 3830 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 3831}
8869b8f6 3832
69029cd5 3833/* remove redundant charge if migration failed*/
c0ff4b85 3834void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 3835 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3836{
ac39cf8c 3837 struct page *used, *unused;
01b1ae63 3838 struct page_cgroup *pc;
b2402857 3839 bool anon;
01b1ae63 3840
c0ff4b85 3841 if (!memcg)
01b1ae63 3842 return;
b25ed609 3843
50de1dd9 3844 if (!migration_ok) {
ac39cf8c
AM
3845 used = oldpage;
3846 unused = newpage;
01b1ae63 3847 } else {
ac39cf8c 3848 used = newpage;
01b1ae63
KH
3849 unused = oldpage;
3850 }
0030f535 3851 anon = PageAnon(used);
7d188958
JW
3852 __mem_cgroup_uncharge_common(unused,
3853 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
3854 : MEM_CGROUP_CHARGE_TYPE_CACHE,
3855 true);
0030f535 3856 css_put(&memcg->css);
69029cd5 3857 /*
ac39cf8c
AM
3858 * We disallowed uncharge of pages under migration because mapcount
3859 * of the page goes down to zero, temporarly.
3860 * Clear the flag and check the page should be charged.
01b1ae63 3861 */
ac39cf8c
AM
3862 pc = lookup_page_cgroup(oldpage);
3863 lock_page_cgroup(pc);
3864 ClearPageCgroupMigration(pc);
3865 unlock_page_cgroup(pc);
ac39cf8c 3866
01b1ae63 3867 /*
ac39cf8c
AM
3868 * If a page is a file cache, radix-tree replacement is very atomic
3869 * and we can skip this check. When it was an Anon page, its mapcount
3870 * goes down to 0. But because we added MIGRATION flage, it's not
3871 * uncharged yet. There are several case but page->mapcount check
3872 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3873 * check. (see prepare_charge() also)
69029cd5 3874 */
b2402857 3875 if (anon)
ac39cf8c 3876 mem_cgroup_uncharge_page(used);
ae41be37 3877}
78fb7466 3878
ab936cbc
KH
3879/*
3880 * At replace page cache, newpage is not under any memcg but it's on
3881 * LRU. So, this function doesn't touch res_counter but handles LRU
3882 * in correct way. Both pages are locked so we cannot race with uncharge.
3883 */
3884void mem_cgroup_replace_page_cache(struct page *oldpage,
3885 struct page *newpage)
3886{
bde05d1c 3887 struct mem_cgroup *memcg = NULL;
ab936cbc 3888 struct page_cgroup *pc;
ab936cbc 3889 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
3890
3891 if (mem_cgroup_disabled())
3892 return;
3893
3894 pc = lookup_page_cgroup(oldpage);
3895 /* fix accounting on old pages */
3896 lock_page_cgroup(pc);
bde05d1c
HD
3897 if (PageCgroupUsed(pc)) {
3898 memcg = pc->mem_cgroup;
3899 mem_cgroup_charge_statistics(memcg, false, -1);
3900 ClearPageCgroupUsed(pc);
3901 }
ab936cbc
KH
3902 unlock_page_cgroup(pc);
3903
bde05d1c
HD
3904 /*
3905 * When called from shmem_replace_page(), in some cases the
3906 * oldpage has already been charged, and in some cases not.
3907 */
3908 if (!memcg)
3909 return;
ab936cbc
KH
3910 /*
3911 * Even if newpage->mapping was NULL before starting replacement,
3912 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3913 * LRU while we overwrite pc->mem_cgroup.
3914 */
ce587e65 3915 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
3916}
3917
f212ad7c
DN
3918#ifdef CONFIG_DEBUG_VM
3919static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3920{
3921 struct page_cgroup *pc;
3922
3923 pc = lookup_page_cgroup(page);
cfa44946
JW
3924 /*
3925 * Can be NULL while feeding pages into the page allocator for
3926 * the first time, i.e. during boot or memory hotplug;
3927 * or when mem_cgroup_disabled().
3928 */
f212ad7c
DN
3929 if (likely(pc) && PageCgroupUsed(pc))
3930 return pc;
3931 return NULL;
3932}
3933
3934bool mem_cgroup_bad_page_check(struct page *page)
3935{
3936 if (mem_cgroup_disabled())
3937 return false;
3938
3939 return lookup_page_cgroup_used(page) != NULL;
3940}
3941
3942void mem_cgroup_print_bad_page(struct page *page)
3943{
3944 struct page_cgroup *pc;
3945
3946 pc = lookup_page_cgroup_used(page);
3947 if (pc) {
90b3feae 3948 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 3949 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
3950 }
3951}
3952#endif
3953
8c7c6e34
KH
3954static DEFINE_MUTEX(set_limit_mutex);
3955
d38d2a75 3956static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3957 unsigned long long val)
628f4235 3958{
81d39c20 3959 int retry_count;
3c11ecf4 3960 u64 memswlimit, memlimit;
628f4235 3961 int ret = 0;
81d39c20
KH
3962 int children = mem_cgroup_count_children(memcg);
3963 u64 curusage, oldusage;
3c11ecf4 3964 int enlarge;
81d39c20
KH
3965
3966 /*
3967 * For keeping hierarchical_reclaim simple, how long we should retry
3968 * is depends on callers. We set our retry-count to be function
3969 * of # of children which we should visit in this loop.
3970 */
3971 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3972
3973 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3974
3c11ecf4 3975 enlarge = 0;
8c7c6e34 3976 while (retry_count) {
628f4235
KH
3977 if (signal_pending(current)) {
3978 ret = -EINTR;
3979 break;
3980 }
8c7c6e34
KH
3981 /*
3982 * Rather than hide all in some function, I do this in
3983 * open coded manner. You see what this really does.
aaad153e 3984 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
3985 */
3986 mutex_lock(&set_limit_mutex);
3987 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3988 if (memswlimit < val) {
3989 ret = -EINVAL;
3990 mutex_unlock(&set_limit_mutex);
628f4235
KH
3991 break;
3992 }
3c11ecf4
KH
3993
3994 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3995 if (memlimit < val)
3996 enlarge = 1;
3997
8c7c6e34 3998 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3999 if (!ret) {
4000 if (memswlimit == val)
4001 memcg->memsw_is_minimum = true;
4002 else
4003 memcg->memsw_is_minimum = false;
4004 }
8c7c6e34
KH
4005 mutex_unlock(&set_limit_mutex);
4006
4007 if (!ret)
4008 break;
4009
5660048c
JW
4010 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4011 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4012 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4013 /* Usage is reduced ? */
4014 if (curusage >= oldusage)
4015 retry_count--;
4016 else
4017 oldusage = curusage;
8c7c6e34 4018 }
3c11ecf4
KH
4019 if (!ret && enlarge)
4020 memcg_oom_recover(memcg);
14797e23 4021
8c7c6e34
KH
4022 return ret;
4023}
4024
338c8431
LZ
4025static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4026 unsigned long long val)
8c7c6e34 4027{
81d39c20 4028 int retry_count;
3c11ecf4 4029 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4030 int children = mem_cgroup_count_children(memcg);
4031 int ret = -EBUSY;
3c11ecf4 4032 int enlarge = 0;
8c7c6e34 4033
81d39c20
KH
4034 /* see mem_cgroup_resize_res_limit */
4035 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4036 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4037 while (retry_count) {
4038 if (signal_pending(current)) {
4039 ret = -EINTR;
4040 break;
4041 }
4042 /*
4043 * Rather than hide all in some function, I do this in
4044 * open coded manner. You see what this really does.
aaad153e 4045 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4046 */
4047 mutex_lock(&set_limit_mutex);
4048 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4049 if (memlimit > val) {
4050 ret = -EINVAL;
4051 mutex_unlock(&set_limit_mutex);
4052 break;
4053 }
3c11ecf4
KH
4054 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4055 if (memswlimit < val)
4056 enlarge = 1;
8c7c6e34 4057 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4058 if (!ret) {
4059 if (memlimit == val)
4060 memcg->memsw_is_minimum = true;
4061 else
4062 memcg->memsw_is_minimum = false;
4063 }
8c7c6e34
KH
4064 mutex_unlock(&set_limit_mutex);
4065
4066 if (!ret)
4067 break;
4068
5660048c
JW
4069 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4070 MEM_CGROUP_RECLAIM_NOSWAP |
4071 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4072 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4073 /* Usage is reduced ? */
8c7c6e34 4074 if (curusage >= oldusage)
628f4235 4075 retry_count--;
81d39c20
KH
4076 else
4077 oldusage = curusage;
628f4235 4078 }
3c11ecf4
KH
4079 if (!ret && enlarge)
4080 memcg_oom_recover(memcg);
628f4235
KH
4081 return ret;
4082}
4083
4e416953 4084unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
4085 gfp_t gfp_mask,
4086 unsigned long *total_scanned)
4e416953
BS
4087{
4088 unsigned long nr_reclaimed = 0;
4089 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4090 unsigned long reclaimed;
4091 int loop = 0;
4092 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 4093 unsigned long long excess;
0ae5e89c 4094 unsigned long nr_scanned;
4e416953
BS
4095
4096 if (order > 0)
4097 return 0;
4098
00918b6a 4099 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
4100 /*
4101 * This loop can run a while, specially if mem_cgroup's continuously
4102 * keep exceeding their soft limit and putting the system under
4103 * pressure
4104 */
4105 do {
4106 if (next_mz)
4107 mz = next_mz;
4108 else
4109 mz = mem_cgroup_largest_soft_limit_node(mctz);
4110 if (!mz)
4111 break;
4112
0ae5e89c 4113 nr_scanned = 0;
d79154bb 4114 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 4115 gfp_mask, &nr_scanned);
4e416953 4116 nr_reclaimed += reclaimed;
0ae5e89c 4117 *total_scanned += nr_scanned;
4e416953
BS
4118 spin_lock(&mctz->lock);
4119
4120 /*
4121 * If we failed to reclaim anything from this memory cgroup
4122 * it is time to move on to the next cgroup
4123 */
4124 next_mz = NULL;
4125 if (!reclaimed) {
4126 do {
4127 /*
4128 * Loop until we find yet another one.
4129 *
4130 * By the time we get the soft_limit lock
4131 * again, someone might have aded the
4132 * group back on the RB tree. Iterate to
4133 * make sure we get a different mem.
