]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/memcontrol.c
mm, oom: refactor oom_kill_process()
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
71cd3113 103static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 114
bb4cc1a8
AM
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
ef8f2327 120struct mem_cgroup_tree_per_node {
bb4cc1a8 121 struct rb_root rb_root;
fa90b2fd 122 struct rb_node *rb_rightmost;
bb4cc1a8
AM
123 spinlock_t lock;
124};
125
bb4cc1a8
AM
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
9490ff27
KH
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
2e72b634 137
79bd9814
TH
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
3bc942f3 141struct mem_cgroup_event {
79bd9814 142 /*
59b6f873 143 * memcg which the event belongs to.
79bd9814 144 */
59b6f873 145 struct mem_cgroup *memcg;
79bd9814
TH
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
fba94807
TH
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
59b6f873 159 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 160 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
59b6f873 166 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 167 struct eventfd_ctx *eventfd);
79bd9814
TH
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
ac6424b9 174 wait_queue_entry_t wait;
79bd9814
TH
175 struct work_struct remove;
176};
177
c0ff4b85
R
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 180
7dc74be0
DN
181/* Stuffs for move charges at task migration. */
182/*
1dfab5ab 183 * Types of charges to be moved.
7dc74be0 184 */
1dfab5ab
JW
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 188
4ffef5fe
DN
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
b1dd693e 191 spinlock_t lock; /* for from, to */
264a0ae1 192 struct mm_struct *mm;
4ffef5fe
DN
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
1dfab5ab 195 unsigned long flags;
4ffef5fe 196 unsigned long precharge;
854ffa8d 197 unsigned long moved_charge;
483c30b5 198 unsigned long moved_swap;
8033b97c
DN
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
2bd9bb20 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
4ffef5fe 205
4e416953
BS
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
a0db00fc 210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 212
217bc319
KH
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 215 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
218 NR_CHARGE_TYPE,
219};
220
8c7c6e34 221/* for encoding cft->private value on file */
86ae53e1
GC
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
510fc4e1 226 _KMEM,
d55f90bf 227 _TCP,
86ae53e1
GC
228};
229
a0db00fc
KS
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 232#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
8c7c6e34 235
b05706f1
KT
236/*
237 * Iteration constructs for visiting all cgroups (under a tree). If
238 * loops are exited prematurely (break), mem_cgroup_iter_break() must
239 * be used for reference counting.
240 */
241#define for_each_mem_cgroup_tree(iter, root) \
242 for (iter = mem_cgroup_iter(root, NULL, NULL); \
243 iter != NULL; \
244 iter = mem_cgroup_iter(root, iter, NULL))
245
246#define for_each_mem_cgroup(iter) \
247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
248 iter != NULL; \
249 iter = mem_cgroup_iter(NULL, iter, NULL))
250
70ddf637
AV
251/* Some nice accessors for the vmpressure. */
252struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253{
254 if (!memcg)
255 memcg = root_mem_cgroup;
256 return &memcg->vmpressure;
257}
258
259struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
260{
261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
262}
263
84c07d11 264#ifdef CONFIG_MEMCG_KMEM
55007d84 265/*
f7ce3190 266 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
267 * The main reason for not using cgroup id for this:
268 * this works better in sparse environments, where we have a lot of memcgs,
269 * but only a few kmem-limited. Or also, if we have, for instance, 200
270 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
271 * 200 entry array for that.
55007d84 272 *
dbcf73e2
VD
273 * The current size of the caches array is stored in memcg_nr_cache_ids. It
274 * will double each time we have to increase it.
55007d84 275 */
dbcf73e2
VD
276static DEFINE_IDA(memcg_cache_ida);
277int memcg_nr_cache_ids;
749c5415 278
05257a1a
VD
279/* Protects memcg_nr_cache_ids */
280static DECLARE_RWSEM(memcg_cache_ids_sem);
281
282void memcg_get_cache_ids(void)
283{
284 down_read(&memcg_cache_ids_sem);
285}
286
287void memcg_put_cache_ids(void)
288{
289 up_read(&memcg_cache_ids_sem);
290}
291
55007d84
GC
292/*
293 * MIN_SIZE is different than 1, because we would like to avoid going through
294 * the alloc/free process all the time. In a small machine, 4 kmem-limited
295 * cgroups is a reasonable guess. In the future, it could be a parameter or
296 * tunable, but that is strictly not necessary.
297 *
b8627835 298 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
299 * this constant directly from cgroup, but it is understandable that this is
300 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 301 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
302 * increase ours as well if it increases.
303 */
304#define MEMCG_CACHES_MIN_SIZE 4
b8627835 305#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 306
d7f25f8a
GC
307/*
308 * A lot of the calls to the cache allocation functions are expected to be
309 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
310 * conditional to this static branch, we'll have to allow modules that does
311 * kmem_cache_alloc and the such to see this symbol as well
312 */
ef12947c 313DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 314EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 315
17cc4dfe
TH
316struct workqueue_struct *memcg_kmem_cache_wq;
317
0a4465d3
KT
318static int memcg_shrinker_map_size;
319static DEFINE_MUTEX(memcg_shrinker_map_mutex);
320
321static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
322{
323 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
324}
325
326static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
327 int size, int old_size)
328{
329 struct memcg_shrinker_map *new, *old;
330 int nid;
331
332 lockdep_assert_held(&memcg_shrinker_map_mutex);
333
334 for_each_node(nid) {
335 old = rcu_dereference_protected(
336 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
337 /* Not yet online memcg */
338 if (!old)
339 return 0;
340
341 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
342 if (!new)
343 return -ENOMEM;
344
345 /* Set all old bits, clear all new bits */
346 memset(new->map, (int)0xff, old_size);
347 memset((void *)new->map + old_size, 0, size - old_size);
348
349 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
350 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
351 }
352
353 return 0;
354}
355
356static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
357{
358 struct mem_cgroup_per_node *pn;
359 struct memcg_shrinker_map *map;
360 int nid;
361
362 if (mem_cgroup_is_root(memcg))
363 return;
364
365 for_each_node(nid) {
366 pn = mem_cgroup_nodeinfo(memcg, nid);
367 map = rcu_dereference_protected(pn->shrinker_map, true);
368 if (map)
369 kvfree(map);
370 rcu_assign_pointer(pn->shrinker_map, NULL);
371 }
372}
373
374static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
375{
376 struct memcg_shrinker_map *map;
377 int nid, size, ret = 0;
378
379 if (mem_cgroup_is_root(memcg))
380 return 0;
381
382 mutex_lock(&memcg_shrinker_map_mutex);
383 size = memcg_shrinker_map_size;
384 for_each_node(nid) {
385 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
386 if (!map) {
387 memcg_free_shrinker_maps(memcg);
388 ret = -ENOMEM;
389 break;
390 }
391 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
392 }
393 mutex_unlock(&memcg_shrinker_map_mutex);
394
395 return ret;
396}
397
398int memcg_expand_shrinker_maps(int new_id)
399{
400 int size, old_size, ret = 0;
401 struct mem_cgroup *memcg;
402
403 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
404 old_size = memcg_shrinker_map_size;
405 if (size <= old_size)
406 return 0;
407
408 mutex_lock(&memcg_shrinker_map_mutex);
409 if (!root_mem_cgroup)
410 goto unlock;
411
412 for_each_mem_cgroup(memcg) {
413 if (mem_cgroup_is_root(memcg))
414 continue;
415 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
416 if (ret)
417 goto unlock;
418 }
419unlock:
420 if (!ret)
421 memcg_shrinker_map_size = size;
422 mutex_unlock(&memcg_shrinker_map_mutex);
423 return ret;
424}
fae91d6d
KT
425
426void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
427{
428 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
429 struct memcg_shrinker_map *map;
430
431 rcu_read_lock();
432 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
f90280d6
KT
433 /* Pairs with smp mb in shrink_slab() */
434 smp_mb__before_atomic();
fae91d6d
KT
435 set_bit(shrinker_id, map->map);
436 rcu_read_unlock();
437 }
438}
439
0a4465d3
KT
440#else /* CONFIG_MEMCG_KMEM */
441static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
442{
443 return 0;
444}
445static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
84c07d11 446#endif /* CONFIG_MEMCG_KMEM */
a8964b9b 447
ad7fa852
TH
448/**
449 * mem_cgroup_css_from_page - css of the memcg associated with a page
450 * @page: page of interest
451 *
452 * If memcg is bound to the default hierarchy, css of the memcg associated
453 * with @page is returned. The returned css remains associated with @page
454 * until it is released.
455 *
456 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
457 * is returned.
ad7fa852
TH
458 */
459struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
460{
461 struct mem_cgroup *memcg;
462
ad7fa852
TH
463 memcg = page->mem_cgroup;
464
9e10a130 465 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
466 memcg = root_mem_cgroup;
467
ad7fa852
TH
468 return &memcg->css;
469}
470
2fc04524
VD
471/**
472 * page_cgroup_ino - return inode number of the memcg a page is charged to
473 * @page: the page
474 *
475 * Look up the closest online ancestor of the memory cgroup @page is charged to
476 * and return its inode number or 0 if @page is not charged to any cgroup. It
477 * is safe to call this function without holding a reference to @page.
478 *
479 * Note, this function is inherently racy, because there is nothing to prevent
480 * the cgroup inode from getting torn down and potentially reallocated a moment
481 * after page_cgroup_ino() returns, so it only should be used by callers that
482 * do not care (such as procfs interfaces).
483 */
484ino_t page_cgroup_ino(struct page *page)
485{
486 struct mem_cgroup *memcg;
487 unsigned long ino = 0;
488
489 rcu_read_lock();
490 memcg = READ_ONCE(page->mem_cgroup);
491 while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 memcg = parent_mem_cgroup(memcg);
493 if (memcg)
494 ino = cgroup_ino(memcg->css.cgroup);
495 rcu_read_unlock();
496 return ino;
497}
498
ef8f2327
MG
499static struct mem_cgroup_per_node *
500mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 501{
97a6c37b 502 int nid = page_to_nid(page);
f64c3f54 503
ef8f2327 504 return memcg->nodeinfo[nid];
f64c3f54
BS
505}
506
ef8f2327
MG
507static struct mem_cgroup_tree_per_node *
508soft_limit_tree_node(int nid)
bb4cc1a8 509{
ef8f2327 510 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
511}
512
ef8f2327 513static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
514soft_limit_tree_from_page(struct page *page)
515{
516 int nid = page_to_nid(page);
bb4cc1a8 517
ef8f2327 518 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
519}
520
ef8f2327
MG
521static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 523 unsigned long new_usage_in_excess)
bb4cc1a8
AM
524{
525 struct rb_node **p = &mctz->rb_root.rb_node;
526 struct rb_node *parent = NULL;
ef8f2327 527 struct mem_cgroup_per_node *mz_node;
fa90b2fd 528 bool rightmost = true;
bb4cc1a8
AM
529
530 if (mz->on_tree)
531 return;
532
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
535 return;
536 while (*p) {
537 parent = *p;
ef8f2327 538 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 539 tree_node);
fa90b2fd 540 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 541 p = &(*p)->rb_left;
fa90b2fd
DB
542 rightmost = false;
543 }
544
bb4cc1a8
AM
545 /*
546 * We can't avoid mem cgroups that are over their soft
547 * limit by the same amount
548 */
549 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 p = &(*p)->rb_right;
551 }
fa90b2fd
DB
552
553 if (rightmost)
554 mctz->rb_rightmost = &mz->tree_node;
555
bb4cc1a8
AM
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 mz->on_tree = true;
559}
560
ef8f2327
MG
561static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
563{
564 if (!mz->on_tree)
565 return;
fa90b2fd
DB
566
567 if (&mz->tree_node == mctz->rb_rightmost)
568 mctz->rb_rightmost = rb_prev(&mz->tree_node);
569
bb4cc1a8
AM
570 rb_erase(&mz->tree_node, &mctz->rb_root);
571 mz->on_tree = false;
572}
573
ef8f2327
MG
574static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 576{
0a31bc97
JW
577 unsigned long flags;
578
579 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 580 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 581 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
582}
583
3e32cb2e
JW
584static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
585{
586 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
588 unsigned long excess = 0;
589
590 if (nr_pages > soft_limit)
591 excess = nr_pages - soft_limit;
592
593 return excess;
594}
bb4cc1a8
AM
595
596static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
597{
3e32cb2e 598 unsigned long excess;
ef8f2327
MG
599 struct mem_cgroup_per_node *mz;
600 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 601
e231875b 602 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
603 if (!mctz)
604 return;
bb4cc1a8
AM
605 /*
606 * Necessary to update all ancestors when hierarchy is used.
607 * because their event counter is not touched.
608 */
609 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 610 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 611 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
612 /*
613 * We have to update the tree if mz is on RB-tree or
614 * mem is over its softlimit.
615 */
616 if (excess || mz->on_tree) {
0a31bc97
JW
617 unsigned long flags;
618
619 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
620 /* if on-tree, remove it */
621 if (mz->on_tree)
cf2c8127 622 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
623 /*
624 * Insert again. mz->usage_in_excess will be updated.
625 * If excess is 0, no tree ops.
626 */
cf2c8127 627 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 628 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
629 }
630 }
631}
632
633static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
634{
ef8f2327
MG
635 struct mem_cgroup_tree_per_node *mctz;
636 struct mem_cgroup_per_node *mz;
637 int nid;
bb4cc1a8 638
e231875b 639 for_each_node(nid) {
ef8f2327
MG
640 mz = mem_cgroup_nodeinfo(memcg, nid);
641 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
642 if (mctz)
643 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
644 }
645}
646
ef8f2327
MG
647static struct mem_cgroup_per_node *
648__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 649{
ef8f2327 650 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
651
652retry:
653 mz = NULL;
fa90b2fd 654 if (!mctz->rb_rightmost)
bb4cc1a8
AM
655 goto done; /* Nothing to reclaim from */
656
fa90b2fd
DB
657 mz = rb_entry(mctz->rb_rightmost,
658 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
659 /*
660 * Remove the node now but someone else can add it back,
661 * we will to add it back at the end of reclaim to its correct
662 * position in the tree.
663 */
cf2c8127 664 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 665 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 666 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
667 goto retry;
668done:
669 return mz;
670}
671
ef8f2327
MG
672static struct mem_cgroup_per_node *
673mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 674{
ef8f2327 675 struct mem_cgroup_per_node *mz;
bb4cc1a8 676
0a31bc97 677 spin_lock_irq(&mctz->lock);
bb4cc1a8 678 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 679 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
680 return mz;
681}
682
ccda7f43 683static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
04fecbf5 684 int event)
e9f8974f 685{
a983b5eb 686 return atomic_long_read(&memcg->events[event]);
e9f8974f
JW
687}
688
c0ff4b85 689static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 690 struct page *page,
f627c2f5 691 bool compound, int nr_pages)
d52aa412 692{
b2402857
KH
693 /*
694 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
695 * counted as CACHE even if it's on ANON LRU.
696 */
0a31bc97 697 if (PageAnon(page))
c9019e9b 698 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
9a4caf1e 699 else {
c9019e9b 700 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
9a4caf1e 701 if (PageSwapBacked(page))
c9019e9b 702 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
9a4caf1e 703 }
55e462b0 704
f627c2f5
KS
705 if (compound) {
706 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
c9019e9b 707 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
f627c2f5 708 }
b070e65c 709
e401f176
KH
710 /* pagein of a big page is an event. So, ignore page size */
711 if (nr_pages > 0)
c9019e9b 712 __count_memcg_events(memcg, PGPGIN, 1);
3751d604 713 else {
c9019e9b 714 __count_memcg_events(memcg, PGPGOUT, 1);
3751d604
KH
715 nr_pages = -nr_pages; /* for event */
716 }
e401f176 717
a983b5eb 718 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
6d12e2d8
KH
719}
720
0a6b76dd
VD
721unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
722 int nid, unsigned int lru_mask)
bb2a0de9 723{
b4536f0c 724 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 725 unsigned long nr = 0;
ef8f2327 726 enum lru_list lru;
889976db 727
e231875b 728 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 729
ef8f2327
MG
730 for_each_lru(lru) {
731 if (!(BIT(lru) & lru_mask))
732 continue;
b4536f0c 733 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
734 }
735 return nr;
889976db 736}
bb2a0de9 737
c0ff4b85 738static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 739 unsigned int lru_mask)
6d12e2d8 740{
e231875b 741 unsigned long nr = 0;
889976db 742 int nid;
6d12e2d8 743
31aaea4a 744 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
745 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
746 return nr;
d52aa412
KH
747}
748
f53d7ce3
JW
749static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
750 enum mem_cgroup_events_target target)
7a159cc9
JW
751{
752 unsigned long val, next;
753
a983b5eb
JW
754 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
755 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
7a159cc9 756 /* from time_after() in jiffies.h */
6a1a8b80 757 if ((long)(next - val) < 0) {
f53d7ce3
JW
758 switch (target) {
759 case MEM_CGROUP_TARGET_THRESH:
760 next = val + THRESHOLDS_EVENTS_TARGET;
761 break;
bb4cc1a8
AM
762 case MEM_CGROUP_TARGET_SOFTLIMIT:
763 next = val + SOFTLIMIT_EVENTS_TARGET;
764 break;
f53d7ce3
JW
765 case MEM_CGROUP_TARGET_NUMAINFO:
766 next = val + NUMAINFO_EVENTS_TARGET;
767 break;
768 default:
769 break;
770 }
a983b5eb 771 __this_cpu_write(memcg->stat_cpu->targets[target], next);
f53d7ce3 772 return true;
7a159cc9 773 }
f53d7ce3 774 return false;
d2265e6f
KH
775}
776
777/*
778 * Check events in order.
779 *
780 */
c0ff4b85 781static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
782{
783 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
784 if (unlikely(mem_cgroup_event_ratelimit(memcg,
785 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 786 bool do_softlimit;
82b3f2a7 787 bool do_numainfo __maybe_unused;
f53d7ce3 788
bb4cc1a8
AM
789 do_softlimit = mem_cgroup_event_ratelimit(memcg,
790 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
791#if MAX_NUMNODES > 1
792 do_numainfo = mem_cgroup_event_ratelimit(memcg,
793 MEM_CGROUP_TARGET_NUMAINFO);
794#endif
c0ff4b85 795 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
796 if (unlikely(do_softlimit))
797 mem_cgroup_update_tree(memcg, page);
453a9bf3 798#if MAX_NUMNODES > 1
f53d7ce3 799 if (unlikely(do_numainfo))
c0ff4b85 800 atomic_inc(&memcg->numainfo_events);
453a9bf3 801#endif
0a31bc97 802 }
d2265e6f
KH
803}
804
cf475ad2 805struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 806{
31a78f23
BS
807 /*
808 * mm_update_next_owner() may clear mm->owner to NULL
809 * if it races with swapoff, page migration, etc.
810 * So this can be called with p == NULL.
811 */
812 if (unlikely(!p))
813 return NULL;
814
073219e9 815 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 816}
33398cf2 817EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 818
d46eb14b
SB
819/**
820 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
821 * @mm: mm from which memcg should be extracted. It can be NULL.
822 *
823 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
824 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
825 * returned.
826 */
827struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 828{
d46eb14b
SB
829 struct mem_cgroup *memcg;
830
831 if (mem_cgroup_disabled())
832 return NULL;
0b7f569e 833
54595fe2
KH
834 rcu_read_lock();
835 do {
6f6acb00
MH
836 /*
837 * Page cache insertions can happen withou an
838 * actual mm context, e.g. during disk probing
839 * on boot, loopback IO, acct() writes etc.
840 */
841 if (unlikely(!mm))
df381975 842 memcg = root_mem_cgroup;
6f6acb00
MH
843 else {
844 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
845 if (unlikely(!memcg))
846 memcg = root_mem_cgroup;
847 }
ec903c0c 848 } while (!css_tryget_online(&memcg->css));
54595fe2 849 rcu_read_unlock();
c0ff4b85 850 return memcg;
54595fe2 851}
d46eb14b
SB
852EXPORT_SYMBOL(get_mem_cgroup_from_mm);
853
f745c6f5
SB
854/**
855 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
856 * @page: page from which memcg should be extracted.
857 *
858 * Obtain a reference on page->memcg and returns it if successful. Otherwise
859 * root_mem_cgroup is returned.
860 */
861struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
862{
863 struct mem_cgroup *memcg = page->mem_cgroup;
864
865 if (mem_cgroup_disabled())
866 return NULL;
867
868 rcu_read_lock();
869 if (!memcg || !css_tryget_online(&memcg->css))
870 memcg = root_mem_cgroup;
871 rcu_read_unlock();
872 return memcg;
873}
874EXPORT_SYMBOL(get_mem_cgroup_from_page);
875
d46eb14b
SB
876/**
877 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
878 */
879static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
880{
881 if (unlikely(current->active_memcg)) {
882 struct mem_cgroup *memcg = root_mem_cgroup;
883
884 rcu_read_lock();
885 if (css_tryget_online(&current->active_memcg->css))
886 memcg = current->active_memcg;
887 rcu_read_unlock();
888 return memcg;
889 }
890 return get_mem_cgroup_from_mm(current->mm);
891}
54595fe2 892
5660048c
JW
893/**
894 * mem_cgroup_iter - iterate over memory cgroup hierarchy
895 * @root: hierarchy root
896 * @prev: previously returned memcg, NULL on first invocation
897 * @reclaim: cookie for shared reclaim walks, NULL for full walks
898 *
899 * Returns references to children of the hierarchy below @root, or
900 * @root itself, or %NULL after a full round-trip.
901 *
902 * Caller must pass the return value in @prev on subsequent
903 * invocations for reference counting, or use mem_cgroup_iter_break()
904 * to cancel a hierarchy walk before the round-trip is complete.
905 *
b213b54f 906 * Reclaimers can specify a node and a priority level in @reclaim to
5660048c 907 * divide up the memcgs in the hierarchy among all concurrent
b213b54f 908 * reclaimers operating on the same node and priority.
5660048c 909 */
694fbc0f 910struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 911 struct mem_cgroup *prev,
694fbc0f 912 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 913{
33398cf2 914 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 915 struct cgroup_subsys_state *css = NULL;
9f3a0d09 916 struct mem_cgroup *memcg = NULL;
5ac8fb31 917 struct mem_cgroup *pos = NULL;
711d3d2c 918
694fbc0f
AM
919 if (mem_cgroup_disabled())
920 return NULL;
5660048c 921
9f3a0d09
JW
922 if (!root)
923 root = root_mem_cgroup;
7d74b06f 924
9f3a0d09 925 if (prev && !reclaim)
5ac8fb31 926 pos = prev;
14067bb3 927
9f3a0d09
JW
928 if (!root->use_hierarchy && root != root_mem_cgroup) {
929 if (prev)
5ac8fb31 930 goto out;
694fbc0f 931 return root;
9f3a0d09 932 }
14067bb3 933
542f85f9 934 rcu_read_lock();
5f578161 935
5ac8fb31 936 if (reclaim) {
ef8f2327 937 struct mem_cgroup_per_node *mz;
5ac8fb31 938
ef8f2327 939 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
940 iter = &mz->iter[reclaim->priority];
941
942 if (prev && reclaim->generation != iter->generation)
943 goto out_unlock;
944
6df38689 945 while (1) {
4db0c3c2 946 pos = READ_ONCE(iter->position);
6df38689
VD
947 if (!pos || css_tryget(&pos->css))
948 break;
5ac8fb31 949 /*
6df38689
VD
950 * css reference reached zero, so iter->position will
951 * be cleared by ->css_released. However, we should not
952 * rely on this happening soon, because ->css_released
953 * is called from a work queue, and by busy-waiting we
954 * might block it. So we clear iter->position right
955 * away.
5ac8fb31 956 */
6df38689
VD
957 (void)cmpxchg(&iter->position, pos, NULL);
958 }
5ac8fb31
JW
959 }
960
961 if (pos)
962 css = &pos->css;
963
964 for (;;) {
965 css = css_next_descendant_pre(css, &root->css);
966 if (!css) {
967 /*
968 * Reclaimers share the hierarchy walk, and a
969 * new one might jump in right at the end of
970 * the hierarchy - make sure they see at least
971 * one group and restart from the beginning.
972 */
973 if (!prev)
974 continue;
975 break;
527a5ec9 976 }
7d74b06f 977
5ac8fb31
JW
978 /*
979 * Verify the css and acquire a reference. The root
980 * is provided by the caller, so we know it's alive
981 * and kicking, and don't take an extra reference.
982 */
983 memcg = mem_cgroup_from_css(css);
14067bb3 984
5ac8fb31
JW
985 if (css == &root->css)
986 break;
14067bb3 987
0b8f73e1
JW
988 if (css_tryget(css))
989 break;
9f3a0d09 990
5ac8fb31 991 memcg = NULL;
9f3a0d09 992 }
5ac8fb31
JW
993
994 if (reclaim) {
5ac8fb31 995 /*
6df38689
VD
996 * The position could have already been updated by a competing
997 * thread, so check that the value hasn't changed since we read
998 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 999 */
6df38689
VD
1000 (void)cmpxchg(&iter->position, pos, memcg);
1001
5ac8fb31
JW
1002 if (pos)
1003 css_put(&pos->css);
1004
1005 if (!memcg)
1006 iter->generation++;
1007 else if (!prev)
1008 reclaim->generation = iter->generation;
9f3a0d09 1009 }
5ac8fb31 1010
542f85f9
MH
1011out_unlock:
1012 rcu_read_unlock();
5ac8fb31 1013out:
c40046f3
MH
1014 if (prev && prev != root)
1015 css_put(&prev->css);
1016
9f3a0d09 1017 return memcg;
14067bb3 1018}
7d74b06f 1019
5660048c
JW
1020/**
1021 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1022 * @root: hierarchy root
1023 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1024 */
1025void mem_cgroup_iter_break(struct mem_cgroup *root,
1026 struct mem_cgroup *prev)
9f3a0d09
JW
1027{
1028 if (!root)
1029 root = root_mem_cgroup;
1030 if (prev && prev != root)
1031 css_put(&prev->css);
1032}
7d74b06f 1033
6df38689
VD
1034static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1035{
1036 struct mem_cgroup *memcg = dead_memcg;
1037 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
1038 struct mem_cgroup_per_node *mz;
1039 int nid;
6df38689
VD
1040 int i;
1041
9f15bde6 1042 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 1043 for_each_node(nid) {
ef8f2327
MG
1044 mz = mem_cgroup_nodeinfo(memcg, nid);
1045 for (i = 0; i <= DEF_PRIORITY; i++) {
1046 iter = &mz->iter[i];
1047 cmpxchg(&iter->position,
1048 dead_memcg, NULL);
6df38689
VD
1049 }
1050 }
1051 }
1052}
1053
7c5f64f8
VD
1054/**
1055 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1056 * @memcg: hierarchy root
1057 * @fn: function to call for each task
1058 * @arg: argument passed to @fn
1059 *
1060 * This function iterates over tasks attached to @memcg or to any of its
1061 * descendants and calls @fn for each task. If @fn returns a non-zero
1062 * value, the function breaks the iteration loop and returns the value.
