]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/memcontrol.c
memcg: page_cgroup array is never stored on reserved pages
[mirror_ubuntu-zesty-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
8cdea7c0
BS
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24#include <linux/res_counter.h>
25#include <linux/memcontrol.h>
26#include <linux/cgroup.h>
78fb7466 27#include <linux/mm.h>
4ffef5fe 28#include <linux/hugetlb.h>
d13d1443 29#include <linux/pagemap.h>
d52aa412 30#include <linux/smp.h>
8a9f3ccd 31#include <linux/page-flags.h>
66e1707b 32#include <linux/backing-dev.h>
8a9f3ccd
BS
33#include <linux/bit_spinlock.h>
34#include <linux/rcupdate.h>
e222432b 35#include <linux/limits.h>
8c7c6e34 36#include <linux/mutex.h>
f64c3f54 37#include <linux/rbtree.h>
b6ac57d5 38#include <linux/slab.h>
66e1707b 39#include <linux/swap.h>
02491447 40#include <linux/swapops.h>
66e1707b 41#include <linux/spinlock.h>
2e72b634
KS
42#include <linux/eventfd.h>
43#include <linux/sort.h>
66e1707b 44#include <linux/fs.h>
d2ceb9b7 45#include <linux/seq_file.h>
33327948 46#include <linux/vmalloc.h>
b69408e8 47#include <linux/mm_inline.h>
52d4b9ac 48#include <linux/page_cgroup.h>
cdec2e42 49#include <linux/cpu.h>
158e0a2d 50#include <linux/oom.h>
08e552c6 51#include "internal.h"
8cdea7c0 52
8697d331
BS
53#include <asm/uaccess.h>
54
cc8e970c
KM
55#include <trace/events/vmscan.h>
56
a181b0e8 57struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 58#define MEM_CGROUP_RECLAIM_RETRIES 5
4b3bde4c 59struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 60
c077719b 61#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
338c8431 62/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 63int do_swap_account __read_mostly;
a42c390c
MH
64
65/* for remember boot option*/
66#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67static int really_do_swap_account __initdata = 1;
68#else
69static int really_do_swap_account __initdata = 0;
70#endif
71
c077719b
KH
72#else
73#define do_swap_account (0)
74#endif
75
76
d52aa412
KH
77/*
78 * Statistics for memory cgroup.
79 */
80enum mem_cgroup_stat_index {
81 /*
82 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
83 */
84 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
d69b042f 85 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
d8046582 86 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
0c3e73e8 87 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
711d3d2c 88 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
32047e2a 89 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
d52aa412
KH
90 MEM_CGROUP_STAT_NSTATS,
91};
92
e9f8974f
JW
93enum mem_cgroup_events_index {
94 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
95 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
96 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
97 MEM_CGROUP_EVENTS_NSTATS,
98};
7a159cc9
JW
99/*
100 * Per memcg event counter is incremented at every pagein/pageout. With THP,
101 * it will be incremated by the number of pages. This counter is used for
102 * for trigger some periodic events. This is straightforward and better
103 * than using jiffies etc. to handle periodic memcg event.
104 */
105enum mem_cgroup_events_target {
106 MEM_CGROUP_TARGET_THRESH,
107 MEM_CGROUP_TARGET_SOFTLIMIT,
108 MEM_CGROUP_NTARGETS,
109};
110#define THRESHOLDS_EVENTS_TARGET (128)
111#define SOFTLIMIT_EVENTS_TARGET (1024)
e9f8974f 112
d52aa412 113struct mem_cgroup_stat_cpu {
7a159cc9 114 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 115 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
7a159cc9 116 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
117};
118
6d12e2d8
KH
119/*
120 * per-zone information in memory controller.
121 */
6d12e2d8 122struct mem_cgroup_per_zone {
072c56c1
KH
123 /*
124 * spin_lock to protect the per cgroup LRU
125 */
b69408e8
CL
126 struct list_head lists[NR_LRU_LISTS];
127 unsigned long count[NR_LRU_LISTS];
3e2f41f1
KM
128
129 struct zone_reclaim_stat reclaim_stat;
f64c3f54
BS
130 struct rb_node tree_node; /* RB tree node */
131 unsigned long long usage_in_excess;/* Set to the value by which */
132 /* the soft limit is exceeded*/
133 bool on_tree;
4e416953
BS
134 struct mem_cgroup *mem; /* Back pointer, we cannot */
135 /* use container_of */
6d12e2d8
KH
136};
137/* Macro for accessing counter */
138#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
139
140struct mem_cgroup_per_node {
141 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_lru_info {
145 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
146};
147
f64c3f54
BS
148/*
149 * Cgroups above their limits are maintained in a RB-Tree, independent of
150 * their hierarchy representation
151 */
152
153struct mem_cgroup_tree_per_zone {
154 struct rb_root rb_root;
155 spinlock_t lock;
156};
157
158struct mem_cgroup_tree_per_node {
159 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
160};
161
162struct mem_cgroup_tree {
163 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
164};
165
166static struct mem_cgroup_tree soft_limit_tree __read_mostly;
167
2e72b634
KS
168struct mem_cgroup_threshold {
169 struct eventfd_ctx *eventfd;
170 u64 threshold;
171};
172
9490ff27 173/* For threshold */
2e72b634
KS
174struct mem_cgroup_threshold_ary {
175 /* An array index points to threshold just below usage. */
5407a562 176 int current_threshold;
2e72b634
KS
177 /* Size of entries[] */
178 unsigned int size;
179 /* Array of thresholds */
180 struct mem_cgroup_threshold entries[0];
181};
2c488db2
KS
182
183struct mem_cgroup_thresholds {
184 /* Primary thresholds array */
185 struct mem_cgroup_threshold_ary *primary;
186 /*
187 * Spare threshold array.
188 * This is needed to make mem_cgroup_unregister_event() "never fail".
189 * It must be able to store at least primary->size - 1 entries.
190 */
191 struct mem_cgroup_threshold_ary *spare;
192};
193
9490ff27
KH
194/* for OOM */
195struct mem_cgroup_eventfd_list {
196 struct list_head list;
197 struct eventfd_ctx *eventfd;
198};
2e72b634 199
2e72b634 200static void mem_cgroup_threshold(struct mem_cgroup *mem);
9490ff27 201static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
2e72b634 202
8cdea7c0
BS
203/*
204 * The memory controller data structure. The memory controller controls both
205 * page cache and RSS per cgroup. We would eventually like to provide
206 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
207 * to help the administrator determine what knobs to tune.
208 *
209 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
210 * we hit the water mark. May be even add a low water mark, such that
211 * no reclaim occurs from a cgroup at it's low water mark, this is
212 * a feature that will be implemented much later in the future.
8cdea7c0
BS
213 */
214struct mem_cgroup {
215 struct cgroup_subsys_state css;
216 /*
217 * the counter to account for memory usage
218 */
219 struct res_counter res;
8c7c6e34
KH
220 /*
221 * the counter to account for mem+swap usage.
222 */
223 struct res_counter memsw;
78fb7466
PE
224 /*
225 * Per cgroup active and inactive list, similar to the
226 * per zone LRU lists.
78fb7466 227 */
6d12e2d8 228 struct mem_cgroup_lru_info info;
6d61ef40 229 /*
af901ca1 230 * While reclaiming in a hierarchy, we cache the last child we
04046e1a 231 * reclaimed from.
6d61ef40 232 */
04046e1a 233 int last_scanned_child;
18f59ea7
BS
234 /*
235 * Should the accounting and control be hierarchical, per subtree?
236 */
237 bool use_hierarchy;
867578cb 238 atomic_t oom_lock;
8c7c6e34 239 atomic_t refcnt;
14797e23 240
a7885eb8 241 unsigned int swappiness;
3c11ecf4
KH
242 /* OOM-Killer disable */
243 int oom_kill_disable;
a7885eb8 244
22a668d7
KH
245 /* set when res.limit == memsw.limit */
246 bool memsw_is_minimum;
247
2e72b634
KS
248 /* protect arrays of thresholds */
249 struct mutex thresholds_lock;
250
251 /* thresholds for memory usage. RCU-protected */
2c488db2 252 struct mem_cgroup_thresholds thresholds;
907860ed 253
2e72b634 254 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 255 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 256
9490ff27
KH
257 /* For oom notifier event fd */
258 struct list_head oom_notify;
259
7dc74be0
DN
260 /*
261 * Should we move charges of a task when a task is moved into this
262 * mem_cgroup ? And what type of charges should we move ?
263 */
264 unsigned long move_charge_at_immigrate;
d52aa412 265 /*
c62b1a3b 266 * percpu counter.
d52aa412 267 */
c62b1a3b 268 struct mem_cgroup_stat_cpu *stat;
711d3d2c
KH
269 /*
270 * used when a cpu is offlined or other synchronizations
271 * See mem_cgroup_read_stat().
272 */
273 struct mem_cgroup_stat_cpu nocpu_base;
274 spinlock_t pcp_counter_lock;
8cdea7c0
BS
275};
276
7dc74be0
DN
277/* Stuffs for move charges at task migration. */
278/*
279 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
280 * left-shifted bitmap of these types.
281 */
282enum move_type {
4ffef5fe 283 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 284 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
285 NR_MOVE_TYPE,
286};
287
4ffef5fe
DN
288/* "mc" and its members are protected by cgroup_mutex */
289static struct move_charge_struct {
b1dd693e 290 spinlock_t lock; /* for from, to */
4ffef5fe
DN
291 struct mem_cgroup *from;
292 struct mem_cgroup *to;
293 unsigned long precharge;
854ffa8d 294 unsigned long moved_charge;
483c30b5 295 unsigned long moved_swap;
8033b97c
DN
296 struct task_struct *moving_task; /* a task moving charges */
297 wait_queue_head_t waitq; /* a waitq for other context */
298} mc = {
2bd9bb20 299 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
300 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
301};
4ffef5fe 302
90254a65
DN
303static bool move_anon(void)
304{
305 return test_bit(MOVE_CHARGE_TYPE_ANON,
306 &mc.to->move_charge_at_immigrate);
307}
308
87946a72
DN
309static bool move_file(void)
310{
311 return test_bit(MOVE_CHARGE_TYPE_FILE,
312 &mc.to->move_charge_at_immigrate);
313}
314
4e416953
BS
315/*
316 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
317 * limit reclaim to prevent infinite loops, if they ever occur.
318 */
319#define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
320#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
321
217bc319
KH
322enum charge_type {
323 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
324 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 325 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 326 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 327 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 328 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
329 NR_CHARGE_TYPE,
330};
331
8c7c6e34
KH
332/* for encoding cft->private value on file */
333#define _MEM (0)
334#define _MEMSWAP (1)
9490ff27 335#define _OOM_TYPE (2)
8c7c6e34
KH
336#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
337#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
338#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
339/* Used for OOM nofiier */
340#define OOM_CONTROL (0)
8c7c6e34 341
75822b44
BS
342/*
343 * Reclaim flags for mem_cgroup_hierarchical_reclaim
344 */
345#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
346#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
347#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
348#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
4e416953
BS
349#define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
350#define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
75822b44 351
8c7c6e34
KH
352static void mem_cgroup_get(struct mem_cgroup *mem);
353static void mem_cgroup_put(struct mem_cgroup *mem);
7bcc1bb1 354static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
cdec2e42 355static void drain_all_stock_async(void);
8c7c6e34 356
f64c3f54
BS
357static struct mem_cgroup_per_zone *
358mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
359{
360 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
361}
362
d324236b
WF
363struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
364{
365 return &mem->css;
366}
367
f64c3f54 368static struct mem_cgroup_per_zone *
97a6c37b 369page_cgroup_zoneinfo(struct mem_cgroup *mem, struct page *page)
f64c3f54 370{
97a6c37b
JW
371 int nid = page_to_nid(page);
372 int zid = page_zonenum(page);
f64c3f54 373
f64c3f54
BS
374 return mem_cgroup_zoneinfo(mem, nid, zid);
375}
376
377static struct mem_cgroup_tree_per_zone *
378soft_limit_tree_node_zone(int nid, int zid)
379{
380 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
381}
382
383static struct mem_cgroup_tree_per_zone *
384soft_limit_tree_from_page(struct page *page)
385{
386 int nid = page_to_nid(page);
387 int zid = page_zonenum(page);
388
389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390}
391
392static void
4e416953 393__mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
f64c3f54 394 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
395 struct mem_cgroup_tree_per_zone *mctz,
396 unsigned long long new_usage_in_excess)
f64c3f54
BS
397{
398 struct rb_node **p = &mctz->rb_root.rb_node;
399 struct rb_node *parent = NULL;
400 struct mem_cgroup_per_zone *mz_node;
401
402 if (mz->on_tree)
403 return;
404
ef8745c1
KH
405 mz->usage_in_excess = new_usage_in_excess;
406 if (!mz->usage_in_excess)
407 return;
f64c3f54
BS
408 while (*p) {
409 parent = *p;
410 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
411 tree_node);
412 if (mz->usage_in_excess < mz_node->usage_in_excess)
413 p = &(*p)->rb_left;
414 /*
415 * We can't avoid mem cgroups that are over their soft
416 * limit by the same amount
417 */
418 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
419 p = &(*p)->rb_right;
420 }
421 rb_link_node(&mz->tree_node, parent, p);
422 rb_insert_color(&mz->tree_node, &mctz->rb_root);
423 mz->on_tree = true;
4e416953
BS
424}
425
426static void
427__mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
428 struct mem_cgroup_per_zone *mz,
429 struct mem_cgroup_tree_per_zone *mctz)
430{
431 if (!mz->on_tree)
432 return;
433 rb_erase(&mz->tree_node, &mctz->rb_root);
434 mz->on_tree = false;
435}
436
f64c3f54
BS
437static void
438mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
439 struct mem_cgroup_per_zone *mz,
440 struct mem_cgroup_tree_per_zone *mctz)
441{
442 spin_lock(&mctz->lock);
4e416953 443 __mem_cgroup_remove_exceeded(mem, mz, mctz);
f64c3f54
BS
444 spin_unlock(&mctz->lock);
445}
446
f64c3f54
BS
447
448static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
449{
ef8745c1 450 unsigned long long excess;
f64c3f54
BS
451 struct mem_cgroup_per_zone *mz;
452 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
453 int nid = page_to_nid(page);
454 int zid = page_zonenum(page);
f64c3f54
BS
455 mctz = soft_limit_tree_from_page(page);
456
457 /*
4e649152
KH
458 * Necessary to update all ancestors when hierarchy is used.
459 * because their event counter is not touched.
f64c3f54 460 */
4e649152
KH
461 for (; mem; mem = parent_mem_cgroup(mem)) {
462 mz = mem_cgroup_zoneinfo(mem, nid, zid);
ef8745c1 463 excess = res_counter_soft_limit_excess(&mem->res);
4e649152
KH
464 /*
465 * We have to update the tree if mz is on RB-tree or
466 * mem is over its softlimit.
467 */
ef8745c1 468 if (excess || mz->on_tree) {
4e649152
KH
469 spin_lock(&mctz->lock);
470 /* if on-tree, remove it */
471 if (mz->on_tree)
472 __mem_cgroup_remove_exceeded(mem, mz, mctz);
473 /*
ef8745c1
KH
474 * Insert again. mz->usage_in_excess will be updated.
475 * If excess is 0, no tree ops.
4e649152 476 */
ef8745c1 477 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
4e649152
KH
478 spin_unlock(&mctz->lock);
479 }
f64c3f54
BS
480 }
481}
482
483static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
484{
485 int node, zone;
486 struct mem_cgroup_per_zone *mz;
487 struct mem_cgroup_tree_per_zone *mctz;
488
489 for_each_node_state(node, N_POSSIBLE) {
490 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
491 mz = mem_cgroup_zoneinfo(mem, node, zone);
492 mctz = soft_limit_tree_node_zone(node, zone);
493 mem_cgroup_remove_exceeded(mem, mz, mctz);
494 }
495 }
496}
497
4e416953
BS
498static struct mem_cgroup_per_zone *
499__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
500{
501 struct rb_node *rightmost = NULL;
26251eaf 502 struct mem_cgroup_per_zone *mz;
4e416953
BS
503
504retry:
26251eaf 505 mz = NULL;
4e416953
BS
506 rightmost = rb_last(&mctz->rb_root);
507 if (!rightmost)
508 goto done; /* Nothing to reclaim from */
509
510 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
511 /*
512 * Remove the node now but someone else can add it back,
513 * we will to add it back at the end of reclaim to its correct
514 * position in the tree.
515 */
516 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
517 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
518 !css_tryget(&mz->mem->css))
519 goto retry;
520done:
521 return mz;
522}
523
524static struct mem_cgroup_per_zone *
525mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
526{
527 struct mem_cgroup_per_zone *mz;
528
529 spin_lock(&mctz->lock);
530 mz = __mem_cgroup_largest_soft_limit_node(mctz);
531 spin_unlock(&mctz->lock);
532 return mz;
533}
534
711d3d2c
KH
535/*
536 * Implementation Note: reading percpu statistics for memcg.
537 *
538 * Both of vmstat[] and percpu_counter has threshold and do periodic
539 * synchronization to implement "quick" read. There are trade-off between
540 * reading cost and precision of value. Then, we may have a chance to implement
541 * a periodic synchronizion of counter in memcg's counter.
542 *
543 * But this _read() function is used for user interface now. The user accounts
544 * memory usage by memory cgroup and he _always_ requires exact value because
545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546 * have to visit all online cpus and make sum. So, for now, unnecessary
547 * synchronization is not implemented. (just implemented for cpu hotplug)
548 *
549 * If there are kernel internal actions which can make use of some not-exact
550 * value, and reading all cpu value can be performance bottleneck in some
551 * common workload, threashold and synchonization as vmstat[] should be
552 * implemented.
553 */
7a159cc9
JW
554static long mem_cgroup_read_stat(struct mem_cgroup *mem,
555 enum mem_cgroup_stat_index idx)
c62b1a3b 556{
7a159cc9 557 long val = 0;
c62b1a3b 558 int cpu;
c62b1a3b 559
711d3d2c
KH
560 get_online_cpus();
561 for_each_online_cpu(cpu)
c62b1a3b 562 val += per_cpu(mem->stat->count[idx], cpu);
711d3d2c
KH
563#ifdef CONFIG_HOTPLUG_CPU
564 spin_lock(&mem->pcp_counter_lock);
565 val += mem->nocpu_base.count[idx];
566 spin_unlock(&mem->pcp_counter_lock);
567#endif
568 put_online_cpus();
c62b1a3b
KH
569 return val;
570}
571
7a159cc9 572static long mem_cgroup_local_usage(struct mem_cgroup *mem)
c62b1a3b 573{
7a159cc9 574 long ret;
c62b1a3b
KH
575
576 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
577 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
578 return ret;
579}
580
0c3e73e8
BS
581static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
582 bool charge)
583{
584 int val = (charge) ? 1 : -1;
c62b1a3b 585 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
0c3e73e8
BS
586}
587
e9f8974f
JW
588static unsigned long mem_cgroup_read_events(struct mem_cgroup *mem,
589 enum mem_cgroup_events_index idx)
590{
591 unsigned long val = 0;
592 int cpu;
593
594 for_each_online_cpu(cpu)
595 val += per_cpu(mem->stat->events[idx], cpu);
596#ifdef CONFIG_HOTPLUG_CPU
597 spin_lock(&mem->pcp_counter_lock);
598 val += mem->nocpu_base.events[idx];
599 spin_unlock(&mem->pcp_counter_lock);
600#endif
601 return val;
602}
603
c05555b5 604static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
e401f176 605 bool file, int nr_pages)
d52aa412 606{
c62b1a3b
KH
607 preempt_disable();
608
e401f176
KH
609 if (file)
610 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
d52aa412 611 else
e401f176 612 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
55e462b0 613
e401f176
KH
614 /* pagein of a big page is an event. So, ignore page size */
615 if (nr_pages > 0)
e9f8974f 616 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 617 else {
e9f8974f 618 __this_cpu_inc(mem->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
619 nr_pages = -nr_pages; /* for event */
620 }
e401f176 621
e9f8974f 622 __this_cpu_add(mem->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
2e72b634 623
c62b1a3b 624 preempt_enable();
6d12e2d8
KH
625}
626
14067bb3 627static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
b69408e8 628 enum lru_list idx)
6d12e2d8
KH
629{
630 int nid, zid;
631 struct mem_cgroup_per_zone *mz;
632 u64 total = 0;
633
634 for_each_online_node(nid)
635 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
636 mz = mem_cgroup_zoneinfo(mem, nid, zid);
637 total += MEM_CGROUP_ZSTAT(mz, idx);
638 }
639 return total;
d52aa412
KH
640}
641
7a159cc9
JW
642static bool __memcg_event_check(struct mem_cgroup *mem, int target)
643{
644 unsigned long val, next;
645
646 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
647 next = this_cpu_read(mem->stat->targets[target]);
648 /* from time_after() in jiffies.h */
649 return ((long)next - (long)val < 0);
650}
651
652static void __mem_cgroup_target_update(struct mem_cgroup *mem, int target)
d2265e6f 653{
7a159cc9 654 unsigned long val, next;
d2265e6f 655
e9f8974f 656 val = this_cpu_read(mem->stat->events[MEM_CGROUP_EVENTS_COUNT]);
d2265e6f 657
7a159cc9
JW
658 switch (target) {
659 case MEM_CGROUP_TARGET_THRESH:
660 next = val + THRESHOLDS_EVENTS_TARGET;
661 break;
662 case MEM_CGROUP_TARGET_SOFTLIMIT:
663 next = val + SOFTLIMIT_EVENTS_TARGET;
664 break;
665 default:
666 return;
667 }
668
669 this_cpu_write(mem->stat->targets[target], next);
d2265e6f
KH
670}
671
672/*
673 * Check events in order.
