]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
mm: vmscan: do not throttle based on pfmemalloc reserves if node has no ZONE_NORMAL
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
83static int really_do_swap_account __initdata = 0;
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
e9f8974f
JW
100enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
105 MEM_CGROUP_EVENTS_NSTATS,
106};
af7c4b0e
JW
107
108static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113};
114
58cf188e
SZ
115static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121};
122
7a159cc9
JW
123/*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 131 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 132 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
133 MEM_CGROUP_NTARGETS,
134};
a0db00fc
KS
135#define THRESHOLDS_EVENTS_TARGET 128
136#define SOFTLIMIT_EVENTS_TARGET 1024
137#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 138
d52aa412 139struct mem_cgroup_stat_cpu {
7a159cc9 140 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 142 unsigned long nr_page_events;
7a159cc9 143 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
144};
145
527a5ec9 146struct mem_cgroup_reclaim_iter {
5f578161
MH
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
542f85f9 151 struct mem_cgroup *last_visited;
d2ab70aa 152 int last_dead_count;
5f578161 153
527a5ec9
JW
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156};
157
6d12e2d8
KH
158/*
159 * per-zone information in memory controller.
160 */
6d12e2d8 161struct mem_cgroup_per_zone {
6290df54 162 struct lruvec lruvec;
1eb49272 163 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 164
527a5ec9
JW
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
bb4cc1a8
AM
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
d79154bb 171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 172 /* use container_of */
6d12e2d8 173};
6d12e2d8
KH
174
175struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177};
178
bb4cc1a8
AM
179/*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187};
188
189struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191};
192
193struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195};
196
197static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
2e72b634
KS
199struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202};
203
9490ff27 204/* For threshold */
2e72b634 205struct mem_cgroup_threshold_ary {
748dad36 206 /* An array index points to threshold just below or equal to usage. */
5407a562 207 int current_threshold;
2e72b634
KS
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212};
2c488db2
KS
213
214struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223};
224
9490ff27
KH
225/* for OOM */
226struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229};
2e72b634 230
79bd9814
TH
231/*
232 * cgroup_event represents events which userspace want to receive.
233 */
3bc942f3 234struct mem_cgroup_event {
79bd9814 235 /*
59b6f873 236 * memcg which the event belongs to.
79bd9814 237 */
59b6f873 238 struct mem_cgroup *memcg;
79bd9814
TH
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
fba94807
TH
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
59b6f873 252 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 253 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
59b6f873 259 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 260 struct eventfd_ctx *eventfd);
79bd9814
TH
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269};
270
c0ff4b85
R
271static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 273
8cdea7c0
BS
274/*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
8cdea7c0
BS
284 */
285struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
59927fb9 291
70ddf637
AV
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
465939a1
LZ
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
59927fb9 299
510fc4e1
GC
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
18f59ea7
BS
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
510fc4e1 308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
309
310 bool oom_lock;
311 atomic_t under_oom;
3812c8c8 312 atomic_t oom_wakeups;
79dfdacc 313
1f4c025b 314 int swappiness;
3c11ecf4
KH
315 /* OOM-Killer disable */
316 int oom_kill_disable;
a7885eb8 317
22a668d7
KH
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
2e72b634
KS
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
2c488db2 325 struct mem_cgroup_thresholds thresholds;
907860ed 326
2e72b634 327 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 328 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 329
9490ff27
KH
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
185efc0f 332
7dc74be0
DN
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
f894ffa8 337 unsigned long move_charge_at_immigrate;
619d094b
KH
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
312734c0
KH
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
d52aa412 344 /*
c62b1a3b 345 * percpu counter.
d52aa412 346 */
3a7951b4 347 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
d1a4c0b3 354
5f578161 355 atomic_t dead_count;
4bd2c1ee 356#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 357 struct cg_proto tcp_mem;
d1a4c0b3 358#endif
2633d7a0
GC
359#if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366#endif
45cf7ebd
GC
367
368 int last_scanned_node;
369#if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373#endif
70ddf637 374
fba94807
TH
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
54f72fe0
JW
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
381};
382
510fc4e1
GC
383/* internal only representation about the status of kmem accounting. */
384enum {
6de64beb 385 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
7de37682 386 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
387};
388
510fc4e1
GC
389#ifdef CONFIG_MEMCG_KMEM
390static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391{
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393}
7de37682
GC
394
395static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396{
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398}
399
400static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
401{
10d5ebf4
LZ
402 /*
403 * Our caller must use css_get() first, because memcg_uncharge_kmem()
404 * will call css_put() if it sees the memcg is dead.
405 */
406 smp_wmb();
7de37682
GC
407 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
408 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
409}
410
411static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412{
413 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
414 &memcg->kmem_account_flags);
415}
510fc4e1
GC
416#endif
417
7dc74be0
DN
418/* Stuffs for move charges at task migration. */
419/*
ee5e8472
GC
420 * Types of charges to be moved. "move_charge_at_immitgrate" and
421 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
422 */
423enum move_type {
4ffef5fe 424 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 425 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
426 NR_MOVE_TYPE,
427};
428
4ffef5fe
DN
429/* "mc" and its members are protected by cgroup_mutex */
430static struct move_charge_struct {
b1dd693e 431 spinlock_t lock; /* for from, to */
4ffef5fe
DN
432 struct mem_cgroup *from;
433 struct mem_cgroup *to;
ee5e8472 434 unsigned long immigrate_flags;
4ffef5fe 435 unsigned long precharge;
854ffa8d 436 unsigned long moved_charge;
483c30b5 437 unsigned long moved_swap;
8033b97c
DN
438 struct task_struct *moving_task; /* a task moving charges */
439 wait_queue_head_t waitq; /* a waitq for other context */
440} mc = {
2bd9bb20 441 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
442 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
443};
4ffef5fe 444
90254a65
DN
445static bool move_anon(void)
446{
ee5e8472 447 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
448}
449
87946a72
DN
450static bool move_file(void)
451{
ee5e8472 452 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
453}
454
4e416953
BS
455/*
456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
457 * limit reclaim to prevent infinite loops, if they ever occur.
458 */
a0db00fc 459#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 460#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 461
217bc319
KH
462enum charge_type {
463 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 464 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 465 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 466 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
467 NR_CHARGE_TYPE,
468};
469
8c7c6e34 470/* for encoding cft->private value on file */
86ae53e1
GC
471enum res_type {
472 _MEM,
473 _MEMSWAP,
474 _OOM_TYPE,
510fc4e1 475 _KMEM,
86ae53e1
GC
476};
477
a0db00fc
KS
478#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
479#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 480#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
481/* Used for OOM nofiier */
482#define OOM_CONTROL (0)
8c7c6e34 483
75822b44
BS
484/*
485 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 */
487#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
488#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
489#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
490#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
491
0999821b
GC
492/*
493 * The memcg_create_mutex will be held whenever a new cgroup is created.
494 * As a consequence, any change that needs to protect against new child cgroups
495 * appearing has to hold it as well.
496 */
497static DEFINE_MUTEX(memcg_create_mutex);
498
b2145145
WL
499struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
500{
a7c6d554 501 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
502}
503
70ddf637
AV
504/* Some nice accessors for the vmpressure. */
505struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
506{
507 if (!memcg)
508 memcg = root_mem_cgroup;
509 return &memcg->vmpressure;
510}
511
512struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
513{
514 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
515}
516
7ffc0edc
MH
517static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
518{
519 return (memcg == root_mem_cgroup);
520}
521
4219b2da
LZ
522/*
523 * We restrict the id in the range of [1, 65535], so it can fit into
524 * an unsigned short.
525 */
526#define MEM_CGROUP_ID_MAX USHRT_MAX
527
34c00c31
LZ
528static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
529{
530 /*
531 * The ID of the root cgroup is 0, but memcg treat 0 as an
532 * invalid ID, so we return (cgroup_id + 1).
533 */
534 return memcg->css.cgroup->id + 1;
535}
536
537static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
538{
539 struct cgroup_subsys_state *css;
540
073219e9 541 css = css_from_id(id - 1, &memory_cgrp_subsys);
34c00c31
LZ
542 return mem_cgroup_from_css(css);
543}
544
e1aab161 545/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 546#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 547
e1aab161
GC
548void sock_update_memcg(struct sock *sk)
549{
376be5ff 550 if (mem_cgroup_sockets_enabled) {
e1aab161 551 struct mem_cgroup *memcg;
3f134619 552 struct cg_proto *cg_proto;
e1aab161
GC
553
554 BUG_ON(!sk->sk_prot->proto_cgroup);
555
f3f511e1
GC
556 /* Socket cloning can throw us here with sk_cgrp already
557 * filled. It won't however, necessarily happen from
558 * process context. So the test for root memcg given
559 * the current task's memcg won't help us in this case.
560 *
561 * Respecting the original socket's memcg is a better
562 * decision in this case.
563 */
564 if (sk->sk_cgrp) {
565 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 566 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
567 return;
568 }
569
e1aab161
GC
570 rcu_read_lock();
571 memcg = mem_cgroup_from_task(current);
3f134619 572 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae
LZ
573 if (!mem_cgroup_is_root(memcg) &&
574 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
3f134619 575 sk->sk_cgrp = cg_proto;
e1aab161
GC
576 }
577 rcu_read_unlock();
578 }
579}
580EXPORT_SYMBOL(sock_update_memcg);
581
582void sock_release_memcg(struct sock *sk)
583{
376be5ff 584 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
585 struct mem_cgroup *memcg;
586 WARN_ON(!sk->sk_cgrp->memcg);
587 memcg = sk->sk_cgrp->memcg;
5347e5ae 588 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
589 }
590}
d1a4c0b3
GC
591
592struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
593{
594 if (!memcg || mem_cgroup_is_root(memcg))
595 return NULL;
596
2e685cad 597 return &memcg->tcp_mem;
d1a4c0b3
GC
598}
599EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 600
3f134619
GC
601static void disarm_sock_keys(struct mem_cgroup *memcg)
602{
2e685cad 603 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
604 return;
605 static_key_slow_dec(&memcg_socket_limit_enabled);
606}
607#else
608static void disarm_sock_keys(struct mem_cgroup *memcg)
609{
610}
611#endif
612
a8964b9b 613#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
614/*
615 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
616 * The main reason for not using cgroup id for this:
617 * this works better in sparse environments, where we have a lot of memcgs,
618 * but only a few kmem-limited. Or also, if we have, for instance, 200
619 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
620 * 200 entry array for that.
55007d84
GC
621 *
622 * The current size of the caches array is stored in
623 * memcg_limited_groups_array_size. It will double each time we have to
624 * increase it.
625 */
626static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
627int memcg_limited_groups_array_size;
628
55007d84
GC
629/*
630 * MIN_SIZE is different than 1, because we would like to avoid going through
631 * the alloc/free process all the time. In a small machine, 4 kmem-limited
632 * cgroups is a reasonable guess. In the future, it could be a parameter or
633 * tunable, but that is strictly not necessary.
634 *
b8627835 635 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
636 * this constant directly from cgroup, but it is understandable that this is
637 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 638 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
639 * increase ours as well if it increases.
640 */
641#define MEMCG_CACHES_MIN_SIZE 4
b8627835 642#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 643
d7f25f8a
GC
644/*
645 * A lot of the calls to the cache allocation functions are expected to be
646 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
647 * conditional to this static branch, we'll have to allow modules that does
648 * kmem_cache_alloc and the such to see this symbol as well
649 */
a8964b9b 650struct static_key memcg_kmem_enabled_key;
d7f25f8a 651EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
652
653static void disarm_kmem_keys(struct mem_cgroup *memcg)
654{
55007d84 655 if (memcg_kmem_is_active(memcg)) {
a8964b9b 656 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
657 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
658 }
bea207c8
GC
659 /*
660 * This check can't live in kmem destruction function,
661 * since the charges will outlive the cgroup
662 */
663 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
664}
665#else
666static void disarm_kmem_keys(struct mem_cgroup *memcg)
667{
668}
669#endif /* CONFIG_MEMCG_KMEM */
670
671static void disarm_static_keys(struct mem_cgroup *memcg)
672{
673 disarm_sock_keys(memcg);
674 disarm_kmem_keys(memcg);
675}
676
c0ff4b85 677static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 678
f64c3f54 679static struct mem_cgroup_per_zone *
c0ff4b85 680mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 681{
45cf7ebd 682 VM_BUG_ON((unsigned)nid >= nr_node_ids);
54f72fe0 683 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
684}
685
c0ff4b85 686struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 687{
c0ff4b85 688 return &memcg->css;
d324236b
WF
689}
690
f64c3f54 691static struct mem_cgroup_per_zone *
c0ff4b85 692page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 693{
97a6c37b
JW
694 int nid = page_to_nid(page);
695 int zid = page_zonenum(page);
f64c3f54 696
c0ff4b85 697 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
698}
699
bb4cc1a8
AM
700static struct mem_cgroup_tree_per_zone *
701soft_limit_tree_node_zone(int nid, int zid)
702{
703 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
704}
705
706static struct mem_cgroup_tree_per_zone *
707soft_limit_tree_from_page(struct page *page)
708{
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
711
712 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
713}
714
715static void
716__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
717 struct mem_cgroup_per_zone *mz,
718 struct mem_cgroup_tree_per_zone *mctz,
719 unsigned long long new_usage_in_excess)
720{
721 struct rb_node **p = &mctz->rb_root.rb_node;
722 struct rb_node *parent = NULL;
723 struct mem_cgroup_per_zone *mz_node;
724
725 if (mz->on_tree)
726 return;
727
728 mz->usage_in_excess = new_usage_in_excess;
729 if (!mz->usage_in_excess)
730 return;
731 while (*p) {
732 parent = *p;
733 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
734 tree_node);
735 if (mz->usage_in_excess < mz_node->usage_in_excess)
736 p = &(*p)->rb_left;
737 /*
738 * We can't avoid mem cgroups that are over their soft
739 * limit by the same amount
740 */
741 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
742 p = &(*p)->rb_right;
743 }
744 rb_link_node(&mz->tree_node, parent, p);
745 rb_insert_color(&mz->tree_node, &mctz->rb_root);
746 mz->on_tree = true;
747}
748
749static void
750__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
751 struct mem_cgroup_per_zone *mz,
752 struct mem_cgroup_tree_per_zone *mctz)
753{
754 if (!mz->on_tree)
755 return;
756 rb_erase(&mz->tree_node, &mctz->rb_root);
757 mz->on_tree = false;
758}
759
760static void
761mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
762 struct mem_cgroup_per_zone *mz,
763 struct mem_cgroup_tree_per_zone *mctz)
764{
765 spin_lock(&mctz->lock);
766 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
767 spin_unlock(&mctz->lock);
768}
769
770
771static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
772{
773 unsigned long long excess;
774 struct mem_cgroup_per_zone *mz;
775 struct mem_cgroup_tree_per_zone *mctz;
776 int nid = page_to_nid(page);
777 int zid = page_zonenum(page);
778 mctz = soft_limit_tree_from_page(page);
779
780 /*
781 * Necessary to update all ancestors when hierarchy is used.
782 * because their event counter is not touched.
783 */
784 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
785 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
786 excess = res_counter_soft_limit_excess(&memcg->res);
787 /*
788 * We have to update the tree if mz is on RB-tree or
789 * mem is over its softlimit.
790 */
791 if (excess || mz->on_tree) {
792 spin_lock(&mctz->lock);
793 /* if on-tree, remove it */
794 if (mz->on_tree)
795 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
796 /*
797 * Insert again. mz->usage_in_excess will be updated.
798 * If excess is 0, no tree ops.
799 */
800 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
801 spin_unlock(&mctz->lock);
802 }
803 }
804}
805
806static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
807{
808 int node, zone;
809 struct mem_cgroup_per_zone *mz;
810 struct mem_cgroup_tree_per_zone *mctz;
811
812 for_each_node(node) {
813 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
814 mz = mem_cgroup_zoneinfo(memcg, node, zone);
815 mctz = soft_limit_tree_node_zone(node, zone);
816 mem_cgroup_remove_exceeded(memcg, mz, mctz);
817 }
818 }
819}
820
821static struct mem_cgroup_per_zone *
822__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823{
824 struct rb_node *rightmost = NULL;
825 struct mem_cgroup_per_zone *mz;
826
827retry:
828 mz = NULL;
829 rightmost = rb_last(&mctz->rb_root);
830 if (!rightmost)
831 goto done; /* Nothing to reclaim from */
832
833 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
834 /*
835 * Remove the node now but someone else can add it back,
836 * we will to add it back at the end of reclaim to its correct
837 * position in the tree.
838 */
839 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
840 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
841 !css_tryget(&mz->memcg->css))
842 goto retry;
843done:
844 return mz;
845}
846
847static struct mem_cgroup_per_zone *
848mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
849{
850 struct mem_cgroup_per_zone *mz;
851
852 spin_lock(&mctz->lock);
853 mz = __mem_cgroup_largest_soft_limit_node(mctz);
854 spin_unlock(&mctz->lock);
855 return mz;
856}
857
711d3d2c
KH
858/*
859 * Implementation Note: reading percpu statistics for memcg.
860 *
861 * Both of vmstat[] and percpu_counter has threshold and do periodic
862 * synchronization to implement "quick" read. There are trade-off between
863 * reading cost and precision of value. Then, we may have a chance to implement
864 * a periodic synchronizion of counter in memcg's counter.
865 *
866 * But this _read() function is used for user interface now. The user accounts
867 * memory usage by memory cgroup and he _always_ requires exact value because
868 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
869 * have to visit all online cpus and make sum. So, for now, unnecessary
870 * synchronization is not implemented. (just implemented for cpu hotplug)
871 *
872 * If there are kernel internal actions which can make use of some not-exact
873 * value, and reading all cpu value can be performance bottleneck in some
874 * common workload, threashold and synchonization as vmstat[] should be
875 * implemented.
876 */
c0ff4b85 877static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 878 enum mem_cgroup_stat_index idx)
c62b1a3b 879{
7a159cc9 880 long val = 0;
c62b1a3b 881 int cpu;
c62b1a3b 882
711d3d2c
KH
883 get_online_cpus();
884 for_each_online_cpu(cpu)
c0ff4b85 885 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 886#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
887 spin_lock(&memcg->pcp_counter_lock);
888 val += memcg->nocpu_base.count[idx];
889 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
890#endif
891 put_online_cpus();
c62b1a3b
KH
892 return val;
893}
894
c0ff4b85 895static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
896 bool charge)
897{
898 int val = (charge) ? 1 : -1;
bff6bb83 899 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
900}
901
c0ff4b85 902static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
903 enum mem_cgroup_events_index idx)
904{
905 unsigned long val = 0;
906 int cpu;
907
9c567512 908 get_online_cpus();
e9f8974f 909 for_each_online_cpu(cpu)
c0ff4b85 910 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 911#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
912 spin_lock(&memcg->pcp_counter_lock);
913 val += memcg->nocpu_base.events[idx];
914 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 915#endif
9c567512 916 put_online_cpus();
e9f8974f
JW
917 return val;
918}
919
c0ff4b85 920static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 921 struct page *page,
b2402857 922 bool anon, int nr_pages)
d52aa412 923{
b2402857
KH
924 /*
925 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
926 * counted as CACHE even if it's on ANON LRU.
927 */
928 if (anon)
929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 930 nr_pages);
d52aa412 931 else
b2402857 932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 933 nr_pages);
55e462b0 934
b070e65c
DR
935 if (PageTransHuge(page))
936 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
937 nr_pages);
938
e401f176
KH
939 /* pagein of a big page is an event. So, ignore page size */
940 if (nr_pages > 0)
c0ff4b85 941 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 942 else {
c0ff4b85 943 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
944 nr_pages = -nr_pages; /* for event */
945 }
e401f176 946
13114716 947 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
948}
949
bb2a0de9 950unsigned long
4d7dcca2 951mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
952{
953 struct mem_cgroup_per_zone *mz;
954
955 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
956 return mz->lru_size[lru];
957}
958
959static unsigned long
c0ff4b85 960mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 961 unsigned int lru_mask)
889976db
YH
962{
963 struct mem_cgroup_per_zone *mz;
f156ab93 964 enum lru_list lru;
bb2a0de9
KH
965 unsigned long ret = 0;
966
c0ff4b85 967 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 968
f156ab93
HD
969 for_each_lru(lru) {
970 if (BIT(lru) & lru_mask)
971 ret += mz->lru_size[lru];
bb2a0de9
KH
972 }
973 return ret;
974}
975
976static unsigned long
c0ff4b85 977mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
978 int nid, unsigned int lru_mask)
979{
889976db
YH
980 u64 total = 0;
981 int zid;
982
bb2a0de9 983 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
984 total += mem_cgroup_zone_nr_lru_pages(memcg,
985 nid, zid, lru_mask);
bb2a0de9 986
889976db
YH
987 return total;
988}
bb2a0de9 989
c0ff4b85 990static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 991 unsigned int lru_mask)
6d12e2d8 992{
889976db 993 int nid;
6d12e2d8
KH
994 u64 total = 0;
995
31aaea4a 996 for_each_node_state(nid, N_MEMORY)
c0ff4b85 997 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 998 return total;
d52aa412
KH
999}
1000
f53d7ce3
JW
1001static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1002 enum mem_cgroup_events_target target)
7a159cc9
JW
1003{
1004 unsigned long val, next;
1005
13114716 1006 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1007 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1008 /* from time_after() in jiffies.h */
f53d7ce3
JW
1009 if ((long)next - (long)val < 0) {
1010 switch (target) {
1011 case MEM_CGROUP_TARGET_THRESH:
1012 next = val + THRESHOLDS_EVENTS_TARGET;
1013 break;
bb4cc1a8
AM
1014 case MEM_CGROUP_TARGET_SOFTLIMIT:
1015 next = val + SOFTLIMIT_EVENTS_TARGET;
1016 break;
f53d7ce3
JW
1017 case MEM_CGROUP_TARGET_NUMAINFO:
1018 next = val + NUMAINFO_EVENTS_TARGET;
1019 break;
1020 default:
1021 break;
1022 }
1023 __this_cpu_write(memcg->stat->targets[target], next);
1024 return true;
7a159cc9 1025 }
f53d7ce3 1026 return false;
d2265e6f
KH
1027}
1028
1029/*
1030 * Check events in order.
1031 *
1032 */
c0ff4b85 1033static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1034{
4799401f 1035 preempt_disable();
d2265e6f 1036 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1037 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1038 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 1039 bool do_softlimit;
82b3f2a7 1040 bool do_numainfo __maybe_unused;
f53d7ce3 1041
bb4cc1a8
AM
1042 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1043 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
1044#if MAX_NUMNODES > 1
1045 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1046 MEM_CGROUP_TARGET_NUMAINFO);
1047#endif
1048 preempt_enable();
1049
c0ff4b85 1050 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
1051 if (unlikely(do_softlimit))
1052 mem_cgroup_update_tree(memcg, page);
453a9bf3 1053#if MAX_NUMNODES > 1
f53d7ce3 1054 if (unlikely(do_numainfo))
c0ff4b85 1055 atomic_inc(&memcg->numainfo_events);
453a9bf3 1056#endif
f53d7ce3
JW
1057 } else
1058 preempt_enable();
d2265e6f
KH
1059}
1060
cf475ad2 1061struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1062{
31a78f23
BS
1063 /*
1064 * mm_update_next_owner() may clear mm->owner to NULL
1065 * if it races with swapoff, page migration, etc.
1066 * So this can be called with p == NULL.
1067 */
1068 if (unlikely(!p))
1069 return NULL;
1070
073219e9 1071 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
1072}
1073
df381975 1074static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1075{
c0ff4b85 1076 struct mem_cgroup *memcg = NULL;
0b7f569e 1077
54595fe2
KH
1078 rcu_read_lock();
1079 do {
6f6acb00
MH
1080 /*
1081 * Page cache insertions can happen withou an
1082 * actual mm context, e.g. during disk probing
1083 * on boot, loopback IO, acct() writes etc.
1084 */
1085 if (unlikely(!mm))
df381975 1086 memcg = root_mem_cgroup;
6f6acb00
MH
1087 else {
1088 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1089 if (unlikely(!memcg))
1090 memcg = root_mem_cgroup;
1091 }
c0ff4b85 1092 } while (!css_tryget(&memcg->css));
54595fe2 1093 rcu_read_unlock();
c0ff4b85 1094 return memcg;
54595fe2
KH
1095}
1096
16248d8f
MH
1097/*
1098 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1099 * ref. count) or NULL if the whole root's subtree has been visited.
1100 *
1101 * helper function to be used by mem_cgroup_iter
1102 */
1103static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
694fbc0f 1104 struct mem_cgroup *last_visited)
16248d8f 1105{
492eb21b 1106 struct cgroup_subsys_state *prev_css, *next_css;
16248d8f 1107
bd8815a6 1108 prev_css = last_visited ? &last_visited->css : NULL;
16248d8f 1109skip_node:
492eb21b 1110 next_css = css_next_descendant_pre(prev_css, &root->css);
16248d8f
MH
1111
1112 /*
1113 * Even if we found a group we have to make sure it is
1114 * alive. css && !memcg means that the groups should be
1115 * skipped and we should continue the tree walk.
1116 * last_visited css is safe to use because it is
1117 * protected by css_get and the tree walk is rcu safe.
0eef6156
MH
1118 *
1119 * We do not take a reference on the root of the tree walk
1120 * because we might race with the root removal when it would
1121 * be the only node in the iterated hierarchy and mem_cgroup_iter
1122 * would end up in an endless loop because it expects that at
1123 * least one valid node will be returned. Root cannot disappear
1124 * because caller of the iterator should hold it already so
1125 * skipping css reference should be safe.
16248d8f 1126 */
492eb21b 1127 if (next_css) {
ce48225f
HD
1128 if ((next_css == &root->css) ||
1129 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
d8ad3055 1130 return mem_cgroup_from_css(next_css);
0eef6156
MH
1131
1132 prev_css = next_css;
1133 goto skip_node;
16248d8f
MH
1134 }
1135
1136 return NULL;
1137}
1138
519ebea3
JW
1139static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1140{
1141 /*
1142 * When a group in the hierarchy below root is destroyed, the
1143 * hierarchy iterator can no longer be trusted since it might
1144 * have pointed to the destroyed group. Invalidate it.
1145 */
1146 atomic_inc(&root->dead_count);
1147}
1148
1149static struct mem_cgroup *
1150mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1151 struct mem_cgroup *root,
1152 int *sequence)
1153{
1154 struct mem_cgroup *position = NULL;
1155 /*
1156 * A cgroup destruction happens in two stages: offlining and
1157 * release. They are separated by a RCU grace period.
1158 *
1159 * If the iterator is valid, we may still race with an
1160 * offlining. The RCU lock ensures the object won't be
1161 * released, tryget will fail if we lost the race.
1162 */
1163 *sequence = atomic_read(&root->dead_count);
1164 if (iter->last_dead_count == *sequence) {
1165 smp_rmb();
1166 position = iter->last_visited;
ecc736fc
MH
1167
1168 /*
1169 * We cannot take a reference to root because we might race
1170 * with root removal and returning NULL would end up in
1171 * an endless loop on the iterator user level when root
1172 * would be returned all the time.
1173 */
1174 if (position && position != root &&
1175 !css_tryget(&position->css))
519ebea3
JW
1176 position = NULL;
1177 }
1178 return position;
1179}
1180
1181static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1182 struct mem_cgroup *last_visited,
1183 struct mem_cgroup *new_position,
ecc736fc 1184 struct mem_cgroup *root,
519ebea3
JW
1185 int sequence)
1186{
ecc736fc
MH
1187 /* root reference counting symmetric to mem_cgroup_iter_load */
1188 if (last_visited && last_visited != root)
519ebea3
JW
1189 css_put(&last_visited->css);
1190 /*
1191 * We store the sequence count from the time @last_visited was
1192 * loaded successfully instead of rereading it here so that we
1193 * don't lose destruction events in between. We could have
1194 * raced with the destruction of @new_position after all.
1195 */
1196 iter->last_visited = new_position;
1197 smp_wmb();
1198 iter->last_dead_count = sequence;
1199}
1200
5660048c
JW
1201/**
1202 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1203 * @root: hierarchy root
1204 * @prev: previously returned memcg, NULL on first invocation
1205 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1206 *
1207 * Returns references to children of the hierarchy below @root, or
1208 * @root itself, or %NULL after a full round-trip.
