]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
memcg, oom: provide more precise dump info while memcg oom happening
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
f64c3f54 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
b69408e8 52#include <linux/mm_inline.h>
52d4b9ac 53#include <linux/page_cgroup.h>
cdec2e42 54#include <linux/cpu.h>
158e0a2d 55#include <linux/oom.h>
08e552c6 56#include "internal.h"
d1a4c0b3 57#include <net/sock.h>
4bd2c1ee 58#include <net/ip.h>
d1a4c0b3 59#include <net/tcp_memcontrol.h>
8cdea7c0 60
8697d331
BS
61#include <asm/uaccess.h>
62
cc8e970c
KM
63#include <trace/events/vmscan.h>
64
a181b0e8 65struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
66EXPORT_SYMBOL(mem_cgroup_subsys);
67
a181b0e8 68#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 69static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 70
c255a458 71#ifdef CONFIG_MEMCG_SWAP
338c8431 72/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 73int do_swap_account __read_mostly;
a42c390c
MH
74
75/* for remember boot option*/
c255a458 76#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
77static int really_do_swap_account __initdata = 1;
78#else
79static int really_do_swap_account __initdata = 0;
80#endif
81
c077719b 82#else
a0db00fc 83#define do_swap_account 0
c077719b
KH
84#endif
85
86
d52aa412
KH
87/*
88 * Statistics for memory cgroup.
89 */
90enum mem_cgroup_stat_index {
91 /*
92 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 */
94 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 95 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 96 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
bff6bb83 97 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
98 MEM_CGROUP_STAT_NSTATS,
99};
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "mapped_file",
105 "swap",
106};
107
e9f8974f
JW
108enum mem_cgroup_events_index {
109 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
110 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
111 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
112 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
113 MEM_CGROUP_EVENTS_NSTATS,
114};
af7c4b0e
JW
115
116static const char * const mem_cgroup_events_names[] = {
117 "pgpgin",
118 "pgpgout",
119 "pgfault",
120 "pgmajfault",
121};
122
58cf188e
SZ
123static const char * const mem_cgroup_lru_names[] = {
124 "inactive_anon",
125 "active_anon",
126 "inactive_file",
127 "active_file",
128 "unevictable",
129};
130
7a159cc9
JW
131/*
132 * Per memcg event counter is incremented at every pagein/pageout. With THP,
133 * it will be incremated by the number of pages. This counter is used for
134 * for trigger some periodic events. This is straightforward and better
135 * than using jiffies etc. to handle periodic memcg event.
136 */
137enum mem_cgroup_events_target {
138 MEM_CGROUP_TARGET_THRESH,
139 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 140 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
141 MEM_CGROUP_NTARGETS,
142};
a0db00fc
KS
143#define THRESHOLDS_EVENTS_TARGET 128
144#define SOFTLIMIT_EVENTS_TARGET 1024
145#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 146
d52aa412 147struct mem_cgroup_stat_cpu {
7a159cc9 148 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 149 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 150 unsigned long nr_page_events;
7a159cc9 151 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
152};
153
527a5ec9
JW
154struct mem_cgroup_reclaim_iter {
155 /* css_id of the last scanned hierarchy member */
156 int position;
157 /* scan generation, increased every round-trip */
158 unsigned int generation;
159};
160
6d12e2d8
KH
161/*
162 * per-zone information in memory controller.
163 */
6d12e2d8 164struct mem_cgroup_per_zone {
6290df54 165 struct lruvec lruvec;
1eb49272 166 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 167
527a5ec9
JW
168 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
169
f64c3f54
BS
170 struct rb_node tree_node; /* RB tree node */
171 unsigned long long usage_in_excess;/* Set to the value by which */
172 /* the soft limit is exceeded*/
173 bool on_tree;
d79154bb 174 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 175 /* use container_of */
6d12e2d8 176};
6d12e2d8
KH
177
178struct mem_cgroup_per_node {
179 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
180};
181
182struct mem_cgroup_lru_info {
183 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
184};
185
f64c3f54
BS
186/*
187 * Cgroups above their limits are maintained in a RB-Tree, independent of
188 * their hierarchy representation
189 */
190
191struct mem_cgroup_tree_per_zone {
192 struct rb_root rb_root;
193 spinlock_t lock;
194};
195
196struct mem_cgroup_tree_per_node {
197 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
198};
199
200struct mem_cgroup_tree {
201 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
202};
203
204static struct mem_cgroup_tree soft_limit_tree __read_mostly;
205
2e72b634
KS
206struct mem_cgroup_threshold {
207 struct eventfd_ctx *eventfd;
208 u64 threshold;
209};
210
9490ff27 211/* For threshold */
2e72b634 212struct mem_cgroup_threshold_ary {
748dad36 213 /* An array index points to threshold just below or equal to usage. */
5407a562 214 int current_threshold;
2e72b634
KS
215 /* Size of entries[] */
216 unsigned int size;
217 /* Array of thresholds */
218 struct mem_cgroup_threshold entries[0];
219};
2c488db2
KS
220
221struct mem_cgroup_thresholds {
222 /* Primary thresholds array */
223 struct mem_cgroup_threshold_ary *primary;
224 /*
225 * Spare threshold array.
226 * This is needed to make mem_cgroup_unregister_event() "never fail".
227 * It must be able to store at least primary->size - 1 entries.
228 */
229 struct mem_cgroup_threshold_ary *spare;
230};
231
9490ff27
KH
232/* for OOM */
233struct mem_cgroup_eventfd_list {
234 struct list_head list;
235 struct eventfd_ctx *eventfd;
236};
2e72b634 237
c0ff4b85
R
238static void mem_cgroup_threshold(struct mem_cgroup *memcg);
239static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 240
8cdea7c0
BS
241/*
242 * The memory controller data structure. The memory controller controls both
243 * page cache and RSS per cgroup. We would eventually like to provide
244 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
245 * to help the administrator determine what knobs to tune.
246 *
247 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
248 * we hit the water mark. May be even add a low water mark, such that
249 * no reclaim occurs from a cgroup at it's low water mark, this is
250 * a feature that will be implemented much later in the future.
8cdea7c0
BS
251 */
252struct mem_cgroup {
253 struct cgroup_subsys_state css;
254 /*
255 * the counter to account for memory usage
256 */
257 struct res_counter res;
59927fb9
HD
258
259 union {
260 /*
261 * the counter to account for mem+swap usage.
262 */
263 struct res_counter memsw;
264
265 /*
266 * rcu_freeing is used only when freeing struct mem_cgroup,
267 * so put it into a union to avoid wasting more memory.
268 * It must be disjoint from the css field. It could be
269 * in a union with the res field, but res plays a much
270 * larger part in mem_cgroup life than memsw, and might
271 * be of interest, even at time of free, when debugging.
272 * So share rcu_head with the less interesting memsw.
273 */
274 struct rcu_head rcu_freeing;
275 /*
3afe36b1
GC
276 * We also need some space for a worker in deferred freeing.
277 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
278 */
279 struct work_struct work_freeing;
280 };
281
510fc4e1
GC
282 /*
283 * the counter to account for kernel memory usage.
284 */
285 struct res_counter kmem;
78fb7466
PE
286 /*
287 * Per cgroup active and inactive list, similar to the
288 * per zone LRU lists.
78fb7466 289 */
6d12e2d8 290 struct mem_cgroup_lru_info info;
889976db
YH
291 int last_scanned_node;
292#if MAX_NUMNODES > 1
293 nodemask_t scan_nodes;
453a9bf3
KH
294 atomic_t numainfo_events;
295 atomic_t numainfo_updating;
889976db 296#endif
18f59ea7
BS
297 /*
298 * Should the accounting and control be hierarchical, per subtree?
299 */
300 bool use_hierarchy;
510fc4e1 301 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
302
303 bool oom_lock;
304 atomic_t under_oom;
305
8c7c6e34 306 atomic_t refcnt;
14797e23 307
1f4c025b 308 int swappiness;
3c11ecf4
KH
309 /* OOM-Killer disable */
310 int oom_kill_disable;
a7885eb8 311
22a668d7
KH
312 /* set when res.limit == memsw.limit */
313 bool memsw_is_minimum;
314
2e72b634
KS
315 /* protect arrays of thresholds */
316 struct mutex thresholds_lock;
317
318 /* thresholds for memory usage. RCU-protected */
2c488db2 319 struct mem_cgroup_thresholds thresholds;
907860ed 320
2e72b634 321 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 322 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 323
9490ff27
KH
324 /* For oom notifier event fd */
325 struct list_head oom_notify;
185efc0f 326
7dc74be0
DN
327 /*
328 * Should we move charges of a task when a task is moved into this
329 * mem_cgroup ? And what type of charges should we move ?
330 */
331 unsigned long move_charge_at_immigrate;
619d094b
KH
332 /*
333 * set > 0 if pages under this cgroup are moving to other cgroup.
334 */
335 atomic_t moving_account;
312734c0
KH
336 /* taken only while moving_account > 0 */
337 spinlock_t move_lock;
d52aa412 338 /*
c62b1a3b 339 * percpu counter.
d52aa412 340 */
3a7951b4 341 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
342 /*
343 * used when a cpu is offlined or other synchronizations
344 * See mem_cgroup_read_stat().
345 */
346 struct mem_cgroup_stat_cpu nocpu_base;
347 spinlock_t pcp_counter_lock;
d1a4c0b3 348
4bd2c1ee 349#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
350 struct tcp_memcontrol tcp_mem;
351#endif
2633d7a0
GC
352#if defined(CONFIG_MEMCG_KMEM)
353 /* analogous to slab_common's slab_caches list. per-memcg */
354 struct list_head memcg_slab_caches;
355 /* Not a spinlock, we can take a lot of time walking the list */
356 struct mutex slab_caches_mutex;
357 /* Index in the kmem_cache->memcg_params->memcg_caches array */
358 int kmemcg_id;
359#endif
8cdea7c0
BS
360};
361
510fc4e1
GC
362/* internal only representation about the status of kmem accounting. */
363enum {
364 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 365 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 366 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
367};
368
a8964b9b
GC
369/* We account when limit is on, but only after call sites are patched */
370#define KMEM_ACCOUNTED_MASK \
371 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
372
373#ifdef CONFIG_MEMCG_KMEM
374static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
375{
376 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
377}
7de37682
GC
378
379static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
380{
381 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
382}
383
a8964b9b
GC
384static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
385{
386 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
387}
388
55007d84
GC
389static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
390{
391 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
392}
393
7de37682
GC
394static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
395{
396 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
397 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
398}
399
400static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
401{
402 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
403 &memcg->kmem_account_flags);
404}
510fc4e1
GC
405#endif
406
7dc74be0
DN
407/* Stuffs for move charges at task migration. */
408/*
409 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
410 * left-shifted bitmap of these types.
411 */
412enum move_type {
4ffef5fe 413 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 414 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
415 NR_MOVE_TYPE,
416};
417
4ffef5fe
DN
418/* "mc" and its members are protected by cgroup_mutex */
419static struct move_charge_struct {
b1dd693e 420 spinlock_t lock; /* for from, to */
4ffef5fe
DN
421 struct mem_cgroup *from;
422 struct mem_cgroup *to;
423 unsigned long precharge;
854ffa8d 424 unsigned long moved_charge;
483c30b5 425 unsigned long moved_swap;
8033b97c
DN
426 struct task_struct *moving_task; /* a task moving charges */
427 wait_queue_head_t waitq; /* a waitq for other context */
428} mc = {
2bd9bb20 429 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
430 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
431};
4ffef5fe 432
90254a65
DN
433static bool move_anon(void)
434{
435 return test_bit(MOVE_CHARGE_TYPE_ANON,
436 &mc.to->move_charge_at_immigrate);
437}
438
87946a72
DN
439static bool move_file(void)
440{
441 return test_bit(MOVE_CHARGE_TYPE_FILE,
442 &mc.to->move_charge_at_immigrate);
443}
444
4e416953
BS
445/*
446 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
447 * limit reclaim to prevent infinite loops, if they ever occur.
448 */
a0db00fc
KS
449#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
450#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 451
217bc319
KH
452enum charge_type {
453 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 454 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 455 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 456 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
457 NR_CHARGE_TYPE,
458};
459
8c7c6e34 460/* for encoding cft->private value on file */
86ae53e1
GC
461enum res_type {
462 _MEM,
463 _MEMSWAP,
464 _OOM_TYPE,
510fc4e1 465 _KMEM,
86ae53e1
GC
466};
467
a0db00fc
KS
468#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
469#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 470#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
471/* Used for OOM nofiier */
472#define OOM_CONTROL (0)
8c7c6e34 473
75822b44
BS
474/*
475 * Reclaim flags for mem_cgroup_hierarchical_reclaim
476 */
477#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
478#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
479#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
480#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
481
c0ff4b85
R
482static void mem_cgroup_get(struct mem_cgroup *memcg);
483static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 484
b2145145
WL
485static inline
486struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
487{
488 return container_of(s, struct mem_cgroup, css);
489}
490
7ffc0edc
MH
491static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
492{
493 return (memcg == root_mem_cgroup);
494}
495
e1aab161 496/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 497#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 498
e1aab161
GC
499void sock_update_memcg(struct sock *sk)
500{
376be5ff 501 if (mem_cgroup_sockets_enabled) {
e1aab161 502 struct mem_cgroup *memcg;
3f134619 503 struct cg_proto *cg_proto;
e1aab161
GC
504
505 BUG_ON(!sk->sk_prot->proto_cgroup);
506
f3f511e1
GC
507 /* Socket cloning can throw us here with sk_cgrp already
508 * filled. It won't however, necessarily happen from
509 * process context. So the test for root memcg given
510 * the current task's memcg won't help us in this case.
511 *
512 * Respecting the original socket's memcg is a better
513 * decision in this case.
514 */
515 if (sk->sk_cgrp) {
516 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
517 mem_cgroup_get(sk->sk_cgrp->memcg);
518 return;
519 }
520
e1aab161
GC
521 rcu_read_lock();
522 memcg = mem_cgroup_from_task(current);
3f134619
GC
523 cg_proto = sk->sk_prot->proto_cgroup(memcg);
524 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 525 mem_cgroup_get(memcg);
3f134619 526 sk->sk_cgrp = cg_proto;
e1aab161
GC
527 }
528 rcu_read_unlock();
529 }
530}
531EXPORT_SYMBOL(sock_update_memcg);
532
533void sock_release_memcg(struct sock *sk)
534{
376be5ff 535 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
536 struct mem_cgroup *memcg;
537 WARN_ON(!sk->sk_cgrp->memcg);
538 memcg = sk->sk_cgrp->memcg;
539 mem_cgroup_put(memcg);
540 }
541}
d1a4c0b3
GC
542
543struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
544{
545 if (!memcg || mem_cgroup_is_root(memcg))
546 return NULL;
547
548 return &memcg->tcp_mem.cg_proto;
549}
550EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 551
3f134619
GC
552static void disarm_sock_keys(struct mem_cgroup *memcg)
553{
554 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
555 return;
556 static_key_slow_dec(&memcg_socket_limit_enabled);
557}
558#else
559static void disarm_sock_keys(struct mem_cgroup *memcg)
560{
561}
562#endif
563
a8964b9b 564#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
565/*
566 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
567 * There are two main reasons for not using the css_id for this:
568 * 1) this works better in sparse environments, where we have a lot of memcgs,
569 * but only a few kmem-limited. Or also, if we have, for instance, 200
570 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
571 * 200 entry array for that.
572 *
573 * 2) In order not to violate the cgroup API, we would like to do all memory
574 * allocation in ->create(). At that point, we haven't yet allocated the
575 * css_id. Having a separate index prevents us from messing with the cgroup
576 * core for this
577 *
578 * The current size of the caches array is stored in
579 * memcg_limited_groups_array_size. It will double each time we have to
580 * increase it.
581 */
582static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
583int memcg_limited_groups_array_size;
584
55007d84
GC
585/*
586 * MIN_SIZE is different than 1, because we would like to avoid going through
587 * the alloc/free process all the time. In a small machine, 4 kmem-limited
588 * cgroups is a reasonable guess. In the future, it could be a parameter or
589 * tunable, but that is strictly not necessary.
590 *
591 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
592 * this constant directly from cgroup, but it is understandable that this is
593 * better kept as an internal representation in cgroup.c. In any case, the
594 * css_id space is not getting any smaller, and we don't have to necessarily
595 * increase ours as well if it increases.
596 */
597#define MEMCG_CACHES_MIN_SIZE 4
598#define MEMCG_CACHES_MAX_SIZE 65535
599
d7f25f8a
GC
600/*
601 * A lot of the calls to the cache allocation functions are expected to be
602 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
603 * conditional to this static branch, we'll have to allow modules that does
604 * kmem_cache_alloc and the such to see this symbol as well
605 */
a8964b9b 606struct static_key memcg_kmem_enabled_key;
d7f25f8a 607EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
608
609static void disarm_kmem_keys(struct mem_cgroup *memcg)
610{
55007d84 611 if (memcg_kmem_is_active(memcg)) {
a8964b9b 612 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
613 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
614 }
bea207c8
GC
615 /*
616 * This check can't live in kmem destruction function,
617 * since the charges will outlive the cgroup
618 */
619 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
620}
621#else
622static void disarm_kmem_keys(struct mem_cgroup *memcg)
623{
624}
625#endif /* CONFIG_MEMCG_KMEM */
626
627static void disarm_static_keys(struct mem_cgroup *memcg)
628{
629 disarm_sock_keys(memcg);
630 disarm_kmem_keys(memcg);
631}
632
c0ff4b85 633static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 634
f64c3f54 635static struct mem_cgroup_per_zone *
c0ff4b85 636mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 637{
c0ff4b85 638 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
639}
640
c0ff4b85 641struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 642{
c0ff4b85 643 return &memcg->css;
d324236b
WF
644}
645
f64c3f54 646static struct mem_cgroup_per_zone *
c0ff4b85 647page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 648{
97a6c37b
JW
649 int nid = page_to_nid(page);
650 int zid = page_zonenum(page);
f64c3f54 651
c0ff4b85 652 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
653}
654
655static struct mem_cgroup_tree_per_zone *
656soft_limit_tree_node_zone(int nid, int zid)
657{
658 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
659}
660
661static struct mem_cgroup_tree_per_zone *
662soft_limit_tree_from_page(struct page *page)
663{
664 int nid = page_to_nid(page);
665 int zid = page_zonenum(page);
666
667 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
668}
669
670static void
c0ff4b85 671__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 672 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
673 struct mem_cgroup_tree_per_zone *mctz,
674 unsigned long long new_usage_in_excess)
f64c3f54
BS
675{
676 struct rb_node **p = &mctz->rb_root.rb_node;
677 struct rb_node *parent = NULL;
678 struct mem_cgroup_per_zone *mz_node;
679
680 if (mz->on_tree)
681 return;
682
ef8745c1
KH
683 mz->usage_in_excess = new_usage_in_excess;
684 if (!mz->usage_in_excess)
685 return;
f64c3f54
BS
686 while (*p) {
687 parent = *p;
688 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
689 tree_node);
690 if (mz->usage_in_excess < mz_node->usage_in_excess)
691 p = &(*p)->rb_left;
692 /*
693 * We can't avoid mem cgroups that are over their soft
694 * limit by the same amount
695 */
696 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
697 p = &(*p)->rb_right;
698 }
699 rb_link_node(&mz->tree_node, parent, p);
700 rb_insert_color(&mz->tree_node, &mctz->rb_root);
701 mz->on_tree = true;
4e416953
BS
702}
703
704static void
c0ff4b85 705__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
706 struct mem_cgroup_per_zone *mz,
707 struct mem_cgroup_tree_per_zone *mctz)
708{
709 if (!mz->on_tree)
710 return;
711 rb_erase(&mz->tree_node, &mctz->rb_root);
712 mz->on_tree = false;
713}
714
f64c3f54 715static void
c0ff4b85 716mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
717 struct mem_cgroup_per_zone *mz,
718 struct mem_cgroup_tree_per_zone *mctz)
719{
720 spin_lock(&mctz->lock);
c0ff4b85 721 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
722 spin_unlock(&mctz->lock);
723}
724
f64c3f54 725
c0ff4b85 726static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 727{
ef8745c1 728 unsigned long long excess;
f64c3f54
BS
729 struct mem_cgroup_per_zone *mz;
730 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
731 int nid = page_to_nid(page);
732 int zid = page_zonenum(page);
f64c3f54
BS
733 mctz = soft_limit_tree_from_page(page);
734
735 /*
4e649152
KH
736 * Necessary to update all ancestors when hierarchy is used.
737 * because their event counter is not touched.
f64c3f54 738 */
c0ff4b85
R
739 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
740 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
741 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
742 /*
743 * We have to update the tree if mz is on RB-tree or
744 * mem is over its softlimit.
745 */
ef8745c1 746 if (excess || mz->on_tree) {
4e649152
KH
747 spin_lock(&mctz->lock);
748 /* if on-tree, remove it */
749 if (mz->on_tree)
c0ff4b85 750 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 751 /*
ef8745c1
KH
752 * Insert again. mz->usage_in_excess will be updated.
753 * If excess is 0, no tree ops.
4e649152 754 */
c0ff4b85 755 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
756 spin_unlock(&mctz->lock);
757 }
f64c3f54
BS
758 }
759}
760
c0ff4b85 761static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
762{
763 int node, zone;
764 struct mem_cgroup_per_zone *mz;
765 struct mem_cgroup_tree_per_zone *mctz;
766
3ed28fa1 767 for_each_node(node) {
f64c3f54 768 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 769 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 770 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 771 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
772 }
773 }
774}
775
4e416953
BS
776static struct mem_cgroup_per_zone *
777__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
778{
779 struct rb_node *rightmost = NULL;
26251eaf 780 struct mem_cgroup_per_zone *mz;
4e416953
BS
781
782retry:
26251eaf 783 mz = NULL;
4e416953
BS
784 rightmost = rb_last(&mctz->rb_root);
785 if (!rightmost)
786 goto done; /* Nothing to reclaim from */
787
788 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
789 /*
790 * Remove the node now but someone else can add it back,
791 * we will to add it back at the end of reclaim to its correct
792 * position in the tree.
793 */
d79154bb
HD
794 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
795 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
796 !css_tryget(&mz->memcg->css))
4e416953
BS
797 goto retry;
798done:
799 return mz;
800}
801
802static struct mem_cgroup_per_zone *
803mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
804{
805 struct mem_cgroup_per_zone *mz;
806
807 spin_lock(&mctz->lock);
808 mz = __mem_cgroup_largest_soft_limit_node(mctz);
809 spin_unlock(&mctz->lock);
810 return mz;
811}
812
711d3d2c
KH
813/*
814 * Implementation Note: reading percpu statistics for memcg.
815 *
816 * Both of vmstat[] and percpu_counter has threshold and do periodic
817 * synchronization to implement "quick" read. There are trade-off between
818 * reading cost and precision of value. Then, we may have a chance to implement
819 * a periodic synchronizion of counter in memcg's counter.
820 *
821 * But this _read() function is used for user interface now. The user accounts
822 * memory usage by memory cgroup and he _always_ requires exact value because
823 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
824 * have to visit all online cpus and make sum. So, for now, unnecessary
825 * synchronization is not implemented. (just implemented for cpu hotplug)
826 *
827 * If there are kernel internal actions which can make use of some not-exact
828 * value, and reading all cpu value can be performance bottleneck in some
829 * common workload, threashold and synchonization as vmstat[] should be
830 * implemented.
831 */
c0ff4b85 832static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 833 enum mem_cgroup_stat_index idx)
c62b1a3b 834{
7a159cc9 835 long val = 0;
c62b1a3b 836 int cpu;
c62b1a3b 837
711d3d2c
KH
838 get_online_cpus();
839 for_each_online_cpu(cpu)
c0ff4b85 840 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 841#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
842 spin_lock(&memcg->pcp_counter_lock);
843 val += memcg->nocpu_base.count[idx];
844 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
845#endif
846 put_online_cpus();
c62b1a3b
KH
847 return val;
848}
849
c0ff4b85 850static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
851 bool charge)
852{
853 int val = (charge) ? 1 : -1;
bff6bb83 854 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
855}
856
c0ff4b85 857static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
858 enum mem_cgroup_events_index idx)
859{
860 unsigned long val = 0;
861 int cpu;
862
863 for_each_online_cpu(cpu)
c0ff4b85 864 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 865#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
866 spin_lock(&memcg->pcp_counter_lock);
867 val += memcg->nocpu_base.events[idx];
868 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
869#endif
870 return val;
871}
872
c0ff4b85 873static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b2402857 874 bool anon, int nr_pages)
d52aa412 875{
c62b1a3b
KH
876 preempt_disable();
877
b2402857
KH
878 /*
879 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
880 * counted as CACHE even if it's on ANON LRU.
881 */
882 if (anon)
883 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 884 nr_pages);
d52aa412 885 else
b2402857 886 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 887 nr_pages);
55e462b0 888
e401f176
KH
889 /* pagein of a big page is an event. So, ignore page size */
890 if (nr_pages > 0)
c0ff4b85 891 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 892 else {
c0ff4b85 893 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
894 nr_pages = -nr_pages; /* for event */
895 }
e401f176 896
13114716 897 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 898
c62b1a3b 899 preempt_enable();
6d12e2d8
KH
900}
901
bb2a0de9 902unsigned long
4d7dcca2 903mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
904{
905 struct mem_cgroup_per_zone *mz;
906
907 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
908 return mz->lru_size[lru];
909}
910
911static unsigned long
c0ff4b85 912mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 913 unsigned int lru_mask)
889976db
YH
914{
915 struct mem_cgroup_per_zone *mz;
f156ab93 916 enum lru_list lru;
bb2a0de9
KH
917 unsigned long ret = 0;
918
c0ff4b85 919 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 920
f156ab93
HD
921 for_each_lru(lru) {
922 if (BIT(lru) & lru_mask)
923 ret += mz->lru_size[lru];
bb2a0de9
KH
924 }
925 return ret;
926}
927
928static unsigned long
c0ff4b85 929mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
930 int nid, unsigned int lru_mask)
931{
889976db
YH
932 u64 total = 0;
933 int zid;
934
bb2a0de9 935 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
936 total += mem_cgroup_zone_nr_lru_pages(memcg,
937 nid, zid, lru_mask);
bb2a0de9 938
889976db
YH
939 return total;
940}
bb2a0de9 941
c0ff4b85 942static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 943 unsigned int lru_mask)
6d12e2d8 944{
889976db 945 int nid;
6d12e2d8
KH
946 u64 total = 0;
947
31aaea4a 948 for_each_node_state(nid, N_MEMORY)
c0ff4b85 949 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 950 return total;
d52aa412
KH
951}
952
f53d7ce3
JW
953static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
954 enum mem_cgroup_events_target target)
7a159cc9
JW
955{
956 unsigned long val, next;
957
13114716 958 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 959 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 960 /* from time_after() in jiffies.h */
f53d7ce3
JW
961 if ((long)next - (long)val < 0) {
962 switch (target) {
963 case MEM_CGROUP_TARGET_THRESH:
964 next = val + THRESHOLDS_EVENTS_TARGET;
965 break;
966 case MEM_CGROUP_TARGET_SOFTLIMIT:
967 next = val + SOFTLIMIT_EVENTS_TARGET;
968 break;
969 case MEM_CGROUP_TARGET_NUMAINFO:
970 next = val + NUMAINFO_EVENTS_TARGET;
971 break;
972 default:
973 break;
974 }
975 __this_cpu_write(memcg->stat->targets[target], next);
976 return true;
7a159cc9 977 }
f53d7ce3 978 return false;
d2265e6f
KH
979}
980
981/*
982 * Check events in order.