4134 * mem_cgroup_largest_soft_limit_node returns
4135 * NULL if no other cgroup is present on
4136 * the tree
4137 */
4138 next_mz =
4139 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 4140 if (next_mz == mz)
d79154bb 4141 css_put(&next_mz->memcg->css);
39cc98f1 4142 else /* next_mz == NULL or other memcg */
4e416953
BS
4143 break;
4144 } while (1);
4145 }
d79154bb
HD
4146 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4147 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
4148 /*
4149 * One school of thought says that we should not add
4150 * back the node to the tree if reclaim returns 0.
4151 * But our reclaim could return 0, simply because due
4152 * to priority we are exposing a smaller subset of
4153 * memory to reclaim from. Consider this as a longer
4154 * term TODO.
4155 */
ef8745c1 4156 /* If excess == 0, no tree ops */
d79154bb 4157 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 4158 spin_unlock(&mctz->lock);
d79154bb 4159 css_put(&mz->memcg->css);
4e416953
BS
4160 loop++;
4161 /*
4162 * Could not reclaim anything and there are no more
4163 * mem cgroups to try or we seem to be looping without
4164 * reclaiming anything.
4165 */
4166 if (!nr_reclaimed &&
4167 (next_mz == NULL ||
4168 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4169 break;
4170 } while (!nr_reclaimed);
4171 if (next_mz)
d79154bb 4172 css_put(&next_mz->memcg->css);
4e416953
BS
4173 return nr_reclaimed;
4174}
4175
2ef37d3f
MH
4176/**
4177 * mem_cgroup_force_empty_list - clears LRU of a group
4178 * @memcg: group to clear
4179 * @node: NUMA node
4180 * @zid: zone id
4181 * @lru: lru to to clear
4182 *
3c935d18 4183 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4184 * reclaim the pages page themselves - pages are moved to the parent (or root)
4185 * group.
cc847582 4186 */
2ef37d3f 4187static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4188 int node, int zid, enum lru_list lru)
cc847582 4189{
bea8c150 4190 struct lruvec *lruvec;
2ef37d3f 4191 unsigned long flags;
072c56c1 4192 struct list_head *list;
925b7673
JW
4193 struct page *busy;
4194 struct zone *zone;
072c56c1 4195
08e552c6 4196 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4197 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4198 list = &lruvec->lists[lru];
cc847582 4199
f817ed48 4200 busy = NULL;
2ef37d3f 4201 do {
925b7673 4202 struct page_cgroup *pc;
5564e88b
JW
4203 struct page *page;
4204
08e552c6 4205 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4206 if (list_empty(list)) {
08e552c6 4207 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4208 break;
f817ed48 4209 }
925b7673
JW
4210 page = list_entry(list->prev, struct page, lru);
4211 if (busy == page) {
4212 list_move(&page->lru, list);
648bcc77 4213 busy = NULL;
08e552c6 4214 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4215 continue;
4216 }
08e552c6 4217 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4218
925b7673 4219 pc = lookup_page_cgroup(page);
5564e88b 4220
3c935d18 4221 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4222 /* found lock contention or "pc" is obsolete. */
925b7673 4223 busy = page;
f817ed48
KH
4224 cond_resched();
4225 } else
4226 busy = NULL;
2ef37d3f 4227 } while (!list_empty(list));
cc847582
KH
4228}
4229
4230/*
c26251f9
MH
4231 * make mem_cgroup's charge to be 0 if there is no task by moving
4232 * all the charges and pages to the parent.
cc847582 4233 * This enables deleting this mem_cgroup.
c26251f9
MH
4234 *
4235 * Caller is responsible for holding css reference on the memcg.
cc847582 4236 */
ab5196c2 4237static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4238{
c26251f9 4239 int node, zid;
bea207c8 4240 u64 usage;
f817ed48 4241
fce66477 4242 do {
52d4b9ac
KH
4243 /* This is for making all *used* pages to be on LRU. */
4244 lru_add_drain_all();
c0ff4b85 4245 drain_all_stock_sync(memcg);
c0ff4b85 4246 mem_cgroup_start_move(memcg);
31aaea4a 4247 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4248 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4249 enum lru_list lru;
4250 for_each_lru(lru) {
2ef37d3f 4251 mem_cgroup_force_empty_list(memcg,
f156ab93 4252 node, zid, lru);
f817ed48 4253 }
1ecaab2b 4254 }
f817ed48 4255 }
c0ff4b85
R
4256 mem_cgroup_end_move(memcg);
4257 memcg_oom_recover(memcg);
52d4b9ac 4258 cond_resched();
f817ed48 4259
2ef37d3f 4260 /*
bea207c8
GC
4261 * Kernel memory may not necessarily be trackable to a specific
4262 * process. So they are not migrated, and therefore we can't
4263 * expect their value to drop to 0 here.
4264 * Having res filled up with kmem only is enough.
4265 *
2ef37d3f
MH
4266 * This is a safety check because mem_cgroup_force_empty_list
4267 * could have raced with mem_cgroup_replace_page_cache callers
4268 * so the lru seemed empty but the page could have been added
4269 * right after the check. RES_USAGE should be safe as we always
4270 * charge before adding to the LRU.
4271 */
bea207c8
GC
4272 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4273 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4274 } while (usage > 0);
c26251f9
MH
4275}
4276
4277/*
4278 * Reclaims as many pages from the given memcg as possible and moves
4279 * the rest to the parent.
4280 *
4281 * Caller is responsible for holding css reference for memcg.
4282 */
4283static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4284{
4285 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4286 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4287
c1e862c1 4288 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4289 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4290 return -EBUSY;
4291
c1e862c1
KH
4292 /* we call try-to-free pages for make this cgroup empty */
4293 lru_add_drain_all();
f817ed48 4294 /* try to free all pages in this cgroup */
569530fb 4295 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4296 int progress;
c1e862c1 4297
c26251f9
MH
4298 if (signal_pending(current))
4299 return -EINTR;
4300
c0ff4b85 4301 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4302 false);
c1e862c1 4303 if (!progress) {
f817ed48 4304 nr_retries--;
c1e862c1 4305 /* maybe some writeback is necessary */
8aa7e847 4306 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4307 }
f817ed48
KH
4308
4309 }
08e552c6 4310 lru_add_drain();
ab5196c2
MH
4311 mem_cgroup_reparent_charges(memcg);
4312
4313 return 0;
cc847582
KH
4314}
4315
6bbda35c 4316static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 4317{
c26251f9
MH
4318 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4319 int ret;
4320
d8423011
MH
4321 if (mem_cgroup_is_root(memcg))
4322 return -EINVAL;
c26251f9
MH
4323 css_get(&memcg->css);
4324 ret = mem_cgroup_force_empty(memcg);
4325 css_put(&memcg->css);
4326
4327 return ret;
c1e862c1
KH
4328}
4329
4330
18f59ea7
BS
4331static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4332{
4333 return mem_cgroup_from_cont(cont)->use_hierarchy;
4334}
4335
4336static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4337 u64 val)
4338{
4339 int retval = 0;
c0ff4b85 4340 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 4341 struct cgroup *parent = cont->parent;
c0ff4b85 4342 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
4343
4344 if (parent)
c0ff4b85 4345 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
4346
4347 cgroup_lock();
567fb435
GC
4348
4349 if (memcg->use_hierarchy == val)
4350 goto out;
4351
18f59ea7 4352 /*
af901ca1 4353 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4354 * in the child subtrees. If it is unset, then the change can
4355 * occur, provided the current cgroup has no children.
4356 *
4357 * For the root cgroup, parent_mem is NULL, we allow value to be
4358 * set if there are no children.
4359 */
c0ff4b85 4360 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
4361 (val == 1 || val == 0)) {
4362 if (list_empty(&cont->children))
c0ff4b85 4363 memcg->use_hierarchy = val;
18f59ea7
BS
4364 else
4365 retval = -EBUSY;
4366 } else
4367 retval = -EINVAL;
567fb435
GC
4368
4369out:
18f59ea7
BS
4370 cgroup_unlock();
4371
4372 return retval;
4373}
4374
0c3e73e8 4375
c0ff4b85 4376static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4377 enum mem_cgroup_stat_index idx)
0c3e73e8 4378{
7d74b06f 4379 struct mem_cgroup *iter;
7a159cc9 4380 long val = 0;
0c3e73e8 4381
7a159cc9 4382 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4383 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4384 val += mem_cgroup_read_stat(iter, idx);
4385
4386 if (val < 0) /* race ? */
4387 val = 0;
4388 return val;
0c3e73e8
BS
4389}
4390
c0ff4b85 4391static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4392{
7d74b06f 4393 u64 val;
104f3928 4394
c0ff4b85 4395 if (!mem_cgroup_is_root(memcg)) {
104f3928 4396 if (!swap)
65c64ce8 4397 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4398 else
65c64ce8 4399 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4400 }
4401
c0ff4b85
R
4402 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4403 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4404
7d74b06f 4405 if (swap)
bff6bb83 4406 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4407
4408 return val << PAGE_SHIFT;
4409}
4410
af36f906
TH
4411static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
4412 struct file *file, char __user *buf,
4413 size_t nbytes, loff_t *ppos)
8cdea7c0 4414{
c0ff4b85 4415 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 4416 char str[64];
104f3928 4417 u64 val;
86ae53e1
GC
4418 int name, len;
4419 enum res_type type;
8c7c6e34
KH
4420
4421 type = MEMFILE_TYPE(cft->private);
4422 name = MEMFILE_ATTR(cft->private);
af36f906
TH
4423
4424 if (!do_swap_account && type == _MEMSWAP)
4425 return -EOPNOTSUPP;
4426
8c7c6e34
KH
4427 switch (type) {
4428 case _MEM:
104f3928 4429 if (name == RES_USAGE)
c0ff4b85 4430 val = mem_cgroup_usage(memcg, false);
104f3928 4431 else
c0ff4b85 4432 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
4433 break;
4434 case _MEMSWAP:
104f3928 4435 if (name == RES_USAGE)
c0ff4b85 4436 val = mem_cgroup_usage(memcg, true);
104f3928 4437 else
c0ff4b85 4438 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 4439 break;
510fc4e1
GC
4440 case _KMEM:
4441 val = res_counter_read_u64(&memcg->kmem, name);
4442 break;
8c7c6e34
KH
4443 default:
4444 BUG();
8c7c6e34 4445 }
af36f906
TH
4446
4447 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4448 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 4449}
510fc4e1
GC
4450
4451static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
4452{
4453 int ret = -EINVAL;
4454#ifdef CONFIG_MEMCG_KMEM
a8964b9b
GC
4455 bool must_inc_static_branch = false;
4456
510fc4e1
GC
4457 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4458 /*
4459 * For simplicity, we won't allow this to be disabled. It also can't
4460 * be changed if the cgroup has children already, or if tasks had
4461 * already joined.