674 *
675 */
676static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
677{
678 /* threshold event is triggered in finer grain than soft limit */
7a159cc9 679 if (unlikely(__memcg_event_check(mem, MEM_CGROUP_TARGET_THRESH))) {
d2265e6f 680 mem_cgroup_threshold(mem);
7a159cc9
JW
681 __mem_cgroup_target_update(mem, MEM_CGROUP_TARGET_THRESH);
682 if (unlikely(__memcg_event_check(mem,
683 MEM_CGROUP_TARGET_SOFTLIMIT))){
d2265e6f 684 mem_cgroup_update_tree(mem, page);
7a159cc9
JW
685 __mem_cgroup_target_update(mem,
686 MEM_CGROUP_TARGET_SOFTLIMIT);
687 }
d2265e6f
KH
688 }
689}
690
d5b69e38 691static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
692{
693 return container_of(cgroup_subsys_state(cont,
694 mem_cgroup_subsys_id), struct mem_cgroup,
695 css);
696}
697
cf475ad2 698struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 699{
31a78f23
BS
700 /*
701 * mm_update_next_owner() may clear mm->owner to NULL
702 * if it races with swapoff, page migration, etc.
703 * So this can be called with p == NULL.
704 */
705 if (unlikely(!p))
706 return NULL;
707
78fb7466
PE
708 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
709 struct mem_cgroup, css);
710}
711
54595fe2
KH
712static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
713{
714 struct mem_cgroup *mem = NULL;
0b7f569e
KH
715
716 if (!mm)
717 return NULL;
54595fe2
KH
718 /*
719 * Because we have no locks, mm->owner's may be being moved to other
720 * cgroup. We use css_tryget() here even if this looks
721 * pessimistic (rather than adding locks here).
722 */
723 rcu_read_lock();
724 do {
725 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
726 if (unlikely(!mem))
727 break;
728 } while (!css_tryget(&mem->css));
729 rcu_read_unlock();
730 return mem;
731}
732
7d74b06f
KH
733/* The caller has to guarantee "mem" exists before calling this */
734static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
14067bb3 735{
711d3d2c
KH
736 struct cgroup_subsys_state *css;
737 int found;
738
739 if (!mem) /* ROOT cgroup has the smallest ID */
740 return root_mem_cgroup; /*css_put/get against root is ignored*/
741 if (!mem->use_hierarchy) {
742 if (css_tryget(&mem->css))
743 return mem;
744 return NULL;
745 }
746 rcu_read_lock();
747 /*
748 * searching a memory cgroup which has the smallest ID under given
749 * ROOT cgroup. (ID >= 1)
750 */
751 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
752 if (css && css_tryget(css))
753 mem = container_of(css, struct mem_cgroup, css);
754 else
755 mem = NULL;
756 rcu_read_unlock();
757 return mem;
7d74b06f
KH
758}
759
760static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
761 struct mem_cgroup *root,
762 bool cond)
763{
764 int nextid = css_id(&iter->css) + 1;
765 int found;
766 int hierarchy_used;
14067bb3 767 struct cgroup_subsys_state *css;
14067bb3 768
7d74b06f 769 hierarchy_used = iter->use_hierarchy;
14067bb3 770
7d74b06f 771 css_put(&iter->css);
711d3d2c
KH
772 /* If no ROOT, walk all, ignore hierarchy */
773 if (!cond || (root && !hierarchy_used))
7d74b06f 774 return NULL;
14067bb3 775
711d3d2c
KH
776 if (!root)
777 root = root_mem_cgroup;
778
7d74b06f
KH
779 do {
780 iter = NULL;
14067bb3 781 rcu_read_lock();
7d74b06f
KH
782
783 css = css_get_next(&mem_cgroup_subsys, nextid,
784 &root->css, &found);
14067bb3 785 if (css && css_tryget(css))
7d74b06f 786 iter = container_of(css, struct mem_cgroup, css);
14067bb3 787 rcu_read_unlock();
7d74b06f 788 /* If css is NULL, no more cgroups will be found */
14067bb3 789 nextid = found + 1;
7d74b06f 790 } while (css && !iter);
14067bb3 791
7d74b06f 792 return iter;
14067bb3 793}
7d74b06f
KH
794/*
795 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
796 * be careful that "break" loop is not allowed. We have reference count.
797 * Instead of that modify "cond" to be false and "continue" to exit the loop.
798 */
799#define for_each_mem_cgroup_tree_cond(iter, root, cond) \
800 for (iter = mem_cgroup_start_loop(root);\
801 iter != NULL;\
802 iter = mem_cgroup_get_next(iter, root, cond))
803
804#define for_each_mem_cgroup_tree(iter, root) \
805 for_each_mem_cgroup_tree_cond(iter, root, true)
806
711d3d2c
KH
807#define for_each_mem_cgroup_all(iter) \
808 for_each_mem_cgroup_tree_cond(iter, NULL, true)
809
14067bb3 810
4b3bde4c
BS
811static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
812{
813 return (mem == root_mem_cgroup);
814}
815
08e552c6
KH
816/*
817 * Following LRU functions are allowed to be used without PCG_LOCK.
818 * Operations are called by routine of global LRU independently from memcg.
819 * What we have to take care of here is validness of pc->mem_cgroup.
820 *
821 * Changes to pc->mem_cgroup happens when
822 * 1. charge
823 * 2. moving account
824 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
825 * It is added to LRU before charge.
826 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
827 * When moving account, the page is not on LRU. It's isolated.
828 */
4f98a2fe 829
08e552c6
KH
830void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
831{
832 struct page_cgroup *pc;
08e552c6 833 struct mem_cgroup_per_zone *mz;
6d12e2d8 834
f8d66542 835 if (mem_cgroup_disabled())
08e552c6
KH
836 return;
837 pc = lookup_page_cgroup(page);
838 /* can happen while we handle swapcache. */
4b3bde4c 839 if (!TestClearPageCgroupAcctLRU(pc))
08e552c6 840 return;
4b3bde4c 841 VM_BUG_ON(!pc->mem_cgroup);
544122e5
KH
842 /*
843 * We don't check PCG_USED bit. It's cleared when the "page" is finally
844 * removed from global LRU.
845 */
97a6c37b 846 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
847 /* huge page split is done under lru_lock. so, we have no races. */
848 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
4b3bde4c
BS
849 if (mem_cgroup_is_root(pc->mem_cgroup))
850 return;
851 VM_BUG_ON(list_empty(&pc->lru));
08e552c6 852 list_del_init(&pc->lru);
6d12e2d8
KH
853}
854
08e552c6 855void mem_cgroup_del_lru(struct page *page)
6d12e2d8 856{
08e552c6
KH
857 mem_cgroup_del_lru_list(page, page_lru(page));
858}
b69408e8 859
3f58a829
MK
860/*
861 * Writeback is about to end against a page which has been marked for immediate
862 * reclaim. If it still appears to be reclaimable, move it to the tail of the
863 * inactive list.
864 */
865void mem_cgroup_rotate_reclaimable_page(struct page *page)
866{
867 struct mem_cgroup_per_zone *mz;
868 struct page_cgroup *pc;
869 enum lru_list lru = page_lru(page);
870
871 if (mem_cgroup_disabled())
872 return;
873
874 pc = lookup_page_cgroup(page);
875 /* unused or root page is not rotated. */
876 if (!PageCgroupUsed(pc))
877 return;
878 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
879 smp_rmb();
880 if (mem_cgroup_is_root(pc->mem_cgroup))
881 return;
97a6c37b 882 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3f58a829
MK
883 list_move_tail(&pc->lru, &mz->lists[lru]);
884}
885
08e552c6
KH
886void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
887{
888 struct mem_cgroup_per_zone *mz;
889 struct page_cgroup *pc;
b69408e8 890
f8d66542 891 if (mem_cgroup_disabled())
08e552c6 892 return;
6d12e2d8 893
08e552c6 894 pc = lookup_page_cgroup(page);
4b3bde4c 895 /* unused or root page is not rotated. */
713735b4
JW
896 if (!PageCgroupUsed(pc))
897 return;
898 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
899 smp_rmb();
900 if (mem_cgroup_is_root(pc->mem_cgroup))
08e552c6 901 return;
97a6c37b 902 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
08e552c6 903 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
904}
905
08e552c6 906void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 907{
08e552c6
KH
908 struct page_cgroup *pc;
909 struct mem_cgroup_per_zone *mz;
6d12e2d8 910
f8d66542 911 if (mem_cgroup_disabled())
08e552c6
KH
912 return;
913 pc = lookup_page_cgroup(page);
4b3bde4c 914 VM_BUG_ON(PageCgroupAcctLRU(pc));
08e552c6 915 if (!PageCgroupUsed(pc))
894bc310 916 return;
713735b4
JW
917 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
918 smp_rmb();
97a6c37b 919 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
ece35ca8
KH
920 /* huge page split is done under lru_lock. so, we have no races. */
921 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
4b3bde4c
BS
922 SetPageCgroupAcctLRU(pc);
923 if (mem_cgroup_is_root(pc->mem_cgroup))
924 return;
08e552c6
KH
925 list_add(&pc->lru, &mz->lists[lru]);
926}
544122e5 927
08e552c6 928/*
544122e5
KH
929 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
930 * lru because the page may.be reused after it's fully uncharged (because of
931 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
932 * it again. This function is only used to charge SwapCache. It's done under
933 * lock_page and expected that zone->lru_lock is never held.
08e552c6 934 */
544122e5 935static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
08e552c6 936{
544122e5
KH
937 unsigned long flags;
938 struct zone *zone = page_zone(page);
939 struct page_cgroup *pc = lookup_page_cgroup(page);
940
941 spin_lock_irqsave(&zone->lru_lock, flags);
942 /*
943 * Forget old LRU when this page_cgroup is *not* used. This Used bit
944 * is guarded by lock_page() because the page is SwapCache.
945 */
946 if (!PageCgroupUsed(pc))
947 mem_cgroup_del_lru_list(page, page_lru(page));
948 spin_unlock_irqrestore(&zone->lru_lock, flags);
08e552c6
KH
949}
950
544122e5
KH
951static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
952{
953 unsigned long flags;
954 struct zone *zone = page_zone(page);
955 struct page_cgroup *pc = lookup_page_cgroup(page);
956
957 spin_lock_irqsave(&zone->lru_lock, flags);
958 /* link when the page is linked to LRU but page_cgroup isn't */
4b3bde4c 959 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
544122e5
KH
960 mem_cgroup_add_lru_list(page, page_lru(page));
961 spin_unlock_irqrestore(&zone->lru_lock, flags);
962}
963
964
08e552c6
KH
965void mem_cgroup_move_lists(struct page *page,
966 enum lru_list from, enum lru_list to)
967{
f8d66542 968 if (mem_cgroup_disabled())
08e552c6
KH
969 return;
970 mem_cgroup_del_lru_list(page, from);
971 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
972}
973
4c4a2214
DR
974int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
975{
976 int ret;
0b7f569e 977 struct mem_cgroup *curr = NULL;
158e0a2d 978 struct task_struct *p;
4c4a2214 979
158e0a2d
KH
980 p = find_lock_task_mm(task);
981 if (!p)
982 return 0;
983 curr = try_get_mem_cgroup_from_mm(p->mm);
984 task_unlock(p);
0b7f569e
KH
985 if (!curr)
986 return 0;
d31f56db
DN
987 /*
988 * We should check use_hierarchy of "mem" not "curr". Because checking
989 * use_hierarchy of "curr" here make this function true if hierarchy is
990 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
991 * hierarchy(even if use_hierarchy is disabled in "mem").
992 */
993 if (mem->use_hierarchy)
0b7f569e
KH
994 ret = css_is_ancestor(&curr->css, &mem->css);
995 else
996 ret = (curr == mem);
997 css_put(&curr->css);
4c4a2214
DR
998 return ret;
999}
1000
c772be93 1001static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
14797e23
KM
1002{
1003 unsigned long active;
1004 unsigned long inactive;
c772be93
KM
1005 unsigned long gb;
1006 unsigned long inactive_ratio;
14797e23 1007
14067bb3
KH
1008 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
1009 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
14797e23 1010
c772be93
KM
1011 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1012 if (gb)
1013 inactive_ratio = int_sqrt(10 * gb);
1014 else
1015 inactive_ratio = 1;
1016
1017 if (present_pages) {
1018 present_pages[0] = inactive;
1019 present_pages[1] = active;
1020 }
1021
1022 return inactive_ratio;
1023}
1024
1025int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
1026{
1027 unsigned long active;
1028 unsigned long inactive;
1029 unsigned long present_pages[2];
1030 unsigned long inactive_ratio;
1031
1032 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
1033
1034 inactive = present_pages[0];
1035 active = present_pages[1];
1036
1037 if (inactive * inactive_ratio < active)
14797e23
KM
1038 return 1;
1039
1040 return 0;
1041}
1042
56e49d21
RR
1043int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
1044{
1045 unsigned long active;
1046 unsigned long inactive;
1047
1048 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
1049 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1050
1051 return (active > inactive);
1052}
1053
a3d8e054
KM
1054unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1055 struct zone *zone,
1056 enum lru_list lru)
1057{
13d7e3a2 1058 int nid = zone_to_nid(zone);
a3d8e054
KM
1059 int zid = zone_idx(zone);
1060 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1061
1062 return MEM_CGROUP_ZSTAT(mz, lru);
1063}
1064
3e2f41f1
KM
1065struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1066 struct zone *zone)
1067{
13d7e3a2 1068 int nid = zone_to_nid(zone);
3e2f41f1
KM
1069 int zid = zone_idx(zone);
1070 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1071
1072 return &mz->reclaim_stat;
1073}
1074
1075struct zone_reclaim_stat *
1076mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1077{
1078 struct page_cgroup *pc;
1079 struct mem_cgroup_per_zone *mz;
1080
1081 if (mem_cgroup_disabled())
1082 return NULL;
1083
1084 pc = lookup_page_cgroup(page);
bd112db8
DN
1085 if (!PageCgroupUsed(pc))
1086 return NULL;
713735b4
JW
1087 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1088 smp_rmb();
97a6c37b 1089 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
3e2f41f1
KM
1090 return &mz->reclaim_stat;
1091}
1092
66e1707b
BS
1093unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1094 struct list_head *dst,
1095 unsigned long *scanned, int order,
1096 int mode, struct zone *z,
1097 struct mem_cgroup *mem_cont,
4f98a2fe 1098 int active, int file)
66e1707b
BS
1099{
1100 unsigned long nr_taken = 0;
1101 struct page *page;
1102 unsigned long scan;
1103 LIST_HEAD(pc_list);
1104 struct list_head *src;
ff7283fa 1105 struct page_cgroup *pc, *tmp;
13d7e3a2 1106 int nid = zone_to_nid(z);
1ecaab2b
KH
1107 int zid = zone_idx(z);
1108 struct mem_cgroup_per_zone *mz;
b7c46d15 1109 int lru = LRU_FILE * file + active;
2ffebca6 1110 int ret;
66e1707b 1111
cf475ad2 1112 BUG_ON(!mem_cont);
1ecaab2b 1113 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 1114 src = &mz->lists[lru];
66e1707b 1115
ff7283fa
KH
1116 scan = 0;
1117 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 1118 if (scan >= nr_to_scan)
ff7283fa 1119 break;
08e552c6 1120
52d4b9ac
KH
1121 if (unlikely(!PageCgroupUsed(pc)))
1122 continue;
5564e88b 1123
6b3ae58e 1124 page = lookup_cgroup_page(pc);
5564e88b 1125
436c6541 1126 if (unlikely(!PageLRU(page)))
ff7283fa 1127 continue;
ff7283fa 1128
436c6541 1129 scan++;
2ffebca6
KH
1130 ret = __isolate_lru_page(page, mode, file);
1131 switch (ret) {
1132 case 0:
66e1707b 1133 list_move(&page->lru, dst);
2ffebca6 1134 mem_cgroup_del_lru(page);
2c888cfb 1135 nr_taken += hpage_nr_pages(page);
2ffebca6
KH
1136 break;
1137 case -EBUSY:
1138 /* we don't affect global LRU but rotate in our LRU */
1139 mem_cgroup_rotate_lru_list(page, page_lru(page));
1140 break;
1141 default:
1142 break;
66e1707b
BS
1143 }
1144 }
1145
66e1707b 1146 *scanned = scan;
cc8e970c
KM
1147
1148 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1149 0, 0, 0, mode);
1150
66e1707b
BS
1151 return nr_taken;
1152}
1153
6d61ef40
BS
1154#define mem_cgroup_from_res_counter(counter, member) \
1155 container_of(counter, struct mem_cgroup, member)
1156
19942822 1157/**
9d11ea9f
JW
1158 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1159 * @mem: the memory cgroup
19942822 1160 *
9d11ea9f 1161 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1162 * pages.
19942822 1163 */
7ec99d62 1164static unsigned long mem_cgroup_margin(struct mem_cgroup *mem)
19942822 1165{
9d11ea9f
JW
1166 unsigned long long margin;
1167
1168 margin = res_counter_margin(&mem->res);
1169 if (do_swap_account)
1170 margin = min(margin, res_counter_margin(&mem->memsw));
7ec99d62 1171 return margin >> PAGE_SHIFT;
19942822
JW
1172}
1173
a7885eb8
KM
1174static unsigned int get_swappiness(struct mem_cgroup *memcg)
1175{
1176 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1177
1178 /* root ? */
1179 if (cgrp->parent == NULL)
1180 return vm_swappiness;
1181
bf1ff263 1182 return memcg->swappiness;
a7885eb8
KM
1183}
1184
32047e2a
KH
1185static void mem_cgroup_start_move(struct mem_cgroup *mem)
1186{
1187 int cpu;
1489ebad
KH
1188
1189 get_online_cpus();
1190 spin_lock(&mem->pcp_counter_lock);
1191 for_each_online_cpu(cpu)
32047e2a 1192 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1489ebad
KH
1193 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1194 spin_unlock(&mem->pcp_counter_lock);
1195 put_online_cpus();
32047e2a
KH
1196
1197 synchronize_rcu();
1198}
1199
1200static void mem_cgroup_end_move(struct mem_cgroup *mem)
1201{
1202 int cpu;
1203
1204 if (!mem)
1205 return;
1489ebad
KH
1206 get_online_cpus();
1207 spin_lock(&mem->pcp_counter_lock);
1208 for_each_online_cpu(cpu)
32047e2a 1209 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1489ebad
KH
1210 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1211 spin_unlock(&mem->pcp_counter_lock);
1212 put_online_cpus();
32047e2a
KH
1213}
1214/*
1215 * 2 routines for checking "mem" is under move_account() or not.
1216 *
1217 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1218 * for avoiding race in accounting. If true,
1219 * pc->mem_cgroup may be overwritten.
1220 *
1221 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1222 * under hierarchy of moving cgroups. This is for
1223 * waiting at hith-memory prressure caused by "move".
1224 */
1225
1226static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1227{
1228 VM_BUG_ON(!rcu_read_lock_held());
1229 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1230}
4b534334
KH
1231
1232static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1233{
2bd9bb20
KH
1234 struct mem_cgroup *from;
1235 struct mem_cgroup *to;
4b534334 1236 bool ret = false;
2bd9bb20
KH
1237 /*
1238 * Unlike task_move routines, we access mc.to, mc.from not under
1239 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1240 */
1241 spin_lock(&mc.lock);
1242 from = mc.from;
1243 to = mc.to;
1244 if (!from)
1245 goto unlock;
1246 if (from == mem || to == mem
1247 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1248 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1249 ret = true;
1250unlock:
1251 spin_unlock(&mc.lock);
4b534334
KH
1252 return ret;
1253}
1254
1255static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1256{
1257 if (mc.moving_task && current != mc.moving_task) {
1258 if (mem_cgroup_under_move(mem)) {
1259 DEFINE_WAIT(wait);
1260 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1261 /* moving charge context might have finished. */
1262 if (mc.moving_task)
1263 schedule();
1264 finish_wait(&mc.waitq, &wait);
1265 return true;
1266 }
1267 }
1268 return false;
1269}
1270
e222432b 1271/**
6a6135b6 1272 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
e222432b
BS
1273 * @memcg: The memory cgroup that went over limit
1274 * @p: Task that is going to be killed
1275 *
1276 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1277 * enabled
1278 */
1279void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1280{
1281 struct cgroup *task_cgrp;
1282 struct cgroup *mem_cgrp;
1283 /*
1284 * Need a buffer in BSS, can't rely on allocations. The code relies
1285 * on the assumption that OOM is serialized for memory controller.
1286 * If this assumption is broken, revisit this code.
1287 */
1288 static char memcg_name[PATH_MAX];
1289 int ret;
1290
d31f56db 1291 if (!memcg || !p)
e222432b
BS
1292 return;
1293
1294
1295 rcu_read_lock();
1296
1297 mem_cgrp = memcg->css.cgroup;
1298 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1299
1300 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1301 if (ret < 0) {
1302 /*
1303 * Unfortunately, we are unable to convert to a useful name
1304 * But we'll still print out the usage information
1305 */
1306 rcu_read_unlock();
1307 goto done;
1308 }
1309 rcu_read_unlock();
1310
1311 printk(KERN_INFO "Task in %s killed", memcg_name);
1312
1313 rcu_read_lock();
1314 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1315 if (ret < 0) {
1316 rcu_read_unlock();
1317 goto done;
1318 }
1319 rcu_read_unlock();
1320
1321 /*
1322 * Continues from above, so we don't need an KERN_ level
1323 */
1324 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1325done:
1326
1327 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1328 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1329 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1330 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1331 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1332 "failcnt %llu\n",
1333 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1334 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1335 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1336}
1337
81d39c20
KH
1338/*
1339 * This function returns the number of memcg under hierarchy tree. Returns
1340 * 1(self count) if no children.
1341 */
1342static int mem_cgroup_count_children(struct mem_cgroup *mem)
1343{
1344 int num = 0;
7d74b06f
KH
1345 struct mem_cgroup *iter;
1346
1347 for_each_mem_cgroup_tree(iter, mem)
1348 num++;
81d39c20
KH
1349 return num;
1350}
1351
a63d83f4
DR
1352/*
1353 * Return the memory (and swap, if configured) limit for a memcg.
1354 */
1355u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1356{
1357 u64 limit;
1358 u64 memsw;
1359
f3e8eb70
JW
1360 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1361 limit += total_swap_pages << PAGE_SHIFT;
1362
a63d83f4
DR
1363 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1364 /*
1365 * If memsw is finite and limits the amount of swap space available
1366 * to this memcg, return that limit.