983 *
984 */
c0ff4b85 985static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 986{
4799401f 987 preempt_disable();
d2265e6f 988 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
989 if (unlikely(mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
991 bool do_softlimit;
992 bool do_numainfo __maybe_unused;
f53d7ce3
JW
993
994 do_softlimit = mem_cgroup_event_ratelimit(memcg,
995 MEM_CGROUP_TARGET_SOFTLIMIT);
996#if MAX_NUMNODES > 1
997 do_numainfo = mem_cgroup_event_ratelimit(memcg,
998 MEM_CGROUP_TARGET_NUMAINFO);
999#endif
1000 preempt_enable();
1001
c0ff4b85 1002 mem_cgroup_threshold(memcg);
f53d7ce3 1003 if (unlikely(do_softlimit))
c0ff4b85 1004 mem_cgroup_update_tree(memcg, page);
453a9bf3 1005#if MAX_NUMNODES > 1
f53d7ce3 1006 if (unlikely(do_numainfo))
c0ff4b85 1007 atomic_inc(&memcg->numainfo_events);
453a9bf3 1008#endif
f53d7ce3
JW
1009 } else
1010 preempt_enable();
d2265e6f
KH
1011}
1012
d1a4c0b3 1013struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 1014{
b2145145
WL
1015 return mem_cgroup_from_css(
1016 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
1017}
1018
cf475ad2 1019struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1020{
31a78f23
BS
1021 /*
1022 * mm_update_next_owner() may clear mm->owner to NULL
1023 * if it races with swapoff, page migration, etc.
1024 * So this can be called with p == NULL.
1025 */
1026 if (unlikely(!p))
1027 return NULL;
1028
b2145145 1029 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
1030}
1031
a433658c 1032struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1033{
c0ff4b85 1034 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1035
1036 if (!mm)
1037 return NULL;
54595fe2
KH
1038 /*
1039 * Because we have no locks, mm->owner's may be being moved to other
1040 * cgroup. We use css_tryget() here even if this looks
1041 * pessimistic (rather than adding locks here).
1042 */
1043 rcu_read_lock();
1044 do {
c0ff4b85
R
1045 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1046 if (unlikely(!memcg))
54595fe2 1047 break;
c0ff4b85 1048 } while (!css_tryget(&memcg->css));
54595fe2 1049 rcu_read_unlock();
c0ff4b85 1050 return memcg;
54595fe2
KH
1051}
1052
5660048c
JW
1053/**
1054 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1055 * @root: hierarchy root
1056 * @prev: previously returned memcg, NULL on first invocation
1057 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1058 *
1059 * Returns references to children of the hierarchy below @root, or
1060 * @root itself, or %NULL after a full round-trip.
1061 *
1062 * Caller must pass the return value in @prev on subsequent
1063 * invocations for reference counting, or use mem_cgroup_iter_break()
1064 * to cancel a hierarchy walk before the round-trip is complete.
1065 *
1066 * Reclaimers can specify a zone and a priority level in @reclaim to
1067 * divide up the memcgs in the hierarchy among all concurrent
1068 * reclaimers operating on the same zone and priority.
1069 */
1070struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1071 struct mem_cgroup *prev,
1072 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1073{
9f3a0d09
JW
1074 struct mem_cgroup *memcg = NULL;
1075 int id = 0;
711d3d2c 1076
5660048c
JW
1077 if (mem_cgroup_disabled())
1078 return NULL;
1079
9f3a0d09
JW
1080 if (!root)
1081 root = root_mem_cgroup;
7d74b06f 1082
9f3a0d09
JW
1083 if (prev && !reclaim)
1084 id = css_id(&prev->css);
14067bb3 1085
9f3a0d09
JW
1086 if (prev && prev != root)
1087 css_put(&prev->css);
14067bb3 1088
9f3a0d09
JW
1089 if (!root->use_hierarchy && root != root_mem_cgroup) {
1090 if (prev)
1091 return NULL;
1092 return root;
1093 }
14067bb3 1094
9f3a0d09 1095 while (!memcg) {
527a5ec9 1096 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
9f3a0d09 1097 struct cgroup_subsys_state *css;
711d3d2c 1098
527a5ec9
JW
1099 if (reclaim) {
1100 int nid = zone_to_nid(reclaim->zone);
1101 int zid = zone_idx(reclaim->zone);
1102 struct mem_cgroup_per_zone *mz;
1103
1104 mz = mem_cgroup_zoneinfo(root, nid, zid);
1105 iter = &mz->reclaim_iter[reclaim->priority];
1106 if (prev && reclaim->generation != iter->generation)
1107 return NULL;
1108 id = iter->position;
1109 }
7d74b06f 1110
9f3a0d09
JW
1111 rcu_read_lock();
1112 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
1113 if (css) {
1114 if (css == &root->css || css_tryget(css))
b2145145 1115 memcg = mem_cgroup_from_css(css);
9f3a0d09
JW
1116 } else
1117 id = 0;
14067bb3 1118 rcu_read_unlock();
14067bb3 1119
527a5ec9
JW
1120 if (reclaim) {
1121 iter->position = id;
1122 if (!css)
1123 iter->generation++;
1124 else if (!prev && memcg)
1125 reclaim->generation = iter->generation;
1126 }
9f3a0d09
JW
1127
1128 if (prev && !css)
1129 return NULL;
1130 }
1131 return memcg;
14067bb3 1132}
7d74b06f 1133
5660048c
JW
1134/**
1135 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1136 * @root: hierarchy root
1137 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1138 */
1139void mem_cgroup_iter_break(struct mem_cgroup *root,
1140 struct mem_cgroup *prev)
9f3a0d09
JW
1141{
1142 if (!root)
1143 root = root_mem_cgroup;
1144 if (prev && prev != root)
1145 css_put(&prev->css);
1146}
7d74b06f 1147
9f3a0d09
JW
1148/*
1149 * Iteration constructs for visiting all cgroups (under a tree). If
1150 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1151 * be used for reference counting.
1152 */
1153#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1154 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1155 iter != NULL; \
527a5ec9 1156 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1157
9f3a0d09 1158#define for_each_mem_cgroup(iter) \
527a5ec9 1159 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1160 iter != NULL; \
527a5ec9 1161 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1162
68ae564b 1163void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1164{
c0ff4b85 1165 struct mem_cgroup *memcg;
456f998e 1166
456f998e 1167 rcu_read_lock();
c0ff4b85
R
1168 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1169 if (unlikely(!memcg))
456f998e
YH
1170 goto out;
1171
1172 switch (idx) {
456f998e 1173 case PGFAULT:
0e574a93
JW
1174 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1175 break;
1176 case PGMAJFAULT:
1177 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1178 break;
1179 default:
1180 BUG();
1181 }
1182out:
1183 rcu_read_unlock();
1184}
68ae564b 1185EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1186
925b7673
JW
1187/**
1188 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1189 * @zone: zone of the wanted lruvec
fa9add64 1190 * @memcg: memcg of the wanted lruvec
925b7673
JW
1191 *
1192 * Returns the lru list vector holding pages for the given @zone and
1193 * @mem. This can be the global zone lruvec, if the memory controller
1194 * is disabled.
1195 */
1196struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1197 struct mem_cgroup *memcg)
1198{
1199 struct mem_cgroup_per_zone *mz;
bea8c150 1200 struct lruvec *lruvec;
925b7673 1201
bea8c150
HD
1202 if (mem_cgroup_disabled()) {
1203 lruvec = &zone->lruvec;
1204 goto out;
1205 }
925b7673
JW
1206
1207 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1208 lruvec = &mz->lruvec;
1209out:
1210 /*
1211 * Since a node can be onlined after the mem_cgroup was created,
1212 * we have to be prepared to initialize lruvec->zone here;
1213 * and if offlined then reonlined, we need to reinitialize it.
1214 */
1215 if (unlikely(lruvec->zone != zone))
1216 lruvec->zone = zone;
1217 return lruvec;
925b7673
JW
1218}
1219
08e552c6
KH
1220/*
1221 * Following LRU functions are allowed to be used without PCG_LOCK.
1222 * Operations are called by routine of global LRU independently from memcg.
1223 * What we have to take care of here is validness of pc->mem_cgroup.
1224 *
1225 * Changes to pc->mem_cgroup happens when
1226 * 1. charge
1227 * 2. moving account
1228 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1229 * It is added to LRU before charge.
1230 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1231 * When moving account, the page is not on LRU. It's isolated.
1232 */
4f98a2fe 1233
925b7673 1234/**
fa9add64 1235 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1236 * @page: the page
fa9add64 1237 * @zone: zone of the page
925b7673 1238 */
fa9add64 1239struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1240{
08e552c6 1241 struct mem_cgroup_per_zone *mz;
925b7673
JW
1242 struct mem_cgroup *memcg;
1243 struct page_cgroup *pc;
bea8c150 1244 struct lruvec *lruvec;
6d12e2d8 1245
bea8c150
HD
1246 if (mem_cgroup_disabled()) {
1247 lruvec = &zone->lruvec;
1248 goto out;
1249 }
925b7673 1250
08e552c6 1251 pc = lookup_page_cgroup(page);
38c5d72f 1252 memcg = pc->mem_cgroup;
7512102c
HD
1253
1254 /*
fa9add64 1255 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1256 * an uncharged page off lru does nothing to secure
1257 * its former mem_cgroup from sudden removal.
1258 *
1259 * Our caller holds lru_lock, and PageCgroupUsed is updated
1260 * under page_cgroup lock: between them, they make all uses
1261 * of pc->mem_cgroup safe.
1262 */
fa9add64 1263 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1264 pc->mem_cgroup = memcg = root_mem_cgroup;
1265
925b7673 1266 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1267 lruvec = &mz->lruvec;
1268out:
1269 /*
1270 * Since a node can be onlined after the mem_cgroup was created,
1271 * we have to be prepared to initialize lruvec->zone here;
1272 * and if offlined then reonlined, we need to reinitialize it.
1273 */
1274 if (unlikely(lruvec->zone != zone))
1275 lruvec->zone = zone;
1276 return lruvec;
08e552c6 1277}
b69408e8 1278
925b7673 1279/**
fa9add64
HD
1280 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1281 * @lruvec: mem_cgroup per zone lru vector
1282 * @lru: index of lru list the page is sitting on
1283 * @nr_pages: positive when adding or negative when removing
925b7673 1284 *
fa9add64
HD
1285 * This function must be called when a page is added to or removed from an
1286 * lru list.
3f58a829 1287 */
fa9add64
HD
1288void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1289 int nr_pages)
3f58a829
MK
1290{
1291 struct mem_cgroup_per_zone *mz;
fa9add64 1292 unsigned long *lru_size;
3f58a829
MK
1293
1294 if (mem_cgroup_disabled())
1295 return;
1296
fa9add64
HD
1297 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1298 lru_size = mz->lru_size + lru;
1299 *lru_size += nr_pages;
1300 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1301}
544122e5 1302
3e92041d 1303/*
c0ff4b85 1304 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1305 * hierarchy subtree
1306 */
c3ac9a8a
JW
1307bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1308 struct mem_cgroup *memcg)
3e92041d 1309{
91c63734
JW
1310 if (root_memcg == memcg)
1311 return true;
3a981f48 1312 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1313 return false;
c3ac9a8a
JW
1314 return css_is_ancestor(&memcg->css, &root_memcg->css);
1315}
1316
1317static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1318 struct mem_cgroup *memcg)
1319{
1320 bool ret;
1321
91c63734 1322 rcu_read_lock();
c3ac9a8a 1323 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1324 rcu_read_unlock();
1325 return ret;
3e92041d
MH
1326}
1327
c0ff4b85 1328int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1329{
1330 int ret;
0b7f569e 1331 struct mem_cgroup *curr = NULL;
158e0a2d 1332 struct task_struct *p;
4c4a2214 1333
158e0a2d 1334 p = find_lock_task_mm(task);
de077d22
DR
1335 if (p) {
1336 curr = try_get_mem_cgroup_from_mm(p->mm);
1337 task_unlock(p);
1338 } else {
1339 /*
1340 * All threads may have already detached their mm's, but the oom
1341 * killer still needs to detect if they have already been oom
1342 * killed to prevent needlessly killing additional tasks.
1343 */
1344 task_lock(task);
1345 curr = mem_cgroup_from_task(task);
1346 if (curr)
1347 css_get(&curr->css);
1348 task_unlock(task);
1349 }
0b7f569e
KH
1350 if (!curr)
1351 return 0;
d31f56db 1352 /*
c0ff4b85 1353 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1354 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1355 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1356 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1357 */
c0ff4b85 1358 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1359 css_put(&curr->css);
4c4a2214
DR
1360 return ret;
1361}
1362
c56d5c7d 1363int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1364{
9b272977 1365 unsigned long inactive_ratio;
14797e23 1366 unsigned long inactive;
9b272977 1367 unsigned long active;
c772be93 1368 unsigned long gb;
14797e23 1369
4d7dcca2
HD
1370 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1371 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1372
c772be93
KM
1373 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1374 if (gb)
1375 inactive_ratio = int_sqrt(10 * gb);
1376 else
1377 inactive_ratio = 1;
1378
9b272977 1379 return inactive * inactive_ratio < active;
14797e23
KM
1380}
1381
c56d5c7d 1382int mem_cgroup_inactive_file_is_low(struct lruvec *lruvec)
56e49d21
RR
1383{
1384 unsigned long active;
1385 unsigned long inactive;
1386
4d7dcca2
HD
1387 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_FILE);
1388 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_FILE);
56e49d21
RR
1389
1390 return (active > inactive);
1391}
1392
6d61ef40
BS
1393#define mem_cgroup_from_res_counter(counter, member) \
1394 container_of(counter, struct mem_cgroup, member)
1395
19942822 1396/**
9d11ea9f 1397 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1398 * @memcg: the memory cgroup
19942822 1399 *
9d11ea9f 1400 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1401 * pages.
19942822 1402 */
c0ff4b85 1403static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1404{
9d11ea9f
JW
1405 unsigned long long margin;
1406
c0ff4b85 1407 margin = res_counter_margin(&memcg->res);
9d11ea9f 1408 if (do_swap_account)
c0ff4b85 1409 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1410 return margin >> PAGE_SHIFT;
19942822
JW
1411}
1412
1f4c025b 1413int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1414{
1415 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1416
1417 /* root ? */
1418 if (cgrp->parent == NULL)
1419 return vm_swappiness;
1420
bf1ff263 1421 return memcg->swappiness;
a7885eb8
KM
1422}
1423
619d094b
KH
1424/*
1425 * memcg->moving_account is used for checking possibility that some thread is
1426 * calling move_account(). When a thread on CPU-A starts moving pages under
1427 * a memcg, other threads should check memcg->moving_account under
1428 * rcu_read_lock(), like this:
1429 *
1430 * CPU-A CPU-B
1431 * rcu_read_lock()
1432 * memcg->moving_account+1 if (memcg->mocing_account)
1433 * take heavy locks.
1434 * synchronize_rcu() update something.
1435 * rcu_read_unlock()
1436 * start move here.
1437 */
4331f7d3
KH
1438
1439/* for quick checking without looking up memcg */
1440atomic_t memcg_moving __read_mostly;
1441
c0ff4b85 1442static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1443{
4331f7d3 1444 atomic_inc(&memcg_moving);
619d094b 1445 atomic_inc(&memcg->moving_account);
32047e2a
KH
1446 synchronize_rcu();
1447}
1448
c0ff4b85 1449static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1450{
619d094b
KH
1451 /*
1452 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1453 * We check NULL in callee rather than caller.
1454 */
4331f7d3
KH
1455 if (memcg) {
1456 atomic_dec(&memcg_moving);
619d094b 1457 atomic_dec(&memcg->moving_account);
4331f7d3 1458 }
32047e2a 1459}
619d094b 1460
32047e2a
KH
1461/*
1462 * 2 routines for checking "mem" is under move_account() or not.
1463 *
13fd1dd9
AM
1464 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1465 * is used for avoiding races in accounting. If true,
32047e2a
KH
1466 * pc->mem_cgroup may be overwritten.
1467 *
1468 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1469 * under hierarchy of moving cgroups. This is for
1470 * waiting at hith-memory prressure caused by "move".
1471 */
1472
13fd1dd9 1473static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1474{
1475 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1476 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1477}
4b534334 1478
c0ff4b85 1479static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1480{
2bd9bb20
KH
1481 struct mem_cgroup *from;
1482 struct mem_cgroup *to;
4b534334 1483 bool ret = false;
2bd9bb20
KH
1484 /*
1485 * Unlike task_move routines, we access mc.to, mc.from not under
1486 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1487 */
1488 spin_lock(&mc.lock);
1489 from = mc.from;
1490 to = mc.to;
1491 if (!from)
1492 goto unlock;
3e92041d 1493
c0ff4b85
R
1494 ret = mem_cgroup_same_or_subtree(memcg, from)
1495 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1496unlock:
1497 spin_unlock(&mc.lock);
4b534334
KH
1498 return ret;
1499}
1500
c0ff4b85 1501static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1502{
1503 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1504 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1505 DEFINE_WAIT(wait);
1506 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1507 /* moving charge context might have finished. */
1508 if (mc.moving_task)
1509 schedule();
1510 finish_wait(&mc.waitq, &wait);
1511 return true;
1512 }
1513 }
1514 return false;
1515}
1516
312734c0
KH
1517/*
1518 * Take this lock when
1519 * - a code tries to modify page's memcg while it's USED.
1520 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1521 * see mem_cgroup_stolen(), too.
312734c0
KH
1522 */
1523static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1524 unsigned long *flags)
1525{
1526 spin_lock_irqsave(&memcg->move_lock, *flags);
1527}
1528
1529static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1530 unsigned long *flags)
1531{
1532 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1533}
1534
58cf188e 1535#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1536/**
58cf188e 1537 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1538 * @memcg: The memory cgroup that went over limit
1539 * @p: Task that is going to be killed
1540 *
1541 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1542 * enabled
1543 */
1544void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1545{
1546 struct cgroup *task_cgrp;
1547 struct cgroup *mem_cgrp;
1548 /*
1549 * Need a buffer in BSS, can't rely on allocations. The code relies
1550 * on the assumption that OOM is serialized for memory controller.
1551 * If this assumption is broken, revisit this code.
1552 */
1553 static char memcg_name[PATH_MAX];
1554 int ret;
58cf188e
SZ
1555 struct mem_cgroup *iter;
1556 unsigned int i;
e222432b 1557
58cf188e 1558 if (!p)
e222432b
BS
1559 return;
1560
e222432b
BS
1561 rcu_read_lock();
1562
1563 mem_cgrp = memcg->css.cgroup;
1564 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1565
1566 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1567 if (ret < 0) {
1568 /*
1569 * Unfortunately, we are unable to convert to a useful name
1570 * But we'll still print out the usage information
1571 */
1572 rcu_read_unlock();
1573 goto done;
1574 }
1575 rcu_read_unlock();
1576
1577 printk(KERN_INFO "Task in %s killed", memcg_name);
1578
1579 rcu_read_lock();
1580 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1581 if (ret < 0) {
1582 rcu_read_unlock();
1583 goto done;
1584 }
1585 rcu_read_unlock();
1586
1587 /*
1588 * Continues from above, so we don't need an KERN_ level
1589 */
1590 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1591done:
1592
1593 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1594 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1595 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1596 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1597 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1598 "failcnt %llu\n",
1599 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1600 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1601 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
510fc4e1
GC
1602 printk(KERN_INFO "kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1603 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1604 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1605 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1606
1607 for_each_mem_cgroup_tree(iter, memcg) {
1608 pr_info("Memory cgroup stats");
1609
1610 rcu_read_lock();
1611 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1612 if (!ret)
1613 pr_cont(" for %s", memcg_name);
1614 rcu_read_unlock();
1615 pr_cont(":");
1616
1617 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1618 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1619 continue;
1620 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1621 K(mem_cgroup_read_stat(iter, i)));
1622 }
1623
1624 for (i = 0; i < NR_LRU_LISTS; i++)
1625 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1626 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1627
1628 pr_cont("\n");
1629 }
e222432b
BS
1630}
1631
81d39c20
KH
1632/*
1633 * This function returns the number of memcg under hierarchy tree. Returns
1634 * 1(self count) if no children.
1635 */
c0ff4b85 1636static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1637{
1638 int num = 0;
7d74b06f
KH
1639 struct mem_cgroup *iter;
1640
c0ff4b85 1641 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1642 num++;
81d39c20
KH
1643 return num;
1644}
1645
a63d83f4
DR
1646/*
1647 * Return the memory (and swap, if configured) limit for a memcg.
1648 */
9cbb78bb 1649static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1650{
1651 u64 limit;
a63d83f4 1652
f3e8eb70 1653 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1654
a63d83f4 1655 /*
9a5a8f19 1656 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1657 */
9a5a8f19
MH
1658 if (mem_cgroup_swappiness(memcg)) {
1659 u64 memsw;
1660
1661 limit += total_swap_pages << PAGE_SHIFT;
1662 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1663
1664 /*
1665 * If memsw is finite and limits the amount of swap space
1666 * available to this memcg, return that limit.
1667 */
1668 limit = min(limit, memsw);
1669 }
1670
1671 return limit;
a63d83f4
DR
1672}
1673
19965460
DR
1674static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1675 int order)
9cbb78bb
DR
1676{
1677 struct mem_cgroup *iter;
1678 unsigned long chosen_points = 0;
1679 unsigned long totalpages;
1680 unsigned int points = 0;
1681 struct task_struct *chosen = NULL;
1682
876aafbf
DR
1683 /*
1684 * If current has a pending SIGKILL, then automatically select it. The
1685 * goal is to allow it to allocate so that it may quickly exit and free
1686 * its memory.
1687 */
1688 if (fatal_signal_pending(current)) {
1689 set_thread_flag(TIF_MEMDIE);
1690 return;
1691 }
1692
1693 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1694 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1695 for_each_mem_cgroup_tree(iter, memcg) {
1696 struct cgroup *cgroup = iter->css.cgroup;
1697 struct cgroup_iter it;
1698 struct task_struct *task;
1699
1700 cgroup_iter_start(cgroup, &it);
1701 while ((task = cgroup_iter_next(cgroup, &it))) {
1702 switch (oom_scan_process_thread(task, totalpages, NULL,
1703 false)) {
1704 case OOM_SCAN_SELECT:
1705 if (chosen)
1706 put_task_struct(chosen);
1707 chosen = task;
1708 chosen_points = ULONG_MAX;
1709 get_task_struct(chosen);
1710 /* fall through */
1711 case OOM_SCAN_CONTINUE:
1712 continue;
1713 case OOM_SCAN_ABORT:
1714 cgroup_iter_end(cgroup, &it);
1715 mem_cgroup_iter_break(memcg, iter);
1716 if (chosen)
1717 put_task_struct(chosen);
1718 return;
1719 case OOM_SCAN_OK:
1720 break;
1721 };
1722 points = oom_badness(task, memcg, NULL, totalpages);
1723 if (points > chosen_points) {
1724 if (chosen)
1725 put_task_struct(chosen);
1726 chosen = task;
1727 chosen_points = points;
1728 get_task_struct(chosen);
1729 }
1730 }
1731 cgroup_iter_end(cgroup, &it);
1732 }
1733
1734 if (!chosen)
1735 return;
1736 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1737 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1738 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1739}
1740
5660048c
JW
1741static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1742 gfp_t gfp_mask,
1743 unsigned long flags)
1744{
1745 unsigned long total = 0;
1746 bool noswap = false;
1747 int loop;
1748
1749 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1750 noswap = true;
1751 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1752 noswap = true;
1753
1754 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1755 if (loop)
1756 drain_all_stock_async(memcg);
1757 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1758 /*
1759 * Allow limit shrinkers, which are triggered directly
1760 * by userspace, to catch signals and stop reclaim
1761 * after minimal progress, regardless of the margin.
1762 */
1763 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1764 break;
1765 if (mem_cgroup_margin(memcg))
1766 break;
1767 /*
1768 * If nothing was reclaimed after two attempts, there
1769 * may be no reclaimable pages in this hierarchy.
1770 */
1771 if (loop && !total)
1772 break;
1773 }
1774 return total;
1775}
1776
4d0c066d
KH
1777/**
1778 * test_mem_cgroup_node_reclaimable
dad7557e 1779 * @memcg: the target memcg
4d0c066d
KH
1780 * @nid: the node ID to be checked.
1781 * @noswap : specify true here if the user wants flle only information.
1782 *
1783 * This function returns whether the specified memcg contains any
1784 * reclaimable pages on a node. Returns true if there are any reclaimable
1785 * pages in the node.
1786 */
c0ff4b85 1787static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1788 int nid, bool noswap)
1789{
c0ff4b85 1790 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1791 return true;
1792 if (noswap || !total_swap_pages)
1793 return false;
c0ff4b85 1794 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1795 return true;
1796 return false;
1797
1798}
889976db
YH
1799#if MAX_NUMNODES > 1
1800
1801/*
1802 * Always updating the nodemask is not very good - even if we have an empty
1803 * list or the wrong list here, we can start from some node and traverse all
1804 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1805 *
1806 */
c0ff4b85 1807static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1808{
1809 int nid;
453a9bf3
KH
1810 /*
1811 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1812 * pagein/pageout changes since the last update.
1813 */
c0ff4b85 1814 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1815 return;
c0ff4b85 1816 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1817 return;
1818
889976db 1819 /* make a nodemask where this memcg uses memory from */
31aaea4a 1820 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1821
31aaea4a 1822 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1823
c0ff4b85
R
1824 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1825 node_clear(nid, memcg->scan_nodes);
889976db 1826 }
453a9bf3 1827
c0ff4b85
R
1828 atomic_set(&memcg->numainfo_events, 0);
1829 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1830}
1831
1832/*
1833 * Selecting a node where we start reclaim from. Because what we need is just
1834 * reducing usage counter, start from anywhere is O,K. Considering
1835 * memory reclaim from current node, there are pros. and cons.
1836 *
1837 * Freeing memory from current node means freeing memory from a node which
1838 * we'll use or we've used. So, it may make LRU bad. And if several threads
1839 * hit limits, it will see a contention on a node. But freeing from remote
1840 * node means more costs for memory reclaim because of memory latency.
1841 *
1842 * Now, we use round-robin. Better algorithm is welcomed.
1843 */
c0ff4b85 1844int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1845{
1846 int node;
1847
c0ff4b85
R
1848 mem_cgroup_may_update_nodemask(memcg);
1849 node = memcg->last_scanned_node;
889976db 1850
c0ff4b85 1851 node = next_node(node, memcg->scan_nodes);
889976db 1852 if (node == MAX_NUMNODES)
c0ff4b85 1853 node = first_node(memcg->scan_nodes);
889976db
YH
1854 /*
1855 * We call this when we hit limit, not when pages are added to LRU.
1856 * No LRU may hold pages because all pages are UNEVICTABLE or
1857 * memcg is too small and all pages are not on LRU. In that case,
1858 * we use curret node.
1859 */
1860 if (unlikely(node == MAX_NUMNODES))
1861 node = numa_node_id();
1862
c0ff4b85 1863 memcg->last_scanned_node = node;
889976db
YH
1864 return node;
1865}
1866
4d0c066d
KH
1867/*
1868 * Check all nodes whether it contains reclaimable pages or not.