4462 *
4463 * If tasks join before we set the limit, a person looking at
4464 * kmem.usage_in_bytes will have no way to determine when it took
4465 * place, which makes the value quite meaningless.
4466 *
4467 * After it first became limited, changes in the value of the limit are
4468 * of course permitted.
4469 *
4470 * Taking the cgroup_lock is really offensive, but it is so far the only
4471 * way to guarantee that no children will appear. There are plenty of
4472 * other offenders, and they should all go away. Fine grained locking
4473 * is probably the way to go here. When we are fully hierarchical, we
4474 * can also get rid of the use_hierarchy check.
4475 */
4476 cgroup_lock();
4477 mutex_lock(&set_limit_mutex);
4478 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4479 if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
4480 !list_empty(&cont->children))) {
4481 ret = -EBUSY;
4482 goto out;
4483 }
4484 ret = res_counter_set_limit(&memcg->kmem, val);
4485 VM_BUG_ON(ret);
4486
55007d84
GC
4487 ret = memcg_update_cache_sizes(memcg);
4488 if (ret) {
4489 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
4490 goto out;
4491 }
a8964b9b 4492 must_inc_static_branch = true;
7de37682
GC
4493 /*
4494 * kmem charges can outlive the cgroup. In the case of slab
4495 * pages, for instance, a page contain objects from various
4496 * processes, so it is unfeasible to migrate them away. We
4497 * need to reference count the memcg because of that.
4498 */
4499 mem_cgroup_get(memcg);
510fc4e1
GC
4500 } else
4501 ret = res_counter_set_limit(&memcg->kmem, val);
4502out:
4503 mutex_unlock(&set_limit_mutex);
4504 cgroup_unlock();
a8964b9b
GC
4505
4506 /*
4507 * We are by now familiar with the fact that we can't inc the static
4508 * branch inside cgroup_lock. See disarm functions for details. A
4509 * worker here is overkill, but also wrong: After the limit is set, we
4510 * must start accounting right away. Since this operation can't fail,
4511 * we can safely defer it to here - no rollback will be needed.
4512 *
4513 * The boolean used to control this is also safe, because
4514 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
4515 * able to set it to true;
4516 */
4517 if (must_inc_static_branch) {
4518 static_key_slow_inc(&memcg_kmem_enabled_key);
4519 /*
4520 * setting the active bit after the inc will guarantee no one
4521 * starts accounting before all call sites are patched
4522 */
4523 memcg_kmem_set_active(memcg);
4524 }
4525
510fc4e1
GC
4526#endif
4527 return ret;
4528}
4529
55007d84 4530static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 4531{
55007d84 4532 int ret = 0;
510fc4e1
GC
4533 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4534 if (!parent)
55007d84
GC
4535 goto out;
4536
510fc4e1 4537 memcg->kmem_account_flags = parent->kmem_account_flags;
7de37682 4538#ifdef CONFIG_MEMCG_KMEM
a8964b9b
GC
4539 /*
4540 * When that happen, we need to disable the static branch only on those
4541 * memcgs that enabled it. To achieve this, we would be forced to
4542 * complicate the code by keeping track of which memcgs were the ones
4543 * that actually enabled limits, and which ones got it from its
4544 * parents.
4545 *
4546 * It is a lot simpler just to do static_key_slow_inc() on every child
4547 * that is accounted.
4548 */
55007d84
GC
4549 if (!memcg_kmem_is_active(memcg))
4550 goto out;
4551
4552 /*
4553 * destroy(), called if we fail, will issue static_key_slow_inc() and
4554 * mem_cgroup_put() if kmem is enabled. We have to either call them
4555 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
4556 * this more consistent, since it always leads to the same destroy path
4557 */
4558 mem_cgroup_get(memcg);
4559 static_key_slow_inc(&memcg_kmem_enabled_key);
4560
4561 mutex_lock(&set_limit_mutex);
4562 ret = memcg_update_cache_sizes(memcg);
4563 mutex_unlock(&set_limit_mutex);
7de37682 4564#endif
55007d84
GC
4565out:
4566 return ret;
510fc4e1
GC
4567}
4568
628f4235
KH
4569/*
4570 * The user of this function is...
4571 * RES_LIMIT.
4572 */
856c13aa
PM
4573static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
4574 const char *buffer)
8cdea7c0 4575{
628f4235 4576 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
4577 enum res_type type;
4578 int name;
628f4235
KH
4579 unsigned long long val;
4580 int ret;
4581
8c7c6e34
KH
4582 type = MEMFILE_TYPE(cft->private);
4583 name = MEMFILE_ATTR(cft->private);
af36f906
TH
4584
4585 if (!do_swap_account && type == _MEMSWAP)
4586 return -EOPNOTSUPP;
4587
8c7c6e34 4588 switch (name) {
628f4235 4589 case RES_LIMIT:
4b3bde4c
BS
4590 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
4591 ret = -EINVAL;
4592 break;
4593 }
628f4235
KH
4594 /* This function does all necessary parse...reuse it */
4595 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
4596 if (ret)
4597 break;
4598 if (type == _MEM)
628f4235 4599 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 4600 else if (type == _MEMSWAP)
8c7c6e34 4601 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1
GC
4602 else if (type == _KMEM)
4603 ret = memcg_update_kmem_limit(cont, val);
4604 else
4605 return -EINVAL;
628f4235 4606 break;
296c81d8
BS
4607 case RES_SOFT_LIMIT:
4608 ret = res_counter_memparse_write_strategy(buffer, &val);
4609 if (ret)
4610 break;
4611 /*
4612 * For memsw, soft limits are hard to implement in terms
4613 * of semantics, for now, we support soft limits for
4614 * control without swap
4615 */
4616 if (type == _MEM)
4617 ret = res_counter_set_soft_limit(&memcg->res, val);
4618 else
4619 ret = -EINVAL;
4620 break;
628f4235
KH
4621 default:
4622 ret = -EINVAL; /* should be BUG() ? */
4623 break;
4624 }
4625 return ret;
8cdea7c0
BS
4626}
4627
fee7b548
KH
4628static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
4629 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4630{
4631 struct cgroup *cgroup;
4632 unsigned long long min_limit, min_memsw_limit, tmp;
4633
4634 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4635 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4636 cgroup = memcg->css.cgroup;
4637 if (!memcg->use_hierarchy)
4638 goto out;
4639
4640 while (cgroup->parent) {
4641 cgroup = cgroup->parent;
4642 memcg = mem_cgroup_from_cont(cgroup);
4643 if (!memcg->use_hierarchy)
4644 break;
4645 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4646 min_limit = min(min_limit, tmp);
4647 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4648 min_memsw_limit = min(min_memsw_limit, tmp);
4649 }
4650out:
4651 *mem_limit = min_limit;
4652 *memsw_limit = min_memsw_limit;
fee7b548
KH
4653}
4654
29f2a4da 4655static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 4656{
af36f906 4657 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
4658 int name;
4659 enum res_type type;
c84872e1 4660
8c7c6e34
KH
4661 type = MEMFILE_TYPE(event);
4662 name = MEMFILE_ATTR(event);
af36f906
TH
4663
4664 if (!do_swap_account && type == _MEMSWAP)
4665 return -EOPNOTSUPP;
4666
8c7c6e34 4667 switch (name) {
29f2a4da 4668 case RES_MAX_USAGE:
8c7c6e34 4669 if (type == _MEM)
c0ff4b85 4670 res_counter_reset_max(&memcg->res);
510fc4e1 4671 else if (type == _MEMSWAP)
c0ff4b85 4672 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
4673 else if (type == _KMEM)
4674 res_counter_reset_max(&memcg->kmem);
4675 else
4676 return -EINVAL;
29f2a4da
PE
4677 break;
4678 case RES_FAILCNT:
8c7c6e34 4679 if (type == _MEM)
c0ff4b85 4680 res_counter_reset_failcnt(&memcg->res);
510fc4e1 4681 else if (type == _MEMSWAP)
c0ff4b85 4682 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
4683 else if (type == _KMEM)
4684 res_counter_reset_failcnt(&memcg->kmem);
4685 else
4686 return -EINVAL;
29f2a4da
PE
4687 break;
4688 }
f64c3f54 4689
85cc59db 4690 return 0;
c84872e1
PE
4691}
4692
7dc74be0
DN
4693static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4694 struct cftype *cft)
4695{
4696 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4697}
4698
02491447 4699#ifdef CONFIG_MMU
7dc74be0
DN
4700static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4701 struct cftype *cft, u64 val)
4702{
c0ff4b85 4703 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
4704
4705 if (val >= (1 << NR_MOVE_TYPE))
4706 return -EINVAL;
4707 /*
4708 * We check this value several times in both in can_attach() and
4709 * attach(), so we need cgroup lock to prevent this value from being
4710 * inconsistent.