1367 */
1368 return min(limit, memsw);
1369}
1370
6d61ef40 1371/*
04046e1a
KH
1372 * Visit the first child (need not be the first child as per the ordering
1373 * of the cgroup list, since we track last_scanned_child) of @mem and use
1374 * that to reclaim free pages from.
1375 */
1376static struct mem_cgroup *
1377mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1378{
1379 struct mem_cgroup *ret = NULL;
1380 struct cgroup_subsys_state *css;
1381 int nextid, found;
1382
1383 if (!root_mem->use_hierarchy) {
1384 css_get(&root_mem->css);
1385 ret = root_mem;
1386 }
1387
1388 while (!ret) {
1389 rcu_read_lock();
1390 nextid = root_mem->last_scanned_child + 1;
1391 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1392 &found);
1393 if (css && css_tryget(css))
1394 ret = container_of(css, struct mem_cgroup, css);
1395
1396 rcu_read_unlock();
1397 /* Updates scanning parameter */
04046e1a
KH
1398 if (!css) {
1399 /* this means start scan from ID:1 */
1400 root_mem->last_scanned_child = 0;
1401 } else
1402 root_mem->last_scanned_child = found;
04046e1a
KH
1403 }
1404
1405 return ret;
1406}
1407
1408/*
1409 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1410 * we reclaimed from, so that we don't end up penalizing one child extensively
1411 * based on its position in the children list.
6d61ef40
BS
1412 *
1413 * root_mem is the original ancestor that we've been reclaim from.
04046e1a
KH
1414 *
1415 * We give up and return to the caller when we visit root_mem twice.
1416 * (other groups can be removed while we're walking....)
81d39c20
KH
1417 *
1418 * If shrink==true, for avoiding to free too much, this returns immedieately.
6d61ef40
BS
1419 */
1420static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
4e416953 1421 struct zone *zone,
75822b44
BS
1422 gfp_t gfp_mask,
1423 unsigned long reclaim_options)
6d61ef40 1424{
04046e1a
KH
1425 struct mem_cgroup *victim;
1426 int ret, total = 0;
1427 int loop = 0;
75822b44
BS
1428 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1429 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
4e416953 1430 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
9d11ea9f
JW
1431 unsigned long excess;
1432
1433 excess = res_counter_soft_limit_excess(&root_mem->res) >> PAGE_SHIFT;
04046e1a 1434
22a668d7
KH
1435 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1436 if (root_mem->memsw_is_minimum)
1437 noswap = true;
1438
4e416953 1439 while (1) {
04046e1a 1440 victim = mem_cgroup_select_victim(root_mem);
4e416953 1441 if (victim == root_mem) {
04046e1a 1442 loop++;
cdec2e42
KH
1443 if (loop >= 1)
1444 drain_all_stock_async();
4e416953
BS
1445 if (loop >= 2) {
1446 /*
1447 * If we have not been able to reclaim
1448 * anything, it might because there are
1449 * no reclaimable pages under this hierarchy
1450 */
1451 if (!check_soft || !total) {
1452 css_put(&victim->css);
1453 break;
1454 }
1455 /*
1456 * We want to do more targetted reclaim.
1457 * excess >> 2 is not to excessive so as to
1458 * reclaim too much, nor too less that we keep
1459 * coming back to reclaim from this cgroup
1460 */
1461 if (total >= (excess >> 2) ||
1462 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1463 css_put(&victim->css);
1464 break;
1465 }
1466 }
1467 }
c62b1a3b 1468 if (!mem_cgroup_local_usage(victim)) {
04046e1a
KH
1469 /* this cgroup's local usage == 0 */
1470 css_put(&victim->css);
6d61ef40
BS
1471 continue;
1472 }
04046e1a 1473 /* we use swappiness of local cgroup */
4e416953
BS
1474 if (check_soft)
1475 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
14fec796 1476 noswap, get_swappiness(victim), zone);
4e416953
BS
1477 else
1478 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1479 noswap, get_swappiness(victim));
04046e1a 1480 css_put(&victim->css);
81d39c20
KH
1481 /*
1482 * At shrinking usage, we can't check we should stop here or
1483 * reclaim more. It's depends on callers. last_scanned_child
1484 * will work enough for keeping fairness under tree.
1485 */
1486 if (shrink)
1487 return ret;
04046e1a 1488 total += ret;
4e416953 1489 if (check_soft) {
9d11ea9f 1490 if (!res_counter_soft_limit_excess(&root_mem->res))
4e416953 1491 return total;
9d11ea9f 1492 } else if (mem_cgroup_margin(root_mem))
04046e1a 1493 return 1 + total;
6d61ef40 1494 }
04046e1a 1495 return total;
6d61ef40
BS
1496}
1497
867578cb
KH
1498/*
1499 * Check OOM-Killer is already running under our hierarchy.
1500 * If someone is running, return false.
1501 */
1502static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1503{
7d74b06f
KH
1504 int x, lock_count = 0;
1505 struct mem_cgroup *iter;
a636b327 1506
7d74b06f
KH
1507 for_each_mem_cgroup_tree(iter, mem) {
1508 x = atomic_inc_return(&iter->oom_lock);
1509 lock_count = max(x, lock_count);
1510 }
867578cb
KH
1511
1512 if (lock_count == 1)
1513 return true;
1514 return false;
a636b327 1515}
0b7f569e 1516
7d74b06f 1517static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
0b7f569e 1518{
7d74b06f
KH
1519 struct mem_cgroup *iter;
1520
867578cb
KH
1521 /*
1522 * When a new child is created while the hierarchy is under oom,
1523 * mem_cgroup_oom_lock() may not be called. We have to use
1524 * atomic_add_unless() here.
1525 */
7d74b06f
KH
1526 for_each_mem_cgroup_tree(iter, mem)
1527 atomic_add_unless(&iter->oom_lock, -1, 0);
0b7f569e
KH
1528 return 0;
1529}
1530
867578cb
KH
1531
1532static DEFINE_MUTEX(memcg_oom_mutex);
1533static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1534
dc98df5a
KH
1535struct oom_wait_info {
1536 struct mem_cgroup *mem;
1537 wait_queue_t wait;
1538};
1539
1540static int memcg_oom_wake_function(wait_queue_t *wait,
1541 unsigned mode, int sync, void *arg)
1542{
1543 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1544 struct oom_wait_info *oom_wait_info;
1545
1546 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1547
1548 if (oom_wait_info->mem == wake_mem)
1549 goto wakeup;
1550 /* if no hierarchy, no match */
1551 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1552 return 0;
1553 /*
1554 * Both of oom_wait_info->mem and wake_mem are stable under us.
1555 * Then we can use css_is_ancestor without taking care of RCU.
1556 */
1557 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1558 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1559 return 0;
1560
1561wakeup:
1562 return autoremove_wake_function(wait, mode, sync, arg);
1563}
1564
1565static void memcg_wakeup_oom(struct mem_cgroup *mem)
1566{
1567 /* for filtering, pass "mem" as argument. */
1568 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1569}
1570
3c11ecf4
KH
1571static void memcg_oom_recover(struct mem_cgroup *mem)
1572{
2bd9bb20 1573 if (mem && atomic_read(&mem->oom_lock))
3c11ecf4
KH
1574 memcg_wakeup_oom(mem);
1575}
1576
867578cb
KH
1577/*
1578 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1579 */
1580bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
0b7f569e 1581{
dc98df5a 1582 struct oom_wait_info owait;
3c11ecf4 1583 bool locked, need_to_kill;
867578cb 1584
dc98df5a
KH
1585 owait.mem = mem;
1586 owait.wait.flags = 0;
1587 owait.wait.func = memcg_oom_wake_function;
1588 owait.wait.private = current;
1589 INIT_LIST_HEAD(&owait.wait.task_list);
3c11ecf4 1590 need_to_kill = true;
867578cb
KH
1591 /* At first, try to OOM lock hierarchy under mem.*/
1592 mutex_lock(&memcg_oom_mutex);
1593 locked = mem_cgroup_oom_lock(mem);
1594 /*
1595 * Even if signal_pending(), we can't quit charge() loop without
1596 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1597 * under OOM is always welcomed, use TASK_KILLABLE here.
1598 */
3c11ecf4
KH
1599 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1600 if (!locked || mem->oom_kill_disable)
1601 need_to_kill = false;
1602 if (locked)
9490ff27 1603 mem_cgroup_oom_notify(mem);
867578cb
KH
1604 mutex_unlock(&memcg_oom_mutex);
1605
3c11ecf4
KH
1606 if (need_to_kill) {
1607 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb 1608 mem_cgroup_out_of_memory(mem, mask);
3c11ecf4 1609 } else {
867578cb 1610 schedule();
dc98df5a 1611 finish_wait(&memcg_oom_waitq, &owait.wait);
867578cb
KH
1612 }
1613 mutex_lock(&memcg_oom_mutex);
1614 mem_cgroup_oom_unlock(mem);
dc98df5a 1615 memcg_wakeup_oom(mem);
867578cb
KH
1616 mutex_unlock(&memcg_oom_mutex);
1617
1618 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1619 return false;
1620 /* Give chance to dying process */
1621 schedule_timeout(1);
1622 return true;
0b7f569e
KH
1623}
1624
d69b042f
BS
1625/*
1626 * Currently used to update mapped file statistics, but the routine can be
1627 * generalized to update other statistics as well.
32047e2a
KH
1628 *
1629 * Notes: Race condition
1630 *
1631 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1632 * it tends to be costly. But considering some conditions, we doesn't need
1633 * to do so _always_.
1634 *
1635 * Considering "charge", lock_page_cgroup() is not required because all
1636 * file-stat operations happen after a page is attached to radix-tree. There
1637 * are no race with "charge".
1638 *
1639 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1640 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1641 * if there are race with "uncharge". Statistics itself is properly handled
1642 * by flags.
1643 *
1644 * Considering "move", this is an only case we see a race. To make the race
1645 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1646 * possibility of race condition. If there is, we take a lock.
d69b042f 1647 */
26174efd 1648
2a7106f2
GT
1649void mem_cgroup_update_page_stat(struct page *page,
1650 enum mem_cgroup_page_stat_item idx, int val)
d69b042f
BS
1651{
1652 struct mem_cgroup *mem;
32047e2a
KH
1653 struct page_cgroup *pc = lookup_page_cgroup(page);
1654 bool need_unlock = false;
dbd4ea78 1655 unsigned long uninitialized_var(flags);
d69b042f 1656
d69b042f
BS
1657 if (unlikely(!pc))
1658 return;
1659
32047e2a 1660 rcu_read_lock();
d69b042f 1661 mem = pc->mem_cgroup;
32047e2a
KH
1662 if (unlikely(!mem || !PageCgroupUsed(pc)))
1663 goto out;
1664 /* pc->mem_cgroup is unstable ? */
ca3e0214 1665 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
32047e2a 1666 /* take a lock against to access pc->mem_cgroup */
dbd4ea78 1667 move_lock_page_cgroup(pc, &flags);
32047e2a
KH
1668 need_unlock = true;
1669 mem = pc->mem_cgroup;
1670 if (!mem || !PageCgroupUsed(pc))
1671 goto out;
1672 }
26174efd 1673
26174efd 1674 switch (idx) {
2a7106f2 1675 case MEMCG_NR_FILE_MAPPED:
26174efd
KH
1676 if (val > 0)
1677 SetPageCgroupFileMapped(pc);
1678 else if (!page_mapped(page))
0c270f8f 1679 ClearPageCgroupFileMapped(pc);
2a7106f2 1680 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
1681 break;
1682 default:
1683 BUG();
8725d541 1684 }
d69b042f 1685
2a7106f2
GT
1686 this_cpu_add(mem->stat->count[idx], val);
1687
32047e2a
KH
1688out:
1689 if (unlikely(need_unlock))
dbd4ea78 1690 move_unlock_page_cgroup(pc, &flags);
32047e2a
KH
1691 rcu_read_unlock();
1692 return;
d69b042f 1693}
2a7106f2 1694EXPORT_SYMBOL(mem_cgroup_update_page_stat);
26174efd 1695
cdec2e42
KH
1696/*
1697 * size of first charge trial. "32" comes from vmscan.c's magic value.
1698 * TODO: maybe necessary to use big numbers in big irons.
1699 */
7ec99d62 1700#define CHARGE_BATCH 32U
cdec2e42
KH
1701struct memcg_stock_pcp {
1702 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1703 unsigned int nr_pages;
cdec2e42
KH
1704 struct work_struct work;
1705};
1706static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1707static atomic_t memcg_drain_count;
1708
1709/*
11c9ea4e 1710 * Try to consume stocked charge on this cpu. If success, one page is consumed
cdec2e42
KH
1711 * from local stock and true is returned. If the stock is 0 or charges from a
1712 * cgroup which is not current target, returns false. This stock will be
1713 * refilled.
1714 */
1715static bool consume_stock(struct mem_cgroup *mem)
1716{
1717 struct memcg_stock_pcp *stock;
1718 bool ret = true;
1719
1720 stock = &get_cpu_var(memcg_stock);
11c9ea4e
JW
1721 if (mem == stock->cached && stock->nr_pages)
1722 stock->nr_pages--;
cdec2e42
KH
1723 else /* need to call res_counter_charge */
1724 ret = false;
1725 put_cpu_var(memcg_stock);
1726 return ret;
1727}
1728
1729/*
1730 * Returns stocks cached in percpu to res_counter and reset cached information.
1731 */
1732static void drain_stock(struct memcg_stock_pcp *stock)
1733{
1734 struct mem_cgroup *old = stock->cached;
1735
11c9ea4e
JW
1736 if (stock->nr_pages) {
1737 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
1738
1739 res_counter_uncharge(&old->res, bytes);
cdec2e42 1740 if (do_swap_account)
11c9ea4e
JW
1741 res_counter_uncharge(&old->memsw, bytes);
1742 stock->nr_pages = 0;
cdec2e42
KH
1743 }
1744 stock->cached = NULL;
cdec2e42
KH
1745}
1746
1747/*
1748 * This must be called under preempt disabled or must be called by
1749 * a thread which is pinned to local cpu.
1750 */
1751static void drain_local_stock(struct work_struct *dummy)
1752{
1753 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1754 drain_stock(stock);
1755}
1756
1757/*
1758 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 1759 * This will be consumed by consume_stock() function, later.
cdec2e42 1760 */
11c9ea4e 1761static void refill_stock(struct mem_cgroup *mem, unsigned int nr_pages)
cdec2e42
KH
1762{
1763 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1764
1765 if (stock->cached != mem) { /* reset if necessary */
1766 drain_stock(stock);
1767 stock->cached = mem;
1768 }
11c9ea4e 1769 stock->nr_pages += nr_pages;
cdec2e42
KH
1770 put_cpu_var(memcg_stock);
1771}
1772
1773/*
1774 * Tries to drain stocked charges in other cpus. This function is asynchronous
1775 * and just put a work per cpu for draining localy on each cpu. Caller can
1776 * expects some charges will be back to res_counter later but cannot wait for
1777 * it.
1778 */
1779static void drain_all_stock_async(void)
1780{
1781 int cpu;
1782 /* This function is for scheduling "drain" in asynchronous way.
1783 * The result of "drain" is not directly handled by callers. Then,
1784 * if someone is calling drain, we don't have to call drain more.
1785 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1786 * there is a race. We just do loose check here.
1787 */
1788 if (atomic_read(&memcg_drain_count))
1789 return;
1790 /* Notify other cpus that system-wide "drain" is running */
1791 atomic_inc(&memcg_drain_count);
1792 get_online_cpus();
1793 for_each_online_cpu(cpu) {
1794 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1795 schedule_work_on(cpu, &stock->work);
1796 }
1797 put_online_cpus();
1798 atomic_dec(&memcg_drain_count);
1799 /* We don't wait for flush_work */
1800}
1801
1802/* This is a synchronous drain interface. */
1803static void drain_all_stock_sync(void)
1804{
1805 /* called when force_empty is called */
1806 atomic_inc(&memcg_drain_count);
1807 schedule_on_each_cpu(drain_local_stock);
1808 atomic_dec(&memcg_drain_count);
1809}
1810
711d3d2c
KH
1811/*
1812 * This function drains percpu counter value from DEAD cpu and
1813 * move it to local cpu. Note that this function can be preempted.
1814 */
1815static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1816{
1817 int i;
1818
1819 spin_lock(&mem->pcp_counter_lock);
1820 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
7a159cc9 1821 long x = per_cpu(mem->stat->count[i], cpu);
711d3d2c
KH
1822
1823 per_cpu(mem->stat->count[i], cpu) = 0;
1824 mem->nocpu_base.count[i] += x;
1825 }
e9f8974f
JW
1826 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
1827 unsigned long x = per_cpu(mem->stat->events[i], cpu);
1828
1829 per_cpu(mem->stat->events[i], cpu) = 0;
1830 mem->nocpu_base.events[i] += x;
1831 }
1489ebad
KH
1832 /* need to clear ON_MOVE value, works as a kind of lock. */
1833 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1834 spin_unlock(&mem->pcp_counter_lock);
1835}
1836
1837static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1838{
1839 int idx = MEM_CGROUP_ON_MOVE;
1840
1841 spin_lock(&mem->pcp_counter_lock);
1842 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
711d3d2c
KH
1843 spin_unlock(&mem->pcp_counter_lock);
1844}
1845
1846static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1847 unsigned long action,
1848 void *hcpu)
1849{
1850 int cpu = (unsigned long)hcpu;
1851 struct memcg_stock_pcp *stock;
711d3d2c 1852 struct mem_cgroup *iter;
cdec2e42 1853
1489ebad
KH
1854 if ((action == CPU_ONLINE)) {
1855 for_each_mem_cgroup_all(iter)
1856 synchronize_mem_cgroup_on_move(iter, cpu);
1857 return NOTIFY_OK;
1858 }
1859
711d3d2c 1860 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
cdec2e42 1861 return NOTIFY_OK;
711d3d2c
KH
1862
1863 for_each_mem_cgroup_all(iter)
1864 mem_cgroup_drain_pcp_counter(iter, cpu);
1865
cdec2e42
KH
1866 stock = &per_cpu(memcg_stock, cpu);
1867 drain_stock(stock);
1868 return NOTIFY_OK;
1869}
1870
4b534334
KH
1871
1872/* See __mem_cgroup_try_charge() for details */
1873enum {
1874 CHARGE_OK, /* success */
1875 CHARGE_RETRY, /* need to retry but retry is not bad */
1876 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1877 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1878 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1879};
1880
7ec99d62
JW
1881static int mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1882 unsigned int nr_pages, bool oom_check)
4b534334 1883{
7ec99d62 1884 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
1885 struct mem_cgroup *mem_over_limit;
1886 struct res_counter *fail_res;
1887 unsigned long flags = 0;
1888 int ret;
1889
1890 ret = res_counter_charge(&mem->res, csize, &fail_res);
1891
1892 if (likely(!ret)) {
1893 if (!do_swap_account)
1894 return CHARGE_OK;
1895 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1896 if (likely(!ret))
1897 return CHARGE_OK;
1898
01c88e2d 1899 res_counter_uncharge(&mem->res, csize);
4b534334
KH
1900 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1901 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1902 } else
1903 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 1904 /*
7ec99d62
JW
1905 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
1906 * of regular pages (CHARGE_BATCH), or a single regular page (1).
9221edb7
JW
1907 *
1908 * Never reclaim on behalf of optional batching, retry with a
1909 * single page instead.
1910 */
7ec99d62 1911 if (nr_pages == CHARGE_BATCH)
4b534334
KH
1912 return CHARGE_RETRY;
1913
1914 if (!(gfp_mask & __GFP_WAIT))
1915 return CHARGE_WOULDBLOCK;
1916
1917 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
19942822 1918 gfp_mask, flags);
7ec99d62 1919 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 1920 return CHARGE_RETRY;
4b534334 1921 /*
19942822
JW
1922 * Even though the limit is exceeded at this point, reclaim
1923 * may have been able to free some pages. Retry the charge
1924 * before killing the task.
1925 *
1926 * Only for regular pages, though: huge pages are rather
1927 * unlikely to succeed so close to the limit, and we fall back
1928 * to regular pages anyway in case of failure.
4b534334 1929 */
7ec99d62 1930 if (nr_pages == 1 && ret)
4b534334
KH
1931 return CHARGE_RETRY;
1932
1933 /*
1934 * At task move, charge accounts can be doubly counted. So, it's
1935 * better to wait until the end of task_move if something is going on.
1936 */
1937 if (mem_cgroup_wait_acct_move(mem_over_limit))
1938 return CHARGE_RETRY;
1939
1940 /* If we don't need to call oom-killer at el, return immediately */
1941 if (!oom_check)
1942 return CHARGE_NOMEM;
1943 /* check OOM */
1944 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1945 return CHARGE_OOM_DIE;
1946
1947 return CHARGE_RETRY;
1948}
1949
f817ed48
KH
1950/*
1951 * Unlike exported interface, "oom" parameter is added. if oom==true,
1952 * oom-killer can be invoked.
8a9f3ccd 1953 */
f817ed48 1954static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 1955 gfp_t gfp_mask,
7ec99d62
JW
1956 unsigned int nr_pages,
1957 struct mem_cgroup **memcg,
1958 bool oom)
8a9f3ccd 1959{
7ec99d62 1960 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334
KH
1961 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1962 struct mem_cgroup *mem = NULL;
1963 int ret;
a636b327 1964
867578cb
KH
1965 /*
1966 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1967 * in system level. So, allow to go ahead dying process in addition to
1968 * MEMDIE process.
1969 */
1970 if (unlikely(test_thread_flag(TIF_MEMDIE)
1971 || fatal_signal_pending(current)))
1972 goto bypass;
a636b327 1973
8a9f3ccd 1974 /*
3be91277
HD
1975 * We always charge the cgroup the mm_struct belongs to.
1976 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
1977 * thread group leader migrates. It's possible that mm is not
1978 * set, if so charge the init_mm (happens for pagecache usage).
1979 */
f75ca962
KH
1980 if (!*memcg && !mm)
1981 goto bypass;
1982again:
1983 if (*memcg) { /* css should be a valid one */
4b534334 1984 mem = *memcg;
f75ca962
KH
1985 VM_BUG_ON(css_is_removed(&mem->css));
1986 if (mem_cgroup_is_root(mem))
1987 goto done;
7ec99d62 1988 if (nr_pages == 1 && consume_stock(mem))
f75ca962 1989 goto done;
4b534334
KH
1990 css_get(&mem->css);
1991 } else {
f75ca962 1992 struct task_struct *p;
54595fe2 1993
f75ca962
KH
1994 rcu_read_lock();
1995 p = rcu_dereference(mm->owner);
f75ca962 1996 /*
ebb76ce1
KH
1997 * Because we don't have task_lock(), "p" can exit.