1209 *
1210 * Caller must pass the return value in @prev on subsequent
1211 * invocations for reference counting, or use mem_cgroup_iter_break()
1212 * to cancel a hierarchy walk before the round-trip is complete.
1213 *
1214 * Reclaimers can specify a zone and a priority level in @reclaim to
1215 * divide up the memcgs in the hierarchy among all concurrent
1216 * reclaimers operating on the same zone and priority.
1217 */
694fbc0f 1218struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1219 struct mem_cgroup *prev,
694fbc0f 1220 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1221{
9f3a0d09 1222 struct mem_cgroup *memcg = NULL;
542f85f9 1223 struct mem_cgroup *last_visited = NULL;
711d3d2c 1224
694fbc0f
AM
1225 if (mem_cgroup_disabled())
1226 return NULL;
5660048c 1227
9f3a0d09
JW
1228 if (!root)
1229 root = root_mem_cgroup;
7d74b06f 1230
9f3a0d09 1231 if (prev && !reclaim)
542f85f9 1232 last_visited = prev;
14067bb3 1233
9f3a0d09
JW
1234 if (!root->use_hierarchy && root != root_mem_cgroup) {
1235 if (prev)
c40046f3 1236 goto out_css_put;
694fbc0f 1237 return root;
9f3a0d09 1238 }
14067bb3 1239
542f85f9 1240 rcu_read_lock();
9f3a0d09 1241 while (!memcg) {
527a5ec9 1242 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
519ebea3 1243 int uninitialized_var(seq);
711d3d2c 1244
527a5ec9
JW
1245 if (reclaim) {
1246 int nid = zone_to_nid(reclaim->zone);
1247 int zid = zone_idx(reclaim->zone);
1248 struct mem_cgroup_per_zone *mz;
1249
1250 mz = mem_cgroup_zoneinfo(root, nid, zid);
1251 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1252 if (prev && reclaim->generation != iter->generation) {
5f578161 1253 iter->last_visited = NULL;
542f85f9
MH
1254 goto out_unlock;
1255 }
5f578161 1256
519ebea3 1257 last_visited = mem_cgroup_iter_load(iter, root, &seq);
527a5ec9 1258 }
7d74b06f 1259
694fbc0f 1260 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1261
527a5ec9 1262 if (reclaim) {
ecc736fc
MH
1263 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1264 seq);
542f85f9 1265
19f39402 1266 if (!memcg)
527a5ec9
JW
1267 iter->generation++;
1268 else if (!prev && memcg)
1269 reclaim->generation = iter->generation;
1270 }
9f3a0d09 1271
694fbc0f 1272 if (prev && !memcg)
542f85f9 1273 goto out_unlock;
9f3a0d09 1274 }
542f85f9
MH
1275out_unlock:
1276 rcu_read_unlock();
c40046f3
MH
1277out_css_put:
1278 if (prev && prev != root)
1279 css_put(&prev->css);
1280
9f3a0d09 1281 return memcg;
14067bb3 1282}
7d74b06f 1283
5660048c
JW
1284/**
1285 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1286 * @root: hierarchy root
1287 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1288 */
1289void mem_cgroup_iter_break(struct mem_cgroup *root,
1290 struct mem_cgroup *prev)
9f3a0d09
JW
1291{
1292 if (!root)
1293 root = root_mem_cgroup;
1294 if (prev && prev != root)
1295 css_put(&prev->css);
1296}
7d74b06f 1297
9f3a0d09
JW
1298/*
1299 * Iteration constructs for visiting all cgroups (under a tree). If
1300 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1301 * be used for reference counting.
1302 */
1303#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1304 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1305 iter != NULL; \
527a5ec9 1306 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1307
9f3a0d09 1308#define for_each_mem_cgroup(iter) \
527a5ec9 1309 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1310 iter != NULL; \
527a5ec9 1311 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1312
68ae564b 1313void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1314{
c0ff4b85 1315 struct mem_cgroup *memcg;
456f998e 1316
456f998e 1317 rcu_read_lock();
c0ff4b85
R
1318 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1319 if (unlikely(!memcg))
456f998e
YH
1320 goto out;
1321
1322 switch (idx) {
456f998e 1323 case PGFAULT:
0e574a93
JW
1324 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1325 break;
1326 case PGMAJFAULT:
1327 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1328 break;
1329 default:
1330 BUG();
1331 }
1332out:
1333 rcu_read_unlock();
1334}
68ae564b 1335EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1336
925b7673
JW
1337/**
1338 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1339 * @zone: zone of the wanted lruvec
fa9add64 1340 * @memcg: memcg of the wanted lruvec
925b7673
JW
1341 *
1342 * Returns the lru list vector holding pages for the given @zone and
1343 * @mem. This can be the global zone lruvec, if the memory controller
1344 * is disabled.
1345 */
1346struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1347 struct mem_cgroup *memcg)
1348{
1349 struct mem_cgroup_per_zone *mz;
bea8c150 1350 struct lruvec *lruvec;
925b7673 1351
bea8c150
HD
1352 if (mem_cgroup_disabled()) {
1353 lruvec = &zone->lruvec;
1354 goto out;
1355 }
925b7673
JW
1356
1357 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1358 lruvec = &mz->lruvec;
1359out:
1360 /*
1361 * Since a node can be onlined after the mem_cgroup was created,
1362 * we have to be prepared to initialize lruvec->zone here;
1363 * and if offlined then reonlined, we need to reinitialize it.
1364 */
1365 if (unlikely(lruvec->zone != zone))
1366 lruvec->zone = zone;
1367 return lruvec;
925b7673
JW
1368}
1369
08e552c6
KH
1370/*
1371 * Following LRU functions are allowed to be used without PCG_LOCK.
1372 * Operations are called by routine of global LRU independently from memcg.
1373 * What we have to take care of here is validness of pc->mem_cgroup.
1374 *
1375 * Changes to pc->mem_cgroup happens when
1376 * 1. charge
1377 * 2. moving account
1378 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1379 * It is added to LRU before charge.
1380 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1381 * When moving account, the page is not on LRU. It's isolated.
1382 */
4f98a2fe 1383
925b7673 1384/**
fa9add64 1385 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1386 * @page: the page
fa9add64 1387 * @zone: zone of the page
925b7673 1388 */
fa9add64 1389struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1390{
08e552c6 1391 struct mem_cgroup_per_zone *mz;
925b7673
JW
1392 struct mem_cgroup *memcg;
1393 struct page_cgroup *pc;
bea8c150 1394 struct lruvec *lruvec;
6d12e2d8 1395
bea8c150
HD
1396 if (mem_cgroup_disabled()) {
1397 lruvec = &zone->lruvec;
1398 goto out;
1399 }
925b7673 1400
08e552c6 1401 pc = lookup_page_cgroup(page);
38c5d72f 1402 memcg = pc->mem_cgroup;
7512102c
HD
1403
1404 /*
fa9add64 1405 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1406 * an uncharged page off lru does nothing to secure
1407 * its former mem_cgroup from sudden removal.
1408 *
1409 * Our caller holds lru_lock, and PageCgroupUsed is updated
1410 * under page_cgroup lock: between them, they make all uses
1411 * of pc->mem_cgroup safe.
1412 */
fa9add64 1413 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1414 pc->mem_cgroup = memcg = root_mem_cgroup;
1415
925b7673 1416 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1417 lruvec = &mz->lruvec;
1418out:
1419 /*
1420 * Since a node can be onlined after the mem_cgroup was created,
1421 * we have to be prepared to initialize lruvec->zone here;
1422 * and if offlined then reonlined, we need to reinitialize it.
1423 */
1424 if (unlikely(lruvec->zone != zone))
1425 lruvec->zone = zone;
1426 return lruvec;
08e552c6 1427}
b69408e8 1428
925b7673 1429/**
fa9add64
HD
1430 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1431 * @lruvec: mem_cgroup per zone lru vector
1432 * @lru: index of lru list the page is sitting on
1433 * @nr_pages: positive when adding or negative when removing
925b7673 1434 *
fa9add64
HD
1435 * This function must be called when a page is added to or removed from an
1436 * lru list.
3f58a829 1437 */
fa9add64
HD
1438void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1439 int nr_pages)
3f58a829
MK
1440{
1441 struct mem_cgroup_per_zone *mz;
fa9add64 1442 unsigned long *lru_size;
3f58a829
MK
1443
1444 if (mem_cgroup_disabled())
1445 return;
1446
fa9add64
HD
1447 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1448 lru_size = mz->lru_size + lru;
1449 *lru_size += nr_pages;
1450 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1451}
544122e5 1452
3e92041d 1453/*
c0ff4b85 1454 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1455 * hierarchy subtree
1456 */
c3ac9a8a
JW
1457bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1458 struct mem_cgroup *memcg)
3e92041d 1459{
91c63734
JW
1460 if (root_memcg == memcg)
1461 return true;
3a981f48 1462 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1463 return false;
b47f77b5 1464 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
c3ac9a8a
JW
1465}
1466
1467static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1468 struct mem_cgroup *memcg)
1469{
1470 bool ret;
1471
91c63734 1472 rcu_read_lock();
c3ac9a8a 1473 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1474 rcu_read_unlock();
1475 return ret;
3e92041d
MH
1476}
1477
ffbdccf5
DR
1478bool task_in_mem_cgroup(struct task_struct *task,
1479 const struct mem_cgroup *memcg)
4c4a2214 1480{
0b7f569e 1481 struct mem_cgroup *curr = NULL;
158e0a2d 1482 struct task_struct *p;
ffbdccf5 1483 bool ret;
4c4a2214 1484
158e0a2d 1485 p = find_lock_task_mm(task);
de077d22 1486 if (p) {
df381975 1487 curr = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1488 task_unlock(p);
1489 } else {
1490 /*
1491 * All threads may have already detached their mm's, but the oom
1492 * killer still needs to detect if they have already been oom
1493 * killed to prevent needlessly killing additional tasks.
1494 */
ffbdccf5 1495 rcu_read_lock();
de077d22
DR
1496 curr = mem_cgroup_from_task(task);
1497 if (curr)
1498 css_get(&curr->css);
ffbdccf5 1499 rcu_read_unlock();
de077d22 1500 }
d31f56db 1501 /*
c0ff4b85 1502 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1503 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1504 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1505 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1506 */
c0ff4b85 1507 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1508 css_put(&curr->css);
4c4a2214
DR
1509 return ret;
1510}
1511
c56d5c7d 1512int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1513{
9b272977 1514 unsigned long inactive_ratio;
14797e23 1515 unsigned long inactive;
9b272977 1516 unsigned long active;
c772be93 1517 unsigned long gb;
14797e23 1518
4d7dcca2
HD
1519 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1520 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1521
c772be93
KM
1522 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1523 if (gb)
1524 inactive_ratio = int_sqrt(10 * gb);
1525 else
1526 inactive_ratio = 1;
1527
9b272977 1528 return inactive * inactive_ratio < active;
14797e23
KM
1529}
1530
6d61ef40
BS
1531#define mem_cgroup_from_res_counter(counter, member) \
1532 container_of(counter, struct mem_cgroup, member)
1533
19942822 1534/**
9d11ea9f 1535 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1536 * @memcg: the memory cgroup
19942822 1537 *
9d11ea9f 1538 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1539 * pages.
19942822 1540 */
c0ff4b85 1541static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1542{
9d11ea9f
JW
1543 unsigned long long margin;
1544
c0ff4b85 1545 margin = res_counter_margin(&memcg->res);
9d11ea9f 1546 if (do_swap_account)
c0ff4b85 1547 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1548 return margin >> PAGE_SHIFT;
19942822
JW
1549}
1550
1f4c025b 1551int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1552{
a7885eb8 1553 /* root ? */
63876986 1554 if (!css_parent(&memcg->css))
a7885eb8
KM
1555 return vm_swappiness;
1556
bf1ff263 1557 return memcg->swappiness;
a7885eb8
KM
1558}
1559
619d094b
KH
1560/*
1561 * memcg->moving_account is used for checking possibility that some thread is
1562 * calling move_account(). When a thread on CPU-A starts moving pages under
1563 * a memcg, other threads should check memcg->moving_account under
1564 * rcu_read_lock(), like this:
1565 *
1566 * CPU-A CPU-B
1567 * rcu_read_lock()
1568 * memcg->moving_account+1 if (memcg->mocing_account)
1569 * take heavy locks.
1570 * synchronize_rcu() update something.
1571 * rcu_read_unlock()
1572 * start move here.
1573 */
4331f7d3
KH
1574
1575/* for quick checking without looking up memcg */
1576atomic_t memcg_moving __read_mostly;
1577
c0ff4b85 1578static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1579{
4331f7d3 1580 atomic_inc(&memcg_moving);
619d094b 1581 atomic_inc(&memcg->moving_account);
32047e2a
KH
1582 synchronize_rcu();
1583}
1584
c0ff4b85 1585static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1586{
619d094b
KH
1587 /*
1588 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1589 * We check NULL in callee rather than caller.
1590 */
4331f7d3
KH
1591 if (memcg) {
1592 atomic_dec(&memcg_moving);
619d094b 1593 atomic_dec(&memcg->moving_account);
4331f7d3 1594 }
32047e2a 1595}
619d094b 1596
32047e2a
KH
1597/*
1598 * 2 routines for checking "mem" is under move_account() or not.
1599 *
13fd1dd9
AM
1600 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1601 * is used for avoiding races in accounting. If true,
32047e2a
KH
1602 * pc->mem_cgroup may be overwritten.
1603 *
1604 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1605 * under hierarchy of moving cgroups. This is for
1606 * waiting at hith-memory prressure caused by "move".
1607 */
1608
13fd1dd9 1609static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1610{
1611 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1612 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1613}
4b534334 1614
c0ff4b85 1615static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1616{
2bd9bb20
KH
1617 struct mem_cgroup *from;
1618 struct mem_cgroup *to;
4b534334 1619 bool ret = false;
2bd9bb20
KH
1620 /*
1621 * Unlike task_move routines, we access mc.to, mc.from not under
1622 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1623 */
1624 spin_lock(&mc.lock);
1625 from = mc.from;
1626 to = mc.to;
1627 if (!from)
1628 goto unlock;
3e92041d 1629
c0ff4b85
R
1630 ret = mem_cgroup_same_or_subtree(memcg, from)
1631 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1632unlock:
1633 spin_unlock(&mc.lock);
4b534334
KH
1634 return ret;
1635}
1636
c0ff4b85 1637static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1638{
1639 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1640 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1641 DEFINE_WAIT(wait);
1642 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1643 /* moving charge context might have finished. */
1644 if (mc.moving_task)
1645 schedule();
1646 finish_wait(&mc.waitq, &wait);
1647 return true;
1648 }
1649 }
1650 return false;
1651}
1652
312734c0
KH
1653/*
1654 * Take this lock when
1655 * - a code tries to modify page's memcg while it's USED.
1656 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1657 * see mem_cgroup_stolen(), too.
312734c0
KH
1658 */
1659static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1660 unsigned long *flags)
1661{
1662 spin_lock_irqsave(&memcg->move_lock, *flags);
1663}
1664
1665static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1666 unsigned long *flags)
1667{
1668 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1669}
1670
58cf188e 1671#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1672/**
58cf188e 1673 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1674 * @memcg: The memory cgroup that went over limit
1675 * @p: Task that is going to be killed
1676 *
1677 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1678 * enabled
1679 */
1680void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1681{
e61734c5 1682 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1683 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1684 struct mem_cgroup *iter;
1685 unsigned int i;
e222432b 1686
58cf188e 1687 if (!p)
e222432b
BS
1688 return;
1689
08088cb9 1690 mutex_lock(&oom_info_lock);
e222432b
BS
1691 rcu_read_lock();
1692
e61734c5
TH
1693 pr_info("Task in ");
1694 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1695 pr_info(" killed as a result of limit of ");
1696 pr_cont_cgroup_path(memcg->css.cgroup);
1697 pr_info("\n");
e222432b 1698
e222432b
BS
1699 rcu_read_unlock();
1700
d045197f 1701 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1702 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1703 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1704 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1705 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1706 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1707 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1708 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1709 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1710 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1711 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1712 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1713
1714 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1715 pr_info("Memory cgroup stats for ");
1716 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1717 pr_cont(":");
1718
1719 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1720 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1721 continue;
1722 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1723 K(mem_cgroup_read_stat(iter, i)));
1724 }
1725
1726 for (i = 0; i < NR_LRU_LISTS; i++)
1727 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1728 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1729
1730 pr_cont("\n");
1731 }
08088cb9 1732 mutex_unlock(&oom_info_lock);
e222432b
BS
1733}
1734
81d39c20
KH
1735/*
1736 * This function returns the number of memcg under hierarchy tree. Returns
1737 * 1(self count) if no children.
1738 */
c0ff4b85 1739static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1740{
1741 int num = 0;
7d74b06f
KH
1742 struct mem_cgroup *iter;
1743
c0ff4b85 1744 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1745 num++;
81d39c20
KH
1746 return num;
1747}
1748
a63d83f4
DR
1749/*
1750 * Return the memory (and swap, if configured) limit for a memcg.
1751 */
9cbb78bb 1752static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1753{
1754 u64 limit;
a63d83f4 1755
f3e8eb70 1756 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1757
a63d83f4 1758 /*
9a5a8f19 1759 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1760 */
9a5a8f19
MH
1761 if (mem_cgroup_swappiness(memcg)) {
1762 u64 memsw;
1763
1764 limit += total_swap_pages << PAGE_SHIFT;
1765 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1766
1767 /*
1768 * If memsw is finite and limits the amount of swap space
1769 * available to this memcg, return that limit.
1770 */
1771 limit = min(limit, memsw);
1772 }
1773
1774 return limit;
a63d83f4
DR
1775}
1776
19965460
DR
1777static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1778 int order)
9cbb78bb
DR
1779{
1780 struct mem_cgroup *iter;
1781 unsigned long chosen_points = 0;
1782 unsigned long totalpages;
1783 unsigned int points = 0;
1784 struct task_struct *chosen = NULL;
1785
876aafbf 1786 /*
465adcf1
DR
1787 * If current has a pending SIGKILL or is exiting, then automatically
1788 * select it. The goal is to allow it to allocate so that it may
1789 * quickly exit and free its memory.
876aafbf 1790 */
465adcf1 1791 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1792 set_thread_flag(TIF_MEMDIE);
1793 return;
1794 }
1795
1796 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1797 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1798 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1799 struct css_task_iter it;
9cbb78bb
DR
1800 struct task_struct *task;
1801
72ec7029
TH
1802 css_task_iter_start(&iter->css, &it);
1803 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1804 switch (oom_scan_process_thread(task, totalpages, NULL,
1805 false)) {
1806 case OOM_SCAN_SELECT:
1807 if (chosen)
1808 put_task_struct(chosen);
1809 chosen = task;
1810 chosen_points = ULONG_MAX;
1811 get_task_struct(chosen);
1812 /* fall through */
1813 case OOM_SCAN_CONTINUE:
1814 continue;
1815 case OOM_SCAN_ABORT:
72ec7029 1816 css_task_iter_end(&it);
9cbb78bb
DR
1817 mem_cgroup_iter_break(memcg, iter);
1818 if (chosen)
1819 put_task_struct(chosen);
1820 return;
1821 case OOM_SCAN_OK:
1822 break;
1823 };
1824 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1825 if (!points || points < chosen_points)
1826 continue;
1827 /* Prefer thread group leaders for display purposes */
1828 if (points == chosen_points &&
1829 thread_group_leader(chosen))
1830 continue;
1831
1832 if (chosen)
1833 put_task_struct(chosen);
1834 chosen = task;
1835 chosen_points = points;
1836 get_task_struct(chosen);
9cbb78bb 1837 }
72ec7029 1838 css_task_iter_end(&it);
9cbb78bb
DR
1839 }
1840
1841 if (!chosen)
1842 return;
1843 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1844 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1845 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1846}
1847
5660048c
JW
1848static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1849 gfp_t gfp_mask,
1850 unsigned long flags)
1851{
1852 unsigned long total = 0;
1853 bool noswap = false;
1854 int loop;
1855
1856 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1857 noswap = true;
1858 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1859 noswap = true;
1860
1861 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1862 if (loop)
1863 drain_all_stock_async(memcg);
1864 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1865 /*
1866 * Allow limit shrinkers, which are triggered directly
1867 * by userspace, to catch signals and stop reclaim
1868 * after minimal progress, regardless of the margin.
1869 */
1870 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1871 break;
1872 if (mem_cgroup_margin(memcg))
1873 break;
1874 /*
1875 * If nothing was reclaimed after two attempts, there
1876 * may be no reclaimable pages in this hierarchy.
1877 */
1878 if (loop && !total)
1879 break;
1880 }
1881 return total;
1882}
1883
4d0c066d
KH
1884/**
1885 * test_mem_cgroup_node_reclaimable
dad7557e 1886 * @memcg: the target memcg
4d0c066d
KH
1887 * @nid: the node ID to be checked.
1888 * @noswap : specify true here if the user wants flle only information.
1889 *
1890 * This function returns whether the specified memcg contains any
1891 * reclaimable pages on a node. Returns true if there are any reclaimable
1892 * pages in the node.
1893 */
c0ff4b85 1894static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1895 int nid, bool noswap)
1896{
c0ff4b85 1897 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1898 return true;
1899 if (noswap || !total_swap_pages)
1900 return false;
c0ff4b85 1901 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1902 return true;
1903 return false;
1904
1905}
bb4cc1a8 1906#if MAX_NUMNODES > 1
889976db
YH
1907
1908/*
1909 * Always updating the nodemask is not very good - even if we have an empty
1910 * list or the wrong list here, we can start from some node and traverse all
1911 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1912 *
1913 */
c0ff4b85 1914static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1915{
1916 int nid;
453a9bf3
KH
1917 /*
1918 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1919 * pagein/pageout changes since the last update.
1920 */
c0ff4b85 1921 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1922 return;
c0ff4b85 1923 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1924 return;
1925
889976db 1926 /* make a nodemask where this memcg uses memory from */
31aaea4a 1927 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1928
31aaea4a 1929 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1930
c0ff4b85
R
1931 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1932 node_clear(nid, memcg->scan_nodes);
889976db 1933 }
453a9bf3 1934
c0ff4b85
R
1935 atomic_set(&memcg->numainfo_events, 0);
1936 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1937}
1938
1939/*
1940 * Selecting a node where we start reclaim from. Because what we need is just
1941 * reducing usage counter, start from anywhere is O,K. Considering
1942 * memory reclaim from current node, there are pros. and cons.
1943 *
1944 * Freeing memory from current node means freeing memory from a node which
1945 * we'll use or we've used. So, it may make LRU bad. And if several threads
1946 * hit limits, it will see a contention on a node. But freeing from remote
1947 * node means more costs for memory reclaim because of memory latency.
1948 *
1949 * Now, we use round-robin. Better algorithm is welcomed.
1950 */
c0ff4b85 1951int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1952{
1953 int node;
1954
c0ff4b85
R
1955 mem_cgroup_may_update_nodemask(memcg);
1956 node = memcg->last_scanned_node;
889976db 1957
c0ff4b85 1958 node = next_node(node, memcg->scan_nodes);
889976db 1959 if (node == MAX_NUMNODES)
c0ff4b85 1960 node = first_node(memcg->scan_nodes);
889976db
YH
1961 /*
1962 * We call this when we hit limit, not when pages are added to LRU.
1963 * No LRU may hold pages because all pages are UNEVICTABLE or
1964 * memcg is too small and all pages are not on LRU. In that case,
1965 * we use curret node.
1966 */
1967 if (unlikely(node == MAX_NUMNODES))
1968 node = numa_node_id();
1969
c0ff4b85 1970 memcg->last_scanned_node = node;
889976db
YH
1971 return node;
1972}
1973
bb4cc1a8
AM
1974/*
1975 * Check all nodes whether it contains reclaimable pages or not.
1976 * For quick scan, we make use of scan_nodes. This will allow us to skip
1977 * unused nodes. But scan_nodes is lazily updated and may not cotain
1978 * enough new information. We need to do double check.
1979 */
1980static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1981{
1982 int nid;
1983
1984 /*
1985 * quick check...making use of scan_node.
1986 * We can skip unused nodes.
1987 */
1988 if (!nodes_empty(memcg->scan_nodes)) {
1989 for (nid = first_node(memcg->scan_nodes);
1990 nid < MAX_NUMNODES;
1991 nid = next_node(nid, memcg->scan_nodes)) {
1992
1993 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1994 return true;
1995 }
1996 }
1997 /*
1998 * Check rest of nodes.
1999 */
2000 for_each_node_state(nid, N_MEMORY) {
2001 if (node_isset(nid, memcg->scan_nodes))
2002 continue;
2003 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
2004 return true;
2005 }
2006 return false;
2007}
2008
889976db 2009#else
c0ff4b85 2010int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2011{
2012 return 0;
2013}
4d0c066d 2014
bb4cc1a8
AM
2015static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2016{
2017 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2018}
889976db
YH
2019#endif
2020
0608f43d
AM
2021static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2022 struct zone *zone,
2023 gfp_t gfp_mask,
2024 unsigned long *total_scanned)
2025{
2026 struct mem_cgroup *victim = NULL;
2027 int total = 0;
2028 int loop = 0;
2029 unsigned long excess;
2030 unsigned long nr_scanned;
2031 struct mem_cgroup_reclaim_cookie reclaim = {
2032 .zone = zone,
2033 .priority = 0,
2034 };
2035
2036 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2037
2038 while (1) {
2039 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2040 if (!victim) {
2041 loop++;
2042 if (loop >= 2) {
2043 /*
2044 * If we have not been able to reclaim
2045 * anything, it might because there are
2046 * no reclaimable pages under this hierarchy
2047 */
2048 if (!total)
2049 break;
2050 /*
2051 * We want to do more targeted reclaim.
2052 * excess >> 2 is not to excessive so as to
2053 * reclaim too much, nor too less that we keep
2054 * coming back to reclaim from this cgroup
2055 */
2056 if (total >= (excess >> 2) ||
2057 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2058 break;
2059 }
2060 continue;
2061 }
2062 if (!mem_cgroup_reclaimable(victim, false))
2063 continue;
2064 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2065 zone, &nr_scanned);
2066 *total_scanned += nr_scanned;
2067 if (!res_counter_soft_limit_excess(&root_memcg->res))
2068 break;
6d61ef40 2069 }
0608f43d
AM
2070 mem_cgroup_iter_break(root_memcg, victim);
2071 return total;
6d61ef40
BS
2072}
2073
0056f4e6
JW
2074#ifdef CONFIG_LOCKDEP
2075static struct lockdep_map memcg_oom_lock_dep_map = {
2076 .name = "memcg_oom_lock",
2077};
2078#endif
2079
fb2a6fc5
JW
2080static DEFINE_SPINLOCK(memcg_oom_lock);
2081
867578cb
KH
2082/*
2083 * Check OOM-Killer is already running under our hierarchy.
2084 * If someone is running, return false.
2085 */
fb2a6fc5 2086static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2087{
79dfdacc 2088 struct mem_cgroup *iter, *failed = NULL;
a636b327 2089
fb2a6fc5
JW
2090 spin_lock(&memcg_oom_lock);
2091
9f3a0d09 2092 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2093 if (iter->oom_lock) {
79dfdacc
MH
2094 /*
2095 * this subtree of our hierarchy is already locked
2096 * so we cannot give a lock.
2097 */
79dfdacc 2098 failed = iter;
9f3a0d09
JW
2099 mem_cgroup_iter_break(memcg, iter);
2100 break;
23751be0
JW
2101 } else
2102 iter->oom_lock = true;
7d74b06f 2103 }
867578cb 2104
fb2a6fc5
JW
2105 if (failed) {
2106 /*
2107 * OK, we failed to lock the whole subtree so we have
2108 * to clean up what we set up to the failing subtree
2109 */
2110 for_each_mem_cgroup_tree(iter, memcg) {
2111 if (iter == failed) {
2112 mem_cgroup_iter_break(memcg, iter);
2113 break;
2114 }
2115 iter->oom_lock = false;
79dfdacc 2116 }
0056f4e6
JW
2117 } else
2118 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
2119
2120 spin_unlock(&memcg_oom_lock);
2121
2122 return !failed;
a636b327 2123}
0b7f569e 2124
fb2a6fc5 2125static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2126{
7d74b06f
KH
2127 struct mem_cgroup *iter;
2128
fb2a6fc5 2129 spin_lock(&memcg_oom_lock);
0056f4e6 2130 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 2131 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2132 iter->oom_lock = false;
fb2a6fc5 2133 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2134}
2135
c0ff4b85 2136static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2137{
2138 struct mem_cgroup *iter;
2139
c0ff4b85 2140 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2141 atomic_inc(&iter->under_oom);
2142}
2143
c0ff4b85 2144static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2145{
2146 struct mem_cgroup *iter;
2147
867578cb
KH
2148 /*
2149 * When a new child is created while the hierarchy is under oom,
2150 * mem_cgroup_oom_lock() may not be called. We have to use
2151 * atomic_add_unless() here.