4711 */
4712 cgroup_lock();
c0ff4b85 4713 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
4714 cgroup_unlock();
4715
4716 return 0;
4717}
02491447
DN
4718#else
4719static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4720 struct cftype *cft, u64 val)
4721{
4722 return -ENOSYS;
4723}
4724#endif
7dc74be0 4725
406eb0c9 4726#ifdef CONFIG_NUMA
ab215884 4727static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 4728 struct seq_file *m)
406eb0c9
YH
4729{
4730 int nid;
4731 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4732 unsigned long node_nr;
d79154bb 4733 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 4734
d79154bb 4735 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 4736 seq_printf(m, "total=%lu", total_nr);
31aaea4a 4737 for_each_node_state(nid, N_MEMORY) {
d79154bb 4738 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
4739 seq_printf(m, " N%d=%lu", nid, node_nr);
4740 }
4741 seq_putc(m, '\n');
4742
d79154bb 4743 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 4744 seq_printf(m, "file=%lu", file_nr);
31aaea4a 4745 for_each_node_state(nid, N_MEMORY) {
d79154bb 4746 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4747 LRU_ALL_FILE);
406eb0c9
YH
4748 seq_printf(m, " N%d=%lu", nid, node_nr);
4749 }
4750 seq_putc(m, '\n');
4751
d79154bb 4752 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 4753 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 4754 for_each_node_state(nid, N_MEMORY) {
d79154bb 4755 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4756 LRU_ALL_ANON);
406eb0c9
YH
4757 seq_printf(m, " N%d=%lu", nid, node_nr);
4758 }
4759 seq_putc(m, '\n');
4760
d79154bb 4761 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 4762 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 4763 for_each_node_state(nid, N_MEMORY) {
d79154bb 4764 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 4765 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
4766 seq_printf(m, " N%d=%lu", nid, node_nr);
4767 }
4768 seq_putc(m, '\n');
4769 return 0;
4770}
4771#endif /* CONFIG_NUMA */
4772
af7c4b0e
JW
4773static const char * const mem_cgroup_lru_names[] = {
4774 "inactive_anon",
4775 "active_anon",
4776 "inactive_file",
4777 "active_file",
4778 "unevictable",
4779};
4780
4781static inline void mem_cgroup_lru_names_not_uptodate(void)
4782{
4783 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
4784}
4785
ab215884 4786static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 4787 struct seq_file *m)
d2ceb9b7 4788{
d79154bb 4789 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
4790 struct mem_cgroup *mi;
4791 unsigned int i;
406eb0c9 4792
af7c4b0e 4793 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 4794 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4795 continue;
af7c4b0e
JW
4796 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
4797 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 4798 }
7b854121 4799
af7c4b0e
JW
4800 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
4801 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
4802 mem_cgroup_read_events(memcg, i));
4803
4804 for (i = 0; i < NR_LRU_LISTS; i++)
4805 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
4806 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
4807
14067bb3 4808 /* Hierarchical information */
fee7b548
KH
4809 {
4810 unsigned long long limit, memsw_limit;
d79154bb 4811 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 4812 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 4813 if (do_swap_account)
78ccf5b5
JW
4814 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4815 memsw_limit);
fee7b548 4816 }
7f016ee8 4817
af7c4b0e
JW
4818 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
4819 long long val = 0;
4820
bff6bb83 4821 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 4822 continue;
af7c4b0e
JW
4823 for_each_mem_cgroup_tree(mi, memcg)
4824 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
4825 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
4826 }
4827
4828 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
4829 unsigned long long val = 0;
4830
4831 for_each_mem_cgroup_tree(mi, memcg)
4832 val += mem_cgroup_read_events(mi, i);
4833 seq_printf(m, "total_%s %llu\n",
4834 mem_cgroup_events_names[i], val);
4835 }
4836
4837 for (i = 0; i < NR_LRU_LISTS; i++) {
4838 unsigned long long val = 0;
4839
4840 for_each_mem_cgroup_tree(mi, memcg)
4841 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
4842 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 4843 }
14067bb3 4844
7f016ee8 4845#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
4846 {
4847 int nid, zid;
4848 struct mem_cgroup_per_zone *mz;
89abfab1 4849 struct zone_reclaim_stat *rstat;
7f016ee8
KM
4850 unsigned long recent_rotated[2] = {0, 0};
4851 unsigned long recent_scanned[2] = {0, 0};
4852
4853 for_each_online_node(nid)
4854 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 4855 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 4856 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 4857
89abfab1
HD
4858 recent_rotated[0] += rstat->recent_rotated[0];
4859 recent_rotated[1] += rstat->recent_rotated[1];
4860 recent_scanned[0] += rstat->recent_scanned[0];
4861 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 4862 }
78ccf5b5
JW
4863 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
4864 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
4865 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
4866 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
4867 }
4868#endif
4869
d2ceb9b7
KH
4870 return 0;
4871}
4872
a7885eb8
KM
4873static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4874{
4875 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4876
1f4c025b 4877 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
4878}
4879
4880static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4881 u64 val)
4882{
4883 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4884 struct mem_cgroup *parent;
068b38c1 4885
a7885eb8
KM
4886 if (val > 100)
4887 return -EINVAL;
4888
4889 if (cgrp->parent == NULL)
4890 return -EINVAL;
4891
4892 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
4893
4894 cgroup_lock();
4895
a7885eb8
KM
4896 /* If under hierarchy, only empty-root can set this value */
4897 if ((parent->use_hierarchy) ||
068b38c1
LZ
4898 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4899 cgroup_unlock();
a7885eb8 4900 return -EINVAL;
068b38c1 4901 }
a7885eb8 4902
a7885eb8 4903 memcg->swappiness = val;
a7885eb8 4904
068b38c1
LZ
4905 cgroup_unlock();
4906
a7885eb8
KM
4907 return 0;
4908}
4909
2e72b634
KS
4910static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4911{
4912 struct mem_cgroup_threshold_ary *t;
4913 u64 usage;
4914 int i;
4915
4916 rcu_read_lock();
4917 if (!swap)
2c488db2 4918 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 4919 else
2c488db2 4920 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
4921
4922 if (!t)
4923 goto unlock;
4924
4925 usage = mem_cgroup_usage(memcg, swap);
4926
4927 /*
748dad36 4928 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
4929 * If it's not true, a threshold was crossed after last
4930 * call of __mem_cgroup_threshold().
4931 */
5407a562 4932 i = t->current_threshold;
2e72b634
KS
4933
4934 /*
4935 * Iterate backward over array of thresholds starting from
4936 * current_threshold and check if a threshold is crossed.
4937 * If none of thresholds below usage is crossed, we read
4938 * only one element of the array here.
4939 */
4940 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4941 eventfd_signal(t->entries[i].eventfd, 1);
4942
4943 /* i = current_threshold + 1 */
4944 i++;
4945
4946 /*
4947 * Iterate forward over array of thresholds starting from
4948 * current_threshold+1 and check if a threshold is crossed.
4949 * If none of thresholds above usage is crossed, we read
4950 * only one element of the array here.
4951 */
4952 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4953 eventfd_signal(t->entries[i].eventfd, 1);
4954
4955 /* Update current_threshold */
5407a562 4956 t->current_threshold = i - 1;
2e72b634
KS
4957unlock:
4958 rcu_read_unlock();
4959}
4960
4961static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4962{
ad4ca5f4
KS
4963 while (memcg) {
4964 __mem_cgroup_threshold(memcg, false);
4965 if (do_swap_account)
4966 __mem_cgroup_threshold(memcg, true);
4967
4968 memcg = parent_mem_cgroup(memcg);
4969 }
2e72b634
KS
4970}
4971
4972static int compare_thresholds(const void *a, const void *b)
4973{
4974 const struct mem_cgroup_threshold *_a = a;
4975 const struct mem_cgroup_threshold *_b = b;
4976
4977 return _a->threshold - _b->threshold;
4978}
4979
c0ff4b85 4980static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
4981{
4982 struct mem_cgroup_eventfd_list *ev;
4983
c0ff4b85 4984 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
4985 eventfd_signal(ev->eventfd, 1);
4986 return 0;
4987}
4988
c0ff4b85 4989static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 4990{
7d74b06f
KH
4991 struct mem_cgroup *iter;
4992
c0ff4b85 4993 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 4994 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4995}
4996
4997static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4998 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4999{
5000 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5001 struct mem_cgroup_thresholds *thresholds;
5002 struct mem_cgroup_threshold_ary *new;
86ae53e1 5003 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5004 u64 threshold, usage;
2c488db2 5005 int i, size, ret;
2e72b634
KS
5006
5007 ret = res_counter_memparse_write_strategy(args, &threshold);
5008 if (ret)
5009 return ret;
5010
5011 mutex_lock(&memcg->thresholds_lock);
2c488db2 5012
2e72b634 5013 if (type == _MEM)
2c488db2 5014 thresholds = &memcg->thresholds;
2e72b634 5015 else if (type == _MEMSWAP)
2c488db2 5016 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5017 else
5018 BUG();
5019
5020 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5021
5022 /* Check if a threshold crossed before adding a new one */
2c488db2 5023 if (thresholds->primary)
2e72b634
KS
5024 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5025
2c488db2 5026 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5027
5028 /* Allocate memory for new array of thresholds */
2c488db2 5029 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5030 GFP_KERNEL);
2c488db2 5031 if (!new) {
2e72b634
KS
5032 ret = -ENOMEM;
5033 goto unlock;
5034 }
2c488db2 5035 new->size = size;
2e72b634
KS
5036
5037 /* Copy thresholds (if any) to new array */
2c488db2
KS
5038 if (thresholds->primary) {
5039 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5040 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5041 }
5042
2e72b634 5043 /* Add new threshold */
2c488db2
KS
5044 new->entries[size - 1].eventfd = eventfd;
5045 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5046
5047 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5048 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5049 compare_thresholds, NULL);
5050
5051 /* Find current threshold */
2c488db2 5052 new->current_threshold = -1;
2e72b634 5053 for (i = 0; i < size; i++) {
748dad36 5054 if (new->entries[i].threshold <= usage) {
2e72b634 5055 /*
2c488db2
KS
5056 * new->current_threshold will not be used until
5057 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5058 * it here.
5059 */
2c488db2 5060 ++new->current_threshold;
748dad36
SZ
5061 } else
5062 break;
2e72b634
KS
5063 }
5064
2c488db2
KS
5065 /* Free old spare buffer and save old primary buffer as spare */
5066 kfree(thresholds->spare);
5067 thresholds->spare = thresholds->primary;
5068
5069 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5070
907860ed 5071 /* To be sure that nobody uses thresholds */
2e72b634
KS
5072 synchronize_rcu();
5073
2e72b634
KS
5074unlock:
5075 mutex_unlock(&memcg->thresholds_lock);
5076
5077 return ret;
5078}
5079
907860ed 5080static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 5081 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
5082{
5083 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5084 struct mem_cgroup_thresholds *thresholds;
5085 struct mem_cgroup_threshold_ary *new;
86ae53e1 5086 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5087 u64 usage;
2c488db2 5088 int i, j, size;
2e72b634
KS
5089
5090 mutex_lock(&memcg->thresholds_lock);
5091 if (type == _MEM)
2c488db2 5092 thresholds = &memcg->thresholds;
2e72b634 5093 else if (type == _MEMSWAP)
2c488db2 5094 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5095 else
5096 BUG();
5097
371528ca
AV
5098 if (!thresholds->primary)
5099 goto unlock;
5100
2e72b634
KS
5101 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5102
5103 /* Check if a threshold crossed before removing */
5104 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5105
5106 /* Calculate new number of threshold */
2c488db2
KS
5107 size = 0;
5108 for (i = 0; i < thresholds->primary->size; i++) {
5109 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5110 size++;
5111 }
5112
2c488db2 5113 new = thresholds->spare;
907860ed 5114
2e72b634
KS
5115 /* Set thresholds array to NULL if we don't have thresholds */
5116 if (!size) {
2c488db2
KS
5117 kfree(new);
5118 new = NULL;
907860ed 5119 goto swap_buffers;
2e72b634
KS
5120 }
5121
2c488db2 5122 new->size = size;
2e72b634
KS
5123
5124 /* Copy thresholds and find current threshold */
2c488db2
KS
5125 new->current_threshold = -1;
5126 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5127 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5128 continue;
5129
2c488db2 5130 new->entries[j] = thresholds->primary->entries[i];
748dad36 5131 if (new->entries[j].threshold <= usage) {
2e72b634 5132 /*
2c488db2 5133 * new->current_threshold will not be used
2e72b634
KS
5134 * until rcu_assign_pointer(), so it's safe to increment
5135 * it here.