1998 * In that case, "mem" can point to root or p can be NULL with
1999 * race with swapoff. Then, we have small risk of mis-accouning.
2000 * But such kind of mis-account by race always happens because
2001 * we don't have cgroup_mutex(). It's overkill and we allo that
2002 * small race, here.
2003 * (*) swapoff at el will charge against mm-struct not against
2004 * task-struct. So, mm->owner can be NULL.
f75ca962
KH
2005 */
2006 mem = mem_cgroup_from_task(p);
ebb76ce1 2007 if (!mem || mem_cgroup_is_root(mem)) {
f75ca962
KH
2008 rcu_read_unlock();
2009 goto done;
2010 }
7ec99d62 2011 if (nr_pages == 1 && consume_stock(mem)) {
f75ca962
KH
2012 /*
2013 * It seems dagerous to access memcg without css_get().
2014 * But considering how consume_stok works, it's not
2015 * necessary. If consume_stock success, some charges
2016 * from this memcg are cached on this cpu. So, we
2017 * don't need to call css_get()/css_tryget() before
2018 * calling consume_stock().
2019 */
2020 rcu_read_unlock();
2021 goto done;
2022 }
2023 /* after here, we may be blocked. we need to get refcnt */
2024 if (!css_tryget(&mem->css)) {
2025 rcu_read_unlock();
2026 goto again;
2027 }
2028 rcu_read_unlock();
2029 }
8a9f3ccd 2030
4b534334
KH
2031 do {
2032 bool oom_check;
7a81b88c 2033
4b534334 2034 /* If killed, bypass charge */
f75ca962
KH
2035 if (fatal_signal_pending(current)) {
2036 css_put(&mem->css);
4b534334 2037 goto bypass;
f75ca962 2038 }
6d61ef40 2039
4b534334
KH
2040 oom_check = false;
2041 if (oom && !nr_oom_retries) {
2042 oom_check = true;
2043 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
cdec2e42 2044 }
66e1707b 2045
7ec99d62 2046 ret = mem_cgroup_do_charge(mem, gfp_mask, batch, oom_check);
4b534334
KH
2047 switch (ret) {
2048 case CHARGE_OK:
2049 break;
2050 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2051 batch = nr_pages;
f75ca962
KH
2052 css_put(&mem->css);
2053 mem = NULL;
2054 goto again;
4b534334 2055 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
f75ca962 2056 css_put(&mem->css);
4b534334
KH
2057 goto nomem;
2058 case CHARGE_NOMEM: /* OOM routine works */
f75ca962
KH
2059 if (!oom) {
2060 css_put(&mem->css);
867578cb 2061 goto nomem;
f75ca962 2062 }
4b534334
KH
2063 /* If oom, we never return -ENOMEM */
2064 nr_oom_retries--;
2065 break;
2066 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
f75ca962 2067 css_put(&mem->css);
867578cb 2068 goto bypass;
66e1707b 2069 }
4b534334
KH
2070 } while (ret != CHARGE_OK);
2071
7ec99d62
JW
2072 if (batch > nr_pages)
2073 refill_stock(mem, batch - nr_pages);
f75ca962 2074 css_put(&mem->css);
0c3e73e8 2075done:
f75ca962 2076 *memcg = mem;
7a81b88c
KH
2077 return 0;
2078nomem:
f75ca962 2079 *memcg = NULL;
7a81b88c 2080 return -ENOMEM;
867578cb
KH
2081bypass:
2082 *memcg = NULL;
2083 return 0;
7a81b88c 2084}
8a9f3ccd 2085
a3032a2c
DN
2086/*
2087 * Somemtimes we have to undo a charge we got by try_charge().
2088 * This function is for that and do uncharge, put css's refcnt.
2089 * gotten by try_charge().
2090 */
854ffa8d 2091static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
e7018b8d 2092 unsigned int nr_pages)
a3032a2c
DN
2093{
2094 if (!mem_cgroup_is_root(mem)) {
e7018b8d
JW
2095 unsigned long bytes = nr_pages * PAGE_SIZE;
2096
2097 res_counter_uncharge(&mem->res, bytes);
a3032a2c 2098 if (do_swap_account)
e7018b8d 2099 res_counter_uncharge(&mem->memsw, bytes);
a3032a2c 2100 }
854ffa8d
DN
2101}
2102
a3b2d692
KH
2103/*
2104 * A helper function to get mem_cgroup from ID. must be called under
2105 * rcu_read_lock(). The caller must check css_is_removed() or some if
2106 * it's concern. (dropping refcnt from swap can be called against removed
2107 * memcg.)
2108 */
2109static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2110{
2111 struct cgroup_subsys_state *css;
2112
2113 /* ID 0 is unused ID */
2114 if (!id)
2115 return NULL;
2116 css = css_lookup(&mem_cgroup_subsys, id);
2117 if (!css)
2118 return NULL;
2119 return container_of(css, struct mem_cgroup, css);
2120}
2121
e42d9d5d 2122struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2123{
e42d9d5d 2124 struct mem_cgroup *mem = NULL;
3c776e64 2125 struct page_cgroup *pc;
a3b2d692 2126 unsigned short id;
b5a84319
KH
2127 swp_entry_t ent;
2128
3c776e64
DN
2129 VM_BUG_ON(!PageLocked(page));
2130
3c776e64 2131 pc = lookup_page_cgroup(page);
c0bd3f63 2132 lock_page_cgroup(pc);
a3b2d692 2133 if (PageCgroupUsed(pc)) {
3c776e64 2134 mem = pc->mem_cgroup;
a3b2d692
KH
2135 if (mem && !css_tryget(&mem->css))
2136 mem = NULL;
e42d9d5d 2137 } else if (PageSwapCache(page)) {
3c776e64 2138 ent.val = page_private(page);
a3b2d692
KH
2139 id = lookup_swap_cgroup(ent);
2140 rcu_read_lock();
2141 mem = mem_cgroup_lookup(id);
2142 if (mem && !css_tryget(&mem->css))
2143 mem = NULL;
2144 rcu_read_unlock();
3c776e64 2145 }
c0bd3f63 2146 unlock_page_cgroup(pc);
b5a84319
KH
2147 return mem;
2148}
2149
ca3e0214 2150static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
5564e88b 2151 struct page *page,
7ec99d62 2152 unsigned int nr_pages,
ca3e0214 2153 struct page_cgroup *pc,
7ec99d62 2154 enum charge_type ctype)
7a81b88c 2155{
ca3e0214
KH
2156 lock_page_cgroup(pc);
2157 if (unlikely(PageCgroupUsed(pc))) {
2158 unlock_page_cgroup(pc);
e7018b8d 2159 __mem_cgroup_cancel_charge(mem, nr_pages);
ca3e0214
KH
2160 return;
2161 }
2162 /*
2163 * we don't need page_cgroup_lock about tail pages, becase they are not
2164 * accessed by any other context at this point.
2165 */
8a9f3ccd 2166 pc->mem_cgroup = mem;
261fb61a
KH
2167 /*
2168 * We access a page_cgroup asynchronously without lock_page_cgroup().
2169 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2170 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2171 * before USED bit, we need memory barrier here.
2172 * See mem_cgroup_add_lru_list(), etc.
2173 */
08e552c6 2174 smp_wmb();
4b3bde4c
BS
2175 switch (ctype) {
2176 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2177 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2178 SetPageCgroupCache(pc);
2179 SetPageCgroupUsed(pc);
2180 break;
2181 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2182 ClearPageCgroupCache(pc);
2183 SetPageCgroupUsed(pc);
2184 break;
2185 default:
2186 break;
2187 }
3be91277 2188
ca3e0214 2189 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
52d4b9ac 2190 unlock_page_cgroup(pc);
430e4863
KH
2191 /*
2192 * "charge_statistics" updated event counter. Then, check it.
2193 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2194 * if they exceeds softlimit.
2195 */
5564e88b 2196 memcg_check_events(mem, page);
7a81b88c 2197}
66e1707b 2198
ca3e0214
KH
2199#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2200
2201#define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2202 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2203/*
2204 * Because tail pages are not marked as "used", set it. We're under
2205 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2206 */
2207void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2208{
2209 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2210 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2211 unsigned long flags;
2212
3d37c4a9
KH
2213 if (mem_cgroup_disabled())
2214 return;
ca3e0214 2215 /*
ece35ca8 2216 * We have no races with charge/uncharge but will have races with
ca3e0214
KH
2217 * page state accounting.
2218 */
2219 move_lock_page_cgroup(head_pc, &flags);
2220
2221 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2222 smp_wmb(); /* see __commit_charge() */
ece35ca8
KH
2223 if (PageCgroupAcctLRU(head_pc)) {
2224 enum lru_list lru;
2225 struct mem_cgroup_per_zone *mz;
2226
2227 /*
2228 * LRU flags cannot be copied because we need to add tail
2229 *.page to LRU by generic call and our hook will be called.
2230 * We hold lru_lock, then, reduce counter directly.
2231 */
2232 lru = page_lru(head);
97a6c37b 2233 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
ece35ca8
KH
2234 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2235 }
ca3e0214
KH
2236 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2237 move_unlock_page_cgroup(head_pc, &flags);
2238}
2239#endif
2240
f817ed48 2241/**
de3638d9 2242 * mem_cgroup_move_account - move account of the page
5564e88b 2243 * @page: the page
7ec99d62 2244 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2245 * @pc: page_cgroup of the page.
2246 * @from: mem_cgroup which the page is moved from.
2247 * @to: mem_cgroup which the page is moved to. @from != @to.
854ffa8d 2248 * @uncharge: whether we should call uncharge and css_put against @from.
f817ed48
KH
2249 *
2250 * The caller must confirm following.
08e552c6 2251 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2252 * - compound_lock is held when nr_pages > 1
f817ed48 2253 *
854ffa8d
DN
2254 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2255 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2256 * true, this function does "uncharge" from old cgroup, but it doesn't if
2257 * @uncharge is false, so a caller should do "uncharge".
f817ed48 2258 */
7ec99d62
JW
2259static int mem_cgroup_move_account(struct page *page,
2260 unsigned int nr_pages,
2261 struct page_cgroup *pc,
2262 struct mem_cgroup *from,
2263 struct mem_cgroup *to,
2264 bool uncharge)
f817ed48 2265{
de3638d9
JW
2266 unsigned long flags;
2267 int ret;
987eba66 2268
f817ed48 2269 VM_BUG_ON(from == to);
5564e88b 2270 VM_BUG_ON(PageLRU(page));
de3638d9
JW
2271 /*
2272 * The page is isolated from LRU. So, collapse function
2273 * will not handle this page. But page splitting can happen.
2274 * Do this check under compound_page_lock(). The caller should
2275 * hold it.
2276 */
2277 ret = -EBUSY;
7ec99d62 2278 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2279 goto out;
2280
2281 lock_page_cgroup(pc);
2282
2283 ret = -EINVAL;
2284 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2285 goto unlock;
2286
2287 move_lock_page_cgroup(pc, &flags);
f817ed48 2288
8725d541 2289 if (PageCgroupFileMapped(pc)) {
c62b1a3b
KH
2290 /* Update mapped_file data for mem_cgroup */
2291 preempt_disable();
2292 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2293 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2294 preempt_enable();
d69b042f 2295 }
987eba66 2296 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
854ffa8d
DN
2297 if (uncharge)
2298 /* This is not "cancel", but cancel_charge does all we need. */
e7018b8d 2299 __mem_cgroup_cancel_charge(from, nr_pages);
d69b042f 2300
854ffa8d 2301 /* caller should have done css_get */
08e552c6 2302 pc->mem_cgroup = to;
987eba66 2303 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
88703267
KH
2304 /*
2305 * We charges against "to" which may not have any tasks. Then, "to"
2306 * can be under rmdir(). But in current implementation, caller of
4ffef5fe
DN
2307 * this function is just force_empty() and move charge, so it's
2308 * garanteed that "to" is never removed. So, we don't check rmdir
2309 * status here.
88703267 2310 */
de3638d9
JW
2311 move_unlock_page_cgroup(pc, &flags);
2312 ret = 0;
2313unlock:
57f9fd7d 2314 unlock_page_cgroup(pc);
d2265e6f
KH
2315 /*
2316 * check events
2317 */
5564e88b
JW
2318 memcg_check_events(to, page);
2319 memcg_check_events(from, page);
de3638d9 2320out:
f817ed48
KH
2321 return ret;
2322}
2323
2324/*
2325 * move charges to its parent.
2326 */
2327
5564e88b
JW
2328static int mem_cgroup_move_parent(struct page *page,
2329 struct page_cgroup *pc,
f817ed48
KH
2330 struct mem_cgroup *child,
2331 gfp_t gfp_mask)
2332{
2333 struct cgroup *cg = child->css.cgroup;
2334 struct cgroup *pcg = cg->parent;
2335 struct mem_cgroup *parent;
7ec99d62 2336 unsigned int nr_pages;
4be4489f 2337 unsigned long uninitialized_var(flags);
f817ed48
KH
2338 int ret;
2339
2340 /* Is ROOT ? */
2341 if (!pcg)
2342 return -EINVAL;
2343
57f9fd7d
DN
2344 ret = -EBUSY;
2345 if (!get_page_unless_zero(page))
2346 goto out;
2347 if (isolate_lru_page(page))
2348 goto put;
52dbb905 2349
7ec99d62 2350 nr_pages = hpage_nr_pages(page);
08e552c6 2351
f817ed48 2352 parent = mem_cgroup_from_cont(pcg);
7ec99d62 2353 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
a636b327 2354 if (ret || !parent)
57f9fd7d 2355 goto put_back;
f817ed48 2356
7ec99d62 2357 if (nr_pages > 1)
987eba66
KH
2358 flags = compound_lock_irqsave(page);
2359
7ec99d62 2360 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
854ffa8d 2361 if (ret)
7ec99d62 2362 __mem_cgroup_cancel_charge(parent, nr_pages);
8dba474f 2363
7ec99d62 2364 if (nr_pages > 1)
987eba66 2365 compound_unlock_irqrestore(page, flags);
8dba474f 2366put_back:
08e552c6 2367 putback_lru_page(page);
57f9fd7d 2368put:
40d58138 2369 put_page(page);
57f9fd7d 2370out:
f817ed48
KH
2371 return ret;
2372}
2373
7a81b88c
KH
2374/*
2375 * Charge the memory controller for page usage.
2376 * Return
2377 * 0 if the charge was successful
2378 * < 0 if the cgroup is over its limit
2379 */
2380static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 2381 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 2382{
73045c47 2383 struct mem_cgroup *mem = NULL;
7ec99d62 2384 unsigned int nr_pages = 1;
7a81b88c 2385 struct page_cgroup *pc;
8493ae43 2386 bool oom = true;
7a81b88c 2387 int ret;
ec168510 2388
37c2ac78 2389 if (PageTransHuge(page)) {
7ec99d62 2390 nr_pages <<= compound_order(page);
37c2ac78 2391 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
2392 /*
2393 * Never OOM-kill a process for a huge page. The
2394 * fault handler will fall back to regular pages.
2395 */
2396 oom = false;
37c2ac78 2397 }
7a81b88c
KH
2398
2399 pc = lookup_page_cgroup(page);
af4a6621 2400 BUG_ON(!pc); /* XXX: remove this and move pc lookup into commit */
7a81b88c 2401
7ec99d62 2402 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &mem, oom);
a636b327 2403 if (ret || !mem)
7a81b88c
KH
2404 return ret;
2405
7ec99d62 2406 __mem_cgroup_commit_charge(mem, page, nr_pages, pc, ctype);
8a9f3ccd 2407 return 0;
8a9f3ccd
BS
2408}
2409
7a81b88c
KH
2410int mem_cgroup_newpage_charge(struct page *page,
2411 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 2412{
f8d66542 2413 if (mem_cgroup_disabled())
cede86ac 2414 return 0;
69029cd5
KH
2415 /*
2416 * If already mapped, we don't have to account.
2417 * If page cache, page->mapping has address_space.
2418 * But page->mapping may have out-of-use anon_vma pointer,
2419 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2420 * is NULL.
2421 */
2422 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2423 return 0;
2424 if (unlikely(!mm))
2425 mm = &init_mm;
217bc319 2426 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2427 MEM_CGROUP_CHARGE_TYPE_MAPPED);
217bc319
KH
2428}
2429
83aae4c7
DN
2430static void
2431__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2432 enum charge_type ctype);
2433
e1a1cd59
BS
2434int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2435 gfp_t gfp_mask)
8697d331 2436{
b5a84319
KH
2437 int ret;
2438
f8d66542 2439 if (mem_cgroup_disabled())
cede86ac 2440 return 0;
52d4b9ac
KH
2441 if (PageCompound(page))
2442 return 0;
accf163e
KH
2443 /*
2444 * Corner case handling. This is called from add_to_page_cache()
2445 * in usual. But some FS (shmem) precharges this page before calling it
2446 * and call add_to_page_cache() with GFP_NOWAIT.
2447 *
2448 * For GFP_NOWAIT case, the page may be pre-charged before calling
2449 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2450 * charge twice. (It works but has to pay a bit larger cost.)
b5a84319
KH
2451 * And when the page is SwapCache, it should take swap information
2452 * into account. This is under lock_page() now.
accf163e
KH
2453 */
2454 if (!(gfp_mask & __GFP_WAIT)) {
2455 struct page_cgroup *pc;
2456
52d4b9ac
KH
2457 pc = lookup_page_cgroup(page);
2458 if (!pc)
2459 return 0;
2460 lock_page_cgroup(pc);
2461 if (PageCgroupUsed(pc)) {
2462 unlock_page_cgroup(pc);
accf163e
KH
2463 return 0;
2464 }
52d4b9ac 2465 unlock_page_cgroup(pc);
accf163e
KH
2466 }
2467
73045c47 2468 if (unlikely(!mm))
8697d331 2469 mm = &init_mm;
accf163e 2470
c05555b5
KH
2471 if (page_is_file_cache(page))
2472 return mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2473 MEM_CGROUP_CHARGE_TYPE_CACHE);
b5a84319 2474
83aae4c7
DN
2475 /* shmem */
2476 if (PageSwapCache(page)) {
56039efa 2477 struct mem_cgroup *mem;
73045c47 2478
83aae4c7
DN
2479 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2480 if (!ret)
2481 __mem_cgroup_commit_charge_swapin(page, mem,
2482 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2483 } else
2484 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
73045c47 2485 MEM_CGROUP_CHARGE_TYPE_SHMEM);
b5a84319 2486
b5a84319 2487 return ret;
e8589cc1
KH
2488}
2489
54595fe2
KH
2490/*
2491 * While swap-in, try_charge -> commit or cancel, the page is locked.
2492 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 2493 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
2494 * "commit()" or removed by "cancel()"
2495 */
8c7c6e34
KH
2496int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2497 struct page *page,
2498 gfp_t mask, struct mem_cgroup **ptr)
2499{
2500 struct mem_cgroup *mem;
54595fe2 2501 int ret;
8c7c6e34 2502
56039efa
KH
2503 *ptr = NULL;
2504
f8d66542 2505 if (mem_cgroup_disabled())
8c7c6e34
KH
2506 return 0;
2507
2508 if (!do_swap_account)
2509 goto charge_cur_mm;
8c7c6e34
KH
2510 /*
2511 * A racing thread's fault, or swapoff, may have already updated
407f9c8b
HD
2512 * the pte, and even removed page from swap cache: in those cases
2513 * do_swap_page()'s pte_same() test will fail; but there's also a
2514 * KSM case which does need to charge the page.
8c7c6e34
KH
2515 */
2516 if (!PageSwapCache(page))
407f9c8b 2517 goto charge_cur_mm;
e42d9d5d 2518 mem = try_get_mem_cgroup_from_page(page);
54595fe2
KH
2519 if (!mem)
2520 goto charge_cur_mm;
8c7c6e34 2521 *ptr = mem;
7ec99d62 2522 ret = __mem_cgroup_try_charge(NULL, mask, 1, ptr, true);
54595fe2
KH
2523 css_put(&mem->css);
2524 return ret;
8c7c6e34
KH
2525charge_cur_mm:
2526 if (unlikely(!mm))
2527 mm = &init_mm;
7ec99d62 2528 return __mem_cgroup_try_charge(mm, mask, 1, ptr, true);
8c7c6e34
KH
2529}
2530
83aae4c7
DN
2531static void
2532__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2533 enum charge_type ctype)
7a81b88c
KH
2534{
2535 struct page_cgroup *pc;
2536
f8d66542 2537 if (mem_cgroup_disabled())
7a81b88c
KH
2538 return;
2539 if (!ptr)
2540 return;
88703267 2541 cgroup_exclude_rmdir(&ptr->css);
7a81b88c 2542 pc = lookup_page_cgroup(page);
544122e5 2543 mem_cgroup_lru_del_before_commit_swapcache(page);
7ec99d62 2544 __mem_cgroup_commit_charge(ptr, page, 1, pc, ctype);
544122e5 2545 mem_cgroup_lru_add_after_commit_swapcache(page);
8c7c6e34
KH
2546 /*
2547 * Now swap is on-memory. This means this page may be
2548 * counted both as mem and swap....double count.
03f3c433
KH
2549 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2550 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2551 * may call delete_from_swap_cache() before reach here.
8c7c6e34 2552 */
03f3c433 2553 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 2554 swp_entry_t ent = {.val = page_private(page)};
a3b2d692 2555 unsigned short id;
8c7c6e34 2556 struct mem_cgroup *memcg;
a3b2d692
KH
2557
2558 id = swap_cgroup_record(ent, 0);
2559 rcu_read_lock();
2560 memcg = mem_cgroup_lookup(id);
8c7c6e34 2561 if (memcg) {
a3b2d692
KH
2562 /*
2563 * This recorded memcg can be obsolete one. So, avoid
2564 * calling css_tryget
2565 */
0c3e73e8 2566 if (!mem_cgroup_is_root(memcg))
4e649152 2567 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2568 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2569 mem_cgroup_put(memcg);
2570 }
a3b2d692 2571 rcu_read_unlock();
8c7c6e34 2572 }
88703267
KH
2573 /*
2574 * At swapin, we may charge account against cgroup which has no tasks.