2152 */
c0ff4b85 2153 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2154 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2155}
2156
867578cb
KH
2157static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2158
dc98df5a 2159struct oom_wait_info {
d79154bb 2160 struct mem_cgroup *memcg;
dc98df5a
KH
2161 wait_queue_t wait;
2162};
2163
2164static int memcg_oom_wake_function(wait_queue_t *wait,
2165 unsigned mode, int sync, void *arg)
2166{
d79154bb
HD
2167 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2168 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2169 struct oom_wait_info *oom_wait_info;
2170
2171 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2172 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2173
dc98df5a 2174 /*
d79154bb 2175 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2176 * Then we can use css_is_ancestor without taking care of RCU.
2177 */
c0ff4b85
R
2178 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2179 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2180 return 0;
dc98df5a
KH
2181 return autoremove_wake_function(wait, mode, sync, arg);
2182}
2183
c0ff4b85 2184static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2185{
3812c8c8 2186 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2187 /* for filtering, pass "memcg" as argument. */
2188 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2189}
2190
c0ff4b85 2191static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2192{
c0ff4b85
R
2193 if (memcg && atomic_read(&memcg->under_oom))
2194 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2195}
2196
3812c8c8 2197static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2198{
3812c8c8
JW
2199 if (!current->memcg_oom.may_oom)
2200 return;
867578cb 2201 /*
49426420
JW
2202 * We are in the middle of the charge context here, so we
2203 * don't want to block when potentially sitting on a callstack
2204 * that holds all kinds of filesystem and mm locks.
2205 *
2206 * Also, the caller may handle a failed allocation gracefully
2207 * (like optional page cache readahead) and so an OOM killer
2208 * invocation might not even be necessary.
2209 *
2210 * That's why we don't do anything here except remember the
2211 * OOM context and then deal with it at the end of the page
2212 * fault when the stack is unwound, the locks are released,
2213 * and when we know whether the fault was overall successful.
867578cb 2214 */
49426420
JW
2215 css_get(&memcg->css);
2216 current->memcg_oom.memcg = memcg;
2217 current->memcg_oom.gfp_mask = mask;
2218 current->memcg_oom.order = order;
3812c8c8
JW
2219}
2220
2221/**
2222 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 2223 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 2224 *
49426420
JW
2225 * This has to be called at the end of a page fault if the memcg OOM
2226 * handler was enabled.
3812c8c8 2227 *
49426420 2228 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
2229 * sleep on a waitqueue until the userspace task resolves the
2230 * situation. Sleeping directly in the charge context with all kinds
2231 * of locks held is not a good idea, instead we remember an OOM state
2232 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 2233 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
2234 *
2235 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 2236 * completed, %false otherwise.
3812c8c8 2237 */
49426420 2238bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 2239{
49426420 2240 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 2241 struct oom_wait_info owait;
49426420 2242 bool locked;
3812c8c8
JW
2243
2244 /* OOM is global, do not handle */
3812c8c8 2245 if (!memcg)
49426420 2246 return false;
3812c8c8 2247
49426420
JW
2248 if (!handle)
2249 goto cleanup;
3812c8c8
JW
2250
2251 owait.memcg = memcg;
2252 owait.wait.flags = 0;
2253 owait.wait.func = memcg_oom_wake_function;
2254 owait.wait.private = current;
2255 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2256
3812c8c8 2257 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
2258 mem_cgroup_mark_under_oom(memcg);
2259
2260 locked = mem_cgroup_oom_trylock(memcg);
2261
2262 if (locked)
2263 mem_cgroup_oom_notify(memcg);
2264
2265 if (locked && !memcg->oom_kill_disable) {
2266 mem_cgroup_unmark_under_oom(memcg);
2267 finish_wait(&memcg_oom_waitq, &owait.wait);
2268 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2269 current->memcg_oom.order);
2270 } else {
3812c8c8 2271 schedule();
49426420
JW
2272 mem_cgroup_unmark_under_oom(memcg);
2273 finish_wait(&memcg_oom_waitq, &owait.wait);
2274 }
2275
2276 if (locked) {
fb2a6fc5
JW
2277 mem_cgroup_oom_unlock(memcg);
2278 /*
2279 * There is no guarantee that an OOM-lock contender
2280 * sees the wakeups triggered by the OOM kill
2281 * uncharges. Wake any sleepers explicitely.
2282 */
2283 memcg_oom_recover(memcg);
2284 }
49426420
JW
2285cleanup:
2286 current->memcg_oom.memcg = NULL;
3812c8c8 2287 css_put(&memcg->css);
867578cb 2288 return true;
0b7f569e
KH
2289}
2290
d69b042f
BS
2291/*
2292 * Currently used to update mapped file statistics, but the routine can be
2293 * generalized to update other statistics as well.
32047e2a
KH
2294 *
2295 * Notes: Race condition
2296 *
2297 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2298 * it tends to be costly. But considering some conditions, we doesn't need
2299 * to do so _always_.
2300 *
2301 * Considering "charge", lock_page_cgroup() is not required because all
2302 * file-stat operations happen after a page is attached to radix-tree. There
2303 * are no race with "charge".
2304 *
2305 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2306 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2307 * if there are race with "uncharge". Statistics itself is properly handled
2308 * by flags.
2309 *
2310 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2311 * small, we check mm->moving_account and detect there are possibility of race
2312 * If there is, we take a lock.
d69b042f 2313 */
26174efd 2314
89c06bd5
KH
2315void __mem_cgroup_begin_update_page_stat(struct page *page,
2316 bool *locked, unsigned long *flags)
2317{
2318 struct mem_cgroup *memcg;
2319 struct page_cgroup *pc;
2320
2321 pc = lookup_page_cgroup(page);
2322again:
2323 memcg = pc->mem_cgroup;
2324 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2325 return;
2326 /*
2327 * If this memory cgroup is not under account moving, we don't
da92c47d 2328 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2329 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2330 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2331 */
13fd1dd9 2332 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2333 return;
2334
2335 move_lock_mem_cgroup(memcg, flags);
2336 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2337 move_unlock_mem_cgroup(memcg, flags);
2338 goto again;
2339 }
2340 *locked = true;
2341}
2342
2343void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2344{
2345 struct page_cgroup *pc = lookup_page_cgroup(page);
2346
2347 /*
2348 * It's guaranteed that pc->mem_cgroup never changes while
2349 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2350 * should take move_lock_mem_cgroup().
89c06bd5
KH
2351 */
2352 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2353}
2354
2a7106f2 2355void mem_cgroup_update_page_stat(struct page *page,
68b4876d 2356 enum mem_cgroup_stat_index idx, int val)
d69b042f 2357{
c0ff4b85 2358 struct mem_cgroup *memcg;
32047e2a 2359 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2360 unsigned long uninitialized_var(flags);
d69b042f 2361
cfa44946 2362 if (mem_cgroup_disabled())
d69b042f 2363 return;
89c06bd5 2364
658b72c5 2365 VM_BUG_ON(!rcu_read_lock_held());
c0ff4b85
R
2366 memcg = pc->mem_cgroup;
2367 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2368 return;
26174efd 2369
c0ff4b85 2370 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2371}
26174efd 2372
cdec2e42
KH
2373/*
2374 * size of first charge trial. "32" comes from vmscan.c's magic value.
2375 * TODO: maybe necessary to use big numbers in big irons.
2376 */
7ec99d62 2377#define CHARGE_BATCH 32U
cdec2e42
KH
2378struct memcg_stock_pcp {
2379 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2380 unsigned int nr_pages;
cdec2e42 2381 struct work_struct work;
26fe6168 2382 unsigned long flags;
a0db00fc 2383#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2384};
2385static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2386static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2387
a0956d54
SS
2388/**
2389 * consume_stock: Try to consume stocked charge on this cpu.
2390 * @memcg: memcg to consume from.
2391 * @nr_pages: how many pages to charge.
2392 *
2393 * The charges will only happen if @memcg matches the current cpu's memcg
2394 * stock, and at least @nr_pages are available in that stock. Failure to
2395 * service an allocation will refill the stock.
2396 *
2397 * returns true if successful, false otherwise.
cdec2e42 2398 */
a0956d54 2399static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2400{
2401 struct memcg_stock_pcp *stock;
2402 bool ret = true;
2403
a0956d54
SS
2404 if (nr_pages > CHARGE_BATCH)
2405 return false;
2406
cdec2e42 2407 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2408 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2409 stock->nr_pages -= nr_pages;
cdec2e42
KH
2410 else /* need to call res_counter_charge */
2411 ret = false;
2412 put_cpu_var(memcg_stock);
2413 return ret;
2414}
2415
2416/*
2417 * Returns stocks cached in percpu to res_counter and reset cached information.
2418 */
2419static void drain_stock(struct memcg_stock_pcp *stock)
2420{
2421 struct mem_cgroup *old = stock->cached;
2422
11c9ea4e
JW
2423 if (stock->nr_pages) {
2424 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2425
2426 res_counter_uncharge(&old->res, bytes);
cdec2e42 2427 if (do_swap_account)
11c9ea4e
JW
2428 res_counter_uncharge(&old->memsw, bytes);
2429 stock->nr_pages = 0;
cdec2e42
KH
2430 }
2431 stock->cached = NULL;
cdec2e42
KH
2432}
2433
2434/*
2435 * This must be called under preempt disabled or must be called by
2436 * a thread which is pinned to local cpu.
2437 */
2438static void drain_local_stock(struct work_struct *dummy)
2439{
2440 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2441 drain_stock(stock);
26fe6168 2442 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2443}
2444
e4777496
MH
2445static void __init memcg_stock_init(void)
2446{
2447 int cpu;
2448
2449 for_each_possible_cpu(cpu) {
2450 struct memcg_stock_pcp *stock =
2451 &per_cpu(memcg_stock, cpu);
2452 INIT_WORK(&stock->work, drain_local_stock);
2453 }
2454}
2455
cdec2e42
KH
2456/*
2457 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2458 * This will be consumed by consume_stock() function, later.
cdec2e42 2459 */
c0ff4b85 2460static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2461{
2462 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2463
c0ff4b85 2464 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2465 drain_stock(stock);
c0ff4b85 2466 stock->cached = memcg;
cdec2e42 2467 }
11c9ea4e 2468 stock->nr_pages += nr_pages;
cdec2e42
KH
2469 put_cpu_var(memcg_stock);
2470}
2471
2472/*
c0ff4b85 2473 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2474 * of the hierarchy under it. sync flag says whether we should block
2475 * until the work is done.
cdec2e42 2476 */
c0ff4b85 2477static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2478{
26fe6168 2479 int cpu, curcpu;
d38144b7 2480
cdec2e42 2481 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2482 get_online_cpus();
5af12d0e 2483 curcpu = get_cpu();
cdec2e42
KH
2484 for_each_online_cpu(cpu) {
2485 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2486 struct mem_cgroup *memcg;
26fe6168 2487
c0ff4b85
R
2488 memcg = stock->cached;
2489 if (!memcg || !stock->nr_pages)
26fe6168 2490 continue;
c0ff4b85 2491 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2492 continue;
d1a05b69
MH
2493 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2494 if (cpu == curcpu)
2495 drain_local_stock(&stock->work);
2496 else
2497 schedule_work_on(cpu, &stock->work);
2498 }
cdec2e42 2499 }
5af12d0e 2500 put_cpu();
d38144b7
MH
2501
2502 if (!sync)
2503 goto out;
2504
2505 for_each_online_cpu(cpu) {
2506 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2507 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2508 flush_work(&stock->work);
2509 }
2510out:
f894ffa8 2511 put_online_cpus();
d38144b7
MH
2512}
2513
2514/*
2515 * Tries to drain stocked charges in other cpus. This function is asynchronous
2516 * and just put a work per cpu for draining localy on each cpu. Caller can
2517 * expects some charges will be back to res_counter later but cannot wait for
2518 * it.
2519 */
c0ff4b85 2520static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2521{
9f50fad6
MH
2522 /*
2523 * If someone calls draining, avoid adding more kworker runs.
2524 */
2525 if (!mutex_trylock(&percpu_charge_mutex))
2526 return;
c0ff4b85 2527 drain_all_stock(root_memcg, false);
9f50fad6 2528 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2529}
2530
2531/* This is a synchronous drain interface. */
c0ff4b85 2532static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2533{
2534 /* called when force_empty is called */
9f50fad6 2535 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2536 drain_all_stock(root_memcg, true);
9f50fad6 2537 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2538}
2539
711d3d2c
KH
2540/*
2541 * This function drains percpu counter value from DEAD cpu and
2542 * move it to local cpu. Note that this function can be preempted.
2543 */
c0ff4b85 2544static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2545{
2546 int i;
2547
c0ff4b85 2548 spin_lock(&memcg->pcp_counter_lock);
6104621d 2549 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2550 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2551
c0ff4b85
R
2552 per_cpu(memcg->stat->count[i], cpu) = 0;
2553 memcg->nocpu_base.count[i] += x;
711d3d2c 2554 }
e9f8974f 2555 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2556 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2557
c0ff4b85
R
2558 per_cpu(memcg->stat->events[i], cpu) = 0;
2559 memcg->nocpu_base.events[i] += x;
e9f8974f 2560 }
c0ff4b85 2561 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2562}
2563
0db0628d 2564static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2565 unsigned long action,
2566 void *hcpu)
2567{
2568 int cpu = (unsigned long)hcpu;
2569 struct memcg_stock_pcp *stock;
711d3d2c 2570 struct mem_cgroup *iter;
cdec2e42 2571
619d094b 2572 if (action == CPU_ONLINE)
1489ebad 2573 return NOTIFY_OK;
1489ebad 2574
d833049b 2575 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2576 return NOTIFY_OK;
711d3d2c 2577
9f3a0d09 2578 for_each_mem_cgroup(iter)
711d3d2c
KH
2579 mem_cgroup_drain_pcp_counter(iter, cpu);
2580
cdec2e42
KH
2581 stock = &per_cpu(memcg_stock, cpu);
2582 drain_stock(stock);
2583 return NOTIFY_OK;
2584}
2585
4b534334 2586
6d1fdc48 2587/* See mem_cgroup_try_charge() for details */
4b534334
KH
2588enum {
2589 CHARGE_OK, /* success */
2590 CHARGE_RETRY, /* need to retry but retry is not bad */
2591 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2592 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2593};
2594
c0ff4b85 2595static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2596 unsigned int nr_pages, unsigned int min_pages,
3812c8c8 2597 bool invoke_oom)
4b534334 2598{
7ec99d62 2599 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2600 struct mem_cgroup *mem_over_limit;
2601 struct res_counter *fail_res;
2602 unsigned long flags = 0;
2603 int ret;
2604
c0ff4b85 2605 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2606
2607 if (likely(!ret)) {
2608 if (!do_swap_account)
2609 return CHARGE_OK;
c0ff4b85 2610 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2611 if (likely(!ret))
2612 return CHARGE_OK;
2613
c0ff4b85 2614 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2615 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2616 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2617 } else
2618 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2619 /*
9221edb7
JW
2620 * Never reclaim on behalf of optional batching, retry with a
2621 * single page instead.
2622 */
4c9c5359 2623 if (nr_pages > min_pages)
4b534334
KH
2624 return CHARGE_RETRY;
2625
2626 if (!(gfp_mask & __GFP_WAIT))
2627 return CHARGE_WOULDBLOCK;
2628
4c9c5359
SS
2629 if (gfp_mask & __GFP_NORETRY)
2630 return CHARGE_NOMEM;
2631
5660048c 2632 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2633 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2634 return CHARGE_RETRY;
4b534334 2635 /*
19942822
JW
2636 * Even though the limit is exceeded at this point, reclaim
2637 * may have been able to free some pages. Retry the charge
2638 * before killing the task.
2639 *
2640 * Only for regular pages, though: huge pages are rather
2641 * unlikely to succeed so close to the limit, and we fall back
2642 * to regular pages anyway in case of failure.
4b534334 2643 */
4c9c5359 2644 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2645 return CHARGE_RETRY;
2646
2647 /*
2648 * At task move, charge accounts can be doubly counted. So, it's
2649 * better to wait until the end of task_move if something is going on.
2650 */
2651 if (mem_cgroup_wait_acct_move(mem_over_limit))
2652 return CHARGE_RETRY;
2653
3812c8c8
JW
2654 if (invoke_oom)
2655 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2656
3812c8c8 2657 return CHARGE_NOMEM;
4b534334
KH
2658}
2659
6d1fdc48
JW
2660/**
2661 * mem_cgroup_try_charge - try charging a memcg
2662 * @memcg: memcg to charge
2663 * @nr_pages: number of pages to charge
2664 * @oom: trigger OOM if reclaim fails
38c5d72f 2665 *
6d1fdc48
JW
2666 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2667 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
8a9f3ccd 2668 */
6d1fdc48
JW
2669static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2670 gfp_t gfp_mask,
2671 unsigned int nr_pages,
2672 bool oom)
8a9f3ccd 2673{
7ec99d62 2674 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2675 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
4b534334 2676 int ret;
a636b327 2677
6d1fdc48
JW
2678 if (mem_cgroup_is_root(memcg))
2679 goto done;
867578cb 2680 /*
6d1fdc48
JW
2681 * Unlike in global OOM situations, memcg is not in a physical
2682 * memory shortage. Allow dying and OOM-killed tasks to
2683 * bypass the last charges so that they can exit quickly and
2684 * free their memory.
867578cb 2685 */
6d1fdc48
JW
2686 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2687 fatal_signal_pending(current)))
867578cb 2688 goto bypass;
a636b327 2689
49426420 2690 if (unlikely(task_in_memcg_oom(current)))
1f14c1ac 2691 goto nomem;
49426420 2692
a0d8b00a
JW
2693 if (gfp_mask & __GFP_NOFAIL)
2694 oom = false;
f75ca962 2695again:
b6b6cc72
MH
2696 if (consume_stock(memcg, nr_pages))
2697 goto done;
8a9f3ccd 2698
4b534334 2699 do {
3812c8c8 2700 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2701
4b534334 2702 /* If killed, bypass charge */
6d1fdc48 2703 if (fatal_signal_pending(current))
4b534334 2704 goto bypass;
6d61ef40 2705
3812c8c8
JW
2706 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2707 nr_pages, invoke_oom);
4b534334
KH
2708 switch (ret) {
2709 case CHARGE_OK:
2710 break;
2711 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2712 batch = nr_pages;
f75ca962 2713 goto again;
4b534334
KH
2714 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2715 goto nomem;
2716 case CHARGE_NOMEM: /* OOM routine works */
6d1fdc48 2717 if (!oom || invoke_oom)
867578cb 2718 goto nomem;
4b534334
KH
2719 nr_oom_retries--;
2720 break;
66e1707b 2721 }
4b534334
KH
2722 } while (ret != CHARGE_OK);
2723
7ec99d62 2724 if (batch > nr_pages)
c0ff4b85 2725 refill_stock(memcg, batch - nr_pages);
0c3e73e8 2726done:
7a81b88c
KH
2727 return 0;
2728nomem:
6d1fdc48 2729 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2730 return -ENOMEM;
867578cb 2731bypass:
38c5d72f 2732 return -EINTR;
7a81b88c 2733}
8a9f3ccd 2734
6d1fdc48
JW
2735/**
2736 * mem_cgroup_try_charge_mm - try charging a mm
2737 * @mm: mm_struct to charge
2738 * @nr_pages: number of pages to charge
2739 * @oom: trigger OOM if reclaim fails
2740 *
2741 * Returns the charged mem_cgroup associated with the given mm_struct or
2742 * NULL the charge failed.
2743 */
2744static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2745 gfp_t gfp_mask,
2746 unsigned int nr_pages,
2747 bool oom)
2748
2749{
2750 struct mem_cgroup *memcg;
2751 int ret;
2752
2753 memcg = get_mem_cgroup_from_mm(mm);
2754 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
2755 css_put(&memcg->css);
2756 if (ret == -EINTR)
2757 memcg = root_mem_cgroup;
2758 else if (ret)
2759 memcg = NULL;
2760
2761 return memcg;
2762}
2763
a3032a2c
DN
2764/*
2765 * Somemtimes we have to undo a charge we got by try_charge().
2766 * This function is for that and do uncharge, put css's refcnt.
2767 * gotten by try_charge().
2768 */
c0ff4b85 2769static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2770 unsigned int nr_pages)
a3032a2c 2771{
c0ff4b85 2772 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2773 unsigned long bytes = nr_pages * PAGE_SIZE;
2774
c0ff4b85 2775 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2776 if (do_swap_account)
c0ff4b85 2777 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2778 }
854ffa8d
DN
2779}
2780
d01dd17f
KH
2781/*
2782 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2783 * This is useful when moving usage to parent cgroup.
2784 */
2785static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2786 unsigned int nr_pages)
2787{
2788 unsigned long bytes = nr_pages * PAGE_SIZE;
2789
2790 if (mem_cgroup_is_root(memcg))
2791 return;
2792
2793 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2794 if (do_swap_account)
2795 res_counter_uncharge_until(&memcg->memsw,
2796 memcg->memsw.parent, bytes);
2797}
2798
a3b2d692
KH
2799/*
2800 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2801 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2802 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2803 * called against removed memcg.)
a3b2d692
KH
2804 */
2805static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2806{
a3b2d692
KH
2807 /* ID 0 is unused ID */
2808 if (!id)
2809 return NULL;
34c00c31 2810 return mem_cgroup_from_id(id);
a3b2d692
KH
2811}
2812
e42d9d5d 2813struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2814{
c0ff4b85 2815 struct mem_cgroup *memcg = NULL;
3c776e64 2816 struct page_cgroup *pc;
a3b2d692 2817 unsigned short id;
b5a84319
KH
2818 swp_entry_t ent;
2819
309381fe 2820 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2821
3c776e64 2822 pc = lookup_page_cgroup(page);
c0bd3f63 2823 lock_page_cgroup(pc);
a3b2d692 2824 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2825 memcg = pc->mem_cgroup;
2826 if (memcg && !css_tryget(&memcg->css))
2827 memcg = NULL;
e42d9d5d 2828 } else if (PageSwapCache(page)) {
3c776e64 2829 ent.val = page_private(page);
9fb4b7cc 2830 id = lookup_swap_cgroup_id(ent);
a3b2d692 2831 rcu_read_lock();
c0ff4b85
R
2832 memcg = mem_cgroup_lookup(id);
2833 if (memcg && !css_tryget(&memcg->css))
2834 memcg = NULL;
a3b2d692 2835 rcu_read_unlock();
3c776e64 2836 }
c0bd3f63 2837 unlock_page_cgroup(pc);
c0ff4b85 2838 return memcg;
b5a84319
KH
2839}
2840
c0ff4b85 2841static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2842 struct page *page,
7ec99d62 2843 unsigned int nr_pages,
9ce70c02
HD
2844 enum charge_type ctype,
2845 bool lrucare)
7a81b88c 2846{
ce587e65 2847 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2848 struct zone *uninitialized_var(zone);
fa9add64 2849 struct lruvec *lruvec;
9ce70c02 2850 bool was_on_lru = false;
b2402857 2851 bool anon;
9ce70c02 2852
ca3e0214 2853 lock_page_cgroup(pc);
309381fe 2854 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
ca3e0214
KH
2855 /*
2856 * we don't need page_cgroup_lock about tail pages, becase they are not
2857 * accessed by any other context at this point.
2858 */
9ce70c02
HD
2859
2860 /*
2861 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2862 * may already be on some other mem_cgroup's LRU. Take care of it.
2863 */
2864 if (lrucare) {
2865 zone = page_zone(page);
2866 spin_lock_irq(&zone->lru_lock);
2867 if (PageLRU(page)) {
fa9add64 2868 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2869 ClearPageLRU(page);
fa9add64 2870 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2871 was_on_lru = true;
2872 }
2873 }
2874
c0ff4b85 2875 pc->mem_cgroup = memcg;
261fb61a
KH
2876 /*
2877 * We access a page_cgroup asynchronously without lock_page_cgroup().
2878 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2879 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2880 * before USED bit, we need memory barrier here.
2881 * See mem_cgroup_add_lru_list(), etc.
f894ffa8 2882 */
08e552c6 2883 smp_wmb();
b2402857 2884 SetPageCgroupUsed(pc);
3be91277 2885
9ce70c02
HD
2886 if (lrucare) {
2887 if (was_on_lru) {
fa9add64 2888 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
309381fe 2889 VM_BUG_ON_PAGE(PageLRU(page), page);
9ce70c02 2890 SetPageLRU(page);
fa9add64 2891 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2892 }
2893 spin_unlock_irq(&zone->lru_lock);
2894 }
2895
41326c17 2896 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2897 anon = true;
2898 else
2899 anon = false;
2900
b070e65c 2901 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2902 unlock_page_cgroup(pc);
9ce70c02 2903
430e4863 2904 /*
bb4cc1a8
AM
2905 * "charge_statistics" updated event counter. Then, check it.
2906 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2907 * if they exceeds softlimit.
430e4863 2908 */
c0ff4b85 2909 memcg_check_events(memcg, page);
7a81b88c 2910}
66e1707b 2911
7cf27982
GC
2912static DEFINE_MUTEX(set_limit_mutex);
2913
7ae1e1d0 2914#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
2915static DEFINE_MUTEX(activate_kmem_mutex);
2916
7ae1e1d0
GC
2917static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2918{
2919 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
6de64beb 2920 memcg_kmem_is_active(memcg);
7ae1e1d0
GC
2921}
2922
1f458cbf
GC
2923/*
2924 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2925 * in the memcg_cache_params struct.
2926 */
2927static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2928{
2929 struct kmem_cache *cachep;
2930
2931 VM_BUG_ON(p->is_root_cache);
2932 cachep = p->root_cache;
7a67d7ab 2933 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
1f458cbf
GC
2934}
2935
749c5415 2936#ifdef CONFIG_SLABINFO
2da8ca82 2937static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
749c5415 2938{
2da8ca82 2939 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
749c5415
GC
2940 struct memcg_cache_params *params;
2941
2942 if (!memcg_can_account_kmem(memcg))
2943 return -EIO;
2944
2945 print_slabinfo_header(m);
2946
2947 mutex_lock(&memcg->slab_caches_mutex);
2948 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2949 cache_show(memcg_params_to_cache(params), m);
2950 mutex_unlock(&memcg->slab_caches_mutex);
2951
2952 return 0;
2953}
2954#endif
2955
5dfb4175 2956int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
7ae1e1d0
GC
2957{
2958 struct res_counter *fail_res;
7ae1e1d0 2959 int ret = 0;
7ae1e1d0
GC
2960
2961 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2962 if (ret)
2963 return ret;
2964
6d1fdc48
JW
2965 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
2966 oom_gfp_allowed(gfp));
7ae1e1d0
GC
2967 if (ret == -EINTR) {
2968 /*
6d1fdc48 2969 * mem_cgroup_try_charge() chosed to bypass to root due to
7ae1e1d0
GC
2970 * OOM kill or fatal signal. Since our only options are to
2971 * either fail the allocation or charge it to this cgroup, do
2972 * it as a temporary condition. But we can't fail. From a
2973 * kmem/slab perspective, the cache has already been selected,
2974 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2975 * our minds.
2976 *
2977 * This condition will only trigger if the task entered
2978 * memcg_charge_kmem in a sane state, but was OOM-killed during
6d1fdc48 2979 * mem_cgroup_try_charge() above. Tasks that were already
7ae1e1d0
GC
2980 * dying when the allocation triggers should have been already
2981 * directed to the root cgroup in memcontrol.h
2982 */
2983 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2984 if (do_swap_account)
2985 res_counter_charge_nofail(&memcg->memsw, size,
2986 &fail_res);
2987 ret = 0;
2988 } else if (ret)
2989 res_counter_uncharge(&memcg->kmem, size);
2990
2991 return ret;
2992}
2993
5dfb4175 2994void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
7ae1e1d0 2995{
7ae1e1d0
GC
2996 res_counter_uncharge(&memcg->res, size);
2997 if (do_swap_account)
2998 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
2999
3000 /* Not down to 0 */
3001 if (res_counter_uncharge(&memcg->kmem, size))
3002 return;
3003
10d5ebf4
LZ
3004 /*
3005 * Releases a reference taken in kmem_cgroup_css_offline in case
3006 * this last uncharge is racing with the offlining code or it is
3007 * outliving the memcg existence.