5136 */
2c488db2 5137 ++new->current_threshold;
2e72b634
KS
5138 }
5139 j++;
5140 }
5141
907860ed 5142swap_buffers:
2c488db2
KS
5143 /* Swap primary and spare array */
5144 thresholds->spare = thresholds->primary;
8c757763
SZ
5145 /* If all events are unregistered, free the spare array */
5146 if (!new) {
5147 kfree(thresholds->spare);
5148 thresholds->spare = NULL;
5149 }
5150
2c488db2 5151 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5152
907860ed 5153 /* To be sure that nobody uses thresholds */
2e72b634 5154 synchronize_rcu();
371528ca 5155unlock:
2e72b634 5156 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5157}
c1e862c1 5158
9490ff27
KH
5159static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5160 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5161{
5162 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5163 struct mem_cgroup_eventfd_list *event;
86ae53e1 5164 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5165
5166 BUG_ON(type != _OOM_TYPE);
5167 event = kmalloc(sizeof(*event), GFP_KERNEL);
5168 if (!event)
5169 return -ENOMEM;
5170
1af8efe9 5171 spin_lock(&memcg_oom_lock);
9490ff27
KH
5172
5173 event->eventfd = eventfd;
5174 list_add(&event->list, &memcg->oom_notify);
5175
5176 /* already in OOM ? */
79dfdacc 5177 if (atomic_read(&memcg->under_oom))
9490ff27 5178 eventfd_signal(eventfd, 1);
1af8efe9 5179 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5180
5181 return 0;
5182}
5183
907860ed 5184static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
5185 struct cftype *cft, struct eventfd_ctx *eventfd)
5186{
c0ff4b85 5187 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27 5188 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5189 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5190
5191 BUG_ON(type != _OOM_TYPE);
5192
1af8efe9 5193 spin_lock(&memcg_oom_lock);
9490ff27 5194
c0ff4b85 5195 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5196 if (ev->eventfd == eventfd) {
5197 list_del(&ev->list);
5198 kfree(ev);
5199 }
5200 }
5201
1af8efe9 5202 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5203}
5204
3c11ecf4
KH
5205static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5206 struct cftype *cft, struct cgroup_map_cb *cb)
5207{
c0ff4b85 5208 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 5209
c0ff4b85 5210 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5211
c0ff4b85 5212 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5213 cb->fill(cb, "under_oom", 1);
5214 else
5215 cb->fill(cb, "under_oom", 0);
5216 return 0;
5217}
5218
3c11ecf4
KH
5219static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5220 struct cftype *cft, u64 val)
5221{
c0ff4b85 5222 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
5223 struct mem_cgroup *parent;
5224
5225 /* cannot set to root cgroup and only 0 and 1 are allowed */
5226 if (!cgrp->parent || !((val == 0) || (val == 1)))
5227 return -EINVAL;
5228
5229 parent = mem_cgroup_from_cont(cgrp->parent);
5230
5231 cgroup_lock();
5232 /* oom-kill-disable is a flag for subhierarchy. */
5233 if ((parent->use_hierarchy) ||
c0ff4b85 5234 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
5235 cgroup_unlock();
5236 return -EINVAL;
5237 }
c0ff4b85 5238 memcg->oom_kill_disable = val;
4d845ebf 5239 if (!val)
c0ff4b85 5240 memcg_oom_recover(memcg);
3c11ecf4
KH
5241 cgroup_unlock();
5242 return 0;
5243}
5244
c255a458 5245#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5246static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5247{
55007d84
GC
5248 int ret;
5249
2633d7a0 5250 memcg->kmemcg_id = -1;
55007d84
GC
5251 ret = memcg_propagate_kmem(memcg);
5252 if (ret)
5253 return ret;
2633d7a0 5254
1d62e436 5255 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
5256};
5257
1d62e436 5258static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 5259{
1d62e436 5260 mem_cgroup_sockets_destroy(memcg);
7de37682
GC
5261
5262 memcg_kmem_mark_dead(memcg);
5263
5264 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5265 return;
5266
5267 /*
5268 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5269 * path here, being careful not to race with memcg_uncharge_kmem: it is
5270 * possible that the charges went down to 0 between mark_dead and the
5271 * res_counter read, so in that case, we don't need the put
5272 */
5273 if (memcg_kmem_test_and_clear_dead(memcg))
5274 mem_cgroup_put(memcg);
d1a4c0b3 5275}
e5671dfa 5276#else
cbe128e3 5277static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5278{
5279 return 0;
5280}
d1a4c0b3 5281
1d62e436 5282static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
5283{
5284}
e5671dfa
GC
5285#endif
5286
8cdea7c0
BS
5287static struct cftype mem_cgroup_files[] = {
5288 {
0eea1030 5289 .name = "usage_in_bytes",
8c7c6e34 5290 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5291 .read = mem_cgroup_read,
9490ff27
KH
5292 .register_event = mem_cgroup_usage_register_event,
5293 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5294 },
c84872e1
PE
5295 {
5296 .name = "max_usage_in_bytes",
8c7c6e34 5297 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5298 .trigger = mem_cgroup_reset,
af36f906 5299 .read = mem_cgroup_read,
c84872e1 5300 },
8cdea7c0 5301 {
0eea1030 5302 .name = "limit_in_bytes",
8c7c6e34 5303 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5304 .write_string = mem_cgroup_write,
af36f906 5305 .read = mem_cgroup_read,
8cdea7c0 5306 },
296c81d8
BS
5307 {
5308 .name = "soft_limit_in_bytes",
5309 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5310 .write_string = mem_cgroup_write,
af36f906 5311 .read = mem_cgroup_read,
296c81d8 5312 },
8cdea7c0
BS
5313 {
5314 .name = "failcnt",
8c7c6e34 5315 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5316 .trigger = mem_cgroup_reset,
af36f906 5317 .read = mem_cgroup_read,
8cdea7c0 5318 },
d2ceb9b7
KH
5319 {
5320 .name = "stat",
ab215884 5321 .read_seq_string = memcg_stat_show,
d2ceb9b7 5322 },
c1e862c1
KH
5323 {
5324 .name = "force_empty",
5325 .trigger = mem_cgroup_force_empty_write,
5326 },
18f59ea7
BS
5327 {
5328 .name = "use_hierarchy",
5329 .write_u64 = mem_cgroup_hierarchy_write,
5330 .read_u64 = mem_cgroup_hierarchy_read,
5331 },
a7885eb8
KM
5332 {
5333 .name = "swappiness",
5334 .read_u64 = mem_cgroup_swappiness_read,
5335 .write_u64 = mem_cgroup_swappiness_write,
5336 },
7dc74be0
DN
5337 {
5338 .name = "move_charge_at_immigrate",
5339 .read_u64 = mem_cgroup_move_charge_read,
5340 .write_u64 = mem_cgroup_move_charge_write,
5341 },
9490ff27
KH
5342 {
5343 .name = "oom_control",
3c11ecf4
KH
5344 .read_map = mem_cgroup_oom_control_read,
5345 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5346 .register_event = mem_cgroup_oom_register_event,
5347 .unregister_event = mem_cgroup_oom_unregister_event,
5348 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5349 },
406eb0c9
YH
5350#ifdef CONFIG_NUMA
5351 {
5352 .name = "numa_stat",
ab215884 5353 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
5354 },
5355#endif
c255a458 5356#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
5357 {
5358 .name = "memsw.usage_in_bytes",
5359 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 5360 .read = mem_cgroup_read,
9490ff27
KH
5361 .register_event = mem_cgroup_usage_register_event,
5362 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
5363 },
5364 {
5365 .name = "memsw.max_usage_in_bytes",
5366 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5367 .trigger = mem_cgroup_reset,
af36f906 5368 .read = mem_cgroup_read,
8c7c6e34
KH
5369 },
5370 {
5371 .name = "memsw.limit_in_bytes",
5372 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5373 .write_string = mem_cgroup_write,
af36f906 5374 .read = mem_cgroup_read,
8c7c6e34
KH
5375 },
5376 {
5377 .name = "memsw.failcnt",
5378 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5379 .trigger = mem_cgroup_reset,
af36f906 5380 .read = mem_cgroup_read,
8c7c6e34 5381 },
510fc4e1
GC
5382#endif
5383#ifdef CONFIG_MEMCG_KMEM
5384 {
5385 .name = "kmem.limit_in_bytes",
5386 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5387 .write_string = mem_cgroup_write,
5388 .read = mem_cgroup_read,
5389 },
5390 {
5391 .name = "kmem.usage_in_bytes",
5392 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5393 .read = mem_cgroup_read,
5394 },
5395 {
5396 .name = "kmem.failcnt",
5397 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5398 .trigger = mem_cgroup_reset,
5399 .read = mem_cgroup_read,
5400 },
5401 {
5402 .name = "kmem.max_usage_in_bytes",
5403 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5404 .trigger = mem_cgroup_reset,
5405 .read = mem_cgroup_read,
5406 },
8c7c6e34 5407#endif
6bc10349 5408 { }, /* terminate */
af36f906 5409};
8c7c6e34 5410
c0ff4b85 5411static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5412{
5413 struct mem_cgroup_per_node *pn;
1ecaab2b 5414 struct mem_cgroup_per_zone *mz;
41e3355d 5415 int zone, tmp = node;
1ecaab2b
KH
5416 /*
5417 * This routine is called against possible nodes.
5418 * But it's BUG to call kmalloc() against offline node.
5419 *
5420 * TODO: this routine can waste much memory for nodes which will
5421 * never be onlined. It's better to use memory hotplug callback
5422 * function.