2575 * So, rmdir()->pre_destroy() can be called while we do this charge.
2576 * In that case, we need to call pre_destroy() again. check it here.
2577 */
2578 cgroup_release_and_wakeup_rmdir(&ptr->css);
7a81b88c
KH
2579}
2580
83aae4c7
DN
2581void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2582{
2583 __mem_cgroup_commit_charge_swapin(page, ptr,
2584 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2585}
2586
7a81b88c
KH
2587void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2588{
f8d66542 2589 if (mem_cgroup_disabled())
7a81b88c
KH
2590 return;
2591 if (!mem)
2592 return;
e7018b8d 2593 __mem_cgroup_cancel_charge(mem, 1);
7a81b88c
KH
2594}
2595
7ec99d62
JW
2596static void mem_cgroup_do_uncharge(struct mem_cgroup *mem,
2597 unsigned int nr_pages,
2598 const enum charge_type ctype)
569b846d
KH
2599{
2600 struct memcg_batch_info *batch = NULL;
2601 bool uncharge_memsw = true;
7ec99d62 2602
569b846d
KH
2603 /* If swapout, usage of swap doesn't decrease */
2604 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2605 uncharge_memsw = false;
569b846d
KH
2606
2607 batch = &current->memcg_batch;
2608 /*
2609 * In usual, we do css_get() when we remember memcg pointer.
2610 * But in this case, we keep res->usage until end of a series of
2611 * uncharges. Then, it's ok to ignore memcg's refcnt.
2612 */
2613 if (!batch->memcg)
2614 batch->memcg = mem;
3c11ecf4
KH
2615 /*
2616 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2617 * In those cases, all pages freed continously can be expected to be in
2618 * the same cgroup and we have chance to coalesce uncharges.
2619 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2620 * because we want to do uncharge as soon as possible.
2621 */
2622
2623 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2624 goto direct_uncharge;
2625
7ec99d62 2626 if (nr_pages > 1)
ec168510
AA
2627 goto direct_uncharge;
2628
569b846d
KH
2629 /*
2630 * In typical case, batch->memcg == mem. This means we can
2631 * merge a series of uncharges to an uncharge of res_counter.
2632 * If not, we uncharge res_counter ony by one.
2633 */
2634 if (batch->memcg != mem)
2635 goto direct_uncharge;
2636 /* remember freed charge and uncharge it later */
7ffd4ca7 2637 batch->nr_pages++;
569b846d 2638 if (uncharge_memsw)
7ffd4ca7 2639 batch->memsw_nr_pages++;
569b846d
KH
2640 return;
2641direct_uncharge:
7ec99d62 2642 res_counter_uncharge(&mem->res, nr_pages * PAGE_SIZE);
569b846d 2643 if (uncharge_memsw)
7ec99d62 2644 res_counter_uncharge(&mem->memsw, nr_pages * PAGE_SIZE);
3c11ecf4
KH
2645 if (unlikely(batch->memcg != mem))
2646 memcg_oom_recover(mem);
569b846d
KH
2647 return;
2648}
7a81b88c 2649
8a9f3ccd 2650/*
69029cd5 2651 * uncharge if !page_mapped(page)
8a9f3ccd 2652 */
8c7c6e34 2653static struct mem_cgroup *
69029cd5 2654__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 2655{
8c7c6e34 2656 struct mem_cgroup *mem = NULL;
7ec99d62
JW
2657 unsigned int nr_pages = 1;
2658 struct page_cgroup *pc;
8a9f3ccd 2659
f8d66542 2660 if (mem_cgroup_disabled())
8c7c6e34 2661 return NULL;
4077960e 2662
d13d1443 2663 if (PageSwapCache(page))
8c7c6e34 2664 return NULL;
d13d1443 2665
37c2ac78 2666 if (PageTransHuge(page)) {
7ec99d62 2667 nr_pages <<= compound_order(page);
37c2ac78
AA
2668 VM_BUG_ON(!PageTransHuge(page));
2669 }
8697d331 2670 /*
3c541e14 2671 * Check if our page_cgroup is valid
8697d331 2672 */
52d4b9ac
KH
2673 pc = lookup_page_cgroup(page);
2674 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 2675 return NULL;
b9c565d5 2676
52d4b9ac 2677 lock_page_cgroup(pc);
d13d1443 2678
8c7c6e34
KH
2679 mem = pc->mem_cgroup;
2680
d13d1443
KH
2681 if (!PageCgroupUsed(pc))
2682 goto unlock_out;
2683
2684 switch (ctype) {
2685 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
8a9478ca 2686 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c
AM
2687 /* See mem_cgroup_prepare_migration() */
2688 if (page_mapped(page) || PageCgroupMigration(pc))
d13d1443
KH
2689 goto unlock_out;
2690 break;
2691 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2692 if (!PageAnon(page)) { /* Shared memory */
2693 if (page->mapping && !page_is_file_cache(page))
2694 goto unlock_out;
2695 } else if (page_mapped(page)) /* Anon */
2696 goto unlock_out;
2697 break;
2698 default:
2699 break;
52d4b9ac 2700 }
d13d1443 2701
7ec99d62 2702 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -nr_pages);
04046e1a 2703
52d4b9ac 2704 ClearPageCgroupUsed(pc);
544122e5
KH
2705 /*
2706 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2707 * freed from LRU. This is safe because uncharged page is expected not
2708 * to be reused (freed soon). Exception is SwapCache, it's handled by
2709 * special functions.
2710 */
b9c565d5 2711
52d4b9ac 2712 unlock_page_cgroup(pc);
f75ca962
KH
2713 /*
2714 * even after unlock, we have mem->res.usage here and this memcg
2715 * will never be freed.
2716 */
d2265e6f 2717 memcg_check_events(mem, page);
f75ca962
KH
2718 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2719 mem_cgroup_swap_statistics(mem, true);
2720 mem_cgroup_get(mem);
2721 }
2722 if (!mem_cgroup_is_root(mem))
7ec99d62 2723 mem_cgroup_do_uncharge(mem, nr_pages, ctype);
6d12e2d8 2724
8c7c6e34 2725 return mem;
d13d1443
KH
2726
2727unlock_out:
2728 unlock_page_cgroup(pc);
8c7c6e34 2729 return NULL;
3c541e14
BS
2730}
2731
69029cd5
KH
2732void mem_cgroup_uncharge_page(struct page *page)
2733{
52d4b9ac
KH
2734 /* early check. */
2735 if (page_mapped(page))
2736 return;
2737 if (page->mapping && !PageAnon(page))
2738 return;
69029cd5
KH
2739 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2740}
2741
2742void mem_cgroup_uncharge_cache_page(struct page *page)
2743{
2744 VM_BUG_ON(page_mapped(page));
b7abea96 2745 VM_BUG_ON(page->mapping);
69029cd5
KH
2746 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2747}
2748
569b846d
KH
2749/*
2750 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2751 * In that cases, pages are freed continuously and we can expect pages
2752 * are in the same memcg. All these calls itself limits the number of
2753 * pages freed at once, then uncharge_start/end() is called properly.
2754 * This may be called prural(2) times in a context,
2755 */
2756
2757void mem_cgroup_uncharge_start(void)
2758{
2759 current->memcg_batch.do_batch++;
2760 /* We can do nest. */
2761 if (current->memcg_batch.do_batch == 1) {
2762 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
2763 current->memcg_batch.nr_pages = 0;
2764 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
2765 }
2766}
2767
2768void mem_cgroup_uncharge_end(void)
2769{
2770 struct memcg_batch_info *batch = &current->memcg_batch;
2771
2772 if (!batch->do_batch)
2773 return;
2774
2775 batch->do_batch--;
2776 if (batch->do_batch) /* If stacked, do nothing. */
2777 return;
2778
2779 if (!batch->memcg)
2780 return;
2781 /*
2782 * This "batch->memcg" is valid without any css_get/put etc...
2783 * bacause we hide charges behind us.
2784 */
7ffd4ca7
JW
2785 if (batch->nr_pages)
2786 res_counter_uncharge(&batch->memcg->res,
2787 batch->nr_pages * PAGE_SIZE);
2788 if (batch->memsw_nr_pages)
2789 res_counter_uncharge(&batch->memcg->memsw,
2790 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 2791 memcg_oom_recover(batch->memcg);
569b846d
KH
2792 /* forget this pointer (for sanity check) */
2793 batch->memcg = NULL;
2794}
2795
e767e056 2796#ifdef CONFIG_SWAP
8c7c6e34 2797/*
e767e056 2798 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
2799 * memcg information is recorded to swap_cgroup of "ent"
2800 */
8a9478ca
KH
2801void
2802mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
2803{
2804 struct mem_cgroup *memcg;
8a9478ca
KH
2805 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2806
2807 if (!swapout) /* this was a swap cache but the swap is unused ! */
2808 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2809
2810 memcg = __mem_cgroup_uncharge_common(page, ctype);
8c7c6e34 2811
f75ca962
KH
2812 /*
2813 * record memcg information, if swapout && memcg != NULL,
2814 * mem_cgroup_get() was called in uncharge().
2815 */
2816 if (do_swap_account && swapout && memcg)
a3b2d692 2817 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 2818}
e767e056 2819#endif
8c7c6e34
KH
2820
2821#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2822/*
2823 * called from swap_entry_free(). remove record in swap_cgroup and
2824 * uncharge "memsw" account.
2825 */
2826void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 2827{
8c7c6e34 2828 struct mem_cgroup *memcg;
a3b2d692 2829 unsigned short id;
8c7c6e34
KH
2830
2831 if (!do_swap_account)
2832 return;
2833
a3b2d692
KH
2834 id = swap_cgroup_record(ent, 0);
2835 rcu_read_lock();
2836 memcg = mem_cgroup_lookup(id);
8c7c6e34 2837 if (memcg) {
a3b2d692
KH
2838 /*
2839 * We uncharge this because swap is freed.
2840 * This memcg can be obsolete one. We avoid calling css_tryget
2841 */
0c3e73e8 2842 if (!mem_cgroup_is_root(memcg))
4e649152 2843 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 2844 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
2845 mem_cgroup_put(memcg);
2846 }
a3b2d692 2847 rcu_read_unlock();
d13d1443 2848}
02491447
DN
2849
2850/**
2851 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2852 * @entry: swap entry to be moved
2853 * @from: mem_cgroup which the entry is moved from
2854 * @to: mem_cgroup which the entry is moved to
483c30b5 2855 * @need_fixup: whether we should fixup res_counters and refcounts.
02491447
DN
2856 *
2857 * It succeeds only when the swap_cgroup's record for this entry is the same
2858 * as the mem_cgroup's id of @from.
2859 *
2860 * Returns 0 on success, -EINVAL on failure.
2861 *
2862 * The caller must have charged to @to, IOW, called res_counter_charge() about
2863 * both res and memsw, and called css_get().
2864 */
2865static int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2866 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2867{
2868 unsigned short old_id, new_id;
2869
2870 old_id = css_id(&from->css);
2871 new_id = css_id(&to->css);
2872
2873 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2874 mem_cgroup_swap_statistics(from, false);
483c30b5 2875 mem_cgroup_swap_statistics(to, true);
02491447 2876 /*
483c30b5
DN
2877 * This function is only called from task migration context now.
2878 * It postpones res_counter and refcount handling till the end
2879 * of task migration(mem_cgroup_clear_mc()) for performance
2880 * improvement. But we cannot postpone mem_cgroup_get(to)
2881 * because if the process that has been moved to @to does
2882 * swap-in, the refcount of @to might be decreased to 0.
02491447 2883 */
02491447 2884 mem_cgroup_get(to);
483c30b5
DN
2885 if (need_fixup) {
2886 if (!mem_cgroup_is_root(from))
2887 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2888 mem_cgroup_put(from);
2889 /*
2890 * we charged both to->res and to->memsw, so we should
2891 * uncharge to->res.
2892 */
2893 if (!mem_cgroup_is_root(to))
2894 res_counter_uncharge(&to->res, PAGE_SIZE);
483c30b5 2895 }
02491447
DN
2896 return 0;
2897 }
2898 return -EINVAL;
2899}
2900#else
2901static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
483c30b5 2902 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
02491447
DN
2903{
2904 return -EINVAL;
2905}
8c7c6e34 2906#endif
d13d1443 2907
ae41be37 2908/*
01b1ae63
KH
2909 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2910 * page belongs to.
ae41be37 2911 */
ac39cf8c 2912int mem_cgroup_prepare_migration(struct page *page,
ef6a3c63 2913 struct page *newpage, struct mem_cgroup **ptr, gfp_t gfp_mask)
ae41be37 2914{
e8589cc1 2915 struct mem_cgroup *mem = NULL;
7ec99d62 2916 struct page_cgroup *pc;
ac39cf8c 2917 enum charge_type ctype;
e8589cc1 2918 int ret = 0;
8869b8f6 2919
56039efa
KH
2920 *ptr = NULL;
2921
ec168510 2922 VM_BUG_ON(PageTransHuge(page));
f8d66542 2923 if (mem_cgroup_disabled())
4077960e
BS
2924 return 0;
2925
52d4b9ac
KH
2926 pc = lookup_page_cgroup(page);
2927 lock_page_cgroup(pc);
2928 if (PageCgroupUsed(pc)) {
e8589cc1
KH
2929 mem = pc->mem_cgroup;
2930 css_get(&mem->css);
ac39cf8c
AM
2931 /*
2932 * At migrating an anonymous page, its mapcount goes down
2933 * to 0 and uncharge() will be called. But, even if it's fully
2934 * unmapped, migration may fail and this page has to be
2935 * charged again. We set MIGRATION flag here and delay uncharge
2936 * until end_migration() is called
2937 *
2938 * Corner Case Thinking
2939 * A)
2940 * When the old page was mapped as Anon and it's unmap-and-freed
2941 * while migration was ongoing.
2942 * If unmap finds the old page, uncharge() of it will be delayed
2943 * until end_migration(). If unmap finds a new page, it's
2944 * uncharged when it make mapcount to be 1->0. If unmap code
2945 * finds swap_migration_entry, the new page will not be mapped
2946 * and end_migration() will find it(mapcount==0).
2947 *
2948 * B)
2949 * When the old page was mapped but migraion fails, the kernel
2950 * remaps it. A charge for it is kept by MIGRATION flag even
2951 * if mapcount goes down to 0. We can do remap successfully
2952 * without charging it again.
2953 *
2954 * C)
2955 * The "old" page is under lock_page() until the end of
2956 * migration, so, the old page itself will not be swapped-out.
2957 * If the new page is swapped out before end_migraton, our
2958 * hook to usual swap-out path will catch the event.
2959 */
2960 if (PageAnon(page))
2961 SetPageCgroupMigration(pc);
e8589cc1 2962 }
52d4b9ac 2963 unlock_page_cgroup(pc);
ac39cf8c
AM
2964 /*
2965 * If the page is not charged at this point,
2966 * we return here.
2967 */
2968 if (!mem)
2969 return 0;
01b1ae63 2970
93d5c9be 2971 *ptr = mem;
7ec99d62 2972 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, ptr, false);
ac39cf8c
AM
2973 css_put(&mem->css);/* drop extra refcnt */
2974 if (ret || *ptr == NULL) {
2975 if (PageAnon(page)) {
2976 lock_page_cgroup(pc);
2977 ClearPageCgroupMigration(pc);
2978 unlock_page_cgroup(pc);
2979 /*
2980 * The old page may be fully unmapped while we kept it.
2981 */
2982 mem_cgroup_uncharge_page(page);
2983 }
2984 return -ENOMEM;
e8589cc1 2985 }
ac39cf8c
AM
2986 /*
2987 * We charge new page before it's used/mapped. So, even if unlock_page()
2988 * is called before end_migration, we can catch all events on this new
2989 * page. In the case new page is migrated but not remapped, new page's
2990 * mapcount will be finally 0 and we call uncharge in end_migration().
2991 */
2992 pc = lookup_page_cgroup(newpage);
2993 if (PageAnon(page))
2994 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2995 else if (page_is_file_cache(page))
2996 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2997 else
2998 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
7ec99d62 2999 __mem_cgroup_commit_charge(mem, page, 1, pc, ctype);
e8589cc1 3000 return ret;
ae41be37 3001}
8869b8f6 3002
69029cd5 3003/* remove redundant charge if migration failed*/
01b1ae63 3004void mem_cgroup_end_migration(struct mem_cgroup *mem,
50de1dd9 3005 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 3006{
ac39cf8c 3007 struct page *used, *unused;
01b1ae63 3008 struct page_cgroup *pc;
01b1ae63
KH
3009
3010 if (!mem)
3011 return;
ac39cf8c 3012 /* blocks rmdir() */
88703267 3013 cgroup_exclude_rmdir(&mem->css);
50de1dd9 3014 if (!migration_ok) {
ac39cf8c
AM
3015 used = oldpage;
3016 unused = newpage;
01b1ae63 3017 } else {
ac39cf8c 3018 used = newpage;
01b1ae63
KH
3019 unused = oldpage;
3020 }
69029cd5 3021 /*
ac39cf8c
AM
3022 * We disallowed uncharge of pages under migration because mapcount
3023 * of the page goes down to zero, temporarly.
3024 * Clear the flag and check the page should be charged.
01b1ae63 3025 */
ac39cf8c
AM
3026 pc = lookup_page_cgroup(oldpage);
3027 lock_page_cgroup(pc);
3028 ClearPageCgroupMigration(pc);
3029 unlock_page_cgroup(pc);
01b1ae63 3030
ac39cf8c
AM
3031 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3032
01b1ae63 3033 /*
ac39cf8c
AM
3034 * If a page is a file cache, radix-tree replacement is very atomic
3035 * and we can skip this check. When it was an Anon page, its mapcount
3036 * goes down to 0. But because we added MIGRATION flage, it's not
3037 * uncharged yet. There are several case but page->mapcount check
3038 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3039 * check. (see prepare_charge() also)
69029cd5 3040 */
ac39cf8c
AM
3041 if (PageAnon(used))
3042 mem_cgroup_uncharge_page(used);
88703267 3043 /*
ac39cf8c
AM
3044 * At migration, we may charge account against cgroup which has no
3045 * tasks.
88703267
KH
3046 * So, rmdir()->pre_destroy() can be called while we do this charge.
3047 * In that case, we need to call pre_destroy() again. check it here.
3048 */
3049 cgroup_release_and_wakeup_rmdir(&mem->css);
ae41be37 3050}
78fb7466 3051
c9b0ed51 3052/*
ae3abae6
DN
3053 * A call to try to shrink memory usage on charge failure at shmem's swapin.
3054 * Calling hierarchical_reclaim is not enough because we should update
3055 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
3056 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
3057 * not from the memcg which this page would be charged to.
3058 * try_charge_swapin does all of these works properly.
c9b0ed51 3059 */
ae3abae6 3060int mem_cgroup_shmem_charge_fallback(struct page *page,
b5a84319
KH
3061 struct mm_struct *mm,
3062 gfp_t gfp_mask)
c9b0ed51 3063{
56039efa 3064 struct mem_cgroup *mem;
ae3abae6 3065 int ret;
c9b0ed51 3066
f8d66542 3067 if (mem_cgroup_disabled())
cede86ac 3068 return 0;
c9b0ed51 3069
ae3abae6
DN
3070 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3071 if (!ret)
3072 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
c9b0ed51 3073
ae3abae6 3074 return ret;
c9b0ed51
KH
3075}
3076
f212ad7c
DN
3077#ifdef CONFIG_DEBUG_VM
3078static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3079{
3080 struct page_cgroup *pc;
3081
3082 pc = lookup_page_cgroup(page);
3083 if (likely(pc) && PageCgroupUsed(pc))
3084 return pc;
3085 return NULL;
3086}
3087
3088bool mem_cgroup_bad_page_check(struct page *page)
3089{
3090 if (mem_cgroup_disabled())
3091 return false;
3092
3093 return lookup_page_cgroup_used(page) != NULL;
3094}
3095
3096void mem_cgroup_print_bad_page(struct page *page)
3097{
3098 struct page_cgroup *pc;
3099
3100 pc = lookup_page_cgroup_used(page);
3101 if (pc) {
3102 int ret = -1;
3103 char *path;
3104
3105 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3106 pc, pc->flags, pc->mem_cgroup);
3107
3108 path = kmalloc(PATH_MAX, GFP_KERNEL);
3109 if (path) {
3110 rcu_read_lock();
3111 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3112 path, PATH_MAX);
3113 rcu_read_unlock();
3114 }
3115
3116 printk(KERN_CONT "(%s)\n",
3117 (ret < 0) ? "cannot get the path" : path);
3118 kfree(path);
3119 }
3120}
3121#endif
3122
8c7c6e34
KH
3123static DEFINE_MUTEX(set_limit_mutex);
3124
d38d2a75 3125static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 3126 unsigned long long val)
628f4235 3127{
81d39c20 3128 int retry_count;
3c11ecf4 3129 u64 memswlimit, memlimit;
628f4235 3130 int ret = 0;
81d39c20
KH
3131 int children = mem_cgroup_count_children(memcg);
3132 u64 curusage, oldusage;
3c11ecf4 3133 int enlarge;
81d39c20
KH
3134
3135 /*
3136 * For keeping hierarchical_reclaim simple, how long we should retry
3137 * is depends on callers. We set our retry-count to be function
3138 * of # of children which we should visit in this loop.
3139 */
3140 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3141
3142 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 3143
3c11ecf4 3144 enlarge = 0;
8c7c6e34 3145 while (retry_count) {
628f4235
KH
3146 if (signal_pending(current)) {
3147 ret = -EINTR;
3148 break;
3149 }
8c7c6e34
KH
3150 /*
3151 * Rather than hide all in some function, I do this in
3152 * open coded manner. You see what this really does.
3153 * We have to guarantee mem->res.limit < mem->memsw.limit.