3008 *
3009 * The memory barrier imposed by test&clear is paired with the
3010 * explicit one in memcg_kmem_mark_dead().
3011 */
7de37682 3012 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 3013 css_put(&memcg->css);
7ae1e1d0
GC
3014}
3015
2633d7a0
GC
3016/*
3017 * helper for acessing a memcg's index. It will be used as an index in the
3018 * child cache array in kmem_cache, and also to derive its name. This function
3019 * will return -1 when this is not a kmem-limited memcg.
3020 */
3021int memcg_cache_id(struct mem_cgroup *memcg)
3022{
3023 return memcg ? memcg->kmemcg_id : -1;
3024}
3025
55007d84
GC
3026static size_t memcg_caches_array_size(int num_groups)
3027{
3028 ssize_t size;
3029 if (num_groups <= 0)
3030 return 0;
3031
3032 size = 2 * num_groups;
3033 if (size < MEMCG_CACHES_MIN_SIZE)
3034 size = MEMCG_CACHES_MIN_SIZE;
3035 else if (size > MEMCG_CACHES_MAX_SIZE)
3036 size = MEMCG_CACHES_MAX_SIZE;
3037
3038 return size;
3039}
3040
3041/*
3042 * We should update the current array size iff all caches updates succeed. This
3043 * can only be done from the slab side. The slab mutex needs to be held when
3044 * calling this.
3045 */
3046void memcg_update_array_size(int num)
3047{
3048 if (num > memcg_limited_groups_array_size)
3049 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3050}
3051
15cf17d2
KK
3052static void kmem_cache_destroy_work_func(struct work_struct *w);
3053
55007d84
GC
3054int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3055{
3056 struct memcg_cache_params *cur_params = s->memcg_params;
3057
f35c3a8e 3058 VM_BUG_ON(!is_root_cache(s));
55007d84
GC
3059
3060 if (num_groups > memcg_limited_groups_array_size) {
3061 int i;
f8570263 3062 struct memcg_cache_params *new_params;
55007d84
GC
3063 ssize_t size = memcg_caches_array_size(num_groups);
3064
3065 size *= sizeof(void *);
90c7a79c 3066 size += offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3067
f8570263
VD
3068 new_params = kzalloc(size, GFP_KERNEL);
3069 if (!new_params)
55007d84 3070 return -ENOMEM;
55007d84 3071
f8570263 3072 new_params->is_root_cache = true;
55007d84
GC
3073
3074 /*
3075 * There is the chance it will be bigger than
3076 * memcg_limited_groups_array_size, if we failed an allocation
3077 * in a cache, in which case all caches updated before it, will
3078 * have a bigger array.
3079 *
3080 * But if that is the case, the data after
3081 * memcg_limited_groups_array_size is certainly unused
3082 */
3083 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3084 if (!cur_params->memcg_caches[i])
3085 continue;
f8570263 3086 new_params->memcg_caches[i] =
55007d84
GC
3087 cur_params->memcg_caches[i];
3088 }
3089
3090 /*
3091 * Ideally, we would wait until all caches succeed, and only
3092 * then free the old one. But this is not worth the extra
3093 * pointer per-cache we'd have to have for this.
3094 *
3095 * It is not a big deal if some caches are left with a size
3096 * bigger than the others. And all updates will reset this
3097 * anyway.
3098 */
f8570263
VD
3099 rcu_assign_pointer(s->memcg_params, new_params);
3100 if (cur_params)
3101 kfree_rcu(cur_params, rcu_head);
55007d84
GC
3102 }
3103 return 0;
3104}
3105
5722d094
VD
3106char *memcg_create_cache_name(struct mem_cgroup *memcg,
3107 struct kmem_cache *root_cache)
3108{
3109 static char *buf = NULL;
3110
3111 /*
3112 * We need a mutex here to protect the shared buffer. Since this is
3113 * expected to be called only on cache creation, we can employ the
3114 * slab_mutex for that purpose.
3115 */
3116 lockdep_assert_held(&slab_mutex);
3117
3118 if (!buf) {
3119 buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
3120 if (!buf)
3121 return NULL;
3122 }
3123
3124 cgroup_name(memcg->css.cgroup, buf, NAME_MAX + 1);
3125 return kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
3126 memcg_cache_id(memcg), buf);
3127}
3128
363a044f
VD
3129int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3130 struct kmem_cache *root_cache)
2633d7a0 3131{
90c7a79c 3132 size_t size;
2633d7a0
GC
3133
3134 if (!memcg_kmem_enabled())
3135 return 0;
3136
90c7a79c
AV
3137 if (!memcg) {
3138 size = offsetof(struct memcg_cache_params, memcg_caches);
55007d84 3139 size += memcg_limited_groups_array_size * sizeof(void *);
90c7a79c
AV
3140 } else
3141 size = sizeof(struct memcg_cache_params);
55007d84 3142
2633d7a0
GC
3143 s->memcg_params = kzalloc(size, GFP_KERNEL);
3144 if (!s->memcg_params)
3145 return -ENOMEM;
3146
943a451a 3147 if (memcg) {
2633d7a0 3148 s->memcg_params->memcg = memcg;
943a451a 3149 s->memcg_params->root_cache = root_cache;
3e6b11df
AV
3150 INIT_WORK(&s->memcg_params->destroy,
3151 kmem_cache_destroy_work_func);
051dd460 3152 css_get(&memcg->css);
4ba902b5
GC
3153 } else
3154 s->memcg_params->is_root_cache = true;
3155
2633d7a0
GC
3156 return 0;
3157}
3158
363a044f
VD
3159void memcg_free_cache_params(struct kmem_cache *s)
3160{
051dd460
VD
3161 if (!s->memcg_params)
3162 return;
3163 if (!s->memcg_params->is_root_cache)
3164 css_put(&s->memcg_params->memcg->css);
363a044f
VD
3165 kfree(s->memcg_params);
3166}
3167
1aa13254 3168void memcg_register_cache(struct kmem_cache *s)
2633d7a0 3169{
d7f25f8a
GC
3170 struct kmem_cache *root;
3171 struct mem_cgroup *memcg;
3172 int id;
3173
1aa13254
VD
3174 if (is_root_cache(s))
3175 return;
3176
2edefe11
VD
3177 /*
3178 * Holding the slab_mutex assures nobody will touch the memcg_caches
3179 * array while we are modifying it.
3180 */
3181 lockdep_assert_held(&slab_mutex);
3182
1aa13254
VD
3183 root = s->memcg_params->root_cache;
3184 memcg = s->memcg_params->memcg;
3185 id = memcg_cache_id(memcg);
3186
d7f25f8a 3187 /*
959c8963
VD
3188 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3189 * barrier here to ensure nobody will see the kmem_cache partially
3190 * initialized.
d7f25f8a 3191 */
959c8963
VD
3192 smp_wmb();
3193
96403da2
VD
3194 /*
3195 * Initialize the pointer to this cache in its parent's memcg_params
3196 * before adding it to the memcg_slab_caches list, otherwise we can
3197 * fail to convert memcg_params_to_cache() while traversing the list.
3198 */
2edefe11 3199 VM_BUG_ON(root->memcg_params->memcg_caches[id]);
959c8963 3200 root->memcg_params->memcg_caches[id] = s;
96403da2
VD
3201
3202 mutex_lock(&memcg->slab_caches_mutex);
3203 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3204 mutex_unlock(&memcg->slab_caches_mutex);
1aa13254 3205}
d7f25f8a 3206
1aa13254
VD
3207void memcg_unregister_cache(struct kmem_cache *s)
3208{
3209 struct kmem_cache *root;
3210 struct mem_cgroup *memcg;
3211 int id;
3212
3213 if (is_root_cache(s))
3214 return;
d7f25f8a 3215
2edefe11
VD
3216 /*
3217 * Holding the slab_mutex assures nobody will touch the memcg_caches
3218 * array while we are modifying it.
3219 */
3220 lockdep_assert_held(&slab_mutex);
3221
d7f25f8a 3222 root = s->memcg_params->root_cache;
96403da2
VD
3223 memcg = s->memcg_params->memcg;
3224 id = memcg_cache_id(memcg);
d7f25f8a
GC
3225
3226 mutex_lock(&memcg->slab_caches_mutex);
3227 list_del(&s->memcg_params->list);
3228 mutex_unlock(&memcg->slab_caches_mutex);
3229
96403da2
VD
3230 /*
3231 * Clear the pointer to this cache in its parent's memcg_params only
3232 * after removing it from the memcg_slab_caches list, otherwise we can
3233 * fail to convert memcg_params_to_cache() while traversing the list.
3234 */
051dd460 3235 VM_BUG_ON(root->memcg_params->memcg_caches[id] != s);
96403da2 3236 root->memcg_params->memcg_caches[id] = NULL;
2633d7a0
GC
3237}
3238
0e9d92f2
GC
3239/*
3240 * During the creation a new cache, we need to disable our accounting mechanism
3241 * altogether. This is true even if we are not creating, but rather just
3242 * enqueing new caches to be created.
3243 *
3244 * This is because that process will trigger allocations; some visible, like
3245 * explicit kmallocs to auxiliary data structures, name strings and internal
3246 * cache structures; some well concealed, like INIT_WORK() that can allocate
3247 * objects during debug.
3248 *
3249 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3250 * to it. This may not be a bounded recursion: since the first cache creation
3251 * failed to complete (waiting on the allocation), we'll just try to create the
3252 * cache again, failing at the same point.
3253 *
3254 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3255 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3256 * inside the following two functions.
3257 */
3258static inline void memcg_stop_kmem_account(void)
3259{
3260 VM_BUG_ON(!current->mm);
3261 current->memcg_kmem_skip_account++;
3262}
3263
3264static inline void memcg_resume_kmem_account(void)
3265{
3266 VM_BUG_ON(!current->mm);
3267 current->memcg_kmem_skip_account--;
3268}
3269
1f458cbf
GC
3270static void kmem_cache_destroy_work_func(struct work_struct *w)
3271{
3272 struct kmem_cache *cachep;
3273 struct memcg_cache_params *p;
3274
3275 p = container_of(w, struct memcg_cache_params, destroy);
3276
3277 cachep = memcg_params_to_cache(p);
3278
22933152
GC
3279 /*
3280 * If we get down to 0 after shrink, we could delete right away.
3281 * However, memcg_release_pages() already puts us back in the workqueue
3282 * in that case. If we proceed deleting, we'll get a dangling
3283 * reference, and removing the object from the workqueue in that case
3284 * is unnecessary complication. We are not a fast path.
3285 *
3286 * Note that this case is fundamentally different from racing with
3287 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3288 * kmem_cache_shrink, not only we would be reinserting a dead cache
3289 * into the queue, but doing so from inside the worker racing to
3290 * destroy it.
3291 *
3292 * So if we aren't down to zero, we'll just schedule a worker and try
3293 * again
3294 */
0d8a4a37 3295 if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
22933152 3296 kmem_cache_shrink(cachep);
0d8a4a37 3297 else
1f458cbf
GC
3298 kmem_cache_destroy(cachep);
3299}
3300
3301void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3302{
3303 if (!cachep->memcg_params->dead)
3304 return;
3305
22933152
GC
3306 /*
3307 * There are many ways in which we can get here.
3308 *
3309 * We can get to a memory-pressure situation while the delayed work is
3310 * still pending to run. The vmscan shrinkers can then release all
3311 * cache memory and get us to destruction. If this is the case, we'll
3312 * be executed twice, which is a bug (the second time will execute over
3313 * bogus data). In this case, cancelling the work should be fine.
3314 *
3315 * But we can also get here from the worker itself, if
3316 * kmem_cache_shrink is enough to shake all the remaining objects and
3317 * get the page count to 0. In this case, we'll deadlock if we try to
3318 * cancel the work (the worker runs with an internal lock held, which
3319 * is the same lock we would hold for cancel_work_sync().)
3320 *
3321 * Since we can't possibly know who got us here, just refrain from
3322 * running if there is already work pending
3323 */
3324 if (work_pending(&cachep->memcg_params->destroy))
3325 return;
1f458cbf
GC
3326 /*
3327 * We have to defer the actual destroying to a workqueue, because
3328 * we might currently be in a context that cannot sleep.
3329 */
3330 schedule_work(&cachep->memcg_params->destroy);
3331}
3332
b8529907 3333int __kmem_cache_destroy_memcg_children(struct kmem_cache *s)
7cf27982
GC
3334{
3335 struct kmem_cache *c;
b8529907 3336 int i, failed = 0;
7cf27982
GC
3337
3338 /*
3339 * If the cache is being destroyed, we trust that there is no one else
3340 * requesting objects from it. Even if there are, the sanity checks in
3341 * kmem_cache_destroy should caught this ill-case.
3342 *
3343 * Still, we don't want anyone else freeing memcg_caches under our
3344 * noses, which can happen if a new memcg comes to life. As usual,
d6441637
VD
3345 * we'll take the activate_kmem_mutex to protect ourselves against
3346 * this.
7cf27982 3347 */
d6441637 3348 mutex_lock(&activate_kmem_mutex);
7a67d7ab
QH
3349 for_each_memcg_cache_index(i) {
3350 c = cache_from_memcg_idx(s, i);
7cf27982
GC
3351 if (!c)
3352 continue;
3353
3354 /*
3355 * We will now manually delete the caches, so to avoid races
3356 * we need to cancel all pending destruction workers and
3357 * proceed with destruction ourselves.
3358 *
3359 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3360 * and that could spawn the workers again: it is likely that
3361 * the cache still have active pages until this very moment.
3362 * This would lead us back to mem_cgroup_destroy_cache.
3363 *
3364 * But that will not execute at all if the "dead" flag is not
3365 * set, so flip it down to guarantee we are in control.
3366 */
3367 c->memcg_params->dead = false;
22933152 3368 cancel_work_sync(&c->memcg_params->destroy);
7cf27982 3369 kmem_cache_destroy(c);
b8529907
VD
3370
3371 if (cache_from_memcg_idx(s, i))
3372 failed++;
7cf27982 3373 }
d6441637 3374 mutex_unlock(&activate_kmem_mutex);
b8529907 3375 return failed;
7cf27982
GC
3376}
3377
1f458cbf
GC
3378static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3379{
3380 struct kmem_cache *cachep;
3381 struct memcg_cache_params *params;
3382
3383 if (!memcg_kmem_is_active(memcg))
3384 return;
3385
3386 mutex_lock(&memcg->slab_caches_mutex);
3387 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3388 cachep = memcg_params_to_cache(params);
3389 cachep->memcg_params->dead = true;
1f458cbf
GC
3390 schedule_work(&cachep->memcg_params->destroy);
3391 }
3392 mutex_unlock(&memcg->slab_caches_mutex);
3393}
3394
5722d094
VD
3395struct create_work {
3396 struct mem_cgroup *memcg;
3397 struct kmem_cache *cachep;
3398 struct work_struct work;
3399};
3400
d7f25f8a
GC
3401static void memcg_create_cache_work_func(struct work_struct *w)
3402{
5722d094
VD
3403 struct create_work *cw = container_of(w, struct create_work, work);
3404 struct mem_cgroup *memcg = cw->memcg;
3405 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 3406
794b1248 3407 kmem_cache_create_memcg(memcg, cachep);
5722d094 3408 css_put(&memcg->css);
d7f25f8a
GC
3409 kfree(cw);
3410}
3411
3412/*
3413 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3414 */
0e9d92f2
GC
3415static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3416 struct kmem_cache *cachep)
d7f25f8a
GC
3417{
3418 struct create_work *cw;
3419
3420 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3421 if (cw == NULL) {
3422 css_put(&memcg->css);
d7f25f8a
GC
3423 return;
3424 }
3425
3426 cw->memcg = memcg;
3427 cw->cachep = cachep;
3428
3429 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3430 schedule_work(&cw->work);
3431}
3432
0e9d92f2
GC
3433static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3434 struct kmem_cache *cachep)
3435{
3436 /*
3437 * We need to stop accounting when we kmalloc, because if the
3438 * corresponding kmalloc cache is not yet created, the first allocation
3439 * in __memcg_create_cache_enqueue will recurse.
3440 *
3441 * However, it is better to enclose the whole function. Depending on
3442 * the debugging options enabled, INIT_WORK(), for instance, can
3443 * trigger an allocation. This too, will make us recurse. Because at
3444 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3445 * the safest choice is to do it like this, wrapping the whole function.
3446 */
3447 memcg_stop_kmem_account();
3448 __memcg_create_cache_enqueue(memcg, cachep);
3449 memcg_resume_kmem_account();
3450}
d7f25f8a
GC
3451/*
3452 * Return the kmem_cache we're supposed to use for a slab allocation.
3453 * We try to use the current memcg's version of the cache.
3454 *
3455 * If the cache does not exist yet, if we are the first user of it,
3456 * we either create it immediately, if possible, or create it asynchronously
3457 * in a workqueue.
3458 * In the latter case, we will let the current allocation go through with
3459 * the original cache.
3460 *
3461 * Can't be called in interrupt context or from kernel threads.
3462 * This function needs to be called with rcu_read_lock() held.
3463 */
3464struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3465 gfp_t gfp)
3466{
3467 struct mem_cgroup *memcg;
959c8963 3468 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
3469
3470 VM_BUG_ON(!cachep->memcg_params);
3471 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3472
0e9d92f2
GC
3473 if (!current->mm || current->memcg_kmem_skip_account)
3474 return cachep;
3475
d7f25f8a
GC
3476 rcu_read_lock();
3477 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3478
3479 if (!memcg_can_account_kmem(memcg))
ca0dde97 3480 goto out;
d7f25f8a 3481
959c8963
VD
3482 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3483 if (likely(memcg_cachep)) {
3484 cachep = memcg_cachep;
ca0dde97 3485 goto out;
d7f25f8a
GC
3486 }
3487
ca0dde97
LZ
3488 /* The corresponding put will be done in the workqueue. */
3489 if (!css_tryget(&memcg->css))
3490 goto out;
3491 rcu_read_unlock();
3492
3493 /*
3494 * If we are in a safe context (can wait, and not in interrupt
3495 * context), we could be be predictable and return right away.
3496 * This would guarantee that the allocation being performed
3497 * already belongs in the new cache.
3498 *
3499 * However, there are some clashes that can arrive from locking.
3500 * For instance, because we acquire the slab_mutex while doing
3501 * kmem_cache_dup, this means no further allocation could happen
3502 * with the slab_mutex held.
3503 *
3504 * Also, because cache creation issue get_online_cpus(), this
3505 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3506 * that ends up reversed during cpu hotplug. (cpuset allocates
3507 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3508 * better to defer everything.
3509 */
3510 memcg_create_cache_enqueue(memcg, cachep);
3511 return cachep;
3512out:
3513 rcu_read_unlock();
3514 return cachep;
d7f25f8a 3515}
d7f25f8a 3516
7ae1e1d0
GC
3517/*
3518 * We need to verify if the allocation against current->mm->owner's memcg is
3519 * possible for the given order. But the page is not allocated yet, so we'll
3520 * need a further commit step to do the final arrangements.
3521 *
3522 * It is possible for the task to switch cgroups in this mean time, so at
3523 * commit time, we can't rely on task conversion any longer. We'll then use
3524 * the handle argument to return to the caller which cgroup we should commit
3525 * against. We could also return the memcg directly and avoid the pointer
3526 * passing, but a boolean return value gives better semantics considering
3527 * the compiled-out case as well.
3528 *
3529 * Returning true means the allocation is possible.
3530 */
3531bool
3532__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3533{
3534 struct mem_cgroup *memcg;
3535 int ret;
3536
3537 *_memcg = NULL;
6d42c232
GC
3538
3539 /*
3540 * Disabling accounting is only relevant for some specific memcg
3541 * internal allocations. Therefore we would initially not have such
52383431
VD
3542 * check here, since direct calls to the page allocator that are
3543 * accounted to kmemcg (alloc_kmem_pages and friends) only happen
3544 * outside memcg core. We are mostly concerned with cache allocations,
3545 * and by having this test at memcg_kmem_get_cache, we are already able
3546 * to relay the allocation to the root cache and bypass the memcg cache
3547 * altogether.
6d42c232
GC
3548 *
3549 * There is one exception, though: the SLUB allocator does not create
3550 * large order caches, but rather service large kmallocs directly from
3551 * the page allocator. Therefore, the following sequence when backed by
3552 * the SLUB allocator:
3553 *
f894ffa8
AM
3554 * memcg_stop_kmem_account();
3555 * kmalloc(<large_number>)
3556 * memcg_resume_kmem_account();
6d42c232
GC
3557 *
3558 * would effectively ignore the fact that we should skip accounting,
3559 * since it will drive us directly to this function without passing
3560 * through the cache selector memcg_kmem_get_cache. Such large
3561 * allocations are extremely rare but can happen, for instance, for the
3562 * cache arrays. We bring this test here.
3563 */
3564 if (!current->mm || current->memcg_kmem_skip_account)
3565 return true;
3566
df381975 3567 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0
GC
3568
3569 if (!memcg_can_account_kmem(memcg)) {
3570 css_put(&memcg->css);
3571 return true;
3572 }
3573
7ae1e1d0
GC
3574 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3575 if (!ret)
3576 *_memcg = memcg;
7ae1e1d0
GC
3577
3578 css_put(&memcg->css);
3579 return (ret == 0);
3580}
3581
3582void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3583 int order)
3584{
3585 struct page_cgroup *pc;
3586
3587 VM_BUG_ON(mem_cgroup_is_root(memcg));
3588
3589 /* The page allocation failed. Revert */
3590 if (!page) {
3591 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3592 return;
3593 }
3594
3595 pc = lookup_page_cgroup(page);
3596 lock_page_cgroup(pc);
3597 pc->mem_cgroup = memcg;
3598 SetPageCgroupUsed(pc);
3599 unlock_page_cgroup(pc);
3600}
3601
3602void __memcg_kmem_uncharge_pages(struct page *page, int order)
3603{
3604 struct mem_cgroup *memcg = NULL;
3605 struct page_cgroup *pc;
3606
3607
3608 pc = lookup_page_cgroup(page);
3609 /*
3610 * Fast unlocked return. Theoretically might have changed, have to
3611 * check again after locking.
3612 */
3613 if (!PageCgroupUsed(pc))
3614 return;
3615
3616 lock_page_cgroup(pc);
3617 if (PageCgroupUsed(pc)) {
3618 memcg = pc->mem_cgroup;
3619 ClearPageCgroupUsed(pc);
3620 }
3621 unlock_page_cgroup(pc);
3622
3623 /*
3624 * We trust that only if there is a memcg associated with the page, it
3625 * is a valid allocation
3626 */
3627 if (!memcg)
3628 return;
3629
309381fe 3630 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
7ae1e1d0 3631 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3632}
1f458cbf
GC
3633#else
3634static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3635{
3636}
7ae1e1d0
GC
3637#endif /* CONFIG_MEMCG_KMEM */
3638
ca3e0214
KH
3639#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3640
a0db00fc 3641#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3642/*
3643 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3644 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3645 * charge/uncharge will be never happen and move_account() is done under
3646 * compound_lock(), so we don't have to take care of races.
ca3e0214 3647 */
e94c8a9c 3648void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3649{
3650 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3651 struct page_cgroup *pc;
b070e65c 3652 struct mem_cgroup *memcg;
e94c8a9c 3653 int i;
ca3e0214 3654
3d37c4a9
KH
3655 if (mem_cgroup_disabled())
3656 return;
b070e65c
DR
3657
3658 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3659 for (i = 1; i < HPAGE_PMD_NR; i++) {
3660 pc = head_pc + i;
b070e65c 3661 pc->mem_cgroup = memcg;
e94c8a9c 3662 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3663 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3664 }
b070e65c
DR
3665 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3666 HPAGE_PMD_NR);
ca3e0214 3667}
12d27107 3668#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3669
f817ed48 3670/**
de3638d9 3671 * mem_cgroup_move_account - move account of the page
5564e88b 3672 * @page: the page
7ec99d62 3673 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3674 * @pc: page_cgroup of the page.
3675 * @from: mem_cgroup which the page is moved from.
3676 * @to: mem_cgroup which the page is moved to. @from != @to.
3677 *
3678 * The caller must confirm following.
08e552c6 3679 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3680 * - compound_lock is held when nr_pages > 1
f817ed48 3681 *
2f3479b1
KH
3682 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3683 * from old cgroup.
f817ed48 3684 */
7ec99d62
JW
3685static int mem_cgroup_move_account(struct page *page,
3686 unsigned int nr_pages,
3687 struct page_cgroup *pc,
3688 struct mem_cgroup *from,
2f3479b1 3689 struct mem_cgroup *to)
f817ed48 3690{
de3638d9
JW
3691 unsigned long flags;
3692 int ret;
b2402857 3693 bool anon = PageAnon(page);
987eba66 3694
f817ed48 3695 VM_BUG_ON(from == to);
309381fe 3696 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
3697 /*
3698 * The page is isolated from LRU. So, collapse function
3699 * will not handle this page. But page splitting can happen.
3700 * Do this check under compound_page_lock(). The caller should
3701 * hold it.
3702 */
3703 ret = -EBUSY;
7ec99d62 3704 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3705 goto out;
3706
3707 lock_page_cgroup(pc);
3708
3709 ret = -EINVAL;
3710 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3711 goto unlock;
3712
312734c0 3713 move_lock_mem_cgroup(from, &flags);
f817ed48 3714
59d1d256
JW
3715 if (!anon && page_mapped(page)) {
3716 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3717 nr_pages);
3718 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3719 nr_pages);
3720 }
3ea67d06 3721
59d1d256
JW
3722 if (PageWriteback(page)) {
3723 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3724 nr_pages);
3725 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3726 nr_pages);
3727 }
3ea67d06 3728
b070e65c 3729 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3730
854ffa8d 3731 /* caller should have done css_get */
08e552c6 3732 pc->mem_cgroup = to;
b070e65c 3733 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3734 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3735 ret = 0;
3736unlock:
57f9fd7d 3737 unlock_page_cgroup(pc);
d2265e6f
KH
3738 /*
3739 * check events
3740 */
5564e88b
JW
3741 memcg_check_events(to, page);
3742 memcg_check_events(from, page);
de3638d9 3743out:
f817ed48
KH
3744 return ret;
3745}
3746
2ef37d3f
MH
3747/**
3748 * mem_cgroup_move_parent - moves page to the parent group
3749 * @page: the page to move
3750 * @pc: page_cgroup of the page
3751 * @child: page's cgroup
3752 *
3753 * move charges to its parent or the root cgroup if the group has no
3754 * parent (aka use_hierarchy==0).
3755 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3756 * mem_cgroup_move_account fails) the failure is always temporary and
3757 * it signals a race with a page removal/uncharge or migration. In the
3758 * first case the page is on the way out and it will vanish from the LRU
3759 * on the next attempt and the call should be retried later.
3760 * Isolation from the LRU fails only if page has been isolated from
3761 * the LRU since we looked at it and that usually means either global
3762 * reclaim or migration going on. The page will either get back to the
3763 * LRU or vanish.
3764 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3765 * (!PageCgroupUsed) or moved to a different group. The page will
3766 * disappear in the next attempt.
f817ed48 3767 */
5564e88b
JW
3768static int mem_cgroup_move_parent(struct page *page,
3769 struct page_cgroup *pc,
6068bf01 3770 struct mem_cgroup *child)
f817ed48 3771{
f817ed48 3772 struct mem_cgroup *parent;
7ec99d62 3773 unsigned int nr_pages;
4be4489f 3774 unsigned long uninitialized_var(flags);
f817ed48
KH
3775 int ret;
3776
d8423011 3777 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3778
57f9fd7d
DN
3779 ret = -EBUSY;
3780 if (!get_page_unless_zero(page))
3781 goto out;
3782 if (isolate_lru_page(page))
3783 goto put;
52dbb905 3784
7ec99d62 3785 nr_pages = hpage_nr_pages(page);
08e552c6 3786
cc926f78
KH
3787 parent = parent_mem_cgroup(child);
3788 /*
3789 * If no parent, move charges to root cgroup.