5423 */
41e3355d
KH
5424 if (!node_state(node, N_NORMAL_MEMORY))
5425 tmp = -1;
17295c88 5426 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5427 if (!pn)
5428 return 1;
1ecaab2b 5429
1ecaab2b
KH
5430 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5431 mz = &pn->zoneinfo[zone];
bea8c150 5432 lruvec_init(&mz->lruvec);
f64c3f54 5433 mz->usage_in_excess = 0;
4e416953 5434 mz->on_tree = false;
d79154bb 5435 mz->memcg = memcg;
1ecaab2b 5436 }
0a619e58 5437 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
5438 return 0;
5439}
5440
c0ff4b85 5441static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5442{
c0ff4b85 5443 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
5444}
5445
33327948
KH
5446static struct mem_cgroup *mem_cgroup_alloc(void)
5447{
d79154bb 5448 struct mem_cgroup *memcg;
c62b1a3b 5449 int size = sizeof(struct mem_cgroup);
33327948 5450
c62b1a3b 5451 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 5452 if (size < PAGE_SIZE)
d79154bb 5453 memcg = kzalloc(size, GFP_KERNEL);
33327948 5454 else
d79154bb 5455 memcg = vzalloc(size);
33327948 5456
d79154bb 5457 if (!memcg)
e7bbcdf3
DC
5458 return NULL;
5459
d79154bb
HD
5460 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5461 if (!memcg->stat)
d2e61b8d 5462 goto out_free;
d79154bb
HD
5463 spin_lock_init(&memcg->pcp_counter_lock);
5464 return memcg;
d2e61b8d
DC
5465
5466out_free:
5467 if (size < PAGE_SIZE)
d79154bb 5468 kfree(memcg);
d2e61b8d 5469 else
d79154bb 5470 vfree(memcg);
d2e61b8d 5471 return NULL;
33327948
KH
5472}
5473
59927fb9 5474/*
c8b2a36f
GC
5475 * At destroying mem_cgroup, references from swap_cgroup can remain.
5476 * (scanning all at force_empty is too costly...)
5477 *
5478 * Instead of clearing all references at force_empty, we remember
5479 * the number of reference from swap_cgroup and free mem_cgroup when
5480 * it goes down to 0.
5481 *
5482 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 5483 */
c8b2a36f
GC
5484
5485static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5486{
c8b2a36f 5487 int node;
3afe36b1 5488 int size = sizeof(struct mem_cgroup);
59927fb9 5489
c8b2a36f
GC
5490 mem_cgroup_remove_from_trees(memcg);
5491 free_css_id(&mem_cgroup_subsys, &memcg->css);
5492
5493 for_each_node(node)
5494 free_mem_cgroup_per_zone_info(memcg, node);
5495
5496 free_percpu(memcg->stat);
5497
3f134619
GC
5498 /*
5499 * We need to make sure that (at least for now), the jump label
5500 * destruction code runs outside of the cgroup lock. This is because
5501 * get_online_cpus(), which is called from the static_branch update,
5502 * can't be called inside the cgroup_lock. cpusets are the ones
5503 * enforcing this dependency, so if they ever change, we might as well.
5504 *
5505 * schedule_work() will guarantee this happens. Be careful if you need
5506 * to move this code around, and make sure it is outside
5507 * the cgroup_lock.
5508 */
a8964b9b 5509 disarm_static_keys(memcg);
3afe36b1
GC
5510 if (size < PAGE_SIZE)
5511 kfree(memcg);
5512 else
5513 vfree(memcg);
59927fb9 5514}
3afe36b1 5515
59927fb9 5516
8c7c6e34 5517/*
c8b2a36f
GC
5518 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
5519 * but in process context. The work_freeing structure is overlaid
5520 * on the rcu_freeing structure, which itself is overlaid on memsw.
8c7c6e34 5521 */
c8b2a36f 5522static void free_work(struct work_struct *work)
33327948 5523{
c8b2a36f 5524 struct mem_cgroup *memcg;
08e552c6 5525
c8b2a36f
GC
5526 memcg = container_of(work, struct mem_cgroup, work_freeing);
5527 __mem_cgroup_free(memcg);
5528}
04046e1a 5529
c8b2a36f
GC
5530static void free_rcu(struct rcu_head *rcu_head)
5531{
5532 struct mem_cgroup *memcg;
08e552c6 5533
c8b2a36f
GC
5534 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
5535 INIT_WORK(&memcg->work_freeing, free_work);
5536 schedule_work(&memcg->work_freeing);
33327948
KH
5537}
5538
c0ff4b85 5539static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 5540{
c0ff4b85 5541 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
5542}
5543
c0ff4b85 5544static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 5545{
c0ff4b85
R
5546 if (atomic_sub_and_test(count, &memcg->refcnt)) {
5547 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
c8b2a36f 5548 call_rcu(&memcg->rcu_freeing, free_rcu);
7bcc1bb1
DN
5549 if (parent)
5550 mem_cgroup_put(parent);
5551 }
8c7c6e34
KH
5552}
5553
c0ff4b85 5554static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 5555{
c0ff4b85 5556 __mem_cgroup_put(memcg, 1);
483c30b5
DN
5557}
5558
7bcc1bb1
DN
5559/*
5560 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
5561 */
e1aab161 5562struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 5563{
c0ff4b85 5564 if (!memcg->res.parent)
7bcc1bb1 5565 return NULL;
c0ff4b85 5566 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 5567}
e1aab161 5568EXPORT_SYMBOL(parent_mem_cgroup);
33327948 5569
c255a458 5570#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
5571static void __init enable_swap_cgroup(void)
5572{
f8d66542 5573 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
5574 do_swap_account = 1;
5575}
5576#else
5577static void __init enable_swap_cgroup(void)
5578{
5579}
5580#endif
5581
f64c3f54
BS
5582static int mem_cgroup_soft_limit_tree_init(void)
5583{
5584 struct mem_cgroup_tree_per_node *rtpn;
5585 struct mem_cgroup_tree_per_zone *rtpz;
5586 int tmp, node, zone;
5587
3ed28fa1 5588 for_each_node(node) {
f64c3f54
BS
5589 tmp = node;
5590 if (!node_state(node, N_NORMAL_MEMORY))
5591 tmp = -1;
5592 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
5593 if (!rtpn)
c3cecc68 5594 goto err_cleanup;
f64c3f54
BS
5595
5596 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5597
5598 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5599 rtpz = &rtpn->rb_tree_per_zone[zone];
5600 rtpz->rb_root = RB_ROOT;
5601 spin_lock_init(&rtpz->lock);
5602 }
5603 }
5604 return 0;
c3cecc68
MH
5605
5606err_cleanup:
3ed28fa1 5607 for_each_node(node) {
c3cecc68
MH
5608 if (!soft_limit_tree.rb_tree_per_node[node])
5609 break;
5610 kfree(soft_limit_tree.rb_tree_per_node[node]);
5611 soft_limit_tree.rb_tree_per_node[node] = NULL;
5612 }
5613 return 1;
5614
f64c3f54
BS
5615}
5616
0eb253e2 5617static struct cgroup_subsys_state * __ref
92fb9748 5618mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 5619{
c0ff4b85 5620 struct mem_cgroup *memcg, *parent;
04046e1a 5621 long error = -ENOMEM;
6d12e2d8 5622 int node;
8cdea7c0 5623
c0ff4b85
R
5624 memcg = mem_cgroup_alloc();
5625 if (!memcg)
04046e1a 5626 return ERR_PTR(error);
78fb7466 5627
3ed28fa1 5628 for_each_node(node)
c0ff4b85 5629 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 5630 goto free_out;
f64c3f54 5631
c077719b 5632 /* root ? */
28dbc4b6 5633 if (cont->parent == NULL) {
cdec2e42 5634 int cpu;
c077719b 5635 enable_swap_cgroup();
28dbc4b6 5636 parent = NULL;
f64c3f54
BS
5637 if (mem_cgroup_soft_limit_tree_init())
5638 goto free_out;
a41c58a6 5639 root_mem_cgroup = memcg;
cdec2e42
KH
5640 for_each_possible_cpu(cpu) {
5641 struct memcg_stock_pcp *stock =
5642 &per_cpu(memcg_stock, cpu);
5643 INIT_WORK(&stock->work, drain_local_stock);
5644 }
711d3d2c 5645 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 5646 } else {
28dbc4b6 5647 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
5648 memcg->use_hierarchy = parent->use_hierarchy;
5649 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 5650 }
28dbc4b6 5651
18f59ea7 5652 if (parent && parent->use_hierarchy) {
c0ff4b85
R
5653 res_counter_init(&memcg->res, &parent->res);
5654 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 5655 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 5656
7bcc1bb1
DN
5657 /*
5658 * We increment refcnt of the parent to ensure that we can
5659 * safely access it on res_counter_charge/uncharge.
5660 * This refcnt will be decremented when freeing this
5661 * mem_cgroup(see mem_cgroup_put).
5662 */
5663 mem_cgroup_get(parent);
18f59ea7 5664 } else {
c0ff4b85
R
5665 res_counter_init(&memcg->res, NULL);
5666 res_counter_init(&memcg->memsw, NULL);
510fc4e1 5667 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
5668 /*
5669 * Deeper hierachy with use_hierarchy == false doesn't make
5670 * much sense so let cgroup subsystem know about this
5671 * unfortunate state in our controller.
5672 */
5673 if (parent && parent != root_mem_cgroup)
5674 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 5675 }
c0ff4b85
R
5676 memcg->last_scanned_node = MAX_NUMNODES;
5677 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 5678
a7885eb8 5679 if (parent)
c0ff4b85
R
5680 memcg->swappiness = mem_cgroup_swappiness(parent);
5681 atomic_set(&memcg->refcnt, 1);
5682 memcg->move_charge_at_immigrate = 0;
5683 mutex_init(&memcg->thresholds_lock);
312734c0 5684 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
5685
5686 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5687 if (error) {
5688 /*
5689 * We call put now because our (and parent's) refcnts
5690 * are already in place. mem_cgroup_put() will internally
5691 * call __mem_cgroup_free, so return directly
5692 */
5693 mem_cgroup_put(memcg);
5694 return ERR_PTR(error);
5695 }
c0ff4b85 5696 return &memcg->css;
6d12e2d8 5697free_out:
c0ff4b85 5698 __mem_cgroup_free(memcg);
04046e1a 5699 return ERR_PTR(error);
8cdea7c0
BS
5700}
5701
92fb9748 5702static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 5703{
c0ff4b85 5704 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 5705
ab5196c2 5706 mem_cgroup_reparent_charges(memcg);
df878fb0
KH
5707}
5708
92fb9748 5709static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 5710{
c0ff4b85 5711 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 5712
1d62e436 5713 kmem_cgroup_destroy(memcg);
d1a4c0b3 5714
c0ff4b85 5715 mem_cgroup_put(memcg);
8cdea7c0
BS
5716}
5717
02491447 5718#ifdef CONFIG_MMU
7dc74be0 5719/* Handlers for move charge at task migration. */
854ffa8d
DN
5720#define PRECHARGE_COUNT_AT_ONCE 256
5721static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 5722{
854ffa8d
DN
5723 int ret = 0;
5724 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 5725 struct mem_cgroup *memcg = mc.to;
4ffef5fe 5726
c0ff4b85 5727 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
5728 mc.precharge += count;
5729 /* we don't need css_get for root */
5730 return ret;
5731 }
5732 /* try to charge at once */
5733 if (count > 1) {
5734 struct res_counter *dummy;
5735 /*
c0ff4b85 5736 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
5737 * by cgroup_lock_live_cgroup() that it is not removed and we
5738 * are still under the same cgroup_mutex. So we can postpone
5739 * css_get().