1063 * Otherwise, it will iterate over all tasks and return 0.
1064 *
1065 * This function must not be called for the root memory cgroup.
1066 */
1067int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1068 int (*fn)(struct task_struct *, void *), void *arg)
1069{
1070 struct mem_cgroup *iter;
1071 int ret = 0;
1072
1073 BUG_ON(memcg == root_mem_cgroup);
1074
1075 for_each_mem_cgroup_tree(iter, memcg) {
1076 struct css_task_iter it;
1077 struct task_struct *task;
1078
bc2fb7ed 1079 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
1080 while (!ret && (task = css_task_iter_next(&it)))
1081 ret = fn(task, arg);
1082 css_task_iter_end(&it);
1083 if (ret) {
1084 mem_cgroup_iter_break(memcg, iter);
1085 break;
1086 }
1087 }
1088 return ret;
1089}
1090
925b7673 1091/**
dfe0e773 1092 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1093 * @page: the page
f144c390 1094 * @pgdat: pgdat of the page
dfe0e773
JW
1095 *
1096 * This function is only safe when following the LRU page isolation
1097 * and putback protocol: the LRU lock must be held, and the page must
1098 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1099 */
599d0c95 1100struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 1101{
ef8f2327 1102 struct mem_cgroup_per_node *mz;
925b7673 1103 struct mem_cgroup *memcg;
bea8c150 1104 struct lruvec *lruvec;
6d12e2d8 1105
bea8c150 1106 if (mem_cgroup_disabled()) {
599d0c95 1107 lruvec = &pgdat->lruvec;
bea8c150
HD
1108 goto out;
1109 }
925b7673 1110
1306a85a 1111 memcg = page->mem_cgroup;
7512102c 1112 /*
dfe0e773 1113 * Swapcache readahead pages are added to the LRU - and
29833315 1114 * possibly migrated - before they are charged.
7512102c 1115 */
29833315
JW
1116 if (!memcg)
1117 memcg = root_mem_cgroup;
7512102c 1118
ef8f2327 1119 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
1120 lruvec = &mz->lruvec;
1121out:
1122 /*
1123 * Since a node can be onlined after the mem_cgroup was created,
1124 * we have to be prepared to initialize lruvec->zone here;
1125 * and if offlined then reonlined, we need to reinitialize it.
1126 */
599d0c95
MG
1127 if (unlikely(lruvec->pgdat != pgdat))
1128 lruvec->pgdat = pgdat;
bea8c150 1129 return lruvec;
08e552c6 1130}
b69408e8 1131
925b7673 1132/**
fa9add64
HD
1133 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1134 * @lruvec: mem_cgroup per zone lru vector
1135 * @lru: index of lru list the page is sitting on
b4536f0c 1136 * @zid: zone id of the accounted pages
fa9add64 1137 * @nr_pages: positive when adding or negative when removing
925b7673 1138 *
ca707239
HD
1139 * This function must be called under lru_lock, just before a page is added
1140 * to or just after a page is removed from an lru list (that ordering being
1141 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 1142 */
fa9add64 1143void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 1144 int zid, int nr_pages)
3f58a829 1145{
ef8f2327 1146 struct mem_cgroup_per_node *mz;
fa9add64 1147 unsigned long *lru_size;
ca707239 1148 long size;
3f58a829
MK
1149
1150 if (mem_cgroup_disabled())
1151 return;
1152
ef8f2327 1153 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1154 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1155
1156 if (nr_pages < 0)
1157 *lru_size += nr_pages;
1158
1159 size = *lru_size;
b4536f0c
MH
1160 if (WARN_ONCE(size < 0,
1161 "%s(%p, %d, %d): lru_size %ld\n",
1162 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1163 VM_BUG_ON(1);
1164 *lru_size = 0;
1165 }
1166
1167 if (nr_pages > 0)
1168 *lru_size += nr_pages;
08e552c6 1169}
544122e5 1170
2314b42d 1171bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1172{
2314b42d 1173 struct mem_cgroup *task_memcg;
158e0a2d 1174 struct task_struct *p;
ffbdccf5 1175 bool ret;
4c4a2214 1176
158e0a2d 1177 p = find_lock_task_mm(task);
de077d22 1178 if (p) {
2314b42d 1179 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1180 task_unlock(p);
1181 } else {
1182 /*
1183 * All threads may have already detached their mm's, but the oom
1184 * killer still needs to detect if they have already been oom
1185 * killed to prevent needlessly killing additional tasks.
1186 */
ffbdccf5 1187 rcu_read_lock();
2314b42d
JW
1188 task_memcg = mem_cgroup_from_task(task);
1189 css_get(&task_memcg->css);
ffbdccf5 1190 rcu_read_unlock();
de077d22 1191 }
2314b42d
JW
1192 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1193 css_put(&task_memcg->css);
4c4a2214
DR
1194 return ret;
1195}
1196
19942822 1197/**
9d11ea9f 1198 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1199 * @memcg: the memory cgroup
19942822 1200 *
9d11ea9f 1201 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1202 * pages.
19942822 1203 */
c0ff4b85 1204static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1205{
3e32cb2e
JW
1206 unsigned long margin = 0;
1207 unsigned long count;
1208 unsigned long limit;
9d11ea9f 1209
3e32cb2e 1210 count = page_counter_read(&memcg->memory);
bbec2e15 1211 limit = READ_ONCE(memcg->memory.max);
3e32cb2e
JW
1212 if (count < limit)
1213 margin = limit - count;
1214
7941d214 1215 if (do_memsw_account()) {
3e32cb2e 1216 count = page_counter_read(&memcg->memsw);
bbec2e15 1217 limit = READ_ONCE(memcg->memsw.max);
3e32cb2e
JW
1218 if (count <= limit)
1219 margin = min(margin, limit - count);
cbedbac3
LR
1220 else
1221 margin = 0;
3e32cb2e
JW
1222 }
1223
1224 return margin;
19942822
JW
1225}
1226
32047e2a 1227/*
bdcbb659 1228 * A routine for checking "mem" is under move_account() or not.
32047e2a 1229 *
bdcbb659
QH
1230 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1231 * moving cgroups. This is for waiting at high-memory pressure
1232 * caused by "move".
32047e2a 1233 */
c0ff4b85 1234static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1235{
2bd9bb20
KH
1236 struct mem_cgroup *from;
1237 struct mem_cgroup *to;
4b534334 1238 bool ret = false;
2bd9bb20
KH
1239 /*
1240 * Unlike task_move routines, we access mc.to, mc.from not under
1241 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1242 */
1243 spin_lock(&mc.lock);
1244 from = mc.from;
1245 to = mc.to;
1246 if (!from)
1247 goto unlock;
3e92041d 1248
2314b42d
JW
1249 ret = mem_cgroup_is_descendant(from, memcg) ||
1250 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1251unlock:
1252 spin_unlock(&mc.lock);
4b534334
KH
1253 return ret;
1254}
1255
c0ff4b85 1256static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1257{
1258 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1259 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1260 DEFINE_WAIT(wait);
1261 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1262 /* moving charge context might have finished. */
1263 if (mc.moving_task)
1264 schedule();
1265 finish_wait(&mc.waitq, &wait);
1266 return true;
1267 }
1268 }
1269 return false;
1270}
1271
8ad6e404 1272static const unsigned int memcg1_stats[] = {
71cd3113
JW
1273 MEMCG_CACHE,
1274 MEMCG_RSS,
1275 MEMCG_RSS_HUGE,
1276 NR_SHMEM,
1277 NR_FILE_MAPPED,
1278 NR_FILE_DIRTY,
1279 NR_WRITEBACK,
1280 MEMCG_SWAP,
1281};
1282
1283static const char *const memcg1_stat_names[] = {
1284 "cache",
1285 "rss",
1286 "rss_huge",
1287 "shmem",
1288 "mapped_file",
1289 "dirty",
1290 "writeback",
1291 "swap",
1292};
1293
58cf188e 1294#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1295/**
58cf188e 1296 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1297 * @memcg: The memory cgroup that went over limit
1298 * @p: Task that is going to be killed
1299 *
1300 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1301 * enabled
1302 */
1303void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1304{
58cf188e
SZ
1305 struct mem_cgroup *iter;
1306 unsigned int i;
e222432b 1307
e222432b
BS
1308 rcu_read_lock();
1309
2415b9f5
BV
1310 if (p) {
1311 pr_info("Task in ");
1312 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1313 pr_cont(" killed as a result of limit of ");
1314 } else {
1315 pr_info("Memory limit reached of cgroup ");
1316 }
1317
e61734c5 1318 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1319 pr_cont("\n");
e222432b 1320
e222432b
BS
1321 rcu_read_unlock();
1322
3e32cb2e
JW
1323 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1324 K((u64)page_counter_read(&memcg->memory)),
bbec2e15 1325 K((u64)memcg->memory.max), memcg->memory.failcnt);
3e32cb2e
JW
1326 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1327 K((u64)page_counter_read(&memcg->memsw)),
bbec2e15 1328 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
3e32cb2e
JW
1329 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1330 K((u64)page_counter_read(&memcg->kmem)),
bbec2e15 1331 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
58cf188e
SZ
1332
1333 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1334 pr_info("Memory cgroup stats for ");
1335 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1336 pr_cont(":");
1337
71cd3113
JW
1338 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1339 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1340 continue;
71cd3113 1341 pr_cont(" %s:%luKB", memcg1_stat_names[i],
ccda7f43 1342 K(memcg_page_state(iter, memcg1_stats[i])));
58cf188e
SZ
1343 }
1344
1345 for (i = 0; i < NR_LRU_LISTS; i++)
1346 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1347 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1348
1349 pr_cont("\n");
1350 }
e222432b
BS
1351}
1352
a63d83f4
DR
1353/*
1354 * Return the memory (and swap, if configured) limit for a memcg.
1355 */
bbec2e15 1356unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
a63d83f4 1357{
bbec2e15 1358 unsigned long max;
f3e8eb70 1359
bbec2e15 1360 max = memcg->memory.max;
9a5a8f19 1361 if (mem_cgroup_swappiness(memcg)) {
bbec2e15
RG
1362 unsigned long memsw_max;
1363 unsigned long swap_max;
9a5a8f19 1364
bbec2e15
RG
1365 memsw_max = memcg->memsw.max;
1366 swap_max = memcg->swap.max;
1367 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1368 max = min(max + swap_max, memsw_max);
9a5a8f19 1369 }
bbec2e15 1370 return max;
a63d83f4
DR
1371}
1372
b6e6edcf 1373static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1374 int order)
9cbb78bb 1375{
6e0fc46d
DR
1376 struct oom_control oc = {
1377 .zonelist = NULL,
1378 .nodemask = NULL,
2a966b77 1379 .memcg = memcg,
6e0fc46d
DR
1380 .gfp_mask = gfp_mask,
1381 .order = order,
6e0fc46d 1382 };
7c5f64f8 1383 bool ret;
9cbb78bb 1384
dc56401f 1385 mutex_lock(&oom_lock);
7c5f64f8 1386 ret = out_of_memory(&oc);
dc56401f 1387 mutex_unlock(&oom_lock);
7c5f64f8 1388 return ret;
9cbb78bb
DR
1389}
1390
ae6e71d3
MC
1391#if MAX_NUMNODES > 1
1392
4d0c066d
KH
1393/**
1394 * test_mem_cgroup_node_reclaimable
dad7557e 1395 * @memcg: the target memcg
4d0c066d
KH
1396 * @nid: the node ID to be checked.
1397 * @noswap : specify true here if the user wants flle only information.
1398 *
1399 * This function returns whether the specified memcg contains any
1400 * reclaimable pages on a node. Returns true if there are any reclaimable
1401 * pages in the node.
1402 */
c0ff4b85 1403static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1404 int nid, bool noswap)
1405{
c0ff4b85 1406 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1407 return true;
1408 if (noswap || !total_swap_pages)
1409 return false;
c0ff4b85 1410 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1411 return true;
1412 return false;
1413
1414}
889976db
YH
1415
1416/*
1417 * Always updating the nodemask is not very good - even if we have an empty
1418 * list or the wrong list here, we can start from some node and traverse all
1419 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1420 *
1421 */
c0ff4b85 1422static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1423{
1424 int nid;
453a9bf3
KH
1425 /*
1426 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427 * pagein/pageout changes since the last update.
1428 */
c0ff4b85 1429 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1430 return;
c0ff4b85 1431 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1432 return;
1433
889976db 1434 /* make a nodemask where this memcg uses memory from */
31aaea4a 1435 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1436
31aaea4a 1437 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1438
c0ff4b85
R
1439 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440 node_clear(nid, memcg->scan_nodes);
889976db 1441 }
453a9bf3 1442
c0ff4b85
R
1443 atomic_set(&memcg->numainfo_events, 0);
1444 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1445}
1446
1447/*
1448 * Selecting a node where we start reclaim from. Because what we need is just
1449 * reducing usage counter, start from anywhere is O,K. Considering
1450 * memory reclaim from current node, there are pros. and cons.
1451 *
1452 * Freeing memory from current node means freeing memory from a node which
1453 * we'll use or we've used. So, it may make LRU bad. And if several threads
1454 * hit limits, it will see a contention on a node. But freeing from remote
1455 * node means more costs for memory reclaim because of memory latency.
1456 *
1457 * Now, we use round-robin. Better algorithm is welcomed.
1458 */
c0ff4b85 1459int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1460{
1461 int node;
1462
c0ff4b85
R
1463 mem_cgroup_may_update_nodemask(memcg);
1464 node = memcg->last_scanned_node;
889976db 1465
0edaf86c 1466 node = next_node_in(node, memcg->scan_nodes);
889976db 1467 /*
fda3d69b
MH
1468 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1469 * last time it really checked all the LRUs due to rate limiting.
1470 * Fallback to the current node in that case for simplicity.
889976db
YH
1471 */
1472 if (unlikely(node == MAX_NUMNODES))
1473 node = numa_node_id();
1474
c0ff4b85 1475 memcg->last_scanned_node = node;
889976db
YH
1476 return node;
1477}
889976db 1478#else
c0ff4b85 1479int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1480{
1481 return 0;
1482}
1483#endif
1484
0608f43d 1485static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1486 pg_data_t *pgdat,
0608f43d
AM
1487 gfp_t gfp_mask,
1488 unsigned long *total_scanned)
1489{
1490 struct mem_cgroup *victim = NULL;
1491 int total = 0;
1492 int loop = 0;
1493 unsigned long excess;
1494 unsigned long nr_scanned;
1495 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1496 .pgdat = pgdat,
0608f43d
AM
1497 .priority = 0,
1498 };
1499
3e32cb2e 1500 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1501
1502 while (1) {
1503 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1504 if (!victim) {
1505 loop++;
1506 if (loop >= 2) {
1507 /*
1508 * If we have not been able to reclaim
1509 * anything, it might because there are
1510 * no reclaimable pages under this hierarchy
1511 */
1512 if (!total)
1513 break;
1514 /*
1515 * We want to do more targeted reclaim.
1516 * excess >> 2 is not to excessive so as to
1517 * reclaim too much, nor too less that we keep
1518 * coming back to reclaim from this cgroup
1519 */
1520 if (total >= (excess >> 2) ||
1521 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1522 break;
1523 }
1524 continue;
1525 }
a9dd0a83 1526 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1527 pgdat, &nr_scanned);
0608f43d 1528 *total_scanned += nr_scanned;
3e32cb2e 1529 if (!soft_limit_excess(root_memcg))
0608f43d 1530 break;
6d61ef40 1531 }
0608f43d
AM
1532 mem_cgroup_iter_break(root_memcg, victim);
1533 return total;
6d61ef40
BS
1534}
1535
0056f4e6
JW
1536#ifdef CONFIG_LOCKDEP
1537static struct lockdep_map memcg_oom_lock_dep_map = {
1538 .name = "memcg_oom_lock",
1539};
1540#endif
1541
fb2a6fc5
JW
1542static DEFINE_SPINLOCK(memcg_oom_lock);
1543
867578cb
KH
1544/*
1545 * Check OOM-Killer is already running under our hierarchy.
1546 * If someone is running, return false.
1547 */
fb2a6fc5 1548static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1549{
79dfdacc 1550 struct mem_cgroup *iter, *failed = NULL;
a636b327 1551
fb2a6fc5
JW
1552 spin_lock(&memcg_oom_lock);
1553
9f3a0d09 1554 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1555 if (iter->oom_lock) {
79dfdacc
MH
1556 /*
1557 * this subtree of our hierarchy is already locked
1558 * so we cannot give a lock.
1559 */
79dfdacc 1560 failed = iter;
9f3a0d09
JW
1561 mem_cgroup_iter_break(memcg, iter);
1562 break;
23751be0
JW
1563 } else
1564 iter->oom_lock = true;
7d74b06f 1565 }
867578cb 1566
fb2a6fc5
JW
1567 if (failed) {
1568 /*
1569 * OK, we failed to lock the whole subtree so we have
1570 * to clean up what we set up to the failing subtree
1571 */
1572 for_each_mem_cgroup_tree(iter, memcg) {
1573 if (iter == failed) {
1574 mem_cgroup_iter_break(memcg, iter);
1575 break;
1576 }
1577 iter->oom_lock = false;
79dfdacc 1578 }
0056f4e6
JW
1579 } else
1580 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1581
1582 spin_unlock(&memcg_oom_lock);
1583
1584 return !failed;
a636b327 1585}
0b7f569e 1586
fb2a6fc5 1587static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1588{
7d74b06f
KH
1589 struct mem_cgroup *iter;
1590
fb2a6fc5 1591 spin_lock(&memcg_oom_lock);
0056f4e6 1592 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1593 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1594 iter->oom_lock = false;
fb2a6fc5 1595 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1596}
1597
c0ff4b85 1598static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1599{
1600 struct mem_cgroup *iter;
1601
c2b42d3c 1602 spin_lock(&memcg_oom_lock);
c0ff4b85 1603 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1604 iter->under_oom++;
1605 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1606}
1607
c0ff4b85 1608static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1609{
1610 struct mem_cgroup *iter;
1611
867578cb
KH
1612 /*
1613 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1614 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1615 */
c2b42d3c 1616 spin_lock(&memcg_oom_lock);
c0ff4b85 1617 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1618 if (iter->under_oom > 0)
1619 iter->under_oom--;
1620 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1621}
1622
867578cb
KH
1623static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1624
dc98df5a 1625struct oom_wait_info {
d79154bb 1626 struct mem_cgroup *memcg;
ac6424b9 1627 wait_queue_entry_t wait;
dc98df5a
KH
1628};
1629
ac6424b9 1630static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1631 unsigned mode, int sync, void *arg)
1632{
d79154bb
HD
1633 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1634 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1635 struct oom_wait_info *oom_wait_info;
1636
1637 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1638 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1639
2314b42d
JW
1640 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1641 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1642 return 0;
dc98df5a
KH
1643 return autoremove_wake_function(wait, mode, sync, arg);
1644}
1645
c0ff4b85 1646static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1647{
c2b42d3c
TH
1648 /*
1649 * For the following lockless ->under_oom test, the only required
1650 * guarantee is that it must see the state asserted by an OOM when
1651 * this function is called as a result of userland actions
1652 * triggered by the notification of the OOM. This is trivially
1653 * achieved by invoking mem_cgroup_mark_under_oom() before
1654 * triggering notification.
1655 */
1656 if (memcg && memcg->under_oom)
f4b90b70 1657 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1658}
1659
29ef680a
MH
1660enum oom_status {
1661 OOM_SUCCESS,
1662 OOM_FAILED,
1663 OOM_ASYNC,
1664 OOM_SKIPPED
1665};
1666
1667static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1668{
29ef680a
MH
1669 if (order > PAGE_ALLOC_COSTLY_ORDER)
1670 return OOM_SKIPPED;
1671
867578cb 1672 /*
49426420
JW
1673 * We are in the middle of the charge context here, so we
1674 * don't want to block when potentially sitting on a callstack
1675 * that holds all kinds of filesystem and mm locks.
1676 *
29ef680a
MH
1677 * cgroup1 allows disabling the OOM killer and waiting for outside
1678 * handling until the charge can succeed; remember the context and put
1679 * the task to sleep at the end of the page fault when all locks are
1680 * released.
49426420 1681 *
29ef680a
MH
1682 * On the other hand, in-kernel OOM killer allows for an async victim
1683 * memory reclaim (oom_reaper) and that means that we are not solely
1684 * relying on the oom victim to make a forward progress and we can
1685 * invoke the oom killer here.
1686 *
1687 * Please note that mem_cgroup_out_of_memory might fail to find a
1688 * victim and then we have to bail out from the charge path.
867578cb 1689 */
29ef680a
MH
1690 if (memcg->oom_kill_disable) {
1691 if (!current->in_user_fault)
1692 return OOM_SKIPPED;
1693 css_get(&memcg->css);
1694 current->memcg_in_oom = memcg;
1695 current->memcg_oom_gfp_mask = mask;
1696 current->memcg_oom_order = order;
1697
1698 return OOM_ASYNC;
1699 }
1700
1701 if (mem_cgroup_out_of_memory(memcg, mask, order))
1702 return OOM_SUCCESS;
1703
1704 WARN(1,"Memory cgroup charge failed because of no reclaimable memory! "
1705 "This looks like a misconfiguration or a kernel bug.");
1706 return OOM_FAILED;
3812c8c8
JW
1707}
1708
1709/**
1710 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1711 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1712 *
49426420
JW
1713 * This has to be called at the end of a page fault if the memcg OOM
1714 * handler was enabled.
3812c8c8 1715 *
49426420 1716 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1717 * sleep on a waitqueue until the userspace task resolves the
1718 * situation. Sleeping directly in the charge context with all kinds
1719 * of locks held is not a good idea, instead we remember an OOM state
1720 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1721 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1722 *
1723 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1724 * completed, %false otherwise.
3812c8c8 1725 */
49426420 1726bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1727{
626ebc41 1728 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1729 struct oom_wait_info owait;
49426420 1730 bool locked;
3812c8c8
JW
1731
1732 /* OOM is global, do not handle */
3812c8c8 1733 if (!memcg)
49426420 1734 return false;
3812c8c8 1735
7c5f64f8 1736 if (!handle)
49426420 1737 goto cleanup;
3812c8c8
JW
1738
1739 owait.memcg = memcg;
1740 owait.wait.flags = 0;
1741 owait.wait.func = memcg_oom_wake_function;
1742 owait.wait.private = current;
2055da97 1743 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1744
3812c8c8 1745 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1746 mem_cgroup_mark_under_oom(memcg);
1747
1748 locked = mem_cgroup_oom_trylock(memcg);
1749
1750 if (locked)
1751 mem_cgroup_oom_notify(memcg);
1752
1753 if (locked && !memcg->oom_kill_disable) {
1754 mem_cgroup_unmark_under_oom(memcg);
1755 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1756 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1757 current->memcg_oom_order);
49426420 1758 } else {
3812c8c8 1759 schedule();
49426420
JW
1760 mem_cgroup_unmark_under_oom(memcg);
1761 finish_wait(&memcg_oom_waitq, &owait.wait);
1762 }
1763
1764 if (locked) {
fb2a6fc5
JW
1765 mem_cgroup_oom_unlock(memcg);
1766 /*
1767 * There is no guarantee that an OOM-lock contender
1768 * sees the wakeups triggered by the OOM kill
1769 * uncharges. Wake any sleepers explicitely.
1770 */
1771 memcg_oom_recover(memcg);
1772 }
49426420 1773cleanup:
626ebc41 1774 current->memcg_in_oom = NULL;
3812c8c8 1775 css_put(&memcg->css);
867578cb 1776 return true;
0b7f569e
KH
1777}
1778
d7365e78 1779/**
81f8c3a4
JW
1780 * lock_page_memcg - lock a page->mem_cgroup binding
1781 * @page: the page
32047e2a 1782 *
81f8c3a4 1783 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1784 * another cgroup.
1785 *
1786 * It ensures lifetime of the returned memcg. Caller is responsible
1787 * for the lifetime of the page; __unlock_page_memcg() is available
1788 * when @page might get freed inside the locked section.
d69b042f 1789 */
739f79fc 1790struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1791{
1792 struct mem_cgroup *memcg;
6de22619 1793 unsigned long flags;
89c06bd5 1794
6de22619
JW
1795 /*
1796 * The RCU lock is held throughout the transaction. The fast
1797 * path can get away without acquiring the memcg->move_lock
1798 * because page moving starts with an RCU grace period.
739f79fc
JW
1799 *
1800 * The RCU lock also protects the memcg from being freed when
1801 * the page state that is going to change is the only thing
1802 * preventing the page itself from being freed. E.g. writeback
1803 * doesn't hold a page reference and relies on PG_writeback to
1804 * keep off truncation, migration and so forth.