3154 */
3155 mutex_lock(&set_limit_mutex);
3156 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3157 if (memswlimit < val) {
3158 ret = -EINVAL;
3159 mutex_unlock(&set_limit_mutex);
628f4235
KH
3160 break;
3161 }
3c11ecf4
KH
3162
3163 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3164 if (memlimit < val)
3165 enlarge = 1;
3166
8c7c6e34 3167 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
3168 if (!ret) {
3169 if (memswlimit == val)
3170 memcg->memsw_is_minimum = true;
3171 else
3172 memcg->memsw_is_minimum = false;
3173 }
8c7c6e34
KH
3174 mutex_unlock(&set_limit_mutex);
3175
3176 if (!ret)
3177 break;
3178
aa20d489 3179 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
4e416953 3180 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
3181 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3182 /* Usage is reduced ? */
3183 if (curusage >= oldusage)
3184 retry_count--;
3185 else
3186 oldusage = curusage;
8c7c6e34 3187 }
3c11ecf4
KH
3188 if (!ret && enlarge)
3189 memcg_oom_recover(memcg);
14797e23 3190
8c7c6e34
KH
3191 return ret;
3192}
3193
338c8431
LZ
3194static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3195 unsigned long long val)
8c7c6e34 3196{
81d39c20 3197 int retry_count;
3c11ecf4 3198 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
3199 int children = mem_cgroup_count_children(memcg);
3200 int ret = -EBUSY;
3c11ecf4 3201 int enlarge = 0;
8c7c6e34 3202
81d39c20
KH
3203 /* see mem_cgroup_resize_res_limit */
3204 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3205 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
3206 while (retry_count) {
3207 if (signal_pending(current)) {
3208 ret = -EINTR;
3209 break;
3210 }
3211 /*
3212 * Rather than hide all in some function, I do this in
3213 * open coded manner. You see what this really does.
3214 * We have to guarantee mem->res.limit < mem->memsw.limit.
3215 */
3216 mutex_lock(&set_limit_mutex);
3217 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3218 if (memlimit > val) {
3219 ret = -EINVAL;
3220 mutex_unlock(&set_limit_mutex);
3221 break;
3222 }
3c11ecf4
KH
3223 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3224 if (memswlimit < val)
3225 enlarge = 1;
8c7c6e34 3226 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
3227 if (!ret) {
3228 if (memlimit == val)
3229 memcg->memsw_is_minimum = true;
3230 else
3231 memcg->memsw_is_minimum = false;
3232 }
8c7c6e34
KH
3233 mutex_unlock(&set_limit_mutex);
3234
3235 if (!ret)
3236 break;
3237
4e416953 3238 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
75822b44
BS
3239 MEM_CGROUP_RECLAIM_NOSWAP |
3240 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 3241 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 3242 /* Usage is reduced ? */
8c7c6e34 3243 if (curusage >= oldusage)
628f4235 3244 retry_count--;
81d39c20
KH
3245 else
3246 oldusage = curusage;
628f4235 3247 }
3c11ecf4
KH
3248 if (!ret && enlarge)
3249 memcg_oom_recover(memcg);
628f4235
KH
3250 return ret;
3251}
3252
4e416953 3253unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
00918b6a 3254 gfp_t gfp_mask)
4e416953
BS
3255{
3256 unsigned long nr_reclaimed = 0;
3257 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3258 unsigned long reclaimed;
3259 int loop = 0;
3260 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 3261 unsigned long long excess;
4e416953
BS
3262
3263 if (order > 0)
3264 return 0;
3265
00918b6a 3266 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
3267 /*
3268 * This loop can run a while, specially if mem_cgroup's continuously
3269 * keep exceeding their soft limit and putting the system under
3270 * pressure
3271 */
3272 do {
3273 if (next_mz)
3274 mz = next_mz;
3275 else
3276 mz = mem_cgroup_largest_soft_limit_node(mctz);
3277 if (!mz)
3278 break;
3279
3280 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3281 gfp_mask,
3282 MEM_CGROUP_RECLAIM_SOFT);
3283 nr_reclaimed += reclaimed;
3284 spin_lock(&mctz->lock);
3285
3286 /*
3287 * If we failed to reclaim anything from this memory cgroup
3288 * it is time to move on to the next cgroup
3289 */
3290 next_mz = NULL;
3291 if (!reclaimed) {
3292 do {
3293 /*
3294 * Loop until we find yet another one.
3295 *
3296 * By the time we get the soft_limit lock
3297 * again, someone might have aded the
3298 * group back on the RB tree. Iterate to
3299 * make sure we get a different mem.
3300 * mem_cgroup_largest_soft_limit_node returns
3301 * NULL if no other cgroup is present on
3302 * the tree
3303 */
3304 next_mz =
3305 __mem_cgroup_largest_soft_limit_node(mctz);
3306 if (next_mz == mz) {
3307 css_put(&next_mz->mem->css);
3308 next_mz = NULL;
3309 } else /* next_mz == NULL or other memcg */
3310 break;
3311 } while (1);
3312 }
4e416953 3313 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
ef8745c1 3314 excess = res_counter_soft_limit_excess(&mz->mem->res);
4e416953
BS
3315 /*
3316 * One school of thought says that we should not add
3317 * back the node to the tree if reclaim returns 0.
3318 * But our reclaim could return 0, simply because due
3319 * to priority we are exposing a smaller subset of
3320 * memory to reclaim from. Consider this as a longer
3321 * term TODO.
3322 */
ef8745c1
KH
3323 /* If excess == 0, no tree ops */
3324 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
4e416953
BS
3325 spin_unlock(&mctz->lock);
3326 css_put(&mz->mem->css);
3327 loop++;
3328 /*
3329 * Could not reclaim anything and there are no more
3330 * mem cgroups to try or we seem to be looping without
3331 * reclaiming anything.
3332 */
3333 if (!nr_reclaimed &&
3334 (next_mz == NULL ||
3335 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3336 break;
3337 } while (!nr_reclaimed);
3338 if (next_mz)
3339 css_put(&next_mz->mem->css);
3340 return nr_reclaimed;
3341}
3342
cc847582
KH
3343/*
3344 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
3345 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3346 */
f817ed48 3347static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 3348 int node, int zid, enum lru_list lru)
cc847582 3349{
08e552c6
KH
3350 struct zone *zone;
3351 struct mem_cgroup_per_zone *mz;
f817ed48 3352 struct page_cgroup *pc, *busy;
08e552c6 3353 unsigned long flags, loop;
072c56c1 3354 struct list_head *list;
f817ed48 3355 int ret = 0;
072c56c1 3356
08e552c6
KH
3357 zone = &NODE_DATA(node)->node_zones[zid];
3358 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 3359 list = &mz->lists[lru];
cc847582 3360
f817ed48
KH
3361 loop = MEM_CGROUP_ZSTAT(mz, lru);
3362 /* give some margin against EBUSY etc...*/
3363 loop += 256;
3364 busy = NULL;
3365 while (loop--) {
5564e88b
JW
3366 struct page *page;
3367
f817ed48 3368 ret = 0;
08e552c6 3369 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 3370 if (list_empty(list)) {
08e552c6 3371 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 3372 break;
f817ed48
KH
3373 }
3374 pc = list_entry(list->prev, struct page_cgroup, lru);
3375 if (busy == pc) {
3376 list_move(&pc->lru, list);
648bcc77 3377 busy = NULL;
08e552c6 3378 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
3379 continue;
3380 }
08e552c6 3381 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 3382
6b3ae58e 3383 page = lookup_cgroup_page(pc);
5564e88b
JW
3384
3385 ret = mem_cgroup_move_parent(page, pc, mem, GFP_KERNEL);
f817ed48 3386 if (ret == -ENOMEM)
52d4b9ac 3387 break;
f817ed48
KH
3388
3389 if (ret == -EBUSY || ret == -EINVAL) {
3390 /* found lock contention or "pc" is obsolete. */
3391 busy = pc;
3392 cond_resched();
3393 } else
3394 busy = NULL;
cc847582 3395 }
08e552c6 3396
f817ed48
KH
3397 if (!ret && !list_empty(list))
3398 return -EBUSY;
3399 return ret;
cc847582
KH
3400}
3401
3402/*
3403 * make mem_cgroup's charge to be 0 if there is no task.
3404 * This enables deleting this mem_cgroup.
3405 */
c1e862c1 3406static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 3407{
f817ed48
KH
3408 int ret;
3409 int node, zid, shrink;
3410 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 3411 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 3412
cc847582 3413 css_get(&mem->css);
f817ed48
KH
3414
3415 shrink = 0;
c1e862c1
KH
3416 /* should free all ? */
3417 if (free_all)
3418 goto try_to_free;
f817ed48 3419move_account:
fce66477 3420 do {
f817ed48 3421 ret = -EBUSY;
c1e862c1
KH
3422 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3423 goto out;
3424 ret = -EINTR;
3425 if (signal_pending(current))
cc847582 3426 goto out;
52d4b9ac
KH
3427 /* This is for making all *used* pages to be on LRU. */
3428 lru_add_drain_all();
cdec2e42 3429 drain_all_stock_sync();
f817ed48 3430 ret = 0;
32047e2a 3431 mem_cgroup_start_move(mem);
299b4eaa 3432 for_each_node_state(node, N_HIGH_MEMORY) {
f817ed48 3433 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 3434 enum lru_list l;
f817ed48
KH
3435 for_each_lru(l) {
3436 ret = mem_cgroup_force_empty_list(mem,
08e552c6 3437 node, zid, l);
f817ed48
KH
3438 if (ret)
3439 break;
3440 }
1ecaab2b 3441 }
f817ed48
KH
3442 if (ret)
3443 break;
3444 }
32047e2a 3445 mem_cgroup_end_move(mem);
3c11ecf4 3446 memcg_oom_recover(mem);
f817ed48
KH
3447 /* it seems parent cgroup doesn't have enough mem */
3448 if (ret == -ENOMEM)
3449 goto try_to_free;
52d4b9ac 3450 cond_resched();
fce66477
DN
3451 /* "ret" should also be checked to ensure all lists are empty. */
3452 } while (mem->res.usage > 0 || ret);
cc847582
KH
3453out:
3454 css_put(&mem->css);
3455 return ret;
f817ed48
KH
3456
3457try_to_free:
c1e862c1
KH
3458 /* returns EBUSY if there is a task or if we come here twice. */
3459 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
3460 ret = -EBUSY;
3461 goto out;
3462 }
c1e862c1
KH
3463 /* we call try-to-free pages for make this cgroup empty */
3464 lru_add_drain_all();
f817ed48
KH
3465 /* try to free all pages in this cgroup */
3466 shrink = 1;
3467 while (nr_retries && mem->res.usage > 0) {
3468 int progress;
c1e862c1
KH
3469
3470 if (signal_pending(current)) {
3471 ret = -EINTR;
3472 goto out;
3473 }
a7885eb8
KM
3474 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3475 false, get_swappiness(mem));
c1e862c1 3476 if (!progress) {
f817ed48 3477 nr_retries--;
c1e862c1 3478 /* maybe some writeback is necessary */
8aa7e847 3479 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3480 }
f817ed48
KH
3481
3482 }
08e552c6 3483 lru_add_drain();
f817ed48 3484 /* try move_account...there may be some *locked* pages. */
fce66477 3485 goto move_account;
cc847582
KH
3486}
3487
c1e862c1
KH
3488int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3489{
3490 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3491}
3492
3493
18f59ea7
BS
3494static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3495{
3496 return mem_cgroup_from_cont(cont)->use_hierarchy;
3497}
3498
3499static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3500 u64 val)
3501{
3502 int retval = 0;
3503 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3504 struct cgroup *parent = cont->parent;
3505 struct mem_cgroup *parent_mem = NULL;
3506
3507 if (parent)
3508 parent_mem = mem_cgroup_from_cont(parent);
3509
3510 cgroup_lock();
3511 /*
af901ca1 3512 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3513 * in the child subtrees. If it is unset, then the change can
3514 * occur, provided the current cgroup has no children.
3515 *
3516 * For the root cgroup, parent_mem is NULL, we allow value to be
3517 * set if there are no children.
3518 */
3519 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3520 (val == 1 || val == 0)) {
3521 if (list_empty(&cont->children))
3522 mem->use_hierarchy = val;
3523 else
3524 retval = -EBUSY;
3525 } else
3526 retval = -EINVAL;
3527 cgroup_unlock();
3528
3529 return retval;
3530}
3531
0c3e73e8 3532
7a159cc9
JW
3533static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *mem,
3534 enum mem_cgroup_stat_index idx)
0c3e73e8 3535{
7d74b06f 3536 struct mem_cgroup *iter;
7a159cc9 3537 long val = 0;
0c3e73e8 3538
7a159cc9 3539 /* Per-cpu values can be negative, use a signed accumulator */
7d74b06f
KH
3540 for_each_mem_cgroup_tree(iter, mem)
3541 val += mem_cgroup_read_stat(iter, idx);
3542
3543 if (val < 0) /* race ? */
3544 val = 0;
3545 return val;
0c3e73e8
BS
3546}
3547
104f3928
KS
3548static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3549{
7d74b06f 3550 u64 val;
104f3928
KS
3551
3552 if (!mem_cgroup_is_root(mem)) {
3553 if (!swap)
3554 return res_counter_read_u64(&mem->res, RES_USAGE);
3555 else
3556 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3557 }
3558
7a159cc9
JW
3559 val = mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_CACHE);
3560 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_RSS);
104f3928 3561
7d74b06f 3562 if (swap)
7a159cc9 3563 val += mem_cgroup_recursive_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
104f3928
KS
3564
3565 return val << PAGE_SHIFT;
3566}
3567
2c3daa72 3568static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 3569{
8c7c6e34 3570 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
104f3928 3571 u64 val;
8c7c6e34
KH
3572 int type, name;
3573
3574 type = MEMFILE_TYPE(cft->private);
3575 name = MEMFILE_ATTR(cft->private);
3576 switch (type) {
3577 case _MEM:
104f3928
KS
3578 if (name == RES_USAGE)
3579 val = mem_cgroup_usage(mem, false);
3580 else
0c3e73e8 3581 val = res_counter_read_u64(&mem->res, name);
8c7c6e34
KH
3582 break;
3583 case _MEMSWAP:
104f3928
KS
3584 if (name == RES_USAGE)
3585 val = mem_cgroup_usage(mem, true);
3586 else
0c3e73e8 3587 val = res_counter_read_u64(&mem->memsw, name);
8c7c6e34
KH
3588 break;
3589 default:
3590 BUG();
3591 break;
3592 }
3593 return val;
8cdea7c0 3594}
628f4235
KH
3595/*
3596 * The user of this function is...
3597 * RES_LIMIT.
3598 */
856c13aa
PM
3599static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3600 const char *buffer)
8cdea7c0 3601{
628f4235 3602 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 3603 int type, name;
628f4235
KH
3604 unsigned long long val;
3605 int ret;
3606
8c7c6e34
KH
3607 type = MEMFILE_TYPE(cft->private);
3608 name = MEMFILE_ATTR(cft->private);
3609 switch (name) {
628f4235 3610 case RES_LIMIT:
4b3bde4c
BS
3611 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3612 ret = -EINVAL;
3613 break;
3614 }
628f4235
KH
3615 /* This function does all necessary parse...reuse it */
3616 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
3617 if (ret)
3618 break;
3619 if (type == _MEM)
628f4235 3620 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
3621 else
3622 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235 3623 break;
296c81d8
BS
3624 case RES_SOFT_LIMIT:
3625 ret = res_counter_memparse_write_strategy(buffer, &val);
3626 if (ret)
3627 break;
3628 /*
3629 * For memsw, soft limits are hard to implement in terms
3630 * of semantics, for now, we support soft limits for
3631 * control without swap
3632 */
3633 if (type == _MEM)
3634 ret = res_counter_set_soft_limit(&memcg->res, val);
3635 else
3636 ret = -EINVAL;
3637 break;
628f4235
KH
3638 default:
3639 ret = -EINVAL; /* should be BUG() ? */
3640 break;
3641 }
3642 return ret;
8cdea7c0
BS
3643}
3644
fee7b548
KH
3645static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3646 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3647{
3648 struct cgroup *cgroup;
3649 unsigned long long min_limit, min_memsw_limit, tmp;
3650
3651 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3652 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3653 cgroup = memcg->css.cgroup;
3654 if (!memcg->use_hierarchy)
3655 goto out;
3656
3657 while (cgroup->parent) {
3658 cgroup = cgroup->parent;
3659 memcg = mem_cgroup_from_cont(cgroup);
3660 if (!memcg->use_hierarchy)
3661 break;
3662 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3663 min_limit = min(min_limit, tmp);
3664 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3665 min_memsw_limit = min(min_memsw_limit, tmp);
3666 }
3667out:
3668 *mem_limit = min_limit;
3669 *memsw_limit = min_memsw_limit;
3670 return;
3671}
3672
29f2a4da 3673static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
3674{
3675 struct mem_cgroup *mem;
8c7c6e34 3676 int type, name;
c84872e1
PE
3677
3678 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
3679 type = MEMFILE_TYPE(event);
3680 name = MEMFILE_ATTR(event);
3681 switch (name) {
29f2a4da 3682 case RES_MAX_USAGE:
8c7c6e34
KH
3683 if (type == _MEM)
3684 res_counter_reset_max(&mem->res);
3685 else
3686 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
3687 break;
3688 case RES_FAILCNT:
8c7c6e34
KH
3689 if (type == _MEM)
3690 res_counter_reset_failcnt(&mem->res);
3691 else
3692 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
3693 break;
3694 }
f64c3f54 3695
85cc59db 3696 return 0;
c84872e1
PE
3697}
3698
7dc74be0
DN
3699static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3700 struct cftype *cft)
3701{
3702 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3703}
3704
02491447 3705#ifdef CONFIG_MMU
7dc74be0
DN
3706static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3707 struct cftype *cft, u64 val)
3708{
3709 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3710
3711 if (val >= (1 << NR_MOVE_TYPE))
3712 return -EINVAL;
3713 /*
3714 * We check this value several times in both in can_attach() and
3715 * attach(), so we need cgroup lock to prevent this value from being
3716 * inconsistent.
3717 */
3718 cgroup_lock();
3719 mem->move_charge_at_immigrate = val;
3720 cgroup_unlock();
3721
3722 return 0;
3723}
02491447
DN
3724#else
3725static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3726 struct cftype *cft, u64 val)
3727{
3728 return -ENOSYS;
3729}
3730#endif
7dc74be0 3731
14067bb3
KH
3732
3733/* For read statistics */
3734enum {
3735 MCS_CACHE,
3736 MCS_RSS,
d8046582 3737 MCS_FILE_MAPPED,
14067bb3
KH
3738 MCS_PGPGIN,
3739 MCS_PGPGOUT,
1dd3a273 3740 MCS_SWAP,
14067bb3
KH
3741 MCS_INACTIVE_ANON,
3742 MCS_ACTIVE_ANON,
3743 MCS_INACTIVE_FILE,
3744 MCS_ACTIVE_FILE,
3745 MCS_UNEVICTABLE,
3746 NR_MCS_STAT,
3747};
3748
3749struct mcs_total_stat {
3750 s64 stat[NR_MCS_STAT];
d2ceb9b7
KH
3751};
3752
14067bb3
KH
3753struct {
3754 char *local_name;
3755 char *total_name;
3756} memcg_stat_strings[NR_MCS_STAT] = {
3757 {"cache", "total_cache"},
3758 {"rss", "total_rss"},
d69b042f 3759 {"mapped_file", "total_mapped_file"},
14067bb3
KH
3760 {"pgpgin", "total_pgpgin"},
3761 {"pgpgout", "total_pgpgout"},
1dd3a273 3762 {"swap", "total_swap"},
14067bb3
KH
3763 {"inactive_anon", "total_inactive_anon"},
3764 {"active_anon", "total_active_anon"},
3765 {"inactive_file", "total_inactive_file"},
3766 {"active_file", "total_active_file"},
3767 {"unevictable", "total_unevictable"}
3768};
3769
3770
7d74b06f
KH
3771static void
3772mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
14067bb3 3773{
14067bb3
KH
3774 s64 val;
3775
3776 /* per cpu stat */
c62b1a3b 3777 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
14067bb3 3778 s->stat[MCS_CACHE] += val * PAGE_SIZE;
c62b1a3b 3779 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
14067bb3 3780 s->stat[MCS_RSS] += val * PAGE_SIZE;
c62b1a3b 3781 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
d8046582 3782 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
e9f8974f 3783 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGIN);
14067bb3 3784 s->stat[MCS_PGPGIN] += val;
e9f8974f 3785 val = mem_cgroup_read_events(mem, MEM_CGROUP_EVENTS_PGPGOUT);
14067bb3 3786 s->stat[MCS_PGPGOUT] += val;
1dd3a273 3787 if (do_swap_account) {
c62b1a3b 3788 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
1dd3a273
DN
3789 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3790 }
14067bb3
KH
3791
3792 /* per zone stat */
3793 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3794 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3795 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3796 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3797 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3798 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3799 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3800 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3801 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3802 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
14067bb3
KH
3803}
3804
3805static void
3806mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3807{
7d74b06f
KH
3808 struct mem_cgroup *iter;
3809
3810 for_each_mem_cgroup_tree(iter, mem)
3811 mem_cgroup_get_local_stat(iter, s);
14067bb3
KH
3812}
3813
c64745cf
PM
3814static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3815 struct cgroup_map_cb *cb)
d2ceb9b7 3816{
d2ceb9b7 3817 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
14067bb3 3818 struct mcs_total_stat mystat;
d2ceb9b7
KH
3819 int i;
3820
14067bb3
KH
3821 memset(&mystat, 0, sizeof(mystat));
3822 mem_cgroup_get_local_stat(mem_cont, &mystat);
d2ceb9b7 3823
1dd3a273
DN
3824 for (i = 0; i < NR_MCS_STAT; i++) {
3825 if (i == MCS_SWAP && !do_swap_account)
3826 continue;
14067bb3 3827 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
1dd3a273 3828 }
7b854121 3829
14067bb3 3830 /* Hierarchical information */
fee7b548
KH
3831 {
3832 unsigned long long limit, memsw_limit;
3833 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3834 cb->fill(cb, "hierarchical_memory_limit", limit);
3835 if (do_swap_account)
3836 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3837 }
7f016ee8 3838
14067bb3
KH
3839 memset(&mystat, 0, sizeof(mystat));
3840 mem_cgroup_get_total_stat(mem_cont, &mystat);
1dd3a273
DN
3841 for (i = 0; i < NR_MCS_STAT; i++) {
3842 if (i == MCS_SWAP && !do_swap_account)
3843 continue;
14067bb3 3844 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
1dd3a273 3845 }
14067bb3 3846
7f016ee8 3847#ifdef CONFIG_DEBUG_VM
c772be93 3848 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
7f016ee8
KM
3849
3850 {
3851 int nid, zid;
3852 struct mem_cgroup_per_zone *mz;
3853 unsigned long recent_rotated[2] = {0, 0};
3854 unsigned long recent_scanned[2] = {0, 0};
3855
3856 for_each_online_node(nid)
3857 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3858 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3859
3860 recent_rotated[0] +=
3861 mz->reclaim_stat.recent_rotated[0];
3862 recent_rotated[1] +=
3863 mz->reclaim_stat.recent_rotated[1];
3864 recent_scanned[0] +=
3865 mz->reclaim_stat.recent_scanned[0];
3866 recent_scanned[1] +=
3867 mz->reclaim_stat.recent_scanned[1];
3868 }
3869 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3870 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3871 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3872 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3873 }
3874#endif
3875
d2ceb9b7
KH
3876 return 0;
3877}
3878
a7885eb8
KM
3879static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3880{
3881 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3882
3883 return get_swappiness(memcg);
3884}
3885
3886static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3887 u64 val)
3888{
3889 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3890 struct mem_cgroup *parent;
068b38c1 3891
a7885eb8
KM
3892 if (val > 100)
3893 return -EINVAL;
3894
3895 if (cgrp->parent == NULL)
3896 return -EINVAL;
3897
3898 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1
LZ
3899
3900 cgroup_lock();
3901
a7885eb8
KM
3902 /* If under hierarchy, only empty-root can set this value */
3903 if ((parent->use_hierarchy) ||
068b38c1
LZ
3904 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3905 cgroup_unlock();
a7885eb8 3906 return -EINVAL;
068b38c1 3907 }
a7885eb8 3908
a7885eb8 3909 memcg->swappiness = val;
a7885eb8 3910
068b38c1
LZ
3911 cgroup_unlock();
3912
a7885eb8
KM
3913 return 0;
3914}
3915
2e72b634
KS
3916static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3917{
3918 struct mem_cgroup_threshold_ary *t;
3919 u64 usage;
3920 int i;
3921
3922 rcu_read_lock();
3923 if (!swap)
2c488db2 3924 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3925 else
2c488db2 3926 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3927
3928 if (!t)
3929 goto unlock;
3930
3931 usage = mem_cgroup_usage(memcg, swap);
3932
3933 /*
3934 * current_threshold points to threshold just below usage.