1869 * For quick scan, we make use of scan_nodes. This will allow us to skip
1870 * unused nodes. But scan_nodes is lazily updated and may not cotain
1871 * enough new information. We need to do double check.
1872 */
6bbda35c 1873static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1874{
1875 int nid;
1876
1877 /*
1878 * quick check...making use of scan_node.
1879 * We can skip unused nodes.
1880 */
c0ff4b85
R
1881 if (!nodes_empty(memcg->scan_nodes)) {
1882 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1883 nid < MAX_NUMNODES;
c0ff4b85 1884 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1885
c0ff4b85 1886 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1887 return true;
1888 }
1889 }
1890 /*
1891 * Check rest of nodes.
1892 */
31aaea4a 1893 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 1894 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 1895 continue;
c0ff4b85 1896 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1897 return true;
1898 }
1899 return false;
1900}
1901
889976db 1902#else
c0ff4b85 1903int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1904{
1905 return 0;
1906}
4d0c066d 1907
6bbda35c 1908static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 1909{
c0ff4b85 1910 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 1911}
889976db
YH
1912#endif
1913
5660048c
JW
1914static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1915 struct zone *zone,
1916 gfp_t gfp_mask,
1917 unsigned long *total_scanned)
6d61ef40 1918{
9f3a0d09 1919 struct mem_cgroup *victim = NULL;
5660048c 1920 int total = 0;
04046e1a 1921 int loop = 0;
9d11ea9f 1922 unsigned long excess;
185efc0f 1923 unsigned long nr_scanned;
527a5ec9
JW
1924 struct mem_cgroup_reclaim_cookie reclaim = {
1925 .zone = zone,
1926 .priority = 0,
1927 };
9d11ea9f 1928
c0ff4b85 1929 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 1930
4e416953 1931 while (1) {
527a5ec9 1932 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 1933 if (!victim) {
04046e1a 1934 loop++;
4e416953
BS
1935 if (loop >= 2) {
1936 /*
1937 * If we have not been able to reclaim
1938 * anything, it might because there are
1939 * no reclaimable pages under this hierarchy
1940 */
5660048c 1941 if (!total)
4e416953 1942 break;
4e416953 1943 /*
25985edc 1944 * We want to do more targeted reclaim.
4e416953
BS
1945 * excess >> 2 is not to excessive so as to
1946 * reclaim too much, nor too less that we keep
1947 * coming back to reclaim from this cgroup
1948 */
1949 if (total >= (excess >> 2) ||
9f3a0d09 1950 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 1951 break;
4e416953 1952 }
9f3a0d09 1953 continue;
4e416953 1954 }
5660048c 1955 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 1956 continue;
5660048c
JW
1957 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1958 zone, &nr_scanned);
1959 *total_scanned += nr_scanned;
1960 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 1961 break;
6d61ef40 1962 }
9f3a0d09 1963 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 1964 return total;
6d61ef40
BS
1965}
1966
867578cb
KH
1967/*
1968 * Check OOM-Killer is already running under our hierarchy.
1969 * If someone is running, return false.
1af8efe9 1970 * Has to be called with memcg_oom_lock
867578cb 1971 */
c0ff4b85 1972static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
867578cb 1973{
79dfdacc 1974 struct mem_cgroup *iter, *failed = NULL;
a636b327 1975
9f3a0d09 1976 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1977 if (iter->oom_lock) {
79dfdacc
MH
1978 /*
1979 * this subtree of our hierarchy is already locked
1980 * so we cannot give a lock.
1981 */
79dfdacc 1982 failed = iter;
9f3a0d09
JW
1983 mem_cgroup_iter_break(memcg, iter);
1984 break;
23751be0
JW
1985 } else
1986 iter->oom_lock = true;
7d74b06f 1987 }
867578cb 1988
79dfdacc 1989 if (!failed)
23751be0 1990 return true;
79dfdacc
MH
1991
1992 /*
1993 * OK, we failed to lock the whole subtree so we have to clean up
1994 * what we set up to the failing subtree
1995 */
9f3a0d09 1996 for_each_mem_cgroup_tree(iter, memcg) {
79dfdacc 1997 if (iter == failed) {
9f3a0d09
JW
1998 mem_cgroup_iter_break(memcg, iter);
1999 break;
79dfdacc
MH
2000 }
2001 iter->oom_lock = false;
2002 }
23751be0 2003 return false;
a636b327 2004}
0b7f569e 2005
79dfdacc 2006/*
1af8efe9 2007 * Has to be called with memcg_oom_lock
79dfdacc 2008 */
c0ff4b85 2009static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2010{
7d74b06f
KH
2011 struct mem_cgroup *iter;
2012
c0ff4b85 2013 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2014 iter->oom_lock = false;
2015 return 0;
2016}
2017
c0ff4b85 2018static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2019{
2020 struct mem_cgroup *iter;
2021
c0ff4b85 2022 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2023 atomic_inc(&iter->under_oom);
2024}
2025
c0ff4b85 2026static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2027{
2028 struct mem_cgroup *iter;
2029
867578cb
KH
2030 /*
2031 * When a new child is created while the hierarchy is under oom,
2032 * mem_cgroup_oom_lock() may not be called. We have to use
2033 * atomic_add_unless() here.
2034 */
c0ff4b85 2035 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2036 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2037}
2038
1af8efe9 2039static DEFINE_SPINLOCK(memcg_oom_lock);
867578cb
KH
2040static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2041
dc98df5a 2042struct oom_wait_info {
d79154bb 2043 struct mem_cgroup *memcg;
dc98df5a
KH
2044 wait_queue_t wait;
2045};
2046
2047static int memcg_oom_wake_function(wait_queue_t *wait,
2048 unsigned mode, int sync, void *arg)
2049{
d79154bb
HD
2050 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2051 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2052 struct oom_wait_info *oom_wait_info;
2053
2054 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2055 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2056
dc98df5a 2057 /*
d79154bb 2058 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2059 * Then we can use css_is_ancestor without taking care of RCU.
2060 */
c0ff4b85
R
2061 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2062 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2063 return 0;
dc98df5a
KH
2064 return autoremove_wake_function(wait, mode, sync, arg);
2065}
2066
c0ff4b85 2067static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2068{
c0ff4b85
R
2069 /* for filtering, pass "memcg" as argument. */
2070 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2071}
2072
c0ff4b85 2073static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2074{
c0ff4b85
R
2075 if (memcg && atomic_read(&memcg->under_oom))
2076 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2077}
2078
867578cb
KH
2079/*
2080 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
2081 */
6bbda35c
KS
2082static bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask,
2083 int order)
0b7f569e 2084{
dc98df5a 2085 struct oom_wait_info owait;
3c11ecf4 2086 bool locked, need_to_kill;
867578cb 2087
d79154bb 2088 owait.memcg = memcg;
dc98df5a
KH
2089 owait.wait.flags = 0;
2090 owait.wait.func = memcg_oom_wake_function;
2091 owait.wait.private = current;
2092 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 2093 need_to_kill = true;
c0ff4b85 2094 mem_cgroup_mark_under_oom(memcg);
79dfdacc 2095
c0ff4b85 2096 /* At first, try to OOM lock hierarchy under memcg.*/
1af8efe9 2097 spin_lock(&memcg_oom_lock);
c0ff4b85 2098 locked = mem_cgroup_oom_lock(memcg);
867578cb
KH
2099 /*
2100 * Even if signal_pending(), we can't quit charge() loop without
2101 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
2102 * under OOM is always welcomed, use TASK_KILLABLE here.
2103 */
3c11ecf4 2104 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
c0ff4b85 2105 if (!locked || memcg->oom_kill_disable)
3c11ecf4
KH
2106 need_to_kill = false;
2107 if (locked)
c0ff4b85 2108 mem_cgroup_oom_notify(memcg);
1af8efe9 2109 spin_unlock(&memcg_oom_lock);
867578cb 2110
3c11ecf4
KH
2111 if (need_to_kill) {
2112 finish_wait(&memcg_oom_waitq, &owait.wait);
e845e199 2113 mem_cgroup_out_of_memory(memcg, mask, order);
3c11ecf4 2114 } else {
867578cb 2115 schedule();
dc98df5a 2116 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 2117 }
1af8efe9 2118 spin_lock(&memcg_oom_lock);
79dfdacc 2119 if (locked)
c0ff4b85
R
2120 mem_cgroup_oom_unlock(memcg);
2121 memcg_wakeup_oom(memcg);
1af8efe9 2122 spin_unlock(&memcg_oom_lock);
867578cb 2123
c0ff4b85 2124 mem_cgroup_unmark_under_oom(memcg);
79dfdacc 2125
867578cb
KH
2126 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
2127 return false;
2128 /* Give chance to dying process */
715a5ee8 2129 schedule_timeout_uninterruptible(1);
867578cb 2130 return true;
0b7f569e
KH
2131}
2132
d69b042f
BS
2133/*
2134 * Currently used to update mapped file statistics, but the routine can be
2135 * generalized to update other statistics as well.
32047e2a
KH
2136 *
2137 * Notes: Race condition
2138 *
2139 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2140 * it tends to be costly. But considering some conditions, we doesn't need
2141 * to do so _always_.
2142 *
2143 * Considering "charge", lock_page_cgroup() is not required because all
2144 * file-stat operations happen after a page is attached to radix-tree. There
2145 * are no race with "charge".
2146 *
2147 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2148 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2149 * if there are race with "uncharge". Statistics itself is properly handled
2150 * by flags.
2151 *
2152 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2153 * small, we check mm->moving_account and detect there are possibility of race
2154 * If there is, we take a lock.
d69b042f 2155 */
26174efd 2156
89c06bd5
KH
2157void __mem_cgroup_begin_update_page_stat(struct page *page,
2158 bool *locked, unsigned long *flags)
2159{
2160 struct mem_cgroup *memcg;
2161 struct page_cgroup *pc;
2162
2163 pc = lookup_page_cgroup(page);
2164again:
2165 memcg = pc->mem_cgroup;
2166 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2167 return;
2168 /*
2169 * If this memory cgroup is not under account moving, we don't
da92c47d 2170 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2171 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2172 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2173 */
13fd1dd9 2174 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2175 return;
2176
2177 move_lock_mem_cgroup(memcg, flags);
2178 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2179 move_unlock_mem_cgroup(memcg, flags);
2180 goto again;
2181 }
2182 *locked = true;
2183}
2184
2185void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2186{
2187 struct page_cgroup *pc = lookup_page_cgroup(page);
2188
2189 /*
2190 * It's guaranteed that pc->mem_cgroup never changes while
2191 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2192 * should take move_lock_mem_cgroup().
89c06bd5
KH
2193 */
2194 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2195}
2196
2a7106f2
GT
2197void mem_cgroup_update_page_stat(struct page *page,
2198 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2199{
c0ff4b85 2200 struct mem_cgroup *memcg;
32047e2a 2201 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2202 unsigned long uninitialized_var(flags);
d69b042f 2203
cfa44946 2204 if (mem_cgroup_disabled())
d69b042f 2205 return;
89c06bd5 2206
c0ff4b85
R
2207 memcg = pc->mem_cgroup;
2208 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2209 return;
26174efd 2210
26174efd 2211 switch (idx) {
2a7106f2 2212 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2213 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2214 break;
2215 default:
2216 BUG();
8725d541 2217 }
d69b042f 2218
c0ff4b85 2219 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2220}
26174efd 2221
cdec2e42
KH
2222/*
2223 * size of first charge trial. "32" comes from vmscan.c's magic value.
2224 * TODO: maybe necessary to use big numbers in big irons.
2225 */
7ec99d62 2226#define CHARGE_BATCH 32U
cdec2e42
KH
2227struct memcg_stock_pcp {
2228 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2229 unsigned int nr_pages;
cdec2e42 2230 struct work_struct work;
26fe6168 2231 unsigned long flags;
a0db00fc 2232#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2233};
2234static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2235static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2236
a0956d54
SS
2237/**
2238 * consume_stock: Try to consume stocked charge on this cpu.
2239 * @memcg: memcg to consume from.
2240 * @nr_pages: how many pages to charge.
2241 *
2242 * The charges will only happen if @memcg matches the current cpu's memcg
2243 * stock, and at least @nr_pages are available in that stock. Failure to
2244 * service an allocation will refill the stock.
2245 *
2246 * returns true if successful, false otherwise.
cdec2e42 2247 */
a0956d54 2248static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2249{
2250 struct memcg_stock_pcp *stock;
2251 bool ret = true;
2252
a0956d54
SS
2253 if (nr_pages > CHARGE_BATCH)
2254 return false;
2255
cdec2e42 2256 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2257 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2258 stock->nr_pages -= nr_pages;
cdec2e42
KH
2259 else /* need to call res_counter_charge */
2260 ret = false;
2261 put_cpu_var(memcg_stock);
2262 return ret;
2263}
2264
2265/*
2266 * Returns stocks cached in percpu to res_counter and reset cached information.
2267 */
2268static void drain_stock(struct memcg_stock_pcp *stock)
2269{
2270 struct mem_cgroup *old = stock->cached;
2271
11c9ea4e
JW
2272 if (stock->nr_pages) {
2273 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2274
2275 res_counter_uncharge(&old->res, bytes);
cdec2e42 2276 if (do_swap_account)
11c9ea4e
JW
2277 res_counter_uncharge(&old->memsw, bytes);
2278 stock->nr_pages = 0;
cdec2e42
KH
2279 }
2280 stock->cached = NULL;
cdec2e42
KH
2281}
2282
2283/*
2284 * This must be called under preempt disabled or must be called by
2285 * a thread which is pinned to local cpu.
2286 */
2287static void drain_local_stock(struct work_struct *dummy)
2288{
2289 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2290 drain_stock(stock);
26fe6168 2291 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2292}
2293
2294/*
2295 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2296 * This will be consumed by consume_stock() function, later.
cdec2e42 2297 */
c0ff4b85 2298static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2299{
2300 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2301
c0ff4b85 2302 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2303 drain_stock(stock);
c0ff4b85 2304 stock->cached = memcg;
cdec2e42 2305 }
11c9ea4e 2306 stock->nr_pages += nr_pages;
cdec2e42
KH
2307 put_cpu_var(memcg_stock);
2308}
2309
2310/*
c0ff4b85 2311 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2312 * of the hierarchy under it. sync flag says whether we should block
2313 * until the work is done.
cdec2e42 2314 */
c0ff4b85 2315static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2316{
26fe6168 2317 int cpu, curcpu;
d38144b7 2318
cdec2e42 2319 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2320 get_online_cpus();
5af12d0e 2321 curcpu = get_cpu();
cdec2e42
KH
2322 for_each_online_cpu(cpu) {
2323 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2324 struct mem_cgroup *memcg;
26fe6168 2325
c0ff4b85
R
2326 memcg = stock->cached;
2327 if (!memcg || !stock->nr_pages)
26fe6168 2328 continue;
c0ff4b85 2329 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2330 continue;
d1a05b69
MH
2331 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2332 if (cpu == curcpu)
2333 drain_local_stock(&stock->work);
2334 else
2335 schedule_work_on(cpu, &stock->work);
2336 }
cdec2e42 2337 }
5af12d0e 2338 put_cpu();
d38144b7
MH
2339
2340 if (!sync)
2341 goto out;
2342
2343 for_each_online_cpu(cpu) {
2344 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2345 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2346 flush_work(&stock->work);
2347 }
2348out:
cdec2e42 2349 put_online_cpus();
d38144b7
MH
2350}
2351
2352/*
2353 * Tries to drain stocked charges in other cpus. This function is asynchronous
2354 * and just put a work per cpu for draining localy on each cpu. Caller can
2355 * expects some charges will be back to res_counter later but cannot wait for
2356 * it.
2357 */
c0ff4b85 2358static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2359{
9f50fad6
MH
2360 /*
2361 * If someone calls draining, avoid adding more kworker runs.
2362 */
2363 if (!mutex_trylock(&percpu_charge_mutex))
2364 return;
c0ff4b85 2365 drain_all_stock(root_memcg, false);
9f50fad6 2366 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2367}
2368
2369/* This is a synchronous drain interface. */
c0ff4b85 2370static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2371{
2372 /* called when force_empty is called */
9f50fad6 2373 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2374 drain_all_stock(root_memcg, true);
9f50fad6 2375 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2376}
2377
711d3d2c
KH
2378/*
2379 * This function drains percpu counter value from DEAD cpu and
2380 * move it to local cpu. Note that this function can be preempted.
2381 */
c0ff4b85 2382static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2383{
2384 int i;
2385
c0ff4b85 2386 spin_lock(&memcg->pcp_counter_lock);
6104621d 2387 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2388 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2389
c0ff4b85
R
2390 per_cpu(memcg->stat->count[i], cpu) = 0;
2391 memcg->nocpu_base.count[i] += x;
711d3d2c 2392 }
e9f8974f 2393 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2394 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2395
c0ff4b85
R
2396 per_cpu(memcg->stat->events[i], cpu) = 0;
2397 memcg->nocpu_base.events[i] += x;
e9f8974f 2398 }
c0ff4b85 2399 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2400}
2401
2402static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2403 unsigned long action,
2404 void *hcpu)
2405{
2406 int cpu = (unsigned long)hcpu;
2407 struct memcg_stock_pcp *stock;
711d3d2c 2408 struct mem_cgroup *iter;
cdec2e42 2409
619d094b 2410 if (action == CPU_ONLINE)
1489ebad 2411 return NOTIFY_OK;
1489ebad 2412
d833049b 2413 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2414 return NOTIFY_OK;
711d3d2c 2415
9f3a0d09 2416 for_each_mem_cgroup(iter)
711d3d2c
KH
2417 mem_cgroup_drain_pcp_counter(iter, cpu);
2418
cdec2e42
KH
2419 stock = &per_cpu(memcg_stock, cpu);
2420 drain_stock(stock);
2421 return NOTIFY_OK;
2422}
2423
4b534334
KH
2424
2425/* See __mem_cgroup_try_charge() for details */
2426enum {
2427 CHARGE_OK, /* success */
2428 CHARGE_RETRY, /* need to retry but retry is not bad */
2429 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2430 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2431 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2432};
2433
c0ff4b85 2434static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359
SS
2435 unsigned int nr_pages, unsigned int min_pages,
2436 bool oom_check)
4b534334 2437{
7ec99d62 2438 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2439 struct mem_cgroup *mem_over_limit;
2440 struct res_counter *fail_res;
2441 unsigned long flags = 0;
2442 int ret;
2443
c0ff4b85 2444 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2445
2446 if (likely(!ret)) {
2447 if (!do_swap_account)
2448 return CHARGE_OK;
c0ff4b85 2449 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2450 if (likely(!ret))
2451 return CHARGE_OK;
2452
c0ff4b85 2453 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2454 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2455 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2456 } else
2457 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2458 /*
9221edb7
JW
2459 * Never reclaim on behalf of optional batching, retry with a
2460 * single page instead.
2461 */
4c9c5359 2462 if (nr_pages > min_pages)
4b534334
KH
2463 return CHARGE_RETRY;
2464
2465 if (!(gfp_mask & __GFP_WAIT))
2466 return CHARGE_WOULDBLOCK;
2467
4c9c5359
SS
2468 if (gfp_mask & __GFP_NORETRY)
2469 return CHARGE_NOMEM;
2470
5660048c 2471 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2472 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2473 return CHARGE_RETRY;
4b534334 2474 /*
19942822
JW
2475 * Even though the limit is exceeded at this point, reclaim
2476 * may have been able to free some pages. Retry the charge
2477 * before killing the task.
2478 *
2479 * Only for regular pages, though: huge pages are rather
2480 * unlikely to succeed so close to the limit, and we fall back
2481 * to regular pages anyway in case of failure.
4b534334 2482 */
4c9c5359 2483 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2484 return CHARGE_RETRY;
2485
2486 /*
2487 * At task move, charge accounts can be doubly counted. So, it's
2488 * better to wait until the end of task_move if something is going on.
2489 */
2490 if (mem_cgroup_wait_acct_move(mem_over_limit))
2491 return CHARGE_RETRY;
2492
2493 /* If we don't need to call oom-killer at el, return immediately */
2494 if (!oom_check)
2495 return CHARGE_NOMEM;
2496 /* check OOM */
e845e199 2497 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
4b534334
KH
2498 return CHARGE_OOM_DIE;
2499
2500 return CHARGE_RETRY;
2501}
2502
f817ed48 2503/*
38c5d72f
KH
2504 * __mem_cgroup_try_charge() does
2505 * 1. detect memcg to be charged against from passed *mm and *ptr,
2506 * 2. update res_counter
2507 * 3. call memory reclaim if necessary.
2508 *
2509 * In some special case, if the task is fatal, fatal_signal_pending() or
2510 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2511 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2512 * as possible without any hazards. 2: all pages should have a valid
2513 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2514 * pointer, that is treated as a charge to root_mem_cgroup.
2515 *
2516 * So __mem_cgroup_try_charge() will return
2517 * 0 ... on success, filling *ptr with a valid memcg pointer.
2518 * -ENOMEM ... charge failure because of resource limits.
2519 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2520 *
2521 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2522 * the oom-killer can be invoked.
8a9f3ccd 2523 */
f817ed48 2524static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2525 gfp_t gfp_mask,
7ec99d62 2526 unsigned int nr_pages,
c0ff4b85 2527 struct mem_cgroup **ptr,
7ec99d62 2528 bool oom)
8a9f3ccd 2529{
7ec99d62 2530 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2531 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2532 struct mem_cgroup *memcg = NULL;
4b534334 2533 int ret;
a636b327 2534
867578cb
KH
2535 /*
2536 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2537 * in system level. So, allow to go ahead dying process in addition to
2538 * MEMDIE process.
2539 */
2540 if (unlikely(test_thread_flag(TIF_MEMDIE)
2541 || fatal_signal_pending(current)))
2542 goto bypass;
a636b327 2543
8a9f3ccd 2544 /*
3be91277
HD
2545 * We always charge the cgroup the mm_struct belongs to.
2546 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2547 * thread group leader migrates. It's possible that mm is not
24467cac 2548 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2549 */
c0ff4b85 2550 if (!*ptr && !mm)
38c5d72f 2551 *ptr = root_mem_cgroup;
f75ca962 2552again:
c0ff4b85
R
2553 if (*ptr) { /* css should be a valid one */
2554 memcg = *ptr;
c0ff4b85 2555 if (mem_cgroup_is_root(memcg))
f75ca962 2556 goto done;
a0956d54 2557 if (consume_stock(memcg, nr_pages))
f75ca962 2558 goto done;
c0ff4b85 2559 css_get(&memcg->css);
4b534334 2560 } else {
f75ca962 2561 struct task_struct *p;
54595fe2 2562
f75ca962
KH
2563 rcu_read_lock();
2564 p = rcu_dereference(mm->owner);
f75ca962 2565 /*
ebb76ce1 2566 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2567 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2568 * race with swapoff. Then, we have small risk of mis-accouning.
2569 * But such kind of mis-account by race always happens because
2570 * we don't have cgroup_mutex(). It's overkill and we allo that
2571 * small race, here.
2572 * (*) swapoff at el will charge against mm-struct not against
2573 * task-struct. So, mm->owner can be NULL.
f75ca962 2574 */
c0ff4b85 2575 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2576 if (!memcg)
2577 memcg = root_mem_cgroup;
2578 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2579 rcu_read_unlock();
2580 goto done;
2581 }
a0956d54 2582 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2583 /*
2584 * It seems dagerous to access memcg without css_get().
2585 * But considering how consume_stok works, it's not
2586 * necessary. If consume_stock success, some charges
2587 * from this memcg are cached on this cpu. So, we
2588 * don't need to call css_get()/css_tryget() before
2589 * calling consume_stock().
2590 */
2591 rcu_read_unlock();
2592 goto done;
2593 }
2594 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2595 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2596 rcu_read_unlock();
2597 goto again;
2598 }
2599 rcu_read_unlock();
2600 }
8a9f3ccd 2601
4b534334
KH
2602 do {
2603 bool oom_check;
7a81b88c 2604
4b534334 2605 /* If killed, bypass charge */
f75ca962 2606 if (fatal_signal_pending(current)) {
c0ff4b85 2607 css_put(&memcg->css);
4b534334 2608 goto bypass;
f75ca962 2609 }
6d61ef40 2610
4b534334
KH
2611 oom_check = false;
2612 if (oom && !nr_oom_retries) {
2613 oom_check = true;
2614 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2615 }
66e1707b 2616
4c9c5359
SS
2617 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, nr_pages,
2618 oom_check);
4b534334
KH
2619 switch (ret) {
2620 case CHARGE_OK:
2621 break;
2622 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2623 batch = nr_pages;
c0ff4b85
R
2624 css_put(&memcg->css);
2625 memcg = NULL;
f75ca962 2626 goto again;
4b534334 2627 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2628 css_put(&memcg->css);
4b534334
KH
2629 goto nomem;
2630 case CHARGE_NOMEM: /* OOM routine works */
f75ca962 2631 if (!oom) {
c0ff4b85 2632 css_put(&memcg->css);
867578cb 2633 goto nomem;
f75ca962 2634 }
4b534334
KH
2635 /* If oom, we never return -ENOMEM */
2636 nr_oom_retries--;
2637 break;
2638 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
c0ff4b85 2639 css_put(&memcg->css);
867578cb 2640 goto bypass;
66e1707b 2641 }
4b534334
KH
2642 } while (ret != CHARGE_OK);
2643
7ec99d62 2644 if (batch > nr_pages)
c0ff4b85
R
2645 refill_stock(memcg, batch - nr_pages);
2646 css_put(&memcg->css);
0c3e73e8 2647done:
c0ff4b85 2648 *ptr = memcg;
7a81b88c
KH
2649 return 0;
2650nomem:
c0ff4b85 2651 *ptr = NULL;
7a81b88c 2652 return -ENOMEM;
867578cb 2653bypass:
38c5d72f
KH
2654 *ptr = root_mem_cgroup;
2655 return -EINTR;
7a81b88c 2656}
8a9f3ccd 2657
a3032a2c
DN
2658/*
2659 * Somemtimes we have to undo a charge we got by try_charge().
2660 * This function is for that and do uncharge, put css's refcnt.
2661 * gotten by try_charge().
2662 */
c0ff4b85 2663static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2664 unsigned int nr_pages)
a3032a2c 2665{
c0ff4b85 2666 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2667 unsigned long bytes = nr_pages * PAGE_SIZE;
2668
c0ff4b85 2669 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2670 if (do_swap_account)
c0ff4b85 2671 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2672 }
854ffa8d
DN
2673}
2674
d01dd17f
KH
2675/*
2676 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2677 * This is useful when moving usage to parent cgroup.