3790 */
3791 if (!parent)
3792 parent = root_mem_cgroup;
f817ed48 3793
2ef37d3f 3794 if (nr_pages > 1) {
309381fe 3795 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
987eba66 3796 flags = compound_lock_irqsave(page);
2ef37d3f 3797 }
987eba66 3798
cc926f78 3799 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3800 pc, child, parent);
cc926f78
KH
3801 if (!ret)
3802 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3803
7ec99d62 3804 if (nr_pages > 1)
987eba66 3805 compound_unlock_irqrestore(page, flags);
08e552c6 3806 putback_lru_page(page);
57f9fd7d 3807put:
40d58138 3808 put_page(page);
57f9fd7d 3809out:
f817ed48
KH
3810 return ret;
3811}
3812
d715ae08 3813int mem_cgroup_charge_anon(struct page *page,
1bec6b33 3814 struct mm_struct *mm, gfp_t gfp_mask)
7a81b88c 3815{
7ec99d62 3816 unsigned int nr_pages = 1;
6d1fdc48 3817 struct mem_cgroup *memcg;
8493ae43 3818 bool oom = true;
ec168510 3819
1bec6b33
JW
3820 if (mem_cgroup_disabled())
3821 return 0;
3822
3823 VM_BUG_ON_PAGE(page_mapped(page), page);
3824 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3825 VM_BUG_ON(!mm);
3826
37c2ac78 3827 if (PageTransHuge(page)) {
7ec99d62 3828 nr_pages <<= compound_order(page);
309381fe 3829 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
8493ae43
JW
3830 /*
3831 * Never OOM-kill a process for a huge page. The
3832 * fault handler will fall back to regular pages.
3833 */
3834 oom = false;
37c2ac78 3835 }
7a81b88c 3836
6d1fdc48
JW
3837 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
3838 if (!memcg)
3839 return -ENOMEM;
1bec6b33
JW
3840 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3841 MEM_CGROUP_CHARGE_TYPE_ANON, false);
8a9f3ccd 3842 return 0;
8a9f3ccd
BS
3843}
3844
54595fe2
KH
3845/*
3846 * While swap-in, try_charge -> commit or cancel, the page is locked.
3847 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3848 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3849 * "commit()" or removed by "cancel()"
3850 */
0435a2fd
JW
3851static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3852 struct page *page,
3853 gfp_t mask,
3854 struct mem_cgroup **memcgp)
8c7c6e34 3855{
6d1fdc48 3856 struct mem_cgroup *memcg = NULL;
90deb788 3857 struct page_cgroup *pc;
54595fe2 3858 int ret;
8c7c6e34 3859
90deb788
JW
3860 pc = lookup_page_cgroup(page);
3861 /*
3862 * Every swap fault against a single page tries to charge the
3863 * page, bail as early as possible. shmem_unuse() encounters
3864 * already charged pages, too. The USED bit is protected by
3865 * the page lock, which serializes swap cache removal, which
3866 * in turn serializes uncharging.
3867 */
3868 if (PageCgroupUsed(pc))
6d1fdc48
JW
3869 goto out;
3870 if (do_swap_account)
3871 memcg = try_get_mem_cgroup_from_page(page);
c0ff4b85 3872 if (!memcg)
6d1fdc48
JW
3873 memcg = get_mem_cgroup_from_mm(mm);
3874 ret = mem_cgroup_try_charge(memcg, mask, 1, true);
c0ff4b85 3875 css_put(&memcg->css);
38c5d72f 3876 if (ret == -EINTR)
6d1fdc48
JW
3877 memcg = root_mem_cgroup;
3878 else if (ret)
3879 return ret;
3880out:
3881 *memcgp = memcg;
3882 return 0;
8c7c6e34
KH
3883}
3884
0435a2fd
JW
3885int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3886 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3887{
6d1fdc48
JW
3888 if (mem_cgroup_disabled()) {
3889 *memcgp = NULL;
0435a2fd 3890 return 0;
6d1fdc48 3891 }
bdf4f4d2
JW
3892 /*
3893 * A racing thread's fault, or swapoff, may have already
3894 * updated the pte, and even removed page from swap cache: in
3895 * those cases unuse_pte()'s pte_same() test will fail; but
3896 * there's also a KSM case which does need to charge the page.
3897 */
3898 if (!PageSwapCache(page)) {
6d1fdc48 3899 struct mem_cgroup *memcg;
bdf4f4d2 3900
6d1fdc48
JW
3901 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3902 if (!memcg)
3903 return -ENOMEM;
3904 *memcgp = memcg;
3905 return 0;
bdf4f4d2 3906 }
0435a2fd
JW
3907 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3908}
3909
827a03d2
JW
3910void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3911{
3912 if (mem_cgroup_disabled())
3913 return;
3914 if (!memcg)
3915 return;
3916 __mem_cgroup_cancel_charge(memcg, 1);
3917}
3918
83aae4c7 3919static void
72835c86 3920__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 3921 enum charge_type ctype)
7a81b88c 3922{
f8d66542 3923 if (mem_cgroup_disabled())
7a81b88c 3924 return;
72835c86 3925 if (!memcg)
7a81b88c 3926 return;
5a6475a4 3927
ce587e65 3928 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
3929 /*
3930 * Now swap is on-memory. This means this page may be
3931 * counted both as mem and swap....double count.
03f3c433
KH
3932 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3933 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3934 * may call delete_from_swap_cache() before reach here.
8c7c6e34 3935 */
03f3c433 3936 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 3937 swp_entry_t ent = {.val = page_private(page)};
86493009 3938 mem_cgroup_uncharge_swap(ent);
8c7c6e34 3939 }
7a81b88c
KH
3940}
3941
72835c86
JW
3942void mem_cgroup_commit_charge_swapin(struct page *page,
3943 struct mem_cgroup *memcg)
83aae4c7 3944{
72835c86 3945 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 3946 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
3947}
3948
d715ae08 3949int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
827a03d2 3950 gfp_t gfp_mask)
7a81b88c 3951{
827a03d2 3952 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
6d1fdc48 3953 struct mem_cgroup *memcg;
827a03d2
JW
3954 int ret;
3955
f8d66542 3956 if (mem_cgroup_disabled())
827a03d2
JW
3957 return 0;
3958 if (PageCompound(page))
3959 return 0;
3960
6d1fdc48 3961 if (PageSwapCache(page)) { /* shmem */
0435a2fd
JW
3962 ret = __mem_cgroup_try_charge_swapin(mm, page,
3963 gfp_mask, &memcg);
6d1fdc48
JW
3964 if (ret)
3965 return ret;
3966 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3967 return 0;
827a03d2 3968 }
6d1fdc48 3969
6f6acb00
MH
3970 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3971 if (!memcg)
3972 return -ENOMEM;
6d1fdc48
JW
3973 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3974 return 0;
7a81b88c
KH
3975}
3976
c0ff4b85 3977static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
3978 unsigned int nr_pages,
3979 const enum charge_type ctype)
569b846d
KH
3980{
3981 struct memcg_batch_info *batch = NULL;
3982 bool uncharge_memsw = true;
7ec99d62 3983
569b846d
KH
3984 /* If swapout, usage of swap doesn't decrease */
3985 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3986 uncharge_memsw = false;
569b846d
KH
3987
3988 batch = &current->memcg_batch;
3989 /*
3990 * In usual, we do css_get() when we remember memcg pointer.
3991 * But in this case, we keep res->usage until end of a series of
3992 * uncharges. Then, it's ok to ignore memcg's refcnt.
3993 */
3994 if (!batch->memcg)
c0ff4b85 3995 batch->memcg = memcg;
3c11ecf4
KH
3996 /*
3997 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 3998 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
3999 * the same cgroup and we have chance to coalesce uncharges.
4000 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4001 * because we want to do uncharge as soon as possible.
4002 */
4003
4004 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4005 goto direct_uncharge;
4006
7ec99d62 4007 if (nr_pages > 1)
ec168510
AA
4008 goto direct_uncharge;
4009
569b846d
KH
4010 /*
4011 * In typical case, batch->memcg == mem. This means we can
4012 * merge a series of uncharges to an uncharge of res_counter.
4013 * If not, we uncharge res_counter ony by one.
4014 */
c0ff4b85 4015 if (batch->memcg != memcg)
569b846d
KH
4016 goto direct_uncharge;
4017 /* remember freed charge and uncharge it later */
7ffd4ca7 4018 batch->nr_pages++;
569b846d 4019 if (uncharge_memsw)
7ffd4ca7 4020 batch->memsw_nr_pages++;
569b846d
KH
4021 return;
4022direct_uncharge:
c0ff4b85 4023 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4024 if (uncharge_memsw)
c0ff4b85
R
4025 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4026 if (unlikely(batch->memcg != memcg))
4027 memcg_oom_recover(memcg);
569b846d 4028}
7a81b88c 4029
8a9f3ccd 4030/*
69029cd5 4031 * uncharge if !page_mapped(page)
8a9f3ccd 4032 */
8c7c6e34 4033static struct mem_cgroup *
0030f535
JW
4034__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4035 bool end_migration)
8a9f3ccd 4036{
c0ff4b85 4037 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4038 unsigned int nr_pages = 1;
4039 struct page_cgroup *pc;
b2402857 4040 bool anon;
8a9f3ccd 4041
f8d66542 4042 if (mem_cgroup_disabled())
8c7c6e34 4043 return NULL;
4077960e 4044
37c2ac78 4045 if (PageTransHuge(page)) {
7ec99d62 4046 nr_pages <<= compound_order(page);
309381fe 4047 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
37c2ac78 4048 }
8697d331 4049 /*
3c541e14 4050 * Check if our page_cgroup is valid
8697d331 4051 */
52d4b9ac 4052 pc = lookup_page_cgroup(page);
cfa44946 4053 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4054 return NULL;
b9c565d5 4055
52d4b9ac 4056 lock_page_cgroup(pc);
d13d1443 4057
c0ff4b85 4058 memcg = pc->mem_cgroup;
8c7c6e34 4059
d13d1443
KH
4060 if (!PageCgroupUsed(pc))
4061 goto unlock_out;
4062
b2402857
KH
4063 anon = PageAnon(page);
4064
d13d1443 4065 switch (ctype) {
41326c17 4066 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4067 /*
4068 * Generally PageAnon tells if it's the anon statistics to be
4069 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4070 * used before page reached the stage of being marked PageAnon.
4071 */
b2402857
KH
4072 anon = true;
4073 /* fallthrough */
8a9478ca 4074 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4075 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4076 if (page_mapped(page))
4077 goto unlock_out;
4078 /*
4079 * Pages under migration may not be uncharged. But
4080 * end_migration() /must/ be the one uncharging the
4081 * unused post-migration page and so it has to call
4082 * here with the migration bit still set. See the
4083 * res_counter handling below.
4084 */
4085 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4086 goto unlock_out;
4087 break;
4088 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4089 if (!PageAnon(page)) { /* Shared memory */
4090 if (page->mapping && !page_is_file_cache(page))
4091 goto unlock_out;
4092 } else if (page_mapped(page)) /* Anon */
4093 goto unlock_out;
4094 break;
4095 default:
4096 break;
52d4b9ac 4097 }
d13d1443 4098
b070e65c 4099 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4100
52d4b9ac 4101 ClearPageCgroupUsed(pc);
544122e5
KH
4102 /*
4103 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4104 * freed from LRU. This is safe because uncharged page is expected not
4105 * to be reused (freed soon). Exception is SwapCache, it's handled by
4106 * special functions.
4107 */
b9c565d5 4108
52d4b9ac 4109 unlock_page_cgroup(pc);
f75ca962 4110 /*
c0ff4b85 4111 * even after unlock, we have memcg->res.usage here and this memcg
4050377b 4112 * will never be freed, so it's safe to call css_get().
f75ca962 4113 */
c0ff4b85 4114 memcg_check_events(memcg, page);
f75ca962 4115 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85 4116 mem_cgroup_swap_statistics(memcg, true);
4050377b 4117 css_get(&memcg->css);
f75ca962 4118 }
0030f535
JW
4119 /*
4120 * Migration does not charge the res_counter for the
4121 * replacement page, so leave it alone when phasing out the
4122 * page that is unused after the migration.
4123 */
4124 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4125 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4126
c0ff4b85 4127 return memcg;
d13d1443
KH
4128
4129unlock_out:
4130 unlock_page_cgroup(pc);
8c7c6e34 4131 return NULL;
3c541e14
BS
4132}
4133
69029cd5
KH
4134void mem_cgroup_uncharge_page(struct page *page)
4135{
52d4b9ac
KH
4136 /* early check. */
4137 if (page_mapped(page))
4138 return;
309381fe 4139 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
28ccddf7
JW
4140 /*
4141 * If the page is in swap cache, uncharge should be deferred
4142 * to the swap path, which also properly accounts swap usage
4143 * and handles memcg lifetime.
4144 *
4145 * Note that this check is not stable and reclaim may add the
4146 * page to swap cache at any time after this. However, if the
4147 * page is not in swap cache by the time page->mapcount hits
4148 * 0, there won't be any page table references to the swap
4149 * slot, and reclaim will free it and not actually write the
4150 * page to disk.
4151 */
0c59b89c
JW
4152 if (PageSwapCache(page))
4153 return;
0030f535 4154 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4155}
4156
4157void mem_cgroup_uncharge_cache_page(struct page *page)
4158{
309381fe
SL
4159 VM_BUG_ON_PAGE(page_mapped(page), page);
4160 VM_BUG_ON_PAGE(page->mapping, page);
0030f535 4161 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4162}
4163
569b846d
KH
4164/*
4165 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4166 * In that cases, pages are freed continuously and we can expect pages
4167 * are in the same memcg. All these calls itself limits the number of
4168 * pages freed at once, then uncharge_start/end() is called properly.
4169 * This may be called prural(2) times in a context,
4170 */
4171
4172void mem_cgroup_uncharge_start(void)
4173{
4174 current->memcg_batch.do_batch++;
4175 /* We can do nest. */
4176 if (current->memcg_batch.do_batch == 1) {
4177 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4178 current->memcg_batch.nr_pages = 0;
4179 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4180 }
4181}
4182
4183void mem_cgroup_uncharge_end(void)
4184{
4185 struct memcg_batch_info *batch = &current->memcg_batch;
4186
4187 if (!batch->do_batch)
4188 return;
4189
4190 batch->do_batch--;
4191 if (batch->do_batch) /* If stacked, do nothing. */
4192 return;
4193
4194 if (!batch->memcg)
4195 return;
4196 /*
4197 * This "batch->memcg" is valid without any css_get/put etc...
4198 * bacause we hide charges behind us.
4199 */
7ffd4ca7
JW
4200 if (batch->nr_pages)
4201 res_counter_uncharge(&batch->memcg->res,
4202 batch->nr_pages * PAGE_SIZE);
4203 if (batch->memsw_nr_pages)
4204 res_counter_uncharge(&batch->memcg->memsw,
4205 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4206 memcg_oom_recover(batch->memcg);
569b846d
KH
4207 /* forget this pointer (for sanity check) */
4208 batch->memcg = NULL;
4209}
4210
e767e056 4211#ifdef CONFIG_SWAP
8c7c6e34 4212/*
e767e056 4213 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4214 * memcg information is recorded to swap_cgroup of "ent"
4215 */
8a9478ca
KH
4216void
4217mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4218{
4219 struct mem_cgroup *memcg;
8a9478ca
KH
4220 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4221
4222 if (!swapout) /* this was a swap cache but the swap is unused ! */
4223 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4224
0030f535 4225 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4226
f75ca962
KH
4227 /*
4228 * record memcg information, if swapout && memcg != NULL,
4050377b 4229 * css_get() was called in uncharge().
f75ca962
KH
4230 */
4231 if (do_swap_account && swapout && memcg)
34c00c31 4232 swap_cgroup_record(ent, mem_cgroup_id(memcg));
8c7c6e34 4233}
e767e056 4234#endif
8c7c6e34 4235
c255a458 4236#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4237/*
4238 * called from swap_entry_free(). remove record in swap_cgroup and
4239 * uncharge "memsw" account.
4240 */
4241void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4242{
8c7c6e34 4243 struct mem_cgroup *memcg;
a3b2d692 4244 unsigned short id;
8c7c6e34
KH
4245
4246 if (!do_swap_account)
4247 return;
4248
a3b2d692
KH
4249 id = swap_cgroup_record(ent, 0);
4250 rcu_read_lock();
4251 memcg = mem_cgroup_lookup(id);
8c7c6e34 4252 if (memcg) {
a3b2d692
KH
4253 /*
4254 * We uncharge this because swap is freed.
4255 * This memcg can be obsolete one. We avoid calling css_tryget
4256 */
0c3e73e8 4257 if (!mem_cgroup_is_root(memcg))
4e649152 4258 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4259 mem_cgroup_swap_statistics(memcg, false);
4050377b 4260 css_put(&memcg->css);
8c7c6e34 4261 }
a3b2d692 4262 rcu_read_unlock();
d13d1443 4263}
02491447
DN
4264
4265/**
4266 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4267 * @entry: swap entry to be moved
4268 * @from: mem_cgroup which the entry is moved from
4269 * @to: mem_cgroup which the entry is moved to
4270 *
4271 * It succeeds only when the swap_cgroup's record for this entry is the same
4272 * as the mem_cgroup's id of @from.
4273 *
4274 * Returns 0 on success, -EINVAL on failure.
4275 *
4276 * The caller must have charged to @to, IOW, called res_counter_charge() about
4277 * both res and memsw, and called css_get().
4278 */
4279static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4280 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4281{
4282 unsigned short old_id, new_id;
4283
34c00c31
LZ
4284 old_id = mem_cgroup_id(from);
4285 new_id = mem_cgroup_id(to);
02491447
DN
4286
4287 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4288 mem_cgroup_swap_statistics(from, false);
483c30b5 4289 mem_cgroup_swap_statistics(to, true);
02491447 4290 /*
483c30b5
DN
4291 * This function is only called from task migration context now.
4292 * It postpones res_counter and refcount handling till the end
4293 * of task migration(mem_cgroup_clear_mc()) for performance
4050377b
LZ
4294 * improvement. But we cannot postpone css_get(to) because if
4295 * the process that has been moved to @to does swap-in, the
4296 * refcount of @to might be decreased to 0.
4297 *
4298 * We are in attach() phase, so the cgroup is guaranteed to be
4299 * alive, so we can just call css_get().
02491447 4300 */
4050377b 4301 css_get(&to->css);
02491447
DN
4302 return 0;
4303 }
4304 return -EINVAL;
4305}
4306#else
4307static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4308 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4309{
4310 return -EINVAL;
4311}
8c7c6e34 4312#endif
d13d1443 4313
ae41be37 4314/*
01b1ae63
KH
4315 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4316 * page belongs to.
ae41be37 4317 */
0030f535
JW
4318void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4319 struct mem_cgroup **memcgp)
ae41be37 4320{
c0ff4b85 4321 struct mem_cgroup *memcg = NULL;
b32967ff 4322 unsigned int nr_pages = 1;
7ec99d62 4323 struct page_cgroup *pc;
ac39cf8c 4324 enum charge_type ctype;
8869b8f6 4325
72835c86 4326 *memcgp = NULL;
56039efa 4327
f8d66542 4328 if (mem_cgroup_disabled())
0030f535 4329 return;
4077960e 4330
b32967ff
MG
4331 if (PageTransHuge(page))
4332 nr_pages <<= compound_order(page);
4333
52d4b9ac
KH
4334 pc = lookup_page_cgroup(page);
4335 lock_page_cgroup(pc);
4336 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4337 memcg = pc->mem_cgroup;
4338 css_get(&memcg->css);
ac39cf8c
AM
4339 /*
4340 * At migrating an anonymous page, its mapcount goes down
4341 * to 0 and uncharge() will be called. But, even if it's fully
4342 * unmapped, migration may fail and this page has to be
4343 * charged again. We set MIGRATION flag here and delay uncharge
4344 * until end_migration() is called
4345 *
4346 * Corner Case Thinking
4347 * A)
4348 * When the old page was mapped as Anon and it's unmap-and-freed
4349 * while migration was ongoing.
4350 * If unmap finds the old page, uncharge() of it will be delayed
4351 * until end_migration(). If unmap finds a new page, it's
4352 * uncharged when it make mapcount to be 1->0. If unmap code
4353 * finds swap_migration_entry, the new page will not be mapped
4354 * and end_migration() will find it(mapcount==0).
4355 *
4356 * B)
4357 * When the old page was mapped but migraion fails, the kernel
4358 * remaps it. A charge for it is kept by MIGRATION flag even
4359 * if mapcount goes down to 0. We can do remap successfully
4360 * without charging it again.
4361 *
4362 * C)
4363 * The "old" page is under lock_page() until the end of
4364 * migration, so, the old page itself will not be swapped-out.
4365 * If the new page is swapped out before end_migraton, our
4366 * hook to usual swap-out path will catch the event.
4367 */
4368 if (PageAnon(page))
4369 SetPageCgroupMigration(pc);
e8589cc1 4370 }
52d4b9ac 4371 unlock_page_cgroup(pc);
ac39cf8c
AM
4372 /*
4373 * If the page is not charged at this point,
4374 * we return here.
4375 */
c0ff4b85 4376 if (!memcg)
0030f535 4377 return;
01b1ae63 4378
72835c86 4379 *memcgp = memcg;
ac39cf8c
AM
4380 /*
4381 * We charge new page before it's used/mapped. So, even if unlock_page()
4382 * is called before end_migration, we can catch all events on this new
4383 * page. In the case new page is migrated but not remapped, new page's
4384 * mapcount will be finally 0 and we call uncharge in end_migration().
4385 */
ac39cf8c 4386 if (PageAnon(page))
41326c17 4387 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4388 else
62ba7442 4389 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4390 /*
4391 * The page is committed to the memcg, but it's not actually
4392 * charged to the res_counter since we plan on replacing the
4393 * old one and only one page is going to be left afterwards.
4394 */
b32967ff 4395 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4396}
8869b8f6 4397
69029cd5 4398/* remove redundant charge if migration failed*/
c0ff4b85 4399void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4400 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4401{
ac39cf8c 4402 struct page *used, *unused;
01b1ae63 4403 struct page_cgroup *pc;
b2402857 4404 bool anon;
01b1ae63 4405
c0ff4b85 4406 if (!memcg)
01b1ae63 4407 return;
b25ed609 4408
50de1dd9 4409 if (!migration_ok) {
ac39cf8c
AM
4410 used = oldpage;
4411 unused = newpage;
01b1ae63 4412 } else {
ac39cf8c 4413 used = newpage;
01b1ae63
KH
4414 unused = oldpage;
4415 }
0030f535 4416 anon = PageAnon(used);
7d188958
JW
4417 __mem_cgroup_uncharge_common(unused,
4418 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4419 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4420 true);
0030f535 4421 css_put(&memcg->css);
69029cd5 4422 /*
ac39cf8c
AM
4423 * We disallowed uncharge of pages under migration because mapcount
4424 * of the page goes down to zero, temporarly.
4425 * Clear the flag and check the page should be charged.
01b1ae63 4426 */
ac39cf8c
AM
4427 pc = lookup_page_cgroup(oldpage);
4428 lock_page_cgroup(pc);
4429 ClearPageCgroupMigration(pc);
4430 unlock_page_cgroup(pc);
ac39cf8c 4431
01b1ae63 4432 /*
ac39cf8c
AM
4433 * If a page is a file cache, radix-tree replacement is very atomic
4434 * and we can skip this check. When it was an Anon page, its mapcount
4435 * goes down to 0. But because we added MIGRATION flage, it's not
4436 * uncharged yet. There are several case but page->mapcount check
4437 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4438 * check. (see prepare_charge() also)
69029cd5 4439 */
b2402857 4440 if (anon)
ac39cf8c 4441 mem_cgroup_uncharge_page(used);
ae41be37 4442}
78fb7466 4443
ab936cbc
KH
4444/*
4445 * At replace page cache, newpage is not under any memcg but it's on
4446 * LRU. So, this function doesn't touch res_counter but handles LRU
4447 * in correct way. Both pages are locked so we cannot race with uncharge.
4448 */
4449void mem_cgroup_replace_page_cache(struct page *oldpage,
4450 struct page *newpage)
4451{
bde05d1c 4452 struct mem_cgroup *memcg = NULL;
ab936cbc 4453 struct page_cgroup *pc;
ab936cbc 4454 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4455
4456 if (mem_cgroup_disabled())
4457 return;
4458
4459 pc = lookup_page_cgroup(oldpage);
4460 /* fix accounting on old pages */
4461 lock_page_cgroup(pc);
bde05d1c
HD
4462 if (PageCgroupUsed(pc)) {
4463 memcg = pc->mem_cgroup;
b070e65c 4464 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4465 ClearPageCgroupUsed(pc);
4466 }
ab936cbc
KH
4467 unlock_page_cgroup(pc);
4468
bde05d1c
HD
4469 /*
4470 * When called from shmem_replace_page(), in some cases the
4471 * oldpage has already been charged, and in some cases not.
4472 */
4473 if (!memcg)
4474 return;
ab936cbc
KH
4475 /*
4476 * Even if newpage->mapping was NULL before starting replacement,
4477 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4478 * LRU while we overwrite pc->mem_cgroup.
4479 */
ce587e65 4480 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4481}
4482
f212ad7c
DN
4483#ifdef CONFIG_DEBUG_VM
4484static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4485{
4486 struct page_cgroup *pc;
4487
4488 pc = lookup_page_cgroup(page);
cfa44946
JW
4489 /*
4490 * Can be NULL while feeding pages into the page allocator for
4491 * the first time, i.e. during boot or memory hotplug;
4492 * or when mem_cgroup_disabled().
4493 */
f212ad7c
DN
4494 if (likely(pc) && PageCgroupUsed(pc))
4495 return pc;
4496 return NULL;
4497}
4498
4499bool mem_cgroup_bad_page_check(struct page *page)
4500{
4501 if (mem_cgroup_disabled())
4502 return false;
4503
4504 return lookup_page_cgroup_used(page) != NULL;
4505}
4506
4507void mem_cgroup_print_bad_page(struct page *page)
4508{
4509 struct page_cgroup *pc;
4510
4511 pc = lookup_page_cgroup_used(page);
4512 if (pc) {
d045197f
AM
4513 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4514 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4515 }
4516}
4517#endif
4518
d38d2a75 4519static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4520 unsigned long long val)
628f4235 4521{
81d39c20 4522 int retry_count;
3c11ecf4 4523 u64 memswlimit, memlimit;
628f4235 4524 int ret = 0;
81d39c20
KH
4525 int children = mem_cgroup_count_children(memcg);
4526 u64 curusage, oldusage;
3c11ecf4 4527 int enlarge;
81d39c20
KH
4528
4529 /*
4530 * For keeping hierarchical_reclaim simple, how long we should retry
4531 * is depends on callers. We set our retry-count to be function
4532 * of # of children which we should visit in this loop.