1805 */
d7365e78
JW
1806 rcu_read_lock();
1807
1808 if (mem_cgroup_disabled())
739f79fc 1809 return NULL;
89c06bd5 1810again:
1306a85a 1811 memcg = page->mem_cgroup;
29833315 1812 if (unlikely(!memcg))
739f79fc 1813 return NULL;
d7365e78 1814
bdcbb659 1815 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1816 return memcg;
89c06bd5 1817
6de22619 1818 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1819 if (memcg != page->mem_cgroup) {
6de22619 1820 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1821 goto again;
1822 }
6de22619
JW
1823
1824 /*
1825 * When charge migration first begins, we can have locked and
1826 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1827 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1828 */
1829 memcg->move_lock_task = current;
1830 memcg->move_lock_flags = flags;
d7365e78 1831
739f79fc 1832 return memcg;
89c06bd5 1833}
81f8c3a4 1834EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1835
d7365e78 1836/**
739f79fc
JW
1837 * __unlock_page_memcg - unlock and unpin a memcg
1838 * @memcg: the memcg
1839 *
1840 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1841 */
739f79fc 1842void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1843{
6de22619
JW
1844 if (memcg && memcg->move_lock_task == current) {
1845 unsigned long flags = memcg->move_lock_flags;
1846
1847 memcg->move_lock_task = NULL;
1848 memcg->move_lock_flags = 0;
1849
1850 spin_unlock_irqrestore(&memcg->move_lock, flags);
1851 }
89c06bd5 1852
d7365e78 1853 rcu_read_unlock();
89c06bd5 1854}
739f79fc
JW
1855
1856/**
1857 * unlock_page_memcg - unlock a page->mem_cgroup binding
1858 * @page: the page
1859 */
1860void unlock_page_memcg(struct page *page)
1861{
1862 __unlock_page_memcg(page->mem_cgroup);
1863}
81f8c3a4 1864EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1865
cdec2e42
KH
1866struct memcg_stock_pcp {
1867 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1868 unsigned int nr_pages;
cdec2e42 1869 struct work_struct work;
26fe6168 1870 unsigned long flags;
a0db00fc 1871#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1872};
1873static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1874static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1875
a0956d54
SS
1876/**
1877 * consume_stock: Try to consume stocked charge on this cpu.
1878 * @memcg: memcg to consume from.
1879 * @nr_pages: how many pages to charge.
1880 *
1881 * The charges will only happen if @memcg matches the current cpu's memcg
1882 * stock, and at least @nr_pages are available in that stock. Failure to
1883 * service an allocation will refill the stock.
1884 *
1885 * returns true if successful, false otherwise.
cdec2e42 1886 */
a0956d54 1887static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1888{
1889 struct memcg_stock_pcp *stock;
db2ba40c 1890 unsigned long flags;
3e32cb2e 1891 bool ret = false;
cdec2e42 1892
a983b5eb 1893 if (nr_pages > MEMCG_CHARGE_BATCH)
3e32cb2e 1894 return ret;
a0956d54 1895
db2ba40c
JW
1896 local_irq_save(flags);
1897
1898 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1899 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1900 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1901 ret = true;
1902 }
db2ba40c
JW
1903
1904 local_irq_restore(flags);
1905
cdec2e42
KH
1906 return ret;
1907}
1908
1909/*
3e32cb2e 1910 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1911 */
1912static void drain_stock(struct memcg_stock_pcp *stock)
1913{
1914 struct mem_cgroup *old = stock->cached;
1915
11c9ea4e 1916 if (stock->nr_pages) {
3e32cb2e 1917 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1918 if (do_memsw_account())
3e32cb2e 1919 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1920 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1921 stock->nr_pages = 0;
cdec2e42
KH
1922 }
1923 stock->cached = NULL;
cdec2e42
KH
1924}
1925
cdec2e42
KH
1926static void drain_local_stock(struct work_struct *dummy)
1927{
db2ba40c
JW
1928 struct memcg_stock_pcp *stock;
1929 unsigned long flags;
1930
72f0184c
MH
1931 /*
1932 * The only protection from memory hotplug vs. drain_stock races is
1933 * that we always operate on local CPU stock here with IRQ disabled
1934 */
db2ba40c
JW
1935 local_irq_save(flags);
1936
1937 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1938 drain_stock(stock);
26fe6168 1939 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1940
1941 local_irq_restore(flags);
cdec2e42
KH
1942}
1943
1944/*
3e32cb2e 1945 * Cache charges(val) to local per_cpu area.
320cc51d 1946 * This will be consumed by consume_stock() function, later.
cdec2e42 1947 */
c0ff4b85 1948static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1949{
db2ba40c
JW
1950 struct memcg_stock_pcp *stock;
1951 unsigned long flags;
1952
1953 local_irq_save(flags);
cdec2e42 1954
db2ba40c 1955 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1956 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1957 drain_stock(stock);
c0ff4b85 1958 stock->cached = memcg;
cdec2e42 1959 }
11c9ea4e 1960 stock->nr_pages += nr_pages;
db2ba40c 1961
a983b5eb 1962 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
475d0487
RG
1963 drain_stock(stock);
1964
db2ba40c 1965 local_irq_restore(flags);
cdec2e42
KH
1966}
1967
1968/*
c0ff4b85 1969 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1970 * of the hierarchy under it.
cdec2e42 1971 */
6d3d6aa2 1972static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1973{
26fe6168 1974 int cpu, curcpu;
d38144b7 1975
6d3d6aa2
JW
1976 /* If someone's already draining, avoid adding running more workers. */
1977 if (!mutex_trylock(&percpu_charge_mutex))
1978 return;
72f0184c
MH
1979 /*
1980 * Notify other cpus that system-wide "drain" is running
1981 * We do not care about races with the cpu hotplug because cpu down
1982 * as well as workers from this path always operate on the local
1983 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1984 */
5af12d0e 1985 curcpu = get_cpu();
cdec2e42
KH
1986 for_each_online_cpu(cpu) {
1987 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1988 struct mem_cgroup *memcg;
26fe6168 1989
c0ff4b85 1990 memcg = stock->cached;
72f0184c 1991 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 1992 continue;
72f0184c
MH
1993 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1994 css_put(&memcg->css);
3e92041d 1995 continue;
72f0184c 1996 }
d1a05b69
MH
1997 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1998 if (cpu == curcpu)
1999 drain_local_stock(&stock->work);
2000 else
2001 schedule_work_on(cpu, &stock->work);
2002 }
72f0184c 2003 css_put(&memcg->css);
cdec2e42 2004 }
5af12d0e 2005 put_cpu();
9f50fad6 2006 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2007}
2008
308167fc 2009static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 2010{
cdec2e42 2011 struct memcg_stock_pcp *stock;
a983b5eb 2012 struct mem_cgroup *memcg;
cdec2e42 2013
cdec2e42
KH
2014 stock = &per_cpu(memcg_stock, cpu);
2015 drain_stock(stock);
a983b5eb
JW
2016
2017 for_each_mem_cgroup(memcg) {
2018 int i;
2019
2020 for (i = 0; i < MEMCG_NR_STAT; i++) {
2021 int nid;
2022 long x;
2023
2024 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2025 if (x)
2026 atomic_long_add(x, &memcg->stat[i]);
2027
2028 if (i >= NR_VM_NODE_STAT_ITEMS)
2029 continue;
2030
2031 for_each_node(nid) {
2032 struct mem_cgroup_per_node *pn;
2033
2034 pn = mem_cgroup_nodeinfo(memcg, nid);
2035 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2036 if (x)
2037 atomic_long_add(x, &pn->lruvec_stat[i]);
2038 }
2039 }
2040
e27be240 2041 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
a983b5eb
JW
2042 long x;
2043
2044 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2045 if (x)
2046 atomic_long_add(x, &memcg->events[i]);
2047 }
2048 }
2049
308167fc 2050 return 0;
cdec2e42
KH
2051}
2052
f7e1cb6e
JW
2053static void reclaim_high(struct mem_cgroup *memcg,
2054 unsigned int nr_pages,
2055 gfp_t gfp_mask)
2056{
2057 do {
2058 if (page_counter_read(&memcg->memory) <= memcg->high)
2059 continue;
e27be240 2060 memcg_memory_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
2061 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2062 } while ((memcg = parent_mem_cgroup(memcg)));
2063}
2064
2065static void high_work_func(struct work_struct *work)
2066{
2067 struct mem_cgroup *memcg;
2068
2069 memcg = container_of(work, struct mem_cgroup, high_work);
a983b5eb 2070 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
f7e1cb6e
JW
2071}
2072
b23afb93
TH
2073/*
2074 * Scheduled by try_charge() to be executed from the userland return path
2075 * and reclaims memory over the high limit.
2076 */
2077void mem_cgroup_handle_over_high(void)
2078{
2079 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 2080 struct mem_cgroup *memcg;
b23afb93
TH
2081
2082 if (likely(!nr_pages))
2083 return;
2084
f7e1cb6e
JW
2085 memcg = get_mem_cgroup_from_mm(current->mm);
2086 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
2087 css_put(&memcg->css);
2088 current->memcg_nr_pages_over_high = 0;
2089}
2090
00501b53
JW
2091static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2092 unsigned int nr_pages)
8a9f3ccd 2093{
a983b5eb 2094 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
9b130619 2095 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2096 struct mem_cgroup *mem_over_limit;
3e32cb2e 2097 struct page_counter *counter;
6539cc05 2098 unsigned long nr_reclaimed;
b70a2a21
JW
2099 bool may_swap = true;
2100 bool drained = false;
29ef680a
MH
2101 bool oomed = false;
2102 enum oom_status oom_status;
a636b327 2103
ce00a967 2104 if (mem_cgroup_is_root(memcg))
10d53c74 2105 return 0;
6539cc05 2106retry:
b6b6cc72 2107 if (consume_stock(memcg, nr_pages))
10d53c74 2108 return 0;
8a9f3ccd 2109
7941d214 2110 if (!do_memsw_account() ||
6071ca52
JW
2111 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2112 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2113 goto done_restock;
7941d214 2114 if (do_memsw_account())
3e32cb2e
JW
2115 page_counter_uncharge(&memcg->memsw, batch);
2116 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2117 } else {
3e32cb2e 2118 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2119 may_swap = false;
3fbe7244 2120 }
7a81b88c 2121
6539cc05
JW
2122 if (batch > nr_pages) {
2123 batch = nr_pages;
2124 goto retry;
2125 }
6d61ef40 2126
06b078fc
JW
2127 /*
2128 * Unlike in global OOM situations, memcg is not in a physical
2129 * memory shortage. Allow dying and OOM-killed tasks to
2130 * bypass the last charges so that they can exit quickly and
2131 * free their memory.
2132 */
da99ecf1 2133 if (unlikely(tsk_is_oom_victim(current) ||
06b078fc
JW
2134 fatal_signal_pending(current) ||
2135 current->flags & PF_EXITING))
10d53c74 2136 goto force;
06b078fc 2137
89a28483
JW
2138 /*
2139 * Prevent unbounded recursion when reclaim operations need to
2140 * allocate memory. This might exceed the limits temporarily,
2141 * but we prefer facilitating memory reclaim and getting back
2142 * under the limit over triggering OOM kills in these cases.
2143 */
2144 if (unlikely(current->flags & PF_MEMALLOC))
2145 goto force;
2146
06b078fc
JW
2147 if (unlikely(task_in_memcg_oom(current)))
2148 goto nomem;
2149
d0164adc 2150 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 2151 goto nomem;
4b534334 2152
e27be240 2153 memcg_memory_event(mem_over_limit, MEMCG_MAX);
241994ed 2154
b70a2a21
JW
2155 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2156 gfp_mask, may_swap);
6539cc05 2157
61e02c74 2158 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2159 goto retry;
28c34c29 2160
b70a2a21 2161 if (!drained) {
6d3d6aa2 2162 drain_all_stock(mem_over_limit);
b70a2a21
JW
2163 drained = true;
2164 goto retry;
2165 }
2166
28c34c29
JW
2167 if (gfp_mask & __GFP_NORETRY)
2168 goto nomem;
6539cc05
JW
2169 /*
2170 * Even though the limit is exceeded at this point, reclaim
2171 * may have been able to free some pages. Retry the charge
2172 * before killing the task.
2173 *
2174 * Only for regular pages, though: huge pages are rather
2175 * unlikely to succeed so close to the limit, and we fall back
2176 * to regular pages anyway in case of failure.
2177 */
61e02c74 2178 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2179 goto retry;
2180 /*
2181 * At task move, charge accounts can be doubly counted. So, it's
2182 * better to wait until the end of task_move if something is going on.
2183 */
2184 if (mem_cgroup_wait_acct_move(mem_over_limit))
2185 goto retry;
2186
9b130619
JW
2187 if (nr_retries--)
2188 goto retry;
2189
29ef680a
MH
2190 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2191 goto nomem;
2192
06b078fc 2193 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2194 goto force;
06b078fc 2195
6539cc05 2196 if (fatal_signal_pending(current))
10d53c74 2197 goto force;
6539cc05 2198
e27be240 2199 memcg_memory_event(mem_over_limit, MEMCG_OOM);
241994ed 2200
29ef680a
MH
2201 /*
2202 * keep retrying as long as the memcg oom killer is able to make
2203 * a forward progress or bypass the charge if the oom killer
2204 * couldn't make any progress.
2205 */
2206 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
3608de07 2207 get_order(nr_pages * PAGE_SIZE));
29ef680a
MH
2208 switch (oom_status) {
2209 case OOM_SUCCESS:
2210 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2211 oomed = true;
2212 goto retry;
2213 case OOM_FAILED:
2214 goto force;
2215 default:
2216 goto nomem;
2217 }
7a81b88c 2218nomem:
6d1fdc48 2219 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2220 return -ENOMEM;
10d53c74
TH
2221force:
2222 /*
2223 * The allocation either can't fail or will lead to more memory
2224 * being freed very soon. Allow memory usage go over the limit
2225 * temporarily by force charging it.
2226 */
2227 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2228 if (do_memsw_account())
10d53c74
TH
2229 page_counter_charge(&memcg->memsw, nr_pages);
2230 css_get_many(&memcg->css, nr_pages);
2231
2232 return 0;
6539cc05
JW
2233
2234done_restock:
e8ea14cc 2235 css_get_many(&memcg->css, batch);
6539cc05
JW
2236 if (batch > nr_pages)
2237 refill_stock(memcg, batch - nr_pages);
b23afb93 2238
241994ed 2239 /*
b23afb93
TH
2240 * If the hierarchy is above the normal consumption range, schedule
2241 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2242 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2243 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2244 * not recorded as it most likely matches current's and won't
2245 * change in the meantime. As high limit is checked again before
2246 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2247 */
2248 do {
b23afb93 2249 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2250 /* Don't bother a random interrupted task */
2251 if (in_interrupt()) {
2252 schedule_work(&memcg->high_work);
2253 break;
2254 }
9516a18a 2255 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2256 set_notify_resume(current);
2257 break;
2258 }
241994ed 2259 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2260
2261 return 0;
7a81b88c 2262}
8a9f3ccd 2263
00501b53 2264static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2265{
ce00a967
JW
2266 if (mem_cgroup_is_root(memcg))
2267 return;
2268
3e32cb2e 2269 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2270 if (do_memsw_account())
3e32cb2e 2271 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2272
e8ea14cc 2273 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2274}
2275
0a31bc97
JW
2276static void lock_page_lru(struct page *page, int *isolated)
2277{
2278 struct zone *zone = page_zone(page);
2279
a52633d8 2280 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2281 if (PageLRU(page)) {
2282 struct lruvec *lruvec;
2283
599d0c95 2284 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2285 ClearPageLRU(page);
2286 del_page_from_lru_list(page, lruvec, page_lru(page));
2287 *isolated = 1;
2288 } else
2289 *isolated = 0;
2290}
2291
2292static void unlock_page_lru(struct page *page, int isolated)
2293{
2294 struct zone *zone = page_zone(page);
2295
2296 if (isolated) {
2297 struct lruvec *lruvec;
2298
599d0c95 2299 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2300 VM_BUG_ON_PAGE(PageLRU(page), page);
2301 SetPageLRU(page);
2302 add_page_to_lru_list(page, lruvec, page_lru(page));
2303 }
a52633d8 2304 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2305}
2306
00501b53 2307static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2308 bool lrucare)
7a81b88c 2309{
0a31bc97 2310 int isolated;
9ce70c02 2311
1306a85a 2312 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2313
2314 /*
2315 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2316 * may already be on some other mem_cgroup's LRU. Take care of it.
2317 */
0a31bc97
JW
2318 if (lrucare)
2319 lock_page_lru(page, &isolated);
9ce70c02 2320
0a31bc97
JW
2321 /*
2322 * Nobody should be changing or seriously looking at
1306a85a 2323 * page->mem_cgroup at this point:
0a31bc97
JW
2324 *
2325 * - the page is uncharged
2326 *
2327 * - the page is off-LRU
2328 *
2329 * - an anonymous fault has exclusive page access, except for
2330 * a locked page table
2331 *
2332 * - a page cache insertion, a swapin fault, or a migration
2333 * have the page locked
2334 */
1306a85a 2335 page->mem_cgroup = memcg;
9ce70c02 2336
0a31bc97
JW
2337 if (lrucare)
2338 unlock_page_lru(page, isolated);
7a81b88c 2339}
66e1707b 2340
84c07d11 2341#ifdef CONFIG_MEMCG_KMEM
f3bb3043 2342static int memcg_alloc_cache_id(void)
55007d84 2343{
f3bb3043
VD
2344 int id, size;
2345 int err;
2346
dbcf73e2 2347 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2348 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2349 if (id < 0)
2350 return id;
55007d84 2351
dbcf73e2 2352 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2353 return id;
2354
2355 /*
2356 * There's no space for the new id in memcg_caches arrays,
2357 * so we have to grow them.
2358 */
05257a1a 2359 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2360
2361 size = 2 * (id + 1);
55007d84
GC
2362 if (size < MEMCG_CACHES_MIN_SIZE)
2363 size = MEMCG_CACHES_MIN_SIZE;
2364 else if (size > MEMCG_CACHES_MAX_SIZE)
2365 size = MEMCG_CACHES_MAX_SIZE;
2366
f3bb3043 2367 err = memcg_update_all_caches(size);
60d3fd32
VD
2368 if (!err)
2369 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2370 if (!err)
2371 memcg_nr_cache_ids = size;
2372
2373 up_write(&memcg_cache_ids_sem);
2374
f3bb3043 2375 if (err) {
dbcf73e2 2376 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2377 return err;
2378 }
2379 return id;
2380}
2381
2382static void memcg_free_cache_id(int id)
2383{
dbcf73e2 2384 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2385}
2386
d5b3cf71 2387struct memcg_kmem_cache_create_work {
5722d094
VD
2388 struct mem_cgroup *memcg;
2389 struct kmem_cache *cachep;
2390 struct work_struct work;
2391};
2392
d5b3cf71 2393static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2394{
d5b3cf71
VD
2395 struct memcg_kmem_cache_create_work *cw =
2396 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2397 struct mem_cgroup *memcg = cw->memcg;
2398 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2399
d5b3cf71 2400 memcg_create_kmem_cache(memcg, cachep);
bd673145 2401
5722d094 2402 css_put(&memcg->css);
d7f25f8a
GC
2403 kfree(cw);
2404}
2405
2406/*
2407 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2408 */
d5b3cf71
VD
2409static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2410 struct kmem_cache *cachep)
d7f25f8a 2411{
d5b3cf71 2412 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2413
c892fd82 2414 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2415 if (!cw)
d7f25f8a 2416 return;
8135be5a
VD
2417
2418 css_get(&memcg->css);
d7f25f8a
GC
2419
2420 cw->memcg = memcg;
2421 cw->cachep = cachep;
d5b3cf71 2422 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2423
17cc4dfe 2424 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2425}
2426
d5b3cf71
VD
2427static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2428 struct kmem_cache *cachep)
0e9d92f2
GC
2429{
2430 /*
2431 * We need to stop accounting when we kmalloc, because if the
2432 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2433 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2434 *
2435 * However, it is better to enclose the whole function. Depending on
2436 * the debugging options enabled, INIT_WORK(), for instance, can
2437 * trigger an allocation. This too, will make us recurse. Because at
2438 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2439 * the safest choice is to do it like this, wrapping the whole function.
2440 */
6f185c29 2441 current->memcg_kmem_skip_account = 1;
d5b3cf71 2442 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2443 current->memcg_kmem_skip_account = 0;
0e9d92f2 2444}
c67a8a68 2445
45264778
VD
2446static inline bool memcg_kmem_bypass(void)
2447{
2448 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2449 return true;
2450 return false;
2451}
2452
2453/**
2454 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2455 * @cachep: the original global kmem cache
2456 *
d7f25f8a
GC
2457 * Return the kmem_cache we're supposed to use for a slab allocation.
2458 * We try to use the current memcg's version of the cache.
2459 *
45264778
VD
2460 * If the cache does not exist yet, if we are the first user of it, we
2461 * create it asynchronously in a workqueue and let the current allocation
2462 * go through with the original cache.
d7f25f8a 2463 *
45264778
VD
2464 * This function takes a reference to the cache it returns to assure it
2465 * won't get destroyed while we are working with it. Once the caller is
2466 * done with it, memcg_kmem_put_cache() must be called to release the
2467 * reference.
d7f25f8a 2468 */
45264778 2469struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2470{
2471 struct mem_cgroup *memcg;
959c8963 2472 struct kmem_cache *memcg_cachep;
2a4db7eb 2473 int kmemcg_id;
d7f25f8a 2474
f7ce3190 2475 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2476
45264778 2477 if (memcg_kmem_bypass())
230e9fc2
VD
2478 return cachep;
2479
9d100c5e 2480 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2481 return cachep;
2482
d46eb14b 2483 memcg = get_mem_cgroup_from_current();
4db0c3c2 2484 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2485 if (kmemcg_id < 0)
ca0dde97 2486 goto out;
d7f25f8a 2487
2a4db7eb 2488 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2489 if (likely(memcg_cachep))
2490 return memcg_cachep;
ca0dde97
LZ
2491
2492 /*
2493 * If we are in a safe context (can wait, and not in interrupt
2494 * context), we could be be predictable and return right away.
2495 * This would guarantee that the allocation being performed
2496 * already belongs in the new cache.
2497 *
2498 * However, there are some clashes that can arrive from locking.
2499 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2500 * memcg_create_kmem_cache, this means no further allocation
2501 * could happen with the slab_mutex held. So it's better to
2502 * defer everything.
ca0dde97 2503 */
d5b3cf71 2504 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2505out:
8135be5a 2506 css_put(&memcg->css);
ca0dde97 2507 return cachep;
d7f25f8a 2508}
d7f25f8a 2509
45264778
VD
2510/**
2511 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2512 * @cachep: the cache returned by memcg_kmem_get_cache
2513 */
2514void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2515{
2516 if (!is_root_cache(cachep))
f7ce3190 2517 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2518}
2519
45264778 2520/**
b213b54f 2521 * memcg_kmem_charge_memcg: charge a kmem page
45264778
VD
2522 * @page: page to charge
2523 * @gfp: reclaim mode
2524 * @order: allocation order
2525 * @memcg: memory cgroup to charge
2526 *
2527 * Returns 0 on success, an error code on failure.
2528 */
2529int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2530 struct mem_cgroup *memcg)
7ae1e1d0 2531{
f3ccb2c4
VD
2532 unsigned int nr_pages = 1 << order;
2533 struct page_counter *counter;
7ae1e1d0
GC
2534 int ret;
2535
f3ccb2c4 2536 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2537 if (ret)
f3ccb2c4 2538 return ret;
52c29b04
JW
2539
2540 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2541 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2542 cancel_charge(memcg, nr_pages);
2543 return -ENOMEM;
7ae1e1d0
GC
2544 }
2545
f3ccb2c4 2546 page->mem_cgroup = memcg;
7ae1e1d0 2547
f3ccb2c4 2548 return 0;
7ae1e1d0
GC
2549}
2550
45264778
VD
2551/**
2552 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2553 * @page: page to charge
2554 * @gfp: reclaim mode
2555 * @order: allocation order
2556 *
2557 * Returns 0 on success, an error code on failure.
2558 */
2559int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2560{
f3ccb2c4 2561 struct mem_cgroup *memcg;
fcff7d7e 2562 int ret = 0;
7ae1e1d0 2563
45264778
VD
2564 if (memcg_kmem_bypass())
2565 return 0;
2566
d46eb14b 2567 memcg = get_mem_cgroup_from_current();
c4159a75 2568 if (!mem_cgroup_is_root(memcg)) {
45264778 2569 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2570 if (!ret)
2571 __SetPageKmemcg(page);
2572 }
7ae1e1d0 2573 css_put(&memcg->css);
d05e83a6 2574 return ret;
7ae1e1d0 2575}
45264778
VD
2576/**
2577 * memcg_kmem_uncharge: uncharge a kmem page
2578 * @page: page to uncharge
2579 * @order: allocation order
2580 */
2581void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2582{
1306a85a 2583 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2584 unsigned int nr_pages = 1 << order;
7ae1e1d0 2585
7ae1e1d0
GC
2586 if (!memcg)
2587 return;
2588
309381fe 2589 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2590
52c29b04
JW
2591 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2592 page_counter_uncharge(&memcg->kmem, nr_pages);
2593
f3ccb2c4 2594 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2595 if (do_memsw_account())
f3ccb2c4 2596 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2597
1306a85a 2598 page->mem_cgroup = NULL;
c4159a75
VD
2599
2600 /* slab pages do not have PageKmemcg flag set */
2601 if (PageKmemcg(page))
2602 __ClearPageKmemcg(page);
2603
f3ccb2c4 2604 css_put_many(&memcg->css, nr_pages);
60d3fd32 2605}
84c07d11 2606#endif /* CONFIG_MEMCG_KMEM */
7ae1e1d0 2607
ca3e0214
KH
2608#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2609
ca3e0214
KH
2610/*
2611 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2612 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2613 */
e94c8a9c 2614void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2615{
e94c8a9c 2616 int i;
ca3e0214 2617
3d37c4a9
KH
2618 if (mem_cgroup_disabled())
2619 return;
b070e65c 2620
29833315 2621 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2622 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2623
c9019e9b 2624 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
ca3e0214 2625}
12d27107 2626#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2627
c255a458 2628#ifdef CONFIG_MEMCG_SWAP
02491447
DN
2629/**
2630 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2631 * @entry: swap entry to be moved
2632 * @from: mem_cgroup which the entry is moved from
2633 * @to: mem_cgroup which the entry is moved to
2634 *
2635 * It succeeds only when the swap_cgroup's record for this entry is the same
2636 * as the mem_cgroup's id of @from.