2678 */
2679static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2680 unsigned int nr_pages)
2681{
2682 unsigned long bytes = nr_pages * PAGE_SIZE;
2683
2684 if (mem_cgroup_is_root(memcg))
2685 return;
2686
2687 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2688 if (do_swap_account)
2689 res_counter_uncharge_until(&memcg->memsw,
2690 memcg->memsw.parent, bytes);
2691}
2692
a3b2d692
KH
2693/*
2694 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2695 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2696 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2697 * called against removed memcg.)
a3b2d692
KH
2698 */
2699static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2700{
2701 struct cgroup_subsys_state *css;
2702
2703 /* ID 0 is unused ID */
2704 if (!id)
2705 return NULL;
2706 css = css_lookup(&mem_cgroup_subsys, id);
2707 if (!css)
2708 return NULL;
b2145145 2709 return mem_cgroup_from_css(css);
a3b2d692
KH
2710}
2711
e42d9d5d 2712struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2713{
c0ff4b85 2714 struct mem_cgroup *memcg = NULL;
3c776e64 2715 struct page_cgroup *pc;
a3b2d692 2716 unsigned short id;
b5a84319
KH
2717 swp_entry_t ent;
2718
3c776e64
DN
2719 VM_BUG_ON(!PageLocked(page));
2720
3c776e64 2721 pc = lookup_page_cgroup(page);
c0bd3f63 2722 lock_page_cgroup(pc);
a3b2d692 2723 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2724 memcg = pc->mem_cgroup;
2725 if (memcg && !css_tryget(&memcg->css))
2726 memcg = NULL;
e42d9d5d 2727 } else if (PageSwapCache(page)) {
3c776e64 2728 ent.val = page_private(page);
9fb4b7cc 2729 id = lookup_swap_cgroup_id(ent);
a3b2d692 2730 rcu_read_lock();
c0ff4b85
R
2731 memcg = mem_cgroup_lookup(id);
2732 if (memcg && !css_tryget(&memcg->css))
2733 memcg = NULL;
a3b2d692 2734 rcu_read_unlock();
3c776e64 2735 }
c0bd3f63 2736 unlock_page_cgroup(pc);
c0ff4b85 2737 return memcg;
b5a84319
KH
2738}
2739
c0ff4b85 2740static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2741 struct page *page,
7ec99d62 2742 unsigned int nr_pages,
9ce70c02
HD
2743 enum charge_type ctype,
2744 bool lrucare)
7a81b88c 2745{
ce587e65 2746 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2747 struct zone *uninitialized_var(zone);
fa9add64 2748 struct lruvec *lruvec;
9ce70c02 2749 bool was_on_lru = false;
b2402857 2750 bool anon;
9ce70c02 2751
ca3e0214 2752 lock_page_cgroup(pc);
90deb788 2753 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2754 /*
2755 * we don't need page_cgroup_lock about tail pages, becase they are not
2756 * accessed by any other context at this point.
2757 */
9ce70c02
HD
2758
2759 /*
2760 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2761 * may already be on some other mem_cgroup's LRU. Take care of it.
2762 */
2763 if (lrucare) {
2764 zone = page_zone(page);
2765 spin_lock_irq(&zone->lru_lock);
2766 if (PageLRU(page)) {
fa9add64 2767 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2768 ClearPageLRU(page);
fa9add64 2769 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2770 was_on_lru = true;
2771 }
2772 }
2773
c0ff4b85 2774 pc->mem_cgroup = memcg;
261fb61a
KH
2775 /*
2776 * We access a page_cgroup asynchronously without lock_page_cgroup().
2777 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2778 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2779 * before USED bit, we need memory barrier here.
2780 * See mem_cgroup_add_lru_list(), etc.
2781 */
08e552c6 2782 smp_wmb();
b2402857 2783 SetPageCgroupUsed(pc);
3be91277 2784
9ce70c02
HD
2785 if (lrucare) {
2786 if (was_on_lru) {
fa9add64 2787 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2788 VM_BUG_ON(PageLRU(page));
2789 SetPageLRU(page);
fa9add64 2790 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2791 }
2792 spin_unlock_irq(&zone->lru_lock);
2793 }
2794
41326c17 2795 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2796 anon = true;
2797 else
2798 anon = false;
2799
2800 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
52d4b9ac 2801 unlock_page_cgroup(pc);
9ce70c02 2802
430e4863
KH
2803 /*
2804 * "charge_statistics" updated event counter. Then, check it.
2805 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2806 * if they exceeds softlimit.
2807 */
c0ff4b85 2808 memcg_check_events(memcg, page);
7a81b88c 2809}
66e1707b 2810
7cf27982
GC
2811static DEFINE_MUTEX(set_limit_mutex);
2812
7ae1e1d0
GC
2813#ifdef CONFIG_MEMCG_KMEM
2814static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2815{
2816 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2817 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2818}
2819
1f458cbf
GC
2820/*
2821 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2822 * in the memcg_cache_params struct.
2823 */
2824static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2825{
2826 struct kmem_cache *cachep;
2827
2828 VM_BUG_ON(p->is_root_cache);
2829 cachep = p->root_cache;
2830 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2831}
2832
749c5415
GC
2833#ifdef CONFIG_SLABINFO
2834static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2835 struct seq_file *m)
2836{
2837 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2838 struct memcg_cache_params *params;
2839
2840 if (!memcg_can_account_kmem(memcg))
2841 return -EIO;
2842
2843 print_slabinfo_header(m);
2844
2845 mutex_lock(&memcg->slab_caches_mutex);
2846 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2847 cache_show(memcg_params_to_cache(params), m);
2848 mutex_unlock(&memcg->slab_caches_mutex);
2849
2850 return 0;
2851}
2852#endif
2853
7ae1e1d0
GC
2854static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2855{
2856 struct res_counter *fail_res;
2857 struct mem_cgroup *_memcg;
2858 int ret = 0;
2859 bool may_oom;
2860
2861 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2862 if (ret)
2863 return ret;
2864
2865 /*
2866 * Conditions under which we can wait for the oom_killer. Those are
2867 * the same conditions tested by the core page allocator
2868 */
2869 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
2870
2871 _memcg = memcg;
2872 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2873 &_memcg, may_oom);
2874
2875 if (ret == -EINTR) {
2876 /*
2877 * __mem_cgroup_try_charge() chosed to bypass to root due to
2878 * OOM kill or fatal signal. Since our only options are to
2879 * either fail the allocation or charge it to this cgroup, do
2880 * it as a temporary condition. But we can't fail. From a
2881 * kmem/slab perspective, the cache has already been selected,
2882 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2883 * our minds.
2884 *
2885 * This condition will only trigger if the task entered
2886 * memcg_charge_kmem in a sane state, but was OOM-killed during
2887 * __mem_cgroup_try_charge() above. Tasks that were already
2888 * dying when the allocation triggers should have been already
2889 * directed to the root cgroup in memcontrol.h
2890 */
2891 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2892 if (do_swap_account)
2893 res_counter_charge_nofail(&memcg->memsw, size,
2894 &fail_res);
2895 ret = 0;
2896 } else if (ret)
2897 res_counter_uncharge(&memcg->kmem, size);
2898
2899 return ret;
2900}
2901
2902static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2903{
7ae1e1d0
GC
2904 res_counter_uncharge(&memcg->res, size);
2905 if (do_swap_account)
2906 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2907
2908 /* Not down to 0 */
2909 if (res_counter_uncharge(&memcg->kmem, size))
2910 return;
2911
2912 if (memcg_kmem_test_and_clear_dead(memcg))
2913 mem_cgroup_put(memcg);
7ae1e1d0
GC
2914}
2915
2633d7a0
GC
2916void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
2917{
2918 if (!memcg)
2919 return;
2920
2921 mutex_lock(&memcg->slab_caches_mutex);
2922 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2923 mutex_unlock(&memcg->slab_caches_mutex);
2924}
2925
2926/*
2927 * helper for acessing a memcg's index. It will be used as an index in the
2928 * child cache array in kmem_cache, and also to derive its name. This function
2929 * will return -1 when this is not a kmem-limited memcg.
2930 */
2931int memcg_cache_id(struct mem_cgroup *memcg)
2932{
2933 return memcg ? memcg->kmemcg_id : -1;
2934}
2935
55007d84
GC
2936/*
2937 * This ends up being protected by the set_limit mutex, during normal
2938 * operation, because that is its main call site.
2939 *
2940 * But when we create a new cache, we can call this as well if its parent
2941 * is kmem-limited. That will have to hold set_limit_mutex as well.
2942 */
2943int memcg_update_cache_sizes(struct mem_cgroup *memcg)
2944{
2945 int num, ret;
2946
2947 num = ida_simple_get(&kmem_limited_groups,
2948 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2949 if (num < 0)
2950 return num;
2951 /*
2952 * After this point, kmem_accounted (that we test atomically in
2953 * the beginning of this conditional), is no longer 0. This
2954 * guarantees only one process will set the following boolean
2955 * to true. We don't need test_and_set because we're protected
2956 * by the set_limit_mutex anyway.
2957 */
2958 memcg_kmem_set_activated(memcg);
2959
2960 ret = memcg_update_all_caches(num+1);
2961 if (ret) {
2962 ida_simple_remove(&kmem_limited_groups, num);
2963 memcg_kmem_clear_activated(memcg);
2964 return ret;
2965 }
2966
2967 memcg->kmemcg_id = num;
2968 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
2969 mutex_init(&memcg->slab_caches_mutex);
2970 return 0;
2971}
2972
2973static size_t memcg_caches_array_size(int num_groups)
2974{
2975 ssize_t size;
2976 if (num_groups <= 0)
2977 return 0;
2978
2979 size = 2 * num_groups;
2980 if (size < MEMCG_CACHES_MIN_SIZE)
2981 size = MEMCG_CACHES_MIN_SIZE;
2982 else if (size > MEMCG_CACHES_MAX_SIZE)
2983 size = MEMCG_CACHES_MAX_SIZE;
2984
2985 return size;
2986}
2987
2988/*
2989 * We should update the current array size iff all caches updates succeed. This
2990 * can only be done from the slab side. The slab mutex needs to be held when
2991 * calling this.
2992 */
2993void memcg_update_array_size(int num)
2994{
2995 if (num > memcg_limited_groups_array_size)
2996 memcg_limited_groups_array_size = memcg_caches_array_size(num);
2997}
2998
2999int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3000{
3001 struct memcg_cache_params *cur_params = s->memcg_params;
3002
3003 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3004
3005 if (num_groups > memcg_limited_groups_array_size) {
3006 int i;
3007 ssize_t size = memcg_caches_array_size(num_groups);
3008
3009 size *= sizeof(void *);
3010 size += sizeof(struct memcg_cache_params);
3011
3012 s->memcg_params = kzalloc(size, GFP_KERNEL);
3013 if (!s->memcg_params) {
3014 s->memcg_params = cur_params;
3015 return -ENOMEM;
3016 }
3017
3018 s->memcg_params->is_root_cache = true;
3019
3020 /*
3021 * There is the chance it will be bigger than
3022 * memcg_limited_groups_array_size, if we failed an allocation
3023 * in a cache, in which case all caches updated before it, will
3024 * have a bigger array.
3025 *
3026 * But if that is the case, the data after
3027 * memcg_limited_groups_array_size is certainly unused
3028 */
3029 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3030 if (!cur_params->memcg_caches[i])
3031 continue;
3032 s->memcg_params->memcg_caches[i] =
3033 cur_params->memcg_caches[i];
3034 }
3035
3036 /*
3037 * Ideally, we would wait until all caches succeed, and only
3038 * then free the old one. But this is not worth the extra
3039 * pointer per-cache we'd have to have for this.
3040 *
3041 * It is not a big deal if some caches are left with a size
3042 * bigger than the others. And all updates will reset this
3043 * anyway.
3044 */
3045 kfree(cur_params);
3046 }
3047 return 0;
3048}
3049
943a451a
GC
3050int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3051 struct kmem_cache *root_cache)
2633d7a0
GC
3052{
3053 size_t size = sizeof(struct memcg_cache_params);
3054
3055 if (!memcg_kmem_enabled())
3056 return 0;
3057
55007d84
GC
3058 if (!memcg)
3059 size += memcg_limited_groups_array_size * sizeof(void *);
3060
2633d7a0
GC
3061 s->memcg_params = kzalloc(size, GFP_KERNEL);
3062 if (!s->memcg_params)
3063 return -ENOMEM;
3064
943a451a 3065 if (memcg) {
2633d7a0 3066 s->memcg_params->memcg = memcg;
943a451a 3067 s->memcg_params->root_cache = root_cache;
4ba902b5
GC
3068 } else
3069 s->memcg_params->is_root_cache = true;
3070
2633d7a0
GC
3071 return 0;
3072}
3073
3074void memcg_release_cache(struct kmem_cache *s)
3075{
d7f25f8a
GC
3076 struct kmem_cache *root;
3077 struct mem_cgroup *memcg;
3078 int id;
3079
3080 /*
3081 * This happens, for instance, when a root cache goes away before we
3082 * add any memcg.
3083 */
3084 if (!s->memcg_params)
3085 return;
3086
3087 if (s->memcg_params->is_root_cache)
3088 goto out;
3089
3090 memcg = s->memcg_params->memcg;
3091 id = memcg_cache_id(memcg);
3092
3093 root = s->memcg_params->root_cache;
3094 root->memcg_params->memcg_caches[id] = NULL;
3095 mem_cgroup_put(memcg);
3096
3097 mutex_lock(&memcg->slab_caches_mutex);
3098 list_del(&s->memcg_params->list);
3099 mutex_unlock(&memcg->slab_caches_mutex);
3100
3101out:
2633d7a0
GC
3102 kfree(s->memcg_params);
3103}
3104
0e9d92f2
GC
3105/*
3106 * During the creation a new cache, we need to disable our accounting mechanism
3107 * altogether. This is true even if we are not creating, but rather just
3108 * enqueing new caches to be created.
3109 *
3110 * This is because that process will trigger allocations; some visible, like
3111 * explicit kmallocs to auxiliary data structures, name strings and internal
3112 * cache structures; some well concealed, like INIT_WORK() that can allocate
3113 * objects during debug.
3114 *
3115 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3116 * to it. This may not be a bounded recursion: since the first cache creation
3117 * failed to complete (waiting on the allocation), we'll just try to create the
3118 * cache again, failing at the same point.
3119 *
3120 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3121 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3122 * inside the following two functions.
3123 */
3124static inline void memcg_stop_kmem_account(void)
3125{
3126 VM_BUG_ON(!current->mm);
3127 current->memcg_kmem_skip_account++;
3128}
3129
3130static inline void memcg_resume_kmem_account(void)
3131{
3132 VM_BUG_ON(!current->mm);
3133 current->memcg_kmem_skip_account--;
3134}
3135
1f458cbf
GC
3136static void kmem_cache_destroy_work_func(struct work_struct *w)
3137{
3138 struct kmem_cache *cachep;
3139 struct memcg_cache_params *p;
3140
3141 p = container_of(w, struct memcg_cache_params, destroy);
3142
3143 cachep = memcg_params_to_cache(p);
3144
22933152
GC
3145 /*
3146 * If we get down to 0 after shrink, we could delete right away.
3147 * However, memcg_release_pages() already puts us back in the workqueue
3148 * in that case. If we proceed deleting, we'll get a dangling
3149 * reference, and removing the object from the workqueue in that case
3150 * is unnecessary complication. We are not a fast path.
3151 *
3152 * Note that this case is fundamentally different from racing with
3153 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3154 * kmem_cache_shrink, not only we would be reinserting a dead cache
3155 * into the queue, but doing so from inside the worker racing to
3156 * destroy it.
3157 *
3158 * So if we aren't down to zero, we'll just schedule a worker and try
3159 * again
3160 */
3161 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3162 kmem_cache_shrink(cachep);
3163 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3164 return;
3165 } else
1f458cbf
GC
3166 kmem_cache_destroy(cachep);
3167}
3168
3169void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3170{
3171 if (!cachep->memcg_params->dead)
3172 return;
3173
22933152
GC
3174 /*
3175 * There are many ways in which we can get here.
3176 *
3177 * We can get to a memory-pressure situation while the delayed work is
3178 * still pending to run. The vmscan shrinkers can then release all
3179 * cache memory and get us to destruction. If this is the case, we'll
3180 * be executed twice, which is a bug (the second time will execute over
3181 * bogus data). In this case, cancelling the work should be fine.
3182 *
3183 * But we can also get here from the worker itself, if
3184 * kmem_cache_shrink is enough to shake all the remaining objects and
3185 * get the page count to 0. In this case, we'll deadlock if we try to
3186 * cancel the work (the worker runs with an internal lock held, which
3187 * is the same lock we would hold for cancel_work_sync().)
3188 *
3189 * Since we can't possibly know who got us here, just refrain from
3190 * running if there is already work pending
3191 */
3192 if (work_pending(&cachep->memcg_params->destroy))
3193 return;
1f458cbf
GC
3194 /*
3195 * We have to defer the actual destroying to a workqueue, because
3196 * we might currently be in a context that cannot sleep.
3197 */
3198 schedule_work(&cachep->memcg_params->destroy);
3199}
3200
d7f25f8a
GC
3201static char *memcg_cache_name(struct mem_cgroup *memcg, struct kmem_cache *s)
3202{
3203 char *name;
3204 struct dentry *dentry;
3205
3206 rcu_read_lock();
3207 dentry = rcu_dereference(memcg->css.cgroup->dentry);
3208 rcu_read_unlock();
3209
3210 BUG_ON(dentry == NULL);
3211
3212 name = kasprintf(GFP_KERNEL, "%s(%d:%s)", s->name,
3213 memcg_cache_id(memcg), dentry->d_name.name);
3214
3215 return name;
3216}
3217
3218static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3219 struct kmem_cache *s)
3220{
3221 char *name;
3222 struct kmem_cache *new;
3223
3224 name = memcg_cache_name(memcg, s);
3225 if (!name)
3226 return NULL;
3227
3228 new = kmem_cache_create_memcg(memcg, name, s->object_size, s->align,
943a451a 3229 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3230
d79923fa
GC
3231 if (new)
3232 new->allocflags |= __GFP_KMEMCG;
3233
d7f25f8a
GC
3234 kfree(name);
3235 return new;
3236}
3237
3238/*
3239 * This lock protects updaters, not readers. We want readers to be as fast as
3240 * they can, and they will either see NULL or a valid cache value. Our model
3241 * allow them to see NULL, in which case the root memcg will be selected.
3242 *
3243 * We need this lock because multiple allocations to the same cache from a non
3244 * will span more than one worker. Only one of them can create the cache.
3245 */
3246static DEFINE_MUTEX(memcg_cache_mutex);
3247static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3248 struct kmem_cache *cachep)
3249{
3250 struct kmem_cache *new_cachep;
3251 int idx;
3252
3253 BUG_ON(!memcg_can_account_kmem(memcg));
3254
3255 idx = memcg_cache_id(memcg);
3256
3257 mutex_lock(&memcg_cache_mutex);
3258 new_cachep = cachep->memcg_params->memcg_caches[idx];
3259 if (new_cachep)
3260 goto out;
3261
3262 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3263 if (new_cachep == NULL) {
3264 new_cachep = cachep;
3265 goto out;
3266 }
3267
3268 mem_cgroup_get(memcg);
1f458cbf 3269 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3270
3271 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3272 /*
3273 * the readers won't lock, make sure everybody sees the updated value,
3274 * so they won't put stuff in the queue again for no reason
3275 */
3276 wmb();
3277out:
3278 mutex_unlock(&memcg_cache_mutex);
3279 return new_cachep;
3280}
3281
7cf27982
GC
3282void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3283{
3284 struct kmem_cache *c;
3285 int i;
3286
3287 if (!s->memcg_params)
3288 return;
3289 if (!s->memcg_params->is_root_cache)
3290 return;
3291
3292 /*
3293 * If the cache is being destroyed, we trust that there is no one else
3294 * requesting objects from it. Even if there are, the sanity checks in
3295 * kmem_cache_destroy should caught this ill-case.
3296 *
3297 * Still, we don't want anyone else freeing memcg_caches under our
3298 * noses, which can happen if a new memcg comes to life. As usual,
3299 * we'll take the set_limit_mutex to protect ourselves against this.
3300 */
3301 mutex_lock(&set_limit_mutex);
3302 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3303 c = s->memcg_params->memcg_caches[i];
3304 if (!c)
3305 continue;
3306
3307 /*
3308 * We will now manually delete the caches, so to avoid races
3309 * we need to cancel all pending destruction workers and
3310 * proceed with destruction ourselves.
3311 *
3312 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3313 * and that could spawn the workers again: it is likely that
3314 * the cache still have active pages until this very moment.
3315 * This would lead us back to mem_cgroup_destroy_cache.
3316 *
3317 * But that will not execute at all if the "dead" flag is not
3318 * set, so flip it down to guarantee we are in control.
3319 */
3320 c->memcg_params->dead = false;
22933152 3321 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3322 kmem_cache_destroy(c);
3323 }
3324 mutex_unlock(&set_limit_mutex);
3325}
3326
d7f25f8a
GC
3327struct create_work {
3328 struct mem_cgroup *memcg;
3329 struct kmem_cache *cachep;
3330 struct work_struct work;
3331};
3332
1f458cbf
GC
3333static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3334{
3335 struct kmem_cache *cachep;
3336 struct memcg_cache_params *params;
3337
3338 if (!memcg_kmem_is_active(memcg))
3339 return;
3340
3341 mutex_lock(&memcg->slab_caches_mutex);
3342 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3343 cachep = memcg_params_to_cache(params);
3344 cachep->memcg_params->dead = true;
3345 INIT_WORK(&cachep->memcg_params->destroy,
22933152 3346 kmem_cache_destroy_work_func);
1f458cbf
GC
3347 schedule_work(&cachep->memcg_params->destroy);
3348 }
3349 mutex_unlock(&memcg->slab_caches_mutex);
3350}
3351
d7f25f8a
GC
3352static void memcg_create_cache_work_func(struct work_struct *w)
3353{
3354 struct create_work *cw;
3355
3356 cw = container_of(w, struct create_work, work);
3357 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3358 /* Drop the reference gotten when we enqueued. */
3359 css_put(&cw->memcg->css);
3360 kfree(cw);
3361}
3362
3363/*
3364 * Enqueue the creation of a per-memcg kmem_cache.
3365 * Called with rcu_read_lock.
3366 */
0e9d92f2
GC
3367static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3368 struct kmem_cache *cachep)
d7f25f8a
GC
3369{
3370 struct create_work *cw;
3371
3372 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3373 if (cw == NULL)
3374 return;
3375
3376 /* The corresponding put will be done in the workqueue. */
3377 if (!css_tryget(&memcg->css)) {
3378 kfree(cw);
3379 return;
3380 }
3381
3382 cw->memcg = memcg;
3383 cw->cachep = cachep;
3384
3385 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3386 schedule_work(&cw->work);
3387}
3388
0e9d92f2
GC
3389static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3390 struct kmem_cache *cachep)
3391{
3392 /*
3393 * We need to stop accounting when we kmalloc, because if the
3394 * corresponding kmalloc cache is not yet created, the first allocation
3395 * in __memcg_create_cache_enqueue will recurse.
3396 *
3397 * However, it is better to enclose the whole function. Depending on
3398 * the debugging options enabled, INIT_WORK(), for instance, can
3399 * trigger an allocation. This too, will make us recurse. Because at
3400 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3401 * the safest choice is to do it like this, wrapping the whole function.
3402 */
3403 memcg_stop_kmem_account();
3404 __memcg_create_cache_enqueue(memcg, cachep);
3405 memcg_resume_kmem_account();
3406}
d7f25f8a
GC
3407/*
3408 * Return the kmem_cache we're supposed to use for a slab allocation.
3409 * We try to use the current memcg's version of the cache.
3410 *
3411 * If the cache does not exist yet, if we are the first user of it,
3412 * we either create it immediately, if possible, or create it asynchronously
3413 * in a workqueue.
3414 * In the latter case, we will let the current allocation go through with
3415 * the original cache.
3416 *
3417 * Can't be called in interrupt context or from kernel threads.
3418 * This function needs to be called with rcu_read_lock() held.
3419 */
3420struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3421 gfp_t gfp)
3422{
3423 struct mem_cgroup *memcg;
3424 int idx;
3425
3426 VM_BUG_ON(!cachep->memcg_params);
3427 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3428
0e9d92f2
GC
3429 if (!current->mm || current->memcg_kmem_skip_account)
3430 return cachep;
3431
d7f25f8a
GC
3432 rcu_read_lock();
3433 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3434 rcu_read_unlock();
3435
3436 if (!memcg_can_account_kmem(memcg))
3437 return cachep;
3438
3439 idx = memcg_cache_id(memcg);
3440
3441 /*
3442 * barrier to mare sure we're always seeing the up to date value. The
3443 * code updating memcg_caches will issue a write barrier to match this.
3444 */
3445 read_barrier_depends();
3446 if (unlikely(cachep->memcg_params->memcg_caches[idx] == NULL)) {
3447 /*
3448 * If we are in a safe context (can wait, and not in interrupt
3449 * context), we could be be predictable and return right away.
3450 * This would guarantee that the allocation being performed
3451 * already belongs in the new cache.
3452 *
3453 * However, there are some clashes that can arrive from locking.
3454 * For instance, because we acquire the slab_mutex while doing
3455 * kmem_cache_dup, this means no further allocation could happen
3456 * with the slab_mutex held.
3457 *
3458 * Also, because cache creation issue get_online_cpus(), this
3459 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3460 * that ends up reversed during cpu hotplug. (cpuset allocates
3461 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3462 * better to defer everything.
3463 */
3464 memcg_create_cache_enqueue(memcg, cachep);
3465 return cachep;
3466 }
3467
3468 return cachep->memcg_params->memcg_caches[idx];
3469}
3470EXPORT_SYMBOL(__memcg_kmem_get_cache);
3471
7ae1e1d0
GC
3472/*
3473 * We need to verify if the allocation against current->mm->owner's memcg is
3474 * possible for the given order. But the page is not allocated yet, so we'll
3475 * need a further commit step to do the final arrangements.
3476 *
3477 * It is possible for the task to switch cgroups in this mean time, so at
3478 * commit time, we can't rely on task conversion any longer. We'll then use
3479 * the handle argument to return to the caller which cgroup we should commit
3480 * against. We could also return the memcg directly and avoid the pointer
3481 * passing, but a boolean return value gives better semantics considering
3482 * the compiled-out case as well.
3483 *
3484 * Returning true means the allocation is possible.
3485 */
3486bool
3487__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3488{
3489 struct mem_cgroup *memcg;
3490 int ret;
3491
3492 *_memcg = NULL;
3493 memcg = try_get_mem_cgroup_from_mm(current->mm);
3494
3495 /*
3496 * very rare case described in mem_cgroup_from_task. Unfortunately there
3497 * isn't much we can do without complicating this too much, and it would
3498 * be gfp-dependent anyway. Just let it go
3499 */
3500 if (unlikely(!memcg))
3501 return true;
3502
3503 if (!memcg_can_account_kmem(memcg)) {
3504 css_put(&memcg->css);
3505 return true;
3506 }
3507
7ae1e1d0
GC
3508 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3509 if (!ret)
3510 *_memcg = memcg;
7ae1e1d0
GC
3511
3512 css_put(&memcg->css);
3513 return (ret == 0);
3514}
3515
3516void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3517 int order)
3518{
3519 struct page_cgroup *pc;
3520
3521 VM_BUG_ON(mem_cgroup_is_root(memcg));
3522
3523 /* The page allocation failed. Revert */
3524 if (!page) {
3525 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3526 return;
3527 }
3528
3529 pc = lookup_page_cgroup(page);
3530 lock_page_cgroup(pc);
3531 pc->mem_cgroup = memcg;
3532 SetPageCgroupUsed(pc);
3533 unlock_page_cgroup(pc);
3534}
3535
3536void __memcg_kmem_uncharge_pages(struct page *page, int order)
3537{
3538 struct mem_cgroup *memcg = NULL;
3539 struct page_cgroup *pc;
3540
3541
3542 pc = lookup_page_cgroup(page);
3543 /*
3544 * Fast unlocked return. Theoretically might have changed, have to
3545 * check again after locking.