5740 */
c0ff4b85 5741 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 5742 goto one_by_one;
c0ff4b85 5743 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 5744 PAGE_SIZE * count, &dummy)) {
c0ff4b85 5745 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
5746 goto one_by_one;
5747 }
5748 mc.precharge += count;
854ffa8d
DN
5749 return ret;
5750 }
5751one_by_one:
5752 /* fall back to one by one charge */
5753 while (count--) {
5754 if (signal_pending(current)) {
5755 ret = -EINTR;
5756 break;
5757 }
5758 if (!batch_count--) {
5759 batch_count = PRECHARGE_COUNT_AT_ONCE;
5760 cond_resched();
5761 }
c0ff4b85
R
5762 ret = __mem_cgroup_try_charge(NULL,
5763 GFP_KERNEL, 1, &memcg, false);
38c5d72f 5764 if (ret)
854ffa8d 5765 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 5766 return ret;
854ffa8d
DN
5767 mc.precharge++;
5768 }
4ffef5fe
DN
5769 return ret;
5770}
5771
5772/**
8d32ff84 5773 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
5774 * @vma: the vma the pte to be checked belongs
5775 * @addr: the address corresponding to the pte to be checked
5776 * @ptent: the pte to be checked
02491447 5777 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
5778 *
5779 * Returns
5780 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5781 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5782 * move charge. if @target is not NULL, the page is stored in target->page
5783 * with extra refcnt got(Callers should handle it).
02491447
DN
5784 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5785 * target for charge migration. if @target is not NULL, the entry is stored
5786 * in target->ent.
4ffef5fe
DN
5787 *
5788 * Called with pte lock held.
5789 */
4ffef5fe
DN
5790union mc_target {
5791 struct page *page;
02491447 5792 swp_entry_t ent;
4ffef5fe
DN
5793};
5794
4ffef5fe 5795enum mc_target_type {
8d32ff84 5796 MC_TARGET_NONE = 0,
4ffef5fe 5797 MC_TARGET_PAGE,
02491447 5798 MC_TARGET_SWAP,
4ffef5fe
DN
5799};
5800
90254a65
DN
5801static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5802 unsigned long addr, pte_t ptent)
4ffef5fe 5803{
90254a65 5804 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 5805
90254a65
DN
5806 if (!page || !page_mapped(page))
5807 return NULL;
5808 if (PageAnon(page)) {
5809 /* we don't move shared anon */
4b91355e 5810 if (!move_anon())
90254a65 5811 return NULL;
87946a72
DN
5812 } else if (!move_file())
5813 /* we ignore mapcount for file pages */
90254a65
DN
5814 return NULL;
5815 if (!get_page_unless_zero(page))
5816 return NULL;
5817
5818 return page;
5819}
5820
4b91355e 5821#ifdef CONFIG_SWAP
90254a65
DN
5822static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5823 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5824{
90254a65
DN
5825 struct page *page = NULL;
5826 swp_entry_t ent = pte_to_swp_entry(ptent);
5827
5828 if (!move_anon() || non_swap_entry(ent))
5829 return NULL;
4b91355e
KH
5830 /*
5831 * Because lookup_swap_cache() updates some statistics counter,
5832 * we call find_get_page() with swapper_space directly.
5833 */
5834 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
5835 if (do_swap_account)
5836 entry->val = ent.val;
5837
5838 return page;
5839}
4b91355e
KH
5840#else
5841static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5842 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5843{
5844 return NULL;
5845}
5846#endif
90254a65 5847
87946a72
DN
5848static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5849 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5850{
5851 struct page *page = NULL;
87946a72
DN
5852 struct address_space *mapping;
5853 pgoff_t pgoff;
5854
5855 if (!vma->vm_file) /* anonymous vma */
5856 return NULL;
5857 if (!move_file())
5858 return NULL;
5859
87946a72
DN
5860 mapping = vma->vm_file->f_mapping;
5861 if (pte_none(ptent))
5862 pgoff = linear_page_index(vma, addr);
5863 else /* pte_file(ptent) is true */
5864 pgoff = pte_to_pgoff(ptent);
5865
5866 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
5867 page = find_get_page(mapping, pgoff);
5868
5869#ifdef CONFIG_SWAP
5870 /* shmem/tmpfs may report page out on swap: account for that too. */
5871 if (radix_tree_exceptional_entry(page)) {
5872 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 5873 if (do_swap_account)
aa3b1895
HD
5874 *entry = swap;
5875 page = find_get_page(&swapper_space, swap.val);
87946a72 5876 }
aa3b1895 5877#endif
87946a72
DN
5878 return page;
5879}
5880
8d32ff84 5881static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
5882 unsigned long addr, pte_t ptent, union mc_target *target)
5883{
5884 struct page *page = NULL;
5885 struct page_cgroup *pc;
8d32ff84 5886 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
5887 swp_entry_t ent = { .val = 0 };
5888
5889 if (pte_present(ptent))
5890 page = mc_handle_present_pte(vma, addr, ptent);
5891 else if (is_swap_pte(ptent))
5892 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
5893 else if (pte_none(ptent) || pte_file(ptent))
5894 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
5895
5896 if (!page && !ent.val)
8d32ff84 5897 return ret;
02491447
DN
5898 if (page) {
5899 pc = lookup_page_cgroup(page);
5900 /*
5901 * Do only loose check w/o page_cgroup lock.
5902 * mem_cgroup_move_account() checks the pc is valid or not under
5903 * the lock.
5904 */
5905 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5906 ret = MC_TARGET_PAGE;
5907 if (target)
5908 target->page = page;
5909 }
5910 if (!ret || !target)
5911 put_page(page);
5912 }
90254a65
DN
5913 /* There is a swap entry and a page doesn't exist or isn't charged */
5914 if (ent.val && !ret &&
9fb4b7cc 5915 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
5916 ret = MC_TARGET_SWAP;
5917 if (target)
5918 target->ent = ent;
4ffef5fe 5919 }
4ffef5fe
DN
5920 return ret;
5921}
5922
12724850
NH
5923#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5924/*
5925 * We don't consider swapping or file mapped pages because THP does not
5926 * support them for now.
5927 * Caller should make sure that pmd_trans_huge(pmd) is true.
5928 */
5929static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5930 unsigned long addr, pmd_t pmd, union mc_target *target)
5931{
5932 struct page *page = NULL;
5933 struct page_cgroup *pc;
5934 enum mc_target_type ret = MC_TARGET_NONE;
5935
5936 page = pmd_page(pmd);
5937 VM_BUG_ON(!page || !PageHead(page));
5938 if (!move_anon())
5939 return ret;
5940 pc = lookup_page_cgroup(page);
5941 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5942 ret = MC_TARGET_PAGE;
5943 if (target) {
5944 get_page(page);
5945 target->page = page;
5946 }
5947 }
5948 return ret;
5949}
5950#else
5951static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5952 unsigned long addr, pmd_t pmd, union mc_target *target)
5953{
5954 return MC_TARGET_NONE;
5955}
5956#endif
5957
4ffef5fe
DN
5958static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5959 unsigned long addr, unsigned long end,
5960 struct mm_walk *walk)
5961{
5962 struct vm_area_struct *vma = walk->private;
5963 pte_t *pte;
5964 spinlock_t *ptl;
5965
12724850
NH
5966 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5967 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5968 mc.precharge += HPAGE_PMD_NR;
5969 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 5970 return 0;
12724850 5971 }
03319327 5972
45f83cef
AA
5973 if (pmd_trans_unstable(pmd))
5974 return 0;
4ffef5fe
DN
5975 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5976 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 5977 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
5978 mc.precharge++; /* increment precharge temporarily */
5979 pte_unmap_unlock(pte - 1, ptl);
5980 cond_resched();
5981
7dc74be0
DN
5982 return 0;
5983}
5984
4ffef5fe
DN
5985static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5986{
5987 unsigned long precharge;
5988 struct vm_area_struct *vma;
5989
dfe076b0 5990 down_read(&mm->mmap_sem);
4ffef5fe
DN
5991 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5992 struct mm_walk mem_cgroup_count_precharge_walk = {
5993 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5994 .mm = mm,
5995 .private = vma,
5996 };
5997 if (is_vm_hugetlb_page(vma))
5998 continue;
4ffef5fe
DN
5999 walk_page_range(vma->vm_start, vma->vm_end,
6000 &mem_cgroup_count_precharge_walk);
6001 }
dfe076b0 6002 up_read(&mm->mmap_sem);
4ffef5fe
DN
6003
6004 precharge = mc.precharge;
6005 mc.precharge = 0;
6006
6007 return precharge;
6008}
6009
4ffef5fe
DN
6010static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6011{
dfe076b0
DN
6012 unsigned long precharge = mem_cgroup_count_precharge(mm);
6013
6014 VM_BUG_ON(mc.moving_task);
6015 mc.moving_task = current;
6016 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6017}
6018
dfe076b0
DN
6019/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6020static void __mem_cgroup_clear_mc(void)
4ffef5fe 6021{
2bd9bb20
KH
6022 struct mem_cgroup *from = mc.from;
6023 struct mem_cgroup *to = mc.to;
6024
4ffef5fe 6025 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6026 if (mc.precharge) {
6027 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6028 mc.precharge = 0;
6029 }
6030 /*
6031 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6032 * we must uncharge here.