2637 *
2638 * Returns 0 on success, -EINVAL on failure.
2639 *
3e32cb2e 2640 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2641 * both res and memsw, and called css_get().
2642 */
2643static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2644 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2645{
2646 unsigned short old_id, new_id;
2647
34c00c31
LZ
2648 old_id = mem_cgroup_id(from);
2649 new_id = mem_cgroup_id(to);
02491447
DN
2650
2651 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
c9019e9b
JW
2652 mod_memcg_state(from, MEMCG_SWAP, -1);
2653 mod_memcg_state(to, MEMCG_SWAP, 1);
02491447
DN
2654 return 0;
2655 }
2656 return -EINVAL;
2657}
2658#else
2659static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2660 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2661{
2662 return -EINVAL;
2663}
8c7c6e34 2664#endif
d13d1443 2665
bbec2e15 2666static DEFINE_MUTEX(memcg_max_mutex);
f212ad7c 2667
bbec2e15
RG
2668static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2669 unsigned long max, bool memsw)
628f4235 2670{
3e32cb2e 2671 bool enlarge = false;
bb4a7ea2 2672 bool drained = false;
3e32cb2e 2673 int ret;
c054a78c
YZ
2674 bool limits_invariant;
2675 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
81d39c20 2676
3e32cb2e 2677 do {
628f4235
KH
2678 if (signal_pending(current)) {
2679 ret = -EINTR;
2680 break;
2681 }
3e32cb2e 2682
bbec2e15 2683 mutex_lock(&memcg_max_mutex);
c054a78c
YZ
2684 /*
2685 * Make sure that the new limit (memsw or memory limit) doesn't
bbec2e15 2686 * break our basic invariant rule memory.max <= memsw.max.
c054a78c 2687 */
bbec2e15
RG
2688 limits_invariant = memsw ? max >= memcg->memory.max :
2689 max <= memcg->memsw.max;
c054a78c 2690 if (!limits_invariant) {
bbec2e15 2691 mutex_unlock(&memcg_max_mutex);
8c7c6e34 2692 ret = -EINVAL;
8c7c6e34
KH
2693 break;
2694 }
bbec2e15 2695 if (max > counter->max)
3e32cb2e 2696 enlarge = true;
bbec2e15
RG
2697 ret = page_counter_set_max(counter, max);
2698 mutex_unlock(&memcg_max_mutex);
8c7c6e34
KH
2699
2700 if (!ret)
2701 break;
2702
bb4a7ea2
SB
2703 if (!drained) {
2704 drain_all_stock(memcg);
2705 drained = true;
2706 continue;
2707 }
2708
1ab5c056
AR
2709 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2710 GFP_KERNEL, !memsw)) {
2711 ret = -EBUSY;
2712 break;
2713 }
2714 } while (true);
3e32cb2e 2715
3c11ecf4
KH
2716 if (!ret && enlarge)
2717 memcg_oom_recover(memcg);
3e32cb2e 2718
628f4235
KH
2719 return ret;
2720}
2721
ef8f2327 2722unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2723 gfp_t gfp_mask,
2724 unsigned long *total_scanned)
2725{
2726 unsigned long nr_reclaimed = 0;
ef8f2327 2727 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2728 unsigned long reclaimed;
2729 int loop = 0;
ef8f2327 2730 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2731 unsigned long excess;
0608f43d
AM
2732 unsigned long nr_scanned;
2733
2734 if (order > 0)
2735 return 0;
2736
ef8f2327 2737 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2738
2739 /*
2740 * Do not even bother to check the largest node if the root
2741 * is empty. Do it lockless to prevent lock bouncing. Races
2742 * are acceptable as soft limit is best effort anyway.
2743 */
bfc7228b 2744 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2745 return 0;
2746
0608f43d
AM
2747 /*
2748 * This loop can run a while, specially if mem_cgroup's continuously
2749 * keep exceeding their soft limit and putting the system under
2750 * pressure
2751 */
2752 do {
2753 if (next_mz)
2754 mz = next_mz;
2755 else
2756 mz = mem_cgroup_largest_soft_limit_node(mctz);
2757 if (!mz)
2758 break;
2759
2760 nr_scanned = 0;
ef8f2327 2761 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2762 gfp_mask, &nr_scanned);
2763 nr_reclaimed += reclaimed;
2764 *total_scanned += nr_scanned;
0a31bc97 2765 spin_lock_irq(&mctz->lock);
bc2f2e7f 2766 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2767
2768 /*
2769 * If we failed to reclaim anything from this memory cgroup
2770 * it is time to move on to the next cgroup
2771 */
2772 next_mz = NULL;
bc2f2e7f
VD
2773 if (!reclaimed)
2774 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2775
3e32cb2e 2776 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2777 /*
2778 * One school of thought says that we should not add
2779 * back the node to the tree if reclaim returns 0.
2780 * But our reclaim could return 0, simply because due
2781 * to priority we are exposing a smaller subset of
2782 * memory to reclaim from. Consider this as a longer
2783 * term TODO.
2784 */
2785 /* If excess == 0, no tree ops */
cf2c8127 2786 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2787 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2788 css_put(&mz->memcg->css);
2789 loop++;
2790 /*
2791 * Could not reclaim anything and there are no more
2792 * mem cgroups to try or we seem to be looping without
2793 * reclaiming anything.
2794 */
2795 if (!nr_reclaimed &&
2796 (next_mz == NULL ||
2797 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2798 break;
2799 } while (!nr_reclaimed);
2800 if (next_mz)
2801 css_put(&next_mz->memcg->css);
2802 return nr_reclaimed;
2803}
2804
ea280e7b
TH
2805/*
2806 * Test whether @memcg has children, dead or alive. Note that this
2807 * function doesn't care whether @memcg has use_hierarchy enabled and
2808 * returns %true if there are child csses according to the cgroup
2809 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2810 */
b5f99b53
GC
2811static inline bool memcg_has_children(struct mem_cgroup *memcg)
2812{
ea280e7b
TH
2813 bool ret;
2814
ea280e7b
TH
2815 rcu_read_lock();
2816 ret = css_next_child(NULL, &memcg->css);
2817 rcu_read_unlock();
2818 return ret;
b5f99b53
GC
2819}
2820
c26251f9 2821/*
51038171 2822 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2823 *
2824 * Caller is responsible for holding css reference for memcg.
2825 */
2826static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2827{
2828 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2829
c1e862c1
KH
2830 /* we call try-to-free pages for make this cgroup empty */
2831 lru_add_drain_all();
d12c60f6
JS
2832
2833 drain_all_stock(memcg);
2834
f817ed48 2835 /* try to free all pages in this cgroup */
3e32cb2e 2836 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2837 int progress;
c1e862c1 2838
c26251f9
MH
2839 if (signal_pending(current))
2840 return -EINTR;
2841
b70a2a21
JW
2842 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2843 GFP_KERNEL, true);
c1e862c1 2844 if (!progress) {
f817ed48 2845 nr_retries--;
c1e862c1 2846 /* maybe some writeback is necessary */
8aa7e847 2847 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2848 }
f817ed48
KH
2849
2850 }
ab5196c2
MH
2851
2852 return 0;
cc847582
KH
2853}
2854
6770c64e
TH
2855static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2856 char *buf, size_t nbytes,
2857 loff_t off)
c1e862c1 2858{
6770c64e 2859 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2860
d8423011
MH
2861 if (mem_cgroup_is_root(memcg))
2862 return -EINVAL;
6770c64e 2863 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2864}
2865
182446d0
TH
2866static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2867 struct cftype *cft)
18f59ea7 2868{
182446d0 2869 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2870}
2871
182446d0
TH
2872static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2873 struct cftype *cft, u64 val)
18f59ea7
BS
2874{
2875 int retval = 0;
182446d0 2876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2877 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2878
567fb435 2879 if (memcg->use_hierarchy == val)
0b8f73e1 2880 return 0;
567fb435 2881
18f59ea7 2882 /*
af901ca1 2883 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2884 * in the child subtrees. If it is unset, then the change can
2885 * occur, provided the current cgroup has no children.
2886 *
2887 * For the root cgroup, parent_mem is NULL, we allow value to be
2888 * set if there are no children.
2889 */
c0ff4b85 2890 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2891 (val == 1 || val == 0)) {
ea280e7b 2892 if (!memcg_has_children(memcg))
c0ff4b85 2893 memcg->use_hierarchy = val;
18f59ea7
BS
2894 else
2895 retval = -EBUSY;
2896 } else
2897 retval = -EINVAL;
567fb435 2898
18f59ea7
BS
2899 return retval;
2900}
2901
8de7ecc6
SB
2902struct accumulated_stats {
2903 unsigned long stat[MEMCG_NR_STAT];
2904 unsigned long events[NR_VM_EVENT_ITEMS];
2905 unsigned long lru_pages[NR_LRU_LISTS];
2906 const unsigned int *stats_array;
2907 const unsigned int *events_array;
2908 int stats_size;
2909 int events_size;
2910};
ce00a967 2911
8de7ecc6
SB
2912static void accumulate_memcg_tree(struct mem_cgroup *memcg,
2913 struct accumulated_stats *acc)
587d9f72 2914{
8de7ecc6 2915 struct mem_cgroup *mi;
72b54e73 2916 int i;
587d9f72 2917
8de7ecc6
SB
2918 for_each_mem_cgroup_tree(mi, memcg) {
2919 for (i = 0; i < acc->stats_size; i++)
2920 acc->stat[i] += memcg_page_state(mi,
2921 acc->stats_array ? acc->stats_array[i] : i);
587d9f72 2922
8de7ecc6
SB
2923 for (i = 0; i < acc->events_size; i++)
2924 acc->events[i] += memcg_sum_events(mi,
2925 acc->events_array ? acc->events_array[i] : i);
2926
2927 for (i = 0; i < NR_LRU_LISTS; i++)
2928 acc->lru_pages[i] +=
2929 mem_cgroup_nr_lru_pages(mi, BIT(i));
72b54e73 2930 }
587d9f72
JW
2931}
2932
6f646156 2933static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2934{
72b54e73 2935 unsigned long val = 0;
ce00a967 2936
3e32cb2e 2937 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2938 struct mem_cgroup *iter;
2939
2940 for_each_mem_cgroup_tree(iter, memcg) {
ccda7f43
JW
2941 val += memcg_page_state(iter, MEMCG_CACHE);
2942 val += memcg_page_state(iter, MEMCG_RSS);
72b54e73 2943 if (swap)
ccda7f43 2944 val += memcg_page_state(iter, MEMCG_SWAP);
72b54e73 2945 }
3e32cb2e 2946 } else {
ce00a967 2947 if (!swap)
3e32cb2e 2948 val = page_counter_read(&memcg->memory);
ce00a967 2949 else
3e32cb2e 2950 val = page_counter_read(&memcg->memsw);
ce00a967 2951 }
c12176d3 2952 return val;
ce00a967
JW
2953}
2954
3e32cb2e
JW
2955enum {
2956 RES_USAGE,
2957 RES_LIMIT,
2958 RES_MAX_USAGE,
2959 RES_FAILCNT,
2960 RES_SOFT_LIMIT,
2961};
ce00a967 2962
791badbd 2963static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2964 struct cftype *cft)
8cdea7c0 2965{
182446d0 2966 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2967 struct page_counter *counter;
af36f906 2968
3e32cb2e 2969 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2970 case _MEM:
3e32cb2e
JW
2971 counter = &memcg->memory;
2972 break;
8c7c6e34 2973 case _MEMSWAP:
3e32cb2e
JW
2974 counter = &memcg->memsw;
2975 break;
510fc4e1 2976 case _KMEM:
3e32cb2e 2977 counter = &memcg->kmem;
510fc4e1 2978 break;
d55f90bf 2979 case _TCP:
0db15298 2980 counter = &memcg->tcpmem;
d55f90bf 2981 break;
8c7c6e34
KH
2982 default:
2983 BUG();
8c7c6e34 2984 }
3e32cb2e
JW
2985
2986 switch (MEMFILE_ATTR(cft->private)) {
2987 case RES_USAGE:
2988 if (counter == &memcg->memory)
c12176d3 2989 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2990 if (counter == &memcg->memsw)
c12176d3 2991 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2992 return (u64)page_counter_read(counter) * PAGE_SIZE;
2993 case RES_LIMIT:
bbec2e15 2994 return (u64)counter->max * PAGE_SIZE;
3e32cb2e
JW
2995 case RES_MAX_USAGE:
2996 return (u64)counter->watermark * PAGE_SIZE;
2997 case RES_FAILCNT:
2998 return counter->failcnt;
2999 case RES_SOFT_LIMIT:
3000 return (u64)memcg->soft_limit * PAGE_SIZE;
3001 default:
3002 BUG();
3003 }
8cdea7c0 3004}
510fc4e1 3005
84c07d11 3006#ifdef CONFIG_MEMCG_KMEM
567e9ab2 3007static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 3008{
d6441637
VD
3009 int memcg_id;
3010
b313aeee
VD
3011 if (cgroup_memory_nokmem)
3012 return 0;
3013
2a4db7eb 3014 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 3015 BUG_ON(memcg->kmem_state);
d6441637 3016
f3bb3043 3017 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
3018 if (memcg_id < 0)
3019 return memcg_id;
d6441637 3020
ef12947c 3021 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 3022 /*
567e9ab2 3023 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 3024 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3025 * guarantee no one starts accounting before all call sites are
3026 * patched.
3027 */
900a38f0 3028 memcg->kmemcg_id = memcg_id;
567e9ab2 3029 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 3030 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
3031
3032 return 0;
d6441637
VD
3033}
3034
8e0a8912
JW
3035static void memcg_offline_kmem(struct mem_cgroup *memcg)
3036{
3037 struct cgroup_subsys_state *css;
3038 struct mem_cgroup *parent, *child;
3039 int kmemcg_id;
3040
3041 if (memcg->kmem_state != KMEM_ONLINE)
3042 return;
3043 /*
3044 * Clear the online state before clearing memcg_caches array
3045 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3046 * guarantees that no cache will be created for this cgroup
3047 * after we are done (see memcg_create_kmem_cache()).
3048 */
3049 memcg->kmem_state = KMEM_ALLOCATED;
3050
3051 memcg_deactivate_kmem_caches(memcg);
3052
3053 kmemcg_id = memcg->kmemcg_id;
3054 BUG_ON(kmemcg_id < 0);
3055
3056 parent = parent_mem_cgroup(memcg);
3057 if (!parent)
3058 parent = root_mem_cgroup;
3059
3060 /*
3061 * Change kmemcg_id of this cgroup and all its descendants to the
3062 * parent's id, and then move all entries from this cgroup's list_lrus
3063 * to ones of the parent. After we have finished, all list_lrus
3064 * corresponding to this cgroup are guaranteed to remain empty. The
3065 * ordering is imposed by list_lru_node->lock taken by
3066 * memcg_drain_all_list_lrus().
3067 */
3a06bb78 3068 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
3069 css_for_each_descendant_pre(css, &memcg->css) {
3070 child = mem_cgroup_from_css(css);
3071 BUG_ON(child->kmemcg_id != kmemcg_id);
3072 child->kmemcg_id = parent->kmemcg_id;
3073 if (!memcg->use_hierarchy)
3074 break;
3075 }
3a06bb78
TH
3076 rcu_read_unlock();
3077
9bec5c35 3078 memcg_drain_all_list_lrus(kmemcg_id, parent);
8e0a8912
JW
3079
3080 memcg_free_cache_id(kmemcg_id);
3081}
3082
3083static void memcg_free_kmem(struct mem_cgroup *memcg)
3084{
0b8f73e1
JW
3085 /* css_alloc() failed, offlining didn't happen */
3086 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3087 memcg_offline_kmem(memcg);
3088
8e0a8912
JW
3089 if (memcg->kmem_state == KMEM_ALLOCATED) {
3090 memcg_destroy_kmem_caches(memcg);
3091 static_branch_dec(&memcg_kmem_enabled_key);
3092 WARN_ON(page_counter_read(&memcg->kmem));
3093 }
8e0a8912 3094}
d6441637 3095#else
0b8f73e1 3096static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
3097{
3098 return 0;
3099}
3100static void memcg_offline_kmem(struct mem_cgroup *memcg)
3101{
3102}
3103static void memcg_free_kmem(struct mem_cgroup *memcg)
3104{
3105}
84c07d11 3106#endif /* CONFIG_MEMCG_KMEM */
127424c8 3107
bbec2e15
RG
3108static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3109 unsigned long max)
d6441637 3110{
b313aeee 3111 int ret;
127424c8 3112
bbec2e15
RG
3113 mutex_lock(&memcg_max_mutex);
3114 ret = page_counter_set_max(&memcg->kmem, max);
3115 mutex_unlock(&memcg_max_mutex);
127424c8 3116 return ret;
d6441637 3117}
510fc4e1 3118
bbec2e15 3119static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
d55f90bf
VD
3120{
3121 int ret;
3122
bbec2e15 3123 mutex_lock(&memcg_max_mutex);
d55f90bf 3124
bbec2e15 3125 ret = page_counter_set_max(&memcg->tcpmem, max);
d55f90bf
VD
3126 if (ret)
3127 goto out;
3128
0db15298 3129 if (!memcg->tcpmem_active) {
d55f90bf
VD
3130 /*
3131 * The active flag needs to be written after the static_key
3132 * update. This is what guarantees that the socket activation
2d758073
JW
3133 * function is the last one to run. See mem_cgroup_sk_alloc()
3134 * for details, and note that we don't mark any socket as
3135 * belonging to this memcg until that flag is up.
d55f90bf
VD
3136 *
3137 * We need to do this, because static_keys will span multiple
3138 * sites, but we can't control their order. If we mark a socket
3139 * as accounted, but the accounting functions are not patched in
3140 * yet, we'll lose accounting.
3141 *
2d758073 3142 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
3143 * because when this value change, the code to process it is not
3144 * patched in yet.
3145 */
3146 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 3147 memcg->tcpmem_active = true;
d55f90bf
VD
3148 }
3149out:
bbec2e15 3150 mutex_unlock(&memcg_max_mutex);
d55f90bf
VD
3151 return ret;
3152}
d55f90bf 3153
628f4235
KH
3154/*
3155 * The user of this function is...
3156 * RES_LIMIT.
3157 */
451af504
TH
3158static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3159 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3160{
451af504 3161 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3162 unsigned long nr_pages;
628f4235
KH
3163 int ret;
3164
451af504 3165 buf = strstrip(buf);
650c5e56 3166 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3167 if (ret)
3168 return ret;
af36f906 3169
3e32cb2e 3170 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3171 case RES_LIMIT:
4b3bde4c
BS
3172 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3173 ret = -EINVAL;
3174 break;
3175 }
3e32cb2e
JW
3176 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3177 case _MEM:
bbec2e15 3178 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
8c7c6e34 3179 break;
3e32cb2e 3180 case _MEMSWAP:
bbec2e15 3181 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
296c81d8 3182 break;
3e32cb2e 3183 case _KMEM:
bbec2e15 3184 ret = memcg_update_kmem_max(memcg, nr_pages);
3e32cb2e 3185 break;
d55f90bf 3186 case _TCP:
bbec2e15 3187 ret = memcg_update_tcp_max(memcg, nr_pages);
d55f90bf 3188 break;
3e32cb2e 3189 }
296c81d8 3190 break;
3e32cb2e
JW
3191 case RES_SOFT_LIMIT:
3192 memcg->soft_limit = nr_pages;
3193 ret = 0;
628f4235
KH
3194 break;
3195 }
451af504 3196 return ret ?: nbytes;
8cdea7c0
BS
3197}
3198
6770c64e
TH
3199static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3200 size_t nbytes, loff_t off)
c84872e1 3201{
6770c64e 3202 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3203 struct page_counter *counter;
c84872e1 3204
3e32cb2e
JW
3205 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3206 case _MEM:
3207 counter = &memcg->memory;
3208 break;
3209 case _MEMSWAP:
3210 counter = &memcg->memsw;
3211 break;
3212 case _KMEM:
3213 counter = &memcg->kmem;
3214 break;
d55f90bf 3215 case _TCP:
0db15298 3216 counter = &memcg->tcpmem;
d55f90bf 3217 break;
3e32cb2e
JW
3218 default:
3219 BUG();
3220 }
af36f906 3221
3e32cb2e 3222 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3223 case RES_MAX_USAGE:
3e32cb2e 3224 page_counter_reset_watermark(counter);
29f2a4da
PE
3225 break;
3226 case RES_FAILCNT:
3e32cb2e 3227 counter->failcnt = 0;
29f2a4da 3228 break;
3e32cb2e
JW
3229 default:
3230 BUG();
29f2a4da 3231 }
f64c3f54 3232
6770c64e 3233 return nbytes;
c84872e1
PE
3234}
3235
182446d0 3236static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3237 struct cftype *cft)
3238{
182446d0 3239 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3240}
3241
02491447 3242#ifdef CONFIG_MMU
182446d0 3243static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3244 struct cftype *cft, u64 val)
3245{
182446d0 3246 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3247
1dfab5ab 3248 if (val & ~MOVE_MASK)
7dc74be0 3249 return -EINVAL;
ee5e8472 3250
7dc74be0 3251 /*
ee5e8472
GC
3252 * No kind of locking is needed in here, because ->can_attach() will
3253 * check this value once in the beginning of the process, and then carry
3254 * on with stale data. This means that changes to this value will only
3255 * affect task migrations starting after the change.
7dc74be0 3256 */
c0ff4b85 3257 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3258 return 0;
3259}
02491447 3260#else
182446d0 3261static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3262 struct cftype *cft, u64 val)
3263{
3264 return -ENOSYS;
3265}
3266#endif
7dc74be0 3267
406eb0c9 3268#ifdef CONFIG_NUMA
2da8ca82 3269static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3270{
25485de6
GT
3271 struct numa_stat {
3272 const char *name;
3273 unsigned int lru_mask;
3274 };
3275
3276 static const struct numa_stat stats[] = {
3277 { "total", LRU_ALL },
3278 { "file", LRU_ALL_FILE },
3279 { "anon", LRU_ALL_ANON },
3280 { "unevictable", BIT(LRU_UNEVICTABLE) },
3281 };
3282 const struct numa_stat *stat;
406eb0c9 3283 int nid;
25485de6 3284 unsigned long nr;
2da8ca82 3285 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3286
25485de6
GT
3287 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3288 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3289 seq_printf(m, "%s=%lu", stat->name, nr);
3290 for_each_node_state(nid, N_MEMORY) {
3291 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3292 stat->lru_mask);
3293 seq_printf(m, " N%d=%lu", nid, nr);
3294 }
3295 seq_putc(m, '\n');
406eb0c9 3296 }
406eb0c9 3297
071aee13
YH
3298 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3299 struct mem_cgroup *iter;
3300
3301 nr = 0;
3302 for_each_mem_cgroup_tree(iter, memcg)
3303 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3304 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3305 for_each_node_state(nid, N_MEMORY) {
3306 nr = 0;
3307 for_each_mem_cgroup_tree(iter, memcg)
3308 nr += mem_cgroup_node_nr_lru_pages(
3309 iter, nid, stat->lru_mask);
3310 seq_printf(m, " N%d=%lu", nid, nr);
3311 }
3312 seq_putc(m, '\n');
406eb0c9 3313 }
406eb0c9 3314
406eb0c9
YH
3315 return 0;
3316}
3317#endif /* CONFIG_NUMA */
3318
df0e53d0 3319/* Universal VM events cgroup1 shows, original sort order */
8dd53fd3 3320static const unsigned int memcg1_events[] = {
df0e53d0
JW
3321 PGPGIN,
3322 PGPGOUT,
3323 PGFAULT,
3324 PGMAJFAULT,
3325};
3326
3327static const char *const memcg1_event_names[] = {
3328 "pgpgin",
3329 "pgpgout",
3330 "pgfault",
3331 "pgmajfault",
3332};
3333
2da8ca82 3334static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3335{
2da8ca82 3336 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3337 unsigned long memory, memsw;
af7c4b0e
JW
3338 struct mem_cgroup *mi;
3339 unsigned int i;
8de7ecc6 3340 struct accumulated_stats acc;
406eb0c9 3341
71cd3113 3342 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3343 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3344
71cd3113
JW
3345 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3346 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3347 continue;
71cd3113 3348 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
ccda7f43 3349 memcg_page_state(memcg, memcg1_stats[i]) *
71cd3113 3350 PAGE_SIZE);
1dd3a273 3351 }
7b854121 3352
df0e53d0
JW
3353 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3354 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
ccda7f43 3355 memcg_sum_events(memcg, memcg1_events[i]));
af7c4b0e
JW
3356
3357 for (i = 0; i < NR_LRU_LISTS; i++)
3358 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3359 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3360
14067bb3 3361 /* Hierarchical information */
3e32cb2e
JW
3362 memory = memsw = PAGE_COUNTER_MAX;
3363 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
bbec2e15
RG
3364 memory = min(memory, mi->memory.max);
3365 memsw = min(memsw, mi->memsw.max);
fee7b548 3366 }
3e32cb2e
JW
3367 seq_printf(m, "hierarchical_memory_limit %llu\n",
3368 (u64)memory * PAGE_SIZE);
7941d214 3369 if (do_memsw_account())
3e32cb2e
JW
3370 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3371 (u64)memsw * PAGE_SIZE);
7f016ee8 3372
8de7ecc6
SB
3373 memset(&acc, 0, sizeof(acc));
3374 acc.stats_size = ARRAY_SIZE(memcg1_stats);
3375 acc.stats_array = memcg1_stats;
3376 acc.events_size = ARRAY_SIZE(memcg1_events);
3377 acc.events_array = memcg1_events;
3378 accumulate_memcg_tree(memcg, &acc);
af7c4b0e 3379
8de7ecc6 3380 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
71cd3113 3381 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3382 continue;
8de7ecc6
SB
3383 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3384 (u64)acc.stat[i] * PAGE_SIZE);
af7c4b0e
JW
3385 }
3386
8de7ecc6
SB
3387 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3388 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3389 (u64)acc.events[i]);
af7c4b0e 3390
8de7ecc6
SB
3391 for (i = 0; i < NR_LRU_LISTS; i++)
3392 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3393 (u64)acc.lru_pages[i] * PAGE_SIZE);
14067bb3 3394
7f016ee8 3395#ifdef CONFIG_DEBUG_VM
7f016ee8 3396 {
ef8f2327
MG
3397 pg_data_t *pgdat;
3398 struct mem_cgroup_per_node *mz;
89abfab1 3399 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3400 unsigned long recent_rotated[2] = {0, 0};
3401 unsigned long recent_scanned[2] = {0, 0};
3402
ef8f2327
MG
3403 for_each_online_pgdat(pgdat) {
3404 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3405 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3406
ef8f2327
MG
3407 recent_rotated[0] += rstat->recent_rotated[0];
3408 recent_rotated[1] += rstat->recent_rotated[1];
3409 recent_scanned[0] += rstat->recent_scanned[0];
3410 recent_scanned[1] += rstat->recent_scanned[1];
3411 }
78ccf5b5
JW
3412 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3413 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3414 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3415 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3416 }
3417#endif
3418
d2ceb9b7
KH
3419 return 0;
3420}
3421
182446d0
TH
3422static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3423 struct cftype *cft)
a7885eb8 3424{
182446d0 3425 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3426
1f4c025b 3427 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3428}
3429
182446d0
TH
3430static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3431 struct cftype *cft, u64 val)
a7885eb8 3432{
182446d0 3433 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3434
3dae7fec 3435 if (val > 100)
a7885eb8
KM
3436 return -EINVAL;
3437
14208b0e 3438 if (css->parent)
3dae7fec
JW
3439 memcg->swappiness = val;
3440 else
3441 vm_swappiness = val;
068b38c1 3442
a7885eb8
KM
3443 return 0;
3444}
3445
2e72b634
KS
3446static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3447{
3448 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3449 unsigned long usage;
2e72b634
KS
3450 int i;
3451
3452 rcu_read_lock();
3453 if (!swap)
2c488db2 3454 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3455 else
2c488db2 3456 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3457
3458 if (!t)
3459 goto unlock;
3460
ce00a967 3461 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3462
3463 /*
748dad36 3464 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3465 * If it's not true, a threshold was crossed after last
3466 * call of __mem_cgroup_threshold().