3546 */
3547 if (!PageCgroupUsed(pc))
3548 return;
3549
3550 lock_page_cgroup(pc);
3551 if (PageCgroupUsed(pc)) {
3552 memcg = pc->mem_cgroup;
3553 ClearPageCgroupUsed(pc);
3554 }
3555 unlock_page_cgroup(pc);
3556
3557 /*
3558 * We trust that only if there is a memcg associated with the page, it
3559 * is a valid allocation
3560 */
3561 if (!memcg)
3562 return;
3563
3564 VM_BUG_ON(mem_cgroup_is_root(memcg));
3565 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3566}
1f458cbf
GC
3567#else
3568static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3569{
3570}
7ae1e1d0
GC
3571#endif /* CONFIG_MEMCG_KMEM */
3572
ca3e0214
KH
3573#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3574
a0db00fc 3575#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3576/*
3577 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3578 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3579 * charge/uncharge will be never happen and move_account() is done under
3580 * compound_lock(), so we don't have to take care of races.
ca3e0214 3581 */
e94c8a9c 3582void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3583{
3584 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c
KH
3585 struct page_cgroup *pc;
3586 int i;
ca3e0214 3587
3d37c4a9
KH
3588 if (mem_cgroup_disabled())
3589 return;
e94c8a9c
KH
3590 for (i = 1; i < HPAGE_PMD_NR; i++) {
3591 pc = head_pc + i;
3592 pc->mem_cgroup = head_pc->mem_cgroup;
3593 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3594 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3595 }
ca3e0214 3596}
12d27107 3597#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3598
f817ed48 3599/**
de3638d9 3600 * mem_cgroup_move_account - move account of the page
5564e88b 3601 * @page: the page
7ec99d62 3602 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3603 * @pc: page_cgroup of the page.
3604 * @from: mem_cgroup which the page is moved from.
3605 * @to: mem_cgroup which the page is moved to. @from != @to.
3606 *
3607 * The caller must confirm following.
08e552c6 3608 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3609 * - compound_lock is held when nr_pages > 1
f817ed48 3610 *
2f3479b1
KH
3611 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3612 * from old cgroup.
f817ed48 3613 */
7ec99d62
JW
3614static int mem_cgroup_move_account(struct page *page,
3615 unsigned int nr_pages,
3616 struct page_cgroup *pc,
3617 struct mem_cgroup *from,
2f3479b1 3618 struct mem_cgroup *to)
f817ed48 3619{
de3638d9
JW
3620 unsigned long flags;
3621 int ret;
b2402857 3622 bool anon = PageAnon(page);
987eba66 3623
f817ed48 3624 VM_BUG_ON(from == to);
5564e88b 3625 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3626 /*
3627 * The page is isolated from LRU. So, collapse function
3628 * will not handle this page. But page splitting can happen.
3629 * Do this check under compound_page_lock(). The caller should
3630 * hold it.
3631 */
3632 ret = -EBUSY;
7ec99d62 3633 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3634 goto out;
3635
3636 lock_page_cgroup(pc);
3637
3638 ret = -EINVAL;
3639 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3640 goto unlock;
3641
312734c0 3642 move_lock_mem_cgroup(from, &flags);
f817ed48 3643
2ff76f11 3644 if (!anon && page_mapped(page)) {
c62b1a3b
KH
3645 /* Update mapped_file data for mem_cgroup */
3646 preempt_disable();
3647 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3648 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3649 preempt_enable();
d69b042f 3650 }
b2402857 3651 mem_cgroup_charge_statistics(from, anon, -nr_pages);
d69b042f 3652
854ffa8d 3653 /* caller should have done css_get */
08e552c6 3654 pc->mem_cgroup = to;
b2402857 3655 mem_cgroup_charge_statistics(to, anon, nr_pages);
312734c0 3656 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3657 ret = 0;
3658unlock:
57f9fd7d 3659 unlock_page_cgroup(pc);
d2265e6f
KH
3660 /*
3661 * check events
3662 */
5564e88b
JW
3663 memcg_check_events(to, page);
3664 memcg_check_events(from, page);
de3638d9 3665out:
f817ed48
KH
3666 return ret;
3667}
3668
2ef37d3f
MH
3669/**
3670 * mem_cgroup_move_parent - moves page to the parent group
3671 * @page: the page to move
3672 * @pc: page_cgroup of the page
3673 * @child: page's cgroup
3674 *
3675 * move charges to its parent or the root cgroup if the group has no
3676 * parent (aka use_hierarchy==0).
3677 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3678 * mem_cgroup_move_account fails) the failure is always temporary and
3679 * it signals a race with a page removal/uncharge or migration. In the
3680 * first case the page is on the way out and it will vanish from the LRU
3681 * on the next attempt and the call should be retried later.
3682 * Isolation from the LRU fails only if page has been isolated from
3683 * the LRU since we looked at it and that usually means either global
3684 * reclaim or migration going on. The page will either get back to the
3685 * LRU or vanish.
3686 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3687 * (!PageCgroupUsed) or moved to a different group. The page will
3688 * disappear in the next attempt.
f817ed48 3689 */
5564e88b
JW
3690static int mem_cgroup_move_parent(struct page *page,
3691 struct page_cgroup *pc,
6068bf01 3692 struct mem_cgroup *child)
f817ed48 3693{
f817ed48 3694 struct mem_cgroup *parent;
7ec99d62 3695 unsigned int nr_pages;
4be4489f 3696 unsigned long uninitialized_var(flags);
f817ed48
KH
3697 int ret;
3698
d8423011 3699 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3700
57f9fd7d
DN
3701 ret = -EBUSY;
3702 if (!get_page_unless_zero(page))
3703 goto out;
3704 if (isolate_lru_page(page))
3705 goto put;
52dbb905 3706
7ec99d62 3707 nr_pages = hpage_nr_pages(page);
08e552c6 3708
cc926f78
KH
3709 parent = parent_mem_cgroup(child);
3710 /*
3711 * If no parent, move charges to root cgroup.
3712 */
3713 if (!parent)
3714 parent = root_mem_cgroup;
f817ed48 3715
2ef37d3f
MH
3716 if (nr_pages > 1) {
3717 VM_BUG_ON(!PageTransHuge(page));
987eba66 3718 flags = compound_lock_irqsave(page);
2ef37d3f 3719 }
987eba66 3720
cc926f78 3721 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3722 pc, child, parent);
cc926f78
KH
3723 if (!ret)
3724 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3725
7ec99d62 3726 if (nr_pages > 1)
987eba66 3727 compound_unlock_irqrestore(page, flags);
08e552c6 3728 putback_lru_page(page);
57f9fd7d 3729put:
40d58138 3730 put_page(page);
57f9fd7d 3731out:
f817ed48
KH
3732 return ret;
3733}
3734
7a81b88c
KH
3735/*
3736 * Charge the memory controller for page usage.
3737 * Return
3738 * 0 if the charge was successful
3739 * < 0 if the cgroup is over its limit
3740 */
3741static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3742 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3743{
c0ff4b85 3744 struct mem_cgroup *memcg = NULL;
7ec99d62 3745 unsigned int nr_pages = 1;
8493ae43 3746 bool oom = true;
7a81b88c 3747 int ret;
ec168510 3748
37c2ac78 3749 if (PageTransHuge(page)) {
7ec99d62 3750 nr_pages <<= compound_order(page);
37c2ac78 3751 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3752 /*
3753 * Never OOM-kill a process for a huge page. The
3754 * fault handler will fall back to regular pages.
3755 */
3756 oom = false;
37c2ac78 3757 }
7a81b88c 3758
c0ff4b85 3759 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3760 if (ret == -ENOMEM)
7a81b88c 3761 return ret;
ce587e65 3762 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3763 return 0;
8a9f3ccd
BS
3764}
3765
7a81b88c
KH
3766int mem_cgroup_newpage_charge(struct page *page,
3767 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3768{
f8d66542 3769 if (mem_cgroup_disabled())
cede86ac 3770 return 0;
7a0524cf
JW
3771 VM_BUG_ON(page_mapped(page));
3772 VM_BUG_ON(page->mapping && !PageAnon(page));
3773 VM_BUG_ON(!mm);
217bc319 3774 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3775 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3776}
3777
54595fe2
KH
3778/*
3779 * While swap-in, try_charge -> commit or cancel, the page is locked.
3780 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3781 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3782 * "commit()" or removed by "cancel()"
3783 */
0435a2fd
JW
3784static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3785 struct page *page,
3786 gfp_t mask,
3787 struct mem_cgroup **memcgp)
8c7c6e34 3788{
c0ff4b85 3789 struct mem_cgroup *memcg;
90deb788 3790 struct page_cgroup *pc;
54595fe2 3791 int ret;
8c7c6e34 3792
90deb788
JW
3793 pc = lookup_page_cgroup(page);
3794 /*
3795 * Every swap fault against a single page tries to charge the
3796 * page, bail as early as possible. shmem_unuse() encounters
3797 * already charged pages, too. The USED bit is protected by
3798 * the page lock, which serializes swap cache removal, which
3799 * in turn serializes uncharging.
3800 */
3801 if (PageCgroupUsed(pc))
3802 return 0;
8c7c6e34
KH
3803 if (!do_swap_account)
3804 goto charge_cur_mm;
c0ff4b85
R
3805 memcg = try_get_mem_cgroup_from_page(page);
3806 if (!memcg)
54595fe2 3807 goto charge_cur_mm;
72835c86
JW
3808 *memcgp = memcg;
3809 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3810 css_put(&memcg->css);
38c5d72f
KH
3811 if (ret == -EINTR)
3812 ret = 0;
54595fe2 3813 return ret;
8c7c6e34 3814charge_cur_mm:
38c5d72f
KH
3815 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3816 if (ret == -EINTR)
3817 ret = 0;
3818 return ret;
8c7c6e34
KH
3819}
3820
0435a2fd
JW
3821int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3822 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3823{
3824 *memcgp = NULL;
3825 if (mem_cgroup_disabled())
3826 return 0;
bdf4f4d2
JW
3827 /*
3828 * A racing thread's fault, or swapoff, may have already
3829 * updated the pte, and even removed page from swap cache: in
3830 * those cases unuse_pte()'s pte_same() test will fail; but
3831 * there's also a KSM case which does need to charge the page.
3832 */
3833 if (!PageSwapCache(page)) {
3834 int ret;
3835
3836 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
3837 if (ret == -EINTR)
3838 ret = 0;
3839 return ret;
3840 }
0435a2fd
JW
3841 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3842}
3843
827a03d2
JW
3844void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3845{
3846 if (mem_cgroup_disabled())
3847 return;
3848 if (!memcg)
3849 return;
3850 __mem_cgroup_cancel_charge(memcg, 1);
3851}
3852
83aae4c7 3853static void
72835c86 3854__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3855 enum charge_type ctype)
7a81b88c 3856{
f8d66542 3857 if (mem_cgroup_disabled())
7a81b88c 3858 return;
72835c86 3859 if (!memcg)
7a81b88c 3860 return;
5a6475a4 3861
ce587e65 3862 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3863 /*
3864 * Now swap is on-memory. This means this page may be
3865 * counted both as mem and swap....double count.
03f3c433
KH
3866 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3867 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3868 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3869 */
03f3c433 3870 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3871 swp_entry_t ent = {.val = page_private(page)};
86493009 3872 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3873 }
7a81b88c
KH
3874}
3875
72835c86
JW
3876void mem_cgroup_commit_charge_swapin(struct page *page,
3877 struct mem_cgroup *memcg)
83aae4c7 3878{
72835c86 3879 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3880 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3881}
3882
827a03d2
JW
3883int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
3884 gfp_t gfp_mask)
7a81b88c 3885{
827a03d2
JW
3886 struct mem_cgroup *memcg = NULL;
3887 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3888 int ret;
3889
f8d66542 3890 if (mem_cgroup_disabled())
827a03d2
JW
3891 return 0;
3892 if (PageCompound(page))
3893 return 0;
3894
827a03d2
JW
3895 if (!PageSwapCache(page))
3896 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
3897 else { /* page is swapcache/shmem */
0435a2fd
JW
3898 ret = __mem_cgroup_try_charge_swapin(mm, page,
3899 gfp_mask, &memcg);
827a03d2
JW
3900 if (!ret)
3901 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3902 }
3903 return ret;
7a81b88c
KH
3904}
3905
c0ff4b85 3906static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3907 unsigned int nr_pages,
3908 const enum charge_type ctype)
569b846d
KH
3909{
3910 struct memcg_batch_info *batch = NULL;
3911 bool uncharge_memsw = true;
7ec99d62 3912
569b846d
KH
3913 /* If swapout, usage of swap doesn't decrease */
3914 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3915 uncharge_memsw = false;
569b846d
KH
3916
3917 batch = &current->memcg_batch;
3918 /*
3919 * In usual, we do css_get() when we remember memcg pointer.
3920 * But in this case, we keep res->usage until end of a series of
3921 * uncharges. Then, it's ok to ignore memcg's refcnt.
3922 */
3923 if (!batch->memcg)
c0ff4b85 3924 batch->memcg = memcg;
3c11ecf4
KH
3925 /*
3926 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3927 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3928 * the same cgroup and we have chance to coalesce uncharges.
3929 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
3930 * because we want to do uncharge as soon as possible.
3931 */
3932
3933 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
3934 goto direct_uncharge;
3935
7ec99d62 3936 if (nr_pages > 1)
ec168510
AA
3937 goto direct_uncharge;
3938
569b846d
KH
3939 /*
3940 * In typical case, batch->memcg == mem. This means we can
3941 * merge a series of uncharges to an uncharge of res_counter.
3942 * If not, we uncharge res_counter ony by one.
3943 */
c0ff4b85 3944 if (batch->memcg != memcg)
569b846d
KH
3945 goto direct_uncharge;
3946 /* remember freed charge and uncharge it later */
7ffd4ca7 3947 batch->nr_pages++;
569b846d 3948 if (uncharge_memsw)
7ffd4ca7 3949 batch->memsw_nr_pages++;
569b846d
KH
3950 return;
3951direct_uncharge:
c0ff4b85 3952 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 3953 if (uncharge_memsw)
c0ff4b85
R
3954 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
3955 if (unlikely(batch->memcg != memcg))
3956 memcg_oom_recover(memcg);
569b846d 3957}
7a81b88c 3958
8a9f3ccd 3959/*
69029cd5 3960 * uncharge if !page_mapped(page)
8a9f3ccd 3961 */
8c7c6e34 3962static struct mem_cgroup *
0030f535
JW
3963__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
3964 bool end_migration)
8a9f3ccd 3965{
c0ff4b85 3966 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
3967 unsigned int nr_pages = 1;
3968 struct page_cgroup *pc;
b2402857 3969 bool anon;
8a9f3ccd 3970
f8d66542 3971 if (mem_cgroup_disabled())
8c7c6e34 3972 return NULL;
4077960e 3973
0c59b89c 3974 VM_BUG_ON(PageSwapCache(page));
d13d1443 3975
37c2ac78 3976 if (PageTransHuge(page)) {
7ec99d62 3977 nr_pages <<= compound_order(page);
37c2ac78
AA
3978 VM_BUG_ON(!PageTransHuge(page));
3979 }
8697d331 3980 /*
3c541e14 3981 * Check if our page_cgroup is valid
8697d331 3982 */
52d4b9ac 3983 pc = lookup_page_cgroup(page);
cfa44946 3984 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 3985 return NULL;
b9c565d5 3986
52d4b9ac 3987 lock_page_cgroup(pc);
d13d1443 3988
c0ff4b85 3989 memcg = pc->mem_cgroup;
8c7c6e34 3990
d13d1443
KH
3991 if (!PageCgroupUsed(pc))
3992 goto unlock_out;
3993
b2402857
KH
3994 anon = PageAnon(page);
3995
d13d1443 3996 switch (ctype) {
41326c17 3997 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
3998 /*
3999 * Generally PageAnon tells if it's the anon statistics to be
4000 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4001 * used before page reached the stage of being marked PageAnon.
4002 */
b2402857
KH
4003 anon = true;
4004 /* fallthrough */
8a9478ca 4005 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4006 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4007 if (page_mapped(page))
4008 goto unlock_out;
4009 /*
4010 * Pages under migration may not be uncharged. But
4011 * end_migration() /must/ be the one uncharging the
4012 * unused post-migration page and so it has to call
4013 * here with the migration bit still set. See the
4014 * res_counter handling below.
4015 */
4016 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4017 goto unlock_out;
4018 break;
4019 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4020 if (!PageAnon(page)) { /* Shared memory */
4021 if (page->mapping && !page_is_file_cache(page))
4022 goto unlock_out;
4023 } else if (page_mapped(page)) /* Anon */
4024 goto unlock_out;
4025 break;
4026 default:
4027 break;
52d4b9ac 4028 }
d13d1443 4029
b2402857 4030 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
04046e1a 4031
52d4b9ac 4032 ClearPageCgroupUsed(pc);
544122e5
KH
4033 /*
4034 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4035 * freed from LRU. This is safe because uncharged page is expected not
4036 * to be reused (freed soon). Exception is SwapCache, it's handled by
4037 * special functions.
4038 */
b9c565d5 4039
52d4b9ac 4040 unlock_page_cgroup(pc);
f75ca962 4041 /*
c0ff4b85 4042 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
4043 * will never be freed.
4044 */
c0ff4b85 4045 memcg_check_events(memcg, page);
f75ca962 4046 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
4047 mem_cgroup_swap_statistics(memcg, true);
4048 mem_cgroup_get(memcg);
f75ca962 4049 }
0030f535
JW
4050 /*
4051 * Migration does not charge the res_counter for the
4052 * replacement page, so leave it alone when phasing out the
4053 * page that is unused after the migration.
4054 */
4055 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4056 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4057
c0ff4b85 4058 return memcg;
d13d1443
KH
4059
4060unlock_out:
4061 unlock_page_cgroup(pc);
8c7c6e34 4062 return NULL;
3c541e14
BS
4063}
4064
69029cd5
KH
4065void mem_cgroup_uncharge_page(struct page *page)
4066{
52d4b9ac
KH
4067 /* early check. */
4068 if (page_mapped(page))
4069 return;
40f23a21 4070 VM_BUG_ON(page->mapping && !PageAnon(page));
0c59b89c
JW
4071 if (PageSwapCache(page))
4072 return;
0030f535 4073 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4074}
4075
4076void mem_cgroup_uncharge_cache_page(struct page *page)
4077{
4078 VM_BUG_ON(page_mapped(page));
b7abea96 4079 VM_BUG_ON(page->mapping);
0030f535 4080 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4081}
4082
569b846d
KH
4083/*
4084 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4085 * In that cases, pages are freed continuously and we can expect pages
4086 * are in the same memcg. All these calls itself limits the number of
4087 * pages freed at once, then uncharge_start/end() is called properly.
4088 * This may be called prural(2) times in a context,
4089 */
4090
4091void mem_cgroup_uncharge_start(void)
4092{
4093 current->memcg_batch.do_batch++;
4094 /* We can do nest. */
4095 if (current->memcg_batch.do_batch == 1) {
4096 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4097 current->memcg_batch.nr_pages = 0;
4098 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4099 }
4100}
4101
4102void mem_cgroup_uncharge_end(void)
4103{
4104 struct memcg_batch_info *batch = &current->memcg_batch;
4105
4106 if (!batch->do_batch)
4107 return;
4108
4109 batch->do_batch--;
4110 if (batch->do_batch) /* If stacked, do nothing. */
4111 return;
4112
4113 if (!batch->memcg)
4114 return;
4115 /*
4116 * This "batch->memcg" is valid without any css_get/put etc...
4117 * bacause we hide charges behind us.
4118 */
7ffd4ca7
JW
4119 if (batch->nr_pages)
4120 res_counter_uncharge(&batch->memcg->res,
4121 batch->nr_pages * PAGE_SIZE);
4122 if (batch->memsw_nr_pages)
4123 res_counter_uncharge(&batch->memcg->memsw,
4124 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4125 memcg_oom_recover(batch->memcg);
569b846d
KH
4126 /* forget this pointer (for sanity check) */
4127 batch->memcg = NULL;
4128}
4129
e767e056 4130#ifdef CONFIG_SWAP
8c7c6e34 4131/*
e767e056 4132 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4133 * memcg information is recorded to swap_cgroup of "ent"
4134 */
8a9478ca
KH
4135void
4136mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4137{
4138 struct mem_cgroup *memcg;
8a9478ca
KH
4139 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4140
4141 if (!swapout) /* this was a swap cache but the swap is unused ! */
4142 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4143
0030f535 4144 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4145
f75ca962
KH
4146 /*
4147 * record memcg information, if swapout && memcg != NULL,
4148 * mem_cgroup_get() was called in uncharge().
4149 */
4150 if (do_swap_account && swapout && memcg)
a3b2d692 4151 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4152}
e767e056 4153#endif
8c7c6e34 4154
c255a458 4155#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4156/*
4157 * called from swap_entry_free(). remove record in swap_cgroup and
4158 * uncharge "memsw" account.
4159 */
4160void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4161{
8c7c6e34 4162 struct mem_cgroup *memcg;
a3b2d692 4163 unsigned short id;
8c7c6e34
KH
4164
4165 if (!do_swap_account)
4166 return;
4167
a3b2d692
KH
4168 id = swap_cgroup_record(ent, 0);
4169 rcu_read_lock();
4170 memcg = mem_cgroup_lookup(id);
8c7c6e34 4171 if (memcg) {
a3b2d692
KH
4172 /*
4173 * We uncharge this because swap is freed.
4174 * This memcg can be obsolete one. We avoid calling css_tryget
4175 */
0c3e73e8 4176 if (!mem_cgroup_is_root(memcg))
4e649152 4177 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4178 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
4179 mem_cgroup_put(memcg);
4180 }
a3b2d692 4181 rcu_read_unlock();
d13d1443 4182}
02491447
DN
4183
4184/**
4185 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4186 * @entry: swap entry to be moved
4187 * @from: mem_cgroup which the entry is moved from
4188 * @to: mem_cgroup which the entry is moved to
4189 *
4190 * It succeeds only when the swap_cgroup's record for this entry is the same
4191 * as the mem_cgroup's id of @from.
4192 *
4193 * Returns 0 on success, -EINVAL on failure.
4194 *
4195 * The caller must have charged to @to, IOW, called res_counter_charge() about
4196 * both res and memsw, and called css_get().
4197 */
4198static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4199 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4200{
4201 unsigned short old_id, new_id;
4202
4203 old_id = css_id(&from->css);
4204 new_id = css_id(&to->css);
4205
4206 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4207 mem_cgroup_swap_statistics(from, false);
483c30b5 4208 mem_cgroup_swap_statistics(to, true);
02491447 4209 /*
483c30b5
DN
4210 * This function is only called from task migration context now.
4211 * It postpones res_counter and refcount handling till the end
4212 * of task migration(mem_cgroup_clear_mc()) for performance
4213 * improvement. But we cannot postpone mem_cgroup_get(to)
4214 * because if the process that has been moved to @to does
4215 * swap-in, the refcount of @to might be decreased to 0.
02491447 4216 */
02491447 4217 mem_cgroup_get(to);
02491447
DN
4218 return 0;
4219 }
4220 return -EINVAL;
4221}
4222#else
4223static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4224 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4225{
4226 return -EINVAL;
4227}
8c7c6e34 4228#endif
d13d1443 4229
ae41be37 4230/*
01b1ae63
KH
4231 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4232 * page belongs to.
ae41be37 4233 */
0030f535
JW
4234void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4235 struct mem_cgroup **memcgp)
ae41be37 4236{
c0ff4b85 4237 struct mem_cgroup *memcg = NULL;
b32967ff 4238 unsigned int nr_pages = 1;
7ec99d62 4239 struct page_cgroup *pc;
ac39cf8c 4240 enum charge_type ctype;
8869b8f6 4241
72835c86 4242 *memcgp = NULL;
56039efa 4243
f8d66542 4244 if (mem_cgroup_disabled())
0030f535 4245 return;
4077960e 4246
b32967ff
MG
4247 if (PageTransHuge(page))
4248 nr_pages <<= compound_order(page);
4249
52d4b9ac
KH
4250 pc = lookup_page_cgroup(page);
4251 lock_page_cgroup(pc);
4252 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4253 memcg = pc->mem_cgroup;
4254 css_get(&memcg->css);
ac39cf8c
AM
4255 /*
4256 * At migrating an anonymous page, its mapcount goes down
4257 * to 0 and uncharge() will be called. But, even if it's fully
4258 * unmapped, migration may fail and this page has to be
4259 * charged again. We set MIGRATION flag here and delay uncharge
4260 * until end_migration() is called
4261 *
4262 * Corner Case Thinking
4263 * A)
4264 * When the old page was mapped as Anon and it's unmap-and-freed
4265 * while migration was ongoing.
4266 * If unmap finds the old page, uncharge() of it will be delayed
4267 * until end_migration(). If unmap finds a new page, it's
4268 * uncharged when it make mapcount to be 1->0. If unmap code
4269 * finds swap_migration_entry, the new page will not be mapped
4270 * and end_migration() will find it(mapcount==0).
4271 *
4272 * B)
4273 * When the old page was mapped but migraion fails, the kernel
4274 * remaps it. A charge for it is kept by MIGRATION flag even
4275 * if mapcount goes down to 0. We can do remap successfully
4276 * without charging it again.
4277 *
4278 * C)
4279 * The "old" page is under lock_page() until the end of
4280 * migration, so, the old page itself will not be swapped-out.
4281 * If the new page is swapped out before end_migraton, our
4282 * hook to usual swap-out path will catch the event.
4283 */
4284 if (PageAnon(page))
4285 SetPageCgroupMigration(pc);
e8589cc1 4286 }
52d4b9ac 4287 unlock_page_cgroup(pc);
ac39cf8c
AM
4288 /*
4289 * If the page is not charged at this point,
4290 * we return here.
4291 */
c0ff4b85 4292 if (!memcg)
0030f535 4293 return;
01b1ae63 4294
72835c86 4295 *memcgp = memcg;
ac39cf8c
AM
4296 /*
4297 * We charge new page before it's used/mapped. So, even if unlock_page()
4298 * is called before end_migration, we can catch all events on this new
4299 * page. In the case new page is migrated but not remapped, new page's
4300 * mapcount will be finally 0 and we call uncharge in end_migration().
4301 */
ac39cf8c 4302 if (PageAnon(page))
41326c17 4303 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4304 else
62ba7442 4305 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4306 /*
4307 * The page is committed to the memcg, but it's not actually
4308 * charged to the res_counter since we plan on replacing the
4309 * old one and only one page is going to be left afterwards.
4310 */
b32967ff 4311 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4312}
8869b8f6 4313
69029cd5 4314/* remove redundant charge if migration failed*/
c0ff4b85 4315void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4316 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4317{
ac39cf8c 4318 struct page *used, *unused;
01b1ae63 4319 struct page_cgroup *pc;
b2402857 4320 bool anon;
01b1ae63 4321
c0ff4b85 4322 if (!memcg)
01b1ae63 4323 return;
b25ed609 4324
50de1dd9 4325 if (!migration_ok) {
ac39cf8c
AM
4326 used = oldpage;
4327 unused = newpage;
01b1ae63 4328 } else {
ac39cf8c 4329 used = newpage;
01b1ae63
KH
4330 unused = oldpage;
4331 }
0030f535 4332 anon = PageAnon(used);
7d188958
JW
4333 __mem_cgroup_uncharge_common(unused,
4334 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4335 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4336 true);
0030f535 4337 css_put(&memcg->css);
69029cd5 4338 /*
ac39cf8c
AM
4339 * We disallowed uncharge of pages under migration because mapcount
4340 * of the page goes down to zero, temporarly.