4533 */
4534 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4535
4536 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4537
3c11ecf4 4538 enlarge = 0;
8c7c6e34 4539 while (retry_count) {
628f4235
KH
4540 if (signal_pending(current)) {
4541 ret = -EINTR;
4542 break;
4543 }
8c7c6e34
KH
4544 /*
4545 * Rather than hide all in some function, I do this in
4546 * open coded manner. You see what this really does.
aaad153e 4547 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4548 */
4549 mutex_lock(&set_limit_mutex);
4550 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4551 if (memswlimit < val) {
4552 ret = -EINVAL;
4553 mutex_unlock(&set_limit_mutex);
628f4235
KH
4554 break;
4555 }
3c11ecf4
KH
4556
4557 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4558 if (memlimit < val)
4559 enlarge = 1;
4560
8c7c6e34 4561 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4562 if (!ret) {
4563 if (memswlimit == val)
4564 memcg->memsw_is_minimum = true;
4565 else
4566 memcg->memsw_is_minimum = false;
4567 }
8c7c6e34
KH
4568 mutex_unlock(&set_limit_mutex);
4569
4570 if (!ret)
4571 break;
4572
5660048c
JW
4573 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4574 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4575 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4576 /* Usage is reduced ? */
f894ffa8 4577 if (curusage >= oldusage)
81d39c20
KH
4578 retry_count--;
4579 else
4580 oldusage = curusage;
8c7c6e34 4581 }
3c11ecf4
KH
4582 if (!ret && enlarge)
4583 memcg_oom_recover(memcg);
14797e23 4584
8c7c6e34
KH
4585 return ret;
4586}
4587
338c8431
LZ
4588static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4589 unsigned long long val)
8c7c6e34 4590{
81d39c20 4591 int retry_count;
3c11ecf4 4592 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4593 int children = mem_cgroup_count_children(memcg);
4594 int ret = -EBUSY;
3c11ecf4 4595 int enlarge = 0;
8c7c6e34 4596
81d39c20 4597 /* see mem_cgroup_resize_res_limit */
f894ffa8 4598 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
81d39c20 4599 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4600 while (retry_count) {
4601 if (signal_pending(current)) {
4602 ret = -EINTR;
4603 break;
4604 }
4605 /*
4606 * Rather than hide all in some function, I do this in
4607 * open coded manner. You see what this really does.
aaad153e 4608 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4609 */
4610 mutex_lock(&set_limit_mutex);
4611 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4612 if (memlimit > val) {
4613 ret = -EINVAL;
4614 mutex_unlock(&set_limit_mutex);
4615 break;
4616 }
3c11ecf4
KH
4617 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4618 if (memswlimit < val)
4619 enlarge = 1;
8c7c6e34 4620 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4621 if (!ret) {
4622 if (memlimit == val)
4623 memcg->memsw_is_minimum = true;
4624 else
4625 memcg->memsw_is_minimum = false;
4626 }
8c7c6e34
KH
4627 mutex_unlock(&set_limit_mutex);
4628
4629 if (!ret)
4630 break;
4631
5660048c
JW
4632 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4633 MEM_CGROUP_RECLAIM_NOSWAP |
4634 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4635 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4636 /* Usage is reduced ? */
8c7c6e34 4637 if (curusage >= oldusage)
628f4235 4638 retry_count--;
81d39c20
KH
4639 else
4640 oldusage = curusage;
628f4235 4641 }
3c11ecf4
KH
4642 if (!ret && enlarge)
4643 memcg_oom_recover(memcg);
628f4235
KH
4644 return ret;
4645}
4646
0608f43d
AM
4647unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4648 gfp_t gfp_mask,
4649 unsigned long *total_scanned)
4650{
4651 unsigned long nr_reclaimed = 0;
4652 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4653 unsigned long reclaimed;
4654 int loop = 0;
4655 struct mem_cgroup_tree_per_zone *mctz;
4656 unsigned long long excess;
4657 unsigned long nr_scanned;
4658
4659 if (order > 0)
4660 return 0;
4661
4662 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4663 /*
4664 * This loop can run a while, specially if mem_cgroup's continuously
4665 * keep exceeding their soft limit and putting the system under
4666 * pressure
4667 */
4668 do {
4669 if (next_mz)
4670 mz = next_mz;
4671 else
4672 mz = mem_cgroup_largest_soft_limit_node(mctz);
4673 if (!mz)
4674 break;
4675
4676 nr_scanned = 0;
4677 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4678 gfp_mask, &nr_scanned);
4679 nr_reclaimed += reclaimed;
4680 *total_scanned += nr_scanned;
4681 spin_lock(&mctz->lock);
4682
4683 /*
4684 * If we failed to reclaim anything from this memory cgroup
4685 * it is time to move on to the next cgroup
4686 */
4687 next_mz = NULL;
4688 if (!reclaimed) {
4689 do {
4690 /*
4691 * Loop until we find yet another one.
4692 *
4693 * By the time we get the soft_limit lock
4694 * again, someone might have aded the
4695 * group back on the RB tree. Iterate to
4696 * make sure we get a different mem.
4697 * mem_cgroup_largest_soft_limit_node returns
4698 * NULL if no other cgroup is present on
4699 * the tree
4700 */
4701 next_mz =
4702 __mem_cgroup_largest_soft_limit_node(mctz);
4703 if (next_mz == mz)
4704 css_put(&next_mz->memcg->css);
4705 else /* next_mz == NULL or other memcg */
4706 break;
4707 } while (1);
4708 }
4709 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4710 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4711 /*
4712 * One school of thought says that we should not add
4713 * back the node to the tree if reclaim returns 0.
4714 * But our reclaim could return 0, simply because due
4715 * to priority we are exposing a smaller subset of
4716 * memory to reclaim from. Consider this as a longer
4717 * term TODO.
4718 */
4719 /* If excess == 0, no tree ops */
4720 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4721 spin_unlock(&mctz->lock);
4722 css_put(&mz->memcg->css);
4723 loop++;
4724 /*
4725 * Could not reclaim anything and there are no more
4726 * mem cgroups to try or we seem to be looping without
4727 * reclaiming anything.
4728 */
4729 if (!nr_reclaimed &&
4730 (next_mz == NULL ||
4731 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4732 break;
4733 } while (!nr_reclaimed);
4734 if (next_mz)
4735 css_put(&next_mz->memcg->css);
4736 return nr_reclaimed;
4737}
4738
2ef37d3f
MH
4739/**
4740 * mem_cgroup_force_empty_list - clears LRU of a group
4741 * @memcg: group to clear
4742 * @node: NUMA node
4743 * @zid: zone id
4744 * @lru: lru to to clear
4745 *
3c935d18 4746 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4747 * reclaim the pages page themselves - pages are moved to the parent (or root)
4748 * group.
cc847582 4749 */
2ef37d3f 4750static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4751 int node, int zid, enum lru_list lru)
cc847582 4752{
bea8c150 4753 struct lruvec *lruvec;
2ef37d3f 4754 unsigned long flags;
072c56c1 4755 struct list_head *list;
925b7673
JW
4756 struct page *busy;
4757 struct zone *zone;
072c56c1 4758
08e552c6 4759 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4760 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4761 list = &lruvec->lists[lru];
cc847582 4762
f817ed48 4763 busy = NULL;
2ef37d3f 4764 do {
925b7673 4765 struct page_cgroup *pc;
5564e88b
JW
4766 struct page *page;
4767
08e552c6 4768 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4769 if (list_empty(list)) {
08e552c6 4770 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4771 break;
f817ed48 4772 }
925b7673
JW
4773 page = list_entry(list->prev, struct page, lru);
4774 if (busy == page) {
4775 list_move(&page->lru, list);
648bcc77 4776 busy = NULL;
08e552c6 4777 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4778 continue;
4779 }
08e552c6 4780 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4781
925b7673 4782 pc = lookup_page_cgroup(page);
5564e88b 4783
3c935d18 4784 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4785 /* found lock contention or "pc" is obsolete. */
925b7673 4786 busy = page;
f817ed48
KH
4787 cond_resched();
4788 } else
4789 busy = NULL;
2ef37d3f 4790 } while (!list_empty(list));
cc847582
KH
4791}
4792
4793/*
c26251f9
MH
4794 * make mem_cgroup's charge to be 0 if there is no task by moving
4795 * all the charges and pages to the parent.
cc847582 4796 * This enables deleting this mem_cgroup.
c26251f9
MH
4797 *
4798 * Caller is responsible for holding css reference on the memcg.
cc847582 4799 */
ab5196c2 4800static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4801{
c26251f9 4802 int node, zid;
bea207c8 4803 u64 usage;
f817ed48 4804
fce66477 4805 do {
52d4b9ac
KH
4806 /* This is for making all *used* pages to be on LRU. */
4807 lru_add_drain_all();
c0ff4b85 4808 drain_all_stock_sync(memcg);
c0ff4b85 4809 mem_cgroup_start_move(memcg);
31aaea4a 4810 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4811 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4812 enum lru_list lru;
4813 for_each_lru(lru) {
2ef37d3f 4814 mem_cgroup_force_empty_list(memcg,
f156ab93 4815 node, zid, lru);
f817ed48 4816 }
1ecaab2b 4817 }
f817ed48 4818 }
c0ff4b85
R
4819 mem_cgroup_end_move(memcg);
4820 memcg_oom_recover(memcg);
52d4b9ac 4821 cond_resched();
f817ed48 4822
2ef37d3f 4823 /*
bea207c8
GC
4824 * Kernel memory may not necessarily be trackable to a specific
4825 * process. So they are not migrated, and therefore we can't
4826 * expect their value to drop to 0 here.
4827 * Having res filled up with kmem only is enough.
4828 *
2ef37d3f
MH
4829 * This is a safety check because mem_cgroup_force_empty_list
4830 * could have raced with mem_cgroup_replace_page_cache callers
4831 * so the lru seemed empty but the page could have been added
4832 * right after the check. RES_USAGE should be safe as we always
4833 * charge before adding to the LRU.
4834 */
bea207c8
GC
4835 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4836 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4837 } while (usage > 0);
c26251f9
MH
4838}
4839
b5f99b53
GC
4840static inline bool memcg_has_children(struct mem_cgroup *memcg)
4841{
696ac172
JW
4842 lockdep_assert_held(&memcg_create_mutex);
4843 /*
4844 * The lock does not prevent addition or deletion to the list
4845 * of children, but it prevents a new child from being
4846 * initialized based on this parent in css_online(), so it's
4847 * enough to decide whether hierarchically inherited
4848 * attributes can still be changed or not.
4849 */
4850 return memcg->use_hierarchy &&
4851 !list_empty(&memcg->css.cgroup->children);
b5f99b53
GC
4852}
4853
c26251f9
MH
4854/*
4855 * Reclaims as many pages from the given memcg as possible and moves
4856 * the rest to the parent.
4857 *
4858 * Caller is responsible for holding css reference for memcg.
4859 */
4860static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4861{
4862 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4863 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4864
c1e862c1 4865 /* returns EBUSY if there is a task or if we come here twice. */
07bc356e 4866 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
c26251f9
MH
4867 return -EBUSY;
4868
c1e862c1
KH
4869 /* we call try-to-free pages for make this cgroup empty */
4870 lru_add_drain_all();
f817ed48 4871 /* try to free all pages in this cgroup */
569530fb 4872 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4873 int progress;
c1e862c1 4874
c26251f9
MH
4875 if (signal_pending(current))
4876 return -EINTR;
4877
c0ff4b85 4878 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4879 false);
c1e862c1 4880 if (!progress) {
f817ed48 4881 nr_retries--;
c1e862c1 4882 /* maybe some writeback is necessary */
8aa7e847 4883 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4884 }
f817ed48
KH
4885
4886 }
08e552c6 4887 lru_add_drain();
ab5196c2
MH
4888 mem_cgroup_reparent_charges(memcg);
4889
4890 return 0;
cc847582
KH
4891}
4892
182446d0
TH
4893static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4894 unsigned int event)
c1e862c1 4895{
182446d0 4896 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c26251f9 4897
d8423011
MH
4898 if (mem_cgroup_is_root(memcg))
4899 return -EINVAL;
c33bd835 4900 return mem_cgroup_force_empty(memcg);
c1e862c1
KH
4901}
4902
182446d0
TH
4903static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4904 struct cftype *cft)
18f59ea7 4905{
182446d0 4906 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
4907}
4908
182446d0
TH
4909static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4910 struct cftype *cft, u64 val)
18f59ea7
BS
4911{
4912 int retval = 0;
182446d0 4913 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
63876986 4914 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
18f59ea7 4915
0999821b 4916 mutex_lock(&memcg_create_mutex);
567fb435
GC
4917
4918 if (memcg->use_hierarchy == val)
4919 goto out;
4920
18f59ea7 4921 /*
af901ca1 4922 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
4923 * in the child subtrees. If it is unset, then the change can
4924 * occur, provided the current cgroup has no children.
4925 *
4926 * For the root cgroup, parent_mem is NULL, we allow value to be
4927 * set if there are no children.
4928 */
c0ff4b85 4929 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 4930 (val == 1 || val == 0)) {
696ac172 4931 if (list_empty(&memcg->css.cgroup->children))
c0ff4b85 4932 memcg->use_hierarchy = val;
18f59ea7
BS
4933 else
4934 retval = -EBUSY;
4935 } else
4936 retval = -EINVAL;
567fb435
GC
4937
4938out:
0999821b 4939 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
4940
4941 return retval;
4942}
4943
0c3e73e8 4944
c0ff4b85 4945static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 4946 enum mem_cgroup_stat_index idx)
0c3e73e8 4947{
7d74b06f 4948 struct mem_cgroup *iter;
7a159cc9 4949 long val = 0;
0c3e73e8 4950
7a159cc9 4951 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 4952 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
4953 val += mem_cgroup_read_stat(iter, idx);
4954
4955 if (val < 0) /* race ? */
4956 val = 0;
4957 return val;
0c3e73e8
BS
4958}
4959
c0ff4b85 4960static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 4961{
7d74b06f 4962 u64 val;
104f3928 4963
c0ff4b85 4964 if (!mem_cgroup_is_root(memcg)) {
104f3928 4965 if (!swap)
65c64ce8 4966 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 4967 else
65c64ce8 4968 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
4969 }
4970
b070e65c
DR
4971 /*
4972 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4973 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4974 */
c0ff4b85
R
4975 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4976 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 4977
7d74b06f 4978 if (swap)
bff6bb83 4979 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
4980
4981 return val << PAGE_SHIFT;
4982}
4983
791badbd
TH
4984static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4985 struct cftype *cft)
8cdea7c0 4986{
182446d0 4987 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
104f3928 4988 u64 val;
791badbd 4989 int name;
86ae53e1 4990 enum res_type type;
8c7c6e34
KH
4991
4992 type = MEMFILE_TYPE(cft->private);
4993 name = MEMFILE_ATTR(cft->private);
af36f906 4994
8c7c6e34
KH
4995 switch (type) {
4996 case _MEM:
104f3928 4997 if (name == RES_USAGE)
c0ff4b85 4998 val = mem_cgroup_usage(memcg, false);
104f3928 4999 else
c0ff4b85 5000 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5001 break;
5002 case _MEMSWAP:
104f3928 5003 if (name == RES_USAGE)
c0ff4b85 5004 val = mem_cgroup_usage(memcg, true);
104f3928 5005 else
c0ff4b85 5006 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5007 break;
510fc4e1
GC
5008 case _KMEM:
5009 val = res_counter_read_u64(&memcg->kmem, name);
5010 break;
8c7c6e34
KH
5011 default:
5012 BUG();
8c7c6e34 5013 }
af36f906 5014
791badbd 5015 return val;
8cdea7c0 5016}
510fc4e1 5017
510fc4e1 5018#ifdef CONFIG_MEMCG_KMEM
d6441637
VD
5019/* should be called with activate_kmem_mutex held */
5020static int __memcg_activate_kmem(struct mem_cgroup *memcg,
5021 unsigned long long limit)
5022{
5023 int err = 0;
5024 int memcg_id;
5025
5026 if (memcg_kmem_is_active(memcg))
5027 return 0;
5028
5029 /*
5030 * We are going to allocate memory for data shared by all memory
5031 * cgroups so let's stop accounting here.
5032 */
5033 memcg_stop_kmem_account();
5034
510fc4e1
GC
5035 /*
5036 * For simplicity, we won't allow this to be disabled. It also can't
5037 * be changed if the cgroup has children already, or if tasks had
5038 * already joined.
5039 *
5040 * If tasks join before we set the limit, a person looking at
5041 * kmem.usage_in_bytes will have no way to determine when it took
5042 * place, which makes the value quite meaningless.
5043 *
5044 * After it first became limited, changes in the value of the limit are
5045 * of course permitted.
510fc4e1 5046 */
0999821b 5047 mutex_lock(&memcg_create_mutex);
07bc356e 5048 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
d6441637
VD
5049 err = -EBUSY;
5050 mutex_unlock(&memcg_create_mutex);
5051 if (err)
5052 goto out;
510fc4e1 5053
d6441637
VD
5054 memcg_id = ida_simple_get(&kmem_limited_groups,
5055 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
5056 if (memcg_id < 0) {
5057 err = memcg_id;
5058 goto out;
5059 }
5060
5061 /*
5062 * Make sure we have enough space for this cgroup in each root cache's
5063 * memcg_params.
5064 */
5065 err = memcg_update_all_caches(memcg_id + 1);
5066 if (err)
5067 goto out_rmid;
5068
5069 memcg->kmemcg_id = memcg_id;
5070 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
5071 mutex_init(&memcg->slab_caches_mutex);
5072
5073 /*
5074 * We couldn't have accounted to this cgroup, because it hasn't got the
5075 * active bit set yet, so this should succeed.
5076 */
5077 err = res_counter_set_limit(&memcg->kmem, limit);
5078 VM_BUG_ON(err);
5079
5080 static_key_slow_inc(&memcg_kmem_enabled_key);
5081 /*
5082 * Setting the active bit after enabling static branching will
5083 * guarantee no one starts accounting before all call sites are
5084 * patched.
5085 */
5086 memcg_kmem_set_active(memcg);
510fc4e1 5087out:
d6441637
VD
5088 memcg_resume_kmem_account();
5089 return err;
5090
5091out_rmid:
5092 ida_simple_remove(&kmem_limited_groups, memcg_id);
5093 goto out;
5094}
5095
5096static int memcg_activate_kmem(struct mem_cgroup *memcg,
5097 unsigned long long limit)
5098{
5099 int ret;
5100
5101 mutex_lock(&activate_kmem_mutex);
5102 ret = __memcg_activate_kmem(memcg, limit);
5103 mutex_unlock(&activate_kmem_mutex);
5104 return ret;
5105}
5106
5107static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5108 unsigned long long val)
5109{
5110 int ret;
5111
5112 if (!memcg_kmem_is_active(memcg))
5113 ret = memcg_activate_kmem(memcg, val);
5114 else
5115 ret = res_counter_set_limit(&memcg->kmem, val);
510fc4e1
GC
5116 return ret;
5117}
5118
55007d84 5119static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5120{
55007d84 5121 int ret = 0;
510fc4e1 5122 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 5123
d6441637
VD
5124 if (!parent)
5125 return 0;
55007d84 5126
d6441637 5127 mutex_lock(&activate_kmem_mutex);
55007d84 5128 /*
d6441637
VD
5129 * If the parent cgroup is not kmem-active now, it cannot be activated
5130 * after this point, because it has at least one child already.
55007d84 5131 */
d6441637
VD
5132 if (memcg_kmem_is_active(parent))
5133 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5134 mutex_unlock(&activate_kmem_mutex);
55007d84 5135 return ret;
510fc4e1 5136}
d6441637
VD
5137#else
5138static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5139 unsigned long long val)
5140{
5141 return -EINVAL;
5142}
6d043990 5143#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5144
628f4235
KH
5145/*
5146 * The user of this function is...
5147 * RES_LIMIT.
5148 */
182446d0 5149static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
4d3bb511 5150 char *buffer)
8cdea7c0 5151{
182446d0 5152 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5153 enum res_type type;
5154 int name;
628f4235
KH
5155 unsigned long long val;
5156 int ret;
5157
8c7c6e34
KH
5158 type = MEMFILE_TYPE(cft->private);
5159 name = MEMFILE_ATTR(cft->private);
af36f906 5160
8c7c6e34 5161 switch (name) {
628f4235 5162 case RES_LIMIT:
4b3bde4c
BS
5163 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5164 ret = -EINVAL;
5165 break;
5166 }
628f4235
KH
5167 /* This function does all necessary parse...reuse it */
5168 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5169 if (ret)
5170 break;
5171 if (type == _MEM)
628f4235 5172 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5173 else if (type == _MEMSWAP)
8c7c6e34 5174 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1 5175 else if (type == _KMEM)
d6441637 5176 ret = memcg_update_kmem_limit(memcg, val);
510fc4e1
GC
5177 else
5178 return -EINVAL;
628f4235 5179 break;
296c81d8
BS
5180 case RES_SOFT_LIMIT:
5181 ret = res_counter_memparse_write_strategy(buffer, &val);
5182 if (ret)
5183 break;
5184 /*
5185 * For memsw, soft limits are hard to implement in terms
5186 * of semantics, for now, we support soft limits for
5187 * control without swap
5188 */
5189 if (type == _MEM)
5190 ret = res_counter_set_soft_limit(&memcg->res, val);
5191 else
5192 ret = -EINVAL;
5193 break;
628f4235
KH
5194 default:
5195 ret = -EINVAL; /* should be BUG() ? */
5196 break;
5197 }
5198 return ret;
8cdea7c0
BS
5199}
5200
fee7b548
KH
5201static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5202 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5203{
fee7b548
KH
5204 unsigned long long min_limit, min_memsw_limit, tmp;
5205
5206 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5207 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
fee7b548
KH
5208 if (!memcg->use_hierarchy)
5209 goto out;
5210
63876986
TH
5211 while (css_parent(&memcg->css)) {
5212 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
fee7b548
KH
5213 if (!memcg->use_hierarchy)
5214 break;
5215 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5216 min_limit = min(min_limit, tmp);
5217 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5218 min_memsw_limit = min(min_memsw_limit, tmp);
5219 }
5220out:
5221 *mem_limit = min_limit;
5222 *memsw_limit = min_memsw_limit;
fee7b548
KH
5223}
5224
182446d0 5225static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
c84872e1 5226{
182446d0 5227 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
86ae53e1
GC
5228 int name;
5229 enum res_type type;
c84872e1 5230
8c7c6e34
KH
5231 type = MEMFILE_TYPE(event);
5232 name = MEMFILE_ATTR(event);
af36f906 5233
8c7c6e34 5234 switch (name) {
29f2a4da 5235 case RES_MAX_USAGE:
8c7c6e34 5236 if (type == _MEM)
c0ff4b85 5237 res_counter_reset_max(&memcg->res);
510fc4e1 5238 else if (type == _MEMSWAP)
c0ff4b85 5239 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5240 else if (type == _KMEM)
5241 res_counter_reset_max(&memcg->kmem);
5242 else
5243 return -EINVAL;
29f2a4da
PE
5244 break;
5245 case RES_FAILCNT:
8c7c6e34 5246 if (type == _MEM)
c0ff4b85 5247 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5248 else if (type == _MEMSWAP)
c0ff4b85 5249 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5250 else if (type == _KMEM)
5251 res_counter_reset_failcnt(&memcg->kmem);
5252 else
5253 return -EINVAL;
29f2a4da
PE
5254 break;
5255 }
f64c3f54 5256
85cc59db 5257 return 0;
c84872e1
PE
5258}
5259
182446d0 5260static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
5261 struct cftype *cft)
5262{
182446d0 5263 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
5264}
5265
02491447 5266#ifdef CONFIG_MMU
182446d0 5267static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
5268 struct cftype *cft, u64 val)
5269{
182446d0 5270 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0
DN
5271
5272 if (val >= (1 << NR_MOVE_TYPE))
5273 return -EINVAL;
ee5e8472 5274
7dc74be0 5275 /*
ee5e8472
GC
5276 * No kind of locking is needed in here, because ->can_attach() will
5277 * check this value once in the beginning of the process, and then carry
5278 * on with stale data. This means that changes to this value will only
5279 * affect task migrations starting after the change.
7dc74be0 5280 */
c0ff4b85 5281 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5282 return 0;
5283}
02491447 5284#else
182446d0 5285static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
5286 struct cftype *cft, u64 val)
5287{
5288 return -ENOSYS;
5289}
5290#endif
7dc74be0 5291
406eb0c9 5292#ifdef CONFIG_NUMA
2da8ca82 5293static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 5294{
25485de6
GT
5295 struct numa_stat {
5296 const char *name;
5297 unsigned int lru_mask;
5298 };
5299
5300 static const struct numa_stat stats[] = {
5301 { "total", LRU_ALL },
5302 { "file", LRU_ALL_FILE },
5303 { "anon", LRU_ALL_ANON },
5304 { "unevictable", BIT(LRU_UNEVICTABLE) },
5305 };
5306 const struct numa_stat *stat;
406eb0c9 5307 int nid;
25485de6 5308 unsigned long nr;
2da8ca82 5309 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 5310
25485de6
GT
5311 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5312 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5313 seq_printf(m, "%s=%lu", stat->name, nr);
5314 for_each_node_state(nid, N_MEMORY) {
5315 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5316 stat->lru_mask);
5317 seq_printf(m, " N%d=%lu", nid, nr);
5318 }
5319 seq_putc(m, '\n');
406eb0c9 5320 }
406eb0c9 5321
071aee13
YH
5322 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5323 struct mem_cgroup *iter;
5324
5325 nr = 0;
5326 for_each_mem_cgroup_tree(iter, memcg)
5327 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5328 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5329 for_each_node_state(nid, N_MEMORY) {
5330 nr = 0;
5331 for_each_mem_cgroup_tree(iter, memcg)
5332 nr += mem_cgroup_node_nr_lru_pages(
5333 iter, nid, stat->lru_mask);
5334 seq_printf(m, " N%d=%lu", nid, nr);
5335 }
5336 seq_putc(m, '\n');
406eb0c9 5337 }
406eb0c9 5338
406eb0c9
YH
5339 return 0;
5340}
5341#endif /* CONFIG_NUMA */
5342
af7c4b0e
JW
5343static inline void mem_cgroup_lru_names_not_uptodate(void)
5344{
5345 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5346}
5347
2da8ca82 5348static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 5349{
2da8ca82 5350 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
af7c4b0e
JW
5351 struct mem_cgroup *mi;
5352 unsigned int i;
406eb0c9 5353
af7c4b0e 5354 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5355 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5356 continue;
af7c4b0e
JW
5357 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5358 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5359 }
7b854121 5360
af7c4b0e
JW
5361 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5362 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5363 mem_cgroup_read_events(memcg, i));
5364
5365 for (i = 0; i < NR_LRU_LISTS; i++)
5366 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5367 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5368
14067bb3 5369 /* Hierarchical information */
fee7b548
KH
5370 {
5371 unsigned long long limit, memsw_limit;
d79154bb 5372 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5373 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5374 if (do_swap_account)
78ccf5b5
JW
5375 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5376 memsw_limit);
fee7b548 5377 }
7f016ee8 5378
af7c4b0e
JW
5379 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5380 long long val = 0;
5381
bff6bb83 5382 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5383 continue;
af7c4b0e
JW
5384 for_each_mem_cgroup_tree(mi, memcg)
5385 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5386 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5387 }
5388
5389 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5390 unsigned long long val = 0;
5391
5392 for_each_mem_cgroup_tree(mi, memcg)
5393 val += mem_cgroup_read_events(mi, i);
5394 seq_printf(m, "total_%s %llu\n",
5395 mem_cgroup_events_names[i], val);
5396 }
5397
5398 for (i = 0; i < NR_LRU_LISTS; i++) {
5399 unsigned long long val = 0;
5400
5401 for_each_mem_cgroup_tree(mi, memcg)
5402 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5403 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5404 }
14067bb3 5405
7f016ee8 5406#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5407 {
5408 int nid, zid;
5409 struct mem_cgroup_per_zone *mz;
89abfab1 5410 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5411 unsigned long recent_rotated[2] = {0, 0};
5412 unsigned long recent_scanned[2] = {0, 0};
5413
5414 for_each_online_node(nid)
5415 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5416 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5417 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5418
89abfab1
HD
5419 recent_rotated[0] += rstat->recent_rotated[0];
5420 recent_rotated[1] += rstat->recent_rotated[1];
5421 recent_scanned[0] += rstat->recent_scanned[0];
5422 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5423 }
78ccf5b5
JW
5424 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5425 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5426 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5427 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5428 }
5429#endif
5430
d2ceb9b7
KH
5431 return 0;
5432}
5433
182446d0
TH
5434static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5435 struct cftype *cft)
a7885eb8 5436{
182446d0 5437 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5438
1f4c025b 5439 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5440}
5441
182446d0
TH
5442static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5443 struct cftype *cft, u64 val)
a7885eb8 5444{
182446d0 5445 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 5446
3dae7fec 5447 if (val > 100)
a7885eb8
KM
5448 return -EINVAL;
5449
3dae7fec
JW
5450 if (css_parent(css))
5451 memcg->swappiness = val;
5452 else
5453 vm_swappiness = val;
068b38c1 5454
a7885eb8
KM
5455 return 0;
5456}
5457
2e72b634
KS
5458static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5459{
5460 struct mem_cgroup_threshold_ary *t;
5461 u64 usage;
5462 int i;
5463
5464 rcu_read_lock();
5465 if (!swap)
2c488db2 5466 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5467 else
2c488db2 5468 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5469
5470 if (!t)
5471 goto unlock;
5472
5473 usage = mem_cgroup_usage(memcg, swap);
5474
5475 /*
748dad36 5476 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5477 * If it's not true, a threshold was crossed after last
5478 * call of __mem_cgroup_threshold().