6033 */
6034 if (mc.moved_charge) {
6035 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6036 mc.moved_charge = 0;
4ffef5fe 6037 }
483c30b5
DN
6038 /* we must fixup refcnts and charges */
6039 if (mc.moved_swap) {
483c30b5
DN
6040 /* uncharge swap account from the old cgroup */
6041 if (!mem_cgroup_is_root(mc.from))
6042 res_counter_uncharge(&mc.from->memsw,
6043 PAGE_SIZE * mc.moved_swap);
6044 __mem_cgroup_put(mc.from, mc.moved_swap);
6045
6046 if (!mem_cgroup_is_root(mc.to)) {
6047 /*
6048 * we charged both to->res and to->memsw, so we should
6049 * uncharge to->res.
6050 */
6051 res_counter_uncharge(&mc.to->res,
6052 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
6053 }
6054 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
6055 mc.moved_swap = 0;
6056 }
dfe076b0
DN
6057 memcg_oom_recover(from);
6058 memcg_oom_recover(to);
6059 wake_up_all(&mc.waitq);
6060}
6061
6062static void mem_cgroup_clear_mc(void)
6063{
6064 struct mem_cgroup *from = mc.from;
6065
6066 /*
6067 * we must clear moving_task before waking up waiters at the end of
6068 * task migration.
6069 */
6070 mc.moving_task = NULL;
6071 __mem_cgroup_clear_mc();
2bd9bb20 6072 spin_lock(&mc.lock);
4ffef5fe
DN
6073 mc.from = NULL;
6074 mc.to = NULL;
2bd9bb20 6075 spin_unlock(&mc.lock);
32047e2a 6076 mem_cgroup_end_move(from);
4ffef5fe
DN
6077}
6078
761b3ef5
LZ
6079static int mem_cgroup_can_attach(struct cgroup *cgroup,
6080 struct cgroup_taskset *tset)
7dc74be0 6081{
2f7ee569 6082 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6083 int ret = 0;
c0ff4b85 6084 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 6085
c0ff4b85 6086 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
6087 struct mm_struct *mm;
6088 struct mem_cgroup *from = mem_cgroup_from_task(p);
6089
c0ff4b85 6090 VM_BUG_ON(from == memcg);
7dc74be0
DN
6091
6092 mm = get_task_mm(p);
6093 if (!mm)
6094 return 0;
7dc74be0 6095 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6096 if (mm->owner == p) {
6097 VM_BUG_ON(mc.from);
6098 VM_BUG_ON(mc.to);
6099 VM_BUG_ON(mc.precharge);
854ffa8d 6100 VM_BUG_ON(mc.moved_charge);
483c30b5 6101 VM_BUG_ON(mc.moved_swap);
32047e2a 6102 mem_cgroup_start_move(from);
2bd9bb20 6103 spin_lock(&mc.lock);
4ffef5fe 6104 mc.from = from;
c0ff4b85 6105 mc.to = memcg;
2bd9bb20 6106 spin_unlock(&mc.lock);
dfe076b0 6107 /* We set mc.moving_task later */
4ffef5fe
DN
6108
6109 ret = mem_cgroup_precharge_mc(mm);
6110 if (ret)
6111 mem_cgroup_clear_mc();
dfe076b0
DN
6112 }
6113 mmput(mm);
7dc74be0
DN
6114 }
6115 return ret;
6116}
6117
761b3ef5
LZ
6118static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6119 struct cgroup_taskset *tset)
7dc74be0 6120{
4ffef5fe 6121 mem_cgroup_clear_mc();
7dc74be0
DN
6122}
6123
4ffef5fe
DN
6124static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6125 unsigned long addr, unsigned long end,
6126 struct mm_walk *walk)
7dc74be0 6127{
4ffef5fe
DN
6128 int ret = 0;
6129 struct vm_area_struct *vma = walk->private;
6130 pte_t *pte;
6131 spinlock_t *ptl;
12724850
NH
6132 enum mc_target_type target_type;
6133 union mc_target target;
6134 struct page *page;
6135 struct page_cgroup *pc;
4ffef5fe 6136
12724850
NH
6137 /*
6138 * We don't take compound_lock() here but no race with splitting thp
6139 * happens because:
6140 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6141 * under splitting, which means there's no concurrent thp split,
6142 * - if another thread runs into split_huge_page() just after we
6143 * entered this if-block, the thread must wait for page table lock
6144 * to be unlocked in __split_huge_page_splitting(), where the main
6145 * part of thp split is not executed yet.
6146 */
6147 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6148 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6149 spin_unlock(&vma->vm_mm->page_table_lock);
6150 return 0;
6151 }
6152 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6153 if (target_type == MC_TARGET_PAGE) {
6154 page = target.page;
6155 if (!isolate_lru_page(page)) {
6156 pc = lookup_page_cgroup(page);
6157 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6158 pc, mc.from, mc.to)) {
12724850
NH
6159 mc.precharge -= HPAGE_PMD_NR;
6160 mc.moved_charge += HPAGE_PMD_NR;
6161 }
6162 putback_lru_page(page);
6163 }
6164 put_page(page);
6165 }
6166 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6167 return 0;
12724850
NH
6168 }
6169
45f83cef
AA
6170 if (pmd_trans_unstable(pmd))
6171 return 0;
4ffef5fe
DN
6172retry:
6173 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6174 for (; addr != end; addr += PAGE_SIZE) {
6175 pte_t ptent = *(pte++);
02491447 6176 swp_entry_t ent;
4ffef5fe
DN
6177
6178 if (!mc.precharge)
6179 break;
6180
8d32ff84 6181 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6182 case MC_TARGET_PAGE:
6183 page = target.page;
6184 if (isolate_lru_page(page))
6185 goto put;
6186 pc = lookup_page_cgroup(page);
7ec99d62 6187 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6188 mc.from, mc.to)) {
4ffef5fe 6189 mc.precharge--;
854ffa8d
DN
6190 /* we uncharge from mc.from later. */
6191 mc.moved_charge++;
4ffef5fe
DN
6192 }
6193 putback_lru_page(page);
8d32ff84 6194put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6195 put_page(page);
6196 break;
02491447
DN
6197 case MC_TARGET_SWAP:
6198 ent = target.ent;
e91cbb42 6199 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6200 mc.precharge--;
483c30b5
DN
6201 /* we fixup refcnts and charges later. */
6202 mc.moved_swap++;
6203 }
02491447 6204 break;
4ffef5fe
DN
6205 default:
6206 break;
6207 }
6208 }
6209 pte_unmap_unlock(pte - 1, ptl);
6210 cond_resched();
6211
6212 if (addr != end) {
6213 /*
6214 * We have consumed all precharges we got in can_attach().
6215 * We try charge one by one, but don't do any additional
6216 * charges to mc.to if we have failed in charge once in attach()
6217 * phase.
6218 */
854ffa8d 6219 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6220 if (!ret)
6221 goto retry;
6222 }
6223
6224 return ret;
6225}
6226
6227static void mem_cgroup_move_charge(struct mm_struct *mm)
6228{
6229 struct vm_area_struct *vma;
6230
6231 lru_add_drain_all();
dfe076b0
DN
6232retry:
6233 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6234 /*
6235 * Someone who are holding the mmap_sem might be waiting in
6236 * waitq. So we cancel all extra charges, wake up all waiters,
6237 * and retry. Because we cancel precharges, we might not be able
6238 * to move enough charges, but moving charge is a best-effort
6239 * feature anyway, so it wouldn't be a big problem.
6240 */
6241 __mem_cgroup_clear_mc();
6242 cond_resched();
6243 goto retry;
6244 }
4ffef5fe
DN
6245 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6246 int ret;
6247 struct mm_walk mem_cgroup_move_charge_walk = {
6248 .pmd_entry = mem_cgroup_move_charge_pte_range,
6249 .mm = mm,
6250 .private = vma,
6251 };
6252 if (is_vm_hugetlb_page(vma))
6253 continue;
4ffef5fe
DN
6254 ret = walk_page_range(vma->vm_start, vma->vm_end,
6255 &mem_cgroup_move_charge_walk);
6256 if (ret)
6257 /*
6258 * means we have consumed all precharges and failed in
6259 * doing additional charge. Just abandon here.
6260 */
6261 break;
6262 }
dfe076b0 6263 up_read(&mm->mmap_sem);
7dc74be0
DN
6264}
6265
761b3ef5
LZ
6266static void mem_cgroup_move_task(struct cgroup *cont,
6267 struct cgroup_taskset *tset)
67e465a7 6268{
2f7ee569 6269 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6270 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6271
dfe076b0 6272 if (mm) {
a433658c
KM
6273 if (mc.to)
6274 mem_cgroup_move_charge(mm);
dfe076b0
DN
6275 mmput(mm);
6276 }
a433658c
KM
6277 if (mc.to)
6278 mem_cgroup_clear_mc();
67e465a7 6279}
5cfb80a7 6280#else /* !CONFIG_MMU */
761b3ef5
LZ
6281static int mem_cgroup_can_attach(struct cgroup *cgroup,
6282 struct cgroup_taskset *tset)
5cfb80a7
DN
6283{
6284 return 0;
6285}
761b3ef5
LZ
6286static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6287 struct cgroup_taskset *tset)
5cfb80a7
DN
6288{
6289}
761b3ef5
LZ
6290static void mem_cgroup_move_task(struct cgroup *cont,
6291 struct cgroup_taskset *tset)
5cfb80a7
DN
6292{
6293}
6294#endif
67e465a7 6295
8cdea7c0
BS
6296struct cgroup_subsys mem_cgroup_subsys = {
6297 .name = "memory",
6298 .subsys_id = mem_cgroup_subsys_id,
92fb9748
TH
6299 .css_alloc = mem_cgroup_css_alloc,
6300 .css_offline = mem_cgroup_css_offline,
6301 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6302 .can_attach = mem_cgroup_can_attach,
6303 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6304 .attach = mem_cgroup_move_task,
6bc10349 6305 .base_cftypes = mem_cgroup_files,
6d12e2d8 6306 .early_init = 0,
04046e1a 6307 .use_id = 1,
8cdea7c0 6308};
c077719b 6309
c255a458 6310#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6311static int __init enable_swap_account(char *s)
6312{
6313 /* consider enabled if no parameter or 1 is given */
a2c8990a 6314 if (!strcmp(s, "1"))
a42c390c 6315 really_do_swap_account = 1;
a2c8990a 6316 else if (!strcmp(s, "0"))
a42c390c
MH
6317 really_do_swap_account = 0;
6318 return 1;
6319}
a2c8990a 6320__setup("swapaccount=", enable_swap_account);
c077719b 6321
c077719b 6322#endif