4341 * Clear the flag and check the page should be charged.
01b1ae63 4342 */
ac39cf8c
AM
4343 pc = lookup_page_cgroup(oldpage);
4344 lock_page_cgroup(pc);
4345 ClearPageCgroupMigration(pc);
4346 unlock_page_cgroup(pc);
ac39cf8c 4347
01b1ae63 4348 /*
ac39cf8c
AM
4349 * If a page is a file cache, radix-tree replacement is very atomic
4350 * and we can skip this check. When it was an Anon page, its mapcount
4351 * goes down to 0. But because we added MIGRATION flage, it's not
4352 * uncharged yet. There are several case but page->mapcount check
4353 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4354 * check. (see prepare_charge() also)
69029cd5 4355 */
b2402857 4356 if (anon)
ac39cf8c 4357 mem_cgroup_uncharge_page(used);
ae41be37 4358}
78fb7466 4359
ab936cbc
KH
4360/*
4361 * At replace page cache, newpage is not under any memcg but it's on
4362 * LRU. So, this function doesn't touch res_counter but handles LRU
4363 * in correct way. Both pages are locked so we cannot race with uncharge.
4364 */
4365void mem_cgroup_replace_page_cache(struct page *oldpage,
4366 struct page *newpage)
4367{
bde05d1c 4368 struct mem_cgroup *memcg = NULL;
ab936cbc 4369 struct page_cgroup *pc;
ab936cbc 4370 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4371
4372 if (mem_cgroup_disabled())
4373 return;
4374
4375 pc = lookup_page_cgroup(oldpage);
4376 /* fix accounting on old pages */
4377 lock_page_cgroup(pc);
bde05d1c
HD
4378 if (PageCgroupUsed(pc)) {
4379 memcg = pc->mem_cgroup;
4380 mem_cgroup_charge_statistics(memcg, false, -1);
4381 ClearPageCgroupUsed(pc);
4382 }
ab936cbc
KH
4383 unlock_page_cgroup(pc);
4384
bde05d1c
HD
4385 /*
4386 * When called from shmem_replace_page(), in some cases the
4387 * oldpage has already been charged, and in some cases not.
4388 */
4389 if (!memcg)
4390 return;
ab936cbc
KH
4391 /*
4392 * Even if newpage->mapping was NULL before starting replacement,
4393 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4394 * LRU while we overwrite pc->mem_cgroup.
4395 */
ce587e65 4396 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4397}
4398
f212ad7c
DN
4399#ifdef CONFIG_DEBUG_VM
4400static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4401{
4402 struct page_cgroup *pc;
4403
4404 pc = lookup_page_cgroup(page);
cfa44946
JW
4405 /*
4406 * Can be NULL while feeding pages into the page allocator for
4407 * the first time, i.e. during boot or memory hotplug;
4408 * or when mem_cgroup_disabled().
4409 */
f212ad7c
DN
4410 if (likely(pc) && PageCgroupUsed(pc))
4411 return pc;
4412 return NULL;
4413}
4414
4415bool mem_cgroup_bad_page_check(struct page *page)
4416{
4417 if (mem_cgroup_disabled())
4418 return false;
4419
4420 return lookup_page_cgroup_used(page) != NULL;
4421}
4422
4423void mem_cgroup_print_bad_page(struct page *page)
4424{
4425 struct page_cgroup *pc;
4426
4427 pc = lookup_page_cgroup_used(page);
4428 if (pc) {
90b3feae 4429 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
f212ad7c 4430 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4431 }
4432}
4433#endif
4434
d38d2a75 4435static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4436 unsigned long long val)
628f4235 4437{
81d39c20 4438 int retry_count;
3c11ecf4 4439 u64 memswlimit, memlimit;
628f4235 4440 int ret = 0;
81d39c20
KH
4441 int children = mem_cgroup_count_children(memcg);
4442 u64 curusage, oldusage;
3c11ecf4 4443 int enlarge;
81d39c20
KH
4444
4445 /*
4446 * For keeping hierarchical_reclaim simple, how long we should retry
4447 * is depends on callers. We set our retry-count to be function
4448 * of # of children which we should visit in this loop.
4449 */
4450 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4451
4452 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4453
3c11ecf4 4454 enlarge = 0;
8c7c6e34 4455 while (retry_count) {
628f4235
KH
4456 if (signal_pending(current)) {
4457 ret = -EINTR;
4458 break;
4459 }
8c7c6e34
KH
4460 /*
4461 * Rather than hide all in some function, I do this in
4462 * open coded manner. You see what this really does.
aaad153e 4463 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4464 */
4465 mutex_lock(&set_limit_mutex);
4466 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4467 if (memswlimit < val) {
4468 ret = -EINVAL;
4469 mutex_unlock(&set_limit_mutex);
628f4235
KH
4470 break;
4471 }
3c11ecf4
KH
4472
4473 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4474 if (memlimit < val)
4475 enlarge = 1;
4476
8c7c6e34 4477 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4478 if (!ret) {
4479 if (memswlimit == val)
4480 memcg->memsw_is_minimum = true;
4481 else
4482 memcg->memsw_is_minimum = false;
4483 }
8c7c6e34
KH
4484 mutex_unlock(&set_limit_mutex);
4485
4486 if (!ret)
4487 break;
4488
5660048c
JW
4489 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4490 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4491 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4492 /* Usage is reduced ? */
4493 if (curusage >= oldusage)
4494 retry_count--;
4495 else
4496 oldusage = curusage;
8c7c6e34 4497 }
3c11ecf4
KH
4498 if (!ret && enlarge)
4499 memcg_oom_recover(memcg);
14797e23 4500
8c7c6e34
KH
4501 return ret;
4502}
4503
338c8431
LZ
4504static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4505 unsigned long long val)
8c7c6e34 4506{
81d39c20 4507 int retry_count;
3c11ecf4 4508 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4509 int children = mem_cgroup_count_children(memcg);
4510 int ret = -EBUSY;
3c11ecf4 4511 int enlarge = 0;
8c7c6e34 4512
81d39c20
KH
4513 /* see mem_cgroup_resize_res_limit */
4514 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4515 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4516 while (retry_count) {
4517 if (signal_pending(current)) {
4518 ret = -EINTR;
4519 break;
4520 }
4521 /*
4522 * Rather than hide all in some function, I do this in
4523 * open coded manner. You see what this really does.
aaad153e 4524 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4525 */
4526 mutex_lock(&set_limit_mutex);
4527 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4528 if (memlimit > val) {
4529 ret = -EINVAL;
4530 mutex_unlock(&set_limit_mutex);
4531 break;
4532 }
3c11ecf4
KH
4533 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4534 if (memswlimit < val)
4535 enlarge = 1;
8c7c6e34 4536 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4537 if (!ret) {
4538 if (memlimit == val)
4539 memcg->memsw_is_minimum = true;
4540 else
4541 memcg->memsw_is_minimum = false;
4542 }
8c7c6e34
KH
4543 mutex_unlock(&set_limit_mutex);
4544
4545 if (!ret)
4546 break;
4547
5660048c
JW
4548 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4549 MEM_CGROUP_RECLAIM_NOSWAP |
4550 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4551 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4552 /* Usage is reduced ? */
8c7c6e34 4553 if (curusage >= oldusage)
628f4235 4554 retry_count--;
81d39c20
KH
4555 else
4556 oldusage = curusage;
628f4235 4557 }
3c11ecf4
KH
4558 if (!ret && enlarge)
4559 memcg_oom_recover(memcg);
628f4235
KH
4560 return ret;
4561}
4562
4e416953 4563unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
4564 gfp_t gfp_mask,
4565 unsigned long *total_scanned)
4e416953
BS
4566{
4567 unsigned long nr_reclaimed = 0;
4568 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4569 unsigned long reclaimed;
4570 int loop = 0;
4571 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 4572 unsigned long long excess;
0ae5e89c 4573 unsigned long nr_scanned;
4e416953
BS
4574
4575 if (order > 0)
4576 return 0;
4577
00918b6a 4578 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
4579 /*
4580 * This loop can run a while, specially if mem_cgroup's continuously
4581 * keep exceeding their soft limit and putting the system under
4582 * pressure
4583 */
4584 do {
4585 if (next_mz)
4586 mz = next_mz;
4587 else
4588 mz = mem_cgroup_largest_soft_limit_node(mctz);
4589 if (!mz)
4590 break;
4591
0ae5e89c 4592 nr_scanned = 0;
d79154bb 4593 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 4594 gfp_mask, &nr_scanned);
4e416953 4595 nr_reclaimed += reclaimed;
0ae5e89c 4596 *total_scanned += nr_scanned;
4e416953
BS
4597 spin_lock(&mctz->lock);
4598
4599 /*
4600 * If we failed to reclaim anything from this memory cgroup
4601 * it is time to move on to the next cgroup
4602 */
4603 next_mz = NULL;
4604 if (!reclaimed) {
4605 do {
4606 /*
4607 * Loop until we find yet another one.
4608 *
4609 * By the time we get the soft_limit lock
4610 * again, someone might have aded the
4611 * group back on the RB tree. Iterate to
4612 * make sure we get a different mem.
4613 * mem_cgroup_largest_soft_limit_node returns
4614 * NULL if no other cgroup is present on
4615 * the tree
4616 */
4617 next_mz =
4618 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 4619 if (next_mz == mz)
d79154bb 4620 css_put(&next_mz->memcg->css);
39cc98f1 4621 else /* next_mz == NULL or other memcg */
4e416953
BS
4622 break;
4623 } while (1);
4624 }
d79154bb
HD
4625 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4626 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
4627 /*
4628 * One school of thought says that we should not add
4629 * back the node to the tree if reclaim returns 0.
4630 * But our reclaim could return 0, simply because due
4631 * to priority we are exposing a smaller subset of
4632 * memory to reclaim from. Consider this as a longer
4633 * term TODO.
4634 */
ef8745c1 4635 /* If excess == 0, no tree ops */
d79154bb 4636 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 4637 spin_unlock(&mctz->lock);
d79154bb 4638 css_put(&mz->memcg->css);
4e416953
BS
4639 loop++;
4640 /*
4641 * Could not reclaim anything and there are no more
4642 * mem cgroups to try or we seem to be looping without
4643 * reclaiming anything.
4644 */
4645 if (!nr_reclaimed &&
4646 (next_mz == NULL ||
4647 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4648 break;
4649 } while (!nr_reclaimed);
4650 if (next_mz)
d79154bb 4651 css_put(&next_mz->memcg->css);
4e416953
BS
4652 return nr_reclaimed;
4653}
4654
2ef37d3f
MH
4655/**
4656 * mem_cgroup_force_empty_list - clears LRU of a group
4657 * @memcg: group to clear
4658 * @node: NUMA node
4659 * @zid: zone id
4660 * @lru: lru to to clear
4661 *
3c935d18 4662 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4663 * reclaim the pages page themselves - pages are moved to the parent (or root)
4664 * group.
cc847582 4665 */
2ef37d3f 4666static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4667 int node, int zid, enum lru_list lru)
cc847582 4668{
bea8c150 4669 struct lruvec *lruvec;
2ef37d3f 4670 unsigned long flags;
072c56c1 4671 struct list_head *list;
925b7673
JW
4672 struct page *busy;
4673 struct zone *zone;
072c56c1 4674
08e552c6 4675 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4676 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4677 list = &lruvec->lists[lru];
cc847582 4678
f817ed48 4679 busy = NULL;
2ef37d3f 4680 do {
925b7673 4681 struct page_cgroup *pc;
5564e88b
JW
4682 struct page *page;
4683
08e552c6 4684 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4685 if (list_empty(list)) {
08e552c6 4686 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4687 break;
f817ed48 4688 }
925b7673
JW
4689 page = list_entry(list->prev, struct page, lru);
4690 if (busy == page) {
4691 list_move(&page->lru, list);
648bcc77 4692 busy = NULL;
08e552c6 4693 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4694 continue;
4695 }
08e552c6 4696 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4697
925b7673 4698 pc = lookup_page_cgroup(page);
5564e88b 4699
3c935d18 4700 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4701 /* found lock contention or "pc" is obsolete. */
925b7673 4702 busy = page;
f817ed48
KH
4703 cond_resched();
4704 } else
4705 busy = NULL;
2ef37d3f 4706 } while (!list_empty(list));
cc847582
KH
4707}
4708
4709/*
c26251f9
MH
4710 * make mem_cgroup's charge to be 0 if there is no task by moving
4711 * all the charges and pages to the parent.
cc847582 4712 * This enables deleting this mem_cgroup.
c26251f9
MH
4713 *
4714 * Caller is responsible for holding css reference on the memcg.
cc847582 4715 */
ab5196c2 4716static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4717{
c26251f9 4718 int node, zid;
bea207c8 4719 u64 usage;
f817ed48 4720
fce66477 4721 do {
52d4b9ac
KH
4722 /* This is for making all *used* pages to be on LRU. */
4723 lru_add_drain_all();
c0ff4b85 4724 drain_all_stock_sync(memcg);
c0ff4b85 4725 mem_cgroup_start_move(memcg);
31aaea4a 4726 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4727 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4728 enum lru_list lru;
4729 for_each_lru(lru) {
2ef37d3f 4730 mem_cgroup_force_empty_list(memcg,
f156ab93 4731 node, zid, lru);
f817ed48 4732 }
1ecaab2b 4733 }
f817ed48 4734 }
c0ff4b85
R
4735 mem_cgroup_end_move(memcg);
4736 memcg_oom_recover(memcg);
52d4b9ac 4737 cond_resched();
f817ed48 4738
2ef37d3f 4739 /*
bea207c8
GC
4740 * Kernel memory may not necessarily be trackable to a specific
4741 * process. So they are not migrated, and therefore we can't
4742 * expect their value to drop to 0 here.
4743 * Having res filled up with kmem only is enough.
4744 *
2ef37d3f
MH
4745 * This is a safety check because mem_cgroup_force_empty_list
4746 * could have raced with mem_cgroup_replace_page_cache callers
4747 * so the lru seemed empty but the page could have been added
4748 * right after the check. RES_USAGE should be safe as we always
4749 * charge before adding to the LRU.
4750 */
bea207c8
GC
4751 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4752 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4753 } while (usage > 0);
c26251f9
MH
4754}
4755
4756/*
4757 * Reclaims as many pages from the given memcg as possible and moves
4758 * the rest to the parent.
4759 *
4760 * Caller is responsible for holding css reference for memcg.
4761 */
4762static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4763{
4764 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4765 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4766
c1e862c1 4767 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4768 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4769 return -EBUSY;
4770
c1e862c1
KH
4771 /* we call try-to-free pages for make this cgroup empty */
4772 lru_add_drain_all();
f817ed48 4773 /* try to free all pages in this cgroup */
569530fb 4774 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4775 int progress;
c1e862c1 4776
c26251f9
MH
4777 if (signal_pending(current))
4778 return -EINTR;
4779
c0ff4b85 4780 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4781 false);
c1e862c1 4782 if (!progress) {
f817ed48 4783 nr_retries--;
c1e862c1 4784 /* maybe some writeback is necessary */
8aa7e847 4785 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4786 }
f817ed48
KH
4787
4788 }
08e552c6 4789 lru_add_drain();
ab5196c2
MH
4790 mem_cgroup_reparent_charges(memcg);
4791
4792 return 0;
cc847582
KH
4793}
4794
6bbda35c 4795static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 4796{
c26251f9
MH
4797 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4798 int ret;
4799
d8423011
MH
4800 if (mem_cgroup_is_root(memcg))
4801 return -EINVAL;
c26251f9
MH
4802 css_get(&memcg->css);
4803 ret = mem_cgroup_force_empty(memcg);
4804 css_put(&memcg->css);
4805
4806 return ret;
c1e862c1
KH
4807}
4808
4809
18f59ea7
BS
4810static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
4811{
4812 return mem_cgroup_from_cont(cont)->use_hierarchy;
4813}
4814
4815static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
4816 u64 val)
4817{
4818 int retval = 0;
c0ff4b85 4819 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 4820 struct cgroup *parent = cont->parent;
c0ff4b85 4821 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
4822
4823 if (parent)
c0ff4b85 4824 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7
BS
4825
4826 cgroup_lock();
567fb435
GC
4827
4828 if (memcg->use_hierarchy == val)
4829 goto out;
4830
18f59ea7 4831 /*
af901ca1 4832 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4833 * in the child subtrees. If it is unset, then the change can
4834 * occur, provided the current cgroup has no children.
4835 *
4836 * For the root cgroup, parent_mem is NULL, we allow value to be
4837 * set if there are no children.
4838 */
c0ff4b85 4839 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7
BS
4840 (val == 1 || val == 0)) {
4841 if (list_empty(&cont->children))
c0ff4b85 4842 memcg->use_hierarchy = val;
18f59ea7
BS
4843 else
4844 retval = -EBUSY;
4845 } else
4846 retval = -EINVAL;
567fb435
GC
4847
4848out:
18f59ea7
BS
4849 cgroup_unlock();
4850
4851 return retval;
4852}
4853
0c3e73e8 4854
c0ff4b85 4855static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4856 enum mem_cgroup_stat_index idx)
0c3e73e8 4857{
7d74b06f 4858 struct mem_cgroup *iter;
7a159cc9 4859 long val = 0;
0c3e73e8 4860
7a159cc9 4861 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4862 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4863 val += mem_cgroup_read_stat(iter, idx);
4864
4865 if (val < 0) /* race ? */
4866 val = 0;
4867 return val;
0c3e73e8
BS
4868}
4869
c0ff4b85 4870static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4871{
7d74b06f 4872 u64 val;
104f3928 4873
c0ff4b85 4874 if (!mem_cgroup_is_root(memcg)) {
104f3928 4875 if (!swap)
65c64ce8 4876 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4877 else
65c64ce8 4878 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4879 }
4880
c0ff4b85
R
4881 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4882 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4883
7d74b06f 4884 if (swap)
bff6bb83 4885 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4886
4887 return val << PAGE_SHIFT;
4888}
4889
af36f906
TH
4890static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
4891 struct file *file, char __user *buf,
4892 size_t nbytes, loff_t *ppos)
8cdea7c0 4893{
c0ff4b85 4894 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 4895 char str[64];
104f3928 4896 u64 val;
86ae53e1
GC
4897 int name, len;
4898 enum res_type type;
8c7c6e34
KH
4899
4900 type = MEMFILE_TYPE(cft->private);
4901 name = MEMFILE_ATTR(cft->private);
af36f906
TH
4902
4903 if (!do_swap_account && type == _MEMSWAP)
4904 return -EOPNOTSUPP;
4905
8c7c6e34
KH
4906 switch (type) {
4907 case _MEM:
104f3928 4908 if (name == RES_USAGE)
c0ff4b85 4909 val = mem_cgroup_usage(memcg, false);
104f3928 4910 else
c0ff4b85 4911 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
4912 break;
4913 case _MEMSWAP:
104f3928 4914 if (name == RES_USAGE)
c0ff4b85 4915 val = mem_cgroup_usage(memcg, true);
104f3928 4916 else
c0ff4b85 4917 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 4918 break;
510fc4e1
GC
4919 case _KMEM:
4920 val = res_counter_read_u64(&memcg->kmem, name);
4921 break;
8c7c6e34
KH
4922 default:
4923 BUG();
8c7c6e34 4924 }
af36f906
TH
4925
4926 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
4927 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 4928}
510fc4e1
GC
4929
4930static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
4931{
4932 int ret = -EINVAL;
4933#ifdef CONFIG_MEMCG_KMEM
a8964b9b
GC
4934 bool must_inc_static_branch = false;
4935
510fc4e1
GC
4936 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4937 /*
4938 * For simplicity, we won't allow this to be disabled. It also can't
4939 * be changed if the cgroup has children already, or if tasks had
4940 * already joined.
4941 *
4942 * If tasks join before we set the limit, a person looking at
4943 * kmem.usage_in_bytes will have no way to determine when it took
4944 * place, which makes the value quite meaningless.
4945 *
4946 * After it first became limited, changes in the value of the limit are
4947 * of course permitted.
4948 *
4949 * Taking the cgroup_lock is really offensive, but it is so far the only
4950 * way to guarantee that no children will appear. There are plenty of
4951 * other offenders, and they should all go away. Fine grained locking
4952 * is probably the way to go here. When we are fully hierarchical, we
4953 * can also get rid of the use_hierarchy check.
4954 */
4955 cgroup_lock();
4956 mutex_lock(&set_limit_mutex);
4957 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
4958 if (cgroup_task_count(cont) || (memcg->use_hierarchy &&
4959 !list_empty(&cont->children))) {
4960 ret = -EBUSY;
4961 goto out;
4962 }
4963 ret = res_counter_set_limit(&memcg->kmem, val);
4964 VM_BUG_ON(ret);
4965
55007d84
GC
4966 ret = memcg_update_cache_sizes(memcg);
4967 if (ret) {
4968 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
4969 goto out;
4970 }
a8964b9b 4971 must_inc_static_branch = true;
7de37682
GC
4972 /*
4973 * kmem charges can outlive the cgroup. In the case of slab
4974 * pages, for instance, a page contain objects from various
4975 * processes, so it is unfeasible to migrate them away. We
4976 * need to reference count the memcg because of that.
4977 */
4978 mem_cgroup_get(memcg);
510fc4e1
GC
4979 } else
4980 ret = res_counter_set_limit(&memcg->kmem, val);
4981out:
4982 mutex_unlock(&set_limit_mutex);
4983 cgroup_unlock();
a8964b9b
GC
4984
4985 /*
4986 * We are by now familiar with the fact that we can't inc the static
4987 * branch inside cgroup_lock. See disarm functions for details. A
4988 * worker here is overkill, but also wrong: After the limit is set, we
4989 * must start accounting right away. Since this operation can't fail,
4990 * we can safely defer it to here - no rollback will be needed.
4991 *
4992 * The boolean used to control this is also safe, because
4993 * KMEM_ACCOUNTED_ACTIVATED guarantees that only one process will be
4994 * able to set it to true;
4995 */
4996 if (must_inc_static_branch) {
4997 static_key_slow_inc(&memcg_kmem_enabled_key);
4998 /*
4999 * setting the active bit after the inc will guarantee no one
5000 * starts accounting before all call sites are patched
5001 */
5002 memcg_kmem_set_active(memcg);
5003 }
5004
510fc4e1
GC
5005#endif
5006 return ret;
5007}
5008
55007d84 5009static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5010{
55007d84 5011 int ret = 0;
510fc4e1
GC
5012 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5013 if (!parent)
55007d84
GC
5014 goto out;
5015
510fc4e1 5016 memcg->kmem_account_flags = parent->kmem_account_flags;
7de37682 5017#ifdef CONFIG_MEMCG_KMEM
a8964b9b
GC
5018 /*
5019 * When that happen, we need to disable the static branch only on those
5020 * memcgs that enabled it. To achieve this, we would be forced to
5021 * complicate the code by keeping track of which memcgs were the ones
5022 * that actually enabled limits, and which ones got it from its
5023 * parents.
5024 *
5025 * It is a lot simpler just to do static_key_slow_inc() on every child
5026 * that is accounted.
5027 */
55007d84
GC
5028 if (!memcg_kmem_is_active(memcg))
5029 goto out;
5030
5031 /*
5032 * destroy(), called if we fail, will issue static_key_slow_inc() and
5033 * mem_cgroup_put() if kmem is enabled. We have to either call them
5034 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5035 * this more consistent, since it always leads to the same destroy path
5036 */
5037 mem_cgroup_get(memcg);
5038 static_key_slow_inc(&memcg_kmem_enabled_key);
5039
5040 mutex_lock(&set_limit_mutex);
5041 ret = memcg_update_cache_sizes(memcg);
5042 mutex_unlock(&set_limit_mutex);
7de37682 5043#endif
55007d84
GC
5044out:
5045 return ret;
510fc4e1
GC
5046}
5047
628f4235
KH
5048/*
5049 * The user of this function is...
5050 * RES_LIMIT.
5051 */
856c13aa
PM
5052static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5053 const char *buffer)
8cdea7c0 5054{
628f4235 5055 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5056 enum res_type type;
5057 int name;
628f4235
KH
5058 unsigned long long val;
5059 int ret;
5060
8c7c6e34
KH
5061 type = MEMFILE_TYPE(cft->private);
5062 name = MEMFILE_ATTR(cft->private);
af36f906
TH
5063
5064 if (!do_swap_account && type == _MEMSWAP)
5065 return -EOPNOTSUPP;
5066
8c7c6e34 5067 switch (name) {
628f4235 5068 case RES_LIMIT:
4b3bde4c
BS
5069 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5070 ret = -EINVAL;
5071 break;
5072 }
628f4235
KH
5073 /* This function does all necessary parse...reuse it */
5074 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5075 if (ret)
5076 break;
5077 if (type == _MEM)
628f4235 5078 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5079 else if (type == _MEMSWAP)
8c7c6e34 5080 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1
GC
5081 else if (type == _KMEM)
5082 ret = memcg_update_kmem_limit(cont, val);
5083 else
5084 return -EINVAL;
628f4235 5085 break;
296c81d8
BS
5086 case RES_SOFT_LIMIT:
5087 ret = res_counter_memparse_write_strategy(buffer, &val);
5088 if (ret)
5089 break;
5090 /*
5091 * For memsw, soft limits are hard to implement in terms
5092 * of semantics, for now, we support soft limits for
5093 * control without swap
5094 */
5095 if (type == _MEM)
5096 ret = res_counter_set_soft_limit(&memcg->res, val);
5097 else
5098 ret = -EINVAL;
5099 break;
628f4235
KH
5100 default:
5101 ret = -EINVAL; /* should be BUG() ? */
5102 break;
5103 }
5104 return ret;
8cdea7c0
BS
5105}
5106
fee7b548
KH
5107static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5108 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5109{
5110 struct cgroup *cgroup;
5111 unsigned long long min_limit, min_memsw_limit, tmp;
5112
5113 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5114 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5115 cgroup = memcg->css.cgroup;
5116 if (!memcg->use_hierarchy)
5117 goto out;
5118
5119 while (cgroup->parent) {
5120 cgroup = cgroup->parent;
5121 memcg = mem_cgroup_from_cont(cgroup);
5122 if (!memcg->use_hierarchy)
5123 break;
5124 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5125 min_limit = min(min_limit, tmp);
5126 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5127 min_memsw_limit = min(min_memsw_limit, tmp);
5128 }
5129out:
5130 *mem_limit = min_limit;
5131 *memsw_limit = min_memsw_limit;
fee7b548
KH
5132}
5133
29f2a4da 5134static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 5135{
af36f906 5136 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5137 int name;
5138 enum res_type type;
c84872e1 5139
8c7c6e34
KH
5140 type = MEMFILE_TYPE(event);
5141 name = MEMFILE_ATTR(event);
af36f906
TH
5142
5143 if (!do_swap_account && type == _MEMSWAP)
5144 return -EOPNOTSUPP;
5145
8c7c6e34 5146 switch (name) {
29f2a4da 5147 case RES_MAX_USAGE:
8c7c6e34 5148 if (type == _MEM)
c0ff4b85 5149 res_counter_reset_max(&memcg->res);
510fc4e1 5150 else if (type == _MEMSWAP)
c0ff4b85 5151 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5152 else if (type == _KMEM)
5153 res_counter_reset_max(&memcg->kmem);
5154 else
5155 return -EINVAL;
29f2a4da
PE
5156 break;
5157 case RES_FAILCNT:
8c7c6e34 5158 if (type == _MEM)
c0ff4b85 5159 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5160 else if (type == _MEMSWAP)
c0ff4b85 5161 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5162 else if (type == _KMEM)
5163 res_counter_reset_failcnt(&memcg->kmem);
5164 else
5165 return -EINVAL;
29f2a4da
PE
5166 break;
5167 }
f64c3f54 5168
85cc59db 5169 return 0;
c84872e1
PE
5170}
5171
7dc74be0
DN
5172static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5173 struct cftype *cft)
5174{
5175 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5176}
5177
02491447 5178#ifdef CONFIG_MMU
7dc74be0
DN
5179static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5180 struct cftype *cft, u64 val)
5181{
c0ff4b85 5182 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
5183
5184 if (val >= (1 << NR_MOVE_TYPE))
5185 return -EINVAL;
5186 /*
5187 * We check this value several times in both in can_attach() and
5188 * attach(), so we need cgroup lock to prevent this value from being
5189 * inconsistent.