3935 * If it's not true, a threshold was crossed after last
3936 * call of __mem_cgroup_threshold().
3937 */
5407a562 3938 i = t->current_threshold;
2e72b634
KS
3939
3940 /*
3941 * Iterate backward over array of thresholds starting from
3942 * current_threshold and check if a threshold is crossed.
3943 * If none of thresholds below usage is crossed, we read
3944 * only one element of the array here.
3945 */
3946 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3947 eventfd_signal(t->entries[i].eventfd, 1);
3948
3949 /* i = current_threshold + 1 */
3950 i++;
3951
3952 /*
3953 * Iterate forward over array of thresholds starting from
3954 * current_threshold+1 and check if a threshold is crossed.
3955 * If none of thresholds above usage is crossed, we read
3956 * only one element of the array here.
3957 */
3958 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3959 eventfd_signal(t->entries[i].eventfd, 1);
3960
3961 /* Update current_threshold */
5407a562 3962 t->current_threshold = i - 1;
2e72b634
KS
3963unlock:
3964 rcu_read_unlock();
3965}
3966
3967static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3968{
ad4ca5f4
KS
3969 while (memcg) {
3970 __mem_cgroup_threshold(memcg, false);
3971 if (do_swap_account)
3972 __mem_cgroup_threshold(memcg, true);
3973
3974 memcg = parent_mem_cgroup(memcg);
3975 }
2e72b634
KS
3976}
3977
3978static int compare_thresholds(const void *a, const void *b)
3979{
3980 const struct mem_cgroup_threshold *_a = a;
3981 const struct mem_cgroup_threshold *_b = b;
3982
3983 return _a->threshold - _b->threshold;
3984}
3985
7d74b06f 3986static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
9490ff27
KH
3987{
3988 struct mem_cgroup_eventfd_list *ev;
3989
3990 list_for_each_entry(ev, &mem->oom_notify, list)
3991 eventfd_signal(ev->eventfd, 1);
3992 return 0;
3993}
3994
3995static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3996{
7d74b06f
KH
3997 struct mem_cgroup *iter;
3998
3999 for_each_mem_cgroup_tree(iter, mem)
4000 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
4001}
4002
4003static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4004 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
4005{
4006 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4007 struct mem_cgroup_thresholds *thresholds;
4008 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4009 int type = MEMFILE_TYPE(cft->private);
4010 u64 threshold, usage;
2c488db2 4011 int i, size, ret;
2e72b634
KS
4012
4013 ret = res_counter_memparse_write_strategy(args, &threshold);
4014 if (ret)
4015 return ret;
4016
4017 mutex_lock(&memcg->thresholds_lock);
2c488db2 4018
2e72b634 4019 if (type == _MEM)
2c488db2 4020 thresholds = &memcg->thresholds;
2e72b634 4021 else if (type == _MEMSWAP)
2c488db2 4022 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4023 else
4024 BUG();
4025
4026 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4027
4028 /* Check if a threshold crossed before adding a new one */
2c488db2 4029 if (thresholds->primary)
2e72b634
KS
4030 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4031
2c488db2 4032 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
4033
4034 /* Allocate memory for new array of thresholds */
2c488db2 4035 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 4036 GFP_KERNEL);
2c488db2 4037 if (!new) {
2e72b634
KS
4038 ret = -ENOMEM;
4039 goto unlock;
4040 }
2c488db2 4041 new->size = size;
2e72b634
KS
4042
4043 /* Copy thresholds (if any) to new array */
2c488db2
KS
4044 if (thresholds->primary) {
4045 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 4046 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
4047 }
4048
2e72b634 4049 /* Add new threshold */
2c488db2
KS
4050 new->entries[size - 1].eventfd = eventfd;
4051 new->entries[size - 1].threshold = threshold;
2e72b634
KS
4052
4053 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 4054 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
4055 compare_thresholds, NULL);
4056
4057 /* Find current threshold */
2c488db2 4058 new->current_threshold = -1;
2e72b634 4059 for (i = 0; i < size; i++) {
2c488db2 4060 if (new->entries[i].threshold < usage) {
2e72b634 4061 /*
2c488db2
KS
4062 * new->current_threshold will not be used until
4063 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
4064 * it here.
4065 */
2c488db2 4066 ++new->current_threshold;
2e72b634
KS
4067 }
4068 }
4069
2c488db2
KS
4070 /* Free old spare buffer and save old primary buffer as spare */
4071 kfree(thresholds->spare);
4072 thresholds->spare = thresholds->primary;
4073
4074 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4075
907860ed 4076 /* To be sure that nobody uses thresholds */
2e72b634
KS
4077 synchronize_rcu();
4078
2e72b634
KS
4079unlock:
4080 mutex_unlock(&memcg->thresholds_lock);
4081
4082 return ret;
4083}
4084
907860ed 4085static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 4086 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
4087{
4088 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
4089 struct mem_cgroup_thresholds *thresholds;
4090 struct mem_cgroup_threshold_ary *new;
2e72b634
KS
4091 int type = MEMFILE_TYPE(cft->private);
4092 u64 usage;
2c488db2 4093 int i, j, size;
2e72b634
KS
4094
4095 mutex_lock(&memcg->thresholds_lock);
4096 if (type == _MEM)
2c488db2 4097 thresholds = &memcg->thresholds;
2e72b634 4098 else if (type == _MEMSWAP)
2c488db2 4099 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
4100 else
4101 BUG();
4102
4103 /*
4104 * Something went wrong if we trying to unregister a threshold
4105 * if we don't have thresholds
4106 */
4107 BUG_ON(!thresholds);
4108
4109 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4110
4111 /* Check if a threshold crossed before removing */
4112 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4113
4114 /* Calculate new number of threshold */
2c488db2
KS
4115 size = 0;
4116 for (i = 0; i < thresholds->primary->size; i++) {
4117 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
4118 size++;
4119 }
4120
2c488db2 4121 new = thresholds->spare;
907860ed 4122
2e72b634
KS
4123 /* Set thresholds array to NULL if we don't have thresholds */
4124 if (!size) {
2c488db2
KS
4125 kfree(new);
4126 new = NULL;
907860ed 4127 goto swap_buffers;
2e72b634
KS
4128 }
4129
2c488db2 4130 new->size = size;
2e72b634
KS
4131
4132 /* Copy thresholds and find current threshold */
2c488db2
KS
4133 new->current_threshold = -1;
4134 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4135 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
4136 continue;
4137
2c488db2
KS
4138 new->entries[j] = thresholds->primary->entries[i];
4139 if (new->entries[j].threshold < usage) {
2e72b634 4140 /*
2c488db2 4141 * new->current_threshold will not be used
2e72b634
KS
4142 * until rcu_assign_pointer(), so it's safe to increment
4143 * it here.
4144 */
2c488db2 4145 ++new->current_threshold;
2e72b634
KS
4146 }
4147 j++;
4148 }
4149
907860ed 4150swap_buffers:
2c488db2
KS
4151 /* Swap primary and spare array */
4152 thresholds->spare = thresholds->primary;
4153 rcu_assign_pointer(thresholds->primary, new);
2e72b634 4154
907860ed 4155 /* To be sure that nobody uses thresholds */
2e72b634
KS
4156 synchronize_rcu();
4157
2e72b634 4158 mutex_unlock(&memcg->thresholds_lock);
2e72b634 4159}
c1e862c1 4160
9490ff27
KH
4161static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4162 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4163{
4164 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4165 struct mem_cgroup_eventfd_list *event;
4166 int type = MEMFILE_TYPE(cft->private);
4167
4168 BUG_ON(type != _OOM_TYPE);
4169 event = kmalloc(sizeof(*event), GFP_KERNEL);
4170 if (!event)
4171 return -ENOMEM;
4172
4173 mutex_lock(&memcg_oom_mutex);
4174
4175 event->eventfd = eventfd;
4176 list_add(&event->list, &memcg->oom_notify);
4177
4178 /* already in OOM ? */
4179 if (atomic_read(&memcg->oom_lock))
4180 eventfd_signal(eventfd, 1);
4181 mutex_unlock(&memcg_oom_mutex);
4182
4183 return 0;
4184}
4185
907860ed 4186static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
4187 struct cftype *cft, struct eventfd_ctx *eventfd)
4188{
4189 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4190 struct mem_cgroup_eventfd_list *ev, *tmp;
4191 int type = MEMFILE_TYPE(cft->private);
4192
4193 BUG_ON(type != _OOM_TYPE);
4194
4195 mutex_lock(&memcg_oom_mutex);
4196
4197 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4198 if (ev->eventfd == eventfd) {
4199 list_del(&ev->list);
4200 kfree(ev);
4201 }
4202 }
4203
4204 mutex_unlock(&memcg_oom_mutex);
9490ff27
KH
4205}
4206
3c11ecf4
KH
4207static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4208 struct cftype *cft, struct cgroup_map_cb *cb)
4209{
4210 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4211
4212 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4213
4214 if (atomic_read(&mem->oom_lock))
4215 cb->fill(cb, "under_oom", 1);
4216 else
4217 cb->fill(cb, "under_oom", 0);
4218 return 0;
4219}
4220
3c11ecf4
KH
4221static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4222 struct cftype *cft, u64 val)
4223{
4224 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4225 struct mem_cgroup *parent;
4226
4227 /* cannot set to root cgroup and only 0 and 1 are allowed */
4228 if (!cgrp->parent || !((val == 0) || (val == 1)))
4229 return -EINVAL;
4230
4231 parent = mem_cgroup_from_cont(cgrp->parent);
4232
4233 cgroup_lock();
4234 /* oom-kill-disable is a flag for subhierarchy. */
4235 if ((parent->use_hierarchy) ||
4236 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4237 cgroup_unlock();
4238 return -EINVAL;
4239 }
4240 mem->oom_kill_disable = val;
4d845ebf
KH
4241 if (!val)
4242 memcg_oom_recover(mem);
3c11ecf4
KH
4243 cgroup_unlock();
4244 return 0;
4245}
4246
8cdea7c0
BS
4247static struct cftype mem_cgroup_files[] = {
4248 {
0eea1030 4249 .name = "usage_in_bytes",
8c7c6e34 4250 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 4251 .read_u64 = mem_cgroup_read,
9490ff27
KH
4252 .register_event = mem_cgroup_usage_register_event,
4253 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 4254 },
c84872e1
PE
4255 {
4256 .name = "max_usage_in_bytes",
8c7c6e34 4257 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 4258 .trigger = mem_cgroup_reset,
c84872e1
PE
4259 .read_u64 = mem_cgroup_read,
4260 },
8cdea7c0 4261 {
0eea1030 4262 .name = "limit_in_bytes",
8c7c6e34 4263 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 4264 .write_string = mem_cgroup_write,
2c3daa72 4265 .read_u64 = mem_cgroup_read,
8cdea7c0 4266 },
296c81d8
BS
4267 {
4268 .name = "soft_limit_in_bytes",
4269 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4270 .write_string = mem_cgroup_write,
4271 .read_u64 = mem_cgroup_read,
4272 },
8cdea7c0
BS
4273 {
4274 .name = "failcnt",
8c7c6e34 4275 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 4276 .trigger = mem_cgroup_reset,
2c3daa72 4277 .read_u64 = mem_cgroup_read,
8cdea7c0 4278 },
d2ceb9b7
KH
4279 {
4280 .name = "stat",
c64745cf 4281 .read_map = mem_control_stat_show,
d2ceb9b7 4282 },
c1e862c1
KH
4283 {
4284 .name = "force_empty",
4285 .trigger = mem_cgroup_force_empty_write,
4286 },
18f59ea7
BS
4287 {
4288 .name = "use_hierarchy",
4289 .write_u64 = mem_cgroup_hierarchy_write,
4290 .read_u64 = mem_cgroup_hierarchy_read,
4291 },
a7885eb8
KM
4292 {
4293 .name = "swappiness",
4294 .read_u64 = mem_cgroup_swappiness_read,
4295 .write_u64 = mem_cgroup_swappiness_write,
4296 },
7dc74be0
DN
4297 {
4298 .name = "move_charge_at_immigrate",
4299 .read_u64 = mem_cgroup_move_charge_read,
4300 .write_u64 = mem_cgroup_move_charge_write,
4301 },
9490ff27
KH
4302 {
4303 .name = "oom_control",
3c11ecf4
KH
4304 .read_map = mem_cgroup_oom_control_read,
4305 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4306 .register_event = mem_cgroup_oom_register_event,
4307 .unregister_event = mem_cgroup_oom_unregister_event,
4308 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4309 },
8cdea7c0
BS
4310};
4311
8c7c6e34
KH
4312#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4313static struct cftype memsw_cgroup_files[] = {
4314 {
4315 .name = "memsw.usage_in_bytes",
4316 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4317 .read_u64 = mem_cgroup_read,
9490ff27
KH
4318 .register_event = mem_cgroup_usage_register_event,
4319 .unregister_event = mem_cgroup_usage_unregister_event,
8c7c6e34
KH
4320 },
4321 {
4322 .name = "memsw.max_usage_in_bytes",
4323 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4324 .trigger = mem_cgroup_reset,
4325 .read_u64 = mem_cgroup_read,
4326 },
4327 {
4328 .name = "memsw.limit_in_bytes",
4329 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4330 .write_string = mem_cgroup_write,
4331 .read_u64 = mem_cgroup_read,
4332 },
4333 {
4334 .name = "memsw.failcnt",
4335 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4336 .trigger = mem_cgroup_reset,
4337 .read_u64 = mem_cgroup_read,
4338 },
4339};
4340
4341static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4342{
4343 if (!do_swap_account)
4344 return 0;
4345 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4346 ARRAY_SIZE(memsw_cgroup_files));
4347};
4348#else
4349static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4350{
4351 return 0;
4352}
4353#endif
4354
6d12e2d8
KH
4355static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4356{
4357 struct mem_cgroup_per_node *pn;
1ecaab2b 4358 struct mem_cgroup_per_zone *mz;
b69408e8 4359 enum lru_list l;
41e3355d 4360 int zone, tmp = node;
1ecaab2b
KH
4361 /*
4362 * This routine is called against possible nodes.
4363 * But it's BUG to call kmalloc() against offline node.
4364 *
4365 * TODO: this routine can waste much memory for nodes which will
4366 * never be onlined. It's better to use memory hotplug callback
4367 * function.
4368 */
41e3355d
KH
4369 if (!node_state(node, N_NORMAL_MEMORY))
4370 tmp = -1;
17295c88 4371 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4372 if (!pn)
4373 return 1;
1ecaab2b 4374
6d12e2d8 4375 mem->info.nodeinfo[node] = pn;
1ecaab2b
KH
4376 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4377 mz = &pn->zoneinfo[zone];
b69408e8
CL
4378 for_each_lru(l)
4379 INIT_LIST_HEAD(&mz->lists[l]);
f64c3f54 4380 mz->usage_in_excess = 0;
4e416953
BS
4381 mz->on_tree = false;
4382 mz->mem = mem;
1ecaab2b 4383 }
6d12e2d8
KH
4384 return 0;
4385}
4386
1ecaab2b
KH
4387static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4388{
4389 kfree(mem->info.nodeinfo[node]);
4390}
4391
33327948
KH
4392static struct mem_cgroup *mem_cgroup_alloc(void)
4393{
4394 struct mem_cgroup *mem;
c62b1a3b 4395 int size = sizeof(struct mem_cgroup);
33327948 4396
c62b1a3b 4397 /* Can be very big if MAX_NUMNODES is very big */
c8dad2bb 4398 if (size < PAGE_SIZE)
17295c88 4399 mem = kzalloc(size, GFP_KERNEL);
33327948 4400 else
17295c88 4401 mem = vzalloc(size);
33327948 4402
e7bbcdf3
DC
4403 if (!mem)
4404 return NULL;
4405
c62b1a3b 4406 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
d2e61b8d
DC
4407 if (!mem->stat)
4408 goto out_free;
711d3d2c 4409 spin_lock_init(&mem->pcp_counter_lock);
33327948 4410 return mem;
d2e61b8d
DC
4411
4412out_free:
4413 if (size < PAGE_SIZE)
4414 kfree(mem);
4415 else
4416 vfree(mem);
4417 return NULL;
33327948
KH
4418}
4419
8c7c6e34
KH
4420/*
4421 * At destroying mem_cgroup, references from swap_cgroup can remain.
4422 * (scanning all at force_empty is too costly...)
4423 *
4424 * Instead of clearing all references at force_empty, we remember
4425 * the number of reference from swap_cgroup and free mem_cgroup when
4426 * it goes down to 0.
4427 *
8c7c6e34
KH
4428 * Removal of cgroup itself succeeds regardless of refs from swap.
4429 */
4430
a7ba0eef 4431static void __mem_cgroup_free(struct mem_cgroup *mem)
33327948 4432{
08e552c6
KH
4433 int node;
4434
f64c3f54 4435 mem_cgroup_remove_from_trees(mem);
04046e1a
KH
4436 free_css_id(&mem_cgroup_subsys, &mem->css);
4437
08e552c6
KH
4438 for_each_node_state(node, N_POSSIBLE)
4439 free_mem_cgroup_per_zone_info(mem, node);
4440
c62b1a3b
KH
4441 free_percpu(mem->stat);
4442 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
33327948
KH
4443 kfree(mem);
4444 else
4445 vfree(mem);
4446}
4447
8c7c6e34
KH
4448static void mem_cgroup_get(struct mem_cgroup *mem)
4449{
4450 atomic_inc(&mem->refcnt);
4451}
4452
483c30b5 4453static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
8c7c6e34 4454{
483c30b5 4455 if (atomic_sub_and_test(count, &mem->refcnt)) {
7bcc1bb1 4456 struct mem_cgroup *parent = parent_mem_cgroup(mem);
a7ba0eef 4457 __mem_cgroup_free(mem);
7bcc1bb1
DN
4458 if (parent)
4459 mem_cgroup_put(parent);
4460 }
8c7c6e34
KH
4461}
4462
483c30b5
DN
4463static void mem_cgroup_put(struct mem_cgroup *mem)
4464{
4465 __mem_cgroup_put(mem, 1);
4466}
4467
7bcc1bb1
DN
4468/*
4469 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4470 */
4471static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4472{
4473 if (!mem->res.parent)
4474 return NULL;
4475 return mem_cgroup_from_res_counter(mem->res.parent, res);
4476}
33327948 4477
c077719b
KH
4478#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4479static void __init enable_swap_cgroup(void)
4480{
f8d66542 4481 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
4482 do_swap_account = 1;
4483}
4484#else
4485static void __init enable_swap_cgroup(void)
4486{
4487}
4488#endif
4489
f64c3f54
BS
4490static int mem_cgroup_soft_limit_tree_init(void)
4491{
4492 struct mem_cgroup_tree_per_node *rtpn;
4493 struct mem_cgroup_tree_per_zone *rtpz;
4494 int tmp, node, zone;
4495
4496 for_each_node_state(node, N_POSSIBLE) {
4497 tmp = node;
4498 if (!node_state(node, N_NORMAL_MEMORY))
4499 tmp = -1;
4500 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4501 if (!rtpn)
4502 return 1;
4503
4504 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4505
4506 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4507 rtpz = &rtpn->rb_tree_per_zone[zone];
4508 rtpz->rb_root = RB_ROOT;
4509 spin_lock_init(&rtpz->lock);
4510 }
4511 }
4512 return 0;
4513}
4514
0eb253e2 4515static struct cgroup_subsys_state * __ref
8cdea7c0
BS
4516mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4517{
28dbc4b6 4518 struct mem_cgroup *mem, *parent;
04046e1a 4519 long error = -ENOMEM;
6d12e2d8 4520 int node;
8cdea7c0 4521
c8dad2bb
JB
4522 mem = mem_cgroup_alloc();
4523 if (!mem)
04046e1a 4524 return ERR_PTR(error);
78fb7466 4525
6d12e2d8
KH
4526 for_each_node_state(node, N_POSSIBLE)
4527 if (alloc_mem_cgroup_per_zone_info(mem, node))
4528 goto free_out;
f64c3f54 4529
c077719b 4530 /* root ? */
28dbc4b6 4531 if (cont->parent == NULL) {
cdec2e42 4532 int cpu;
c077719b 4533 enable_swap_cgroup();
28dbc4b6 4534 parent = NULL;
4b3bde4c 4535 root_mem_cgroup = mem;
f64c3f54
BS
4536 if (mem_cgroup_soft_limit_tree_init())
4537 goto free_out;
cdec2e42
KH
4538 for_each_possible_cpu(cpu) {
4539 struct memcg_stock_pcp *stock =
4540 &per_cpu(memcg_stock, cpu);
4541 INIT_WORK(&stock->work, drain_local_stock);
4542 }
711d3d2c 4543 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
18f59ea7 4544 } else {
28dbc4b6 4545 parent = mem_cgroup_from_cont(cont->parent);
18f59ea7 4546 mem->use_hierarchy = parent->use_hierarchy;
3c11ecf4 4547 mem->oom_kill_disable = parent->oom_kill_disable;
18f59ea7 4548 }
28dbc4b6 4549
18f59ea7
BS
4550 if (parent && parent->use_hierarchy) {
4551 res_counter_init(&mem->res, &parent->res);
4552 res_counter_init(&mem->memsw, &parent->memsw);
7bcc1bb1
DN
4553 /*
4554 * We increment refcnt of the parent to ensure that we can
4555 * safely access it on res_counter_charge/uncharge.