3467 */
5407a562 3468 i = t->current_threshold;
2e72b634
KS
3469
3470 /*
3471 * Iterate backward over array of thresholds starting from
3472 * current_threshold and check if a threshold is crossed.
3473 * If none of thresholds below usage is crossed, we read
3474 * only one element of the array here.
3475 */
3476 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3477 eventfd_signal(t->entries[i].eventfd, 1);
3478
3479 /* i = current_threshold + 1 */
3480 i++;
3481
3482 /*
3483 * Iterate forward over array of thresholds starting from
3484 * current_threshold+1 and check if a threshold is crossed.
3485 * If none of thresholds above usage is crossed, we read
3486 * only one element of the array here.
3487 */
3488 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3489 eventfd_signal(t->entries[i].eventfd, 1);
3490
3491 /* Update current_threshold */
5407a562 3492 t->current_threshold = i - 1;
2e72b634
KS
3493unlock:
3494 rcu_read_unlock();
3495}
3496
3497static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3498{
ad4ca5f4
KS
3499 while (memcg) {
3500 __mem_cgroup_threshold(memcg, false);
7941d214 3501 if (do_memsw_account())
ad4ca5f4
KS
3502 __mem_cgroup_threshold(memcg, true);
3503
3504 memcg = parent_mem_cgroup(memcg);
3505 }
2e72b634
KS
3506}
3507
3508static int compare_thresholds(const void *a, const void *b)
3509{
3510 const struct mem_cgroup_threshold *_a = a;
3511 const struct mem_cgroup_threshold *_b = b;
3512
2bff24a3
GT
3513 if (_a->threshold > _b->threshold)
3514 return 1;
3515
3516 if (_a->threshold < _b->threshold)
3517 return -1;
3518
3519 return 0;
2e72b634
KS
3520}
3521
c0ff4b85 3522static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3523{
3524 struct mem_cgroup_eventfd_list *ev;
3525
2bcf2e92
MH
3526 spin_lock(&memcg_oom_lock);
3527
c0ff4b85 3528 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3529 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3530
3531 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3532 return 0;
3533}
3534
c0ff4b85 3535static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3536{
7d74b06f
KH
3537 struct mem_cgroup *iter;
3538
c0ff4b85 3539 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3540 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3541}
3542
59b6f873 3543static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3544 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3545{
2c488db2
KS
3546 struct mem_cgroup_thresholds *thresholds;
3547 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3548 unsigned long threshold;
3549 unsigned long usage;
2c488db2 3550 int i, size, ret;
2e72b634 3551
650c5e56 3552 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3553 if (ret)
3554 return ret;
3555
3556 mutex_lock(&memcg->thresholds_lock);
2c488db2 3557
05b84301 3558 if (type == _MEM) {
2c488db2 3559 thresholds = &memcg->thresholds;
ce00a967 3560 usage = mem_cgroup_usage(memcg, false);
05b84301 3561 } else if (type == _MEMSWAP) {
2c488db2 3562 thresholds = &memcg->memsw_thresholds;
ce00a967 3563 usage = mem_cgroup_usage(memcg, true);
05b84301 3564 } else
2e72b634
KS
3565 BUG();
3566
2e72b634 3567 /* Check if a threshold crossed before adding a new one */
2c488db2 3568 if (thresholds->primary)
2e72b634
KS
3569 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3570
2c488db2 3571 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3572
3573 /* Allocate memory for new array of thresholds */
2c488db2 3574 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3575 GFP_KERNEL);
2c488db2 3576 if (!new) {
2e72b634
KS
3577 ret = -ENOMEM;
3578 goto unlock;
3579 }
2c488db2 3580 new->size = size;
2e72b634
KS
3581
3582 /* Copy thresholds (if any) to new array */
2c488db2
KS
3583 if (thresholds->primary) {
3584 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3585 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3586 }
3587
2e72b634 3588 /* Add new threshold */
2c488db2
KS
3589 new->entries[size - 1].eventfd = eventfd;
3590 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3591
3592 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3593 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3594 compare_thresholds, NULL);
3595
3596 /* Find current threshold */
2c488db2 3597 new->current_threshold = -1;
2e72b634 3598 for (i = 0; i < size; i++) {
748dad36 3599 if (new->entries[i].threshold <= usage) {
2e72b634 3600 /*
2c488db2
KS
3601 * new->current_threshold will not be used until
3602 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3603 * it here.
3604 */
2c488db2 3605 ++new->current_threshold;
748dad36
SZ
3606 } else
3607 break;
2e72b634
KS
3608 }
3609
2c488db2
KS
3610 /* Free old spare buffer and save old primary buffer as spare */
3611 kfree(thresholds->spare);
3612 thresholds->spare = thresholds->primary;
3613
3614 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3615
907860ed 3616 /* To be sure that nobody uses thresholds */
2e72b634
KS
3617 synchronize_rcu();
3618
2e72b634
KS
3619unlock:
3620 mutex_unlock(&memcg->thresholds_lock);
3621
3622 return ret;
3623}
3624
59b6f873 3625static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3626 struct eventfd_ctx *eventfd, const char *args)
3627{
59b6f873 3628 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3629}
3630
59b6f873 3631static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3632 struct eventfd_ctx *eventfd, const char *args)
3633{
59b6f873 3634 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3635}
3636
59b6f873 3637static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3638 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3639{
2c488db2
KS
3640 struct mem_cgroup_thresholds *thresholds;
3641 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3642 unsigned long usage;
2c488db2 3643 int i, j, size;
2e72b634
KS
3644
3645 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3646
3647 if (type == _MEM) {
2c488db2 3648 thresholds = &memcg->thresholds;
ce00a967 3649 usage = mem_cgroup_usage(memcg, false);
05b84301 3650 } else if (type == _MEMSWAP) {
2c488db2 3651 thresholds = &memcg->memsw_thresholds;
ce00a967 3652 usage = mem_cgroup_usage(memcg, true);
05b84301 3653 } else
2e72b634
KS
3654 BUG();
3655
371528ca
AV
3656 if (!thresholds->primary)
3657 goto unlock;
3658
2e72b634
KS
3659 /* Check if a threshold crossed before removing */
3660 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3661
3662 /* Calculate new number of threshold */
2c488db2
KS
3663 size = 0;
3664 for (i = 0; i < thresholds->primary->size; i++) {
3665 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3666 size++;
3667 }
3668
2c488db2 3669 new = thresholds->spare;
907860ed 3670
2e72b634
KS
3671 /* Set thresholds array to NULL if we don't have thresholds */
3672 if (!size) {
2c488db2
KS
3673 kfree(new);
3674 new = NULL;
907860ed 3675 goto swap_buffers;
2e72b634
KS
3676 }
3677
2c488db2 3678 new->size = size;
2e72b634
KS
3679
3680 /* Copy thresholds and find current threshold */
2c488db2
KS
3681 new->current_threshold = -1;
3682 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3683 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3684 continue;
3685
2c488db2 3686 new->entries[j] = thresholds->primary->entries[i];
748dad36 3687 if (new->entries[j].threshold <= usage) {
2e72b634 3688 /*
2c488db2 3689 * new->current_threshold will not be used
2e72b634
KS
3690 * until rcu_assign_pointer(), so it's safe to increment
3691 * it here.
3692 */
2c488db2 3693 ++new->current_threshold;
2e72b634
KS
3694 }
3695 j++;
3696 }
3697
907860ed 3698swap_buffers:
2c488db2
KS
3699 /* Swap primary and spare array */
3700 thresholds->spare = thresholds->primary;
8c757763 3701
2c488db2 3702 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3703
907860ed 3704 /* To be sure that nobody uses thresholds */
2e72b634 3705 synchronize_rcu();
6611d8d7
MC
3706
3707 /* If all events are unregistered, free the spare array */
3708 if (!new) {
3709 kfree(thresholds->spare);
3710 thresholds->spare = NULL;
3711 }
371528ca 3712unlock:
2e72b634 3713 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3714}
c1e862c1 3715
59b6f873 3716static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3717 struct eventfd_ctx *eventfd)
3718{
59b6f873 3719 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3720}
3721
59b6f873 3722static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3723 struct eventfd_ctx *eventfd)
3724{
59b6f873 3725 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3726}
3727
59b6f873 3728static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3729 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3730{
9490ff27 3731 struct mem_cgroup_eventfd_list *event;
9490ff27 3732
9490ff27
KH
3733 event = kmalloc(sizeof(*event), GFP_KERNEL);
3734 if (!event)
3735 return -ENOMEM;
3736
1af8efe9 3737 spin_lock(&memcg_oom_lock);
9490ff27
KH
3738
3739 event->eventfd = eventfd;
3740 list_add(&event->list, &memcg->oom_notify);
3741
3742 /* already in OOM ? */
c2b42d3c 3743 if (memcg->under_oom)
9490ff27 3744 eventfd_signal(eventfd, 1);
1af8efe9 3745 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3746
3747 return 0;
3748}
3749
59b6f873 3750static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3751 struct eventfd_ctx *eventfd)
9490ff27 3752{
9490ff27 3753 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3754
1af8efe9 3755 spin_lock(&memcg_oom_lock);
9490ff27 3756
c0ff4b85 3757 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3758 if (ev->eventfd == eventfd) {
3759 list_del(&ev->list);
3760 kfree(ev);
3761 }
3762 }
3763
1af8efe9 3764 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3765}
3766
2da8ca82 3767static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3768{
2da8ca82 3769 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3770
791badbd 3771 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3772 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
fe6bdfc8
RG
3773 seq_printf(sf, "oom_kill %lu\n",
3774 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3c11ecf4
KH
3775 return 0;
3776}
3777
182446d0 3778static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3779 struct cftype *cft, u64 val)
3780{
182446d0 3781 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3782
3783 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3784 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3785 return -EINVAL;
3786
c0ff4b85 3787 memcg->oom_kill_disable = val;
4d845ebf 3788 if (!val)
c0ff4b85 3789 memcg_oom_recover(memcg);
3dae7fec 3790
3c11ecf4
KH
3791 return 0;
3792}
3793
52ebea74
TH
3794#ifdef CONFIG_CGROUP_WRITEBACK
3795
841710aa
TH
3796static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3797{
3798 return wb_domain_init(&memcg->cgwb_domain, gfp);
3799}
3800
3801static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3802{
3803 wb_domain_exit(&memcg->cgwb_domain);
3804}
3805
2529bb3a
TH
3806static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3807{
3808 wb_domain_size_changed(&memcg->cgwb_domain);
3809}
3810
841710aa
TH
3811struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3812{
3813 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3814
3815 if (!memcg->css.parent)
3816 return NULL;
3817
3818 return &memcg->cgwb_domain;
3819}
3820
c2aa723a
TH
3821/**
3822 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3823 * @wb: bdi_writeback in question
c5edf9cd
TH
3824 * @pfilepages: out parameter for number of file pages
3825 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3826 * @pdirty: out parameter for number of dirty pages
3827 * @pwriteback: out parameter for number of pages under writeback
3828 *
c5edf9cd
TH
3829 * Determine the numbers of file, headroom, dirty, and writeback pages in
3830 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3831 * is a bit more involved.
c2aa723a 3832 *
c5edf9cd
TH
3833 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3834 * headroom is calculated as the lowest headroom of itself and the
3835 * ancestors. Note that this doesn't consider the actual amount of
3836 * available memory in the system. The caller should further cap
3837 * *@pheadroom accordingly.
c2aa723a 3838 */
c5edf9cd
TH
3839void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3840 unsigned long *pheadroom, unsigned long *pdirty,
3841 unsigned long *pwriteback)
c2aa723a
TH
3842{
3843 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3844 struct mem_cgroup *parent;
c2aa723a 3845
ccda7f43 3846 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3847
3848 /* this should eventually include NR_UNSTABLE_NFS */
ccda7f43 3849 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
c5edf9cd
TH
3850 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3851 (1 << LRU_ACTIVE_FILE));
3852 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3853
c2aa723a 3854 while ((parent = parent_mem_cgroup(memcg))) {
bbec2e15 3855 unsigned long ceiling = min(memcg->memory.max, memcg->high);
c2aa723a
TH
3856 unsigned long used = page_counter_read(&memcg->memory);
3857
c5edf9cd 3858 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3859 memcg = parent;
3860 }
c2aa723a
TH
3861}
3862
841710aa
TH
3863#else /* CONFIG_CGROUP_WRITEBACK */
3864
3865static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3866{
3867 return 0;
3868}
3869
3870static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3871{
3872}
3873
2529bb3a
TH
3874static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3875{
3876}
3877
52ebea74
TH
3878#endif /* CONFIG_CGROUP_WRITEBACK */
3879
3bc942f3
TH
3880/*
3881 * DO NOT USE IN NEW FILES.
3882 *
3883 * "cgroup.event_control" implementation.
3884 *
3885 * This is way over-engineered. It tries to support fully configurable
3886 * events for each user. Such level of flexibility is completely
3887 * unnecessary especially in the light of the planned unified hierarchy.
3888 *
3889 * Please deprecate this and replace with something simpler if at all
3890 * possible.
3891 */
3892
79bd9814
TH
3893/*
3894 * Unregister event and free resources.
3895 *
3896 * Gets called from workqueue.
3897 */
3bc942f3 3898static void memcg_event_remove(struct work_struct *work)
79bd9814 3899{
3bc942f3
TH
3900 struct mem_cgroup_event *event =
3901 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3902 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3903
3904 remove_wait_queue(event->wqh, &event->wait);
3905
59b6f873 3906 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3907
3908 /* Notify userspace the event is going away. */
3909 eventfd_signal(event->eventfd, 1);
3910
3911 eventfd_ctx_put(event->eventfd);
3912 kfree(event);
59b6f873 3913 css_put(&memcg->css);
79bd9814
TH
3914}
3915
3916/*
a9a08845 3917 * Gets called on EPOLLHUP on eventfd when user closes it.
79bd9814
TH
3918 *
3919 * Called with wqh->lock held and interrupts disabled.
3920 */
ac6424b9 3921static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 3922 int sync, void *key)
79bd9814 3923{
3bc942f3
TH
3924 struct mem_cgroup_event *event =
3925 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3926 struct mem_cgroup *memcg = event->memcg;
3ad6f93e 3927 __poll_t flags = key_to_poll(key);
79bd9814 3928
a9a08845 3929 if (flags & EPOLLHUP) {
79bd9814
TH
3930 /*
3931 * If the event has been detached at cgroup removal, we
3932 * can simply return knowing the other side will cleanup
3933 * for us.
3934 *
3935 * We can't race against event freeing since the other
3936 * side will require wqh->lock via remove_wait_queue(),
3937 * which we hold.
3938 */
fba94807 3939 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3940 if (!list_empty(&event->list)) {
3941 list_del_init(&event->list);
3942 /*
3943 * We are in atomic context, but cgroup_event_remove()
3944 * may sleep, so we have to call it in workqueue.
3945 */
3946 schedule_work(&event->remove);
3947 }
fba94807 3948 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3949 }
3950
3951 return 0;
3952}
3953
3bc942f3 3954static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3955 wait_queue_head_t *wqh, poll_table *pt)
3956{
3bc942f3
TH
3957 struct mem_cgroup_event *event =
3958 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3959
3960 event->wqh = wqh;
3961 add_wait_queue(wqh, &event->wait);
3962}
3963
3964/*
3bc942f3
TH
3965 * DO NOT USE IN NEW FILES.
3966 *
79bd9814
TH
3967 * Parse input and register new cgroup event handler.
3968 *
3969 * Input must be in format '<event_fd> <control_fd> <args>'.
3970 * Interpretation of args is defined by control file implementation.
3971 */
451af504
TH
3972static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3973 char *buf, size_t nbytes, loff_t off)
79bd9814 3974{
451af504 3975 struct cgroup_subsys_state *css = of_css(of);
fba94807 3976 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3977 struct mem_cgroup_event *event;
79bd9814
TH
3978 struct cgroup_subsys_state *cfile_css;
3979 unsigned int efd, cfd;
3980 struct fd efile;
3981 struct fd cfile;
fba94807 3982 const char *name;
79bd9814
TH
3983 char *endp;
3984 int ret;
3985
451af504
TH
3986 buf = strstrip(buf);
3987
3988 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3989 if (*endp != ' ')
3990 return -EINVAL;
451af504 3991 buf = endp + 1;
79bd9814 3992
451af504 3993 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3994 if ((*endp != ' ') && (*endp != '\0'))
3995 return -EINVAL;
451af504 3996 buf = endp + 1;
79bd9814
TH
3997
3998 event = kzalloc(sizeof(*event), GFP_KERNEL);
3999 if (!event)
4000 return -ENOMEM;
4001
59b6f873 4002 event->memcg = memcg;
79bd9814 4003 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4004 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4005 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4006 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4007
4008 efile = fdget(efd);
4009 if (!efile.file) {
4010 ret = -EBADF;
4011 goto out_kfree;
4012 }
4013
4014 event->eventfd = eventfd_ctx_fileget(efile.file);
4015 if (IS_ERR(event->eventfd)) {
4016 ret = PTR_ERR(event->eventfd);
4017 goto out_put_efile;
4018 }
4019
4020 cfile = fdget(cfd);
4021 if (!cfile.file) {
4022 ret = -EBADF;
4023 goto out_put_eventfd;
4024 }
4025
4026 /* the process need read permission on control file */
4027 /* AV: shouldn't we check that it's been opened for read instead? */
4028 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4029 if (ret < 0)
4030 goto out_put_cfile;
4031
fba94807
TH
4032 /*
4033 * Determine the event callbacks and set them in @event. This used
4034 * to be done via struct cftype but cgroup core no longer knows
4035 * about these events. The following is crude but the whole thing
4036 * is for compatibility anyway.
3bc942f3
TH
4037 *
4038 * DO NOT ADD NEW FILES.
fba94807 4039 */
b583043e 4040 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4041
4042 if (!strcmp(name, "memory.usage_in_bytes")) {
4043 event->register_event = mem_cgroup_usage_register_event;
4044 event->unregister_event = mem_cgroup_usage_unregister_event;
4045 } else if (!strcmp(name, "memory.oom_control")) {
4046 event->register_event = mem_cgroup_oom_register_event;
4047 event->unregister_event = mem_cgroup_oom_unregister_event;
4048 } else if (!strcmp(name, "memory.pressure_level")) {
4049 event->register_event = vmpressure_register_event;
4050 event->unregister_event = vmpressure_unregister_event;
4051 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4052 event->register_event = memsw_cgroup_usage_register_event;
4053 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4054 } else {
4055 ret = -EINVAL;
4056 goto out_put_cfile;
4057 }
4058
79bd9814 4059 /*
b5557c4c
TH
4060 * Verify @cfile should belong to @css. Also, remaining events are
4061 * automatically removed on cgroup destruction but the removal is
4062 * asynchronous, so take an extra ref on @css.
79bd9814 4063 */
b583043e 4064 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4065 &memory_cgrp_subsys);
79bd9814 4066 ret = -EINVAL;
5a17f543 4067 if (IS_ERR(cfile_css))
79bd9814 4068 goto out_put_cfile;
5a17f543
TH
4069 if (cfile_css != css) {
4070 css_put(cfile_css);
79bd9814 4071 goto out_put_cfile;
5a17f543 4072 }
79bd9814 4073
451af504 4074 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4075 if (ret)
4076 goto out_put_css;
4077
9965ed17 4078 vfs_poll(efile.file, &event->pt);
79bd9814 4079
fba94807
TH
4080 spin_lock(&memcg->event_list_lock);
4081 list_add(&event->list, &memcg->event_list);
4082 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4083
4084 fdput(cfile);
4085 fdput(efile);
4086
451af504 4087 return nbytes;
79bd9814
TH
4088
4089out_put_css:
b5557c4c 4090 css_put(css);
79bd9814
TH
4091out_put_cfile:
4092 fdput(cfile);
4093out_put_eventfd:
4094 eventfd_ctx_put(event->eventfd);
4095out_put_efile:
4096 fdput(efile);
4097out_kfree:
4098 kfree(event);
4099
4100 return ret;
4101}
4102
241994ed 4103static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4104 {
0eea1030 4105 .name = "usage_in_bytes",
8c7c6e34 4106 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4107 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4108 },
c84872e1
PE
4109 {
4110 .name = "max_usage_in_bytes",
8c7c6e34 4111 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4112 .write = mem_cgroup_reset,
791badbd 4113 .read_u64 = mem_cgroup_read_u64,
c84872e1 4114 },
8cdea7c0 4115 {
0eea1030 4116 .name = "limit_in_bytes",
8c7c6e34 4117 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4118 .write = mem_cgroup_write,
791badbd 4119 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4120 },
296c81d8
BS
4121 {
4122 .name = "soft_limit_in_bytes",
4123 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4124 .write = mem_cgroup_write,
791badbd 4125 .read_u64 = mem_cgroup_read_u64,
296c81d8 4126 },
8cdea7c0
BS
4127 {
4128 .name = "failcnt",
8c7c6e34 4129 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4130 .write = mem_cgroup_reset,
791badbd 4131 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4132 },
d2ceb9b7
KH
4133 {
4134 .name = "stat",
2da8ca82 4135 .seq_show = memcg_stat_show,
d2ceb9b7 4136 },
c1e862c1
KH
4137 {
4138 .name = "force_empty",
6770c64e 4139 .write = mem_cgroup_force_empty_write,
c1e862c1 4140 },
18f59ea7
BS
4141 {
4142 .name = "use_hierarchy",
4143 .write_u64 = mem_cgroup_hierarchy_write,
4144 .read_u64 = mem_cgroup_hierarchy_read,
4145 },
79bd9814 4146 {
3bc942f3 4147 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4148 .write = memcg_write_event_control,
7dbdb199 4149 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4150 },
a7885eb8
KM
4151 {
4152 .name = "swappiness",
4153 .read_u64 = mem_cgroup_swappiness_read,
4154 .write_u64 = mem_cgroup_swappiness_write,
4155 },
7dc74be0
DN
4156 {
4157 .name = "move_charge_at_immigrate",
4158 .read_u64 = mem_cgroup_move_charge_read,
4159 .write_u64 = mem_cgroup_move_charge_write,
4160 },
9490ff27
KH
4161 {
4162 .name = "oom_control",
2da8ca82 4163 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4164 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4165 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4166 },
70ddf637
AV
4167 {
4168 .name = "pressure_level",
70ddf637 4169 },
406eb0c9
YH
4170#ifdef CONFIG_NUMA
4171 {
4172 .name = "numa_stat",
2da8ca82 4173 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4174 },
4175#endif
510fc4e1
GC
4176 {
4177 .name = "kmem.limit_in_bytes",
4178 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4179 .write = mem_cgroup_write,
791badbd 4180 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4181 },
4182 {
4183 .name = "kmem.usage_in_bytes",
4184 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4185 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4186 },
4187 {
4188 .name = "kmem.failcnt",
4189 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4190 .write = mem_cgroup_reset,
791badbd 4191 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4192 },
4193 {
4194 .name = "kmem.max_usage_in_bytes",
4195 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4196 .write = mem_cgroup_reset,
791badbd 4197 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4198 },
5b365771 4199#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4200 {
4201 .name = "kmem.slabinfo",
bc2791f8
TH
4202 .seq_start = memcg_slab_start,
4203 .seq_next = memcg_slab_next,
4204 .seq_stop = memcg_slab_stop,
b047501c 4205 .seq_show = memcg_slab_show,
749c5415
GC
4206 },
4207#endif
d55f90bf
VD
4208 {
4209 .name = "kmem.tcp.limit_in_bytes",
4210 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4211 .write = mem_cgroup_write,
4212 .read_u64 = mem_cgroup_read_u64,
4213 },
4214 {
4215 .name = "kmem.tcp.usage_in_bytes",
4216 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4217 .read_u64 = mem_cgroup_read_u64,
4218 },
4219 {
4220 .name = "kmem.tcp.failcnt",
4221 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4222 .write = mem_cgroup_reset,
4223 .read_u64 = mem_cgroup_read_u64,
4224 },
4225 {
4226 .name = "kmem.tcp.max_usage_in_bytes",
4227 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4228 .write = mem_cgroup_reset,
4229 .read_u64 = mem_cgroup_read_u64,
4230 },
6bc10349 4231 { }, /* terminate */
af36f906 4232};
8c7c6e34 4233
73f576c0
JW
4234/*
4235 * Private memory cgroup IDR
4236 *
4237 * Swap-out records and page cache shadow entries need to store memcg
4238 * references in constrained space, so we maintain an ID space that is
4239 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4240 * memory-controlled cgroups to 64k.