5190 */
5191 cgroup_lock();
c0ff4b85 5192 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5193 cgroup_unlock();
5194
5195 return 0;
5196}
02491447
DN
5197#else
5198static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5199 struct cftype *cft, u64 val)
5200{
5201 return -ENOSYS;
5202}
5203#endif
7dc74be0 5204
406eb0c9 5205#ifdef CONFIG_NUMA
ab215884 5206static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 5207 struct seq_file *m)
406eb0c9
YH
5208{
5209 int nid;
5210 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5211 unsigned long node_nr;
d79154bb 5212 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 5213
d79154bb 5214 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5215 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5216 for_each_node_state(nid, N_MEMORY) {
d79154bb 5217 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5218 seq_printf(m, " N%d=%lu", nid, node_nr);
5219 }
5220 seq_putc(m, '\n');
5221
d79154bb 5222 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5223 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5224 for_each_node_state(nid, N_MEMORY) {
d79154bb 5225 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5226 LRU_ALL_FILE);
406eb0c9
YH
5227 seq_printf(m, " N%d=%lu", nid, node_nr);
5228 }
5229 seq_putc(m, '\n');
5230
d79154bb 5231 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5232 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5233 for_each_node_state(nid, N_MEMORY) {
d79154bb 5234 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5235 LRU_ALL_ANON);
406eb0c9
YH
5236 seq_printf(m, " N%d=%lu", nid, node_nr);
5237 }
5238 seq_putc(m, '\n');
5239
d79154bb 5240 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5241 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5242 for_each_node_state(nid, N_MEMORY) {
d79154bb 5243 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5244 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5245 seq_printf(m, " N%d=%lu", nid, node_nr);
5246 }
5247 seq_putc(m, '\n');
5248 return 0;
5249}
5250#endif /* CONFIG_NUMA */
5251
af7c4b0e
JW
5252static inline void mem_cgroup_lru_names_not_uptodate(void)
5253{
5254 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5255}
5256
ab215884 5257static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 5258 struct seq_file *m)
d2ceb9b7 5259{
d79154bb 5260 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
5261 struct mem_cgroup *mi;
5262 unsigned int i;
406eb0c9 5263
af7c4b0e 5264 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5265 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5266 continue;
af7c4b0e
JW
5267 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5268 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5269 }
7b854121 5270
af7c4b0e
JW
5271 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5272 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5273 mem_cgroup_read_events(memcg, i));
5274
5275 for (i = 0; i < NR_LRU_LISTS; i++)
5276 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5277 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5278
14067bb3 5279 /* Hierarchical information */
fee7b548
KH
5280 {
5281 unsigned long long limit, memsw_limit;
d79154bb 5282 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5283 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5284 if (do_swap_account)
78ccf5b5
JW
5285 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5286 memsw_limit);
fee7b548 5287 }
7f016ee8 5288
af7c4b0e
JW
5289 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5290 long long val = 0;
5291
bff6bb83 5292 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5293 continue;
af7c4b0e
JW
5294 for_each_mem_cgroup_tree(mi, memcg)
5295 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5296 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5297 }
5298
5299 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5300 unsigned long long val = 0;
5301
5302 for_each_mem_cgroup_tree(mi, memcg)
5303 val += mem_cgroup_read_events(mi, i);
5304 seq_printf(m, "total_%s %llu\n",
5305 mem_cgroup_events_names[i], val);
5306 }
5307
5308 for (i = 0; i < NR_LRU_LISTS; i++) {
5309 unsigned long long val = 0;
5310
5311 for_each_mem_cgroup_tree(mi, memcg)
5312 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5313 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5314 }
14067bb3 5315
7f016ee8 5316#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5317 {
5318 int nid, zid;
5319 struct mem_cgroup_per_zone *mz;
89abfab1 5320 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5321 unsigned long recent_rotated[2] = {0, 0};
5322 unsigned long recent_scanned[2] = {0, 0};
5323
5324 for_each_online_node(nid)
5325 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5326 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5327 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5328
89abfab1
HD
5329 recent_rotated[0] += rstat->recent_rotated[0];
5330 recent_rotated[1] += rstat->recent_rotated[1];
5331 recent_scanned[0] += rstat->recent_scanned[0];
5332 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5333 }
78ccf5b5
JW
5334 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5335 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5336 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5337 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5338 }
5339#endif
5340
d2ceb9b7
KH
5341 return 0;
5342}
5343
a7885eb8
KM
5344static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5345{
5346 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5347
1f4c025b 5348 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5349}
5350
5351static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5352 u64 val)
5353{
5354 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5355 struct mem_cgroup *parent;
068b38c1 5356
a7885eb8
KM
5357 if (val > 100)
5358 return -EINVAL;
5359
5360 if (cgrp->parent == NULL)
5361 return -EINVAL;
5362
5363 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
5364
5365 cgroup_lock();
5366
a7885eb8
KM
5367 /* If under hierarchy, only empty-root can set this value */
5368 if ((parent->use_hierarchy) ||
068b38c1
LZ
5369 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
5370 cgroup_unlock();
a7885eb8 5371 return -EINVAL;
068b38c1 5372 }
a7885eb8 5373
a7885eb8 5374 memcg->swappiness = val;
a7885eb8 5375
068b38c1
LZ
5376 cgroup_unlock();
5377
a7885eb8
KM
5378 return 0;
5379}
5380
2e72b634
KS
5381static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5382{
5383 struct mem_cgroup_threshold_ary *t;
5384 u64 usage;
5385 int i;
5386
5387 rcu_read_lock();
5388 if (!swap)
2c488db2 5389 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5390 else
2c488db2 5391 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5392
5393 if (!t)
5394 goto unlock;
5395
5396 usage = mem_cgroup_usage(memcg, swap);
5397
5398 /*
748dad36 5399 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5400 * If it's not true, a threshold was crossed after last
5401 * call of __mem_cgroup_threshold().
5402 */
5407a562 5403 i = t->current_threshold;
2e72b634
KS
5404
5405 /*
5406 * Iterate backward over array of thresholds starting from
5407 * current_threshold and check if a threshold is crossed.
5408 * If none of thresholds below usage is crossed, we read
5409 * only one element of the array here.
5410 */
5411 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5412 eventfd_signal(t->entries[i].eventfd, 1);
5413
5414 /* i = current_threshold + 1 */
5415 i++;
5416
5417 /*
5418 * Iterate forward over array of thresholds starting from
5419 * current_threshold+1 and check if a threshold is crossed.
5420 * If none of thresholds above usage is crossed, we read
5421 * only one element of the array here.
5422 */
5423 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5424 eventfd_signal(t->entries[i].eventfd, 1);
5425
5426 /* Update current_threshold */
5407a562 5427 t->current_threshold = i - 1;
2e72b634
KS
5428unlock:
5429 rcu_read_unlock();
5430}
5431
5432static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5433{
ad4ca5f4
KS
5434 while (memcg) {
5435 __mem_cgroup_threshold(memcg, false);
5436 if (do_swap_account)
5437 __mem_cgroup_threshold(memcg, true);
5438
5439 memcg = parent_mem_cgroup(memcg);
5440 }
2e72b634
KS
5441}
5442
5443static int compare_thresholds(const void *a, const void *b)
5444{
5445 const struct mem_cgroup_threshold *_a = a;
5446 const struct mem_cgroup_threshold *_b = b;
5447
5448 return _a->threshold - _b->threshold;
5449}
5450
c0ff4b85 5451static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5452{
5453 struct mem_cgroup_eventfd_list *ev;
5454
c0ff4b85 5455 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5456 eventfd_signal(ev->eventfd, 1);
5457 return 0;
5458}
5459
c0ff4b85 5460static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5461{
7d74b06f
KH
5462 struct mem_cgroup *iter;
5463
c0ff4b85 5464 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5465 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5466}
5467
5468static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5469 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
5470{
5471 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5472 struct mem_cgroup_thresholds *thresholds;
5473 struct mem_cgroup_threshold_ary *new;
86ae53e1 5474 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5475 u64 threshold, usage;
2c488db2 5476 int i, size, ret;
2e72b634
KS
5477
5478 ret = res_counter_memparse_write_strategy(args, &threshold);
5479 if (ret)
5480 return ret;
5481
5482 mutex_lock(&memcg->thresholds_lock);
2c488db2 5483
2e72b634 5484 if (type == _MEM)
2c488db2 5485 thresholds = &memcg->thresholds;
2e72b634 5486 else if (type == _MEMSWAP)
2c488db2 5487 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5488 else
5489 BUG();
5490
5491 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5492
5493 /* Check if a threshold crossed before adding a new one */
2c488db2 5494 if (thresholds->primary)
2e72b634
KS
5495 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5496
2c488db2 5497 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5498
5499 /* Allocate memory for new array of thresholds */
2c488db2 5500 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5501 GFP_KERNEL);
2c488db2 5502 if (!new) {
2e72b634
KS
5503 ret = -ENOMEM;
5504 goto unlock;
5505 }
2c488db2 5506 new->size = size;
2e72b634
KS
5507
5508 /* Copy thresholds (if any) to new array */
2c488db2
KS
5509 if (thresholds->primary) {
5510 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5511 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5512 }
5513
2e72b634 5514 /* Add new threshold */
2c488db2
KS
5515 new->entries[size - 1].eventfd = eventfd;
5516 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5517
5518 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5519 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5520 compare_thresholds, NULL);
5521
5522 /* Find current threshold */
2c488db2 5523 new->current_threshold = -1;
2e72b634 5524 for (i = 0; i < size; i++) {
748dad36 5525 if (new->entries[i].threshold <= usage) {
2e72b634 5526 /*
2c488db2
KS
5527 * new->current_threshold will not be used until
5528 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5529 * it here.
5530 */
2c488db2 5531 ++new->current_threshold;
748dad36
SZ
5532 } else
5533 break;
2e72b634
KS
5534 }
5535
2c488db2
KS
5536 /* Free old spare buffer and save old primary buffer as spare */
5537 kfree(thresholds->spare);
5538 thresholds->spare = thresholds->primary;
5539
5540 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5541
907860ed 5542 /* To be sure that nobody uses thresholds */
2e72b634
KS
5543 synchronize_rcu();
5544
2e72b634
KS
5545unlock:
5546 mutex_unlock(&memcg->thresholds_lock);
5547
5548 return ret;
5549}
5550
907860ed 5551static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 5552 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
5553{
5554 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5555 struct mem_cgroup_thresholds *thresholds;
5556 struct mem_cgroup_threshold_ary *new;
86ae53e1 5557 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5558 u64 usage;
2c488db2 5559 int i, j, size;
2e72b634
KS
5560
5561 mutex_lock(&memcg->thresholds_lock);
5562 if (type == _MEM)
2c488db2 5563 thresholds = &memcg->thresholds;
2e72b634 5564 else if (type == _MEMSWAP)
2c488db2 5565 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5566 else
5567 BUG();
5568
371528ca
AV
5569 if (!thresholds->primary)
5570 goto unlock;
5571
2e72b634
KS
5572 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5573
5574 /* Check if a threshold crossed before removing */
5575 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5576
5577 /* Calculate new number of threshold */
2c488db2
KS
5578 size = 0;
5579 for (i = 0; i < thresholds->primary->size; i++) {
5580 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5581 size++;
5582 }
5583
2c488db2 5584 new = thresholds->spare;
907860ed 5585
2e72b634
KS
5586 /* Set thresholds array to NULL if we don't have thresholds */
5587 if (!size) {
2c488db2
KS
5588 kfree(new);
5589 new = NULL;
907860ed 5590 goto swap_buffers;
2e72b634
KS
5591 }
5592
2c488db2 5593 new->size = size;
2e72b634
KS
5594
5595 /* Copy thresholds and find current threshold */
2c488db2
KS
5596 new->current_threshold = -1;
5597 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5598 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5599 continue;
5600
2c488db2 5601 new->entries[j] = thresholds->primary->entries[i];
748dad36 5602 if (new->entries[j].threshold <= usage) {
2e72b634 5603 /*
2c488db2 5604 * new->current_threshold will not be used
2e72b634
KS
5605 * until rcu_assign_pointer(), so it's safe to increment
5606 * it here.
5607 */
2c488db2 5608 ++new->current_threshold;
2e72b634
KS
5609 }
5610 j++;
5611 }
5612
907860ed 5613swap_buffers:
2c488db2
KS
5614 /* Swap primary and spare array */
5615 thresholds->spare = thresholds->primary;
8c757763
SZ
5616 /* If all events are unregistered, free the spare array */
5617 if (!new) {
5618 kfree(thresholds->spare);
5619 thresholds->spare = NULL;
5620 }
5621
2c488db2 5622 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5623
907860ed 5624 /* To be sure that nobody uses thresholds */
2e72b634 5625 synchronize_rcu();
371528ca 5626unlock:
2e72b634 5627 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5628}
c1e862c1 5629
9490ff27
KH
5630static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5631 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5632{
5633 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5634 struct mem_cgroup_eventfd_list *event;
86ae53e1 5635 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5636
5637 BUG_ON(type != _OOM_TYPE);
5638 event = kmalloc(sizeof(*event), GFP_KERNEL);
5639 if (!event)
5640 return -ENOMEM;
5641
1af8efe9 5642 spin_lock(&memcg_oom_lock);
9490ff27
KH
5643
5644 event->eventfd = eventfd;
5645 list_add(&event->list, &memcg->oom_notify);
5646
5647 /* already in OOM ? */
79dfdacc 5648 if (atomic_read(&memcg->under_oom))
9490ff27 5649 eventfd_signal(eventfd, 1);
1af8efe9 5650 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5651
5652 return 0;
5653}
5654
907860ed 5655static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
5656 struct cftype *cft, struct eventfd_ctx *eventfd)
5657{
c0ff4b85 5658 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27 5659 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5660 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5661
5662 BUG_ON(type != _OOM_TYPE);
5663
1af8efe9 5664 spin_lock(&memcg_oom_lock);
9490ff27 5665
c0ff4b85 5666 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5667 if (ev->eventfd == eventfd) {
5668 list_del(&ev->list);
5669 kfree(ev);
5670 }
5671 }
5672
1af8efe9 5673 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5674}
5675
3c11ecf4
KH
5676static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5677 struct cftype *cft, struct cgroup_map_cb *cb)
5678{
c0ff4b85 5679 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 5680
c0ff4b85 5681 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5682
c0ff4b85 5683 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5684 cb->fill(cb, "under_oom", 1);
5685 else
5686 cb->fill(cb, "under_oom", 0);
5687 return 0;
5688}
5689
3c11ecf4
KH
5690static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5691 struct cftype *cft, u64 val)
5692{
c0ff4b85 5693 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
5694 struct mem_cgroup *parent;
5695
5696 /* cannot set to root cgroup and only 0 and 1 are allowed */
5697 if (!cgrp->parent || !((val == 0) || (val == 1)))
5698 return -EINVAL;
5699
5700 parent = mem_cgroup_from_cont(cgrp->parent);
5701
5702 cgroup_lock();
5703 /* oom-kill-disable is a flag for subhierarchy. */
5704 if ((parent->use_hierarchy) ||
c0ff4b85 5705 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3c11ecf4
KH
5706 cgroup_unlock();
5707 return -EINVAL;
5708 }
c0ff4b85 5709 memcg->oom_kill_disable = val;
4d845ebf 5710 if (!val)
c0ff4b85 5711 memcg_oom_recover(memcg);
3c11ecf4
KH
5712 cgroup_unlock();
5713 return 0;
5714}
5715
c255a458 5716#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5717static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5718{
55007d84
GC
5719 int ret;
5720
2633d7a0 5721 memcg->kmemcg_id = -1;
55007d84
GC
5722 ret = memcg_propagate_kmem(memcg);
5723 if (ret)
5724 return ret;
2633d7a0 5725
1d62e436 5726 return mem_cgroup_sockets_init(memcg, ss);
e5671dfa
GC
5727};
5728
1d62e436 5729static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 5730{
1d62e436 5731 mem_cgroup_sockets_destroy(memcg);
7de37682
GC
5732
5733 memcg_kmem_mark_dead(memcg);
5734
5735 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5736 return;
5737
5738 /*
5739 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5740 * path here, being careful not to race with memcg_uncharge_kmem: it is
5741 * possible that the charges went down to 0 between mark_dead and the
5742 * res_counter read, so in that case, we don't need the put
5743 */
5744 if (memcg_kmem_test_and_clear_dead(memcg))
5745 mem_cgroup_put(memcg);
d1a4c0b3 5746}
e5671dfa 5747#else
cbe128e3 5748static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5749{
5750 return 0;
5751}
d1a4c0b3 5752
1d62e436 5753static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
5754{
5755}
e5671dfa
GC
5756#endif
5757
8cdea7c0
BS
5758static struct cftype mem_cgroup_files[] = {
5759 {
0eea1030 5760 .name = "usage_in_bytes",
8c7c6e34 5761 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5762 .read = mem_cgroup_read,
9490ff27
KH
5763 .register_event = mem_cgroup_usage_register_event,
5764 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5765 },
c84872e1
PE
5766 {
5767 .name = "max_usage_in_bytes",
8c7c6e34 5768 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5769 .trigger = mem_cgroup_reset,
af36f906 5770 .read = mem_cgroup_read,
c84872e1 5771 },
8cdea7c0 5772 {
0eea1030 5773 .name = "limit_in_bytes",
8c7c6e34 5774 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5775 .write_string = mem_cgroup_write,
af36f906 5776 .read = mem_cgroup_read,
8cdea7c0 5777 },
296c81d8
BS
5778 {
5779 .name = "soft_limit_in_bytes",
5780 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5781 .write_string = mem_cgroup_write,
af36f906 5782 .read = mem_cgroup_read,
296c81d8 5783 },
8cdea7c0
BS
5784 {
5785 .name = "failcnt",
8c7c6e34 5786 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5787 .trigger = mem_cgroup_reset,
af36f906 5788 .read = mem_cgroup_read,
8cdea7c0 5789 },
d2ceb9b7
KH
5790 {
5791 .name = "stat",
ab215884 5792 .read_seq_string = memcg_stat_show,
d2ceb9b7 5793 },
c1e862c1
KH
5794 {
5795 .name = "force_empty",
5796 .trigger = mem_cgroup_force_empty_write,
5797 },
18f59ea7
BS
5798 {
5799 .name = "use_hierarchy",
5800 .write_u64 = mem_cgroup_hierarchy_write,
5801 .read_u64 = mem_cgroup_hierarchy_read,
5802 },
a7885eb8
KM
5803 {
5804 .name = "swappiness",
5805 .read_u64 = mem_cgroup_swappiness_read,
5806 .write_u64 = mem_cgroup_swappiness_write,
5807 },
7dc74be0
DN
5808 {
5809 .name = "move_charge_at_immigrate",
5810 .read_u64 = mem_cgroup_move_charge_read,
5811 .write_u64 = mem_cgroup_move_charge_write,
5812 },
9490ff27
KH
5813 {
5814 .name = "oom_control",
3c11ecf4
KH
5815 .read_map = mem_cgroup_oom_control_read,
5816 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5817 .register_event = mem_cgroup_oom_register_event,
5818 .unregister_event = mem_cgroup_oom_unregister_event,
5819 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5820 },
406eb0c9
YH
5821#ifdef CONFIG_NUMA
5822 {
5823 .name = "numa_stat",
ab215884 5824 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
5825 },
5826#endif
c255a458 5827#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
5828 {
5829 .name = "memsw.usage_in_bytes",
5830 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
af36f906 5831 .read = mem_cgroup_read,
9490ff27
KH
5832 .register_event = mem_cgroup_usage_register_event,
5833 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
5834 },
5835 {
5836 .name = "memsw.max_usage_in_bytes",
5837 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5838 .trigger = mem_cgroup_reset,
af36f906 5839 .read = mem_cgroup_read,
8c7c6e34
KH
5840 },
5841 {
5842 .name = "memsw.limit_in_bytes",
5843 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5844 .write_string = mem_cgroup_write,
af36f906 5845 .read = mem_cgroup_read,
8c7c6e34
KH
5846 },
5847 {
5848 .name = "memsw.failcnt",
5849 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5850 .trigger = mem_cgroup_reset,
af36f906 5851 .read = mem_cgroup_read,
8c7c6e34 5852 },
510fc4e1
GC
5853#endif
5854#ifdef CONFIG_MEMCG_KMEM
5855 {
5856 .name = "kmem.limit_in_bytes",
5857 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5858 .write_string = mem_cgroup_write,
5859 .read = mem_cgroup_read,
5860 },
5861 {
5862 .name = "kmem.usage_in_bytes",
5863 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5864 .read = mem_cgroup_read,
5865 },
5866 {
5867 .name = "kmem.failcnt",
5868 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5869 .trigger = mem_cgroup_reset,
5870 .read = mem_cgroup_read,
5871 },
5872 {
5873 .name = "kmem.max_usage_in_bytes",
5874 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5875 .trigger = mem_cgroup_reset,
5876 .read = mem_cgroup_read,
5877 },
749c5415
GC
5878#ifdef CONFIG_SLABINFO
5879 {
5880 .name = "kmem.slabinfo",
5881 .read_seq_string = mem_cgroup_slabinfo_read,
5882 },
5883#endif
8c7c6e34 5884#endif
6bc10349 5885 { }, /* terminate */
af36f906 5886};
8c7c6e34 5887
c0ff4b85 5888static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
5889{
5890 struct mem_cgroup_per_node *pn;
1ecaab2b 5891 struct mem_cgroup_per_zone *mz;
41e3355d 5892 int zone, tmp = node;
1ecaab2b
KH
5893 /*
5894 * This routine is called against possible nodes.
5895 * But it's BUG to call kmalloc() against offline node.
5896 *
5897 * TODO: this routine can waste much memory for nodes which will
5898 * never be onlined. It's better to use memory hotplug callback
5899 * function.
5900 */
41e3355d
KH
5901 if (!node_state(node, N_NORMAL_MEMORY))
5902 tmp = -1;
17295c88 5903 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
5904 if (!pn)
5905 return 1;
1ecaab2b 5906
1ecaab2b
KH
5907 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5908 mz = &pn->zoneinfo[zone];
bea8c150 5909 lruvec_init(&mz->lruvec);
f64c3f54 5910 mz->usage_in_excess = 0;
4e416953 5911 mz->on_tree = false;
d79154bb 5912 mz->memcg = memcg;
1ecaab2b 5913 }
0a619e58 5914 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
5915 return 0;
5916}
5917
c0ff4b85 5918static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 5919{
c0ff4b85 5920 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
5921}
5922
33327948
KH
5923static struct mem_cgroup *mem_cgroup_alloc(void)
5924{
d79154bb 5925 struct mem_cgroup *memcg;
c62b1a3b 5926 int size = sizeof(struct mem_cgroup);
33327948 5927
c62b1a3b 5928 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 5929 if (size < PAGE_SIZE)
d79154bb 5930 memcg = kzalloc(size, GFP_KERNEL);
33327948 5931 else
d79154bb 5932 memcg = vzalloc(size);
33327948 5933
d79154bb 5934 if (!memcg)
e7bbcdf3
DC
5935 return NULL;
5936
d79154bb
HD
5937 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
5938 if (!memcg->stat)
d2e61b8d 5939 goto out_free;
d79154bb
HD
5940 spin_lock_init(&memcg->pcp_counter_lock);
5941 return memcg;
d2e61b8d
DC
5942
5943out_free:
5944 if (size < PAGE_SIZE)
d79154bb 5945 kfree(memcg);
d2e61b8d 5946 else
d79154bb 5947 vfree(memcg);
d2e61b8d 5948 return NULL;
33327948
KH
5949}
5950
59927fb9 5951/*
c8b2a36f
GC
5952 * At destroying mem_cgroup, references from swap_cgroup can remain.
5953 * (scanning all at force_empty is too costly...)
5954 *
5955 * Instead of clearing all references at force_empty, we remember
5956 * the number of reference from swap_cgroup and free mem_cgroup when
5957 * it goes down to 0.
5958 *
5959 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 5960 */
c8b2a36f
GC
5961
5962static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 5963{
c8b2a36f 5964 int node;
3afe36b1 5965 int size = sizeof(struct mem_cgroup);
59927fb9 5966
c8b2a36f
GC
5967 mem_cgroup_remove_from_trees(memcg);
5968 free_css_id(&mem_cgroup_subsys, &memcg->css);
5969
5970 for_each_node(node)
5971 free_mem_cgroup_per_zone_info(memcg, node);
5972
5973 free_percpu(memcg->stat);
5974
3f134619
GC
5975 /*
5976 * We need to make sure that (at least for now), the jump label
5977 * destruction code runs outside of the cgroup lock. This is because
5978 * get_online_cpus(), which is called from the static_branch update,
5979 * can't be called inside the cgroup_lock. cpusets are the ones
5980 * enforcing this dependency, so if they ever change, we might as well.
5981 *
5982 * schedule_work() will guarantee this happens. Be careful if you need
5983 * to move this code around, and make sure it is outside
5984 * the cgroup_lock.
5985 */
a8964b9b 5986 disarm_static_keys(memcg);
3afe36b1
GC
5987 if (size < PAGE_SIZE)
5988 kfree(memcg);
5989 else
5990 vfree(memcg);
59927fb9 5991}
3afe36b1 5992
59927fb9 5993
8c7c6e34 5994/*
c8b2a36f
GC
5995 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
5996 * but in process context. The work_freeing structure is overlaid
5997 * on the rcu_freeing structure, which itself is overlaid on memsw.