5479 */
5407a562 5480 i = t->current_threshold;
2e72b634
KS
5481
5482 /*
5483 * Iterate backward over array of thresholds starting from
5484 * current_threshold and check if a threshold is crossed.
5485 * If none of thresholds below usage is crossed, we read
5486 * only one element of the array here.
5487 */
5488 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5489 eventfd_signal(t->entries[i].eventfd, 1);
5490
5491 /* i = current_threshold + 1 */
5492 i++;
5493
5494 /*
5495 * Iterate forward over array of thresholds starting from
5496 * current_threshold+1 and check if a threshold is crossed.
5497 * If none of thresholds above usage is crossed, we read
5498 * only one element of the array here.
5499 */
5500 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5501 eventfd_signal(t->entries[i].eventfd, 1);
5502
5503 /* Update current_threshold */
5407a562 5504 t->current_threshold = i - 1;
2e72b634
KS
5505unlock:
5506 rcu_read_unlock();
5507}
5508
5509static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5510{
ad4ca5f4
KS
5511 while (memcg) {
5512 __mem_cgroup_threshold(memcg, false);
5513 if (do_swap_account)
5514 __mem_cgroup_threshold(memcg, true);
5515
5516 memcg = parent_mem_cgroup(memcg);
5517 }
2e72b634
KS
5518}
5519
5520static int compare_thresholds(const void *a, const void *b)
5521{
5522 const struct mem_cgroup_threshold *_a = a;
5523 const struct mem_cgroup_threshold *_b = b;
5524
2bff24a3
GT
5525 if (_a->threshold > _b->threshold)
5526 return 1;
5527
5528 if (_a->threshold < _b->threshold)
5529 return -1;
5530
5531 return 0;
2e72b634
KS
5532}
5533
c0ff4b85 5534static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5535{
5536 struct mem_cgroup_eventfd_list *ev;
5537
c0ff4b85 5538 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5539 eventfd_signal(ev->eventfd, 1);
5540 return 0;
5541}
5542
c0ff4b85 5543static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5544{
7d74b06f
KH
5545 struct mem_cgroup *iter;
5546
c0ff4b85 5547 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5548 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5549}
5550
59b6f873 5551static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 5552 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 5553{
2c488db2
KS
5554 struct mem_cgroup_thresholds *thresholds;
5555 struct mem_cgroup_threshold_ary *new;
2e72b634 5556 u64 threshold, usage;
2c488db2 5557 int i, size, ret;
2e72b634
KS
5558
5559 ret = res_counter_memparse_write_strategy(args, &threshold);
5560 if (ret)
5561 return ret;
5562
5563 mutex_lock(&memcg->thresholds_lock);
2c488db2 5564
2e72b634 5565 if (type == _MEM)
2c488db2 5566 thresholds = &memcg->thresholds;
2e72b634 5567 else if (type == _MEMSWAP)
2c488db2 5568 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5569 else
5570 BUG();
5571
5572 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5573
5574 /* Check if a threshold crossed before adding a new one */
2c488db2 5575 if (thresholds->primary)
2e72b634
KS
5576 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5577
2c488db2 5578 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5579
5580 /* Allocate memory for new array of thresholds */
2c488db2 5581 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5582 GFP_KERNEL);
2c488db2 5583 if (!new) {
2e72b634
KS
5584 ret = -ENOMEM;
5585 goto unlock;
5586 }
2c488db2 5587 new->size = size;
2e72b634
KS
5588
5589 /* Copy thresholds (if any) to new array */
2c488db2
KS
5590 if (thresholds->primary) {
5591 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5592 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5593 }
5594
2e72b634 5595 /* Add new threshold */
2c488db2
KS
5596 new->entries[size - 1].eventfd = eventfd;
5597 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5598
5599 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5600 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5601 compare_thresholds, NULL);
5602
5603 /* Find current threshold */
2c488db2 5604 new->current_threshold = -1;
2e72b634 5605 for (i = 0; i < size; i++) {
748dad36 5606 if (new->entries[i].threshold <= usage) {
2e72b634 5607 /*
2c488db2
KS
5608 * new->current_threshold will not be used until
5609 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5610 * it here.
5611 */
2c488db2 5612 ++new->current_threshold;
748dad36
SZ
5613 } else
5614 break;
2e72b634
KS
5615 }
5616
2c488db2
KS
5617 /* Free old spare buffer and save old primary buffer as spare */
5618 kfree(thresholds->spare);
5619 thresholds->spare = thresholds->primary;
5620
5621 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5622
907860ed 5623 /* To be sure that nobody uses thresholds */
2e72b634
KS
5624 synchronize_rcu();
5625
2e72b634
KS
5626unlock:
5627 mutex_unlock(&memcg->thresholds_lock);
5628
5629 return ret;
5630}
5631
59b6f873 5632static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5633 struct eventfd_ctx *eventfd, const char *args)
5634{
59b6f873 5635 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
5636}
5637
59b6f873 5638static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
5639 struct eventfd_ctx *eventfd, const char *args)
5640{
59b6f873 5641 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
5642}
5643
59b6f873 5644static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 5645 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 5646{
2c488db2
KS
5647 struct mem_cgroup_thresholds *thresholds;
5648 struct mem_cgroup_threshold_ary *new;
2e72b634 5649 u64 usage;
2c488db2 5650 int i, j, size;
2e72b634
KS
5651
5652 mutex_lock(&memcg->thresholds_lock);
5653 if (type == _MEM)
2c488db2 5654 thresholds = &memcg->thresholds;
2e72b634 5655 else if (type == _MEMSWAP)
2c488db2 5656 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5657 else
5658 BUG();
5659
371528ca
AV
5660 if (!thresholds->primary)
5661 goto unlock;
5662
2e72b634
KS
5663 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5664
5665 /* Check if a threshold crossed before removing */
5666 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5667
5668 /* Calculate new number of threshold */
2c488db2
KS
5669 size = 0;
5670 for (i = 0; i < thresholds->primary->size; i++) {
5671 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5672 size++;
5673 }
5674
2c488db2 5675 new = thresholds->spare;
907860ed 5676
2e72b634
KS
5677 /* Set thresholds array to NULL if we don't have thresholds */
5678 if (!size) {
2c488db2
KS
5679 kfree(new);
5680 new = NULL;
907860ed 5681 goto swap_buffers;
2e72b634
KS
5682 }
5683
2c488db2 5684 new->size = size;
2e72b634
KS
5685
5686 /* Copy thresholds and find current threshold */
2c488db2
KS
5687 new->current_threshold = -1;
5688 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5689 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5690 continue;
5691
2c488db2 5692 new->entries[j] = thresholds->primary->entries[i];
748dad36 5693 if (new->entries[j].threshold <= usage) {
2e72b634 5694 /*
2c488db2 5695 * new->current_threshold will not be used
2e72b634
KS
5696 * until rcu_assign_pointer(), so it's safe to increment
5697 * it here.
5698 */
2c488db2 5699 ++new->current_threshold;
2e72b634
KS
5700 }
5701 j++;
5702 }
5703
907860ed 5704swap_buffers:
2c488db2
KS
5705 /* Swap primary and spare array */
5706 thresholds->spare = thresholds->primary;
8c757763
SZ
5707 /* If all events are unregistered, free the spare array */
5708 if (!new) {
5709 kfree(thresholds->spare);
5710 thresholds->spare = NULL;
5711 }
5712
2c488db2 5713 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5714
907860ed 5715 /* To be sure that nobody uses thresholds */
2e72b634 5716 synchronize_rcu();
371528ca 5717unlock:
2e72b634 5718 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5719}
c1e862c1 5720
59b6f873 5721static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5722 struct eventfd_ctx *eventfd)
5723{
59b6f873 5724 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
5725}
5726
59b6f873 5727static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
5728 struct eventfd_ctx *eventfd)
5729{
59b6f873 5730 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
5731}
5732
59b6f873 5733static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 5734 struct eventfd_ctx *eventfd, const char *args)
9490ff27 5735{
9490ff27 5736 struct mem_cgroup_eventfd_list *event;
9490ff27 5737
9490ff27
KH
5738 event = kmalloc(sizeof(*event), GFP_KERNEL);
5739 if (!event)
5740 return -ENOMEM;
5741
1af8efe9 5742 spin_lock(&memcg_oom_lock);
9490ff27
KH
5743
5744 event->eventfd = eventfd;
5745 list_add(&event->list, &memcg->oom_notify);
5746
5747 /* already in OOM ? */
79dfdacc 5748 if (atomic_read(&memcg->under_oom))
9490ff27 5749 eventfd_signal(eventfd, 1);
1af8efe9 5750 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5751
5752 return 0;
5753}
5754
59b6f873 5755static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 5756 struct eventfd_ctx *eventfd)
9490ff27 5757{
9490ff27 5758 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 5759
1af8efe9 5760 spin_lock(&memcg_oom_lock);
9490ff27 5761
c0ff4b85 5762 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5763 if (ev->eventfd == eventfd) {
5764 list_del(&ev->list);
5765 kfree(ev);
5766 }
5767 }
5768
1af8efe9 5769 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5770}
5771
2da8ca82 5772static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 5773{
2da8ca82 5774 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 5775
791badbd
TH
5776 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5777 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
5778 return 0;
5779}
5780
182446d0 5781static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
5782 struct cftype *cft, u64 val)
5783{
182446d0 5784 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
5785
5786 /* cannot set to root cgroup and only 0 and 1 are allowed */
3dae7fec 5787 if (!css_parent(css) || !((val == 0) || (val == 1)))
3c11ecf4
KH
5788 return -EINVAL;
5789
c0ff4b85 5790 memcg->oom_kill_disable = val;
4d845ebf 5791 if (!val)
c0ff4b85 5792 memcg_oom_recover(memcg);
3dae7fec 5793
3c11ecf4
KH
5794 return 0;
5795}
5796
c255a458 5797#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5798static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5799{
55007d84
GC
5800 int ret;
5801
2633d7a0 5802 memcg->kmemcg_id = -1;
55007d84
GC
5803 ret = memcg_propagate_kmem(memcg);
5804 if (ret)
5805 return ret;
2633d7a0 5806
1d62e436 5807 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5808}
e5671dfa 5809
10d5ebf4 5810static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 5811{
1d62e436 5812 mem_cgroup_sockets_destroy(memcg);
10d5ebf4
LZ
5813}
5814
5815static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5816{
5817 if (!memcg_kmem_is_active(memcg))
5818 return;
5819
5820 /*
5821 * kmem charges can outlive the cgroup. In the case of slab
5822 * pages, for instance, a page contain objects from various
5823 * processes. As we prevent from taking a reference for every
5824 * such allocation we have to be careful when doing uncharge
5825 * (see memcg_uncharge_kmem) and here during offlining.
5826 *
5827 * The idea is that that only the _last_ uncharge which sees
5828 * the dead memcg will drop the last reference. An additional
5829 * reference is taken here before the group is marked dead
5830 * which is then paired with css_put during uncharge resp. here.
5831 *
5832 * Although this might sound strange as this path is called from
5833 * css_offline() when the referencemight have dropped down to 0
5834 * and shouldn't be incremented anymore (css_tryget would fail)
5835 * we do not have other options because of the kmem allocations
5836 * lifetime.
5837 */
5838 css_get(&memcg->css);
7de37682
GC
5839
5840 memcg_kmem_mark_dead(memcg);
5841
5842 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5843 return;
5844
7de37682 5845 if (memcg_kmem_test_and_clear_dead(memcg))
10d5ebf4 5846 css_put(&memcg->css);
d1a4c0b3 5847}
e5671dfa 5848#else
cbe128e3 5849static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5850{
5851 return 0;
5852}
d1a4c0b3 5853
10d5ebf4
LZ
5854static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5855{
5856}
5857
5858static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
d1a4c0b3
GC
5859{
5860}
e5671dfa
GC
5861#endif
5862
3bc942f3
TH
5863/*
5864 * DO NOT USE IN NEW FILES.
5865 *
5866 * "cgroup.event_control" implementation.
5867 *
5868 * This is way over-engineered. It tries to support fully configurable
5869 * events for each user. Such level of flexibility is completely
5870 * unnecessary especially in the light of the planned unified hierarchy.
5871 *
5872 * Please deprecate this and replace with something simpler if at all
5873 * possible.
5874 */
5875
79bd9814
TH
5876/*
5877 * Unregister event and free resources.
5878 *
5879 * Gets called from workqueue.
5880 */
3bc942f3 5881static void memcg_event_remove(struct work_struct *work)
79bd9814 5882{
3bc942f3
TH
5883 struct mem_cgroup_event *event =
5884 container_of(work, struct mem_cgroup_event, remove);
59b6f873 5885 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5886
5887 remove_wait_queue(event->wqh, &event->wait);
5888
59b6f873 5889 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
5890
5891 /* Notify userspace the event is going away. */
5892 eventfd_signal(event->eventfd, 1);
5893
5894 eventfd_ctx_put(event->eventfd);
5895 kfree(event);
59b6f873 5896 css_put(&memcg->css);
79bd9814
TH
5897}
5898
5899/*
5900 * Gets called on POLLHUP on eventfd when user closes it.
5901 *
5902 * Called with wqh->lock held and interrupts disabled.
5903 */
3bc942f3
TH
5904static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5905 int sync, void *key)
79bd9814 5906{
3bc942f3
TH
5907 struct mem_cgroup_event *event =
5908 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 5909 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
5910 unsigned long flags = (unsigned long)key;
5911
5912 if (flags & POLLHUP) {
5913 /*
5914 * If the event has been detached at cgroup removal, we
5915 * can simply return knowing the other side will cleanup
5916 * for us.
5917 *
5918 * We can't race against event freeing since the other
5919 * side will require wqh->lock via remove_wait_queue(),
5920 * which we hold.
5921 */
fba94807 5922 spin_lock(&memcg->event_list_lock);
79bd9814
TH
5923 if (!list_empty(&event->list)) {
5924 list_del_init(&event->list);
5925 /*
5926 * We are in atomic context, but cgroup_event_remove()
5927 * may sleep, so we have to call it in workqueue.
5928 */
5929 schedule_work(&event->remove);
5930 }
fba94807 5931 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
5932 }
5933
5934 return 0;
5935}
5936
3bc942f3 5937static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
5938 wait_queue_head_t *wqh, poll_table *pt)
5939{
3bc942f3
TH
5940 struct mem_cgroup_event *event =
5941 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
5942
5943 event->wqh = wqh;
5944 add_wait_queue(wqh, &event->wait);
5945}
5946
5947/*
3bc942f3
TH
5948 * DO NOT USE IN NEW FILES.
5949 *
79bd9814
TH
5950 * Parse input and register new cgroup event handler.
5951 *
5952 * Input must be in format '<event_fd> <control_fd> <args>'.
5953 * Interpretation of args is defined by control file implementation.
5954 */
3bc942f3 5955static int memcg_write_event_control(struct cgroup_subsys_state *css,
4d3bb511 5956 struct cftype *cft, char *buffer)
79bd9814 5957{
fba94807 5958 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 5959 struct mem_cgroup_event *event;
79bd9814
TH
5960 struct cgroup_subsys_state *cfile_css;
5961 unsigned int efd, cfd;
5962 struct fd efile;
5963 struct fd cfile;
fba94807 5964 const char *name;
79bd9814
TH
5965 char *endp;
5966 int ret;
5967
5968 efd = simple_strtoul(buffer, &endp, 10);
5969 if (*endp != ' ')
5970 return -EINVAL;
5971 buffer = endp + 1;
5972
5973 cfd = simple_strtoul(buffer, &endp, 10);
5974 if ((*endp != ' ') && (*endp != '\0'))
5975 return -EINVAL;
5976 buffer = endp + 1;
5977
5978 event = kzalloc(sizeof(*event), GFP_KERNEL);
5979 if (!event)
5980 return -ENOMEM;
5981
59b6f873 5982 event->memcg = memcg;
79bd9814 5983 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
5984 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5985 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
5986 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
5987
5988 efile = fdget(efd);
5989 if (!efile.file) {
5990 ret = -EBADF;
5991 goto out_kfree;
5992 }
5993
5994 event->eventfd = eventfd_ctx_fileget(efile.file);
5995 if (IS_ERR(event->eventfd)) {
5996 ret = PTR_ERR(event->eventfd);
5997 goto out_put_efile;
5998 }
5999
6000 cfile = fdget(cfd);
6001 if (!cfile.file) {
6002 ret = -EBADF;
6003 goto out_put_eventfd;
6004 }
6005
6006 /* the process need read permission on control file */
6007 /* AV: shouldn't we check that it's been opened for read instead? */
6008 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6009 if (ret < 0)
6010 goto out_put_cfile;
6011
fba94807
TH
6012 /*
6013 * Determine the event callbacks and set them in @event. This used
6014 * to be done via struct cftype but cgroup core no longer knows
6015 * about these events. The following is crude but the whole thing
6016 * is for compatibility anyway.
3bc942f3
TH
6017 *
6018 * DO NOT ADD NEW FILES.
fba94807
TH
6019 */
6020 name = cfile.file->f_dentry->d_name.name;
6021
6022 if (!strcmp(name, "memory.usage_in_bytes")) {
6023 event->register_event = mem_cgroup_usage_register_event;
6024 event->unregister_event = mem_cgroup_usage_unregister_event;
6025 } else if (!strcmp(name, "memory.oom_control")) {
6026 event->register_event = mem_cgroup_oom_register_event;
6027 event->unregister_event = mem_cgroup_oom_unregister_event;
6028 } else if (!strcmp(name, "memory.pressure_level")) {
6029 event->register_event = vmpressure_register_event;
6030 event->unregister_event = vmpressure_unregister_event;
6031 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
6032 event->register_event = memsw_cgroup_usage_register_event;
6033 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
6034 } else {
6035 ret = -EINVAL;
6036 goto out_put_cfile;
6037 }
6038
79bd9814 6039 /*
b5557c4c
TH
6040 * Verify @cfile should belong to @css. Also, remaining events are
6041 * automatically removed on cgroup destruction but the removal is
6042 * asynchronous, so take an extra ref on @css.
79bd9814 6043 */
5a17f543
TH
6044 cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
6045 &memory_cgrp_subsys);
79bd9814 6046 ret = -EINVAL;
5a17f543 6047 if (IS_ERR(cfile_css))
79bd9814 6048 goto out_put_cfile;
5a17f543
TH
6049 if (cfile_css != css) {
6050 css_put(cfile_css);
79bd9814 6051 goto out_put_cfile;
5a17f543 6052 }
79bd9814 6053
59b6f873 6054 ret = event->register_event(memcg, event->eventfd, buffer);
79bd9814
TH
6055 if (ret)
6056 goto out_put_css;
6057
6058 efile.file->f_op->poll(efile.file, &event->pt);
6059
fba94807
TH
6060 spin_lock(&memcg->event_list_lock);
6061 list_add(&event->list, &memcg->event_list);
6062 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
6063
6064 fdput(cfile);
6065 fdput(efile);
6066
6067 return 0;
6068
6069out_put_css:
b5557c4c 6070 css_put(css);
79bd9814
TH
6071out_put_cfile:
6072 fdput(cfile);
6073out_put_eventfd:
6074 eventfd_ctx_put(event->eventfd);
6075out_put_efile:
6076 fdput(efile);
6077out_kfree:
6078 kfree(event);
6079
6080 return ret;
6081}
6082
8cdea7c0
BS
6083static struct cftype mem_cgroup_files[] = {
6084 {
0eea1030 6085 .name = "usage_in_bytes",
8c7c6e34 6086 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 6087 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6088 },
c84872e1
PE
6089 {
6090 .name = "max_usage_in_bytes",
8c7c6e34 6091 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 6092 .trigger = mem_cgroup_reset,
791badbd 6093 .read_u64 = mem_cgroup_read_u64,
c84872e1 6094 },
8cdea7c0 6095 {
0eea1030 6096 .name = "limit_in_bytes",
8c7c6e34 6097 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 6098 .write_string = mem_cgroup_write,
791badbd 6099 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6100 },
296c81d8
BS
6101 {
6102 .name = "soft_limit_in_bytes",
6103 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6104 .write_string = mem_cgroup_write,
791badbd 6105 .read_u64 = mem_cgroup_read_u64,
296c81d8 6106 },
8cdea7c0
BS
6107 {
6108 .name = "failcnt",
8c7c6e34 6109 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 6110 .trigger = mem_cgroup_reset,
791badbd 6111 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 6112 },
d2ceb9b7
KH
6113 {
6114 .name = "stat",
2da8ca82 6115 .seq_show = memcg_stat_show,
d2ceb9b7 6116 },
c1e862c1
KH
6117 {
6118 .name = "force_empty",
6119 .trigger = mem_cgroup_force_empty_write,
6120 },
18f59ea7
BS
6121 {
6122 .name = "use_hierarchy",
f00baae7 6123 .flags = CFTYPE_INSANE,
18f59ea7
BS
6124 .write_u64 = mem_cgroup_hierarchy_write,
6125 .read_u64 = mem_cgroup_hierarchy_read,
6126 },
79bd9814 6127 {
3bc942f3
TH
6128 .name = "cgroup.event_control", /* XXX: for compat */
6129 .write_string = memcg_write_event_control,
79bd9814
TH
6130 .flags = CFTYPE_NO_PREFIX,
6131 .mode = S_IWUGO,
6132 },
a7885eb8
KM
6133 {
6134 .name = "swappiness",
6135 .read_u64 = mem_cgroup_swappiness_read,
6136 .write_u64 = mem_cgroup_swappiness_write,
6137 },
7dc74be0
DN
6138 {
6139 .name = "move_charge_at_immigrate",
6140 .read_u64 = mem_cgroup_move_charge_read,
6141 .write_u64 = mem_cgroup_move_charge_write,
6142 },
9490ff27
KH
6143 {
6144 .name = "oom_control",
2da8ca82 6145 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 6146 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
6147 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6148 },
70ddf637
AV
6149 {
6150 .name = "pressure_level",
70ddf637 6151 },
406eb0c9
YH
6152#ifdef CONFIG_NUMA
6153 {
6154 .name = "numa_stat",
2da8ca82 6155 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
6156 },
6157#endif
510fc4e1
GC
6158#ifdef CONFIG_MEMCG_KMEM
6159 {
6160 .name = "kmem.limit_in_bytes",
6161 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6162 .write_string = mem_cgroup_write,
791badbd 6163 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6164 },
6165 {
6166 .name = "kmem.usage_in_bytes",
6167 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 6168 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6169 },
6170 {
6171 .name = "kmem.failcnt",
6172 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6173 .trigger = mem_cgroup_reset,
791badbd 6174 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
6175 },
6176 {
6177 .name = "kmem.max_usage_in_bytes",
6178 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6179 .trigger = mem_cgroup_reset,
791badbd 6180 .read_u64 = mem_cgroup_read_u64,
510fc4e1 6181 },
749c5415
GC
6182#ifdef CONFIG_SLABINFO
6183 {
6184 .name = "kmem.slabinfo",
2da8ca82 6185 .seq_show = mem_cgroup_slabinfo_read,
749c5415
GC
6186 },
6187#endif
8c7c6e34 6188#endif
6bc10349 6189 { }, /* terminate */
af36f906 6190};
8c7c6e34 6191
2d11085e
MH
6192#ifdef CONFIG_MEMCG_SWAP
6193static struct cftype memsw_cgroup_files[] = {
6194 {
6195 .name = "memsw.usage_in_bytes",
6196 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 6197 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6198 },
6199 {
6200 .name = "memsw.max_usage_in_bytes",
6201 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6202 .trigger = mem_cgroup_reset,
791badbd 6203 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6204 },
6205 {
6206 .name = "memsw.limit_in_bytes",
6207 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6208 .write_string = mem_cgroup_write,
791badbd 6209 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6210 },
6211 {
6212 .name = "memsw.failcnt",
6213 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6214 .trigger = mem_cgroup_reset,
791badbd 6215 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
6216 },
6217 { }, /* terminate */
6218};
6219#endif
c0ff4b85 6220static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6221{
6222 struct mem_cgroup_per_node *pn;
1ecaab2b 6223 struct mem_cgroup_per_zone *mz;
41e3355d 6224 int zone, tmp = node;
1ecaab2b
KH
6225 /*
6226 * This routine is called against possible nodes.
6227 * But it's BUG to call kmalloc() against offline node.
6228 *
6229 * TODO: this routine can waste much memory for nodes which will
6230 * never be onlined. It's better to use memory hotplug callback
6231 * function.
6232 */
41e3355d
KH
6233 if (!node_state(node, N_NORMAL_MEMORY))
6234 tmp = -1;
17295c88 6235 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6236 if (!pn)
6237 return 1;
1ecaab2b 6238
1ecaab2b
KH
6239 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6240 mz = &pn->zoneinfo[zone];
bea8c150 6241 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
6242 mz->usage_in_excess = 0;
6243 mz->on_tree = false;
d79154bb 6244 mz->memcg = memcg;
1ecaab2b 6245 }
54f72fe0 6246 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
6247 return 0;
6248}
6249
c0ff4b85 6250static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6251{
54f72fe0 6252 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
6253}
6254
33327948
KH
6255static struct mem_cgroup *mem_cgroup_alloc(void)
6256{
d79154bb 6257 struct mem_cgroup *memcg;
8ff69e2c 6258 size_t size;
33327948 6259
8ff69e2c
VD
6260 size = sizeof(struct mem_cgroup);
6261 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 6262
8ff69e2c 6263 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 6264 if (!memcg)
e7bbcdf3
DC
6265 return NULL;
6266
d79154bb
HD
6267 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6268 if (!memcg->stat)
d2e61b8d 6269 goto out_free;
d79154bb
HD
6270 spin_lock_init(&memcg->pcp_counter_lock);
6271 return memcg;
d2e61b8d
DC
6272
6273out_free:
8ff69e2c 6274 kfree(memcg);
d2e61b8d 6275 return NULL;
33327948
KH
6276}
6277
59927fb9 6278/*
c8b2a36f
GC
6279 * At destroying mem_cgroup, references from swap_cgroup can remain.
6280 * (scanning all at force_empty is too costly...)
6281 *
6282 * Instead of clearing all references at force_empty, we remember
6283 * the number of reference from swap_cgroup and free mem_cgroup when
6284 * it goes down to 0.
6285 *
6286 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6287 */
c8b2a36f
GC
6288
6289static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6290{
c8b2a36f 6291 int node;
59927fb9 6292
bb4cc1a8 6293 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
6294
6295 for_each_node(node)
6296 free_mem_cgroup_per_zone_info(memcg, node);
6297
6298 free_percpu(memcg->stat);
6299
3f134619
GC
6300 /*
6301 * We need to make sure that (at least for now), the jump label
6302 * destruction code runs outside of the cgroup lock. This is because
6303 * get_online_cpus(), which is called from the static_branch update,
6304 * can't be called inside the cgroup_lock. cpusets are the ones
6305 * enforcing this dependency, so if they ever change, we might as well.
6306 *
6307 * schedule_work() will guarantee this happens. Be careful if you need
6308 * to move this code around, and make sure it is outside
6309 * the cgroup_lock.