4241 *
4242 * However, there usually are many references to the oflline CSS after
4243 * the cgroup has been destroyed, such as page cache or reclaimable
4244 * slab objects, that don't need to hang on to the ID. We want to keep
4245 * those dead CSS from occupying IDs, or we might quickly exhaust the
4246 * relatively small ID space and prevent the creation of new cgroups
4247 * even when there are much fewer than 64k cgroups - possibly none.
4248 *
4249 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4250 * be freed and recycled when it's no longer needed, which is usually
4251 * when the CSS is offlined.
4252 *
4253 * The only exception to that are records of swapped out tmpfs/shmem
4254 * pages that need to be attributed to live ancestors on swapin. But
4255 * those references are manageable from userspace.
4256 */
4257
4258static DEFINE_IDR(mem_cgroup_idr);
4259
7e97de0b
KT
4260static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4261{
4262 if (memcg->id.id > 0) {
4263 idr_remove(&mem_cgroup_idr, memcg->id.id);
4264 memcg->id.id = 0;
4265 }
4266}
4267
615d66c3 4268static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4269{
58fa2a55 4270 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4271 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4272}
4273
615d66c3 4274static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4275{
58fa2a55 4276 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4277 if (atomic_sub_and_test(n, &memcg->id.ref)) {
7e97de0b 4278 mem_cgroup_id_remove(memcg);
73f576c0
JW
4279
4280 /* Memcg ID pins CSS */
4281 css_put(&memcg->css);
4282 }
4283}
4284
615d66c3
VD
4285static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4286{
4287 mem_cgroup_id_get_many(memcg, 1);
4288}
4289
4290static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4291{
4292 mem_cgroup_id_put_many(memcg, 1);
4293}
4294
73f576c0
JW
4295/**
4296 * mem_cgroup_from_id - look up a memcg from a memcg id
4297 * @id: the memcg id to look up
4298 *
4299 * Caller must hold rcu_read_lock().
4300 */
4301struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4302{
4303 WARN_ON_ONCE(!rcu_read_lock_held());
4304 return idr_find(&mem_cgroup_idr, id);
4305}
4306
ef8f2327 4307static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4308{
4309 struct mem_cgroup_per_node *pn;
ef8f2327 4310 int tmp = node;
1ecaab2b
KH
4311 /*
4312 * This routine is called against possible nodes.
4313 * But it's BUG to call kmalloc() against offline node.
4314 *
4315 * TODO: this routine can waste much memory for nodes which will
4316 * never be onlined. It's better to use memory hotplug callback
4317 * function.
4318 */
41e3355d
KH
4319 if (!node_state(node, N_NORMAL_MEMORY))
4320 tmp = -1;
17295c88 4321 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4322 if (!pn)
4323 return 1;
1ecaab2b 4324
a983b5eb
JW
4325 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4326 if (!pn->lruvec_stat_cpu) {
00f3ca2c
JW
4327 kfree(pn);
4328 return 1;
4329 }
4330
ef8f2327
MG
4331 lruvec_init(&pn->lruvec);
4332 pn->usage_in_excess = 0;
4333 pn->on_tree = false;
4334 pn->memcg = memcg;
4335
54f72fe0 4336 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4337 return 0;
4338}
4339
ef8f2327 4340static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4341{
00f3ca2c
JW
4342 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4343
4eaf431f
MH
4344 if (!pn)
4345 return;
4346
a983b5eb 4347 free_percpu(pn->lruvec_stat_cpu);
00f3ca2c 4348 kfree(pn);
1ecaab2b
KH
4349}
4350
40e952f9 4351static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4352{
c8b2a36f 4353 int node;
59927fb9 4354
c8b2a36f 4355 for_each_node(node)
ef8f2327 4356 free_mem_cgroup_per_node_info(memcg, node);
a983b5eb 4357 free_percpu(memcg->stat_cpu);
8ff69e2c 4358 kfree(memcg);
59927fb9 4359}
3afe36b1 4360
40e952f9
TE
4361static void mem_cgroup_free(struct mem_cgroup *memcg)
4362{
4363 memcg_wb_domain_exit(memcg);
4364 __mem_cgroup_free(memcg);
4365}
4366
0b8f73e1 4367static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4368{
d142e3e6 4369 struct mem_cgroup *memcg;
0b8f73e1 4370 size_t size;
6d12e2d8 4371 int node;
8cdea7c0 4372
0b8f73e1
JW
4373 size = sizeof(struct mem_cgroup);
4374 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4375
4376 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4377 if (!memcg)
0b8f73e1
JW
4378 return NULL;
4379
73f576c0
JW
4380 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4381 1, MEM_CGROUP_ID_MAX,
4382 GFP_KERNEL);
4383 if (memcg->id.id < 0)
4384 goto fail;
4385
a983b5eb
JW
4386 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4387 if (!memcg->stat_cpu)
0b8f73e1 4388 goto fail;
78fb7466 4389
3ed28fa1 4390 for_each_node(node)
ef8f2327 4391 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4392 goto fail;
f64c3f54 4393
0b8f73e1
JW
4394 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4395 goto fail;
28dbc4b6 4396
f7e1cb6e 4397 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4398 memcg->last_scanned_node = MAX_NUMNODES;
4399 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4400 mutex_init(&memcg->thresholds_lock);
4401 spin_lock_init(&memcg->move_lock);
70ddf637 4402 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4403 INIT_LIST_HEAD(&memcg->event_list);
4404 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4405 memcg->socket_pressure = jiffies;
84c07d11 4406#ifdef CONFIG_MEMCG_KMEM
900a38f0 4407 memcg->kmemcg_id = -1;
900a38f0 4408#endif
52ebea74
TH
4409#ifdef CONFIG_CGROUP_WRITEBACK
4410 INIT_LIST_HEAD(&memcg->cgwb_list);
4411#endif
73f576c0 4412 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4413 return memcg;
4414fail:
7e97de0b 4415 mem_cgroup_id_remove(memcg);
40e952f9 4416 __mem_cgroup_free(memcg);
0b8f73e1 4417 return NULL;
d142e3e6
GC
4418}
4419
0b8f73e1
JW
4420static struct cgroup_subsys_state * __ref
4421mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4422{
0b8f73e1
JW
4423 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4424 struct mem_cgroup *memcg;
4425 long error = -ENOMEM;
d142e3e6 4426
0b8f73e1
JW
4427 memcg = mem_cgroup_alloc();
4428 if (!memcg)
4429 return ERR_PTR(error);
d142e3e6 4430
0b8f73e1
JW
4431 memcg->high = PAGE_COUNTER_MAX;
4432 memcg->soft_limit = PAGE_COUNTER_MAX;
4433 if (parent) {
4434 memcg->swappiness = mem_cgroup_swappiness(parent);
4435 memcg->oom_kill_disable = parent->oom_kill_disable;
4436 }
4437 if (parent && parent->use_hierarchy) {
4438 memcg->use_hierarchy = true;
3e32cb2e 4439 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4440 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4441 page_counter_init(&memcg->memsw, &parent->memsw);
4442 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4443 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4444 } else {
3e32cb2e 4445 page_counter_init(&memcg->memory, NULL);
37e84351 4446 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4447 page_counter_init(&memcg->memsw, NULL);
4448 page_counter_init(&memcg->kmem, NULL);
0db15298 4449 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4450 /*
4451 * Deeper hierachy with use_hierarchy == false doesn't make
4452 * much sense so let cgroup subsystem know about this
4453 * unfortunate state in our controller.
4454 */
d142e3e6 4455 if (parent != root_mem_cgroup)
073219e9 4456 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4457 }
d6441637 4458
0b8f73e1
JW
4459 /* The following stuff does not apply to the root */
4460 if (!parent) {
4461 root_mem_cgroup = memcg;
4462 return &memcg->css;
4463 }
4464
b313aeee 4465 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4466 if (error)
4467 goto fail;
127424c8 4468
f7e1cb6e 4469 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4470 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4471
0b8f73e1
JW
4472 return &memcg->css;
4473fail:
7e97de0b 4474 mem_cgroup_id_remove(memcg);
0b8f73e1 4475 mem_cgroup_free(memcg);
ea3a9645 4476 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4477}
4478
73f576c0 4479static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4480{
58fa2a55
VD
4481 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4482
0a4465d3
KT
4483 /*
4484 * A memcg must be visible for memcg_expand_shrinker_maps()
4485 * by the time the maps are allocated. So, we allocate maps
4486 * here, when for_each_mem_cgroup() can't skip it.
4487 */
4488 if (memcg_alloc_shrinker_maps(memcg)) {
4489 mem_cgroup_id_remove(memcg);
4490 return -ENOMEM;
4491 }
4492
73f576c0 4493 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4494 atomic_set(&memcg->id.ref, 1);
73f576c0 4495 css_get(css);
2f7dd7a4 4496 return 0;
8cdea7c0
BS
4497}
4498
eb95419b 4499static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4500{
eb95419b 4501 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4502 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4503
4504 /*
4505 * Unregister events and notify userspace.
4506 * Notify userspace about cgroup removing only after rmdir of cgroup
4507 * directory to avoid race between userspace and kernelspace.
4508 */
fba94807
TH
4509 spin_lock(&memcg->event_list_lock);
4510 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4511 list_del_init(&event->list);
4512 schedule_work(&event->remove);
4513 }
fba94807 4514 spin_unlock(&memcg->event_list_lock);
ec64f515 4515
bf8d5d52 4516 page_counter_set_min(&memcg->memory, 0);
23067153 4517 page_counter_set_low(&memcg->memory, 0);
63677c74 4518
567e9ab2 4519 memcg_offline_kmem(memcg);
52ebea74 4520 wb_memcg_offline(memcg);
73f576c0
JW
4521
4522 mem_cgroup_id_put(memcg);
df878fb0
KH
4523}
4524
6df38689
VD
4525static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4526{
4527 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4528
4529 invalidate_reclaim_iterators(memcg);
4530}
4531
eb95419b 4532static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4533{
eb95419b 4534 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4535
f7e1cb6e 4536 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4537 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4538
0db15298 4539 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4540 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4541
0b8f73e1
JW
4542 vmpressure_cleanup(&memcg->vmpressure);
4543 cancel_work_sync(&memcg->high_work);
4544 mem_cgroup_remove_from_trees(memcg);
0a4465d3 4545 memcg_free_shrinker_maps(memcg);
d886f4e4 4546 memcg_free_kmem(memcg);
0b8f73e1 4547 mem_cgroup_free(memcg);
8cdea7c0
BS
4548}
4549
1ced953b
TH
4550/**
4551 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4552 * @css: the target css
4553 *
4554 * Reset the states of the mem_cgroup associated with @css. This is
4555 * invoked when the userland requests disabling on the default hierarchy
4556 * but the memcg is pinned through dependency. The memcg should stop
4557 * applying policies and should revert to the vanilla state as it may be
4558 * made visible again.
4559 *
4560 * The current implementation only resets the essential configurations.
4561 * This needs to be expanded to cover all the visible parts.
4562 */
4563static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4564{
4565 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4566
bbec2e15
RG
4567 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4568 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4569 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4570 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4571 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
bf8d5d52 4572 page_counter_set_min(&memcg->memory, 0);
23067153 4573 page_counter_set_low(&memcg->memory, 0);
241994ed 4574 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4575 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4576 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4577}
4578
02491447 4579#ifdef CONFIG_MMU
7dc74be0 4580/* Handlers for move charge at task migration. */
854ffa8d 4581static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4582{
05b84301 4583 int ret;
9476db97 4584
d0164adc
MG
4585 /* Try a single bulk charge without reclaim first, kswapd may wake */
4586 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4587 if (!ret) {
854ffa8d 4588 mc.precharge += count;
854ffa8d
DN
4589 return ret;
4590 }
9476db97 4591
3674534b 4592 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4593 while (count--) {
3674534b 4594 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4595 if (ret)
38c5d72f 4596 return ret;
854ffa8d 4597 mc.precharge++;
9476db97 4598 cond_resched();
854ffa8d 4599 }
9476db97 4600 return 0;
4ffef5fe
DN
4601}
4602
4ffef5fe
DN
4603union mc_target {
4604 struct page *page;
02491447 4605 swp_entry_t ent;
4ffef5fe
DN
4606};
4607
4ffef5fe 4608enum mc_target_type {
8d32ff84 4609 MC_TARGET_NONE = 0,
4ffef5fe 4610 MC_TARGET_PAGE,
02491447 4611 MC_TARGET_SWAP,
c733a828 4612 MC_TARGET_DEVICE,
4ffef5fe
DN
4613};
4614
90254a65
DN
4615static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4616 unsigned long addr, pte_t ptent)
4ffef5fe 4617{
c733a828 4618 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4619
90254a65
DN
4620 if (!page || !page_mapped(page))
4621 return NULL;
4622 if (PageAnon(page)) {
1dfab5ab 4623 if (!(mc.flags & MOVE_ANON))
90254a65 4624 return NULL;
1dfab5ab
JW
4625 } else {
4626 if (!(mc.flags & MOVE_FILE))
4627 return NULL;
4628 }
90254a65
DN
4629 if (!get_page_unless_zero(page))
4630 return NULL;
4631
4632 return page;
4633}
4634
c733a828 4635#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4636static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4637 pte_t ptent, swp_entry_t *entry)
90254a65 4638{
90254a65
DN
4639 struct page *page = NULL;
4640 swp_entry_t ent = pte_to_swp_entry(ptent);
4641
1dfab5ab 4642 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4643 return NULL;
c733a828
JG
4644
4645 /*
4646 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4647 * a device and because they are not accessible by CPU they are store
4648 * as special swap entry in the CPU page table.
4649 */
4650 if (is_device_private_entry(ent)) {
4651 page = device_private_entry_to_page(ent);
4652 /*
4653 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4654 * a refcount of 1 when free (unlike normal page)
4655 */
4656 if (!page_ref_add_unless(page, 1, 1))
4657 return NULL;
4658 return page;
4659 }
4660
4b91355e
KH
4661 /*
4662 * Because lookup_swap_cache() updates some statistics counter,
4663 * we call find_get_page() with swapper_space directly.
4664 */
f6ab1f7f 4665 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4666 if (do_memsw_account())
90254a65
DN
4667 entry->val = ent.val;
4668
4669 return page;
4670}
4b91355e
KH
4671#else
4672static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4673 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4674{
4675 return NULL;
4676}
4677#endif
90254a65 4678
87946a72
DN
4679static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4680 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4681{
4682 struct page *page = NULL;
87946a72
DN
4683 struct address_space *mapping;
4684 pgoff_t pgoff;
4685
4686 if (!vma->vm_file) /* anonymous vma */
4687 return NULL;
1dfab5ab 4688 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4689 return NULL;
4690
87946a72 4691 mapping = vma->vm_file->f_mapping;
0661a336 4692 pgoff = linear_page_index(vma, addr);
87946a72
DN
4693
4694 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4695#ifdef CONFIG_SWAP
4696 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4697 if (shmem_mapping(mapping)) {
4698 page = find_get_entry(mapping, pgoff);
4699 if (radix_tree_exceptional_entry(page)) {
4700 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4701 if (do_memsw_account())
139b6a6f 4702 *entry = swp;
f6ab1f7f
HY
4703 page = find_get_page(swap_address_space(swp),
4704 swp_offset(swp));
139b6a6f
JW
4705 }
4706 } else
4707 page = find_get_page(mapping, pgoff);
4708#else
4709 page = find_get_page(mapping, pgoff);
aa3b1895 4710#endif
87946a72
DN
4711 return page;
4712}
4713
b1b0deab
CG
4714/**
4715 * mem_cgroup_move_account - move account of the page
4716 * @page: the page
25843c2b 4717 * @compound: charge the page as compound or small page
b1b0deab
CG
4718 * @from: mem_cgroup which the page is moved from.
4719 * @to: mem_cgroup which the page is moved to. @from != @to.
4720 *
3ac808fd 4721 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4722 *
4723 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4724 * from old cgroup.
4725 */
4726static int mem_cgroup_move_account(struct page *page,
f627c2f5 4727 bool compound,
b1b0deab
CG
4728 struct mem_cgroup *from,
4729 struct mem_cgroup *to)
4730{
4731 unsigned long flags;
f627c2f5 4732 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4733 int ret;
c4843a75 4734 bool anon;
b1b0deab
CG
4735
4736 VM_BUG_ON(from == to);
4737 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4738 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4739
4740 /*
6a93ca8f 4741 * Prevent mem_cgroup_migrate() from looking at
45637bab 4742 * page->mem_cgroup of its source page while we change it.
b1b0deab 4743 */
f627c2f5 4744 ret = -EBUSY;
b1b0deab
CG
4745 if (!trylock_page(page))
4746 goto out;
4747
4748 ret = -EINVAL;
4749 if (page->mem_cgroup != from)
4750 goto out_unlock;
4751
c4843a75
GT
4752 anon = PageAnon(page);
4753
b1b0deab
CG
4754 spin_lock_irqsave(&from->move_lock, flags);
4755
c4843a75 4756 if (!anon && page_mapped(page)) {
c9019e9b
JW
4757 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4758 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
b1b0deab
CG
4759 }
4760
c4843a75
GT
4761 /*
4762 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4763 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4764 * So mapping should be stable for dirty pages.
4765 */
4766 if (!anon && PageDirty(page)) {
4767 struct address_space *mapping = page_mapping(page);
4768
4769 if (mapping_cap_account_dirty(mapping)) {
c9019e9b
JW
4770 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4771 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
c4843a75
GT
4772 }
4773 }
4774
b1b0deab 4775 if (PageWriteback(page)) {
c9019e9b
JW
4776 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4777 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
b1b0deab
CG
4778 }
4779
4780 /*
4781 * It is safe to change page->mem_cgroup here because the page
4782 * is referenced, charged, and isolated - we can't race with
4783 * uncharging, charging, migration, or LRU putback.
4784 */
4785
4786 /* caller should have done css_get */
4787 page->mem_cgroup = to;
4788 spin_unlock_irqrestore(&from->move_lock, flags);
4789
4790 ret = 0;
4791
4792 local_irq_disable();
f627c2f5 4793 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4794 memcg_check_events(to, page);
f627c2f5 4795 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4796 memcg_check_events(from, page);
4797 local_irq_enable();
4798out_unlock:
4799 unlock_page(page);
4800out:
4801 return ret;
4802}
4803
7cf7806c
LR
4804/**
4805 * get_mctgt_type - get target type of moving charge
4806 * @vma: the vma the pte to be checked belongs
4807 * @addr: the address corresponding to the pte to be checked
4808 * @ptent: the pte to be checked
4809 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4810 *
4811 * Returns
4812 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4813 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4814 * move charge. if @target is not NULL, the page is stored in target->page
4815 * with extra refcnt got(Callers should handle it).
4816 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4817 * target for charge migration. if @target is not NULL, the entry is stored
4818 * in target->ent.
df6ad698
JG
4819 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4820 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4821 * For now we such page is charge like a regular page would be as for all
4822 * intent and purposes it is just special memory taking the place of a
4823 * regular page.
c733a828
JG
4824 *
4825 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
4826 *
4827 * Called with pte lock held.
4828 */
4829
8d32ff84 4830static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4831 unsigned long addr, pte_t ptent, union mc_target *target)
4832{
4833 struct page *page = NULL;
8d32ff84 4834 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4835 swp_entry_t ent = { .val = 0 };
4836
4837 if (pte_present(ptent))
4838 page = mc_handle_present_pte(vma, addr, ptent);
4839 else if (is_swap_pte(ptent))
48406ef8 4840 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4841 else if (pte_none(ptent))
87946a72 4842 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4843
4844 if (!page && !ent.val)
8d32ff84 4845 return ret;
02491447 4846 if (page) {
02491447 4847 /*
0a31bc97 4848 * Do only loose check w/o serialization.
1306a85a 4849 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4850 * not under LRU exclusion.
02491447 4851 */
1306a85a 4852 if (page->mem_cgroup == mc.from) {
02491447 4853 ret = MC_TARGET_PAGE;
df6ad698
JG
4854 if (is_device_private_page(page) ||
4855 is_device_public_page(page))
c733a828 4856 ret = MC_TARGET_DEVICE;
02491447
DN
4857 if (target)
4858 target->page = page;
4859 }
4860 if (!ret || !target)
4861 put_page(page);
4862 }
3e14a57b
HY
4863 /*
4864 * There is a swap entry and a page doesn't exist or isn't charged.
4865 * But we cannot move a tail-page in a THP.
4866 */
4867 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 4868 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4869 ret = MC_TARGET_SWAP;
4870 if (target)
4871 target->ent = ent;
4ffef5fe 4872 }
4ffef5fe
DN
4873 return ret;
4874}
4875
12724850
NH
4876#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4877/*
d6810d73
HY
4878 * We don't consider PMD mapped swapping or file mapped pages because THP does
4879 * not support them for now.
12724850
NH
4880 * Caller should make sure that pmd_trans_huge(pmd) is true.
4881 */
4882static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4883 unsigned long addr, pmd_t pmd, union mc_target *target)
4884{
4885 struct page *page = NULL;
12724850
NH
4886 enum mc_target_type ret = MC_TARGET_NONE;
4887
84c3fc4e
ZY
4888 if (unlikely(is_swap_pmd(pmd))) {
4889 VM_BUG_ON(thp_migration_supported() &&
4890 !is_pmd_migration_entry(pmd));
4891 return ret;
4892 }
12724850 4893 page = pmd_page(pmd);
309381fe 4894 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4895 if (!(mc.flags & MOVE_ANON))
12724850 4896 return ret;
1306a85a 4897 if (page->mem_cgroup == mc.from) {
12724850
NH
4898 ret = MC_TARGET_PAGE;
4899 if (target) {
4900 get_page(page);
4901 target->page = page;
4902 }
4903 }
4904 return ret;
4905}
4906#else
4907static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4908 unsigned long addr, pmd_t pmd, union mc_target *target)
4909{
4910 return MC_TARGET_NONE;
4911}
4912#endif
4913
4ffef5fe
DN
4914static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4915 unsigned long addr, unsigned long end,
4916 struct mm_walk *walk)
4917{
26bcd64a 4918 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4919 pte_t *pte;
4920 spinlock_t *ptl;
4921
b6ec57f4
KS
4922 ptl = pmd_trans_huge_lock(pmd, vma);
4923 if (ptl) {
c733a828
JG
4924 /*
4925 * Note their can not be MC_TARGET_DEVICE for now as we do not
4926 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4927 * MEMORY_DEVICE_PRIVATE but this might change.
4928 */
12724850
NH
4929 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4930 mc.precharge += HPAGE_PMD_NR;
bf929152 4931 spin_unlock(ptl);
1a5a9906 4932 return 0;
12724850 4933 }
03319327 4934
45f83cef
AA
4935 if (pmd_trans_unstable(pmd))
4936 return 0;
4ffef5fe
DN
4937 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4938 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4939 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4940 mc.precharge++; /* increment precharge temporarily */
4941 pte_unmap_unlock(pte - 1, ptl);
4942 cond_resched();
4943
7dc74be0
DN
4944 return 0;
4945}
4946
4ffef5fe
DN
4947static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4948{
4949 unsigned long precharge;
4ffef5fe 4950
26bcd64a
NH
4951 struct mm_walk mem_cgroup_count_precharge_walk = {
4952 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4953 .mm = mm,
4954 };
dfe076b0 4955 down_read(&mm->mmap_sem);
0247f3f4
JM
4956 walk_page_range(0, mm->highest_vm_end,
4957 &mem_cgroup_count_precharge_walk);
dfe076b0 4958 up_read(&mm->mmap_sem);
4ffef5fe
DN
4959
4960 precharge = mc.precharge;
4961 mc.precharge = 0;
4962
4963 return precharge;
4964}
4965
4ffef5fe
DN
4966static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4967{
dfe076b0
DN
4968 unsigned long precharge = mem_cgroup_count_precharge(mm);
4969
4970 VM_BUG_ON(mc.moving_task);
4971 mc.moving_task = current;
4972 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4973}
4974
dfe076b0
DN
4975/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4976static void __mem_cgroup_clear_mc(void)
4ffef5fe 4977{
2bd9bb20
KH
4978 struct mem_cgroup *from = mc.from;
4979 struct mem_cgroup *to = mc.to;
4980
4ffef5fe 4981 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4982 if (mc.precharge) {
00501b53 4983 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4984 mc.precharge = 0;
4985 }
4986 /*
4987 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4988 * we must uncharge here.
4989 */
4990 if (mc.moved_charge) {
00501b53 4991 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4992 mc.moved_charge = 0;
4ffef5fe 4993 }
483c30b5
DN
4994 /* we must fixup refcnts and charges */
4995 if (mc.moved_swap) {
483c30b5 4996 /* uncharge swap account from the old cgroup */
ce00a967 4997 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4998 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4999
615d66c3
VD
5000 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5001
05b84301 5002 /*
3e32cb2e
JW
5003 * we charged both to->memory and to->memsw, so we
5004 * should uncharge to->memory.