8c7c6e34 5998 */
c8b2a36f 5999static void free_work(struct work_struct *work)
33327948 6000{
c8b2a36f 6001 struct mem_cgroup *memcg;
08e552c6 6002
c8b2a36f
GC
6003 memcg = container_of(work, struct mem_cgroup, work_freeing);
6004 __mem_cgroup_free(memcg);
6005}
04046e1a 6006
c8b2a36f
GC
6007static void free_rcu(struct rcu_head *rcu_head)
6008{
6009 struct mem_cgroup *memcg;
08e552c6 6010
c8b2a36f
GC
6011 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6012 INIT_WORK(&memcg->work_freeing, free_work);
6013 schedule_work(&memcg->work_freeing);
33327948
KH
6014}
6015
c0ff4b85 6016static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 6017{
c0ff4b85 6018 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
6019}
6020
c0ff4b85 6021static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 6022{
c0ff4b85
R
6023 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6024 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
c8b2a36f 6025 call_rcu(&memcg->rcu_freeing, free_rcu);
7bcc1bb1
DN
6026 if (parent)
6027 mem_cgroup_put(parent);
6028 }
8c7c6e34
KH
6029}
6030
c0ff4b85 6031static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 6032{
c0ff4b85 6033 __mem_cgroup_put(memcg, 1);
483c30b5
DN
6034}
6035
7bcc1bb1
DN
6036/*
6037 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6038 */
e1aab161 6039struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6040{
c0ff4b85 6041 if (!memcg->res.parent)
7bcc1bb1 6042 return NULL;
c0ff4b85 6043 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6044}
e1aab161 6045EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6046
c255a458 6047#ifdef CONFIG_MEMCG_SWAP
c077719b
KH
6048static void __init enable_swap_cgroup(void)
6049{
f8d66542 6050 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
6051 do_swap_account = 1;
6052}
6053#else
6054static void __init enable_swap_cgroup(void)
6055{
6056}
6057#endif
6058
f64c3f54
BS
6059static int mem_cgroup_soft_limit_tree_init(void)
6060{
6061 struct mem_cgroup_tree_per_node *rtpn;
6062 struct mem_cgroup_tree_per_zone *rtpz;
6063 int tmp, node, zone;
6064
3ed28fa1 6065 for_each_node(node) {
f64c3f54
BS
6066 tmp = node;
6067 if (!node_state(node, N_NORMAL_MEMORY))
6068 tmp = -1;
6069 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6070 if (!rtpn)
c3cecc68 6071 goto err_cleanup;
f64c3f54
BS
6072
6073 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6074
6075 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6076 rtpz = &rtpn->rb_tree_per_zone[zone];
6077 rtpz->rb_root = RB_ROOT;
6078 spin_lock_init(&rtpz->lock);
6079 }
6080 }
6081 return 0;
c3cecc68
MH
6082
6083err_cleanup:
3ed28fa1 6084 for_each_node(node) {
c3cecc68
MH
6085 if (!soft_limit_tree.rb_tree_per_node[node])
6086 break;
6087 kfree(soft_limit_tree.rb_tree_per_node[node]);
6088 soft_limit_tree.rb_tree_per_node[node] = NULL;
6089 }
6090 return 1;
6091
f64c3f54
BS
6092}
6093
0eb253e2 6094static struct cgroup_subsys_state * __ref
92fb9748 6095mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 6096{
c0ff4b85 6097 struct mem_cgroup *memcg, *parent;
04046e1a 6098 long error = -ENOMEM;
6d12e2d8 6099 int node;
8cdea7c0 6100
c0ff4b85
R
6101 memcg = mem_cgroup_alloc();
6102 if (!memcg)
04046e1a 6103 return ERR_PTR(error);
78fb7466 6104
3ed28fa1 6105 for_each_node(node)
c0ff4b85 6106 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6107 goto free_out;
f64c3f54 6108
c077719b 6109 /* root ? */
28dbc4b6 6110 if (cont->parent == NULL) {
cdec2e42 6111 int cpu;
c077719b 6112 enable_swap_cgroup();
28dbc4b6 6113 parent = NULL;
f64c3f54
BS
6114 if (mem_cgroup_soft_limit_tree_init())
6115 goto free_out;
a41c58a6 6116 root_mem_cgroup = memcg;
cdec2e42
KH
6117 for_each_possible_cpu(cpu) {
6118 struct memcg_stock_pcp *stock =
6119 &per_cpu(memcg_stock, cpu);
6120 INIT_WORK(&stock->work, drain_local_stock);
6121 }
18f59ea7 6122 } else {
28dbc4b6 6123 parent = mem_cgroup_from_cont(cont->parent);
c0ff4b85
R
6124 memcg->use_hierarchy = parent->use_hierarchy;
6125 memcg->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 6126 }
28dbc4b6 6127
18f59ea7 6128 if (parent && parent->use_hierarchy) {
c0ff4b85
R
6129 res_counter_init(&memcg->res, &parent->res);
6130 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6131 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6132
7bcc1bb1
DN
6133 /*
6134 * We increment refcnt of the parent to ensure that we can
6135 * safely access it on res_counter_charge/uncharge.
6136 * This refcnt will be decremented when freeing this
6137 * mem_cgroup(see mem_cgroup_put).
6138 */
6139 mem_cgroup_get(parent);
18f59ea7 6140 } else {
c0ff4b85
R
6141 res_counter_init(&memcg->res, NULL);
6142 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6143 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6144 /*
6145 * Deeper hierachy with use_hierarchy == false doesn't make
6146 * much sense so let cgroup subsystem know about this
6147 * unfortunate state in our controller.
6148 */
6149 if (parent && parent != root_mem_cgroup)
6150 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6151 }
c0ff4b85
R
6152 memcg->last_scanned_node = MAX_NUMNODES;
6153 INIT_LIST_HEAD(&memcg->oom_notify);
6d61ef40 6154
a7885eb8 6155 if (parent)
c0ff4b85
R
6156 memcg->swappiness = mem_cgroup_swappiness(parent);
6157 atomic_set(&memcg->refcnt, 1);
6158 memcg->move_charge_at_immigrate = 0;
6159 mutex_init(&memcg->thresholds_lock);
312734c0 6160 spin_lock_init(&memcg->move_lock);
cbe128e3
GC
6161
6162 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6163 if (error) {
6164 /*
6165 * We call put now because our (and parent's) refcnts
6166 * are already in place. mem_cgroup_put() will internally
6167 * call __mem_cgroup_free, so return directly
6168 */
6169 mem_cgroup_put(memcg);
6170 return ERR_PTR(error);
6171 }
c0ff4b85 6172 return &memcg->css;
6d12e2d8 6173free_out:
c0ff4b85 6174 __mem_cgroup_free(memcg);
04046e1a 6175 return ERR_PTR(error);
8cdea7c0
BS
6176}
6177
92fb9748 6178static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 6179{
c0ff4b85 6180 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ec64f515 6181
ab5196c2 6182 mem_cgroup_reparent_charges(memcg);
1f458cbf 6183 mem_cgroup_destroy_all_caches(memcg);
df878fb0
KH
6184}
6185
92fb9748 6186static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 6187{
c0ff4b85 6188 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 6189
1d62e436 6190 kmem_cgroup_destroy(memcg);
d1a4c0b3 6191
c0ff4b85 6192 mem_cgroup_put(memcg);
8cdea7c0
BS
6193}
6194
02491447 6195#ifdef CONFIG_MMU
7dc74be0 6196/* Handlers for move charge at task migration. */
854ffa8d
DN
6197#define PRECHARGE_COUNT_AT_ONCE 256
6198static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6199{
854ffa8d
DN
6200 int ret = 0;
6201 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6202 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6203
c0ff4b85 6204 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6205 mc.precharge += count;
6206 /* we don't need css_get for root */
6207 return ret;
6208 }
6209 /* try to charge at once */
6210 if (count > 1) {
6211 struct res_counter *dummy;
6212 /*
c0ff4b85 6213 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6214 * by cgroup_lock_live_cgroup() that it is not removed and we
6215 * are still under the same cgroup_mutex. So we can postpone
6216 * css_get().
6217 */
c0ff4b85 6218 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6219 goto one_by_one;
c0ff4b85 6220 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6221 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6222 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6223 goto one_by_one;
6224 }
6225 mc.precharge += count;
854ffa8d
DN
6226 return ret;
6227 }
6228one_by_one:
6229 /* fall back to one by one charge */
6230 while (count--) {
6231 if (signal_pending(current)) {
6232 ret = -EINTR;
6233 break;
6234 }
6235 if (!batch_count--) {
6236 batch_count = PRECHARGE_COUNT_AT_ONCE;
6237 cond_resched();
6238 }
c0ff4b85
R
6239 ret = __mem_cgroup_try_charge(NULL,
6240 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6241 if (ret)
854ffa8d 6242 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6243 return ret;
854ffa8d
DN
6244 mc.precharge++;
6245 }
4ffef5fe
DN
6246 return ret;
6247}
6248
6249/**
8d32ff84 6250 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6251 * @vma: the vma the pte to be checked belongs
6252 * @addr: the address corresponding to the pte to be checked
6253 * @ptent: the pte to be checked
02491447 6254 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6255 *
6256 * Returns
6257 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6258 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6259 * move charge. if @target is not NULL, the page is stored in target->page
6260 * with extra refcnt got(Callers should handle it).
02491447
DN
6261 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6262 * target for charge migration. if @target is not NULL, the entry is stored
6263 * in target->ent.
4ffef5fe
DN
6264 *
6265 * Called with pte lock held.
6266 */
4ffef5fe
DN
6267union mc_target {
6268 struct page *page;
02491447 6269 swp_entry_t ent;
4ffef5fe
DN
6270};
6271
4ffef5fe 6272enum mc_target_type {
8d32ff84 6273 MC_TARGET_NONE = 0,
4ffef5fe 6274 MC_TARGET_PAGE,
02491447 6275 MC_TARGET_SWAP,
4ffef5fe
DN
6276};
6277
90254a65
DN
6278static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6279 unsigned long addr, pte_t ptent)
4ffef5fe 6280{
90254a65 6281 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6282
90254a65
DN
6283 if (!page || !page_mapped(page))
6284 return NULL;
6285 if (PageAnon(page)) {
6286 /* we don't move shared anon */
4b91355e 6287 if (!move_anon())
90254a65 6288 return NULL;
87946a72
DN
6289 } else if (!move_file())
6290 /* we ignore mapcount for file pages */
90254a65
DN
6291 return NULL;
6292 if (!get_page_unless_zero(page))
6293 return NULL;
6294
6295 return page;
6296}
6297
4b91355e 6298#ifdef CONFIG_SWAP
90254a65
DN
6299static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6300 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6301{
90254a65
DN
6302 struct page *page = NULL;
6303 swp_entry_t ent = pte_to_swp_entry(ptent);
6304
6305 if (!move_anon() || non_swap_entry(ent))
6306 return NULL;
4b91355e
KH
6307 /*
6308 * Because lookup_swap_cache() updates some statistics counter,
6309 * we call find_get_page() with swapper_space directly.
6310 */
6311 page = find_get_page(&swapper_space, ent.val);
90254a65
DN
6312 if (do_swap_account)
6313 entry->val = ent.val;
6314
6315 return page;
6316}
4b91355e
KH
6317#else
6318static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6319 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6320{
6321 return NULL;
6322}
6323#endif
90254a65 6324
87946a72
DN
6325static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6326 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6327{
6328 struct page *page = NULL;
87946a72
DN
6329 struct address_space *mapping;
6330 pgoff_t pgoff;
6331
6332 if (!vma->vm_file) /* anonymous vma */
6333 return NULL;
6334 if (!move_file())
6335 return NULL;
6336
87946a72
DN
6337 mapping = vma->vm_file->f_mapping;
6338 if (pte_none(ptent))
6339 pgoff = linear_page_index(vma, addr);
6340 else /* pte_file(ptent) is true */
6341 pgoff = pte_to_pgoff(ptent);
6342
6343 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6344 page = find_get_page(mapping, pgoff);
6345
6346#ifdef CONFIG_SWAP
6347 /* shmem/tmpfs may report page out on swap: account for that too. */
6348 if (radix_tree_exceptional_entry(page)) {
6349 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6350 if (do_swap_account)
aa3b1895
HD
6351 *entry = swap;
6352 page = find_get_page(&swapper_space, swap.val);
87946a72 6353 }
aa3b1895 6354#endif
87946a72
DN
6355 return page;
6356}
6357
8d32ff84 6358static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6359 unsigned long addr, pte_t ptent, union mc_target *target)
6360{
6361 struct page *page = NULL;
6362 struct page_cgroup *pc;
8d32ff84 6363 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6364 swp_entry_t ent = { .val = 0 };
6365
6366 if (pte_present(ptent))
6367 page = mc_handle_present_pte(vma, addr, ptent);
6368 else if (is_swap_pte(ptent))
6369 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6370 else if (pte_none(ptent) || pte_file(ptent))
6371 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6372
6373 if (!page && !ent.val)
8d32ff84 6374 return ret;
02491447
DN
6375 if (page) {
6376 pc = lookup_page_cgroup(page);
6377 /*
6378 * Do only loose check w/o page_cgroup lock.
6379 * mem_cgroup_move_account() checks the pc is valid or not under
6380 * the lock.
6381 */
6382 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6383 ret = MC_TARGET_PAGE;
6384 if (target)
6385 target->page = page;
6386 }
6387 if (!ret || !target)
6388 put_page(page);
6389 }
90254a65
DN
6390 /* There is a swap entry and a page doesn't exist or isn't charged */
6391 if (ent.val && !ret &&
9fb4b7cc 6392 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6393 ret = MC_TARGET_SWAP;
6394 if (target)
6395 target->ent = ent;
4ffef5fe 6396 }
4ffef5fe
DN
6397 return ret;
6398}
6399
12724850
NH
6400#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6401/*
6402 * We don't consider swapping or file mapped pages because THP does not
6403 * support them for now.
6404 * Caller should make sure that pmd_trans_huge(pmd) is true.
6405 */
6406static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6407 unsigned long addr, pmd_t pmd, union mc_target *target)
6408{
6409 struct page *page = NULL;
6410 struct page_cgroup *pc;
6411 enum mc_target_type ret = MC_TARGET_NONE;
6412
6413 page = pmd_page(pmd);
6414 VM_BUG_ON(!page || !PageHead(page));
6415 if (!move_anon())
6416 return ret;
6417 pc = lookup_page_cgroup(page);
6418 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6419 ret = MC_TARGET_PAGE;
6420 if (target) {
6421 get_page(page);
6422 target->page = page;
6423 }
6424 }
6425 return ret;
6426}
6427#else
6428static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6429 unsigned long addr, pmd_t pmd, union mc_target *target)
6430{
6431 return MC_TARGET_NONE;
6432}
6433#endif
6434
4ffef5fe
DN
6435static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6436 unsigned long addr, unsigned long end,
6437 struct mm_walk *walk)
6438{
6439 struct vm_area_struct *vma = walk->private;
6440 pte_t *pte;
6441 spinlock_t *ptl;
6442
12724850
NH
6443 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6444 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6445 mc.precharge += HPAGE_PMD_NR;
6446 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6447 return 0;
12724850 6448 }
03319327 6449
45f83cef
AA
6450 if (pmd_trans_unstable(pmd))
6451 return 0;
4ffef5fe
DN
6452 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6453 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6454 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6455 mc.precharge++; /* increment precharge temporarily */
6456 pte_unmap_unlock(pte - 1, ptl);
6457 cond_resched();
6458
7dc74be0
DN
6459 return 0;
6460}
6461
4ffef5fe
DN
6462static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6463{
6464 unsigned long precharge;
6465 struct vm_area_struct *vma;
6466
dfe076b0 6467 down_read(&mm->mmap_sem);
4ffef5fe
DN
6468 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6469 struct mm_walk mem_cgroup_count_precharge_walk = {
6470 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6471 .mm = mm,
6472 .private = vma,
6473 };
6474 if (is_vm_hugetlb_page(vma))
6475 continue;
4ffef5fe
DN
6476 walk_page_range(vma->vm_start, vma->vm_end,
6477 &mem_cgroup_count_precharge_walk);
6478 }
dfe076b0 6479 up_read(&mm->mmap_sem);
4ffef5fe
DN
6480
6481 precharge = mc.precharge;
6482 mc.precharge = 0;
6483
6484 return precharge;
6485}
6486
4ffef5fe
DN
6487static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6488{
dfe076b0
DN
6489 unsigned long precharge = mem_cgroup_count_precharge(mm);
6490
6491 VM_BUG_ON(mc.moving_task);
6492 mc.moving_task = current;
6493 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6494}
6495
dfe076b0
DN
6496/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6497static void __mem_cgroup_clear_mc(void)
4ffef5fe 6498{
2bd9bb20
KH
6499 struct mem_cgroup *from = mc.from;
6500 struct mem_cgroup *to = mc.to;
6501
4ffef5fe 6502 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6503 if (mc.precharge) {
6504 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6505 mc.precharge = 0;
6506 }
6507 /*
6508 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6509 * we must uncharge here.
6510 */
6511 if (mc.moved_charge) {
6512 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6513 mc.moved_charge = 0;
4ffef5fe 6514 }
483c30b5
DN
6515 /* we must fixup refcnts and charges */
6516 if (mc.moved_swap) {
483c30b5
DN
6517 /* uncharge swap account from the old cgroup */
6518 if (!mem_cgroup_is_root(mc.from))
6519 res_counter_uncharge(&mc.from->memsw,
6520 PAGE_SIZE * mc.moved_swap);
6521 __mem_cgroup_put(mc.from, mc.moved_swap);
6522
6523 if (!mem_cgroup_is_root(mc.to)) {
6524 /*
6525 * we charged both to->res and to->memsw, so we should
6526 * uncharge to->res.
6527 */
6528 res_counter_uncharge(&mc.to->res,
6529 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
6530 }
6531 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
6532 mc.moved_swap = 0;
6533 }
dfe076b0
DN
6534 memcg_oom_recover(from);
6535 memcg_oom_recover(to);
6536 wake_up_all(&mc.waitq);
6537}
6538
6539static void mem_cgroup_clear_mc(void)
6540{
6541 struct mem_cgroup *from = mc.from;
6542
6543 /*
6544 * we must clear moving_task before waking up waiters at the end of
6545 * task migration.
6546 */
6547 mc.moving_task = NULL;
6548 __mem_cgroup_clear_mc();
2bd9bb20 6549 spin_lock(&mc.lock);
4ffef5fe
DN
6550 mc.from = NULL;
6551 mc.to = NULL;
2bd9bb20 6552 spin_unlock(&mc.lock);
32047e2a 6553 mem_cgroup_end_move(from);
4ffef5fe
DN
6554}
6555
761b3ef5
LZ
6556static int mem_cgroup_can_attach(struct cgroup *cgroup,
6557 struct cgroup_taskset *tset)
7dc74be0 6558{
2f7ee569 6559 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6560 int ret = 0;
c0ff4b85 6561 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
7dc74be0 6562
c0ff4b85 6563 if (memcg->move_charge_at_immigrate) {
7dc74be0
DN
6564 struct mm_struct *mm;
6565 struct mem_cgroup *from = mem_cgroup_from_task(p);
6566
c0ff4b85 6567 VM_BUG_ON(from == memcg);
7dc74be0
DN
6568
6569 mm = get_task_mm(p);
6570 if (!mm)
6571 return 0;
7dc74be0 6572 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6573 if (mm->owner == p) {
6574 VM_BUG_ON(mc.from);
6575 VM_BUG_ON(mc.to);
6576 VM_BUG_ON(mc.precharge);
854ffa8d 6577 VM_BUG_ON(mc.moved_charge);
483c30b5 6578 VM_BUG_ON(mc.moved_swap);
32047e2a 6579 mem_cgroup_start_move(from);
2bd9bb20 6580 spin_lock(&mc.lock);
4ffef5fe 6581 mc.from = from;
c0ff4b85 6582 mc.to = memcg;
2bd9bb20 6583 spin_unlock(&mc.lock);
dfe076b0 6584 /* We set mc.moving_task later */
4ffef5fe
DN
6585
6586 ret = mem_cgroup_precharge_mc(mm);
6587 if (ret)
6588 mem_cgroup_clear_mc();
dfe076b0
DN
6589 }
6590 mmput(mm);
7dc74be0
DN
6591 }
6592 return ret;
6593}
6594
761b3ef5
LZ
6595static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6596 struct cgroup_taskset *tset)
7dc74be0 6597{
4ffef5fe 6598 mem_cgroup_clear_mc();
7dc74be0
DN
6599}
6600
4ffef5fe
DN
6601static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6602 unsigned long addr, unsigned long end,
6603 struct mm_walk *walk)
7dc74be0 6604{
4ffef5fe
DN
6605 int ret = 0;
6606 struct vm_area_struct *vma = walk->private;
6607 pte_t *pte;
6608 spinlock_t *ptl;
12724850
NH
6609 enum mc_target_type target_type;
6610 union mc_target target;
6611 struct page *page;
6612 struct page_cgroup *pc;
4ffef5fe 6613
12724850
NH
6614 /*
6615 * We don't take compound_lock() here but no race with splitting thp
6616 * happens because:
6617 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6618 * under splitting, which means there's no concurrent thp split,
6619 * - if another thread runs into split_huge_page() just after we
6620 * entered this if-block, the thread must wait for page table lock
6621 * to be unlocked in __split_huge_page_splitting(), where the main
6622 * part of thp split is not executed yet.
6623 */
6624 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6625 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6626 spin_unlock(&vma->vm_mm->page_table_lock);
6627 return 0;
6628 }
6629 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6630 if (target_type == MC_TARGET_PAGE) {
6631 page = target.page;
6632 if (!isolate_lru_page(page)) {
6633 pc = lookup_page_cgroup(page);
6634 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6635 pc, mc.from, mc.to)) {
12724850
NH
6636 mc.precharge -= HPAGE_PMD_NR;
6637 mc.moved_charge += HPAGE_PMD_NR;
6638 }
6639 putback_lru_page(page);
6640 }
6641 put_page(page);
6642 }
6643 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6644 return 0;
12724850
NH
6645 }
6646
45f83cef
AA
6647 if (pmd_trans_unstable(pmd))
6648 return 0;
4ffef5fe
DN
6649retry:
6650 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6651 for (; addr != end; addr += PAGE_SIZE) {
6652 pte_t ptent = *(pte++);
02491447 6653 swp_entry_t ent;
4ffef5fe
DN
6654
6655 if (!mc.precharge)
6656 break;
6657
8d32ff84 6658 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6659 case MC_TARGET_PAGE:
6660 page = target.page;
6661 if (isolate_lru_page(page))
6662 goto put;
6663 pc = lookup_page_cgroup(page);
7ec99d62 6664 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6665 mc.from, mc.to)) {
4ffef5fe 6666 mc.precharge--;
854ffa8d
DN
6667 /* we uncharge from mc.from later. */
6668 mc.moved_charge++;
4ffef5fe
DN
6669 }
6670 putback_lru_page(page);
8d32ff84 6671put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6672 put_page(page);
6673 break;
02491447
DN
6674 case MC_TARGET_SWAP:
6675 ent = target.ent;
e91cbb42 6676 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6677 mc.precharge--;
483c30b5
DN
6678 /* we fixup refcnts and charges later. */
6679 mc.moved_swap++;
6680 }
02491447 6681 break;
4ffef5fe
DN
6682 default:
6683 break;
6684 }
6685 }
6686 pte_unmap_unlock(pte - 1, ptl);
6687 cond_resched();
6688
6689 if (addr != end) {
6690 /*
6691 * We have consumed all precharges we got in can_attach().
6692 * We try charge one by one, but don't do any additional
6693 * charges to mc.to if we have failed in charge once in attach()
6694 * phase.
6695 */
854ffa8d 6696 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6697 if (!ret)
6698 goto retry;
6699 }
6700
6701 return ret;
6702}
6703
6704static void mem_cgroup_move_charge(struct mm_struct *mm)
6705{
6706 struct vm_area_struct *vma;
6707
6708 lru_add_drain_all();
dfe076b0
DN
6709retry:
6710 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6711 /*
6712 * Someone who are holding the mmap_sem might be waiting in
6713 * waitq. So we cancel all extra charges, wake up all waiters,
6714 * and retry. Because we cancel precharges, we might not be able
6715 * to move enough charges, but moving charge is a best-effort
6716 * feature anyway, so it wouldn't be a big problem.
6717 */
6718 __mem_cgroup_clear_mc();
6719 cond_resched();
6720 goto retry;
6721 }
4ffef5fe
DN
6722 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6723 int ret;
6724 struct mm_walk mem_cgroup_move_charge_walk = {
6725 .pmd_entry = mem_cgroup_move_charge_pte_range,
6726 .mm = mm,
6727 .private = vma,
6728 };
6729 if (is_vm_hugetlb_page(vma))
6730 continue;
4ffef5fe
DN
6731 ret = walk_page_range(vma->vm_start, vma->vm_end,
6732 &mem_cgroup_move_charge_walk);
6733 if (ret)
6734 /*
6735 * means we have consumed all precharges and failed in
6736 * doing additional charge. Just abandon here.
6737 */
6738 break;
6739 }
dfe076b0 6740 up_read(&mm->mmap_sem);
7dc74be0
DN
6741}
6742
761b3ef5
LZ
6743static void mem_cgroup_move_task(struct cgroup *cont,
6744 struct cgroup_taskset *tset)
67e465a7 6745{
2f7ee569 6746 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6747 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6748
dfe076b0 6749 if (mm) {
a433658c
KM
6750 if (mc.to)
6751 mem_cgroup_move_charge(mm);
dfe076b0
DN
6752 mmput(mm);
6753 }
a433658c
KM
6754 if (mc.to)
6755 mem_cgroup_clear_mc();
67e465a7 6756}
5cfb80a7 6757#else /* !CONFIG_MMU */
761b3ef5
LZ
6758static int mem_cgroup_can_attach(struct cgroup *cgroup,
6759 struct cgroup_taskset *tset)
5cfb80a7
DN
6760{
6761 return 0;
6762}
761b3ef5
LZ
6763static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6764 struct cgroup_taskset *tset)
5cfb80a7
DN
6765{
6766}
761b3ef5
LZ
6767static void mem_cgroup_move_task(struct cgroup *cont,
6768 struct cgroup_taskset *tset)
5cfb80a7
DN
6769{
6770}
6771#endif
67e465a7 6772
8cdea7c0
BS
6773struct cgroup_subsys mem_cgroup_subsys = {
6774 .name = "memory",
6775 .subsys_id = mem_cgroup_subsys_id,
92fb9748
TH
6776 .css_alloc = mem_cgroup_css_alloc,
6777 .css_offline = mem_cgroup_css_offline,
6778 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6779 .can_attach = mem_cgroup_can_attach,
6780 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 6781 .attach = mem_cgroup_move_task,
6bc10349 6782 .base_cftypes = mem_cgroup_files,
6d12e2d8 6783 .early_init = 0,
04046e1a 6784 .use_id = 1,
8cdea7c0 6785};
c077719b 6786
154b454e
TH
6787/*
6788 * The rest of init is performed during ->css_alloc() for root css which
6789 * happens before initcalls. hotcpu_notifier() can't be done together as
6790 * it would introduce circular locking by adding cgroup_lock -> cpu hotplug
6791 * dependency. Do it from a subsys_initcall().
6792 */
6793static int __init mem_cgroup_init(void)
6794{
6795 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6796 return 0;
6797}
6798subsys_initcall(mem_cgroup_init);
6799
c255a458 6800#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
6801static int __init enable_swap_account(char *s)
6802{
6803 /* consider enabled if no parameter or 1 is given */
a2c8990a 6804 if (!strcmp(s, "1"))
a42c390c 6805 really_do_swap_account = 1;
a2c8990a 6806 else if (!strcmp(s, "0"))
a42c390c
MH
6807 really_do_swap_account = 0;
6808 return 1;
6809}
a2c8990a 6810__setup("swapaccount=", enable_swap_account);
c077719b 6811
c077719b 6812#endif