4556 * This refcnt will be decremented when freeing this
4557 * mem_cgroup(see mem_cgroup_put).
4558 */
4559 mem_cgroup_get(parent);
18f59ea7
BS
4560 } else {
4561 res_counter_init(&mem->res, NULL);
4562 res_counter_init(&mem->memsw, NULL);
4563 }
04046e1a 4564 mem->last_scanned_child = 0;
9490ff27 4565 INIT_LIST_HEAD(&mem->oom_notify);
6d61ef40 4566
a7885eb8
KM
4567 if (parent)
4568 mem->swappiness = get_swappiness(parent);
a7ba0eef 4569 atomic_set(&mem->refcnt, 1);
7dc74be0 4570 mem->move_charge_at_immigrate = 0;
2e72b634 4571 mutex_init(&mem->thresholds_lock);
8cdea7c0 4572 return &mem->css;
6d12e2d8 4573free_out:
a7ba0eef 4574 __mem_cgroup_free(mem);
4b3bde4c 4575 root_mem_cgroup = NULL;
04046e1a 4576 return ERR_PTR(error);
8cdea7c0
BS
4577}
4578
ec64f515 4579static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
df878fb0
KH
4580 struct cgroup *cont)
4581{
4582 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
ec64f515
KH
4583
4584 return mem_cgroup_force_empty(mem, false);
df878fb0
KH
4585}
4586
8cdea7c0
BS
4587static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4588 struct cgroup *cont)
4589{
c268e994 4590 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
c268e994 4591
c268e994 4592 mem_cgroup_put(mem);
8cdea7c0
BS
4593}
4594
4595static int mem_cgroup_populate(struct cgroup_subsys *ss,
4596 struct cgroup *cont)
4597{
8c7c6e34
KH
4598 int ret;
4599
4600 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4601 ARRAY_SIZE(mem_cgroup_files));
4602
4603 if (!ret)
4604 ret = register_memsw_files(cont, ss);
4605 return ret;
8cdea7c0
BS
4606}
4607
02491447 4608#ifdef CONFIG_MMU
7dc74be0 4609/* Handlers for move charge at task migration. */
854ffa8d
DN
4610#define PRECHARGE_COUNT_AT_ONCE 256
4611static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4612{
854ffa8d
DN
4613 int ret = 0;
4614 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4ffef5fe
DN
4615 struct mem_cgroup *mem = mc.to;
4616
854ffa8d
DN
4617 if (mem_cgroup_is_root(mem)) {
4618 mc.precharge += count;
4619 /* we don't need css_get for root */
4620 return ret;
4621 }
4622 /* try to charge at once */
4623 if (count > 1) {
4624 struct res_counter *dummy;
4625 /*
4626 * "mem" cannot be under rmdir() because we've already checked
4627 * by cgroup_lock_live_cgroup() that it is not removed and we
4628 * are still under the same cgroup_mutex. So we can postpone
4629 * css_get().
4630 */
4631 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4632 goto one_by_one;
4633 if (do_swap_account && res_counter_charge(&mem->memsw,
4634 PAGE_SIZE * count, &dummy)) {
4635 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4636 goto one_by_one;
4637 }
4638 mc.precharge += count;
854ffa8d
DN
4639 return ret;
4640 }
4641one_by_one:
4642 /* fall back to one by one charge */
4643 while (count--) {
4644 if (signal_pending(current)) {
4645 ret = -EINTR;
4646 break;
4647 }
4648 if (!batch_count--) {
4649 batch_count = PRECHARGE_COUNT_AT_ONCE;
4650 cond_resched();
4651 }
7ec99d62 4652 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, 1, &mem, false);
854ffa8d
DN
4653 if (ret || !mem)
4654 /* mem_cgroup_clear_mc() will do uncharge later */
4655 return -ENOMEM;
4656 mc.precharge++;
4657 }
4ffef5fe
DN
4658 return ret;
4659}
4660
4661/**
4662 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4663 * @vma: the vma the pte to be checked belongs
4664 * @addr: the address corresponding to the pte to be checked
4665 * @ptent: the pte to be checked
02491447 4666 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4667 *
4668 * Returns
4669 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4670 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4671 * move charge. if @target is not NULL, the page is stored in target->page
4672 * with extra refcnt got(Callers should handle it).
02491447
DN
4673 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4674 * target for charge migration. if @target is not NULL, the entry is stored
4675 * in target->ent.
4ffef5fe
DN
4676 *
4677 * Called with pte lock held.
4678 */
4ffef5fe
DN
4679union mc_target {
4680 struct page *page;
02491447 4681 swp_entry_t ent;
4ffef5fe
DN
4682};
4683
4ffef5fe
DN
4684enum mc_target_type {
4685 MC_TARGET_NONE, /* not used */
4686 MC_TARGET_PAGE,
02491447 4687 MC_TARGET_SWAP,
4ffef5fe
DN
4688};
4689
90254a65
DN
4690static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4691 unsigned long addr, pte_t ptent)
4ffef5fe 4692{
90254a65 4693 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4694
90254a65
DN
4695 if (!page || !page_mapped(page))
4696 return NULL;
4697 if (PageAnon(page)) {
4698 /* we don't move shared anon */
4699 if (!move_anon() || page_mapcount(page) > 2)
4700 return NULL;
87946a72
DN
4701 } else if (!move_file())
4702 /* we ignore mapcount for file pages */
90254a65
DN
4703 return NULL;
4704 if (!get_page_unless_zero(page))
4705 return NULL;
4706
4707 return page;
4708}
4709
4710static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4711 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4712{
4713 int usage_count;
4714 struct page *page = NULL;
4715 swp_entry_t ent = pte_to_swp_entry(ptent);
4716
4717 if (!move_anon() || non_swap_entry(ent))
4718 return NULL;
4719 usage_count = mem_cgroup_count_swap_user(ent, &page);
4720 if (usage_count > 1) { /* we don't move shared anon */
02491447
DN
4721 if (page)
4722 put_page(page);
90254a65 4723 return NULL;
02491447 4724 }
90254a65
DN
4725 if (do_swap_account)
4726 entry->val = ent.val;
4727
4728 return page;
4729}
4730
87946a72
DN
4731static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4732 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4733{
4734 struct page *page = NULL;
4735 struct inode *inode;
4736 struct address_space *mapping;
4737 pgoff_t pgoff;
4738
4739 if (!vma->vm_file) /* anonymous vma */
4740 return NULL;
4741 if (!move_file())
4742 return NULL;
4743
4744 inode = vma->vm_file->f_path.dentry->d_inode;
4745 mapping = vma->vm_file->f_mapping;
4746 if (pte_none(ptent))
4747 pgoff = linear_page_index(vma, addr);
4748 else /* pte_file(ptent) is true */
4749 pgoff = pte_to_pgoff(ptent);
4750
4751 /* page is moved even if it's not RSS of this task(page-faulted). */
4752 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4753 page = find_get_page(mapping, pgoff);
4754 } else { /* shmem/tmpfs file. we should take account of swap too. */
4755 swp_entry_t ent;
4756 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4757 if (do_swap_account)
4758 entry->val = ent.val;
4759 }
4760
4761 return page;
4762}
4763
90254a65
DN
4764static int is_target_pte_for_mc(struct vm_area_struct *vma,
4765 unsigned long addr, pte_t ptent, union mc_target *target)
4766{
4767 struct page *page = NULL;
4768 struct page_cgroup *pc;
4769 int ret = 0;
4770 swp_entry_t ent = { .val = 0 };
4771
4772 if (pte_present(ptent))
4773 page = mc_handle_present_pte(vma, addr, ptent);
4774 else if (is_swap_pte(ptent))
4775 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
4776 else if (pte_none(ptent) || pte_file(ptent))
4777 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4778
4779 if (!page && !ent.val)
4780 return 0;
02491447
DN
4781 if (page) {
4782 pc = lookup_page_cgroup(page);
4783 /*
4784 * Do only loose check w/o page_cgroup lock.
4785 * mem_cgroup_move_account() checks the pc is valid or not under
4786 * the lock.
4787 */
4788 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4789 ret = MC_TARGET_PAGE;
4790 if (target)
4791 target->page = page;
4792 }
4793 if (!ret || !target)
4794 put_page(page);
4795 }
90254a65
DN
4796 /* There is a swap entry and a page doesn't exist or isn't charged */
4797 if (ent.val && !ret &&
7f0f1546
KH
4798 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4799 ret = MC_TARGET_SWAP;
4800 if (target)
4801 target->ent = ent;
4ffef5fe 4802 }
4ffef5fe
DN
4803 return ret;
4804}
4805
4806static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4807 unsigned long addr, unsigned long end,
4808 struct mm_walk *walk)
4809{
4810 struct vm_area_struct *vma = walk->private;
4811 pte_t *pte;
4812 spinlock_t *ptl;
4813
03319327
DH
4814 split_huge_page_pmd(walk->mm, pmd);
4815
4ffef5fe
DN
4816 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4817 for (; addr != end; pte++, addr += PAGE_SIZE)
4818 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4819 mc.precharge++; /* increment precharge temporarily */
4820 pte_unmap_unlock(pte - 1, ptl);
4821 cond_resched();
4822
7dc74be0
DN
4823 return 0;
4824}
4825
4ffef5fe
DN
4826static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4827{
4828 unsigned long precharge;
4829 struct vm_area_struct *vma;
4830
dfe076b0 4831 down_read(&mm->mmap_sem);
4ffef5fe
DN
4832 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4833 struct mm_walk mem_cgroup_count_precharge_walk = {
4834 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4835 .mm = mm,
4836 .private = vma,
4837 };
4838 if (is_vm_hugetlb_page(vma))
4839 continue;
4ffef5fe
DN
4840 walk_page_range(vma->vm_start, vma->vm_end,
4841 &mem_cgroup_count_precharge_walk);
4842 }
dfe076b0 4843 up_read(&mm->mmap_sem);
4ffef5fe
DN
4844
4845 precharge = mc.precharge;
4846 mc.precharge = 0;
4847
4848 return precharge;
4849}
4850
4ffef5fe
DN
4851static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4852{
dfe076b0
DN
4853 unsigned long precharge = mem_cgroup_count_precharge(mm);
4854
4855 VM_BUG_ON(mc.moving_task);
4856 mc.moving_task = current;
4857 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4858}
4859
dfe076b0
DN
4860/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4861static void __mem_cgroup_clear_mc(void)
4ffef5fe 4862{
2bd9bb20
KH
4863 struct mem_cgroup *from = mc.from;
4864 struct mem_cgroup *to = mc.to;
4865
4ffef5fe 4866 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
4867 if (mc.precharge) {
4868 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4869 mc.precharge = 0;
4870 }
4871 /*
4872 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4873 * we must uncharge here.
4874 */
4875 if (mc.moved_charge) {
4876 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4877 mc.moved_charge = 0;
4ffef5fe 4878 }
483c30b5
DN
4879 /* we must fixup refcnts and charges */
4880 if (mc.moved_swap) {
483c30b5
DN
4881 /* uncharge swap account from the old cgroup */
4882 if (!mem_cgroup_is_root(mc.from))
4883 res_counter_uncharge(&mc.from->memsw,
4884 PAGE_SIZE * mc.moved_swap);
4885 __mem_cgroup_put(mc.from, mc.moved_swap);
4886
4887 if (!mem_cgroup_is_root(mc.to)) {
4888 /*
4889 * we charged both to->res and to->memsw, so we should
4890 * uncharge to->res.
4891 */
4892 res_counter_uncharge(&mc.to->res,
4893 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
4894 }
4895 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
4896 mc.moved_swap = 0;
4897 }
dfe076b0
DN
4898 memcg_oom_recover(from);
4899 memcg_oom_recover(to);
4900 wake_up_all(&mc.waitq);
4901}
4902
4903static void mem_cgroup_clear_mc(void)
4904{
4905 struct mem_cgroup *from = mc.from;
4906
4907 /*
4908 * we must clear moving_task before waking up waiters at the end of
4909 * task migration.
4910 */
4911 mc.moving_task = NULL;
4912 __mem_cgroup_clear_mc();
2bd9bb20 4913 spin_lock(&mc.lock);
4ffef5fe
DN
4914 mc.from = NULL;
4915 mc.to = NULL;
2bd9bb20 4916 spin_unlock(&mc.lock);
32047e2a 4917 mem_cgroup_end_move(from);
4ffef5fe
DN
4918}
4919
7dc74be0
DN
4920static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4921 struct cgroup *cgroup,
4922 struct task_struct *p,
4923 bool threadgroup)
4924{
4925 int ret = 0;
4926 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4927
4928 if (mem->move_charge_at_immigrate) {
4929 struct mm_struct *mm;
4930 struct mem_cgroup *from = mem_cgroup_from_task(p);
4931
4932 VM_BUG_ON(from == mem);
4933
4934 mm = get_task_mm(p);
4935 if (!mm)
4936 return 0;
7dc74be0 4937 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
4938 if (mm->owner == p) {
4939 VM_BUG_ON(mc.from);
4940 VM_BUG_ON(mc.to);
4941 VM_BUG_ON(mc.precharge);
854ffa8d 4942 VM_BUG_ON(mc.moved_charge);
483c30b5 4943 VM_BUG_ON(mc.moved_swap);
32047e2a 4944 mem_cgroup_start_move(from);
2bd9bb20 4945 spin_lock(&mc.lock);
4ffef5fe
DN
4946 mc.from = from;
4947 mc.to = mem;
2bd9bb20 4948 spin_unlock(&mc.lock);
dfe076b0 4949 /* We set mc.moving_task later */
4ffef5fe
DN
4950
4951 ret = mem_cgroup_precharge_mc(mm);
4952 if (ret)
4953 mem_cgroup_clear_mc();
dfe076b0
DN
4954 }
4955 mmput(mm);
7dc74be0
DN
4956 }
4957 return ret;
4958}
4959
4960static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4961 struct cgroup *cgroup,
4962 struct task_struct *p,
4963 bool threadgroup)
4964{
4ffef5fe 4965 mem_cgroup_clear_mc();
7dc74be0
DN
4966}
4967
4ffef5fe
DN
4968static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4969 unsigned long addr, unsigned long end,
4970 struct mm_walk *walk)
7dc74be0 4971{
4ffef5fe
DN
4972 int ret = 0;
4973 struct vm_area_struct *vma = walk->private;
4974 pte_t *pte;
4975 spinlock_t *ptl;
4976
03319327 4977 split_huge_page_pmd(walk->mm, pmd);
4ffef5fe
DN
4978retry:
4979 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4980 for (; addr != end; addr += PAGE_SIZE) {
4981 pte_t ptent = *(pte++);
4982 union mc_target target;
4983 int type;
4984 struct page *page;
4985 struct page_cgroup *pc;
02491447 4986 swp_entry_t ent;
4ffef5fe
DN
4987
4988 if (!mc.precharge)
4989 break;
4990
4991 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4992 switch (type) {
4993 case MC_TARGET_PAGE:
4994 page = target.page;
4995 if (isolate_lru_page(page))
4996 goto put;
4997 pc = lookup_page_cgroup(page);
7ec99d62
JW
4998 if (!mem_cgroup_move_account(page, 1, pc,
4999 mc.from, mc.to, false)) {
4ffef5fe 5000 mc.precharge--;
854ffa8d
DN
5001 /* we uncharge from mc.from later. */
5002 mc.moved_charge++;
4ffef5fe
DN
5003 }
5004 putback_lru_page(page);
5005put: /* is_target_pte_for_mc() gets the page */
5006 put_page(page);
5007 break;
02491447
DN
5008 case MC_TARGET_SWAP:
5009 ent = target.ent;
483c30b5
DN
5010 if (!mem_cgroup_move_swap_account(ent,
5011 mc.from, mc.to, false)) {
02491447 5012 mc.precharge--;
483c30b5
DN
5013 /* we fixup refcnts and charges later. */
5014 mc.moved_swap++;
5015 }
02491447 5016 break;
4ffef5fe
DN
5017 default:
5018 break;
5019 }
5020 }
5021 pte_unmap_unlock(pte - 1, ptl);
5022 cond_resched();
5023
5024 if (addr != end) {
5025 /*
5026 * We have consumed all precharges we got in can_attach().
5027 * We try charge one by one, but don't do any additional
5028 * charges to mc.to if we have failed in charge once in attach()
5029 * phase.
5030 */
854ffa8d 5031 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5032 if (!ret)
5033 goto retry;
5034 }
5035
5036 return ret;
5037}
5038
5039static void mem_cgroup_move_charge(struct mm_struct *mm)
5040{
5041 struct vm_area_struct *vma;
5042
5043 lru_add_drain_all();
dfe076b0
DN
5044retry:
5045 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5046 /*
5047 * Someone who are holding the mmap_sem might be waiting in
5048 * waitq. So we cancel all extra charges, wake up all waiters,
5049 * and retry. Because we cancel precharges, we might not be able
5050 * to move enough charges, but moving charge is a best-effort
5051 * feature anyway, so it wouldn't be a big problem.
5052 */
5053 __mem_cgroup_clear_mc();
5054 cond_resched();
5055 goto retry;
5056 }
4ffef5fe
DN
5057 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5058 int ret;
5059 struct mm_walk mem_cgroup_move_charge_walk = {
5060 .pmd_entry = mem_cgroup_move_charge_pte_range,
5061 .mm = mm,
5062 .private = vma,
5063 };
5064 if (is_vm_hugetlb_page(vma))
5065 continue;
4ffef5fe
DN
5066 ret = walk_page_range(vma->vm_start, vma->vm_end,
5067 &mem_cgroup_move_charge_walk);
5068 if (ret)
5069 /*
5070 * means we have consumed all precharges and failed in
5071 * doing additional charge. Just abandon here.
5072 */
5073 break;
5074 }
dfe076b0 5075 up_read(&mm->mmap_sem);
7dc74be0
DN
5076}
5077
67e465a7
BS
5078static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5079 struct cgroup *cont,
5080 struct cgroup *old_cont,
be367d09
BB
5081 struct task_struct *p,
5082 bool threadgroup)
67e465a7 5083{
dfe076b0
DN
5084 struct mm_struct *mm;
5085
5086 if (!mc.to)
4ffef5fe
DN
5087 /* no need to move charge */
5088 return;
5089
dfe076b0
DN
5090 mm = get_task_mm(p);
5091 if (mm) {
5092 mem_cgroup_move_charge(mm);
5093 mmput(mm);
5094 }
4ffef5fe 5095 mem_cgroup_clear_mc();
67e465a7 5096}
5cfb80a7
DN
5097#else /* !CONFIG_MMU */
5098static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5099 struct cgroup *cgroup,
5100 struct task_struct *p,
5101 bool threadgroup)
5102{
5103 return 0;
5104}
5105static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5106 struct cgroup *cgroup,
5107 struct task_struct *p,
5108 bool threadgroup)
5109{
5110}
5111static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5112 struct cgroup *cont,
5113 struct cgroup *old_cont,
5114 struct task_struct *p,
5115 bool threadgroup)
5116{
5117}
5118#endif
67e465a7 5119
8cdea7c0
BS
5120struct cgroup_subsys mem_cgroup_subsys = {
5121 .name = "memory",
5122 .subsys_id = mem_cgroup_subsys_id,
5123 .create = mem_cgroup_create,
df878fb0 5124 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
5125 .destroy = mem_cgroup_destroy,
5126 .populate = mem_cgroup_populate,
7dc74be0
DN
5127 .can_attach = mem_cgroup_can_attach,
5128 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5129 .attach = mem_cgroup_move_task,
6d12e2d8 5130 .early_init = 0,
04046e1a 5131 .use_id = 1,
8cdea7c0 5132};
c077719b
KH
5133
5134#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
a42c390c
MH
5135static int __init enable_swap_account(char *s)
5136{
5137 /* consider enabled if no parameter or 1 is given */
fceda1bf 5138 if (!(*s) || !strcmp(s, "=1"))
a42c390c 5139 really_do_swap_account = 1;
fceda1bf 5140 else if (!strcmp(s, "=0"))
a42c390c
MH
5141 really_do_swap_account = 0;
5142 return 1;
5143}
5144__setup("swapaccount", enable_swap_account);
c077719b
KH
5145
5146static int __init disable_swap_account(char *s)
5147{
552b372b 5148 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
fceda1bf 5149 enable_swap_account("=0");
c077719b
KH
5150 return 1;
5151}
5152__setup("noswapaccount", disable_swap_account);
5153#endif