05b84301 5005 */
ce00a967 5006 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
5007 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5008
615d66c3
VD
5009 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5010 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 5011
483c30b5
DN
5012 mc.moved_swap = 0;
5013 }
dfe076b0
DN
5014 memcg_oom_recover(from);
5015 memcg_oom_recover(to);
5016 wake_up_all(&mc.waitq);
5017}
5018
5019static void mem_cgroup_clear_mc(void)
5020{
264a0ae1
TH
5021 struct mm_struct *mm = mc.mm;
5022
dfe076b0
DN
5023 /*
5024 * we must clear moving_task before waking up waiters at the end of
5025 * task migration.
5026 */
5027 mc.moving_task = NULL;
5028 __mem_cgroup_clear_mc();
2bd9bb20 5029 spin_lock(&mc.lock);
4ffef5fe
DN
5030 mc.from = NULL;
5031 mc.to = NULL;
264a0ae1 5032 mc.mm = NULL;
2bd9bb20 5033 spin_unlock(&mc.lock);
264a0ae1
TH
5034
5035 mmput(mm);
4ffef5fe
DN
5036}
5037
1f7dd3e5 5038static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 5039{
1f7dd3e5 5040 struct cgroup_subsys_state *css;
eed67d75 5041 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 5042 struct mem_cgroup *from;
4530eddb 5043 struct task_struct *leader, *p;
9f2115f9 5044 struct mm_struct *mm;
1dfab5ab 5045 unsigned long move_flags;
9f2115f9 5046 int ret = 0;
7dc74be0 5047
1f7dd3e5
TH
5048 /* charge immigration isn't supported on the default hierarchy */
5049 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
5050 return 0;
5051
4530eddb
TH
5052 /*
5053 * Multi-process migrations only happen on the default hierarchy
5054 * where charge immigration is not used. Perform charge
5055 * immigration if @tset contains a leader and whine if there are
5056 * multiple.
5057 */
5058 p = NULL;
1f7dd3e5 5059 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
5060 WARN_ON_ONCE(p);
5061 p = leader;
1f7dd3e5 5062 memcg = mem_cgroup_from_css(css);
4530eddb
TH
5063 }
5064 if (!p)
5065 return 0;
5066
1f7dd3e5
TH
5067 /*
5068 * We are now commited to this value whatever it is. Changes in this
5069 * tunable will only affect upcoming migrations, not the current one.
5070 * So we need to save it, and keep it going.
5071 */
5072 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5073 if (!move_flags)
5074 return 0;
5075
9f2115f9
TH
5076 from = mem_cgroup_from_task(p);
5077
5078 VM_BUG_ON(from == memcg);
5079
5080 mm = get_task_mm(p);
5081 if (!mm)
5082 return 0;
5083 /* We move charges only when we move a owner of the mm */
5084 if (mm->owner == p) {
5085 VM_BUG_ON(mc.from);
5086 VM_BUG_ON(mc.to);
5087 VM_BUG_ON(mc.precharge);
5088 VM_BUG_ON(mc.moved_charge);
5089 VM_BUG_ON(mc.moved_swap);
5090
5091 spin_lock(&mc.lock);
264a0ae1 5092 mc.mm = mm;
9f2115f9
TH
5093 mc.from = from;
5094 mc.to = memcg;
5095 mc.flags = move_flags;
5096 spin_unlock(&mc.lock);
5097 /* We set mc.moving_task later */
5098
5099 ret = mem_cgroup_precharge_mc(mm);
5100 if (ret)
5101 mem_cgroup_clear_mc();
264a0ae1
TH
5102 } else {
5103 mmput(mm);
7dc74be0
DN
5104 }
5105 return ret;
5106}
5107
1f7dd3e5 5108static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 5109{
4e2f245d
JW
5110 if (mc.to)
5111 mem_cgroup_clear_mc();
7dc74be0
DN
5112}
5113
4ffef5fe
DN
5114static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5115 unsigned long addr, unsigned long end,
5116 struct mm_walk *walk)
7dc74be0 5117{
4ffef5fe 5118 int ret = 0;
26bcd64a 5119 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
5120 pte_t *pte;
5121 spinlock_t *ptl;
12724850
NH
5122 enum mc_target_type target_type;
5123 union mc_target target;
5124 struct page *page;
4ffef5fe 5125
b6ec57f4
KS
5126 ptl = pmd_trans_huge_lock(pmd, vma);
5127 if (ptl) {
62ade86a 5128 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5129 spin_unlock(ptl);
12724850
NH
5130 return 0;
5131 }
5132 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5133 if (target_type == MC_TARGET_PAGE) {
5134 page = target.page;
5135 if (!isolate_lru_page(page)) {
f627c2f5 5136 if (!mem_cgroup_move_account(page, true,
1306a85a 5137 mc.from, mc.to)) {
12724850
NH
5138 mc.precharge -= HPAGE_PMD_NR;
5139 mc.moved_charge += HPAGE_PMD_NR;
5140 }
5141 putback_lru_page(page);
5142 }
5143 put_page(page);
c733a828
JG
5144 } else if (target_type == MC_TARGET_DEVICE) {
5145 page = target.page;
5146 if (!mem_cgroup_move_account(page, true,
5147 mc.from, mc.to)) {
5148 mc.precharge -= HPAGE_PMD_NR;
5149 mc.moved_charge += HPAGE_PMD_NR;
5150 }
5151 put_page(page);
12724850 5152 }
bf929152 5153 spin_unlock(ptl);
1a5a9906 5154 return 0;
12724850
NH
5155 }
5156
45f83cef
AA
5157 if (pmd_trans_unstable(pmd))
5158 return 0;
4ffef5fe
DN
5159retry:
5160 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5161 for (; addr != end; addr += PAGE_SIZE) {
5162 pte_t ptent = *(pte++);
c733a828 5163 bool device = false;
02491447 5164 swp_entry_t ent;
4ffef5fe
DN
5165
5166 if (!mc.precharge)
5167 break;
5168
8d32ff84 5169 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5170 case MC_TARGET_DEVICE:
5171 device = true;
5172 /* fall through */
4ffef5fe
DN
5173 case MC_TARGET_PAGE:
5174 page = target.page;
53f9263b
KS
5175 /*
5176 * We can have a part of the split pmd here. Moving it
5177 * can be done but it would be too convoluted so simply
5178 * ignore such a partial THP and keep it in original
5179 * memcg. There should be somebody mapping the head.
5180 */
5181 if (PageTransCompound(page))
5182 goto put;
c733a828 5183 if (!device && isolate_lru_page(page))
4ffef5fe 5184 goto put;
f627c2f5
KS
5185 if (!mem_cgroup_move_account(page, false,
5186 mc.from, mc.to)) {
4ffef5fe 5187 mc.precharge--;
854ffa8d
DN
5188 /* we uncharge from mc.from later. */
5189 mc.moved_charge++;
4ffef5fe 5190 }
c733a828
JG
5191 if (!device)
5192 putback_lru_page(page);
8d32ff84 5193put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5194 put_page(page);
5195 break;
02491447
DN
5196 case MC_TARGET_SWAP:
5197 ent = target.ent;
e91cbb42 5198 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5199 mc.precharge--;
483c30b5
DN
5200 /* we fixup refcnts and charges later. */
5201 mc.moved_swap++;
5202 }
02491447 5203 break;
4ffef5fe
DN
5204 default:
5205 break;
5206 }
5207 }
5208 pte_unmap_unlock(pte - 1, ptl);
5209 cond_resched();
5210
5211 if (addr != end) {
5212 /*
5213 * We have consumed all precharges we got in can_attach().
5214 * We try charge one by one, but don't do any additional
5215 * charges to mc.to if we have failed in charge once in attach()
5216 * phase.
5217 */
854ffa8d 5218 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5219 if (!ret)
5220 goto retry;
5221 }
5222
5223 return ret;
5224}
5225
264a0ae1 5226static void mem_cgroup_move_charge(void)
4ffef5fe 5227{
26bcd64a
NH
5228 struct mm_walk mem_cgroup_move_charge_walk = {
5229 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5230 .mm = mc.mm,
26bcd64a 5231 };
4ffef5fe
DN
5232
5233 lru_add_drain_all();
312722cb 5234 /*
81f8c3a4
JW
5235 * Signal lock_page_memcg() to take the memcg's move_lock
5236 * while we're moving its pages to another memcg. Then wait
5237 * for already started RCU-only updates to finish.
312722cb
JW
5238 */
5239 atomic_inc(&mc.from->moving_account);
5240 synchronize_rcu();
dfe076b0 5241retry:
264a0ae1 5242 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5243 /*
5244 * Someone who are holding the mmap_sem might be waiting in
5245 * waitq. So we cancel all extra charges, wake up all waiters,
5246 * and retry. Because we cancel precharges, we might not be able
5247 * to move enough charges, but moving charge is a best-effort
5248 * feature anyway, so it wouldn't be a big problem.
5249 */
5250 __mem_cgroup_clear_mc();
5251 cond_resched();
5252 goto retry;
5253 }
26bcd64a
NH
5254 /*
5255 * When we have consumed all precharges and failed in doing
5256 * additional charge, the page walk just aborts.
5257 */
0247f3f4
JM
5258 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5259
264a0ae1 5260 up_read(&mc.mm->mmap_sem);
312722cb 5261 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5262}
5263
264a0ae1 5264static void mem_cgroup_move_task(void)
67e465a7 5265{
264a0ae1
TH
5266 if (mc.to) {
5267 mem_cgroup_move_charge();
a433658c 5268 mem_cgroup_clear_mc();
264a0ae1 5269 }
67e465a7 5270}
5cfb80a7 5271#else /* !CONFIG_MMU */
1f7dd3e5 5272static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5273{
5274 return 0;
5275}
1f7dd3e5 5276static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5277{
5278}
264a0ae1 5279static void mem_cgroup_move_task(void)
5cfb80a7
DN
5280{
5281}
5282#endif
67e465a7 5283
f00baae7
TH
5284/*
5285 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5286 * to verify whether we're attached to the default hierarchy on each mount
5287 * attempt.
f00baae7 5288 */
eb95419b 5289static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5290{
5291 /*
aa6ec29b 5292 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5293 * guarantees that @root doesn't have any children, so turning it
5294 * on for the root memcg is enough.
5295 */
9e10a130 5296 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5297 root_mem_cgroup->use_hierarchy = true;
5298 else
5299 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5300}
5301
241994ed
JW
5302static u64 memory_current_read(struct cgroup_subsys_state *css,
5303 struct cftype *cft)
5304{
f5fc3c5d
JW
5305 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5306
5307 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5308}
5309
bf8d5d52
RG
5310static int memory_min_show(struct seq_file *m, void *v)
5311{
5312 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5313 unsigned long min = READ_ONCE(memcg->memory.min);
5314
5315 if (min == PAGE_COUNTER_MAX)
5316 seq_puts(m, "max\n");
5317 else
5318 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5319
5320 return 0;
5321}
5322
5323static ssize_t memory_min_write(struct kernfs_open_file *of,
5324 char *buf, size_t nbytes, loff_t off)
5325{
5326 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5327 unsigned long min;
5328 int err;
5329
5330 buf = strstrip(buf);
5331 err = page_counter_memparse(buf, "max", &min);
5332 if (err)
5333 return err;
5334
5335 page_counter_set_min(&memcg->memory, min);
5336
5337 return nbytes;
5338}
5339
241994ed
JW
5340static int memory_low_show(struct seq_file *m, void *v)
5341{
5342 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
23067153 5343 unsigned long low = READ_ONCE(memcg->memory.low);
241994ed
JW
5344
5345 if (low == PAGE_COUNTER_MAX)
d2973697 5346 seq_puts(m, "max\n");
241994ed
JW
5347 else
5348 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5349
5350 return 0;
5351}
5352
5353static ssize_t memory_low_write(struct kernfs_open_file *of,
5354 char *buf, size_t nbytes, loff_t off)
5355{
5356 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5357 unsigned long low;
5358 int err;
5359
5360 buf = strstrip(buf);
d2973697 5361 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5362 if (err)
5363 return err;
5364
23067153 5365 page_counter_set_low(&memcg->memory, low);
241994ed
JW
5366
5367 return nbytes;
5368}
5369
5370static int memory_high_show(struct seq_file *m, void *v)
5371{
5372 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5373 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5374
5375 if (high == PAGE_COUNTER_MAX)
d2973697 5376 seq_puts(m, "max\n");
241994ed
JW
5377 else
5378 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5379
5380 return 0;
5381}
5382
5383static ssize_t memory_high_write(struct kernfs_open_file *of,
5384 char *buf, size_t nbytes, loff_t off)
5385{
5386 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5387 unsigned long nr_pages;
241994ed
JW
5388 unsigned long high;
5389 int err;
5390
5391 buf = strstrip(buf);
d2973697 5392 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5393 if (err)
5394 return err;
5395
5396 memcg->high = high;
5397
588083bb
JW
5398 nr_pages = page_counter_read(&memcg->memory);
5399 if (nr_pages > high)
5400 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5401 GFP_KERNEL, true);
5402
2529bb3a 5403 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5404 return nbytes;
5405}
5406
5407static int memory_max_show(struct seq_file *m, void *v)
5408{
5409 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 5410 unsigned long max = READ_ONCE(memcg->memory.max);
241994ed
JW
5411
5412 if (max == PAGE_COUNTER_MAX)
d2973697 5413 seq_puts(m, "max\n");
241994ed
JW
5414 else
5415 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5416
5417 return 0;
5418}
5419
5420static ssize_t memory_max_write(struct kernfs_open_file *of,
5421 char *buf, size_t nbytes, loff_t off)
5422{
5423 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5424 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5425 bool drained = false;
241994ed
JW
5426 unsigned long max;
5427 int err;
5428
5429 buf = strstrip(buf);
d2973697 5430 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5431 if (err)
5432 return err;
5433
bbec2e15 5434 xchg(&memcg->memory.max, max);
b6e6edcf
JW
5435
5436 for (;;) {
5437 unsigned long nr_pages = page_counter_read(&memcg->memory);
5438
5439 if (nr_pages <= max)
5440 break;
5441
5442 if (signal_pending(current)) {
5443 err = -EINTR;
5444 break;
5445 }
5446
5447 if (!drained) {
5448 drain_all_stock(memcg);
5449 drained = true;
5450 continue;
5451 }
5452
5453 if (nr_reclaims) {
5454 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5455 GFP_KERNEL, true))
5456 nr_reclaims--;
5457 continue;
5458 }
5459
e27be240 5460 memcg_memory_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5461 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5462 break;
5463 }
241994ed 5464
2529bb3a 5465 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5466 return nbytes;
5467}
5468
5469static int memory_events_show(struct seq_file *m, void *v)
5470{
5471 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5472
e27be240
JW
5473 seq_printf(m, "low %lu\n",
5474 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5475 seq_printf(m, "high %lu\n",
5476 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5477 seq_printf(m, "max %lu\n",
5478 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5479 seq_printf(m, "oom %lu\n",
5480 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
fe6bdfc8
RG
5481 seq_printf(m, "oom_kill %lu\n",
5482 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
241994ed
JW
5483
5484 return 0;
5485}
5486
587d9f72
JW
5487static int memory_stat_show(struct seq_file *m, void *v)
5488{
5489 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
8de7ecc6 5490 struct accumulated_stats acc;
587d9f72
JW
5491 int i;
5492
5493 /*
5494 * Provide statistics on the state of the memory subsystem as
5495 * well as cumulative event counters that show past behavior.
5496 *
5497 * This list is ordered following a combination of these gradients:
5498 * 1) generic big picture -> specifics and details
5499 * 2) reflecting userspace activity -> reflecting kernel heuristics
5500 *
5501 * Current memory state:
5502 */
5503
8de7ecc6
SB
5504 memset(&acc, 0, sizeof(acc));
5505 acc.stats_size = MEMCG_NR_STAT;
5506 acc.events_size = NR_VM_EVENT_ITEMS;
5507 accumulate_memcg_tree(memcg, &acc);
72b54e73 5508
587d9f72 5509 seq_printf(m, "anon %llu\n",
8de7ecc6 5510 (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5511 seq_printf(m, "file %llu\n",
8de7ecc6 5512 (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5513 seq_printf(m, "kernel_stack %llu\n",
8de7ecc6 5514 (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5515 seq_printf(m, "slab %llu\n",
8de7ecc6
SB
5516 (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
5517 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5518 seq_printf(m, "sock %llu\n",
8de7ecc6 5519 (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5520
9a4caf1e 5521 seq_printf(m, "shmem %llu\n",
8de7ecc6 5522 (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
587d9f72 5523 seq_printf(m, "file_mapped %llu\n",
8de7ecc6 5524 (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5525 seq_printf(m, "file_dirty %llu\n",
8de7ecc6 5526 (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5527 seq_printf(m, "file_writeback %llu\n",
8de7ecc6 5528 (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
587d9f72 5529
8de7ecc6
SB
5530 for (i = 0; i < NR_LRU_LISTS; i++)
5531 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5532 (u64)acc.lru_pages[i] * PAGE_SIZE);
587d9f72 5533
27ee57c9 5534 seq_printf(m, "slab_reclaimable %llu\n",
8de7ecc6 5535 (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5536 seq_printf(m, "slab_unreclaimable %llu\n",
8de7ecc6 5537 (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5538
587d9f72
JW
5539 /* Accumulated memory events */
5540
8de7ecc6
SB
5541 seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
5542 seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
587d9f72 5543
8de7ecc6
SB
5544 seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
5545 seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
5546 acc.events[PGSCAN_DIRECT]);
5547 seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
5548 acc.events[PGSTEAL_DIRECT]);
5549 seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
5550 seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
5551 seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
5552 seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
2262185c 5553
2a2e4885 5554 seq_printf(m, "workingset_refault %lu\n",
8de7ecc6 5555 acc.stat[WORKINGSET_REFAULT]);
2a2e4885 5556 seq_printf(m, "workingset_activate %lu\n",
8de7ecc6 5557 acc.stat[WORKINGSET_ACTIVATE]);
2a2e4885 5558 seq_printf(m, "workingset_nodereclaim %lu\n",
8de7ecc6 5559 acc.stat[WORKINGSET_NODERECLAIM]);
2a2e4885 5560
587d9f72
JW
5561 return 0;
5562}
5563
241994ed
JW
5564static struct cftype memory_files[] = {
5565 {
5566 .name = "current",
f5fc3c5d 5567 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5568 .read_u64 = memory_current_read,
5569 },
bf8d5d52
RG
5570 {
5571 .name = "min",
5572 .flags = CFTYPE_NOT_ON_ROOT,
5573 .seq_show = memory_min_show,
5574 .write = memory_min_write,
5575 },
241994ed
JW
5576 {
5577 .name = "low",
5578 .flags = CFTYPE_NOT_ON_ROOT,
5579 .seq_show = memory_low_show,
5580 .write = memory_low_write,
5581 },
5582 {
5583 .name = "high",
5584 .flags = CFTYPE_NOT_ON_ROOT,
5585 .seq_show = memory_high_show,
5586 .write = memory_high_write,
5587 },
5588 {
5589 .name = "max",
5590 .flags = CFTYPE_NOT_ON_ROOT,
5591 .seq_show = memory_max_show,
5592 .write = memory_max_write,
5593 },
5594 {
5595 .name = "events",
5596 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5597 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5598 .seq_show = memory_events_show,
5599 },
587d9f72
JW
5600 {
5601 .name = "stat",
5602 .flags = CFTYPE_NOT_ON_ROOT,
5603 .seq_show = memory_stat_show,
5604 },
241994ed
JW
5605 { } /* terminate */
5606};
5607
073219e9 5608struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5609 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5610 .css_online = mem_cgroup_css_online,
92fb9748 5611 .css_offline = mem_cgroup_css_offline,
6df38689 5612 .css_released = mem_cgroup_css_released,
92fb9748 5613 .css_free = mem_cgroup_css_free,
1ced953b 5614 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5615 .can_attach = mem_cgroup_can_attach,
5616 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5617 .post_attach = mem_cgroup_move_task,
f00baae7 5618 .bind = mem_cgroup_bind,
241994ed
JW
5619 .dfl_cftypes = memory_files,
5620 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5621 .early_init = 0,
8cdea7c0 5622};
c077719b 5623
241994ed 5624/**
bf8d5d52 5625 * mem_cgroup_protected - check if memory consumption is in the normal range
34c81057 5626 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5627 * @memcg: the memory cgroup to check
5628 *
23067153
RG
5629 * WARNING: This function is not stateless! It can only be used as part
5630 * of a top-down tree iteration, not for isolated queries.
34c81057 5631 *
bf8d5d52
RG
5632 * Returns one of the following:
5633 * MEMCG_PROT_NONE: cgroup memory is not protected
5634 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5635 * an unprotected supply of reclaimable memory from other cgroups.
5636 * MEMCG_PROT_MIN: cgroup memory is protected
34c81057 5637 *
bf8d5d52 5638 * @root is exclusive; it is never protected when looked at directly
34c81057 5639 *
bf8d5d52
RG
5640 * To provide a proper hierarchical behavior, effective memory.min/low values
5641 * are used. Below is the description of how effective memory.low is calculated.
5642 * Effective memory.min values is calculated in the same way.
34c81057 5643 *
23067153
RG
5644 * Effective memory.low is always equal or less than the original memory.low.
5645 * If there is no memory.low overcommittment (which is always true for
5646 * top-level memory cgroups), these two values are equal.
5647 * Otherwise, it's a part of parent's effective memory.low,
5648 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5649 * memory.low usages, where memory.low usage is the size of actually
5650 * protected memory.
34c81057 5651 *
23067153
RG
5652 * low_usage
5653 * elow = min( memory.low, parent->elow * ------------------ ),
5654 * siblings_low_usage
34c81057 5655 *
23067153
RG
5656 * | memory.current, if memory.current < memory.low
5657 * low_usage = |
5658 | 0, otherwise.
34c81057 5659 *
23067153
RG
5660 *
5661 * Such definition of the effective memory.low provides the expected
5662 * hierarchical behavior: parent's memory.low value is limiting
5663 * children, unprotected memory is reclaimed first and cgroups,
5664 * which are not using their guarantee do not affect actual memory
5665 * distribution.
5666 *
5667 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5668 *
5669 * A A/memory.low = 2G, A/memory.current = 6G
5670 * //\\
5671 * BC DE B/memory.low = 3G B/memory.current = 2G
5672 * C/memory.low = 1G C/memory.current = 2G
5673 * D/memory.low = 0 D/memory.current = 2G
5674 * E/memory.low = 10G E/memory.current = 0
5675 *
5676 * and the memory pressure is applied, the following memory distribution
5677 * is expected (approximately):
5678 *
5679 * A/memory.current = 2G
5680 *
5681 * B/memory.current = 1.3G
5682 * C/memory.current = 0.6G
5683 * D/memory.current = 0
5684 * E/memory.current = 0
5685 *
5686 * These calculations require constant tracking of the actual low usages
bf8d5d52
RG
5687 * (see propagate_protected_usage()), as well as recursive calculation of
5688 * effective memory.low values. But as we do call mem_cgroup_protected()
23067153
RG
5689 * path for each memory cgroup top-down from the reclaim,
5690 * it's possible to optimize this part, and save calculated elow
5691 * for next usage. This part is intentionally racy, but it's ok,
5692 * as memory.low is a best-effort mechanism.
241994ed 5693 */
bf8d5d52
RG
5694enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5695 struct mem_cgroup *memcg)
241994ed 5696{
23067153 5697 struct mem_cgroup *parent;
bf8d5d52
RG
5698 unsigned long emin, parent_emin;
5699 unsigned long elow, parent_elow;
5700 unsigned long usage;
23067153 5701
241994ed 5702 if (mem_cgroup_disabled())
bf8d5d52 5703 return MEMCG_PROT_NONE;
241994ed 5704
34c81057
SC
5705 if (!root)
5706 root = root_mem_cgroup;
5707 if (memcg == root)
bf8d5d52 5708 return MEMCG_PROT_NONE;
241994ed 5709
23067153 5710 usage = page_counter_read(&memcg->memory);
bf8d5d52
RG
5711 if (!usage)
5712 return MEMCG_PROT_NONE;
5713
5714 emin = memcg->memory.min;
5715 elow = memcg->memory.low;
34c81057 5716
bf8d5d52 5717 parent = parent_mem_cgroup(memcg);
df2a4196
RG
5718 /* No parent means a non-hierarchical mode on v1 memcg */
5719 if (!parent)
5720 return MEMCG_PROT_NONE;
5721
23067153
RG
5722 if (parent == root)
5723 goto exit;
5724
bf8d5d52
RG
5725 parent_emin = READ_ONCE(parent->memory.emin);
5726 emin = min(emin, parent_emin);
5727 if (emin && parent_emin) {
5728 unsigned long min_usage, siblings_min_usage;
5729
5730 min_usage = min(usage, memcg->memory.min);
5731 siblings_min_usage = atomic_long_read(
5732 &parent->memory.children_min_usage);
5733
5734 if (min_usage && siblings_min_usage)
5735 emin = min(emin, parent_emin * min_usage /
5736 siblings_min_usage);
5737 }
5738
23067153
RG
5739 parent_elow = READ_ONCE(parent->memory.elow);
5740 elow = min(elow, parent_elow);
bf8d5d52
RG
5741 if (elow && parent_elow) {
5742 unsigned long low_usage, siblings_low_usage;
23067153 5743
bf8d5d52
RG
5744 low_usage = min(usage, memcg->memory.low);
5745 siblings_low_usage = atomic_long_read(
5746 &parent->memory.children_low_usage);
23067153 5747
bf8d5d52
RG
5748 if (low_usage && siblings_low_usage)
5749 elow = min(elow, parent_elow * low_usage /
5750 siblings_low_usage);
5751 }
23067153 5752
23067153 5753exit:
bf8d5d52 5754 memcg->memory.emin = emin;
23067153 5755 memcg->memory.elow = elow;
bf8d5d52
RG
5756
5757 if (usage <= emin)
5758 return MEMCG_PROT_MIN;
5759 else if (usage <= elow)
5760 return MEMCG_PROT_LOW;
5761 else
5762 return MEMCG_PROT_NONE;
241994ed
JW
5763}
5764
00501b53
JW
5765/**
5766 * mem_cgroup_try_charge - try charging a page
5767 * @page: page to charge
5768 * @mm: mm context of the victim
5769 * @gfp_mask: reclaim mode
5770 * @memcgp: charged memcg return
25843c2b 5771 * @compound: charge the page as compound or small page
00501b53
JW
5772 *
5773 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5774 * pages according to @gfp_mask if necessary.