6310 */
a8964b9b 6311 disarm_static_keys(memcg);
8ff69e2c 6312 kfree(memcg);
59927fb9 6313}
3afe36b1 6314
7bcc1bb1
DN
6315/*
6316 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6317 */
e1aab161 6318struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6319{
c0ff4b85 6320 if (!memcg->res.parent)
7bcc1bb1 6321 return NULL;
c0ff4b85 6322 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6323}
e1aab161 6324EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6325
bb4cc1a8
AM
6326static void __init mem_cgroup_soft_limit_tree_init(void)
6327{
6328 struct mem_cgroup_tree_per_node *rtpn;
6329 struct mem_cgroup_tree_per_zone *rtpz;
6330 int tmp, node, zone;
6331
6332 for_each_node(node) {
6333 tmp = node;
6334 if (!node_state(node, N_NORMAL_MEMORY))
6335 tmp = -1;
6336 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6337 BUG_ON(!rtpn);
6338
6339 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6340
6341 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6342 rtpz = &rtpn->rb_tree_per_zone[zone];
6343 rtpz->rb_root = RB_ROOT;
6344 spin_lock_init(&rtpz->lock);
6345 }
6346 }
6347}
6348
0eb253e2 6349static struct cgroup_subsys_state * __ref
eb95419b 6350mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 6351{
d142e3e6 6352 struct mem_cgroup *memcg;
04046e1a 6353 long error = -ENOMEM;
6d12e2d8 6354 int node;
8cdea7c0 6355
c0ff4b85
R
6356 memcg = mem_cgroup_alloc();
6357 if (!memcg)
04046e1a 6358 return ERR_PTR(error);
78fb7466 6359
3ed28fa1 6360 for_each_node(node)
c0ff4b85 6361 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6362 goto free_out;
f64c3f54 6363
c077719b 6364 /* root ? */
eb95419b 6365 if (parent_css == NULL) {
a41c58a6 6366 root_mem_cgroup = memcg;
d142e3e6
GC
6367 res_counter_init(&memcg->res, NULL);
6368 res_counter_init(&memcg->memsw, NULL);
6369 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6370 }
28dbc4b6 6371
d142e3e6
GC
6372 memcg->last_scanned_node = MAX_NUMNODES;
6373 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
6374 memcg->move_charge_at_immigrate = 0;
6375 mutex_init(&memcg->thresholds_lock);
6376 spin_lock_init(&memcg->move_lock);
70ddf637 6377 vmpressure_init(&memcg->vmpressure);
fba94807
TH
6378 INIT_LIST_HEAD(&memcg->event_list);
6379 spin_lock_init(&memcg->event_list_lock);
d142e3e6
GC
6380
6381 return &memcg->css;
6382
6383free_out:
6384 __mem_cgroup_free(memcg);
6385 return ERR_PTR(error);
6386}
6387
6388static int
eb95419b 6389mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 6390{
eb95419b
TH
6391 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6392 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
d142e3e6 6393
4219b2da
LZ
6394 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6395 return -ENOSPC;
6396
63876986 6397 if (!parent)
d142e3e6
GC
6398 return 0;
6399
0999821b 6400 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6401
6402 memcg->use_hierarchy = parent->use_hierarchy;
6403 memcg->oom_kill_disable = parent->oom_kill_disable;
6404 memcg->swappiness = mem_cgroup_swappiness(parent);
6405
6406 if (parent->use_hierarchy) {
c0ff4b85
R
6407 res_counter_init(&memcg->res, &parent->res);
6408 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6409 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6410
7bcc1bb1 6411 /*
8d76a979
LZ
6412 * No need to take a reference to the parent because cgroup
6413 * core guarantees its existence.
7bcc1bb1 6414 */
18f59ea7 6415 } else {
c0ff4b85
R
6416 res_counter_init(&memcg->res, NULL);
6417 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6418 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6419 /*
6420 * Deeper hierachy with use_hierarchy == false doesn't make
6421 * much sense so let cgroup subsystem know about this
6422 * unfortunate state in our controller.
6423 */
d142e3e6 6424 if (parent != root_mem_cgroup)
073219e9 6425 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 6426 }
0999821b 6427 mutex_unlock(&memcg_create_mutex);
d6441637 6428
073219e9 6429 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
8cdea7c0
BS
6430}
6431
5f578161
MH
6432/*
6433 * Announce all parents that a group from their hierarchy is gone.
6434 */
6435static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6436{
6437 struct mem_cgroup *parent = memcg;
6438
6439 while ((parent = parent_mem_cgroup(parent)))
519ebea3 6440 mem_cgroup_iter_invalidate(parent);
5f578161
MH
6441
6442 /*
6443 * if the root memcg is not hierarchical we have to check it
6444 * explicitely.
6445 */
6446 if (!root_mem_cgroup->use_hierarchy)
519ebea3 6447 mem_cgroup_iter_invalidate(root_mem_cgroup);
5f578161
MH
6448}
6449
eb95419b 6450static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 6451{
eb95419b 6452 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 6453 struct mem_cgroup_event *event, *tmp;
4fb1a86f 6454 struct cgroup_subsys_state *iter;
79bd9814
TH
6455
6456 /*
6457 * Unregister events and notify userspace.
6458 * Notify userspace about cgroup removing only after rmdir of cgroup
6459 * directory to avoid race between userspace and kernelspace.
6460 */
fba94807
TH
6461 spin_lock(&memcg->event_list_lock);
6462 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
6463 list_del_init(&event->list);
6464 schedule_work(&event->remove);
6465 }
fba94807 6466 spin_unlock(&memcg->event_list_lock);
ec64f515 6467
10d5ebf4
LZ
6468 kmem_cgroup_css_offline(memcg);
6469
5f578161 6470 mem_cgroup_invalidate_reclaim_iterators(memcg);
4fb1a86f
FB
6471
6472 /*
6473 * This requires that offlining is serialized. Right now that is
6474 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6475 */
6476 css_for_each_descendant_post(iter, css)
6477 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6478
1f458cbf 6479 mem_cgroup_destroy_all_caches(memcg);
33cb876e 6480 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
6481}
6482
eb95419b 6483static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 6484{
eb95419b 6485 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
96f1c58d
JW
6486 /*
6487 * XXX: css_offline() would be where we should reparent all
6488 * memory to prepare the cgroup for destruction. However,
6489 * memcg does not do css_tryget() and res_counter charging
6490 * under the same RCU lock region, which means that charging
6491 * could race with offlining. Offlining only happens to
6492 * cgroups with no tasks in them but charges can show up
6493 * without any tasks from the swapin path when the target
6494 * memcg is looked up from the swapout record and not from the
6495 * current task as it usually is. A race like this can leak
6496 * charges and put pages with stale cgroup pointers into
6497 * circulation:
6498 *
6499 * #0 #1
6500 * lookup_swap_cgroup_id()
6501 * rcu_read_lock()
6502 * mem_cgroup_lookup()
6503 * css_tryget()
6504 * rcu_read_unlock()
6505 * disable css_tryget()
6506 * call_rcu()
6507 * offline_css()
6508 * reparent_charges()
6509 * res_counter_charge()
6510 * css_put()
6511 * css_free()
6512 * pc->mem_cgroup = dead memcg
6513 * add page to lru
6514 *
6515 * The bulk of the charges are still moved in offline_css() to
6516 * avoid pinning a lot of pages in case a long-term reference
6517 * like a swapout record is deferring the css_free() to long
6518 * after offlining. But this makes sure we catch any charges
6519 * made after offlining:
6520 */
6521 mem_cgroup_reparent_charges(memcg);
c268e994 6522
10d5ebf4 6523 memcg_destroy_kmem(memcg);
465939a1 6524 __mem_cgroup_free(memcg);
8cdea7c0
BS
6525}
6526
02491447 6527#ifdef CONFIG_MMU
7dc74be0 6528/* Handlers for move charge at task migration. */
854ffa8d
DN
6529#define PRECHARGE_COUNT_AT_ONCE 256
6530static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6531{
854ffa8d
DN
6532 int ret = 0;
6533 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6534 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6535
c0ff4b85 6536 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6537 mc.precharge += count;
6538 /* we don't need css_get for root */
6539 return ret;
6540 }
6541 /* try to charge at once */
6542 if (count > 1) {
6543 struct res_counter *dummy;
6544 /*
c0ff4b85 6545 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6546 * by cgroup_lock_live_cgroup() that it is not removed and we
6547 * are still under the same cgroup_mutex. So we can postpone
6548 * css_get().
6549 */
c0ff4b85 6550 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6551 goto one_by_one;
c0ff4b85 6552 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6553 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6554 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6555 goto one_by_one;
6556 }
6557 mc.precharge += count;
854ffa8d
DN
6558 return ret;
6559 }
6560one_by_one:
6561 /* fall back to one by one charge */
6562 while (count--) {
6563 if (signal_pending(current)) {
6564 ret = -EINTR;
6565 break;
6566 }
6567 if (!batch_count--) {
6568 batch_count = PRECHARGE_COUNT_AT_ONCE;
6569 cond_resched();
6570 }
6d1fdc48 6571 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
38c5d72f 6572 if (ret)
854ffa8d 6573 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6574 return ret;
854ffa8d
DN
6575 mc.precharge++;
6576 }
4ffef5fe
DN
6577 return ret;
6578}
6579
6580/**
8d32ff84 6581 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6582 * @vma: the vma the pte to be checked belongs
6583 * @addr: the address corresponding to the pte to be checked
6584 * @ptent: the pte to be checked
02491447 6585 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6586 *
6587 * Returns
6588 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6589 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6590 * move charge. if @target is not NULL, the page is stored in target->page
6591 * with extra refcnt got(Callers should handle it).
02491447
DN
6592 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6593 * target for charge migration. if @target is not NULL, the entry is stored
6594 * in target->ent.
4ffef5fe
DN
6595 *
6596 * Called with pte lock held.
6597 */
4ffef5fe
DN
6598union mc_target {
6599 struct page *page;
02491447 6600 swp_entry_t ent;
4ffef5fe
DN
6601};
6602
4ffef5fe 6603enum mc_target_type {
8d32ff84 6604 MC_TARGET_NONE = 0,
4ffef5fe 6605 MC_TARGET_PAGE,
02491447 6606 MC_TARGET_SWAP,
4ffef5fe
DN
6607};
6608
90254a65
DN
6609static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6610 unsigned long addr, pte_t ptent)
4ffef5fe 6611{
90254a65 6612 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6613
90254a65
DN
6614 if (!page || !page_mapped(page))
6615 return NULL;
6616 if (PageAnon(page)) {
6617 /* we don't move shared anon */
4b91355e 6618 if (!move_anon())
90254a65 6619 return NULL;
87946a72
DN
6620 } else if (!move_file())
6621 /* we ignore mapcount for file pages */
90254a65
DN
6622 return NULL;
6623 if (!get_page_unless_zero(page))
6624 return NULL;
6625
6626 return page;
6627}
6628
4b91355e 6629#ifdef CONFIG_SWAP
90254a65
DN
6630static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6631 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6632{
90254a65
DN
6633 struct page *page = NULL;
6634 swp_entry_t ent = pte_to_swp_entry(ptent);
6635
6636 if (!move_anon() || non_swap_entry(ent))
6637 return NULL;
4b91355e
KH
6638 /*
6639 * Because lookup_swap_cache() updates some statistics counter,
6640 * we call find_get_page() with swapper_space directly.
6641 */
33806f06 6642 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6643 if (do_swap_account)
6644 entry->val = ent.val;
6645
6646 return page;
6647}
4b91355e
KH
6648#else
6649static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6650 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6651{
6652 return NULL;
6653}
6654#endif
90254a65 6655
87946a72
DN
6656static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6657 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6658{
6659 struct page *page = NULL;
87946a72
DN
6660 struct address_space *mapping;
6661 pgoff_t pgoff;
6662
6663 if (!vma->vm_file) /* anonymous vma */
6664 return NULL;
6665 if (!move_file())
6666 return NULL;
6667
87946a72
DN
6668 mapping = vma->vm_file->f_mapping;
6669 if (pte_none(ptent))
6670 pgoff = linear_page_index(vma, addr);
6671 else /* pte_file(ptent) is true */
6672 pgoff = pte_to_pgoff(ptent);
6673
6674 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6675#ifdef CONFIG_SWAP
6676 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
6677 if (shmem_mapping(mapping)) {
6678 page = find_get_entry(mapping, pgoff);
6679 if (radix_tree_exceptional_entry(page)) {
6680 swp_entry_t swp = radix_to_swp_entry(page);
6681 if (do_swap_account)
6682 *entry = swp;
6683 page = find_get_page(swap_address_space(swp), swp.val);
6684 }
6685 } else
6686 page = find_get_page(mapping, pgoff);
6687#else
6688 page = find_get_page(mapping, pgoff);
aa3b1895 6689#endif
87946a72
DN
6690 return page;
6691}
6692
8d32ff84 6693static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6694 unsigned long addr, pte_t ptent, union mc_target *target)
6695{
6696 struct page *page = NULL;
6697 struct page_cgroup *pc;
8d32ff84 6698 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6699 swp_entry_t ent = { .val = 0 };
6700
6701 if (pte_present(ptent))
6702 page = mc_handle_present_pte(vma, addr, ptent);
6703 else if (is_swap_pte(ptent))
6704 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6705 else if (pte_none(ptent) || pte_file(ptent))
6706 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6707
6708 if (!page && !ent.val)
8d32ff84 6709 return ret;
02491447
DN
6710 if (page) {
6711 pc = lookup_page_cgroup(page);
6712 /*
6713 * Do only loose check w/o page_cgroup lock.
6714 * mem_cgroup_move_account() checks the pc is valid or not under
6715 * the lock.
6716 */
6717 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6718 ret = MC_TARGET_PAGE;
6719 if (target)
6720 target->page = page;
6721 }
6722 if (!ret || !target)
6723 put_page(page);
6724 }
90254a65
DN
6725 /* There is a swap entry and a page doesn't exist or isn't charged */
6726 if (ent.val && !ret &&
34c00c31 6727 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6728 ret = MC_TARGET_SWAP;
6729 if (target)
6730 target->ent = ent;
4ffef5fe 6731 }
4ffef5fe
DN
6732 return ret;
6733}
6734
12724850
NH
6735#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6736/*
6737 * We don't consider swapping or file mapped pages because THP does not
6738 * support them for now.
6739 * Caller should make sure that pmd_trans_huge(pmd) is true.
6740 */
6741static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6742 unsigned long addr, pmd_t pmd, union mc_target *target)
6743{
6744 struct page *page = NULL;
6745 struct page_cgroup *pc;
6746 enum mc_target_type ret = MC_TARGET_NONE;
6747
6748 page = pmd_page(pmd);
309381fe 6749 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
12724850
NH
6750 if (!move_anon())
6751 return ret;
6752 pc = lookup_page_cgroup(page);
6753 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6754 ret = MC_TARGET_PAGE;
6755 if (target) {
6756 get_page(page);
6757 target->page = page;
6758 }
6759 }
6760 return ret;
6761}
6762#else
6763static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6764 unsigned long addr, pmd_t pmd, union mc_target *target)
6765{
6766 return MC_TARGET_NONE;
6767}
6768#endif
6769
4ffef5fe
DN
6770static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6771 unsigned long addr, unsigned long end,
6772 struct mm_walk *walk)
6773{
6774 struct vm_area_struct *vma = walk->private;
6775 pte_t *pte;
6776 spinlock_t *ptl;
6777
bf929152 6778 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
6779 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6780 mc.precharge += HPAGE_PMD_NR;
bf929152 6781 spin_unlock(ptl);
1a5a9906 6782 return 0;
12724850 6783 }
03319327 6784
45f83cef
AA
6785 if (pmd_trans_unstable(pmd))
6786 return 0;
4ffef5fe
DN
6787 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6788 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6789 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6790 mc.precharge++; /* increment precharge temporarily */
6791 pte_unmap_unlock(pte - 1, ptl);
6792 cond_resched();
6793
7dc74be0
DN
6794 return 0;
6795}
6796
4ffef5fe
DN
6797static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6798{
6799 unsigned long precharge;
6800 struct vm_area_struct *vma;
6801
dfe076b0 6802 down_read(&mm->mmap_sem);
4ffef5fe
DN
6803 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6804 struct mm_walk mem_cgroup_count_precharge_walk = {
6805 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6806 .mm = mm,
6807 .private = vma,
6808 };
6809 if (is_vm_hugetlb_page(vma))
6810 continue;
4ffef5fe
DN
6811 walk_page_range(vma->vm_start, vma->vm_end,
6812 &mem_cgroup_count_precharge_walk);
6813 }
dfe076b0 6814 up_read(&mm->mmap_sem);
4ffef5fe
DN
6815
6816 precharge = mc.precharge;
6817 mc.precharge = 0;
6818
6819 return precharge;
6820}
6821
4ffef5fe
DN
6822static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6823{
dfe076b0
DN
6824 unsigned long precharge = mem_cgroup_count_precharge(mm);
6825
6826 VM_BUG_ON(mc.moving_task);
6827 mc.moving_task = current;
6828 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6829}
6830
dfe076b0
DN
6831/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6832static void __mem_cgroup_clear_mc(void)
4ffef5fe 6833{
2bd9bb20
KH
6834 struct mem_cgroup *from = mc.from;
6835 struct mem_cgroup *to = mc.to;
4050377b 6836 int i;
2bd9bb20 6837
4ffef5fe 6838 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6839 if (mc.precharge) {
6840 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6841 mc.precharge = 0;
6842 }
6843 /*
6844 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6845 * we must uncharge here.
6846 */
6847 if (mc.moved_charge) {
6848 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6849 mc.moved_charge = 0;
4ffef5fe 6850 }
483c30b5
DN
6851 /* we must fixup refcnts and charges */
6852 if (mc.moved_swap) {
483c30b5
DN
6853 /* uncharge swap account from the old cgroup */
6854 if (!mem_cgroup_is_root(mc.from))
6855 res_counter_uncharge(&mc.from->memsw,
6856 PAGE_SIZE * mc.moved_swap);
4050377b
LZ
6857
6858 for (i = 0; i < mc.moved_swap; i++)
6859 css_put(&mc.from->css);
483c30b5
DN
6860
6861 if (!mem_cgroup_is_root(mc.to)) {
6862 /*
6863 * we charged both to->res and to->memsw, so we should
6864 * uncharge to->res.
6865 */
6866 res_counter_uncharge(&mc.to->res,
6867 PAGE_SIZE * mc.moved_swap);
483c30b5 6868 }
4050377b 6869 /* we've already done css_get(mc.to) */
483c30b5
DN
6870 mc.moved_swap = 0;
6871 }
dfe076b0
DN
6872 memcg_oom_recover(from);
6873 memcg_oom_recover(to);
6874 wake_up_all(&mc.waitq);
6875}
6876
6877static void mem_cgroup_clear_mc(void)
6878{
6879 struct mem_cgroup *from = mc.from;
6880
6881 /*
6882 * we must clear moving_task before waking up waiters at the end of
6883 * task migration.
6884 */
6885 mc.moving_task = NULL;
6886 __mem_cgroup_clear_mc();
2bd9bb20 6887 spin_lock(&mc.lock);
4ffef5fe
DN
6888 mc.from = NULL;
6889 mc.to = NULL;
2bd9bb20 6890 spin_unlock(&mc.lock);
32047e2a 6891 mem_cgroup_end_move(from);
4ffef5fe
DN
6892}
6893
eb95419b 6894static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 6895 struct cgroup_taskset *tset)
7dc74be0 6896{
2f7ee569 6897 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6898 int ret = 0;
eb95419b 6899 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
ee5e8472 6900 unsigned long move_charge_at_immigrate;
7dc74be0 6901
ee5e8472
GC
6902 /*
6903 * We are now commited to this value whatever it is. Changes in this
6904 * tunable will only affect upcoming migrations, not the current one.
6905 * So we need to save it, and keep it going.
6906 */
6907 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6908 if (move_charge_at_immigrate) {
7dc74be0
DN
6909 struct mm_struct *mm;
6910 struct mem_cgroup *from = mem_cgroup_from_task(p);
6911
c0ff4b85 6912 VM_BUG_ON(from == memcg);
7dc74be0
DN
6913
6914 mm = get_task_mm(p);
6915 if (!mm)
6916 return 0;
7dc74be0 6917 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6918 if (mm->owner == p) {
6919 VM_BUG_ON(mc.from);
6920 VM_BUG_ON(mc.to);
6921 VM_BUG_ON(mc.precharge);
854ffa8d 6922 VM_BUG_ON(mc.moved_charge);
483c30b5 6923 VM_BUG_ON(mc.moved_swap);
32047e2a 6924 mem_cgroup_start_move(from);
2bd9bb20 6925 spin_lock(&mc.lock);
4ffef5fe 6926 mc.from = from;
c0ff4b85 6927 mc.to = memcg;
ee5e8472 6928 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6929 spin_unlock(&mc.lock);
dfe076b0 6930 /* We set mc.moving_task later */
4ffef5fe
DN
6931
6932 ret = mem_cgroup_precharge_mc(mm);
6933 if (ret)
6934 mem_cgroup_clear_mc();
dfe076b0
DN
6935 }
6936 mmput(mm);
7dc74be0
DN
6937 }
6938 return ret;
6939}
6940
eb95419b 6941static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 6942 struct cgroup_taskset *tset)
7dc74be0 6943{
4ffef5fe 6944 mem_cgroup_clear_mc();
7dc74be0
DN
6945}
6946
4ffef5fe
DN
6947static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6948 unsigned long addr, unsigned long end,
6949 struct mm_walk *walk)
7dc74be0 6950{
4ffef5fe
DN
6951 int ret = 0;
6952 struct vm_area_struct *vma = walk->private;
6953 pte_t *pte;
6954 spinlock_t *ptl;
12724850
NH
6955 enum mc_target_type target_type;
6956 union mc_target target;
6957 struct page *page;
6958 struct page_cgroup *pc;
4ffef5fe 6959
12724850
NH
6960 /*
6961 * We don't take compound_lock() here but no race with splitting thp
6962 * happens because:
6963 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6964 * under splitting, which means there's no concurrent thp split,
6965 * - if another thread runs into split_huge_page() just after we
6966 * entered this if-block, the thread must wait for page table lock
6967 * to be unlocked in __split_huge_page_splitting(), where the main
6968 * part of thp split is not executed yet.
6969 */
bf929152 6970 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 6971 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 6972 spin_unlock(ptl);
12724850
NH
6973 return 0;
6974 }
6975 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6976 if (target_type == MC_TARGET_PAGE) {
6977 page = target.page;
6978 if (!isolate_lru_page(page)) {
6979 pc = lookup_page_cgroup(page);
6980 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6981 pc, mc.from, mc.to)) {
12724850
NH
6982 mc.precharge -= HPAGE_PMD_NR;
6983 mc.moved_charge += HPAGE_PMD_NR;
6984 }
6985 putback_lru_page(page);
6986 }
6987 put_page(page);
6988 }
bf929152 6989 spin_unlock(ptl);
1a5a9906 6990 return 0;
12724850
NH
6991 }
6992
45f83cef
AA
6993 if (pmd_trans_unstable(pmd))
6994 return 0;
4ffef5fe
DN
6995retry:
6996 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6997 for (; addr != end; addr += PAGE_SIZE) {
6998 pte_t ptent = *(pte++);
02491447 6999 swp_entry_t ent;
4ffef5fe
DN
7000
7001 if (!mc.precharge)
7002 break;
7003
8d32ff84 7004 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
7005 case MC_TARGET_PAGE:
7006 page = target.page;
7007 if (isolate_lru_page(page))
7008 goto put;
7009 pc = lookup_page_cgroup(page);
7ec99d62 7010 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 7011 mc.from, mc.to)) {
4ffef5fe 7012 mc.precharge--;
854ffa8d
DN
7013 /* we uncharge from mc.from later. */
7014 mc.moved_charge++;
4ffef5fe
DN
7015 }
7016 putback_lru_page(page);
8d32ff84 7017put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
7018 put_page(page);
7019 break;
02491447
DN
7020 case MC_TARGET_SWAP:
7021 ent = target.ent;
e91cbb42 7022 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 7023 mc.precharge--;
483c30b5
DN
7024 /* we fixup refcnts and charges later. */
7025 mc.moved_swap++;
7026 }
02491447 7027 break;
4ffef5fe
DN
7028 default:
7029 break;
7030 }
7031 }
7032 pte_unmap_unlock(pte - 1, ptl);
7033 cond_resched();
7034
7035 if (addr != end) {
7036 /*
7037 * We have consumed all precharges we got in can_attach().
7038 * We try charge one by one, but don't do any additional
7039 * charges to mc.to if we have failed in charge once in attach()
7040 * phase.
7041 */
854ffa8d 7042 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
7043 if (!ret)
7044 goto retry;
7045 }
7046
7047 return ret;
7048}
7049
7050static void mem_cgroup_move_charge(struct mm_struct *mm)
7051{
7052 struct vm_area_struct *vma;
7053
7054 lru_add_drain_all();
dfe076b0
DN
7055retry:
7056 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7057 /*
7058 * Someone who are holding the mmap_sem might be waiting in
7059 * waitq. So we cancel all extra charges, wake up all waiters,
7060 * and retry. Because we cancel precharges, we might not be able
7061 * to move enough charges, but moving charge is a best-effort
7062 * feature anyway, so it wouldn't be a big problem.
7063 */
7064 __mem_cgroup_clear_mc();
7065 cond_resched();
7066 goto retry;
7067 }
4ffef5fe
DN
7068 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7069 int ret;
7070 struct mm_walk mem_cgroup_move_charge_walk = {
7071 .pmd_entry = mem_cgroup_move_charge_pte_range,
7072 .mm = mm,
7073 .private = vma,
7074 };
7075 if (is_vm_hugetlb_page(vma))
7076 continue;
4ffef5fe
DN
7077 ret = walk_page_range(vma->vm_start, vma->vm_end,
7078 &mem_cgroup_move_charge_walk);
7079 if (ret)
7080 /*
7081 * means we have consumed all precharges and failed in
7082 * doing additional charge. Just abandon here.
7083 */
7084 break;
7085 }
dfe076b0 7086 up_read(&mm->mmap_sem);
7dc74be0
DN
7087}
7088
eb95419b 7089static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7090 struct cgroup_taskset *tset)
67e465a7 7091{
2f7ee569 7092 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 7093 struct mm_struct *mm = get_task_mm(p);
dfe076b0 7094
dfe076b0 7095 if (mm) {
a433658c
KM
7096 if (mc.to)
7097 mem_cgroup_move_charge(mm);
dfe076b0
DN
7098 mmput(mm);
7099 }
a433658c
KM
7100 if (mc.to)
7101 mem_cgroup_clear_mc();
67e465a7 7102}
5cfb80a7 7103#else /* !CONFIG_MMU */
eb95419b 7104static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 7105 struct cgroup_taskset *tset)
5cfb80a7
DN
7106{
7107 return 0;
7108}
eb95419b 7109static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 7110 struct cgroup_taskset *tset)
5cfb80a7
DN
7111{
7112}
eb95419b 7113static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 7114 struct cgroup_taskset *tset)
5cfb80a7
DN
7115{
7116}
7117#endif
67e465a7 7118
f00baae7
TH
7119/*
7120 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7121 * to verify sane_behavior flag on each mount attempt.
7122 */
eb95419b 7123static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
7124{
7125 /*
7126 * use_hierarchy is forced with sane_behavior. cgroup core
7127 * guarantees that @root doesn't have any children, so turning it
7128 * on for the root memcg is enough.
7129 */
eb95419b
TH
7130 if (cgroup_sane_behavior(root_css->cgroup))
7131 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
7132}
7133
073219e9 7134struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 7135 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 7136 .css_online = mem_cgroup_css_online,
92fb9748
TH
7137 .css_offline = mem_cgroup_css_offline,
7138 .css_free = mem_cgroup_css_free,
7dc74be0
DN
7139 .can_attach = mem_cgroup_can_attach,
7140 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7141 .attach = mem_cgroup_move_task,
f00baae7 7142 .bind = mem_cgroup_bind,
6bc10349 7143 .base_cftypes = mem_cgroup_files,
6d12e2d8 7144 .early_init = 0,
8cdea7c0 7145};
c077719b 7146
c255a458 7147#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7148static int __init enable_swap_account(char *s)
7149{
a2c8990a 7150 if (!strcmp(s, "1"))
a42c390c 7151 really_do_swap_account = 1;
a2c8990a 7152 else if (!strcmp(s, "0"))
a42c390c
MH
7153 really_do_swap_account = 0;
7154 return 1;
7155}
a2c8990a 7156__setup("swapaccount=", enable_swap_account);
c077719b 7157
2d11085e
MH
7158static void __init memsw_file_init(void)
7159{
073219e9 7160 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
6acc8b02
MH
7161}
7162
7163static void __init enable_swap_cgroup(void)
7164{
7165 if (!mem_cgroup_disabled() && really_do_swap_account) {
7166 do_swap_account = 1;
7167 memsw_file_init();
7168 }
2d11085e 7169}
6acc8b02 7170
2d11085e 7171#else
6acc8b02 7172static void __init enable_swap_cgroup(void)
2d11085e
MH
7173{
7174}
c077719b 7175#endif
2d11085e
MH
7176
7177/*
1081312f
MH
7178 * subsys_initcall() for memory controller.
7179 *
7180 * Some parts like hotcpu_notifier() have to be initialized from this context
7181 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7182 * everything that doesn't depend on a specific mem_cgroup structure should
7183 * be initialized from here.
2d11085e
MH
7184 */
7185static int __init mem_cgroup_init(void)
7186{
7187 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7188 enable_swap_cgroup();
bb4cc1a8 7189 mem_cgroup_soft_limit_tree_init();
e4777496 7190 memcg_stock_init();
2d11085e
MH
7191 return 0;
7192}
7193subsys_initcall(mem_cgroup_init);