5775 *
5776 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5777 * Otherwise, an error code is returned.
5778 *
5779 * After page->mapping has been set up, the caller must finalize the
5780 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5781 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5782 */
5783int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5784 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5785 bool compound)
00501b53
JW
5786{
5787 struct mem_cgroup *memcg = NULL;
f627c2f5 5788 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5789 int ret = 0;
5790
5791 if (mem_cgroup_disabled())
5792 goto out;
5793
5794 if (PageSwapCache(page)) {
00501b53
JW
5795 /*
5796 * Every swap fault against a single page tries to charge the
5797 * page, bail as early as possible. shmem_unuse() encounters
5798 * already charged pages, too. The USED bit is protected by
5799 * the page lock, which serializes swap cache removal, which
5800 * in turn serializes uncharging.
5801 */
e993d905 5802 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 5803 if (compound_head(page)->mem_cgroup)
00501b53 5804 goto out;
e993d905 5805
37e84351 5806 if (do_swap_account) {
e993d905
VD
5807 swp_entry_t ent = { .val = page_private(page), };
5808 unsigned short id = lookup_swap_cgroup_id(ent);
5809
5810 rcu_read_lock();
5811 memcg = mem_cgroup_from_id(id);
5812 if (memcg && !css_tryget_online(&memcg->css))
5813 memcg = NULL;
5814 rcu_read_unlock();
5815 }
00501b53
JW
5816 }
5817
00501b53
JW
5818 if (!memcg)
5819 memcg = get_mem_cgroup_from_mm(mm);
5820
5821 ret = try_charge(memcg, gfp_mask, nr_pages);
5822
5823 css_put(&memcg->css);
00501b53
JW
5824out:
5825 *memcgp = memcg;
5826 return ret;
5827}
5828
2cf85583
TH
5829int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5830 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5831 bool compound)
5832{
5833 struct mem_cgroup *memcg;
5834 int ret;
5835
5836 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5837 memcg = *memcgp;
5838 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5839 return ret;
5840}
5841
00501b53
JW
5842/**
5843 * mem_cgroup_commit_charge - commit a page charge
5844 * @page: page to charge
5845 * @memcg: memcg to charge the page to
5846 * @lrucare: page might be on LRU already
25843c2b 5847 * @compound: charge the page as compound or small page
00501b53
JW
5848 *
5849 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5850 * after page->mapping has been set up. This must happen atomically
5851 * as part of the page instantiation, i.e. under the page table lock
5852 * for anonymous pages, under the page lock for page and swap cache.
5853 *
5854 * In addition, the page must not be on the LRU during the commit, to
5855 * prevent racing with task migration. If it might be, use @lrucare.
5856 *
5857 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5858 */
5859void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5860 bool lrucare, bool compound)
00501b53 5861{
f627c2f5 5862 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5863
5864 VM_BUG_ON_PAGE(!page->mapping, page);
5865 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5866
5867 if (mem_cgroup_disabled())
5868 return;
5869 /*
5870 * Swap faults will attempt to charge the same page multiple
5871 * times. But reuse_swap_page() might have removed the page
5872 * from swapcache already, so we can't check PageSwapCache().
5873 */
5874 if (!memcg)
5875 return;
5876
6abb5a86
JW
5877 commit_charge(page, memcg, lrucare);
5878
6abb5a86 5879 local_irq_disable();
f627c2f5 5880 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5881 memcg_check_events(memcg, page);
5882 local_irq_enable();
00501b53 5883
7941d214 5884 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5885 swp_entry_t entry = { .val = page_private(page) };
5886 /*
5887 * The swap entry might not get freed for a long time,
5888 * let's not wait for it. The page already received a
5889 * memory+swap charge, drop the swap entry duplicate.
5890 */
38d8b4e6 5891 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
5892 }
5893}
5894
5895/**
5896 * mem_cgroup_cancel_charge - cancel a page charge
5897 * @page: page to charge
5898 * @memcg: memcg to charge the page to
25843c2b 5899 * @compound: charge the page as compound or small page
00501b53
JW
5900 *
5901 * Cancel a charge transaction started by mem_cgroup_try_charge().
5902 */
f627c2f5
KS
5903void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5904 bool compound)
00501b53 5905{
f627c2f5 5906 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5907
5908 if (mem_cgroup_disabled())
5909 return;
5910 /*
5911 * Swap faults will attempt to charge the same page multiple
5912 * times. But reuse_swap_page() might have removed the page
5913 * from swapcache already, so we can't check PageSwapCache().
5914 */
5915 if (!memcg)
5916 return;
5917
00501b53
JW
5918 cancel_charge(memcg, nr_pages);
5919}
5920
a9d5adee
JG
5921struct uncharge_gather {
5922 struct mem_cgroup *memcg;
5923 unsigned long pgpgout;
5924 unsigned long nr_anon;
5925 unsigned long nr_file;
5926 unsigned long nr_kmem;
5927 unsigned long nr_huge;
5928 unsigned long nr_shmem;
5929 struct page *dummy_page;
5930};
5931
5932static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 5933{
a9d5adee
JG
5934 memset(ug, 0, sizeof(*ug));
5935}
5936
5937static void uncharge_batch(const struct uncharge_gather *ug)
5938{
5939 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
5940 unsigned long flags;
5941
a9d5adee
JG
5942 if (!mem_cgroup_is_root(ug->memcg)) {
5943 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 5944 if (do_memsw_account())
a9d5adee
JG
5945 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5946 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5947 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5948 memcg_oom_recover(ug->memcg);
ce00a967 5949 }
747db954
JW
5950
5951 local_irq_save(flags);
c9019e9b
JW
5952 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5953 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5954 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5955 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5956 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
a983b5eb 5957 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
a9d5adee 5958 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 5959 local_irq_restore(flags);
e8ea14cc 5960
a9d5adee
JG
5961 if (!mem_cgroup_is_root(ug->memcg))
5962 css_put_many(&ug->memcg->css, nr_pages);
5963}
5964
5965static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5966{
5967 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
5968 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5969 !PageHWPoison(page) , page);
a9d5adee
JG
5970
5971 if (!page->mem_cgroup)
5972 return;
5973
5974 /*
5975 * Nobody should be changing or seriously looking at
5976 * page->mem_cgroup at this point, we have fully
5977 * exclusive access to the page.
5978 */
5979
5980 if (ug->memcg != page->mem_cgroup) {
5981 if (ug->memcg) {
5982 uncharge_batch(ug);
5983 uncharge_gather_clear(ug);
5984 }
5985 ug->memcg = page->mem_cgroup;
5986 }
5987
5988 if (!PageKmemcg(page)) {
5989 unsigned int nr_pages = 1;
5990
5991 if (PageTransHuge(page)) {
5992 nr_pages <<= compound_order(page);
5993 ug->nr_huge += nr_pages;
5994 }
5995 if (PageAnon(page))
5996 ug->nr_anon += nr_pages;
5997 else {
5998 ug->nr_file += nr_pages;
5999 if (PageSwapBacked(page))
6000 ug->nr_shmem += nr_pages;
6001 }
6002 ug->pgpgout++;
6003 } else {
6004 ug->nr_kmem += 1 << compound_order(page);
6005 __ClearPageKmemcg(page);
6006 }
6007
6008 ug->dummy_page = page;
6009 page->mem_cgroup = NULL;
747db954
JW
6010}
6011
6012static void uncharge_list(struct list_head *page_list)
6013{
a9d5adee 6014 struct uncharge_gather ug;
747db954 6015 struct list_head *next;
a9d5adee
JG
6016
6017 uncharge_gather_clear(&ug);
747db954 6018
8b592656
JW
6019 /*
6020 * Note that the list can be a single page->lru; hence the
6021 * do-while loop instead of a simple list_for_each_entry().
6022 */
747db954
JW
6023 next = page_list->next;
6024 do {
a9d5adee
JG
6025 struct page *page;
6026
747db954
JW
6027 page = list_entry(next, struct page, lru);
6028 next = page->lru.next;
6029
a9d5adee 6030 uncharge_page(page, &ug);
747db954
JW
6031 } while (next != page_list);
6032
a9d5adee
JG
6033 if (ug.memcg)
6034 uncharge_batch(&ug);
747db954
JW
6035}
6036
0a31bc97
JW
6037/**
6038 * mem_cgroup_uncharge - uncharge a page
6039 * @page: page to uncharge
6040 *
6041 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6042 * mem_cgroup_commit_charge().
6043 */
6044void mem_cgroup_uncharge(struct page *page)
6045{
a9d5adee
JG
6046 struct uncharge_gather ug;
6047
0a31bc97
JW
6048 if (mem_cgroup_disabled())
6049 return;
6050
747db954 6051 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 6052 if (!page->mem_cgroup)
0a31bc97
JW
6053 return;
6054
a9d5adee
JG
6055 uncharge_gather_clear(&ug);
6056 uncharge_page(page, &ug);
6057 uncharge_batch(&ug);
747db954 6058}
0a31bc97 6059
747db954
JW
6060/**
6061 * mem_cgroup_uncharge_list - uncharge a list of page
6062 * @page_list: list of pages to uncharge
6063 *
6064 * Uncharge a list of pages previously charged with
6065 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6066 */
6067void mem_cgroup_uncharge_list(struct list_head *page_list)
6068{
6069 if (mem_cgroup_disabled())
6070 return;
0a31bc97 6071
747db954
JW
6072 if (!list_empty(page_list))
6073 uncharge_list(page_list);
0a31bc97
JW
6074}
6075
6076/**
6a93ca8f
JW
6077 * mem_cgroup_migrate - charge a page's replacement
6078 * @oldpage: currently circulating page
6079 * @newpage: replacement page
0a31bc97 6080 *
6a93ca8f
JW
6081 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6082 * be uncharged upon free.
0a31bc97
JW
6083 *
6084 * Both pages must be locked, @newpage->mapping must be set up.
6085 */
6a93ca8f 6086void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 6087{
29833315 6088 struct mem_cgroup *memcg;
44b7a8d3
JW
6089 unsigned int nr_pages;
6090 bool compound;
d93c4130 6091 unsigned long flags;
0a31bc97
JW
6092
6093 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6094 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 6095 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
6096 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6097 newpage);
0a31bc97
JW
6098
6099 if (mem_cgroup_disabled())
6100 return;
6101
6102 /* Page cache replacement: new page already charged? */
1306a85a 6103 if (newpage->mem_cgroup)
0a31bc97
JW
6104 return;
6105
45637bab 6106 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 6107 memcg = oldpage->mem_cgroup;
29833315 6108 if (!memcg)
0a31bc97
JW
6109 return;
6110
44b7a8d3
JW
6111 /* Force-charge the new page. The old one will be freed soon */
6112 compound = PageTransHuge(newpage);
6113 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6114
6115 page_counter_charge(&memcg->memory, nr_pages);
6116 if (do_memsw_account())
6117 page_counter_charge(&memcg->memsw, nr_pages);
6118 css_get_many(&memcg->css, nr_pages);
0a31bc97 6119
9cf7666a 6120 commit_charge(newpage, memcg, false);
44b7a8d3 6121
d93c4130 6122 local_irq_save(flags);
44b7a8d3
JW
6123 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6124 memcg_check_events(memcg, newpage);
d93c4130 6125 local_irq_restore(flags);
0a31bc97
JW
6126}
6127
ef12947c 6128DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
6129EXPORT_SYMBOL(memcg_sockets_enabled_key);
6130
2d758073 6131void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
6132{
6133 struct mem_cgroup *memcg;
6134
2d758073
JW
6135 if (!mem_cgroup_sockets_enabled)
6136 return;
6137
edbe69ef
RG
6138 /*
6139 * Socket cloning can throw us here with sk_memcg already
6140 * filled. It won't however, necessarily happen from
6141 * process context. So the test for root memcg given
6142 * the current task's memcg won't help us in this case.
6143 *
6144 * Respecting the original socket's memcg is a better
6145 * decision in this case.
6146 */
6147 if (sk->sk_memcg) {
6148 css_get(&sk->sk_memcg->css);
6149 return;
6150 }
6151
11092087
JW
6152 rcu_read_lock();
6153 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
6154 if (memcg == root_mem_cgroup)
6155 goto out;
0db15298 6156 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 6157 goto out;
f7e1cb6e 6158 if (css_tryget_online(&memcg->css))
11092087 6159 sk->sk_memcg = memcg;
f7e1cb6e 6160out:
11092087
JW
6161 rcu_read_unlock();
6162}
11092087 6163
2d758073 6164void mem_cgroup_sk_free(struct sock *sk)
11092087 6165{
2d758073
JW
6166 if (sk->sk_memcg)
6167 css_put(&sk->sk_memcg->css);
11092087
JW
6168}
6169
6170/**
6171 * mem_cgroup_charge_skmem - charge socket memory
6172 * @memcg: memcg to charge
6173 * @nr_pages: number of pages to charge
6174 *
6175 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6176 * @memcg's configured limit, %false if the charge had to be forced.
6177 */
6178bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6179{
f7e1cb6e 6180 gfp_t gfp_mask = GFP_KERNEL;
11092087 6181
f7e1cb6e 6182 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6183 struct page_counter *fail;
f7e1cb6e 6184
0db15298
JW
6185 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6186 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
6187 return true;
6188 }
0db15298
JW
6189 page_counter_charge(&memcg->tcpmem, nr_pages);
6190 memcg->tcpmem_pressure = 1;
f7e1cb6e 6191 return false;
11092087 6192 }
d886f4e4 6193
f7e1cb6e
JW
6194 /* Don't block in the packet receive path */
6195 if (in_softirq())
6196 gfp_mask = GFP_NOWAIT;
6197
c9019e9b 6198 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
b2807f07 6199
f7e1cb6e
JW
6200 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6201 return true;
6202
6203 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
6204 return false;
6205}
6206
6207/**
6208 * mem_cgroup_uncharge_skmem - uncharge socket memory
b7701a5f
MR
6209 * @memcg: memcg to uncharge
6210 * @nr_pages: number of pages to uncharge
11092087
JW
6211 */
6212void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6213{
f7e1cb6e 6214 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 6215 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
6216 return;
6217 }
d886f4e4 6218
c9019e9b 6219 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
b2807f07 6220
475d0487 6221 refill_stock(memcg, nr_pages);
11092087
JW
6222}
6223
f7e1cb6e
JW
6224static int __init cgroup_memory(char *s)
6225{
6226 char *token;
6227
6228 while ((token = strsep(&s, ",")) != NULL) {
6229 if (!*token)
6230 continue;
6231 if (!strcmp(token, "nosocket"))
6232 cgroup_memory_nosocket = true;
04823c83
VD
6233 if (!strcmp(token, "nokmem"))
6234 cgroup_memory_nokmem = true;
f7e1cb6e
JW
6235 }
6236 return 0;
6237}
6238__setup("cgroup.memory=", cgroup_memory);
11092087 6239
2d11085e 6240/*
1081312f
MH
6241 * subsys_initcall() for memory controller.
6242 *
308167fc
SAS
6243 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6244 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6245 * basically everything that doesn't depend on a specific mem_cgroup structure
6246 * should be initialized from here.
2d11085e
MH
6247 */
6248static int __init mem_cgroup_init(void)
6249{
95a045f6
JW
6250 int cpu, node;
6251
84c07d11 6252#ifdef CONFIG_MEMCG_KMEM
13583c3d
VD
6253 /*
6254 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
6255 * so use a workqueue with limited concurrency to avoid stalling
6256 * all worker threads in case lots of cgroups are created and
6257 * destroyed simultaneously.
13583c3d 6258 */
17cc4dfe
TH
6259 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6260 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
6261#endif
6262
308167fc
SAS
6263 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6264 memcg_hotplug_cpu_dead);
95a045f6
JW
6265
6266 for_each_possible_cpu(cpu)
6267 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6268 drain_local_stock);
6269
6270 for_each_node(node) {
6271 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
6272
6273 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6274 node_online(node) ? node : NUMA_NO_NODE);
6275
ef8f2327 6276 rtpn->rb_root = RB_ROOT;
fa90b2fd 6277 rtpn->rb_rightmost = NULL;
ef8f2327 6278 spin_lock_init(&rtpn->lock);
95a045f6
JW
6279 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6280 }
6281
2d11085e
MH
6282 return 0;
6283}
6284subsys_initcall(mem_cgroup_init);
21afa38e
JW
6285
6286#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
6287static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6288{
6289 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6290 /*
6291 * The root cgroup cannot be destroyed, so it's refcount must
6292 * always be >= 1.
6293 */
6294 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6295 VM_BUG_ON(1);
6296 break;
6297 }
6298 memcg = parent_mem_cgroup(memcg);
6299 if (!memcg)
6300 memcg = root_mem_cgroup;
6301 }
6302 return memcg;
6303}
6304
21afa38e
JW
6305/**
6306 * mem_cgroup_swapout - transfer a memsw charge to swap
6307 * @page: page whose memsw charge to transfer
6308 * @entry: swap entry to move the charge to
6309 *
6310 * Transfer the memsw charge of @page to @entry.
6311 */
6312void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6313{
1f47b61f 6314 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6315 unsigned int nr_entries;
21afa38e
JW
6316 unsigned short oldid;
6317
6318 VM_BUG_ON_PAGE(PageLRU(page), page);
6319 VM_BUG_ON_PAGE(page_count(page), page);
6320
7941d214 6321 if (!do_memsw_account())
21afa38e
JW
6322 return;
6323
6324 memcg = page->mem_cgroup;
6325
6326 /* Readahead page, never charged */
6327 if (!memcg)
6328 return;
6329
1f47b61f
VD
6330 /*
6331 * In case the memcg owning these pages has been offlined and doesn't
6332 * have an ID allocated to it anymore, charge the closest online
6333 * ancestor for the swap instead and transfer the memory+swap charge.
6334 */
6335 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6336 nr_entries = hpage_nr_pages(page);
6337 /* Get references for the tail pages, too */
6338 if (nr_entries > 1)
6339 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6340 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6341 nr_entries);
21afa38e 6342 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6343 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
21afa38e
JW
6344
6345 page->mem_cgroup = NULL;
6346
6347 if (!mem_cgroup_is_root(memcg))
d6810d73 6348 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6349
1f47b61f
VD
6350 if (memcg != swap_memcg) {
6351 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6352 page_counter_charge(&swap_memcg->memsw, nr_entries);
6353 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6354 }
6355
ce9ce665
SAS
6356 /*
6357 * Interrupts should be disabled here because the caller holds the
b93b0163 6358 * i_pages lock which is taken with interrupts-off. It is
ce9ce665 6359 * important here to have the interrupts disabled because it is the
b93b0163 6360 * only synchronisation we have for updating the per-CPU variables.
ce9ce665
SAS
6361 */
6362 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6363 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6364 -nr_entries);
21afa38e 6365 memcg_check_events(memcg, page);
73f576c0
JW
6366
6367 if (!mem_cgroup_is_root(memcg))
d08afa14 6368 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6369}
6370
38d8b4e6
HY
6371/**
6372 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6373 * @page: page being added to swap
6374 * @entry: swap entry to charge
6375 *
38d8b4e6 6376 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6377 *
6378 * Returns 0 on success, -ENOMEM on failure.
6379 */
6380int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6381{
38d8b4e6 6382 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6383 struct page_counter *counter;
38d8b4e6 6384 struct mem_cgroup *memcg;
37e84351
VD
6385 unsigned short oldid;
6386
6387 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6388 return 0;
6389
6390 memcg = page->mem_cgroup;
6391
6392 /* Readahead page, never charged */
6393 if (!memcg)
6394 return 0;
6395
f3a53a3a
TH
6396 if (!entry.val) {
6397 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
bb98f2c5 6398 return 0;
f3a53a3a 6399 }
bb98f2c5 6400
1f47b61f
VD
6401 memcg = mem_cgroup_id_get_online(memcg);
6402
37e84351 6403 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6404 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
f3a53a3a
TH
6405 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6406 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
1f47b61f 6407 mem_cgroup_id_put(memcg);
37e84351 6408 return -ENOMEM;
1f47b61f 6409 }
37e84351 6410
38d8b4e6
HY
6411 /* Get references for the tail pages, too */
6412 if (nr_pages > 1)
6413 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6414 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6415 VM_BUG_ON_PAGE(oldid, page);
c9019e9b 6416 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
37e84351 6417
37e84351
VD
6418 return 0;
6419}
6420
21afa38e 6421/**
38d8b4e6 6422 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6423 * @entry: swap entry to uncharge
38d8b4e6 6424 * @nr_pages: the amount of swap space to uncharge
21afa38e 6425 */
38d8b4e6 6426void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6427{
6428 struct mem_cgroup *memcg;
6429 unsigned short id;
6430
37e84351 6431 if (!do_swap_account)
21afa38e
JW
6432 return;
6433
38d8b4e6 6434 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6435 rcu_read_lock();
adbe427b 6436 memcg = mem_cgroup_from_id(id);
21afa38e 6437 if (memcg) {
37e84351
VD
6438 if (!mem_cgroup_is_root(memcg)) {
6439 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6440 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6441 else
38d8b4e6 6442 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6443 }
c9019e9b 6444 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
38d8b4e6 6445 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6446 }
6447 rcu_read_unlock();
6448}
6449
d8b38438
VD
6450long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6451{
6452 long nr_swap_pages = get_nr_swap_pages();
6453
6454 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6455 return nr_swap_pages;
6456 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6457 nr_swap_pages = min_t(long, nr_swap_pages,
bbec2e15 6458 READ_ONCE(memcg->swap.max) -
d8b38438
VD
6459 page_counter_read(&memcg->swap));
6460 return nr_swap_pages;
6461}
6462
5ccc5aba
VD
6463bool mem_cgroup_swap_full(struct page *page)
6464{
6465 struct mem_cgroup *memcg;
6466
6467 VM_BUG_ON_PAGE(!PageLocked(page), page);
6468
6469 if (vm_swap_full())
6470 return true;
6471 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6472 return false;
6473
6474 memcg = page->mem_cgroup;
6475 if (!memcg)
6476 return false;
6477
6478 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
bbec2e15 6479 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
5ccc5aba
VD
6480 return true;
6481
6482 return false;
6483}
6484
21afa38e
JW
6485/* for remember boot option*/
6486#ifdef CONFIG_MEMCG_SWAP_ENABLED
6487static int really_do_swap_account __initdata = 1;
6488#else
6489static int really_do_swap_account __initdata;
6490#endif
6491
6492static int __init enable_swap_account(char *s)
6493{
6494 if (!strcmp(s, "1"))
6495 really_do_swap_account = 1;
6496 else if (!strcmp(s, "0"))
6497 really_do_swap_account = 0;
6498 return 1;
6499}
6500__setup("swapaccount=", enable_swap_account);
6501
37e84351
VD
6502static u64 swap_current_read(struct cgroup_subsys_state *css,
6503 struct cftype *cft)
6504{
6505 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6506
6507 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6508}
6509
6510static int swap_max_show(struct seq_file *m, void *v)
6511{
6512 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
bbec2e15 6513 unsigned long max = READ_ONCE(memcg->swap.max);
37e84351
VD
6514
6515 if (max == PAGE_COUNTER_MAX)
6516 seq_puts(m, "max\n");
6517 else
6518 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6519
6520 return 0;
6521}
6522
6523static ssize_t swap_max_write(struct kernfs_open_file *of,
6524 char *buf, size_t nbytes, loff_t off)
6525{
6526 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6527 unsigned long max;
6528 int err;
6529
6530 buf = strstrip(buf);
6531 err = page_counter_memparse(buf, "max", &max);
6532 if (err)
6533 return err;
6534
be09102b 6535 xchg(&memcg->swap.max, max);
37e84351
VD
6536
6537 return nbytes;
6538}
6539
f3a53a3a
TH
6540static int swap_events_show(struct seq_file *m, void *v)
6541{
6542 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6543
6544 seq_printf(m, "max %lu\n",
6545 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6546 seq_printf(m, "fail %lu\n",
6547 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6548
6549 return 0;
6550}
6551
37e84351
VD
6552static struct cftype swap_files[] = {
6553 {
6554 .name = "swap.current",
6555 .flags = CFTYPE_NOT_ON_ROOT,
6556 .read_u64 = swap_current_read,
6557 },
6558 {
6559 .name = "swap.max",
6560 .flags = CFTYPE_NOT_ON_ROOT,
6561 .seq_show = swap_max_show,
6562 .write = swap_max_write,
6563 },
f3a53a3a
TH
6564 {
6565 .name = "swap.events",
6566 .flags = CFTYPE_NOT_ON_ROOT,
6567 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6568 .seq_show = swap_events_show,
6569 },
37e84351
VD
6570 { } /* terminate */
6571};
6572
21afa38e
JW
6573static struct cftype memsw_cgroup_files[] = {
6574 {
6575 .name = "memsw.usage_in_bytes",
6576 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6577 .read_u64 = mem_cgroup_read_u64,
6578 },
6579 {
6580 .name = "memsw.max_usage_in_bytes",
6581 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6582 .write = mem_cgroup_reset,
6583 .read_u64 = mem_cgroup_read_u64,
6584 },
6585 {
6586 .name = "memsw.limit_in_bytes",
6587 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6588 .write = mem_cgroup_write,
6589 .read_u64 = mem_cgroup_read_u64,
6590 },
6591 {
6592 .name = "memsw.failcnt",
6593 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6594 .write = mem_cgroup_reset,
6595 .read_u64 = mem_cgroup_read_u64,
6596 },
6597 { }, /* terminate */
6598};
6599
6600static int __init mem_cgroup_swap_init(void)
6601{
6602 if (!mem_cgroup_disabled() && really_do_swap_account) {
6603 do_swap_account = 1;
37e84351
VD
6604 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6605 swap_files));
21afa38e
JW
6606 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6607 memsw_cgroup_files));
6608 }
6609 return 0;
6610}
6611subsys_initcall(mem_cgroup_swap_init);
6612
6613#endif /* CONFIG_MEMCG_SWAP */